

 [image: UNIX Power Tools, 3rd Edition]

 UNIX Power Tools, 3rd Edition

Jerry Peek

Shelley Powers

Tim O’Reilly

Mike Loukides

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files

Supplemental files and examples for this book can be found at http://examples.oreilly.com/9780596003302/. Please use a standard desktop web browser to access these files, as they may not be accessible from all ereader devices.
All code files or examples referenced in the book will be available online. For physical books that ship with an accompanying disc, whenever possible, we’ve posted all CD/DVD content. Note that while we provide as much of the media content as we are able via free download, we are sometimes limited by licensing restrictions. Please direct any questions or concerns to booktech@oreilly.com.

How to Use This Book

This section refers to conventions used in the print book and explains how they were
 modified for the Safari version. The numbers in the following images correspond to the
 list below.

[image: image with no caption]

	Summary Boxes. You’ll see gray shaded summary
 boxes all through the book. (On Safari, the Summary Boxes are bordered sidebars
 with the title “Summary Box.”) They summarize a topic and point you to articles
 with examples and further explanation.

	Article/Section Number. The first two digits
 indicate in which chapter the article resides; the last two digits indicate the
 number of the article within that chapter. The article number is used to refer
 to this article in all cross-references throughout the book. (On Safari, Article
 numbers correspond to Section numbers.)

	Cross-Reference in a Sentence. To find out
 more about the topic displayed in gray type (On Safari, this text is displayed
 in boldface.), see the article referenced by the number in parentheses
 immediately following the term.

	Cross-Reference in a Code Example. When a
 cross-reference occurs in an example, the cross-referenced text and related
 article number appear in the left margin. (On Safari, these cross-references
 appear above the code example.)

[image: image with no caption]

	Globe If you don’t want to type this script
 into a file yourself, or if we’re talking about a C program that isn’t shown,
 you can download it from the book’s web site. See the Preface for full details
 on the content available for download. (Online version available at http://examples.oreilly.com/upt3)

	Screw. Be careful with this feature, or you
 might get screwed.

[image: image with no caption]

	Pushpin. A note to keep in mind, or a helpful
 tip.

	Bomb. A bomb icon in the margin is a
 cross-reference to another article that explains the possible trouble you might
 encounter using the tip or script in the current article. (You can think of the
 bomb as a cross-referenced screw.) (On Safari, the Bomb appears above the
 paragraph it refers to.)

	Author’s Initials. The author’s full name is
 listed in the Preface.

Preface

A Book for Browsing

Technical books can be boring. But this is not an ordinary technical book! This
 book is like an almanac, a news magazine, and a hypertext database all rolled into
 one. Instead of trying to put the topics in perfect order — and expecting you to
 start at the beginning, then read through to the end — we hope that you’ll browse.
 Start anywhere. Read what you want. (That’s not quite true. First, you should read
 this Preface and the pages before it titled How to Use This
 Book. They will help you get the most out of your time with this
 book. Next, you may want to skim through the Unix fundamentals in Chapter 1. Then read what you
 want.)

Like an Almanac

The book is full of practical information. The main purpose isn’t to teach you
 concepts (though they’re in here). We’ve picked a lot of common problems, and we’ll
 show you how to solve them.
Even though it’s not designed to be read in strict order, the book is organized
 into chapters with related subject matter. If you want to find a specific subject,
 the table of contents is still a good place to start. In addition, several of the
 chapters contain shaded boxes. These are like small
 tables of contents on a particular subject, which might be even more limited than
 the scope of the chapter itself. Use the Index when
 you’re trying to find a specific piece of information instead of a general group of
 articles about a topic.

Like a News Magazine

This book has short articles. Most show a problem
 and a solution — in one page or less. The articles are numbered within each chapter.
 Not all articles are “how-to” tips. Some articles have background information and
 concepts.

Like a Hypertext Database

Each article doesn’t define all the concepts and words used. Instead, it gives you
 “links” that let you get more information if you need it. It’s
 easy to get more information when you need it, but just skip the link if you don’t.
 Unix Power Tools uses two kinds of links: those in a
 sentence and those in the margin. For examples, see the pages before this Preface
 titled How to Use This Book.

Programs on the Web

[image:]
The book describes scripts and freely available programs that are available on the
 web site. An article about a program or file that’s on the web site will have a
 globe icon next to it, like this. To get one of these programs, visit the web
 site:
	http://www.oreilly.com/catalog/upt3/

About Unix Versions

 There are
 lots of similarities between different versions of Unix. But it’s almost impossible
 to write a book that covers every detail of every version correctly. Where we know
 there might be big differences or problems, we’ll print a note in the text. Other
 places, we’re forced to use “weasel words” like “Some versions of XXX will do...,”
 without telling you exactly which versions. When you see those
 weasel words, what can you do?
	If the command or feature won’t destroy anything when it doesn’t work, try
 it! For instance, don’t experiment with rm, the command
 that removes files. But cat, a command that shows
 files, probably won’t hurt anything if some feature doesn’t work with your
 version.

	Look at the online manual or check your
 vendor’s latest printed manuals. However, even
 these can be wrong. For instance, your system administrator may have
 installed a local version of a command that works differently — but not
 updated the online documentation. Be careful with “generic” manuals, the
 kind you buy at a bookstore; there are lots of versions of Unix, and the
 manual may not match your version closely enough.

	Ask your system administrator or another “guru” for help before you use a
 command that might be dangerous.

Cross-References

If a cross-reference is to a single word — for example, a command name like this:
 tar — the cross reference is probably to an article that
 introduces that command. Cross references to phrases — like this: from a parent process to child process — are to an
 article that explains more about the concept or problem printed in gray.
Cross references don’t necessarily give a complete list of all articles about a
 topic. We’ve tried to pick one or a few articles that give the best information. For
 a more complete list, use the Index.

What’s New in the Third Edition

There have been some big changes in Unix since we wrote the first edition in the
 early 1990s, and there’s been a surprising number of changes since the second
 edition, released in the late 1990s. Well over half of the articles have been
 revised, and we’ve expanded our coverage of the so-called small Unix flavors: Linux,
 FreeBSD, Mac OS X’s Darwin, and so on.
A major change to this edition was the addition of several new topics relevant to
 today’s connected world, including protecting your machine from attack and several
 articles related to Internet protocols. We’ve also added chapters with coverage of
 two of the more popular languages used in Unix: Perl and Python.

Typefaces and Other Conventions

	Italic
	Is used for the names of all Unix utilities, switches, directories,
 and filenames and to emphasize new terms and concepts when they are
 first introduced. It’s also used in programs and examples to explain
 what’s happening or what’s been left out at the . . . marks.

	Bold
	Is used occasionally within text to make words easy to find — just
 like movie stars’ names in the People section of your local
 newspaper.

	Constant width
	Is used for sample code fragments and examples. A reference in text to
 a word or item used in an example or code fragment is also shown in
 constant width font.

	Constant width bold
	Is used in examples to show commands or text that would be typed in
 literally by the user.

	Constant width italic, bold
 italic
	Are used in code fragments and examples to show variables for which a
 context-specific substitution should be made. (The variable
 filename, for example, would be replaced
 by some actual filename.)

	function(n)
	Is a reference to a manual page in Section n of
 the Unix programmer’s manual. For example,
 getopt(3) refers to a page called
 getopt in Section 3.

	%
	Is the C-shell prompt.

	$
	Is the Bourne-shell prompt.

	:-)
	Is a “smiley face” that means “don’t take this seriously.” The idea
 started on Usenet and spread.

	& . . .
	Stands for text (usually computer output) that’s been omitted for
 clarity or to save space.

	CTRL
	Starts a control character. To create CTRL-d, for example, hold down
 the “control” key and press the “d” key. Control characters are not case
 sensitive; “d” refers to both the upper- and lowercase letter. The
 notation ^D also means CTRL-d. Also,
 you’ll sometimes see the key sequence in bold (for example, CTRL-d is
 used when we want to make it clear exactly what you should type.

	·
	Is used in some examples to represent a space chara·cter.

	TAB
	Is used in some examples to represent a TAB character.

The Authors

This book is the effort of several authors who have contributed to one edition or
 another since the first edition was released. Much of the material for the first and
 second edition came from three authors: Jerry Peek, Tim O’Reilly, and Mike Loukides.
 Their work is still present, though edited for current times. This third edition
 brought in four new authors, who edited the previous material, in addition to
 contributing new articles: Shelley Powers, Steven Champeon, Deborah Hooker, and Joe
 Johnston.
In addition, we also had several other authors contribute to all three editions —
 either people who originally posted a good tip to Usenet, authors of Nutshell
 Handbooks who let us take material from their books, or authors of software packages
 who let us take a few paragraphs from README files or other documentation.
Here’s a list of authors and their initials:
	
 	AD

 	
 	Angus Duggan

 	
 	JIK

 	
 	Jonathan I. Kamens

	
 	AF

 	
 	AEleen Frisch

 	
 	JM

 	
 	Jeff Moskow

	
 	AN

 	
 	Adrian Nye

 	
 	JP

 	
 	Jerry Peek

	
 	BA

 	
 	Brandon S. Allbery

 	
 	JJ

 	
 	Joe Johnston

	
 	BB

 	
 	Bruce Barnett

 	
 	JS

 	
 	John Strang

	
 	BR

 	
 	Bill Rosenblatt

 	
 	LK

 	
 	Lar Kaufman

	
 	CT

 	
 	Chris Torek

 	
 	LL

 	
 	Linda Lamb

	
 	DC

 	
 	Debra Cameron

 	
 	LM

 	
 	Linda Mui

	
 	DD

 	
 	Dale Dougherty

 	
 	LW

 	
 	Larry Wall

	
 	DG

 	
 	Daniel Gilly

 	
 	MAL

 	
 	Maarten Litmaath

	
 	DH

 	
 	Dave Hitz

 	
 	ML

 	
 	Mike Loukides

	
 	DJPH

 	
 	Deborah Hooker

 	
 	MS

 	
 	Mike Stansbery

	
 	DL

 	
 	Don Libes

 	
 	RS

 	
 	Randal Schwartz

	
 	DR

 	
 	Daniel Romike

 	
 	SP

 	
 	Shelley Powers

	
 	DS

 	
 	Daniel Smith

 	
 	SG

 	
 	Simson Garfinkel

	
 	EK

 	
 	Eileen Kramer

 	
 	SC

 	
 	Steve Champeon

	
 	EP

 	
 	Eric Pearce

 	
 	SW

 	
 	Sun Wu

	
 	GS

 	
 	Gene Spafford

 	
 	TC

 	
 	Tom Christiansen

	
 	GU

 	
 	Greg Ubben

 	
 	TOR

 	
 	Tim O’Reilly

	
 	HS

 	
 	Henry Spencer

 	
 	UM

 	
 	Udi Manber

The Fine Print

Where we show an article from an author on Usenet, that person may not have
 thought of the idea originally, but may just be passing on something he or she
 learned. We attribute everything we can.

Request for Comments

Please tell us about any errors you find in this book or ways you think it could
 be improved. Our U.S. mail address, phone numbers, and electronic mail address are
 as follows:

O’Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international/local)

(707) 829-0104 (fax)

bookquestions@oreilly.com (email)

Acknowledgments for the First Edition

This book wouldn’t exist without Ron Petrusha. As the technical book buyer at
 Golden-Lee, a major book distributor, he discovered us soon after we started
 publishing Nutshell Handbooks in the mid-1980s. He was one of our early boosters,
 and we owed him one. So when he became an editor at Bantam (whose computer-book
 publishing operations were later acquired by Random House), we took him seriously
 when he started asking if there was anything we could do together.
At first nothing seemed to fit, since by that time we were doing pretty well as a
 publisher. We needed to find something that we could do together that might sell
 better than something that either company might do alone. Eventually, Ron suggested
 that we copublish a Unix book for Bantam’s “Power Tools” series. This made sense for
 both of us. It gave Bantam access to our Unix expertise and reputation, and it gave
 us a chance to learn from Bantam about the mass market bookstore trade, as well as
 build on their successful “Power Tools” series.
But what would the book contain? There were two features of Bantam’s original
 DOS Power Tools that we decided to emulate: its in-depth
 treatment of under-documented system features and its large collection of freely
 available scripts and utilities. However, we didn’t want to write yet another book
 that duplicated the format of many others on the market, in which chapters on each
 of the major Unix tools follow one another in predictable succession. Our goal was
 certainly to provide essential technical information on Unix utilities, but more
 importantly, to show how the utilities can be combined and used to solve common (and
 uncommon) problems.
Similarly, because we were weary of the multitude of endless tutorial books about
 Unix utilities, we wanted to keep the tone brisk and to the point. The solution I
 came up with, a kind of “hypertext in print,” actually owes a lot to Dale Dougherty.
 Dale has been working for several years on hypertext and online information
 delivery, and I was trying to get him to work with me on this project. So I tried to
 imagine the kind of book that he might like to create. (We have a kind of friendly
 rivalry, in which we try to leapfrog each other with ideas for new and better
 books!) Dale’s involvement never went far beyond the early brainstorming stage, but
 the book still bears his indirect stamp. In some of the first books he wrote for me,
 he introduced the idea that sidebars — asides that illuminate and expand on the
 topic under discussion — could be used effectively in a technical book. Well, Dale,
 here’s a book that’s nothing but sidebars!
Dale, Mike Loukides, and I worked out the basic outline for the book in a week or
 two of brainstorming and mail exchanges. We thought we could throw it together
 pretty quickly by mining many of our existing books for the tips and tricks buried
 in them. Unfortunately, none of us was ever able to find enough time, and the book
 looked to be dying a slow death. (Mike was the only one who got any writing done.)
 Steve Talbott rescued the project by insisting that it was just too good an idea to
 let go; he recruited Jerry Peek, who had just joined the company as a writer and
 Unix consultant/tools developer for our production department.
Production lost the resulting tug of war, and Jerry plunged in. Jerry has
 forgotten more Unix tips and tricks than Mike, Dale, or I ever knew; he fleshed out
 our outline and spent a solid year writing and collecting the bulk of the book. I
 sat back in amazement and delight as Jerry made my ideas take shape. Finally,
 though, Jerry had had enough. The book was just too big, and he’d never signed on to
 do it all alone! (It was about 1,000 pages at that point, and only half done.)
 Jerry, Mike, and I spent a week locked up in our conference room, refining the
 outline, writing and cutting articles, and generally trying to make Jerry feel a
 little less like Sisyphus.
From that point on, Jerry continued to carry the ball, but not quite alone, with
 Mike and I playing “tag team,” writing and editing to fill in gaps. I’m especially
 grateful to Mike for pitching in, since he had many other books to edit and this was
 supposed to be “my” project. I am continually amazed by the breadth of Mike’s
 knowledge and his knack for putting important concepts in perspective.
Toward the end of the project, Linda Mui finished up another book she was working
 on and joined the project, documenting many of the freely available utilities that
 we’d planned to include but hadn’t gotten around to writing up. Linda, you really
 saved us at the end!
Thanks also to all the other authors, who allowed us to use (and sometimes abuse!)
 their material. In particular, we’re grateful to Bruce Barnett, who let us use so
 much of what he’s written, even though we haven’t yet published his book, and Chris
 Torek, who let us use many of the gems he’s posted to the Net over the years. (Chris
 didn’t keep copies of most of these articles; they were saved and sent in by Usenet
 readers, including Dan Duval, Kurt J. Lidl, and Jarkko Hietaniemi.)
Jonathan Kamens and Tom Christiansen not only contributed articles but read parts
 of the book with learned and critical eyes. They saved us from many a “power goof.”
 If we’d been able to give them enough time to read the whole thing, we wouldn’t have
 to issue the standard disclaimer that any errors that remain are our own. H. Milton
 Peek provided technical review and proofreading. Four sharp-eyed Usenet readers
 helped with debugging: Casper Dik of the University of Amsterdam, Byron Ratzikis of
 Network Appliance Corporation, Dave Barr of the Population Research Institute, and
 Duncan Sinclair.
In addition to all the acknowledged contributors, there are many unacknowledged
 ones — people who have posted questions or answers to the Net over the years and who
 have helped to build the rich texture of the Unix culture that we’ve tried to
 reflect in this book. Jerry also singles out one major contributor to his own
 mastery of Unix. He says: “Daniel Romike of Tektronix, Inc. (who wrote Section 28.5 and Section 30.8 in the early 1980s, by the way)
 led the first Unix workshop I attended. He took the time to answer a ton of
 questions as I taught myself Unix in the early 1980s. I’m sure some of the insights
 and neat tricks that I thought I’ve figured out myself actually came from Dan
 instead.”
James Revell and Bryan Buus scoured “the Net” for useful and interesting free
 software that we weren’t aware of. Bryan also compiled most of the software he
 collected so we could try it out and gradually winnow down the list.
Thanks also to all of the authors of the software packages we wrote about! Without
 their efforts, we wouldn’t have had anything to write about; without their
 generosity in making their software free in the first place, we wouldn’t be able to
 distribute hundreds of megabytes of software for the price of a book.
Jeff Moskow of Ready-to-Run Software solved the problem we had been putting off to
 the end: that of packaging up all the software for the original disk, porting it to
 the major Unix platforms, and making it easy to install. This was a much bigger job
 than we’d anticipated, and we could never have done it without Jeff and the RTR
 staff. We might have been able to distribute source code and binaries for a few
 platforms, but without their porting expertise, we could never have ported all these
 programs to every supported platform. Eric Pearce worked with RTR to pre-master the
 software for CD-ROM duplication, wrote the installation instructions, and made sure
 that everything came together at the end! (Eric, thanks for pitching in at the last
 minute. You were right that there were a lot of details that might fall through the
 cracks.)
Edie Freedman worked with us to design the format of the book — quite an
 achievement considering everything we wanted the format to do! She met the challenge
 of presenting thousands of inline cross-references without distracting the reader or
 creating a visual monstrosity. What she created is as attractive as it is useful — a
 real breakthrough in technical book design, and one that we plan to use again and
 again!
Lenny Muellner was given the frightful task of implementing all of our ideas in
 troff — no mean feat, and one that added to his store of
 grey hair.
Eileen Kramer was the copyeditor, proofreader, and critic who made sure that
 everything came together. For a thousand-plus page book with multiple authors, it’s
 hard to imagine just how much work that was.
Ellie Cutler wrote the index; Chris Reilley created the illustrations. Additional
 administrative support was provided by Bonnie Hyland, Donna Woonteiler, and Jane
 Appleyard.
—Tim O’Reilly

Acknowledgments for the Second Edition

After teaching myself about Unix for the past 15 years, I’m off to graduate school
 in Computer Science. Frank Willison, O’Reilly’s Editor-in-Chief, fit this project
 into the summer between leaving my position at ORA and starting school. Frank didn’t
 just give me something to do in the summer: the royalties should help to pay for my
 coursework. (So, buy this book and support a student! ;-)) Gigi Estabrook edited this edition and fielded my zillions of
 questions along the way. Many thanks to Gigi, Frank, and ORA’s Production staff.
 Clairemarie Fisher O’Leary and Nancy Wolfe Kotary shared the jobs of production
 editor and project manager. Madeleine Newell and Kismet McDonough-Chan provided
 production support. Sheryl Avruch, Nicole Gipson Arigo, and Danny Marcus provided
 quality control checks. Lenny Muellner provided extensive troff
 assistance and technical support. Chris Reilley created the technical
 illustrations.
When time was short, I got expert advice from Arnold Robbins, the maintainer of
 the GNU gawk utility, and coauthor of O’Reilly’s sed
 & awk, Second Edition. He reviewed parts of the book and gave me
 thorough comments.
I’d also like to thank all the readers who took a moment to send us comments and
 corrections. I read every message, and the ideas in them made a big difference in
 this second edition. Three peoples’ comments were extensive enough to mention
 specially. Ted Timar spotted problems that showed his deep knowledge of Unix. I’m
 glad he still found the book useful enough to read it — and to spot goofs in some of
 our hairier tips. Andrew T. Young sent two long email messages: one a few years ago
 and another after I contacted him. He caught plenty of techno-goofs and also sent
 fixes for them. Andy doesn’t know just Unix: his background in English helped to
 sharpen a few rough spots in our folksy writing style. Finally, Greg Ubben sent a
 15-page (!) email message that took me most of a week to work through. When I
 tracked him down, three years after writing his message, he was even more helpful.
 Greg wrote enough to make into a small book — and, in fact, agreed to write a few
 new articles, too. He’s an expert in sed and regular
 expressions (and Unix) who taught me a lot in our month of email messages back and
 forth. I deeply appreciate all that he’s given to this book’s readers.
—Jerry Peek, jpeek@jpeek.com

Acknowledgments for the Third Edition

Though much of this book is new material or has been newly updated for changes in
 Unix, there is a core that remains from previous editions. The fact that this
 material has continued to be fresh, useful, and relevant through the years is a
 testament to the abilities — technical and writing — of the original authors. These
 includes Tim O’Reilly and Jerry Peek, among others previously mentioned, who
 contributed to past editions. We, the authors of this current edition, thank you. We
 had a number of terrific reviewers comment on this version of the text. We
 appreciate the work of Dave Carrano, Chris DiBona, Schuyler Erle, Jeff Kawski,
 Werner Klauser, Adam Langley, Arnold Robbins, Jaron Rubenstein, Kevin Schmidt, Jay
 Sekora, Joe Sloan, Nat Torkington, and Jay Ts. Thanks also to Stephen Samuel.
In addition, I would like to thank those who contribute their time and efforts on
 Unix systems, particularly the open source versions of Unix such as FreeBSD, Linux,
 and now Darwin.
—Shelley Powers
I’d just like to thank you all for inviting me to contribute to a book that helped
 me learn Unix a long time ago. It’s nice to be able to give something back, given
 how much the book helped me back in 1994 when I was just another Unix newbie.
—Steven Champeon
Thank you, Amy and Joel, for the input and review and just for putting up with me
 through it, and Jasper, for being my strength when I needed it.
—Deborah Hooker

Part I. Basic Unix Environment

Part I contains the following chapters:
Chapter 1
Chapter 2

Chapter 1. Introduction

What’s Special About Unix?

If we were writing about any other operating system, “power tools” might mean
 “nifty add-on utilities to extend the power of your operating system.” That
 sounds suspiciously like a definition of Unix: an operating system loaded with
 decades’ worth of nifty add-on utilities.
Unix is unique in that it wasn’t designed as a
 commercial operating system meant to run application programs, but as a hacker’s
 toolset, by and for programmers. In fact, an early release of the operating
 system went by the name PWB (Programmer’s Work Bench).
When Ken Thompson and Dennis Ritchie first wrote Unix at AT&T Bell Labs,
 it was for their own use and for their friends and coworkers. Utility programs
 were added by various people as they had problems to solve. Because Bell Labs
 wasn’t in the computer business, source code was given out to universities for a
 nominal fee. Brilliant researchers wrote their own software and added it to Unix
 in a spree of creative anarchy, which has been equaled only with Linux, in the
 introduction of the X Window System (Section 1.22), and especially the blend
 of Mac and Unix with Darwin included in the Mac OS
 X.
Unlike most other operating systems, where free software remains an
 unsupported add-on, Unix has taken as its own the work of thousands of
 independent programmers. During the commercialization of Unix within the past
 several years, this incorporation of outside software has slowed down for larger
 Unix installations, such as Sun’s Solaris and HP’s hp-ux, but not stopped
 entirely. This is especially true with the newer lighter versions of Unix, such
 as the various flavors of
 Linux and Darwin.
Therefore, a book on Unix inevitably has to focus not
 just on add-on utilities (though we do include many of those), but on how to use
 clever features of the many utilities that have been made part of Unix over the
 years.
Unix is also important to power users because it’s one of the last popular
 operating systems that doesn’t force you to work behind an interface of menus,
 windows, and mouse with a “one-size(-doesn’t)-fit-all” programming interface.
 Yes, you can use Unix interfaces with windows and menus — and they can be great
 time savers in a lot of cases. But Unix also gives you building blocks that,
 with some training and practice, will give you many more choices than any
 software designer can cram onto a set of menus. If you learn to use Unix and its
 utilities from the command line, you don’t have to be a programmer to do very
 powerful things with a few keystrokes.
So, it’s also essential that this book teach you some of the underlying
 principles that make Unix such a tinkerer’s paradise.
In the body of this book, we assume that you are already moderately familiar
 with Unix — a journeyman hacker wanting to become a master. But at the same
 time, we don’t want to leave beginners entirely at sea; so in this chapter, we
 include some fundamental concepts. We’ve tried to intersperse some simple tips
 and tricks to keep things interesting, but the ratio of concept articles to tips
 is much higher than in any other part of the book. The concepts covered are also
 much more basic. If you aren’t a beginner, you can safely skip this chapter,
 though we may bounce you back here if you don’t understand something later in
 the book.
Don’t expect a complete introduction to Unix — if you need that, buy an
 introductory book. What you’ll find here is a selection of key concepts that
 you’ll need to understand to progress beyond the beginner stage, as well as
 answers to frequently asked questions and problems. In some ways, consider this
 introduction a teaser. If you are a beginner, we want to show you enough of Unix
 to whet your appetite for more.
Also, don’t expect everything to be in order. Because we don’t want you to get
 in the habit of reading through each chapter from beginning to end, as in most
 books, the articles in this chapter are in loose order. We’ve tried not to make
 you jump around too much, but we’ve also avoided a lot of the transitional
 material that makes reading most books a chore.
—TOR, JP, and SP

Power Grows on You

It has been said that Unix is not an operating system
 as much as it is a way of thinking. In The UNIX Programming
 Environment, Kernighan and Pike write that at the heart of the
 Unix philosophy “is the idea that the power of a system comes more from the
 relationships among programs than from the programs themselves.”
Most of the nongraphical utility programs that have run under Unix since the
 beginning, some 30 years ago, share the same user interface. It’s a minimal
 interface, to be sure — but one that allows programs to be strung together in
 pipelines to do jobs that no single program could do alone.
Most
 operating systems — including modern Unix and
 Linux systems — have graphical interfaces that are powerful and a pleasure to
 use. But none of them are so powerful or exciting to use as classic Unix pipes
 and filters, and the programming power of the shell.

 A new user
 starts by stringing together simple pipelines and, when they get long enough,
 saving them for later execution in a file
 (Section 1.8), alias (Section
 29.2), or function (Section 29.11). Gradually, if the user
 has the right temperament, he gets the idea that the computer can do more of the
 boring part of many jobs. Perhaps he starts out with a for
 loop (Section 28.9) to apply the same editing script to a series of files.
 Conditions and cases soon follow and before long, he finds himself
 programming.
On most systems, you need to learn consciously how to program. You must take
 up the study of one or more programming languages and expend a fair amount of
 concentrated effort before you can do anything productive. Unix, on the other
 hand, teaches programming imperceptibly — it is a slow but steady extension of
 the work you do simply by interacting with the computer.
Before long, you can step outside the bounds of the tools that have already
 been provided by the designers of the system and solve problems that don’t quite
 fit the mold. This is sometimes called hacking; in
 other contexts, it is called “engineering.” In essence, it is the ability to
 build a tool when the right one is not already on hand.
No single program, however well thought out, will solve every problem. There
 is always a special case, a special need, a situation that runs counter to the
 expected. But Unix is not a single program. It is a collection of hundreds of
 them, and with these basic tools, a clever or dedicated person can meet just
 about any computing problem.
Like the fruits of any advanced system, these capabilities don’t fall unbidden
 into the hands of new users. But they are there for the reaching. And over time,
 even those users who want a system they don’t have to think about will gradually
 reach out for these capabilities. Faced with a choice between an hour spent on a
 boring, repetitive task and an hour putting together a tool that will do the
 task in a flash, most of us will choose the latter.
— TOR

The Core of Unix

 In recent times, more attention has been
 paid on the newer and more lightweight varieties of Unix:

 FreeBSD, Linux, and
 now Darwin — the version of BSD Unix that Apple used as the platform for the new
 Mac OS X. If you’ve worked with the larger Unix versions, you might be curious
 to see how it differs within these new environments.
For the most part, basic Unix functionality differs very little between
 implementations. For instance, I’ve not worked with a Unix box that doesn’t have
 vi (Section 21.7) installed. Additionally, I’ve also not found any Unix
 system that doesn’t have basic functionality, such as traversing directories
 with cd (Section 1.16) or getting additional help with man (Section
 2.1).
However, what can differ between flavors of Unix is the behavior of some of
 the utilities and built-in commands, as well as the options. Even within a
 specific Unix flavor, such as FreeBSD, installations can differ because one
 installation uses the built-in version of a utility such as make (Section
 40.3) and another installation has a GNU version of the same
 application.
An attempt was made to create some form of standardization with the POSIX
 effort.

 POSIX, which stands for
 Portable Operating System Interface, is an IEEE
 standard to work towards application interoperability. With this, C programs written on one flavor of
 Unix should work, with minimum modification, on another flavor of Unix.
Unfortunately, though the POSIX effort has had some impact on
 interoperability, there still are significant differences between Unix versions.
 In particular, something such as System V Unix can differ considerably from
 something such as Darwin.
However, there is stability in this seeming chaos: for the most part, the
 basic Unix utilities and commands behave the same in all Unix flavors, and aside
 from some optional differences, how a command works within one environment is
 exactly the same as in another environment. And if there are differences, using
 the facilities described in Chapter 2 should
 help you resolve these quickly.
— SP

Communication with Unix

 Probably the single most important concept for
 would-be power users to grasp is that you don’t “talk” directly to the Unix
 operating system. Instead, you talk to a program
 —
 and that program either talks to Unix itself or it talks to
 another program that talks to Unix. (When we say “talk”
 here, we mean communication using a keyboard and a mouse.)
There are three general kinds of programs you’ll probably “talk” to:
	
 The program
 called the shell (Section 27.1). A shell is a
 command interpreter. Its main job is to
 interpret the commands you type and to run the programs you specify in
 your command lines. By default, the shell reads commands from your
 tty and arranges for other programs to write
 their results there. The shell protects Unix from the user (and the user
 from Unix). It’s the main focus of this book (and the rest of this
 article).

	
 An interactive
 command, running “inside” a tty,
 that reads what you type directly. These take input directly from the
 user, without intervention from the shell. The shell’s only job is to
 start them up. A text editor, a mail program, or almost any application
 program (such as word processing) includes its own command interpreter
 with its own rules. This book covers a few interactive commands — such
 as the vi editor — but its main focus
 is the shell and “noninteractive” utilities that the shell coordinates
 to do what needs doing.

	

 A Graphical User
 Interface (GUI) with a desktop, windows, and so on. On Unix, a GUI is
 implemented with a set of running programs (all of which talk to Unix
 for you).
Unix was around long before GUIs were common, and there’s no need to
 use a GUI to use Unix.
 In fact, Unix started in the days
 of teletypes, those clattering printing devices used to send telegrams.
 Unix terminals are still referred to as teletypes or ttys (Section 2.7).

The core of the Unix operating system
 is referred to as the kernel (Section 1.10). Usually, only programs
 talk to the kernel (through system calls). Users talk to
 one of the three previous types of programs, which interprets their commands and
 either executes them directly or passes them on to other programs. These
 programs may, in turn, request lower-level services from the kernel.
Let’s look at a specific example of using the shell. When you type a command
 to display files whose four-character filenames start with the letter
 “m”:
???
 Section 1.13
% cat m???

 it is the shell that finds the filenames,
 makes a complete list of them, and calls the cat (Section 12.2)
 command to print the expanded list. The cat
 command calls on the kernel to find each file on the disk and print its contents
 as a stream of characters on the display.
Why is this important? First of all, you can choose between several different shells (Section 1.6), each of which may have
 different rules for interpreting command lines.

 Second, the shell has to interpret the
 command line you type and package it up for the command you are calling. Because
 the shell reads the command line first, it’s important to understand just how
 the shell changes what it reads.
For example, one basic rule is that the
 shell uses “whitespace” (spaces or tabs) to separate each “argument” of a
 command. But sometimes, you want the shell to interpret its arguments
 differently. For example, if you are calling grep

 (Section 13.1), a program for searching through files for a matching
 line of text, you might want to supply an entire phrase as a single argument.
 The shell lets you do this by quoting (Section 27.12) arguments. For
 example:
% grep "Power Tools" articles/*
Understanding how the shell interprets the command line, and when to keep it
 from doing so, can be very important in a lot of special cases, especially when
 dealing with wildcards (Section 1.13), like the * (asterisk) in the previous example.

 You can think of
 the relationship of the kernel, the shell, and various Unix utilities and
 applications as looking like Figure
 1-1.
[image: Relationship of kernel, shell, utilities, and applications]

Figure 1-1. Relationship of kernel, shell, utilities, and applications

Figure 1-1 shows that a user can
 interact with the shell, as well as directly with interactive commands like
 cat and ls. The shell transfers control to the commands it starts for you
 — then those commands may write the output you see.
 The
 shell also has some built-in commands (Section 1.9) that run directly within the
 shell itself. All of the commands shown in Figure 1-1 interact directly with Unix itself.
—TOR and JP

Programs Are Designed to Work Together

As pointed out by Kernighan and Pike in
 The UNIX Programming Environment, there are a number of
 principles that distinguish the Unix environment. One key concept is that
 programs are tools. Like all good tools, they should be specific in function,
 but usable for many different purposes.
In order for programs to become general-purpose tools, they must be data
 independent. This means three things:
	Within limits, the output of any program should be usable as the input
 to another.

	All of the information needed by a program should be either contained
 in the data stream passed to it or specified on the command line. A
 program should not prompt for input or do unnecessary formatting of
 output. In most cases, this means that Unix programs work with plain
 text files that don’t contain “nonprintable” or “control” characters.

	If no arguments are given, a program should read the

 standard input (usually the terminal
 keyboard) and write the standard output (usually the terminal
 screen).

 Programs
 that can be used in this way are often called
 filters.
One of the most important consequences of these guidelines is that programs
 can be strung together in “pipelines” in which the output of one program is used
 as the input of another. A vertical bar
 (|) represents
 pipe and means “take the output of the program on the left
 and feed it into the program on the right.”
For example, you can pipe the output of a search program to another program
 that sorts the output, and then pipe the result to the printer program or
 redirect it to a file (Section 43.1).
Not all Unix programs work together in this
 way. An interactive program like the Emacs
 editor (Section 19.1)
 generally doesn’t read from or write to pipes you’d create on the command line.
 Instead, once the shell has started Emacs, the editor works independently of the shell (Section 1.4), reading its input and
 output directly from the terminal. And there are even exceptions to this
 exception. A program like less
 (Section
 12.3) can read its standard input from a pipe and still interact with
 you at the keyboard. It does that by reading directly from your tty (Section
 2.7).
— TOR

There Are Many Shells

With most operating
 systems, the command intepreter is built in; it is an integral part of the
 operating system. With Unix, your command interpreter is just another program.
 Traditionally, a command interpreter is called a “shell,” perhaps because it
 protects you from the underlying kernel — or because it protects the kernel from
 you!
In the early 1980s, the most common shells were the Bourne shell (sh) and the C shell (csh). The Bourne shell (Section 3.3) (named after its creator, Steve Bourne) came first. It
 was excellent for shell programming (Section 1.8). But many Unix users (who
 were also writing programs in the
 C language) wanted a more familiar programming
 syntax — as well as more features for interactive use. So the C shell came from
 Berkeley as part of their Unix implementation. Soon (on systems that gave you
 the choice, at least) csh was much more
 popular for interactive use than sh. The C
 shell had a lot of nice features that weren’t available in the original Bourne
 shell, including job control (Section 23.1) and history (Section
 30.2). However, it wasn’t hard for a shell programmer or an advanced user
 to push the C shell to its limits.

 The Korn shell (also named after its
 creator, David Korn) arrived in the mid-1980s. The ksh is compatible with the Bourne shell, but has most of the C
 shell’s features plus features like history
 editing (Section
 30.14), often called command-line editing. The Korn
 shell was available only with a proprietary version of Unix, System V — but now
 a
 public-domain version
 named pdksh is widely available.

 These days,
 most original C shell users have probably switched to tcsh (pronounced “T-shell”). It has all the features of csh and more — as well as fewer mis-features and
 outright bugs.

 The “Bourne-again” shell, bash, is from the Free Software Foundation. It’s
 fairly similar to the Korn shell. It has most of the C shell’s features, plus
 command-line editing and a built-in help command. The programming syntax,
 though, is much more like the original Bourne shell — and many systems
 (including Linux) use bash
 in place of the original Bourne shell (but still call it sh).

 The Z shell, zsh, is an interesting hybrid. It tries to be
 compatible with most features of all the other shells, with compatibility modes
 and a slew of options that turn off conflicting features. In its soul, though,
 zsh has a different way of doing some
 things. It’s been accused of feature creep. But zsh users love its flexibility.
There are other shells.

 If you’re a fan of the Bell Labs research
 operating system named Plan 9 (actually, Plan 9
 from Outer Space), you’ll be happy to know that its shell,
 rc, has been ported to Unix. If you
 program in Tcl, you’ll probably be familiar with tclsh
 , which lets you intermix Unix commands with Tcl
 commands. (And we can’t forget wish

 , the shell that’s a superset of tclsh: it uses Tcl/Tk commands to let you build
 graphical interfaces as you go.) Least — but certainly not last — if you’re a
 minimalist who needs the original sh, a newer
 shell named ash
 emulates the late-1980s Bourne shell.

 In this book, we try to be as generic as we
 can. Where we need to get specific, many examples are shown in the style of both
 the Bourne shell and the C shell — for instance, we’ll often show Bourne-shell
 functions side-by-side with C-shell aliases. Because bash and ksh can read scripts
 written for the original Bourne shell, we use original sh syntax to make our shell programming as portable as
 possible.

 Where we
 talk about “the Bourne shell” or sh, it’s
 usually a safe bet that the information applies to bash and ksh too. In the same
 way, “the C shell” generally also means tcsh.
—JP and ML

Which Shell Am I Running?

You can usually tell which family your
 shell belongs to by a character in the prompt it displays.
 Bourne-type shells, such as bash

 , usually have $ in the prompt. The C shell uses % (but tcsh users often use
 >).
If your shell has superuser (Section 1.18) privileges, though, the
 prompt typically ends with a hash, #.
To check the shell that runs automatically when you log in to Unix, type one
 of these commands (the second is for systems that use
 NIS, Sun’s Network Information
 Service, to manage network-wide files):
% grep
 yourloginname /etc/passwd
% ypmatch
 yourloginname passwd

 You should get back the contents of your entry
 in the system password file. For example:
shelleyp:*:1006:1006:Shelley Powers:/usr/home/shelleyp:/usr/local/bin/bash
The
 fields are separated by colons, and the default shell is usually specified in
 the last field.
Note that in
 Mac OS X, passwords are managed and
 stored in Netinfo by default. To store the passwords in
 /etc/passwd, you’ll need to configure this
 using Netinfo.
—TOR and SP

Anyone Can Program the Shell

 One of the really wonderful things about
 the shell is that it doesn’t just read and execute the commands you type at a
 prompt. The shell is a complete programming language.
The ease of shell
 programming is one of the real highlights of Unix for novices. A shell program
 need be no more than a single complex command line saved in a file — or a series
 of commands.

 For example, let’s say
 that you occasionally need to convert a
 Macintosh Microsoft Word file
 for use on your Unix system. Word lets you save the file in ASCII
 format. But there’s a catch: the Mac uses a carriage return ASCII character 015 to mark the
 end of each line, while Unix uses a linefeed (ASCII 012). As a result, with Unix,
 the file looks like one long paragraph, with no end in sight.

 That’s easy to fix: the Unix tr (Section
 21.11) command can convert every occurrence of one character in a
 file to another:
bash-2.04$ tr '\015' '\012' <
 file.mac
 >
 file.unix

 But you’re a novice, and you don’t want to
 remember this particular piece of magic. Fine. Save the first part of this
 command line in a file called mac2unix in
 your personal
 bin
 directory (Section 7.4):
tr '\015' '\012'
Make the file
 executable with chmod (Section
 50.5):
bash-2.04$ chmod +x mac2unix
Now you can say:
bash-2.04$ mac2unix <
 file.mac
 >
 file.unix
But why settle for that? What if you want to convert a bunch of files at once?
 Easy. The shell includes a general

 way of referring to arguments passed to a
 script and a number of looping constructs. The script:
for
 Section 35.21, $x
 Section 35.9
for x
do
 echo "Converting $x"
 tr '\015' '\012' < "$x" > "tmp.$x"
 mv "tmp.$x" "$x"
done
will convert any number of files with one command, replacing each original
 with the converted version:
bash-2.04$ mac2unix
 file1 file2 file3 ...
As you become more familiar with Unix, it quickly becomes apparent that doing
 just a little homework can save hours of tedium. This script incorporates only
 two simple programming constructs: the for
 loop

 and variable substitution (Section 35.9, Section 35.3).[1] As a new user with no programming experience, I learned these two
 constructs by example: I saved a skeleton for
 loop in a file and simply filled in the blanks with whatever commands I wanted
 to repeat. Section 35.2 has more about
 shell programming.
In short, Unix is sometimes difficult because it is so rich and complex. The
 user who doesn’t want to learn the complexity doesn’t have to — the basic
 housekeeping commands are simple and straightforward. But the user who wants to
 take the time to investigate the possibilities can uncover a wealth of useful
 tools.
— TOR

Internal and External Commands

 Some commands that you type are
 internal, which means they are built into the

 shell, and
 it’s the shell that performs the action. For example, the cd
 command is built-in. The ls
 command, on the other hand, is an
 external program stored in the file /bin/ls.
The shell doesn’t start a separate process to run internal commands. External
 commands require the shell to fork and exec (Section
 27.2) a new subprocess (Section 24.3); this takes some time,
 especially on a busy system.
When you type the name of a command, the shell first checks to see if it is a
 built-in command and, if so, executes it. If the command name is an absolute pathname (

 Section 1.16) beginning with
 /, like /bin/ls, there
 is no problem: the command is likewise executed. If the command is neither
 built-in nor specified with an absolute pathname, most shells (except the
 original Bourne shell)

 will
 check for aliases (Section 29.2) or shell functions (Section
 29.11), which may have been defined by the user — often in a shell setup file
 (Section 3.3) that was read when
 the shell started. Most shells also “remember” the location of external commands (Section 27.6); this saves a long hunt down the search path. Finally,
 all shells look in the search path for an executable program or script with the
 given name.
The search path is exactly what its name
 implies: a list of directories that the shell should look through for a command
 whose name matches what is typed.
The search path isn’t built into the shell; it’s something you specify in your
 shell setup files.
By tradition,
 Unix
 system programs are kept in directories called /bin and
 /usr/bin, with additional programs usually used only by
 system administrators in either /etc and
 /usr/etc or /sbin and
 /usr/sbin. Many versions of Unix also have programs
 stored in /usr/ucb (named after the University of
 California at Berkeley, where many Unix programs were written). There may be
 other directories containing programs. For example, the programs that make up
 the X Window System (Section 1.22) are stored in
 /usr/bin/X11. Users or sites often also have their own
 directories where custom commands and scripts are kept, such as
 /usr/local/bin or /opt.
The search path is stored in an environment
 variable (Section 35.3)
 called PATH (Section 35.6). A typical PATH setting might
 look something like this:
PATH=/bin:/usr/bin:/usr/bin/X11:/usr/ucb:/home/tim/bin:
The path is searched in order, so if there are two commands with the same
 name, the one that is found first in the path will be executed. For example,
 your system certainly has the ls command we
 mentioned earlier — and it’s probably in /bin/ls.
You can add new directories to your search path on the fly, but the path is
 usually set in shell setup files.
— TOR

The Kernel and Daemons

 If you have arrived at Unix via
 Windows 2000 or some other personal computer operating system, you will notice
 some big differences. Unix was, is, and always will be a multiuser operating
 system. It is a multiuser operating system even when you’re the only person
 using it; it is a multiuser operating system even when it is running on a PC
 with a single keyboard; and this fact has important ramifications for everything
 that you do.
Why does this make a difference? Well, for one thing, you’re never the only
 one using the system, even when you think you are. Don’t bother to look under
 your desk to see if there’s an extra terminal hidden down there. There isn’t.
 But Unix is always doing things “behind your back,” running programs of its own,
 whether you are aware of it or not. The most important of these programs, the
 kernel, is the heart of the Unix operating system
 itself. The kernel assigns memory to each of the programs that are running,
 partitions time fairly so that each program can get its job done, handles all
 I/O (input/output) operations, and so on. Another important group of programs,
 called daemons, are the system’s “helpers.” They run
 continuously — or from time to time — performing small but important tasks like
 handling mail, running network communications, feeding data to your printer,
 keeping track of the time, and so on.

 Not only are you sharing the computer with the
 kernel and some mysterious daemons, you’re also sharing it with yourself. You
 can issue the ps x

 (Section 24.5) command to get a list of all processes running on your
 system. For example:
 PID TTY STAT TIME COMMAND
18034 tty2 S 0:00 -zsh
18059 ? S 0:01 ssh-agent
18088 tty2 S 0:00 sh /usr/X11R6/bin/startx
18096 tty2 S 0:00 xinit /etc/X11/xinit/xinitrc -- :0 -auth /home/jpeek/
18101 tty2 S 0:00 /usr/bin/gnome-session
18123 tty2 S 0:33 enlightenment -clientId default2
18127 tty2 S 0:01 magicdev --sm-client-id=default12
18141 tty2 S 0:03 panel --sm-client-id default8
18145 tty2 S 0:01 gmc --sm-client-id default10
18166 ? S 1:20 gnomepager_applet --activate-goad-server gnomepager_a
18172 tty2 S 0:01 gnome-terminal
18174 tty2 S 0:00 gnome-pty-helper
18175 pts/0 S 0:00 zsh
18202 tty2 S 0:49 gnome-terminal
18203 tty2 S 0:00 gnome-pty-helper
18204 pts/1 S 0:01 zsh
18427 pts/1 T 0:00 man zshjp
18428 pts/1 T 0:00 sh -c /bin/gunzip -c /home/jpeek/.man/cat1/zshjp.1.gz
18430 pts/1 T 0:03 /usr/bin/less -is
18914 pts/1 T 0:02 vi upt3_changes.html
 1263 pts/1 T 0:00 vi urls.html
 1511 pts/1 T 0:00 less coding
 3363 pts/1 S 0:00 vi 1007.sgm
 4844 tty2 S 0:24 /usr/lib/netscape/netscape-communicator -irix-session
 4860 tty2 S 0:00 (dns helper)
 5055 pts/1 R 0:00 ps x
This output tells us that the user has only three windows open. You may think
 that they’re only running four or five programs, but the computer is actually
 doing a lot more. (And, to keep this brief, we aren’t showing all the lines of
 output!) The user logged into his Linux system on virtual
 console (Section
 23.12) 2, which shows as tty2 in the
 TTY column; a lot of programs are running
 there, including the X Window System (Section 1.22) (which actually runs
 itself as another user — root — so its process isn’t listed
 here). The user is also running
 Gnome and Enlightenment,
 which keep track of the
 workstation’s display. Two of the
 windows are Gnome terminals,
 which are windows that act like separate terminals; each has its own
 tty, pts/0 and
 pts/1. And the list continues.
If you are running a different window system (or no window system at all) or
 different utility programs, you will see something different. But we guarantee
 that you’re running at least two programs, and quite likely many more. If you
 want to see everything that’s running, including the daemons, type the command
 ps aux

 (Berkeley-style ps) or ps -el (for many other flavors of ps). You’ll be impressed.
Because there is so much going on at once, Unix requires a different way of
 thinking. The Unix kernel is a traffic cop that mediates different demands for
 time, memory, disks, and so on. Not only does the kernel need to run your
 programs, but it also needs to run the daemons, any programs that other users
 might want to start, or any programs that you may have scheduled to run
 automatically, as discussed in Chapter 23.
 When it runs a program, the kernel allocates a small slice of time — up to a
 second — and lets the program run until that slice is used up or until the
 program decides to take a rest of its own accord (this is called "sleeping”). At this point,
 regardless of whether the program is finished, the kernel finds some other
 program to run. The Unix kernel never takes a vacation: it is always watching
 over the system.
Once you understand that the kernel is a manager that schedules many different
 kinds of activity, you understand a lot about how Unix works. For example, if
 you have used any computer system previously, you know that it’s a bad idea to
 turn the computer off while it is writing something to disk. You will probably
 destroy the disk, and you could conceivably damage the disk drive. The same is
 true for Unix — but with an important complication. Any of the programs that are
 running can start doing something to the disk at any time. One of the daemons
 makes a point of accessing the disk drive every 30 seconds or so, just to stay
 in touch. Therefore, you can’t just turn a Unix computer off. You might do all
 sorts of damage to the system’s files — and not just your own, but conceivably
 files belonging to many other users. To turn a Unix system off, you must first
 run a program called shutdown,
 which kicks everyone off the system, makes sure
 that a daemon won’t try to play with a disk drive when you aren’t looking, and
 runs a program named sync to make sure that
 the disks have the latest version of everything. Only then is it safe to pull
 the switch. When you start up a Unix system, it automatically runs a program
 called fsck

 , which stands for “filesystem
 check”; its job is to find out if you shut down the system correctly and try to
 fix any damage that might have happened if you didn’t.

—ML and JP

Filenames

 Like all operating systems, Unix files
 have names. (Unix directories, devices, and so on also have filenames — and are
 treated like files (Section 1.19).) The names are words
 (sequences of characters) that let you identify a file. Older versions of Unix
 had some restrictions on the length of a filename (14 characters), but modern
 versions have removed these restrictions for all practical purposes. Sooner or
 later you will run into a limit, but if so, you are probably being unnecessarily
 verbose.
Technically, a filename can be made from almost
 any group of characters (including nonprinting characters and numbers) except a
 slash (/). However, you should avoid
 filenames containing most punctuation marks and all nonprinting characters. To
 be safe, limit your filenames to the following characters:
	Upper- and lowercase
 characters
	Unix filenames are always case sensitive.
 That is, upper- and lowercase letters are always different (unlike
 Microsoft Windows and others that consider upper- and lowercase
 letters the same). Therefore, myfile and
 Myfile are different files. It is usually a
 bad idea to have files whose names differ only in their
 capitalization, but that’s your decision.

	
 Underscores (_)
	Underscores are handy for separating “words” in a filename to make
 them more readable. For example,
 my_long_filename is easier to read than
 mylongfilename.

	Periods (.)
	Periods are used by some programs (such as the C compiler) to
 separate filenames from filename
 extensions (Section 1.12). Extensions are used by these programs to
 recognize the type of file to be processed, but they are not treated
 specially by the shell, the kernel, or other Unix programs.
Filenames that begin with a period are treated specially by the
 shell: wildcards won’t match (Section 1.13) them unless
 you include the period (like .*).
 The ls command, which lists your
 files, ignores files whose names begin with a period unless you give
 it a special option (ls -a (Section 8.9)). Special
 configuration files are often “hidden” in directories by beginning
 their names with a period.

	Certain other punctuation
	About the only other punctuation mark
 that is always safe is the
 comma (,), although it isn’t part of the POSIX-portable character
 set.

I’m so dead-set against using weird,
 nonprinting characters in filenames that I won’t even tell you how to do it. I
 will give you some special techniques for deleting files
 with weird names (Section
 14.11), though, in case you create some by accident.
Some things to be aware of:
	Unix does not have any concept of a
 file version. There are some revision control programs (Section 39.4) that implement
 their own notion of a version, but there is nothing built into the
 operating system that handles this for you. If you are editing a file,
 don’t count on Unix to save your previous versions — you can program this (Section 35.16, Section 18.14) though, if you
 want to; the GNU Emacs editor also makes
 backups (Section
 19.4).

	Once
 you delete a file in Unix, it is gone
 forever (Section
 14.3). You can’t get it back without restoring it from a
 backup. So be careful when you delete files. Later, we’ll show you
 programs that will give you a “grace period” between the time you delete
 a file and the time it actually disappears.

— ML

Filename Extensions

 In Microsoft Windows and some other
 operating systems, filenames often have the form
 name.extension. For
 example, plain text files have extensions such as .txt. The
 operating system treats the extension as separate from the filename and has
 rules about how long it must be, and so forth.
Unix doesn’t have any special rules about extensions. The dot has no special
 meaning as a separator, and extensions can be any length. However, a number of
 programs (especially compilers) make use of extensions to recognize the
 different types of files they work with. In addition, there are a number of
 conventions that users have adopted to make clear the contents of their files.
 For example, you might name a text file containing some design notes
 notes.txt.

Table 1-1 lists some of the filename
 extensions you might see and a brief description of the programs that recognize
 them.
Table 1-1. Filename extensions that programs expect
	
 Extension

 	
 Description

	
 .a

 	
 Archive file (library)

	
 .c

 	
 C program source file

	
 .f

 	
 FORTRAN program source file

	
 .F

 	
 FORTRAN program source file to preprocess

	
 .gz

 	

 gzip
 ped file (Section 15.6)

	
 .h

 	

 C program header
 file

	
 .html or .htm

 	
 HTML file for web servers

	
 .xhtml

 	
 XHTML file for web servers

	
 .o

 	
 Object file (compiled and assembled code)

	
 .s

 	
 Assembly language code

	
 .z

 	
 Packed file

	
 .Z

 	

 Compressed file
 Section 15.6)

	
 .1 to .8

 	

 Online manual (Section 2.1) source
 file

	

 ~

 	

 Emacs editor backup file
 (Section 19.4)

In Table 1-2 are some extensions
 often used by users to signal the contents of a file, but are not actually
 recognized by the programs themselves.

Table 1-2. Filename extensions for user’s benefit
	
 Extension

 	
 Description

	
 .tar

 	

 tar
 archive (Section 39.2)

	
 .tar.gz or .tgz

 	

 gzip
 ped (Section 15.6)
 tar
 archive (Section 39.2)

	
 .shar

 	
 Shell archive

	
 .sh

 	

 Bourne shell script (Section 1.8)

	
 .csh

 	
 C shell script

	
 .mm

 	
 Text file containing troff’s mm macros

	
 .ms

 	
 Text file containing troff’s ms macros

	
 .ps

 	
 PostScript source file

	
 .pdf

 	
 Adobe Portable Document Format

—ML and TOR

Wildcards

The shells provide a
 number of wildcards that you can use to abbreviate
 filenames or refer to groups of files. For example, let’s say you want to delete
 all filenames ending in .txt in the current directory (Section
 1.16). You could delete these files one by one, but that would be
 boring if there were only 5 and very boring if there were
 100. Instead, you can use a wildcarded name to say, “I want all files whose
 names end with .txt, regardless of what the first part is.”
 The wildcard is the “regardless” part. Like a wildcard in a poker game, a
 wildcard in a filename can have any value.

 The
 wildcard you see most often is * (an
 asterisk), but we’ll start with something simpler: ? (a question mark). When it appears in a filename, the ? matches any single character. For example,
 letter? refers to any filename that
 begins with letter and has exactly one character after
 that. This would include letterA,
 letter1, as well as filenames with a nonprinting
 character as their last letter, such as letter^C.
The * wildcard matches any character or
 group of zero or more characters. For example, *.txt matches all files whose names end with
 .txt; c* matches all
 files whose names start with c; c*b* matches names starting with c and
 containing at least one b; and so on.
The * and ? wildcards are sufficient for 90 percent of the situations that
 you will find. However, there are some situations that they can’t handle. For
 example, you may want to list files whose names end with
 .txt, mail, or
 let. There’s no way to do this with a single *; it won’t let you exclude the files you don’t
 want. In this situation, use a separate *
 with each filename ending:
*.txt *mail *let
Sometimes you need to match a particular group of characters. For example, you
 may want to list all filenames that begin with digits or all filenames that
 begin with uppercase letters. Let’s assume that you want to work with the files
 program.n,
 where n is a single-digit number. Use the
 filename:
program.[0123456789]
In other words, the wildcard [
 character-list
] matches any single character that appears
 in the list. The character list can be any group of ASCII characters; however,
 if they are consecutive (e.g., A-Z, a-z, 0-9, or 3-5, for that matter), you can
 use a hyphen as shorthand for the range. For example, [a-zA-Z] means any alphabetic English character.
There is
 one exception to these wildcarding rules. Wildcards never match /, which is both the name of the filesystem root (Section 1.14) and the character used to separate directory names in
 a path (Section 1.16). The only way to match on this character is to
 escape it using the backslash character (\). However, you’ll find it difficult to use the
 forward slash within a filename anyway (the system will keep trying to use it as
 a directory command).
If you are new to computers, you probably will catch on to Unix wildcarding
 quickly. If you have used any other computer system, you have to watch out for
 one important detail. Virtually all computer systems except for Unix consider a
 period (.) a special character within a filename. Many operating
 systems even require a filename to have a period in it. With these operating
 systems, a * does not match a period; you
 have to say *.*. Therefore, the equivalent of
 rm * does virtually nothing on some
 operating systems. Under Unix, it is dangerous: it means “delete all the files
 in the current directory, regardless of their name.” You only want to give this
 command when you really mean it.
But
 here’s the exception to the exception. The shells and the
 ls command consider a . special if it is the first
 character of a filename. This is often used to hide initialization files and
 other files with which you aren’t normally concerned; the ls command doesn’t show these files unless you
 ask (Section 8.9) for them. If a file’s name begins with ., you always
 have to type the . explicitly. For example, .*rc matches all files whose names begin with . and end with
 rc. This is a common convention for the names of Unix
 initialization files.
Table 1-3 has a summary of common
 wildcards.
Table 1-3. Common shell wildcards
	
 Wildcard

 	
 Matches

	
 ?

 	
 Any single character

	
 *

 	
 Any group of zero or more characters

	
 [ab]

 	
 Either a or b

	
 [a-z]

 	
 Any character between a and z, inclusive

Wildcards can be used at any point or points within a path. Remember,
 wildcards only match names that already exist. You can’t use them to create new files (Section 28.3) — though many shells have
 curly
 braces ({}) for doing that. Section 33.3 explains how wildcards are
 handled, and Section 33.2 has more
 about wildcards, including specialized wildcards in each of the
 shells.
— ML

The Tree Structure of the Filesystem

A multiuser system needs a way to let different users have different files
 with the same name. It also needs a way to keep files in logical groups. With
 thousands of system files and hundreds of files per user, it would be disastrous
 to have all of the files in one big heap. Even single-user operating systems
 have found it necessary to go beyond “flat” filesystem structures.
Almost every operating system solved this problem by implementing a
 tree-structured, or hierarchical, filesystem. Unix is no
 exception. A hierarchical filesystem is not much different from a set of filing
 cabinets at the office. Your set of cabinets consists of many individual
 cabinets. Each individual cabinet has several drawers; each drawer may have
 several partitions in it; each partition may have several hanging (Pendaflex)
 folders; and each hanging folder may have several files. You can specify an
 individual file by naming the filing cabinet, the drawer, the partition, the
 group of folders, and the individual folder. For example, you might say to
 someone: “Get me the `meeting of July 9’ file from the Kaiser folder in the
 Medical Insurance Plans partition in the Benefits drawer of the Personnel file
 cabinet.” This is backwards from the way you’d specify a filename, because it
 starts with the most specific part, but the idea is essentially the same.
You could give a complete path like this to any file in any of your cabinets,
 as shown in Figure 1-2. The concept of a
 “path” lets you distinguish your July 9 meeting with Kaiser from your July 9
 interview with a job applicant or your July 9 policy-planning meeting. It also
 lets you keep related topics together: it’s easy to browse through the “Medical
 Insurance” section of one drawer or to scan all your literature and notes about
 the Kaiser plan. The Unix filesystem works in exactly the same way (as do most
 other hierarchical filesystems). Rather than having a heap of assorted
 files, files are organized into
 directories. A directory is really nothing more than a
 special kind of file that lists a bunch of other files (see Section 10.2). A directory can contain
 any number of files (although for performance reasons, it’s a good idea to keep
 the number of files in one directory relatively small — under 100, when you
 can). A directory can also contain other directories. Because a directory is
 nothing more than a special kind of file, directories also have names. At the
 top (the filesystem “tree” is really upside down) is a directory called the
 “root,” which has the special name /
 (pronounced “slash,” but never spelled out).
[image: A hierarchical filesystem]

Figure 1-2. A hierarchical filesystem

To locate any file, we can give a sequence of names, starting from the
 filesystem’s root, that shows the file’s exact position in the filesystem: we
 start with the root and then list the directories you go through to find the
 file, separating them by slashes. This is called a path.
 For examples, let’s look at the simple filesystem represented by Figure 1-3. The names
 /home/mkl/mystuff/stuff and
 /home/hun/publick/stuff both refer to files named
 stuff. However, these files are in different
 directories, so they are different files. The names home,
 hun, and so on are all names of directories. Complete
 paths like these are called “absolute paths.” There are shorter ways to refer to
 a file: relative paths (Section 1.16).
— ML
[image: A Unix filesystem tree]

Figure 1-3. A Unix filesystem tree

Your Home Directory

 Microsoft
 Windows and the Mac OS have hierarchical
 filesystems (Section
 1.14), much like those in Unix and other large systems. But there is
 an important difference. On many Windows and Mac systems, you start right at the
 “root” of the filesystem tree. In effect, you start with a blank slate and
 create subdirectories to organize your files.
A Unix system comes with an enormous filesystem tree already developed. When
 you log in, you start somewhere down in that tree, in a directory created for
 you by the system administrator (who may even be yourself, if you are
 administering your own system).
This directory — the one place in the filesystem that is your very own, to
 store your files (especially the shell setup
 files (Section 3.3) and
 rc files (Section 3.20) that you use to customize
 the rest of your environment) — is called your home
 directory.
Home directories were originally stored in a directory called
 /usr (and still are on some systems), but are now often
 stored in other directories, such as /home. Within the
 Linux Filesystem Hierarchy Standard (FHS), the home directory is always at
 /home, as configuration files are always in
 /etc and so on.
To change your current directory (Section 1.16) to your home, type
 cd with no pathname; the shell will
 assume you mean your home directory.
Within the Mac OS X environment, home is in the /Users/username directory by default.
— TOR

Making Pathnames

Pathnames locate a file (or directory, or any other object) in the Unix
 filesystem. As you read this article, refer to Figure 1-4. It’s a diagram of a (very) small part of a Unix
 filesystem.

[image: Part of a Unix filesystem tree]

Figure 1-4. Part of a Unix filesystem tree

Whenever you are using Unix, you have a current
 directory. By default, Unix looks for any mentioned files or
 directories within the current directory. That is, if you don’t give an
 absolute pathname (Section 1.14) (starting from the root,
 /), Unix tries to look up files
 relative to the current directory. When you first log
 in, your current directory is your home
 directory (Section
 1.15), which the system administrator will assign to you. It typically
 has a name like /u/mike or /home/mike.
 You can change your current directory by giving the cd command, followed by the name of a new directory (for example,
 cd /usr/bin). You can find out your
 current directory by giving the pwd (“print
 working directory”) command.
If your current directory is /home/mike and you give the
 command cat textfile, you are asking Unix to
 locate the file textfile within the directory
 /home/mike. This is equivalent to the absolute path
 /home/mike/textfile. If you give the command cat notes/textfile, you are asking Unix to locate
 the file textfile within the directory
 notes, within the current directory
 /home/mike.
A number of abbreviations help you to
 form relative pathnames more conveniently. You can use the abbreviation . (dot)
 to refer to the current working directory. You can use .. (dot dot) to refer to the parent of the current working
 directory. For example, if your current directory is
 /home/mike, ./textfile is the same
 as textfile, which is the same as
 /home/mike/textfile. The relative path
 ../gina/textfile is the same as
 /home/gina/textfile; .. moves up one level from /home/mike (to
 /home) and then searches for the directory
 gina and the file textfile.
You can use either the abbreviation
 ~ (tilde) or the environment variables
 $HOME or $LOGDIR, to refer to your home directory. In most shells,
 ~
 name refers to the home directory of the user
 name. See Section
 31.11.
Here’s a summary of the rules that Unix uses to interpret paths:
	If the pathname begins with
 /
	It is an absolute path,
 starting from the root.

	If the pathname begins with
 ~
 or with
 ~
 name
	Most shells turn it into an absolute pathname starting at your
 home directory (~) or at the home
 directory of the user name (~
 name).

	If the pathname does not begin with a
 /
	The pathname is relative to the current directory. Two relative
 special cases use entries that are in every Unix directory:
	

 If
 the pathname begins with ./, the path is relative to the current
 directory, e.g., ./textfile, though
 this can also execute the file if it is given executable
 file permissions.

	If the pathname begins with ../, the path is relative to the parent of
 the current directory. For example, if your current
 directory is /home/mike/work, then
 ../src means
 /home/mike/src.

Section 10.2 explains where . and .. come
 from.
Note
The . and .. may appear at any point within a path. They mean “the
 current directory at this point in the path” and “the parent of the current
 directory at this point in the path.” You commonly see paths starting with
 ../../ (or more) to refer to the
 grandparent or great-grandparent of the current directory. However, they can
 appear at other places in a pathname as well. For example,
 /usr/ucb/./bin is the same as
 /usr/ucb/bin, and
 /usr/ucb/bin/../lib is the same as
 /usr/ucb/lib. Placing . or .. in the middle of a
 path may be helpful in building paths within shell scripts, but I have never
 seen them used in any other useful way.

—ML and JP

File Access Permissions

Under Unix, access to files is based on the concept of users and
 groups.
Every “user” on a system has a unique account with a unique login name and a
 unique UID (Section 24.3) (user ID number). It is possible, and sometimes
 convenient, to create accounts that are shared by groups of people. For example,
 in a transaction-processing application, all of the order-entry personnel might
 be assigned a common login name (as far as Unix is concerned, they only count as
 one user). In a research and development environment, certain administrative
 operations might be easier if members of a team shared the same account, in
 addition to having their own accounts. However, in most situations each person
 using the system has one and only one user ID, and vice versa.
Every user may be a member of one or more “groups.”[2]

 The user’s entry in the master password file
 (/etc/passwd (Section 22.3)) defines his “primary
 group membership.” The /etc/group (Section 49.6) file defines the groups
 that are available and can also assign other users to these groups as needed.
 For example, I am a member of three groups: staff,
 editors, and research. My primary
 group is staff; the group file says
 that I am also a member of the editors and
 research groups. We call editors
 and research my “secondary groups.” The system
 administrator is responsible for maintaining the group and
 passwd files. You don’t need to worry about them unless
 you’re administering your own system.
Every file belongs to one user and one group. When a file is first created,
 its owner is the user who created it; its group is the user’s primary group or
 the group of the directory in which it’s created. For example, all files I
 create are owned by the user mikel and the group
 staff. As the file’s owner, I am allowed to use the

 chgrp command to change the file’s group. On
 filesystems that don’t have quotas (Section 15.11), I can also use the
 chown command to change the file’s owner.
 (To change ownership on systems with quotas, see Section 50.15.) For example, to change
 the file data so that it is owned by the user
 george and the group others, I
 give the commands:
% chgrp others data
% chown george data
Warning
If you need to change both owner and group, change the group first! You
 won’t have permission to change the group after you aren’t the owner.

Some versions of chown can change both
 owner and group at the same time:
% chown george.others data
File access is based on a file’s user and group ownership and a set of access
 bits (commonly called the mode bits). When you try to
 access a file, you are put into one of three classes. You are either the file’s
 owner, a member of the file’s group, or an “other.” Three bits then determine
 whether you are allowed to read, write, or execute the file. So, as Figure 1-1 shows, there are a total of
 nine mode bits (three for each class) that set the basic access
 permissions.
— ML

The Superuser (Root)

In general, a process (Section 24.1) is a program that’s
 running: a shell, the ls command, the
 vi editor, and so on. In order to
 kill a process (Section 24.12), change its priority (Section
 26.5), or manipulate it in any other way, you have to be the process’
 owner (i.e., the user who started it). In order to delete a job from a print queue (Section 45.1), you must be the user who started it.
As you might guess, there needs to be a way to circumvent all of this
 security. Someone has to be able to kill runaway programs, modify the system’s
 files, and so on. Under Unix, a special user known as root
 (and commonly called the “superuser”) is allowed to do anything.
To become the superuser, you can either log in as root or
 use the su (Section 49.9) command. In this book, though, we’ll assume that you
 don’t have the superuser password. Almost all of what we describe can be done
 without becoming superuser.
— ML

When Is a File Not a File?

Unix differs from most operating systems in that it is file oriented. The
 designers of Unix decided that they could make the operating system much simpler
 if they treated everything as if it were a file. As far as Unix is concerned,
 disk drives, terminals, modems, network connections, etc. are all just files.
 Recent versions of Unix (such as Linux) have gone further: files can be pipes (FIFOs) (Section 43.11) and processes are files (Section 24.9). Like waves and particles
 in quantum physics, the boundary between files and the rest of the world can be
 extremely fine: whether you consider a disk a piece of hardware or a special
 kind of file depends primarily on your perspective and what you want to do with
 it.
Therefore, to understand Unix, you have
 to understand what files are. A file is nothing more than a stream of bytes —
 that is, an arbitrarily long string of bytes with no special structure. There
 are no special file structures and only a few special file types (for keeping
 track of disks and a few other purposes). The structure of any file is defined
 by the programs that use it, not by the Unix operating system.[3] You may hear users talk about file headers and so on, but these are
 defined by the applications that use the files, not by the Unix filesystem
 itself.

 Unix programs do abide by one convention,
 however. Text files use a single newline character (linefeed) between lines of
 text, rather than the carriage return-linefeed combination used in Microsoft
 Windows or the carriage returns used in the Macintosh. This difference may cause
 problems when you bring files from other operating systems over to Unix. Windows
 files will often be littered with carriage returns (Ctrl-M), which are necessary
 for that operating system but superfluous for Unix. These carriage returns will
 look ugly if you try to edit or print the file and may confuse some Unix
 programs. Mac text files will appear to be one long line with no breaks. Of
 course, you can use Unix utilities to convert Mac and Windows files for
 Unix.
— ML

Scripting

Scripting languages and scripting
 applications differ from compiled languages and applications in that the
 application is interpreted as run rather than compiled into a
 machine-understandable format. You can use shell scripting for many of your
 scripting needs, but there are times when you’ll want to use something more
 sophisticated. Though not directly a part of a Unix system, most Unix
 installations come with the tools you need for this more complex scripting —
 Perl (Chapter 41), Python (Chapter 42), and Tcl.
These three scripting languages seem so prevelant within the Unix world that I
 think of them as the Unix Scripting Language Triumvirate. .
Perl is probably the granddaddy of scripting. Created by Larry Wall, this
 language is probably used more than any other for creating complex scripts to
 perform sophisticated functionality with Unix and other operating systems. The
 language is particularly noted for its ability to handle regular expressions, as
 well as working with files and other forms of I/O.
Python isn’t as widespread as Perl, but its popularity is growing. One reason
 it’s gaining popularity is that as a language, Python is more structured and a
 little more verbose than Perl, and therefore a little easier to read. In
 addition, according to its fans, Python has more object-oriented and
 data-manipulation features than the file-manipulation and regular-expression
 manipulation of Perl.
Tcl is particularly prevalent within Linux systems, though its use is
 widespread throughout all Unix systems. It’s popular because it’s simpler to
 learn than Perl and allows scripters to get up to speed more quickly than you
 can with Perl or Python. In addition, the language also has access to a very
 popular graphical user interface library called the Tk toolkit. You’ll rarely
 hear about Tcl without the associated Tk.
—TOR and SP

Unix Networking and Communications

 Generally speaking, a network lets two or
 more computers communicate and work together. Partly because of the open design
 of Unix, a lot of networking development has been done in this operating system.
 Just as there are different versions of Unix, there are different ways and
 programs to use networks from Unix.
There’s an entire chapter devoted to Connectivity (Chapter 46), but for now, here’s a quick review of the major
 networking components.
	The Internet
	

 The Internet is a
 worldwide network of computers. Internet users can transfer files,
 log into other computers, and use a wide range of programs and
 services.

	WWW
	The World Wide Web is a set of information servers on the
 Internet. The servers are linked into a hypertext web of documents,
 graphics, sound, and more. Point-and-click
 browser programs turn that hypertext into
 an easy-to-use Internet interface. (For many people, the Web
 is the Internet. But Unix lets you do much
 more.)

	mail
	A Unix facility that’s been around for years, long before
 networking was common, is electronic mail. Users can send electronic
 memos, usually called email messages, between
 themselves. When you send email, your message waits for the other
 user to start his own mail program. System programs can send you
 mail to tell you about problems or give you information. You can
 send mail to programs, asking them for information. Worldwide
 mailing lists connect users into discussion groups.

	ftp
	The ftp program is one way to transfer files between your
 computer and another computer with TCP/IP, often over the Internet
 network, using the File Transfer Protocol
 (FTP).

	UUCP
	Unix-to-Unix Copy
 is a family of programs (uucp,
 uux, uulog, and others) for transferring files and email
 between computers. UUCP is usually used with modems over telephone
 lines and has been mostly superceded by Internet-type
 connections.

	Usenet
	Usenet isn’t exactly a
 network. It’s a collection of hundreds of thousands (millions?) of
 computers worldwide that exchange files called news
 articles. This “net news” system has thousands of
 interactive discussion groups — electronic bulletin boards — for
 discussing everything from technical topics to erotic art.

	telnet
	This utility logs you into a
 remote computer over a network (such as the Internet) using TCP/IP.
 You can work on the remote computer as if it were your local
 computer. The telnet program is
 available on many operating systems; telnet can log you into other operating systems from
 your Unix host and vice versa.

	rsh
	This starts a
 "remote shell” to run
 a command on a remote system without needing to log in
 interactively. If you don’t give a command, rsh acts like rlogin. This is often used to start remote X Window System (Section 1.22) programs whose
 display opens on your local system. Section 6.10 has examples —
 as well as details on problems you can have running rsh for any
 application.

	ssh
	
 ssh acts like rsh (and rlogin), but it makes a secure encrypted connection
 to the remote computer. It also can encrypt X
 Window System (Section 1.22) connections, as well as other types of
 connections, between hosts. The utility ssh-agent allows remote logins without typing a
 passphrase. We’ve included an entire chapter on ssh (Chapter 51).

	rcp
	
 This is a
 "remote cp" program
 for copying files between computers. It has the same command-line
 syntax as cp except that
 hostnames are added to the remote pathnames.

	scp
	
 This is a secure version of
 rcp that uses the ssh
 protocol. ssh-agent works here,
 too.

	NFS
	
 NFS isn’t a
 user utility. The Network FileSystem and related packages like NIS
 (the Network Information Service) let your system administrator
 mount remote computers’ filesystems onto your local computer. You
 can use the remote filesystem as easily as if it were on your local
 computer.

	write
	This sends messsages to another
 user’s screen. Two users can have a discussion with write.

	talk
	A more sophisticated program
 than write, talk splits the screen into two pieces
 and lets users type at the same time if they wish. talk can be used over networks, though
 not all versions of talk can talk
 to one another.

	irc
	Internet Relay Chat allows
 multiple users to carry on multiple discussions across the Internet
 and other networks. One popular IRC client is
 irc.

— JP

The X Window System

 In 1988, an organization
 called the MIT (Massachusetts Institute of Technology) X Consortium was formed
 to promote and develop a vendor-neutral windowing system called the X Window
 System. (It was called “X” because it was a follow-on to a window system called
 “W” that was developed at Stanford University.) The organization eventually
 moved away from MIT and became known as the X Consortium. The XFree86 Project,
 Inc. is another major group developing X; they produce a freely redistributable
 version that’s used on Linux and other Unix-like systems such as Darwin.
A window system is a way of dividing up the large screen of a workstation into
 multiple virtual terminals, or windows. Each window can interact with a separate
 application program — or a single application can have many windows. While the
 “big win” is to have applications with point-and-click mouse-driven user
 interfaces, one of the most common applications is still a simple terminal
 emulator (xterm (Section 5.9)).

 X thus allows a
 workstation to display multiple simultaneous terminal sessions — which makes
 many of the standard Unix multitasking features such as job control less
 important because programs can all be running in the foreground in separate
 windows. X also runs on many kinds of hardware, and it lets you run a program on
 a remote computer (across a network) while the program’s windows are displayed
 on your local system. Because Unix systems also run on many kinds of hardware,
 this makes X a good match for Unix.
Unix boxes are, by default, character-based systems. GUI Communication with Unixsystems are added to facilitate ease of use, as
 well as to provide access to a great number of sophisticated applications. The
 Mac OS X, though, is already a GUI, built on the BSD-based Unix environment,
 Darwin.
Though Darwin doesn’t come with the X Window System, versions of X are
 available for Mac OS X..
—TOR and JP

[1] [Tim is keeping this article simple, as an illustration of how easy
 writing a shell program can be. If you’re writing this little script for
 general use, you can make it work like a filter (Section
 1.5) by adding four or five more lines of code: a case (Section 35.10) or if
 (Section 35.13) statement
 that tests the number of command-line arguments. With no filename
 arguments, the script would simply run tr
 '\015' '\012'. — JP]

[2] In most newer Unix systems, users have the access privileges of all
 groups to which they belong, all at the same time. In other Unix
 systems, you use a command like newgrp (Section
 48.6) to change the group to which you currently belong. Your
 system may even support both methods.

[3] Many executable files — programs — begin with a magic
 number. This is a special two-byte-long sequence that
 tells the kernel how to execute the file.

Chapter 2. Getting Help

The man Command

 The Unix operating system was one of the
 first to include online documentation. It’s not the best in the world — most
 users who haven’t internalized the manual set curse it once a week — but it has
 proven surprisingly resilient. What’s particularly interesting about Unix’s
 online documentation is that, unlike other early help systems, it isn’t an
 adjunct to another set of printed documentation that contains the “real” truth.
 The online manual is complete, authoritative, and usually more current than any
 printed documentation.
The basis for Unix’s online documentation
 is the man command. Most simply, you use it
 as follows:
% man
 topic
where topic is usually the name of some command; but it
 can also be the name of a system call, a library routine, an I/O device, or an
 administrative file (or file type). The output from man is usually sent to a pager like more, which allows you to page through the results.
There are several command-line options for the
 man command that can differ based on
 system. For instance, to look at a command within a specific section, on a
 System V machine use the
 -s “section” option, with the following format:
% man
 section topic
% man -s
 section topic
For example, if you want to read documentation about the
 /etc/passwd
 file (rather than the passwd command) on a System V machine, give the
 command:
% man -s 4 passwd
This is an easy way to distinguish between topics with the same name, but in
 different sections. For other Unix systems, such as FreeBSD, the option to
 search a section could be something different, such as
 -S.
Another useful command-line option is the -k option, which is
 equivalent to the apropos command. This
 option searches database files for matches of a given keyword, returning the
 results. This is particularly helpful in finding commands that contain a
 specific keyword if you’re not quite sure what the command is.
Your system may have a
 configuration file for man named /etc/man.config. If it does, reading it will show you the
 directories in which manpages are stored, the order in which manpages are
 searched by default, and more. Even if you don’t have an /etc/man.config file, your man command may understand the MANPATH

 (Section 3.21) environment variable, a
 list of where man should search. You can set
 your own MANPATH, for example, to show manpages for local
 versions of commands before standard versions with the same name.
Your system may also have a different manual page system: info (Section
 2.9).
—ML and JP

whatis: One-Line Command Summaries

 whatis is almost identical to apropos or the use of man
 -k (Section 2.1), but it
 requires a command name as an argument — rather than an arbitrary string. Why is
 this useful? Well, let’s say you forget what cat (Section 12.2)
 does. On my system, apropos cat gives you several
 screenfuls of output. You may not want to read the entire manual page. But
 whatis cat gives you a nice one-line summary:
% whatis cat
cat (1V) - concatenate and display
The whatis command is equivalent to
 man
 -f on most systems.
Before running whatis the first time on
 your system — particularly if you’re running a standalone machine using FreeBSD,
 Linux, or Darwin — you’ll want to run the makewhatis

 at
 /usr/libexec/makewhatis, which creates the whatis database
 by scanning the command names from the existing manpages.
— ML

whereis: Finding Where a Command Is Located

 The whereis command helps you to locate the

 executable file, source code, and manual pages
 for a program. I use it primarily as a sanity check; if I type cat
 useless.txt and get the message “cat: command
 not found,” I immediately try whereis cat.
 This gives me a lot of information about what went wrong: someone may have
 removed cat (Section 12.2) from the system, or my PATH (Section 35.6)
 environment variable may be set incorrectly, etc.
Output from whereis typically looks like
 this:
% whereis cat
cat: /bin/cat /usr/share/man/man1/cat.1.gz
This says that the executable file is /bin/cat and the
 manual page is /usr/share/man/man1/cat.1.gz.

 whereis has a few options worth
 mentioning:
	-b
	Only report the executable name

	-m
	Only report the location of the manual page

	-s
	Only search for source files

	-u
	Only issue a report if any of the requested information
 (executable, manual page, source) is missing

There are other options for modifying the list of directories through which
 whereis searches; if you need these,
 check your manual pages. In addition, the functionality and flags for whereis can differ between versions of Unix. For
 instance, much of the basic functionality of the command was removed in version
 4.4 of FreeBSD as well as Darwin. Again, the manual pages will show you this
 information.
—ML and SP

Searching Online Manual
 Pages

 When the other techniques in this chapter
 don’t find the information you want, you can try searching the online manual page (Section 2.1) files. You’ll probably have to wade through a lot of
 stuff that you don’t want to see, but this method can work when nothing else
 does. As an example, you remember that there’s some command for
 chopping columns out of a file. You try man -k or apropos, but it only mentions colrm and pr,
 and those aren’t what you want. You’ll usually be able to narrow your search to
 one or two manual page sections (Section 2.1); here, you know that user
 commands are in section 1. So you go to the manual pages and do a
 case-insensitive search through all the files for “column” or
 “chop”:
% cd /usr/man/man1
% egrep -i 'column|chop' *
awk.1:Add up first column, print sum and average:
colrm.1:colrm \- remove characters from specified columns within each line
 ...
cut.1:.IX cut "" "\fIcut\fP \(em remove columns from file"
 ...
It’s
 cut
 ! Notice that awk also handles columns, but apropos doesn’t say so.
(I cheated on that example:
 there were other ways to find cut — using the
 synonym apropos field instead of apropos
 column, for instance. But this method does work in tougher
 cases.) To search the manual page files, you’ll need to know where they’re
 stored. There are lots of possibilities. If your system has an /etc/man.config file, it’ll probably tell you.
 Otherwise, the directories /usr/man

 or /usr/share/man are
 good places to look. If the command is local, try
 /usr/local/man
 and maybe /opt

 (a big tree where find (Section 9.4) can
 help). If your system has fast
 find
 or
 locate (Section 9.18), try searching for man or */man*.

 Your manpage files may be compressed (Section
 15.6). In that case, use grep (Section 13.2) with the
 -Z option, grep
 -Z.
You’ll probably find subdirectories with names like
 man1, man2, . . . and/or
 cat1, cat2, . . . Directory names
 like manN will have unformatted source files for section
 N; the catN directories have
 formatted source files. Or you may just find files named
 command.N, where N is
 1 for section 1, 2 for section 2,
 and so on.

 There are two types of manpage files:
 unformatted (shown in Section 3.22)
 and formatted. The unformatted pages are easier to search because none of the
 words will have embedded backspace characters. The previous example shows how.
 The unformatted pages have nroff commands and
 macros in them, though, which can make searching and reading
 tougher.
To search formatted pages, you’ll want to
 strip the embedded backspace characters. Otherwise, grep might miss the word you want because it was boldfaced or
 underlined — with backspaces in it. In the following example, a shell loop (Section 28.9) applies a series of commands to each file. First,
 col -b removes the overstriking. grep does a search (case insensitive, as before).
 Because grep is reading its standard input,
 it doesn’t know the filename, so a little sed
 command adds the name to the start of every line grep
 outputs.
$ cd /usr/man/cat1
*
 Section
 1.13
$ for file in *
> do col -b < $file | grep -i column | sed "s/^/${file}:/"
> done
awk.1: Add up first column, print sum and average:
 ...
cut.1: Use cut to cut out columns from a table or fields from each
 ...
If
 your manpage files are compressed, replace col -b <
 $file
 with:
zcat $file | col -b
In

 Bourne shells, you can pipe the output of the
 loop to a pager (like less (Section 12.3)) to see the output a
 screenful at a time and quit (with q) when
 you’re done. To do that, change the last line of the for loop
 to:
done | less
—
 JP

How Unix Systems Remember Their Names

 Each computer on a network needs a name. On many
 Unix versions, the uname -n
 command shows you this name. On some
 systems, the command hostname or
 uuname -l
 (two us, lowercase
 L) may be what you want. If you use more than one
 system, the hostname is great to use in a shell prompt — or any time you forget
 where you’re logged in.
— JP

Which Version Am I Using?

 Your system may have several versions of a
 particular command — for instance, a BSD-compatible version in one directory and
 a System V-compatible version somewhere else (and you might have added a private
 version in your own
 bin
 directory (Section 7.4)). Which command you’ll get depends on your PATH
 (Section
 35.6) environment variable. It’s often essential to know which
 version you’re using. For example:
$ type sort
sort is /bin/sort
tells me exactly which version of the sort
 program I’m using. (On one system I’ve used, there were two sorts; I had also defined an alias for sort.) If I want to see all versions, bash supports a -all
 option:
$ type -all sort
sort is aliased to `TMPDIR=/var/tmp /bin/sort'
sort is /bin/sort
sort is /usr/5bin/sort
A similar command is whence
 .
But
 type
 and whence
 are built into shells and are also Unix-version dependent (not all Unix systems
 have them), so they won’t work everywhere. The which command is usually external (Section 1.9),
 so it works everywhere — although, because it isn’t built into the shells, it
 can’t always find out about aliases defined in your current shell. For
 example:
% which sort
/usr/bin/sort
You’ll find that which comes in handy in
 lots of other situations. I find that I’m always using which inside of backquotes to get a precise path. (whence and type
 may print extra text.) For example, when I was writing these articles, I started
 wondering whether or not man, apropos, and whatis were really the same executable. It’s a simple question,
 but one I had never bothered to think about. There’s one good way to find
 out:
% ls -li `which man` `which apropos` `which whatis`
102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/apropos
102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/man
102352 -rwxr-xr-x 3 root 24576 Feb 8 2001 /usr/ucb/whatis
What does this tell us? Well, within this system the three commands have the
 same file size, which means that they’re likely to be identical; furthermore,
 each file has three links, meaning that each file has three names. The
 -i option confirms it; all three files have the same
 i-number. So, apropos, man, and whatis
 are just one executable file that has three hard links.
However, running the same command in another environment, such as in Darwin,
 results in a different output:
117804 -r-xr-xr-x 1 root wheel 14332 sep 2 2001 /usr/bin/apropos
117807 -r-xr-xr-x 1 root wheel 19020 sep 2 2001 /usr/bin/man
117808 -r-xr-xr-x 1 root wheel 14336 sep 2 2001 /usr/bin/whatis
In Darwin, the commands are separate entities.
A few System V implementations don’t have a which command.
—ML, JP, MAL, and SP

What tty Am I On?

Each login session has its own tty (Section
 24.6) — a Unix device file that handles input and output for your
 terminal, window, etc. Each tty has its own filename. If you’re logged on more
 than once and other users want to write

 or talk
 (Section 1.21) to you, they need
 to know which tty to use. If you have processes running on several ttys, you can
 tell which process is where.
To do that, run the tty command at a shell prompt in the
 window:
% tty
/dev/tty07
You can tell other users to type write
 your-username
 tty07.
Most systems have different kinds of ttys: a few dialup terminals, some
 network ports for rlogin and telnet, etc. (Section 1.21). A system file like /etc/ttys
 lists which ttys are used for what. You can
 use this to make your login setup more automatic. For example, most network
 terminals on our computers have names like /dev/ttyp
 x or /dev/pts/
 x, where x is a single
 digit or letter. I have a test in my .logout
 file (Section 4.17) that clears the screen on all ttys except
 network:
Clear screen non-network ttys:
` `
 Section 28.14
if ("`tty`" !~ /dev/ttyp?) then
 clear
endif
(Of course, you don’t need to clear the terminal screen if you’re using an
 xterm window that you close when you log
 out.)
— JP

Who’s
 On?

 The who
 command lists the users logged on to the system now. Here’s an example of the
 output on my
 system:
% who
naylor ttyZ1 Nov 6 08:25
hal ttyp0 Oct 20 16:04 (zebra.ora.com:0.)
pmui ttyp1 Nov 4 17:21 (dud.ora.com:0.0)
jpeek ttyp2 Nov 5 23:08 (jpeek.com)
hal ttyp3 Oct 28 15:43 (zebra.ora.com:0.)
 ...

 Each line shows a different terminal or
 window. The columns show the username logged on, the tty (Section 2.7)
 number, the login time, and, if the user is coming in via a network (Section
 1.21), you’ll see their location (in parentheses). The user
 hal is logged on twice, for instance.
It’s
 handy to search the output of who with
 grep (Section 13.1) — especially on systems with a lot of users. For
 example:
% who | grep "^hal "
 ...where is hal logged on?
% who | grep "Nov 6"
 ...who logged on today?
-v
 Section 13.3
% who | grep -v "Nov 6"
 ...who logged on before today?
 ...
Your
 version may have more options. To find out, type man
 who.
— JP

The info Command

 An information system gaining popularity on the
 more lightweight Unix-based systems is info. It’s particularly relevant for
 finding information within
 Linux and
 FreeBSD.
Unlike man — which displays all information on a topic at once, usually routed
 through some form of paging system such as cat — info is based on a hypertext
 like linkage between topic components. You connect to each of the subtopics
 using character-based commands and typing part or all of the subtopic title — at
 least enough to distinguish one subtopic from another.
To use info, you type the command info
 followed by the Unix command about which you’re trying to find information. For
 instance, to find out more about info itself, you would use the following
 command line:
info info
This will return the main info introduction page and a menu of subtopics such
 as:
Getting Started
Advanced Info
Creating an Info File
To access the subtopic, you type the letter m for menu, and then in the prompt that opens at the bottom of
 the screen, type enough of the letters to distinguish the subtopic menu item
 from any other. You don’t have to complete the command: you can just type enough
 of the letters followed by a TAB to fill in the rest. Once the subtopic menu
 item has been filled in, hitting ENTER sends you to the information.
To learn more about using info, you can type the letter h when you’re in info and no command line buffer
 is showing. This brings up basic information about the info command, including the commands you use within info to use
 the application. These letters are summarized in Table 2-1.
Table 2-1. info commands
	
 Command

 	
 Action

	
 h

 	
 To get help on using info

	
 m

 	
 To access a subtopic menu item

	
 n

 	
 To get to next related subtopic

	
 p

 	
 To get to the previous related subtopic

	

 space

 	
 To move forward in the display if it exceeds page
 size

	

 delete

 	
 To move backward in the display if it exceeds page
 size

	

 Ctrl-l

 	
 To clean up the display if it gets mangled

	
 b

 	
 To get to the first page of the display

	

 ?

 	
 To get a list of info commands

	
 q

 	
 To quit info

	
 d

 	
 To return to highest level of info topics

	
 mEmacsreturn

 	
 To access the Emacs manual

	
 s

 	
 To search for string within current node

Note that the letter commands are case insensitive: U works the same as u.
Use the d command to pull up the Directory
 node, the menu of info major topics. In fact, this is a good way to become
 familiar with info and its contained subtopics — type d and then use the menu commands to explore each of the major
 subtopic areas.
For instance, from the Directory Node, typing m followed by typing strings
 into the command buffer pulls up the strings info node.
When using the info command, if the
 information doesn’t fit within a page, header and footer information will
 provide you some details about the subtopic, such as the info file, node, and
 the next nodes within the hierarchy. For instance, when accessing information
 about man, depending on your system the
 header reads as follows:
File: *manpages*, Node:man, Up: (dir)
This translates to the info file manpages and the node for man. Typing the
 u will move you up to the dir info page.
 Within Emacs, use mouse button two to click on and access a subtopic.
The footer provides a summary of the header information and also provides the
 number of lines for the topic if the topic page extends past the current screen.
 To see more information, type the space to
 page through the topic, just as you do with man.
Much of the help information within info is pulled over as is from manpages
 and hasn’t been converted to the hypertext format of info. Because of this, the
 use of the m command won’t pull up any
 subtopic. You’ll need to use the space key to access the additional
 information.
To search within an info node/page, type s
 and then type the search string into the command buffer. The cursor is moved to
 the first occurance of the
 string.
— SP

Part II. Customizing Your Environment

Part II contains the following
 chapters:
Chapter 3
Chapter 4
Chapter 5
Chapter 6

Chapter 3. Setting Up Your Unix Shell

What Happens When You Log In

When

 you first log in to a Unix system, the login program performs various security measures.
 These vary slightly from Unix variant to Unix variant, but they are largely the
 same.
First, login checks to see if you are not
 the root user and whether the file /etc/nologin
 exists (it is created by the shutdown command to indicate that the system is
 being brought down for maintenance). If both of these conditions are true, the
 login program prints the contents of that
 file to the terminal, and the login fails. If you are the root user, however,
 you will be allowed to log in.
Second, login checks to see if there are
 any special conditions on your login attempt (which may be defined in
 /etc/usertty or /etc/securetty),
 such as on which tty you’re coming in. Linux systems do this, for example. Some
 systems (such as Darwin and other BSD-based systems) also check
 /etc/fbtab and may restrict your access to any devices
 listed in that file. These systems may also log failed login attempts to a file,
 such as /var/log/failedlogin, if it exists.
login may also record the
 time of login in the file
 /var/log/lastlog, make an entry in the file
 /var/run/utmp
 , showing that you are successfully logged in
 (it is removed once you log out), and append the utmp entry
 to the file /var/log/wtmp

 , showing that you logged in. This
 wtmp record will be updated on logout, showing the
 duration of your login session.
If the file .hushlogin
 exists in the user’s home directory, the
 login will be quiet; otherwise, the following sequence of events will occur. If
 the system has any special copyright information to display, it will be printed
 to the terminal, followed by the message of the day (usually stored in
 /etc/motd), and the user’s last login time and system
 of origin (from the wtmp file, as discussed in the previous
 paragraph). If you want your login to be quiet, simply touch ~/.hushlogin. If you want it to be noisy, remove the
 file.
Finally, if all other checks have passed
 and restrictions have been performed, login
 starts a shell for you. Which shell depends on what is set in your user database
 entry (/etc/passwd, NIS, or possibly NetInfo under Darwin).
 If the shell specified for you is not interactive (Section
 3.4), you may well be denied a command line. This is common for POP
 and ftp-only user accounts, where /bin/true
 and /bin/false are often specified as shells
 to disallow shell logins from those accounts.
—JP and SJC

The Mac OS X Terminal Application

 Throughout the book, we will refer to terminals,
 terminal emulators, and other software that allows you, the end user, to
 interact with the computer via some character-driven screen. In the old days,
 most terminals were separate hardware, but nowadays they’re usually software.
 Mac OS X is no exception: its Terminal application, found in the Utilities folder of your Applications folder, is a terminal emulator.
You can launch Terminal by double-clicking on the icon in the Finder, or if
 you have the Terminal icon in your Dock, by single-clicking on that icon.
Once launched, Terminal may be configured as most Mac applications can: by
 setting preferences in the Preferences dialog and choosing a font family and
 size from the Font menu.
One big difference between Terminal and other, X-specific applications is that
 instead of running individual instances of xterm, you run one instance of Terminal and may have multiple
 windows, known as “shells,” which may have saved settings (such as color, size,
 font choice, and various other settings). You can’t run a shell in Mac OS X
 without running Terminal.
— SJC

Shell Setup Files — Which, Where, and Why

 To understand setup files, you need to
 understand that a shell can act like a login
 shell
 or a
 nonlogin shell (Section 3.4). There are different setup
 files for nonlogin and login shells.
When you log in to a Unix system — but not under a window system — the
 login program starts a shell for you. The
 login program sets a special flag (Section
 3.19) to tell a shell that it’s a login shell. If the shell doesn’t
 have that flag set, it won’t act like a login shell. Opening a new window in a
 window system may or may not set the “login shell” flag — that depends on the
 configuration. (For example, the command xterm
 -ls starts a login shell in an xterm
 window (Section 24.20); xterm
 +ls starts a nonlogin shell.) When you connect to a system with
 programs like ftp and scp, that usually starts a nonlogin shell. And a
 subshell (Section 24.4) is never a login shell
 (unless you set a command-line option to force a login shell, like bash -l).
How can you tell whether your shell is a
 login shell? The answer is “it depends.” When you first log in to a system, you
 want a login shell that sets things like the terminal
 type (Section 5.2, Section 5.3). Other shells on the same
 terminal should be nonlogin shells — to avoid redoing those one-time-only setup
 commands. Different shells have their own methods for handling first-time shell
 invocations versus later invocations, and that’s what the rest of this article
 is about.

 Parenthesis operators (Section 43.7) don’t read any setup file.
 Instead, they start another instance of your current shell. Parentheses are
 called “subshell operators,” but the subshell they start doesn’t print a prompt
 and usually has a short lifetime.
Next, let’s look at the setup files — login and nonlogin — for the major
 shells. I recommend that you read about all of them. Then experiment with your
 shell’s setup files until you get things working the way you want them.
	System-wide setup
	Your login(1) command probably
 sets some environment variables
 (

 Section 35.3) like HOME,
 PATH, SHELL, TERM, MAIL, and LOGNAME or USER; check its manual page.
 Your system may set some environment variables or other parameters
 that apply to all shells or to all shells of a particular type (all
 bash shells, zsh shells, etc.). All of these will
 be passed through the environment, from parent
 process to child process (Section 35.4), to all of
 your shells, login and nonlogin.

Once login or your window system starts
 your individual shell, it may also read its own system-wide setup files. These
 files, if any, will be read before your personal setup files. Check your shell’s
 manual page and the /etc directory for
 files like csh.login, bashrc, zshrc, and so on. On Red Hat systems, for example, there is a
 directory named /etc/profile.d containing
 package-specific C and Bash shell config files that are sourced (read into the
 current shell) on startup of a shell. On Mac OS X, when you use Terminal (Section
 3.2), your shell (which is tcsh by
 default) reads /private/etc/csh.cshrc, as
 well as any user-specific files (e.g., ~/.tcshrc).
	Bourne shell
	

 The original Bourne shell has one
 file that it reads when you log in: it’s called .profile and is in your home
 directory. Put all your setup commands there. Later versions of the
 Bourne shell may also read /etc/profile
 before
 your local setup file is read and may also read the contents of
 whatever file is named in the
 ENV environment variable (Section 35.3) (but only for
 interactive shells). You may
 set this variable from your own .profile:
ENV=$HOME/.mystartup; export ENV
The Bourne shell doesn’t read .profile when you start a
 nonlogin
 shell or subshell (Section 43.7), though.
 Subshells are set up through inheritance of environment variables (Section 35.3) that were set
 when you first logged in (in system-wide setup files or .profile) or from commands you typed
 since.

	C shell
	

 C shell users have several shell
 setup files available:
	The .cshrc file is
 read any time a C shell starts — that includes shell escapes
 and shell scripts.[1] This is the place to put commands that should
 run every time you start a shell. For instance, shell
 variables like cdpath
 (Section 31.5)
 and prompt should be set here.
 Aliases (
 Section 29.2)
 should, too. Those things aren’t passed to subshells through
 the environment, so they belong in .cshrc (or .tcshrc). See the upcoming section on
 tcsh for more
 details.
Alternately, you can put aliases into a separate file and
 use the source

 command to read the file into the current shell from your
 .cshrc/.tcshrc — if you’re the sort
 who likes to have custom init files for every host you log
 in to, but like your aliases to be common wherever you go.
 This provides a quick and easy way for you to copy your
 .csh.aliases (or
 whatever name you give it, being careful to distinguish
 between it and the slightly different format required by
 bash aliases) from
 host to host without clobbering your custom, localized init
 files.

	
 When csh starts up, on recent
 systems it may read a system-wide setup file, such as
 /etc/csh.cshrc
 ,[2] and for login shells, /etc/csh.login
 .

	
 Your .login file is read when you
 start a login shell. You should set several things here. Set
 environment variables
 (Section 35.3)
 (which Unix will pass to subshells automatically). Run
 commands like tset (Section 5.3) and
 stty (Section 5.7, Section 5.8) that set
 up your terminal. Finally, include commands you want to run
 every time you log in — checking for mail and news (Section 1.21),
 running fortune, checking
 your calendar for the day, etc.
Note that .cshrc is
 read before .login, by
 csh, but that tcsh
 may be compiled such that the order is reversed, and
 .tcshrc may be read
 after
 .login in some
 environments. Check the version shell
 variable to find out how your environment is set up.

	The shell reads .logout when you end a login
 shell. Section 3.8
 has tips for reading .logout from nonlogin shells.

	Korn shell
	

 The Korn shell is a lot like the
 Bourne shell. A login Korn shell
 (Section 3.4) will read
 the .profile

 first; recent versions do so only after reading /etc/profile
 , if present. The .profile can set the ENV
 (Section 35.5) environment
 variable to the pathname of a file (typically $HOME/.kshrc). Any child Korn shell
 started by that login shell — including all subshells — will read
 the file named by $ENV as it
 starts up, before printing a prompt or running other
 commands.
The public domain Korn shell often found on Linux may also be
 further restricted when invoked as a “privileged” shell, using a
 pattern that matches r*sh, in which case neither the ~/.profile nor the file named by the
 ENV environment variable will be read.
 Instead, the shell will be initialized using /etc/suid_profile, if present.

	bash
	

 bash is something of a cross
 between the Bourne and C shells. A login bash will read .bash_profile

 ,
 .bash_login, or .profile. A noninteractive bash will read a file named .bashrc in your home directory.
 The shell reads .bash_logout when you end a login
 shell; you can set a trap (Section 4.18) to handle
 nonlogin shells.
bash also uses GNU Readline for reading and
 editing text you enter at a shell prompt. The .inputrc

 file
 configures Readline for a given user; /etc/inputrc is for global configuration.

	tcsh
	

 tcsh is like the C shell but more
 flexible. If a tcsh shell is run,
 it first tries to read .tcshrc

 and, if not
 found, then tries .cshrc. In
 addition, tcsh will also load
 either .history or the value of
 the histfile variable, if set; then it may try
 to read .cshdirs

 or the value
 of the dirsfile variable.

	
 zsh
	

 As always,
 zsh is very flexible. Startup
 files are read from the directory named in the
 ZDOTDIR

 environment variable, if
 any;[3] otherwise, from HOME. All shells
 read the global /etc/zshenv and
 your .zshenv files. If the
 shell is a login shell, commands are
 read from /etc/zprofile and
 then your .zprofile. Then, if
 the shell is interactive, commands are read from /etc/zshrc and your .zshrc. Finally, if the shell is a
 login shell, /etc/zlogin and
 your .zlogin files are
 read.

—JP and SJC

Login Shells, Interactive Shells

 Each Unix shell (sh, csh, etc.) can be in
 interactive mode or noninteractive
 mode. A shell also can act as a login shell or a
 nonlogin shell. A shell is a shell is a shell — e.g., a
 login bash shell is the same program (like
 /bin/bash) as a nonlogin
 bash shell. The difference is in the way that the shell
 acts: which setup files it reads, whether it sets a shell prompt, and so
 on.
Login Shells

 When
 you first log in to a Unix system from a terminal, the system normally
 starts a
 login shell. (Section 3.4) A login shell is
 typcally the top-level shell in the “tree” of processes that starts with the
 init (Section 24.2) process. Many
 characteristics of processes are passed from parent to child process down
 this “tree” — especially environment
 variables (Section
 35.3), such as the search path
 (Section 35.6). The changes
 you make in a login shell will affect all the other processes that the
 top-level shell starts — including any subshells (Section
 24.4).
So, a login shell is where you do general setup that’s done only the first
 time you log in — initialize your terminal, set environment variables, and
 so on. A shell “knows” (Section 3.19) when it’s a login
 shell — and, if it is, the shell reads special setup
 files (Section 3.3)
 for login shells. For instance, login C shells read your .login file, and Bourne-type login shells
 read .profile. Bash may also read
 /etc/profile, and ~/.bash_profile or ~/.bash_login or ~/.profile, depending on whether those files exist and
 whether the -noprofile option has been passed (which would
 disable reading of any startup files).

 Nonlogin shells are either subshells
 (started from the login shell), shells started by your
 window system (Section
 24.20), or “disconnected” shells started by at (Section 25.5),
 rsh (Section 1.21), etc. These shells don’t read .login or .profile. In addition, bash allows a nonlogin shell to read ~/.bashrc or not, depending on whether the
 -norc or -rcfile options have been
 passed as arguments during invocation. The former simply disables reading of
 the file, and the latter allows a substitute file to be specified as an
 argument.
Some shells make it easy to know if a particular invocation is a login
 shell. For instance, tcsh

 sets the variable
 loginsh. Check your shell’s manual page for
 details. Section 4.12 shows
 another solution: the SHLVL
 variable that’s set in most modern
 shells. Or you can add the following line to the beginning of a setup file that’s only read by login shells
 (Section 3.3). The line sets a
 shell variable (Section 35.9) named
 loginshell
 :
set loginsh=yes ...csh

loginshell=yes ...bash and other sh-type shells
Now wherever you need to know the type of shell, use tests like:
if
 Section 35.13
if ($?loginsh) ...csh-type shells

if [-n "$loginshell"] ...sh-type shells (including bash)
This works because the flag variable will only be defined if a shell has
 read a setup file for login shells. Note that none of the variable
 declarations use the “export” keyword — this is so that the variable is not
 passed on to subsequent shells, thereby ruining its purpose as a flag
 specific to login shells.

Interactive Shells

 In general, shells are used for two
 jobs. Sometimes, a shell handles commands that you type at a prompt. These
 are interactive shells. Other times, a shell reads
 commands from a file — a shell script
 (
 Section 35.2). In this case, the
 shell doesn’t need to print a prompt, to handle command-line editing, and so
 on. These shells can be noninteractive shells
 . (There’s no rule that only
 noninteractive shells can read shell scripts or that only interactive shells
 can read commands from a terminal. But this is generally true.)
One other difference between interactive and noninteractive shells is that
 interactive shells tie
 STDOUT and STDERR to
 the current terminal, unless otherwise specified.
It’s usually easy to see whether a particular invocation of your shell is
 interactive. In C shells, the prompt
 variable will be set. In the Korn
 shell and bash, the -i
 flag is set. Your current flags may be displayed using the
 $-

 variable:
prompt$ echo $-
imH
The previous example, from an interactive bash shell, shows that the flags
 for an interactive shell (i), monitor mode (m), and history substitution (H)
 have been set.
—JP and SJC

What Goes in Shell Setup Files?

Setup files for login
 shells (

 Section 3.4) — such as .login and .profile — typically do at least the following:
	Set the search path (
 Section 27.6) if the system
 default path isn’t what you want.

	Set the terminal type (
 Section 5.3) and make various terminal settings (Section 5.7, Section 5.8) if the system might
 not know your terminal (if you log in from various terminals over a
 dialup line or from a terminal emulator on a desktop machine, for
 instance).

	Set environment variables (
 Section 35.3) that might be
 needed by programs or scripts that you typically run.

	Run one or more commands that you
 want to run whenever you log in. For example, if your system login program doesn’t show the message of
 the day, your setup file can. Many people also like to print an amusing
 or instructive fortune. You also might want to run who (Section
 2.8) or uptime (Section 26.4) or w (a combination of the other two, but not
 found on all systems) for information about the system.

In the
 C
 shell, the .cshrc file is used to establish settings that
 will apply to every instance of the C shell, not just login shells. For example,
 you typically want aliases (Section 28.2) available in every
 interactive shell you run — but these aren’t passed through the environment, so
 a setup file has to do the job. You may wish to put all of your aliases into
 another file, such as .aliases, or qualify
 the name with the shell’s name, such as .csh.aliases, to allow for different alias formats between
 shells, and then you can use the source
 command to read in that file on startup from .cshrc.
Even novices can write simple setup files. The trick is to make these setup
 scripts really work for you. Here are some of the things you might want to
 try:
	Creating a custom prompt.

	Coordinating custom setup files on different machines (Section 3.18).

	Making different terminal settings depending on which terminal you’re
 using (Section 3.10 and
 others).

	Seeing the message of the day only when it changes.

	Doing all of the above without making your login take forever.

—TOR and SJC

Tip for Changing Account Setup: Keep a Shell Ready

 The shell is your interface to Unix. If you make a
 bad mistake when you change your setup file
 (Section 3.3) or your password, it
 can be tough to log in and fix things.
Before you change your setup, it’s a good idea to start a login session to the
 same account from somewhere else. Use that session for making your changes. Log
 in again elsewhere to test your changes.
Don’t have a terminal with multiple windows or another terminal close to your
 desk?
 You can get the same result by using
 rlogin or telnet (Section 1.21)
 to log in to your host again from the same terminal. What I mean is:
somehost% vi .cshrc
 ...Make edits to the file...
somehost% rlogin localhost
 ...Logs you in to your same account...
 An error message
somehost% logout
Connection closed.
somehost% vi .cshrc
 ...Edit to fix mistake...
If you don’t have rlogin or telnet, the command
 su -
 username, where username
 is your username, will do almost the same thing. Or, if you’re testing your
 login shell configuration, login will do as
 well.
—JP and SJC

Use Absolute Pathnames in Shell Setup Files

 One common mistake in shell setup files (Section
 3.3) is lines like these:
$$
 Section 27.17, `...`
 Section 28.14
source .aliases

echo "Shell PID $$ started at `date`" >> login.log
What’s wrong with those lines? Both use relative
 pathnames (Section
 1.16) for the files (.aliases,
 login.log), assuming the files are in the home
 directory. Those lines won’t work when you start a subshell (Section
 24.4) from somewhere besides your home directory because your setup files
 for nonlogin shells (like .cshrc) are read whenever a shell
 starts. If you ever use the source
 or . commands (Section 35.29) to read the setup files
 from outside your home directory, you’ll have the same problem.
Use absolute pathnames instead. As Section
 31.11 explains, the pathname of your home directory is in the
 tilde (~)
 operator or the $HOME

 or $LOGDIR environment variable:
source ~/.aliases
echo "Shell PID $$ started at `date`" >> ~/login.log
— JP

Setup Files Aren’t Read When You Want?

 The C shell reads its
 .cshrc, .login, and
 .logout setup files at particular
 times (Section 3.3).
 Only “login” C shells (Section 3.4) will read the
 .login and .logout files. Back
 when csh was designed, this restriction
 worked fine. The shell that started as you logged in was flagged as a login
 shell, and it read all three files. You started other shells (shell escapes,
 shell scripts, etc.) from that login shell, and they would read only
 .cshrc. The same can be said of other shell variants,
 such as tcsh, though they may have multiple
 startup files — the problem of distinguishing between login and nonlogin shell
 startup is the same.
Now, Unix has interactive shells started by
 window systems (like xterm (Section 24.20)),
 remote shells
 (like rsh (Section 1.21) or ssh), and other
 shells that might need some things set from the .login or
 .logout files. Depending on how these shells are
 invoked, these might not be login shells — so they might read only
 .cshrc (or .tcshrc, etc.). How can you handle that? Putting
 all your setup commands in
 .cshrc isn’t a good idea because all subshells (Section
 24.4) read it . . . you definitely don’t want to run terminal-setting commands like
 tset (Section
 5.3) during shell escapes!
Most other shells have the same problem. Some, like zsh and bash, have several
 setup files that are read at different times — and probably can be set up to do
 what you want. For other shells, though, you’ll probably need to do some
 tweaking.
To handle problems at login time, put almost all of your setup commands in a
 file that’s read by all instances of your shell, login or nonlogin. (In the C
 shell, use .cshrc instead of .login.)
 After the “login-only” commands have been read from the setup file, set the
 ENV_SET
 environment variable (Section 35.3) as a flag. (There’s
 nothing special about this name. You can pick any name you want.) You can then
 use this variable to test whether the login-only commands have already been run
 and skip running them again in nonlogin shells.
Because the environment variables from a parent process are passed to any
 child processes it starts, the shell will copy the “flag” variable to subshells,
 and the .cshrc can test for it. If the variable exists, the
 login-only commands are skipped. That’ll keep the commands from being read again
 in a child shell.
Here are parts of a .cshrc that show the idea:
...Normal .cshrc stuff...
if ($?prompt && ! $?ENV_SET) then
 # Do commands that used to go in .login file:
 setenv EDITOR /usr/ucb/vi
 tset
 ...
 setenv ENV_SET done
endif
You might put a comment in the file you’ve bypassed — the csh
 .login file, the ksh
 .profile file, etc. — to explain what
 you’ve done.
The file that runs when you log out (in the C shell, that’s .logout
) should probably be read only once — when
 your last (“top-level”) shell exits. If your top-level shell isn’t a login
 shell, you can make it read the logout file anyway. Here’s how: first, along
 with the previous fixes to your .cshrc-type file, add an
 alias that will read your logout file when you use the exit

 command. Also set your shell to
 force you to use the
 exit
 command (Section 35.12) to log out — in csh, for example, use set ignoreeof.
 Here’s what the chunk of your .bashrc
 will look like:
case
 Section 35.10, /
 Section 36.25, function
 Section 29.11, .
 Section 35.29
case "$-/${ENV_SET:-no}" in
i/no)
 # This is an interactive shell / $ENV_SET was not set earlier.
 # Make all top-level interactive shells read .bash_logout file:
 set -o ignoreeof
 function exit {
 . ~/.bash_logout
 builtin exit
 }
 ;;
esac
The builtin exit (Section 27.9) prevents a loop; it makes
 sure bash uses its internal exit command instead of the
 exit function you’ve just defined. In the C shell, use ""exit (Section 27.10)
 instead. This isn’t needed on all shells though. If you can’t tell from your
 manual page, test with another shell (Section 3.6) and be ready to kill (Section
 24.12) a looping shell.
—JP and SJC

Gotchas in set prompt Test

Lots of users add an if

 (! $?prompt)
 exit test to their .cshrc files. It’s gotten so common that some vendors add a
 workaround to defeat the test. For instance, some versions of the which

 command (Section 2.6) set the prompt variable so that it
 can see your aliases “hidden” inside the $?prompt test. I’ve also seen a version of at that starts an interactive shell to run
 jobs.
If you’ve buried commands after if
 (! $?prompt) that should only be run on
 interactive shells or at login time, then you may have trouble.
There are workarounds. What you’ll need depends on the problem you’re trying
 to work around.
	Here’s a way to stop the standard which from reading parts of your .cshrc that you don’t want it to read.
 The first time you log in, this scheme sets a

 CSHRC_READ
 environment variable (Section 35.3). The variable will
 be copied into all subshells
 (
 Section 24.4) (like the one
 that which starts). In subshells, the
 test if
 ($?CSHRC_READ)
 will branch to the end of your
 .cshrc file:
if (! $?prompt) goto cshrc_end

COMMANDS BELOW HERE ARE READ ONLY BY INTERACTIVE SHELLS:
alias foo bar
 ...

if ($?CSHRC_READ) goto cshrc_end

COMMANDS BELOW HERE ARE READ ONLY AT LOGIN TIME:
setenv CSHRC_READ yes
 ...

cshrc_end:

	If you have a buggy version of at
 (Section 25.5) that runs
 jobs from interactive shells, make your own
 frontend to
 at (Section 29.1)
 that
 sets an environment variable named AT temporarily
 before it submits the at job. Add a
 test to your .cshrc that quits if
 AT is set:
()
 Section 43.7, \at
 Section 29.8
at JOBS RUN INTERACTIVE SHELLS ON MY BUGGY VERSION OF UNIX.
WORKAROUND IS HERE AND IN THE at ALIAS BELOW:
if ($?AT) goto cshrc_end

 ...
alias at '(setenv AT yes; \at \!*)'
 ...

cshrc_end:
Most modern versions of at save a
 copy of your environment when you submit the job and use it when the
 at job is run. At that time, the
 AT environment variable will be set; the C
 shell will skip the parts of your .cshrc that you want it to. It’s ugly, but it
 works.

Those workarounds probably won’t solve all the problems on your version of
 Unix, but I hope they’ll give you some ideas.
—JP and SJC

Automatic Setups for Different Terminals

 If you work at several kinds of terminals
 or terminal emulators, terminal setup can be tough. For instance, my X terminal
 sends a backspace character when I push the upper-right key, but the same key on
 another terminal sends a delete character — I want stty
 erase (Section 5.8) to
 set the correct erase character automatically.[4] Maybe you want a full set of calendar programs started when you log
 in to the terminal at your desk, but not when you make a quick login from
 somewhere else.

 The next seven articles have ideas for
 changing your login sequence automatically. Some examples are for the C shell
 and use that shell’s switch and if. Examples for
 Bourne-type shells use case (Section
 35.10) and if (Section 35.13). If you use the other
 type of shell, the idea still applies; just swap the syntax.
	If you use several kinds of terminals or terminal emulators, try
 testing the
 TERM

 environment variable (Section 3.11). Testing other environment variables (Section 3.14) can identify the
 frontend system (like a window system) you’re using.

	Test the output of
 who am i (Section 3.12) to find out about
 the remote system from which you’ve logged in.

	If you log into different kinds of ports — network, hardwired, and so
 on — search for the port type (Section 3.15) in a table like
 /etc/ttys (in BSD derivatives)
 or /etc/inittab (in some other
 variants). Testing the port name (Section 3.13) may also
 work.

	In the X Window System, you can test the window size (Section 3.16) and make various
 settings based on that. Naming windows
 (Section 3.17) lets you
 identify a particular window by reading its environment.

	You can also handle some of these cases using the venerable but
 obscure tset
 (Section 5.3) program to select and initialize the correct
 terminal type. Another program that sets the terminal type is qterm
 (Section 5.4).

Because your terminal type doesn’t change after you’ve logged in, many of
 these tests probably belong in your .profile or .login file.
 Those setup files are read when you first log in to a tty.
 Other tests, especially ones that involve windows, will probably fit better in a
 per-shell setup file such as .bashrc or
 .cshrc. Section 3.3 can help you choose.
—JP and SJC

Terminal Setup: Testing TERM

If you use several different kinds of terminals (or, as is far more common
 these days, terminal emulators) and your TERM environment variable is set
 differently on each terminal, you can add a test like this to your
 C shell .login file:
switch ($TERM)
case vt100:
 ...do commands for vt100
 breaksw
case xxx:
 ...do commands for xxx
 breaksw
default:
 ...do commands for other terminals
 breaksw
endsw

 If you have a
 Bourne-type shell, use a case
 statement (Section 35.10) in your .profile
 instead:
case "$TERM" in
 vt100)
 ...do commands for vt100
 ;;
 xterm)
 ...do commands for xterm
 ;;
 *)
 ...do commands for other terminals
 ;;
esac
—JP and SJC

Terminal Setup: Testing Remote Hostname and X Display

 If you log in from
 other hosts (Section
 1.21) or from hosts running the X Window
 System (Section
 24.20), the who am i
 [5] command will probably show a hostname and/or window information in
 parentheses:
schampeo@fugazi:1002 $ who am i
schampeo ttyp7 Jun 19 03:28 (fugazi:0.0)
(Long hostnames may be truncated. Also, note that some versions of who am i prepend the name of the local host to the
 username and don’t include the remote hostname at all in their output. Check
 yours before you write this test.) The information in parentheses can help you
 configure your terminal based on where you’ve logged in from and/or which
 display you’re using. To test it, add commands such as the following to your
 .profile file. (In C-type shells, use a
 switch statement in .login instead.)
case
 Section 35.10
case "`who am i | sed -n 's/.*(\(.*\))/\1/p'`" in
\(..\) \1
 Section 34.11
*0.0) ...do commands for X display 0 ;;
mac2*) ...do commands for the host mac2.foo.com ;;
"") ...no output (probably not a remote login) ;;
*) ...do commands for other situations ;;
esac
That uses sed
 (Section 34.1) to give the text
 between the parentheses for that remote host to the case. This *0.0 case matches
 lines ending with 0.0; the mac2 case matches lines that start with mac2; an empty string means sed probably didn’t find any parentheses; and the
 * case catches everything else.
—JP and SJC

Terminal Setup: Testing Port

 If you know that certain port
 (tty) numbers are used for certain kinds of logins, you can test that and change
 your terminal setup based on the tty you’re currently
 using. For example, some systems use ttyp0,
 ttyq1, etc. as network ports for rlogin

 and
 ssh
 (Section
 1.21), while others use pty0, etc. This

 Bourne-type case statement branches on the port name:
tty
 Section 2.7
case "`tty`" in
/dev/tty[pqrs]?)
 # rlogin, telnet:
 ...
/dev/tty02)
 # terminal on my desk:
 ...
"not a tty") ;; ...not a terminal login session; do nothing
esac
In C-type
 shells, try a switch or if statement instead.
On Linux, you may need to look for patterns to match
 /dev/pts/0, /dev/pts/1, etc.
—JP and SJC

Terminal Setup: Testing Environment Variables

 Certain systems set certain environment
 variables. For example, the X Window System sets a DISPLAY
 environment variable (Section 35.5). If you’ve logged in from
 a remote system using ssh (Section 1.21), look for variables like
 SSH_CLIENT and SSH_TTY or
 SSH_AUTH_SOCK on the system you log in to. (If you
 aren’t sure about your system, use the env

 or
 printenv
 command (Section 35.3) to look for changes in your environment at different
 systems.)
Your shell setup file (Section 3.3) makes decisions based on the
 environment variables that have been set. Here are examples for both C-type and
 Bourne-type shells:
[]
 Section 35.26
if ($?DISPLAY) then if [-n "$DISPLAY"]; then
 # on X window system # on X window system

else if ($?XDARWIN_VERSION) then elif [-n "$XDARWIN_VERSION"]; then
 # on MacOS X system # on MacOS X system

else else

endif fi
—JP and SJC

Terminal Setup: Searching Terminal Table

 Your system may have an /etc/ttytab or /etc/ttys file that lists the type of each terminal port
 (tty (Section 24.6)).[6] Here are lines from /etc/ttys on a NetBSD
 system I use:
console "/usr/libexec/getty std.9600" vt100 on local
tty00 "/usr/libexec/getty std.9600" dialup off local
tty01 "/usr/libexec/getty std.9600" plugboard off local
 ...
ttyp0 none network off
 ...
For example, port ttyp0 is network,
 the type used by xterm (Section 24.20), telnet (Section 1.21),
 etc.
To change your account configuration based on the tty port type, match the
 first column of that file to the output of the tty (Section 2.7)
 command, which shows your current tty pathname. The output of tty starts with /dev or
 /dev/pts. So, to match your current tty to the file,
 you need to strip the name to its tail. For example, in bash

 and ksh, these three lines would put the terminal port type (vt100, plugboard, etc.) into the ttykind shell
 variable:
tty=`tty`
ttytail=${tty#/dev/}
awk
 Section 20.10
ttykind=`awk '$1 == "'$ttytail'" {print $3}' /etc/ttys`
Then you can test the value with case (Section 35.10) or if (Section 35.13).
 In C shells, you can set ttytail by using the :t string modifier (Section 28.5) and test its value with
 switch or if.
—JP and SJC

Terminal Setup: Testing Window Size

I use
 several terminal windows of different sizes. I
 don’t stretch the windows after I open them; instead, I set the size as I start
 each xterm
 . Here’s an excerpt from my X setup file (Section 3.20) that opens the windows:
-e
 Section 5.22
xterm -title SETI -geometry 80x9+768+1 -e setiathome -verbose -nice 10 &
xterm -title "work xterm" -geometry 80x74+329-81 &
The first window has 9 rows (80x9) and the
 second has 74 rows (80x74).[7] I’d like the less (Section 12.3) pager to use different
 jump-target lines in larger windows. If the window has more than 24 lines, I
 want less to use its option
 -j3 to show search-matches on the third line of the window
 instead of the first.
On many systems, the command stty
 size gives the number of rows and columns in the current
 window, like this:
$ stty size
74 80
Your system might need the command stty
 -a instead — or it could have

 environment variables named
 LINES and COLUMNS. We’ll use
 stty
 size in the following Bourne shell setup file. The set
 (Section 35.25) command puts the number
 of rows into the $2 shell parameter. (Using
 set this way is portable to all shells,
 but it’s a clumsy way to split stty’s output
 into words. If you have a newer shell with array support, it’ll be easier.) Then
 a series of if (Section 35.13)/then (Section 35.26)
 tests handle different window sizes:
LESS=emqc; export LESS
Put number of rows into $2, configure session based on that:
set x `stty size`
if [-z "$2" -o "$2" -lt 1]
then echo ".profile: bogus number of rows ($2) in window!?" 1>&2
elif ["$2" -gt 24]
then LESS=j3$LESS
 ...
fi
Additionally, you may be able to run resize

 on
 machines with the X Window System installed; it may output something like
 this:
schampeo@fugazi:1046 $ resize
COLUMNS=80;
LINES=37;
export COLUMNS LINES;
You may then capture the output and read it for the current setting or simply
 check the COLUMNS or LINES environment variables.
—JP and SJC

Terminal Setup: Setting and Testing Window Name

I use several xterm windows. Here’s an excerpt from my X
 setup file (Section
 3.20):
WINNAME=console xterm -C -title Console -geometry 80x9+0+0 &
WINNAME=work xterm -title "work xterm" -geometry 80x74+329-81 &
The WINNAME=
 name sets an
 environment variable named
 WINNAME for the particular command line it’s on. This
 is passed through the environment, through the xterm process, to the shell running inside the window. So the
 shell’s setup file can test for this variable — and, by knowing the window name
 stored in that variable, do specific setup for just that window. For example, in
 tcsh
 :
-f
 Section 11.10, { }
 Section 28.4
if ($?WINNAME) then
 switch ($WINNAME)
 case console:
 # Watch logs:
 tail -f /var/log/{messages,maillog,secure} ~/tmp/startx.log &
 breaksw
 case work:
 /usr/games/fortune
 fetchmail
 breaksw
 endsw
endif
On the console terminal, this .tcshrc
 file starts a job in the background (Section 23.2) to watch log files. On the
 work xterm, I get a fortune and grab email
 from the POP

 server.
—JP and SJC

A .cshrc.$HOST File for Per Host Setup

 I work with different types of machines
 every day. It is often necessary to set things up differently for, say, a Linux
 box than a SPARCstation or a MacOS X box. Going beyond that, you may want to set
 things up differently on a per-host basis.
I have this test in my .cshrc file:
setenv
 Section 35.3
setenv HOST "`uname -n`"
~
 Section 31.11
if (-e ~/lib/cshrc.hosts/cshrc.$HOST) then
 source ~/lib/cshrc.hosts/cshrc.$HOST
endif
So, if I log in to a machine named (Section 2.5) bosco,
 and I have a file called ~/lib/cshrc.hosts/cshrc.bosco, I can source (Section
 35.29) it to customize my environment for that one machine. These are
 examples of things you would put in a .cshrc.$HOST file:
	Search path (Section 27.6)
	
 Some machines have
 /usr/local/bin, and some
 have /opt. The same goes for
 cdpath (Section 31.5).

	Terminal settings (Section 5.8)
	
 I
 always like to
 reach for the upper-right part of a keyboard to erase characters.
 Sometimes this is the location for the BACKSPACE key, and sometimes
 it is the DELETE key. I set things up so that I can consistently get
 “erase” behavior from whatever key is there.

	

 Other shell
 variables (Section
 35.9) and environment
 variables (Section
 35.3)
	These may be different. You may run a package on a certain machine
 that relies on a few environment variables. No need to always set
 them and use up a little bit of memory if you only use them in one
 place!

In general, this idea allows you to group together whatever exceptions you
 want for a machine, rather than having to write a series of switch or if
 statements throughout your .cshrc and
 .login files. The principle carries over directly to
 the newer shells as well.
—DS and SJC

Making a “Login” Shell

 When you log
 in to most Unix systems, your shell is a login shell. When
 a shell is a login shell, it acts differently
 (Section 3.4).
Sometimes, when you’re testing an account or using a window system, you want
 to start a login shell without logging in. Unix shells act like login shells
 when they are executed with a name that starts with a dash (-).[8] This is easy to do if you’re using a system call in the
 exec(3) family. These system calls let a C-language
 programmer give both the filename of an executable file, like
 sh or /bin/sh, as
 well as the name that should be used to identify the process (in a ps (Section
 24.5) listing, for example), like -sh.
If you’re currently using zsh
 , you can invoke another shell this way by
 typing a dash and a space before the shell’s name:
zsh% - csh
 ...C shell starts, acting like a login shell...
%
C programmers can write a little program that runs the actual shell but tells
 the shell that its name starts with a dash. This is how the Unix login process does it:
run_login_csh()
{
 execl("/bin/csh", "-csh", 0);
}
A more general solution is to make a link
 (Section 10.4) to the shell and
 give the link a filename starting with a dash. If your own
 bin subdirectory is on the same filesystem as /bin (or wherever the executable shell file is),
 you can use a hard link. Otherwise, make a symbolic link, as shown here:
bin
 Section 7.4, ./-
 Section 14.13
$ cd $HOME/bin
$ ln -s /bin/csh ./-csh
Then you can execute your new shell by typing its name:
$ -csh
 ...normal C shell login process...
% ...run whatever commands you want...
% logout
$...back to original shell
—JP and SJC

RC Files

One way to set defaults for your applications is with environment variables (Section 35.3) that the applications might read. This can get messy,
 though, if your environment has tens or hundreds of variables in it. A lot of
 applications have a different way to choose defaults: setup files, similar to
 shell setup files (Section 3.3). Most of these filenames end
 with rc, so they’re often called RC
 files.[9] Today’s more-complex applications also use their own setup
 subdirectories. Almost all of these files and directories are hidden (Section
 8.9) in your home directory; you’ll need ls
 -A to see them.
This article describes some of the most common setup files. For a more
 complete list, check your application’s manpage:
	.emacs
	For the Emacs editor. See Section 19.3.

	.exrc
	For the vi (actually, ex) editor. See Section 17.5.

	.inputrc
	For the GNU Readline library and applications
 that use it, such as the bash
 shell.

	.mailrc
	For the mail (Section 1.21) program and
 others like it. This can be handy if you use mail from the command line to send
 quick messages. For example:
If I send mail to "bookquestions", send it to myself too:
alias bookquestions bookquestions@oreilly.com, jerry
When I send a message, prompt me for "cc:" addresses:
set askcc

	.mh_profile
	For the MH email system.

	.netrc
	A listing of hostnames, accounts — and possibly passwords — used
 for connecting to remote hosts with ftp and some other programs. Should have file access mode (Section 50.2) 600 or 400 for
 security, but this may not be enough protection for passwords! Best
 used for Anonymous ftp.

	.newsrc
	For news readers (Section 1.21). (Some newer
 news readers have more complex files.) A list of newsgroups in the
 order you want to see them. For example:
comp.security.announce: 1-118
news.announce.important: 1
comp.org.usenix: 1-1745
comp.sys.palmtops! 1-55069,55071
 ...
A newsgroup name ending with a colon (:) means you want to read
 that newsgroup; an exclamation point (!) means you don’t. After each name is a list of the
 article numbers you’ve read in that newsgroup; a range like 1-55069 means you’ve read all articles
 between number 1 and number 55069.

	.rhosts
	A list of remote hostnames that are allowed to access your local
 machine with clients like rsh
 and
 rlogin (Section 1.21). Remote
 usernames are assumed the same as your local username unless the
 remote username is listed after the hostname. This file can be a
 security hole; make its file access
 mode (Section
 50.2) 600 or 400. We suggest you only use it if your
 system or network administrator approves. For example:
rodan Allow a user with same username from host rodan
foo.bar.com joe Allow username joe from host foo.bar.com

	.Xauthority
	For xauth, a program that
 handles authorization information used in connecting to the X Window
 System server.

	.Xdefaults
	A resource file (Section 6.5) for the X Window
 System. Sometimes also called .xrdb.

	.xinitrc
	A shell script (Section 35.2) that runs as
 you log in to an X Window System session using xinit. (Also see .xsession, later in this
 list.)

All commands except the last typically end with an
 ampersand (&), which makes those clients
 run in the background. The last command becomes the controlling
 process; when that process exits (for instance, you use the
 window manager’s “quit” command), the window system shuts down. For
 example:
$Id
 Section 39.5, exec >
 Section 36.5, -v
 Section 35.25, uname
 -n
 Section 2.5 , ${..:=..}
 Section 36.7, export
 Section 35.3, xrdb
 Section 6.8, sh
 -c
 Section 24.21, exec
 Section 36.5
#! /bin/sh
$Id: ch03.xml,v 1.36 2002/10/13 03:50:01 troutman Exp troutman $
Usage: .xinitrc [DISPLAY]

wm=fvwm2 # window manager

Put all output into log that you can watch from a window (tail -f):
mv -f $HOME/tmp/startx.log $HOME/tmp/,startx.log
exec > $HOME/tmp/startx.log 2>&1
set -v

Set DISPLAY from $1 if the X server isn't on same host as client:
if [$# -gt 0]
then
 if [$# -ne 1]
 then
 echo "Usage: .xintirc [DISPLAY]" 1>&2
 exit 1
 else
 DISPLAY=$1
 fi
else
 host=`uname -n`
 DISPLAY=${DISPLAY:=$host:0.0}
fi
export DISPLAY
xrdb -load $HOME/.xrdb

#
Clients
#
xterm -C -geometry 80x9+0+0 -sl 2000 &
oclock -geometry -1+1 &
xterm -title "SETI console" -bg blue -fg white -geometry 80x9+768+1 -e \
 sh -c 'cd /var/cache/seti && exec ./setiathome -nice 5 -verbose' &
Don't use -e because Mozilla crashes; start by hand from prompt:
xterm -title "Mozilla console" -bg orange -geometry 80x9-0+1 &
xterm -geometry 80x74+329-81 &

#
Start window manager
#
exec $wm
	.xsession
	An executable file (generally a shell
 script (Section
 35.2), but it can be any executable) that runs as you log
 into an X Window System session using xdm. See .xinitrc, earlier in this list.

	/etc/rc*
	Last but not least, your system probably has a lot of setup files
 in its /etc directory. Look for
 subdirectory or filenames starting with rc.
 These are read when your system reboots or changes its runlevel (for
 example, from single-user mode to multiuser mode). These files are
 basically shell scripts (Section 35.2). If you know a
 little about shell programming, you can learn a lot about your
 system by looking around these files.

—JP and SJC

Make Your Own Manpages Without Learning troff

We strongly suggest that you write a manual page for each command that you
 place in your bin directory. Unix manual pages typically
 have the following format, which we suggest you follow:
NAME
 The program's name; one line summary of what it does.

SYNOPSIS
 How to invoke the program, including all arguments and
 command-line options. (Optional arguments are placed in
 square brackets.)

DESCRIPTION
 A description of what the program does—as long as
 is necessary.

OPTIONS
 An explanation of each option.

EXAMPLES
 One or more examples of how to use the program.

ENVIRONMENT
 Any environment variables that control the program's behavior.

FILES
 Files the program internals will read or write. May include
 temporary files; doesn't include files on the command line.

BUGS
 Any known bugs. The standard manual pages don't take
 bug recording seriously, but this can be very helpful.

AUTHOR
 Who wrote the program.
To see how a “real” manual page looks, type man
 ls.

 Feel free
 to add any other sections that you think are necessary. You can use the
 nroff -man
 macros (Section 3.22) if you want a nicely formatted manual page. However,
 nroff is fairly complicated and, for this
 purpose, not really necessary. Just create a text file that looks like the one
 we showed previously. If you are using a BSD system and want your manual pages
 formatted with nroff, look at any of the
 files in /usr/man/man1, and copy it.
Note
If you insist on formatting your manual page properly, using the troff or groff “man” macros, you can use nroff to preview the file.

The man (Section 2.1) command is essentially the same as this:
-s
 Section 11.7
% nroff -e -man
 filename
 | more -s
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 gnroffawf
You can safely omit the -e option to nroff and the -s option to more, or even substitute in your favorite pager,
 such as less. And remember that nroff may not be available on all systems, but the
 web site has gnroff and awf. In fact, on some systems, nroff is simply a script that emulates the real
 nroff using groff.
Now, you want to make this manual page “readable” by the standard man command. There are a few ways to do this,
 depending on your system. Create the directory man in your home directory; create the directory cat1 as a subdirectory of man; then copy your manual entry into cat1, with the name program.1 (where program is
 the name of your special command). When you want to read the manual page, try
 the command:
~
 Section 31.11
% man -M ~/man
 program
Note
We like to be more strict about naming things properly, but you can omit
 the man directory and just put the
 cat1 directory into your home
 directory. In this case, the command would be as follows:
% man -M ~
 program

 Some
 systems have a MANPATH
 environment variable (Section 35.3), a colon-separated list of
 directories where the man command should
 look. For example, my MANPATH contains:
/home/mike/man:/usr/local/man:/usr/man
MANPATH can be more convenient than the
 -M option.
Note
We are telling you to put the manual page into the cat1 directory rather than the man1 directory because the man program assumes that files in cat1 are already formatted.

If you are sharing your program with other people on the system, you should
 put your manual entry in a public place. Become superuser and copy your
 documentation into /usr/local/man/catl,
 giving it the name program.l (the “l”
 stands for “local”). You may need to create /usr/local and /usr/local/man first. If you can’t become superuser, get the
 system administrator to do it for you. Make sure that everyone can read the
 manual page; the permissions should be something like this:
% ls -l /usr/local/man/catl
-r--r--r-- 1 root 468 Aug 5 09:21 program.l
Then give the command man
 program to read your documentation.
If you are working on some other systems, the rules are a little different.
 The organization of the manual pages and the man command itself are slightly different — and really, not as
 good. Write your manual entry, and place it in your doc directory. Then create the following C
 shell alias (Section
 29.3):
less
 Section 12.3
alias myman "(cd ~/doc; man -d \!$ | less)"
or shell function (Section 29.11):
myman() { (cd $HOME/doc; man -d "$1" | less); }
Now the command myman docfilename will
 retrieve your manual page. Note that if you use a section-number extension like
 .1, you have to give the entire filename
 (e.g., program.1), not just the program’s
 name.
If you want to make your manual page publicly available, copy the file into
 the system manual page directory for section 1; you may have to become superuser
 to do so. Make sure that anyone on the system can read your file. If the entry
 is extremely long and you want to save space in your filesystem, you can use the
 gzip (Section 15.6) utility on your documentation file. The resulting file
 will have the name program.1.gz; newer
 versions of the man command will
 automatically uncompress the file on-the-fly.
—ML and SJC

Writing a Simple Manpage with the -man Macros

If you’re not satisfied with the simple manual pages we discussed in Section 3.21, here’s how to go all the
 way and create a “real” manual page. As we said, the best way to create a manual
 page is to copy one that already exists. So here’s a sample for you to copy.
 Rather than discuss it blow by blow, I’ll include lots of comments (these start
 with .\" or \").
.\" Title: Program name, manual section, and date
1
 Section 2.1
.TH GRIND 1
.\" Section heading: NAME, followed by command name and one line summary
.\" It's important to copy this exactly; the "whatis" database (used
.\" for apropos) looks for the summary line.
.SH NAME
grind \- create output from input
.\" Section heading: SYNOPSIS, followed by syntax summary
.SH SYNOPSIS
.B grind \" .B: bold font; use it for the command name.
[-b] [-c] [-d] \" Put optional arguments in square brackets.
[input [output]] \" Arguments can be spread across several lines.
.br \" End the synopsis with an explicit line break (.br)
.\" A new section: DESCRIPTION, followed by what the command does
.SH DESCRIPTION
.I Grind \" .I: Italic font for the word "Grind"
performs lots of computations. Input to
.IR grind , \" .IR: One word italic, next word roman, no space between.
is taken from the file
.IR input ,
and output is sent to the file
.IR output ,
which default to standard input and standard output if not specified.
.\" Another section: now we're going to discuss the -b, -c, and -d options
.SH OPTIONS
.\" The .TP macro precedes each option
.TP
.B \-b \" print the -b option in bold.

Print output in binary.
.TP
.B \-c \" \- requests a minus sign, which is preferable to a hyphen (-)
Eliminate ASCII characters from input before processing.
.TP
.B \-d
Cause daemons to overrun your computer.
.\" OK, we're done with the description and the options; now mention
.\" other requirements (like environment and files needed) as well as
.\" what can go wrong. You can add any other sections you want.
.SH FILES
.PD 0
.TP 20
.B /dev/null
data file
.TP
.B /tmp/grind*
temporary file (typically 314.159 Gigabytes)
.PD
.SH BUGS
In order to optimize computational speed, this program always produces
the same result, independent of the input.
.\" Use .LP between paragraphs
.LP
If the moon is full,
.I grind
may destroy your input file. To say nothing of your sex life.
.\" Good manual pages end by stating who wrote the program.
.SH AUTHOR
I wouldn't admit to this hack if my life depended on it.
After all that, you should have noticed that there are four important macros
 (listed in Table 3-1) to know
 about.
Table 3-1. Important -man macros
	
 Macro

 	
 Meaning

	
 .TH

 	
 Title of the manual page.

	
 .SH

 	
 Section heading; one for each section.

	
 .TP

 	
 Formats options correctly (sets up the “hanging indent”).

	
 .LP

 	
 Used between paragraphs in a section.

For some arcane reason, all manual pages use the silly .B, .BI, etc.
 macros to make font changes. I’ve adhered to this style in the example, but it’s
 much easier to use inline font changes: \fI
 for italic, \fB for
 bold, and \fR for roman. There may be some systems on which this doesn’t
 work properly, but I’ve never seen any.
—ML and SJC

[1] If you write a csh (or tcsh) script, you probably should use
 the -f option to keep scripts from
 reading .cshrc
 (or .tcshrc).
 However, you probably shouldn’t use csh or tcsh for scripts.

[2] On Mac OS X, /etc is a symbolic link to /private/etc. The
 actual initialization files for tcsh are in /usr/share/init/tcsh.

[3] ZDOTDIR may be hard to set on your
 first login — when your zsh is a login shell — because it’s hard to
 set an environment variable before your first shell starts.
 (The system program that starts your shell, like login(1), could do the job, I
 guess.)

[4] Of course, it is all arbitrary and contingent on your keyboard layout
 and configuration.

[5] Also try "who mom likes" or maybe
 "who is responsible?" — the
 who doesn’t really care, as long
 as there are only two arguments. So, "who let
 the dogs out?“, as you might expect, causes an
 error.

[6] Then again, it may not. The RedHat Linux system I tested this on did
 not; the MacOS X 10.1.5 box I tested it on did.

[7] Both windows have 80 columns. This is a Unix custom that comes from
 “the old days” when terminals all were 80 columns wide. But it’s still a
 common width today — and a good default when you don’t need a wider
 window. Some people are even sort of weird about it, especially for
 reading email.

[8] bash also has a command-line
 option, -login, that makes it act like a login shell.
 zsh -l
 (lowercase L) does the same for zsh.

[9] Don’t ask me why. It’s one of those acronyms, like spool (Section 45.2), that’s open to interpretation, though one
 theory is that it is derived from “runcom files,” (possibly short for
 “run commands”) on the Compatible Time-Sharing System, c.1962-63
 (source: The Jargon File).

Chapter 4. Interacting with Your Environment

Basics of Setting the Prompt

 The prompt displayed by your shell is
 contained in a shell variable (Section 35.9) called
 prompt in C-type shells and PS1 in
 Bourne-type shells. As such, it can be set like any other shell variable.
There are two or three ways to set a prompt. One is a static prompt (Section
 4.2) that doesn’t change during your login session (as you change
 directories, as the time of day changes, etc.). Some shells let you set a
 dynamic prompt (Section 4.3) string that is interpreted
 by the shell before each prompt is printed. Even on shells that don’t interpret
 prompt strings dynamically, you can simulate a dynamic
 prompt (Section 4.4) by
 changing the prompt string automatically.[1]
Depending on your shell’s capabilties, you can use or combine those three
 techniques — and those found in the rest of this chapter — to do a lot. But, of
 course, you don’t want to type that prompt-setting command every time you log
 in. So after you’ve perfected your prompt on the command line, store it in the
 correct shell setup file (Section 3.3): use the file that’s read by
 interactive shells or add an interactive shell test to your setup file. (Setting
 the prompt in noninteractive shells is pointless — and it can even cause
 problems (Section 4.5).)
—JP, TOR, and SJC

Static Prompts

 As Section 4.1 explains, the simplest prompts — which I call
 static prompts — are prompts whose value are set once.
 The prompt doesn’t change (until you reset the prompt variable, of
 course).
The default bash
 prompt is a
 good example of a static prompt. It’s "bash$
 " (with a space at the end, to make the command you type stand out from the rest
 of the prompt). You could set that prompt with the simple command:
PS1='bash$ '.
Notice the
 single quotes (Section 11.3) around the value; this is
 a good idea unless you want special characters in the prompt value to be
 interpreted before it’s set. You can try it now: type that command on a command
 line, just as you would to set any other shell variable. Experiment a bit. The
 same prompt works on ksh
 and
 sh
 .
If you use csh

 or
 tcsh, try one of these, then
 experiment:
set prompt='csh% '
set prompt='tcsh> '
(zsh

 users: you can use any of the previous styles, but omit the
 set from the set
 prompt style.) Those prompts are fairly useless, right? If you log
 in to more than one machine, on more than one account, it’s nice to have your

 hostname and username in the prompt.
 So try one of the following prompts. (From here on, I won’t show a separate
 tcsh version with a > instead of a %. You can
 do that yourself, though, if you like.) If your system doesn’t have uname, try hostname instead:
PS1="$USER@`uname -n`$ "
set prompt="$user@`uname -n`% "
Notice
 that I’ve used double quotes (Section 12.3) around the values, which
 lets the shell expand the values inside the prompt string before the
 prompt is stored. The shell interprets the variable $USER or $user
 — and it runs the command substitution (Section 28.14) that gives the hostname
 — once, before the prompt is set. Using double quotes is
 more efficient if your prompt won’t change as you move around the system.
—JP and SJC

Dynamic Prompts

 Many shells can interpret the stored prompt
 string as each prompt is printed. As Section 4.1 explains, I call these
 dynamic prompts.
Special character sequences in the prompt
 let you include the current directory, date and time, username, hostname, and much
 more. Your shell’s manual page should list these at the
 PS1 or prompt variable. (If you
 use the Korn shell or the original C shell, you don’t have these special
 sequences. Section 4.4 has a technique
 that should work for you.)
It’s simplest to put single quotes around the prompt string to prevent
 interpretation (Section 27.1) as the prompt is stored.
 For example, the following prompt shows the date and time, separated by spaces.
 It also has a special sequence at the end (\$
 in bash,
 %#

 in tcsh and zsh) that’s printed
 as a hash mark (#) if you’re the superuser,
 or the usual prompt character for that shell otherwise. The first command in the
 following code listing works only in bash;
 the second only in tcsh:
PS1='\d \t \$ ' ...bash
set prompt='%w %D %Y %P %# ' ...tcsh
PS1='%W %* %# ' ...zsh
Having the history number in your
 prompt, as Section 4.14 shows, makes
 it easy to use history (Section 30.8) to repeat or modify a
 previous command. You can glance up your screen to the prompt where you ran the
 command, spot the history number (for example, 27), and type !27 to repeat it, !27:$ to grab the filename off the end of the line, and much
 more. In csh, tcsh, and bash prompts, use
 \!

 to get the history number. In
 zsh, use %! instead.
—JP, TOR, and SJC

Simulating Dynamic Prompts

 Some
 shells don’t have the special “dynamic” prompt-setting sequences shown in Section 4.3. If you still want a dynamic
 prompt, you probably can simulate one. Both ksh

 and bash will expand variables (like $PWD), do command substitution (to run a command like 'date'), and do arithmetic as they print the
 prompt. So, for example, you can put single quotes around the prompt string to
 prevent interpretation of these items as the prompt is stored. When the prompt
 string is interpreted, the current values will be put into
 each prompt. (zsh

 gives control over whether this happens as a prompt is printed. If you want it
 to happen, put the command setopt prompt_subst
 (Section 28.14) in your .zshrc
 file (Section
 3.3).)
The following prompt stores the $PWD

 parameter to give the current directory,
 followed by a backquoted date
 command. The argument to date is a format string; because the format string
 is inside single quotes, I’ve used nested double quotes around it. Because it’s
 in single quotes, it’s stored verbatim — and the shell gets the latest values
 from date and $PWD each time a prompt is printed. Try this prompt, then
 cd around the filesystem a bit:
PS1='`date "+%D %T"` $PWD $ '
That prompt prints a lot of text. If you want all of it, think about a
 multiline prompt (Section 4.7). Or you could write a simple
 shell function (Section 29.11) named, say, do_prompt:
for bash
function do_prompt {
 date=`date '+%D %T'`
 dir=`echo $PWD | sed "s@$HOME@~@"`
 echo "$date $dir"
 unset date dir
}

for ksh
do_prompt() {
 date=`date '+%D %T'`
 dir=`echo $PWD | sed "s@$HOME@~@"`
 echo "$date $dir"
 unset date dir
}
and use its output in your prompt:
PS1='`do_prompt` $ ' ...for sh-type shells
The original C shell does almost no interpretation inside its
 prompt variable. You can work around this by writing a
 shell alias (Section 29.2) named something like setprompt
 (
 Section 4.14) that resets the
 prompt variable after you do something like changing
 your current directory. Then, every time csh
 needs to print a prompt, it uses the latest value of
 prompt, as stored by the most recent run of setprompt. (Original Bourne shell users, see Section 4.15 for a similar
 trick.)
—JP, TOR, and SJC

C-Shell Prompt Causes Problems in vi, rsh, etc.

Stray prompts can cause trouble for many commands
 that start a noninteractive shell. This problem may have (and probably has) been
 fixed in your C shell, but some of the following tricks will speed up your
 .cshrc, so keep reading.
If you set prompt
 in your .cshrc file without carefully
 checking first whether prompt was already set (Section 4.1), many older versions of the
 C shell will cheerfully print prompts into the pipe vi uses to expand glob characters, such as filename wildcards (*,
 ?, [
]) (Section 1.13) and the
 tilde (~) (Section 31.11).
When you type :r abc*, vi opens a pipe to the C shell, writes the command
 echo abc* down the pipe, then reads the
 response. If the response contains spaces or newlines, vi gets confused. If you set your prompt to (
 n
) in your .cshrc [i.e., if you show the history number in parentheses as
 the prompt — TOR], vi
 tends to get:
(1) abc.file (2)
back from the C shell, instead of just abc.file.
The solution is to kludge your .cshrc
 like this:
if ($?prompt) then
 # things to do for an interactive shell, like:
 set prompt='(\!) '
endif
This works because a noninteractive shell has no initial prompt, while an
 interactive shell has it set to % .
If you have a large .cshrc, this can speed things up
 quite a bit when programs run other programs with csh
 -c '
 command
 ', if you put all of it inside that
 test.
— CT

Faster Prompt Setting with Built-ins

 To set your prompt, you execute a
 command (on most shells, that command sets a shell variable). Before setting the
 prompt, you may run other commands to get information for it: the current
 directory name, for example. A shell can run two kinds of commands: built-in and external (Section 1.9). Built-in commands usually
 run faster than external commands. On a slow computer, the difference may be
 important — waiting a few seconds for your prompt to reset can get irritating
 (though the computer would have to be quite slow nowadays for it to matter that
 much). Creative use of your shell’s built-in commands might pay off there, and
 they are still quite useful for those trying to squeeze the most performance out
 of their system. Let’s look at some examples:
	

 Section 4.3 has examples of
 some shells’ special characters, such as %D to give the current date. Check your shell’s manual
 page; if it has these features, using them won’t slow you down the way
 an external command in backquotes
 (Section 28.14), like
 'date', might.

	If
 you’re putting your current directory in your prompt, you may only want
 the tail of the pathname (the name past the last slash). How can you
 edit a pathname? You might think of using basename (Section
 36.13) or sed (Section 34.1) with the current
 directory from $cwd — as in the first
 command in the following code listing, and probably in an alias like
 setprompt (Section 4.7) to make sure the
 prompt is updated whenever you change directories. The faster way is
 with the second command, using the C shell’s built-in “tail” operator,
 :t:
set prompt="`basename $cwd`% "
{}
 Section 35.9
set prompt="${cwd:t}% "
If your current directory is
 /usr/users/hanna/projects, either of those
 prompts would look like "projects% "
 (with a space after the percent sign).
The C shell has several of these
 built-in string operators (

 Section 28.5) like :t; the Korn Shell, zsh, and bash have more-powerful string
 operators (Section
 28.5).

	If your prompt gets complex, you can use a shell
 function (Section
 29.11) to access other built-in commands and edit the prompt.
 This can be faster than using an external shell or Perl script because
 functions run within the shell instead of in an external process. Here’s
 an example from my .zshrc
 file:
${+}
 Section 36.7, $(...)
 Section 28.14
Change "script" prompt automatically so I remember I'm in one.
alias script='SCRIPT=yes /usr/bin/script'

#
Functions:
#
setprompt() {
 case "${TTY##*/}" in
 tty[1-9]) xpi=':tty%l' ;; # Virtual console
 *) xpi= ;;
 esac

 PS1="
$USER@%m$xpi $(dirs)
%* \$(folder -list)
${SCRIPT+SCRIPT-}%!%# "
}
Before the function, I set an alias
 that temporarily sets an environment variable named
 SCRIPT while the script (Section
 37.7) program is running. The setprompt function, running in the child shell under
 script, sees that this
 environment variable has been set and adds the string SCRIPT- before the prompt. This reminds me
 that I’m logging to a script file. (If this is hard to visualize, Section 24.3 and Section 35.3 have some
 background.)
The setprompt function itself has two parts. The first is a
 case

 statement (Section 35.11) that tests
 $TTY, the name of the tty (Section
 2.7) I’m currently using. If the name ends in
 tty1, tty2, etc., it’s one
 of my Linux virtual consoles (Section 23.12). In that case, I
 want to add the console name (tty1, etc.) to my
 prompt — so I store the name in the xpi
 (extra prompt
 info) shell variable. This variable’s value —
 if it’s been set — is expanded when the prompt is printed. The second
 part sets the prompt variable PS1. The whole prompt
 looks like this:
jpeek@kludge:tty1 ~/pt/art
15:38:30 inbox pt
501%
The first line shows my username, hostname, the virtual console name
 (if any), and the current directory (in this example, there was nothing
 else on the directory stack (Section 31.7)). The second line
 has the time — and my email folder stack, from the MH folder
 -list command, which is the only nonbuilt-in command used
 in the prompt. And here’s a subtle point that’s worth perusing. The
 whole prompt string is inside double quotes (Section 27.12) so that variable
 and command substitution will happen whenever setprompt is run. But, the way my prompt is set, the MH
 folder stack may change between the times that setprompt resets the prompt. So I escape the $ in \$(folder
 -list). This stores the command substitution without
 executing folder! So, when
 every prompt is about to be printed, the shell
 will evaulate the prompt string and expand the $(...) operators into the current folder stack. The third
 line sets the end of the prompt string: the zsh prompt substitution at %m, %*, %! and %#.
On a slow machine, I’d try hard to find a way to eliminate the
 external folder -list command. But my Linux box is
 fast enough so that I don’t notice any delay before a prompt. To make
 this work, I needed a good understanding of what’s evaluated when. It’s
 this sort of subtlety that makes prompt setting a challenge — and a
 pleasure, too, when you get it working just right.

As another example, Section 4.14
 shows more about using dirs in a shell
 prompt.
—JP and SJC

Multiline Shell Prompts

 Lots
 of people like lots of information in their prompts: hostname, directory name,
 history number, and maybe username. Lots of
 people have spent lots of time trying to make their prompts short enough to fit
 across the screen and still leave room for typing a command longer than ls:
<elaineq@applefarm> [/usr/elaineq/projects/april/week4] 23 % ls
Even with fairly short prompts, if you look back at a screen after running a
 few commands, telling the data from the prompts can be a little tough (real
 terminals don’t show user input in boldface, so I won’t do it here
 either):
+<elaineq@applefarm> [~] 56% cd beta
<elaineq@applefarm> [~/beta] 57% which prog
/usr/tst/applefarm/bin/beta/prog
<elaineq@applefarm> [~/beta] 58% prog
61,102 units inventoried; 3142 to do
<elaineq@applefarm> [~/beta] 59%
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 mlprompt.cshmlprompt.sh
One nice
 answer is to make a prompt that has more than one line. Here’s part of a
 .cshrc file that sets a three-line
 prompt: one blank line, one line with the
 hostname and current directory, and a third
 line with the history number and a percent sign. (If this were a tcsh, I could have gotten the hostname with
 %m.) The

 C shell quoting (Section 27.13) is ugly — doubly ugly
 because the prompt is set inside an alias — but otherwise it’s
 straightforward:
uname -n
 Section 2.5, {..}
 Section 35.9
set hostname=`uname -n`
alias setprompt 'set prompt="\\
${hostname}:${cwd}\\
\! % "'
alias cd 'chdir \!* && setprompt'
alias pushd 'pushd \!* && setprompt'
alias popd 'popd \!* && setprompt'
setprompt # to set the initial prompt
(There’s a version on the Web for Bourne-type shells.) The prompts look like
 this:
applefarm:/usr/elaineq/projects/april/week4
23 % prog | tee /dev/tty | mail -s "prog results" bigboss@corpoffice
61,102 units inventoried; 3142 to do

applefarm:/usr/elaineq/projects/april/week4
24 % cd ~/beta

applefarm:/usr/elaineq/beta
25 % prog | mail joanne
The blank lines separate each command — though you may want to save space by
 omitting them. For example, Mike Sierra of O’Reilly &
 Associates has used a row of asterisks:
***** 23 *** <mike@mymac> *** ~/calendar *****
% cd Sep*
***** 24 *** <mike@mymac> *** ~/calendar/September *****
%
Other shells have different syntax, but the idea is the same: embed newlines
 to get multiline prompts. In
 Bourne-type shells you’ll need
 zero or one backslash before each newline; Section 27.12 explains.
 In bash, put a \n (which stands
 for a newline character) anywhere you want the prompt to break to a new
 line.
What I like best about multiline prompts is that you get a lot of information
 but have the whole screen width for typing. Of course, you can put different
 information in the prompt than I’ve shown here. The important idea is that if
 you want more information and need room to type, try a multiline prompt.
—JP and SJC

Session Info in Window Title or Status Line

 Some

 people don’t
 like to put the current directory, hostname, etc. into their prompts because it
 makes the screen look cluttered to them. Here’s another idea. If your terminal
 or window system has a status line or titlebar, you might be able to put the
 information there. That’s nice because you can see the information while you run
 programs. The down side is that the information can get out of date if you use a
 command that takes you to another host or directory without updating the status
 line. The latest bash and zsh shells do this by default when you’re using an
 xterm window. For the rest of you, here’s
 how to do it yourself.

 Because neither csh or tcsh do this by
 default, I’ll show C-shell-type syntax. But you can do the same thing in
 Bourne-type shells with a shell function and case (Section 35.10)
 statement; there’s a ready-to-use version on the web site.

 When you use cd, pushd, or popd, an alias uses the echo command to write special escape sequences to the terminal or
 window.
Here are cd aliases and other commands for
 your .cshrc or .tcshrc file. If I were logged in to
 www.jpeek.com in the directory /home/jpeek, this alias would put:
www:/home/jpeek
in the status area or window title, depending on which terminal type I’m
 using. Of course, you can change the format of the status line. Change the
 following command string, ${host:h}:${cwd},
 to do what you need; see your shell’s manual page for a list of variables, or
 create your own custom information.

:h
 Section 28.5, &&
 Section 35.14
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 stattitle.cshstattitle.sh
set e=`echo x | tr x '\033'` # Make an ESCape character

set g=`echo x | tr x '\07'` # And a Ctrl-g
set host=`uname -n`
Puts $host and $cwd in VT102 status line. Escape sequences are:
${e}7 = save cursor position, ${e}[25;1f = go to start of status
line (line 25), ${e}[0K = erase line, ${e}8 = restore cursor
alias setstatline 'echo -n "${e}7${e}[25;1f${e}[0K ${host:h}:${cwd}${e}8"'
alias settitle 'echo -n "${e}]2;${host:h}:${cwd}${g}"'
switch ($TERM)
case vt10?:
 alias cd 'cd \!* && setstatline'
 alias pushd 'pushd \!* && setstatline'
 alias popd 'popd \!* && setstatline'
 breaksw
case xterm*:
 alias cd 'cd \!* && settitle'
 alias pushd 'pushd \!* && settitle'
 alias popd 'popd \!* && settitle'
 breaksw
endsw
(Section 5.15 has more about how
 this works in xterms.)
The ESC and CTRL-g characters are stored with a trick that should work on all
 Unix shells. Most modern echos will let you
 make a nonprintable character directly, like this: g='echo '\07''.
If you always use a VT102-type
 terminal (and many people do), the setstatline alias will work fine. If you use a different
 terminal, try it anyway! Otherwise, read the terminal manual or its
 termcap/terminfo entry and find
 the escape sequences that work for it; then add a new case to the switch statement.
Note that you might have some trouble here: if this code is in your .cshrc file but your terminal type is set in your
 .login file, the terminal type may not
 be set until after the alias has been read. There are workarounds (Section
 3.8).
The status line or titlebar can also get out of sync with reality if you use
 remote logins (

 Section 1.21), subshells (Section
 24.4), etc. These might make a new status line or titlebar but not
 reset the original one when needed. To fix this, just type setstatline or settitle at a shell prompt. Or, if you don’t want to bother to
 think of the name of the alias, use the following command to change to the
 current directory (.), which will use the correct alias and reset the status or
 title:
% cd .
If you’re using tcsh
 , its special alias cwdcmd
 will be run every time
 you change the shell’s current directory. So, in tcsh, you can replace the three aliases for cd, pushd, and
 popd with something like this:
alias cwdcmd settitle
—JP and SJC

A “Menu Prompt” for Naive Users

 Some people don’t want to be faced with a
 Unix % or $ shell prompt. If you (or, if you’re a sys admin on a multiuser
 system, your users) usually run only a few particular Unix commands, you can put
 those command names in the shell prompt. Here’s
 a simple one-line Bourne-shell prompt for a .profile:
PS1='Type "rn", "mailx", "wp", or "logout": '
Next, a multiline prompt (Section 4.7) for the C shell .cshrc or .tcshrc file:
if ($?prompt) then
set prompt='\\
Type "pine" to read the news,\\
type "mutt" to read and send mail,\\
type "wp" for word processing, or\\
type "logout" to log out.\\
YES, MASTER? '
endif
You get the idea.
—JP and SJC

Highlighting and Color in Shell Prompts

 If your
 prompt has some information that you want to stand out — or if you want your
 whole prompt to stand out from the rest of the text on the screen — you might be
 able to make it in enhanced characters or colors. If your terminal has special
 escape sequences for enhancing the characters (and most do), you can use them to
 make part or all of your prompt stand out. Newer versions of xterm also have color capability, as does the

 Mac
 OS X Terminal program, though Terminal may not properly support the escape
 sequences we discuss later. (The
 GNU dircolors (Section 8.6)
 command sets up a color-capable terminal.)
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 blinkprompt.cshblinkprompt.sh
Let’s say that you want to make sure people notice that they’re logged in as

 root (the superuser) by making part of the root
 prompt flash. Here are lines for the root .cshrc:
Put ESCape character in $e. Use to start blinking mode (${e}[5m)
and go back to normal mode (${e}[0m) on VT100-series terminals:
set e="`echo x | tr x '\033'`"
uname -n
 Section 2.5
set prompt="${e}[5mroot${e}[0m@`uname -n`# "
That prompt might look like this, with the word root flashing:
root@www.jpeek.com#
Note

 Shells
 with command-line editing need to calculate the width of your prompt string.
 When you put
 nonprinting escape sequences in a
 prompt (as we’re doing here), in zsh and
 tcsh you have to delimit them
 with
 %{ and %}. In bash

 , bracket nonprinting characters
 with \[and \]. In the Korn shell, prefix your prompt
 with a nonprinting character (such as CTRL-a) followed by a RETURN, and
 delimit the escape codes with this same nonprinting character. As the
 pdksh manual page says, “Don’t blame
 me for this hack; it’s in the original ksh.”

 The prompt
 is set inside double quotes ("), so the
 uname' -n command is run once, when the
 PS1 string is first stored. In some shells, like
 bash and pdksh, you can put single quotes (') around the PS1 string; this stores the
 backquotes (`) in the string, and the shell
 will interpret them before it prints each prompt. (In this case, that’s useless
 because the output of uname -n will always be
 the same in a particular invocation of a shell. But if you want constantly
 updated information in your prompt, it’s very handy.) Section 4.6 and Section 27.12 have more info.
Because the same escape sequences won’t work on
 all terminals, it’s probably a good idea to add an if test that only sets the prompt if the terminal type
 $TERM is in the Digital Equipment Corporation VT100
 series (or one that emulates it). Table
 4-1 shows a few escape sequences for VT100 and compatible terminals.
 (The ESC in each sequence stands for an
 ESCape character.)
Table 4-1. VT100 escape sequences for highlighting
	
 Sequence

 	
 What it does

	
 ESC[1m

 	
 Bold, intensify foreground

	
 ESC[4m

 	
 Underscore

	
 ESC[5m

 	
 Blink

	
 ESC[7m

 	
 Reverse video

	
 ESC[0m

 	
 All attributes off

Of course, you can use different escape sequences if your terminal needs them.

 Better, read your terminal’s
 terminfo or termcap database with
 a program like tput or tcap to get the correct escape sequences for your
 terminal. Store the escape sequences in shell
 variables (Section
 35.9).

 bash interprets octal character codes (like
 \033) in the prompt. It also has
 special-backslashed special-prompt characters — for instance, bash Version 2 has \e, which outputs an ESCape character, and \H, which gives the complete hostname. The string
 \$ is replaced by a dollar sign ($) on non-root shells and a
 hash mark (#) if you’re currently
 root. So, on bash,
 you can make the previous csh prompt this
 way:
PS1='\[\e[5m\]root\[\e[0m\]@\H\$ '
(The delimiters for nonprinting characters, \[and \], might make it look
 complicated. Try spotting them first, as you look at the prompt string, so you
 can see what’s left.)
Eight-bit-clean versions of tcsh can put standout, boldface, and underline — and any other
 terminal escape sequence, too — into your shell prompt. For instance, %S starts standout mode and %s ends it; the tcsh manpage has details for your version. The next example shows
 how to make the same prompt as earlier with the word root in standout mode. (tcsh
 puts the hostname into %m.) Because tcsh “knows” the width of its special %S and %s
 formatting sequences, they don’t need to be delimited with %{ or %}:
set prompt = '%Sroot%s@%m# '
You also can add color to your prompt! For instance, make the previous prompt
 for bash using bright red (1;31) on a blue
 background (44):
PS1='\[\e[1;31;44m\]root\[\e[0m\]@\H# '
—JP and SJC

Right-Side Prompts

 Both
 zsh and tcsh have an optional prompt at the right side of the screen.
 Unlike the normal left-side prompt, the cursor doesn’t sit next to the
 right-side prompt (though the right prompt disappears if you type a long command
 line and the cursor passes over it). It’s stored in the zsh
 RPROMPT variable and in tcsh
 rprompt.
What can you do with a right-hand prompt? Anything you want to! (You’ll
 probably want to keep it fairly short, though.) Put the time of day on the
 right-hand side, for instance; on tcsh, it’s
 this easy:
[jpeek@ruby ~]% set rprompt='%t'
[jpeek@ruby ~]% users 3:44pm
jpeek ollie
[jpeek@ruby ~]% 3:45pm
As another idea, you could use sched
 to remind you of an important meeting by
 setting the right-hand prompt. Here’s a shell function for zsh that sets the right prompt to “LEAVE NOW” at a
 particular time. You can give it one argument to set the time to remind you. Or,
 with no argument, it removes the right-hand prompt:
leave() {
 case "$#" in
 0) unset RPROMPT ;;
 1) sched "$1" "RPROMPT='LEAVE NOW'" ;;
 *) echo "Usage: leave [time]" 1>&2 ;;
 esac
}
Here’s an example:
jpeek$ date
Fri May 12 15:48:49 MST 2000
jpeek$ leave 15:55
 ...do some work...
jpeek$ pwd
/u/jpeek/pt
jpeek$ date LEAVE NOW
Fri May 12 15:55:22 MST 2000
jpeek$ lpr report LEAVE NOW
jpeek$ leave LEAVE NOW
jpeek$
—JP and SJC

Show Subshell Level with $SHLVL

 If you’re like me, when you start a
 shell escape (Section 17.21) or any subshell (Section
 24.4), you can forget that you aren’t in your login shell. Your shell
 history (Section 30.1) might get confused, shell
 variables (Section
 35.9) may not be set, and other problems may come up. zsh

 and bash have a built-in SHLVL
 environment variable (Section 35.3) that lets you track how
 many subshells deep your current shell is. tcsh has a shlvl shell variable that’s
 automatically set from (and sets) SHLVL. So, all three
 shells cooperate with each other to set the right value, even if you start one
 shell from another. (For other shells that don’t have SHLVL — ksh and csh —
 you can set up something similar with a bit of arithmetic in the ENV (Section
 35.5) file or the .cshrc file,
 respectively.)
In your top-level shell, the value of $shlvl is 1 (one). In the first subshell, it’s 2; in a
 sub-subshell, it’s 3; and so on. You can use this to control your shell startup
 files — for example, have some commands in your .cshrc that run when you first log in (and $shlvl is 1), but don’t run in subshells. You can
 also put $shlvl in your prompt (but only
 during subshells, if you’d like — as a reminder that you aren’t in your
 top-level shell). You can set your prompt to mike% in top-level shells, (1)
 mike% in a first-level subshell, (2)
 mike% in a second-level subshell, and so on.
 Here’s some sample prompt-setting code for your .tcshrc:
If this is a subshell, put shell level in prompt:
if ($shlvl == 1) then
 set prompt="${USER}% "
else
 set prompt="($SHLVL) ${USER}% "
endif

 bash doesn’t need an if because login shells read your .bash_profile (or .profile)
 and subshells read your .bashrc. Here are
 commands to set the prompts I mentioned earlier:
PS1='\u\$ ' ...for the .bash_profile
PS1='($SHLVL) \u\$ ' ...for the .bashrc
Does your account run a windowing system that’s started from your top-level
 shell startup file (like .login
)? If it does, lines like the following
 examples (these are for .login) will reset
 SHLVL so that the shell in the window will start at a
 SHLVL of 1 — and act like a top-level shell. This code assumes that your first login
 shell starts on a tty named /dev/tty1
 through /dev/tty6 (which are the
 Linux virtual
 consoles (Section
 23.12)) and that the windows that open won’t have a tty with the same
 name (which is true on Linux). (If you aren’t sure, check who (Section 2.8).) You
 may need to adapt this. The trick is to make SHLVL 0 (zero)
 before you start the windowing system. When the windows’ shells start, they’ll
 raise SHLVL to 1:
If on a virtual console, bury this shell and start X right away:
if ("`tty`" =~ /dev/tty[1-6]) then
 setenv SHLVL 0
 startx
endif
Getting this to work right in every situation (rsh (Section 1.21),
 ssh, su,
 shell escapes (Section 17.21) — both interactive and noninteractive (Section 3.4) — subshells, window systems,
 at
 jobs (Section 25.5), and so on) can be a
 challenge (Section 3.8)!
 It takes a little planning. Sit down and think about all the ways you start
 subshells — which subshells are interactive and which aren’t — and whether
 they’ll get SHLVL passed from their parent process. (If you
 aren’t sure, test that with an env
 or
 printenv
 command (Section 35.3).) Then plan which kind of shell needs which
 SHLVL settings. If it gets too complicated, make it
 work in most cases! If you use many subshells, this system can be too handy to
 ignore.
—JP and SJC

What Good Is a Blank Shell Prompt?

Note
This tip is also great if you use a mouse to copy and paste command lines
 in your window.

Some
 terminals I’ve used (like old
 Hewlett-Packard and Tektronix terminals) had local editing. You could move your
 cursor up the screen to a previous command line, maybe make some edits to it,
 then press a SEND LINE key to resend that line to the host. This didn’t have
 anything to do with sophisticated command-line
 editing (Section
 30.14) that modern Unix shells have, though. Maybe your terminal can do
 that, too. Depending on how your emacs editor
 is configured, shell-mode may work that way, as
 well.
The problem was that unless I erased the shell prompt (%) on my screen, it would be sent back to the
 shell and give the error "%: Command not
 found.” So I set my shell prompt to this:
set prompt=' '
That’s right: four spaces. Most Unix commands start their output at column 1,
 so my command lines were easy to find because they were indented. The shell
 didn’t care if I sent four spaces before the command line. So everything was
 fine until I got my new terminal without a SEND LINE key . . .
If you want some information in your prompt, too, make a multiline prompt (Section
 4.7) with four spaces in the last line.
—JP and SJC

dirs in Your Prompt: Better Than $cwd

 Many people use the current directory in
 their prompts. If you use the pushd
 and
 popd (Section 30.7) commands, you may not always remember exactly what’s
 in your directory stack (I don’t, at least). Here’s how: run the dirs command, and use its output in your prompt. A
 simple csh and tcsh alias looks like this:
alias cd 'chdir \!* && set prompt="`dirs`% "'
and the prompts look like:
/work/project % cd
~ % cd bin
~/bin %
Here’s what to put in .cshrc or .tcshrc
 to make a multiline
 prompt (Section 4.7)
 that shows the directory stack:
uname -n
 Section 2.5, expr
 Section 36.21
PUT hostname.domain.name IN $hostname AND hostname IN $HOST:
set hostname=`uname -n`
setenv HOST `expr $hostname : '\([^.]*\).*'`
alias setprompt 'set prompt="\\
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 dirs-prompt.cshdirs-prompt.sh
${USER}@${HOST} `dirs`\\
\! % "'
alias cd 'chdir \!* && setprompt'
alias pushd 'pushd \!* && setprompt'
alias popd 'popd \!* && setprompt'
setprompt # SET THE INITIAL PROMPT
Because bash can run a command each time it sets its prompt, and because
 it has built-in prompt operators (Section 4.3) like \u, the bash
 version of all the previous stuff fits on one line:
$(...)
 Section 28.14
PS1='\n\u@\h $(dirs)\n\! \$ '
That makes a blank line before each prompt; if you don’t want that, join the

 first
 and second lines of the setprompt alias or remove the first
 \n. Let’s push a couple of directories
 and watch the prompt:
jerry@ora ~
1 % pushd /work/src/perl
/work/src/perl ~

jerry@ora /work/src/perl ~
2 % cd ../cnews

jerry@ora /work/src/cnews ~
3 % pushd ~/bin
~/bin /work/src/cnews ~

jerry@ora ~/bin /work/src/cnews ~
4 %
Of course, the prompt looks a little
 redundant here because each pushd command
 also shows the dirs output. A few commands
 later, though, having your directory stack in the prompt will be handy. If your
 directory stack has a lot of entries, the first line of the prompt can get wider
 than the screen. In that case, store the dirs
 output in a shell array, and edit it with a command like sed or with the built-in
 csh
 string editing (Section 28.5).
For example, to show just the
 tail of each path in the dirs output, use the following alias; the

 C shell operator :gt globally edits all words, to the tail of each
 pathname:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 dirstail-prompt.csh
alias setprompt 'set dirs=(`dirs`); set prompt="\\
${USER}@${HOST} $dirs:gt\\
\! % "'
Watch the prompt. If you forget what the names in the prompt mean, just type
 dirs:
jerry@ora bin cnews jerry
5 % pushd ~/tmp/test
~/tmp/test ~/bin /work/src/cnews ~
 ...
jerry@ora test bin cnews jerry
12 % dirs
~/tmp/test ~/bin /work/src/cnews ~
—JP and SJC

External Commands Send Signals to Set Variables

 The Bourne
 shell’s

 trap (Section 35.17) will run one or more commands when the shell gets a
 signal (Section 24.10) (usually, from the kill command). The shell will run any command, including commands
 that set shell variables. For instance, the shell could reread a configuration
 file; Section 24.13 shows that. Or it
 could set a new PS1 prompt variable that’s updated any time
 an external command (like another shell script or a cron
 job (Section
 25.2)) sends the shell a signal. There are lots of
 possibilities.
This trick takes over signal 5 (SIGTRAP), which usually isn’t used. When the
 shell gets signal 5, a trap runs a command to
 get the date and time, then resets the prompt. A background (Section
 23.2) job springs this trap once a minute. So, every minute, after
 you type any command, your prompt will change.
You can use any command’s output in your prompt (possibly with some editing,
 probably with sed (Section 34.1) or expr (Section
 36.21)): count the number of users, show the load
 average (Section 26.4),
 whatever. Newer shells, like bash, can run a
 command in backquotes (Section 28.14) each time the prompt is
 displayed — Section 4.10 has an
 example. But, to have an external command update a shell variable at any random
 time, this trap trick is still the
 best.
[image:] Go to http://examples.oreilly.com/upt3 for more information on: date-
 prompt.sh
Now on to the specific example of putting date and time in the
 old Bourne shell’s prompt.
 If your
 system’s date command doesn’t understand date
 formats (like +%a), get one that does. Put
 these lines in your .profile file (or just
 type them in at a Bourne shell prompt):
Put date and time in prompt; update every 60 seconds:
trap 'PS1=`date "+%a %D %H:%M%n"`\
$\ ' 5
while :
:
 Section 36.6
do
 sleep 60
 kill -5 $$
done &
promptpid=$!
Now, every minute after you type a command, your prompt will change:
Thu 06/20/02 02:33
$ cc bigprog.c
undefined symbol first referenced in file
xputc bigprog.o
ld fatal: Symbol referencing errors.
Thu 06/20/02 02:34
$ ls
bigprog.c
bigprog.o
Thu 06/20/02 02:35
$
The prompt format is up to you. This example makes a two-line prompt (Section
 3.7) with backslashes (\) to protect the newline and space from the
 trap; a single-line prompt might be
 easier to design. The manual page for date
 lists what you can put in the prompt.
This setup starts a while
 loop (Section 35.15) in the background. The
 promptpid variable holds the process ID number (
 Section 24.3) of the background shell.
 Before you log out, you should kill (Section 24.12) the loop. You can type
 the command:
kill $promptpid
at a prompt or put it in a file that’s executed when you
 log out (Section
 4.18).
—JP and SJC

Preprompt, Pre-execution, and Periodic Commands

 bash,

 tcsh, and zsh can run a Unix command, or multiple commands, before printing
 each prompt. tcsh

 and zsh also can do something you specify
 before executing the command you’ve typed at a prompt. Finally, tcsh and zsh
 can do something periodically (every n seconds) before
 whatever prompt comes next. (Section
 4.15 shows how to execute commands periodically in the original
 Bourne shell.) These commands don’t have anything to do with setting the prompt
 itself, though they can. The command could do some system checking, reset shell
 variables, or almost anything that you could type at a shell prompt. If the
 commands run slowly, they’ll delay whatever else you’re doing, so keep that in
 mind.
Let’s start with precmd
 , the tcsh
 alias that’s run after your command line is read and before the command is
 executed. In zsh, the same thing is done by
 the shell function named preexec. Shell history is
 available, so you can use history substitution
 (Section 30.8) inside the alias or
 function.
 Here’s a nice example adapted from the
 tcsh manual page: showing the command
 line you’re running in your xterm window
 titlebar. It’s ugly because it has ESC and CTRL-g characters embedded directly
 in the alias; I’d rather store the escape sequences in shell variables, as shown
 in the xterm
 titlebar article (Section 4.8). The if sets the alias only if you’re using an
 xterm terminal:
Show each command line in xterm title bar:
if ($TERM == xterm) alias postcmd 'echo -n "^[]2;\!#^G"'

 Next, let’s look at running a command
 periodically. You’d like to watch the load average by running uptime
 (Section 26.4) every minute, before a prompt. Here’s how to do it in
 zsh: put code like this in your

 .zshrc
 file (Section
 3.3) (or just type it at a prompt to try it). The
 PERIOD
 shell variable is the interval, in
 seconds, between runs of the periodic function as shown in
 the following code:
Run "uptime" every 60 seconds; put blank line before:
periodic() {echo "\n==> $(uptime) <==";}
PERIOD=60
Here’s how it looks:
jpeek@ruby$ pwd
/u/jpeek/pt

==> 5:16pm up 4:07, 6 users, load average: 0.22, 0.15, 0.08 <==
jpeek@ruby$ lpr xrefs
jpeek@ruby$ mail -s "xrefs list" jan < xrefs

==> 5:17pm up 4:08, 7 users, load average: 1.29, 0.55, 0.23 <==
jpeek@ruby$

 Finally,
 here’s how to set preprompt commands. These are run before each shell prompt is
 printed. In tcsh, define a precmd alias. In zsh, define a precmd function.
 In bash, store the command(s) in the
 PROMPT_COMMAND

 shell variable. Let’s look at
 bash this time. Here’s a silly example
 that I used to have in my bash
 setup file (Section 3.3):
IFS
 Section 36.23, set
 Section 35.25, shift $#
 Section 36.10
PROMPT_COMMAND='
Save old $IFS; set IFS to tab:
OIFS="$IFS"; IFS=" "
Put x in $1, face in $2, explanation[s] in $3[, $4, ...]:
set x `smiley`
Put face into $face and explanation(s) into $explan:
face="$2"; shift 2; explan="$*"
Restore shell environment:
shift $#; IFS="$OIFS"'

Prompt I use (includes the latest $face):
PS1='\u@\h $face '
The first part is a series of shell commands
 that are stored in the PROMPT_COMMAND variable; they’re
 surrounded by a pair of single quotes ('' '),
 one on the first line (after the =) and the
 other after IFS is reset. That series of
 commands is executed before every prompt. It sets two shell variables, $face and $explan, with new values before each prompt is set. The prompt is
 set on the last line; it includes the value of $face.
Here’s what my screen looked like with this ridiculous setup. Notice that the
 prompt keeps changing as the PROMPT_COMMAND resets $face and $explan. If I wanted the explanation of a face I saw as I went
 along, I could type echo
 <">$explan<">:
jerry@ruby :-{) echo "$explan"
normal smiling face with a moustache
jerry@ruby +<||-) vi proj.cc
 ...
jerry@ruby :-O echo "$explan"
Mr. Bill
 Wow!
 ohh, big mouth, Mick Jagger
 uh oh
jerry@ruby :-) < g++ -Wall proj.cc
 ...
(It was even more useless than psychoanalyze-pinhead (Section 19.13), but it was fun while it lasted.) Seriously now, I’ll
 say again: preprompt commands do not have to be used to set
 a prompt. You can use them to do anything. If the commands in
 PROMPT_COMMAND — or any of the other functions or
 aliases we’ve covered — write to standard output or standard error, you’ll see
 that text on your screen, before or after the prompt, at the point where the
 commands are executed.
—JP and SJC

Running Commands When You Log Out

 Is there
 something you want to do every time you log out: run a program that deletes
 temporary files, asks you a question, or prints a fortune to your screen? If you
 use the C shell, make a file named .logout
 (Section 3.3) in your home
 directory and put the commands there. Before a login C shell exits, it will read
 that file. A login bash
 reads .bash_logout, and zsh reads
 .zlogout. But not all shells are login
 shells; you might want these shells to read your logout-type file, too. Section 3.18 shows a fix for the Bourne
 and Korn shells; Section 3.8 and Section 3.4 have background
 information.
Some ideas for your logout file are:
	A command like fortune to give you
 something fun to think about when you log out.

	A command to list a “reminder” file — for example, work to take
 home.

	A script that prompts you for the hours you’ve worked on projects so
 you can make a timesheet later.

	
 The
 command clear to erase your screen.
 This keeps the next user from reading what you did.[2] In the
 Mac OS X Terminal
 application, command-k will delete the scrollback buffer. It also helps
 to stop “burn-in” damage to old, monochrome monitors caused by
 characters left over from your login session (though this is hardly a
 concern nowadays; most of us have moved on to color screens that are not
 subject to burn-in). (Some Unixes clear the screen before printing the
 login: prompt. Of course, this
 won’t help users who connect with a data switch or port manager because
 the connection will be broken before the next login prompt.)

If you connect to this host over a network, with a slow modem or on a data
 switch — and you don’t see all the logout commands run before your connection
 closes — try putting the command sleep 2 (Section 25.9) at the end of the
 file. That makes the shell wait two seconds before it exits, which gives output
 more time to get to your screen.
—JP and SJC

Running Commands at Bourne/Korn Shell Logout

 Section 4.17 describes logout files.
 Commands in those files are run when you log out. The Bourne and Korn shells don’t have a logout file, though.
 Here’s how to make one:
	In your .profile file, add the
 line:
trap
 Section 35.17, .
 Section 35.29
trap '. $HOME/.sh_logout; exit' 0
(Some systems may need $LOGDIR
 instead of $HOME.)

	Make a file in your home directory named
 .sh_logout. Put in the commands you want to be
 run when you log out. For example:
if
 Section 35.13, [
 -f
 Section 35.26
clear
if [-f $HOME/todo.tomorrow]
then
 echo "=========== STUFF TO DO TOMORROW: ============"
 cat $HOME/todo.tomorrow
fi

The trap will read the .sh_logout file when the shell exits.
—JP and SJC

Stop Accidental Bourne-Shell Logouts

 It’s pretty easy to type one too many
 CTRL-d characters and log out of a Bourne shell without meaning to. The

 C shell has an
 ignoreeof shell variable that won’t let you log out
 with CTRL-d. So do the
 Korn shell and bash; use set -o
 ignoreeof.
Here’s a different sort of solution for the Bourne shell. When you end the
 shell, it asks if you’re sure. If you don’t answer yes, a new shell is started
 to replace your old one.
First, make a file like the C shell’s .logout
 that will be read when your Bourne shell exits (Section 4.18). Save your tty (Section
 2.7) name in an environment variable
 (Section 35.3), too — you’ll need
 it later:
trap
 Section 35.17
TTY=`tty`; export TTY
trap '. $HOME/.sh_logout; exit' 0
(Your system may need $LOGDIR instead of $HOME.) Put
 the following lines in your new .sh_logout
 file:
exec <
 Section 36.15, case
 Section 35.11, exec
 Section 24.2, -sh
 Section 3.19
exec < $TTY
echo "Do you really want to log out? \c"
read ans
case "$ans" in
[Yy]*) ;;
*) exec $HOME/bin/-sh ;;
esac
The last line uses some trickery to start a new login
 shell (Section 3.19).
 The shell closes your tty (Section 36.15) before reading your
 .sh_logout file; the exec < $TTY reconnects the shell’s standard
 input to your terminal.
Note that if your system is very slow, you may not get
 the reminder message for a couple of seconds — consequently, you might forget
 that it’s coming and walk away. That hasn’t been a problem where I’ve tested
 this. If it is for you, though, replace the read
 ans with a program like grabchars that times out and gives a default
 answer after a while. There may be some Bourne shells that need other tricks —
 and others that don’t need these tricks — but this should give you an idea of
 what to do.
—JP and SJC

[1] I haven’t seen prompts described this way before. I invented the terms
 static prompt and dynamic
 prompt to make them easier to talk about.

[2] Some terminals and windows have “scroll back” memory of
 previous screens. clear
 usually doesn’t erase all of that. To set scrollback in xterm, use the
 -sb and -sl options. Most
 other terminal emulators have similar mechanisms to set the
 number of lines to keep in the scrollback buffer.

Chapter 5. Getting the Most out of Terminals, xterm, and X Windows

There’s a Lot to Know About Terminals

 This
 chapter covers most of what you need to know to set up your terminal or terminal
 emulator from your shell setup files (Section 3.3).
In the latter half of the chapter, we cover the ins and outs of working with
 some of the most popular terminal-emulator software for the X Window System,
 including xterm, rxvt, and others, where applicable. The list of terminals and
 emulators you might come into contact with is long and getting longer, though,
 so the advice we give in the first section of the chapter regarding how to
 configure your terminal will be helpful. As you find yourself suddenly
 confronted with the prospect of configuring the terminal emulator on your cell
 phone or tablet computer, remember: you can usually make it work, with enough
 time and effort.
It is important to remember, however, that the tricks and tips we discuss in
 this chapter, if implemented incorrectly, may cause your terminal to hang. One
 way around a hung terminal is always to keep at least one other terminal
 emulator window, with sane settings, open all the time you’re modifying the
 setup of the other. That way, if you hang up the terminal you’re actively
 modifying, you can always go back to the other and save yourself. On systems
 that support virtual consoles, such as
 Linux, you can also use command keys (e.g., ALT
 and the first five function keys) to switch between various virtual consoles,
 just as you might with a terminal emulator. Don’t just reach for the power
 switch!
—TOR and SJC

The Idea of a Terminal Database

In the past few years, terminals have been standardized to a few types. In
 fact, most terminals nowadays are terminal emulators (like
 xterm) that simulate a terminal on a
 graphical display. Years ago, though, terminals differed widely. Rather than
 simply being implemented in software, they were hardware — keyboards and
 monitors or even teletypes, with which the user interacted to communicate with
 an often faraway mainframe or other big iron. All were specialized, and
 differences between them often came down to how much you paid and to what
 manufacturer. This lets you take advantage of other features of the
 manufacturer’s primary hardware — the big computers they considered their main
 product. Manufacturers produced a variety of terminals, each one including a
 particular set of features for a certain price. There were smart terminals and
 dumb ones, terminals with big screens and terminals with small screens, printing
 terminals and video displays, and terminals with all sorts of special
 features.
Differences between terminals do not matter much to programs like cat (Section
 12.2) or who (Section 2.8) that use the terminal screen
 as a sort of typewriter with an endless scroll of paper. These programs produce
 sequential output and do not make use of the terminal’s special features; they
 do not need to know much to do their job.
 Only programs such as screen editors, which
 make use of screen-handling features, need to know a lot about differences
 between terminals.
However, even today, we find a wide variety of terminal emulators across a
 multitude of platforms. My new Kyocera Smartphone, for example, is a Palm device
 integrated with a PCS telephone; one of the main reasons I bought it was for
 remote, emergency ssh access to my servers,
 using a tiny terminal emulator that runs on the PalmOS. Many Unix programs assume a basic
 environment that this terminal emulator does not provide — an 80-column screen —
 so even simple commands such as w, which
 prints a list of who is logged in, where they logged in from, and what they’re
 currently running, become impossible to run. But let’s go back to the early days
 and revisit some of the old problems that plagued early Unix developers, so that
 we might better understand how to deal with today’s problems.

 In the
 late 1970s, Bill Joy created the vi (Section 17.2) text editor at UC
 Berkeley. Like all screen-oriented editors, vi uses the terminal screen nonsequentially (in stark contrast to
 earlier editors such as ed, which were
 designed for a teletype, and so use even more terse commands and feature even
 more terse output). A program performing nonsequential output does not just
 print character after character, but must manipulate the text that was sent
 before, scroll the page, move the cursor, delete lines, insert characters, and
 more. While it would be possible to keep redrawing the screen in its entirety,
 many features are provided in hardware or firmware by the terminal itself,
 saving too much time and trouble to be ignored.
The first version of vi was written
 specifically for Lear Siegler ADM3a terminals. vi was such an improvement over line-oriented editors that there
 was great demand to port vi to other brands
 of terminals. The problem was that each terminal had different features and used
 different control codes to manipulate the features that they did have in
 common.
Rather than write separate terminal drivers for each terminal type, Bill Joy
 did something very clever, which all Unix users now take for granted. He wrote a
 version of vi with generic commands to
 manipulate the screen instead of hardcoding the control codes and dimensions for
 a particular terminal.[1]
Joy came up with a generic terminal-handling mechanism that had two parts: a
 database describing the capabilities of each of the terminals to be supported
 and a subroutine library that allows programs to query that database and make
 use of the capability values it contains. Both the library and the database were
 given the name termcap, which is short for
 terminal capabilities.

At this point, users take for granted that you can use just about any terminal
 with a Unix system and use screen-oriented programs like vi without any problem. But this is really quite
 remarkable!
The termcap database is contained in a single text file,
 which grew quite large over the years to include descriptions of hundreds of
 different terminals. To improve performance, AT&T later introduced a

 database called
 terminfo, which stores terminal descriptions in
 compiled form in a separate file for each terminal.
If a program is designed to use termcap or
 terminfo, it queries an
 environment variable called
 TERM to determine the terminal type (or terminal type
 being emulated), then looks up the entry for that terminal in the terminal
 database, and reads the definition of any capabilities it plans to use as
 external variables. Programs that use termcap or
 terminfo range from screen editors like vi
 and
 emacs (Section 19.1), which use the complete terminal description, to a
 program like clear, which needs to know only
 one capability (the escape sequence to clear the screen). Other programs include
 more, pg, rogue
 , tset (Section 5.3), ul, and nroff.
—JS and SJC

Setting the Terminal Type When You Log In

If you always work at the same terminal or use the same terminal emulator,
 there’s no problem with setting the terminal type explicitly in your

 shell setup file (Section 3.3) — like .login or .profile. Just set the TERM
 environment variable (Section 35.3):
setenv TERM vt100 ...csh, tcsh
TERM=vt100; export TERM ...sh, ksh, zsh
export TERM=vt100 ...pdksh, bash, zsh
In fact, on a hardwired terminal, your terminal type may already have been set
 in a system file like /etc/ttys
 or
 /etc/ttytype (Section 3.15). But if, like many Unix
 users, you might log in from time to time at different terminals, from home, or
 on different systems over a network, you may need some more intelligent method
 for setting the terminal type. To find out, try logging in at each place and
 starting a screen-oriented program like vi.
 Do various operations: scrolling up, inserting text that wraps onto another
 line, deleting lines. If the screen scrambles or the cursor gets “out of sync,”
 your terminal type may need to be set.
It’s possible to set up various tests (Section
 3.10) in your shell setup files to do this. But you can also do a surprising amount of
 terminal type testing with tset, even though
 it was nominally designed for initializing the terminal:
	If no arguments (Section 1.4) are specified and
 TERM is already set, tset uses the value of TERM to
 determine the terminal type.

	If no arguments are specified and TERM is
 not set, then tset uses the value specified in the system file
 /etc/ttytype or /etc/ttys (BSD 4.3 and later and its
 derivatives only). On Linux systems, the terminal type is determined by
 getty, based on a similar process
 but using the /etc/inittab file or
 other configuration files used by getty during initialization. On SVR4 systems, a similar
 process is managed by ttymon and
 listen.[2]

	If a terminal type is specified as an argument, that argument is used
 as the terminal type, regardless of the value of
 TERM.

	The -m

 (map) option allows a fine degree of
 control in cases where the terminal type may be ambiguous. For example,
 if you sometimes log in on a dialup line, sometimes over a local area
 network, and sometimes on a hardwired line, the -m
 option can be specified to determine which login is currently being
 used, and the terminal type can be set accordingly.

 In Bourne-type shells, tset can be used to set the value of
 TERM as follows:
export TERM=`tset - -Q options` ...newer shells
TERM=`tset - -Q options`; export TERM ...all shells
(Given the - option, tset
 prints the value determined for the terminal type to standard output (
 Section 43.1). Otherwise, it initializes the terminal (Section 5.3), but keeps the terminal type
 to itself.
 The
 -Q (quiet) option causes tset to suppress printing a message it normally prints regarding
 the values set for the erase and kill characters — a job it does in its
 alternate role as terminal initializer. The backquotes (

 Section 28.14) surrounding the
 tset command interpolate its output into
 the command line.)

 In the C shell, you should use the eval (Section
 27.8) command to capture the output of tset; this will also allow you to set
 the
 TERMCAP

 variable (Section 35.5). (You must also issue the command set noglob
 .) To simplify the rest of this article,
 we’ll show examples for the C shell; if you don’t use a C-type shell, please
 translate to Bourne-shell syntax (as shown earlier).
To see what tset can do, consider a case
 where the terminal’s serial line is connected to a dialup modem, through which
 several different users might be connected, each using a different type of
 terminal. Accordingly, the default terminal type in /etc/ttytype or /etc/ttys
 should be set to dialup
 . The tset
 command could then be used in the .login
 file as follows, with the appropriate terminal type set for each user:
set noglob
eval `tset -s -Q -m 'dialup:vt100'`
This means that if
 ttytype says dialup, use
 vt100 as the terminal type. A colon separates the
 ttytype value and the value to which it is to be
 mapped. If a user wants to be prompted to be sure, place a question mark after
 the colon and before the mapped terminal type:
set noglob
eval `tset -s -Q -m 'dialup:?vt100'`
The prompt will look like this:
TERM = (vt100)
If the user presses RETURN, the preferred terminal type will be used.
 Alternately, another terminal type could be entered at that time.
You can cause tset to prompt for a terminal
 type even without testing a generic entry like dialup. Just
 specify the desired terminal type, preceded by a question mark, after the
 -m option. For example:
set noglob
eval `tset -s -Q -m '?vt100'`
It is also possible to specify different terminal types for different line
 speeds. For example, say that you normally used a Wyse-50 with a 9600-bps modem
 when dialing in from home, but used a portable PC with a VT100 terminal emulator
 and 2400-bps modem on the road.[3] You might then use a tset command
 like this:
set noglob
eval `tset -s -Q -m 'dialup@2400:vt100' wy50`
Assuming that the type is set in /etc/ttys or /etc/ttytype
 as dialup, tset will use
 the type vt100 if at 2400 bps and, if not, will use the
 type wy50. See the tset(1) manual page for more choices. Watch out for the line-speed
 switches. They don’t work on a lot of networked systems — usually, the line
 speed at the computer’s port is higher than the speed at the terminal. The same
 problem occurs with dialup modems that use data compression. The stty
 command will tell you what data rate the
 system believes you’re using.
Multiple
 -m options can be specified; the first map to be satisfied will
 be used. If no match is found, a final value specified on the line without a
 -m option (as in the previous example) will be used. If no
 value is specified, the type in /etc/ttytype or /etc/ttys
 will be used.
—TOR and SJC

Querying Your Terminal Type: qterm

tset (Section 5.3)

 is a powerful tool to use if you often log
 in at different terminals. You can use tset
 to prompt you with a default terminal type, giving you the opportunity to
 specify a new terminal type when you log in:
TERM = (vt100)
However, tset requires you to know your
 terminal type. You might log in at a new terminal and have no idea what to set
 the terminal type to. Or your terminal might be configured to emulate another
 terminal type without your knowledge. New users in particular are confused by
 the tset prompt. In some respects, this is
 not a surprise, as the prompt itself can be confusing without a bit of
 context.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 qterm
As an alternative, try Michael Cooper’s
 qterm program. qterm sends the terminal a test string and determines what sort
 of terminal you’re using based on how the terminal responds. Using qterm, you can make sure you always use the
 correct terminal type by placing the following line in your .login
 :
'...'
 Section 28.14
setenv TERM `qterm`
or in .profile
 :
TERM=`qterm`;export TERM
The advantage of qterm is that it sets the
 terminal type without your intervention. You don’t need to know your terminal
 type; it gets set automatically.
qterm works by sending the terminal a query
 string and returning the terminal type depending on the terminal’s response.
 qterm is configured using a listing of
 responses and the terminals to which they correspond. By default, qterm looks for the listings in a system-wide
 location such as /usr/local/lib/qtermtab.
 In addition, you can call qterm
 with
 the +
 usrtab option, so that it will look for a file called .qtermtab in your home directory.
The string used to query the terminal is
 usually ESC Z. The sample
 qtermtab file distributed with qterm defines the responses several different
 terminals give for that string:
#
QtermTab - Query terminal table for qterm.
#
#SendStr ReceiveStr TermName FullTermName
#
^[Z ^[[?1;0c vt100 Base vt100
^[Z ^[[?1;1c vt100 vt100 with STP
^[Z ^[[?1;2c vt100 ANSI/VT100 Clone
 ...
^[Z ^[/K h29 Zenith z29 in zenith mode
^[Z ^[/Z vt52 Generic vt52
^[Z ^[[0n vt100 AT&T Unix PC 7300
If your terminal isn’t listed here, you can just add it. To find out your
 terminal’s response to the query string, just echo ESC Z to your terminal and
 see what the response is. For example, I logged in from my Macintosh terminal
 emulator at home and found that qterm didn’t
 recognize my terminal type:
% qterm
Terminal NOT recognized - defaults to "vt100".
vt100
qterm defaults to the right terminal
 description, but I’d still rather define my own entry. I find out my terminal’s
 response to the ESC Z string:
% echo "^[Z"
^[[E;Y|
(Note that ESC prints as ^[.) Then I add
 the entry to my qterm description
 file:
^[Z ^[[E;Y| vt100 Macintosh terminal emulator
Now when I run qterm, the terminal is
 recognized:
% qterm
Terminal recognized as vt100 (Macintosh terminal emulator)
vt100
The string Terminal
 recognized
 as
 ... is sent to standard
 error (Section 43.1);
 only the terminal type itself is sent to standard
 output (Section 43.1).
 So if you use the following command line:
% setenv TERM `qterm`
Terminal recognized as vt100 (Macintosh terminal emulator)
the TERM variable is set correctly:
% echo $TERM
vt100
Now for the caveat: qterm’s results are
 only as accurate as the qtermtab file. Not
 all terminals respond to the ESC Z string, and you may not find a string to
 which it responds uniquely. And some terminals do uncanny imitations of others.
 For example, I’m currently using an xterm
 (Section 24.20) window, but
 qterm thinks I’m using a
 vt100:
% echo $TERM
xterm
% qterm
Terminal recognized as vt100 (ANSI/VT100 Clone)
vt100
As a hack, you can just edit your .qtermtab
 file. For
 example, I could comment out the old vt100 entry and map
 ^[[?1;2c to xterm instead:
#^[Z ^[[?1;2c vt100 ANSI/VT100 Clone
^[Z ^[[?1;2c xterm xterm window
and then call qterm with the
 +usrtab command-line option:
setenv TERM `qterm +usrtab`
—LM and SJC

Querying Your xterm Size: resize

 When the xterm

 client is called, it not only sets the TERM environment
 variable, but it also adjusts the terminal definition for the size of the window
 being created. The size of xterm windows,
 however, can be changed later on by using the window manager. If the window is
 resized, then the user’s shell may need to be passed the new size information as
 well, or programs that use termcap and terminfo won’t work correctly. The
 resize
 client
 is provided for redefining the number of lines and columns for the terminal
 database used in an xterm window. Note that
 resize cannot be used for terminal
 emulators other than xterm (except for those,
 like rxvt, that emulate xterm) because it depends on xterm’s escape sequences.
Some systems can send a “window size changed” signal
 (SIGWINCH) to programs and do not require resize to be run for a resized xterm window. We recommend using resize only if terminal-based programs start to
 have problems with your window size. A typical terminal-based program that is
 having problems with the window size will fill only some of the lines in the
 window — or may scroll lines down the window when it shouldn’t.
The resize client is typically used
 immediately after the dimensions of an xterm
 window are changed. A peculiarity of the resize client is that it does not access the shell itself, but
 simply returns the shell commands that would be needed; to have those commands
 read by the shell, you either save its output in a file and read the file with
 the shell commands source or . (Section
 35.29), or evaluate resize output using the shell command eval (Section 27.8).
 For example, after resizing a window, you would type in that shell:
`...`
 Section 28.14
% eval `resize`
When you call the resize command under a
 termcap system, it produces the commands for resetting the TERMCAP environment variable with the
 li# and co# capabilities
 reflecting the current dimensions. When you call the resize command under a terminfo system, it produces the commands for
 resetting the LINES
 and COLUMNS
 environment variables.
The resize command consults the value of
 your SHELL

 environment
 variable and generates the commands for setting variables within that shell. If
 you’re using a nonstandard shell, resize may
 still recognize your shell; as of X Release 5, resize recognizes tcsh,
 jcsh, ksh, bash, and jsh. But if resize does not recognize your shell, try using the
 -c
 or -u
 options to force resize to use C- or
 Bourne-shell syntax (respectively), depending on which syntax is appropriate for
 your shell.
—LM, EP, and SJC

Checklist: Terminal Hangs When I Log In

 If your terminal seems to “hang” (freeze,
 lock up) when you log in, here are some things to try:
	Have another user look at your shell’s setup
 files (Section
 3.3). There could be some obvious mistakes that you didn’t
 catch.

	Log in to another account and use
 the su stucklogin
 command (if the stuck account uses
 Bourne-type shells) or the su -f stucklogin

 command (if the stuck account uses
 csh or tcsh). Change (cd) to
 the home directory. Rename the account’s setup files so the shell won’t
 see them as you log in. (If you have superuser
 access (Section
 1.18), you also can use it to rename the file.)[4]
If you can log in after that, you know that the problem is with the
 account’s setup files.

	Set shell debugging (

 Section 27.15) on the stuck
 account’s setup files. From another account or as the superuser, start
 an editor and put the following line at the top of an sh-like setup file (such as .profile). It’ll tell you whether .profile is being read at all and where
 it hangs:
set -xv
You’ll see each line read from the .profile and the commands executed on the screen. If you
 don’t see anything, then the shell probably didn’t read .profile. Bash users would want to
 check
 .bashrc or .bash_profile.

 C-shell users should put this command
 at the top of .cshrc

 (or .tcshrc, for tcsh)
 instead:
set echo verbose
Note that on many Unix systems, the shell won’t read its startup files
 if the files aren’t owned by you. You might use
 ls -l (Section 50.2) to check.

	Look at the entry in the /etc/passwd
 file (Section 22.3) for this user.

 Be sure it has the correct number
 of fields (separated by :). Also, see if there’s another user with the
 same login name. (If your system has commands like useradd, linuxconf, or vipw(8)
 and pwck(8), using them to edit and
 check the passwd file will avoid
 many of these problems, as those programs perform sanity checks on any
 modifications you make before taking them live.)

	
 Does your
 account use any directories remotely mounted (by
 NFS) (
 Section 1.21)? If the remote
 host or network is down and any command in your startup files
 (especially set path

) tries to access those
 directories, the shell may hang there.
To fix that problem, su to the
 account as explained earlier, and take the command or directory name out
 of your startup file. Or, if this problem happens a lot, the system
 administrator can mount an
 NFS filesystem “soft” (instead of
 “hard,” the default) and limit the number of retrys.

	What looks like a “hang” might also be that you just aren’t getting
 any output to the terminal, for some very weird reason. Then the
 set -xv
 wouldn’t help you. In that
 case, try adding this line to the start of the .profile:
exec > /tmp/sh.out.$$ 2>&1
If the Bourne shell starts reading
 .profile, it’ll make a file in
 /tmp called sh.out.nnn with
 output from the commands and the shell’s set -xv.
There’s no command like that for the C shell or tcsh.

Here are a few more tips for dealing with stuck terminals.
Output Stopped?

 If your terminal has a HOLD SCREEN or
 SCROLL LOCK button, did you accidentally press it? Try pressing it and see
 if things start working again. If pressing the button once doesn’t fix the
 problem, you should probably press it once more to undo the screen hold.
 Otherwise, you may lock up your session worse than it was before!

 Another way to stop output is by
 pressing CTRL-s. The way to restart stopped output is with CTRL-q — try pressing
 that now. (Unlike a SCROLL LOCK button, though, if CTRL-q doesn’t help, you
 don’t need to undo it.)

Job Stopped?

 If you’re at a shell prompt instead of in the
 program you thought you were running — and if your Unix has job control —
 you may have stopped a job. Try the
 jobs
 command (Section 23.1); if the job is stopped, restart it.

Program Waiting for Input?

 The program may be waiting for you to
 answer a question or type text to its standard input.
Warning
If the program you were running does something that’s hard to undo —
 like removing files — don’t try this step unless
 you’ve thought about it carefully.

 If your system has job
 control, you can find out by putting the job in the background with
 CTRL-z and bg. If the job was waiting
 for input, you’ll see the message:
[1] + Stopped (tty input) grep pat
You can bring the job back into the foreground and answer its
 question, if you know what that question is. Otherwise, now that the job
 is stopped, you can kill it. See the following directions.
On systems without job control, you might satisfy the program by
 pressing RETURN or some other key that the program is expecting, like
 y or n. You could also try
 pressing CTRL-d or whatever your “end of input” character is set to.
 That might log you out, though, unless you’ve set the
 ignoreeof variable.

Stalled Data Connection?

 Be sure that the wires haven’t come
 loose.

 If you’re using a modem and the modem has
 function lights, try pressing keys to see if the Send Data (SD) light
 flashes. If it does, your terminal is sending data to the host computer. If
 the Receive Data (RD) light flashes, the computer is sending data to your
 terminal. If you don’t see anything, there might be something wrong on your
 terminal.

 If you’re connected with rlogin
 or
 telnet
 or
 ssh (Section 1.21), the network to the remote computer might be down
 or really slow. Try opening another connection to the same remote host — if
 you get a response like Connection
 timed
 out, you have two choices:
	Wait for your original connection to unfreeze. The connection may
 come back and let you keep working where you left off. Or the
 connection may end when rlogin,
 telnet, or ssh notices the network
 problem.

	Quit the session, and try again later.

Aborting Programs

 To abort a program, most users press
 CTRL-c. Your account may be set up to use a different interrupt character,
 such as DELETE. If this doesn’t work, try CTRL-\ (CTRL-backslash). Under
 most circumstances, this will force the program to terminate. Otherwise, do
 the following:
	Log in at another terminal or window.

	Enter the command ps
 x, or, if that doesn’t work, use
 ps
 -u
 yourname, where
 yourname is your Unix username. This
 displays a list of the programs you are running, something like
 this:
% ps x
PID TTY STAT TIME COMMAND
163 i26 I 0:41 -csh (csh)
8532 i26 TW 2:17 vi ts.ms
22202 i26 S 12:50 vi UNIXintro.ms
8963 pb R 0:00 ps -x
24077 pb S 0:05 -bin/csh (csh)
%

	Search through this list to find the command that has backfired.
 Note the process identification (PID) number for this
 command.

	Enter the command kill PID (Section 24.12), where
 PID is the identification number from the
 previous step. If that doesn’t work, try kill -1
 PID to send a HUP signal. You can also
 try various other signals, including -2 or -15. If none
 of them work, you may need kill -9, but try the
 other kills first.

	If the Unix shell prompt (such as % or $) has
 appeared at your original terminal, things are probably back to
 normal. You may still have to take the terminal out of a strange
 mode though.

 If the shell prompt hasn’t come
 back, find the shell associated with your terminal (identified by a
 tty number), and kill it. The
 command name for the C shell is csh. For the Bourne shell, it is sh. In most cases, this will destroy
 any other commands running from your terminal. Be sure to kill the shell on your own terminal,
 not the terminal you borrowed to enter these commands. The tty you
 borrowed is the one running ps;
 look at the previous example and check the TTY column. In this case, the borrowed terminal is
 TTY pb.
Check ps to ensure that your
 shell has died. If it is still there, take more drastic action with
 the command kill -9
 PID.

	Run ps x or ps -u
 yourname again to be sure that all
 processes on the other tty have died. (In some cases, processes will
 remain.) If there are still processes on the other tty, kill
 them.

	At this point, you should be able to log in again from your own
 terminal.

The ps (Section 24.5) command, which lists
 some or all of the programs you are running, also gives you useful
 information about the status of each program and the amount of CPU time it
 has consumed.

—JP and SJC

Find Out Terminal Settings with stty

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 stty

 It may hardly seem appropriate to follow
 Chris Torek’s learned article about how stty
 works with some basics, but this book is designed for beginners as well as those
 who already know everything. :-) [Good idea,
 Tim. This is also a handy place to put the globe icon for the GNU version.
 ;^)
 — JP]
So, to find out what settings your terminal line currently has, type:
% stty
For a more complete listing, type:
% stty -a
On older BSD-style systems, use stty
 everything instead. On most newer BSD-derived systems, stty everything and stty -a are both supported,
 but with slightly different output formats. The former prints a tabular layout,
 while the latter prints each control character setting in a
 name
 =
 value format.
As Jerry Peek said in an editorial aside to Chris’s article, be sure to have
 your stty manual page handy!
—TOR and SJC

Setting Your Erase, Kill, and Interrupt Characters

 Have you ever sat down at a terminal where
 the “erase” key (the character that deletes the last thing you typed) wasn’t
 where you thought it would be? If you have, you know how disorienting this can
 be! On Linux, there’s loadkeys. If you’re using the
 X Window System, check into the xmodmap (Section
 5.1) command. Newer shells, like bash and zsh, tend to do their
 own handling of these special characters — especially during their built-in command-line editing (Section 30.14). Check your shell’s
 manual page about readline
 . The most portable method is with the
 stty
 (Section 5.7) command. All of these give you a way of changing the
 erase character (along with several others) so you can restore some order to
 your world.
stty takes two kinds of input. If you want
 to give the command interactively, type stty
 erase
 char, where char is the
 key you normally use for erase —
 BACKSPACE, DELETE, whatever — followed by RETURN.
 This will do the trick, provided that the character you type isn’t already used
 for something. If the character is in use or if you’re putting stty commands into your .login, .profile, or
 .bash_profile file, it’s
 better to “spell these characters out.” “Control” characters in .login are allowed, but they aren’t a great idea.
 If you like to use the BACKSPACE key as the erase key, add the following
 line:
stty erase ^h
If you want to use the DELETE key, quote the ? character so the shell won’t treat it as a wildcard (Section
 1.13):
stty erase ^\?

 That is, stty lets you represent a control key with the two-character
 combination ^
 x, where ^ is the
 literal key ^

 (caret) and x is any single character. You may need
 to put a \ before the
 x to prevent the shell from interpreting it as a
 wildcard [and a \ before the ^ to prevent old Bourne shells from interpreting
 it as a pipe! — JP].
Of course, you’re not limited to the BACKSPACE or DELETE keys; you can choose
 any other key you want. If you want to use “Z” as your DELETE key, type stty erase
 Z. Just make sure you never want to type a
 real Z!
Table 5-1 lists functions that
 stty can change.

Table 5-1. Keys to set with stty
	
 Character

 	
 Function

 	
 Good setting

 	
 See article

	
 erase

 	
 Erases the previous character.

 	
 ^\? (DELETE)

 	

 Section 5.8

	
 kill

 	
 Erases the entire line.

 	
 ^u (CTRL-u)

 	

 Section 5.8

	
 werase

 	
 Erases the previous word.

 	
 ^w (CTRL-w)

 	

 Section 5.8

	
 intr

 	

 Terminates the current job.

 	
 ^c (CTRL-c)

 	

 Section 24.11

	
 quit

 	
 Terminates the current job; makes a core file.

 	
 ^\ (CTRL-\)

 	

 Section 24.11

	
 susp

 	
 Stops the current job (so you can put it in the
 background).

 	
 ^z (CTRL-z)

 	

 Section 23.3

	
 rprnt

 	
 Redisplays the current line.

 	
 ^r (CTRL-r)

 	

 Section 28.2

The command stty everything (BSD derivatives) or
 stty -a (Linux and System V derivatives) shows all your
 current terminal settings. The werase and
 rprnt characters aren’t implemented on some older
 versions of Unix, though they are on Linux and Darwin and most other modern Unix
 variants.
It’s amazing how often you’ll see even moderately experienced Unix users
 holding down the BACKSPACE or DELETE key to delete a partially completed command
 line that contains an error.
It’s usually easier to use the line-kill characters — typically CTRL-u or
 CTRL-x. (The command stty -a or stty everything (Section 41.3) will tell you which. Section 5.7 shows how to change them.) The line-kill character will
 work on a command line (at a shell prompt
 (Section 4.1)) and in other places
 where the terminal is in cooked mode. Some Unix programs that don’t run in
 cooked mode, like vi, understand the
 line-kill character, too.
Even better, many stystems have a “word-erase” character, usually CTRL-2,
 which deletes only back to the previous whitespce. There’s no need to delete the
 entire command line if you want to change only part of it!
As a historical note, the

 erase
 character was originally #, and the kill
 character was originally @. These assignments
 go back to the olden days, when terminals printed with real ink on real paper
 and made lots of noise. However, I’m told that there are some modern systems on
 which these settings are still the default.[5]
Note
Terminal emulators, editors, and other programs can fool around with all
 of this stuff. They should be well behaved and reset
 your terminal when you leave them, but that’s often not true. So don’t
 expect your settings to work within a terminal emulator; they may, or they may not.
 And don’t expect your settings to be correct after you exit from your
 terminal emulator. Again, they may, or they may not. This is primarily due
 to the fact that some terminal-emulator programs lie about the extent to
 which they support a given set of control codes.
The tset
 program also fools around (Section 5.3) with key settings.
 Therefore, in your shell setup files (Section 3.3), put stty after tset.

—ML, JP, SJC, and TOR

Working with xterm and Friends

xterm

 is by far the most commonly used X client, although more and more people are
 switching from xterm to similar or related
 programs, such as rxvt
 — which is a lightweight xterm derivative without the Tektronix terminal
 emulation support. Regardless, the most commonly used clients are largely
 derivatives of xterm, so we’re devoting the
 rest of this section to this single client and its family.
xterm
 [6] gives you a window containing your standard shell prompt (as
 specified in your /etc/passwd entry). You
 can use this window to run any command-line-oriented Unix
 program or to start additional X applications.
The uncustomized xterm window should be
 sufficient for many users’ needs. Certainly you can do anything in a vanilla
 xterm window that you can from a
 character-based terminal. But xterm also has
 special features you can use, and since you spend so much time in xterm, you might as well use them.
The rest of this chapter gives you a set of tricks and tips about using
 xterm, including the following:
	Specifying and using a scrollbar (Section 5.11).

	Copying and pasting text selections (Section 5.13).

	Modifying text-selection behavior (Section 5.14).

	Printing the current directory in the xterm titlebar (Section 5.15).

	Dynamically changing fonts and other features (Section 5.17, Section 5.18).

Note
The articles in this chapter use terms that you may want defined:
	A pointer

 , or pointing device, is a piece
 of hardware designed for navigating a screen. Most people use a
 mouse as their pointer, but there are also trackballs, touchpads,
 and others.

	The best pointer to use with X has three buttons. When we refer to
 the first button or button
 1, we mean the button you click with your index
 finger. For right-handed people, this is usually the left button on
 a mouse. But the X client
 xmodmap (Section 6.1) lets left-handed
 users swap mouse buttons to make the rightmost button the
 “first.”

	Even though the actual image on the screen is called a cursor,
 throughout this chapter we refer to “moving the pointer” to avoid
 confusion with the standard text cursor that can appear in an
 xterm window.

—LM, VQ, and SJC

Login xterms and rxvts

If you want your xterm

 or rxvt to run
 a login shell (Section 3.4), give it the
 -ls
 flag, or put a line like one of the
 following in your X resource file (Section 6.5):
xterm*loginShell: true ...for xterm
XTerm*loginShell: true ...for xterm or rxvt
Rxvt*loginShell: true ...for rxvt
Once you’ve defined the appropriate resource, you can get a nonlogin shell (which is otherwise the default)
 with xterm +ls.
—JP and SJC

Working with Scrollbars

 The scrollbar is a favorite xterm feature, particularly among those whose
 terminals lacked the ability to scroll backwards. Using the scrollbar, you can
 re-examine the output or error from a command, select previous text to supply in
 another command line or to paste into a file, or to hide your current screen
 from a nosy coworker.
There are many ways to start
 up the scrollbar. You can specify the -sb option on the command
 line:
% xterm -sb &
% rxvt -sb &
or you can set the scrollBar
 resource (Section 6.5) to true:
XTerm*scrollBar: true ...for xterm or rxvt
Rxvt*scrollBar: true ...for rxvt
or for an xterm window that’s already
 running, you can call up the VT Options

 menu (Section 5.17) by holding down the CTRL key and
 the center mouse button or by selecting Enable
 Scrollbar. These menus are not supported by rxvt.
A scrollbar appears on the left side of the xterm window, as shown in Figure
 5-1.
[image: xterm window with scrollbar]

Figure 5-1. xterm window with scrollbar

—LM and SJC

How Many Lines to Save?

If you use the scrollbar in
 xterm (Section 5.11), you’ll find that by default the scrollbar retains
 only 64 previous lines of text. You
 can change this by using the -sl

 command-line option:
% xterm -sb -sl 200 &
% rxvt -sb -sl 200 &
or by setting the saveLines resource:

XTerm*saveLines: 200
You don’t want to go crazy with the number of saved lines, though. Too many
 lines saved may crunch on virtual memory and also make it hard to scroll.
—LM and SJC

Simple Copy and Paste in xterm

 You can use the pointer to select text to copy and paste within the same
 xterm window or between xterm windows. You don’t need to be in a text
 editor to copy and paste. You can also copy or paste text to and from the
 command line, between the command line and a file, etc.
There are several ways to select (copy) text; all require you to use the
 pointer. You can select a passage of text, or you can select text by individual
 words or lines.
When you select text, it is highlighted and copied into global memory from
 which you can paste it into any xterm window.
 Regardless of the number of xterm windows
 you’re running, you can store only one selection in memory at a time. However,
 you can paste that selection as many times as you like. When you make another
 selection, the new text replaces the previous selection in memory.
Table 5-2 summarizes all of the
 text-selection methods.
Table 5-2. Button combinations to select text
 for copying
	
 To select

 	
 Do this

	
 Passage

 	
 Click the first button at the start of the selection and
 the third button at the end of the selection. Or at the
 beginning of the selection, hold down the first button; drag
 the pointer to the end of the desired text; release the
 button.

	
 Word

 	
 Double-click the first button anywhere on the word.

	
 Line

 	
 Triple-click the first button anywhere on the line.

To clear the highlighting, move the pointer off the selection, and click the
 first button anywhere else in the window. Note, however, that the text still
 remains in memory until you make another selection.
Of the two methods for selecting a passage, the first is generally easier.
 Hypothetically, you can select a passage of any length; in practice, we’ve found
 there to be limitations. The size of the window limits the amount of text you
 can highlight in one action. You can extend a selection beyond the parameters of
 a window. Copying an extremely long selection, however, doesn’t seem to work
 reliably. Also, when pasting a long selection, the text can become
 garbled.
You can paste text into any xterm window, either onto the command line or into
 a text file you’re editing. In both cases, move the pointer into the window, and
 click the second button. The text will be pasted; in other words, it will appear
 on the screen, just as if you typed it.
Warning
To paste into an open text file, the editing program must be in insert mode. (If not, when pasted, the
 selection may be interpreted as a stream of editor commands, such as in
 vi. The act of pasting the word
 “selection” in a vi editor not in insert
 mode would be to ignore everything up until the i,
 which would place vi into insert mode,
 and then the last three letters would be inserted into the buffer.)

—VQ and SJC

Defining What Makes Up a Word for Selection Purposes

 You probably already
 know how to select text (Section 5.13) in an xterm, and you’ve probably discovered that
 double-clicking
 Section 5.13 will select the entire
 word around the pointer. What you may not know is that it is possible to change
 what defines a “word.”
xterm maintains a table of all the

 ASCII characters and their
 character classes. Any sequence of adjacent characters
 of the same class is treated as a word.

 Numbers, letters, and the underscore are in class 48
 (which is the ASCII code for the character 0) and
 SPACE and
 TAB are in class 32 (the ASCII code for SPACE). By default,
 all the other characters are in classes by themselves.
For Unix users, this isn’t the most useful default; it
 would be better if you could select filenames, email addresses, URLs, resource
 specifications, etc. as single words even though they often contain punctuation
 characters.
You can modify the character class table with xterm’s
 charClass
 resource variable (Section 6.3). The value this resource
 accepts is a comma-separated list; each item on the list is an
 ASCII character code or range of characters, followed by
 a colon, followed by the character class to which the character should be added.
 I set the charClass resource as
 follows:
xterm*charClass: 33:48, 37:48, 42:48, 45-47:48, 63-64:48, 126:48
This tells xterm to treat !, %, *, -, ., /,
 ?, @, and ~ as characters of the same class as numbers and letters. You may also
 want to treat : as a member of this class, for URLs; in that case, use the
 following charClass string:
xterm*charClass: 33:48, 37:48, 42:48, 45-47:48, 58:48, 63-64:48, 126:48
—DJF and SJC

Setting the Titlebar and Icon Text

 Under most modern window managers, most
 windows (including xterm) are displayed with
 a titlebar. You can change the text in the titlebar using the following xterm
 escape sequence:
^[]2;string^G
Note that this sequence has a close bracket (]) following the ESC (Escape, ^[) — not an open bracket. It ends with a CTRL-g character — not
 a caret followed by a “g”.
I use this sequence to display my current working directory and directory
 stack in the titlebar, where they are visible but unobtrusive. I do this by
 adding a few lines to my shell setup file
 (Section 3.3). Section 4.8 explains.
If you change the number “2” in the escape sequence to “1,” it will set the
 text that appears in the xterm’s icon instead
 of its titlebar. If you change it to “0,” it will set the text for both the icon
 and the titlebar. If you use and iconify a number of xterms, you may find these sequences useful.
You may also wish simply to specify an icon name and/or title text for a given
 window, statically, for those situations where the window is only used to
 display output from some program, and not for interactive use. Both xterm and rxvt
 allow this, using the -n option to specify the icon name and
 the -T option to specify the title. You may also use X
 resources to specify icon name or title.
The Mac OS X Terminal application lets you set the title from the Set Title
 command on the Shell menu as well.
—DJF and SJC

The Simple Way to Pick a Font

 X font names make the Rosetta Stone look
 like bedtime reading. Those hardy souls who want to experiment with fonts or
 access fonts on remote machines must take the high road and learn the X font
 naming conventions anyway. But if you just want to locate some fonts to use with
 xterm and other clients, you can use the
 predefined aliases for some of the constant-width fonts available on most
 systems.
Figure 5-2 lists the aliases for some constant-width fonts that should be appropriate for
 most of the standard clients, including xterm. [These “aliases” are basically font
 names. They aren’t the same as shell
 aliases (Section 29.1).
 Also note that terminals should use constant-width fonts (where every character
 — thin or wide — occupies the same horizontal width). Constant-width fonts
 ensure that, for instance, the 54th character in every line of output from
 ls
 -l is always in the same horizontal position on the screen — so
 columns will always be straight. — JP] To give you an idea
 of the range of sizes,
 each alias is written in the font it identifies.
[image: Miscellaneous fonts for xterm and other clients]

Figure 5-2. Miscellaneous fonts for xterm and other clients

In these cases, the aliases refer to the dimensions in pixels of each
 character in the font. (For example, “10×20” is the alias for a font with
 characters 10 pixels wide by 20 pixels high.) Note, however, that an alias can
 be virtually any character string.
The
 default font for many applications, including xterm, is a 6×13 pixel font that has two
 aliases: “fixed” and “6×13.” Many users consider this font to be too small. If
 you have enough screen space, you might want to use the 10×20 font for xterm windows:
% xterm -fn 10x20 &
You can make this font the default for xterm by specifying it as the value for the font

 resource variable (Section 6.3):
XTerm*font: 10x20
Another quick way to get a list of fonts that match a given string is to use
 the xlsfonts program, which accepts a variety
 of options but may be used as simply as this:
% xlsfonts -fn *-10-*
This command will display all of the fonts that are 10 pixels wide. The string
 -10- is a wildcard expression
 matching any font specification containing -10-. Be sure to escape the * and ? characters when specifying a
 pattern on the command line, to avoid interpolation by the shell.
—VQ and SJC

The xterm Menus

xterm

 has four different menus, each providing items that serve different purposes.
 You display a menu by placing the pointer on the window and simultaneously
 pressing the CTRL (keyboard) key and a pointer button. When you’re using a
 window manager that provides a titlebar or frame, the pointer must rest within
 the window proper and not on any window decoration.
Table 5-3 describes the menus and
 how to display them.
Table 5-3. The xterm menus
	
 Menu title

 	
 Display by holding

 	
 Use to

	

 Main Options

 	

 CTRL, pointer button
 1

 	
 Enter secure mode; interrupt, stop, etc., the xterm
 process.

	

 VT Options

 	

 CTRL, pointer button
 2

 	
 Toggle user preferences, including scrollbar, reverse
 video, margin bell; toggle Tektronix/VT100 mode.

	

 VT Fonts

 	

 CTRL, pointer button
 3

 	
 Select alternative display font.

	

 Tek Options

 	

 CTRL, pointer button 2, on
 Tektronix window

 	
 Toggle VT100/Tektronix mode; select display font.

As shown in Table 5-3, three of the
 four xterm menus are divided into sections
 separated by horizontal lines. The top portion of each divided menu contains
 various modes that can be toggled. (The one exception is the Redraw Window item on the Main
 Options menu, which is a command.) A check mark appears next to a
 mode that is currently active. Selecting one of these modes toggles its
 state.
The items on the VT Fonts menu change the
 font in which text is displayed in the xterm
 window. Only one of these fonts can be active at a time. To turn one off, you
 must activate another. See Section
 5.18 for information on using the VT
 Fonts menu.
When you display an xterm menu, the pointer
 becomes the arrow pointer and initially appears in the menu’s title. Once the
 menu appears, you can release any keyboard key. The menu will remain visible as
 long as you continue to hold down the appropriate pointer button. (You can move
 the pointer off the menu without it disappearing.) To toggle a mode or activate a command, drag the pointer
 down the menu and release the pointer button on the item you want.
If you decide not to select a menu item after the menu has appeared, move the
 pointer off the menu and release the button. The menu disappears and no action
 is taken.
You probably won’t use the xterm menus too
 often. You can set most mode entries by using command-line options when invoking
 xterm or by using entries in a resource file (Section 6.5). See the xterm
 manpage for a complete list of options and resource variables.
The various modes on the menus are very helpful if you’ve set (or failed to
 set) a particular mode on the command line and then decide you want the opposite
 characteristic. For instance, say you’ve run xterm without a scrollbar and then decide you want one. You can
 toggle the scrollbar from the VT Options

 menu.
The sections below the modes portion of each menu contain various commands.
 Selecting one of these commands performs the indicated function. Many of these
 functions can be invoked only from the xterm
 menus. However, some functions can be invoked in other ways, which are often
 more convenient. For example, you can remove the xterm window using several of the items on the Main Options menu, but it’s probably simpler to type
 exit or logout, or use a window manager menu or button. Of course, the
 xterm menus can be very helpful when
 other methods fail to invoke a function. And some functions (such as Secure Keyboard) are not available in any other way —
 unless you do a little customizing.
Most people tend to use the mode toggles on the VT
 Options menu (which allow you to turn features like the scrollbar
 on and off) and the items on the VT Fonts

 menu (which allow you to change the display
 font once the client is running). If you’re concerned about
 security, you may want to invoke secure
 keyboard mode from the Main Options menu before
 typing passwords or other sensitive information.
Note that a
 Release 5 patch (Section 20.9) has eliminated xterm’s logging capability for security reasons.
 If this patch has been applied, your Main
 Options menu will not offer the Log to
 File

 option.
—VQ and SJC

Changing Fonts Dynamically

 Ideally, you want to set up your
 environment so that xterm windows (and other
 clients) come up automatically with the characteristics you prefer, including
 the display font. I use the very large 10×20-pixel
 font (Section 5.16) for
 all my xterm windows by specifying the

 resource variable (Section 6.3):
XTerm*font: 10x20
But if you start an xterm and then decide
 you want a different font, you do have an option.
VT Fonts Menu

 The xterm
 VT Fonts menu (Section 5.17) allows you to change a
 window’s font on the fly, which is a very handy capability. You can change
 the font any number of times to accommodate a variety of uses. You might
 choose to use a large font for text editing; you could then change to a
 smaller font while a process is running, since you don’t need to be reading
 or typing in that xterm. Since xterm’s dimensions are determined by the
 number of characters wide by the number of lines high, changing the font
 also changes the size of the window.
When the focus is on an xterm, you
 display the menu by pressing CTRL and then the third pointer button. The
 default menu is shown in Figure
 5-3.
[image: xterm’s VT Fonts menu lets you change fonts dynamically]

Figure 5-3. xterm’s VT Fonts menu lets you change fonts dynamically

The items on the VT Fonts menu are
 toggles, each of which provides a different size display font. If you have
 not toggled any items on this menu, a check mark will appear next to
 Default, which is the font specified
 when the xterm was run. This font could
 have been specified on the xterm command
 line or in a resource file. Whatever the case, this font remains the
 Default for the duration of the current
 xterm process.
By default, the Unreadable, Tiny, Small,
 Medium, Large, and Huge menu
 choices toggle the

 constant-width fonts shown in Table 5-4.
Table 5-4. VT Fonts menu defaults
	
 Menu item

 	
 Default font

	

 Unreadable

 	
 nil2

	

 Tiny

 	
 5×7

	

 Small

 	
 6×10

	

 Medium

 	
 7×13

	

 Large

 	
 9×15

	

 Huge

 	
 10×20

Bring up the VT Fonts menu, and toggle
 some of these fonts to see what they look like. The first choice is not
 called Unreadable for nothing, but it does
 have a practical use.
You can specify your own Unreadable, Tiny, Small, Medium, Large, and Huge
 fonts using the xterm resource variables
 font1, font2, font3, font4, font5, and font6. You
 might want to specify bold alternatives to some
 of the default fonts. For example, 7×13 bold is somewhat more readable than
 the standard Medium font.
All of the references to fonts and command-line options also apply to
 rxvt
 , which does not, however, support
 the VT Fonts menu supported by xterm.

Enabling Escape Sequence and Selection

When you first run an xterm window, the final two choices on the
 VT Fonts

 menu, Escape Sequence and Selection, are not functional. (They will appear in a
 lighter typeface than the other selections.) The average user may not care
 about these items, but if you’re experimenting with fonts, they are
 sometimes useful.
To enable Selection, you first have to
 select a font name. You can do this simply by highlighting a font name with
 the pointer, as you would any text
 selection (Section
 5.13). However, it’s more likely that you’ll use Selection in concert with the xfontsel client. [This is a client that does
 point-and-click selection of X11 font names; see its manpage. —
 JP] Once you’ve selected a font name, you can
 toggle it using the Selection menu item. A
 serious limitation: Selection tries to use
 the last selected text as a font name. If the last selected text was not a
 valid font name, toggling Selection will
 get you nothing more than a beep. When there is no
 primary text selection in memory, the menu item is
 grayed out again.
The Escape Sequence item is a little more
 complicated, but once set up it will be available for the duration of the
 xterm process. To make it available,
 you first need to change the font by a more primitive method, using a
 literal escape sequence that you send to the xterm using echo:
val@ruby 181% echo "Esc]50;7x13boldControl-g"
These are the literal keys you type to change the font to 7×13bold. But
 pressing ESC actually generates the symbol ^[, and CTRL-g appears as ^G, so you’ll get a line that looks like this:
val@ruby 181% echo "^[]50;7x13bold^G"
If you don’t get this string, try typing the CTRL-v
 character before both the ESC and CTRL-g characters, letting the system know
 you intend for the following character to be a literal.
I’ve used a short font name alias (Section 5.16), but you could use a
 full name or a name with wildcards. Once you’ve changed the font in this
 manner, you can toggle it using the Escape
 Sequence menu item. If you change the font again using the
 literal escape sequence, that font will be available via the menu item. Note
 that the trick for changing the font discussed earlier also works in
 rxvt, but does not enable any font
 menus.

—VQ and SJC

Working with xclipboard

The xclipboard

 client does exactly what you might think: it allows you to save multiple
 text selections (Section 5.13) and
 copy
 them to other windows. Text you copy from an xterm window can be made the CLIPBOARD selection (and thus automatically
 appear in the xclipboard window). To set this
 up, you first need to customize xterm using
 resources.[7]
For text you copy from an xterm to be pasted automatically into xclipboard, the text must be made the CLIPBOARD
 selection. You set this up to happen by specifying a few translations (Section
 6.4) for xterm.[8] Here are the translations I use to coordinate xterm with xclipboard:
*VT100.Translations: #override\
 Button1 <Btn3Down>: select-end(primary,CUT_BUFFER0,CLIPBOARD)\n\
 !Shift <Btn2Up>: insert-selection(CLIPBOARD)\n\
 ~Shift ~Ctrl ~Meta <Btn2Up>: insert-selection(primary,CUT_BUFFER0)
To let you store multiple text selections, the seemingly tiny xclipboard actually provides multiple screens,
 each of which can be thought of as a separate buffer. Each time you use the
 pointer to make text the CLIPBOARD selection, the xclipboard advances to a new screen in which it displays and
 stores the text. If you make a long selection, it might take up more than one
 screen, but the clipboard still considers it a single buffer. When you make a
 selection that extends beyond the bounds of the xclipboard window (either horizontally, vertically, or both),
 scrollbars (Section 5.11) will be activated in the
 window to allow you to view the entire selection.
To the right of the command buttons is a tiny box that displays a number
 corresponding to the selection currently in the xclipboard window. Once you have saved multiple selections, you
 can click on the client’s Next and Prev command buttons to move forward and backward
 among these screens of text.
If you’ve coordinated xterm with xclipboard using the guidelines outlined earlier,
 you paste the CLIPBOARD selection in an xterm
 window by holding down the Shift key and clicking the second pointer button.
 When you paste the CLIPBOARD selection, you get the selection that’s currently
 being displayed in the xclipboard window.
 Here’s where the client really comes in handy. Suppose you send four selections
 to xclipboard and you want to paste #2. Just
 go back to selection #2 using the Prev
 command button; when you use the pointer command to paste the CLIPBOARD
 selection, selection #2 is pasted. In Figure
 5-4, we’ve pasted selection #2 into a new file. (Notice that the text
 is too wide for the xclipboard window and
 that a horizontal scrollbar has been provided so we can view the entire
 selection.)
[image: Text you copy from an xterm appears in xclipboard]

Figure 5-4. Text you copy from an xterm appears in xclipboard

A selection remains available in xclipboard
 until you Quit the program or use the
 Delete button to erase the current
 buffer.
Use the Save command button to save the
 text in the current buffer to a file. A dialog will ask you to Accept or Cancel the save to a file with the default name
 clipboard. You can change the filename using
 Text widget commands [these are listed in the xedit(1) manpage — JP]. If
 you want to save multiple selections, you’ll need to change the filename each
 time, or you’ll overwrite the previous save.
You can edit text you send to the xclipboard using Text widget commands. When you edit a
 screenful of text, the xclipboard continues
 to store the edited version until you delete it or exit the
 program.

—VQ and SJC

Problems with Large Selections

 If you experiment making large selections
 with xclipboard, you may discover what seems
 to be a bug in the program. Though making a new selection usually causes the
 screen to advance and display the new text, this does not happen reliably after
 a selection that vertically spans more than one screenful. In these cases, the
 new selection is saved in the xclipboard (and the number in the small box is incremented to
 indicate this); however, the xclipboard
 window does not automatically advance to show you the new current selection.
 Instead, the previous long selection is still displayed. (For example, though
 the box says “5,” indicating that a fifth selection has been saved, the window
 is still displaying selection #4.) This is a bit of xclipboard sleight of hand: the new selection has been
 successfully made, but the appearance of the window belies this fact. The
 Next button will probably add to your
 confusion; it will not be available for selection, suggesting that the text in
 the window is the last selection saved. This is not the case.
To get around this problem and display the actual current selection, press the
 Previous button. The same long selection
 (which is, in actuality, the Previous selection) will be displayed again. (The
 small box will flip back to display the preceding number as well.) Then the
 Next button will be enabled, and you can
 click on it to display the actual current selection. The selection displayed in
 the window and the number in the small box will correspond.[9]
—VQ and SJC

Tips for Copy and Paste Between Windows

 One of
 my favorite uses for an xterm (which may seem
 natural to people who’ve grown up using window systems, but was a pleasant
 surprise for a guy who started computing with teletypes in 1970) is using a
 window to accept text pasted from some other window. For instance, in writing
 this book, I’ll have one window open with something happening that I want to put
 into the book. So I select the text, then paste it into another xterm window — where there’s usually a text editor
 (like vi, with its keymaps for pasting text (Section 18.5)).
You can also use a text editor or Unix utilities to reformat text from one
 window before pasting it into another. For instance, you’d like to send most of
 the text in your browser to another window where you’re composing an email
 message. But the web site used those irritating
 Microsoft Windows-specific
 quote characters that show up as question marks (?) on any other platform. So you paste the text into an Emacs
 window, do a quick run of text substitution, and copy the result to paste into
 the email window.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 requote
Another problem with
 email
 messages comes when you’re sending a reply to someone who’s used very long or
 jagged lines and the quoted text is a mess. But if you cut the messy text into
 an xterm window running the requote

 shell
 script, you’ll get a neatened version. In the following example, the text I
 paste (cut from a quoted email message) is shown in boldface. Then I press
 CTRL-d, and the result appears; I can paste it back into the email
 message:
$ requote
 > This is a long line of text that runs on and on and wraps to the next
 line without a quote character at the start and it goes on and on and on
 and well you know
 > This is the next line of text
CTRL-d
> This is a long line of text that runs on and on and wraps to the next
> line without a quote character at the start and it goes on and on and
> on and well you know This is the next line of text
You can pass a fmt

 width option to tell requote how wide to make
 the output lines. (Different versions of fmt
 have different width options: -w, -l, etc.)
 requote also works great as a vi

 filter-through (Section 17.18): paste the messy text
 into vi, and run a command like !{requote to requote the text in place.
requote is a simple script that doesn’t try
 to handle multiple levels of quoting (>> >
 >>, etc.). The main formatting commands are shown here; the
 temporary file $temp makes sure fmt has read all the text before the final
 sed outputs any of it:
${1+"$@"}
 Section 36.7
sed 's/^> //' |
fmt ${1+"$@"} > $temp
sed 's/^/> /' $temp
Here’s another problem like the one
 requote solves. When I copy text from a
 browser window, my browser usually puts some whitespace before each line. When I
 paste the text, it’s a mess. I could use a text editor to clean up the lines,
 but a one-line sed

 script can do the
 job faster.
Let’s look at three examples of dedent. It
 removes all space and TAB characters from the start of each line it reads on its
 standard input, and it writes the result to standard output.
$ dedent > order_confirmation
 ...paste text into xterm, press CTRL-d...
$ dedent | fmt > johnson
 ...paste text into xterm, press CTRL-d...
$ dedent | mail -s 'article I mentioned' ali
 ...paste text into xterm, press CTRL-d...
$
In the first example, I started dedent and
 pasted text into the xterm. After I pressed
 CTRL-d, dedent removed leading whitespace
 from the pasted text and wrote the result to standard output, which the shell
 had redirected to a file named order_confirmation. In the
 second example, dedent’s output is piped to
 fmt (Section 21.2) to make the lines neat. (Without dedent, most versions of fmt would indent the reformatted text.) The third example removes
 leading whitespace, then emails (Section 1.21) the text to
 ali.
One more thing: many of the tricks discussed earlier may be implemented as
 shell functions or even emacs functions or
 vi macro. If you use a mail user agent
 such as mutt, you can specify your favorite
 editor for email messages and just call the functions or macros while you edit.
 This is how I requote my replies to others’ email, wrap it to a sane width, and
 so on. In emacs, ESC
 q is mapped to the function fill-paragraph, so if I need a paragraph wrapped to a certain
 width (determined by default-fill-column), I
 just position the cursor inside the paragraph and call the function. If the
 fill-prefix variable is properly set
 (say, to >) it even knows how to wrap
 several levels of nested quoting in email.

—JP and SJC

Running a Single Command with
 xterm -e

The -e option to xterm is useful for running a single command
 before exiting. For example, if you just want to run a character-based mail
 program, type the
 following:
% xterm -e mail
When
 you quit the mail program, the xterm window exits.
The
 -e option needs to be the last xterm option on the command line. The remainder of the command
 line is assumed to be part of the command to be executed by xterm. The new window has the command name in its
 titlebar by default (unless overridden by other
 command-line options (Section
 5.15)).
One use for xterm -e is for
 running a window with a login session to a remote system, like
 this:
% xterm -e ssh
 hostname
 &
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 ssh-agent
The xterm process runs
 on the local system, but immediately logs you into the remote machine. You are
 prompted for a password in the new xterm that
 pops up — before you can log in to the remote system. This isn’t as convenient
 as putting that command in your X setup file (like .xinitrc or .xsession) —
 but it’s far more secure because you don’t need to put your hostname in your
 .rhosts
 or
 .shosts
 file (Section 1.21), which is a potential
 security hole. (Or, if you use ssh for your
 remote login — and you start ssh-agent before
 you start X — you won’t need to type passwords at all during your X session.
 This is the handiest setup by far.)
You can use -e
 to create a makeshift X display for any character-based programs you like to
 run. For example, you might want to keep track of messages sent to the console,
 but you can’t run xterm -C to get console messages because
 you aren’t actually logged in on the console. You might run something like
 this:
tail
 -f
 Section
 12.10
% xterm -e tail -f /var/log/messages &
Section 24.21 has more about how this
 works.
—LM, JP, and SJC

Don’t Quote Arguments to
 xterm -e

Being a belt-and-suspenders kind of guy,
 I’ve gotten in the habit of quoting arguments to commands. This makes good sense
 with lots of Unix shell commands, but it can get you in trouble with
 xterm -e. For example, I wanted to set up a job that
 would open vi in a window to edit a file
 named .postit. At first, I used the
 command:
 xterm ... -e 'vi .postit' &
only
 to receive the perplexing message in the resulting
 window:
Can't execvp vi .postit
The
 quotes passed the entire string to xterm as
 an argument, which parsed it as a single command name, rather than a command
 plus argument. Removing the quotes solved the

 problem.

—TOR and
 SJC

[1] When we refer to terminals throughout this and
 other chapters, understand that we mean, more often than not, the set of
 standard terminal-emulation control codes implemented by terminal
 emulators, such as vt100 or ANSI
 color. So, though we may refer to a vt100 terminal, we’re
 more likely referring to any terminal-emulator software that can
 understand and react to that set of control codes.

[2] getty is spawned by the
 init at multiuser system
 startup, and it sets up all ttys, handles the initial login
 prompt, and then hands successful logins over to login to complete.

[3] Sure, you don’t have to worry about whether there is a local TYMNET
 dialup nowadays, but back in the day . . .

[4] Note that there is no user named
 stucklogin; you’re expected to supply
 the actual login username as an argument to su.

[5] . . . for some values of “modern”, anyway . . . —
 SJC

[6] When we refer, throughout the rest of the chapter, to xterm, we’re often referring to xterm proper, as well as rxvt and other related terminal
 programs.

[7] Since there can be only one CLIPBOARD selection at a time, you can
 only run one xclipboard per
 display.

[8] If you’re using a terminal emulator other than xterm, the program should also allow this
 sort of customization. See the client manpage for the actions (the
 equivalents of select-end and
 insert-selection) to include in
 the translation table.

[9] By this time, the observant reader will have concluded that xclipboard is a nuisance at best.

Chapter 6. Your X Environment

Defining Keys and Button Presses with xmodmap

 If you have a Linux system, you may want
 to use loadkeys

 instead of xmodmap. loadkeys is designed
 to set the keymap used by the system as a whole, particularly the console, so
 use your own judgment. Whatever is done in xmodmap will affect X but not the system console.
An important piece to the X Window System puzzle is filled by the xmodmap client. When the user performs any action
 — such as typing a key or moving the mouse — the server sends a packet of
 information to the client called an event. These events are
 then translated into actions by the client. You can use the xmodmap utility to effectively change the event
 that is reported to the client.
Keysym mappings

 are mappings of keyboard
 events at the server level, before the event is sent to the client.
 Keysyms are the symbols used for
 each key on the keyboard.
The X server maintains a keymap table
 , which contains a listing
 of keys on the keyboard and how they should be interpreted. A client gets the
 keymap table from the server upon client startup. In most cases, the keymap
 table is used to interpret keys literally — when you press the letter “a,” a key
 code is sent to the client that corresponds to the letter “a” in the keymap
 table.
You can use the xmodmap client to reassign
 key codes within the keymap table. xmodmap
 can therefore be used to redefine how the key is interpreted by the client. You
 probably wouldn’t want to translate the alphanumeric keys on the keyboard, but
 you may want to translate others. For example, you might want to change the
 BACKSPACE key to DELETE:
% xmodmap -e "keysym BackSpace = Delete"
Another example is if you mistakenly hit the CAPS LOCK
 key a bit too often, you can disable it completely. Some people might disable
 CAPS LOCK the low-tech way (by just removing the key from the keyboard!), but
 you can also render it harmless with the command:
% xmodmap -e "keysym Caps_Lock = "
effectively disabling the CAPS LOCK key entirely. Note that the symbol is now
 gone and can’t be redefined without using the hardware key code.
If you are a
 DVORAK typist, you can use xmodmap to translate every key on the keyboard and
 so your QWERTY keyboard behaves like a DVORAK keyboard.
If it ever seems that keystrokes are not working correctly, you can check
 current keysym settings by running xmodmap
 with the -pk argument. Use the xev client to determine exactly which key code a key generates on
 your display. There is also a public domain client called xkeycaps that can be used to display the keysyms
 for selected keyboards.
You can use xmodmap to add or remove
 keysyms, or even to redefine the key code associated with that keysym. You can
 also use it to redefine the mouse buttons, using the pointer keyword. For example, to have the second and third mouse
 button switch places, you can enter:
% xmodmap -e "pointer = 1 3 2"
If you have a large number of keys to remap, you can put the commands in a
 file that is read when your X session starts. For example, create a file called
 .Xmodmap:
! my .Xmodmap file
remove Lock = Caps_Lock
remove Control = Control_L
keysym Control_L = Caps_Lock
keysym Caps_Lock = Control_L
add Lock = Caps_Lock
add Control = Control_L
 ...
These commands effectively reverse your CTRL and CAPS LOCK keys. (CTRL and
 CAPS LOCK are “switched” on
 PC and Macintosh keyboards, which can be
 exceedingly frustrating.) This file can then be read automatically in a X
 startup script:
 ...
xset b 10 100 10
xrdb $HOME/.Xdefaults
xmodmap $HOME/.Xmodmap
fvwm &
 ...
Alternately, you might want to assign different functions to little-used keys,
 such as making the tiny “enter” key on Powerbook keyboards into another command
 key. Remember, too, that some keys may have different names than what you’re
 used to. Sun keyboards, for example, often come with a “meta” key; Macintosh
 keyboards have an “option” key where PC users expect to find “alt” (though they
 act the same); and so forth.
On Linux systems, the loadkeys command is often used to make
 system-level changes to key mappings; it’s common to see a variety of keytables
 already defined and a system default chosen from among them. The system default
 is often found in /etc/sysconfig/keytable
 (Red Hat 6 and earlier) or /etc/sysconfig/keyboard (Red Hat 7) or otherwise defined in a
 directory such as /usr/share/keymaps or
 /usr/lib/kbd/keymaps. On Debian, the
 keytable is simply set in /etc/console-tools/default.kmap.gz.
If you have a physical keyboard on which you’ve switched certain keys, you may
 want to modify the system-level
 key mappings as well, so that they are always loaded properly for those times
 when you need the console to work without any special user-level configuration.
 For example, on my Red Hat systems, I always
 modify my keymap (in 6.* and earlier, found in /usr/lib/kbd/keymaps/i386/qwerty/us.kmap.gz, and in 7.*, found
 in /lib/kbd/keymaps/i386/qwerty/us.kmap.gz)
 to reflect the fact that the keyboard I carry with me to the co-lo has swapped
 CAPS LOCK and CTRL keys. Just gunzip the
 file, edit, and then gzip it back up again.
 Alternately, you can create a new file from an existing one, make your edits,
 and specify the new file in your /etc/sysconfig/keytable or /etc/syscongig/keyboard file, as appropriate.
The keymaps directory tree is broken down by the platform (Amiga, Atari, i386,
 Mac, Sun) and then by the layout type of the keyboard (
 DVORAK, QWERTY, and various other
 layouts) and finally by the language or character set. So, there is a U.S.
 keymap, a U.K. keymap, a Hebrew keymap, and dozens of various others, for all of
 the systems on which Linux is supported. The files are in a relatively
 straightforward format:
keycode 54 = Shift
keycode 56 = Alt
keycode 57 = space
 control keycode 57 = nul
keycode 58 = Control
keycode 86 = less greater bar
keycode 97 = Control
First comes the keycode
 keyword, followed by the numeric value of
 the keysym generated when the key is pressed, and then a keyword (or several)
 describing the character to be generated when a given keysym is received.
 Modifiers may precede the keycode keyword,
 binding the combination of modifier key and keysym to another character
 value.
Note
One danger of using xmodmap is that
 anything set with xmodmap might remain in
 effect after you have logged out. This isn’t a problem if you use the same X
 server every day, but be aware that if you use a coworker’s X terminal in
 his absence, he may come back complaining that you broke his CAPS LOCK key.
 This might happen if you use xdm, since
 the server is not restarted after every X session. On some X terminals, you
 can fix this problem by toggling “Retain X Settings” on the X terminal setup
 menu.

—LM, EP, and SJC

Using xev to Learn Keysym Mappings

 The xev
 client is essential for
 debugging
 X Window System keysym mappings (Section 6.1). When you start up xev, a small “event window” appears. All events
 that take place within that window are shown on standard output. This means
 screenfuls of output, but it also means that when you type a key, you can
 immediately trace the resulting event. For example, if you need to know what
 keysym is sent when you type the DELETE key on the keyboard, just run xev and type the DELETE key in the event window.
 Typical output might be the following:
KeyPress event, serial 13, synthetic NO, window 0x800001,
 root 0x8006d, subw 0x800002, time 1762968270, (50,36),
 root:(190,176), state 0x0, keycode 27 (keysym 0xffff, Delete),
 same_screen YES, XLookupString gives 1 characters: "^?"

KeyRelease event, serial 15, synthetic NO, window 0x800001,
 root 0x8006d, subw 0x800002, time 1762968336, (50,36),
 root:(190,176), state 0x0, keycode 27 (keysym 0xffff, Delete),
 same_screen YES, XLookupString gives 1 characters: "^?"
This tells you that the DELETE key (keycode
 27) is interpreted as keysym 0xffff, which is
 Delete and character ^?. If you do an xmodmap
 -pk (Section 5.1), you
 should see a line resembling:[1]
27 0xffff (Delete)
If you redefine the DELETE key as the BACKSPACE key and
 do the same exercise (run xev and press the
 DELETE key), you should see something like this:
% xmodmap -e "keysym Delete = BackSpace"
% xev
 ...
KeyPress event, serial 13, synthetic NO, window 0x800001,
 root 0x8006d, subw 0x800002, time 1763440073, (44,39),
 root:(240,235), state 0x0, keycode 27 (keysym 0xff08, BackSpace),
 same_screen YES, XLookupString gives 1 characters: "^H"

KeyRelease event, serial 15, synthetic NO, window 0x800001,
 root 0x8006d, subw 0x800002, time 1763440139, (44,39),
 root:(240,235), state 0x0, keycode 27 (keysym 0xff08, BackSpace),
 same_screen YES, XLookupString gives 1 characters: "^H"
This tells you that now the DELETE key (still keycode 27) is being interpreted
 as hexadecimal 0xff08, keysym BackSpace, and generates character "^H.” xmodmap
 -pk should show you the following:
27 0xff08 (BackSpace)
For more information, see O’Reilly & Associates’ X Window
 System User’s Guide, Volume 3.
—LM, EP, and SJC

X Resource Syntax

 Virtually all X Window System clients are
 customizable.[2] You can specify how a client looks on the screen — its size and
 placement, its border and background color or pattern, whether the window has a
 scrollbar, and so on. This article introduces X resources and shows their
 syntax.
Traditional Unix applications rely on command-line options to allow users to
 customize the way they work. X applications support command-line options too,
 but often not for all features. Almost every feature of an X program can be
 controlled by a variable called a
 resource; you can change the behavior or appearance of a
 program by changing the value associated with a resource
 variable.
Resource variables may be Boolean (such as scrollBar:
 True) or take a numeric or string value (borderWidth: 2 or foreground:
 blue). What’s more, in applications written with the X Toolkit (or
 an Xt-based toolkit such as the Motif toolkit), resources may be associated with
 separate objects
 (or “widgets”) within an
 application. There is a syntax that allows for separate control over both a
 class

 of objects
 in the application and an individual instance of an object.
 This is illustrated by these resource specifications for a hypothetical
 application called xclient:
xclient*Buttons.foreground: blue
xclient*help.foreground: red
The first resource specification makes the foreground color blue for all
 buttons in the xclient application (in the
 class Buttons); the second resource
 specification makes the foreground color red for the help button in this application (an instance of the class
 Buttons). Resource settings can be even
 simpler than this.
The values of resources can be set as application defaults using a number of
 different mechanisms, including resource files in your home directory and a
 program called xrdb (X resource database
 manager). As we’ll see, the xrdb program
 stores resources directly in the X server, making them available to all clients,
 regardless of the machine on which the clients run.[3]
Placing resources in files allows you to set many resources at once without
 the restrictions encountered when using command-line options.

 In addition to a primary resource file (often
 called .Xdefaults, .Xresources, or xrdb) in your home directory, which determines defaults for the
 clients you yourself run, the system administrator can create system-wide
 resource files to set defaults for all instances of the application run on this
 machine. It is also possible to create resource files to set some resources for
 just the local machine, some for all machines in a network, and some for one or
 more specific machines.[4]
The various resource files are automatically read in and processed in a
 certain order within an application by a set of routines
 called the resource manager. The syntax for resource
 specifications and the rules of precedence by which the resource manager
 processes them are intended to give you the maximum flexibility in setting
 resources with the minimum amount of text. You can specify a resource that
 controls only one feature of a single application, such as the red help button in the hypothetical xclient settings listed earlier. You can also
 specify a resource that controls one feature of multiple objects within multiple
 applications with a single line.
Command-line options normally take precedence over any prior resource
 settings; so you can set up the files to control the way you
 normally want your application to work and then use
 command-line options (in an alias or shell
 function (Section
 29.1), for instance) to specify changes you need for only one or two
 instances of the application.
The basic syntax of a resource definition file is fairly simple. Each client
 recognizes certain resource variables that can be assigned a value; see the
 client’s manpage for a list.
Toolkits are a
 mechanism for simplifying the design and coding
 of applications and making them operate in a consistent way. Toolkits provide a
 standard set of objects or widgets, such as menus, command buttons, dialog
 boxes, scrollbars, and so on. If a client was built with the X Toolkit, this
 should be noted on its manual page. In addition to certain application-specific
 resource variables, most clients that use the X Toolkit recognize a common set
 of resource variables.
The most basic line you can have in a resource definition file consists of the
 name of a client, followed by a dot (.) or an asterisk (*), and the name of a variable. A colon (:) and whitespace
 separate the client and variable names from the actual value of the resource
 variable. The following line gives a scrollbar to all instances of the xterm client:
xterm*scrollBar: True
If the name of the client is omitted, the variable is
 global: it applies to all instances of all clients (in
 this case, all clients that can have a scrollbar). If the same variable is
 specified as a global variable and a client-specific variable, the value of the
 client-specific variable takes precedence for that client. However, if the name
 of the client is omitted, the line should generally begin with an
 asterisk.
Be sure not to omit the colon inadvertently at the end of a resource
 specification. This is an easy mistake to make, and the resource manager
 provides no error messages. If there is an error in a resource specification
 (including a syntax error such as the omission of the colon or a misspelling),
 the specification is ignored. The value you set will simply not take
 effect.
A line starting with an exclamation point (!) is ignored as a comment. If the last character
 on a line is a backslash (\), the resource definition on that line is assumed to continue
 on the next line.

—VQ and SJC

X Event Translations

 This article
 introduces event translations, which are special X Window System resources that
 control actions of things like mouse clicks. Section 6.3 introduces X resources and shows their syntax. Section 6.5 through Section 6.9 explain how to set and check
 resources — as you log in and after.
We’ve discussed the basics of resource-naming syntax. From the sample resource
 settings, it appears that what many resource variables do is self-evident or
 nearly so. Among the less obvious resource variables, there is one type of
 specification, an event translation, that can be used with many clients and
 warrants somewhat closer examination.
User input and several other types of information pass from the server to a
 client in the form of events
 . An event is a packet of information
 that gives the client something to act on, such as keyboard input. Moving the
 pointer or pressing a key causes input
 events to occur. When a program receives a
 meaningful event, it responds with some sort of action.
For many clients, the resource manager recognizes mappings between certain
 input events (such as a pointer button click) and some sort of action by the
 client program (such as selecting text). A mapping between one or more events
 and an action is called a translation. A resource
 containing a list of translations is called a translation
 table.

Many event translations are programmed into an application and are invisible
 to the user.[5] For our purposes we are only concerned with very visible
 translations of certain input events, primarily the translation of keystrokes
 and pointer button clicks to particular actions by a client program.
The operation of many clients, notably xterm, is partly determined by default input event translations.
 For example, selecting text with the first pointer button (an event) saves that
 text into memory (an action).
In this case, the input “event” is actually three separate X events:
	Pressing the first pointer button.

	Moving the pointer while holding down the first button.[6]

	Releasing the button.

Each of these input events performs a part of the action of selecting
 text:
	Unselects any previously selected text and begins selecting new
 text.

	Extends the selection.

	Ends the selection, saving the text into memory (both as the primary
 selection and CUT_BUFFER0).

The event and action mappings would be expressed in a translation table as
 follows:
<Btn1Down>: select-start()\n\
<Btn1Motion>: select-extend()\n\
<Btn1Up>: select-end(primary,CUT_BUFFER0)
where each
 event is enclosed in angle brackets
 (<>) and produces the action that follows the colon (:). A space or TAB
 generally precedes the action, though this is not mandatory:
<event>: action
A translation table must be a continuous string. To link multiple mappings as
 a continuous string, each event-action line should be terminated by a newline character (\n), which is in turn followed by a backslash
 (\) to escape the actual newline.

 These are default translations for
 xterm.[7] All of the events are simple, comprised of a single button motion.
 As we’ll see, events can also have modifiers: i.e., additional button motions or
 keystrokes (often CTRL or Meta) that must be performed with the primary event to
 produce the action. (Events can also have modifiers that must
 not accompany the primary event if the action is to take
 place.)
As you can see, the default actions of keysym mappings are hardly intuitive.
 The client’s manpage usually lists the event-action mappings that you can
 modify.

 You can specify nondefault translations using
 a translation table (a resource containing a list of translations). Since
 actions are part of the client application and cannot be modified, you are
 actually specifying alternative events to perform an action.[8] Keep in mind that only applications written with the X Toolkit (or
 an Xt-based toolkit such as the Motif Toolkit) recognize translation-table
 syntax as described here.
The basic syntax for specifying a translation table as
 a resource is as follows:
[object*[subobject...]]*translations: #override\
 [modifier]<event>: action
The first line is basically like any other resource specification with a few
 exceptions. First, the final argument is always
 translations, indicating that one (or
 more) of the event-action bindings associated with the
 [object
 *[subobject
 ...]] are being modified.
Second, note that #override is not the
 value of the resource; it is literal and
 indicates that what follows should override any default translations. In effect,
 #override is no more than a pointer to
 the true value of the resource: a new event-action
 mapping (on the following line) where the event may take a modifier.
A not-so-obvious principle behind overriding translations is that you only
 literally “override” a default translation when the event(s) of the new
 translation match the event(s) of a default translation
 exactly. If the new translation does not conflict with
 any existing translation, it is merely appended to the defaults.
To be specified as a resource, a translation table must be a single string.
 The #override is followed by a backslash
 (\) to indicate that the subsequent line
 should be a continuation of the first.
In the previous basic syntax example, the value is
 a single event-action mapping. The value could also
 be a list of several mappings, linked by the characters \n\ to make the resource a continuous string.
The following xterm translation table shows
 multiple event-action mappings linked in this

 manner:
*VT100.Translations: #override\
 <Btn1Down>: select-start()\n\
 <Btn1Motion>: select-extend()\n\
 <Btn1Up>: select-end(primary,CUT_BUFFER0)
—VQ and SJC

Setting X Resources: Overview

 Learning
 to write resource specifications is a fairly manageable task, once you
 understand the basic rules of syntax and precedence. In contrast, the multiple
 ways you can set resources — for a single system, multiple systems, a single
 user, or for all users — can be confusing. For our purposes, we are primarily
 concerned with specifying resources for a single user running applications both
 on the local system and on remote systems in a network.
As we’ve said, resources are generally specified in files. A resource file can
 have any name you like. Resources are generally “loaded” into the X server by
 the xrdb (Section 56.8) client, which is normally run from your startup file
 or run automatically by xdm when you log in.
 Prior to Release 2 of X, there was only one resource file called .Xdefaults, placed in the user’s home directory.
 If no resource file is loaded into the server by xrdb, the .Xdefaults file
 will still be read.

Remember that X allows clients to run on different machines across a network,
 not just on the machine that supports the X server. One problem with the older
 .Xdefaults mechanism was that users who
 were running clients on multiple machines had to maintain multiple .Xdefaults files, one on each machine. By
 contrast, xrdb stores the application
 resources directly in the server, thus making them available to all clients,
 regardless of the machine on which the clients are running. As we’ll see,
 xrdb also allows you to change resources
 without editing files.
Of course, you may want certain resources to be set on all machines and others
 to be set only on particular machines. For a complex setup, check the detailed
 information in O’Reilly & Associates’ X Window System Guide,
 Volume 3M, Chapter 11.
In addition to loading resource files, you can specify defaults for a
 particular instance of an application from the command line using two options:
 -xrm and -name.
A sample resources file follows. This file
 sets the border width for all clients to a default value of two pixels, and it
 sets other specific variables for xclock and
 xterm. The meaning of each variable is
 obvious from its name. (For example, xterm*scrollBar:
 True means that xterm windows should be created with a scrollbar.)
Note that comments are preceded by an exclamation point (!).
For a detailed description of each variable, see the X client manpages.
*borderWidth: 2
!
! xclock resources
!
xclock*borderWidth: 5
xclock*geometry: 64x64
!
! xterm resources
!
xterm*curses: on
xterm*cursorColor: skyblue
xterm*pointerShape: pirate
xterm*jumpScroll: on
xterm*saveLines: 300
xterm*scrollBar: True
xterm*scrollKey: on
xterm*background: black
xterm*borderColor: blue
xterm*borderWidth: 3
xterm*foreground: white
xterm*font: 8x13
Section 6.6 takes a look at the use
 of the -xrm command-line option in standard X clients; Section 6.7 covers
 -name. Section 6.8
 discusses various ways you can load resources using the xrdb program. Section
 6.9 shows how to list the resources for a client with appres.
—VQ and SJC

Setting Resources with the -xrm Option

 The -xrm command-line option,
 which is supported by all X Window System clients written with the X Toolkit,
 can be useful in specifying from the command line any specification that you
 would otherwise put into a resources file
 (Section 6.5). For example:
% xterm -xrm 'xterm*Foreground: blue' &
Note that a resource specification on the command line must be quoted using
 the single quotes.
The -xrm option only specifies the resource(s) for the
 current instance of the application. Resources specified in this way do not
 become part of the resource database.
The -xrm option is most useful for setting classes, since
 most clients have command-line options that correspond to instance variable
 names. For example, the -fg command-line option sets the
 foreground attribute of a window, but
 -xrm must be used to set Foreground.
Note also that a resource specified with the -xrm option will
 not take effect if a resource that takes precedence has already been loaded with
 xrdb. For example, say you’ve loaded a
 resource file that includes the specification:
xterm*pointerShape: pirate
The command-line specification of another cursor will fail:
% xterm -xrm '*pointerShape: gumby' &
because the resource xterm*pointerShape is
 more specific than the resource *pointerShape. Instead, you’ll get an xterm with the previously specified pirate cursor.
To override the resource database (and get the Gumby cursor), you’d need to
 use a resource equally (or more) specific, such as the following:
% xterm -xrm 'xterm*pointerShape: gumby' &
—VQ and SJC

How -name Affects Resources

 The command-line option
 -name lets you name one instance of an application; the
 server identifies the single instance of the application by this name. The

 name of an application affects how resources
 are interpreted. This option is supported by all X Window System clients written
 with the X Toolkit.
For example, the following command sets the xterm instance name to bigxterm:
% xterm -name bigxterm &
When this command is run, the client uses any resources specified for bigxterm rather than for xterm.
The -name option allows you to create different instances of
 the same application, each using different resources. For example, you could put
 the following entries into a resource file such as .Xresources:
XTerm*Font: 8x13
smallxterm*Font: 6x10
smallxterm*Geometry: 80x10
bigxterm*Font: 9x15
bigxterm*Geometry: 80x55
You could then use these commands to create xterms of different specifications. The command:
% xterm &
would create an xterm with the default
 specifications, while:
% xterm -name bigxterm &
would create a big xterm, 80 characters
 across by 55 lines down, displaying in the font 9x15. The command:
% xterm -name smallxterm &
would create a small xterm, 80 characters
 across by 10 lines down, displaying in the font 6x10.
—VQ and SJC

Setting Resources with xrdb

 The xrdb program
 saves you from maintaining multiple resource files if you run clients on
 multiple machines. It stores resources on the X server, where they are
 accessible to all clients using that server. (This property is also called the
 resource database.)
Place the appropriate xrdb command line in
 your .xinitrc file or .xsession file to initialize resources at login,
 although it can also be invoked interactively. It has the following
 syntax:
 xrdb [options] [filename]
The xrdb client takes several options, all
 of which are documented on its manual page. We’ll discuss the most useful
 options.
The optional filename argument specifies the name of a
 file from which the values of client variables (resources) will be read. If no
 filename is specified, xrdb will expect to
 read its data from standard input. Note that whatever you type will override the
 previous contents, so if you inadvertently type xrdb without a filename argument and then quit with CTRL-d, you
 will delete any previous values. (You can append new settings to current ones
 using the -merge option discussed later in this
 article.)
The resource filename can be anything you want. Two
 commonly used names are .Xresources and
 .Xdefaults.
You should load a resource file with the xrdb -load option. For example, to load the
 contents of your .Xresources file into the
 RESOURCE_MANAGER, you would type:
% xrdb -load .Xresources
	Querying the resource
 database
	You can find out what options are currently set by using the
 -query

 option. For example:
% xrdb -query
XTerm*ScrollBar: True
bigxterm*font: 9x15
bigxterm*Geometry: 80x55
smallxterm*Font: 6x10
smallxterm*Geometry: 80x10
xterm*borderWidth: 3
If xrdb has not been run, this
 command will produce no output.

	Loading new values into the resource database
	By default, xrdb reads its
 input (either a file or standard input) and stores the results into
 the resource database, replacing the previous values. If you simply
 want to merge new values with the currently active ones (perhaps by
 specifying a single value from standard input), you can use the
 -merge

 option. Only the new values will
 be changed; variables that were already set will be preserved rather
 than overwritten with empty values.
For example, let’s say you wanted to add new resources listed in
 the file new.values. You could
 say:
% xrdb -merge new.values
As another example, if you wanted all subsequently run xterm windows to have scrollbars, you
 could use standard input and enter:
% xrdb -merge
xterm*scrollBar: True
and then press CTRL-d to end the standard input. Note that because
 of precedence rules for resource naming, you may not get what you
 want automatically. For example, if you specify:
xterm*scrollBar: True
and the more specific value:
xterm*vt100.scrollBar: False
has already been set, your new, less specific setting will be
 ignored. The problem isn’t that you used the -merge
 option incorrectly — you just got caught by the rules of
 precedence.
If your specifications don’t seem to work, use the
 -query option to list the values in the
 RESOURCE_MANAGER property, and look
 for conflicting specifications.
Note also that when you add new specifications, they won’t affect
 any programs already running — only programs started after the new
 resource specifications are in effect. (This is also true even if
 you overwrite the existing specifications by loading a new resource
 file. Only programs run after this point will reflect the new
 specifications.)

	Saving active resource definitions in a file
	Assume that you’ve loaded the RESOURCE_MANAGER property from an
 .Xresources or other file.
 However, you’ve dynamically loaded a different value using the
 -merge option, and you’d like to make the new
 value your default.
You don’t need to edit the file manually (although you certainly
 could.) The -edit

 option allows you to write the
 current value of the RESOURCE_MANAGER property to a file. If the
 file already exists, it is overwritten with the new values. However,
 xrdb is smart enough to
 preserve any comments and preprocessor declarations in the file
 being overwritten, replacing only the resource definitions. For
 example:
% xrdb -edit ~/.Xresources
will save the current contents of the RESOURCE_MANAGER property in
 the file .Xresources in your
 home directory.
If you want to save a backup copy of an existing file, use the
 -backup

 option:
% xrdb -edit .mydefaults -backup old
The string following the -backup option is an
 extension appended to the old filename. In the prior example, the
 previous copy of .mydefaults
 would be saved as .mydefaults.old.

	Removing resource definitions
	
 You can delete the
 definition of the RESOURCE_MANAGER property from the server by
 calling xrdb with the
 -remove

 option.
There is no way to delete a single resource
 definition other than to read the current xrdb values into a file. For
 example:
% xrdb -query >
 filename
Use
 an editor to edit the file, deleting the resource definitions you no
 longer want, and save the
 file:
% vi
 filename

 Then read the edited values back
 into the RESOURCE_MANAGER with xrdb (note that we’re replacing the values, not
 merging them, so we use -load):
% xrdb -load
 filename

—VQ and SJC

Listing the Current Resources for a Client: appres

 The appres (application
 resource) program lists the resources that currently might
 apply to a client. These resources may be derived from several sources,
 including the user’s .Xresources file and a
 system-wide application defaults file. The directory /usr/lib/X11/app-defaults

 contains application-default files for
 several clients. (Note that it may be in a different place depending on how your
 X11 is installed; on Mac OS X, which does not come with X by default, you might
 find it in /usr/X11R6/etc/app-defaults in
 one popular install or /usr/local/lib/X11/app-defaults in another.) The function of
 these files is discussed in the next section. For now, be aware that all of the
 resources contained in these files begin with the class name of the
 application.
Also be aware that appres has one serious
 limitation: it cannot distinguish between valid and invalid resource
 specifications. It lists all resources that might apply to a client, regardless
 of whether the resources are correctly specified.
appres lists the resources that apply to a
 client having the class_name and/or
 instance_name you specify. Typically, you would
 use appres before running a client program to
 find out what resources the client program will access.
For example, say you want to run xterm, but
 you can’t remember the latest resources you’ve specified for it, whether you’ve
 loaded them, what some of the application defaults are, etc. You can use the
 appres client to check the current
 xterm resources. If you specify only a
 class name, as in this command line:[9]
% appres XTerm
appres lists the resources that any
 xterm would load. In the case of xterm, this is an extensive list, encompassing all
 of the system-wide application defaults, as well as any other defaults you have
 specified in a resource file.
You can also specify an instance name to list the resources that applies to a
 particular instance of the client, as in:
% appres XTerm bigxterm
If you omit the class name, xappres assumes
 the class -NoSuchClass-, which has no
 defaults, and returns only the resources that would be loaded by the particular
 instance of the client.
Note that the instance can simply be the client name, e.g., xterm. In that case none of the system-wide
 application defaults would be listed, since all begin with the class name
 XTerm. For example, the command:
% appres xterm
might return resources settings similar to these:
xterm.vt100.scrollBar: True
xterm*PhonyResource: youbet
xterm*pointerShape: gumby
xterm*iconGeometry: +50+50
*VT100.Translations: #override\
 Button1 <Btn3Down>: select-end(CLIPBOARD)\n\
 ~Ctrl ~Meta <Btn2Up>: insert-selection(primary,CLIPBOARD)
Most of these resources set obvious features of xterm. The translation table sets up xterm to use the xclipboard
 . Notice also that appres has returned an invalid resource called PhonyResource that we created for demonstration
 purposes. You can’t rely on appres to tell
 you what resources a client will actually load because the appres program cannot distinguish a valid resource
 specification from an invalid one. Still, it can be fairly useful to jog your
 memory as to the defaults you’ve specified in your .Xresources file, as well as the system-wide application
 defaults.

—VQ and SJC

Starting Remote X Clients

 One of the unique advantages of window systems
 such as X is that you can run applications remotely and view
 them on the local display (as opposed to systems that merely allow for the
 execution of shared applications by the local host, such as Windows and the Mac
 OS prior to OS X). Even Mac OS X, except insofar as it can run an X server, does
 not allow for a split between an application’s display and its execution. Only
 X-aware applications may be executed in such a fashion.
Starting Remote X Clients from Interactive Logins

 You
 can try this easily enough by doing an
 rlogin or telnet
 [10] to the remote host, setting the
 DISPLAY environment
 variable and starting up an X client. Of course, it helps to have an X
 server already running on your local machine. In the following example, we
 start up a new xload client running on
 the host ruby:
sapphire:joan % rlogin ruby
Password:
Last login: Mon Mar 12 16:27:23 from sapphire.oreilly.com
NetBSD 1.4.2A (ORA-GENERIC) #6: Wed May 31 06:12:46 EEST 2000

TERM = (vt100) xterm

ruby:joan % setenv DISPLAY sapphire:0
ruby:joan % xload &
(You must, of course, have an account on the remote system.)
The first thing that might go wrong is that you may run into server access control. If you see the
 following error:
Xlib: connection to "sapphire:0" refused by server
Xlib: Client is not authorized to connect to Server
Error: Can't open display: sapphire:0
you can probably fix it by typing
 xhost +ruby in a
 sapphire window and running the command again on
 ruby.[11]
Once you have networking and access control issues solved, you should be
 able to display clients from the remote machine. The next issue is how to
 run remote clients easily.
If you have ssh (
 Section 1.21), its X forwarding
 handles authorization (setting DISPLAY) and also
 encrypts the connection to make it secure. Here’s an example using ssh for an interactive login:
sapphire:joan % ssh ruby
joan's passphrase:
Last login: Mon Mar 12 16:27:23 from sapphire.oreilly.com
NetBSD 1.4.2A (ORA-GENERIC) #6: Wed May 31 06:12:46 EEST 2000

TERM = (vt100) xterm

ruby:joan % xload &

Starting a Remote Client with rsh and ssh

 If
 you have ssh,
 that’s the easiest way to start a remote client:
sapphire:joan % ssh ruby -n xterm &
If you aren’t running an SSH agent, you’ll need to enter your password
 before the remote command can run. If you have trouble, try the ssh -f option — with no
 ampersand (&) at the end of the
 command line.
If you don’t have ssh, the best way to
 start a remote client is the same way you’d start any remote command: using
 the rsh command:
sapphire:joan % rsh ruby -n xterm -display sapphire:0
There are a few issues to be ironed out first, though.
To run rsh successfully, make sure that
 you have permission to run remote shells on the remote machine. This
 means that the local machine must be listed either in the remote machine’s
 /etc/hosts.equiv

 file or in your personal $HOME/.rhosts file on the remote machine. For
 example, an .rhosts file might read:

sapphire.ora.com
harry.ora.com
If the host is properly set up on the remote machine, then rsh will execute properly, and rlogin will no longer ask for a password when
 you try to connect to the remote machine. If it is not set up properly, then
 rlogin will prompt for a password,
 and rsh will fail with the message
 Permission denied.
Using .rhosts or /etc/hosts.equiv for this purpose might be considered a
 breach of security: it means that if someone breaks into your account on one
 machine, he can break into your account on all other machines as well.
 Clearly, you want to be careful what hosts you list in .rhosts. For that reason, it’s better to use
 the fully qualified domain name (i.e., harry.ora.com
 instead of just harry).
There are a few more rules:
	For security reasons, the .rhosts file will be ignored if it is publically
 writable. Make sure that the .rhosts file is writable only by you.

	Make sure that you are running the correct rsh command. Some systems have a
 restricted
 shell, also named rsh. If you get the following
 error:
ruby: ruby: No such file or directory
or:
ruby: ruby: cannot open
where ruby is the name of the
 system that you wanted to run the remote shell on, the problem is
 probably that you are using the wrong rsh command. Use the which (

 Section 1.6) or whereis (Section 1.3) command to see
 which rsh you are using:
sapphire:joan % which rsh
/bin/rsh
sapphire:joan % echo $path
/bin /usr/bin /usr/bin/X11 /usr/bsd
On some
 System V-derived systems such
 as IRIX, the restricted shell rsh
 might live in /bin, while the
 remote shell rsh (the one you
 want) resides in /usr/bsd

 . /bin often shows up in search paths earlier than
 /usr/bsd, so on those
 systems you need to redefine your path explicitly so that /usr/bsd is searched before /bin. Alternately, you can supply the
 full path to the command when you invoke it.

	You may need to append the -n
 option to rsh to avoid a Stopped error message on some
 machines.

	You need to be sure that the directory containing X binaries is
 defined in your search path in your shell
 setup file (Section
 3.3) on the remote system.

	If you are using

 host-based access control, you
 need to execute the xhost client
 to extend access to the remote host before the rsh command is run. Otherwise, clients
 from the remote host will not have permission to access your
 display. If you are using

 user-based access control,
 you may need to run the xauth
 command to copy your access code to the remote machine.

	You have to use the -display
 option in calling a remote shell,
 or the Can't
 Open display error will be
 returned. (Alternatively, you can have your
 DISPLAY
 environment variable hard-coded into your shell setup file (Section 3.3) on the remote machine, but this is a
 very bad idea.) See Section 35.8 for more
 information on setting your display.

	Be careful not to use unix:0.0
 or :0.0 as the display name!
 Otherwise, the client will display the window on the local display
 of the remote host. If this succeeds, the user on that display could
 either become very annoyed or take advantage of the sudden access to
 your account by reading personal files and sending nasty mail to
 your boss. You would have no warning; all you would know is that
 your window didn’t appear. So, before running
 another client, you may want to log in to
 the remote system and do a ps
 to ensure that
 you’re not already running the application on the remote
 display.

ssh
 expects slightly different files than does
 rsh, although the server may be
 configured to allow the use of both .rhosts and .shosts
 , as well as the system-level /etc/hosts.equiv and /etc/ssh/shosts.equiv files. Many
 administrators have wisely chosen to avoid rsh and related commands altogether, even to the point of
 disallowing fallback to rsh from a
 ssh login attempt. More information
 about the peculiarities of ssh may be
 found in Chapter 51.

—LM, EP, JP, and SJC

[1] The keycode numbers may vary from system to system, depending on how
 your key mappings are configured. For example, under a Debian 2.2
 install running inside VirtualPC on a Powerbook G3, DELETE is keycode
 107, whereas under OroborusX on the same machine, the same keypress
 produces keycode 59, the BACKSPACE character. On both systems, however,
 the hexadecimal keysym values for DELETE and BACKSPACE are the same:
 0xffff and 0xff08, respectively.

[2] Not to be confused with the extensive customization of window
 decorations and the like now possible with window managers such as
 Enlightenment, Afterstep, FVWM, or Sawfish. If you have a difficult time
 visualizing what is affected by these resource assignments apart from
 the fancy decoration around the windows themselves, try killing your
 window manager and viewing just the X clients themselves, in all of
 their sparse glory.

[3] Remember, in X the client server model is the inverse of what you may
 be used to; the server is local, and displays clients that may be
 running remotely.

[4] While this is often okay for applications such as xterm that have not been modified much
 since the early nineties, app-defaults files can be more trouble than
 they’re worth in a rapid application development environment, as they
 can quickly get out of sync with changes in the application itself from
 one version to the next.

[5] For more information on events and translations, see O’Reilly &
 Associates’ X Window System Guide, Volume
 4.

[6] Actually, if there is no text to select, motion is recorded as
 a series of MotionNotify events.

[7] They are actually slightly simplified versions of default
 translations. Before you can understand the actual translations listed
 in the xterm manual page, you must
 learn more about the syntax of translations. We cover the basics here;
 for more information, see O’Reilly & Associates’ X Window
 System Guide, Volume 3M, Appendix F.

[8] As we’ll see, in certain cases you may be able to supply an
 alternative argument (such as a selection name) to
 an action. These changes are interpreted by the
 resource manager.

[9] The class name of xterm starts with
 two uppercase letters; this is contrary to the
 naming scheme followed by most other application classes.

[10] Most of the recent distributions of Unix default to the use of
 ssh as a secure replacement
 for the various r* command, (rsh, rcp, rlogin, et al.), so you may
 want to skip ahead to Chapter
 5.

[11] The security-conscious may prefer to use the fully qualified
 domain name on the xhost command
 line (such as xhost
 +ruby.oreilly.com).

Part III. Working with Files and Directories

Part III contains the following
 chapters:
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15

Chapter 7. Directory Organization

What? Me, Organized?

Computers and offices have one thing in common:
 you lose things in them. If you walk into my office, you’ll see stacks of paper
 on top of other stacks of paper, with a few magazines and business cards in the
 mix. I can often find things, but I’d be lying if I said that I could
 always find that article I was reading the other
 day!
When you look at a new computer user’s home
 directory (Section
 31.11) , you often see something similar to my office. You see a huge
 number of unrelated files with obscure names. He hasn’t created any
 subdirectories, aside from those the system administrator told him they needed;
 and those probably aren’t even being used. His home directory probably contains
 programs for several different projects, personal mail, notes from meetings, a
 few data files, some half-finished documentation, a spreadsheet for something he
 started last month but has now forgotten, and so on.
Remember that a computer’s filesystem isn’t that much different from any other
 filing system. If you threw all of your papers into one giant filing cabinet
 without sorting them into different topics and subtopics, the filing cabinet
 wouldn’t do you much good at all: it would just be a mess. On a computer, the
 solution to this problem is to sort your files into directories, which are analogous to the filing cabinets and
 drawers.
The Unix filesystem can help you keep all
 of your material neatly sorted. Your directories are like filing cabinets, with
 dividers and folders inside them. In this chapter, we’ll give some hints for
 organizing your computer “office.” Of course, things occasionally get misplaced
 even in the most efficient offices. Later we’ll show some scripts that use the
 find (Section 8.3) and grep (Section 9.21) commands to help you find
 files that are misplaced.
— ML

Many Homes

Various
 operating systems store users’ home directories in many places, and you’ve
 probably already noticed evidence of this throughout this book. Home directories
 may be in /home/
 username, /u/
 username, /Users/
 username, or some other, more esoteric
 location.
The simplest way to find out where your system believes your home directory to
 be is to take advantage of the fact that cd
 with no arguments changes to your home directory:
% cd
% pwd
/home/users/deb
Generally, the $HOME

 environment
 variable will point to your home directory:
% echo $HOME
/home/users/deb
Most shells also expand tilde (~
) to a user’s home directory as well, so
 ~/archive on my machine becomes
 /home/users/deb/archive and ~joel/tmp expands to /home/users/joel/tmp.
Your home directory is set in your /etc/passwd entry (or equivalent — Netinfo on Darwin and NIS on
 Solaris store the same information, for example). There is no actual requirement
 that all users’ home directories be in the same directory. In fact, I’ve seen
 systems that have lots of users organize home directories by the first few
 letters of the username (so my home directory there was /home/d/de/deb).
If you add user accounts using a tool rather than by using vipw and adding them by hand, take a peek at the
 documentation for your tool. It should tell you both where it wants to put home
 directories by default and how to change that default should you want to.
— DJPH

Access to Directories

Unix uses the
 same mode bits (
 Section 50.2) for directories as for
 files, but they are interpreted differently. This interpretation will make sense
 if you remember that a directory is nothing more than a list of files. Creating
 a file, renaming a file, or deleting a file from a directory requires changing
 this list: therefore, you need write access to the directory to
 create or delete a file. Modifying a file’s contents does not require you to
 change the directory; therefore, you can modify files even if you don’t have
 write access to the directory (provided that you have write access to the
 file).
Reading a directory is relatively
 straightforward: you need read access to list the contents of a directory (find
 out what files it contains, etc.). If you don’t have read access, you can’t list
 the contents of the directory. However (surprise!), you may still be able to
 access files in the directory, provided that you already know their
 names.
Execute access for a directory has no
 meaning per se, so the designers of Unix have reassigned this. It is called the
 search bit. Search access is needed to
 perform any operation within a directory and its subdirectories. In other words,
 if you deny execute access to a directory, you are effectively denying access to
 the directory and everything beneath it in the directory tree. Note that
 providing search access to a directory without read access prevents people from
 listing the directory, but allows them to access files if they know their names.
 This is particularly useful in situations where you want to allow public access
 to areas, but only to people who know exactly what files to access; files
 available via a web server are a good example.
The SUID bit (Section 50.4) is meaningless for
 directories, but the
 SGID bit set on a directory affects
 group ownership of files created in that directory, and the sticky bit prohibits
 users with write access to the directory from deleting or renaming files that
 they don’t own.
The exception is, of course, that the superuser can do absolutely anything at
 any time.
— ML

A bin Directory for Your Programs and Scripts

 If you compile programs or write shell
 scripts, it’s good to put them in one directory. This can be a subdirectory of
 your home directory. Or, if several people want to use these programs, you could
 pick any other directory — as long as you have write access to it. Usually, the
 directory’s name is something like bin —
 though I name mine .bin (with a leading
 dot) to keep it from cluttering my ls
 listings.
For instance, to make a bin under your
 home directory, type:
% cd
% mkdir bin
Once you have a directory for storing programs, be sure that the shell can
 find the programs in it. Type the command echo
 $PATH

 and look for the directory’s
 pathname. For instance, if your directory is called /u/walt/bin, you should see:
% echo $PATH
...:/u/walt/bin:...
If the directory isn’t in your PATH, add
 it in your .profile or .cshrc.
If other people are using your bin
 directory, use a command like chmod go+rx
 bin
 to give them access. If you’re
 concerned about security, prevent
 unauthorized users from adding, removing, or renaming files in your directory by
 making sure that only you have write access; you can do this with a command like
 chmod go-w bin
 . Also be sure that individual files
 can’t be edited by people who shouldn’t have access to the files.
When you add a new program to your bin
 directory, if you use the

 C
 shell or a C-shell derivative, you need to use the shell’s rehash command to update its command search
 path.
— JP

Private (Personal) Directories

 You might want to create a private
 directory for your personal files: love letters, financial data, complaints
 about your boss, off-color jokes, or whatever you want to keep there. While you
 can set any directory you own to be private, having one in your home directory
 is convenient to organize all of your private directories together. For
 simplicity, you can just name it private;
 giving it a less obvious name, however, can make it more difficult for prying
 eyes to discover.
Once you’ve
 created a private directory, you should set its file
 access mode (

 Section 50.2) to 700; this means that you’re the only person
 allowed to read, write, or even list the files that are in the directory. Here’s
 how:
% mkdir private
% chmod 700 private
On any Unix system, anyone who knows the root password can become superuser (
 Section 49.9) and read any files he
 wants. So a private personal directory doesn’t give you complete protection by
 any means — especially on systems where most users know the root password. If
 you really need security, you can always encrypt your files.
—ML and DJPH

Naming Files

 Let’s
 think about a filing cabinet again. If the files in your filing cabinet were
 called letter1, letter2, letter3, and so
 on, you’d never be able to find anything — the names aren’t descriptive enough.
 The same is true on your computer — you should come up with a descriptive name
 for each file that you create. Unix systems let you have very long filenames. A
 few older systems have a 14-character limit, but most allow names that are 256
 characters long — hopefully, longer than you will ever need.
Generally, a descriptive filename summarizes the contents with a few useful
 words. letter is not a terribly useful
 summary, unless perhaps you’ve only ever written one letter and don’t expect to
 write another. The recipient’s name (JohnShmoe, for example) would only be a useful summary if you
 expect to send only one letter to that person. Even if you only plan to send one
 letter, the name doesn’t tell you anything about what you sent Mr. Shmoe.
OctoberGoldPriceTrends is a pretty good
 summary; it’s obvious what the contents of that file are, though you might want
 to know to which year it referred, looking back two years from now. I often
 start time-specific files with the date, so that ls sorts the files in date order. If you do this, I recommend a
 YYYYMMDD format to get proper sorting,
 so files look like 20021004-GoldPrices. If
 you’re going to have regular updates to something, you might want to make a
 directory to hold those things (e.g., GoldPrices/20021004, GoldPrices/20021108, GoldPrices/20021206, and so forth). Note that in this specific
 example, a filename of nothing but a date makes sense, because you don’t have
 anything else in that directory but information on gold prices.
Bruce Barnett has suggested that, by using long filenames, you can create a
 simple “relational database.” For example, you could find out everything you’ve
 recorded about the price of gold with a command like more *Gold*Price*. Of course, if this starts to get very
 complex, using an actual database is much simpler.
Similarly, if you’re a programmer, the name of each file in your program
 should describe what the code does. If the code diagonalizes matrices, the file
 should be called something like MatrixDiagonalizer.cpp. If the code reads input from bank
 tellers, it should be called something like teller_input.c. Some programming languages even enforce this by
 requiring a particular file-naming convention; Java requires files to have only
 one object per file, and the name of the file and the object within it must be
 the same. (Of course, if your object names aren’t very good, you’re right back
 where you started.)
— DJPH

Make More Directories!

Creating
 many directories has several advantages:
	First, it is easier to find any particular file if your home directory
 is well sorted. Imagine a rack of filing cabinets that isn’t sorted;
 people just insert files wherever they fit. You may as well throw your
 data out; when you need something, you’ll never be able to find
 it.

	Second, Unix can access files much faster when directories are
 relatively small. Ideally, directories should have at most 60 files in
 them.

	Third, directories are an important part of Unix file protections. By
 setting the permissions on the directories themselves, you can use
 directories to help protect certain groups of files against access by
 others.

Create new directories liberally! Make a new directory for every new project
 you start; make subdirectories within these directories for subtopics. Your home
 directory should ideally contain nothing but
 subdirectories. Following are some recommended conventions.
If you’re a programmer, create a new directory for each project. In the
 project directory, create a directory called src for source files, a directory called doc or man
 for documentation, a directory called obj
 for object files, a directory called rel
 for the current working version (or almost-working version) of the program, a
 directory called test for test files and
 results, and so on. If the program is large, your src and obj directories
 should also be split into different subdirectories, each containing different
 parts of the project (or perhaps the subdirectory for each part of the project
 should have its own src and obj directories).
Many users save all of their mail in one directory
 (often called Mail or Maildir, depending on your mail system), which is
 then divided into subdirectories by topic. I use a variation of this scheme; I
 keep general mail in my Mail directory, but
 I save correspondence about particular projects with the project itself. For
 example, my Power Tools mail is shelved with the source code for this
 article.
— ML

Making Directories Made Easier

Earlier we
 told you that you should have lots of directories. Experienced Unix users are
 creating new directories all the time. How do you make a directory?
It’s easy. Use the mkdir
 command, followed by the name of your new
 directory:
% mkdir
 directory
This creates the new directory you want. It doesn’t necessarily have to be in
 your current directory. For example:
% cd /home/los/mikel
% mkdir /src/books/power/articles/files
The only requirements are:
	The parent of the directory you want to create must exist (in this
 case, /src/books/power/articles).

	You must have write access to the parent directory.

What if the parent
 directory doesn’t already exist? Assume, for example, that /src/books already exists, but the power and articles directories do not. You can make these “by hand,” or on
 many Unix systems you can add the -p

 (parents) option:
% mkdir -p /src/books/power/articles/files
This tells mkdir to create all the
 intermediate directories that are needed. So the previous command creates three
 directories:
/src/books/power
/src/books/power/articles
/src/books/power/articles/files
If your mkdir doesn’t have -p, you can use history
 substitution

 :
% mkdir /src/books/power
% !!/articles
mkdir /src/books/power/articles
% !!/files
mkdir /src/books/power/articles/files
On some mkdirs, you can also supply the file protection
 mode to be assigned to the directory. (By default, the

 file
 protection mode is derived from your umask.) To do so, use the -m option. For example:
% mkdir -m 755 /src/books/power/articles/files
This creates the directory with access mode 755, which allows the owner to do
 anything with the directory. Note that this must be a
 numeric mode.
— ML

Chapter 8. Directories and Files

Everything but the find Command

 A computer isn’t that much different from a
 house or an office; unless you’re incredibly orderly, you spend a lot of time
 looking for things that you’ve misplaced. Even if you are incredibly orderly,
 you still spend some time looking for things you need — you just have a better
 idea of where to find them. After all, librarians don’t memorize the location of
 every book in the stacks, but they do know how to find any book, quickly and
 efficiently, using whatever tools are available. A key to becoming a proficient
 user of any system, then, is knowing how to find things.
This chapter is about how to find things. We’re excluding the find (Section
 9.1) utility itself because it’s complicated and deserves a chapter
 of its own. We’ll concentrate on simpler ways to find files, beginning with some
 different ways to use ls.
Well, okay, towards the end of the chapter we’ll touch on a few simple uses of
 find, but to really get into find, take a peek at Chapter 9.
— ML

The Three Unix File Times

 When you’re talking to experienced
 Unix users, you often hear the terms "
 change time” and “modification time” thrown
 around casually. To most people (and most dictionaries), “change” and
 “modification” are the same thing. What’s the difference here?
The difference between a change and a modification is the difference between
 altering the label on a package and altering its contents. If someone says
 chmod a-w myfile, that is a change; if someone says
 echo foo >> myfile, that is a modification. A
 change modifies the file’s inode; a modification modifies the contents of the
 file itself. A file’s modification time is also called the
 timestamp
 .
As long as we’re talking about change times
 and modification times, we might as
 well mention “access times,” too. The access time is the last time the file was
 read or written. So reading a
 file updates its access time, but not its change time (information about the
 file wasn’t changed) or its modification time (the file itself wasn’t
 changed).
Incidentally, the change time or “ctime”
 is incorrectly documented as the “creation time” in many places, including some
 Unix manuals. Do not believe them.
— CT

Finding Oldest or Newest Files with ls -t and ls -u

Your

 directory might have 50, 100, or more files.
 Which files haven’t been used for a while? You might save space by removing
 them. You read or edited a file yesterday, but you can’t remember its name?
 These commands will help you find it. (If you want a quick review of Unix file
 times, see Section 8.2.)
In this example, I’ll show you my bin (Section 7.4) directory full of shell
 scripts and other programs — I want to see which programs I don’t use very
 often. You can use the same technique for directories with text or other
 files.
The
 ls command has options to change the way
 it orders files. By default, ls lists files
 alphabetically. For finding old files, use the -t

 option. This sorts files by their
 modification time, or the last time the file was
 changed. The newest files are listed first. Here’s what happens:
jerry@ora ~/.bin
60 % ls -t
weather unshar scandrafts rn2mh recomp
crontab zloop tofrom rmmer mhprofile
rhyes showpr incc mhadd append
rhno rfl drmm fixsubj README
pickthis maillog reheader distprompter rtfm
cgrep c-w zrefile xmhprint saveart
dirtop cw zscan replf echoerr
which cx zfolders fols
tcx showmult alifile incs
I just added a shell script named weather yesterday; you
 can see it as the first file in the first column. I also made a change to my
 script named crontab last week; it’s shown next. The oldest
 program in here is echoerr; it’s listed
 last.[1]
ls -t is also great for file-time comparisons in a script (Section 8.15). ls -t is quite useful when I’ve
 forgotten whether I’ve edited a file recently. If I’ve changed a file, it will
 be at or near the top of the ls -t listing. For example, I
 might ask, “Have I made the changes to that letter I was going to send?” If I
 haven’t made the changes (but only think I have), my letter will most likely
 appear somewhere in the middle of the listing.
The -u

 option shows the files’ last-access time
 instead of the last-modification time. The -u option doesn’t do
 anything with plain ls — you have to use it
 with another option like -t or -l. The next
 listing shows that I’ve recently used the rtfm and rmmer files. I
 haven’t read README in a long time, though — oops:
jerry@ora ~/.bin
62 % ls -tu
rtfm cx drmm saveart fixsubj
rmmer c-w zscan scandrafts echoerr
rfl cw zrefile rhno dirtop
mhprofile distprompter xmhprint rhyes cgrep
showmult recomp zloop replf append
tcx crontab zfolders reheader alifile
tofrom mhadd which incs README
rn2mh pickthis unshar maillog
weather incc showpr fols
(Some Unixes don’t update the last-access time of executable files when
 you run them. Shell scripts are always read, so their last-access times will always be
 updated.)
The -c

 option shows when the file’s inode
 information was last changed. The inode time tells when the file was created,
 when you used chmod to change the
 permissions, and so on.
jerry@ora ~/.bin
64 % ls -tc
weather maillog reheader recomp incs
crontab tcx rn2mh fols cx
cgrep zscan tofrom rmmer cw
zloop zrefile mhadd fixsubj c-w
dirtop rfl drmm mhprofile echoerr
pickthis showmult alifile append which
rhno rtfm showpr saveart README
unshar incc scandrafts distprompter
rhyes zfolders xmhprint replf
If you’re wondering just how long ago a file was modified (or accessed), add
 the -l

 option for
 a long listing. As before, adding -u shows the last-access
 time; -c shows inode change time. If I look at the access times
 of a few specific files, I find that I haven’t read README
 since 2001.
jerry@ora ~/.bin
65 % ls -ltu README alifile maillog
-rwxr-xr-x 1 jerry ora 59 Feb 2 2002 maillog
-rwxr-xr-x 1 jerry ora 213 Nov 29 2001 alifile
-rw-r--r-- 1 jerry ora 3654 Nov 27 2001 README
— JP

List All Subdirectories with ls -R

 By default, ls lists just one directory. If you name one or
 more directories on the command line, ls will
 list each one. The -R (uppercase R) option lists all
 subdirectories, recursively. That shows you the whole directory tree starting at
 the current directory (or the directories you name on the command line).
This list can get pretty long; you might want
 to pipe the output to a pager program such as less (
 Section 12.3). The ls
 -C

 option is a good idea, too, to list the
 output in columns. (When the ls output goes
 to a pipe, many versions of ls won’t make
 output in columns automatically.)
— JP

The ls -d Option

 If you give ls
 the pathname of a directory, ls lists the
 entries in the directory:
% ls -l /home/joanne
total 554
-rw-r--r-- 1 joanne 15329 Oct 5 14:33 catalog
-rw------- 1 joanne 58381 Oct 10 09:08 mail
 ...
With the -d option, ls
 lists the directory itself:
% ls -ld /home/joanne
drwxr-x--x 7 joanne 4608 Oct 10 10:13 /home/joanne
The -d option is especially handy when you’re trying to list
 the names of some directories that match a wildcard. Compare the listing with
 and without the -d option:
% ls -Fd [a-c]*
arc/ bm/ ctrl/
atcat.c cdecl/
atl.c.Z cleanscript.c
% ls -F [a-c]*
atcat.c atl.c.Z cleanscript.c

arc:
BugsEtc.Z arcadd.c arcext.c.Z arcmisc.c.Z
 ...
bm:
Execute.c.Z MakeDesc.c.Z MkDescVec.c.Z Search.c.Z
 ...
— JP

Color ls

The

 GNU ls
 command — which is on a lot of systems, including Linux — can
 display names in colors. For instance, when I enable color listings on my
 system, directory names are in dark blue, symbolic links are in sky blue,
 executable files (scripts, programs, etc.) are in green, and so on.
tcsh

 ’s
 built-in ls -F command can display in colors,
 too. Just set color in your .cshrc
 to
 enable it, and configure it using LS_COLORS
 as described later in this section. You may also want to look at Section 8.6.4 for another way to
 configure colors if - - color

 doesn’t seem to work.
Trying It

[image:] Go to http://examples.oreilly.com/upt3 for more information on: GNU
 ls
Has your system been set up for this? Simply try this command:
$ ls --color / /bin
If you don’t get an error (ls: no such option —
 color, or something similar), you should see colors. If you don’t
 get an error, but you also don’t get colors, try one of these commands, and
 see what you get:
$ ls --color=always / /bin | cat -v
^[[00m/:
^[[01;34mbin^[[00m
^[[01;34mboot^[[00m
 ...
^[[01;34mvar^[[00m

/bin:
^[[01;32march^[[00m
^[[01;36mawk^[[00m
^[[01;32mbasename^[[00m
 ...

$ ls --color=yes / /bin | cat -v
 ...same kind of output...
Those extra characters surrounding the filenames, such as ^[[01;34m
 and
 ^[[00m, are the escape sequences that
 (you hope) make the colors. (The cat -v
 (
 Section 12.4) command makes the
 sequences visible, if there are any to see.) The ^[
 is an ESC character; the next
 [starts a formatting code; the
 01
 code means “boldface”; the semicolon (;) is a code separator; the 34 means “blue”; and the m
 ends the escape sequence. ^[[00m is an escape sequence that resets the
 attributes to normal. If you see the escape sequences when you use cat -v, but you haven’t gotten any highlighting effects when
 you don’t use it, there’s probably some kind of mismatch between your
 termcap or terminfo entry (Section 5.2) (which should define the
 sequences) and the color database (see later in this section). If you don’t
 see the escape sequences at all, take a look at Section 8.6.4 for another way to
 configure color ls.

Configuring It

How are the colors set? Both
 GNU ls and tcsh’s ls -F use the LS_COLORS

 environment variable to decide how
 to format filenames. Here’s a sample (truncated and split onto three lines
 for printing):
$ echo $LS_COLORS
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:
bd=40;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:
.cmd=01;32:.exe=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:
 ...
The LS_COLORS value is a series of
 item
 =attribute
 values with a colon (:) between each pair. For instance, fi=00 means that files have the attribute
 (color) 00; di=01;34
 means that directories have the attributes 01 (bold)
 and 34 (blue); and *.exe=01;32 means that filenames ending with
 .exe have the attributes 01
 (bold) and 32 (green). There can be up to three
 numbers. The first is an attribute code (bold, underscore, etc.); the
 second is a foreground color;
 the third is a background color.
 So, 01;37;41 indicates boldfaced white
 foreground (37) text on a red background
 (41).
The format is fairly obtuse, so you won’t want to set
 LS_COLORS

 directly if you don’t have to. The
 easy way to set it is with the dircolors
 command — typically in a shell setup file
 (Section 3.3):
eval
 Section 27.8
 '...'
 Section 28.14
eval `dircolors`
There, dircolors is reading the default
 database and outputting a command to set LS_COLORS.
 What if you don’t want the default database settings? You can make your own.
 An easy place to start is with dircolors

 -p, which outputs a copy of the database. You can
 redirect the output to a file; a good option is to use a .dircolorsrc
 file in your home directory. Then take a look at it:
$ dircolors -p > $HOME/.dircolorsrc
$ cat $HOME/.dircolorsrc
 ...
Below should be one TERM entry for each colorizable termtype
TERM linux
 ...
TERM vt100

Below are the color init strings for the basic file types. A color
init string consists of one or more of the following numeric codes:
Attribute codes:
00=none 01=bold 04=underscore 05=blink 07=reverse 08=concealed
Text color codes:
30=black 31=red 32=green 33=yellow 34=blue 35=magenta 36=cyan 37=white
Background color codes:
40=black 41=red 42=green 43=yellow 44=blue 45=magenta 46=cyan 47=white
NORMAL 00 # global default, although everything should be something.
FILE 00 # normal file
DIR 01;34 # directory
LINK 01;36 # symbolic link
 ...

List any file extensions like '.gz' or '.tar' that you would like ls
to colorize below. Put the extension, a space, and the color init string.
(and any comments you want to add after a '#')
.tar 01;31 # archives or compressed (bright red)
.tgz 01;31
 ...
The file starts with a listing of terminal
 type (Section 5.3)
 names that understand the color escape sequences listed in this file.
 Fortunately, the escape sequences are almost universal; there are some old
 terminals (like my old Tektronix 4106, I think . . . R.I.P.) that don’t
 understand these, but not many. (If you have a different terminal or an odd
 terminal emulator, you can select a setup file
 automatically as you log in (Section 3.10).) The second section
 has a commented-out list of the attributes that these terminals recognize.
 You can use that list in the third section — which has standard attributes
 for files, directories, and so on. The fourth section lets you choose
 attributes for files by their filename “extensions” — that is, the part of
 the filename after the final dot (like .tar).
If you make your own database, you’ll need to use it (again, typically in
 a shell setup file) to set LS_COLORS:
eval `dircolors $HOME/.dircolorsrc`

The -- color Option

For better or for worse, the way to activate color ls is by using the --color option on the command line. Because almost no one
 will want to type those characters every time they run ls, most users need to make an alias (Section
 29.2, Section 29.4) for
 ls that runs ls --color. For example, here are the three aliases defined
 for bash on my Linux system:
alias l.='ls .[a-zA-Z]* --color=auto'
alias ll='ls -l --color=auto'
alias ls='ls --color=auto'
If you’re using tcsh, setting the
 color variable to enable ls -F’s color also arranges to send
 -- color=auto to regular ls.
The -- color option gives you three choices of when the
 ls output should be colored:
 -- color=never to never output color, --
 color=always to always output color, and --
 color=auto to only output color escape sequences if the
 standard output of ls is a terminal. I
 suggest using -- color=auto, because --
 color=always means that when you pipe the output of ls to a printer or redirect it to a file, it
 will still have the ugly escape sequences you saw earlier in this
 article.

Another color ls

Some systems have another way to configure and use color ls. My FreeBSD systems use this scheme; if
 none of the configuration techniques described earlier work, use
 ls -G

 or
 set the CLICOLOR environment variable. If
 this works, you’ll want to use the LSCOLORS

 environment variable to configure color information instead of LS_COLORS as described earlier. Spend a little
 time perusing your ls(1) manpage for
 further details if your ls seems to work
 this way, as configuring it is likely to be completely different from what
 we described previously.

—JP and DJPH

Some GNU ls Features

 A
 lot of the GNU utilities came
 from Unix utilities — but with extra features. The GNU
 ls command is no exception: as its info page (Section
 2.9) says, “Because ls is such a
 fundamental program, it has accumulated many options over the years.” Amen.
 Let’s look at three of the options that aren’t covered by other articles on
 ls.

 An Emacs editor backup
 file (Section 19.4) has
 a name ending in ~ (tilde). If you use Emacs
 a lot, these files can really clutter your directories. The ls -B option ignores Emacs backup
 files:
$ ls
bar.c bar.c~ baz.c baz.c~ foo.c foo.c~
$ ls -B
bar.c baz.c foo.c
The option
 -I (uppercase letter I) takes
 -B one step further: you can give a wildcard expression (shell wildcard
 pattern, not grep-like expressions) for
 entries not to list. (Remember that — because you want to
 pass the wildcard pattern to ls, and
 not let the shell expand it first — you need to
 quote (Section 27.12) the pattern.) For instance, to skip all filenames
 ending in .a and .o, use the wildcard
 pattern *.[ao], like this:
$ ls
bar.a bar.c bar.o baz.a baz.c baz.o foo.a foo.c foo.o
$ ls -I "*.[ao]"
bar.c baz.c foo.c
The “minimalist” side of me might argue that both -B and
 -I are feeping creatures because you can get basically the
 same effect by combining plain old ls with
 one of the “not this file” shell wildcard operators. This next option is in the
 same category. Instead of using -S to sort the files by size,
 you could pipe the output of plain ls
 -l to sort -n (Section 22.5) and sort on the size
 field, then strip off the information you didn’t want and . . . ahem. (Grumble,
 grumble.) Okay, -S really is pretty useful. ;-) I use it a lot when I’m cleaning out
 directories and want to find the most effective files to remove:
$ ls -lS
total 1724
-rw-rw-r-- 1 jerry ora 395927 Sep 9 06:21 SunTran_map.pdf
-rw------- 1 jerry ora 389120 Oct 31 09:55 core
-rw-r--r-- 1 jerry ora 178844 May 8 16:36 how
-rw------- 1 jerry ora 77122 Oct 29 08:46 dead.letter
 ...
— JP

A csh Alias to List Recently Changed Files

 Looking
 for a recently changed file? Not sure of the name?
 Trying to do this in a directory with lots of files? Try the lr alias:
alias lr "ls -lagFqt \!* | head"
This alias takes advantage of the -t option
 (Section 8.3) to ls, so that recent files can float to the top of
 the listing. !* is the csh syntax for “put all of the arguments to the
 alias here.” (We have to escape the exclamation point to keep it from being
 interpreted when we set the alias.) head (Section 12.12) shows just the first ten
 lines.
A simple lr in my home directory gives
 me:
bermuda:home/dansmith :-) lr
total 1616
-rw------- 1 dansmith staff 445092 Oct 7 20:11 .mush256
-rw-r--r-- 1 dansmith staff 1762 Oct 7 20:11 .history
drwxr-xr-x 30 dansmith staff 1024 Oct 7 12:59 text/
-rw------- 1 dansmith staff 201389 Oct 7 12:42 .record
drwxr-xr-x 31 dansmith staff 1024 Oct 4 09:41 src/
-rw-r--r-- 1 dansmith staff 4284 Oct 4 09:02 .mushrc
 ...
You can also give a wildcarded pattern to narrow the search. For example,
 here’s the command to show me the dot files that have changed lately:
bermuda:home/dansmith :-) lr .??*
-rw------- 1 dansmith staff 445092 Oct 7 20:11 .mush256
-rw-r--r-- 1 dansmith staff 1762 Oct 7 20:11 .history
-rw------- 1 dansmith staff 201389 Oct 7 12:42 .record
-rw-r--r-- 1 dansmith staff 4284 Oct 4 09:02 .mushrc
 ...
— DS

Showing Hidden Files with ls -A and -a

 The

 ls
 command
 normally ignores any files whose names begin with a dot (.). This is often very
 convenient: Unix has lots of small configuration files, scratch files, etc. that
 you really don’t care about and don’t want to be bothered about most of the
 time. However, there are some times when you care very much about these files.
 If you want to see “hidden” files, use the command ls -a.
 For example:
% cd
% ls
 Don't show hidden files
Mail mail.txt performance powertools
% ls -a
 This time, show me EVERYTHING
. .emacs Mail powertools
.. .login mail.txt
.cshrc .mailrc performance
With the -a option, we see four additional files: two C-shell
 initialization files, the customization files for the GNU Emacs editor, and
 mail. We also see two “special” entries,
 . and .., which represent the current directory and the parent of the
 current directory. All Unix directories contain these two
 entries (Section
 10.2).

 If you
 don’t want to be bothered with . and .., many versions of ls also have a -A option:
% ls -A
 Show me everything but . and ..
.cshrc .login Mail performance
.emacs .mailrc mail.txt powertools
— ML

Useful ls Aliases

 Because
 ls is one of the most commonly used Unix
 commands and provides numerous options, it’s a good idea to create aliases for
 the display formats that best suit your needs. For example, many users
 always want to know about their “hidden” files. That’s
 reasonable — they’re just as important as any other files you have. In some
 cases, they can grow to take up lots of room (for example, some editors hide
 backup files), so it’s worth being aware of them.
Rather than typing ls -a every time, you
 can create a convenient alias that supplies the -a or -A
 option (
 Section 8.9) automatically:
$ alias la="ls -aF"
% alias la ls -aF
or:
$ alias la="ls -AF"
% alias la ls -AF
Two things to note here. First, I recommend using la as the name of the alias, rather than just renaming ls. I personally think it’s dangerous to hide the
 pure, unadulterated command underneath an alias; it’s better to pick a new name
 and get used to using that name. If you ever need the original ls for some reason, you’ll be able to get at it
 without problems.

 Second, what’s with the -F
 option? I just threw it in to see if you were paying attention. It’s actually
 quite useful; many users add it to their ls
 aliases. The -F option shows you the type
 of
 file in each directory by printing an extra character after each filename. Table 8-1 lists what the extra character
 can be.
Table 8-1. Filename types listed by ls -F
	
 Character

 	
 Definition

	
 (nothing)

 	
 The file is a regular file.

	

 *

 	
 The file is an executable.

	

 /

 	
 The file is a directory.

	

 @

 	
 The file is a symbolic
 link
 Section 10.4).

	

 |

 	
 The file is a FIFO (named
 pipe)
 Section 43.11).

	

 =

 	
 The file is a socket.

For example:
% la
 Alias includes -F functionality
.cshrc .login Mail/ performance/
.emacs .mailrc mail.txt powertools@
This says that Mail and performance
 are directories. powertools is a symbolic link
 (ls -l will show you what it’s linked to). There are no
 executables, FIFOs, or sockets in this directory.
[If you use tcsh
 , it has a built-in ls called ls -F, which not
 only prints this extra information, but also supports color (Section 8.6) and
 caching of filesystem information for speed. I generally put alias ls
 ls -F in my .cshrc. —
 DH]
You may want this version instead:
$ alias la="ls -aFC"
% alias la ls -aFC
The -C

 option lists the files in multiple columns.
 This option isn’t needed with ls versions
 where multicolumn output is the normal behavior. Note, however, that when piped
 to another command, ls output is
 single-column unless -C is used. For example, use ls -C | less to preserve multiple columns with a
 paged listing.
Finally, if you often need the full listing,
 use the alias:
$ alias ll="ls -l"
% alias ll ls -l
This alias may not seem like much of a
 shortcut until after you’ve typed it a dozen times. In addition, it’s easy to
 remember as “long listing.” Some Unix systems even include ll as a regular command.
—DG and ML

Can’t Access a File? Look for Spaces in the Name

 What’s wrong here?
% ls
afile exefiles j toobig
% lpr afile
lpr: afile: No such file or directory
Huh? ls shows that the file is there,
 doesn’t it? Try using:
-v
 Section 12.4, -t
 -e
 Section 1125
% ls -l | cat -v -t -e
total 89$
-rw-rw-rw- 1 jerry 28 Mar 7 19:46 afile $
-rw-r--r-- 1 root 25179 Mar 4 20:34 exefiles$
-rw-rw-rw- 1 jerry 794 Mar 7 14:23 j$
-rw-r--r-- 1 root 100 Mar 5 18:24 toobig$
The cat -e

 option marks the ends of lines with a
 $. Notice that afile has a $ out past the end
 of the column. Aha . . . the filename ends with a space. Whitespace characters
 like TABs have the same problem, though the default
 ls -q (Section 8.12) option (on many Unix versions) shows them as ? if you’re using a terminal.
If you have the GNU

 version of ls, try its -Q
 option to put double quotes around each name:
$ ls -Q
"afile " "exefiles" "j" "toobig"

 To
 rename afile, giving it a name without the space,
 type:
% mv "afile " afile
The quotes (Section 27.12) tell the shell to
 include the space as part of the first argument it passes to mv. The same quoting works for other Unix commands
 as well, such as rm.
— JP

Showing Nonprintable Characters in Filenames

 From time
 to time, you may get filenames with nonprinting characters, spaces, and other
 garbage in them. This is usually the result of some mistake — but it’s a pain
 nevertheless.
If you’re using a version of ls

 that uses -q by default (and
 most do these days), the ls command gives you
 some help; it converts all nonprinting characters to a question mark (?), giving you some idea that something funny is
 there.[2] For example:
% ls
ab??cd
This shows that there are two nonprinting characters between ab and cd. To

 delete (or rename) this file,
 you can use a wildcard pattern like ab??cd.
Warning
Be careful: when I was new to Unix, I once accidentally generated a lot of
 weird filenames. ls told me that they all
 began with ????, so I naively typed rm ????*. That’s when my troubles began. See
 Section 14.3 for the rest of
 the gruesome story. (I spent the next day and night trying to undo the
 damage.) The moral is: it’s always a good idea to use echo
 to test filenames with wildcards in
 them.

If you’re using an ls that came from

 System V Unix, you have a different set of
 problems. System V’s ls doesn’t convert the
 nonprinting characters to question marks. In fact, it doesn’t do anything at all
 — it just spits these weird characters at your terminal, which can respond in
 any number of strange and hostile ways. Most of the nonprinting characters
 have special meanings — ranging from “don’t take any more input” to “clear the
 screen.” [If you don’t have a System V ls,
 but you want this behavior for some reason, try GNU ls with its -N option. —
 JP]
To prevent this, or to see what’s actually
 there instead of just the question marks, use the -b

 option.[3] This tells ls to print the octal
 value of any nonprinting characters, preceeded by a backslash. For
 example:
% ls -b
ab\013\014cd
This shows that the nonprinting characters have octal values 13 and 14,
 respectively. If you look up these values in an ASCII table, you will see that
 they correspond to CTRL-k and CTRL-l. If you think about what’s happening —
 you’ll realize that CTRL-l is a formfeed character, which tells many terminals
 to clear the screen. That’s why the regular ls command behaved so strangely.
Once you know what you’re dealing with, you can use a wildcard pattern to
 delete or rename the file.
— ML

Counting Files by Types

 I use awk
 (Section 20.10) a lot. One of my
 favorite features of awk is its associative
 arrays. This means awk can use anything as an
 index into an array. In the next example, I use the output of the file (Section
 12.6) command as the index into an array to count how many files
 there are of each type:
xargs
 Section 28.17
#!/bin/sh
usage: count_types [directory ...]
Counts how many files there are of each type
Original by Bruce Barnett
Updated version by yu@math.duke.edu (Yunliang Yu)
find ${*-.} -type f -print | xargs file |
awk '{
 $1=NULL;
 t[$0]++;
}
END {
 for (i in t) printf("%d\t%s\n", t[i], i);
}' | sort -nr # Sort the result numerically, in reverse
The output of this might look like:
38 ascii text
32 English text
20 c program text
17 sparc executable not stripped
12 compressed data block compressed 16 bits
8 executable shell script
1 sparc demand paged dynamically linked executable
1 executable /bin/make script
— BB

Listing Files by Age and Size

 If you find a large directory and most of the
 files are new, that directory may not be suitable for removal, as it is still
 being used. Here is a script that lists a summary of file sizes, broken down
 into the time of
 last
 modification. You may remember that ls -l
 will list the month,
 day, hour, and minute if the file is less than six months old and show the
 month, day, and year if the file is more than six months old. Using this, the
 script creates a summary for each of the last six months, as well as a summary
 for each year for files older than that:
xargs
 Section 28.17
#!/bin/sh
usage: age_files [directory ...]
lists size of files by age
#
pick which version of ls you use
System V
#LS="ls -ls"
Berkeley
LS="ls -lsg"
#
find ${*:-.} -type f -print | xargs $LS | awk '
argument 7 is the month; argument 9 is either hh:mm or yyyy
test if argument is hh:mm or yyyy format
{
 if ($9 !~ /:/) {
 sz[$9]+=$1;
 } else {
 sz[$7]+=$1;
 }
}
END {
 for (i in sz) printf("%d\t%s\n", sz[i], i);
}' | sort -nr
The program might generate results like this:
5715 1991
3434 1992
2929 1989
1738 Dec
1495 1990
1227 Jan
1119 Nov
953 Oct
61 Aug
40 Sep
[For the book’s third edition, I thought about replacing this venerable
 ten-year-old script with one written in Perl. Perl, after all, lets you get at a
 file’s inode information directly from the script, without the ls -awk kludge.
 But I changed my mind because this technique — groveling through the output of
 ls -l with a
 “summarizing” filter script — is really handy sometimes. —
 JP]
— BB

newer: Print the Name of the Newest File

 Here’s a quick alias that figures
 out which file in a group is the newest:
-d
 Section 8.5
alias newer "ls -dt \!* | head -1"
If your system doesn’t have a head
 (

 Section 12.12) command, use
 sed 1q instead.
For example, let’s say that you have two files named
 plan.v1 and plan.v2. If you’re
 like me, you (often) edit the wrong version by mistake — and then, a few hours
 later, can’t remember what you did. You can use this alias to figure out which
 file you changed most recently:
% newer plan.v*
plan.v1
I could also have used command substitution
 (Section 28.14) to handle this in
 one step:
% emacs `newer plan.*`
— ML

oldlinks: Find Unconnected Symbolic Links

 One problem with symbolic links is that they’re
 relatively “fragile” (Section 10.6). The link and the file
 itself are different kinds of entities; the link only stores the name of the
 “real” file. Therefore, if you delete or rename the real file, you can be left
 with a “dead” or “old” link: a link that points to a file that doesn’t
 exist.
This causes no end of confusion, particularly for new users. For example,
 you’ll see things like this:
% ls -l nolink
lrwxrwxrwx 1 mikel users 12 Nov 2 13:57 nolink -> /u/joe/afile
% cat nolink
cat: nolink: No such file or directory
The file’s obviously there, but cat tells
 you that it doesn’t exist.
There’s no real solution to this problem,
 except to be careful. Try writing a script that checks links to see whether they
 exist. Here’s one such script from Tom Christiansen; it uses find
 to track down all links and then uses
 perl to print the names of links that
 point to nonexistent files. (If you’re a Perl hacker and you’ll be using this
 script often, you could replace the Unix find
 utility with the

 Perl File::Find module.)
#!/bin/sh
find . -type l -print | perl -nle '-e || print'
The script only lists “dead” links; it doesn’t try to delete them or do anything drastic. If you
 want to take some other action (such as deleting these links automatically), you
 can use the output of the script in backquotes
 (Section 28.14). For
 example:
% rm `oldlinks`
— ML

Picking a Unique Filename
 Automatically

 Shell scripts, aliases, and other programs often
 need temporary files to hold data to be used later. If the program will be run
 more than once, or if the temp file needs to stay around after the program is
 done, you need some way to make a unique filename. Generally these files are
 stored in /tmp or /usr/tmp.
One way is with the shell’s
 process ID number (Section 24.3), available in the
 $$ parameter. You might name a file /tmp/
 myprog$$; the shell will turn that into something
 like /tmp/
 myprog1234 or /tmp/
 myprog28471. If your program needs more than one
 temporary file, add an informative suffix to the
 names:
% errs=/tmp/
 myprog-errs$$
% output=/tmp/
 myprog-output$$

 You
 can also use date’s + option
 to get a representation of the date suitable for temporary filenames. For
 example, to output the Year, month,
 day, Hour,
 Minute, and
 Second:
% date
Wed Mar 6 17:04:39 MST 2002
% date +'%Y%m%d%H%M%S'
20020306170515
Use
 a + parameter and backquotes (
 ``) (Section 28.14) to get a temp file named for the current date and/or
 time. For instance, on May 31 the following command would store
 foo.0531 in the Bourne shell variable
 temp. On December 7, it would store
 foo.1207:
% temp=foo.`date +'%m%d'`
If
 you’ll be generating a lot of temporary files in close proximity, you can use
 both the process ID and the date/time:
% output=/tmp/
 myprog$$.`date +'%Y%m%d%H%M%S'`
% echo $output
/tmp/myprog25297.20020306170222
—JP
 and DJPH

[1] On some systems, ls -t will list the files in one
 column, with the newest file first. Although that’s usually a pain, I
 actually find that more convenient when I’m interested in the most
 recent files. If your system does that and you don’t like the
 single-column display, you can use ls -Ct. On other
 systems, if a single-column display would be handy, use ls
 -1t; the "1" option
 means “one column.” You can also use ls -lt, since
 long listings also list one file per line. Throughout this article,
 we’ll assume you’re using an ls
 version that makes multicolumn output.

[2] Even in lses that use it, the
 -q option is the default only when ls’s standard output is a terminal. If you
 pipe the output or redirect it to a file, remember to add
 -q.

[3] On systems that don’t support ls
 -b, pipe the ls -q output
 through cat -v or od -c
 (
 Section 12.4) to see what the
 nonprinting characters are.

Chapter 9. Finding Files with find

How to Use find

The utility find is one of the most useful and important of
 the Unix utilities. It finds files that match a given set of parameters, ranging
 from the file’s name to its modification date. In this chapter, we’ll be looking
 at many of the things it can do. As an introduction, here’s a quick summary of
 its features and basic operators:

% find
 path operators
where path is one or more directories in which
 find will begin to search and operators (or, in more customary jargon,
 options) tell find which files you’re interested in. The operators are as follows:
	-name
 filename
	Find files with the given filename.
 This is the most commonly used operator.
 filename may include wildcards, but
 if it does, they must be quoted to prevent the shell from
 interpreting the wildcards.

	-perm
 mode
	Find files with the given access mode. You must give the access
 mode in octal.

	-type
 c
	Find the files of the given type, specified by
 c. c is a
 one-letter code; for example, f
 for a plain file, b for a block
 special file, l for a symbolic
 link, and so forth.

	-user
 name
	Find files belonging to user name.
 name may also be a user ID
 number.

	-group
 name
	Find files belonging to group name.
 name may also be a group ID
 number.

	-size
 n
	Find files that are n blocks long. A
 block usually equals 512 bytes. The notation +
 n says “find files that are over
 n blocks long.” The notation
 n
 c says “find files that are
 n characters long.” Can you guess
 what +
 n
 c means?

	-inum
 n
	Find files with the inode number
 n.

	-atime
 n
	Find files that were accessed n days
 ago. +
 n means “find files that were accessed
 over n days ago” (i.e., not accessed in
 the last n days). -
 n means “find files that were accessed
 less than n days ago” (i.e., accessed in
 the last n days).

	-mtime
 n
	Similar to -atime, except
 that it checks the time the file’s contents were modified.

	-ctime
 n
	Similar to -atime, except
 that it checks the time the inode was last changed. “Changed” means
 that the file was modified or that one of its attributes (for
 example, its owner) was changed.

	-newer
 file
	Find files that have been modified more recently than
 file.

You might want to take some action on files that match several criteria. So we
 need some way to combine several operators:
	operator1
 -a
 operator2
	Find files that match both operator1
 and operator2. The -a isn’t strictly necessary; when two
 search parameters are provided, one after the other, find assumes you want files that
 match both conditions.

	operator1
 -o
 operator2
	Find files that match either operator1
 or operator2.

	!
 operator
	Find all files that do not match the given
 operator. The ! performs a logical NOT
 operation.

	\(
 expression \)
	Logical precedence; in a complex expression, evaluate this part of
 the expression before the rest.

Another group of operators tells find
 what action to take when it locates a file:
	-print
	Print the file’s name on standard output. On most modern finds, this is the default action if
 no action is given.

	-ls
	List the file’s name on standard output with a format like
 ls
 -l. (Not on older
 versions.)

	-exec
 command
	Execute command. To include the
 pathname of the file that’s just been found in
 command, use the special symbol
 {}.
 command must end with a backslash
 followed by a semicolon (\;). For
 example:
% find . -name "*.o" -exec rm -f {} \;
tells find to delete any
 files whose names end in .o.

	-ok
 command
	Same as -exec, except that
 find prompts you for
 permission before executing command. This
 is a useful way to test find
 commands.

A last word: find is one of the tools
 that vendors frequently fiddle with, adding (or deleting) a few operators that
 they like (or dislike). The GNU version, in particular, has many more. The
 operators listed here should be valid on virtually any system. If you check your
 manual page, you may find others.

— ML

Delving Through a Deep Directory Tree

The first, most obvious, use of
 this utility is find’s ability to locate
 old, big, or unused files whose locations you’ve forgotten. In particular,
 find’s most fundamentally important
 characteristic is its ability to travel down subdirectories.
Normally the shell provides the argument list to a
 command. That is, Unix programs are frequently given filenames and not directory
 names. Only a few programs can be given a directory name and march down the
 directory searching for subdirectories. The
 programs find, tar (Section 38.3),
 du, and diff do this. Some versions of chmod (Section 50.5),
 chgrp, ls, rm, and cp will, but only if a -r or -R option is
 specified.
In general, most commands do not understand directory structures and rely on
 the shell to expand wildcards to directory names. That is, to delete all files
 whose names end with a .o in a group of
 directories, you could type:
% rm *.o */*.o */*/*.o
Not only is this tedious to type, it may not find all of the files you are
 searching for. The shell has certain blind spots. It will not match files in
 directories whose names start with a dot. And, if any files match */*/*/*.o, they would not be deleted.
Another problem is typing the previous command and getting the error
 “Arguments too long.” This means the
 shell would expand too many arguments from the wildcards you typed.
find is the answer to these
 problems.
A simple example of find is using it to
 print the names of all the files in the directory and all subdirectories. This
 is done with the simple command:
% find . -print
The first arguments to find are directory
 and file pathnames — in the example, a dot (.) is one name for the current
 directory. The arguments after the pathnames always start with a minus sign
 (-) and tell find what to do once it finds a file; these are the search
 operators. In this case, the filename is printed.
You can use the tilde (~), as well as
 particular paths. For example:
% find ~ ~barnett /usr/local -print
And if you have a very slow day, you can type:
% find / -print
This command will list every file on the system. This is okay on single-user
 workstations with their own disks. However, it can tie up disks on multiuser
 systems enough to make users think of gruesome crimes! If you really need that
 list and your system has
 fast find
 or locate, try the command find '/*' or locate '
 *' instead.
find
 sends its output to standard output, so once
 you’ve “found” a list of filenames, you can pass them to other commands. One way
 to use this is with command substitution:

% ls -l `find . -print`
The find command is executed, and its
 output replaces the backquoted string. ls
 sees the output of find and doesn’t even
 know find was used.
An alternate method uses the xargs

 command. xargs and find work
 together beautifully. xargs executes its
 arguments as commands and reads standard input to specify arguments to that
 command. xargs knows the maximum number of
 arguments each command line can handle and does not exceed that limit. While the
 command:
% ls -ld `find / -print`
might generate an error when the command line is too large, the equivalent
 command using xargs will never generate
 that error:
% find / -print | xargs ls -ld
—BB and JP

Don’t Forget -print

“Why didn’t find find my file?” I
 wondered sometimes. “I know it’s there!”
More often than not, I’d forgotten to use -print. Without -print (or
 -ls, on versions of find that have it), find may not print any pathnames. For a long time, this quirk of
 find confused new users, so most modern
 versions of find will assume -print if you don’t supply an action; some will
 give you an error message instead. If you don’t get the output you expected from
 find, check to make sure that you
 specified the action you meant.
—JP and DJPH

Looking for Files with Particular Names

 You
 can look for particular files by using an expression with wildcards (Section
 28.3) as an argument to the -name operator. Because the shell also interprets wildcards, it
 is necessary to quote them so they are passed to find unchanged. Any kind of quoting can be used:
% find . -name *.o -print
% find . -name '*.o' -print
% find . -name "[a-zA-Z]*.o" -print
Any directory along the path to the file is not matched with the -name operator, merely the name at the end of the
 path. For example, the previous commands would not match the pathname ./subdir.o/afile — but they would match ./subdir.o and ./src/subdir/prog.o.
Section 9.27 shows a way to match
 directories in the middle of a path. Here’s a simpler “find file” alias that can
 come in very handy:
 alias ff "find . -name '*\!{*}*' -ls"
Give it a file or directory name; the alias will give a long listing of any
 file or directory names that contain the argument. For example:
% ff ch09
2796156 4 -rw-r--r-- 1 deb deb 628 Feb 2 10:41 ./oreilly/UPT/book/ch09.sgm
—BB and JP

Searching for Old Files

If you want to find a file that is seven days
 old, use the -mtime

 operator:
% find . -mtime 7 -print
An alternate way is to specify a range of times:
% find . -mtime +6 -mtime -8 -print
mtime is the last modified time of a
 file. If you want to look for files that have not been used, check the access
 time with the -atime argument. Here is a
 command to list all files that have not been read in 30 days or more:
% find . -type f -atime +30 -print
It is difficult to find directories that have not been accessed because the
 find command modifies the directory’s
 access time.
There is another time associated with each file, called the ctime, the inode change time. Access it with
 the -ctime operator. The ctime will have a more recent value if the owner,
 group, permission, or number of links has changed, while the file itself has
 not. If you want to search for files with a specific number of links, use the -links operator.
Section 8.2 has more information
 about these three times, and Section
 9.7 explains how find checks
 them.
— BB

Be an Expert on find Search Operators

find

 is admittedly tricky. Once you get a handle on its
 abilities, you’ll learn to appreciate its power. But before thinking about
 anything remotely tricky, let’s look at a simple find command:
% find . -name "*.c" -print
The . tells find to start its search in the current directory (.) and to
 search all subdirectories of the current directory. The -name "*.c" tells find to
 find files whose names end in .c. The
 -print operator tells find how to handle what it finds, i.e., print the
 names on standard output.
All find commands, no matter how
 complicated, are really just variations on this one. You can specify many
 different names, look for old files, and so on; no matter how complex, you’re
 really only specifying a starting point, some search parameters, and what to do
 with the files (or directories or links or . . .) you find.
The key to using find in a more
 sophisticated way is realizing that search parameters are really “logical
 expressions” that find evaluates. That is,
 find:
	Looks at every file, one at a time.

	Uses the information in the file’s inode to evaluate an expression
 given by the command-line operators.

	Takes the specified action (e.g., printing the file’s name) if the
 expression’s value is “true.”

So, -name "*.c" is really a logical
 expression that evaluates to true if the file’s name ends in .c.
Once you’ve gotten used to thinking this way, it’s easy to use the

 AND, OR, NOT, and grouping operators. So let’s
 think about a more complicated find
 command. Let’s look for files that end in .o
 or .tmp AND that are more than five days old,
 AND let’s print their pathnames. We want an expression that evaluates true for
 files whose names match either *.o OR
 *.tmp:
-name "*.o" -o -name "*.tmp"
If either condition is true, we want to check the access time. So we put the previous expression
 within parentheses (quoted with backslashes so the shell doesn’t treat the
 parentheses as subshell operators). We also add a -atime operator:
-atime +5 \(-name "*.o" -o -name "*.tmp" \)
The parentheses force find to evaluate
 what’s inside as a unit. The expression is true if “the access time is more than
 five days ago and \(either the name ends with .o or the name ends with .tmp
 \).” If you didn’t use parentheses, the expression would mean something
 different:
-atime +5 -name "*.o" -o -name "*.tmp" Wrong!
When find sees two operators next to each
 other with no -o between, that means AND. So
 the “wrong” expression is true if “either \(the access time is more than five
 days ago and the name ends with .o \) or the
 name ends with .tmp.” This incorrect
 expression would be true for any name ending with .tmp, no matter how recently the file was accessed — the -atime doesn’t apply. (There’s nothing really
 “wrong” or illegal in this second expression — except that it’s not what we
 want. find will accept the expression and
 do what we asked — it just won’t do what we want.)
The following command, which is what we want, lists files in the current
 directory and subdirectories that match our criteria:
% find . -atime +5 \(-name "*.o" -o -name "*.tmp" \) -print
What if we wanted to list all files that do not match
 these criteria? All we want is the logical inverse of this expression. The NOT
 operator is an exclamation point (!). Like
 the parentheses, in most shells we need to escape ! with a backslash to keep the shell from interpreting it before
 find can get to it. The ! operator applies to the expression on its right.
 Since we want it to apply to the entire expression, and not just the -atime operator, we’ll have to group everything
 from -atime to "*.tmp" within another set of parentheses:
% find . \! \(-atime +5 \(-name "*.o" -o -name "*.tmp" \) \) -print
For that matter, even -print is an
 expression; it always evaluates to true. So are -exec and -ok; they
 evaluate to true when the command they execute returns a zero status. (There are
 a few situations in which this can be used to good effect.)
But before you try anything too complicated, you need to realize one thing.
 find isn’t as sophisticated as you
 might like it to be. You can’t squeeze all the spaces out of expressions, as if
 it were a real programming language. You need spaces before and after operators
 like !, (,
), and {}, in addition to spaces before and after every other operator.
 Therefore, a command line like the following won’t work:
% find . \!\(-atime +5 \(-name "*.o" -o -name "*.tmp"\)\) -print
A true power user will realize that find
 is relying on the shell to separate the command line into meaningful chunks, or
 tokens. And the shell, in turn, is
 assuming that tokens are separated by spaces. When the shell gives find a chunk of characters like *.tmp)) (without the double quotes or backslashes
 — the shell took them away), find gets
 confused; it thinks you’re talking about a weird filename pattern that includes
 a couple of parentheses.
Once you start thinking about expressions, find’s syntax ceases to be obscure — in some ways, it’s even
 elegant. It certainly allows you to say what you need to say with reasonable
 efficiency.

—ML and JP

The Times That find Finds

 The times that go with the find operators -mtime

 , -atime, and -ctime often
 aren’t documented very well. The times are in days:
	A number with no sign, for example, 3 (as in -mtime 3 or
 -atime 3), means the 24-hour
 period that ended exactly 3 days ago (in other
 words, between 96 and 72 hours ago).

	A number with a minus sign (-) refers to the period
 since that 24-hour period. For example,
 -3 (as in -mtime -3) is any time between now and 3
 days ago (in other words, between 0 and 72 hours ago).

	Naturally, a number with a plus sign (+) refers to the period before that
 24-hour period. For example, +3 (as
 in -mtime +3) is any time more than
 3 days ago (in other words, more than 96 hours ago).

Got that? Then you should see that -atime
 -2 and -atime 1 are both
 true on files that have been accessed between 48 and 24 hours ago. (-atime -2 is also true on files accessed 24 hours
 ago or less.)
For more exact comparisons, use find -newer
 with touch
 Section 9.8).
— JP

Exact File-Time Comparisons

 One problem with find’s time operators (-atime and its brethren) is that they don’t allow very exact
 comparisons. They only allow you to specify time to within a day, and sometimes
 that’s just not good enough. You think that your system was corrupted at roughly
 4 p.m. yesterday (March 20); you want to find any files that were modified after
 that point, so you can inspect them. Obviously, you’d like something more
 precise than “give me all the files that were modified in the last 24
 hours.”
Some versions of touch

 , and other freely available commands like
 it, can create a file with an arbitrary timestamp. That is, you can use
 touch to make a file that’s backdated
 to any point in the past (or, for that matter, postdated to some point in the
 future). This feature, combined with find’s
 -newer operator, lets you make
 comparisons accurate to one minute or less.
For example, to create a file dated 4 p.m., March 20, give the command:
% touch -t 03201600 /tmp/4PMyesterday
Then to find the files created after this, give the command:
% find . -newer /tmp/4PMyesterday -print
What about “older” files? Older files are “not newer” files, and find has a convenient
 NOT operator (!) for just this purpose. So let’s say that you want to find files
 that were created between 10:46 a.m. on July 3, 1999 and 9:37 p.m. on June 4,
 2001. You could use the following commands:[1]
% touch -t 199907031046 /tmp/file1
% touch -t 200106042137 /tmp/file2
% find . -newer /tmp/file1 \! -newer /tmp/file2 -print
% rm /tmp/file[12]
— ML

Running Commands on What You Find

Often, when you find a file, you don’t just
 want to see its name; you want to do something, like grep (Section 13.2)
 for a text string. To do this, use the -exec

 operator. This allows you to specify a command that is executed upon each file
 that is found.
The syntax is peculiar and in many cases, it is simpler just to pipe the
 output of find to xargs (Section
 28.17). However, there are cases where -exec is just the thing, so let’s plunge in and explain its
 peculiarities.
The
 -exec operator allows you to execute
 any command, including another find
 command. If you consider that for a moment, you realize that find needs some way to distinguish the command
 it’s executing from its own arguments. The obvious choice is to use the same
 end-of-command character as the shell (the semicolon). But since the shell uses
 the semicolon itself, it is necessary to escape the character with a backslash
 or quotes.
Therefore, every -exec operator ends with
 the characters \;. There is one more special
 argument that find treats differently:
 {}
 . These
 two characters are used as the variable whose name is the file find found. Don’t bother rereading that last
 line: an example will clarify the usage. The following is a trivial case and
 uses the -exec operator with echo to mimic the -print operator:
% find . -exec echo {} \;
The C shell (
 Section 29.1) uses the characters
 { and }, but doesn’t change {}
 together, which is why it is not necessary to quote these characters. The
 semicolon must be quoted, however. Quotes can be
 used instead of a backslash:
% find . -exec echo {} ';'
as both will sneak the semicolon past the shell and get it to the find command. As I said before, find can even call find. If you wanted to list every symbolic
 link in every directory owned by a group staff under the current directory, you could execute:
% find `pwd` -type d -group staff -exec find {} -type l -print \;
To search for all files with group-write permission under the
 current directory and to remove the permission, you can use:
% find . -perm -20 -exec chmod g-w {} \;
or:
% find . -perm -20 -print | xargs chmod g-w

 The difference between -exec and xargs is subtle. The first one will execute the program once per
 file, while xargs can handle several files
 with each process. However, xargs may have
 problems with filenames that contain embedded spaces. (Versions of xargs
 that
 support the -0 option can avoid this
 problem; they expect NUL characters as delimiters instead of spaces,
 and find

 ’s -print0
 option generates output that way.)
Occasionally, people create a strange file
 that they can’t delete. This could be caused by accidentally creating a file
 with a space or some control character in the name. find and -exec can delete
 this file, while xargs could not. In this
 case, use
 ls -il to list the files and i-numbers, and
 use the -inum

 operator with -exec to delete the
 file:
% find . -inum 31246 -exec rm {} ';'
If you wish, you can use -ok
 , which does the same as -exec, except the program asks you to confirm the
 action first before executing the command. It is a good idea to be cautious when
 using find, because the program can make a
 mistake into a disaster. When in doubt, use echo as the command. Or send the output to a file, and examine
 the file before using it as input to xargs.
 This is how I discovered that find requires
 {} to stand alone in the arguments to
 -exec. I wanted to rename some files
 using -exec mv {} {}.orig, but find wouldn’t replace the {} in {}.orig.
 I learned that I have to write a shell script that I tell find to execute.
Note
GNU find
 will replace the {}
 in {}.orig for you. If you don’t have GNU find, a little Bourne shell while loop with redirected input can handle
 that too:
$ find ... -print |
> while read file
> do mv "$file" "$file.orig"
> done
find writes the filenames to its
 standard output. The while loop and its
 read command read the filenames from
 standard input then make them available as $file, one by one.

Section 9.12 and Section 9.27 have more examples of
 -exec.
— BB

Using
 -exec to Create Custom Tests

 Here’s something that will really make your
 head spin. Remember that -exec doesn’t
 necessarily evaluate to “true”; it only evaluates to true if the command it
 executes returns a zero exit status. You can use this to construct custom
 find tests.
Assume that you want to list files that are “beautiful.” You have written a
 program called beauty that returns zero if
 a file is beautiful and nonzero otherwise. (This program can be a shell script,
 a perl script, an executable from a C
 program, or anything you like.)
Here’s an example:
% find . -exec beauty {} \; -print
In this command, -exec is just another
 find operator. The only difference is
 that we care about its value; we’re not assuming that it will always be “true.”
 find executes the beauty command for every file. Then -exec evaluates to true when find is looking at a “beautiful” program, causing
 find to print the filename. (Excuse us,
 causing find to evaluate the -print. :-))
Of course, this ability is capable of infinite variation. If you’re interested
 in finding beautiful C code, you could use the command:
% find . -name "*.[ch]" -exec beauty {} \; -print
For performance reasons, it’s a good idea to put the -exec operator as close to the end as possible. This avoids
 starting processes unnecessarily; the -exec
 command will execute only when the previous operators evaluate to true.
—JP and ML

Custom -exec Tests Applied

My favorite reason to use find

 ’s -exec
 is for large recursive greps. Let’s say I
 want to search through a large directory with lots of subdirectories to find all
 of the .cc files that call the method
 GetRaw():
% find . -name *.cc -exec grep -n "GetRaw(" {} \; -print
58: string Database::GetRaw(const Name &owner) const {
67: string Database::GetRaw(const Name &owner,
./db/Database.cc
39: return new Object(owner, _database->GetRaw(owner));
51: string Object::GetRaw(const Property& property) const {
52: return _database->GetRaw(_owner, property);
86: Properties properties(_database->GetRaw(owner));
103: return _database->GetRaw(_owner);
./db/Object.cc
71: return new DatabaseObject(owner, GetDatabase().GetRaw(owner));
89: return Sexp::Parse(GetRaw(property));
92: SexpPtr parent = Sexp::Parse(GetRaw("_parent"))->Eval(this);
./tlisp/Object.cc
This output is from a real source
 directory for an open source project I’m working on; it shows me each line that
 matched my grep along with its line number,
 followed by the name of the file where those lines were found. Most versions of
 grep can search recursively (using
 -R), but they search all files; you need find to grep
 through only certain files in a large directory tree.
—JP and DJPH

Finding Many Things with One Command

Running find is fairly time consuming, and for good reason: it has to
 read every inode in the directory tree that it’s searching. Therefore, combine
 as many things as you can into a single find command. If you’re going to walk the entire tree, you may
 as well accomplish as much as possible in the process.
Let’s work from an example. Assume that you want
 to write a command (eventually for inclusion in a Chapter 27 shell script) that sets file-access modes correctly. You
 want to give 771 access to all directories, 600 access for all backup files
 (*.BAK), 755 access for all shell
 scripts (*.sh), and 644 access for all text
 files (*.txt). You can do all this with one
 command:
$ find . \(-type d -a -exec chmod 771 {} \; \) -o \
 \(-name "*.BAK" -a -exec chmod 600 {} \; \) -o \
 \(-name "*.sh" -a -exec chmod 755 {} \; \) -o \
 \(-name "*.txt" -a -exec chmod 644 {} \; \)

 Why
 does this work? Remember that -exec is
 really just another part of the expression; it evaluates to true when the
 following command is successful. It isn’t an independent action that somehow
 applies to the whole find operation.
 Therefore, -exec can be mixed freely with
 -type, -name, and so on.
However, there’s another important trick here. Look at the first chunk of the
 command — the first statement, that is, between the first pair of \(and \). It
 says, “If this file is a directory and the chmod command executes successfully . . . " Wait. Why doesn’t
 the -exec execute a chmod on every file in the directory to see
 whether it’s successful?

 Logical
 expressions are evaluated from left to right; in any chunk of the expression,
 evaluation stops once it’s clear what the outcome is. Consider the logical
 expression “`A AND B’ is true.” If A is false, you know that the result of “`A
 AND B’ is true” will also be false — so there’s no need to look the rest of the
 statement, B.
So in the previous multilayered expression, when find is looking at a file, it checks whether the file is a
 directory. If it is, -type d is true, and
 find evaluates the -exec (changing the file’s mode). If the file is
 not a directory, find knows that the result
 of the entire statement will be false, so it doesn’t bother wasting time with
 the -exec. find goes on to the next chunk after the OR operator — because, logically, if one
 part of an OR expression isn’t true, the next part may be — so evaluation of an
 OR . . . OR . . . OR . . . expression has to continue until either one chunk is
 found to be true, or they’ve all been found to be false. In this case having the
 directory first is important, so that directories named, for example, blah.BAK don’t lose their execute
 permissions.
Of course, there’s no need for the -execs
 to run the same kind of command. Some could delete files, some could change
 modes, some could move them to another directory, and so on.
One final point. Although understanding our multilayered find expression was difficult, it really was no
 different from a “garden variety” command. Think about what the following
 command means:
% find . -name "*.c" -print
There are two operators: -name

 (which evaluates to true if the file’s name
 ends in .c) and -print
 (which is always true). The two operators are ANDed together; we could stick a
 -a between the two without changing the
 result at all. If -name evaluates to false
 (i.e., if the file’s name doesn’t end in .c), find knows that the entire expression will be
 false. So it doesn’t bother with -print.
 But if -name evaluates to true, find evaluates -print — which, as a side effect, prints the name.
As we said in Section 9.6, find’s business is evaluating expressions — not
 locating files. Yes, find certainly locates
 files; but that’s really just a side effect. For me, understanding this point
 was the conceptual breakthrough that made find much more useful.
— ML

Searching for Files by Type

 If you
 are only interested in files of a certain type, use the -type argument, followed by one of the characters in Table 9-1. Note, though that some
 versions of find don’t have all of
 these.
Table 9-1. find -type characters
	
 Character

 	
 Meaning

	

 b

 	
 Block special file (“device file”)

	

 c

 	
 Character special file (“device file”)

	

 d

 	
 Directory

	

 f

 	
 Plain file

	

 l

 	
 Symbolic link

	

 p

 	
 Named pipe file

	

 s

 	
 Socket

Unless you are a system administrator, the important types are directories,
 plain files, or symbolic links (i.e., types d, f, or
 l).
Using the -type operator, here is another
 way to list files recursively:
% find . -type f -print | xargs ls -l

 It can be difficult to keep track of all the
 symbolic links in a directory. The next command will find all the symbolic links
 in your home directory and print the files to which your symbolic links point.
 $NF gives the last field of each line,
 which holds the name to which a symlink points. If your find doesn’t have a -ls operator, pipe to xargs ls
 -l as previously.
% find $HOME -type l -ls | awk '{print $NF}'
— BB

Searching for Files by Size

find

 has several operators that take a decimal
 integer. One such argument is -size. The
 number after this argument is the size of the files in disk blocks.
 Unfortunately, this is a vague number. Earlier versions of Unix used disk blocks
 of 512 bytes. Newer versions allow larger block sizes, so a “block” of 512 bytes
 is misleading.

 This
 confusion is aggravated when the command ls
 -s is used. The -s option
 supposedly lists the size of the file in blocks. But if your system has a
 different block size than ls -s has been
 programmed to assume, it can give a misleading answer. You can put a c after the number and specify the size in bytes.
 To find a file with exactly 1,234 bytes (as in an ls
 -l listing), type:
% find . -size 1234c -print
To search for files using a range of file sizes, a minus or plus sign can be
 specified before the number. The minus sign (-) means less than, and the plus sign (+) means greater than. This next example lists all files that are
 greater than 10,000 bytes, but less than 32,000 bytes:
% find . -size +10000c -size -32000c -print
When more than one qualifier is given, both must be true.
— BB

Searching for Files by Permission

find

 can
 look for files with specific permissions. It uses an octal number for these
 permissions. If you aren’t comfortable with octal numbers and the way Unix uses
 them in file permissions, Section 1.17
 is good background reading.

 The string rw-rw-r-- indicates that you and members of your group have read
 and write permission, while the world has read-only privilege. The same
 permissions are expressed as an octal number as 664. To find all *.o files with these permissions, use the
 following:
% find . -name *.o -perm 664 -print
To see if you have any directories with write permission for everyone, use
 this:
% find . -type d -perm 777 -print
The previous examples only match an exact combination of permissions. If you
 wanted to find all directories with group write permission, you want to match
 the pattern ----w----. There are several
 combinations that can match. You could list each combination, but find allows you to specify a pattern that can be
 bitwise ANDed with the permissions of the file. Simply put a minus sign
 (-) before the octal value. The group
 write permission bit is octal 20, so the following negative value:
% find . -perm -20 -print
will match the following common permissions:
	
 Permission

 	
 Octal value

	

 rwxrwxrwx

 	
 777

	

 rwxrwxr-x

 	
 775

	

 rw-rw-rw-

 	
 666

	

 rw-rw-r--

 	
 664

	

 rw-rw----

 	
 660

If you wanted to look for files that the owner can execute (i.e., shell
 scripts or programs), you want to match the pattern --x------ by typing:
% find . -perm -100 -print
When the -perm argument has a minus sign,
 all of the permission bits are examined, including the set user ID, set group
 ID, and sticky bits.
— BB

Searching by Owner and Group

 Often you need to look for a file
 belonging to a certain user or group. This is done with the -user and -group search operators. You often need to combine this with a
 search for particular permissions. To find all files that are set user ID
 (setuid) root, use this:
% find . -user root -perm -4000 -print
To find all files that are set group ID (setgid) staff, use this:
% find . -group staff -perm -2000 -print
Instead of using a name or group from /etc/passwd or /etc/group,
 you can use the UID or GID number:
% find . -user 0 -perm -4000 -print
% find . -group 10 -perm -2000 -print
Often, when a user leaves a site, his account is deleted, but his files are
 still on the computer. Some versions of find have -nouser

 or -nogroup operators to find files with an unknown user or group
 ID.
— BB

Duplicating a Directory Tree

 In many versions of find, the operator {}

 , used with the -exec operator, only works when it’s separated from other
 arguments by whitespace. So, for example, the following command will
 not do what you thought it would:
% find . -type d -exec mkdir /usr/project/{} \;
You might have thought this command would make a duplicate set of (empty)
 directories, from the current directory and down, starting at the directory
 /usr/project. For instance, when the
 find command finds the directory
 ./adir, you would have it execute
 mkdir /usr/project/./adir (mkdir will ignore the dot; the result is
 /usr/project/adir).
That doesn’t work because those versions of find don’t recognize the {}
 in the pathname. The GNU version does expand {} in the middle of a string. On versions that
 don’t, though, the trick is to pass the directory names to sed

 , which substitutes in the leading
 pathname:
% find . -type d -print | sed 's@^@/usr/project/@' | xargs mkdir
% find . -type d -print | sed 's@^@mkdir @' | (cd /usr/project; sh)
Let’s start with the first example. Given a list of directory names, sed substitutes the desired path to that
 directory at the beginning of the line before passing the completed filenames to
 xargs and mkdir.
 An @ is used as a sed delimiter because slashes (/) are needed in the actual text of the substitution. If you
 don’t have xargs, try the second example.
 It uses sed to insert the mkdir command, then it changes to the target
 directory in a subshell where the mkdir
 commands will actually be executed.
— JP

Using “Fast find” Databases

 Berkeley added a handy feature to its find command — if you give it a single argument,
 it will search a database for file or directory names that match. For example,
 if you know there’s a file named MH.eps
 somewhere on the computer but you don’t know where, type the following:
% find MH.eps
/nutshell/graphics/cover/MH.eps
That syntax can be confusing to new users: you have to give find just one argument. With more arguments,
 find searches the filesystem directly.
 Maybe that’s one reason that GNU has a “fast find" utility named locate

 — and its find utility always searches, as described in the rest of this
 chapter. The GNU slocate

 command is a security-enhanced version of
 locate. In the rest of this article, I’ll
 describe locate — but find with a single argument (as shown previously)
 works about the same way.
The “fast find" database is usually rebuilt
 every night. So, it’s not completely up-to-date, but it’s usually close enough.
 If your system administrator has set this up, the database usually lists all
 files on the filesystem — although it may not list files in directories that
 don’t have world-access permission. If the database isn’t set up at all, you’ll
 get an error like /usr/lib/find/find.codes: No such
 file or
 directory. (If that’s the case, you can set
 up a “fast find" database yourself. Set up
 your own private locate database, or see
 Section 9.20.)
Unless you use wildcards, locate does a
 simple string search, like fgrep, through a
 list of absolute pathnames. Here’s an extreme example:
% locate bin
/bin
/bin/ar
 ...
/home/robin
/home/robin/afile
/home/sally/bin
 ...
You can cut down this output by piping it
 through grep, sed, and so on. But locate and
 “fast find" also can use wildcards to limit
 searches. Section 9.19 explains this
 in more detail.
locate has an advantage over the “fast
 find" command: you can have multiple file
 databases and you can search some or all of them. locate and slocate come with a
 database-building program.
Because locate is so fast, it’s worth trying to use whenever you can.
 Pipe the output to xargs
 and any other Unix command, or run a shell or
 Perl script to test its output — almost anything will be faster than running a
 standard find. For example, if you want a
 long listing of the files, here are two locate commands to do it:
% ls -l `locate whatever`
% locate whatever | xargs ls -ld
There’s one problem with that trick. The locate list may be built by root, which can
 see all the files on the filesystem; your ls
 -l
 command may not be able to access
 all files in the list. But slocate can be
 configured not to show you files you don’t have permission to see.
Note
The locate
 database may need to be updated on your
 machine before you can use locate, if
 it’s not already in the system’s normal cron scripts. Use locate.updatedb to do this, and consider having it run weekly
 or so if you’re going to use locate
 regularly.

— JP

Wildcards with “Fast find” Database

locate

 and all the “fast find" commands I’ve used can match shell wildcards (
 Section 1.13) (*

 , ?, []). If you use a wildcard
 on one end of the pattern, the search pattern is automatically “anchored” to the
 opposite end of the string (the end where the wildcard isn’t). The shell matches
 filenames in the same way.
The difference between the shell’s wildcard matching and locate
 matching is that the shell treats slashes
 (/
)
 in a special manner: you have to type them as part of the expression. In
 locate, a wildcard matches slashes and
 any other character. When you use a wildcard, be sure to put quotes around the
 pattern so the shell won’t touch it.
Here are some examples:
	To find any pathname that ends with bin:
% locate '*bin'
/bin
/home/robin
/home/robin/bin
 ...

	To find any pathname that ends with /bin (a good way to find a file or directory named
 exactly bin):
% locate '*/bin'
/bin
/home/robin/bin
/usr/bin
 ...

	Typing locate '*bin*' is the same
 as typing locate bin.

	To match the files in a directory named bin, but not the directory itself, try something like
 this:
% locate '*/bin/*'
/bin/ar
/bin/cat
 ...
/home/robin/bin/prog

	To find the files in /home whose
 names end with a tilde (~) (these are
 probably backup files from the Emacs editor):
% locate '/home/*~'
/home/testfile~
/home/allan/.cshrc~
/home/allan/.login~
/home/dave/.profile~
 ...
Notice that the locate asterisk
 matches dot files, unlike shell wildcards.

	The question mark (?) and square
 brackets ([]) operators work, too.
 They’re not quite as useful as they are in the shell because they match
 the slashes (/) in the pathnames.
 Here are a couple of quick examples:
% locate '????'
/bin
/etc
/lib
/src
/sys
/usr
% locate '/[bel]??'
/bin
/etc
/lib

— JP

Finding Files (Much) Faster with a find Database

 If you use find to
 search for files, you know that it can take a long time to work, especially when
 there are lots of directories to search. Here are some ideas for speeding up
 your finds.
Note
By design, setups like these that build a file database won’t have
 absolutely up-to-date information about all your files.

If your system has "
 fast
 find" or locate, that’s probably all you need. It lets you search a list
 of all pathnames on the system.
Even if you have “fast find" or locate, it still might not do what you need. For
 example, those utilities only search for pathnames. To find files by the owner’s
 name, the number of links, the size, and so on, you have to use “slow find.” In that case — or, when you don’t have
 “fast find" or locate — you may want to set up your own version.
slocate
 can build and update its own database
 (with its -u option), as well as search the
 database. The basic “fast find" has two
 parts. One part is a command, a shell script usually named updatedb

 or locate.updatedb, that builds a database of the files on your
 system — if your system has it, take a look to see a fancy way to build the
 database. The other part is the find or
 locate command itself — it searches the
 database for pathnames that match the name (regular expression) you type.
To make your own “fast find“:
	Pick a filename for the database. We’ll use $HOME/.fastfind (some systems use $LOGDIR instead of $HOME).

	Design the find command you want
 to use. The command to build a database of all the files in your home
 directory might look like this:
% cd
% find . -print | sed "s@^./@@" > .fastfind.new
% mv -f .fastfind.new .fastfind
That doesn’t update the database until the new one is finished. It
 also doesn’t compress the database. If you’re short on disk space, use
 this instead:
% cd
% find . -print | sed "s@^./@@" | gzip > .fastfind.gz
The script starts from your home directory, then uses sed (Section 13.9) to strip the start of the pathname (like
 ./) from every entry. (If you’re
 building a database of the whole filesystem, don’t do that part!) To
 save more space, you can compress with bzip2 instead; it’s slow, but it saved about 25% of the
 disk space for my database.

	Set up cron (Section 25.3) or at to run that find as often as you want — usually once a day, early in
 the morning morning, is fine.

	Finally, make a shell script (I call mine ffind) to search the database. If you use egrep (Section 13.4), you can search with flexible regular
 expressions:
egrep "$1" $HOME/.fastfind | sed "s@^@$HOME/@"
or, for a gzipped
 database:
gzcat $HOME/.fastfind.gz | egrep "$1" | sed "s@^@$HOME/@"
The sed expressions add your home
 directory’s pathname (like /usr/freddie) to each line.

To search the database, type:
% ffind somefile
/usr/freddie/lib/somefile
% ffind '/(sep|oct)[^/]*$'
/usr/freddie/misc/project/september
/usr/freddie/misc/project/october
You can do much more: I’ll get you started. If you have room to store more
 information than just pathnames, you can feed your find output to a command like ls
 -l. For example, if you do a lot of work with links, you might
 want to keep the files’ i-numbers as well as their names. You’d build your
 database with a command like this:
% cd
% find . -print | xargs ls -id > .fastfind.new
% mv -f .fastfind.new .fastfind
Or, if your version of find has the handy
 -ls operator, use the next script.
 Watch out for really large i-numbers; they might shift the columns and make
 cut give wrong output. The exact column
 numbers will depend on your system:
% cd
% find . -ls | cut -c1-7,67- > .fastfind.new
% mv -f .fastfind.new .fastfind
Then, your ffind script could search for
 files by i-number. For instance, if you had a file with i-number 1234 and you
 wanted to find all its links:
% ffind "^1234 "
The space at the end of that regular expression prevents matches with
 i-numbers like 12345. You could search by pathname in the same way. To get a bit
 fancier, you could make your ffind a little
 perl or awk script that searches your database by field. For instance,
 here’s how to make awk do the previous
 i-number search; the output is just the matching pathnames:
awk '$1 == 1234 {print $2}' $HOME/.fastfind
With some information about Unix shell programming and utilities like
 awk, the techniques in this article
 should let you build and search a sophisticated file database — and get
 information much faster than with plain old find.

— JP

grepping a Directory Tree

 Want to search every file, in some directory and
 all its subdirectories, to find the file that has a particular word or string in
 it? That’s a job for find and one of the
 grep commands.
For example, to search all the files for lines starting with a number and
 containing the words “SALE PRICE,” you could use:
% egrep '^[0-9].*SALE PRICE' `find . -type f -print`
./archive/ad.1290: 1.99 a special SALE PRICE
./archive/ad.0191: 2.49 a special SALE PRICE
Using the backquotes (``) might not work.
 If find finds too many files, egrep
 ’s command-line arguments can get too long.
 Using xargs
 can solve that; it splits long sets of
 arguments into smaller chunks. There’s a problem with that: if the last “chunk”
 has just one filename and the grep command
 finds a match there, grep won’t print the
 filename:
% find . -type f -print | xargs fgrep '$12.99'
./old_sales/ad.0489: Get it for only $12.99!
./old_sales/ad.0589: Last chance at $12.99, this month!
Get it for only $12.99 today.
The answer is to add the Unix "
 empty file,” /dev/null. It’s a filename that’s guaranteed never to match but
 always to leave fgrep
 with at least two filenames:
% find . -type f -print | xargs fgrep '$12.99' /dev/null
Then xargs will run commands like
 these:
fgrep '$12.99' /dev/null ./afile ./bfile ...
fgrep '$12.99' /dev/null ./archives/ad.0190 ./archives/ad.0290 ...
fgrep '$12.99' /dev/null ./old_sales/ad.1289
That trick is also good when you use a wildcard (Section
 28.3) and only one file might match it. grep won’t always print the file’s name unless you add /dev/null:
% grep "whatever" /dev/null /x/y/z/a*
— JP

lookfor: Which File Has That Word?

 The following simple shell script, lookfor, uses find to look
 for all files in the specified directory hierarchy that have been modified
 within a certain time, and it passes the resulting names to
 grep to scan for a particular pattern. For example, the
 command:
% lookfor /work -7 tamale enchilada
would search through the entire /work
 filesystem and print the names of all files modified within the past week that
 contain the words “tamale” or “enchilada.” (For example, if this article is
 stored in /work, lookfor should find it.)
The arguments to the script are the pathname of a directory hierarchy to
 search in ($1), a time ($2), and one or more text patterns (the other
 arguments). This simple but slow version will search for an (almost) unlimited
 number of words:
#!/bin/sh
temp=/tmp/lookfor$$
trap 'rm -f $temp; exit' 0 1 2 15
find $1 -mtime $2 -print > $temp
shift; shift
for word
do grep -i "$word" `cat $temp` /dev/null
done
That version runs grep
 once to search for each word. The -i option makes the search find either upper- or
 lowercase letters. Using /dev/null
 makes sure that grep will print the filename. Watch out, though: the list of
 filenames may get too long.
The next version is more limited but faster. It builds a

 regular expression for egrep that finds all the words in one pass through the files. If
 you use too many words, egrep will say
 Regular
 expression
 too
 long. Also, your egrep may not have a -i
 option; you can just omit it. This version also uses xargs; though xargs has its
 problems.
#!/bin/sh
where="$1"
when="$2"
shift; shift
Build egrep expression like (word1|word2|...) in $expr
for word
do
 case "$expr" in
 "") expr="($word" ;;
 *) expr="$expr|$word" ;;
 esac
done
expr="$expr)"

find $where -mtime $when -print | xargs egrep -i "$expr" /dev/null
—JP and TOR

Using Shell Arrays to Browse Directories

 Even
 a graphical file manager might not be enough to help you step through a
 complicated directory tree with multiple layers of subdirectories. Which
 directories have you visited so far, and which are left to go? This article
 shows a simple way, using shell arrays, to step through a tree
 directory-by-directory. The technique is also good for stepping through lists of
 files — or almost any collection of things, over a period of time — of which you
 don’t want to miss any. At the end are a couple of related tips on using
 arrays.
Using the Stored Lists

Let’s start with a quick overview of expanding array values; then we’ll
 look at specifics for each shell. A dollar sign ($) before the name of a shell variable gives you its value.
 In the C shells and zsh, that gives all
 members of an array. But, in the Korn shell and bash2, expanding an array value without the index gives just
 the first member. To pick out a particular member, put its number in square
 brackets after the name; in ksh and
 bash2, you also need to use curly
 braces ({}). A hash mark (#) gives the number of members. Finally, you
 can use range operators to choose several members of an array.
Here’s a practical example that you might use, interactively, at a shell
 prompt. You’re cleaning your home directory tree. You store all the
 directory names in an array named d. When
 you’ve cleaned one directory, you go to the next one. This way, you don’t
 miss any directories. (To keep this simple, I’ll show an example with just
 four directories.)
Note
If you don’t want to use shell commands to browse the directories, you
 could use a command to launch a graphical file browser on each directory
 in the array. For instance, make the nextdir alias launch Midnight Commander with mc $d[1].

Let’s start with the C shell:
% set d=(`find $home -type d -print`)
% echo $#d directories to search: $d
4 directories to search: /u/ann /u/ann/bin /u/ann/src /u/ann/lib
% alias nextdir 'shift d; cd $d[1]; pwd; ls -l'
% cd $d[1]
 ...clean up first directory...
% nextdir
/u/ann/bin
total 1940
lrwxrwxrwx 1 ann users 14 Feb 7 2002] -> /usr/ucb/reset
-r-xr-xr-x 1 ann users 1134 Aug 23 2001 addup
 ...clean up bin directory...
% nextdir
/u/ann/src
 ...do other directories, one by one...
% nextdir
d: Subscript out of range.
You store the array, list the number of directories, and show their names.
 You then create a nextdir alias that
 changes to the next directory to clean. First, use the
 C shell’s shift command; it “throws away” the first member of an array
 so that the second member becomes the first member, and so on. Next,
 nextdir
 changes the current directory to the
 next member of the array and lists it. (Note that members of a C shell array are indexed starting at 1 —
 unlike the C language, which the C shell emulates, where indexes start at 0.
 So the alias uses cd $d[1].) At the end
 of our example, when there’s not another array member to shift away, the command cd $d[1] fails; the rest of the nextdir alias isn’t executed.
Bourne-type
 shells have a different array syntax than the C shell. They don’t have a
 shift command for arrays, so we’ll
 use a variable named n to hold the array
 index. Instead of aliases, let’s use a
 more powerful shell function. We’ll show ksh

 and bash2 arrays, which are indexed starting at
 0. (By default, the first zsh
 array
 member is number 1.) The first command that follows, to store the array, is
 different in ksh and bash2 — but the rest of the example is the
 same on both shells.
bash2$ d=(`find $HOME -type d -print`)
ksh$ set -A d `find $HOME -type d -print`

$ echo ${#d[*]} directories to search: ${d[*]}
4 directories to search: /u/ann /u/ann/bin /u/ann/src /u/ann/lib
$ n=0
$ nextdir() {
> if [$((n += 1)) -lt ${#d[*]}]
> then cd ${d[$n]}; pwd; ls -l
> else echo no more directories
> fi
> }
$ cd ${d[0]}
 ...clean up first directory...
$ nextdir
/u/ann/bin
total 1940
lrwxrwxrwx 1 ann users 14 Feb 7 2002] -> /usr/ucb/reset
-r-xr-xr-x 1 ann users 1134 Aug 23 2001 addup
 ...do directories, as in C shell example...
$ nextdir
no more directories
If you aren’t a programmer, this may look intimidating — like something
 you’d never type interactively at a shell prompt. But this sort of thing
 starts to happen — without planning, on the spur of the moment — as you
 learn more about Unix and what the shell can do.

Expanding Ranges

We don’t use quite all the

 array-expanding operators in the
 previous examples, so here’s a quick overview of the rest. To expand a range
 of members in ksh
 and
 bash2, give the first and last indexes
 with a dash (-) between them. For
 instance, to expand the second, third, and fourth members of array arrname, use ${arrname[1-3]}. In zsh
 , use a comma (,) instead — and
 remember that the first zsh array
 member is number 1; so you’d use ${arrname[2-4]} in zsh.
 C shell wants $arrname[2-4]. If the last number of a range is omitted
 (like ${arrname[2-]} or $arrname[2-]), this gives you all members
 from 2 through the last.
Finally, in all shells except
 zsh, remember that expanded values
 are split into words at space characters. So if members of an array have
 spaces in their values, be careful to quote them. For instance, Unix
 directory names can have spaces in them — so we really should have used
 cd "$d[1]" in the newdir alias and cd
 "${d[$n]}" in the newdir
 function.[2] If we hadn’t done this, the cd command could have gotten multiple argument words. But it
 would only pay attention to the first argument, so it would probably
 fail.
To expand a range of members safely, such as ${foo[1-3]} in bash2 and
 ksh, you need ugly expressions
 without range operators, such as "${foo[1]}"
 "${foo[2]}" "${foo[3]}". The C shell has
 a :q
 string modifier that says
 “quote each word,” so in csh you can
 safely use $foo[1-3]:q. It’s hard to
 quote array values, though, if you don’t know ahead of time how many there
 are! So, using ${foo[*]} to give all
 members of the foo array suffers from
 word-splitting in ksh and bash2 (but not in zsh, by default). In ksh and bash2, though,
 you can use "${foo[@]}", which expands
 into a quoted list of the members; each member isn’t split into separate
 words. In csh, $foo[*]:q

 does the trick.

— JP

Finding the (Hard) Links to a File

 Here is how to find hard links, as well as a
 brief look at the Unix filesystem from the user’s viewpoint. Suppose you are
 given the following:
% ls -li /usr/bin/at
8041 -r-sr-xr-x 4 root wheel 19540 Apr 21 2001 /usr/bin/at*
In other words, there are four links, and /usr/bin/at is one of four names for inode 8041. You can find
 the full names of the other three links by using find. However, just knowing the inode number does not tell you
 everything. In particular, inode numbers are only unique to a given filesystem.
 If you do a find / -inum 8041 -print

 , you may find more than four files, if
 inode 8041 is also on another filesystem. So how do you tell which ones refer to
 the same file as /usr/bin/at?
The simplest way is to figure out the filesystem on which /usr/bin/at lives by using df:
% df /usr/bin/at
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1f 3360437 1644024 1447579 53% /usr
Then start your find at the top of that filesystem, and use -xdev
 to tell it not to search into other
 filesystems:
% find /usr -xdev -inum 8041 -print
/usr/bin/at
/usr/bin/atq
/usr/bin/atrm
/usr/bin/batch
Some manpages list -x as an alternative
 to -xdev; -xdev is generally more portable.
—DJPH and CT

Finding Files with -prune

find

 has
 lots of operators for finding some particular kinds of files. But find won’t stop at your current directory — if
 there are subdirectories, it looks there too. How can you tell it “only the
 current directory”? Use -prune.
Most finds also have a -maxdepth option that gives the maximum number of
 directory levels to descend. For example, find .
 -maxdepth 0 operates only on the current directory.
-prune cuts short find’s search at the current pathname. So, if the
 current pathname is a directory, find won’t
 descend into that directory for any further searches. The command line looks
 kind of hairy. Here’s one to find all files modified in the last 24 hours from
 the current directory:
% date
Tue Feb 12 19:09:35 MST 2002
% ls -l
total 0
drwxr-xr-x 1 deb deb 0 Feb 12 12:11 adir
-rw-r--r-- 1 deb deb 0 Feb 12 19:08 afile
-rw-r--r-- 1 deb deb 0 Jan 10 10:37 bfile
-rw-r--r-- 1 deb deb 0 Feb 11 22:43 cfile
% find . \(-type d ! -name . -prune \) -o \(-mtime -1 -print \)
./afile
./cfile
Let’s try to understand this command: once you see the pattern, you’ll
 understand some important things about find
 that many people don’t. Let’s follow find
 as it looks at a few pathnames.
find looks at each entry, one by one, in
 the current directory (.). For each entry, find tries to match the expression from left to right. As soon
 as some parenthesized part matches, it ignores the rest (if any) of the
 expression.[3]
When find is looking at the file named
 ./afile, the first part of the
 expression, (
 -type d ! -name . -prune), doesn’t match
 (./afile isn’t a directory). So
 find doesn’t prune. It tries the other
 part, after the -o (or):
Has ./afile been modified in the last
 day? In this (imaginary) case, it has — so the -print (which is always true) prints the pathname.
Next, ./bfile: like the previous step,
 the first part of the expression won’t match. In the second part, (-mtime -1 -print), the file’s modification
 time is more than one day ago. So the -mtime
 -1 part of the expression is false; find doesn’t bother with the -print operator.
Finally, let’s look at ./adir, a
 directory: the first part of the expression, (-type d
 ! -name . -prune), matches. That’s because ./adir is a directory (-type d), its name is not . (! -name
 .). So -prune, which is
 always true, makes this part of the expression true. find skips ./adir (because
 -prune prunes the search tree at the
 current pathname). Note that if we didn’t use ! -name
 ., then the current directory would match immediately and not be
 searched, and we wouldn’t find anything at all.
Section 9.27 shows handy aliases
 that use -prune.
— JP

Quick finds in the Current Directory

find -prune

 prunes find’s search tree at the current
 pathname. Here are a couple of aliases that use -prune to search for files in the current directory. The first
 one, named find. (with a dot on the end of
 its name, to remind you of ., the relative pathname for the current directory),
 simply prints names with -print. The second
 alias gives a listing like ls -gilds. You
 can add other find operators to the command
 lines to narrow your selection of files. The aliases work like this:
% find. -mtime -1
./afile
./cfile
% find.ls -mtime -1
43073 0 -r-------- 1 jerry ora 0 Mar 27 18:16 ./afile
43139 2 -r--r--r-- 1 jerry ora 1025 Mar 24 02:33 ./cfile
The find. alias is handy inside
 backquotes, feeding a pipe, and other places you need a list of filenames. The
 second one, find.ls, uses -ls instead of -print:
alias find. 'find . \(-type d ! -name . -prune \) -o \(\!* -print \)'
alias find.ls 'find . \(-type d ! -name . -prune \) -o \(\!* -ls \)'
If you don’t want the ./ at the start of
 each name, add a pipe through cut -c3- or
 cut -d'/' -f2- to the end of the alias
 definition.
— JP

Skipping Parts of a Tree in find

 Q:
 I want to run find across a
 directory tree, skipping standard directories like /usr/spool and /usr/local/bin. A -name dirname
 -prune clause won’t do it because -name doesn’t match the whole pathname — just each part of
 it, such as spool or local. How can I make find match the whole pathname, like /usr/local/bin/, instead of
 all directories named bin?
A: It cannot be done directly. You
 can do this:
% find /path -exec test {} = /foo/bar -o {} = /foo/baz \; -prune -o pred
This will not perform pred on /foo/bar and /foo/baz; if you want them done, but not any files within them,
 try:
% find /path \(-exec test test-exprs \; ! -prune \) -o pred
The second version is worth close study, keeping the manual for find at hand for reference. It shows a great deal
 about how find works.
The -prune operator simply says “do not
 search the current path any deeper” and then succeeds a la -print.
Q:
 I only want a list of pathnames; the pred I use in your earlier answer will be just -print. I think I could solve my particular
 problem by piping the find output
 through a sed or egrep -v filter that deletes the pathnames I
 don’t want to see.
A: That would probably be fastest. Using
 test runs the test program for each file name, which is quite slow. Take a
 peek at locate, described in Section 9.18.
There’s more about complex find
 expressions in other articles, especially Section 9.6 and Section
 9.12.
—CT and JP

Keeping find from Searching Networked Filesystem

 The most painful aspect of a large NFS
 environment is avoiding the access of files on NFS servers that are down.
 find is particularly sensitive to this
 because it is very easy to access dozens of machines with a single command. If
 find tries to explore a file server
 that happens to be down, it will time out. It is important to understand how to
 prevent find from going too far.
To do this, use -xdev

 or -prune with -fstype,
 though, unfortunately, not all finds have
 all of these. -fstype tests for filesystem
 types and expects an argument like nfs,
 ufs, cd9660, or ext2fs. To limit
 find to files only on a local disk or
 disks, use the clause -fstype nfs -prune,
 or, if your find supports it, -fstype local.
To limit the search to one particular disk partition, use -xdev. For example, if you need to clear out a
 congested disk partition, you could look for all files bigger than 10 MB
 (10*1024*1024) on the disk partition containing /usr, using this command:
% find /usr -size +10485760c -xdev -print
— BB

[1] Very old versions of find have
 trouble with using multiple -newer
 expressions in one command. If find
 doesn’t find files that it should, try using multiple explicit -mtime expressions instead. They’re not
 as precise, but they will work even on finds with buggy -newer handling.

[2] We didn’t do so because the syntax was already messy enough for
 people getting started.

[3] That’s because if one part of an OR expression is true, you don’t need
 to check the rest. This so-called “short-circuit” logical evaluation by
 find is important to
 understanding its expressions.

Chapter 10. Linking, Renaming, and Copying Files

What’s So Complicated About Copying Files

At first
 glance, there doesn’t seem to be enough material to fill an entire chapter with
 information about linking, moving, and copying files. However, there are several
 things that make the topic more complex (and more interesting) than you might
 expect:
	In addition to moving and copying
 files, Unix systems also allow you to link them — to have two filenames,
 perhaps in different directories or even on different filesystems, that
 point to the same file. Section
 10.3 explores the reasons why you want to do that; Section 10.4 discusses the
 difference between “hard” and “soft” links; Section 10.5 demonstrates how to
 create links; and other articles discuss various issues that can come up
 when using links.

	It’s
 nontrivial to rename a group of files all at once, but Unix provides
 many ways to circumvent the tedium of renaming files individually. In
 the chapter you’ll see many different ways to do this, exploring the
 variety in the Unix toolbox along the way.

	In a hierarchical
 filesystem, you’re sometimes faced with the problem of moving not only
 files but entire directory hierarchies from one place to another. Section 10.12 and Section 10.13 demonstrate two
 techniques you can use to perform this task.

— TOR

What’s Really in a Directory?

 Before you can understand moving and copying
 files, you need to know a bit more about how files are represented in
 directories. What does it mean to say that a file is really “in” a directory?
 It’s easy to imagine that files are actually inside of something (some special
 chunk of the disk that’s called a directory). But that’s precisely wrong, and
 it’s one place where the filing cabinet model of a filesystem doesn’t
 apply.
A directory really is just another file, and it really isn’t different from
 any other datafile. If you want to prove this, try the command od -c .
 On some Unix
 systems, it dumps the current directory to the screen in raw form. The result
 certainly looks ugly (it’s not a text file; it just has lots of binary
 characters). But, if your system allows it, od

 -
 c should let you see the names of the files
 that are in the current directory [and, probably, some names of files that have
 been deleted! Sorry, they’re only the old directory entries; you can’t get the
 files back — JP]. If od
 -
 c . doesn’t work (and it won’t on current
 versions of Linux, for example), use ls
 -
 if instead.
A directory is really just a list of
 files represented by filenames and inode numbers, as shown in the output in
 Example 10-1.
Example 10-1. Directory-content visualization
The file named . is inode 34346
The file named .. is inode 987
The file named mr.ed is inode 10674
The file named joe.txt is inode 8767
The file named grok is inode 67871
The file named otherdir is inode 2345

When you give a filename like grok, the
 kernel looks up grok in the current
 directory and finds out that this file has inode 67871; it then looks up this
 inode to find out who owns the file, where the data blocks are, and so
 on.
What’s more, some of these “files” may be directories in their own right. In
 particular, that’s true of the first two entries: .
 and ... These entries are in every directory.
 The
 current directory is represented by
 ., while .. refers to the “parent” of the current directory (i.e., the
 directory that “contains” the current directory). The file otherdir is yet another directory that happens to
 be “within” the current directory. However, there’s no way you can tell that
 from its directory entry — Unix doesn’t know it’s different until it looks up
 its inode.
Now that you know what a directory is, think about some basic directory
 operations. What does it mean to move, or rename, a file? If the file is staying
 in the same directory, the mv
 command just changes the file’s name in the
 directory; it doesn’t touch the data at all.
Moving a file into another directory
 takes a little more work, but not much. A command like mv dir1/foo dir2/foo means “delete foo’s entry in dir1 and
 create a new entry for foo in dir2.” Again, Unix doesn’t have to touch the data
 blocks or the inode at all.

 The only time you actually need to copy
 data is if you’re moving a file into another filesystem. In that case, you have
 to copy the file to the new filesystem; delete its old directory entry; return
 the file’s data blocks to the “free list,” which means that they can be reused;
 and so on. It’s a fairly complicated operation, but (still) relatively rare. (On
 some old versions of Unix, mv wouldn’t let
 you move files between filesystems. You had to copy it and remove the old file
 by hand.)
How does Unix find out the name of the current directory? In Example 10-1 there’s an entry for ., which tells you that the current directory has
 inode 34346. Is the directory’s name part of the inode? Sorry — it isn’t. The
 directory’s name is included in the parent directory. The parent directory is
 .., which is inode 987. So Unix looks up
 inode 987, finds out where the data is, and starts reading every entry in the
 parent directory. Sooner or later, it will find one that corresponds to inode
 34346. When it does that, it knows that it has found the directory entry for the
 current directory and can read its name.
Complicated? Yes, but if you understand this, you have a pretty good idea of
 how Unix directories work.
— ML

Files with Two or More Names

 We’ve talked
 about hard links
 (Section 10.1) and symbolic links
 in a number of places, but we’ve not discussed why you’d
 want a file with several names. It was easy to understand what a link would
 do, but why would you want one?
There are many situations that links (and only links) are able to handle. Once
 you’ve seen a few of the problems that a link can solve, you’ll start seeing
 even more situations in which they are appropriate.
Consider a company phone list on a system that is shared by several users.
 Every user might want a copy of the phone list in his home directory. However,
 you wouldn’t want to give each user a different phone list. In addition to
 wasting disk space, it would be a pain to modify all of the individual lists
 whenever you made a change. Giving each user a “link” to a master phone list is
 one way to solve the problem.
Similarly, assume that you use several different systems that share files via
 NFS. Eventually, you get tired of editing five or six different .login and .cshrc files whenever you decide to add a new alias or change
 some element in your startup file; you’d like to have the exact same file appear
 in each of your home directories. You might also want to give several systems
 access to the same master database files.
How about this: you have a program or script that performs several related
 functions. Why not perform them all with the same executable? The script or
 program just needs to check the name by which it’s called and act
 accordingly.
As another example, assume that you have two versions of a file: a current
 version, which changes from time to time, and one or more older versions. One
 good convention would be to name the files data.
 date, where date shows
 when the file was created. For example, you might have the files data.jul1, data.jul2, data.jul5, and
 so on. However, when you access these files, you don’t necessarily want to
 figure out the date — not unless you have a better chronological sense than I
 do. To make it easier on yourself, create a link (either symbolic or hard) named
 data.cur that always refers to your
 most recent file. The following script runs the program output, puts the data into a dated file, and
 resets data.cur:
#!/bin/sh
curfile=data.`date +%h%d`
linkname=data.cur
output > $curfile
rm -f $linkname
ln -s $curfile $linkname
Here’s an analogous situation. When writing technical manuals at one company,
 I had two classes of readers: some insisted on referring to the manuals by name,
 and the others by part number. Rather than looking up part numbers all the time,
 I created a set of links so that I could look up a manual online via either its
 name or its part number. For example, if the manual was named “Programming” and
 had the part number 046-56-3343, I would create the file /manuals/byname/programming. I would then create
 the link /manuals/bynumber/046-56-3343:
..
 Section 1.16
% cd /manuals/bynumber
% ln -s ../byname/programming 046-56-3343
Sometimes you simply want to collect an assortment of files in one directory.
 These files may really belong in other places, but you want to collect them for
 some temporary purpose: for example, to make a tape. Let’s say that you want to
 make a tape that includes manual pages from /development/doc/man/man1, a manual from /development/doc/product, source files from
 /src/ccode, and a set of executables
 from /release/68000/execs. The following
 shell script creates links for all of these directories within the /tmp/tape directory and then creates a tar tape that can be sent to a customer or
 friend. Note that the tar h option tells
 tar to follow symbolic links and
 archive whatever is at the end of the link; otherwise, tar makes a copy of just the symbolic link:
#!/bin/sh
dir=/tmp/tape.mike
test -d $dir || mkdir $dir
cd $dir
rm -f man1 product ccode execs
ln -s /development/doc/man/man1
ln -s /development/doc/product
ln -s /src/ccode
ln -s /release/68000/execs
tar ch ./man1 ./product ./ccode ./execs
These examples only begin to demonstrate the use of linking in solving
 day-to-day tasks. Links provide neat solutions to many problems, including
 source control, filesystem layout, and so forth.

— ML

More About Links

 Unix provides two different kinds of
 links:
	Hard links
	With a hard link, two
 filenames (i.e., two directory entries) point to the same inode and
 the same set of data blocks. All Unix versions support hard links.
 They have two important limitations: a hard link can’t cross a
 filesystem (i.e., both filenames must be in the same filesystem),
 and you can’t create a hard link to a directory (i.e., a directory
 can only have one name).[1] They have two important advantages: the link and the
 original file are absolutely and always identical, and the extra
 link takes no disk space (except an occasional extra disk block in
 the directory file).

	

 Symbolic links (also called
 soft links or
 symlinks)
	With a symbolic link, there really are two different files. One
 file contains the actual data; the other file just contains the name
 of the first file and serves as a “pointer.” We call the pointer the
 link. The system knows that
 whenever it opens a symlink, it should read the contents of the link
 and then access the file that really holds the data you want. Nearly
 all Unix systems support symbolic links these days. Symbolic links
 are infinitely more flexible than hard links. They can cross
 filesystems or even computer systems (if you are using NFS or RFS (Section 44.9)). You can make
 a symbolic link to a directory. A symbolic link has its own inode
 and takes a small amount of disk space to store.

You obviously can’t do without copies of files: copies are important whenever
 users need their own “private version” of some master file. However, links are
 equally useful. With links, there’s only one set of data and many different
 names that can access it. Section 10.5
 shows how to make links.
Differences Between Hard and Symbolic Links

 With
 a hard link,
 the two filenames are identical in every
 way. You can delete one without harming the other. The system deletes the
 directory entry for one filename and leaves the data blocks (which are
 shared) untouched. The only thing rm
 does to the inode is decrement its "link
 count,” which (as the name implies) counts the number of hard links to the
 file. The data blocks are only deleted when the link count goes to zero —
 meaning that there are no more directory entries that point to this inode.
 Section 9.24 shows how to find
 the hard links to a file.
With a symbolic link, the two filenames are really not the same. Deleting
 the link with rm leaves the original
 file untouched, which is what you’d expect. But deleting or renaming the
 original file removes both the filename and the data. You are left with a
 link that doesn’t point anywhere. Remember that the link itself doesn’t have
 any data associated with it. Despite this disadvantage, you rarely see hard
 links on Unix versions that support symbolic links. Symbolic links are so
 much more versatile that they have become omnipresent.

 Let’s finish by taking a look at
 the ls listing for a directory. This
 directory has a file named file with
 another hard link to it named hardlink.
 There’s also a symlink to file named
 (are you ready?) symlink:
$ ls -lai
total 8
 140330 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:11 .
 85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ..
 140331 -rw-r--r-- 2 jerry ora 2764 Aug 18 10:11 file
 140331 -rw-r--r-- 2 jerry ora 2764 Aug 18 10:11 hardlink
 140332 lrwxrwxrwx 1 jerry ora 4 Aug 18 10:12 symlink -> file
You’ve seen ls’s -l option
 Section 50.2) and, probably, the
 -a option
 Section 8.9) for listing “dot
 files.” The -i option lists the
 i-number
 Section 14.2) for each entry in
 the directory; see the first column. The third column has the link count: this is the number of hard links
 to the file.
When you compare the entries for file
 and hardlink, you’ll see that they have
 a link count of 2. In this case, both links are in the same directory. Every
 other entry (i-number, size, owner, etc.) for file and hardlink is
 the same; that’s because they both refer to exactly the same file, with two
 links (names).
A symbolic
 link has an l at the start of the
 permissions field. Its i-number isn’t the same as the file to which it
 points because a symbolic link takes a separate inode; so, it also takes
 disk space (which an extra hard link doesn’t). The name has two parts: the
 name of the link (here, symlink)
 followed by an arrow and the name to which the link points (in this case,
 file). The symlink takes just four
 characters, which is exactly enough to store the pathname (file) to which the link points.

Links to a Directory

 While we’re at it, here’s a section
 that isn’t about linking to files or making symbolic links. Let’s look at
 the first two entries in the previous sample directory in terms of links and
 link counts. This should help to tie the filesystem together (both literally
 and in your mind!).

 You’ve
 seen . and .. in pathnames
 Section 1.16); you might also have
 read an explanation of what’s in a
 directory
 Section 10.2). The . entry is a link to the current directory;
 notice that its link count is 2. Where’s the other link? It’s in the parent
 directory:
$ ls -li ..
total 2
 140330 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:11 sub
 85524 drwxr-xr-x 2 jerry ora 1024 Aug 18 10:47 sub2
Look at the i-numbers for the entries
 in the parent directory. Which entry is for our current directory? The entry
 for sub has the i-number 140330, and so
 does the . listing in the current
 directory. So the current directory is named sub. Now you should be able see why every directory has at
 least two links. One link, named ., is to
 the directory itself. The other link, in its parent, gives the directory its
 name.
Every directory has a .. entry, which
 is a link to its parent directory. If you look back at the listing of our
 current directory, you can see that the parent directory has four links.
 Where are they?
When a directory has subdirectories, it will also have a hard link named
 .. in each subdirectory. You can see
 earlier, in the output from ls -li ..,
 that the parent directory has two subdirectories: sub and sub2. That’s
 two of the four links. The other two links are the . entry in the parent directory and the entry for the parent
 directory (which is named test in
 its parent directory):
-d
 Section 8.5
% ls -dli ../. ../../test
 85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ../.
 85523 drwxr-xr-x 4 jerry ora 1024 Aug 18 10:47 ../../test
As they should, all the links have the same i-number: 85523. Make sense?
 This concept can be a little abstract and hard to follow at first.
 Understanding it will help you, though — especially if you’re a system
 administrator who has to understand fsck’s output because it can’t fix something automatically
 or use strong medicine like clri. For
 more practice, make a subdirectory and experiment in it the way shown in
 this article.
By the way, directories and their hard links . and .. are added by the
 mkdir

 (2) system call. That’s the only way that normal users can create a
 directory (and the links to it).
—JP and ML

Creating and Removing Links

 The ln
 command creates both hard and soft (symbolic) links
 Section 10.4). If by some strange
 chance you’re using Minix or some other Unix that doesn’t have symlinks, then
 ln won’t have the
 -s option.
% ln
 filename linkname

 . . . To create a hard link
% ln -s
 filename linkname

 . . . To create a symbolic link
If creating a hard link, filename must
 already exist, or you will get an error message. On many versions of ln, linkname
 must not exist — if it does, you will also get
 an error. On other versions, linkname may
 already exist; if you are allowed to write the file, ln destroys its old contents and creates your link. If you don’t
 have write access for linkname, ln asks whether it is okay to override the file’s
 protection. For example:
% ln foo bar
ln: override protection 444 for bar? y
Typing y gives ln permission to destroy the file bar and create the link. Note that this will still fail if you
 don’t have write access to the directory.
You are allowed to omit the linkname
 argument from the ln command. In this case,
 ln takes the last component of
 filename (i.e., everything after the
 last slash) and uses it for linkname. Of
 course, this assumes that filename doesn’t
 refer to the current directory. If it does, the command fails because the link
 already exists. For example, the following commands are the same:
..
 Section 1.16
% ln -s ../archive/file.c file.c
% ln -s ../archive/file.c
Both create a link from file.c in the
 current directory to ../archive/file.c.
 ln also lets you create a group of
 links with one command, provided that all of the links are in the same
 directory. Here’s how:
% ln file1 file2 file3 ... filen directory
This command uses the filename from each pathname (after the last slash) as
 each link’s name. It then creates all the links within the given directory. For example, the first of the
 following commands is equivalent to the next two:
.
 Section 1.16
% ln ../s/f1 ../s/f2 current
% ln ../s/f1 current/f1
% ln ../s/f2 current/f2
You can replace this list of files with a wildcard
 expression
 Section 33.2), as in:
% ln -s ../newversion/*.[ch]
Note that

 symbolic
 links can get out-of-date
 Section 10.6). Hard links can also be
 “broken” in some situations. For example, a text editor might rename the link
 textfile to textfile.bak then create a new textfile during editing. Previous links to textfile will now give you textfile.bak. To track down this problem,
 find the links
 Section 9.24) to each file.
To remove a link, either hard or symbolic, use the rm

 command.
— ML

Stale Symbolic Links

Symbolic links (

 Section 10.5) have one problem. Like
 good bread, they become “stale” fairly easily. What does that mean?
Consider the following commands:
% ln -s foo bar
% rm foo
What happens if you run these two commands? Remember that the link bar is a pointer: it doesn’t have any real data
 of its own. Its data is the name of the file foo. After deleting foo,
 the link bar still exists, but it points to
 a nonexistent file. Commands that refer to bar will get a confusing error
 message:
% cat bar
cat: bar: No such file or directory
This will drive you crazy if you’re not careful. The ls command will show you that bar still exists. You won’t understand what’s going on until you
 realize that bar is only a pointer to a
 file that no longer exists.
The commands ls -Ll or ls -LF will show an unconnected symbolic link.
 The -L option means “list the file that
 this link points to instead of the link itself.” If the link points nowhere,
 ls -L will still list the link.
There are many innocuous ways of creating invalid symbolic links. For example, you could simply
 mv the data file foo. Or you could move foo, bar, or both to some
 other part of the filesystem where the pointer wouldn’t be valid anymore.
One way to avoid problems with invalid links is to use
 relative pathnames
 Section 1.16) when appropriate. For
 instance, using relative pathnames will let you move entire directory trees
 around without invalidating links (provided that both the file and the link are
 in the same tree). Here’s an example: assume that you have the file /home/mars/john/project/datastash/input123.txt.
 Assume that you want to link this file to /home/mars/john/test/input.txt. You create a link by giving the
 command:
% cd /home/mars/john/test
% ln -s ../project/datastash/input123.txt input.txt
At some later date, you hand the project over to mary,
 who copies
 Section 10.13) the entire project and test data trees into her home directory. The link between
 input.txt and the real file, input123.txt, will still be valid. Although both
 files’ names have changed, the relationship between the two (i.e., the relative
 path from one directory to the other) is still the same. Alternatively, assume
 that you are assigned to a different computer named jupiter and that you copy your entire home directory when you
 move. Again, the link remains valid: the relative path from your test directory to your datastash directory hasn’t changed, even though the absolute
 paths of both directories are different.
On the other hand, there is certainly room for
 absolute pathnames
 Section 31.2). They’re useful if
 you’re more likely to move the link than the original file. Assume that you are
 creating a link from your working directory to a file in a master directory
 (let’s say /corp/masterdata/input345.txt).
 It is much more likely that you will rearrange your working directory than that
 someone will move the master set of files. In this case, you would link as
 follows:
% ln -s /corp/masterdata/input345.txt input.txt
Now you can move the link input.txt
 anywhere in the filesystem: it will still be valid, provided that input345.txt never moves.
Note that hard links never have this problem. With a
 hard link, there is no difference at all between the link and the original — in
 fact, it’s unfair to call one file the link and the other the original, since
 both are just links to the same inode. You can’t even tell which one came
 first.
— ML

Linking Directories

One feature of symbolic links (

 Section 10.5) (a.k.a. symlinks) is that unlike hard links, you can use
 symbolic links to link directories as well as files. Since symbolic links can
 span between filesystems, this can become enormously useful.
For example, sometimes administrators want to install a package in a directory
 tree that’s not where users and other programs expect it to be. On our site, we
 like to keep /usr/bin

 pure — that is, we like to be sure that all the programs in /usr/bin came with the operating system. That
 way, when we install a new OS, we know for sure that we can overwrite the
 entirety of /usr/bin and not lose any
 “local” programs. We install all
 local programs in /usr/local.
The X11 package poses a problem, though. Our X windows package (discussed in
 Chapter 5) expects X11 programs to be
 installed in /usr/bin/X11. But X isn’t
 distributed as part of our OS, so we’d prefer not to put it there. Instead, we
 install X programs in /usr/local/X11/bin
 and create a symbolic link named /usr/bin/X11. We do the same for /usr/include/X11 and /usr/lib/X11:
ln -s /usr/local/X11/bin /usr/bin/X11
ln -s /usr/local/X11/lib /usr/lib/X11
ln -s /usr/local/X11/include /usr/include/X11
By using symlinks, we installed the package where we wanted, but we kept it
 invisible to any users or programs that expected the X programs, libraries, or
 include files to be in the standard directories.
Directory links can result in some unexpected behavior, however. For example,
 let’s suppose I want to look at files in /usr/bin/X11. I can just cd
 to /usr/bin/X11, even though the files are
 really in /usr/local/X11/bin:
% cd /usr/bin/X11
% ls -F
 mkfontdir* xcalc* xinit* xset*
 ...
But when I do
 a pwd,[2] I see that I’m really in /usr/local/X11/bin. If I didn’t know about the symlink, this
 might be confusing for me:
% pwd
/usr/local/X11/bin
Now suppose I want to look at files in /usr/bin. Since I did a cd
 to /usr/bin/X11, I might think I can just
 go up a level. But that doesn’t work:
-F
 Section 8.3
% cd ..
% ls -F
bin/ include/ lib/
% pwd
/usr/local/X11
What happened? Remember that a symbolic link is just a
 pointer
 to another
 file or directory. So when I went to the /usr/bin/X11 “directory,” my current working directory became
 the directory to which /usr/bin/X11 points,
 which is /usr/local/X11/bin.
As a solution to this problem and others, the X distribution provides a
 program called lndir
 . lndir
 makes symlinks between directories by creating links for each individual file.
 It’s cheesy, but it works. If you have it, you can use lndir instead of ln -s:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 lndir
lndir /usr/local/X11/bin /usr/bin/X11
ls -F /usr/bin/X11
X@ mkfontdir@ xcalc@ xinit@ xset@
 ...
— LM

Showing the Actual Filenames for Symbolic Links

[image:] Go to http://examples.oreilly.com/upt3 for more information on: sl

 The sl program is a perl script
 (see coverage of Perl in Chapter 41) that
 traverses the pathnames supplied on the command line, and for each
 one, it tells you if it had to follow any symbolic links to find the actual
 filename. Symbolic links to absolute pathnames start over at the left margin.
 Symbolic links to relative pathnames are aligned vertically with
 the path element they replace. For example:
$ sl /usr/lib/libXw.a

/usr/lib/libXw.a:
/usr/lib/libXw.a -> /usr/lib/X11/libXw.a
/usr/lib/X11 -> /X11/lib
/X11 -> /usr/local/X11R4
/usr/local/X11R4/lib/libXw.a

$ sl /bin/rnews

/bin -> /usr/bin
/usr/bin/rnews -> /usr/lib/news/rnews
/usr/lib/news -> ../local/lib/news
 local/lib/news/rnews -> inews
 inews

Renaming, Copying, or Comparing a Set of Files

If you have a group of files
 whose names end with .new and you want to

 rename them to end with .old, you might try something like the following:
% mv *.new *.old
 Wrong!
However, this won’t work because the shell can’t match *.old and because the mv command just doesn’t work that way. Here’s one way to do it
 that will work with most shells:
-d
 Section 8.5, \(..\)..\1
 Section 34.11
$ ls -d *.new | sed "s/\(.*\)\.new$/mv '&' '\1.old'/" | sh
% ls -d *.new | sed 's/\(.*\)\.new$/mv "&" "\1.old"/' | sh

 That outputs a series of mv commands, one per file, and pipes them to a
 shell (Section 3.4). The quotes help make sure that special characters
 Section 27.17) aren’t touched by the
 shell — this isn’t always needed, but it’s a good idea if you aren’t sure what
 files you’ll be renaming. Single quotes around the filenames are “strongest”; we
 use them in the Bourne-type shell version. Unfortunately, csh

 and tcsh don’t allow $ inside
 double quotes unless it’s the start of a shell variable name. So the C shell
 version
 puts double quotes around the filenames — but the Bourne shell version can use
 the “stronger” single quotes, like this:
mv 'afile.new' 'afile.old'
mv 'bfile.new' 'bfile.old'
 ...
To copy,
 change mv to cp. For safety, use mv -i

 or
 cp -i if your versions have the
 -i options
 Section 14.15). Using sh -v
 Section 27.15) will show
 the commands as the shell executes them.
This
 method works for any Unix command that takes a pair of filenames. For instance,
 to compare a set of files in the current directory with the original files in
 the /usr/local/src directory, use diff
 :
% ls -d *.c *.h | sed 's@.*@diff -c & /usr/local/src/&@' | sh
Note that diff -r
 does let
 you compare entire directories, but you need a trick like
 this to only compare some of the files.
—JP and DJPH

Renaming a List of Files Interactively

 Section 10.9 shows how to rename a set
 of files, e.g., changing *.new to *.old. Here’s a different way, done from inside
 vi. This gives you a chance to review and
 edit the commands before you run them. Here are the steps:
&&
 Section 34.10, $
 Section 32.5
% vi
 Start vi without a filename
 :r !ls *.new
 Read in the list of files, one filename per line
 :%s/.*/mv -i &&/
 Make mv command lines
 :%s/new$/old/
 Change second filenames; ready to review
 :w !sh
 Run commands by writing them to a shell
 :q!
 Quit vi without saving
If you’ve made your own version of ls that
 changes its output format, that can cause trouble here. If your version gives
 more than a plain list of filenames in a column, use!/bin/ls instead of just !ls.
— JP

One More Way to Do It

I couldn’t resist throwing my hat into this ring. I can imagine an
 unsophisticated user who might not trust himself to replace one pattern with
 another, but doesn’t want to repeat a long list of mv -i commands. (The -i option
 will prompt if a new name would overwrite an existing file.) Here’s a simple
 script (Section 1.8) that takes a list of filenames (perhaps provided by
 wildcards) as input and prompts the user for a new name for each file:
#!/bin/sh
Usage: newname files
for x
do
 echo -n "old name is $x, new name is: "
 read newname
 mv -i "$x" "$newname"
done
For example:
% touch junk1 junk2 junk3
% newname junk*
old name is junk1, new name is: test1
mv: overwrite test1 with junk1? y
old name is junk2, new name is: test2
old name is junk3, new name is: test3
In the first case, test1 already existed, so mv
 -i prompted.
This script is very simple; I just thought I’d use it to demonstrate that
 there’s more than one way to do it, even if you aren’t using Perl.
— TOR

Copying Directory Trees with cp -r

cp has a -r (recursive)
 flag, which copies all the files in a directory tree — that is, all the files in
 a directory and its subdirectories.
Note
One of our Unix systems has a cp
 without a -r option. But it also has an rcp (
 Section 1.21) command that
 does have -r. rcp can copy to any machine, not just remote
 machines. When I need cp -r on that host, I use
 rcp -r.

cp -r can be used in two ways. The first is much like
 normal copies; provide a list of files to copy and an existing directory into
 which to copy them. The -r option just means that source
 directories will be copied as well as normal files. The second allows you to
 copy a single directory to another location.
	Here’s how to do the copy shown in Figure 10-1. This copies the directory /home/jane, with all its files and
 subdirectories, and creates a subdirectory named jane in the current
 directory (.) (Section
 1.16):
% cd /work/bkup
% cp -r /home/jane .

	How can you copy the contents of the subdirectory called data and all its files (but not the
 subdirectory itself) into a duplicate directory named data.bak? First make sure that the
 destination directory doesn’t exist. That’s because if the last argument
 to cp is a directory that already
 exists, the source directory will be copied to a subdirectory of the
 destination directory (i.e., it will become data.bak/data rather than just data.bak):
% cd /home/jane
% cp -r data data.bak

	Use this to copy the subdirectories Aug and Sep and
 their files from the directory /home/jim/calendar into the current directory
 (.):
[..]*
 Section 33.2
% cp -r /home/jim/calendar/[AS]* .
In many shells, if you wanted the Oct directory too, but not the file named Output, you can copy just the directories
 by using the handy curly brace
 operators (Section
 28.4):
% cp -r /home/jim/calendar/{Aug,Sep,Oct} .

Some gotchas:
	Symbolic and hard links (Section 10.4)

 are
 copied as files. That can be a good thing; if a symbolic link were not
 turned into a file along the way, the new symbolic link would point to
 the wrong place. It can be bad if the link pointed to a really big file;
 the copy can take up a lot of disk space that you didn’t expect. (In
 Figure 10-1, notice that
 the symbolic link in jane’s home
 directory was converted to a file named .setup with a copy of the contents of generic.) This can be prevented by using
 the -d option, if your cp supports it.

	On many Unixes, the copy will be dated at the time you made the copy
 and may have its permissions set by your umask. If you want the copy to have the original
 modification time and permissions, add the -p
 option.

	cp -r may go into an endless loop if you try to
 copy a directory into itself. For example, let’s say you’re copying
 everything from the current directory into an existing subdirectory
 named backup, like this:
% cp -r * backup
Unless your cp -r is smart enough to scan for
 files before it starts copying, it will create backup/backup, and backup/backup/backup, and so on. To avoid that, replace
 the * wildcard with other less-"wild”
 wildcards.

	cp -r doesn’t deal well with special files. Most
 platforms support a -R option instead, which correctly
 handles device files and the like. GNU cp has -a as a recommended option for
 normal recursive copying; it combines -R with
 -d and -p, as described
 earlier.

Note that directories can be copied to another machine using the same basic
 syntax with rcp and scp. The only difference is that remote files have
 hostname: in front of them; note that remote
 files can be used either as source or destination. Relative pathnames for remote
 files are always relative to your home directory on the remote machine.
% scp -r mydata bigserver:backups
% scp -r bass:/export/src/gold-20020131 .
scp and rcp use the same syntax; scp
 uses SSH (Section 46.6) to do its copying, while rcp uses unencrypted connections.
—DJPH and JP

Copying Directory Trees with tar and Pipes

 The tar (Section 39.2) command isn’t just for
 tape archives. It can copy files from disk to disk, too. And even if your
 computer has cp -r (Section 10.12), there are advantages to
 using tar.
The obvious way to copy directories with tar is to write them onto a tape archive with relative pathnames
 — then read back the tape and write it somewhere else on the disk. But tar can also write to a Unix pipe — and read from
 a pipe. This looks like:
% reading-tar
 |
 writing-tar
with one trick: the writing-tar
 process has a
 different current directory (Section 24.3, Section
 24.4) (the place where you want the copy made) than the
 reading-tar
 . To do that, run the
 writing-tar in a subshell (Section
 43.7), or if your tar supports it, use
 the -C
 option.
The argument(s) to the reading-tar can be
 directories or files. Just be sure to use relative
 pathnames (Section
 31.2) that don’t start with a slash — otherwise, the
 writing-tar may write the copies in the same
 place from where the originals came!
“How about an example,” you ask? Figure
 10-1 has one. It copies from the directory /home/jane, with all its files and subdirectories. The copy is
 made in the directory /work/bkup/jane:
% mkdir /work/bkup/jane
% cd /home/jane
% tar cf - . | (cd /work/bkup/jane && tar xvf -)
Or, if you want to use -C:
% tar cf - . | tar xvf - -C /work/bkup/jane
In the subshell version, the

 && operator (Section 35.14) tells the shell to start
 tar xvf - only if the previous command
 (the cd) succeeded. That prevents tar writing files into the same directory from
 which it’s reading — if the destination directory isn’t accessible or you flub
 its pathname. Also, don’t use the v
 (verbose) option in both
 tars unless you want to see doubled
 output; one or the other is plenty. I usually put it in the
 writing-tar to see write progress, as that’s more
 interesting to me than how far ahead the system has cached the read for
 me.
[image: Copying /home/jane to /work/bkup with tar]

Figure 10-1. Copying /home/jane to /work/bkup with tar

Warning
At least one tar version has a
 v (verbose) option that writes the verbose text to
 standard output instead of standard error! If your tar does that, definitely don’t use v on the
 reading-tar (the tar that feeds the pipe) — use v on the
 writing-tar only.

You can use other options that your tar
 might have — such as excluding files or directories — on the
 reading-tar, too. Some gotchas:
	Be aware that symbolic links (Section 10.4) will be copied
 exactly. If they point to relative pathnames, the
 copied links might point to locations that don’t exist
 (Section 10.6). You can
 search for these symbolic links with find -type
 l.

	If your system has rsh (

 Section 1.21) or ssh, you can run either the
 reading-tar or the
 writing-tar on a remote system. For
 example, to copy a directory to the computer named
 kumquat:
% ssh kumquat mkdir /work/bkup/jane
% tar cf - . | ssh kumquat 'cd /work/bkup/jane && tar xvf -'

—JP and DJPH

[1] Actually, every directory has at least two names. See the
 last section of this article.

[2] I mean the standard Unix pwd
 command, an external command that isn’t built into your shell. Most
 shells have an internal version of pwd that “keeps track” of you as you change your current
 directory; it may not give the same answer I show here. You can run the
 external version by typing /bin/pwd.

Chapter 11. Comparing Files

Checking Differences with diff

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 diff

 The diff command displays different versions of lines that are found
 when comparing two files. It prints a message that uses ed-like notation (a for append,
 c for change, and d for delete) to
 describe how a set of lines has changed. The lines themselves follow this
 output. The < character precedes lines
 from the first file and > precedes lines
 from the second file.
Let’s create an example to explain the output produced by diff. Look at the contents of three sample
 files:
	
 test1

 	
 test2

 	
 test3

	
 apples

 	
 apples

 	
 oranges

	
 oranges

 	
 oranges

 	
 walnuts

	
 walnuts

 	
 grapes

 	
 chestnuts

When you run diff on
 test1 and test2, the following
 output is produced:
$ diff test1 test2
3c3
< walnuts
--
> grapes
The diff command displays the only line
 that differs between the two files. To understand the report, remember that
 diff is prescriptive, describing what
 changes need to be made to the first file to make it the same as the second
 file. This report specifies that only the third line is affected, exchanging
 walnuts for grapes. This is more apparent if you use the -e
 option,
 which produces an editing script that can be submitted to ed
 , the Unix line editor. (You must redirect standard output (Section 43.1) to capture this script in
 a file.)
$ diff -e test1 test2
3c
grapes
.
This script, if run on test1, will bring
 test1 into agreement with test2.
 (To do this, feed the script to the standard input of ed (Section 20.6) or
 ex; add a w
 command (Section 20.4)
 at the end of the script to write the changes, if you want to.)
If you compare the first and third files, you find more differences:
$ diff test1 test3
1dO
< apples
3a3
> chestnuts
To make test1 the same as test3,
 you’d have to delete the first line (apples)
 and append the third line from test3 after the third line
 in test1. Again, this can be seen more clearly in the
 editing script produced by the -e option. Notice that the
 script specifies editing lines in reverse order; otherwise, changing the first
 line would alter all subsequent line numbers.
$ diff -e test1 test3
3a
chestnuts
.
1d
So what’s this good for? Here’s one example.
When working on a document, it is common practice to make a copy of a file and
 edit the copy rather than the original. This might be done, for example, if
 someone other than the writer is inputing edits from a written copy. The
 diff command can be used to compare the
 two versions of a document. A writer could use it to proof an edited copy
 against the original.
$ diff brochure brochure.edits
49c43,44
< environment for program development and communications,
--
> environment for multiprocessing, program development
> and communications, programmers
56c51
< offering even more power and productivity for commericial
--
> offering even more power and productivity for commercial
76c69
< Languages such as FORTRAN, COBOL, Pascal, and C can be
--
> Additional languages such as FORTRAN, COBOL, Pascal, and
Using diff in this manner is a simple way
 for a writer to examine changes without reading the entire document. By
 redirecting diff output to a file, you can
 keep a record of changes made to any document. In fact, just that technique is
 used by both RCS and CVS (Section 39.4) to manage multiple
 revisions of source code and documents.
—DD, from Unix Text Processing (Hayden Books,
 1987)

Comparing Three Different Versions with diff3

You can
 use the diff3 command to look at differences
 between three files. Here are three sample files, repeated from Section 11.1:
	
 test1

 	
 test2

 	
 test3

	
 apples

 	
 apples

 	
 oranges

	
 oranges

 	
 oranges

 	
 walnuts

	
 walnuts

 	
 grapes

 	
 chestnuts

For each set of differences, diff3 displays
 a row of equal signs (====) followed by 1, 2,
 or 3, indicating which file is different; if no number is specified, then all
 three files differ. Then, using ed-like
 notation (Section
 11.1), the differences are described for each file:
$ diff3 test1 test2 test3
====3
1:1c
2:1c
 apples
3:0a
====
1:3c
 walnuts
2:3c
 grapes
3:2,3c
 walnuts
 chestnuts
With the output of diff3, it is easy to
 keep track of which file is which; however, the prescription given is a little
 harder to decipher. To bring these files into agreement, the first range of text
 (after ====3) shows that you would have to
 add apples at the beginning of the third file
 (3:0a). The second range tells you to
 change line 3 of the second file to line 3 of the first file — change lines 2
 and 3 of the third file, effectively dropping the last line.
The diff3 command also has a
 -e option for creating an editing script for ed. It doesn’t work quite the way you might think.
 Basically, it creates a script for building the first file from the second and
 third files.
$ diff3 -e test1 test2 test3
3c
walnuts
chestnuts
.
1d
.
w
q
If you reverse the second and third files, a different script is
 produced:
$ diff3 -e test1 test3 test2
3c
grapes
.
w
q
As you might guess, this is basically the same output as doing a diff on the first and third files.
— DD

Context diffs

 The diff examples in Section 11.1 and Section 11.2 show compact formats with
 just the differences between the two files. But, in many cases, context diff listings are more useful. Context diffs show the changed lines and the lines around
 them. (This can be a headache if you’re trying to read the listing on a terminal
 and there are many changed lines fairly close to one another: the context will
 make a huge “before” section, with the “after” section several screenfuls ahead.
 In that case, the more compact diff formats
 can be useful.) A related format, unified diff, shows context but doesn’t take as much space.
[image:] Go to http://examples.oreilly.com/upt3 for more information on: rcs
The rcsdiff
 command shows differences between
 revisions in an RCS (Section 39.5) file (and will only be
 available if you have RCS installed). We’ll use it here instead of diff — but the concepts are the same.
 Incidentally, these examples would also work with cvs
 diff (
 Section 39.7), if you have CVS
 installed.
The -c option shows before-and-after versions of each changed
 section of a file. By itself, -c shows three lines above and
 below each change. Here’s an example of a C file before and after some edits;
 the -c2 option shows two lines of context.
 The -u option shows changed lines next to each other, not in
 separate before-and-after sections. Again, an option like -u2 shows two lines of context around a change
 instead of the default three lines.
	Start of a listing
	A diff -c

 listing starts with the two
 filenames and their last-modified dates (“timestamps”). The first
 filename (here, atcat.c revision 1.1) has three
 asterisks (***) before it; the
 second name (atcat.c revision 1.2) has three
 dashes (---). These markers
 identify the two files in the difference listings below:
*** atcat.c 1987/09/19 12:00:44 1.1
--- atcat.c 1987/09/19 12:08:41 1.2
A diff -u
 listing also starts with the two
 filenames and their last-modified dates (“timestamps”). The first
 filename (here, atcat.c revision 1.1) has three
 minus signs (---) before it,
 meaning “from” or “before.” The second name
 (atcat.c revision 1.2) has three plus signs
 (+++). Again, these markers
 identify the two files in the difference listings that
 follow:
--- atcat.c 1987/09/19 12:00:44 1.1
+++ atcat.c 1987/09/19 12:08:41 1.2

	Start of a section
	Each difference section in a diff -c
 listing starts with a row of
 asterisks:

In a diff -u
 listing, each difference section
 starts with a line that has a pair of line numbers and line counts.
 This one means that the first version of the file (with a - before it) starts at line 14 and
 contains 5 lines; the second version of the file (with a +) also starts at line 14 and has 5
 lines:
@@ -14,5 +14,5 @@

	Changes
	In a diff -c
 listing, changed lines that exist
 in both files are marked with an ! (exclamation point) character in the left margin.
 So, one of the lines between lines 15-19 was changed. Other lines in
 the section weren’t changed:
*** 15, 19 ****
 #ifndef lint
 static char rcsid[] =
! "$Id: ch11.xml,v 1.33 2002/10/13 03:51:58 troutman Exp troutman $";
 #endif not lint
--- 15,19 ----
 #ifndef lint
 static char rcsid[] =
! "$Id: ch11.xml,v 1.33 2002/10/13 03:51:58 troutman Exp troutman $";
 #endif not lint
 /* end of Identification */
A diff -u
 listing always shows lines that
 are marked with a minus (-) only
 in the first version and lines marked with a plus (+) in the second version. Here, one
 line was changed:
@@ -15,5 +15,5 @@
 #ifndef lint
 static char rcsid[] =
- "$Id: ch11.xml,v 1.33 2002/10/13 03:51:58 troutman Exp troutman $";
 static char rcsid[] =
+ "$Id: ch11.xml,v 1.33 2002/10/13 03:51:58 troutman Exp troutman $";
 #endif not lint
 /* end of Identification */

	Deletions
	In a diff -c
 listing, a line that exists in the
 first version but not the second version is marked with a minus sign
 (-). None of the lines from
 the second version are shown. So, line 62 in the first version
 (lines 64-68) was deleted, leaving lines 64-67 in the second
 version:
*** 64,68 ****
 {
 int i; /* for loop index */
- int userid; /* uid of owner of file */
 int isuname; /* is a command line argv a user name? */
 int numjobs; /* # of jobs in spooling area */
--- 64,67 ----
A diff -u
 listing simply shows the deleted line
 with a minus (-) sign before it.
 The section started at line 64 and had 5 lines; after the change, it
 starts at line 64 and has 4 lines:
@@ -64,5 +64,4 @@
 {
 int i; /* for loop index */
- int userid; /* uid of owner of file */
 int isuname; /* is a command line argv a user name? */
 int numjobs; /* # of jobs in spooling area */

	Additions
	In a diff -c
 listing, lines that are added are
 marked with an exclamation point (!) and only appear in the second
 version. So, one of the lines between lines 111-116 was changed, and
 two other lines were added, leaving lines 111-118 in the second
 version:
*** 111,116 ****
 * are given, print usage info and exit.
 */
! if (allflag && argc)
 usage();

 /*
--- 111,118 ----
 * are given, print usage info and exit.
 */
! if (allflag && argc) {
 usage();
+ exit(1);
+ }

 /*
In a diff -u
 listing, lines that are only in
 the second version are always marked with a +. Here, one line was changed, and two lines were
 added. The original version started at line 111 and had 6 lines; the
 changed version started at line 111 and has 8 lines:
@@ -111,6 +111,8 @@
 * are given, print usage info and exit.
 */
- if (allflag && argc)
+ if (allflag && argc) {
 usage();
+ exit(1);
+ }

 /*

Context diffs
 aren’t just nice for reading. The patch (Section 20.9) program reads context
 diff listings and uses them to update
 files automatically. For example, if I had the first version of
 atcat.c, someone could send me either of the previous
 diff listings (called a “patch”). From
 the original and the patch, patch could
 create the second version of atcat.c. The advantage of a
 context diff over the formats in Section 11.1 and Section 11.2 is that context diffs let patch
 locate the changed sections even if they’ve been moved somewhat. In this case,
 it’s probably not a good idea to save space by reducing the
 number of context lines (with -c2 or -u2, as I did here); giving all three lines of
 context can help patch locate the changed
 sections.

Side-by-Side diffs: sdiff

 After
 you’ve used diff for a while, the output is
 easy to read. Sometimes, though, it’s just easier to see two files side-by-side. The
 sdiff command does that. Between the
 files, it prints < to point to lines that
 are only in the first file, > for lines
 only in the second file, and | for lines that
 are in both, but different. By default, sdiff
 shows all the lines in both files. Here’s a fairly bogus example that compares
 two files that contain the output of who (Section 2.8) at different times:
$ sdiff -w75 who1 who2
jake vt01 Sep 10 10:37 jake vt01 Sep 10 10:37
uunmv ttyi1i Sep 16 11:43 <
jerry ttyi1j Sep 15 22:38 jerry ttyi1j Sep 15 22:38
jake ttyp1 Sep 9 14:55 jake ttyp1 Sep 9 14:55
jake ttyp2 Sep 9 15:19 | ellen ttyp2 Sep 16 12:07
 > carolo ttyp5 Sep 16 13:03
alison ttyp8 Sep 9 12:49 alison ttyp8 Sep 9 12:49
To see only lines that are different, use -s (silent):
$ sdiff -s -w75 who1 who2
2d1
uunmv ttyi1i Sep 16 11:43 <
5c4,5
jake ttyp2 Sep 9 15:19 | ellen ttyp2 Sep 16 12:07
 > carolo ttyp5 Sep 16 13:03
The output lines are usually 130 characters long. That’s too long for
 80-column-wide screens; if you can put your terminal in 132-column mode or
 stretch your window, fine. If you can’t, use the
 -w option to set a narrower width, like -w80
 for 80-column lines; sdiff will show the
 first 37 characters from each line (it doesn’t write quite all 80 columns). If
 you can set your printer to compressed type or have a very wide window, use an
 option like -w170 to get all of each line.
Section 11.5 explains a very useful
 feature of sdiff: building one file
 interactively from two files you compare.
— JP

Choosing Sides with sdiff

One problem you might be tempted to tackle
 with diff3 (Section 11.2) is sorting out the mess resulting if two people make
 copies of the same file, and then make changes to their copies. You often find
 that one version has some things right and another version has other things
 right. What if you wanted to compile a single version of this document that
 reflects the changes made to each copy? You want to select which version is
 correct for each set of differences. An effective way to do this would be to use
 sdiff (Section 11.4). (Of course, the best thing to do is to prevent the
 problem in the first place, by using RCS or CVS
 (Section 39.4).)
One of the most powerful uses of sdiff is
 to build an output file by choosing between different versions of two files
 interactively. To do this, specify the -o option and the name
 of an output file to be created. The sdiff
 command then displays a % prompt after each
 set of differences.
You can compare the different versions and select the one that will be sent to
 the output file. Some of the possible responses are l to choose the left column, r
 to choose the right column, and q to exit the
 program.
—TOR and JP

Problems with diff and Tabstops

 The diff (Section 11.1) utility adds extra
 characters (>, <, +, and so on) to the
 beginning of lines. That can cause you real grief with tabstops because the
 extra characters added by diff can shift
 lines enough to make the indentation look wrong. The diff
 -t option expands TABs to 8-character tabstops and solves the
 problem.
If you use nonstandard tabstops, though, piping diff’s output through expand
 or pr -e doesn’t help because diff has already added the extra characters.
The best answers I’ve seen are the <()
 process-substitution operator and the !
 (exclamation point) script. You can expand TABs before diff sees them. For example, to show the differences between two
 files with 4-column tabstops:
$ diff <(expand -4 afile) <(expand -4 bfile)
 process substitution
% diff `! expand -4 afile` `! expand -4 bfile`
 other shells
Of course, nonstandard tabstops cause lots more problems than just with
 diff. If you can, you’re better off using
 8-space TABs and using spaces instead of tabs for indentation.
— JP

cmp and diff

 cmp is another program for comparing files.
 It’s a lot simpler than diff (
 Section 11.1); it tells you whether
 the files are equivalent and the byte offset at which the first difference
 occurs. You don’t get a detailed analysis of where the two files differ. For
 this reason, cmp is often faster,
 particularly when you’re comparing ASCII files: it doesn’t have to generate a
 long report summarizing the differences. If all you want to know is whether two
 files are different, it’s the right tool for the job.
It’s worth noting, though, that cmp isn’t
 always faster. Some versions of diff make some simple checks first, such as
 comparing file length. If two binary files have different lengths, they are
 obviously different; some diff
 implementations will tell you so without doing any further processing.
Both diff and cmp return an exit status
 (
 Section 35.12) that shows what they
 found:
	
 Exit status

 	
 Meaning

	
 0

 	
 The files were the same.

	
 1

 	
 The files differed.

	
 2

 	
 An error occurred.

Within a shell script, the exit status from diff and cmp is often more
 important than their actual output.

— ML

Comparing Two Files with comm

The comm command can tell you what
 information is common to two lists and what information appears uniquely in one
 list or the other. For example, let’s say you’re compiling information on the
 favorite movies of critics Ebert and Roeper. The movies are listed in separate
 files (and must be sorted (Section 22.1)). For the sake of
 illustration, assume each list is short:
% cat roeper
Citizen Kane
Halloween VI
Ninja III
Rambo II
Star Trek V
Zelig
% cat ebert
Cat People
Citizen Kane
My Life as a Dog
Q
Z
Zelig
To compare the favorite movies of your favorite critics, type:
% comm roeper ebert
 Cat People
 Citizen Kane
Halloween VI
 My Life as a Dog
Ninja III
 Q
Rambo II
Star Trek V
 Z
 Zelig
Column 1 shows the movies that only Roeper likes; column 2 shows those that
 only Ebert likes; and column 3 shows the movies that they both like. You can
 suppress one or more columns of output by specifying that column as a
 command-line option. For example, to suppress columns 1 and 2 (displaying only
 the movies both critics like), you would type:
% comm -12 roeper ebert
Citizen Kane
Zelig
As another example, say you’ve just received a new software release (Release
 4), and it’s your job to figure out which library functions have been added so
 that they can be documented along with the old ones. Let’s assume you already
 have a list of the Release 3 functions (r3_list) and a list
 of the Release 4 functions (r4_list). (If you didn’t, you
 could create them by changing to the directory that has the function manual
 pages, listing the files with ls, and saving
 each list to a file.) In the following lists, we’ve used letters of the alphabet
 to represent the functions:
% cat r3_list
b
c
d
f
g
h

% cat r4_list
a
b
c
d
e
f
You can now use the comm command to answer
 several questions you might have:
	Which functions are new to Release 4? Answer:
% comm -13 r3_list r4_list
 Show 2nd column, which is "Release 4 only"
a
e

	Which Release 3 functions have been dropped in Release 4?
 Answer:
% comm -23 r3_list r4_list
 Show 1st column, which is "Release 3 only"
g
h

	Which Release 3 functions have been retained in Release 4?
 Answer:
% comm -12 r3_list r4_list
 Show 3rd column, which is "common functions"
b
c
d
f

You can create partial lists by saving the previous output to three separate
 files.
comm can only compare sorted files. In the
 GNU version, the option -l (lowercase L)
 means the input files are sorted using the LC_COLLATE collating sequence. If you
 have non-ASCII characters to sort, check your manual page for
 details.
— DG

More Friendly comm Output

Section 11.8 didn’t show one of my
 least-favorite comm features. The default
 output (with text in “columns”) confuses me if the lines of output have much
 text (especially text with spaces). For example, if I’m looking at two who (Section
 2.8) listings to compare who was logged on at particular times, the
 columns in the who output are jumbled:
$ comm who1 who2
 root tty1 Oct 31 03:13
 jpeek tty2 Oct 31 03:15
jpeek pts/0 Oct 31 03:19
 jpeek pts/1 Oct 31 03:19
 jpeek pts/2 Oct 31 03:19
ally pts/4 Oct 31 03:19
 jpeek pts/3 Oct 31 03:19
 xena pts/5 Nov 3 08:41
The commer script (see later) filters the
 comm output through sed. It converts comm’s indentation characters (one TAB for lines in “column 2”
 and two TABs for lines in “column 3”) into labels at the start of each output
 line. The default output looks like this:
$ commer who1 who2
BOTH>root tty1 Oct 31 03:13
BOTH>jpeek tty2 Oct 31 03:15
 TWO>jpeek pts/0 Oct 31 03:19
BOTH>jpeek pts/1 Oct 31 03:19
BOTH>jpeek pts/2 Oct 31 03:19
 TWO>ally pts/4 Oct 31 03:19
BOTH>jpeek pts/3 Oct 31 03:19
 ONE>xena pts/5 Nov 3 08:41
With the -i option, the script uses both labels and
 columns:
$ commer -i who1 who2
BOTH> root tty1 Oct 31 03:13
BOTH> jpeek tty2 Oct 31 03:15
 TWO>jpeek pts/0 Oct 31 03:19
BOTH> jpeek pts/1 Oct 31 03:19
BOTH> jpeek pts/2 Oct 31 03:19
 TWO>ally pts/4 Oct 31 03:19
BOTH> jpeek pts/3 Oct 31 03:19
 ONE> xena pts/5 Nov 3 08:41
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 commer
Here’s the script. The sed substitute
 (s) commands have one or two TABs between
 the first pair of slashes. Note that the sed
 script is inside double quotes ("), so the
 shell can substitute the value of $indent
 with an ampersand (&) into the sed script if the -i option was
 used:
#!/bin/sh
commer - label columns in "comm" output
Usage: commer [-i] file1 file2
-i option indents output lines into columns as "comm" does
#
Note that script WILL FAIL if any input lines start with a TAB.

case "$1" in
-i) indent='&'; shift ;;
-*|"") echo "Usage: `basename $0` [-i] file1 file2" 1>&2; exit 1 ;;
esac

In "comm" output, column 1 (lines in file 1) has no leading TAB.
Column 2 (lines in file 2) has one leading TAB.
Column 3 (lines in both files) has two leading TABs.
Search for these tabs and use them to label lines.
(You could replace ONE and TWO with the filenames $1 and $2)
comm "$1" "$2" |
sed "{
/^ / {s//BOTH>$indent/; b}
/^ / {s// ONE>$indent/; b}
s/^/ TWO>/
}"
Note
The commer script will be fooled by
 lines that already have TAB characters at the start. If this might be a
 problem, you can modify the script to search the files (grep "^TAB" >/dev/null) before starting
 comm.

— JP

make Isn’t Just for Programmers!

 The make program is a Unix facility for describing dependencies among
 a group of related files, usually ones that are part of the same project. This
 facility has enjoyed widespread use in software-development projects.
 Programmers use make to describe how to
 “make” a program — which source files need to be compiled, which libraries must
 be included, and which object files need to be linked. By keeping track of these
 relationships in a single place, individual members of a software-development
 team can make changes to a single module, run make, and be assured that the program reflects the latest changes
 made by others on the team.
Only by a leap of the imagination do we group make with the other commands for keeping track of differences
 between files. However, although it does not compare two versions of the same
 source file, it can be used to compare versions of a source file and to the
 formatted output.
Part of what makes Unix a productive environment for text processing is
 discovering other uses for standard programs. The make utility has many possible applications for a documentation
 project. One such use is to maintain up-to-date copies of formatted files —
 which make up a single manual and provide users with a way of obtaining a
 printed copy of the entire manual without having to know which preprocessors or formatting options (Section 45.13) need to be used.
The basic operation that make performs is
 to compare two sets of files — for example, formatted and unformatted files —
 and determine if any members of one set, the unformatted files, are more recent
 than their counterpart in the other set, the formatted files. This is accomplished by simply comparing
 the last-modification date (Section 8.2) (“timestamp”) of pairs of
 files. If the unformatted source file has been modified since the formatted file
 was made, make executes the specified command
 to “remake” the formatted file.
To use make, you have to write a
 description file, usually named Makefile
 (or
 makefile), that resides in the working directory for
 the project. The Makefile specifies a hierarchy of
 dependencies among individual files, called components. At the top of this
 hierarchy is a target. For our example, you can think of the target as a printed
 copy of a book; the components are formatted files generated by processing an
 unformatted file with nroff
 Section 45.12).
Here’s the Makefile that reflects these
 dependencies:
lp
 Section 45.2
manual: ch01.fmt ch02.fmt ch03.fmt
 lp ch0[1-3].fmt
ch01.fmt: ch01
 nroff -mm ch01 > ch01.fmt
ch02.fmt: ch02
 tbl ch02 | nroff -mm > ch02.fmt
ch03.fmt: ch03a ch03b ch03c
 nroff -mm ch03[abc] > ch03.fmt
This hierarchy is represented in Figure
 10-1.
[image: What Makefile describes: Files and commands to make manual]

Figure 11-1. What Makefile describes: Files and commands to make manual

The target is manual, which is made up of three formatted
 files whose names appear after the colon. Each of these components has its own
 dependency line. For instance, ch01.fmt is dependent upon a
 coded file named ch01. Underneath the dependency line is
 the command that generates ch01.fmt. Each command line must
 begin with a TAB.
When you enter the command make, the end
 result is that the three formatted files are spooled to the printer. However, a
 sequence of operations is performed before this final action. The dependency
 line for each component is evaluated, determining if the coded file has been
 modified since the last time the formatted file was made. The formatting command
 will be executed only if the coded file is more recent. After all the components
 are made, the lp (Section 45.2) command is
 executed.
As an example of this process, we’ll assume that all the formatted files are
 up-to-date. Then by editing the source file ch03a, we
 change the modification time. When you execute the make command, any output files dependent on
 ch03a are reformatted:
$ make
nroff -mm ch03[abc] > ch03.fmt
lp ch0[1-3].fmt
Only ch03.fmt needs to be remade. As soon as that
 formatting command finishes, the command underneath the target
 manual is executed, spooling the files to the
 printer.
Although this example has actually made only limited use of make’s facilities, we hope it suggests more ways
 to use make in a documention project. You can
 keep your Makefiles just this simple, or you can go on to
 learn additional notation, such as internal macros and suffixes, in an effort to
 generalize the description file for increased usefulness.
—TOR, from Unix Text Processing (Hayden Books,
 1987)

Even More Uses for make

Thinking about make will pay off in many
 ways. One way to get ideas about how to use it is to look at other
 Makefiles.
One of my favorites is the Makefile for NIS
 (
 Section 1.21) (formerly called
 YP, or “Yellow Pages”). I like this
 Makefile because it does something that you’d never
 think of doing (even though it suits make
 perfectly):

 updating a distributed database.
The Makefile is fairly complicated, so I don’t want to
 get into a line-by-line explication; but I will give you a sketch of how it
 works. Here’s the problem: a system administrator updates one or more files
 (we’ll say the passwd file) and wants to get her changes
 into the NIS database. So you need to check whether the new
 password file is more recent than the database. Unfortunately, the database
 isn’t represented by a single file, so there’s nothing to “check” against. The
 NIS
 Makefile handles this situation by creating empty files
 that serve as timestamps. There’s a separate timestamp file for every database
 that NIS serves. When you type make, make checks every master file against the
 corresponding timestamp. If a master file is newer than the timestamp, make knows that it has to rebuild part of the
 database. After rebuilding the database, the Makefile
 “touches” the timestamp, so that it reflects the time at which the database was
 built.
The Makefile looks something like this:
passwd: passwd.time
passwd.time: /etc/master/passwd
 @ lots of commands that rebuild the database
 @ touch passwd.time
 @ more commands to distribute the new database

hosts: hosts.time
hosts.time: similar stuff
You may never need to write a Makefile this complicated,
 but you should look for situations in which you can use make profitably. It isn’t just for

 programming.
— ML

Chapter 12. Showing What’s in a File

Cracking the Nut

Summary Box

 This
 chapter talks about the many ways of dumping a file to the screen. Most
 users know the brute force approach provided by cat (Section
 12.2), but there’s more to it than that:
	Pagers such as more and less
 (Section 12.3) that
 give you more control when looking through long files.

	Finding out what type of data a file contains before opening it
 (Section 12.6).

	Looking at just the beginning or end of a file (Section 12.8 through Section 12.12).

	Numbering lines (Section
 12.13).

— TOR

What Good Is a cat?

The cat

 command
 may well be the first command new users hear about, if only because of its odd
 name. cat stands for concatenate or, as some would
 say, catenate. Both words mean the same thing: to connect in a series. The
 cat command takes its filename arguments
 and strings their contents together. Essentially, cat takes its input and spits it out again.
cat has many uses, but the four most basic
 applications are described in the following list. In many ways, they don’t
 illustrate cat so much as they illustrate the
 shell’s output redirection (Section 43.1) mechanism.
	First form:
% cat
 file
% cat
 file1 file2 file
 ...
Use this form to display one or more files on the screen. The output
 doesn’t pause when the screen is full. As a result, if your files are
 more than one screenful long, the output will whiz by without giving you
 a chance to read it. To read output by screenfuls, use a pager such as
 less (Section 12.3).[1]

	Second form:
% cat
 file(s) > new_file
Use this form when you want to combine several smaller files into one
 large file. Be sure the destination file does not already exist;
 otherwise, it will be replaced by the new contents (effectively
 destroying the original). For example, the command:
% cat chap1 chap2 chap3 > book
creates a new file, book, composed of three
 files, one after the other. The three component files still exist as
 chap1, chap2, and
 chap3.

	Third form:
% cat
 file >> existing_file
% cat
 files >> existing_file
Use this form to add one or more files to the end of an existing file.
 For example:
% cat note1 note2 > note_list
% cat note3 >> note_list

	Fourth form:
% cat >
 newfile
Use this form as a quick-and-dirty way to create a new file. This is
 useful when you aren’t yet familiar with any of the standard text
 editors. With this command, everything you type at the keyboard goes
 into the new file. (You won’t be able to back up to a previous line.) To
 finish your input, enter CTRL-d on a line by itself.

Well, that was just in case there are some beginners on board. Section 12.4, Section 12.7, and Section 12.13 give some more useful
 tips about cat options.
— DG

“less” is More

 The most popular pager for Unix
 systems was once the more command, so named
 because it gave you “one more screen.” more
 is ubiquitous, but also somewhat limited in its capability. The less
 command (so named because, of course,
 “less is more!”) is more commonly used. less
 is a full-featured text pager that emulates more but offers an extended set of capabilities.
One particularly important feature of less
 is that it does not read all of its input before starting, which makes it faster
 than an editor for large input. less also
 offers many useful features and is available for almost every operating
 environment. As an extra bonus, it is installed by default on most free
 Unixes.
less begins execution by first examining
 the environment in which it is running. It needs to know some things about the
 terminal (or window) in which its output will be displayed. Once that’s known,
 less formats the text and displays the
 first screen’s output. The last line of the screen is reserved for user
 interaction with the program. less will
 display a colon (:) on the first column of the last line and leave the cursor
 there. This colon is a command prompt, awaiting command input from the user.
 Most commands to less are single-character
 entries, and less will act upon them
 immediately and without a subsequent carriage return (this is known as
 cbreak mode). The most basic command to less (and more)
 is a single space, which instructs the pager to move ahead in the text by one
 screen. Table 12-1 lists commonly
 used less commands.
Table 12-1. Commonly used less commands
	
 Command

 	
 Description

	
 Space

 	
 Scroll forward one screen.

	

 d

 	
 Scroll forward one-half screen.

	
 RETURN

 	
 Scroll forward one line.

	

 b

 	
 Scroll backward one screen. Unlike more, while less is reading from pipes
 Section 1.5), it
 can redraw the screen and read previous pages.

	

 u

 	
 Scroll backward one-half screen.

	

 y

 	
 Scroll backward one line.

	

 g

 	
 Go to the beginning of the text (could be slow with large
 amounts of text).

	

 G

 	
 Go to the end of the text (could be slow with large
 amounts of text).

	

 /
 pattern

 	
 Search forward for pattern,
 which can be a regular expression.

	

 ?
 pattern

 	
 Search backward for pattern,
 which can be a regular expression.

	

 n

 	
 Search for the next occurance of the last search, in the
 same direction: forward in the file if the previous search
 was using / and backwards
 in the file if the previous search was using ?.

	

 N

 	
 Search for the previous occurance of the last search. See
 earlier.

	

 h

 	
 Display a help screen.

	

 :n

 	
 Display next file from command line (two-character
 command).

	

 :p

 	
 Display previous file from command line (two-character
 command).

less has a rich command set, and its
 behavior can be modified as needed for your use.
 The lesskey program lets you make custom key definitions, and you can
 store your favorite setup options in the LESS
 environment variable (Section 35.3). See the less manpage for further details.
One of the big advantages of less is that
 it doesn’t require any relearning; less does
 the right thing when you use more, vi (Section
 17.2), or emacs (Section 19.1) file-browsing commands.
 Incidentally, it also protects you from terminal control sequences and other
 obnoxious things that happen when you try to view a binary file, because it
 escapes nonprinting characters (Section 12.4).

— JD

Show Nonprinting Characters with cat -v or od -c

 Especially if you
 use an
 ASCII-based terminal, files can have characters that your terminal can’t
 display. Some characters will lock up your communications software or hardware,
 make your screen look strange, or cause other weird problems. So if you’d like
 to look at a file and you aren’t sure what’s in there, it’s not a good idea to
 just cat the file!
Instead, try cat -v. It shows an ASCII

 (“printable”) representation of unprintable and non-ASCII
 characters. In fact, although most manual pages don’t explain how, you can read
 the output and see what’s in the file. Another utility for displaying
 nonprintable files is od
 . I usually use its
 -c option when I need to look at a file character by
 character.
Let’s look at a file that’s almost guaranteed to be unprintable: a directory
 file. This example is on a standard V7 (Unix Version 7) filesystem.
 (Unfortunately, some Unix systems won’t let you read a directory. If you want to
 follow along on one of those systems, try a compressed
 file (Section 15.6) or
 an executable program from /bin.) A directory usually has
 some long lines, so it’s a good idea to pipe cat’s output through fold:
% ls -fa
.
..
comp
% cat -v . | fold -62
M-^?^N.^@^@^@^@^@^@^@^@^@^@^@^@^@>^G..^@^@^@^@^@^@^@^@^@^@^@^@
M-a
comp^@^@^@^@^@^@^@^@^@^@^@^@MassAveFood^@^@^@^@^@hist^@^@^
@^@^@^@^@^@^@^@
% od -c .
0000000 377 016 . \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000020 > 007 . . \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000040 341 \n c o m p \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000060 \0 \0 M a s s A v e F o o d \0 \0 \0
0000100 \0 \0 h i s t \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
0000120
Each entry in a V7-type directory is 16 bytes long (that’s also 16 characters,
 in the ASCII system). The od -c command starts each line
 with the number of bytes, in octal, shown since the start of the file. The first
 line starts at byte 0. The second line starts at byte 20 octal (that’s byte 16
 in decimal, the way most people count). And so on. Enough about od for now, though. We’ll come back to it in a
 minute. Time to dissect the cat -v output:
	You’ve probably seen sequences like ^N and ^G. Those are
 control characters.
Another character like this is ^@,
 the character NUL (ASCII 0).
 There are a lot of NULs in the directory; more about that later. A
 DEL character (ASCII 177 octal)
 is shown as ^?. Check an ASCII
 chart.

	cat -v has its own symbol for characters outside
 the ASCII range with their high bits set, also called metacharacters. cat
 -v prints those as M-
 followed by another character. There are two of them in the
 cat -v output: M-^? and M-a.
To get a metacharacter, you add 200 octal. For an example, let’s look
 at M-a. The octal value of the letter
 a is 141. When cat
 -v prints M-a, it
 means the character you get by adding 141+200, or 341 octal.
You can decode that the character cat prints as M-^? in
 the same way. The ^? stands for the
 DEL character, which is octal 177. Add 200+177 to get 377 octal.

	If a character isn’t M-
 something or ^
 something, it’s a regular printable
 character. The entries in the directory (., .., comp, MassAveFood, and hist)
 are all made of regular ASCII characters.
If you’re wondering where the entries MassAveFood and hist
 are in the ls listing, the answer is
 that they aren’t. Those entries have been deleted from the directory.
 Unix puts two NUL (ASCII 0, or ^@)
 bytes in front of the names of deleted V7 directory entries.

cat

 has two options, -t and
 -e, for displaying whitespace in a line. The
 -v option doesn’t convert TAB and trailing-space characters to a
 visible form without those options. See Section 12.5.

 Next, od
 -c. It’s easier to explain than cat
 -v:
	od -c

 shows some characters
 starting with a backslash (\). It
 uses the standard Unix and C abbreviations for control characters where it can. For
 instance, \n stands for a newline
 character, \t for a tab, etc. There’s
 a newline at the start of the comp
 entry — see it in the od -c output? That explains
 why the cat -v output was broken onto a new line at
 that place: cat -v doesn’t translate newlines when
 it finds them.
The \0 is a NUL character (ASCII
 0). It’s used to pad the ends of entries in V7 directories when a name
 isn’t the full 14 characters long.

	od -c shows the octal value of other characters
 as three digits. For instance, the 007 means “the character 7 octal.” cat
 -v shows this as ^G
 (CTRL-g).
Metacharacters, the ones with octal
 values 200 and higher, are shown as M-
 something by cat -v. In
 od -c, you’ll see their octal values — such as
 341.
Each directory entry on a Unix Version 7 filesystem starts with a
 two-byte “pointer” to its location in the disk’s inode table. When you
 type a filename, Unix uses this pointer to find the actual file
 information on the disk. The entry for this directory (named .) is
 377 016. Its parent (named
 ..) is at > 007. And comp’s
 entry is 341 \n. Find those in the
 cat -v output, if you want; and compare the two
 outputs.

	Like cat -v, regular printable characters are
 shown as is by od -c.

The strings (
 Section 13.15) program finds
 printable strings of characters (such as filenames) inside mostly nonprintable
 files (such as executable binaries).

— JP

What’s in That Whitespace?

 The cat -v
 option (Section 12.4)
 shows an ASCII representation of unprintable and
 non-ASCII characters. cat has two options for displaying whitespace in a line. If you
 use the -t option with -v, TAB characters are
 shown as ^I. The -e option
 combined with -v marks the end of each line with a $ character. Some versions of cat don’t require the -v with
 those options. Let’s compare a one-line file without and with the -t
 -e (which may have to be typed separately, by the way;
 -te won’t work on some versions):
% cat afile
This is a one-line file - boring, eh?
% cat -v -t -e afile
ThiS^Hs is^Ia one-line file^I- boring, eh? $
Although you can’t tell it from plain cat,
 there’s a backspace (CTRL-h) before the first s, two TABs that take up only one column of whitespace each, and
 seven spaces at the end of the line. Knowing this can help you debug problems in
 printing and displaying files. It’s also a help for shell programmers who need
 to parse or sort the output of other programs.
— JP

Finding File Types

 Many different kinds of files live on the typical
 Unix system: database files, executable files, regular text files, files for
 applications like StarOffice, tar files, mail
 messages, directories, font files, and so on.
You often want to check to make sure you have the right “kind” of file before
 doing something. For example, you’d like to read the file tar. But before typing more tar, you’d like to know whether this file is your set of
 notes on carbon-based sludge or the tar
 executable. If you’re wrong, the consequences might be unpleasant. Sending the
 tar executable to your screen might screw
 up your terminal settings, log you off, or do any number of unpleasant
 things.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 file
The file
 utility tells you what sort of file
 something is. It’s fairly self-explanatory:
% file /bin/sh
/bin/sh: sparc demand paged executable
% file 2650
2650: [nt]roff, tbl, or eqn input text
% file 0001,v
0001,v: ascii text
% file foo.sh
foo.sh: shell commands
file is actually quite clever though it
 isn’t always correct — some versions are better than others. It doesn’t just
 tell you if something’s binary or text; it looks at the beginning of the file
 and tries to figure out what it’s doing. So, for example, you see that file
 2650 is an nroff
 (Section 45.12) file and
 foo.sh is a shell script. It isn’t quite clever enough
 to figure out that 0001,v is an RCS (Section 39.5)
 archive, but it does know that it’s a plain ASCII text file.
Many versions of file can be customized to
 recognize additional file types. The file /etc/magic tells
 file how to recognize different kinds of
 files. [My Linux system has the file command
 from ftp://ftp.astron.com/pub/file/, which uses a
 multiple-database format. It’s updated fairly often to understand new file
 formats. — JP] It’s capable of a lot (and should be capable
 of even more), but we’ll satisfy ourselves with an introductory explanation. Our
 goal will be to teach file to recognize
 RCS archives.
/etc/magic has four fields:
offset data-type value file-type

These are as follows:
	offset
	The offset into the file at which magic will
 try to find something. If you’re looking for something right at the
 beginning of the file, the offset should be 0. (This is usually what you want.)

	data-type
	The type of test to make. Use string for text comparisons, byte for byte comparisons, short for two-byte comparisons, and long for four-byte comparisons.

	value
	The value you want to find. For string comparisons, any text
 string will do; you can use the standard Unix escape sequences (such
 as \n for newline). For numeric
 comparisons (byte, short, long), this field should be a number,
 expressed as a C constant (e.g., 0x77 for the hexadecimal byte 77).

	file-type
	The string that file will print
 if this test succeeds.

So, we know that RCS archives begin with the word head. This word is right at the beginning of the file (offset 0).
 Since we obviously want a string comparison, we make the the following addition
 to /etc/magic:
0 string head RCS archive
This says, “The file is an RCS archive if you find the string head at an offset of 0 bytes from the beginning of
 the file.” Does it work?
% file RCS/0001,v
RCS/0001,v: RCS archive
As I said, the tests can be much more complicated, particularly if you’re
 working with binary files. To recognize simple text files, this is all you need
 to know.
— ML

Squash Extra Blank Lines

 Reading output with lots of empty lines can
 be a waste of screen space. For instance, some versions of man (Section 2.1) show
 all the blank lines between manual pages. To stop that, read your file or pipe
 it through cat -s. (

 Many versions of less (Section 12.3)
 and more have a similar -s
 option.) The -s option replaces multiple blank lines with a
 single blank line. (If your cat doesn’t have
 -s, see the sed alternative at the end.)
cat -s
 might not always seem to work. The problem
 is usually that the “empty” lines have SPACE, TAB, or CTRL-m characters on them.
 The fix is to let sed
 “erase” lines with those invisible
 characters on them:
% sed 's/^[SPACE TAB CTRL-v CTRL-m]*$//' file
 | cat -s
In vi (Section 18.6) and many terminal drivers, the CTRL-v character quotes
 the CTRL-m (RETURN) so that character doesn’t end the current line.
If you don’t have cat -s, then sed can do both jobs:
% sed -e 's/^[SPACE TAB CTRL-v CTRL-m]*$//' -e '/./,/^$/!d' file
— JP

How to Look at the End of a File: tail

 Let’s say that you want to look at the end of
 some large file. For example, you’ve just sent some mail and want to find out
 whether it was handled correctly. But when you look at your mail logs, you find
 out that the log file is 30 or 40 KB long, and you don’t care about the whole
 thing — you certainly don’t want to page through it until you get to the end.
 How do you handle this?
The tail command is just what you need in
 this situation. tail reads its input and
 discards everything except for the last ten lines (by default). Therefore, if
 you’re pretty sure that the information you want is at the end of the file, you
 can use tail to get rid of the junk that you
 don’t want. To see just the end of that mail log (in this case, qmail’s log):
% tail /var/log/maillog
Feb 19 10:58:45 yyy qmail: 1014141525.474209 delivery 6039: success: did_0+0+1/
Feb 19 10:58:45 yyy qmail: 1014141525.491370 status: local 0/10 remote 0/20
Feb 19 10:58:45 yyy qmail: 1014141525.492211 end msg 111214
Feb 19 11:11:15 yyy qmail: 1014142275.469000 new msg 111214
Feb 19 11:11:15 yyy qmail: 1014142275.469631 info msg 111214: bytes 281 from
<xxx@yyy.zyzzy.com> qp 51342 uid 1000
Feb 19 11:11:15 yyy qmail: 1014142275.562074 starting delivery 6040: msg 111214
to remote xyz@frob.com
Feb 19 11:11:15 yyy qmail: 1014142275.562630 status: local 0/10 remote 1/20
Feb 19 11:11:30 yyy qmail: 1014142290.110546 delivery 6040: success:
64.71.166.115_accepted_message./Remote_host_said:_250_Ok:_queued_as_C0EC73E84D/
Feb 19 11:11:30 yyy qmail: 1014142290.127763 status: local 0/10 remote 0/20
Feb 19 11:11:30 yyy qmail: 1014142290.128381 end msg 111214
For another common example, to see the latest entries from the BSD or
 Linux kernel ring
 buffer:
% dmesg | tail
lpt0: <Printer> on ppbus0
lpt0: Interrupt-driven port
ppi0: <Parallel I/O> on ppbus0
IPsec: Initialized Security Association Processing.
ad0: 19569MB <ST320430A> [39761/16/63] at ata0-master UDMA66
afd0: 239MB <IOMEGA ZIP 250 ATAPI> [239/64/32] at ata0-slave using PIO3
acd0: CDROM <ATAPI CDROM> at ata1-master using PIO4
Mounting root from ufs:/dev/ad0s1a
pid 50882 (fetch), uid 0: exited on signal 10 (core dumped)
pid 88041 (smbd), uid 1000 on /usr: file system full
This will give you the last ten lines from the dmesg command. If you need more or less than ten
 lines, look at Section 12.9.
Althought the GNU version is better behaved, some older versions of tail accept one (and only
 one!) filename:
% tail
 somefile
There are many other situations in which tail is useful: I’ve used it to make sure that a job that
 produces a big output file has finished correctly, to remind me what the last
 piece of mail in my mailbox was about, and so on. You’ll find tail important whenever you’re interested only in
 the end of something.
— ML

Finer Control on tail

What if you need to look at the last 11 lines of the file? The command
 tail -

 n shows the final n lines.
 The command tail +
 n discards the first n-1
 lines, giving you line n and everything that follows
 it.
You can also tell tail to count the number
 of characters or the number of 512-byte blocks. To do so, use the
 -c

 option (count characters) or the
 -b option (count blocks). If you want to state explicitly
 that you’re interested in lines, give the -l

 option.
Your tail

 probably has a -r option that shows the file in reverse order,
 starting from the last line.
Many versions of Unix limit the maximum number of lines that tail, especially tail -r, can
 display.
— ML

How to Look at Files as They Grow

One of the best things
 that you can do with tail is to look at a
 file as it is growing. For example, I once was debugging a program named
 totroff that converted a manual from a
 plain text format to troff. It was rather
 slow, so that you didn’t want to wait until the program finished before looking
 at the output. But you didn’t want to be typing more every 20 seconds either, to find out whether the part of the
 file that you were debugging had made it through yet. (more quits when you “run out” of file, so it can’t really help
 you look for a part of a file that hasn’t been written yet.) The tail
 -f command solves this problem. For example:
&
 Section 23.3
% totroff < file.txt > file.ms &
[1] 12345
% tail -f file.ms
.LP
Tail produces output as
the file grows.
 ...
CTRL-c
Now suppose you want to monitor several files at once. Administrators, for
 example, might want to keep track of several log files, such as
 /usr/adm/messages,
 /usr/adm/lpd-errs, UUCP error files, etc. The
 GNU tail
 program comes in useful for keeping an eye on several administrative log files
 at once. But it also comes in useful for nonadministrators.
For example, suppose you want to perform several greps through many files, saving the output in different files.
 You can then monitor the files using tail
 -f. For example:
% grep Berkeley ch?? > Berkeley.grep &
% grep BSD ch?? > BSD.grep &
% grep "System V" ch?? > SystemV.grep &
% grep SysV ch?? > SysV.grep &
% tail -f Berkeley.grep BSD.grep SystemV.grep SysV.grep
When new text appears in the files called with tail -f, it also appears on the screen:
==> SysV.grep <==
ch01:using a SysV-based UNIX system, you must

==> Berkeley.grep <==
ch01:at the University of California at Berkeley, where

==> BSD.grep <==
ch03:prefer BSD UNIX systems because they are less likely to
ch04:who use a BSD-based UNIX systems must run the

==> SysV.grep <==
ch04:is a SysV derivative sold by Acme Products Inc.
(When text is written to a new file, the filename is printed surrounded by
 ==> and <==.)
What’s actually happening here?
When you invoke tail -f, tail behaves just like it normally does: it reads the file and
 dumps the last ten (or however many) lines to the screen. But, unlike most
 applications, tail doesn’t quit at this
 point. Instead, tail goes into an infinite loop. It sleeps for a second, then
 wakes up and looks to see if the file is any longer, then sleeps again, and so
 on. Because this is an infinite loop, you have to enter CTRL-c (or whatever your
 interrupt key (Section 24.11) is) when you’ve seen the
 data you’re interested in, or when the file you’re watching has been completed.
 tail has no way of knowing when the file
 has stopped growing.
tail ignores the -f option
 when it is reading from a pipe. For example, totroff < file.txt |
 tail -f wouldn’t work.
Section 12.11 shows a useful
 feature of GNU tail: following files by name
 or file descriptor.
—ML and LM

GNU tail File Following

I like to keep an xterm window open on my
 Linux system so I can watch various log files. Although there are fancier
 log-file-monitoring programs (such as swatch), tail -f
 (Section 12.10) is perfect for
 me.
I also run a weekly cron (
 Section 25.2) job to rotate log files
 (rename the files, compress and archive them). When this job runs, the log files
 suddenly have new names — messages becomes
 messages.1, for instance — so the
 system logger starts writing to a different messages file. Then plain tail -f suddenly stops showing the log because
 it doesn’t realize that the same physical file on the disk suddenly has a new
 name. When this happened, I had to remember to kill and restart tail each Sunday morning . . . until I found the
 new version of GNU
 tail, that is.
The GNU

 tail
 - -follow option lets you choose how the files you’re watching
 should be followed. By default, GNU
 tail acts like the standard tail: it opens a file for reading and gets a
 file descriptor (Section 36.15) number, which it
 constantly watches for changes. But if that file is renamed and a new file with
 the old name (and a new inode) takes its place, the file descriptor may point to
 a file that’s not in use anymore.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 tail
The GNU

 tail options, - -follow=name
 and - -retry, tell it to watch the actual file name, not the
 open file descriptor. Here’s what happens Sunday mornings when I’m using
 this:
{ }
 Section 28.4
kludge# tail --follow=name --retry ~jerry/tmp/startx.log \
 /var/log/{messages,maillog,secure}
 ...lots of log messages...
tail: `/var/log/secure' has been replaced; following end of new file
tail: `/var/log/maillog' has been replaced; following end of new file
tail: `/var/log/messages' has been replaced; following end of new file
Dec 31 04:02:01 kludge syslogd 1.3-3: restart.
Dec 31 04:02:01 kludge syslogd 1.3-3: restart.
Dec 31 04:02:05 kludge anacron[8397]: Updated timestamp for job
`cron.weekly' to 2000-12-31
It’s just what I’ve always needed.

Printing the Top of a File

 head can be used to print the first few lines
 of one or more files (the “head” of the file or files). When more than one file
 is specified, a header is printed at the beginning of each file, and each is
 listed in succession.
Like tail (Section 12.9), head

 supports the -
 n option to control the number of lines displayed and
 the -c option to print characters/bytes instead of lines.

 GNU head also supports an extention to -c:
 -c
 nk prints the first n
 kilobytes of the file, and -c
 nm prints the first n
 megabytes of the file.
— DJPH

Numbering Lines

 There are times when you want to print
 out a file with the lines numbered — perhaps because you are showing a script or
 program in documentation and want to refer to individual lines in the course of
 your discussion.
This is one of the handy things cat can do
 for you with the -n option.
cat -n
 precedes
 each line with some leading spaces, the line number, and a TAB. How many leading
 spaces? It depends on how high the line numbers go. The line numbers are
 right-justified at column 6, which means that a 6-digit number will go all the
 way back to the margin. I only belabor this point in case you’re tempted to trim
 the leading spaces with something like cut
 (Section 21.14).
[image:] Go to http://examples.oreilly.com/upt3 for more information on: nl
If you have a version of cat that doesn’t support -n, try
 nl, the line-numbering program.
 nl -ba acts like cat -n. By
 itself, nl numbers only lines with text. The
 GNU version is on the web site.
You can achieve a similar effect with pr -t -n
 .
 (The -t keeps pr from
 inserting the header and footer (Section 45.6) it normally uses to break
 its output into pages.) And as long as we’re giving you choices, here are five
 more:

less -N filename
grep -n \^ filename
awk '{print NR,$0}' filename
sed = < filename | sed 'N;s/\n/ /'
ex - '+%#\|q' filename

[1] You may think this command form is pointless. In truth, this
 form is rarely used in such a basic way. More often, you’ll use
 this form along with some of cat’s display options or connect this command to
 other Unix commands via a pipe
 Section 1.5).

Chapter 13. Searching Through Files

Different Versions of grep

Summary Box
grep

 is one of Unix’s most useful tools. As
 a result, all users seem to want their own, slightly different version that
 solves a different piece of the problem. (Maybe this is a problem in itself;
 there really should be only one grep, as
 the manpage says.) Three versions of grep
 come with every Unix system; in addition, there are six or seven freely
 available versions that we’ll mention here, as well as probably dozens of
 others that you can find kicking around the Net.
Here are the different versions of grep
 and what they offer. We’ll start with the standard versions:
	Plain
 old grep
	Great for searching with regular expressions (Section 13.2).

	
 Extended
 grep (or egrep)
	Handles extended regular expressions.
 It is also, arguably, the fastest of the standard greps (Section 13.4).

	
 Fixed
 grep (or fgrep)
	So named because it matches fixed
 strings. It is sometimes inaccurately called “fast grep“; often it is really the
 slowest of them all. It is useful to search for patterns with
 literal backslashes, asterisks, and so on that you’d otherwise
 have to escape somehow. fgrep
 has the interesting ability to search for multiple strings
 (Section
 13.5).

Of course, on many modern Unixes all three are the same executable, just
 with slightly different behaviors, and so you may not see dramatic speed
 differences between them. Now for the freeware versions:
	

 agrep, or “approximate grep"
	A tool that finds lines that “more or less” match your search
 string. A very interesting and useful tool, it’s part of the
 glimpse package, which is
 an indexing and query system for fast searching of huge amounts
 of text. agrep is introduced
 in Section
 13.6.

	Very fast versions of grep,
 such as GNU grep/egrep/fgrep
	Most free Unixes use GNU grep as their main grep.

	

 rcsgrep
	Searches through RCS files
 (Section 39.5)
 (Section
 13.7).

In addition, you can simulate the action of grep

 with sed, awk, and perl. These utilities allow you to write such
 variations as a grep that searches for a
 pattern that can be split across several
 lines (Section
 13.9) and other context
 grep
 programs (Section 41.12), which show you a
 few lines before and after the text you find. (Normal greps just show the lines that match.)
— ML

Searching for Text with grep

There are many well-known benefits provided by grep to the user who doesn’t remember what his files contain.
 Even users of non-Unix systems wish they had a utility with its power to search
 through a set of files for an arbitrary text pattern (known as a regular expression).
The main function of grep is to look for
 strings matching a regular
 expression and print only the lines found. Use grep when you want to look at how a particular word is used in
 one or more files. For example, here’s how to list the lines in the file
 ch04 that contain either run-time
 or run time:
".."
 Section 27.12
$ grep "run[-]time" ch04
This procedure avoids run-time errors for not-assigned
and a run-time error message is produced.
run-time error message is produced.
program aborts and a run-time error message is produced.
DIMENSION statement in BASIC is executable at run time.
This means that arrays can be redimensioned at run time.
accessible or not open, the program aborts and a run-time
Another use might be to look for a specific HTML tag in a file. The following
 command will list top-level (<H1>
 or
 <h1>) and second-level (<H2>
 or
 <h2>) headings that have the starting
 tag at the beginning (^) of the line:
$ grep "^<[Hh][12]>" ch0[12].html
ch01.html:<h1>Introduction</h1>
ch01.html:<h1>Windows, Screens, and Images</h1>
ch01.html:<h2>The Standard Screen-stdscr</h2>
ch01.html:<h2>Adding Characters</h2>
ch02.html:<H1>Introduction</H1>
ch02.html:<H1>What Is Terminal Independence?</H1>
ch02.html:<H2>Termcap</H2>
ch02.html:<H2>Terminfo</H2>
In effect, it produces a quick outline of the contents of these files.
grep
 is also often used as a filter (Section 1.5),
 to select from the output of some other program. For example, you might want to
 find the process id of your inetd, if you just changed the configuration file
 and need to HUP inetd to make it reread the configuration file. Using ps (

 Section 24.5) and grep together allows you to do this without wading
 through a bunch of lines of output:
% ps -aux | grep inetd
root 321 0.0 0.2 1088 548 ?? Is 12Nov01 0:08.93 inetd -wW
deb 40033 0.0 0.2 1056 556 p5 S+ 12:55PM 0:00.00 grep inetd
% kill -HUP 321
There are several options commonly used
 with grep. The -i option
 specifies that the search ignore the distinction between upper- and lowercase.
 The -c
 option tells grep to return only a count of the number of lines matched. The
 -w
 option searches for the pattern “as a
 word.” For example, grep if would match words
 like cliff or knife, but grep -w if wouldn’t. The -l
 option returns only the name of the file
 when grep finds a match. This can be used to
 prepare a list of files for another command. The

 -v option (Section 13.3) reverses the normal action, and only prints out lines
 that don’t match the search pattern. In the previous example, you can use the
 -v option to get rid of the extra line of output:
% ps -aux | grep inetd | grep -v grep
root 321 0.0 0.2 1088 548 ?? Is 12Nov01 0:08.93 inetd -wW
% kill -HUP 321
— DD

Finding Text That Doesn’t Match

The grep programs have one very handy feature: they can select lines
 that don’t match a pattern just as they can select the lines that do. Simply use
 the -v option.
I used this most recently when working on this book. We have thousands of
 separate files under RCS (Section 39.5), and I sometimes forget
 which ones I’ve got checked out. Since there’s a lot of clutter in the directory
 and several people working there, a simple ls
 won’t do. There are a series of temporary files created by some of our printing
 scripts that I don’t want to see. All of their filenames consist of one or more
 x characters: nothing else. So I use a findpt

 alias to list only the files belonging to me. It’s a version of the find. alias described in Section 9.26, with -user
 tim added to select only my own files and a grep pattern to exclude the temporary files. My
 findpt alias executes the following
 command line:
find. | grep -v '^\./xx*$'
The leading ./ matches the start of each
 line of find. output, and xx* matches one x followed by zero or more xs.
 I couldn’t use the find

 operators !
 -name in that case because -name uses shell-like
 wildcard patterns, and there’s no way to say “one or more of the preceding
 character” (in this case, the character x) with shell
 wildcards.
Obviously, that’s as specific and nonreproducible an example as you’re likely
 to find anywhere! But it’s precisely these kinds of special cases that call for
 a rich vocabulary of tips and tricks. You’ll never have to use grep
 -v for this particular purpose, but you’ll find a use for it
 someday.
[Note that you could use a slightly simpler regular expression by
 using egrep (Section 13.4), which supports the

 plus (+) operator to mean “one or more,” instead of
 having to use the basic regular expression character character
 zero-or-more (xx*). The
 previous regular expression would then become:
find. | egrep -v '^\./x+$'
The richer regular expression language is the primary advantage of egrep. — DJPH]
— TOR

Extended Searching for Text with egrep

 The egrep command is yet another version of grep (Section
 13.2), one that extends the syntax of regular expressions. (Versions where
 grep and egrep are the same allow you to get egrep-like behavior from grep
 by using the -E option.) A plus sign (+) following a regular expression matches one or
 more occurrences of the regular expression; a question mark (?) matches zero or one occurrences. In addition,
 regular expressions can be nested within parentheses:
% egrep "Lab(oratorie)?s" name.list
AT&T Bell Laboratories
AT&T Bell Labs
Symtel Labs of Chicago
Parentheses surround a second regular expression and ? modifies this expression. The nesting helps to eliminate
 unwanted matches; for instance, the word Labors or
 oratories would not be matched.

 Another special feature of egrep is the vertical bar (|), which serves as an or
 operator between two expressions. Lines matching either expression are printed,
 as in the next example:
% egrep "stdscr|curscr" ch03
into the stdscr, a character array.
When stdscr is refreshed, the
stdscr is refreshed.
curscr.
initscr() creates two windows: stdscr
and curscr.
Remember to put the expression inside
 quotation marks to protect the vertical bar from being interpreted by the shell
 as a pipe symbol. Look at the next example:
% egrep "Alcuin (User|Programmer)('s)? Guide" docguide
Alcuin Programmer's Guide is a thorough
refer to the Alcuin User Guide
Alcuin User's Guide introduces new users to
You can see the flexibility that egrep’s
 syntax can give you, matching either User or
 Programmer and matching them regardless
 of whether they had an 's.
Both egrep and fgrep can read search patterns from a file using the -f option (Section
 13.5).
— DJPD

grepping for a List of Patterns

egrep (
 Section 13.4) lets you look for
 multiple patterns using its grouping and alternation operators (big words for

 parentheses and a vertical bar). But sometimes,
 even that isn’t enough.
Both egrep
 and
 fgrep
 support a
 -f option, which allows you to save a list of patterns
 (fixed strings in the case of fgrep) in a
 file, one pattern per line, and search for all the items in the list with a
 single invocation of the program. For example, in writing this book, we’ve used
 this feature to check for consistent usage in a list of terms across all
 articles:
% egrep -f terms *
(To be more accurate, we used rcsegrep (Section 13.7), since the articles are
 all kept under RCS (Section 39.5), but you get the
 idea.)
— TOR

Approximate grep: agrep

agrep

 is
 one of the nicer additions to the grep
 family. It’s not only one of the faster greps around; it also has the unique
 feature of looking for approximate matches. It’s also record oriented rather
 than line oriented. The three most significant features of agrep that are not supported by the grep family are as follows:
	The ability to search for approximate
 patterns, with a user-definable level of accuracy. For example:
% agrep -2 homogenos foo
will find “homogeneous,” as well as any other word that can be
 obtained from “homogenos” with at most two substitutions, insertions, or
 deletions.
% agrep -B homogenos foo
will generate a message of the form:
best match has 2 errors, there are 5 matches, output them? (y/n)

	agrep is record oriented rather
 than just line oriented; a record is by default a line, but it can be
 user-defined with the
 -d option specifying a pattern that will be used as a
 record delimiter. For example:
% agrep -d '^From ' 'pizza' mbox
outputs all mail messages (Section 1.21) (delimited by a
 line beginning with From and a space) in the file
 mbox that contain the keyword
 pizza. Another example:
% agrep -d '$$'
 pattern
 foo
will output all paragraphs (separated by an empty line) that contain
 pattern.

	agrep
 allows multiple
 patterns with
 AND (or OR) logic
 queries. For example:
% agrep -d '^From ' 'burger,pizza' mbox
outputs all mail messages containing at least one of the two keywords
 (, stands for OR).
% agrep -d '^From ' 'good;pizza' mbox
outputs all mail messages containing both keywords.

Putting these options together, one can write queries such as the
 following:
% agrep -d '$$' -2 '<CACM>;
 TheAuthor
 ;Curriculum;<198[5-9]>' bib
which outputs all paragraphs referencing articles in CACM between 1985 and
 1989 by TheAuthor dealing with Curriculum. Two errors are
 allowed, but they cannot be in either CACM or the year. (The < > brackets
 forbid errors in the pattern between them.)
Other agrep features include searching for
 regular expressions (with or without errors),
 using unlimited wildcards, limiting the errors to only insertions or only
 substitutions or any combination, allowing each deletion, for example, to be
 counted as two substitutions or three insertions, restricting parts of the query
 to be exact and parts to be approximate, and many more.
—JP, SW, and UM

Search RCS Files with rcsgrep

 Storing multiple versions of a file in
 RCS (Section 39.5) saves space. How can you search a lot of those files
 at once? You could check out all the files, then run grep — but you’ll have to remove the files after you’re done
 searching. Or, you could search the RCS files themselves with a command like
 grep
 foo
 RCS/*,v — but that can show you garbage lines
 from previous revisions, log messages, and other text that isn’t in the latest
 revision of your file. This article has two ways to solve that problem.
rcsgrep, rcsegrep, rcsfgrep

The rcsgrep
 script — and two links to it named
 rcsegrep and rcsfgrep — run grep

 , egrep
 (Section 13.4), and fgrep on all files in the RCS directory. (You
 can also choose the files to search.)
The script tests its name to decide whether to act like grep, egrep, or fgrep. Then it
 checks out each file and pipes it to the version of grep you chose. The
 output looks just like grep’s — although,
 by default, you’ll also see the messages from the co command (the -s option silences those
 messages).
By default, rcsgrep searches the latest
 revision of every file. With the -a option, rcsgrep will search all revisions of every
 file, from first to last. This is very handy when you’re trying to see what
 was changed in a particular place and to find which revision(s) have some
 text that was deleted some time ago. (rcsgrep uses rcsrevs (Section 39.6) to implement
 -a.)
Some grep options need special handling
 to work right in the script: -e, -f, and
 -l. (For instance, -e and
 -f have an argument after them. The script has to pass
 both the option and its argument.) The script passes any other options you
 type to the grep command. Your grep versions may have some other options that
 need special handling, too. Just edit the script to handle them.

rcsegrep.fast

To search an RCS file, rcsgrep and its
 cousins run several Unix processes: co,
 grep, sed, and others. Each process takes time to start and run. If
 your directory has hundreds of RCS files (like our directory for this book
 does), searching the whole thing can take a lot of time. I could have cut
 the number of processes by rewriting rcsgrep in Perl; Perl has the functionality of grep, sed,
 and others built in, so all it would need to do is run hundreds of co processes . . . which would still make it
 too slow.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 rcsegrep.fast
The solution I came up with was to do everything in (basically) one
 process: a gawk (Section 20.11) script. Instead of
 using the RCS co command to extract each
 file’s latest revision, the rcsegrep.fast

 script reads each RCS file directly (The rcsfile(5)
 manpage explains the format of an RCS file.) An RCS file contains the latest
 revision of its working file as plain text, with one difference: each
 @ character is changed to @@. rcsegrep.fast searches the RCS file until it finds the
 beginning of the latest revision. Then it applies an egrep-like regular expression to each line.
 Matching lines are written to standard output with the filename first; the
 -n option gives a line number after the
 filename.
rcsegrep.fast is sort of a kludge
 because it’s accessing RCS files without using RCS tools. There’s a chance
 that it won’t work on some versions of RCS or that I’ve made some other
 programming goof. But it’s worked very well for us. It’s much faster than
 rcsgrep and friends. I’d recommend
 using rcsegrep.fast when you need to
 search the latest revisions of a lot of RCS files; otherwise, stick to the
 rcsgreps.

— JP

GNU Context greps

 By
 default, standard grep utilities show only
 the lines of text that match the search pattern. Sometimes, though, you need to
 see the matching line’s context: the lines before or after the matching line.
 The GNU greps (grep, fgrep, and egrep) can do this. There are three context grep
 options:
	The -C

 option shows two lines of context around each match; you can also give a
 numeric argument, such as -C 4, to
 choose how many lines of context (here, four).

	The
 -B option shows context before each match. A numeric
 argument, such as -B 2 for two lines
 of context, is required.

	The -A

 option shows context after each match. A numeric argument, such as
 -A 3 for three lines of context,
 is required.

Each set of contiguous matching lines is separated by a line of two dashes
 (--).
Let’s look at an example: I’d like to search my system mail log for all
 messages sent to anyone at oreilly.com. But sendmail doesn’t put all information about a
 message on the to= log line; some info is in
 the from= line, which is usually the previous
 line. So I’ll search for all “to” lines and add one line of context before each
 match. I’ll also use the -n, which numbers the output lines, to
 make the context easier to see. This option also puts marker characters after
 the line number: a line number ends with a colon (:) if this line contains a
 match, and a dash (-) marks lines before or
 after a match. Here goes:
grep -n -B 1 'to=<[^@]*@oreilly\.com>' maillog
7-Nov 12 18:57:42 jpeek sendmail[30148]: SAA30148: from=<jpeek@jpeek.com>...
8:Nov 12 18:57:43 jpeek sendmail[30150]: SAA30148: to=<al@oreilly.com>...
9-Nov 12 22:49:51 jpeek sendmail[1901]: WAA01901: from=<jpeek@jpeek.com>...
10:Nov 12 22:49:51 jpeek sendmail[1901]: WAA01901: to=<wfurby@oreilly.com>...
11:Nov 12 22:50:23 jpeek sendmail[2000]: WAA01901: to=<wfurby@oreilly.com>...
--
25-Nov 13 07:42:38 jpeek sendmail[9408]: HAA09408: from=<jpeek@jpeek.com>...
26:Nov 13 07:42:44 jpeek sendmail[9410]: HAA09408: to=<al@oreilly.com>...
27-Nov 13 08:08:36 jpeek sendmail[10004]: IAA10004: from=<jpeek@jpeek.com>...
28:Nov 13 08:08:37 jpeek sendmail[10006]: IAA10004: to=<wfurby@oreilly.com>...
--
32-Nov 13 11:59:46 jpeek sendmail[14473]: LAA14473: from=<jpeek@jpeek.com>...
33:Nov 13 11:59:47 jpeek sendmail[14475]: LAA14473: to=<al@oreilly.com>...
34-Nov 13 15:34:17 jpeek sendmail[18272]: PAA18272: from=<jpeek@jpeek.com>...
35:Nov 13 15:34:19 jpeek sendmail[18274]: PAA18272: to=<al@oreilly.com>...
I’ve truncated each line for printing, but you still can see the matches. A
 few notes about what’s happening here:
	Line 8 matches (so it has a colon after its line number), and line 7
 is the line of context before (so it starts with a dash).

	Note that a line is never shown more than once, as you can see in
 lines 9 through 11: lines 10 and 11 both match, so they both have
 colons. But because line 10 has already been shown once, it’s not
 repeated as the line “before” line 11.

	There are no matches on line 12, so a line of two dashes is printed as
 a separator. The next match is on line 26.

— JP

A Multiline Context grep Using sed

 [One weakness of the grep family of programs is that they are line oriented. They read
 only one line at a time, so they can’t find patterns (such as phrases) that are
 split across two lines. agrep (Section 13.6) can do multiline searches.
 One advantage of the cgrep

 script is that it shows how to handle multiple-line patterns in sed and can be adapted for work other than
 searches. — JP]
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 cgrep
It may surprise you to learn that a fairly decent context grep (Section
 13.8) program can be built using sed. As an example, the following command line:
$ cgrep -10 system main.c
will find all lines containing the word system in the
 file main.c and show ten additional lines of context above
 and below each match. (The -context option must be at
 least one, and it defaults to two lines.) If several matches occur within the
 same context, the lines are printed as one large “hunk” rather than repeated
 smaller hunks. Each new block of context is preceded by the line number of the
 first occurrence in that hunk. This script, which can also search for patterns
 that span lines:
$ cgrep -3 "awk.*perl"
will find all occurrences of the word “awk” where it is followed by the word
 “perl” somewhere within the next three lines. The pattern can be any simple
 regular expression, with one notable exception: because you can match across
 lines, you should use \n in place of the
 ^ and $ metacharacters.
[While this is a wonderful example of some neat sed techniques, if this is all
 you’re trying to do, use perl. It has features designed to do exactly this sort
 of thing very efficiently, and it will be much faster. — DH]
— GU

Compound Searches

 You may recall that you can search for lines
 containing “this” or “that” using the egrep (Section 13.4)
 | metacharacter:
egrep 'this|that' files
But how do you grep for “this” and “that”? Conventional
 regular expressions don’t support an and operator because
 it breaks the rule of patterns matching one consecutive string of text. Well,
 agrep (Section 13.6) is one version of grep that breaks all the rules. If you’re lucky enough to have it
 installed, just use this:
agrep 'cat;dog;bird' files
If you don’t have agrep, a common technique
 is to filter the text
 through several greps so that only lines
 containing all the keywords make it through the pipeline intact:
grep cat files | grep dog | grep bird
But can it be done in one command? The closest you can come with grep is this idea:
grep 'cat.*dog.*bird' files
which has two limitations — the words must appear in the given order, and they
 cannot overlap. (The first limitation can be overcome using egrep 'cat.*dog|dog.*cat', but this trick is not
 really scalable to more than two terms.)
As usual, the problem can also be solved by moving beyond the grep family to
 the more powerful tools. Here is how to do a

 line-by-line and
 search using sed, awk, or perl:[1]
sed '/cat/!d; /dog/!d; /bird/!d' files
awk '/cat/ && /dog/ && /bird/' files
perl -ne 'print if /cat/ && /dog/ && /bird/' files
Okay, but what if you want to find where all the words occur in the same
 paragraph? Just turn on paragraph mode by setting
 RS="" in awk or by giving the -00 option to perl:
awk '/cat/ && /dog/ && /bird/ {print $0 ORS}' RS= files
perl -n00e 'print "$_\n" if /cat/ && /dog/ && /bird/' files
And if you just want a list of the files that
 contain all the words anywhere in them? Well, perl can easily slurp in entire files if you have the memory and
 you use the -0 option to set the record separator to something
 that won’t occur in the file (like NUL):
perl -ln0e 'print $ARGV if /cat/ && /dog/ && /bird/' files
(Notice that as the problem gets harder, the less powerful commands drop
 out.)
The grep filter technique shown earlier
 also works on this problem. Just add a -l option and the
 xargs command (
 Section 27.17) to make it pass
 filenames, rather than text lines, through the pipeline:
grep -l cat files | xargs grep -l dog | xargs grep -l bird
(xargs is basically the glue used when one
 program produces output needed by another program as command-line
 arguments.)
— GU

Narrowing a Search Quickly

 If you’re searching a long file to find a
 particular word or name, or you’re running a program like ls
 -l and you want to filter some lines, here’s a quick way to
 narrow down the search. As an example, say your phone file has 20,000 lines like
 these:
Smith, Nancy:MFG:50 Park Place:Huntsville:(205)234-5678
and you want to find someone named Nancy. When you see more information, you
 know you can find which of the Nancys she is:
% grep Nancy phones
 ...150 lines of names...
Use the C shell’s history mechanism
 (
 Section 30.2) and sed to cut out lines you don’t want. For example,
 about a third of the Nancys are in Huntsville, and you know she doesn’t work
 there:
% !! | sed -e /Huntsville/d
grep Nancy phones | sed -e /Huntsville/d
...100 lines of names...
The shell shows the command it’s executing: the previous command (!!) piped to sed, which deletes lines in the grep output that have the word
 Huntsville.
Okay. You know Nancy doesn’t work in the MFG or SLS groups, so delete those
 lines, too:
% !! -e /MFG/d -e /SLS/d
grep Nancy phones | sed -e /Huntsville/d -e /MFG/d -e /SLS/d
...20 lines of names...
Keep using !! to repeat the previous
 command line, and keep adding more sed
 expressions until the list gets short enough. The same thing works for other
 commands. When you’re hunting for errors in a BSDish system log, for example,
 and you want to skip lines from named and
 sudo, use the following:
% cat /var/log/messages | sed -e /named/d -e /sudo/d
...
If the
 matching pattern has anything but letters and numbers in it, you’ll have to
 understand shell quoting (Section 27.12) and sed regular expressions. Most times, though, this
 quick-and-dirty method works just fine.
[Yes, you can do the exact same thing with multiple
 grep -v (
 Section 13.3) commands, but using
 sed like this allows multiple matches
 with only one execution of sed.
 grep -v requires a new grep process for each condition. — DH]
— JP

Faking Case-Insensitive Searches

 This may be the simplest tip in the book,
 but it’s something that doesn’t occur to lots of users.
Some versions of egrep don’t support the -i option, which
 requests case-insensitive searches. I find that case-insensitive searches are
 absolutely essential, particularly to writers. You never know whether any
 particular word will be capitalized.
To fake a case-insensitive search with egrep, just eliminate any letters that might be uppercase.
 Instead of searching for Example, just search for
 xample. If the letter that might be capitalized occurs
 in the middle of a phrase, you can replace the missing letter with a “dot”
 (single character) wildcard, rather than omitting it.
Sure, you could do this the “right way” with a command like:
% egrep '[eE]xample' *
but our shortcut is easier.
This tip obviously isn’t limited to egrep;
 it applies to any utility that only implements case-sensitive searches, like
 more
 .
— ML

Finding a Character in a Column

 Here’s an idea for finding lines that have
 a given character in a column. Use the following simple awk (Section 20.10)
 command:
% awk 'substr($0,
 n
 ,1) == "
 c
 "'
 filename
where c is the character you’re searching for, and
 n is the column you care about.
Where would you do this? If you’re processing a file with strict formatting,
 this might be useful; for example, you might have a telephone list with a
 # in column 2 for “audio” telephone
 numbers, $ for dialup modems, and % for fax machines. A script for looking up phone
 numbers might use an awk command like this to
 prevent you from mistakenly talking to a fax machine.
If your data has any TAB characters, the columns might not be where you
 expect. In that case, use expand on the file,
 then pipe it to awk.
—JP and ML

Fast Searches and Spelling Checks with “look”

 Every so often, someone has designed a new,
 faster grep-type program. Public- domain
 software archives have more than a few of them. One of the fastest search
 programs has been around for years: look. It
 uses a binary search method that’s very fast. But look won’t solve all your problems: it works only on files that
 have been sorted (Section 22.1). If you have a big file or
 database that can be sorted, searching it with look will save a lot of time. For example, to search for all
 lines that start with Alpha:
% look Alpha
 filename
Alpha particle
Alphanumeric
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 look
The
 look program can also be used to check
 the spelling of a word or find a related word; see Section 16.3. If you don’t have look installed on your system, you can get it from
 the Unix Power Tools web site.
— JP

Finding Words Inside Binary Files

If you try to read
 binaries on your screen with cat -v (Section
 12.4), you’ll see a lot of nonprintable characters. Buried in there
 somewhere, though, are words and strings of characters that might make some
 sense. For example, if the code is copyrighted, you can usually find that
 information in the binary. The pathnames of special files read by the program
 will probably show up. If you’re trying to figure out which program printed an
 error message, use strings on the binaries
 and look for the error. Some versions of strings do a better job of getting just the useful information;
 others may write a lot of junk, too. But what the heck? — pipe the output to
 a pager (Section 12.3) or grep (Section 13.2), redirect it to a file,
 and ignore the stuff you don’t want.
Here’s a (shortened) example on FreeBSD:
% strings /usr/bin/write
/usr/libexec/ld-elf.so.1
FreeBSD
libc.so.4
strcpy
...
@(#) Copyright (c) 1989, 1993
 The Regents of the University of California. All rights reserved.
$FreeBSD: src/usr.bin/write/write.c,v 1.12 1999/08/28 01:07:48 peter Exp $
can't find your tty
can't find your tty's name
you have write permission turned off
/dev/
%s is not logged in on %s
%s has messages disabled on %s
usage: write user [tty]
/var/run/utmp
utmp
%s is not logged in
%s has messages disabled
%s is logged in more than once; writing to %s
%s%s
Message from %s@%s on %s at %s ...
The eighth line ($FreeBSD: ... $) comes from RCS (Section
 39.5) — you can see the version number, the date the code was last
 modified or released, and so on. The %s is a
 special pattern that the printf(3) function will replace
 with values like the username, hostname, and time.
By default, strings doesn’t search all of a
 binary file: it only reads the initialized and loaded sections. The - (dash) option tells strings to search all of the file. Another useful option is
 -
 n, where n is the minimum-length
 string to print. Setting a higher limit will cut the “noise,” but you might also
 lose what you’re looking for.
The od command with its option -s
 n command does a similar thing: finds all
 null-terminated strings that are at least n characters
 long.
— JP

A Highlighting grep

 Do
 you ever grep for a word, and when lines
 scroll down your screen, it’s hard to find the word on each line? For example,
 suppose I’m looking for any mail messages I’ve saved that say anything about the
 perl programming language. But when I
 grep the file, most of it seems
 useless:
% grep perl ~/Mail/save
> and some of it wouldn't compile properly. I wonder if
Subject: install script, for perl scripts
 perl itself is installed?
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I
Well, as described on its own manual page, here’s a program that’s “trivial,
 but cute.” hgrep runs a grep and highlights the string being searched for,
 to make it easier for us to find what we’re looking for.
% hgrep perl ~/Mail/save
> and some of it wouldn't compile properly. I wonder if
Subject: install script, for perl scripts
 perl itself is installed?
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I
> run but dies with a read error because it isn't properly
> if I can get it installed properly on another machine I
And now we know why the output looked useless: because most of it is! Luckily,
 hgrep is just a frontend; it simply
 passes all its arguments to grep. So hgrep necessarily accepts all of grep’s options, and I can just use the
 -w option to pare the output down to what I want:
% hgrep -w perl ~/Mail/save
Subject: install script, for perl scripts
 perl itself is installed?
The less (
 Section 12.3) pager also automatically
 highlights matched patterns as you search.

— LM

[1] Some versions of nawk require an
 explicit $0~ in front of each
 pattern.

Chapter 14. Removing Files

The Cycle of Creation and Destruction

As a computer user, you spend lots
 of time creating files. Just as the necessary counterpart of life is death, the
 other side of file creation is deletion. If you never delete any files, you soon
 have a computer’s equivalent of a population explosion: your disks get full, and
 you must either spend money (buy and install more disk drives) or figure out
 which files you don’t really need.
In this chapter, we’ll talk about ways to get
 rid of files: how to do it safely, how to get rid of files that don’t want to
 die, and how to find “stale” files — or unused files that have been around for a
 long time. “Safe” deletion is a particularly interesting topic, because Unix’s
 rm command is extreme: once you delete a
 file, it’s gone permanently. There are several solutions for working around this
 problem, letting you (possibly) reclaim files from the dead.
— ML

How Unix Keeps Track of Files: Inodes

 The ability to mumble about
 inodes is the key to social success at a Unix gurus’
 cocktail party. This may not seem attractive to you, but sooner or later you
 will need to know what an inode is.
Seriously, inodes are an important part of the Unix filesystem. You don’t need
 to worry about them most of the time, but it does help to know what they
 are.
An inode is a data structure on the disk that describes a file. It holds most
 of the important information about the file, including the on-disk address of the file’s data blocks
 (the part of the file that you care about). Each inode has its own identifying
 number, called an
 i-number.
You really don’t care about where a file is physically located on a disk. You
 usually don’t care about the i-number — unless you’re trying to find the links (
 Section 9.24, Section 10.3) to a file. But you do care
 about the following information, all of which is stored in a file’s inode:
	The file’s ownership
	The user and the group that own the file

	The file’s access mode (Section 1.17, Section 50.2)
	Whether various users and groups are allowed to read, write, or
 execute the file

	The file’s timestamps (Section 8.2)
	When the file itself was last modified, when the file was last
 accessed, and when the inode was last modified

	The file’s type
	Whether the file is a regular file, a special file, or some other
 kind of abstraction masquerading
 (Section 1.19) as a
 file

Each filesystem has a set number of inodes that are created when the
 filesystem is first created (usually when the disk is first initialized). This
 number is therefore the maximum number of files that the filesystem can hold. It
 cannot be changed without reinitializing the filesystem, which destroys all the
 data that the filesystem holds. It is possible, though rare, for a filesystem to
 run out of inodes, just as it is possible to run out of storage space — this can
 happen on filesystems with many, many small files.

 The
 ls -l (Section 50.2) command shows much of this information. The ls -i option (Section 10.4) shows a file’s i-number. The stat command lists almost everything in an inode.
— ML

rm and Its Dangers

 Under Unix, you use the rm command to delete files. The command is simple
 enough; you just type rm followed by a list
 of files. If anything, rm is too simple. It’s
 easy to delete more than you want, and once something is gone, it’s permanently
 gone. There are a few hacks that make rm
 somewhat safer, and we’ll get to those momentarily. But first, here’s a quick
 look at some of the dangers.
To understand why it’s impossible to reclaim deleted files, you need to know a
 bit about how the Unix filesystem works. The system contains a “free list,”
 which is a list of disk blocks that aren’t used. When you delete a file, its
 directory entry (which gives it its name) is removed. If there are no more
 links (Section 10.3) to the file (i.e., if the file only had one name), its
 inode (Section 14.2) is added to the list of free inodes, and its
 datablocks are added to the free list.
Well, why can’t you get the file back from the free list? After all, there are
 DOS utilities that can reclaim deleted files by doing something similar.
 Remember, though, Unix is a multitasking operating system. Even if you think
 your system is a single-user system, there are a lot of things going on “behind
 your back”: daemons are writing to log files, handling network connections,
 processing electronic mail, and so on. You could theoretically reclaim a file if
 you could “freeze” the filesystem the instant your file was deleted — but that’s
 not possible. With Unix, everything is always active. By the time you realize
 you made a mistake, your file’s data blocks may well have been reused for
 something else.

 When you’re deleting files, it’s important to
 use wildcards carefully. Simple typing errors can have disastrous consequences.
 Let’s say you want to delete all your object (.o) files.
 You want to type:
% rm *.o
But because of a nervous twitch, you add an extra space and type:
% rm * .o
It looks right, and you might not even notice the error. But before you know
 it, all the files in the current directory will be gone, irretrievably.
If you don’t think this can happen to you, here’s something that actually did
 happen to me. At one point, when I was a relatively new Unix user, I was working
 on my company’s business plan. The executives thought, so as to be “secure,”
 that they’d set a business plan’s permissions so you had to be root (Section
 1.18) to modify it. (A mistake in its own right, but that’s another
 story.) I was using a terminal I wasn’t familiar with and accidentally created a
 bunch of files with four control characters at the beginning of their name. To
 get rid of these, I typed (as root):
rm ????*
This command took a long time to execute. When about
 two-thirds of the directory was gone, I realized (with horror) what was
 happening: I was deleting all files with four or more characters in the
 filename.
The story got worse. They hadn’t made a backup in about five months. (By the
 way, this article should give you plenty of reasons for making regular backups (Section
 38.3).) By the time I had restored the files I had deleted (a
 several-hour process in itself; this was on an ancient version of Unix with a
 horrible backup utility) and checked (by hand) all the
 files against our printed copy of the business plan, I had resolved to be
 very careful with my rm commands.
[Some shells have safeguards that work against Mike’s first disastrous example
 — but not the second one. Automatic safeguards like these can become a crutch,
 though . . . when you use another shell temporarily and don’t have them, or when
 you type an expression like Mike’s very destructive second example. I agree with
 his simple advice: check your rm commands
 carefully! — JP]
— ML

Tricks for Making rm Safer

Summary Box

 Here’s a summary of ways to protect yourself
 from accidentally
 deleting files:
	Use rm -i, possibly as an alias (Section 14.8).

	Make rm -i less painful (Section 14.7).

	Write a “delete” script that moves “deleted” files to a temporary
 directory (Section
 14.9).

	tcsh

 has an
 rmstar variable that makes the shell ask
 for confirmation when you type something like rm *. In zsh, this protection is automatic unless you set the
 RM_STAR_SILENT shell option
 to stop it.

	Use revision control (Section 39.4).

	Make your own backups, as
 explained in Section
 38.3.

	Prevent deletion (or renaming or
 creating) of files by making the directory (not
 necessarily the files in it!) unwritable (Section 50.2).

If you want to delete with wild abandon, use rm -f
 (Section 14.10).
— ML

Answer “Yes” or “No” Forever with yes

 Some
 commands — like rm -i, find -ok, and
 so on — ask users to answer a “do it or not?” question from the keyboard. For
 example, you might have a file-deleting program or alias named del that asks before deleting each file:

% del *
Remove file1? y
Remove file2? y
 ...
If you answer y, then the file will be
 deleted.
What if you want to run a command that will ask you 200 questions and you want
 to answer y to all of them, but you don’t
 want to type all those ys from the keyboard?
 Pipe the output of yes to the command; it
 will answer y for you:
% yes | del *
Remove file1?
Remove file2?
 ...
If you want to answer n to all the
 questions, you can do:
% yes n | del *
Note
Not all Unix commands read their standard input for answers to prompts. If
 a command opens your terminal (/dev/tty
 (Section 36.15)) directly to
 read your answer, yes won’t work. Try
 expect (Section 28.18) instead.

— JP

Remove Some, Leave Some

Most people use rm -i for safety:
 so they’re always asked for confirmation before removing a particular
 file. Mike Loukides told me about another way he uses rm
 -i. When he has several files to remove, but the wildcards (Section
 1.13) would be too painful to type with a plain rm, Mike gives rm -i a bigger
 list of filenames and answers “n” to filenames he doesn’t want deleted. For
 instance:
% ls
aberrant abhorred abnormal abominate acerbic
aberrate abhorrent abominable absurd acrimonious
 ...
% rm -i ab*
rm: remove aberrant (y/n)? y
rm: remove aberrate (y/n)? n
rm: remove abhorred (y/n)? y
rm: remove abhorrent (y/n)? n
 ...
— JP

A Faster Way to Remove Files Interactively

 The
 rm -i command asks you about each file,
 separately. The method in this article can give you the safety without the
 hassle of typing y as much.
Another approach, which I recommend, is that
 you create a new script or alias, and use that alias whenever you delete files.
 Call the alias del or Rm, for instance. This way, if you ever execute
 your special delete command when it doesn’t exist, no harm is done — you just
 get an error. If you get into this habit, you can start making your delete
 script smarter. Here is one that asks you about each file if there are three or
 fewer files specified. For more than three files, it displays them all and asks
 you once if you wish to delete them all:
#!/bin/sh
case $# in
0) echo "`basename $0`: you didn't say which file(s) to delete"; exit 1;;
[123]) /bin/rm -i "$@" ;;
) echo "$"
 echo do you want to delete these files\?
 read a
 case "$a" in
 [yY]*) /bin/rm "$@" ;;
 esac
 ;;
esac
— BB

Safer File Deletion in Some Directories

 Using noclobber (Section
 43.6) and read-only files only protects you from a few occasional
 mistakes. A potentially catastrophic error is typing:
% rm * .o
instead of:
% rm *.o
In the blink of an eye, all of your files
 would be gone. A simple, yet effective, preventive measure is to create a file
 called -i in the particular directory in which you want
 extra protection:
./-
 Section 14.13
% touch ./-i
In this case, the * is expanded to match
 all of the filenames in the directory. Because the file -i
 is alphabetically listed before any file except those that start with one of the
 characters !, #, $, %, &, ', (,), *, +, or ,, the
 rm command sees the
 -i file as a command-line argument. When rm is executed with its -i
 option, files will not be deleted unless you verify the action. This still isn’t
 perfect, though. If you have a file that starts with a comma (,) in the
 directory, it will come before the file starting with a dash, and rm will not get the -i argument
 first.
The -i file also won’t save you from errors like
 this:
% rm [a-z]* .o
If lots of users each make a -i file in each of their
 zillions of subdirectories, that could waste a lot of disk inodes (Section 14.2).
 It might be better to make one -i file in your home
 directory and hard link (
 Section 15.4) the rest to it, like
 this:
~
 Section 30.11
% cd
% touch ./-i
% cd
 somedir
% ln ~/-i .
 ...
Second, to save disk blocks, make sure the -i file is
 zero-length — use the touch command, not
 vi or some other command that puts
 characters in the file.
— BB

Safe Delete: Pros and Cons

To protect themselves from accidentally deleting files, some users create a
 "

 trash” directory somewhere and then write a “safe
 delete” program that, instead of rming a
 file, moves it into the trash directory. The implementation
 can be quite complex, but a simple alias or shell function will do most of what
 you want:
alias del "mv \!* ~/trash/."
Or, for Bourne-type shells:
del () { mv "$@" $HOME/trash/.; }
Of course, now your deleted files collect in your trash
 directory, so you have to clean that out from time to time. You can do this
 either by hand or automatically, via a cron
 (
 Section 25.2) entry like this:
&&
 Section 35.14, -r
 Section 14.16
23 2 * * * cd $HOME/trash && rm -rf *
This deletes everything in the trash directory at 2:23 a.m. daily. To restore
 a file that you deleted, you have to look through your trash directory by hand
 and put the file back in the right place. That may not be much more pleasant
 than poking through your garbage to find the tax return you threw out by
 mistake, but (hopefully) you don’t make lots of mistakes.
There are plenty of problems with this approach. Obviously, if you delete two
 files with the same name in the same day, you’re going to lose one of them. A
 shell script could (presumably) handle this problem, though you’d have to
 generate a new name for the deleted file. There are also lots of nasty side
 effects and “gotchas,” particularly if you want an rm -r
 equivalent, if you want this approach to work on a network of workstations, or
 if you use it to delete files that are shared by a team of users.
Unfortunately, this is precisely the problem. A “safe delete” that isn’t
 really safe may not be worth the effort. Giving people a safety net with holes
 in it is only good if you can guarantee in advance that they won’t land in one
 of the holes, believing themselves protected. You can patch some of the holes by
 replacing this simple alias with a shell script; but you can’t fix all of
 them.
— ML

Deletion with Prejudice: rm -f

 The -f option to
 rm is the extreme opposite of
 -i. It says, “Just delete the file; don’t ask me any
 questions.” The “f” stands (allegedly) for “force,” but this isn’t quite right.
 rm -f won’t force the deletion of something that you
 aren’t allowed to delete. (To understand what you’re allowed to delete, you need
 to understand directory access permissions
 (Section 50.2).)
What, then, does rm -f do, and why would you want to use
 it?
	Normally, rm asks you for
 confirmation if you tell it to delete files to which you don’t have
 write access — you’ll get a message like Override protection
 444 for foo? (The Unix filesystem
 allows you to delete read-only files, provided you have write access to
 the directory.) With -f, these files will be deleted
 silently.

	Normally, rm’s exit status (
 Section 35.12) is 0 if it
 succeeded and 1 if it failed to delete the file. With
 -f, rm’s return
 status is always 0.

I find that I rarely use rm -f on the Unix command line,
 but I almost always use it within shell scripts. In a shell script, you
 (probably) don’t want to be interrupted by lots of prompts should rm find a bunch of read-only files.
You probably also don’t want to be interrupted if rm -f
 tries to delete files that don’t exist because the script never created them.
 Generally, rm -f keeps quiet about files that don’t exist;
 if the desired end result is for the file to be gone, it not existing in the
 first place is just as good.
— ML

Deleting Files with Odd Names

Summary Box
A perennial problem is deleting files
 that have strange characters (or other oddities) in their names. The next
 few articles contain some hints for the following:
	Deleting files with random control characters in their names
 (Section
 14.12).

	Deleting files whose names start with a dash (Section 14.13).

	Deleting files with “unprintable” filenames (Section 14.14).

	Deleting files by using the inode number (Section 14.15).

	Deleting directories and problems that can arise as a result
 (Section
 14.16).

We’ll also give hints for these:
	Deleting unused (or rarely used) files (Section 14.17).

	Deleting all the files in a directory, except for one or two
 (Section
 14.18).

Most tips for deleting files also work for renaming the files (if you want
 to keep them): just replace the rm
 command with mv.
— ML

Using Wildcards to Delete Files with Strange Names

Filenames can be hard to handle if their names include control characters or
 characters that are special to the shell. Here’s a directory with three oddball
 filenames:
% ls
What now
a$file
prog|.c
program.c
When you type those filenames on the command line, the shell interprets the
 special characters (space, dollar sign, and vertical bar) instead of including
 them as part of the filename. There are several
 ways (Section 14.11)
 to handle this problem. One is with wildcards
 (Section 33.2). Type a part of the
 filename without the weird characters, and use a wildcard to match the rest. The
 shell doesn’t scan the filenames for other special characters after it
 interprets the wildcards, so you’re (usually) safe if you can get a wildcard to
 match. For example, here’s how to rename What now to
 Whatnow, remove a$file, and rename
 prog|.c to prog.c:
% mv What* Whatnow
% rm -i a*
rm: remove a$file? y
% mv prog?.c prog.c
Filenames with control characters are just another version of the same
 problem. Use a wildcard to match the part of the name that’s troubling you. The
 real problem with control characters in filenames is that some control
 characters do weird things to your screen. Once I accidentally got a file with a
 CTRL-L in its name. Whenever I ran ls, it
 erased the screen before I could see what the filename was! Section 8.12 explains how, depending on
 your version of ls, you can use the
 -q or -b options to spot the offensive
 file and construct a wildcard expression to rename or delete it. (ls
 -q is the default on most Unix implementations these days, so you
 will probably never see this particular problem.)
— JP

Handling a Filename Starting with a Dash (-)

Sometimes you can slip and create a file whose name
 starts with a dash (-), like -output or
 -f. That’s a perfectly legal filename. The problem is
 that Unix command options usually start with a dash. If you try to type that
 filename on a command line, the command might think you’re trying to type a
 command option.
In almost every case, all you need to do is “hide” the dash from the command.
 Start the filename with ./
 (dot slash). This doesn’t change anything
 as far as the command is concerned; ./ just
 means “look in the current directory” (Section 1.16). So here’s how to remove
 the file -f:
% rm ./-f
(Most rm
 commands have a special option for
 dealing with filenames that start with a dash, but this trick should work on
 all Unix commands.)
— JP

Using unlink to Remove a File with a Strange Name

 Some versions of
 Unix have a lot of trouble with eight-bit filenames — that is, filenames that
 contain non-ASCII characters. The ls -q (
 Section 8.12) command shows the
 nonASCII characters as question marks (?),
 but usual tricks like
 rm -i * (Section 14.12) skip right over the file. You can see exactly what
 the filename is by using ls -b (
 Section 8.12):
% ls -q
 ????
afile
bfile
% rm -i *
afile: ? n
bfile: ? n
% ls -b
\t\360\207\005\254
afile
bfile
On older
 Unixes, the -b option to ls
 might not be supported, in which case you can use od
 -c (Section 12.4) to
 dump the current directory, using its relative pathname .
 (dot) (Section 1.16),
 character by character. It’s messier, and isn’t supported on all Unix platforms,
 but it’s worth a try:
% od -c .
 ...
00..... \t 360 207 005 254 \0 \0 \0 \0 ...
If you can move all the other files out of the directory, then you’ll probably
 be able to remove the leftover file and directory with
 rm -rf (Section 14.16, Section
 14.10). Moving files and removing the directory is a bad idea,
 though, if this is an important system directory like /bin.
 Otherwise, if you use the escaped name ls -b gave you, you
 might be able to remove it directly by using the system call
 unlink

 (2) in Perl. Use the same escape characters in
 Perl that ls -b displayed. (Or, if you needed to use
 od -c, find the filename in the od listing of the directory — it will probably end
 with a series of NUL characters, like \0 \0
 \0.)
perl -e 'unlink("\t\360\207\005\254");'
— JP

Removing a Strange File by its i-number

 If

 wildcards don’t work (Section 14.12) to remove a file with a
 strange name, try getting the file’s i-number
 (Section 13.2). Then use find’s -inum operator (Section 9.9) to remove the file.
Here’s a directory with a weird filename. ls (with its default -q option
 (Section 8.12) on most versions)
 shows that the name has three unusual characters. Running ls
 -i shows each file’s i-number. The strange file has i-number
 6239. Give the i-number to find, and the file
 is gone:
% ls
adir afile b???file bfile cfile dfile
% ls -i
 6253 adir 6239 b???file 6249 cfile
 9291 afile 6248 bfile 9245 dfile
% find . -inum 6239 -exec rm {} \;
% ls
adir afile bfile cfile dfile
Instead of deleting the file, I also could have renamed it to
 newname with the command:
% find . -inum 6239 -exec mv {} newname \;
If the current directory has large subdirectories, you’ll probably want to
 keep find from recursing down into them by
 using the -maxdepth 1

 operator. (finds that don’t support
 -maxdepth can use -prune
 (

 Section 9.25) for speed.)
— JP

Problems Deleting Directories

 What if you want to get rid of a directory?
 The standard — and safest — way to do this is to use the Unix rmdir
 “remove directory”
 utility:
% rmdir files
The rmdir command often confuses new users.
 It will only remove a directory if it is completely empty;
 otherwise, you’ll get an error message:
% rmdir files
rmdir: files: Directory not empty
% ls files
%
As in the example, ls will often show that
 the directory is empty. What’s going on?
It’s common for editors and other programs to create "
 invisible” files (files with names beginning
 with a dot). The
 ls command normally doesn’t list them; if you
 want to see them, you have to use ls -A (Section 8.9):[1]
% rmdir files
rmdir: files: Directory not empty
% ls -A files
.BAK.textfile2
Here, we see that the directory wasn’t empty after all: there’s a backup file
 that was left behind by some editor. You may have used rm *
 to clean the directory out, but that won’t
 work: rm also ignores files beginning with
 dots, unless you explicitly tell it to delete them. We really need a wildcard pattern like .??* or .[a-zA-Z0-9]* to catch normal dotfiles without catching the
 directories . and ..:
% rmdir files
rmdir: files: Directory not empty
% ls -A files
.BAK.textfile2
% rm files/.??*
% rmdir files
%
Other pitfalls might be files whose names consist of
 nonprinting characters or blank spaces —
 sometimes these get created by accident or by malice (yes, some people think
 this is funny). Such files will usually give you “suspicious” ls output (Section 8.11) (like a blank line).
If you don’t want to worry about all these special cases, just use
 rm -r
 :
% rm -r files
This command removes the directory and everything that’s in it, including
 other directories. A lot of people warn you about it; it’s dangerous because
 it’s easy to delete more than you realize. Personally, I use it all the time,
 and I’ve never made a mistake. I never bother with rmdir.
— ML

Deleting Stale Files

 Sooner or later, a lot of junk collects in your
 directories: files that you don’t really care about and never use. It’s possible
 to write find (Section 9.1) commands that will
 automatically clean these up. If you want to clean up regularly, you can add
 some find commands to your crontab file (
 Section 25.2).
Basically, all you need to do is write a find

 command that locates files based on their last access time (-atime (Section
 9.5)) and use -ok or -exec (Section 9.9) to delete them. Such a
 command might look like this:
% find . -atime +60 -ok rm -f {} \;
This locates files that haven’t been accessed in the last 60 days, asks if you
 want to delete the file, and then deletes the file. (If you run it from cron, make sure you use -exec
 instead of -ok, and make absolutely sure
 that the find won’t delete files that you
 think are important.)
Of course, you can modify this find command
 to exclude (or select) files with particular names; for example, the following
 command deletes old core dumps and GNU Emacs backup files (whose names end in
 ~), but leaves all others alone:
% find . \(-name core -o -name "*~" \) -atime +60 -ok rm -f {} \;
If you take an automated
 approach to deleting stale files, watch out for these things:
	There are plenty of files (for example, Unix utilities and log files)
 that should never be removed. Never run any
 “automatic deletion” script on /usr or / or any other “system” directory.

	On some systems, executing a binary executable doesn’t update
 the last access time. Since there’s no reason to read these files, you
 can expect them to get pretty stale, even if they’re used often. But you
 don’t want to delete them. If you cook up a complicated enough find command, you should be able to handle
 this automatically. Something like this should (at least partially) do
 the trick:
!
 Section 9.6, -perm
 Section 9.15
% find . -atime +30 ! -perm -111 ... -exec rm {} \;

	Along the same lines, you’d probably never want to delete C source
 code, so you might modify your find
 command to look like this:
% find . -atime +30 ! -perm -111 ! -name "*.c" ... -exec rm {} \;

	I personally find that automatically deleting files is an extreme and
 bizarre solution. I can’t imagine deleting files without knowing exactly
 what I’ve deleted or without (somehow) saving the “trash” somewhere just
 in case I accidentally removed something important. To archive the
 deleted files on tape, you can use the find

 -cpio
 operator if your system has it. Otherwise, try a little
 shell script with GNU tar; the following script writes the list
 of files to a temporary file and then, if that succeeds, reads the list
 of files, writes them to tape, and removes the files if the tape write
 succeeds:
umask 077
files=/tmp/CLEANUP$$
if
 Section 35.13, &&
 Section 35.14
if find ... -print > $files
then tar -c -T $files --remove && rm $files
else echo "cleanup aborted because find returned nonzero status"
fi

Okay, I’ve said that I don’t really think that automated deletion scripts are
 a good idea. However, I don’t have a good comprehensive solution. I spend a
 reasonable amount of time (maybe an hour a month) going through directories and
 deleting stale files by hand. I also have a clean

 alias that I type whenever I think about
 it. It looks like this:
alias clean "rm *~ junk *.BAK core #*"
That is, this alias deletes all of my Emacs
 (Section 19.1) backup files, Emacs
 autosave files (risky, I know), files named junk, some
 other backup files, and core dumps. I’ll admit that since I
 never want to save these files, I could probably live
 with something like this:
% find ~ \(-name "*~" -o -name core \) -atime +1 -exec rm {} \;
But still, automated deletion commands make me really nervous, and I’d prefer
 to live without them.
— ML

Removing Every File but One

 One problem with Unix: it’s not terribly
 good at “excluding” things. There’s no option to rm
 that says, “Do what you will with
 everything else, but please don’t delete these files.” You can sometimes create
 a wildcard expression (Section 33.2) that does what you want —
 but sometimes that’s a lot of work, or maybe even impossible.
Here’s one place where Unix’s command
 substitution (

 Section 28.14) operators (backquotes)
 come to the rescue. You can use ls to list
 all the files, pipe the output into a grep -v or egrep
 -v (

 Section 13.3) command, and then use
 backquotes to give the resulting list to rm.
 Here’s what this command would look like:
% rm -i `ls -d *.txt | grep -v '^john\.txt$'`
This command deletes all files whose names end in .txt,
 except for john.txt. I’ve probably been more careful than
 necessary about making sure there aren’t any extraneous matches; in most cases,
 grep -v john would probably suffice. Using ls -d (Section
 8.5) makes sure that ls doesn’t
 look into any subdirectories and give you those filenames. The rm
 -i asks you before removing each file; if you’re sure of
 yourself, omit the -i.
Of course, if you want to exclude two files, you can do that with egrep:
% rm `ls -d *.txt | egrep -v 'john|mary'`
(Don’t forget to quote the vertical bar (|), as shown earlier, to prevent the shell from piping egrep’s output to
 mary.)
Another solution is the nom (Section 33.8) script.
— ML

Using find to Clear Out Unneeded Files

 Do you run find on your machine every night? Do you know what it has to go
 through just to find out if a file is three days old and smaller than ten blocks
 or owned by “fred” or setuid root? This is why I tried to combine all the things
 we need done for removal of files into one big find script:

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 cleanup
2>&1
 Section 36.16
#! /bin/sh
#
cleanup - find files that should be removed and clean them
out of the file system.

find / \(\(-name '#*' -atime +1 \) \
 -o \(-name ',*' -atime +1 \) \
 -o \(-name rogue.sav -atime +7 \) \
 -o \(\(-name '*.bak' \
 -o -name '*.dvi' \
 -o -name '*.CKP' \
 -o -name '.*.bak' \
 -o -name '.*.CKP' \) -atime +3 \) \
 -o \(-name '.emacs_[0-9]*' -atime +7 \) \
 -o \(-name core \) \
 -o \(-user guest -atime +9 \) \
\) -print -exec rm -f {} \; > /tmp/.cleanup 2>&1
This is an example of using a single find
 command to search for files with different names and last-access times (see
 Section 9.5). Doing it all with one
 find is much faster — and less work for
 the disk — than running a lot of separate finds. The parentheses group each part of the expression. The
 neat indentation makes this big thing easier to read. The -print
 -exec at the end removes each file and also
 writes the filenames to standard output, where they’re collected into a file
 named /tmp/.cleanup — people can read it to see what files
 were removed. You should probably be aware that printing the names to
 /tmp/.cleanup lets everyone see pathnames, such as
 /home/joe/personal/resume.bak, which some people might
 consider sensitive. Another thing to be aware of is that this find command starts at the root directory; you can
 do the same thing for your own directories.
—CT and JP

[1] If your version of ls doesn’t have
 the -A option, use -a instead. You’ll
 see the two special directory entries
 . and .. (Section 8.9), which you can
 ignore.

Chapter 15. Optimizing Disk Space

Disk Space Is Cheap

 Many of the
 techniques in this chapter aren’t nearly as applicable as they once were. At the
 time of this writing, EIDE disks are about a dollar a gigabyte; even fast-wide
 SCSI isn’t that expensive. Often the solution to running low on disk space is
 just to buy more.
That said, many of these techniques illustrate useful things to know about
 Unix. It’s common these days to run Unix on an old, spare machine where it’s not
 worth the trouble of upgrading the disks. You may also be dealing with a Unix
 box at work or school that uses expensive, highly reliable disks with expensive
 backup procedures in place, where more disk space just isn’t an option. It never
 hurts to know how to eke the last few bytes out of a partition.
This chapter also has a lot of information about compressing and decompressing
 files, which is fairly common. (These days, you may well compress files to save
 network bandwidth rather than disk space, but the same principles apply.) So
 enjoy exploring!
— DH

Instead of Removing a File, Empty It

 Sometimes you don’t want to remove a file
 completely — you just want to empty it:
	If an active process has the file open (not uncommon for log files),
 removing the file and creating a new one will not affect the logging
 program; those messages will just keep going to the file that’s no
 longer linked. Emptying the file doesn’t break the association, and so
 it clears the file without affecting the logging program.

	When you remove a file and create a new one with the same name, the
 new file will have your default permissions and ownership (Section
 50.3). It’s better to empty the file now, then add new text
 later; this won’t change the permissions and ownership.

	Completely empty files (ones that ls -l says have
 zero characters) don’t take any disk space to store (except the few
 bytes that the directory entry (Section 10.2) uses).

	You can use the empty files as “place markers” to remind you that
 something was there or belongs there. Some Unix logging programs won’t
 write errors to their log files unless the log files already exist.
 Empty files work fine for that.

	Empty files hold a “timestamp” (just as files with text do) that shows
 when the file was last modified. I use empty files in some directories
 to remind me when I’ve last done something (backups, printouts, etc.).
 The find -newer (Section 9.8) command can compare
 other files to a timestamp file.

Well, you get the idea by now.
How can you empty a file? Watch out: when some editors say that a file has “no
 lines,” they may still append a newline character when writing the file. Just
 one character still takes a block of disk space to store. Here are some better
 ways to get a properly empty file:
	In Bourne-type shells like sh and
 bash, the most efficient way is
 to redirect the output of a null command:
$ > afile

	If the file already exists, that command will truncate the file
 without needing a subprocess.

	Copy the Unix empty file, /dev/null
 (Section 43.12), on top
 of the file:
% cp /dev/null afile

	Or just cat it there:
% cat /dev/null > afile

You can also “almost” empty the file, leaving just a few lines, this
 way:
tail
 Section 12.8
% tail afile > tmpfile
% cat tmpfile > afile
% rm tmpfile
That’s especially good for log files that you never want to delete completely.
 Use cat and rm, not mv -- mv will break any other links to the original file
 (afile) and replace it with the temporary
 file.
— JP

Save Space with “Bit Bucket” Log Files and Mailboxes

 Some Unix programs — usually background or
 daemon programs — insist on writing a log file. You might not want the log file
 itself as much as you want the disk space that the log file takes. Here are a
 few tips:
	Some programs will write to a log file only if the log file exists. If
 the program isn’t running, try removing the log file.

	If you remove a log file and the program recreates it, look for
 command-line options or a configuration-file setup that tells the
 program not to make the log file.

	If you can’t get the program to stop writing the log file, try
 replacing the log file with a
 symbolic link to
 /dev/null (Section
 43.12):
rm logfile
ln -s /dev/null logfile
The program won’t complain, because it will happily write its log file
 to /dev/null, which discards
 everything written to it. (Writing to /dev/null is also known as “throwing it in the bit
 bucket,” since all the bits just go away.) Watch out for programs that
 run at reboot or those that run from the system crontab (Section
 25.2) to truncate and replace the log file. These programs
 might replace the symbolic link with a small regular file that will
 start growing again.

	Does a system mailbox for a user like bin keep
 getting mail (Section 1.21) that you want to
 throw away? You may be able to add a .forward file
 to the account’s home directory with this single line:
/dev/null
Or add an alias in the system mail alias file that does the same
 thing:
bin: /dev/null
If your system has a command like newaliases to rebuild the alias database, don’t forget to
 use it after you make the change.

— JP

Save Space with a Link

 You might have copies of the same file in
 several directories for the following reasons:
	Several different users need to read it (a data file, a program setup
 file, a telephone list, etc.).

	It’s a program that more than one person wants to use. For some
 reason, you don’t want to keep one central copy and put its directory in
 your search path (Section 27.6).

	The file has a strange name or it’s in a directory you don’t usually
 use. You want a name that’s easier to type, but you can’t use mv.

Instead of running cp, think about ln. There are lots of advantages to links (Section
 10.3). One big advantage of hard links is that they don’t use any disk
 space.[1] The bigger the file, the more space you save with a link. A
 symbolic
 link always takes some disk space, so a hard link might be better for ekeing the
 most space out of your disk. Of course, you have to use a symbolic link if you
 want to link across filesystems, and symbolic links are much more obvious to
 other people, so a symlink is less likely to confuse people. Generally the
 clarity is worth the little bit of extra disk space.
— JP

Limiting File Sizes

 Here are techniques to keep you from creating
 large files (which can happen by accident, such as with runaway programs). Your
 shell may be able to set process limits. If you’re writing a program in C or
 another language that has access to kernel system calls, you can set these
 limits yourself. And there’s one more trick you can use.
These limits are passed to child processes. So, if your shell sets a limit,
 all programs you start from that shell will inherit the limit from their parent
 process.
limit and ulimit

Many shells have a built-in command that uses
 system calls to set resource
 limits. This is usually done from a shell setup
 file (Section 3.3),
 but can also be done from the command line at a shell prompt. To set a
 maximum file size in

 C-type shells and zsh

 , use the command limit filesize
 max-size. In
 the Korn shell and bash, use ulimit -f
 max-size. For example, the following csh and ksh
 commands keep you from creating any files larger than 2 MB:
% limit filesize 2m
$ ulimit -f 2000
Similarly, on many systems, you can use limit and ulimit to
 restrict the size of core dump files. Core dumps are
 generally large files, and if you are not actively developing or debugging,
 they are often not interesting or useful. To set a maximum size for core
 dumps, execute one of these commands:
% limit coredumpsize
 max-size
$ ulimit -c
 max-size
To eliminate core dumps entirely, use 0 (zero) for
 max-size. Because core dumps are essential
 for effective debugging, any users who actively
 debug programs should know the commands
 unlimit coredumpsize (which removes
 this restriction in csh

) and ulimit -c unlimited for bash and ksh.

Other Ideas

File size limits only apply to processes that are invoked from a shell
 where the limit is set. For instance, at

 and cron
 jobs might not read the shell setup file
 (Section 3.3) that sets your
 limit. One way to fix this is to set the limit explicitly before you start
 the job. For instance, to keep your cron
 job named cruncher from core-dumping,
 make the crontab entry similar to one
 of these:
;
 Section 28.16
47 2 * * * ulimit -c 0; cruncher
47 2 * * * bash -c 'ulimit -c 0; exec cruncher'
If you’ve written a daemon (Section 1.10) in C that starts as
 your workstation boots up (so no shell is involved), have your program
 invoke a system call like ulimit(3) or
 setrlimit(2).
If the unwanted files
 are created in a directory where you can deny write permission to the
 directory itself — and the files are not created by a process running as
 root (filesystem permissions don’t apply to
 root) — simply make the directory unwritable. (If
 the process needs to write temporary files, have it use /tmp. An environment variable such as
 TMP or TMPDIR may control
 this.)
You can prevent the files from being created by putting a zero-size
 unwritable file in the directory where the files are being created. Because
 the file is zero-length, it doesn’t take any disk space to store:
chmod
 Section 50.5
% touch core
% chmod 000 core
If all else fails, try making a symbolic link to /dev/null (Section
 43.12).
—ML and JP

Compressing Files to Save Space

 gzip is a fast and efficient compression
 program distributed by the GNU project. The basic function of
 gzip
 is to take a file
 filename, compress it, save the compressed version as
 filename.gz, and remove the original, uncompressed
 file. The original file is removed only if gzip is successful; it is very difficult to delete a file
 accidentally in this manner. Of course, being GNU software,
 gzip has more options than you want to
 think about, and many aspects of its behavior can be modified using command-line
 options.
First, let’s say that we have a large file named garbage.txt:
rutabaga% ls -l garbage.txt*
-rw-r--r-- 1 mdw hack 312996 Nov 17 21:44 garbage.txt
If we compress this file using gzip, it
 replaces garbage.txt with the compressed
 file garbage.txt.gz. We end up with the
 following:
rutabaga% gzip garbage.txt
rutabaga% ls -l garbage.txt*
-rw-r--r-- 1 mdw hack 103441 Nov 17 21:48 garbage.txt.gz
Note that garbage.txt is removed when
 gzip completes.
You can give gzip a list of filenames; it
 compresses each file in the list, storing each with a .gz
 extension. (Unlike the zip program for Unix
 and MS-DOS systems, gzip
 will not, by default, compress several files into a single
 .gz archive. That’s what tar is for; see Section
 15.7.)
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 gzip
How efficiently a file is compressed depends upon its format and contents. For
 example, many audio and graphics file formats (such as MP3
 and JPEG) are already well compressed, and gzip will have little or no effect upon such
 files. Files that compress well usually include plain-text files and binary
 files such as executables and libraries. You can get information on a gzip ped file using gzip

 -l. For example:
rutabaga% gzip -l garbage.txt.gz
compressed uncompr. ratio uncompressed_name
 103115 312996 67.0% garbage.txt
To get our original file back from the
 compressed version, we use gunzip, as
 in:
rutabaga% gunzip garbage.txt.gz
rutabaga% ls -l garbage.txt
-rw-r--r-- 1 mdw hack 312996 Nov 17 21:44 garbage.txt
which is identical to the original file. Note that when you gunzip a file, the compressed version is removed
 once the uncompression is complete.
gzip stores the name of the original,
 uncompressed file in the compressed version. This allows the name of the
 compressed file to be irrelevant; when the file is uncompressed it can be
 restored to its original splendor. To
 uncompress a file to its original filename, use the -N option
 with gunzip. To see the value of this option,
 consider the following sequence of commands:
rutabaga% gzip garbage.txt
rutabaga% mv garbage.txt.gz rubbish.txt.gz
If we were to gunzip rubbish.txt.gz
 at this
 point, the uncompressed file would be named rubbish.txt, after the new (compressed) filename. However, with
 the -N option, we get the following:
rutabaga% gunzip -N rubbish.txt.gz
rutabaga% ls -l garbage.txt
-rw-r--r-- 1 mdw hack 312996 Nov 17 21:44 garbage.txt
gzip and gunzip can also compress or uncompress data from
 standard input and output. If gzip is given no filenames to compress, it
 attempts to compress data read from standard input. Likewise, if you use the
 -c
 option with gunzip, it writes uncompressed data to standard
 output. For example, you could pipe the output of a command to gzip to compress the output stream and save it to
 a file in one step, as in:
rutabaga% ls -laR $HOME | gzip > filelist.gz
This will produce a recursive directory listing of your home directory and
 save it in the compressed file filelist.gz.
 You can display the contents of this file with the command:
rutabaga% gunzip -c filelist.gz | less
This will uncompress filelist.gz and pipe
 the output to the less (Section 12.3) command. When you use
 gunzip -c, the file on
 disk remains compressed.

 The gzcat command is identical to gunzip -c. You can think of this as a version of
 cat for compressed files. Some systems,
 including Linux, even have a version of the pager less

 for compressed files:
 zless.
When compressing files, you can use one of the options -1,
 -2, through -9 to specify the speed and
 quality of the compression used. -1 (also -
 -fast) specifies the fastest method, which compresses the files
 less compactly, while -9 (also - -best) uses
 the slowest, but best compression method. If you don’t specify one of these
 options, the default is -6. None of these options has any
 bearing on how you use gunzip; gunzip can uncompress the file no matter what
 speed option you use.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 bzip2
Another compression/decompression program has emerged to take the lead from

 gzip. bzip2 is the new kid on the block and sports even better
 compression (on the average about 10 to 20% better than gzip), at the expense of longer compression times. You cannot use
 bunzip2

 to
 uncompress files compressed with gzip and
 vice versa. Since you cannot expect everybody to have bunzip2 installed on their machine, you might want to confine
 yourself to gzip for the time being if you
 want to send the compressed file to somebody else (or, as many archives do,
 provide both gzip- and bzip2-compressed versions of the file). However,
 it pays to have bzip2 installed, because more
 and more FTP servers now provide bzip2-compressed packages to conserve disk space and, more
 importantly these days, bandwidth. You can recognize bzip2-compressed files from their typical
 .bz2 file name extension.
While the command-line options of bzip2 are
 not exactly the same as those of gzip, those
 that have been described in this section are, except for -
 -best and - -fast, which bzip2 doesn’t have. For more information, see the bzip2 manual page.
The bottom line is that you should use gzip/gunzip or bzip2/bunzip2
 for your compression needs. If you encounter a file with the extension
 .Z
 , it was probably produced by
 compress
 , and gunzip can uncompress it for you.
[These days, the only real use for compress
 — if you have gzip and bzip2 — is for creating compressed images needed
 by some embedded hardware, such as older Cisco IOS images. — DJPH]

— MW, MKD, and LK

Save Space: tar and compress a Directory Tree

 In the Unix filesystem, files are stored in
 blocks. Each nonempty file, no matter how small, takes up at least one
 block.[2] A directory tree full of little files can fill up a lot of partly
 empty blocks. A big file is more efficient because it fills all (except possibly
 the last) of its blocks completely.

 The tar (Section 39.2) command can read lots of
 little files and put them into one big file. Later, when you need one of the
 little files, you can extract it from the tar
 archive. Seems like a good space-saving idea, doesn’t it? But tar, which was really designed for magnetic
 tape archives, adds “garbage”
 characters at the end of each file to make it an even size. So, a big tar archive uses about as many blocks as the
 separate little files do.
Okay, then why am I writing this article? Because the gzip (Section 15.6)
 utility can solve the problems. It squeezes files down — compressing them to get
 rid of repeated characters. Compressing a tar
 archive typically saves 50% or more. The bzip2
 (Section 15.6) utility can save
 even more.
Warning
If your compressed archive is corrupted somehow — say, a disk block goes
 bad — you could lose access to all of the files. That’s
 because neither tar nor compression
 utilities recover well from missing data blocks. If you’re archiving an
 important directory, be sure you have good backup copies of the
 archive.

Making a compressed archive of a directory and all of its subdirectories is
 easy: tar copies the whole tree when you give
 it the top directory name. Just be sure to save the archive in some directory
 that won’t be copied — so tar won’t try to
 archive its own archive! I usually put the archive in the parent directory. For
 example, to archive my directory named project, I’d use the
 following commands. The .tar.gz extension isn’t required,
 but is just a convention; another common convention is
 .tgz. I’ve added the gzip - -best option for more compression — but
 it can be a lot slower, so use it only if you need to squeeze out every last
 byte. bzip2 is another way to save bytes, so
 I’ll show versions with both gzip and
 bzip2. No matter what command you use,
 watch carefully for errors:
..
 Section 1.16, -r
 Section 14.16
% cd project
% tar clf - . | gzip --best > ../project.tar.gz
% gzcat ../project.tar.gz | tar tvf -
 Quick verification
% tar clf - . | bzip2 --best > ../project.tar.bz2
% bzcat ../project.tar.bz2 | tar tvf -
 Quick verification
% cd ..
% rm -r project
[image:] Go to http://examples.oreilly.com/upt3 for more information on: tar
If you have GNU tar
 or another version with the
 z option, it will run gzip for you. This method doesn’t use the gzip - -best option, though — so
 you may want to use the previous method to squeeze out all you can. Newer
 GNU
 tar
 s have an I option
 to run bzip2. Watch out for other tar versions that use -I as an
 “include file” operator — check your manpage or tar — help.
 If you want to be sure that you don’t have a problem like this, use the long
 options (-- gzip and -- bzip2) because
 they’re guaranteed not to conflict with something else; if your tar doesn’t support the particular compression
 you’ve asked for, it will fail cleanly rather than do something you don’t
 expect.
Using the short flags to get compression from GNU tar, you’d write the previous tar command lines as follows:
tar czlf ../project.tar.gz .
tar cIlf ../project.tar.bz2 .

 In any case, the tar l
 (lowercase letter L) option will print messages if any of the files you’re
 archiving have other hard links (Section 10.4). If a lot of your files
 have other links, archiving the directory may not save much disk space — the
 other links will keep those files on the disk, even after your rm
 -r command.
Any time you want a list of the files in the archive, use tar
 t
 or
 tar tv:
less
 Section 12.3
% gzcat project.tar.gz | tar tvf - | less
rw-r--r--239/100 485 Oct 5 19:03 1991 ./Imakefile
rw-rw-r--239/100 4703 Oct 5 21:17 1991 ./scalefonts.c
rw-rw-r--239/100 3358 Oct 5 21:55 1991 ./xcms.c
rw-rw-r--239/100 12385 Oct 5 22:07 1991 ./io/input.c
rw-rw-r--239/100 7048 Oct 5 21:59 1991 ./io/output.c
 ...
% bzcat project.tar.bz2 | tar tvf - | less
 ...
% tar tzvf project.tar.gz | less
 ...
% tar tIvf project.tar.bz2 | less
 ...
To extract all the files
 from the archive, type one of these tar
 command lines:
% mkdir project
% cd project
% gzcat ../project.tar.gz | tar xf -

% mkdir project
% cd project
% bzcat ../project.tar.bz2 | tar xf -

% mkdir project
% cd project
% tar xzf ../project.tar.gz

% mkdir project
% cd project
% tar xIf ../project.tar.bz2
Of course, you don’t have to extract the files into a directory named
 project. You can read the archive file from other
 directories, move it to other computers, and so on.
You can also extract just
 a few files or directories from the archive. Be sure to use the exact name shown
 by the previous tar t command. For instance, to restore the
 old subdirectory named project/io (and everything that was
 in it), you’d use one of the previous tar
 command lines with the filename at the end. For instance:
% mkdir project
% cd project
% gzcat ../project.tar.gz | tar xf - ./io
— JP

How Much Disk Space?

Two tools,
 df and du, report how much disk space is free and how much is used by
 any given directory. For each filesystem, df
 tells you the capacity, how much space is in use, and how much is free. By
 default, it lists both local and remote (i.e., NFS (Section 1.21))
 filesystems. Under Linux or BSD Unix, the output from df looks like this:
% df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 99183 37480 53769 41% /
/dev/ad2s1e 3943876 1873453 1754913 52% /home
/dev/ad0s1f 3360437 1763460 1328143 57% /usr
/dev/ad0s1e 508143 16925 450567 4% /var
procfs 4 4 0 100% /proc
toy:/usr 17383462 15470733 522053 97% /toy
 ...
This report shows information about four local filesystems, the local
 procfs filesystem, and one remote filesystem (from the
 system toy). Note that a normal filesystem that is 100%
 full really has 5 to 10% free space — but only the superuser (Section
 1.18) can use this reserved space, and that usually isn’t a good
 idea. The reserved space is primarily for recovering from the disk filling up
 for some reason; the superuser can still successfully copy files and the like to
 free up space. Special filesystems often don’t do this sort of block
 reservation; procfs and ISO-9660 (CD-ROM and CD-R) filesystems don’t
 care.
df can be invoked in several other
 ways:
	If you already know that you’re interested in a particular filesystem,
 you can use a command such as df /home or
 df . (. means “the current directory” (Section 1.16)).

	If your system uses NFS and you are interested only in local (non-NFS)
 filesystems, use the command df -t ufs (most BSDs)
 or df -t ext2fs (most Linuxes). You should always
 use this command if remote file servers are down. If you have mounted
 remote disks that are unavailable, df
 will be extremely slow or hang completely.

	If you are interested in inode usage rather than filesystem data
 capacity, use the command df -i. This produces a
 similar report showing inode statistics.

If you are using the older System V filesystem (for example, on Solaris), the
 report from df will look different. The
 information it presents, however, is substantially the same. Here is a typical
 report:
% df
/ (/dev/root): 1758 blocks 3165 i-nodes
/u (/dev/u): 108 blocks 13475 i-nodes
/usr (/dev/usr): 15694 blocks 8810 i-nodes
[If you get this sort of output from df,
 you may be able to get the BSDish display by using df
 -P or df -k. You may also want
 to try the GNU df. — DH]
There are 1,758 physical blocks (always measured as 512-byte blocks for this
 sort of df, regardless of the filesystem’s
 logical block size) and 3,165 inodes available on the root filesystem. To find
 out the filesystem’s total capacity, use df -t. The command
 df -l only reports on your system’s local filesystems,
 omitting filesystems mounted by NFS or RFS.
It is often useful to know how much storage a specific directory requires.
 This can help you to determine if any users are occupying more than their share
 of storage. The du
 utility
 provides such a report. Generally you want to use the -k to
 du; by default its reports are in disk
 blocks and thus somewhat harder to read. -k asks df to report its numbers in kilobytes. Here’s a
 simple report from du:
% du -k
107 ./reports
888 ./stuff
32 ./howard/private
33 ./howard/work
868 ./howard
258 ./project/code
769 ./project
2634 .
du shows that the current directory and all
 of its subdirectories occupy about 2.5 MB (2,634 KB). The biggest directories in
 this group are stuff and howard, which
 have a total of 888 KB and 868 KB, respectively. The total for each directory
 includes the totals for any subdirectories, as well as files in the directory
 itself. For instance, the two subdirectories private and
 work contribute 65 KB to howard;
 the rest of the 868 KB is from files in howard itself. (So,
 to get the grand total of 2,634, du adds 107,
 888, 868, and 769, plus files in the top-level directory.) du does not show individual files as separate
 items unless you use its -a option.
The -s
 option
 tells du to report the total amount of
 storage occupied by a directory; it suppresses individual reports for all
 subdirectories. For example:
% du -s
2634 .
This is essentially the last line of the previous report. du
 -s is particularly useful for showing only the files in the
 current directory, rather than showing every directory down the tree:
% cd /home
% du -sk *
69264 boots
18236 chaos
1337820 deb
...
—ML, from System Performance Tuning (O’Reilly,
 2002)

Compressing a Directory Tree: Fine-Tuning

 Here’s a
 quick little command that will compress (Section 15.6) files in the current
 directory and below. It uses find (
 Section 9.2) to find the files
 recursively and pick the files it should compress:
-size
 Section 9.14, xargs
 Section 28.17
% find . ! -perm -0100 -size +1 -type f -print | xargs gzip -v
This command finds all files that are the following:
	Not executable (!
 -perm
 -0100), so we don’t compress shell
 scripts and other program files.

	Bigger than one block, since it won’t save any disk space to compress
 a file that takes one disk block or less. But, depending on your
 filesystem, the -size +1 may not
 really match files that are one block long. You may need to use -size +2, -size
 +1024c, or something else.

	Regular files (-type
 f) and not directories, named pipes,
 etc.

The -v switch to gzip
 tells you the names of the files and how much they’re being compressed. If your
 system doesn’t have xargs, use the
 following:
% find . ! -perm -0100 -size +1 -type f -exec gzip -v {} \;
Tune the find expressions to do what you
 want. Here are some ideas — for more, read your system’s find manual page:
	! -name *.gz
	Skip any file that’s already gzipped (filename ends with .gz
).

	-links 1
	Only compress files that have no other (hard) links.

	-user
 yourname
	Only compress files that belong to you.

	-atime +60
	Only compress files that haven’t been accessed (read, edited,
 etc.) for more than 60 days.

You might want to put this in a job that’s run every month or so by at (Section
 25.5) or cron (Section 25.2).
— JP

Save Space in Executable Files with strip

 After you
 compile and debug a program, there’s a part of the executable binary that you
 can delete to save disk space. The strip
 command does the job. Note that once you strip a file, you can’t use a symbolic
 debugger like dbx or gdb on it!
Here’s an example. I’ll compile a C program and list it. Then I’ll strip it
 and list it again. How much space you save depends on several factors, but
 you’ll almost always save something.
-s
 Section 9.14
% cc -o echoerr echoerr.c
% ls -ls echoerr
 52 -rwxr-xr-x 1 jerry 24706 Nov 18 15:49 echoerr
% strip echoerr
% ls -ls echoerr
 36 -rwxr-xr-x 1 jerry 16656 Nov 18 15:49 echoerr
The GNU strip has a number of options to
 control what symbols and sections are stripped from the binary file. Check the
 strip manpage for specific details of the
 version you have.
If you know that you want a file stripped when you compile it, your compiler
 probably has a -s option (which is passed to ld after compilation is complete). If you use
 ld directly — say, in a makefile (Section
 11.10) — use the -s option there.

 Here’s a
 shell script named stripper that finds all
 the unstripped executable files in your bin
 directory (Section 7.4) and strips them. It’s a quick way to save space on your
 account. (The same script, searching the whole filesystem, will save even more
 space for system administrators — but watch out for unusual filenames):
xargs
 Section 28.17
#! /bin/sh
skipug="! -perm -4000 ! -perm -2000" # SKIP SETUID, SETGID FILES
find $HOME/bin -type f \(-perm -0100 $skipug \) -print |
xargs file |
sed -n '/executable .*not stripped/s/: TAB .*//p' |
xargs -rpl strip
The find (Section 9.2) finds all executable files that aren’t setuid or setgid
 and runs file (Section 12.6) to get a description of
 each. The sed command skips shell scripts and
 other files that can’t be stripped. sed
 searches for lines from file like the
 following:
/usr/local/bin/xemacs: TAB xxx... executable
xxx... not stripped
with the word “executable” followed by “not stripped.” sed removes the colon, tab, and description, then
 passes the filename to strip.
The final xargs command uses the options
 -r (to not run strip if
 sed outputs no names to strip),
 -p (to be interactive, asking before each strip), and -l (to process one
 filename at a time). None of those options are required; if you don’t want them,
 you might at least use -t so the script will list the files
 it’s stripping.
— JP

Disk Quotas

 No matter how much disk space you have,
 you will eventually run out. One way the system administrator can force users to
 clean up after themselves is to impose quotas on disk usage. Many Unixes have
 quota systems available: check your manual pages with a command like apropos quota.
If you’re a user, how do quotas affect you? Sooner or later, you may find that
 you’re over your quota. Quotas are maintained on a per-filesystem basis. They
 may be placed on disk storage (the number of blocks) and on inodes (the number
 of files).
 The quota system maintains the concept of
 hard and soft limits. When you
 exceed a soft limit, you’ll get a warning (WARNING:
 disk quota
 exceeded), but you can continue to accumulate
 more storage. The warning will be repeated whenever you log in. At some point
 (i.e., after some number of sessions in which the storage stays above the soft
 limit), the system loses patience and refuses to allocate any more storage.
 You’ll get a message like OVER DISK
 QUOTA: NO MORE DISK SPACE. At this point, you
 must delete files until you’re again within the soft limit. Users are never
 allowed to exceed their hard limit. This design allows you to have large
 temporary files without penalty, provided that they do not occupy too much disk
 space long-term.
There may also be a quota on the number of files (i.e., inodes) that you can
 own per filesystem. It works exactly the same way; you’ll get a warning when you
 exceed the soft limit; if you don’t delete some files, the system will
 eventually refuse to create new files.
The quota command shows a user’s quota on each filesystem where
 quotas have been set. With no option, it displays a line for each system where
 you’re over quota. The -v option shows a line for each system
 where you have a quota. The output can be a bit confusing on systems with the
 automounter running, since it mounts things dynamically and uses symlinks to
 make things appear where you expect them, so the filesystem names may not match
 the directory names you’re accustomed to:
$ quota
Over disk quota on /home/jpeek, remove 228K within 4.0 days
Over file quota on /home/jpeek, remove 13 files within 4.5 days
$ quota -v
Filesystem usage quota limit timeleft files quota limit timeleft
/export/users 0 8000 9000 0 600 750
/export/home9 8228 8000 9000 4.0 days 613 600 750 4.5 days
In this case, the automounter has clearly mounted my home directory on
 /export/home9, since that shows the
 same information that quota showed me in the
 first command.

— ML and JP

[1] The link entry takes a few characters in the directory where you make
 the link. Unless this makes the directory occupy another disk block, the
 space available on the disk doesn’t change.

[2] Completely empty files (zero characters) don’t take a block.

Part IV. Basic Editing

Part IV contains the following
 chapters:
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22

Chapter 16. Spell Checking, Word Counting, and Textual Analysis

The Unix spell Command

On some Unix systems, the
 spell

 command reads one or more files and prints a list of words that may be
 misspelled. You can
 redirect the output to a file, use grep (Section 13.1) to locate each of the
 words, and then use vi or ex to make the edits. It’s also possible to hack
 up a shell and sed script that interactively
 displays the misspellings and fixes them on command, but realistically, this is
 too tedious for most users. (The ispell (Section 16.2) program solves many —
 though not all — of these problems.)
When you run spell on a file, the list of
 words it produces usually includes a number of legitimate words or terms that
 the program does not recognize. spell is case
 sensitive; it’s happy with Aaron but complains about
 aaron. You must cull out the proper nouns and other
 words spell doesn’t know about to arrive at a
 list of true misspellings. For instance, look at the results on this sample
 sentence:
$ cat sample
Alcuin uses TranScript to convert ditroff into
PostScript output for the LaserWriter printerr.
$ spell sample
Alcuin
ditroff
printerr
LaserWriter
PostScript
TranScript
Only one word in this list is actually misspelled.

 On many Unix systems, you can supply a local
 dictionary file so that spell recognizes
 special words and terms specific to your site or application. After you have run
 spell and looked through the word list,
 you can create a file containing the words that were not actual misspellings.
 The spell command will check this list after
 it has gone through its own dictionary. On certain systems, your word-list file
 must be sorted (Section 22.1).
If you added the special terms in a file named dict, you
 could specify that file on the command line using the + option:
$ spell +dict sample
printerr
The output is reduced to the single misspelling.
The spell command will make some errors
 based on incorrect derivation of spellings from the root words contained in its
 dictionary. If you understand how spell
 works (Section 15.4), you may be less surprised by some of these
 errors.
As stated at the beginning, spell isn’t on
 all Unix systems, e.g., Darwin and FreeBSD. In these other environments, check
 for the existence of alternative spell checking, such as ispell (Section 16.2).
 Or you can download and install the GNU version of spell at http://www.gnu.org/directory/spell.html.
—DD and SP

Check Spelling Interactively with ispell

The original Unix spell-checking program, spell (

 Section 15.1), is fine for quick
 checks of spelling in a short document, but it makes you cry out for a real
 spellchecker, which not only shows you the misspelled words in context, but
 offers to change them for you.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 ispell
ispell, a very useful program that’s been
 ported to Unix and enhanced over the years, does all this and more. Either it
 will be preinstalled or you’ll need to install it for your Unix version.
Here’s the basic usage: just as with spell,
 you spell check a document by giving ispell a
 filename. But there the similarities cease. ispell takes over your screen or window, printing two lines of
 context at the bottom of the screen. If your terminal can do reverse video, the
 offending word is highlighted. Several alternate possibilities are presented in
 the upper-left corner of the screen — any word in ispell’s dictionary that differs by only one letter, has a
 missing or extra letter, or transposed letters.
Faced with a highlighted word, you have eight choices:
	SPACE
	Press the spacebar to accept the current spelling.

	A
	Type A to accept the current
 spelling, now and for the rest of this input file.

	I
	Type I to accept the current
 spelling now and for the rest of this input file and also to
 instruct ispell to add the word
 to your private dictionary. By default, the private dictionary is
 the file .ispell_words in your home directory,
 but it can be changed with the -p option or by
 setting the environment variable
 (Section 35.3)
 WORDLIST

 to the name of some other file. If you work with computers, this
 option will come in handy since we use so much jargon in this
 business! It makes a lot more sense to “teach” all those words to
 ispell than to keep being
 offered them for possible correction. (One gotcha: when specifying
 an alternate file, you must use an absolute
 pathname (Section
 1.14), or ispell will
 look for the file in your home directory.)

	0-9
	Type the digit corresponding to one of ispell’s alternative suggestions to use that spelling
 instead. For example, if you’ve typed “hnadle,” as I did when
 writing this article, ispell will
 offer 0: handle in the upper-left
 corner of your screen. Typing 0
 makes the change and moves on to the next misspelling, if
 any.

	R
	Type R if none of ispell’s offerings do the trick and
 you want to be prompted for a replacement. Type in the new word, and
 the replacement is made.

	L
	Type L if ispell didn’t make any helpful
 suggestions and you’re at a loss as to how to spell the word
 correctly. ispell will prompt you
 for a lookup string. You can use * as a wildcard character (it appears to substitute
 for zero or one characters); ispell will print a list of matching words from its
 dictionary.

	Q
	Type Q to quit, writing any
 changes made so far, but ignoring any misspellings later in the
 input file.

	X
	Type X to quit without writing
 any changes.

But
 that’s not all! ispell also saves a copy of
 your original file with a .bak extension, just in case you
 regret any of your changes. If you don’t want ispell making .bak files, invoke it with the
 -x option.

 How about
 this: ispell knows about capitalization. It
 already knows about proper names and a lot of common acronyms — it can even
 handle words like “TEX” that have oddball capitalization.
 Speaking of TEX, ispell has special modes in which it recognizes
 TEX constructions.
If ispell isn’t on your system by default,
 you should be able to find an installation of it packaged in your system’s own
 unique software-installation packaging, discussed in Chapter 40.
In addition, you can also look for a newer spell-checking utility, aspell

 ,
 based on ispell but with improved processing.
 Though aspell is being considered a
 replacement for ispell, the latter is still
 the most commonly found and used of the two.
— TOR

How Do I Spell That Word?

Are you writing a document and want to check the spelling of a word before you
 finish (if you aren’t using a word processor with automatic spelling correction,
 that is)? A Unix system gives you several ways to do this.
Note
Because this is Unix, you can use any of these approaches when you write a
 script of your own.

	If you aren’t sure which of two
 possible spellings is right, you can use the spell command with no arguments to find out. Type the
 name of the command, followed by a RETURN, then type the alternative
 spellings you are considering. Press CTRL-d (on a line by itself) to end
 the list. The spell command will echo
 back the word(s) in the list that it considers to be in error:
$ spell
misspelling
mispelling
CTRL-d
mispelling

	If you’re using ispell (

 Section 16.2) or the newer
 aspell, you need to add the
 -a option. The purpose of this option is to let the
 speller interact with other programs; there are details in the programs’
 documentation. But, like most Unix filters, you can also let these
 programs read a word from standard input and write their response on
 standard output; it will either tell you that the spelling is right or
 give you a list of suggestions. aspell and ispell will
 use their local dictionaries and improved spelling rules.
As an example, let’s check the spelling of
 outragous and whut with
 both ispell and aspell:
$ ispell -a
@(#) International Ispell Version 3.1.20 10/10/95
outragous whut
& outragous 1 0: outrageous
& whut 5 10: hut, shut, what, whet, whit

CTRL-d
$ aspell -a
@(#) International Ispell Version 3.1.20 (but really Aspell .32.6 alpha)
outragous whut
& outragous 3 0: outrageous, outrages, outrage's
& whut 5 10: what, whet, whit, hut, shut

CTRL-d
$
When these spellers start, they print a version message and wait for
 input. I type the words I want to check and press RETURN. The speller
 returns one result line for each word:
	A result of * means the
 word is spelled correctly.

	A line starting with &
 means the speller has suggestions. Then it repeats the word, the
 number of suggestions it has for that word, the character
 position that the word had on the input line, and finally the
 suggestions.

	So ispell suggested that
 outragous might be
 outrageous. aspell also came up with
 outrages and
 outrage’s. (I’d say that
 outrage’s is barely a word. Be careful
 with aspell’s suggestions.)
 Both spellers had five suggestions for
 whut; the differences are interesting . .
 .

	A result of # means there
 were no suggestions.

After processing a line, the spellers both print an empty line. Press
 CTRL-d to end input.

	
 Another way to do the same thing is
 with look (Section 13.14). With just one
 argument, look searches the

 system word file,
 /usr/dict/words, for words starting with the
 characters in that one argument. That’s a good way to check spelling or
 find a related word:
% look help
help
helpful
helpmate
look

 uses its -df options automatically when it searches the
 word list. -d ignores any character that isn’t a
 letter, number, space or tab; -f treats upper- and
 lowercase letters the same.

—JP and DD

Inside spell

[If you have ispell (Section 16.2),
 there’s not a whole lot of reason for using spell any more. Not only is ispell more powerful, it’s a heck of a lot easier to update its
 spelling dictionaries. Nonetheless, we decided to include this article, because
 it clarifies the kinds of rules that spellcheckers go through to expand on the
 words in their dictionaries. — TOR]
On many Unix systems, the directory /usr/lib/spell
 contains the main program invoked by the
 spell command along with auxiliary
 programs and data files.
On some systems, the spell command is a
 shell script that pipes its input through deroff -w and
 sort -u (

 Section 22.6) to remove formatting
 codes and prepare a sorted word list, one word per line. On other systems, it is
 a standalone program that does these steps internally. Two separate spelling
 lists are maintained, one for American usage and one for British usage (invoked
 with the -b
 option to spell). These lists,
 hlista and hlistb, cannot be read
 or updated directly. They are compressed files, compiled from a list of words
 represented as nine-digit hash codes. (Hash coding is a special technique used
 to search for information quickly.)
The
 main program invoked by spell is spellprog. It loads the list of hash codes from
 either hlista or hlistb into a table,
 and it looks for the hash code corresponding to each word on the sorted word
 list. This eliminates all words (or hash codes) actually found in the spelling
 list. For the remaining words, spellprog
 tries to derive a recognizable word by performing various operations on the word
 stem based on suffix and prefix rules. A few of these manipulations
 follow:
	-y+iness +ness -y+i+less +less -y+ies -t+ce -t+cy

The new words created as a result of these manipulations will be checked once
 more against the spell table. However, before the stem-derivative rules are applied, the
 remaining words are checked against a table of hash codes built from the file
 hstop.
 The stop list
 contains typical misspellings that stem-derivative operations might allow to
 pass. For instance, the misspelled word thier would be
 converted into thy using the suffix rule -y+ier. The
 hstop file accounts for as many cases of this type of
 error as possible.
The final output consists of words not found in the spell list — even after
 the program tried to search for their stems — and words that were found in the
 stop list.
You can get a better sense of these rules
 in action by using the -v or -x option. The
 -v option eliminates the last look-up in the table and
 produces a list of words that are not actually in the spelling list, along with
 possible derivatives. It allows you to see which words were found as a result of
 stem-derivative operations and prints the rule used. (Refer to the
 sample file in Section 16.1.)
% spell -v sample
Alcuin
ditroff
LaserWriter
PostScript
printerr
TranScript
+out output
+s uses
The -x option makes
 spell begin at the stem-derivative stage
 and prints the various attempts it makes to find the stem of each word.
% spell -x sample
...
=into
=LaserWriter
=LaserWrite
=LaserWrit
=laserWriter
=laserWrite
=laserWrit
=output
=put
...
LaserWriter
...
The stem is preceded by an equals sign (=).
 At the end of the output are the words whose stem does not appear in the spell
 list.
One

 other file you should know about is
 spellhist. On some systems, each time you run spell, the output is appended through tee (Section
 43.8) into spellhist, in effect creating a list
 of all the misspelled or unrecognized words for your site. The
 spellhist file is something of a “garbage” file that
 keeps on growing: you will want to reduce it or remove it periodically. To
 extract useful information from this spellhist, you might
 use the sort and uniq
 -c (Section 21.20)
 commands to compile a list of misspelled words or special terms that occur most
 frequently. It is possible to add these words back into the basic spelling
 dictionary, but this is too complex a process to describe here. It’s probably
 easier just to use a local spelling dictionary
 (Section 16.1). Even better, use
 ispell; not only is it a more powerful
 spelling program, it is much easier to update the word
 lists it uses (Section
 16.5).
— DD

Adding Words to ispell’s Dictionary

ispell (

 Section 16.2) uses two lists for
 spelling verification: a master word list and a supplemental personal word list.

The master word list for ispell is normally
 the file /usr/local/lib/ispell/ispell.hash, though the
 location of the file can vary on your system. This is a “hashed” dictionary
 file. That is, it has been converted to a condensed, program-readable form using
 the buildhash program (which comes with
 ispell) to speed the spell-checking
 process.
The personal word list is normally a file called .ispell_english or .ispell_words in your home directory. (You can override this
 default with either the -p command-line option or the
 WORDLIST

 environment variable (Section 35.3).) This file is simply a
 list of words, one per line, so you can readily edit it to add, alter, or remove
 entries. The personal word list is normally used in addition to the master word
 list, so if a word usage is permitted by either list it is not flagged by
 ispell.
Custom personal word lists are particularly useful for checking documents that
 use jargon or special technical words that are not in the master word list, and
 for personal needs such as holding the names of your correspondents. You may
 choose to keep more than one custom word list to meet various special
 requirements.
You can add to your personal word list any time you use ispell: simply use the I command to tell ispell that
 the word it offered as a misspelling is actually correct, and should be added to
 the dictionary. You can also add a list of words from a file using the ispell -a (
 Section 16.3) option. The words must
 be one to a line, but need not be sorted. Each word to be added must be preceded
 with an asterisk. (Why? Because ispell -a has other
 functions as well.) So, for example, we could have added a list of Unix utility
 names to our personal dictionaries all at once, rather than one-by-one as they
 were encountered during spell checking.
Obviously, though, in an environment where many people are working with the
 same set of technical terms, it doesn’t make sense for each individual to add
 the same word list to his own private .ispell_words file.
 It would make far more sense for a group to agree on a common dictionary for
 specialized terms and always to set WORDLIST to point to
 that common dictionary.
If the private word list gets too long, you
 can create a “munched” word list. The

 munchlist script that comes with ispell reduces the words in a word list to a set
 of word roots and permitted suffixes. This creates a more compact but still
 editable word list.
Another
 option is to provide an alternative master spelling list using the
 -d option. This has two problems, though:
	The master spelling list should include spellings that are always
 valid, regardless of context. You do not want to overload your master
 word list with terms that might be misspellings in a different context.
 For example, perl is a powerful
 programming language, but in other contexts, perl
 might be a misspelling of pearl. You may want to
 place perl in a supplemental word list when
 documenting Unix utilities, but you probably wouldn’t want it in the
 master word list unless you were documenting Unix utilities most of the
 time that you use ispell.

	The -d option must point to a hashed dictionary file.
 What’s more, you cannot edit a hashed dictionary; you will have to edit
 a master word list and use (or
 have
 the system administrator use) buildhash to hash the new dictionary to optimize spell
 checker performance.

To build a new hashed word list, provide buildhash with a complete list of the words you want included,
 one per line. (The buildhash utility can only
 process a raw word list, not a munched word list.) The standard system word
 list, /usr/dict/words on many systems, can provide a good
 starting point. This file is writable only by the system administrator and
 probably shouldn’t be changed in any case. So make a copy of this file, and edit
 or add to the copy. After processing the file with buildhash, you can either replace the default
 ispell.hash file or point to your new hashed file with
 the -d option.
—TOR and LK

Counting Lines, Words, and Characters: wc

The wc

 (word count) command counts the number of
 lines, words, and characters in the files you specify. (Like most Unix
 utilities, wc reads from its standard input
 if you don’t specify a filename.) For example, the file
 letter has 120 lines, 734 words, and 4,297
 characters:
% wc letter
 120 734 4297 letter
You can restrict what is counted by specifying the options -l
 (count lines only), -w

 (count words only), and -c (count characters only). For
 example, you can count the number of lines in a file:
% wc -l letter
 120 letter
or you can count the number of
 files in a directory:
% cd man_pages
% ls | wc -w
 233
The first example uses a file as input; the second example pipes the output of
 an ls command to the input of wc. (Be aware that the -a
 option (Section 8.9)
 makes ls list dot files. If your ls
 command is aliased (Section 29.2)
 to include -a or other options that add words to the normal
 output — such as the line total
 nnn from ls -l — then you may
 not get the results you want.)
The following command will tell you how
 many more words are in new.file than in
 old.file:

% expr `wc -w < new.file` - `wc -w < old.file`
Many shells have built-in arithmetic commands and don’t really need expr ; however, expr works in all shells.
Note
In a programming application, you’ll usually want wc to read the input files by using a < character, as shown earlier. If instead
 you say:
% expr `wc -w new.file` - `wc -w old.file`
the filenames will show up in the expressions and produce a syntax
 error.[1]

Taking this concept a step further, here’s a simple shell script to calculate
 the difference in word count between two files:

count_1=`wc -w < $1` # number of words in file 1
count_2=`wc -w < $2` # number of words in file 2

diff_12=`expr $count_1 - $count_2` # difference in word count

if $diff_12 is negative, reverse order and don't show the minus sign:
case "$diff_12" in
-*) echo "$2 has `expr $diff_12 : '-\(.*\)'` more words than $1" ;;
*) echo "$1 has $diff_12 more words than $2" ;;
esac
If this script were called count.it, then you could
 invoke it like this:
% count.it draft.2 draft.1
draft.1 has 23 more words than draft.2
You could modify this script to count lines or characters.
Note

 Unless the counts are very large, the
 output of wc will have leading spaces.
 This can cause trouble in scripts if you aren’t careful. For instance, in
 the previous script, the command:
echo "$1 has $count_1 words"
might print:
draft.2 has 79 words
See the extra spaces? Understanding how the shell handles quoting (Section 27.12) will help here. If you can, let the shell read
 the wc output and remove extra spaces.
 For example, without quotes, the shell passes four separate words to
 echo -- and echo adds a single space between each word:
echo $1 has $count_1 words
that might print:
draft.2 has 79 words
That’s especially important to understand when you use wc with test or expr commands that
 don’t expect spaces in their arguments. If you can’t use the shell to strip
 out the spaces, delete them by piping the wc output through tr -d ' '
 (Section 21.11).

Finally, two notes about file size:
	wc -c
 isn’t an efficient way to count
 the characters in large numbers of files. wc opens and reads each file, which takes time. The
 fourth or fifth column of output from ls -l
 (depending on your version) gives the
 character count without opening the file.

	Using character counts (as in the previous item) doesn’t give you the
 total disk space used by files. That’s because, in general, each file
 takes at least one disk block to store. The du (
 Section 15.8) command gives
 accurate disk usage.

—JP, DG, and SP

Find a a Doubled Word

 One type of error that’s hard
 to catch when proofreading is a doubled word. It’s hard to miss the double “a”
 in the title of this article, but you might find yourself from time to time with
 a “the” on the end of one line and the beginning of another.
We’ve seen awk scripts to catch this, but
 nothing so simple as this shell function. Here are two
 versions; the second is for the System V version of
 tr (
 Section 21.11):
uniq
 Section 21.20
ww() { cat $* | tr -cs "a-z'" "\012" | uniq -d; }

ww() { cat $* | tr -cs "[a-z]'" "[\012*]" | uniq -d; }
In the script ww.sh

 , the
 output of the file is piped to tr
 to break the stream into separate words, which
 is then passed to the uniq
 command for testing of duplicate terms.
—TOR and JP

Looking for Closure

 A common problem in text
 processing is making sure that items that need to occur in pairs actually do
 so.
Most Unix text editors include support for making sure that elements of C
 syntax such as parentheses and braces are closed properly. Some editors, such as
 Emacs (Section 19.1) and vim
 Section 17.1), also support syntax
 coloring and checking for text documents -- HTML and
 SGML, for instance. There’s much less support in
 command-line utilities for making sure that textual documents have the proper
 structure. For example, HTML documents that start a list with
 need a closing .
Unix provides a number of tools that might help you to tackle this problem.
 Here’s a gawk
 script written by Dale Dougherty that makes
 sure and tags macros come in pairs:

gawk
 Section 20.11
#! /usr/local/bin/gawk -f
BEGIN {
 IGNORECASE = 1
 inList = 0
 LSlineno = 0
 LElineno = 0
 prevFile = ""
}
if more than one file, check for unclosed list in first file
FILENAME != prevFile {
 if (inList)
 printf ("%s: found at line %d without before end of file\n",
 prevFile, LSlineno)
 inList = 0
 prevFile = FILENAME
}
match and see if we are in list
/^/ {
 if (inList) {
 printf("%s: nested list starts: line %d and %d\n",
 FILENAME, LSlineno, FNR)
 }
 inList = 1
 LSlineno = FNR
}
/^<\/UL>/ {
 if (! inList)
 printf("%s: too many list ends: line %d and %d\n",
 FILENAME, LElineno, FNR)
 else
 inList = 0
 LElineno = FNR
}
this catches end of input
END {
 if (inList)
 printf ("%s: found at line %d without before end of file\n",
 FILENAME, LSlineno)
}
You can adapt this type of script for any place you need to check for a start
 and finish to an item. Note, though, that not all systems have gawk preinstalled. You’ll want to look for an
 installation of the utility for your system to use this script.
A more complete syntax-checking
 program could be written with the help of a
 lexical analyzer like lex. lex is
 normally used by experienced C programmers, but it can be used profitably by
 someone who has mastered awk
 and
 is just beginning with C, since it combines an awk-like pattern-matching process using regular-expression syntax
 with actions written in the more powerful and flexible C language. (See O’Reilly
 & Associates’ lex & yacc.)
Of course, this kind of problem could be very easily tackled with the
 information in Chapter 41.
—TOR and SP

Just the Words, Please

 In various textual-analysis scripts, you
 sometimes need just the words (Section 16.7).
I know two ways to do this. The deroff
 command was designed to strip out troff
 Section 45.11) constructs and
 punctuation from files. The command deroff -w will give you
 a list of just the words in a document; pipe to sort
 -u (Section 22.6) if
 you want only one of each.
deroff has one major failing, though. It
 considers a word as just a string of characters beginning with a letter of the
 alphabet. A single character won’t do, which leaves out one-letter words like
 the indefinite article “A.”
A substitute is tr (Section 21.11),
 which can perform various kinds of character-by-character conversions.
To produce a list of all the individual words in a file, type the
 following:
<
 Section 43.1
% tr -cs A-Za-z '\012' <
 file
The -c option “complements” the first string passed to
 tr; -s squeezes out
 repeated characters. This has the effect of saying: “Take any nonalphabetic
 characters you find (one or more) and convert them to newlines (\012).”
(Wouldn’t it be nice if tr just recognized
 standard Unix regular expression syntax (Section 32.4)? Then, instead of -c A-Za-z, you’d say '[^A-Za-z]'. It’s no less obscure, but at least it’s used by
 other programs, so there’s one less thing to learn.)
The System V version of tr (
 Section 21.11) has slightly different
 syntax. You’d get the same effect with this:
% tr -cs '[A-Z][a-z]' '[\012*]' <
 file
— TOR

[1] You could also type cat new.file | wc
 -w, but this involves two commands, so it’s less efficient (Section 43.2).

Chapter 17. vi Tips and Tricks

The vi Editor: Why So Much Material?

 We’re
 giving a lot of pages to the vi editor. People who use another editor, like
 Emacs, might wonder why. Here’s why.
I’ve watched people (including myself) learn and use vi for 20 years. It’s the standard editor that comes with almost
 every Unix system these days, but most people have no idea that vi can do so much. People are surprised, over and
 over, when I show them features that their editor has. Even with its
 imperfections, vi is a power tool. If you
 work with files, you probably use it constantly. Knowing how to use it well will
 save you lots of time and work.
But why not give the same coverage to another editor that lots of people use:
 GNU Emacs (

 Section 19.1)? That’s because GNU
 Emacs comes with source code and can be extended by writing LISP code. Its
 commands have descriptive names that you can understand by reading through a
 list. vi’s commands are usually no more than
 a few characters long; many of the option names are short and not too
 descriptive either. Lots of Unix systems don’t even have vi source code these days.
I hope that you vi users will learn a lot
 in this section and that people who don’t use vi will at least browse through to see some of vi’s less obvious features.
If you’re looking for additional text-editing power, you can use vim

 instead of the plain
 vanilla vi installed on most systems. All
 vi commands work with vim, but with added functionality, power, and more
 standardized behavior accross flavors of Unix. There should be an installation
 of vim for your Unix.
—JP and SP

What We Cover

Summary Box
	Travel between files, save text into buffers, and move it around
 without leaving vi: Section 17.3, Section 17.4, and Section 17.6.

	Recover deletions from up to nine numbered buffers: Section 17.7.

	Do global search and replacement with pattern matching: Section 17.8, Section 17.13, Section 17.14, Section 17.16, and Section 17.22.

	Save a lot of typing with word abbreviations: Section 17.23, Section 17.24, and Section 17.25.

	“Prettify” lines of text that don’t fit on the screen as you would
 like: Section
 17.28.

	Run other Unix commands without leaving vi (called a filter-through): Section 17.18 and Section 17.21.

	Keep track of functions and included files with ctags and tags.

	Change your vi and ex options in your
 .exrc file for all files or just for files
 in a local directory: Section
 17.5.

When you type a : (colon) command in vi, you’re beginning an ex
 command. There’s more information about ex in a later chapter: Section 20.3, Section
 20.4, and Section
 20.5.
— EK

Editing Multiple Files with vi

 ex commands enable you to switch between
 multiple files. The advantage is speed. When you are sharing the system with
 other users, it takes time to exit and re-enter vi for each file you want to edit. Staying in the same editing
 session and traveling between files is not only faster for access, but you also
 save abbreviations and command sequences that you have defined, and you keep
 yank buffers (Section 17.4) so that you can copy text
 from one file to another.
When you first invoke vi, you can name more
 than one file to edit and then use ex
 commands to travel between the files:
% vi file1 file2
This edits file1 first. After you have finished editing
 the first file, the ex command :w writes (saves) file1, and
 :n calls in the next file
 (file2). On many versions of vi, you can type :wn both to save the current file changes and to
 go to the next file. Typing :q! discards
 changes and closes the current file. Type vi
 * to edit all the files in a directory, though this will give you
 an error in some Unix systems. Type CTRL-g or :f to get the name of your current file; :args lists all filenames from the command line and puts brackets
 around the [
 current
] file.
You can also switch at any time to another file not specified on the command
 line with the ex command :e. If you want to edit another file within
 vi, you first need to save your current
 file (:w), then you can type the following
 command:
 :e
 filename
vi “remembers” two filenames at a time as
 the current and alternate filenames. These can be referred to by the symbols
 %

 (current filename) and # (alternate filename).
is particularly useful with :e, since it allows you to switch back and forth
 between two files easily. The command :e# is
 always “switch to the other one.” With different flavors of Unix, the vi command CTRL-^ (control-caret) is a synonym for :e#. This usually seems to work even without pressing the SHIFT
 key. For instance, if I get a caret by pressing SHIFT-6, I don’t need to press
 CTRL-SHIFT-6 to make vi change files: just
 CTRL-6 is enough.
If you have not first saved the current file, vi will not allow you to switch files with :e or :n unless
 you tell it imperatively to do so by adding an exclamation point after the
 command.
The command:
 :e!
is also useful. It discards your edits and returns to the last saved version
 of the current file.
In contrast to the # symbol, % is useful mainly in shell
 escapes (Section
 17.21) and when writing out the contents of the current buffer to a new
 file. For example, you could save a second version of the file
 letter with the command:
 :w %.new
instead of:
 :w letter.new
— LL and SP

Edits Between Files

When you give a yank
 buffer (temporary holding buffer) a one-letter name, you have a convenient way
 to move text from one file to another. Named buffers are not cleared when a new
 file is loaded into the vi buffer with the
 :e command (Section 17.3). Thus, by yanking
 (copying) or deleting text from one file (into multiple named buffers if
 necessary), calling in a new file with :e and
 putting the named buffer into the new file, you can transfer material between
 files.
The following table illustrates how to transfer text from one file to another.
 Type the keystrokes exactly as shown to achieve the stated result.
	
 Keystrokes

 	
 Action

 	
 Results

	

 "f4yy

 	
 Yank four lines into buffer f.

 	
 With a screen editor you can scroll
the page, move the cursor, delete lines,
insert characters, and more, while seeing
the results of the edits as you make them

	

 :w

 	
 Save the file.

 	
 "practice" 6 lines 238 characters

	

 :e letter

 	
 Enter the file letter with :e. Move cursor to where the
 copied text will be placed.

 	
 Dear Mr.
Henshaw:
I thought that you would
be interested to know that:
Yours truly,

	

 "fp

 	
 Place yanked text from named buffer f below the
 cursor.

 	
 Dear Mr.
Henshaw:
I thought that you would
be interested to know that:
With a screen editor you can scroll
the page, move the cursor, delete lines,
insert characters, and more, while seeing
the results of the edits as you make them
Yours truly,

If you yank into a buffer and type the buffer name as an uppercase letter,
 your new text will be added to the text already in the buffer. For example, you
 might use "f4yy to yank four lines into the
 buffer named f. If you then move somewhere else and type
 "F6yy with an uppercase
 F, that will add six more lines to the same
 f buffer — for a total of ten lines. You can yank into
 the uppercase buffer name over and over. To output all of the yanked text, use
 the lowercase letter — like "fp. To clear the
 buffer and start over, use its lowercase name ("fy...) again.
— LL and JP

Local Settings for vi

 In
 addition to reading the .exrc file (the vi configuration or startup file) in your home
 directory, many versions
 of vi will read a file called
 .exrc in the current directory. This allows you to set
 options that are appropriate to a particular project.
For example, you might want to have one set of options in a directory used
 mainly for programming:
set number lisp autoindent sw=4 terse
set tags=/usr/lib/tags
and another set of options in a directory used for text editing:
set wrapmargin=15 ignorecase
Note that you can set certain options in the .exrc file
 in your home directory (Section 1.15) and unset them (for
 example, set wrapmargin=0 noignorecase) in a
 local directory.
Note
Many versions of vi don’t read
 .exrc files in the current
 directory unless you first set the exrc
 option in your home directory’s .exrc
 file:
set exrc
This mechanism makes it harder for other people to place, in your working
 directory, an .exrc file whose commands
 might jeopardize the security of your system.

You can also define alternate vi environments by saving option settings in a
 file other than .exrc and reading in that file with the
 :so command. For example:
:so .progoptions
Local .exrc files are also useful for defining abbreviations (

 Section 17.23) and key mappings (Section 18.2). When we write a book or manual, we save all
 abbreviations to be used in that book in an .exrc file in
 the directory in which the book is being created.

 You can also store settings and
 startup commands for vi and ex in an
 environment variable called EXINIT (Section
 17.27). If there is a conflict between settings in
 EXINIT and an .exrc file,
 EXINIT settings take precedence.
Note
You can keep a group of standard .exrc files in a central directory and link (
 Section 10.5) to them from various
 local directories. For instance, from this book’s source-file directory,
 which is full of SGML files, I made a symlink:
% ln -s ~/lib/vi/exrc.sgml .exrc
I prefer symbolic links to hard links in a case like this because they
 make it easy to see to which central file the local
 .exrc link points.

— TOR

Using Buffers to Move or Copy Text

 In a vi
 editing session, your last deletion (d or
 x) or yank (y) is saved in a buffer. You can access the contents of that
 buffer and put the saved text back in your file with the
 put command (p or
 P). This is a frequent sequence of
 commands:
5dd delete 5 lines
 . . . move somewhere else

p put the 5 deleted lines back in a new
 location, below the current line
Fewer new users are aware that vi stores
 the last nine (Section 17.7) deletions in numbered
 buffers. You can access any of these numbered buffers to restore any (or all) of
 the last nine deletions. (Small deletions, of only parts of lines, are not saved
 in numbered buffers, however.) Small deletions can be recovered only by using
 the p or P
 command immediately after you’ve made the deletion.
vi also allows you to yank (copy) text to
 "named”
 buffers identified by letters. You can fill up to 26 (a-z) buffers with yanked
 text and restore that text with a put
 command at any time in your editing session.
 This is especially important if you want to transfer data between two files,
 because all buffers except those that are named are lost when you change files.
 See Section 17.4.
— TOR

Get Back What You Deleted with Numbered Buffers

 Being able to delete large blocks of text
 in a single bound is all very well and good, but what if you mistakenly delete
 53 lines that you need? There’s a way to recover any of your past
 nine deletions, because they’re saved in numbered
 buffers. The last delete is saved in buffer 1, the second-to-last in buffer 2,
 and so on.
To recover a deletion, type <"> (the
 double quote character), identify the buffered text by number, then give the
 put command. To recover your second-to-last deletion
 from buffer 2, type the following:
"2p
The deletion in buffer 2 is placed on the line below the cursor.
If you’re not sure which buffer contains
 the deletion you want to restore, you don’t have to keep typing <">
 n
 p over and over again. If you use the
 repeat

 command (.) with p after u (undo), it
 automatically increments the buffer number. As a result, you can search through
 the numbered buffers as follows:
"1pu.u.u etc.
to put the contents of each succeeding buffer in the file one after the other.
 Each time you type u, the restored text is
 removed; when you type a dot (.), the contents of the next
 buffer is restored to your file. Keep typing u and . until you’ve recovered the text you’re looking
 for.
— TOR

Using Search Patterns and Global Commands

 Besides using line numbers and address symbols (.,
 $, %),
 ex (including the ex
 mode of vi, of course) can address lines
 (Section 20.3) using search patterns (
 Section 32.1). For example:
	:/
 pattern
 /d
	Deletes the next line containing
 pattern.

	:/
 pattern
 /+d
	Deletes the line below the next line
 containing pattern. (You could also use
 +1 instead of + alone.)

	:/
 pattern1
 /,/
 pattern2
 /d
	Deletes from the next line (after the current line) that contains
 pattern1 through the next following line
 that contains pattern2.

	:.,/
 pattern
 /m23
	Takes text from current line (.) through the next line containing
 pattern and puts it after line 23.

Note that patterns are delimited by a
 slash both before and after.
If you make deletions by pattern with vi
 and ex, there is a difference in the way the
 two editors operate. Suppose you have in your file named
 practice the following lines:
With a screen editor you can scroll the
page, move the cursor, delete lines, insert
characters and more, while seeing results
of your edits as you make them.
	
 Key-strokes

 	
 Action

 	
 Results

	

 d/while

 	
 The vi
 delete-to-pattern command deletes
 from the cursor up to the word while
 but leaves the remainder of both lines.

 	
 With a screen editor you can scroll the
page, move the cursor, while seeing results
of your edits as you make them.

	

 :.,/while/d

 	
 The ex command deletes
 the entire range of addressed lines; in this case both the
 current line and the line containing the pattern. All lines
 are deleted in their entirety.

 	
 With a screen editor you can scroll the
of your edits as you make them.

Global Searches

In

 vi you use a / (slash) to search for patterns of characters in your
 files. By contrast, ex has a global command, g, that lets you search for a pattern and display all lines
 containing the pattern when it finds them. The command :g! does the opposite of :g. Use :g!
 (or its synonym :v) to search for all
 lines that do not contain
 pattern.
You can use the global command on all lines in the file, or you can use
 line addresses to limit a global search to specified lines or to a range of
 lines.
	:g/
 pattern
 /
	Finds (moves to) the last occurrence of
 pattern in the file.

	:g/
 pattern
 /p
	Finds and displays all lines in the file containing
 pattern.

	:g!/
 pattern
 /nu
	Finds and displays all lines in the file that don’t contain
 pattern; also displays line number for
 each line found.

	:60,124g/
 pattern
 /p
	Finds and displays any lines between 60 and 124 containing
 pattern.

g can also be used for
 global replacements. For example, to
 search for all lines that begin with WARNING: and change the first word not on those lines to NOT:
:g/^WARNING:/s/\<not\>/NOT/
— LL, from Learning the vi Editor
 (O’Reilly, 1998)

Confirming Substitutions in vi

 It makes sense to be overly careful when using a
 search-and-replace command. It sometimes happens that what you get
 is not what you expected. You can undo any

 search-and-replace command by entering
 u, provided that the command was intended
 for the most recent edit you made. But you don’t always catch undesired changes
 until it is too late to undo them. Another way to protect your edited file is to
 save the file with :w before performing a
 global replacement. Then at least you can quit the file without saving your
 edits and go back to where you were before the change was made. You can also
 read back in the previous version of the buffer with :e! (Section
 17.3).
It’s wise to be cautious and know exactly what is going to be changed in your
 file. If you’d like to see what the search turns up and confirm each replacement
 before it is made, add the c option (for
 confirm) at the end of the substitute command:
 :1,30s/his/the/gc
The item to be substituted is highlighted so that placement of the cursor on
 the first character is marked by a series of carets (^^^^).
copyists at his school
 ^^^_
If you want to make the replacement, you must enter y (for yes) and press RETURN. If you don’t want to make a change,
 simply press RETURN.
The combination of the vi commands, n (repeat last search) and dot (.) (repeat last
 command), is also an extraordinarily useful and quick way to page through a file
 and make repetitive changes that you may not want to make globally. So, for
 example, if your editor has told you that you’re using
 which when you should be using
 that, you can spot-check every occurrence of
 which, changing only those that are incorrect.
This often turns out to be faster than using a global substitution with
 confirmation. It also lets you see other lines near the text you’re checking,
 which is hard to do with :s///c in original
 vi. vi
 clones have improved the situation. For instance, in vim, :s///c runs in fullscreen
 mode; it also lets you type CTRL-y and CTRL-e to scroll the screen up or down to
 see context before you approve or deny each substitution.
—DD, TOR, from Learning the vi Editor
 (O’Reilly, 1998)

Keep Your Original File, Write to a New File

 You can use :w to save an entire buffer (the copy of the file you are
 editing) under a new filename.
Suppose you have a file practice, containing 600 lines.
 You open the file and make extensive edits. You want to quit but save
 both the old version of practice
 and your new edits for comparison. To save the edited buffer in a file called
 check_me, give the command:
 :w check_me
Your old version, in the file practice, remains unchanged
 (provided that you didn’t previously use :w).
 You can now quit the old version by typing :q.
— LL, from Learning the vi Editor (O’Reilly,
 1998)

Saving Part of a File

 While editing, you will sometimes want to
 save just part of your file as a separate, new file. For example, you might have
 entered formatting codes and text that you want to use as a header for several
 files.
You can combine ex line addressing (Section 20.3) with the write command,
 w, to save part of a file. For example,
 if you are in the file practice and want to save part of
 practice as the file newfile, you could enter:
	:230,$w
 newfile
	Saves from line 230 to end-of-file in
 newfile.

	:.,600w
 newfile
	Saves from the current line to line 600 in
 newfile.

After newfile has been created, you’ll need w! instead of w.
— LL, from Learning the vi Editor (O’Reilly,
 1998)

Appending to an Existing File

 You can use the

 Unix redirect and append operator
 (>>) with w to append all or part of the buffer’s contents to an existing
 file. For example, if you entered:
 :1,10w
 newfile
and then:
$
 Section 20.3
 :340,$w >>
 newfile
newfile would contain lines 1-10 and line 340 to the end
 of the buffer.
—TOR, from Learning the vi Editor (O’Reilly,
 1998)

Moving Blocks of Text by Patterns

 You can move blocks of text delimited by
 patterns (Section 17.8). For example, assume you
 have a 150-page reference manual. All reference pages are organized into three
 paragraphs with the same three headings: SYNTAX, DESCRIPTION, and PARAMETERS. A
 sample of one reference page follows:
 .Rh 0 "Get status of named file" "STAT"
 .Rh "SYNTAX"
 .nf
 integer*4 stat, retval
 integer*4 status(11)
 character*123 filename
 ...
 retval = stat (filename, status)
 .fi
 .Rh "DESCRIPTION"
 Writes the fields of a system data structure into the
 status array.
 These fields contain (among other
 things) information about the file's location, access
 privileges, owner, and time of last modification.
 .Rh "PARAMETERS"
 .IP "\fBfilename\fR" 15n
 A character string variable or constant containing
 the Unix pathname for the file whose status you want
 to retrieve.
 You can give the ...
Suppose that it is decided to move the SYNTAX paragraph below the DESCRIPTION
 paragraph. Using pattern matching, you can move blocks of text on all 150 pages
 with one command!
 :g/SYNTAX/,/DESCRIPTION/-1 mo /PARAMETERS/-1
This command operates on the block of text between the line containing the
 word SYNTAX and the line just before the word
 DESCRIPTION (/DESCRIPTION/-1). The block is moved (using mo) to the line just before
 PARAMETERS (/PARAMETERS/-1). Note that ex
 can only place text below the line specified. To tell ex to place text above a line, you first have to move up a line
 with -1 and then place your text below. In a
 case like this, one command literally saves hours of work. (This is a real-life
 example — we once used a pattern match like this to rearrange a reference manual
 containing hundreds of pages.)
Block definition by patterns can be used equally well with other ex commands. For example, if you wanted to delete
 all DESCRIPTION paragraphs in the reference chapter, you could enter:
 :g/DESCRIPTION/,/PARAMETERS/-1d
This very powerful kind of change is
 implicit in ex’s line addressing syntax (Section 20.3), but it is not readily
 apparent even to experienced users. For this reason, whenever you are faced with
 a complex, repetitive editing task, take the time to analyze the problem and
 find out if you can apply pattern-matching tools to do the job.
—TOR, from Learning the vi Editor (O’Reilly,
 1998)

Useful Global Commands (with Pattern Matches)

 The best way to learn pattern matching is by
 example, so here’s a short list of pattern-matching examples with explanations.
 (Section 32.21 has a list of
 these patterns.) Study the syntax carefully so you understand the principles at
 work. You should then be able to adapt these examples to your own
 situation.
	Change all occurrences of the word help (or
 Help) to HELP:
%
 Section 20.3
 :%s/[Hh]elp/HELP/g
or:
 :%s/[Hh]elp/\U&/g
The \U changes the pattern that
 follows to all uppercase. The pattern that follows is the repeated
 search pattern, which is either help or
 Help.

	Replace one or more spaces following
 a colon (:) or a period (.) with two spaces (here a space is marked by a
 ·):
 :%s/\([:.]\)··*/\1··/g
Either of the two characters within brackets can be matched. This
 character is saved into a hold buffer, using \(
 and \) (Section
 34.11) and restored on the right-hand side by the \1. Note that most metacharacters lose
 their special meanings inside brackets — so the dot does not need to be
 escaped with a backslash (\).

	Delete all blank lines:
g
 Section 20.4
 :g/^$/d
What you are actually matching here is the beginning of the line
 (^), followed by the end of the
 line ($), with nothing in
 between.

	Delete all blank lines, plus any lines that contain only
 whitespace:
 :g/^[·tab
]*$/d
(In the previous line, a TAB character is shown as
 tab.) A line may appear to be blank, but
 may in fact contain spaces or tabs. The previous numbered example will
 not delete such a line. This example, like the previous one, searches
 for the beginning and end of the line. But instead of having nothing in
 between, the pattern tries to find any number of spaces or tabs. If no
 spaces or tabs are matched, the line is blank. To delete lines that
 contain whitespace but that aren’t blank, you would
 have to match lines with at least one space or
 tab:
 :g/^[·tab
][·tab
]*$/d

	This example and the next both refer to a line in a troff-formatted document like this A-level
 (top-level) heading macro call:
.Ah "Budget Projections" "for 2001-2002"
To match the first quoted argument of all section header (.Ah) macros and replace each line with
 this argument:
 :%s/^\.Ah "\([^"]*\)" .*/\1/
this example macro call would be changed to simply:
Budget Projections
The substitution assumes that the .Ah macro can have more than one argument surrounded by
 quotes. You want to match everything between quotes, but only up to the
 first closing quote. As Section 32.18 explains, using
 ".*" would be wrong because it
 would match all arguments on the line. What you do is match a series of
 characters that aren’t quotes, [^"]*. The pattern "[^"]*" matches a quote, followed by any
 number of nonquote characters, followed by a quote. Enclose the first
 argument in \(and \) so that it can be replayed using
 \1.

	Same as previous, except preserve the original lines by copying
 them:
 :g/^\.Ah/t$ | s/\.Ah "\([^"]*\)" .*/\1/
In ex, the vertical bar (|
) is a command separator that
 works like a semicolon (;) (Section 28.16) on a Unix command line. The first part,
 :g/^\.Ah/t$, matches all lines
 that begin with a .Ah macro, uses the
 t command to copy these lines,
 and places the copies after the last line ($) of the file. The second part is the same as in the
 previous example, except that the substitutions are performed on copies
 at the end of the file. The original lines are unchanged.

Counting Occurrences; Stopping Search Wraps

 Want to see how many times you used the word
 very in a file? There are a couple of easy ways.
First, tell vi to stop searching when you
 get to the end of the file. Type the command :set
 nowrapscan or put it in your .exrc
 file (Section
 17.30).
	Move to the top of the file with the 1G command. Search for the first
 very with the command /very (HINT: using the word-limiting regular expression /\<very\> (Section 32.12) instead will
 keep you from matching words like every). To find
 the next very, type the n (next) command.
When vi says Address
 search
 hit
 BOTTOM
 without
 matching
 pattern, you’ve found all of the
 words.

	Use the command:
 :g/very/p
The matching lines will scroll down your screen.

To find the line numbers, too, type :set
 number before your searches.
— JP

Capitalizing Every Word on a Line

 Are you typing the title of an article or something else
 that needs an uppercase letter at the start of every word? Do you need to
 capitalize some text that isn’t? It can be tedious to press the SHIFT key as you
 enter the text or to use ~ (tilde) and
 w commands to change the text. The
 following command capitalizes the first character of every word.
:s/\<./\u&/g
(You might be wondering why we didn’t use :s/\<[a-z]/\u&/g to match lowercase letters. The <. actually matches the first character of
 every word, but the \u will only affect letters. So, unless you only want to
 capitalize certain letters, <. is
 enough.)
The previous example does only the current line. You can add a range of lines
 after the colon. For example, to edit all lines in the file, type the
 following:
 :%s/\<./\u&/g
To do the current line and the next five, use this:
 :.,+5s/\<./\u&/g
To make the first character of each word uppercase (with \u) and the rest lowercase (with \L), try:
\(...\)...\1
 Section 32.21
 :s/\<\(.\)\([A-Za-z]*\)\>/\u\1\L\2/g
The previous command doesn’t convert the back ends of words with hyphens (like
 CD-ROM) or apostrophes (like
 O’Reilly) to lowercase. That’s because [A-Za-z]*\> only matches words whose second
 through last characters are all letters. You can add a hyphen or an apostrophe
 to make that expression match more words, if you’d like.
Those commands can be a pain to type. If you use one of them a lot, try
 putting it in a keymap (Section 18.2).
— JP

Per-File Setups in Separate Files

Do you need to set certain editor options for certain files — but
 not use the same setup for every file you edit?

 Make a special setup file
 with the same name and an underscore (_) or
 an extension like .vi, .ex, or
 .so at the end. For instance, a file named report could have a corresponding setup file
 named report_ or report.so. (You don’t have to use an underscore at the end of
 the filename. It’s convenient, though, because it’s not a shell special character (Section 27.17).)
The setup file has the same format as a .exrc
 file (Section 17.5). To
 make the editor read it, map (Section 18.2) a function key like F1 (or
 any other key sequence):
source
 Section 20.4, ^[
 Section 18.6
map #1 :source %_^[
When you start vi, tap that key to read the
 setup file. (The percent sign stands for the current
 filename (Section
 17.3).)
If you want to use the same setup file for several files in a directory, you
 might want to make hard links (Section 10.4) between them. That will
 save disk space. It also means that if you decide to change a setup option, you
 can edit one of the links to the setup file, and the others will have the same
 change.
— JP

Filtering Text Through a Unix Command

 When you’re editing in vi, you can send a block of text as standard input
 to a Unix command. The output from this command replaces the block of text in
 the buffer.
In vi, you can filter text through a Unix
 command by typing an exclamation mark (!
) followed by any of vi’s movement keystrokes that indicate a block of
 text and then by the Unix command line to be executed. For example:
 !)
 command
will pass the next sentence through command.
There are a couple of unusual features about how vi acts when you use this structure:
	First, the exclamation mark doesn’t appear on your screen right away.
 When you type the keystroke(s) for the text object you want to filter,
 the exclamation mark appears at the bottom of the screen, but
 the character you type to reference the object does
 not.

	Second, text blocks must be more than one line, so you can use only
 the keystrokes that would move more than one line (G, { },
 (), [[
]], +, -). To repeat the effect, a number may
 precede either the exclamation mark or the text object. (For example,
 both !10+ and 10!+ would indicate the next ten lines.)
 Objects such as w do not work unless
 enough of them are specified so as to exceed a single line. You can also
 use a slash (/) followed by a
 pattern and a carriage return to specify the
 object. This takes the text up to the pattern as input to the
 command.

	Third, there is a special text object that can be used only with this
 command syntax; you can specify the current line by entering a second
 exclamation mark:
 !!
 command
Remember that either the entire sequence or the text object can be
 preceded by a number to repeat the effect. For instance, to change lines
 96 through 99 as in the previous example, you could position the cursor
 on line 96 and enter either:
 4!!sort
or:
 !4!sort

As another example, assume you have a portion of text in a message that you’d
 like to convert to all uppercase letters. ex
 has operators to convert case (Section 17.16), but it’s also easy to
 convert case with the tr (

 Section 21.11) command. In this
 example, the second sentence is the block of text that will be filtered to the
 command:
One sentence before.
With a screen editor you can scroll the page
move the cursor, delete lines, insert characters,
and more, while seeing the results of your edits
as you make them.
One sentence after.
	
 Keystrokes

 	
 Action

 	
 Results

	
 !)

 	
 An exclamation mark appears on the last line to prompt you
 for the Unix command.

 	
 One sentence after.
~
~
~
!_

	
 tr '[a-z]' '[A-Z]'

 	
 Enter the Unix command, and press RETURN. The input is
 replaced by the output.

 	
 One sentence before.
WITH A SCREEN EDITOR YOU CAN SCROLL THE PAGE
MOVE THE CURSOR, DELETE LINES, INSERT CHARACTERS,
AND MORE, WHILE seeING THE RESULTS OF YOUR EDITS
AS YOU MAKE THEM.
One sentence after.

To repeat the previous command, the syntax is as follows:
! object !
It is sometimes useful to send sections of a coded document to nroff to be replaced by formatted output. Remember
 that the “original” input is replaced by the output. Fortunately, if there is a
 mistake, such as an error message being sent instead of the expected output, you
 can undo the command and restore the lines.
Warning
Sometimes a filter-through on old, buggy versions of vi can completely scramble and trash your
 text. Things can be so bad that the u (undo) command
 won’t work. If you’ve been burned this way before, you’ll want to write your
 buffer (with :w) before filter-throughs.
 This doesn’t seem to be a problem with modern versions, but be aware of
 it.

— TOR

vi File Recovery Versus Networked Filesystems

 Have you ever used the vi
 -r command to recover a file? It lets you get a file back that you
 were editing when the system crashed or something else killed your editor before
 you could save. The system may send you an email message something like
 this:
Date: Thu, 19 Nov 1999 09:59:00 EST
To: jerry

A copy of an editor buffer of your file "afile"
was saved when the system went down.
This buffer can be retrieved using the "recover" command of the editor.
An easy way to do this is to give the command "vi -r afile".
This works for "edit" and "ex" also.
[image:]
 Section 17.20
Your files are saved under a directory named something like
 /usr/preserve. Follow the instructions and you’ll get
 back your file, more or less the way it was when you lost it.
If your computers have networked filesystems, such as
 NFS, there’s a wrinkle in the way that vi -r works. It may
 only work right on the specific computer where you were editing a file. For
 example, if you’re editing the file foo on the host named
 artemis and it crashes, you may not be able to log on
 to another host and do vi -r foo to recover that file.
 That’s because, on many hosts, temporary files (like editor buffers) are stored
 on a local filesystem instead of on the networked (shared) filesystems. On this
 kind of system, you may need to log on to artemis to
 recover your lost editor buffer.
If you don’t remember which computer you were using when the file was lost,
 check the “Received:” lines in the email message header;[1] they’ll often show from which machine the message originally came.
 Also, if you don’t remember what files are saved on a machine, you can usually
 get a list of your saved files by typing vi -r without a
 filename:
% vi -r
/var/preserve/jerry:
On Wed Jul 17 at 08:02 saved 15 lines of file "/u/jerry/Mail/drafts/1"
On Sun Aug 25 at 18:42 saved 157 lines of file "doit"
/tmp:
No files saved.
Don’t wait too long. Many Unix systems remove these saved editor buffers every
 month, week, or sooner.
— JP

Be Careful with vi -r Recovered Buffers

 Usually, when you’re editing a file with
 vi, if you type the command
 ZZ, it saves your file. But if you recover a file with
 vi -r (Section 17.19), typing ZZ may not save your
 edits!
That might be a good thing. When you recover a buffer, you need to decide
 whether the recovered buffer is really what you want. Maybe you’ve made other
 changes to the file since then. Maybe something went wrong as the buffer was
 being saved (say, the system crashed). You shouldn’t just save without checking
 first.
You can use the :w! command to write the
 recovered version after you’re sure that you want it. Use the :q! command if you don’t want the recovered
 version.
Another good choice is to write the recovered buffer using a different
 filename, then compare the recovered buffer to the original file. For example,
 here I recover a draft MH email message and immediately write it to a file named
 recovered-9 in my tmp directory. Then I use a shell escape (Section
 17.21) to run diff (Section 11.1) and compare the draft file
 on disk (/home/jerry/Mail/drafts/9) with
 the copy of the recovered buffer that I just wrote (/home/jerry/tmp/recovered-9); the vi
 current filename
 % and alternate filename # shortcuts (Section 17.3) are handy here. Oops: diff shows that the recovered version has replaced the last three
 lines of the message on disk, in the recovered version, with more than 2,000
 lines of junk!
less
 Section 12.3
% vi -r /home/jerry/Mail/drafts/9
 ...recovered file appears...
 :w ~/tmp/recovered-9
/home/jerry/tmp/recovered-9: 55 lines, 168767 characters.
:!diff % # | less
!diff /home/jerry/Mail/drafts/9 /home/jerry/tmp/recovered-9 | less
5c5
< Subject: Re: Two more Unix Power Tools questions

> Subject: Next UPT (was: Re: Two more Unix Power Tools questions)
146,148c146,2182
< Yes, you mentioned it once. Thanks for pointing that out, Greg.
< I think the next job is to review all the articles in that chapter
< to be sure which items should be included -- just the articles, or

> Yes, you^@
> ^@
> ^@
 ...zillions of lines of junk...
At this point, the best thing to do is to quit vi immediately (with :q!).
 Then fix up the original file by copying and pasting the good text from the copy
 of the recovered buffer that I just wrote. (You might want to rerun diff, outside of vi, to remind yourself which parts of the recovered file you want
 to transfer to the original file.) Starting a new vi session with the filenames of both the original file and the
 (mostly trashed) recovered buffer, as Section
 17.4 explains, can make the recovery job easier.
— JP

Shell Escapes: Running One UnixCommand While Using Another

 Some
 Unix commands (usually interactive commands like vi) let you run another Unix command temporarily. To do that, you
 type a special command character — usually an exclamation point (!) — then type the Unix command line you want to
 run. In this article, I’ll show examples for the vi editor. To see if this works on another utility, check its
 documentation or just try typing !
 Unixcommand when the utility is waiting for you to
 type a command.
You can run any Unix command without quitting vi. That’s handy, for example, if you want to read your mail or
 look at some other file . . . , then go back to the file you were editing
 without losing your place. It’s called a “shell escape.” (By the way, there’s a
 another way to do this, job control (
 Section 23.3), that works on most Unix
 systems. Job control is often more convenient and flexible than shell
 escapes.)
Let’s say you’re editing the file named foo and you need
 to run grep to get someone’s phone number
 from your phone file. The steps are as follows:
	Be sure you’re in command mode (press the ESC key if you aren’t
 sure).

	If you want to run a command that needs the file you’re editing,
 remember to write out your vi buffer
 with the :w command. (So you probably
 wouldn’t need to write anything before the following grep command.) Type :! followed by the Unix command, then
 press RETURN. For example:
 :!grep tim ~/phone

	The grep program will run. When it
 finishes, vi will say:
[Hit return to continue]

	After you press RETURN, you’ll be right back where you were.

Other examples:
	:!less afile
	Page through afile on your screen.

	:!rcsdiff %
	Give this file to the rcsdiff
 (Section 11.3) program
 to see what you’ve changed since the file was checked out of the
 archive. vi
 replaces
 % with the name of the file
 you’re editing now (Section
 17.3).

	:!mail
	Read your mail. Be careful about this if you were already running
 the mail program and you used the
 command ~v to edit a message with vi from inside the mail program. This shell escape starts
 a subshell (Section 24.4); it will
 not take you back to the same mail session before you started
 editing!

	:sh
	Start a completely new shell. (If you are using a shell with job
 control, you’ll almost always want to use job control to suspend vi
 temporarily instead (Section 23.6). Press CTRL-z,
 or use the ex command :suspend.)

Basically, anything you can do at a shell prompt, you can do with a shell
 escape. You’ll be in a subshell though, not your original login shell. So
 commands like cd won’t affect the program
 where you started the subshell or any other shell. On the bright side, changing
 directories or resetting anything in your environment won’t affect vi or the shell where you started vi. Terminating the program you’re running in the
 subshell will bring you right back where you were.
— JP

vi Compound Searches

 You probably know that you can search for a word
 or phrase with the vi
 / (slash) command:
 /treasure
If you have a file that uses the same word over and over again, you might want
 to find one particular place that the word is used. You can repeat the search
 with the n command until you find the place you want. That
 can take time and effort, though.
For example, suppose you want to find the word “treasure” in the sentence that
 has words like “Los Alamos residents . . . treasure,” but you can’t remember
 exactly how the sentence is written. You could use wildcards in your regular
 expression:
 /Los Alamos.*treasure
but then the phrases “Los Alamos” and “treasure” have to be on the same line
 of the file you’re searching — and they won’t always be. Also, you want your
 cursor on the word treasure, but that search would put the
 cursor on Los instead.
“Hmmm,” you say, “How about two separate searches, like this?”
/Los Alamos
/treasure
The problem there is that the file might have the phrase “Los Alamos” all
 throughout it; you might have to type n over and over until
 you get to the sentence with treasure.
Here’s the easy way: a compound search. Say your cursor is on line 1 of the
 following file:
Before the second World War, there was a treasured boys' school in
what was to become the city of Los Alamos, New Mexico. The school at
Los Alamos changed the lives and made a lifelong impression on most boys
who attended. One of the boys who attended the Los Alamos school went on
to propose that remote set of mesas as a site for the U.S. Government's
 ...
Since the war ended, most of the boys' school ranch buildings have been torn
down or replaced. But there's one building that Los Alamos residents still
use and treasure. It's The Lodge, a log building on the edge of what's now
 ...
Type the command:
 /Los Alamos/;/treasure/
That means “find the first occurrence of treasure just
 after Los Alamos.” Starting at the top of the previous
 example, that search will skip past all the treasure and
 Los Alamos words until it finds the word
 treasure on the last line shown. (It’s probably smarter
 to type just /Alamos/;/treasure/ in case
 Los Alamos is split across two lines of the
 file.)
Another example: a C programmer wants to find the printf
 function call just after the line where i is incremented by
 two (i += 2). She could type:
 /i += 2/;/printf/
Note
You can’t repeat a compound search by typing n. The easiest way is to define the search as a key map
 Section 18.2):
^M
 Section 18.6
 :map #3 /Los Alamos/;/treasure/^M
and repeat the search with (in this case) your F3 function key.

— JP

vi Word Abbreviation

 You can define abbreviations that vi will automatically expand into the full text
 whenever it’s typed during text-input mode. To define an abbreviation, use the
 ex command:
 :ab
 abbr phrase
abbr is an abbreviation for the specified
 phrase. The sequence of characters that make up the
 abbreviation will be expanded during text-input mode only if you type it as a
 full word; abbr will not be expanded within a word. [I
 abbreviate Covnex to Convex, my
 company’s name, because I have dyslexic fingers. --
 TC]
Suppose you want to enter text that contains a frequently occuring phrase,
 such as a difficult product or company name. The command:
 :ab ns the Nutshell Handbook
abbreviates the Nutshell Handbook to the initials
 ns. Now whenever you type ns as a
 separate word during text-input mode, ns expands to the
 full text.
Abbreviations expand as soon as you press a nonalphanumeric character (e.g.,
 punctuation), a carriage return, or ESC (returning to command mode).[2] When you are choosing abbreviations, choose combinations of
 characters that don’t ordinarily occur while you are typing text. If you create
 an abbreviation that ends up expanding in places where you don’t want it to, you
 can disable the abbreviation by typing:
 :unab
 abbr
To list your currently defined abbreviations, type:
 :ab
The characters that compose your abbreviation cannot appear at the end of your
 phrase. For example, if you issue the command:
 :ab PG This movie is rated PG
you’ll get the message No tail recursion,
 and the abbreviation won’t be set. The message means that you have tried to
 define something that will expand itself repeatedly, creating an infinite loop.
 If you issue the command:
 :ab PG the PG rating system
you may or may not produce an infinite loop, but in either case you won’t get
 a warning message. For example, when the previous command was tested on a System
 V version of Unix, the expansion worked. On a Berkeley version, though, the
 abbreviation expanded repeatedly, like this:
the the the the the ...
until a memory error occurred and vi quit.
 We recommend that you avoid repeating your abbreviation as part of the defined
 phrase.
—DD and DG, from Learning the vi Editor
 (O’Reilly, 1998)

Using vi Abbreviations as Commands (Cut and Paste Between vi’s)

The

 vi command ab (Section 17.23) is
 for abbreviating words. But it’s also good for abbreviating ex-mode commands that you type over and over. In
 fact, for ex-mode commands (commands that
 start with a colon (:)), abbreviations can be better than keymaps (Section
 18.2). That’s because you can choose almost any command name; you don’t
 have to worry about conflicts with existing vi commands.
Here’s an example. If you have a windowing terminal or more than one terminal,
 you might have vi sessions running in more
 than one place. Your system might have a way to transfer text between windows,
 but it can be easier to use files in /tmp — especially for
 handling lots of text. (If your text is confidential and your umask (Section
 49.4) isn’t set to make new files unreadable by other users, try
 using a more private directory.) Here are some abbreviations from my .exrc (Section
 17.30) file:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 exrc
ab aW w! /tmp/jerry.temp.a
ab aR r /tmp/jerry.temp.a
ab bW w! /tmp/jerry.temp.b
ab bR r /tmp/jerry.temp.b
 ...
I use those abbreviations this way. To write the current and next 45 lines to
 temporary file a, I type this command in one vi session:
 :.,+45 aW
To read those saved lines into another vi
 session, I use:
 :aR
You can do the same thing in a single vi
 session by using named buffers (Section 17.4), but temporary files are
 the only method that works between two separate vi sessions.
— JP

Fixing Typos with vi Abbreviations

 Abbreviations (Section 17.23) are a handy way to fix
 common typos. Try a few abbreviations like this:
ab teh the
ab taht that
in your .exrc (Section 17.5) file.
Any time you find yourself transposing letters or saying, “Darn, I always
 misspell that word,” add an abbreviation to .exrc. (Of
 course, you do have to worry about performance if the file gets too big.)
You may be able to enforce conventions this way. For example, command names
 should be surrounded by <command> tags,
 so creating a list of abbreviations like this:
ab vi <command>vi</command>
saves us from having to type lots of SGML codes.
(Depending on your version of vi, this
 abbreviation may be recursive (Section 17.23) because the vi is sandwiched between other nonalphanumeric
 characters. nvi repeated the <command>) quite a few times and quit, but
 vim did what we wanted.)

—TOR and JP

vi Line Commands Versus Character Commands

 [Quite a few vi users understand how to build vi commands with the (number)(command)(text
 object) model. But not too many people understand the difference
 between line commands and character commands. This article explains that and
 gives some examples. — JP]
The _ (underscore) command is very similar
 to the ^ (caret) command in that it moves to
 the first nonblank character of the current line. The key difference is that
 _ is a line command
 while ^ is a character
 command. This is important for all functions that read an “address” — for
 example, d, y, and c.
In fact, delete, yank, and so on all call a common internal routine in
 vi to get an “address.” If the address is
 of a particular character, vi does a
 character-mode delete or yank or whatever. If it is a line address, vi does a line-mode operation. The “address”
 command may be any of the regular positioning commands (e.g., W, b, $, or /pattern/) or the original character repeated (as in dd or yy).
Some examples are found in Table
 17-1.
Table 17-1. Examples of vi character and line commands
	
 Keystrokes

 	
 Results

	

 dd

 	
 Deletes the current line.

	

 d'a

 	
 Deletes all lines between the current line and the line
 containing mark a,
 inclusive.

	

 d'a

 	
 Deletes all characters between the current character and
 the character at mark a.
 This works much like an Emacs W in that the two endpoints are considered to
 be between two characters. Note that a character-oriented
 delete may delete newlines.

	

 c/accord/

 	
 Changes all characters (not lines!)
 between the current character up to but not including the
 a in accord. (However, see the
 following Note.)

	

 c?accord?

 	
 Changes all characters between the current character and
 the accord, including the
 word accord.

	

 yj

 	
 Yanks two lines: the current line and the one
 below.

	

 yH

 	
 Yanks all the lines from the top of the screen to the
 current line, inclusive.

	

 <G

 	
 Unindents or “dedents” the lines between the current line
 and the last line, inclusive. (The variable
 shiftwidth determines the amount of
 dedenting.) Note that this command turns character addresses
 into line addresses (so does >).

	

 !}fmt

 	
 Runs the lines between the current line and the end of the
 paragraph through the program fmt (Section 17.28).

Note
If you have wrapscan set, a search like c?accord? may wrap from the beginning of the
 file to the end. This can cause unexpected results and is one reason why I
 have set nows in my
 .exrc. Unfortunately, turning off
 wrapscan breaks tags in many
 versions of vi.

vi combines the repeat count on the command
 character with the repeat count on the motion command, so that 2y2j yanks five lines. Interestingly, 2y2_ yanks 4 lines (so does 2y2y) since the _ command moves down (repeat count minus 1) lines. Beware,
 however, of using repeat counts on all of the motion commands; they’re not all
 implemented in the same way. 4$ moves to the
 end of the third line below the current; 4
 merely moves to the first nonblank character of the current line. | (vertical bar) is a synonym for 0 (zero); given a repeat count, it goes that many
 characters to the right of the beginning of the line (as if you had typed
 | (rept-1) l). (Exercise for the reader: why can’t you give a
 repeat count to 0?)
Uppercase letters do different
 things depending on the command. The exact actions may not always seem sensible,
 but typically they affect the “current line”: D acts like d$; C acts like c$;
 Y acts like yy. The list must merely be memorized, or you can use a good
 vi reference guide.
— CT

Out of Temporary Space? Use Another Directory

vi

 keeps its temporary copy of the file
 you’re editing in a temporary-file directory — usually
 /tmp, /usr/tmp, or
 /var/tmp. If you’re editing a big file or if the
 temporary filesystem runs out of space, vi
 may not be able to make your temporary file. When that happens, you can use
 vi’s set
 directory command to set the pathname of a
 different temporary directory. (If this happens a lot though, you should talk to
 the system administrator and see if the standard area can be cleaned up or made
 bigger.)
First, you’ll need the absolute pathname (Section 3.7) of a directory on a filesystem with enough room. Use an
 existing directory, or make a new one.
The vi command is set directory. For example:
set directory=/usr1/jim/vitemp
You have to type that command before giving vi a filename to edit — after that, vi has made the temporary file, and you’ll be too late. But if
 you type that command while using vi and then
 use the :e command (Section 17.3), all files from then on
 will use the new temporary directory (in the versions I tried, at least).
To set the directory temporarily, it’s probably easiest to add that command to
 the EXINIT environment variable:
setenv EXINIT 'set directory=/usr1/jim/vitemp'
If you already have a .exrc file (Section 17.5),
 setting
 EXINIT will make vi
 ignore your .exrc file. To make the temporary set
 directory work, too, use a command with a
 vertical bar (|), like this:
setenv EXINIT 'source /usr1/jim/.exrc|set directory=/usr1/jim/vitemp'
— JP

Neatening Lines

 Have you made edits that left some of your lines
 too short or long? The fmt (
 Section 21.2) utility can clean that
 up. Here’s an example. Let’s say you’re editing a file (email message, whatever)
 in vi and the lines aren’t even. They look
 like this:
This file is a mess
with some short lines
and some lines that are too long — like this one, which goes on and on for quite
a while and etc.

Let's see what 'fmt' does with it.
You put your cursor on the first line and type (in command mode):
5!!
 Section 17.18
 5!!fmt
which means "filter (Section 17.18) 5 lines through fmt.” Then the lines will look like this:
This file is a mess with some short lines and some lines that are too
long — like this one, which goes on and on for quite a while and etc.

Let's see what 'fmt' does with it.
This is handiest for formatting paragraphs. Put your cursor on the first line
 of the paragraph and type (in command mode):
 !}fmt
If you don’t have any text in your file that needs to be kept as is, you can
 neaten the whole file at once by typing:
%
 Section 20.3
 :%!fmt
There are a few different versions of fmt,
 some fancier than others. Most of the articles in Chapter 21 about editing-related tools can be handy too. For
 example, recomment reformats program comment
 blocks. cut (Section 21.14) can remove columns,
 fields, or shorten lines; tr (Section 21.11) can do other
 transformations. To neaten columns, try filtering through with the setup in
 Section 21.17. In general, if the
 utility will read its standard input and write converted text to its standard
 output, you can use the utility as a vi
 filter.
— JP

Finding Your Place with Undo

 Often, you’re editing one part
 of a file and need to go to another point to look at something. How do you get
 back?
You can mark your place with the m command.
 In command mode, type m followed by any
 letter. (We’ll use x in the example.) Here
 are the commands to do the job:
	m
 x
	Marks current position with x
 (x can be any letter).

	'
 x
	Moves cursor to first character of line marked by
 x.

	`
 x
	Moves cursor to character marked by x.

	``
	Returns to exact position of previous mark or context after a
 move.

	''
	Returns to the beginning of the line of the previous mark or
 context.

I often find it just as easy to type u to
 undo my last edit. That pops me right back to the place where I was editing.
 Then I type u again to restore the edit.
 Watch out for the new multilevel undo feature in vi clones: typing u twice will
 undo two edits! (I still use m if I want to mark more than one place.)
— TOR

Setting Up vi with the .exrc File

 You can store commands and settings to be
 executed any time you start the vi or ex
 editors (Section 17.2)
 in .exrc in your home directory. You can modify the
 .exrc file with the vi editor, just as you can any other text file.
If you don’t yet have an .exrc file, simply use vi to create one. Enter into this file the
 set, ab
 (Section 17.23), and map (Section
 18.2) commands that you want to have in effect whenever you use
 vi or ex. A sample .exrc file looks like
 this:
set nowrapscan wrapmargin=7
set sections=SeAhBhChDh nomesg
map q :w^M:n^M
" To swap two words, put cursor at start of first word and type v:
map v dwElp
ab ORA O'Reilly & Associates, Inc.

 The ^M
 characters are RETURNs.
 Make them by pressing CTRL-v, then RETURN
 (Section 18.6). Lines that start
 with a double quote (") are comments. Since
 the file is actually read by ex before it
 enters vi,
 commands in .exrc should not have
 a preceding colon (:).
In addition to reading the .exrc file in your home
 directory, vi will read the
 .exrc file in the current directory. This allows you to
 set options that are appropriate to a particular
 project (Section
 17.5).
If your .exrc file doesn’t seem to be working, watch
 carefully for error messages just as vi
 starts, before it clears your screen. If you can’t read them quickly enough,
 start ex instead of vi. The q! command quits ex:
% ex
No tail recursion
:q!

[1] Many email programs hide these header lines from you. You might need
 to set a “show all header fields” option first.

[2] An abbreviation won’t expand when you type an underscore (_); it’s treated as part of the
 abbreviation.

Chapter 18. Creating Custom Commands in vi

Why Type More Than You Have To?

Summary Box
Keymapping — storing complex command
 sequences so that they can be executed with a single keystroke — is one of
 my favorite timesavers. There’s nothing like typing one key and watching a
 whole string of work take place. For repetitive edits (e.g., font changes)
 it’s a real wrist-saver, too. In this chapter we show you how to:
	Save time by mapping keys: Section 18.2, Section
 18.4, Section
 18.7, and Section
 18.8.

	Know when to map a key and when not to: Section 18.3.

	Map keys like ESC and RETURN: Section 18.6.

	Move around the file without leaving text-input mode: Section 18.11

	Protect the text you’re pasting in from another window: Section 18.5.

	Put custom commands in your .exrc file: Section 18.9 and Section 18.12.

	Break long lines of text: Section 18.13.

— EK

Save Time and Typing with the
 vi map Commands

While
 you’re editing, you may
 find that you are using a command sequence frequently, or you may occasionally
 use a very complex command sequence. To save yourself keystrokes — or the time
 it takes to remember the sequence — assign the sequence to an unused key by
 using the map and map! commands.
Command Mode Maps

The
 map command acts a lot like ab (Section
 17.23) except that you define a macro for command mode instead of
 text-input mode. The map! command works
 during text-input mode; see the following list.
	map
 x sequence
	Define x as a
 sequence of editing commands.

	unmap
 x
	Disable the x definition.

	map
	List the characters that are currently mapped.

As with other ex-mode commands, these
 map commands can be saved in your .exrc
 file (Section
 17.30) or typed in after a colon (:). If you want a keymap to use
 just during this editing session, you might find that vi @-functions (Section
 18.4) are easier to create and use. The map commands are best for
 keymaps that you save in your .exrc file and use during
 many editing sessions.
Before you can start creating your own maps, you need to know the keys not
 used in command mode that are available for user-defined commands. Here’s a
 list of the unused keys in original vi:

	Letters
	g K q V v

	Control keys
	^A ^K ^O ^T ^W ^X

	Symbols
	_ * \ =

Note
The = is used by vi if Lisp mode is
 set. In addition, other letters such as v may already be used in other
 systems.

With maps you can create simple or complex command sequences. As a simple
 example, you could define a command to reverse the order of words. In
 vi, with the cursor as shown:
you can the scroll page
the sequence to put the after
 scroll would be dwwP: (delete word), dw;
 (move to the next word), w; (put the
 deleted word before that word), P. (You
 can also use W instead of w.) Saving this sequence:
map v dwwP
enables you to reverse the order of two words at any time in the editing
 session with the single keystroke v.
You can also map certain multiple-character sequences. Start the map with
 one of the symbols in the previous list. For example, to map the keystrokes
 *s to put single quotes around a word
 ('
 word
 ') and *d to use double quotes ("
 word
 "):
^[
 Section 18.6
map *s Ea'^[Bi'^[
map *d Ea"^[Bi"^[
Now you’ll be able to make
 hundreds of keymaps (though your version of vi probably has a limit).
You may also be able to associate map sequences with your terminal’s
 function keys if your termcap or terminfo
 entry (

 Section 5.2) defines those keys.
 For example, to make function key F1 transpose words:
map #1 dwelp
Note
Map assignments are not really limited to unused keys. You can map
 keys that are defined as other vi
 commands, but then the key’s original meaning is inaccessible. This is
 probably okay if the key is tied to a command that you rarely use.
 There’s more information in Section
 18.12 about the noremap option.

Text-Input Mode Maps

The map!
 command works like map, but map! works during text-input mode. You
 actually set the map! during command
 mode, in the same way as a plain map: at
 a colon (:) prompt. Type map! followed by
 a space and the key(s) that activate the map; then type a space and the text
 for which the text-input mode map stands. These text-input mode maps are a
 lot like abbreviations (Section 17.23); the difference is
 that map! lets your keymap switch from
 text-input mode to command mode, execute commands, then go back to
 text-input mode. To go to command mode during a map!, put an ESC key in the value of the map by typing CTRL-v and then ESC (Section 18.6). After your map! does whatever it does in command mode, it
 can re-enter text-input mode with the usual commands: a, i, and
 so on.
Let’s say you normally never type the caret (^) key during input mode. When you’re typing along, as you
 realize that what you’re typing is important, you want to press the caret
 key. Then, vi should open a line above
 and insert the phrase “THIS IS IMPORTANT:”. Finally, vi should return you to text-input mode at the
 end of the line where you pressed the caret key. To do that, go to command
 mode and enter the following map!
 command. The first ^ comes from pressing
 the caret key. Then you’ll see two places with ^[; that are made by pressing CTRL-v followed by the ESC key.
 Finish the map by pressing RETURN:
:map! ^ ^[OTHIS IS IMPORTANT:^[jA
What does that do? It executes the same vi commands you’d use to add those three words yourself,
 manually. During text-input mode, typing a caret (^) will:
	Do ESC to go to command mode.

	Use O to open a new line above
 (in text-input mode).

	Enter the text THIS IS
 IMPORTANT:.

	Do another ESC to go back to command mode.

	Do j to go down a line (to the
 line where you started).

	Do A to put you at the end of
 the line, in text-input mode.

The trick is to use map! only to redefine keys you’ll never use
 for anything else during text-input mode. To disable a text-input mode map
 temporarily, press CTRL-v before the key. For example, to put a real caret
 into your file, type CTRL-v ^. To disable an input-mode map for the rest of
 your vi session, type :unmap! followed by the character(s) that
 activate the map.

 A more common example is mapping your
 keyboard’s arrow or function keys to do something during text-input mode.
 These keys send a special series of characters. Normally, without a map! defined for these keys, the characters
 they send will be put into your editor buffer — just as if you’d typed the
 characters they make yourself, one by one. For instance, my left-arrow key
 sends the characters ESC, then [(left bracket), then D. Without a text-input mode map! defined for that three-character
 sequence, vi will be hopelessly confused
 if I press that arrow key.[1] Many Unix developers have added text-input mode maps for arrow
 keys. You can see them when you list all your text-input mode maps by typing
 :map! by itself, with nothing
 after:
up ^[[A ^[ka
down ^[[B ^[ja
left ^[[D ^[hi
right ^[[C ^[la
^ ^ ^[OTHIS IS IMPORTANT:^[jA
Section 18.3 lists some problems
 with map!.
—JP, DG, and LL

What You Lose When You Use map!

Back in the old days, a
 terminal’s arrow keys didn’t work during vi
 text-input mode. To move around in the file, you pressed ESC and used
 command-mode commands like 5k and 4w.
 Since then, lots of vendors and users have modified vi so that you can use arrow keys during text-input mode. These
 days, most people think the new-fangled way that vi works is the right way. Here are some reasons to leave the
 arrow keys alone and do it the old way instead:
	In most cases, the u (undo) command
 will be useless after text-input mode because the arrow keymap does
 several hidden commands — and u can
 only undo the single previous command. The only “undo” command that will
 do much good is U — it undoes all
 changes on the current line, and it probably won’t work if you’ve moved
 off the line since you made the change you want to undo.

	Beginners can get confused by this. They need to learn that vi is a moded editor — that you enter text
 in text-input mode and make changes in command mode. Movement through
 the file is with commands.
When people start using vi and they
 find that some motion commands (the cursor keys) work in text-input
 mode, vi seems inconsistent.

	If your map! runs commands that
 start with an ESC (and it almost always will), your ESC key may work
 more slowly. That’s because every time you press the ESC key, vi will wait one second (or so) to be sure
 that the ESC is just an ESC alone and not the beginning of a map! sequence. Some versions have changed
 this, though.
The fast alternative is to press ESC twice. That rings the terminal
 bell,
 though.

— JP

vi @-Functions

 The vi map
 command (Section 18.2)
 lets you define keymaps: short names for a series of one or more commands. You
 can enter :map to define a keymap while
 you’re editing a file with vi. But if you
 make a mistake, you usually have to re-enter the whole :map command to correct the problem.
@-functions (pronounced “at-functions”)
 give you another way to define complex commands. You can define 26 @-functions named @a through @z. They’re stored
 in named buffers (Section 17.4). So if you’re also using
 named buffers for copying and pasting text, you’ll need to share them with your
 @-functions.
Defining and Using Simple @-Functions

To define an @-function:
	Enter the command(s) you want to execute onto one or more lines of
 the file you’re editing.

	Yank or delete the line(s) into a named buffer with a command like
 "ay$ or "bD.

	To use the function, type a command like @a or @b. You can
 repeat the function by typing @@
 or a dot (.). Use u or U to undo the effects of the @-function.

Here’s an example. You’re editing a long HTML file with lines like
 these:
Some heading here
Another heading here
When you see one of those lines, you need to change the STRONGs to either H3 or H4. A global
 substitution with :%s won’t do the job
 because some lines need H3 and others
 need H4; you have to decide line-by-line
 as you work through the file. So you define the function @a to change a line to H3, and @b
 to change to H4.
To design an @-function, start by
 thinking how you’d make the changes by hand. You’d probably move to the
 start of the line with 0, move to the
 right one character with l, type cw to change the word STRONG, and type in H3 (or
 H4). Then you’d press ESC to return
 to command mode. After going to the end of the line with $, you’d move to the character after the slash
 with T/, then change the second STRONG the way you fixed the first one.
To define the function, open a new empty line of your file (first go into
 text-input mode). Then type the keystrokes that will make the H3 changes; type CTRL-v
 before each ESC or RETURN (Section 18.6). When you’re done, press ESC again to go to
 command mode. Because the commands for the H4 change are similar, the easiest way to make them is by
 copying and pasting the line for H3 (by
 typing yy and p) and then editing the copy. The pair of command lines
 should look like this (where ^[stands
 for the CTRL-v ESC keys):
0lcwH3^[$T/cwH3^[
0lcwH4^[$T/cwH4^[
Move to the start of the first line, and delete it into the
 a buffer by typing "aD. Go to the next line, and type "bD. (This will leave two empty lines; delete them with
 dd if you’d like.) Now, when you type
 @a, it will execute the commands to
 change a line to H3; typing @b on a line will change it to have H4. Move through your file (maybe with a
 search: /STRONG ... n ...), typing @a or @b as you go. Or use
 @@ to make the same change you made
 on a previous line.

Combining @-Functions

An @
 -function
 can execute other @-functions. For
 example, here are four lines ready for storing as @a through @d:
0l@c$T/@c ...becomes @a
0l@d$T/@d ...becomes @b
cwH3^[...becomes @c
cwH4^[...becomes @d
See that the definition of @a has
 @c in it twice? When you execute
 @a, it will do 0l to move to the second character on the
 line, then do @c to change the word to
 H3, move to the end of the line, and
 use @c again. Calling one @-function from another can save you from
 retyping repetitive commands.
A disadvantage is that @@ won’t always
 work as you might expect. If you type @a
 to make a change in one place, then move somewhere else and type @@, the @@
 will do what @c does (instead of what you
 might have wanted, @a). That’s because
 the @a function finishes by doing
 @c.

Reusing a Definition

You don’t have to delete the definition
 line into a buffer with dd. If you think
 you might need to fine-tune the command, you can yank (copy) it into a
 buffer with a command like "ay$. Then, if
 you need to revise the command, re-edit the line and type "ay$ to put the revised version into the
 buffer. Or use "by$ to copy the revised
 line into another buffer.

Newlines in an @-Function

 Stored @-functions can span multiple lines. For example, if you
 delete the following four lines with "z4dd, typing @z will open
 a newline below (o) and insert four
 newlines of text:
oThis is the newline one.
This is the newline two.
This is the third line.
This is the fourth.^[
After you execute the function with @z,
 your cursor will move to the line below the new fourth line. Why? Because
 you included the newlines (RETURNs) in the buffer; each RETURN moves down a
 line — including the RETURN after the last ESC.
If you don’t want that, there are two ways to fix it:
	Delete the first three lines, including the newlines, into the
 buffer by typing "z3dd. Delete
 the fourth line, without its newline, and
 append it to the buffer by typing "ZD. (An uppercase letter like
 Z appends to a named buffer.
 D deletes all of a line
 except the newline.)
Some versions of vi will delete
 four lines, without the last newline, when you use "z4D.

	Type all of the text onto a single line; embed the newlines in
 that line by typing CTRL-v RETURN between each finished line. It’ll
 look like this:
oThis is the new line one.^MThis is the new line two.^MThis is the new...

	Delete that long line into your buffer with "zD. Because D doesn’t delete the final newline, your cursor will
 stay at the end of the fourth newline after you execute the @z.

— JP

Keymaps for Pasting into a Window Running vi

I usually run vi inside windows on a system like X or the Macintosh. The window
 systems can copy and paste text between windows.

 Pasting into a vi window may be tricky if you use vi options like wrapmargin or
 autoindent because the text you paste can be rearranged
 or indented in weird ways.

 I’ve fixed that
 with the upcoming keymaps. If I’m pasting in text that should be copied exactly
 with no changes, I go into text-input mode and type CTRL-x. That shuts off
 autoindent (noai) and the wrapmargin
 (wm=0). When I’m done pasting, I type
 CTRL-n while I’m still in text-input mode.

 A different kind of “pasted” input is with
 CTRL-r. It starts the fmt (Section 21.2) utility to reformat and
 clean up lines while I’m pasting them. To use it, go to text-input mode and type
 CTRL-r. Then paste the text -- fmt will read
 it but not display it. Press RETURN, then CTRL-d to end the standard input to
 fmt. The reformatted text will be read
 into your vi buffer.
^[
 Section 18.6
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 exrc
" Set 'exact' input mode for pasting exactly what is entered:
map! ^X ^[:se noai wm=0^Ma
" Set 'normal' input mode with usual autoindent and wrapmargin:
map! ^N ^[:se ai wm=8^Ma
" Read pasted text, clean up lines with fmt. Type CTRL-d when done:
map! ^R ^[:r!fmt^M
Note that some window systems convert TAB
 characters to spaces when you copy and paste. If you want the TABs back, try a
 filter-through (Section 17.18) with unexpand.
— JP

Protecting Keys from Interpretation by ex

 Note that when defining a map, you cannot
 simply type certain keys — such as RETURN, ESC, BACKSPACE, and DELETE — as part
 of the command to be mapped, because these keys already have meaning within
 ex. If you want to include one of these
 keys as part of the command sequence, you must escape the normal meaning by
 preceding the key with ^V (CTRL-v). After CTRL-v, a carriage
 return appears as ^M, escape as ^[, backspace as ^H, and so on.
On the other hand, if you want to map a control character, in most cases you
 can just hold down the CTRL key and press the letter key at the same time. For
 example, to map ^A (CTRL-a), simply
 type:
:map CTRL-a sequence
There are, however, a few other control characters that must be escaped with a
 ^V. One is ^T. The others are as follows:
	The characters that your account uses for erasing parts of the input
 you type at a command line: ^W for
 erasing words and ^U for erasing
 lines.

	The characters for interrupting jobs
 (Section 24.11) and
 stopping jobs (Section 23.1).

So, if you want to map ^T, you must type:
:map CTRL-v CTRL-t sequence
The use of CTRL-v applies to any ex
 command, not just a map command. This means that you can type a carriage return
 in an abbreviation (Section 17.23) or a substitution
 command. For example, the abbreviation:
 :ab 123 one^Mtwo^Mthree
expands to this:
one
two
three
(The sequence CTRL-v RETURN is shown as it appears on your screen, ^M.)
You can also add lines globally at certain locations. The command:
 :g/^Section/s//As you recall, in^M&/
inserts a phrase on a separate line before any line beginning with the word
 Section. The &
 restores the search pattern.

 The vertical bar
 (|) is used to separate multiple ex commands; it’s especially difficult to quote.
 Because a map is interpreted when it’s stored and again when it’s used, you need
 enough CTRL-v characters to protect the vertical bar from each interpretation.
 You also need to protect stored CTRL-v characters by adding a CTRL-v before each
 one! The worst case is a text-input mode map (map! (Section 18.2)) —
 it needs three CTRL-v characters, which means you need to type
 six CTRL-v characters before you type the vertical bar.
 For example, the following map will make your function key
 F1 (Section 18.2)
 insert the string {x|y}:
 map! #1 {x^V^V^V|y}
If you ask for a list of text-input mode maps, you should see a single stored
 CTRL-v:
 :map!
f1 ^[OP {x^V|y}
 —LL, DG, and JP, from Learning the vi Editor
 (O’Reilly, 1998)

Maps for Repeated Edits

 Another way to do this is with @-functions (Section 18.4).
Not every keymap is something you want to save in your
 .exrc file. Some maps are handy just because you have
 to do a repetitive series of edits. Developing a complex map to repeat your
 edits can save more time than it takes. For example, assume that you have a
 glossary with entries like this, separated by blank lines:
map - an ex command which allows you to associate
a complex command sequence with a single key.
You want to convert this glossary list to HTML format, so that it looks
 like:
<DT>map</DT>
<DD>
An ex command which allows you to associate
a complex command sequence with a single key.
</DD>
The best way to define a complex map is to do the edit once manually, writing
 down each keystroke that you must type. Then recreate these keystrokes as a
 map.
	Use I to insert the tag for an data
 list term (<DT>) at the
 beginning of the line.

	Press ESC to terminate text-input mode. Move just before the dash
 (t-). Use 3s to replace the dash and space after it
 with the closing term tag (</DT>).

	Still in text-input mode, press RETURN to insert a new line. (This
 moves the definition to a newline underneath the <DT> tags.) Enter the opening data
 list definition (<DD>) tag, and
 press RETURN again. (The definition moves to yet another newline
 underneath the <DD>
 tag.)

	Press ESC to terminate text-input mode. Your cursor is at the start of
 the definition. Capitalize the first word of the definition (~).

	Go to the blank line after the definition (}), open a newline above (O), and insert the closing data list definition (</DD>) tag. Press ESC to end
 text-input mode.

	Press RETURN to end the keymap definiton.

That’s quite an editing chore if you have to repeat it more than a few times.
 With map you can save the entire sequence so
 that it can be re-executed with a single keystroke:
map g I<DT>^[t-3s</DT>^M<DD>^M^[~}O</DD>^[
(To store a map during a vi session, type a
 colon (:) first.) Note that you have to “quote” both the ESC and RETURN
 characters with CTRL-v (Section 18.6). ^[is the sequence that appears when you type CTRL-v followed by ESC. ^M is the sequence shown
 when you type CTRL-v RETURN.
Now, simply typing g will perform the
 entire series of edits. At a slow data rate you can actually see the edits
 happening individually. At a fast data rate it will seem to happen by
 magic.
Don’t be discouraged if your first attempt at keymapping fails. A small error
 in defining the map can give very different results from the ones you expect.
 You can probably type u to undo the edit and
 try again. It’s safer to write the file (:w)
 before you use the keymap — in case your version of vi can’t undo complex keymaps.
If the keymap is complex, or if you’re defining several maps at once, you can
 make a temporary keymap file and edit the maps there until you’ve worked out the
 bugs. For instance, write your buffer and type :e
 temp to open a temporary file temp. Make the
 keymaps, one per line — without a colon (:) first. Write this map file (:w), then read it in to the editor (:so %). If there’s no error, switch to the
 original file (:e # or CTRL-^), and try the
 map. (Section 17.3 explains % and #.) Then,
 if there are problems, go back to the map file (:e!
 #, where the ! tells vi not to write the mistakes out to the file), fix
 the keymap, and repeat the process until you get what you wanted.
In this case, for instance, maybe the next glossary definition starts with an
 uppercase letter, but the ~ in the keymap is
 changing that letter to lowercase. You need to change the ~ to an ex
 substitution command that converts a lowercase letter to
 uppercase (Section
 17.16). If you’ve saved the keymap in a temporary file, just type
 :e# and change it:
map g I<DT>^[t-3s</DT>^M<DD>^M^[:s/^./\u&/^M}O</DD>^[
We’ve changed ~ to :s/^./\u&/^M. As you can see, complex keymaps can be tough to
 decipher after you’ve written them, which makes the notes you’ve written even
 more useful.
—TOR and JP, from Learning the vi Editor
 (O’Reilly, 1998)

More Examples of Mapping Keys in vi

 The
 examples that follow will give you an idea of the clever shortcuts possible when
 defining keyboard maps:
	Add text whenever you move to the end of a word:
map e ea
Most of the time, the only reason you want to move to the end of a
 word is to add text. This map sequence puts you in text-input mode
 automatically. Note that the mapped key, e, has meaning in vi.
 You’re allowed to map a key that is already used by vi, but the key’s normal function will be
 unavailable as long as the map is in effect. This isn’t so bad in this
 case, since the E command is often
 identical to e.
In the remaining examples, we assume that e has been mapped to ea.

	Save a file and edit the next one in a
 series (Section
 17.3):
map q :w^M:n^M
Notice that you can map keys to ex
 commands, but be sure to finish each ex command with a RETURN. This sequence makes it easy to
 move from one file to the next, and it’s useful when you’ve opened many
 short files with one vi command.
 Mapping the letter q helps you
 remember that the sequence is similar to a “quit.”

	Put HTML emboldening codes (and) around a word:
map v i^[e^[
This sequence assumes that the cursor is at the beginning of the word.
 First, you enter text-input mode, then you type the code for bold font.
 Next, you return to command mode by typing a “quoted” (Section
 18.6) ESC. Finally, you append the closing HTML tag at the
 end of the word, and you return to command mode. Of course, the map is
 not limited to HTML font tags. You can use it to enclose a word in
 parentheses or C comment characters, to name just a few
 applications.
This example shows you that map sequences are allowed to contain other
 map commands (the e is already mapped
 to ea). The ability to use nested map
 sequences is controlled by vi’s remap
 option (Section
 18.12), which is normally enabled.

	Put HTML emboldening tags around a word, even when the cursor is not
 at the beginning of the word:
map V lbi^[e^[
This sequence is the same as the previous one, except that it uses
 lb to handle the additional task
 of positioning the cursor at the beginning of the word. The cursor might
 be in the middle of the word, so you’ll want to move to the beginning
 with the b command.
But if the cursor were already at the beginning of the word, the
 b command would move the cursor
 to the previous word instead. To guard against that case, type an
 l before moving back with
 b so that the cursor never starts
 on the first letter of the word. You can define variations of this
 sequence by replacing the b with
 B and the e with Ea. In all cases though, the l command prevents this sequence from working if the
 cursor is at the end of a line. (To get around this, you could add a
 space to the end of the word before typing the keymap.)

—DG, from Learning the vi Editor (O’Reilly,
 1998)

Repeating a vi Keymap

 The vi (actually, ex) command map (Section 18.2) lets you build custom
 vi commands. For example, the following
 keymap redefines the -key to run the vi commands o (open a newline
 below), ESCAPE, 72a- (add 72 dashes),
 and ESCAPE again:
 :map - o^[72a-^[
So typing - draws a row of dashes below the current line.
 The problem is that on versions of vi I’ve
 tried, you can’t add a repetition number — that is, you can’t type the command
 10- to add 10 dashed lines.
The workaround is to define another macro that calls the first macro ten
 times. For example, to make the v key draw
 ten rows of dashes:
 :map v ----------
(Ugly, eh? But it works.) You might want to put the -
 map in your
 .exrc file and define “multimaps” like
 v while you’re running vi.
— JP

Typing in Uppercase Without CAPS LOCK

 You may want to input text in all uppercase
 letters.
 Using CAPS LOCK
 in vi can be a pain because you have to
 release CAPS LOCK almost every time you want to type a vi command. Here’s a nice way to type lowercase letters during
 input and ex modes; they’ll be mapped to
 uppercase automatically.
Try putting this in your .exrc (Section 17.5) file:
map! a A
map! b B
map! c C
 ...
map! z Z
Anytime you type (during text-input mode) an a, the editor will map it into A. What’s that you say . . . you don’t want this all the time?
 Just put it in a file called .f (for FORTRAN), and
 type:
 :source .f
when you want FORTRAN mode. Of course, you can define a
 function key (Section
 18.2) to :source this.
[After that, anywhere you want a lowercase letter, type CTRL-v first to cancel the map
 temporarily. For example, to type the command :w, type : CTRL-v w.
You can also go into the ex

 command mode by typing the vi command
 Q. That takes you to the
 ex colon (:) prompt — where the
 map! macros won’t affect what you type. To return to
 vi mode from ex command mode, type
 :vi. -- JP]
—BB, in net.unix on Usenet, 9 October
 1986

Text-Input Mode Cursor Motion with No Arrow Keys

 Some people don’t like to press ESC first
 to move the cursor while they’re using vi.
 These keymaps change CTRL-h, CTRL-j, CTRL-k, and
 CTRL-l to do the same things during input mode as the commands h, j, k, and l do in
 command mode.
Note
Is your erase character set to CTRL-h
 (Section 5.8) outside vi? If it is, mapping CTRL-h (usually labeled
 BACKSPACE on your keyboard) will change the way CTRL-h works during
 text-input mode: instead of erasing the characters you’ve typed since you
 entered text-input mode, now CTRL-h will move backwards over what you type
 without erasing it. One workaround is to change your Unix erase character to
 the DELETE or RUBOUT key by typing the command stty
 erase
 '^?' before you start vi. Then your DELETE key will erase what you
 type, and the BACKSPACE key will jump back over it without deleting.

The lines for your .exrc file (Section 17.30) are as follows:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 exrc
map! ^H ^[i
map! ^K ^[ka
map! ^L ^[la
map! ^V
 ^[ja
" Note: the two lines above map ^J (LINEFEED)
That last map takes two lines; it’s tricky and may not work right on all
 versions of vi. No, it isn’t a map for
 CTRL-v, though that’s what it looks like. It maps ^J, the LINEFEED key. The ^V
 comes at the very end of its line. When you’re entering that keymap, type CTRL-v
 and then press LINEFEED or CTRL-j. The cursor will move to the start of the next
 line; type a SPACE and the rest of the macro. It’s a good idea to add the
 reminder comment (starting with the comment character, a double quote (")), on the line below the map.
Note
This map for CTRL-j is obviously something for which the people who wrote
 my version of vi didn’t plan. For
 example, look at the mess it makes when I ask for a list of my text-input
 keymaps:
:map!^H ^H ^[i
^K ^K ^[ka
^L ^L ^[la

 ^[ja
Before you use this map on important files, you probably should test it
 carefully.

— JP

Don’t Lose Important Functions with vi Maps: Use noremap

 For
 years, I assumed that I could map (Section 18.2) only a few keys in
 vi — the characters like
 v and ^A that aren’t used. For
 instance, if I mapped ^F to do something else, I thought
 I’d lose that handy “forward one screen” command. You thought the same thing?
 Then we’re both wrong!
Just use the noremap option. Here’s a simple example. You
 can make ^F the “show file information” (normally
 ^G) command. Then, make ^A take
 over the “forward (ahead) one screen” function. Put these lines in your
 .exrc file (Section 17.5):
set noremap
map ^F ^G
map ^A ^F
— JP

vi Macro for Splitting Long Lines

 When you add text to the start of a line
 and make the line longer than your screen’s width, vi won’t break (“wrap”) the line unless your cursor crosses the
 wrapmargin point near the righthand edge of the screen.
 You can get lines that are too long.
Here are two macros that cut (Kut) the current line:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 exrc
map K 78^V|lBhr^M
map K 078lF r^M
The first macro doesn’t seem to work on some versions of vi. It’s the better one though, because it uses
 the | (vertical bar) command to move to
 column 78, even if there are TABs in the line. Then it moves one more character
 to the right (if it can), moves back to the start of the word, moves back one
 more character onto the blank or TAB before the word, and replaces that
 character with a RETURN.
The second macro counts TABs as single characters, but it works on every
 version of vi I’ve tried. It moves to the
 left edge, then to the 79th character, then back to the previous space. Finally,
 it replaces that space with a carriage return.
You might try adding a J to the start of
 either macro. That’ll join the next line to the current one before cutting; it
 might make a nicer “wrap.” Another way to do this is with a filter-through (Section 17.18) and the fmt (Section 17.28) command:
 !!fmt
That will break the current line neatly, though it also might change the
 spacing after periods (.) or replace leading TABs with spaces.
— JP

File-Backup Macros

 Emacs automatically keeps backup
 copies of the file you’re editing. If you have editing problems (or just change
 your mind), you can get the previous file version by recovering from a backup
 file. I like this idea, but I don’t like the way that backups are done
 automatically. Instead, I want to choose when vi makes a backup “snapshot.” This macro, CTRL-w, lets me do
 that: it writes a copy of the current filename as
 filename~. (The trailing tilde (~) is an Emacs convention. Section 14.17 shows ways to remove
 these backup files.) Whenever I want to save a snapshot of the editing buffer, I
 just type CTRL-w.
^M
 Section 18.6
map ^W :w! %~^M
The w! writes without questions,
 overwriting any previous backup with that name. vi replaces % (percent sign)
 with the filename (or pathname) you’re currently editing.
If you want an Emacs-style backup to be made every time you write the file
 (except the first time), you could try something like this:
map ^W :!cp -pf % %~^M:w^M
The first command uses cp -p (Section 10.12) to make a backup of the
 previously written file; the cp
 -f option forces the write. (vi may warn you File modified
 since
 last write, but the versions I’ve checked
 will run cp anyway.) The next command writes
 the current editing buffer into the file.

— JP

[1] Actually, the ESC will switch
 vi back to command mode. The
 first [will make vi think you’re about to type the
 section-motion command [[, so the
 following D will make vi beep. Ugly, eh?

Chapter 19. GNU Emacs

Emacs: The Other Editor

 The “other” interactive
 editor that’s commonly used is Emacs. Emacs actually refers to a family of
 editors; versions of Emacs run under most operating systems available. However,
 the most important (and most commonly used) version of Emacs is “GNU Emacs,”
 developed by the Free Software Foundation.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 emacs
GNU Emacs is popular because it’s the most powerful editor in the Emacs
 family; it is also freely available under the terms of the FSF’s General Public
 License. Although there are certainly strong differences of opinion between
 Emacs and vi users, most people agree that
 Emacs provides a much more powerful and richer working environment.
What’s
 so good about Emacs, aside from the fact that it’s free? There are any number of
 individual features that I could mention. (I’ll give a list of favorite features
 in Section 19.2.) Emacs’ best feature
 is the extent to which it interacts with other Unix features. For example, it
 has a built-in email system so you can send and receive mail without leaving the
 editor. It has tools for “editing” (deleting, copying,
 renaming) files, for running a Unix shell within Emacs, and so on. The C shell
 has a rather awkward command-history mechanism; the Korn shell has something
 more elaborate. But imagine being able to recall and edit your commands as
 easily as you edit a letter! That’s far beyond the abilities of any shell, but
 it’s simple when you run a shell inside your editor.
In this book, we can’t give anywhere near as much attention to Emacs as we can to vi (Section 17.1), but we will point out some of its best features and a
 few tricks that will help you get the most out of it. For the impatient, here’s
 a very brief survival guide to Emacs.
	Starting Emacs
	Like vi, Emacs
 can be started from the shell prompt by typing its name, emacs. Once started, emacs will
 present you with a helpful screen of commands. A word of advice:
 take the tutorial (CTRL-h t). If you want to edit an existing file,
 simply type emacs with the
 desired filename after it. While editing your file, you may save
 your work to disk with CTRL-x CTRL-s.

	Exiting Emacs
	To
 exit
 emacs, type CTRL-x CTRL-c. If you haven’t saved your work yet, you
 will have the opportunity to do so before Emacs quits.

	Moving around
	Unlike vi,
 Emacs doesn’t have a command mode.
 Like many more modern editors, Emacs allows the user to begin typing
 his document immediately. Terminal emulation willing, the arrow keys
 work as expected to move your cursor in and around lines of text.
 For long documents, you can move by pages rather than lines.
 Pressing CTRL-v moves the cursor lower in the document, while ESC-v
 moves the cursor towards the begining.

	Deleting characters and lines
	The

 BACKSPACE key normally erases
 one character to the left of the cursor, and the DELETE key erases
 the charater under the cursor. Entire lines of text may be removed
 using CTRL-k, which removes all text from the cursor to the end of
 the line. You can paste back the most recent cut with CTRL-y.

	Undo
	To
 undo your last action, type
 CTRL-x u. You can cancel out of a command sequence with CTRL-g. This
 is helpful when you’re experiencing key lag and type a few extra
 CTRL-c’s.

One last tip before moving on. The Emacs online help descibes key bindings using different abbreviations
 than used in this book. In the Emacs documentation, C-x is our CTRL-x. Their

 M-x is our ESC-x.
 The M stands for META key, which is mapped to the ESCAPE key and usually to the
 ALT key as well. For consistency, this
 chapter always refers to the ESCAPE key.
—ML, BR, DC, and JJ

Emacs Features: A Laundry List

 Here’s the list we promised — a list of our
 favorite features:
	
 Windows
	Emacs is a “windowed editor.” Before anyone heard of the X Window
 System or the Macintosh, Emacs had the ability to divide a
 terminal’s screen into several “windows,” allowing you to do
 different things in each one. You can edit a different file in each
 window or read mail in one window, answer mail in another, issue
 shell commands in a third, and so on.
Now that we all have nice workstations with mice and other crawly
 things for navigating around a bitmapped screen, why do you care?
 First, you may not have a bitmapped screen, and even if you have one
 in the office, you may not at home. Second, I still find Emacs
 preferable to most “modern” window systems because I
 don’t have to use a
 mouse. If I want to create another window, I just type CTRL-x 2
 (which splits the current window, whatever it is, into two); if I
 want to work in another window, I just type CTRL-x o; if I want to
 delete a window, I type CTRL-x 0. Is this faster than reaching for
 my mouse and moving it around? You bet. Particularly since my mouse
 is hidden under a pile of paper. (Of course, it’s hidden because I
 hardly ever need it.) Once you’ve created a window, it’s just as
 easy to start editing a new file, initiate a shell session, and so
 on. Third, even though you’re using a windowing system, you may not
 have a lot of screen real estate available. By having a split Emacs
 screen, all editing can be done in one window, leaving enough room
 for other applications, such as the Mozilla web browser, to be open.
 Whether you’re developing web pages or just reading Slashdot while
 “working,” you’ll appreciate the free space on the screen. It isn’t
 uncommon for Emacs users to always have Emacs open on their
 desktops.

	Shells
	
 You can start an interactive shell
 within any Emacs window; just type ESC-x shell, and you’ll see your familiar shell prompt.
 It’s easy to see why this is so useful. It’s trivial to return to
 earlier comands, copy them, and edit them. Even more important, you
 can easily take the output of a command and copy it into a text file
 that you’re editing — obviously an extremely useful feature when
 you’re writing a book like this. Emacs also lets you issue commands
 that operate on the contents of a window or a selected region within
 a window. Another benefit to doing shell work directly in Emacs is
 that every word that appears in that shell buffer is available for
 command completions (
 Section 19.6). So if
 you’re creating a small shell script that has to reference a long
 directory name, being able to autocomplete that name is an
 invaluable feature.
In fact, there are many filesystem maintenance tasks with which
 Emacs can help you. You can view and manipulate
 directories and
 files with Dired
 mode, which can be activated by typing ESC-x dired. You’ll be asked
 which directory you want to view (the current directory is the
 default). Do you want to remove a file that starts with a hyphen,
 but rm complains that your file
 is not a valid option? Start Emacs in Dired mode, select the file,
 and type D. Emacs will ask you
 for confirmation about the proposed deletion. Want to delete a
 bunch of files that can’t be easily described with wildcards? In
 dired mode, select each file with d, then remove them all with ESC-x dired-do-flagged-delete.

	

 Keyboard macros and advanced
 editing features
	Emacs
 lets you define “keyboard macros” — and sequences of commands that can be executed
 automatically. This is similar to vi’s
 map (Section
 18.2) facility, with one extra twist: Emacs actually
 executes the commands while you’re defining the macro; vi expects you to figure out what you
 need to do, type it in without any feedback, and hope that the macro
 doesn’t do anything hostile when you edit it. With Emacs, it’s much
 easier to get the macro right. You can see what it’s going to do as
 you’re defining it, and if you make a mistake, you can correct it
 immediately.
To create a macro, you first need to tell Emacs that it needs to
 remember the next sequence of keystrokes by typing CTRL-x (. Now perform the
 desired actions. To end the macro recording, type CTRL-x). To
 execute the most recently defined macro, type CTRL-x e. If you make
 a mistake when recording the marco, type CTRL-g to cancel out of the
 entire operation, and begin recording the macro again.
Even if you don’t create your own macros, Emacs provides a rich
 set of text- editing features that
 often do what you mean. For instance, Emacs
 allows users to make rectangluar text cuts. This is very useful for
 removing leading whitespace from a series of lines. To
 make the cut, you must first define the starting point of the
 rectangle to be cut. Position the cursor in Emacs to the upper-left
 corner of the area to be excised. Then mark the area with
 CTRL-SPACE. Move the cursor down to the last line of the area to be
 removed and then over to right as far as is desired. This is the
 lowest and rightmost corner of the rectangle. Now remove the area
 with the key sequence CTRL-x r k.

	Editing modes
	

 Emacs has a large number
 of special

 editing modes that provide
 context-sensitive help while you’re writing. For example, if you’re
 writing a C program, the C
 mode will help you to observe conventions for indentation and
 commenting. It automatically lines up braces for you and tells you
 when parentheses are unbalanced. In X Windows, Emacs will even do
 syntax highlighting for you. Perl programmers
 get two editing modes to choose from, perl-mode and cperl-mode.
 Based on the file extension, Emacs will figure out which mode you
 want. (The default and simplest mode is called Fundamental.) You can
 enter a new mode by typing ESC- x and then the name of the mode.
 Emacs also integrates well with the perl debugger (ESC-x perldb) so that you can step through
 your running code in the editor. Emacs also supports many

 version-control systems including
 RCS and CVS. Checking out a file from RCS is as simple as typing
 CTRL-x v v. After you have made your edits, check in the file with
 CTRL-x v v. That’s not a typo; Emacs can figure out the
 right thing to do with your file because it
 remembers the last version-control state. Pretty cool. There are
 special modes for virtually every programming language I’ve ever
 heard of. There are also special modes for HTML, troff, TEX,
 outlines, stick figures, etc. For any kind of programming, Emacs is
 the Integrated Development Environment of choice for many
 users.

	Mail, news, FTP, and HTTP
	
 Although I often use Emacs’
 mail facility as an example, I’m not personally fond of it. However,
 if you really like working within the Emacs environment, you should
 try it. Sending mail from Emacs (ESC-x mail) is convenient if you are already editing the
 file you wish to send. You can simply copy and paste your work into
 the mail buffer and send it along with CTRL-c CTRL-c. You can even
 add Cc: and Reply-to: fields to the message just by adding them to
 the mail buffer directly under the To: field.
Emacs also has a

 Usenet client called GNUS (ESC-x
 gnus) that has quite a
 following. What editor would be complete without an integrated

 FTP
 client? Certainly not Emacs. There are two ways to access FTP in
 Emacs. The first is to type ESC-x ftp. This gives you a shell-like ftp client. While
 this is nice, Emacs provides an even slicker way to FTP files.
 Ange-ftp mode allows Emacs users to
 open remote files almost as if they
 were local. To open a remote file or directory, simple type CTRL-x
 CTRL-f. However, you must specify the filename with a leading slash
 and your remote username followed by @ and followed again by the ftp hostname, a colon,
 and the full path you wish to retrieve. For example, if I wished to
 edit the file index.html as
 user edit on my web server, I
 would use the filename
 /edit@www.nowhere.com:/home/html/htdocs/index.html.
To extend the last example a bit, Emacs even has a web-browser mode so that you
 could look at the web page you just edited! In truth, lynx is still
 king of the ASCII web browsers, but the Emacs W3 mode is coming along. It
 doesn’t normally come with Emacs, so you’re going to have to look on
 the Web for it. It has very good integration with XEmacs (neè Lucent Emacs) and
 can even display images. Speaking of the Web, there’s a nice Emacs
 feature called webjump (ESC-x webjumb) that will make a currently opened Web
 browser such as Netscape go to a new URL. Webjump comes with a list
 a predefined URLs, which can be expanded, of course. One of those
 URLs is Yahoo. When that site is selected, webjump will ask you for
 a query term to submit. After hitting return, the Yahoo search
 results will appear in a browser window. Again, it’s a nice
 shortcut.

	Customization
	

 Emacs is the most
 customizable tool I’ve ever seen. Customization is based on the LISP
 programming language, so you need to learn some LISP before you can
 work with it much. However, once you know LISP, you can do virtually
 anything. For example, you could write a complete
 spreadsheet program within Emacs — which means that you could use
 your normal Emacs commands to edit the spreadsheet and incorporate
 it (in whole or in part) into your documents. In fact, several Emacs
 spreadsheet modes exist, but their quality and functionality vary
 wildly. And, because of the FSF’s General Public License, virtually
 all special-purpose packages are available for free.

—ML and JJ

Customizations and How to Avoid Them

 Emacs customizations are usually
 stored in a file called .emacs in your home directory. In
 Section 19.7, we’ve given a few
 customizations that I personally find convenient; if you’re like most people,
 you’ll add customizations over time. You’ll end up doing this even if you’re not
 a LISP programmer; if you know any other Emacs users, you’ll soon be borrowing
 their shortcuts. The best way to customize Emacs to your taste is to find out
 what works for others . . . and then steal it. For that matter, many — if not
 most — of the customizations in my file were stolen from other users over the
 years. I hope I’ve gotten this process off to a good start.
However, you should also be aware of
 the “dark side” of customization. What happens if you sit down at someone else’s
 system, start Emacs, and find out that he’s customized it so extensively that
 it’s unrecognizable? Or that a “helpful” administrator has installed some
 system-wide hacks that are getting in your way? Here’s what will help. First,
 start emacs with the option
 -q; that tells Emacs not to load any
 .emacs
 initialization file. (If you want to load
 your initialization file instead of someone else’s, try the option -u
 username).
That still doesn’t solve the problem of system-wide customizations. To keep
 those from getting in the way, put the following line at the beginning of your
 .emacs file:
(setq inhibit-default-init t)
This turns off
 all “global” initializations. (If you’re sharing someone else’s system, you may
 still need the -u option to force Emacs to read your
 initialization file.)
—ML, DC, and BR

Backup and Auto-Save Files

 If you’re
 like most people, you often spend a few hours editing a file, only to decide
 that you liked your original version better. Or you press some strange sequence
 of keys that makes Emacs do something extremely weird and that you can’t “undo.”
 Emacs provides several ways to get out of these tight spots.
First, try the command ESC-x revert-buffer.
 Emacs will ask one of two questions: either “Buffer has been auto-saved
 recently. Revert from auto-save file? (y or n)” or “Revert buffer from file
 your-filename? (yes or no)”.
Before deciding what to do, it’s important to understand the difference
 between these two questions. Emacs creates an auto-save[1] file every 300 keystrokes you type. So, if you’re reverting to the
 auto-save file, you’ll at most lose your last 300 keystrokes. Maybe this is what
 you want — but maybe you made the mistake a long time ago. In that case, you
 don’t want to use the auto-save file; type n,
 and you’ll see the second question, asking if you want to revert to the last
 copy of the file that you saved. Type yes to
 go back to your most recent saved version.
It’s possible that you’ll only see the second question (“Revert buffer from
 file . . . “). This means that you have saved the file sometime within the last
 300 keystrokes. As soon as you save a file, Emacs deletes the auto-save file. It
 will create a new one every 300 keystrokes.
It’s worth noting that Emacs is very picky about what you
 type. If it asks for a y or an n, you’ve got to type y or n. If it asks for
 yes or no, you’ve got to type yes or
 no. In situations like this, where the
 two styles are mixed up, you’ve got to get it right.
If you’re in real trouble and you want to go back to your original
 file — the way it was when you started editing — you need to
 recover Emacs’ backup file. If you’re editing a file that
 already exists, Emacs will create a backup file as soon as it starts. If you’re
 editing a new file, Emacs will create a backup the second
 time you save the file. Once it’s created, the backup file is never touched; it
 stays there until the next time you start Emacs, at which point you’ll get a new
 backup, reflecting the file’s contents at the start of your editing
 session.
Now that we’re over the preliminaries, how do you recover the backup file?
 Emacs doesn’t have any special command for doing this; you have to do it by
 hand. The backup file’s name is the same as your original filename, with a tilde
 (~) added to it. So quit Emacs (or start
 a shell), and type:
% mv
 your-filename
 ~
 your-filename
Note that Emacs has the ability to save “numbered” backup files, like the
 VAX/VMS operating system. We’ve never played with this feature and don’t think
 it’s a particularly good idea. But it’s there if you want it.
—ML and DC

Putting Emacs in Overwrite Mode

 Many users are used to editors that are
 normally in overwrite mode: when you backspace and start
 typing, you type over the character that is underneath the cursor.[2] By default, Emacs works in insertion mode,
 where new characters are inserted just before the cursor’s position.
If you prefer overwrite mode, just give the command ESC-x overwrite-mode. You can use command abbreviation (Section
 19.6) to shorten this to ESC-x ov.
 On many keyboards, pressing INSERT also turns on overwrite mode. If you get
 tired of overwrite mode, use the same command to turn it off.
If you always want to use overwrite mode, create a file
 named .emacs in your home directory, and put the following
 line in it:
(setq-default overwrite-mode t)
This is a simple Emacs customization; for a lot more about customization, see
 O’Reilly & Associates’ Learning GNU Emacs, by Bill
 Rosenblatt, Eric Raymond, and Debra Cameron.
—ML and DC

Command Completion

 Emacs has a great feature called
 command completion. Basically, command completion means
 that Emacs will let you type the absolute minimum and it will fill in the rest.
 You can use command completion whenever you’re typing a filename, buffer name,
 command name, or variable name. Simply type enough of the name to be “unique”
 (usually the first few letters), followed by a TAB. Emacs will fill in the rest
 of the name for you. If the name isn’t unique — that is, if there are other
 filenames that start with the same letters — Emacs will show you the
 alternatives. Type a few more letters to select the file you want, then press
 TAB again.
For example, if I’m trying to load the file outline.txt,
 I can simply give the command CTRL-x CTRL-f out TAB. Providing that there are no other filenames beginning
 with the letters out, Emacs will fill in the rest of the
 filename. When I see that it’s correct, I press RETURN, and I’m done.
When you use command completion, always make sure that Emacs has successfully
 found the file you want. If you don’t, the results may be strange: you may end
 up with a partial filename or the wrong file.
Along the same lines as command completion is a feature called
 dynamic expansion
 . After typing the first few letters of a
 word, you can have Emacs search all open buffers for completions of that word.
 Simply type ESC-/, and emacs will complete the partial word with one you’ve
 already typed. You can cycle through all the choices by repeating the keystroke.
 Warning: this feature is addictive.
—ML and BR

Mike’s Favorite Timesavers

 I’m a
 very fast typist — which means that I hate using special function keys, arrow
 keys, and especially mice. I deeply resent anything that moves me away from the
 basic alphanumeric keyboard. Even BACKSPACE and DELETE are obnoxious, since they
 force me to shift my hand position.
With this in mind, I’ve customized Emacs so that I can do virtually anything
 with the basic alphabetic keys, plus the CONTROL key. Here are some extracts
 from my .emacs file:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 .emacs_ml
;; Make CTRL-h delete the previous character. Normally, this gets
;; you into the "help" system.
 (define-key global-map "\C-h" 'backward-delete-char)
;; make sure CTRL-h works in searches, too
 (setq search-delete-char (string-to-char "\C-h"))
;; bind the "help" facility somewhere else (CTRL-underscore).
;; NOTE: CTRL-underscore is not defined on some terminals.
 (define-key global-map "\C-_" 'help-command) ;; replacement
 (setq help-char (string-to-char "\C-_"))
;; Make ESC-h delete the previous word.
 (define-key global-map "\M-h" 'backward-kill-word)
;; Make CTRL-x CTRL-u the "undo" command; this is better than "CTRL-x u"
;; because you don't have to release the CTRL key.
 (define-key global-map "\C-x\C-u" 'undo)
;; scroll the screen "up" or "down" one line with CTRL-z and ESC z
 (defun scroll-up-one () "Scroll up 1 line." (interactive)
 (scroll-up (prefix-numeric-value current-prefix-arg)))
 (defun scroll-down-one () "Scroll down 1 line." (interactive)
 (scroll-down (prefix-numeric-value current-prefix-arg)))
 (define-key global-map "\C-z" 'scroll-up-one)
 (define-key global-map "\M-z" 'scroll-down-one)
;; Use CTRL-x CTRL-v to "visit" a new file, keeping the current file
;; on the screen
 (define-key global-map "\C-x\C-v" 'find-file-other-window)
The comments (lines beginning with two
 semicolons) should adequately explain what these commands do. Figure out which
 you need, and add them to your .emacs file. The most
 important commands are at the top of the file.
— ML

Rational Searches

 Emacs
 has, oh, a hundred or so different search commands. (Well, the number’s probably
 more like 32, but who’s counting?) There are searches of absolutely every flavor
 you could ever imagine: incremental searches, word searches,[3] regular-expression searches, and so on.
However, when it comes to your plain old garden-variety search, Emacs is
 strangely deficient. There is a simple search that just looks for some arbitrary
 sequence of characters, but it’s rather well hidden. In addition, it lacks one
 very important feature: you can’t search for the same string repeatedly. That
 is, you can’t say “Okay, you found the right sequence of letters; give me the
 next occurrence”; you have to retype your search string every time.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 search.el
I thought this was an incredible pain until a
 friend of mine wrote a special search command. It’s in the file
 search.el. Just stick this into your directory for Emacs hacks (Section 19.12), and add something like
 the following to your .emacs
 file:
;; real searches, courtesy of Chris Genly
;; substitute your own Emacs hack directory for /home/los/mikel/emacs
 (load-file "/home/los/mikel/emacs/search.el")
Now you can type CTRL-s to search forward and CTRL-r to search back. Emacs
 will prompt you for a search string and start searching when you press RETURN.
 Typing another CTRL-s or CTRL-r repeats your previous search. When you try this,
 you’ll see one other useful feature: unlike the other Emacs searches, this kind
 of search displays the “default” (i.e., most recent) search string in the
 minibuffer. It’s exactly the kind of search I want.
It’s conceivable that you’ll occasionally want incremental searches. You’ll have to “rebind”
 them, though, to use them conveniently. Here are the key
 bindings that I use:
;; rebind incremental search as ESC-s and ESC-r
 (define-key global-map "\M-s" 'isearch-forward)
 (define-key global-map "\M-r" 'isearch-backward)
 ;; have to rebind ESC s separately for text-mode. It's normally
 ;; bound to 'center-line'.
 (define-key text-mode-map "\M-s" 'isearch-forward)
That is, ESC-s and ESC-r now give you forward and reverse incremental
 searches. And once you’ve started an incremental search, CTRL-s and CTRL-r still
 repeat the previous incremental search, just as they’re supposed to.
Of course, now you’ll have to rebind the “center-line” command if you’re fond
 of it. In my opinion, it’s not worth the trouble. The game of “musical
 key-bindings” stops here.
— ML

Unset PWD Before Using Emacs

 I’ve seen a
 number of strange situations in which Emacs can’t find files unless you type a
 complete (“absolute”) pathname (

 Section 1.16), starting from the root
 (/). When you try to visit a file, you’ll get the
 message File
 not
 found and directory
 doesn't
 exist.
In my experience, this usually means that the
 C shell’s PWD environment variable (Section 35.5) has been incorrectly set.
 There are a few (relatively pathological) ways of tricking the C shell into
 making a mistake. More commonly, though, I’ve seen a few systems on which the C
 shell sticks an extra slash into PWD: that is, its value
 will be something like /home/mike//Mail rather than
 /home/mike/Mail. Unix doesn’t care; it lets you stack
 up extra slashes without any trouble. But Emacs interprets
 // as the root directory — that is, it discards
 everything to the left of the double slash. So if you’re trying to edit the file
 /home/mike//Mail/output.txt, Emacs will look for
 /Mail/output.txt. Even if this file exists, it’s not
 what you want. [This also happens when Emacs is called from a (Bourne) shell
 script that has changed its current directory without changing
 PWD. — JP]
This problem is particularly annoying because the shell will automatically
 reset PWD every time you change directories. The obvious
 solution, sticking unsetenv PWD in your
 .cshrc file, doesn’t do any good.
What will work is defining an alias (Section 29.1):
(..)
 Section 43.7
alias gmacs "(unsetenv PWD; emacs \!*)"
A better solution might be to switch to another shell that doesn’t have this
 problem. The Bourne shell (sh) obviously
 doesn’t, since it doesn’t keep track of your current directory.
— ML

Inserting Binary Characters into Files

 I
 remember being driven absolutely crazy by a guy (who hopefully won’t be reading
 this) who called me every other week and asked me how to stick a page break into
 some text file he was writing. He was only printing on a garden-variety printer,
 for which inserting a page break is a simple matter: just add a formfeed
 character, CTRL-l. But CTRL-l already means something to Emacs (“redraw the
 screen”). How do you get the character into your file, without Emacs thinking
 that you’re typing a command?

 Simple. Precede CTRL-l with the “quoting” command,
 CTRL-q. CTRL-q tells Emacs that
 the next character you type is text, not a part of some command. So the sequence
 CTRL-q CTRL-l inserts the character CTRL-l into your file; you’ll see ^L on your screen. (Note that this represents a
 single character, instead of two characters.) In turn, when you print the file
 on many printers, the CTRL-l will cause a page eject at the appropriate
 point.
You can use this technique to get any “control character” into an Emacs file.
 In fact, under pressure I’ve done some pretty bizarre binary editing — not a
 task I’d recommend, but certainly one that’s possible.
— ML

Using Word-Abbreviation Mode

Like vi, Emacs provides an “abbreviation”
 facility. Its traditional usage lets you define abbreviations for long words or
 phrases so you don’t have to type them in their entirety. For example, let’s say
 you are writing a contract that repeatedly references the National Institute of
 Standards and Technology. Rather than typing the full name, you can define the
 abbreviation nist. Emacs inserts the full
 name whenever you type nist, followed by a
 space or punctuation mark. Emacs watches for you to type an abbreviation, then
 expands it automatically as soon as you press the spacebar or type a punctuation
 mark (such as ., ,, !, ?, ;, or :).
One use for word-abbreviation mode is to correct misspellings as you type.
 Almost everyone has a dozen or so words that he habitually types incorrectly,
 due to some worn neural pathways. You can simply tell Emacs that these
 misspellings are “abbreviations” for the correct versions, and Emacs fixes the
 misspellings every time you type them. If you take time to define your common
 typos as abbreviations, you’ll never be bothered with teh, adn, and recieve when you run the spellchecker. Emacs
 sweeps up after your typos and corrects them. For example, let’s say that you
 define teh as an abbreviation for the. When you press the spacebar after you type
 teh, Emacs fixes it immediately, and you
 continue happily typing. You may not even notice that you typed the word wrong
 before Emacs fixes it.
Trying Word Abbreviations for One Session

Usually, if you go to the trouble of defining a word abbreviation, you
 will use it in more than one Emacs session. But if you’d like to try out
 abbreviation mode to see if you want to make it part of your startup, use
 the following procedure to define word abbreviations for this
 session:
	Enter word-abbreviation mode by typing ESC-x abbrev-mode. abbrev appears on the mode line.

	Type the abbreviation you want to use, and press CTRL-x a. Emacs then asks you for the
 expansion.

	Type the definition for the abbreviation, and press RETURN. Emacs
 then expands the abbreviation; it will do so each time you type it
 followed by a space or punctuation mark. The abbreviations you’ve
 defined will work only during this Emacs session.

If you find that you like using word-abbreviation mode, you may want to
 make it part of your startup, as described in the following section.

Making Word Abbreviations Part of Your Startup

Once you become hooked on abbreviation mode, make
 it part of your .emacs file so that you enter
 abbreviation mode and load your word-abbreviations file automatically. To
 define word abbreviations and make them part of your startup:
	Add these lines to your .emacs file:
(setq-default abbrev-mode t)
(read-abbrev-file "~/.abbrev_defs")
(setq save-abbrevs t)

	Save the .emacs file, and re-enter Emacs.
 Abbrev appears on the mode
 line. (You’ll get an error at this point; ignore it — it won’t
 happen again.)

	Type an abbreviation you want to use, and then type CTRL-x
 a following the abbreviation.
 Emacs asks you for the expansion.

	Type the definition for the abbreviation, and press RETURN. Emacs
 expands the abbreviation and will do so each time you type it
 followed by a space or punctuation mark. You can define as many
 abbreviations as you wish by repeating Steps 3 and 4.

	Type ESC-x write-abbrev-file to
 save your abbreviations file. Emacs asks for the filename.

	Type ~/.abbrev_defs. Emacs then
 writes the file. You need only take this step the first time you
 define abbreviations using this procedure. After this file exists,
 the lines in your .emacs file load the
 abbreviations file automatically.

After you’ve followed this procedure the first time, you only need to use
 Steps 3 and 4 to define more abbreviations. When you add word abbreviations
 in subsequent sessions, Emacs asks whether you want to save the
 abbreviations file. Respond with a y to
 save the new abbreviations you’ve defined and have them take effect
 automatically. If you define an abbreviation and later regret it, use ESC-x
 edit-word-abbrevs to delete
 it.
— DC

Directories for Emacs Hacks

 If you use any Emacs editor (GNU Emacs or any of
 the commercial alternatives), you may have written lots of handy LISP programs
 to use while you’re editing. It’s convenient to create a separate directory for
 these; a good name for this directory is (obviously) emacs;
 it’s usually located in your home directory.
If you use GNU Emacs, you should put the following line in the
 .emacs file:
(setq load-path (append load-path '("your-emacs-directory")))
This tells Emacs that it should look in your personal Emacs directory to find
 your programs. (It’s similar to the PATH (Section 35.6) environment
 variable.)
— ML

An Absurd Amusement

 If you have time to waste (and I
 mean really waste), Emacs has things to keep you occupied.
 There are lots of interesting special effects, such as “disassociated text.” My
 favorite is a command called “psychoanalyze-pinhead.” It’s based on “doctor,”
 which is a variation of the classic artificial-intelligence demonstration called
 “Eliza”: the computer plays psychotherapist and asks you questions; you reply,
 and your answers are the basis for new questions. Nothing new, really; I
 remember it from my high school days, in the early 1970s. If you think you might
 be in need of a psychotherapist, save your money and try ESC-x doctor RETURN.
If you want to see something really interesting, try ESC-x psychoanalyze-pinhead. This takes the built-in
 “doctor” program and feeds it with quotations from the cult comic strip
 Zippy the Pinhead. The result is indeed bizarre. Here’s
 some typical output:
I am the psychotherapist. Please, describe your problems. Each time
you are finished talking, type RET twice.

YOU PICKED KARL MALDEN'S NOSE!!

Why do you say I picked karl malden's nose?

Am I SHOPLIFTING?

Is it because of your plans that you say are you shoplifting?

Are you selling NYLON OIL WELLS?? If so, we can use TWO DOZEN!!
Press CTRL-c when you’ve had enough.

— ML

[1] For reference, the name of the auto-save file is #
 your-filename
 #; that is, it sticks a hash mark
 (#) before and after the file’s
 “regular” name.

[2] This includes some mainframe editors, like XEDIT, and (in my memory) a
 lot of older tools for word processing and general editing.

[3] These are especially nice because they can search for phrases that
 cross line breaks; most searches assume that all the text you want will
 all be on the same line. However, you can only search for whole words,
 and if you use troff or
 TEX, Emacs may be confused by your
 “markup.”

Chapter 20. Batch Editing

Why Line Editors Aren’t Dinosaurs

 In the “old days,” when programmers worked on
 printing terminals, editing was done one line at a time. Editors that let you move a
 cursor around the screen to select text to edit hadn’t yet been invented,
 because there weren’t any screens to look at text on!
With ever more advanced WYSIWYG (What You See Is What You Get)
 word processors and editing programs, it’s easy for novices to think of line
 editors as a bizarre relic. Perhaps they are — but if so, they are a relic of
 extraordinary power.
You see, line editors lend themselves to scripting — the
 ability to write what in effect are editing programs that can be applied over
 and over to different files.
When we talk about “batch editing” or scripts, here are some of the programs
 you might use:
	ed

 is the original Unix line editor.

	ex

 supports a superset of ed commands;
 it is widely used from within vi,
 which is the ex “visual” or “screen”
 mode.

	sed (

 Section 34.1) is an editor
 that can only be run with scripts or by entering a
 few short commands as command-line arguments; while it has many similar
 commands, it has some important
 differences (Section
 34.2) from ed and ex.

	awk (

 Section 20.10) is a great way
 to pull apart a line of text into a sequence of elements. Used
 frequently with sed.

	patch (

 Section 20.9) is a specialized
 editor designed to apply editing scripts created with diff (Section 11.1). You can do this with ed or ex as well, but
 patch is especially clever at
 it.

Of course, editing is a continuum, and beyond sed and awk (Section 20.10) lie more complete
 programming languages like perl (Section 41.1) and python (Section 42.1)
 that are very adept at manipulating text.
— TOR

Writing Editing Scripts

 When you write a
 script that contains a series of editing actions and then run the script on an
 input file, you take what would be a hands-on procedure in an editor such as
 vi and transform it into a look-no-hands
 procedure.
When performing edits manually, you get to trust the cause-and-effect
 relationship of entering an editing command and seeing the immediate result.
 There is usually an “undo” command that allows you to reverse the effect of a
 command and return the text file to its previous state. Once you learn an
 interactive text editor, you have the feeling of making changes in a safe and
 controlled manner, one step at a time.
Most people new to “power editing” will feel there is greater risk in writing
 a script to perform a series of edits than in making those changes manually. The
 fear is that by automating the task, something will happen that cannot be
 reversed. The object of learning scripting with ex or sed is to understand the
 commands well enough to see that your results are predictable. In other words,
 you come to understand the cause-and-effect relationship between your editing
 script and the output you get.
This requires using the editor in a controlled, methodical way. Gradually, you
 will develop methods for creating and testing editing scripts. You will come to
 rely upon these methods and gain confidence that you know what your script is
 doing and why.
Here are a few tips:
	Carefully examine your input file, using grep, before designing your script.

	Start with a small sample of occurrences in a test file. Run your
 script on the sample and make sure the script is working. Remember, it’s
 just as important to make sure the script doesn’t
 work where you don’t want it to. Then increase the
 size of the sample. Try to increase the complexity of the input.

	Work carefully, testing each command that you add to a script. Compare
 the output against the input file to see what has changed. Prove to
 yourself that your script is complete. Your script may work perfectly
 based on your assumptions of what is in the input file, but your
 assumptions may be wrong.

	Be pragmatic! Try to accomplish what you can with
 your script, but understand that it doesn’t have to do 100 percent of
 the job. If you encounter difficult situations, check to see how
 frequently they occur. Sometimes it’s better to do a few remaining edits
 manually.

If you can add to these tips with your experience, tack them on.
One additional suggestion is to use a revision control
 system (Section 39.4)
 to preserve previous versions. That makes it easy to undo your edits.
— DD

Line Addressing

 The key to making line editors work
 for you is understanding how to select (or “address”) the lines that will be
 affected by the commands in your script.
In
 ed and ex,
 a command affects only the “current” line — the first line of the file to begin
 with, and later the site of the last edit or movement command — unless you
 precede the command with an address to indicate some other line or lines. In
 sed, most commands apply to every line
 unless you give an address.
Most line editors address lines in three ways:
	with line numbers

	with regular expression patterns

	with special symbols

It’s possible to address single lines or a range of lines.
Table 20-1 describes the addresses
 you can use with ex.
Table 20-1. Line addressing in the ex editor
	
 Address

 	
 Description

	

 1,$

 	
 All lines in the file.

	

 %

 	
 All lines; same as 1,$.

	

 x,y

 	
 Lines x through
 y.

	

 x
 ;
 y

 	
 Lines x through
 y, with current line reset to
 x.

	

 1

 	
 Top of file.

	

 0

 	
 “Before the top” of file. Used to add text above top line:
 0r,
 x
 m0, etc.

	
 .

 	
 Current line.

	

 n

 	
 Absolute line number n.

	

 $

 	
 Last line.

	

 x
 -
 n

 	

 n lines before
 x.

	

 x
 +
 n

 	

 n lines after
 x.

	

 -
 n

 	

 n lines previous.

	

 -

 	
 Previous line.

	

 +
 n

 	

 n lines ahead.

If the address specifies a range of lines, the format is:
 x,y
where x and y are the
 first and last addressed lines. x must precede
 y in the file.
—TOR, DG, and JP

Useful ex
 Commands

 Many
 line editor commands are
 not particularly useful in scripts. The two commands that you will use far and
 away the most often are s (substitute), to
 replace one pattern with another, and d
 (delete), to delete one or more lines. On occasion, though, you’ll want to
 insert text from a script. (Editing scripts built by
 diff (Section 18.6)
 make heavy use of insert, append, delete, and change commands.) And of course,
 you need commands to write the file and quit the editor.
Here’s the
 syntax of most of the commands you may encounter in ex editing scripts. (The ed

 editor understands the abbreviated versions of some, but not all, of these
 commands.) Elements in [brackets] are optional; don’t type the [or].
 The leading colon (:) shown in examples is the
 ex command character used to issue an
 ex command from vi; in a script, the colon would be omitted. The autoindent
 feature referred to below aids anyone writing structured text. Your editor can
 ease the burden of creating outlines and source code by positioning the cursor
 beneath the first character of the previous line.
	append
	[
 address
] a[!]
 text
 .
Append
 text at specified
 address, or at present address if
 none is specified. Add a ! to
 switch the autoindent setting
 that will be used during input. For example, if autoindent was enabled, ! disables it.

	change
	[
 address
] c[!]
 text
 .
Replace the specified lines with text. Add a
 ! to switch the autoindent setting during input of
 text.

	copy
	[
 address
] co
 destination
 [
 address
] t
 destination
Copy[1] the lines included in address
 to the specified destination address.

:1,10 co 50
:1,10t50

	delete
	[
 address
] d [
 buffer
]
Delete the lines included in address.
 If
 buffer is specified, save or append
 the text to the named buffer.
:/Part I/,/Part II/-1d Delete to line above "Part II"
:/main/+d Delete line below "main"
:.,$d Delete from this line to last line

	global
	[
 address
] g[!]/pattern/[
 commands
]
Execute commands on all lines that
 contain pattern, or if
 address
 is specified, on all
 lines within that range. If commands are
 not specified, print all such lines. (Exception: doesn’t print when
 you use it from vi by typing :
 first. You’ll need to add a p, as in the
 second example below). If ! is
 used, execute commands on all lines that
 don’t contain
 pattern.
:g/Unix/
:g/Unix/p
:g/Name:/s/tom/Tom/

	insert
	[
 address
] i[!]
 text
 .
Insert text at line before the
 specified address, or at present
 address if none is
 specified. Add a ! to switch the
 autoindent setting during
 input of text.

	move
	[
 address
] m
 destination
Move the lines specified by address to
 the destination address.
:.,/Note/m /END/ Move block after line containing "END"

	print
	[
 address
] p [
 count
]
Print the lines specified by address.
 count
 specifies the number of
 lines to print, starting with
 address.
:100;+5p Show line 100 and the next five lines

	quit
	q[!]
Terminate current editing session. Use ! to discard changes made since
 the last save. If the editing session includes additional files in
 the argument list that were never accessed, quit by typing q! or by typing q twice.

	read
	[
 address
] r
 file
Copy in the text from file on the line
 below the specified address
 . If
 file is not specified, the current
 filename is used.
:0r $HOME/data Read file in at top of current file

	read
	[
 address
] r !
 command
Read the output of Unix command into
 the text after the line specified by
 address.
:$r !cal Place a calendar at end of file

	source
	so
 file
Read and execute ex commands from
 file.
:so $HOME/.exrc

	substitute
	[
 address
] s [
 /pattern/replacement/
] [
 options
] [
 count
]
Replace first instance of pattern on
 each of the specified lines with
 replacement

 . If
 pattern and
 replacement are omitted, repeat last
 substitution. count specifies the number
 of lines on which to substitute, starting with
 address. The following can be used as
 options:
	c
	Prompt for confirmation before each change.

	g
	Substitute all instances of
 pattern on each
 line.

	p
	Print the last line on which a substitution was
 made.
c
 Section 17.9,
 \U
 Section
 17.14
:1,10s/yes/no/g Substitute on first 10 lines
:%s/[Hh]ello/Hi/gc Confirm global substitutions
:s/Fortran/\U&/ 3 Uppercase "Fortran" on next 3 lines

	write
	[
 address
] w[!] [>>]
 file
]
Write lines specified by address to
 file, or write full contents of buffer
 if address is not specified. If
 file is also omitted, save the
 contents of the buffer to the current filename. If >>
 file is used, write contents to the end
 of an existing file. The ! flag forces the editor to write over
 any current contents of file.
:1,10w name_list Copy first 10 lines to name_list
:50w >> name_list Now append line 50

	write
	[
 address
] w !
 command
Write lines specified by address, or
 write full contents of buffer if address
 is not specified, to the standard
 input (Section
 43.1) of command.
:1,10w !spell Send first 10 lines to the spell command
:w !lpr Print entire buffer with lpr command

— TOR and DG

Running Editing Scripts Within vi

 Because vi is
 built on top of the ex line editor, you get
 all the power of a line editor as well. Any experienced vi user issues ex commands all
 the time — but usually one by one, at the colon (:) prompt.
The one exception is the .exrc file (Section 17.5), which is, at bottom, a
 list of commands for ex to run on startup —
 in short, an editor script.
What many beginners don’t know is that you can save a sequence of ex commands in any file and execute it with the
 :so command (Section 20.4). For example, Bruce
 Barnett uses this trick to set himself up specially for editing FORTRAN programs (Section 18.10).
In general, sed (
 Section 34.1) is better for
 general-purpose batch editing — such as making a set of global substitutions
 over and over again on multiple files — therefore, :so is most often used for reading in setup commands. Keep in
 mind, though, any time you find yourself issuing the same commands over and over
 again, think script!
— TOR

Change Many Files by Editing Just One

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 diff
The diff

 command can make an editing script
 that you give to the ex or ed editors or the patch (Section 20.9)
 program. They’ll apply your same edits to other copies of the same file. This is
 handy if you have a lot of copies of a big file, spread around a network or on a
 lot of disks, and you want to make the same changes to all the
[image:]
 Section 20.8
files. In fact, this is how the Concurrent Version Control (CVS) system
 works. Instead of sending new copies of the whole file, just have diff make a script — and use that little script to
 update all the big files.
Here’s a demo. I’m going to modify a program called pqs.c. Then I’ll use diff
 and ed to apply the same changes to a copy of the
 file named remote-pqs.c (which might be at a remote computer):
>>
 Section 43.1
1% cp pqs.c remote-pqs.c
2% cp pqs.c pqs.c.new
3% vi pqs.c.new
4% diff pqs.c pqs.c.new
106,107c106
< fprintf(stderr,
< "%s: quitting: not able to %s your .pq_profile file.\n",
--
> fprintf(stderr, "%s: quitting: can't %s your .pq_profile file.\n",
390a390
> "WARNING:",
5% diff -e pqs.c pqs.c.new > edscr
6% cat edscr
390a
 "WARNING:",
.
106,107c
 fprintf(stderr, "%s: quitting: can't %s your .pq_profile file.\n",
.
7% echo w >> edscr
8% ed remote-pqs.c < edscr
19176
19184
9% diff pqs.c.new remote-pqs.c
10%
At prompt 1%, I make the simulated “remote”
 copy of the pqs.c file. At prompt 2%, I make another copy of it; at prompt 3%, I edit the copy. Prompt 4%
 has a diff that shows the changes I made.
 Then, at prompt 5%, I run diff -e (Section
 11.1); I save the result in edscr, which I show
 at prompt 6%.
Prompt 7% is important because
 diff -e doesn’t add a w command to the script file. That tells ed to write its changes to the file. I use echo w (Section 27.5)
 to add the command.
In prompt 8%, I give ed the name of the “remote” file to edit as a
 command-line argument and give it the script file on its standard input. At
 prompt 9%, I do a diff that shows the changes have been made and the two versions
 are the same.
If you find yourself needing to keep multiple copies of the same set of files
 in sync with each other, you might want to consider using CVS. Not only is it a
 client/server system ready for network use, it is also designed for multiple
 users. Every check-in is logged, and updating a whole set of files (called
 “projects”) can be done with the command cvs
 update. This can be a great timesaver for webmasters maintaining
 multiple web servers with static (or even dynamic) content.

 Another great tool for synchronizing many
 filesystems is rsync. This program can be
 used to update a remote filesystem, say a web directory, with more current
 version of existing files or add new ones. The synchronization can go both ways.
 rsync even has built-in support for SSH.
 Here’s an example of using rsync to publish
 new web documents to a live server:
$ rsync -urz -e /path/to/ssh local_dir hostname:/path/to/web/docs
The -u flag tells rsync to update the
 remote filesystem with newer files on the local system. The -r flag tells rsync to recurse into subdirectories. The -z allows the files to be gzipped during transfer
 (good for slow modem links). While it can be a client/server system, rsync can work just fine as a peer-to-peer system
 where it will need to run some commands on the remote machine. The -e flag provides the path to the rsh

 or ssh
 program that you to have rsync use. The next argument is the directory on the
 local machine rsync is to copy, and the last
 argument is the hostname and target directory to be updated. rsync is a very handy tool, and the manpage
 illustrates its flexibility.

— JP

ed/ex Batch Edits: A Typical Example

 What ed and
 ex lack in intutitive interface design,
 they make up for when used in batch editing shell scripts. For example, you
 might be maintaining a web site with a lot of static content all stored in
 traditional HTML files. One such file might look like
 this:
<html>
<body>
<h1>Hello, world!</h1>
<p>Glad you could make it
.
<p>Here's a picture of my house:

</body>
</html>
One day, you get an email that all the images will now be served out of the
 directory /img instead of /graphics.
 Also, all existing gif files have been replaced with
 png files. Although these changes don’t
 sound like much, making these modifications to a large number of files quickly
 becomes tedious. By writing a shell script that calls either ed or ex, you
 will not only solve today’s problem, but you’ll also be ready to make new
 changes to the files whenever that becomes necessary. A Bourne shell script that
 makes these changes looks like the following:
#!/bin/sh
Convert some of the hard coded values in HTML
into the new site schema

Patterns to be replaced
old_graphics_dir="graphics"
old_graphics_ext="gif"

new values
new_graphics_dir="img"
new_graphics_ext="png"

Make the changes
for file in *html;
do
 ed $file <<EOF
1,\$s/$old_graphics_dir/$new_graphics_dir/g
1,\$s/$old_graphics_ext/$new_graphics_ext/g
w
EOF
done
The script is fairly simple. It defines a few variables to hold the patterns
 to be found and replaced. The replacement values are defined next. This script
 is meant to be run in the directory containing all the HTML files. The list of
 all files ending in “html” is iterated over in a for loop in which ed is fed
 commands from a here document. Recall that $
 is a special character for Bourne shell and must be escaped in the
 line-addressing part of the ed command. After
 the search and replace operations finish, the ed buffers need to be written back to disk with the w command. This script works with both ed and ex.
In older versions of ed, you may find that
 if the first pattern doesn’t match, ed
 doesn’t even try the second pattern. If your version does this, one workaround
 suggested by Chris Torek is to use the global command g like this:
ed - $i << end
g/$old_graphics_dir/s//$new_graphics_dir/g
g/$old_graphics_ext/s//$new_graphics_ext/g
w
end
The addition of the - suppresses the two
 numbers that ed normally prints.
— CT and JJ

Batch Editing Gotcha: Editors Fail on Big Files

People
 use the ed
 editor with script files to make global edits. But many versions of ed can’t edit large files. The ex editor is usually better, but it has limits,
 too. How large is “large”? That depends on your version. Most eds I’ve seen can’t handle more than about 100,000
 characters.
There are no limits on sed (Section 34.1), although you’ll need to
 save its output somehow (Section 34.4), and your editing script
 may have to be changed to work with sed.[2] Here’s what you’ll see when ed
 fails:
% cat edscr
s/Unix/UNIX/g
w
% ed - words < edscr
?
%
The ? is ed’s “verbose” way of telling you that something’s wrong. This
 obscure message is especially bad if you write a shell script that edits
 multiple files in a loop; you may not notice the error or be able to tell which
 file had the problem. Be sure your script checks for errors!
Unfortunately for programmers, ed may not
 return an error status that you can test. There are workarounds, though. When
 the ed - command succeeds, it doesn’t display
 anything. The simplest way to find errors is to check for any output on
 stdout or stderr. This chunk of a
 Bourne shell script shows how (your filename is in the shell variable $filename (Section 35.9)):
2>&1
 Section 36.16, []
 Section 35.26, $?
 Section 35.12
edout="`ed - $filename < edscr 2>&1`"
if [-n "$edout" -o $? -ne 0]
then
 echo "$edout" 1>&2
 echo "QUITTING: 'ed - $filename < edscr' failed?!?" 1>&2
 exit 1
fi
— JP

patch: Generalized Updating of Files That Differ

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 patch

 Like all of Larry Wall’s widely used
 programs (including perl (Section 41.1), a software configuration
 script called Configure, and the rn news reader), patch betrays a whimsical intelligence of its own. Feed it any
 kind of diff listing (
 Section 11.1) (not just an editing
 script produced with the -e option — the typical way before
 patch came around). patch figures out what it needs to do to apply the
 diff, and updates the file, supplying all the while a breezy commentary on what
 it’s doing:
% patch < testfile.diff
Hmm... Looks like a normal diff to me...
File to patch: testfile
Patching file testfile using Plan A...
Hunk #1 succeeded at 2.
done
As Larry once noted, patch has done an
 awful lot to “change the culture of computing.” Almost all free software is now
 updated by means of patches rather than complete new releases. patch is smart enough to discard any leading or
 trailing garbage (such as mail headers or signatures), so a program source file
 can be updated by piping a mail message containing a diff listing between old
 and new versions directly to patch.
Here are a few of the other things patch is
 smart enough to do:
	Figure out the name of the file to be updated and do it without asking
 (usually only if the diff file is a context
 diff (Section
 11.3) produced with the -c option).

	Look for a suitable RCS or CVS (Section 39.4) file and check it
 out, if the filename itself can’t be found.

	Handle diff listings that don’t quite match. This makes it possible
 for patch to update a file that the
 recipient has already changed from the one that the diff was based
 on.

	Save any pieces of the diff file that don’t end up being used, in a
 file named by adding the suffix .rej (reject) to
 the name of the file being patched.

	Back up the file that is being patched, appending the suffix
 .orig to the name of the file being
 patched.

	Recognize that its input may actually apply to several files, and
 patch each of them separately. For example, a whole directory might be
 updated by a “patch” file that contained diff listings for each of the
 files in the directory. (By the way, the -d option to
 patch tells it to cd to a specified directory before
 starting work.)

	Recognize (or at least speculate)
 that a patch might have been created incorrectly, with the old and new
 files swapped. Larry says, “Yes, I’m afraid that does happen
 occasionally, human nature being what it is.”
 patch’s -R option will force
 patch to reverse the sense of the
 patch; what’s really amusing is to see patch suggest that this might be the thing to do, when
 things seem out of sync.

If you are a programmer, patch is worth
 studying just to see how much a program can do to anticipate errors, deal with
 fuzzy input, and in general “make the computer do the dirty work.” But if you’re
 a programmer, you doubtless already know about patch.
One last note: patch is so useful that it’s
 been added to many Unix systems. Check to see if your system has it before
 installing the program. Some versions of patch we’ve seen are limted versions or buggy when they come from
 software vendors, though. The one on the book’s website is worth comparing to
 yours.
— TOR

Quick Reference: awk

 Up to this point, we’ve shown
 you tools to do basic batch editing of text files. These tools, although
 powerful, have limitations. Although you can script ex commands, the range of text manipulation is quite limited. If
 you need more powerful and flexible batch editing tools, you need to look at
 programming languages that are designed for text manipulation. One of the
 earliest Unix languages to do this is awk,
 created by Al Aho, Peter Weinberger, and Brian Kernighan. Even if you’ve never
 programmed before, there are some simple but powerful ways that you can use
 awk. Whenever you have a text file that’s
 arranged in columns from which you need to extract data, awk should come to mind.
For example, every Red Hat Linux system stores its version number in /etc/redhat-release. On my system, it looks like
 this:
Red Hat Linux release 7.1 (Seawolf)
When applying new RPM files to your system, it is often helpful to know which
 Red Hat version you’re using. On the command line, you can retrieve just that
 number with:
awk '{print $5}' /etc/redhat-release
What’s going on here? By default, awk
 splits each line read from standard input on whitespace, as is explained below.
 In effect, it’s like you are looking at one row of a spreadsheet. In
 spreadsheets, columns are usually named with letters. In awk, columns are numbered and you only can see one
 row (that is, one line of input) at a time. The Red Hat version number is in the
 fifth column. Similar to the way shells use $
 for variable interpolation, the values of columns in awk are retrieved using variables that start with $ and are followed by an integer.
As you can guess, this is a fairly simple demonstration of awk, which includes support for regular
 expressions, branching and looping, and subroutines. For a more complete
 reference on using awk, see
 Effective awk Programming or sed & awk
 Pocket Reference, both published by O’Reilly.

 Since there are many flavor of awk, such as nawk and
 gawk (Section 18.11),
 this article tries to provide a usable reference for the most common elements of
 the language. Dialect differences, when they occur, are noted. With the
 exception of array subscripts, values in [brackets] are optional; don’t
 type the [or].
Command-Line Syntax

awk

 can be invoked
 in one of two ways:
awk [options] 'script' [var=value] [file(s)]
awk [options] -f scriptfile [var=value] [file(s)]
You can specify a script directly on the
 command line, or you can store a script in a
 scriptfile and specify it with
 -f. In most versions, the -f option
 can be used multiple times. The variable var can
 be assigned a value on the command line. The value can be a literal, a shell
 variable ($
 name), or a command substitution ('
 cmd
 '), but the value is available only after
 a line of input is read (i.e., after the BEGIN statement). awk operates on one or more
 file(s). If none are specified (or if
 - is specified), awk reads from the standard input (Section
 43.1).
The other recognized options are:
	-F
 c
	Set the field separator to character
 c. This is the same as setting
 the system variable FS. nawk allows
 c to be a regular expression (Section 32.4). Each
 record (by default, one input line) is divided into fields by
 whitespace (blanks or tabs) or by some other user-definable
 field separator. Fields are referred to by the variables
 $1, $2, . . . $
 n. $0 refers to the entire record. For example, to
 print the first three (colon-separated) fields on separate
 lines:

 % awk -F: '{print $1; print $2; print $3}' /etc/passwd
	-v
 var
 =
 value
	Assign a value to variable
 var. This allows assignment
 before the script begins execution. (Available in nawk only.)

Patterns and Procedures

 awk
 scripts consist of patterns and
 procedures:
pattern
 {
 procedure
 }

Both are optional. If pattern is missing,
 {
 procedure
 } is applied to all records. If {
 procedure
 } is missing, the matched record is
 written to the standard output.
Patterns

pattern
 can be any of the following:
/regular expression/
relational expression
 pattern-matching expression
BEGIN
END
	Expressions can be composed of quoted strings, numbers,
 operators, functions, defined variables, and any of the
 predefined variables described later in Section
 20.10.3.

	Regular expressions use the extended set of metacharacters, as
 described in Section
 32.15. In addition, ^ and
 $ (Section
 32.5) can be used to refer to the beginning and end
 of a field, respectively, rather than the beginning and end of a
 record (line).

	Relational expressions use the relational operators listed in
 Section 20.10.4
 later in this article. Comparisons can be either string or
 numeric. For example, $2
 >
 $1 selects records for which
 the second field is greater than the first.

	Pattern-matching expressions use the operators ~ (match) and !~ (don’t match). See Section 20.10.4 later
 in this article.

	The
 BEGIN pattern lets you
 specify procedures that will take place
 before the first input record is
 processed. (Generally, you set global variables here.)

	The END pattern lets you specify procedures that will take
 place after the last input record is
 read.

Except for BEGIN and END, patterns can be combined with the

 Boolean operators || (

 OR), && (AND), and ! (NOT). A range of lines can also be specified using
 comma-separated patterns:
pattern,pattern

Procedures

 procedure can consist of one or more
 commands, functions, or variable assignments, separated by newlines or
 semicolons (;), and contained within
 curly braces ({}). Commands fall into four groups:
	Variable or array assignments

	Printing commands

	Built-in functions

	Control-flow commands

Simple pattern-procedure examples

	Print the first field of each line:
{ print $1 }

	Print all lines that contain pattern:
/pattern/

	Print first field of lines that contain pattern:
/pattern/{ print $1 }

	Print records containing more than two fields:
NF > 2

	Interpret input records as a group of lines up to a blank
 line:
BEGIN { FS = "\n"; RS = "" }
{ ...process records... }

	Print fields 2 and 3 in switched order, but only on lines
 whose first field matches the string URGENT:
$1 ~ /URGENT/ { print $3, $2 }

	Count and print the number of pattern found:
/pattern/ { ++x }
END { print x }

	Add numbers in second column and print total:
{total += $2 };
END { print "column total is", total}

	Print lines that contain fewer than 20 characters:
length($0) < 20

	Print each line that begins with Name: and that contains exactly seven
 fields:
NF == 7 && /^Name:/

awk System Variables

 nawk supports all awk

 variables. gawk supports both nawk and awk.
	
 Version

 	
 Variable

 	
 Description

	
 awk

 	

 FILENAME

 	
 Current filename

	 	

 FS

 	
 Field separator (default is whitespace)

	 	

 NF

 	
 Number of fields in current record

	 	

 NR

 	
 Number of the current record

	 	

 OFMT

 	
 Output format for numbers (default is %.6g)

	 	

 OFS

 	
 Output field separator (default is a blank)

	 	

 ORS

 	
 Output record separator (default is a newline)

	 	

 RS

 	
 Record separator (default is a newline)

	 	

 $0

 	
 Entire input record

	 	

 $n

 	

 nth field in current record;
 fields are separated by FS

	
 nawk

 	

 ARGC

 	
 Number of arguments on command line

	 	

 ARGV

 	
 An array containing the command-line arguments

	 	

 ENVIRON

 	
 An associative array of environment variables

	 	

 FNR

 	
 Like NR, but relative to the
 current file

	 	

 RSTART

 	
 First position in the string matched by
 match function

	 	

 RLENGTH

 	
 Length of the string matched by
 match function

	 	

 SUBSEP

 	
 Separator character for array subscripts (default is
 \034)

Operators

 This
 table lists the operators, in increasing precedence, that are available in
 awk.
	
 Symbol

 	
 Meaning

	
 = += -= *= /= %= ^=

 	
 Assignment (^= only
 in nawk and
 gawk)

	
 ?:

 	
 C conditional expression (nawk
 and gawk)

	
 ||

 	
 Logical OR

	
 &&

 	
 Logical AND

	
 ~ !~

 	
 Match regular expression and negation

	
 < <= > >= != ==

 	
 Relational operators

	
 (blank)

 	
 Concatenation

	
 + -

 	
 Addition, subtraction

	
 * / %

 	
 Multiplication, division, and modulus

	
 + - !

 	
 Unary plus and minus, and logical negation

	
 ^

 	
 Exponentiation (nawk and
 gawk)

	
 ++ --

 	
 Increment and decrement, either prefix or
 postfix

	
 $

 	
 Field reference

Variables and Array Assignments

 Variables can be assigned a value with an
 equal sign (=). For example:
FS = ","
Expressions using the operators +,
 -, *, /, and % (modulus) can be assigned to
 variables.
Arrays can be created with the split
 function (see below), or they can
 simply be named in an assignment statement. Array elements can be
 subscripted with numbers (array
 [1], . . .
 ,array
 [
 n
]) or with names (as associative arrays). For example, to count
 the number of occurrences of a pattern, you could use the following
 script:
/pattern/ { array["pattern"]++ }
END { print array["pattern"] }

Group Listing of awk Commands

awk commands may be classified as
 follows:
	
 Arithmetic functions

 	
 String functions

 	
 Control flow statements

 	
 Input/Output processing

	

 atan2
 [3]

 	

 gsub
 [3]

 	

 break

 	

 close
 [3]

	

 cos
 [3]

 	

 index

 	

 continue

 	

 delete
 [3]

	

 exp

 	

 length

 	

 do/while
 [3]

 	

 getline
 [3]

	

 int

 	

 match
 [3]

 	

 exit

 	

 next

	

 log

 	

 split

 	

 for

 	

 print

	

 rand
 [3]

 	

 sub
 [3]

 	

 if

 	

 printf

	

 sin
 [3]

 	

 substr

 	

 return
 [3]

 	

 sprintf

	

 sqrt

 	

 tolower
 [3]

 	

 while

 	

 system
 [3]

	

 srand
 [3]

 	

 toupper
 [3]

 	 	
	[3] Not in original awk.

Alphabetical Summary of Commands

The following alphabetical list of statements and functions includes all
 that are available in awk, nawk, or gawk. Unless otherwise mentioned, the statement or function
 is found in all versions. New statements and functions introduced with
 nawk are also found in gawk.
	atan2
	atan2(
 y,x
)
Returns the arctangent of
 y/x in
 radians. (nawk)

	break
	Exit from a while,
 for, or do loop.

	close
	close(
 filename-expr
)
 close(
 command-expr
)
In some implementations of awk, you can have only ten files open simultaneously and one pipe;
 modern versions allow more than one pipe open. Therefore,
 nawk provides a
 close statement that allows you to
 close a file or a pipe. close takes as an
 argument the same expression that opened the pipe or file.
 (nawk)

	continue
	Begin next iteration of while,
 for, or do loop
 immediately.

	cos
	cos(
 x
)
Return cosine of x (in radians).
 (nawk)

	delete
	delete
 array[element]
Delete element of
 array. (nawk)

	do
	do
 body
 while (
 expr
)
Looping statement. Execute statements in
 body, then evaluate
 expr. If
 expr is true, execute
 body again. More than one
 command must be put inside braces
 ({}). (nawk)

	exit
	exit[expr]
Do not execute remaining instructions and do not read new
 input. END procedure, if any,
 will be executed. The expr, if any,
 becomes awk’s exit status (Section 34.12).

	exp
	exp(
 arg
)
Return the natural exponent of arg.

	for
	for
 ([init-expr];
 [test-expr];
 [incr-expr])
 command
C-language-style looping construct. Typically,
 init-expr assigns the initial
 value of a counter variable.
 test-expr is a relational
 expression that is evaluated each time before executing the
 command. When
 test-expr is false, the loop is
 exited. incr-expr is used to
 increment the counter variable after each pass. A series of
 commands must be put within
 braces ({}). For
 example:
for (i = 1; i <= 10; i++)
 printf "Element %d is %s.\n", i, array[i]

	for
	for (

 item
 in
 array
)
 command
For each item in an associative
 array, do
 command. More than one
 command must be put inside braces
 ({}). Refer to each
 element of the array as array
 [
 item
].

	
 getline
	getline
 [var][<
 file] or
 command
 | getline
 [var]
Read next line of input. Original awk does not support the syntax to open multiple
 input streams. The first form reads input from
 file, and the second form reads
 the standard output of a Unix
 command. Both forms read one line at
 a time, and each time the statement is executed, it gets the
 next line of input. The line of input is assigned to $0, and it is parsed into fields,
 setting NF, NR, and
 FNR. If var
 is specified, the result is assigned to
 var and the $0 is not changed. Thus, if the
 result is assigned to a variable, the current line does not
 change. getline is actually a function, and
 it returns 1 if it reads a record successfully, 0 if end-of-file
 is encountered, and -1 if for some reason it is otherwise
 unsuccessful. (nawk)

	gsub
	gsub(
 r,s[,t])
Globally substitute s for each
 match of the

 regular expression
 r in the string
 t. Return the number of
 substitutions. If t is not supplied,
 defaults to $0. (nawk)

	if
	if (
 condition
)
 command
 [else
 command
]
If condition is true, do
 command(s), otherwise do

 command(s) in
 else clause (if any).
 condition can be an expression
 that uses any of the

 relational operators
 <, <=, ==, !=

 , >=, or >, as well as the

 pattern-matching operators
 ~ or !~ (e.g., if ($1 ~ /[Aa].*[Zz]/)). A series of
 commands must be put within
 braces ({}).

	index
	index(
 str,substr
)
Return position of first substring
 substr in string
 str
 or 0 if not
 found.

	int
	int(
 arg
)
Return integer value of arg.

	length
	length(
 arg
)
Return the length of arg.

	log
	log(
 arg
)
Return the natural logarithm of
 arg.

	match
	match(
 s,r
)
Function that matches the pattern, specified by the regular
 expression
 r, in the string
 s and returns either the position
 in s where the match begins or 0 if
 no occurrences are found. Sets the values of
 RSTART and
 RLENGTH. (nawk)

	next
	Read next input line and start new cycle through
 pattern/procedures statements.

	print
	print
 [args]
 [destination]
Print args on output, followed by a
 newline.
 args is usually one or more fields,
 but it may also be one or more of the predefined variables — or
 arbitrary expressions. If no args are
 given, prints $0 (the current
 input record). Literal strings must be quoted. Fields are
 printed in the order they are listed. If separated by commas (,)
 in the argument list, they are separated in the output by the
 OFS character. If separated by spaces,
 they are concatenated in the output.
 destination is a Unix redirection
 or pipe expression (e.g., >
 file) that redirects the default
 standard output.

	printf
	printf
 format [,
 expression(s)]
 [destination]
Formatted print statement. Fields or variables can be
 formatted according to instructions in the
 format argument. The number of
 expressions must correspond to
 the number specified in the format sections.
 format follows the conventions of
 the C-language printf statement. Here are a
 few of the most common formats:

	%s
	A string.

	%d
	A decimal number.

	%
 n.m
 f
	A floating-point number, where n is
 the total number of digits and m is
 the number of digits after the decimal point.

	%[-]nc
	n specifies minimum field length
 for format type c, while - left-justifies value in field;
 otherwise value is right-justified.
format can also contain embedded
 escape sequences: \n
 (newline) or \t (tab) are the
 most common. destination is a Unix
 redirection or pipe expression (e.g., >
 file) that redirects the default
 standard output.
For example, using the following script:
{printf "The sum on line %s is %d.\n", NR, $1+$2}
and the following input line:
5 5
produces this output, followed by a newline:
The sum on line 1 is 10.

	rand
	rand()
Generate a random number between 0 and 1. This function returns the
 same series of numbers each time the script is executed, unless
 the random number generator is seeded using the srand(
) function. (nawk)

	return
	return
 [expr]
Used at end of user-defined functions to exit the function,
 returning value of
 expression expr, if any. (nawk)

	sin
	sin(
 x
)
Return sine of
 x (in radians). (nawk)

	split
	split(
 string,array[,sep])
Split string into elements of
 array

 array[1], . . . ,array[
 n
].
 string is split at each
 occurrence of separator sep. (In
 nawk, the separator may
 be a regular expression.) If sep is
 not specified, FS is used. The number of
 array elements created is returned.

	sprintf
	sprintf (
 format [,
 expression(s)])
Return the value of expression(s),
 using the specified format
 (see printf).
 Data is formatted but not printed.

	sqrt
	sqrt(
 arg
)
Return square root of arg.

	srand
	srand(
 expr
)

 Use
 expr to set a new seed for random
 number generator. Default is time of day. Returns the old seed.
 (nawk)

	sub
	sub(
 r,s[,t])
Substitute s for first match of the

 regular expression
 r in the string
 t. Return 1 if successful; 0
 otherwise. If t is not supplied,
 defaults to $0. (nawk)

	substr
	substr(
 string,m[,n])
Return substring of string,
 beginning at character position

 m and consisting of the next
 n characters. If
 n is omitted, include all
 characters to the end of string.

	system
	system(
 command
)
Function that executes the specified Unix
 command and returns its

 status (Section 34.12). The
 status of the command that is executed typically indicates its
 success (0) or failure (nonzero). The output of the command is
 not available for processing within the nawk script. Use
 command
 |
 getline to read the output of
 the command into the script. (nawk)

	tolower
	tolower(
 str
)
Translate all uppercase characters
 in
 str to lowercase and return the
 new string. (nawk)

	toupper
	toupper(
 str
)
Translate all lowercase characters in
 str to uppercase and return the
 new string. (nawk)

	while
	while
 (condition)
 command
Do command while
 condition is true (see
 if for a description of allowable
 conditions). A series of commands must be put within braces ({}).

— DG

Versions of awk

awk was introduced as part of Unix’s
 seventh edition and has been part of the standard distribution ever since.

In 1985, the authors of awk extended the
 language, adding many useful features. Unfortunately, this new version remained
 inside AT&T for several years. It became a regular part of AT&T’s System
 V as of Release 3.1. It can be found under the name of nawk (for “new awk“); the
 older version still exists under its original name.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 gawk
Unfortunately, nawk is not available on all
 systems. The good news is that the Free Software Foundation GNU project’s
 version of awk, called gawk, implements all the features of the new
 awk.
In general, you can assume that what is true for nawk is true for gawk, unless
 gawk is explicitly called out. Scripts
 written for nawk are 100 percent compatible
 with gawk. If you want to use one of the
 nawk scripts and don’t have nawk on your system, simply change the script to
 invoke gawk instead.
There are a few areas where gawk has
 introduced gawk-specific features; however,
 recent versions of nawk support many of these
 features, suggesting that the remaining differences are really very minor.
This book doesn’t cover any of the awks in
 detail. The recent awks, especially, have
 quite a few features in common — so documentation for any one of them should
 help you learn the others.
In this book, we show scripts for awk as
 well as scripts that work only on nawk and
 gawk. But we barely scratch the surface
 of all the awks’ features. The completely
 revised second edition of O’Reilly & Associates’ sed &
 awk has detailed information on all of them.[19]
 JP and DD, TOR

[1] Note that “t” is short for “to.” The ed editor only has
 one-letter commands and since “c” was already taken for
 “change,” they used “t” for “copy TO.”

[2] By default, ed commands apply to
 the current line. sed commands are
 global. Also, relative line addresses like -5 don’t work in sed.

[19] And thanks to Arnold Robbins, coauthor of the second edition, for his
 help with this section and other awk
 material in this book.

Chapter 21. You Can’t Quite Call This Editing

And Why Not?

Summary Box

 There
 are many specialized forms of editing that happen frequently enough that
 they sometimes want to be saved into a script. Examples of this kind of
 thing include:
	fmt (Section 21.2) and related scripts (Section 21.3) for
 reformatting jagged lines into neat paragraphs

	recomment (Section 21.4), a script for
 reformatting comment blocks within programs and scripts

	behead (Section 21.5), a script for
 removing the headers from mail and news messages

	center (Section 21.8), a script for
 centering lines of text in a file

In addition, there are a number of programs that provide some useful ways
 of modifying files but that you don’t normally think of as editors:
	split (Section 21.9) and csplit (Section 21.10) let you
 split a big file into smaller pieces.

	tr (Section 21.11) lets you
 substitute one character for another — including non-printing
 characters that you specify by their octal values.

	dd (Section 21.6, Section 21.13) lets you
 perform various data conversions on a file.

	cut (Section 21.14) lets you cut
 columns or fields out of a file, and paste (Section
 21.18) lets you put them back, perhaps in a different
 order.

This chapter covers all that and more.
— TOR

Neatening Text with fmt

 One of the problems with fold
 is that it breaks text at an arbitrary
 column position — even if that position happens to be in the middle of a word.
 It’s a pretty primitive utility, designed to keep long lines from printing off
 the edge of a line printer page, and not much more.
fmt can do a better job because it thinks
 in terms of language constructs like paragraphs. fmt
 wraps lines continuously, rather than just folding the long ones. It assumes
 that paragraphs end at blank lines.
You can use fmt for things like neatening
 lines of a mail message or a file that you’re editing with
 vi (Section
 17.28). (Emacs has its own built-in line-neatener.) It’s also great
 for shell programming and almost any place you have lines that are too long or
 too short for your screen.
To make this discussion more concrete, let’s imagine that you have the
 following paragraph:
 Most people take their Emo Phillips for granted. They figure, and not
without some truth, that he is a God-given right and any government that
considers itself a democracy would naturally provide
its citizens with this
sort of access. But what too many of this Gap-wearing,
Real World-watching generation fail to realize
is that our American
forefathers, under the tutelage of Zog, the wizened master sage from
Zeta-Reticuli, had to fight not only the godless and effete British
for our system of self-determined government, but also avoid the terrors
of hynpo-death from the dark and
unclean Draco-Repitilians.
To prepare this text for printing, you’d like to have all the lines be about
 60 characters wide and remove the extra space in the lines. Although you could
 format this text by hand, GNU fmt can do this
 for you with the following command line:
% fmt -tuw 60 my_file
The
 -t option, short for --tagged-paragraph mode, tells fmt to preserve the paragraph’s initial indent but
 align the rest of the lines with the left margin of the second line. The
 -u option, short for --uniform-spacing, squashes all the inappropriate
 whitespace in the lines. The final option, -w, sets the width of the output in characters. Like most UNIX
 commands, fmt sends its output to
 stdout. For our test paragraph, fmt did this:
 Most people take their Emo Phillips for granted.
They figure, and not without some truth, that he is a
God-given right and any government that considers itself a
democracy would naturally provide its citizens with this
sort of access. But what too many of this Gap-wearing,
Real World-watching generation fail to realize is that
our American forefathers, under the tutelage of Zog,
the wizened master sage from Zeta-Reticuli, had to fight
not only the godless and effete British for our system of
self-determined government, but also avoid the terrors of
hynpo-death from the dark and unclean Draco-Repitilians.
There is one subtlety to fmt to be aware of: fmt expects sentences to end with a period, question mark, or
 exclamation point followed by two spaces. If your document isn’t marked up
 according to this convention, fmt can’t
 differentiate between sentences and abbreviations. This is a common “gotcha”
 that appears frequently on Usenet.
Warning
On at least one version of Unix, fmt is a disk initializer (disk formatter)
 command. Don’t run that command accidentally! Check
 your online manual page and see the fmt
 equivalents that follow.

There are a few different versions of fmt,
 some fancier than others. In general, the program assumes the following:
	Paragraphs have blank lines between them.

	If a line is indented, the indentation should be preserved.

	The output lines should be about 70 characters wide. Some have a
 command-line option to let you set this. For example, fmt -132 (or on some versions, fmt -l 132) would reformat your file to
 have lines with no more than 132 characters on each.

	It reads files or standard input. Lines will be written to standard
 output.

[image:] Go to http://examples.oreilly.com/upt3 for more information on: fmt
There are a couple of free versions
 available. Many versions of fmt have options
 for other structured data. The -p
 option (Section 21.4) reformats program source code. (If your fmt doesn’t have -p, the
 recomment (Section 21.4) script uses standard
 fmt with sed to do the same thing.) The -s option breaks
 long lines at whitespace but doesn’t join short lines to form longer
 ones.
Alternatively, you can make your own (Section 21.3) simple (and a little
 slower) version with sed and nroff. If you want to get fancy (and use some
 nroff and/or tbl coding), this will let you do automatically formatted text
 tables, bulleted lists, and much more.
—JP, TOR, and JJ

Alternatives to fmt

fmt

 (Section 21.2) is hard to do without once
 you’ve learned about it. Unfortunately, it’s not available in some versions of
 Unix, but it’s also relatively easy to emulate with sed
 (Section 37.4) and nroff
 . Using those two utilities also let you take
 advantage of the more sophisticated formatting and flexibility that sed and nroff
 macros can give you. (If you’re doing anything really fancy, like tables with tbl,[1] you might need col or colcrt to clean up nroff’s output.)
Here’s the script:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 fmt.sh
#!/bin/sh
sed '1i\
.ll 72\
.na\
.hy 0\
.pl 1' $* | nroff
The reason this is so complicated is that, by default, nroff makes some assumptions you need to change.
 For example, it assumes an 11-inch page (66 lines) and will add blank lines to a
 short file (or the end of a long file). The quick-and-dirty workaround to this
 is to manually put the nroff request
 .pl 1 (page length 1 line) at the top of the text you
 want to reformat. nroff also tends to justify
 lines; you want to turn this off with the .na
 request. You also want to turn off hyphenation (.hy
 0), and you may want to set the line length to 72 instead of
 nroff’s default 65, if only for
 consistency with the real fmt program. All
 these nroff requests get inserted before the
 first line of input by the sed
 1i command.
A fancier script would take a -nn line-length option and turn
 it into a .ll request for nroff, etc.
Another solution to consider is

 Damian Conway’s Text::Autoformat Perl module. It has some very sophisticated
 heuristics to try to figure out how text should be formatted, including bulleted
 and numbered lists. In its simplest form, it can be used to read from
 stdin and write to stdout, just as
 a standard Unix utility would do. You can invoke this module from the command
 line like this:
% perl -MText::Autoformat -e 'autoformat' < your_file_here
By default, autoformat formats only one
 paragraph at a time. This behavior can be changed by altering the invocation
 slightly:
% perl -MText::Autoformat -e 'autoformat({all =>1})'
The manpage for this module even suggests a way into integrate this into
 vi:
map f !Gperl -MText::Autoformat -e'autoformat'
—TOR and JJ

Clean Up Program Comment Blocks

 Lines in a program’s comment block usually
 start with one or more special characters, like this:
line 1 of the comment
line 2 of the comment
line 3 of the comment
 ...
It can be a hassle to add more text to one of the comment lines in a block,
 because the line can get too long, which requires you to fold that line onto the
 next line, which means you have to work around the leading comment
 character(s).
The fmt (Section 21.2) program neatens lines of a text file. But the standard fmt won’t help you “neaten” blocks of comments in a program: it
 mixes the comment characters from the starts of lines with the words. (If your
 fmt has the -p option,
 it handles this problem; there’s an example below.) The recomment script is fmt for
 comment blocks. It’s for people who write shell, awk, C, or almost any other kind of program with comment blocks
 several lines long.
The recomment Script

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 recomment
recomment
 reads the lines that you feed its
 standard input. It looks at the first line and figures out what characters
 you’re using to comment the line (see the $cchars variable for a list — typically SPACEs, TABs,
 #, or *). recomment then strips
 those comment characters off each line, feeds the remaining block of text to
 the fmt utility, and uses sed (Section
 34.1) to add the comment characters again.
I usually use recomment from inside
 vi, with filter-through (Section
 17.18) commands like:
!}recomment reformat to the next blank line
5!!recomment reformat this line and the next 4
Normally, recomment lets fmt choose the width of the comment block (72
 characters, typically). To get another width, you can do one of the
 following:
	Give the width on the command line, like this:
recomment -50

	Set an environment variable named CBLKWID

 . Give the
 maximum width, in characters, for the comment text. For example, in
 the C shell, use:
% setenv CBLKWID 50

recomment isn’t perfect, but it’s
 usually much better than nothing! Here’s the part of the script that does
 the work. The first two commands get the comment character(s) and count
 their length. The next three commands strip the comment characters, clean up
 the remaining comment text, and add the same comment characters to the start
 of all reformatted lines:
-n
 Section 34.3, expr
 Section 36.22, cut
 Section 21.14
Get comment characters used on first line; store in $comment:
comment=`sed -n "1s/^\([$cchars]*\).*/\1/p" $temp`
Count number of characters in comment character string:
cwidth=`expr "$comment" : '.*'`

Re-format the comment block. If $widopt set, use it:
cut -c`expr $cwidth + 1`- < $temp | # Strip off comment leader
fmt $widopt | # Re-format the text, and
sed "s/^/$comment/" # put back comment characters
When the expr command in backquotes (Section 28.14) is expanded, it makes a command like cut -c4-.

fmt -p

Some versions of fmt have a -p option that
 does the same thing. Unlike the automatic system in recomment, you have to tell fmt -p what
 the prefix characters are — but then it will only reformat lines with that
 prefix character For example, here’s the start of a C++ program. The prefix
 character is *:
% cat load.cc
/*
 * This file, load.cc, reads an input
 * data file.
 * Each input line is added to a new node
 * of type struct Node.
 */
 ...
% fmt -p '*' load.cc
/*
 * This file, load.cc, reads an input data file. Each input line is
 * added to a new node of type struct Node.
 */
 ...
— JP

Remove Mail/News Headers with behead

 When
 you’re saving or resending a Usenet
 article or mail message, you might want to the remove header lines
 (Subject:, Received:, and so on).
 This little script will handle standard input, one or many files. It writes to
 standard output. Here are a few examples:
	With saved messages, at a shell prompt:

mail
 Section 1.21
% behead msg* | mail -s "Did you see these?" fredf
	To save an article from a pipe without a header, from a program (here,
 the old readnews) that can’t cut off
 headers itself:
What now? [ynq] s- | behead > filename

Here’s the script, adapted a little from the original by Arthur David
 Olson:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 behead
#! /bin/sh
case $# in
0) exec sed '1,/^$/d' ;;
*) for i
 do sed '1,/^$/d' "$i"
 done
 ;;
esac
The script relies on the fact that news articles and mail messages use a blank
 line to separate the header from the body of the message. As a result, the
 script simply deletes the text from the beginning up to the first blank
 line.
— JP

Low-Level File Butchery with dd

 Want to strip off some arbitrary number of
 characters from the front of a file?
[image:] Go to http://examples.oreilly.com/upt3 for more information on: dd
dd provides an unexpectedly easy answer.
 Let’s say you wanted to delete the first 100 characters in a file. Here’s the
 command that will do the trick (assuming of course that you give dd a filename with the if=
 option or data from a pipe):
% dd bs=100 skip=1
Or you could try:
% dd bs=1 skip=100
dd normally reads and writes data in
 512-byte blocks; the input block size can be changed with the
 ibs= option, and the output block size with
 obs=. Use bs= to set both.
 skip= sets the number of blocks to skip at the start of
 the file.
Why would you want to do this? Section
 21.9 gives an interesting example of reading text from standard input
 and writing it to a series of smaller files. Section 21.13 shows even more uses for dd.
— TOR

offset: Indent Text

 Do you have a printer that
 starts each line too close to the left margin? You might want to indent text to
 make it look better on the screen or a printed page. Here’s a Perl script that does that. It reads from files or
 standard input and writes to standard output. The default indentation is 5
 spaces. For example, to send a copy of a file named graph
 to the lp printer, indented 12 spaces:
% offset -12 graph | lp
Here’s the Perl script that does the job:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 offset
#!/usr/local/bin/perl

if ($ARGV[0] =~ /-[0-9]+/) {
 ($indent = $ARGV[0]) =~ s/-//;
 shift @ARGV;
} else {
 $indent = 5;
}

while (<>) {
 print " " x $indent, $_;
}
If there’s an indentation amount in the first command-line argument, the dash
 is stripped and the value stored, then that argument is shifted away. Then a
 loop steps through the remaining arguments, if any (otherwise standard input is
 read) and outputs their text preceded by spaces. The script uses the Perl
 operator "string"
 x
 n, which outputs the string (in this case, a single
 space) n times. The Perl $_ operator contains the current input line.
— JP

Centering Lines in a File

 Here’s an awk script, written by Greg Ubben, that centers text across an
 80-character line. If your system understands #! (Section 36.3),
 this script will be passed directly to awk
 without a shell. Otherwise, put this into a Bourne shell
 wrapper (Section
 35.19).
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 center
#!/usr/bin/awk -f
{
 printf "%" int(40+length($0)/2) "s\n", $0
}
For each input line, the script builds a printf
 command with a width specification just wide
 enough to center the line (which awk holds in
 $0). For instance, a line 60 characters
 wide would give a value of int(40+60/2),
 which is 70. That makes the following printf
 command:
printf %70s\n, $0
Because %s prints a string right-justified,
 that command gives a 10-character indentation (70 minus 60) on an 80-character
 line. The right end of the line is also 10 characters (80 minus 70) from the
 right edge of the screen.
In vi
 , you can use a filter-through (Section
 17.18) command to center lines while you’re editing. Or just use
 center from the command line. For
 example:
% center afile > afile.centered
% sort party_list | center | lp
— JP

Splitting Files at Fixed Points: split

Most versions of Unix come with a program called split whose purpose is to split large files into smaller files
 for tasks such as editing them in an editor that cannot handle large files, or
 mailing them if they are so big that some mailers will refuse to deal with them.
 For example, let’s say you have a really big text file that you want to mail to
 someone:
% ls -l bigfile
-r--r--r-- 1 jik 139070 Oct 15 21:02 bigfile
Running split on that file will (by
 default, with most versions of split) break
 it up into pieces that are each no more than 1000 lines long:
wc
 Section 16.6
% split bigfile
% ls -l
total 283
-r--r--r-- 1 jik 139070 Oct 15 21:02 bigfile
-rw-rw-r-- 1 jik 46444 Oct 15 21:04 xaa
-rw-rw-r-- 1 jik 51619 Oct 15 21:04 xab
-rw-rw-r-- 1 jik 41007 Oct 15 21:04 xac
% wc -l x*
 1000 xaa
 1000 xab
 932 xac
 2932 total
Note the default naming scheme, which is to append “aa”, “ab”, “ac”, etc., to
 the letter “x” for each subsequent filename. It is possible to modify the
 default behavior. For example, you can make split create files that are 1500 lines long instead of
 1000:
% rm x??
% split -1500 bigfile
% ls -l
total 288
-r--r--r-- 1 jik 139070 Oct 15 21:02 bigfile
-rw-rw-r-- 1 jik 74016 Oct 15 21:06 xaa
-rw-rw-r-- 1 jik 65054 Oct 15 21:06 xab
You can also get it to use a name prefix other than “x”:
% rm x??
% split -1500 bigfile bigfile.split.
% ls -l
total 288
-r--r--r-- 1 jik 139070 Oct 15 21:02 bigfile
-rw-rw-r-- 1 jik 74016 Oct 15 21:07 bigfile.split.aa
-rw-rw-r-- 1 jik 65054 Oct 15 21:07 bigfile.split.ab
Although the simple behavior described above tends to be relatively universal,
 there are differences in the functionality of split on different Unix systems. There are four basic variants of
 split as shipped with various
 implementations of Unix:
	A split that understands only how
 to deal with splitting text files into chunks of n
 lines or less each.

	A split, usually called bsplit, that understands only how to deal with splitting
 nontext files into n-character chunks.

	A split that splits text files into
 n-line chunks, or nontext files into
 n-character chunks, and tries to figure out
 automatically whether it’s working on a text file or a nontext
 file.

	A split that does either text files
 or nontext files but needs to be told explicitly when it is working on a
 nontext file.

The only way to tell which version you’ve got is to read the manual page for
 it on your system, which will also tell you the exact syntax for using
 it.
The problem with the third variant is that although it tries to be smart and
 automatically do the right thing with both text and nontext files, it sometimes
 guesses wrong and splits a text file as a nontext file or vice versa, with
 completely unsatisfactory results. Therefore, if the variant on your system is
 (3), you probably want to get your hands on one of the many split clones out there that is closer to one of
 the other variants (see below).
Variants (1) and (2) listed above are OK as far as they go, but they aren’t
 adequate if your environment provides only one of them rather than both. If you
 find yourself needing to split a nontext file when you have only a text split, or needing to split a text file when you
 have only bsplit, you need to get one of the
 clones that will perform the function you need.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 split
Variant (4) is the most reliable and versatile of the four listed, and it is
 therefore what you should go with if you find it necessary to get a clone and
 install it on your system. There are several such clones in the various source
 archives, including the free BSD Unix version. Alternatively, if you have
 installed perl (Section 41.1), it is quite easy to write
 a simple split clone in perl, and you don’t have to worry about compiling
 a C program to do it; this is an especially significant advantage if you need to
 run your split on multiple architectures that
 would need separate binaries. The Perl code for a binary split program
 follows:
#!/usr/bin/perl -w --
Split text or binary files; jjohn 2/2002
use strict;
use Getopt::Std;

my %opts;
getopts("?b:f:hp:ts:", \%opts);

if($opts{'?'} || $opts{'h'} || !-e $opts{'f'}){
 print <<USAGE;
$0 - split files in smaller ones

USAGE:
 $0 -b 1500 -f big_file -p part.

OPTIONS:

 -? print this screen
 -h print this screen
 -b <INT> split file into given byte size parts
 -f <TXT> the file to be split
 -p <TXT> each new file to begin with given text
 -s <INT> split file into given number of parts
USAGE
 exit;
}

my $infile;
open($infile, $opts{'f'}) or die "No file given to split\n";
binmode($infile);
my $infile_size = (stat $opts{'f'})[7];

my $block_size = 1;
if($block_size = $opts{'b'}){
 # chunk file into blocks

}elsif(my $total_parts = $opts{'s'}){
 # chunk file into N parts
 $block_size = int ($infile_size / $total_parts) + 1;

}else{
 die "Please indicate how to split file with -b or -s\n";
}

my $outfile_base = $opts{'p'} || 'part.';
my $outfile_ext = "aa";

my $offset = 0;
while($offset < $infile_size){
 my $buf;
 $offset += read $infile, $buf, $block_size;
 write_file($outfile_base, $outfile_ext++, \$buf);
}

#--- subs ---#
sub write_file {
 my($fname, $ext, $buf) = @_;

 my $outfile;
 open($outfile, ">$fname$ext") or die "can't open $fname$ext\n";
 binmode($outfile);
 my $wrote = syswrite $outfile, $$buf;
 my $size = length($$buf);
 warn "WARN: wrote $wrote bytes instead of $size to $fname$ext\n"
 unless $wrote == $size;
}
Although it may seem somewhat complex at first glance, this small Perl script
 is cross-platform and has its own small help screen to describe its options.
 Briefly, it can split files into N-sized blocks (given the -b option) or, with -s, create N new segments of the original file. For a better
 introduction to Perl, see Chapter 42.Chapter 42
If you need to split a nontext file and don’t feel
 like going to all of the trouble of finding a split clone to handle it, one standard Unix tool you can use to
 do the splitting is dd (Section 21.6). For example, if
 bigfile above were a nontext file and you wanted to
 split it into 20,000-byte pieces, you could do something like this:
for
 Section 35.21, >
 Section 28.12
$ ls -l bigfile
-r--r--r-- 1 jik 139070 Oct 23 08:58 bigfile
$ for i in 1 2 3 4 5 6 7 #[2]
> do
> dd of=x$i bs=20000 count=1 2>/dev/null #[3]
> done < bigfile
$ ls -l
total 279
-r--r--r-- 1 jik 139070 Oct 23 08:58 bigfile
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x1
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x2
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x3
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x4
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x5
-rw-rw-r-- 1 jik 20000 Oct 23 09:00 x6
-rw-rw-r-- 1 jik 19070 Oct 23 09:00 x7
—JIK and JJ

Splitting Files by Context: csplit

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 csplit

 Like split (Section 21.9),

 csplit lets you break a file into smaller
 pieces, but csplit (context split) also
 allows the file to be broken into different-sized pieces, according to context.
 With csplit, you give the locations (line
 numbers or search patterns) at which to break each section. csplit comes with System V, but there are also
 free versions available.

 Let’s look at search patterns first.
 Suppose you have an outline consisting of three main sections that start on
 lines with the Roman numerals I., II., and III..
 You could create a separate file for each section by typing:
% csplit outline /I./ /II./ /III./
28 number of characters in each file
415 .
372 .
554 .
% ls
outline
xx00 outline title, etc.
xx01 Section I
xx02 Section II
xx03 Section III
This command creates four new files (outline remains
 intact). csplit displays the character counts
 for each file. Note that the first file (xx00) contains any
 text up to but not including the first pattern, and
 xx01 contains the first section, as you’d expect. This
 is why the naming scheme begins with 00. (If
 outline had begun immediately with a I., xx01 would still contain
 Section I, but in this case xx00 would be empty.)
If you don’t want to save the text that occurs before a specified pattern, use
 a percent sign as the pattern delimiter:
% csplit outline %I.% /II./ /III./
415
372
554
% ls
outline
xx00 Section I
xx01 Section II
xx02 Section III
The preliminary text file has been suppressed, and the created files now begin
 where the actual outline starts (the file numbering is off, however).
Let’s make some further refinements. We’ll use the -s

 option to
 suppress the display of the character counts, and we’ll use the
 -f option to specify a file prefix other than the
 conventional xx:
% csplit -s -f part. outline /I./ /II./ /III./
% ls
outline
part.00
part.01
part.02
part.03
There’s still a slight problem, though.
 In search patterns, a period is a metacharacter (Section
 32.21) that matches any single character, so the pattern /I./ may inadvertently match words like
 Introduction. We need to escape the period with a
 backslash; however, the backslash has meaning both to the pattern and to the
 shell, so in fact, we need either to use a double backslash or to surround the
 pattern in quotes (Section 27.12). A subtlety, yes, but
 one that can drive you crazy if you don’t remember it. Our command line
 becomes:
% csplit -s -f part. outline "/I\./" /II./ /III./
You can also break a file at repeated occurrences of the same pattern. Let’s
 say you have a file that describes 50 ways to cook a chicken, and you want each
 method stored in a separate file. The sections begin with headings WAY
 #1, WAY #2, and so on. To divide the file,
 use csplit’s repeat argument:
% csplit -s -f cook. fifty_ways /^WAY/ "{49}"
This command splits the file at the first occurrence of
 WAY, and the number in braces tells csplit to repeat the split 49 more times. Note
 that a caret (^) (Section 32.5) is
 used to match the beginning of the line and the C shell requires quotes around
 the braces (Section 28.4). The command has created 50 files:
% ls cook.*
cook.00
cook.01
 ...
cook.48
cook.49
Quite often, when you want to split a file repeatedly, you don’t know or don’t
 care how many files will be created; you just want to make sure that the
 necessary number of splits takes place. In this case, it makes sense to specify
 a repeat count that is slightly higher than what you need (the maximum is 99).
 Unfortunately, if you tell csplit to create
 more files than it’s able to, this produces an “out of range” error.
 Furthermore, when csplit encounters an error,
 it exits by removing any files it created along the way. (A bug, if you ask me.)
 This is where the -k option comes in. Specify
 -k to keep the files around, even when
 the “out of range” message occurs.
csplit allows you to break a file at some
 number of lines above or below a given search pattern. For example, to break a
 file at the line that is five lines below the one containing
 Sincerely, you could type:
% csplit -s -f letter. all_letters /Sincerely/+5
This situation might arise if you have a series of business letters strung
 together in one file. Each letter begins differently, but each one begins five
 lines after the previous letter’s Sincerely line. Here’s
 another example, adapted from AT&T’s Unix User’s Reference
 Manual:
% csplit -s -k -f routine. prog.c '%main(%' '/^}/+1' '{99}'
The idea is that the file prog.c contains a group of C
 routines, and we want to place each one in a separate file
 (routine.00, routine.01, etc.).
 The first pattern uses % because we want to
 discard anything before main. The next argument says, “Look
 for a closing brace at the beginning of a line (the conventional end of a
 routine) and split on the following line (the assumed beginning of the next
 routine).” Repeat this split up to 99 times, using -k to
 preserve the created files.[4]
The csplit command takes line-number
 arguments in addition to patterns. You can say:
% csplit stuff 50 373 955
to create files split at some arbitrary line numbers. In that example, the new
 file xx00 will have lines 1-49 (49 lines total),
 xx01 will have lines 50-372 (323 lines total),
 xx02 will have lines 373-954 (582 lines total), and
 xx03 will hold the rest of
 stuff.
csplit works like split if you repeat the argument. The command:
% csplit top_ten_list 10 "{18}"
breaks the list into 19 segments of 10
 lines

 each.[5]

— DG

Hacking on Characters with tr

 The tr command is a character translation filter, reading standard input (Section 43.1) and either deleting specific characters or
 substituting one character for another.
The most common use of tr is to change each
 character in one string to the corresponding character in a second string.
 (A string of consecutive ASCII
 characters can be represented as a hyphen-separated range.)
For example, the command:
<
 Section 43.1
$ tr 'A-Z' 'a-z' <
 file
 Berkeley version
will convert all uppercase characters in file to the
 equivalent lowercase characters. The result is printed on standard
 output.

 In fact, a frequent trick I use tr for is to convert filenames from all uppercase
 to all lowercase. This comes up when you’re dealing with files from MS-DOS or
 VMS that you are copying on to a Unix filesystem. To change all the files in the
 current directory to lowercase, try this from a Bash or Bourne shell
 prompt:
$ for i in `ls`; do mv $i `echo $i | tr [A-Z] [a-z]`; done
Of course, you need to be careful that there are no files that have the same
 name regardless of case. The GNU mv can be
 passed the -i flag that will make the program
 prompt you before overwriting an existing file. If you want to uppercase
 filenames, simply flip the arguments to tr.
 You can even apply this to an entire branch of a file system by sticking this in
 a find command. First, create a small shell
 script that can downcase a file and call it downcase:
#!/bin/sh
mv $1 `echo $1 | tr [A-Z] [a-z]`
Now you can really do some damage with find:
$ find /directory/to/be/affected -exec 'downcase' '{}' ';'
Obviously, running this programming on random directories as root is not recomended, unless you’re looking to
 test your backup system.
[image:] Go to http://examples.oreilly.com/upt3 for more information on: tr
In the System V version of tr, square brackets must surround any range
 of characters. That is, you have to say [a-z]
 instead of simply a-z. And of course, because
 square brackets are meaningful to the shell, you must protect them from
 interpretation by putting the string in quotes. The GNU
 tr, on the web site, is basically the System
 V version.
If you aren’t sure which version you have, here’s a test. Both tr examples below will convert the lowercase
 letters a through z to an uppercase A, but
 that’s not what we’re testing here. The Berkeley version also converts
 the input [] to A characters because []
 aren’t treated as range operators:
% echo '[]' | tr '[a-z]' A
AA Berkeley version
% echo '[]' | tr '[a-z]' A
[] System V version
There’s one place you don’t have to worry about the difference between the two
 versions: when you’re converting one range to another range, and both ranges
 have the same number of characters. For example, this command works in both
 versions:
$ tr '[A-Z]' '[a-z]' < file

 both versions
The Berkeley tr will convert a [from the first string into the same character
 [in the second string, and the same for
 the] characters. The System V version uses
 the [] characters as range operators. In
 both versions, you get what you want: the range A-Z is converted to the corresponding range a-z. Again, this trick works only when both ranges
 have the same number of characters.
The System V version also has a nice feature: the syntax [a*
 n
], where n is some
 digit, means that the string should consist of n
 repetitions of character “a.” If n isn’t specified or
 is 0, it is taken to be some indefinitely large number. This is useful if you
 don’t know how many characters might be included in the first string.

 As described in Section 17.18, this translation (and
 the reverse) can be useful from within vi for
 translating a string. You can also delete specific characters. The
 -d option deletes from the input each occurrence of one or
 more characters specified in a string (special characters should be placed
 within quotation marks to protect them from the shell). For instance, the
 following command passes to standard output the contents of
 file with all punctuation deleted (and is a great
 exercise in shell quoting (Section 27.12)):
$ tr -d ",.\!?;:\"\'`" < file

The -s (squeeze) option of tr removes multiple consecutive occurrences of the
 same character in the second argument. For example, the command:
$ tr -s " " " " < file

will print on standard output a copy of file in which
 multiple spaces in sequence have been replaced with a single space.
We’ve also found tr useful when converting
 documents created on other systems for use under Unix. For example, as described
 in Section 1.8, tr can be used to change the carriage returns at
 the end of each line in a Macintosh text file into the newline Unix expects.
 tr allows you to specify characters as
 octal values by preceding the value with a backslash, so the following command
 does the trick:

$ tr '\015' '\012' < file.mac > file.unix
The command:
$ tr -d '\015' < pc.file
will remove the carriage return from the carriage return/newline pair that a
 PC file uses as a line terminator. (This command is also handy for removing the
 excess carriage returns from a file created with script (Section
 37.7).)

Encoding “Binary” Files into ASCII

 Email transport systems were originally
 designed to transmit characters with a seven-bit encoding — like
 ASCII. This meant they could send messages with plain
 English text but not “binary” text, such as program files or graphics (or
 non-English text!), that used all of an eight-bit byte. Usenet (Section 1.21),
 the newsgroup system, was transmitted
 like email and had its same seven-bit limitations. The solution — which is still
 used today — is to encode eight-bit text into characters
 that use only the seven low bits.
The first popular solution on Unix-type systems was
 uuencoding
 . That method is mostly obsolete
 now (though you’ll still find it used sometimes); it’s been replaced by
 MIME encoding. The next two sections cover both of those
 — though we recommend avoiding uuencode like the
 plague.
uuencoding

 The
 uuencode
 utility encodes eight-bit data into a
 seven-bit representation for sending via email or on Usenet. The recipient
 can use uudecode to restore the original
 data. Unfortunately, there are several different and incompatible versions
 of these two utilities. Also, uuencoded data doesn’t travel well through all
 mail gateways — partly because uuencoding is sensitive to changes in
 whitespace (space and TAB) characters, and some gateways munge (change or
 corrupt) whitespace. So if you’re encoding text for transmission, use
 MIME instead of uuencode
 whenever you can.
To create an ASCII version of a binary file, use the
 uuencode utility. For instance,
 a compressed file (Section
 15.6) is definitely eight-bit; it needs encoding.
A uuencoded file (there’s an example later in this article) starts with a
 begin line that gives the file’s
 name; this name comes from the first argument you give the uuencode utility as it encodes a file. To make
 uuencode read a file directly, give
 the filename as the second argument. uuencode writes the encoded file to its standard output. For
 example, to encode the file emacs.tar.gz from your ~/tarfiles directory and store it in a file named emacs.tar.gz.uu:
% uuencode emacs.tar.gz ~/tarfiles/emacs.tar.gz > emacs.tar.gz.uu
You can then insert emacs.tar.gz.uu into a mail
 message and send it to someone. Of course, the ASCII-only
 encoding takes more space than the original binary format. The encoded file
 will be about one-third larger.[6]
If you’d rather, you can combine the steps above into one pipeline. Given
 only one command-line argument (the name of the file for the begin line), uuencode will read its standard input. Instead of creating
 the ~/tarfiles/emacs.tar.gz, making a
 second uuencoded file, then mailing that file, you can give tar the “filename” so it writes to its
 standard output. That feeds the archive down the pipe:[7]
mail
 Section 1.21
% tar cf - emacs | gzip | uuencode emacs.tar.gz | \
 mail -s "uuencoded emacs file" whoever@wherever.com
What happens when you receive a uuencoded, compressed tar file? The same thing, in reverse. You’ll
 get a mail message that looks something like this:
From: you@whichever.ie
To: whoever@wherever.com
Subject: uuencoded emacs file

begin 644 emacs.tar.gz
M+DQ0"D%L;"!O9B!T:&5S92!P<F]B;&5M<R!C86X@8F4@<V]L=F5D(&)Y(")L
M:6YK<RPB(&$@;65C:&%N:7-M('=H:6-H"F%L;&]W<R!A(&9I;&4@=&\@:&%V
M92!T=V\@;W(@;6]R92!N86UE<RX@(%5.25@@<')O=FED97,@='=O(&1I9F9E
M<F5N= IK:6YD<R!O9B!L:6YK<SH*+DQS($(*+DQI"EQF0DAA<F0@;&EN:W-<
 ...
end
So you save the message in a file, complete with headers. Let’s say you
 call this file mailstuff. How do you get the original
 files back? Use the following sequence of commands:
% uudecode mailstuff
% gunzip emacs.tar.gz
% tar xf emacs.tar

 The uudecode command searches through the file,
 skipping From:, etc., until it sees its
 special begin line; it decodes the rest
 of the file (until the corresponding end
 line) and creates the file emacs.tar.gz. Then gunzip
 recreates your original tar file, and tar xf
 extracts the individual files from the archive.
Again, though, you’ll be better off using MIME encoding
 whenever you can.

MIME Encoding

 When
 MIME (Multipurpose
 Internet Mail Extensions) was designed in the early 1990s, one main goal was
 robust email communications. That meant coming up with a mail encoding
 scheme that would work on all platforms and get through all mail
 transmission paths.
Some text is “mostly ASCII“: for instance, it’s in a
 language like German or French that uses many ASCII
 characters plus some eight-bit characters (characters with a octal value
 greater than 177). The MIME standard allows that text to
 be minimally encoded in a way that it can be read fairly well without
 decoding: the quoted-printable encoding. Other text is
 full binary — either not designed for humans to read, or so far from
 ASCII that an ASCII representation
 would be pointless. In that case, you’ll want to use the
 base64

 encoding.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 mimencode, mailto
Most modern email programs automatically MIME-encode
 files. Unfortunately, some aren’t too smart about it. The

 Metamail utilities come with a utility
 called mimencode (also named mmencode) for encoding and decoding
 MIME formats. Another Metamail utility, mailto, encodes and sends
 MIME messages directly — but let’s use mimencode, partly because of the extra control
 it gives you.
By default, mimencode reads text from
 standard input, uses a base64 encoding, and writes the encoded text to
 standard output. If you add the -q option, mimencode uses quoted-printable encoding
 instead.
Unlike uuencoded messages, which contain the filename in the message body,
 MIME-encoded messages need information in the message
 header (the lines “To:”, “From:”, etc.).
 The mail
 utility (except an older version) doesn’t let you make a message header. So
 let’s do it directly: create a mail header with cat
 > (Section
 11.2), create a mail body with mimencode, and send it using a common system mail transfer
 agent, sendmail
 . (You could automate this with a
 script, of course, but we’re just demonstrating.) The
 MIME standard header formats are still evolving;
 we’ll use a simple set of header fields that should do the job. Here’s the
 setup. Let’s do it first in three steps, using temporary files:
$ cat > header
From: jpeek@oreilly.com
To: jpeek@jpeek.com
Subject: base64-encoded smallfile
MIME-Version: 1.0
Content-Type: application/octet-stream; name="smallfile.tar.gz"
Content-Transfer-Encoding: base64

CTRL-d
$ tar cf - smallfile | gzip | mimencode > body
$ cat header body | /usr/lib/sendmail -t
The cat > command lets me create the
 header file by typing it in at the
 terminal; I could have used a text editor instead. One important note:
 the header must end with a blank line. The second
 command creates the body file. The
 third command uses cat to output the
 header, then the body; the message we’ve built is piped to sendmail, whose -t option
 tells it to read the addresses from the message header. You should get a
 message something like this:
Date: Wed, 22 Nov 2000 11:46:53 -0700
Message-Id: <200011221846.LAA18155@oreilly.com>
From: jpeek@oreilly.com
To: jpeek@jpeek.com
Subject: base64-encoded smallfile
MIME-Version: 1.0
Content-Type: application/octet-stream; name="smallfile.tar.gz"
Content-Transfer-Encoding: base64

H4sIACj6GzoAA+1Z21YbRxb1c39FWcvBMIMu3A0IBWxDzMTYDuBgrxU/lKSSVHF3V6erGiGv
rPn22edU3wRIecrMPLgfEGpVV53LPvtcOktcW6au3dnZ2mrZcfTkb7g6G53O7vb2k06ns7G3
06HPzt7uDn/Sra1N/L+32dnd29ve3tjD+s3Nna0novN3CHP/yqyTqRBPfk+U+rpknUnlf0Oc
 ...
Your mail client may be able to extract that file directly. You also can
 use mimencode -u. But
 mimencode doesn’t know about mail
 headers, so you should strip off the header first. The behead
 (Section 21.5) script can do that. For instance, if you’ve saved
 the mail message in a file msg:
$ behead msg | mimencode -u > smallfile.tar.gz
Extract (Section 39.2) smallfile.tar.gz and compare it to your
 original smallfile (maybe with cmp). They should be identical.

 If you’re planning to do this
 often, it’s important to understand how to form an email header and body
 properly. For more information, see relevant Internet
 RFCs (standards documents) and O’Reilly’s
 Programming Internet Email by David

 Wood.

—JP and ML

Text Conversion with dd

 Besides the other uses
 of
 dd (Section
 21.6) we’ve covered, you also can use this versatile utility to
 convert:
	
 fixed length to variable-length
 records (conv=unblock), and the reverse
 (conv=block)

	uppercase to lowercase
 (conv=lcase), and the reverse
 (conv=ucase)

	the byte order of every
 pair of bytes (conv=swab)

	
 ASCII to EBCDIC and the
 reverse (conv=ebcdic,
 conv=ibm). If you’re converting old IBM tapes,
 you’ll need to know the tape’s blocking factor. And if the tape has
 multiple files on it, you’ll have to use the tape device name that
 allows “no rewind on close” (Section 38.5) to read past the
 first file.

The cbs= option must be used to specify a
 conversion buffer size when using block and
 unblock and when converting between ASCII and EBCDIC.
 The specified number of characters are put into the conversion buffer. For
 ascii and unblock conversion,
 trailing blanks are trimmed and a newline is added to each buffer before it is
 output. For ebcdic, ibm, and
 block, the input is padded with blanks up to the
 specified conversion buffer size.
— TOR

Cutting Columns or Fields

 A nifty command called cut lets you select a list of columns or fields from one or more
 files.
You must specify either the -c option to cut by column or
 -f to cut by fields. (Fields are separated by tabs unless
 you specify a different field separator with -d. Use quotes (Section
 27.12) if you want a space or other special character as the
 delimiter.)
In some versions of cut, the column(s) or
 field(s) to cut must follow the option immediately, without any space. Use a
 comma between separate values and a hyphen to specify a range (e.g., 1-10,15 or 20,23 or 50-).
The order of the columns and fields is ignored; the characters in each line
 are always output from first to last, in the order they’re read from the input.
 For example, cut -f1,2,4 produces exactly the
 same output as cut -f4,2,1. If this isn’t
 what you want, try perl (Section 41.1) or awk (Section 20.10),
 which let you output fields in any order.
cut is incredibly handy. Here are some
 examples:
	Find out who is logged in, but list only login names:
who
 Section 2.8
% who | cut -d" " -f1

	Extract usernames and real names from /etc/passwd (Section
 22.3):
% cut -d: -f1,5 /etc/passwd

	Cut characters in the fourth column of file, and
 paste them back as the first column in the same file:
% cut -c4 file | paste - file

Section 21.18 covers the cut counterpart, paste.
As was mentioned, you can use awk or
 perl to extract columns of text. Given
 the above task to extract the fifth and first fields fields of /etc/passwd, you can use awk:
% awk -F: '{print $5, "=>", $1}' /etc/passwd
An often forgotten command-line option for
 perl is -a, which puts perl in
 awk compatibility mode. In other words,
 you can get the same field-splitting behavior right from the command
 line:
% perl -F: -lane 'print $F[4], "=>", "$F[0]"' /etc/passwd
In the line above, perl is told about the
 field separator in the same way awk is, with
 the -F flag. The next four options are fairly
 common. The -l option removes newlines from
 input and adds a newline to all print
 statements. This is a real space saver for “one-line wonders,” like the one
 above. The -a flag tells perl to split each line on the indicated field
 separator. If no field separator is indicated, the line is split on a space character. Each
 field is stored in the global array @F.
 Remember that the first index in a Perl array is zero. The -n option encloses the Perl code indicated by the
 -e to be wrapped in a loop that reads one
 line at a time from stdin. This little Perl snippet is
 useful if you need to do some additional processing with the contents of each
 field.
—TOR, DG, and JJ

Making Text in Columns with pr

 The pr
 command (Section 45.6) is famous for printing a file neatly on a page — with
 margins at top and bottom, filename, date, and page numbers. It can also print
 text in columns: one file per column or many columns for each file.
The -t option takes away the heading and margins at the top
 and bottom of each page. That’s useful when “pasting” data into columns with no
 interruptions.
One File per Column: -m

The -m option reads
 all files on the command line simultaneously and prints each in its own
 column, like this:
% file1 file2 file3

The lines The lines The lines
of file1 of file2 of file3
are here are here are here

pr may use TAB characters between
 columns. If that would be bad, you can pipe pr’s output through expand. Many versions of pr
 have a -s

 X option that sets the column separator to the
 single character X.
By default, pr -m
 doesn’t put filenames in the heading. If you want that, use the
 -h
 option to make your own heading. Or maybe
 you’d like to make a more descriptive heading. Here’s an example using
 process substitution to compare a directory with its RCS (Section
 39.5) subdirectory:
% pr -m -h "working directory compared to RCS directory" <(ls) <(ls RCS)

2000-11-22 23:57 working directory compared to RCS directory Page 1

0001.sgm 0001.sgm,v
0002.sgm 0002.sgm,v
0007.sgm 0007.sgm,v
0008.sgm 0008.sgm,v
 ...
(The heading comes from the GNU version of pr. Later examples in this article use a different version
 with a different heading format.)

One File, Several Columns: -number

An option that’s a number will print a
 file in that number of columns. For instance, the -3 option
 prints a file in three columns. The file is read, line by line, until the
 first column is full (by default, that takes 56 lines). Next, the second
 column is filled. Then, the third column is filled. If there’s more of the
 file, the first column of page 2 is filled — and the cycle repeats:
% pr -3 file1

Nov 1 19:44 1992 file1 Page 1

Line 1 here Line 57 here Line 115 here
Line 2 here Line 58 here Line 116 here
Line 3 here Line 59 here Line 117 here

The columns aren’t balanced — if the file will fit into one column, the
 other columns aren’t used. You can change that by adjusting
 -l, the page length option; see the section
 below.

Order Lines Across Columns: -l

Do you want to arrange your data across
 the columns, so that the first three lines print across the top of each
 column, the next three lines are the second in each column, and so on, like
 this?
% pr -l1 -t -3 file1
Line 1 here Line 2 here Line 3 here
Line 4 here Line 5 here Line 6 here
Line 7 here Line 8 here Line 9 here

Use the -l1 (page length 1 line) and -t
 (no title) options. Each “page” will be filled by three lines (or however
 many columns you set). You have to use -t; otherwise,
 pr will silently ignore any page
 lengths that don’t leave room for the header and footer. That’s just what
 you want if you want data in columns with no headings.
If you want headings too, pipe the output of pr through another pr:
% pr -l1 -t -3 file1 | pr -h file1

Nov 1 19:48 1992 file1 Page 1

Line 1 here Line 2 here Line 3 here
Line 4 here Line 5 here Line 6 here
Line 7 here Line 8 here Line 9 here

The -h file1 puts the filename into the
 heading.
Also see paste (Section 21.18). Of course,
 programming languages like awk (Section 20.10) and perl (Section
 41.1) can also make text into columns.

— JP

Make Columns Automatically with column

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 column

 Another
 column-making program, besides cols and
 pr (Section 21.15), is the creatively named utility column. It tries to determine the terminal width,
 which you can override with the -c option (-c 132, for example, gives 132 columns: handy for
 printing on wide line-printer paper.) The -x option fills
 columns before rows — similar to pr with its
 -
 n option and cols
 -d.

 What makes
 column
 different from the others is its
 -t option. This reads input data that’s already in columns
 and rebalances the columns into a table with variable-width columns. Say what?
 This is easiest to see with an example, and the column(1) manual page has a good one.
If you’d like to add column headings to ls
 -l output, it can be a pain to try to make headings that
 each take the same number of characters as the data below them. For instance,
 the first field on each line, the permissions, takes 10 characters, but if you
 want to use the heading “PERM”, which takes only 4 characters, you need to
 balance it by adding 6 spaces after. Using column
 -t, you can balance these automatically. Here’s an example. The
 first command is plain ls -l. In the second
 and third examples, I use sed 1d (Section 34.1) to delete the total
 n line from ls,
 and subshells (Section 24.4) to make both commands use
 the same standard output; this is important only in the third command, where I
 pipe the combined stdout to column for balancing:
;
 Section 28.16, >
 Section 28.12
$ ls -lo
total 1644
-r--r--r-- 1 jpeek 1559177 Sep 19 1999 ORA_tifs.tgz
-rw-rw-r-- 1 jpeek 4106 Oct 21 1999 UPT_Russian.jpg
-rw-rw-r-- 1 jpeek 101944 Nov 19 09:30 london_dusk-livesights.xwd.gz
dr-xr-xr-x 2 jpeek 4096 Dec 12 1999 me
$ (echo "PERM LINKS OWNER SIZE MON DY TM/YR NAME"; \
> ls -lo | sed 1d)
PERM LINKS OWNER SIZE MON DY TM/YR NAME
-r--r--r-- 1 jpeek 1559177 Sep 19 1999 ORA_tifs.tgz
-rw-rw-r-- 1 jpeek 4106 Oct 21 1999 UPT_Russian.jpg
-rw-rw-r-- 1 jpeek 101944 Nov 19 09:30 london_dusk-livesights.xwd.gz
dr-xr-xr-x 2 jpeek 4096 Dec 12 1999 me

$ (echo PERM LINKS OWNER SIZE MONTH DAY HH:MM/YEAR NAME; \
> ls -lo | sed 1d) | column -t
PERM LINKS OWNER SIZE MONTH DAY HH:MM/YEAR NAME
-r--r--r-- 1 jpeek 1559177 Sep 19 1999 ORA_tifs.tgz
-rw-rw-r-- 1 jpeek 4106 Oct 21 1999 UPT_Russian.jpg
-rw-rw-r-- 1 jpeek 101944 Nov 19 09:30 london_dusk-livesights.xwd.gz
dr-xr-xr-x 2 jpeek 4096 Dec 12 1999 me
My feeble attempt in the second example took a lot of trial-and-error to get
 the right spacing, and I still had to cram DY
 over the tiny sixth column and TM/YR over the
 seventh. In the third example, column
 automatically adjusted the column width to compensate for the HH:MM/YEAR heading. Unfortunately, the long
 filename london_dusk-livesights.xwd.gz ran off the right
 edge (past column 80, my window width) — but there was nothing column could do in this case because the combined
 header+columns were just too wide.
— JP

Straightening Jagged Columns

 As
 we were writing this book, I decided to make a list of all the articles and the
 numbers of lines and characters in each, then combine that with the description,
 a status code, and the article’s title. After a few minutes with wc -l -c (Section
 16.6), cut (Section 21.14), sort (Section 22.1),
 and join (Section 21.19), I had a file that looked like this:
% cat messfile
2850 2095 51441 ~BB A sed tutorial
3120 868 21259 +BB mail - lots of basics
6480 732 31034 + How to find sources - JIK's periodic posting
 ...900 lines...
5630 14 453 +JP Running Commands on Directory Stacks
1600 12 420 !JP With find, Don't Forget -print
0495 9 399 + Make 'xargs -i' use more than one filename
Yuck. It was tough to read: the columns needed to be straightened. The
 column (Section 21.16) command could do it automatically, but I wanted more
 control over the alignment of each column. A little awk (Section 20.10)
 script turned the mess into this:
% cat cleanfile
2850 2095 51441 ~BB A sed tutorial
3120 868 21259 +BB mail - lots of basics
6480 732 31034 + How to find sources - JIK's periodic posting
 ...900 lines...
5630 14 453 +JP Running Commands on Directory Stacks
1600 12 420 !JP With find, Don't Forget -print
0495 9 399 + Make 'xargs -i' use more than one filename
Here’s the simple script I used and the command I typed to run it:
% cat neatcols
{
printf "%4s %4s %6s %-4s %s\n", \
 $1, $2, $3, $4, substr($0, index($0,$5))
}
% awk -f neatcols messfile > cleanfile
You can adapt that script for whatever kinds of columns you need to clean up.
 In case you don’t know awk, here’s a quick
 summary:
	The first line of the printf, between double
 quotes ("), specifies the field
 widths and alignments. For example, the first column should be
 right-aligned in 4 characters (%4s).
 The fourth column should be 4 characters wide left-adjusted (%-4s). The fifth column is big enough to
 just fit (%s). I used string
 (%s) instead of decimal (%d) so awk wouldn’t strip off the leading zeros in the
 columns.

	The second line arranges the input data fields onto the output line.
 Here, input and output are in the same order, but I could have reordered
 them. The first four columns get the first four fields ($1, $2, $3, $4). The fifth column is a
 catch-all; it gets everything else. substr($0,
 index($0,$5)) means “find the fifth
 input column; print it and everything after it.”

— JP

Pasting Things in Columns

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 cut+paste

 Do
 you ever wish you could paste two (or even three) files side by side? You can,
 if you have the paste program (or the
 public-domain implementation on the disc).
For example, to create a three-column file from files
 x, y, and
 z:
$ paste x y z > file
To make paste read standard input, use the
 - option, and repeat -
 for every column you want. For example, to make an old ls
 (which lists files in a single column) list files in four columns:
$ ls | paste - - - -
The “standard input” option is also handy when used with cut (Section 21.14).
 You can cut data from one position on a line and paste it back on
 another.
The separate data streams being merged are separated by default with a tab,
 but you can change this with the -d option. Unlike the
 -d option to cut, you
 need not specify a single character; instead, you can specify a list of
 characters, which will be used in a circular fashion.
The characters in the list can be any regular character or the following
 escape sequences:
	\n
	newline

	\t
	tab

	\\
	backslash

	\0
	empty string

Use quoting (Section 27.12), if necessary, to
 protect characters from the shell.
There’s also a -s option that lets you merge subsequent lines
 from one file. For example, to merge each pair of lines onto a single
 line:
$ paste -s -d"\t\n" list
Let’s finish with one nice place to use process substitution, if your shell
 has it. You can use cut to grab certain
 columns from certain files, then use process substitution to make “files” that
 paste will read. Output those “files” into columns in
 any order you want. For example, to paste column 1 from file1 in the first output column, and column 3
 from file2 in the second output
 column:
paste <(cut -f1 file1) <(cut -f3 file2)
If none of the shells on your system have process substitution, you can always
 use a bunch of temporary files, one file per column.
—TOR, DG, and JP

Joining Lines with join

 If you’ve worked with databases,
 you’ll probably know what to do with the Unix join command; see your online manual page. If you don’t have a
 database (as far as you know!), you still probably have a use for join: combining or “joining” two column-format
 files. join searches certain columns in the
 files; when it finds columns that match one another, it “glues the lines
 together” at that column. This is easiest to show with an example.
I needed to summarize the information in thousands of email messages under the
 MH mail system. MH made that easy: it has one command (scan) that gave me almost all the information I wanted about each
 message and also let me specify the format I needed. But I also had to use
 wc -l (Section 16.6) to count the number of lines in each message. I ended
 up with two files, one with scan output and
 the other with wc output. One field in both
 lines was the message number; I used sort
 (Section 22.1) to sort the files
 on that field. I used awk '{print $1 "," $2}'
 to massage wc output into comma-separated
 fields. Then I used join to “glue” the two
 lines together on the message-number field. (Next I fed the file to a PC running
 dBASE, but that’s another story.)
Here’s the file that I told scan to output.
 The columns (message number, email address, comment, name, and date sent) are
 separated with commas (,):
0001,andrewe@isc.uci.edu,,Andy Ernbaum,19901219
0002,bc3170x@cornell.bitnet,,Zoe Doan,19910104
0003,zcode!postman@uunet.uu.net,,Head Honcho,19910105
 ...
Here’s the file from wc and awk with the message number and number of
 lines:
0001,11
0002,5
0003,187
 ...
The following join command then joined the
 two files at their first columns (-t, tells
 join that the fields are
 comma-separated):
% join -t, scanfile wcfile
The output file looked like this:
0001,andrewe@isc.uci.edu,,Andy Ernbaum,19901219,11
0002,bc3170x@cornell.bitnet,,Zoe Doan,19910104,5
0003,zcode!postman@uunet.uu.net,,Head Honcho,19910105,187
 ...
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 join
join can do a lot more than this simple
 example shows. See your online manual page.
— JP

What Is (or Isn’t) Unique?

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 uniq

 uniq reads a file and compares adjacent lines
 (which means you’ll usually want to sort the file first to be sure identical
 lines appear next to each other). Here’s what uniq can do as it watches the input lines stream by:
	With the -u option, the output gets only the lines
 that occur just once (and weren’t repeated).

	The -d option does the opposite: the output gets a
 single copy of each line that was repeated (no
 matter how many times it was repeated).
(The GNU version also has a -D option. It’s like
 -d except that all duplicate
 lines are output.)

	The default output (with no options) is the union of
 -u and -d: only the first
 occurrence of a line is written to the output file; any adjacent copies
 of a line (second, third, etc.) are ignored.

	The output with -c is like the default, but each line
 is preceded by a count of how many times it occurred.

Warning
Be warned:
% uniq file1 file2
will not print the unique lines from both
 file1 and file2 to standard
 output. It will replace the contents of
 file2 with the unique lines from
 file1!

Three more options control how comparisons are done:
	-
 n ignores the first
 n fields of a line and all whitespace
 before each. A field is defined as a string of nonwhitespace characters
 (separated from its neighbors by whitespace).

	+
 n ignores the first
 n characters. Fields are skipped before
 characters.

	-w
 n in the GNU version compares no more than
 n characters in each line.

	GNU uniq also has
 -i to make comparisons case-insensitive. (Upper-
 and lowercase letters compare equal.)

uniq is often used as a filter. See also
 comm (Section 11.8), sort (Section 22.1), and especially sort -u (Section
 22.6).
So what can you do with all of this?
To send only one copy of each line from list (which is
 typically sorted) to output file list.new:
uniq list list.new
To show which names appear more than once:
sort names | uniq -d
To show which lines appear exactly three times, search the output of uniq -c for lines that start with
 spaces before the digit 3 and have a tab after. (This is
 the way GNU uniq -c makes
 its output lines, at least.) In the example below, the space is marked by
 ·; the TAB is marked by
 tab:
grep
 Section 13.1
sort names | uniq -c | grep "^·*3tab"
The lines don’t have to be sorted; they simply have to be adjacent. For
 example, if you have a log file where the last few fields are repeated, you can
 have uniq “watch” those fields and tell you
 how many times they were repeated. Here we’ll skip the first four fields and get
 a count of how many times the rest of each line was repeated:
$ cat log
Nov 21 17:20:19 powerd: down 2 volts
Nov 21 17:20:27 powerd: down 2 volts
Nov 21 17:21:15 powerd: down 2 volts
Nov 21 17:22:48 powerd: down 2 volts
Nov 21 18:18:02 powerd: up 3 volts
Nov 21 19:55:03 powerd: down 2 volts
Nov 21 19:58:41 powerd: down 2 volts
$ uniq -4 -c log
 4 Nov 21 17:20:19 powerd: down 2 volts
 1 Nov 21 18:18:02 powerd: up 3 volts
 2 Nov 21 19:55:03 powerd: down 2 volts
—JP and DG

Rotating Text

 Every now and then you come across
 something and say, “Gee, that might come in handy someday, but I have no idea
 for what.” This might happen to you when you’re browsing at a flea market or
 garage sale; if you’re like us, it might happen when you’re browsing through
 public domain software.
[image:] Go to http://examples.oreilly.com/upt3 for more information on: rot
Which brings us to the rot program.
 rot basically just rotates text columns
 and rows. For example, the first column below shows an input file. The other
 three columns show the same file fed through rot once, twice, and three times:
	
 $ cat file

 	
 $ rot file

 	
 $ rot file | rot

 	
 $ rot file | rot | rot

	
 abcde

 	
 54321

 	
 5

 	
 e

	
 1

 	
 a

 	
 4

 	
 d

	
 2

 	
 b

 	
 3

 	
 c

	
 3

 	
 c

 	
 2

 	
 b

	
 4

 	
 d

 	
 1

 	
 a

	
 5

 	
 e

 	
 edcba

 	
 12345

Now let’s compare combinations of rot and tail -r
 (Section 42.1):
	
 $ cat file

 	
 $ rot file

 	
 $ rot file | tail -r

 	
 $ tail -r file | rot

	
 abcde

 	
 54321

 	
 e

 	
 12345

	
 1

 	
 a

 	
 d

 	
 a

	
 2

 	
 b

 	
 c

 	
 b

	
 3

 	
 c

 	
 b

 	
 c

	
 4

 	
 d

 	
 a

 	
 d

	
 5

 	
 e

 	
 54321

 	
 e

rot rotates the text 90 degrees.
 tail -r turns the text “upside down” (last line in
 becomes the first line out, and so forth).
rot can also rotate the output of banner to print down a page instead of across. By
 now, we hope you have an idea of what rot can
 do!

—JP and LM

[1] [The combination of tbl, nroff, and col can make ASCII tables in a few quick steps. The
 tables aren’t sexy, but they can be quite complex. They can be emailed
 or printed anywhere and, because they’re plain text, don’t require
 sophisticated viewing software or equipment. tbl is a powerful way to describe tables without worrying
 about balancing columns or wrapping text in them. And if you want
 nicer-looking output, you can feed the same tbl file to groff. —
 JP]

[2] To figure out how many numbers to count up to, divide the total size of the file by the block size you want and add one if there's a remainder. The jot program can help here.

[3] The output file size I want is denoted by the bs or "block size" parameter to dd. The 2>/dev/null (Section 36.16, Section 43.12) gets rid of dd's diagnostic output, which isn't useful here and takes up space.

[4] In this case, the repeat can actually occur only 98 times, since we’ve
 already specified two arguments and the maximum number is 100.

[5] Not really. The first file contains only nine lines (1-9); the rest
 contain 10. In this case, you’re better off saying split -10 top_ten_list.

[6] If so, why bother gzipping? Why
 not forget about both gzip and
 uuencode? Well, you can’t.
 Remember that tar files are
 binary files to start with, even if every file in the archive is an
 ASCII text file. You’d need to uuencode a file before mailing it,
 anyway, so you’d still pay the 33 percent size penalty that uuencode incurs. Using gzip minimizes the damage.

[7] With GNU tar, you can use
 tar czf - emacs | uuencode
 That’s not the point of this example, though.
 We’re just showing how to uuencode some arbitrary data.

Chapter 22. Sorting

Putting Things in Order

Summary Box
Sorting a file under Unix is easy, right? Of course it is, if all you want
 to do is sort a list of single words, or sort lines starting with the first
 character in the line. But if you want to do more than that, there’s a lot
 more to the sort command than typing
 sort
 filename:
	Section 22.2 describes
 how to select individual fields from a line for sort to operate on.

	Section 22.3 describes
 how to change the field delimiter from whitespace to some other
 character.

	Section 22.4 describes
 the kinds of problems that you can encounter if fields
 are delimited by whitespace.

	Section 22.5 clarifies
 the distinctions between alphabetic and numeric sorting.

	Section 22.6 gives
 miscellaneous hints about useful sort options.

But learning the mechanics of sort
 isn’t the end of the story. Like most of the other things you’ll find in the
 Unix toolbox, sort is even more powerful
 when it’s used with other programs. For example, you can:
	Sort paragraphs or other multiline entries.

	Sort lines by how long they are (Section 22.7).

	Sort a list of names by last name, whether or not there’s a middle
 name as well (Section
 22.8).

— TOR

Sort Fields: How sort Sorts

 Unless you tell it otherwise, sort divides each line into fields at whitespace
 (blanks or tabs), and sorts the lines by field, from left to right.
That is, it sorts on the basis of field 0 (leftmost), but when the leftmost
 fields are the same, it sorts on the basis of field 1, and so on. This is hard
 to put into words, but it’s really just common sense. Suppose your office
 inventory manager created a file like this:
supplies pencils 148
furniture chairs 40
kitchen knives 22
kitchen forks 20
supplies pens 236
furniture couches 10
furniture tables 7
supplies paper 29
You’d want all the supplies sorted into categories, and within each category,
 you’d want them sorted alphabetically:
% sort supplies
furniture chairs 40
furniture couches 10
furniture tables 7
kitchen forks 20
kitchen knives 22
supplies paper 29
supplies pencils 148
supplies pens 236
Of course, you don’t always want to sort from left to right. The command-line
 option +n tells sort to
 start sorting on field n; -n tells
 sort to stop sorting on field
 n. Remember (again) that sort counts fields from left to right, starting with 0.[1] Here’s an example. We want to sort a list of telephone numbers of
 authors, presidents, and blues singers:
Robert M Johnson 344-0909
Lyndon B Johnson 933-1423
Samuel H Johnson 754-2542
Michael K Loukides 112-2535
Jerry O Peek 267-2345
Timothy F O'Reilly 443-2434
According to standard “telephone book rules,” we want these names sorted by
 last name, first name, and middle initial. We don’t want the phone number to
 play a part in the sorting. So we want to start sorting on field 2, stop sorting
 on field 3, continue sorting on field 0, sort on field 1, and (just to make
 sure) stop sorting on field 2 (the last name). We can code this as
 follows:
% sort +2 -3 +0 -2 phonelist
Lyndon B Johnson 933-1423
Robert M Johnson 344-0909
Samuel H Johnson 754-2542
Michael K Loukides 112-2535
Timothy F O'Reilly 443-2434
Jerry O Peek 267-2345
A few notes:
	We need the -3 option to prevent sort from sorting on the telephone number
 after sorting on the last name. Without -3, the “Robert
 Johnson” entry would appear before “Lyndon Johnson” because it has a
 lower phone number.

	We don’t need to state +1 explicitly. Unless you give
 an explicit “stop” field, +1 is implied after
 +0.

	If two names are completely identical, we probably don’t care what
 happens next. However, just to be sure that something unexpected doesn’t
 take place, we end the option list with -2, which says,
 “After sorting on the middle initial, don’t do any further
 sorting.”

There are a couple of variations that are worth mentioning. You may never need
 them unless you’re really serious about sorting data files, but it’s good to
 keep them in the back of your mind. First, you can add any “collation”
 operations (discard blanks, numeric sort, etc.) to the end of a field specifier
 to describe how you want that field sorted. Using our previous example, let’s
 say that if two names are identical, you want them sorted
 in numeric phone number order. The following command does the trick:
% sort +2 -3 +0 -2 +3n phonelist
The +3n option says “do a numeric sort on the fourth field.”
 If you’re worried about initial blanks (perhaps some of the phone numbers have
 area codes), use +3nb.
Second, you can specify individual columns within any field for sorting, using
 the notation +n.c, where n is a field
 number, and c is a character position within the field.
 Likewise, the notation -n.c says “stop sorting at the character
 before character c.” If you’re counting characters, be sure
 to use the -b (ignore whitespace) option — otherwise, it will
 be very difficult to figure out what character you’re counting.
— ML

Changing the sort Field Delimiter

 Section 22.2 explained how sort separates a line of input into two or more
 fields using whitespace (spaces or tabs) as field delimiters. The
 -t option lets you change the field delimiter to some other
 character.
For example, if you wanted to sort the login names on your system by the login
 shell they use, you could issue a command like this:
/etc..wd
 Section 1.7
% sort -t: +6 /etc/passwd
root:SndEKOs9H7YLm:0:1:Operator:/:/bin/bash
sys:*:2:2::/:/bin/bash
jim:LjKwcUt8l6kZK:2391:1004:Jim O'Callahan:/u/jim:/bin/bash
 ...
bart:2DPD8rCOKBbUu:2665:1004:Bart Buus:/u/bart:/bin/tcsh
tap:xY7oeuJ8WxyGO:2943:1004:Tap Bronman:/u/tap:/bin/tcsh
The option -t: tells sort
 to use a colon as a field separator — so, in this example, field 0 is the login
 name, field 1 is the encoded password, field 2 is the user ID number, field 3 is
 the group ID number, and so on. By this numbering, the login shell is in the
 sixth field.
Remember that sort numbers fields starting
 with zero — this will save you lots of grief. Two consecutive colons indicate a
 “null” field that still must be counted.
—ML and TOR

Confusion with Whitespace Field Delimiters

One would hope that a simple task like sorting would be relatively
 unambiguous. Unfortunately, it isn’t. The behavior of sort can be very puzzling. I’ll try to straighten out some of the
 confusion — at the same time, I’ll be leaving myself open to abuse by the real
 sort experts. I hope you appreciate this!
 Seriously, though: if you know of any other wrinkles to the story, please let us
 know and we’ll add them in the next edition.
The trouble with sort is figuring out where
 one field ends and another begins. It’s simplest if you can specify an explicit field delimiter (Section 22.3). This makes it easy to
 tell where fields end and begin. But by default, sort uses whitespace characters (tabs and spaces) to separate
 fields, and the rules for interpreting whitespace field delimiters are
 unfortunately complicated. As I see them, they are:
	The first whitespace character you encounter is a “field delimiter”;
 it marks the end of the old field and the beginning of the next
 field.

	Any whitespace character following a field delimiter is part
 of the new field. That is, if you have two or more
 whitespace characters in a row, the first one is used as a field
 delimiter and isn’t sorted. The remainder are
 sorted, as part of the next field.

	Every field has at least one nonwhitespace character, unless you’re at
 the end of the line. (That is, null fields only occur when you’ve
 reached the end of a line.)

	All whitespace is not equal. Sorting is done according to the ASCII
 collating sequence. Therefore, TABs are sorted before spaces.

Here is a silly but instructive example that demonstrates most of the hard
 cases. We’ll sort the file sortme, which is:
 apple Fruit shipment
20 beta beta test sites
 5 Something or other
All is not as it seems -- cat -t -v (Section 12.5, Section 12.4) shows that the file really
 looks like this:
^Iapple^IFruit shipment
20^Ibeta^Ibeta test sites
 5^I^ISomething or other
^I indicates a tab character. Before
 showing you what sort does with this file,
 let’s break it into fields, being very careful to apply the rules above. In the
 table, we use quotes to show exactly where each field begins and ends:
	 	
 Field 0

 	
 Field 1

 	
 Field 2

 	
 Field 3

	
 Line 1

 	
 “^Iapple”

 	
 “Fruit”

 	
 “shipment”

 	
 null (no more data)

	
 Line 2

 	
 “20”

 	
 “beta”

 	
 “beta”

 	
 “test”

	
 Line 3

 	
 " 5”

 	
 “^Isomething”

 	
 “or”

 	
 “other”

OK, now let’s try some sort commands; I’ve
 added annotations on the right, showing what character the “sort” was based on.
 First, we’ll sort on field zero — that is, the first field in each line:
% sort sortme
 ...sort on field zero
 apple Fruit shipments field 0, first character: TAB
 5 Something or other field 0, first character: SPACE
20 beta beta test sites field 0, first character: 2
As I noted earlier, a TAB precedes a space in the collating sequence.
 Everything is as expected. Now let’s try another, this time sorting on field 1
 (the second field):
+% sort +1 sortme
 ...sort on field 1
 5 Something or other field 1, first character: TAB
 apple Fruit shipments field 1, first character: F
20 beta beta test sites field 1, first character: b
Again, the initial TAB causes “something or other” to appear first. “Fruit
 shipments” preceded “beta” because in the ASCII table, uppercase letters precede
 lowercase letters. Now, let’s sort on the next field:
+% sort +2 sortme
 ...sort on field 2
20 beta beta test sites field 2, first character: b
 5 Something or other field 2, first character: o
 apple Fruit shipments field 2, first character: s
No surprises here. And finally, sort on field 3 (the “fourth” field):
+% sort +3 sortme
 ...sort on field 3
 apple Fruit shipments field 3, NULL
 5 Something or other field 3, first character: o
20 beta beta test sites field 3, first character: t
The only surprise here is that the NULL field gets sorted first. That’s really
 no surprise, though: NULL has the ASCII value zero, so we should expect it to
 come first.
OK, this was a silly example. But it was a difficult one; a casual
 understanding of what sort “ought to do” won’t explain any of these cases, which
 leads to another point. If someone tells you to sort some terrible mess of a
 data file, you could be heading for a nightmare. But often, you’re not just
 sorting; you’re also designing the data file you want to
 sort. If you get to design the format for the input data, a little bit of care
 will save you lots of headaches. If you have a choice,
 never allow TABs in the file. And be careful of leading
 spaces; a word with an extra space before it will be sorted
 before other words. Therefore, use an explicit
 delimiter between fields (like a colon), or use the -b option
 (and an explicit sort field), which tells sort to ignore initial whitespace.
— ML

Alphabetic and Numeric Sorting

 sort performs two fundamentally different
 kinds of sorting operations: alphabetic sorts and numeric sorts. An alphabetic
 sort is performed according to the traditional “dictionary order,” using the
 ASCII collating sequence. Uppercase letters come before lowercase letters
 (unless you specify the -f option, which “folds” uppercase and
 lowercase together), with numerals and punctuation interspersed. The
 -l (lowercase L) option sorts by the
 current locale instead of the default US/ASCII order.
This is all fairly trivial and common sense. However, it’s worth belaboring
 the difference, because it’s a frequent source of bugs in shell scripts. Say you
 sort the numbers 1 through 12. A numeric sort gives you these numbers “in
 order,” just like you’d expect. An alphabetic sort gives you:
1
11
12
2
...
Of course, this is how you’d sort the numbers if you applied dictionary rules
 to the list. Numeric sorts can handle
 decimal numbers (for example, numbers like
 123.44565778); they can’t handle floating-point numbers (for example,
 1.2344565778E+02). The GNU sort

 does provide the -g flag for sorting numbers in scientific notation.
 Unfortunately, it is significantly slower than plain old decimal sorting.
What happens if you include alphabetic characters in a numeric sort? Although
 the results are predictable, I would prefer to say that they’re “undefined.”
 Including alphabetic characters in a numeric sort is a mistake, and there’s no
 guarantee that different versions of sort
 will handle them the same way. As far as I know, there is no provision for
 sorting hexadecimal numbers.
One final note: your version of numeric sort may treat initial blanks as
 significant, sorting numbers with additional spaces before them ahead of numbers
 without the additional spaces. This is an incredibly stupid misfeature. There is
 a workaround: use the -b
 (ignore leading blanks) and always specify a
 sort field.[2] That is, sort -nb +0 will do what
 you expect; sort -n won’t.
— ML

Miscellaneous sort Hints

Here is a grab bag of useful, if not exactly interesting, sort features. The utility will actually do quite
 a bit, if you let it.
Dealing with Repeated Lines

 sort -u

 sorts the file and eliminates duplicate lines. It’s more powerful than
 uniq (Section 21.20) because:
	It sorts the file for you; uniq
 assumes that the file is already sorted and won’t do you any good if
 it isn’t.

	It is much more flexible. sort -u considers
 lines “unique” if the sort fields
 (Section 22.2) you’ve
 selected don’t match. So the lines don’t even have to be (strictly
 speaking) unique; differences outside of the sort fields are
 ignored.

In return, there are a few things that uniq does that sort won’t
 do — such as print only those lines that aren’t repeated, or count the
 number of times each line is repeated. But on the whole, I find
 sort -u more useful.
Here’s one idea for using sort -u. When I was writing
 a manual, I often needed to make tables of error messages. The easiest way
 to do this was to grep the source code
 for printf statements, write some Emacs (Section
 19.1) macros to eliminate junk that I didn’t care about, use
 sort -u to put the messages in order and get rid of
 duplicates, and write some more Emacs macros to format the error messages
 into a table. All I had to do then was write the descriptions.

Ignoring Blanks

 One important option (that I’ve
 mentioned a number of times) is -b; this tells sort to ignore extra whitespace at the
 beginning of each field. This is absolutely essential; otherwise, your sorts
 will have rather strange results. In my opinion, -b should
 be the default. But they didn’t ask me.
Another thing to remember about -b: it works only if you
 explicitly specify which fields you want to sort. By itself, sort
 -b is the same as sort:
 whitespace characters are counted. I call this a bug, don’t you?

Case-Insensitive Sorts

 If you don’t care about the difference
 between uppercase and lowercase letters, invoke sort with the -f (case-fold) option. This
 folds lowercase letters into uppercase. In other words, it treats all
 letters as uppercase.

Dictionary Order

 The -d option tells
 sort to ignore all characters except
 for letters, digits, and whitespace. In particular, sort
 -d ignores punctuation.

Month Order

 The -M option tells
 sort to treat the first three
 nonblank characters of a field as a three-letter month abbreviation and to
 sort accordingly. That is, JAN comes before FEB, which comes before MAR.
 This option isn’t available on all versions of Unix.

Reverse Sort

 The -r option tells
 sort to “reverse” the order of the
 sort; i.e., Z comes before A, 9 comes before 1, and so on. You’ll find that
 this option is really useful. For example, imagine you have a program
 running in the background that records the number of free blocks in the
 filesystem at midnight each night. Your log file might look like
 this:
Jan 1 2001: 108 free blocks
Jan 2 2001: 308 free blocks
Jan 3 2001: 1232 free blocks
Jan 4 2001: 76 free blocks
...
The script below finds the smallest and largest number of free blocks in
 your log file:
head
 Section 12.12
#!/bin/sh
echo "Minimum free blocks"
sort -t: +1nb logfile | head -1

echo "Maximum free blocks"
sort -t: +1nbr logfile | head -1
It’s not profound, but it’s an example of what you can do.
— ML

lensort: Sort Lines by Length

 A nice little script to sort lines from
 shortest to longest can be handy when you’re writing and want to find your big
 words:
deroff
 Section 16.9, uniq
 Section 21.20
% deroff -w report | uniq -d | lensort
a
an
 ...
deoxyribonucleic
Once I used it to sort a list of pathnames:
find
 Section 9.1
% find adir -type f -print | lensort
adir/.x
adir/.temp
 ...
adir/subdir/part1/somefile
adir/subdir/part1/a_test_case
The script uses awk (
 Section 20.10) to print each line’s
 length, followed by the original line. Next, sort sorts the lengths numerically (Section
 22.5). Then sed (Section 34.1) strips off the lengths and
 the spaces and prints the lines:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 lensort
#! /bin/sh
awk 'BEGIN { FS=RS }
{ print length, $0 }' $* |
Sort the lines numerically
sort +0n -1 |
Remove the length and the space and print each line
sed 's/^[0-9][0-9]* //'
(Some awks require a semicolon after the
 first curly bracket — that is, { FS=RS
 };.)
Of course, you can also tackle this problem
 with Perl:
$ perl -lne '$l{$_}=length;END{for(sort{$l{$a}<=>$l{$b}}keys %l){print}}' \
 filename
This one-line wonder has the side effect of eliminating

 duplicate lines. If this seems a bit terse, that’s
 because it’s meant to be “write-only,” that is, it is a bit of shell magic that
 you’d use to accomplish a short-term task. If you foresee needing this same
 procedure in the future, it’s better to capture the magic in script. Scripts
 also tend to be easier to understand, debug, and expand. The following script
 does the same thing as the one-liner but a bit more clearly:
#!/usr/bin/perl

my %lines;
while(my $curr_line = <STDIN>){
 chomp $curr_line;
 $lines{$curr_line} = length $curr_line;
}

for my $line (sort{ $lines{$a} <=> $lines{$b} } keys %lines){
 print $line, "\n";
}
This script reads in a line from standard input, removes the newline character
 and creates an associative array that maps whole line to its length in
 characters. After processing the whole file, the keys of the associative array
 is sorted in ascending numerical order by each key’s value. It is then a simple
 matter to print the key, which is the line itself. More Perl tricks can be found
 in Chapter 11.
—JP and JJ

Sorting a List of People by Last Name

 It’s
 hard to sort any old list of peoples’ names because some people have one-word
 first and last names like Joe Smith, but other people have multi-part names like
 Mary Jo Appleton. This program sorts on the last word in each name. That won’t
 take care of the way that names are used everywhere in the world, but it might
 give you some ideas.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 namesort
The script reads from files or its standard input; it writes to standard
 output.
#! /bin/sh
Print last field (last name), a TAB, then whole name:
awk '{print $NF "\t" $0}' $* |
sort (by last name: the temporary first field)
sort |
strip off first field and print the names:
cut -f2-
If you want more control over the sorting or you’re interested in pulling
 apart names in general, there’s a Perl module you might want to look at called
 Lingua::EN::NameParse
 .
 Below is a Perl script that also sorts a list
 of names by surname.
#!/usr/bin/perl

use Lingua::EN::NameParse;

my $Name_Obj = Lingua::EN::NameParse->new(auto_clean => 1);
my @names = <STDIN>;
for my $line (sort by_lastname @names){
 chomp($line);
 print $line, "\n";
}

sub by_lastname {
 my @names;
 for my $name ($a, $b) {
 chomp($name);
 if(my $err = $Name_Obj->parse($name)){
 warn "WARN: Unparsable name ($name): $err";
 }
 my %tmp = $Name_Obj->components;
 push @names, \%tmp;
 }
 return lc $names[0]->{surname_1} cmp lc $names[1]->{surname_1};
}
The script starts by bringing in the Lingua::EN::NameParse library. Then, all lines from standard
 input are read in and stored in an array. Perl’s sort function is particularly flexible in that it can use a
 user-defined subroutine to determine the desired collating sequence. Here, the
 subroutine by_lastname receives the next two
 items of the list to be sorted in the “magical” global variables $a and $b.
 These names are then parsed by the global Lingua::EN::NameParse object, and the name components are stored
 in the array @names. It’s then a simple
 matter to alphabetically compare the lowercased surnames and return that value
 to sort. Although this script may be a little
 bit more Perl than you wanted to know, the problem of sorting by last names is
 complex. Fortunately, the Lingua::EN::NameParse module available on CPAN was available to
 do the heavy lifting for us. In fact, one of most the compelling reasons to
 learn Perl is the large collection of free library modules stored on the

 Comprehensive
 Perl Archive Network (CPAN), which is mirrored throughout the world. For more
 about CPAN, see Section 41.11.
—JP and JJ

[1] I harp on this because I always get confused and have to look it up in
 the manual page.

[2] Stupid misfeature number 2: -b doesn’t work unless
 you specify a sort field explicitly, with a +n
 option.

Part V. Processes and the Kernel

Part V contains the following chapters:
Chapter 23
Chapter 24
Chapter 25
Chapter 26

Chapter 23. Job Control

Job Control in a Nutshell

As has been said many times
 in this book, Unix is a multiprocessing
 system. Unlike some historic systems such as MS-DOS, all flavors of Unix run
 more than one process at a time. In fact, when Unix boots, the first program
 executed is called init

 , which is the parent of all future
 processes. init immediately creates a new
 process in which other programs can run, such as getty and the various rc setup
 scripts. At some point when a user logs into the system, the getty program creates a new shell for that
 session. Even when the system is in single-user mode, Unix is still capable of
 running multiple processes. Multiprocessing is pervasive in Unix.
But multiprocessing isn’t just for
 system daemons. It’s also there to make your interactive shell session just a
 little bit more productive. Often, you will need to execute a program that takes
 a long time to run. For instance, you might be downloading a file with FTP or
 Lynx. It is possible to have that task put into the
 background so that you may execute new
 commands while the previous ones are running to completion. Just as you may have
 several piles of work on your desk, you often need to set aside one stack to
 work on another. A process is said to be in the foreground when it is receiving
 your keyboard input and is writing to your screen. Using the desk analogy, the
 foreground process is that pile of work currently in front of you. Only one
 process can be in the foreground at a time. Putting a process in the background
 is like putting the current stack of work in front of you on the floor. And if
 your desk is anything like mine, you can soon find your desk surrounded by piles
 of work. Unlike the real world, Unix is able to continue working on completing
 processes in the background. The management and manipulation of foreground and
 background processes is called job control. By
 understanding job control, you can begin to take better advantage of your Unix
 system.
One cautionary note on job control: there’s no such thing as a free lunch. In
 other words, while Unix blithely lets you put all the processes you want into
 the background, they all share the same CPU, RAM, and hard drive resources. If
 one process dominates one of these resources, the other processes won’t get done
 any faster than they would have had you run them one after the other to
 completion. So if you’ve got a process that’s CPU-intensive (such as a
 photomosiac program), there’s little point in trying to run more processes on
 that machine.
From the days of mainframes, when programs were submitted on stacks of cards,
 comes the term “job control.” This chapter is going to go into some depth about
 using your shell’s job control features. For those already familar with the
 concept, here is the thirty-second version of “Job Control in a
 Nutshell.”
Summary Box
Unless otherwise noted, these commands apply only to the

 C shell, Korn shell, and bash:
	
 command & (Section 23.3)
	Run command in the background. You
 can continue to execute jobs in the foreground. This is the most
 common way to put processes in the background.

	
 CTRL-c (Section 24.11)
	Kill the current foreground job by sending the INTR signal (Section 24.10).

	

 CTRL-z (Section 23.3, Section 23.6)
	Suspend the current foreground job by sending the TSTP signal (Section 24.10).

	

 suspend
	Suspend a shell with the suspend command.

	

 stop
	Suspend a background job with the stop command or an alias
 that does the same thing (Section 23.7).

	

 bg %num (Section 23.3)
	Let a stopped job (by job number
 num) continue in the
 background.

	

 fg %num (Section 23.3)
	Put a background job or a stopped job (by job number
 num) into the foreground.

	

 kill %num (Section 23.3)
	Kill an arbitrary background job (by job number
 num).

	

 kill pid (Section 24.12)
	Kill an arbitrary job (by process ID number
 num).

	

 jobs (Section 23.3)
	List background and stopped jobs and their job numbers.

	

 set notify (Section 23.8)
	Immediate job-state change notices.

	

 stty tostop (Section 23.9)
	Automatically stop background processes if they try writing to
 the screen.

Some systems, like Linux, extend the kill
 to kill processes by name. See Section
 24.15, which introduces killall.
—ML and JJ

Job Control Basics

If you’re
 coming from a Windows or MacOS desktop, Unix job control may seem a little
 strange at first, but both of those operating systems support a form of job
 control too. The Windows’ taskbar shows the foreground application as a
 depressed icon. In the classic Mac interface, the current application’s icon is
 present in the upper righthand corner. Such displays aren’t possible on the
 command line (although there are similar metaphors available in modern X11
 desktop environments like Gnome and KDE). This article tries to give you some
 background on, er, background processes.
How Job Control Works

To get a better feel for how to use job
 control, a brief look at how Unix handles processes can be helpful.
 As was mentioned in the opening section, Unix
 systems normally are running many processes at once. A process
 is defined as a program that is executing in memory, as opposed to an
 executable file (i.e., the program) that is sitting on the filesystem. When
 you log into a Unix system, you are running some shell program (e.g.,
 tcsh or bash). When you ask the shell to run another program, such as
 vi, a new process starts and takes
 over the terminal from the shell. That new process is in the foreground by
 default. When you type commands, it is vi
 that responds, not the shell. When you exit vi, that process ends and parent process, the shell, returns.
 When you run vi, the shell itself goes
 into the background. You’ve been using background processes all
 along.
You may have noticed that I slipped in a new concept about processes in
 the last paragraph. Process are related to each other in hierarchical way by
 the kernel. When you execute a command from the shell, that new command is a
 child process of the shell. When a process terminates, the parent process is
 notified and is given an opportunity to take some action. What happens when
 you log out? All your shell’s child processes are terminated along with the
 shell process itself, and your system’s getty

 daemon waits for a new user to log in.
 What happens when getty dies? The
 ultimate ancestor for all system processes on a Unix system is init. When init dies, the system is halted.

Using Job Control from Your Shell

 Remember that
 the shell sits there listening to what you type and calling other programs
 to do jobs that it doesn’t have built-in commands to do.
Normally, when the shell calls another program, it waits for the other program to finish. The ampersand
 (&) at the end of a command line
 tells the shell not to wait.

 Basically all shells allow background
 processing. On systems that have job
 control (Section
 23.3), however, most shells will give you a lot of extra
 capabilities for manipulating background processes.
Here’s the tip of the iceberg:
	If you forget to put a job into the background, you can stop it on
 the fly with a suspend signal
 (Section 24.1) by
 typing

 CTRL-z. Then use the bg command to put it into the
 background and restart it:
% find /usr -name tim -print > mine
CTRL-z
Stopped
% bg
[1] find /usr -name tim -print > mine &

	You can bring the current background
 job (

 Section 23.5) into the
 foreground with the fg command.
 This is handy when Unix stops the background job that needs input
 from your keyboard (you can’t type to jobs running in the
 background).

	If you have a lot of background processes running,
 you can use the jobs
 command to list them all, then
 bring a selected job into the foreground by job number. You can also
 kill jobs by job number rather
 than by process ID. [Recall that job numbers are per-session numbers
 that the shell generates, whereas process IDs are generated by the
 operating system and are visible to all other processes. —
 JJ]

—TOR and JJ

Using jobs Effectively

So far, you’ve seen how to get processes into and
 out of the background. That’s a pretty good start, but what happens when you put
 more than one process in the background? How do you remember what’s in the
 background at all? Fortunately the jobs
 command, built into Bourne and C shell
 derivatives, lists all your current session’s background jobs. Let’s see this in
 action. In the example below, I started several web browsers:
[jjohn@marian jjohn]$ jobs
[1] Running netscape &
[2]- Stopped lynx
[3]+ Stopped lynx http://aliensaliensaliens.com
Every background process is assigned a job number by your shell. This number is
 unique only for your current session. It isn’t globally unique like a process
 ID. In fact, one job number is assigned to processes that are pipelined
 together. For example, the following line gets only one job number.
$ uniq bigfile.dat | sort | wc -l &
In the jobs example above, the first
 process was started with an ampersand, so it was immediately backgrounded. Job 2
 started as a typical interactive session, but I stopped it with CTRL-z. A

 stopped process is not the same as a
 terminated process — it simply doesn’t receive any CPU time. It’s like a caveman
 frozen in ice, waiting to be thawed out and come back to life. If you find that
 a job is becoming a resource hog, consider using CTRL-z to suspend the process
 until you figure out why it’s being so gluttonous. The next job listed is a new
 instance of lynx, which is also put into the
 background so that the jobs command could be
 run for this listing. The plus sign next to the job number indicates that that
 job will be in the foreground when fg is
 typed. That job is known as the current job

 .
 The minus sign indicates the previous job

 ,
 the job that used to be the current job.
Job numbers can be supplied to fg
 . In the given example, the first version of
 lynx can be revived using fg %2. You can also kill jobs with the job number.
 Why have two versions of lynx running? The
 first one can be terminated with kill %2. You
 can also supply signal numbers, as you normally would to kill. By default kill sends the
 TERM (15 on Linux) signal, which will
 stop most processes.
When a backgrounded job is terminated or completes, you will be notified
 before the next command prompt is printed. For example:
[jjohn@marian jjohn]$ kill -9 %3
[jjohn@marian jjohn]$
[3]+ Killed xcalc
[jjohn@marian jjohn]$
Just as
 before, the job number is printed with a plus sign, indicating that it was the
 current job. Because this process exited abnormally (it was sent a KILL signal),
 the reason is printed next, along with the line that was executed. For a process
 that runs to completion, the output looks slightly different:
[jjohn@marian jjohn]$ ls | uniq | sort | wc -l &
 99
[2] 10501
[2]+ Done ls --color=tty | uniq | sort | wc -l
[jjohn@marian jjohn]$
Here, the command was put in the background immediately. The shell then
 reported the job number and process ID. Because the command completed very
 quickly, the shell reports that job 2 exited normally even before the next
 command prompt could be printed.
As useful as job numbers are, sometimes you don’t want to bother running
 jobs, searching for the desired command,
 finding its job number, and then running fg
 %num. Luckily, the job control mechanism uses a simple pattern-matching scheme so that you can supply
 only part of the command or job you wish to foreground or kill. Instead of
 prefixing the job number with simply %, use
 %?
 . The string you supply must be enough to
 disambiguate it from all other jobs. Take this job listing, for example:
[1] Running netscape &
[2] Running xcalc &
[3]- Stopped lynx
[4]+ Stopped lynx http://aliensaliensaliens.com
I can put the xcalc program in the
 foreground with fg %?xc, because xc doesn’t appear in the other jobs. But I can’t
 refer to either of the lynx processes with
 any substring of “lynx.” If I do, I get something like the following.
[jjohn@marian jjohn]$ fg %?ly
bash: fg: ambigious job spec: ly
Instead, I could refer to the second version with fg
 %?aliens. In order to get at the first lynx job, its job number must be used explicitly.
You may find that your shell attempts to interpret %? as a filename wildcard. This is increasingly rare, but you may
 need to escape the ?, so that you can
 foreground a process. That can be done like this: fg
 %\?
 string.
One final shortcut to job control: you can
 put jobs in the foreground simply by referring to the job number. For instance,
 typing %2 alone at the command prompt will
 put job number 2 in the foreground. You can even put jobs into the background
 with this notation: %2 &. This seems a
 little terse, even for Unix, but it will save you some typing.
— JJ

Some Gotchas with Job Control

	If you’re using Bourne-type shells, you
 have to watch out for putting a series of commands separated by
 semicolons (Section 28.16) into the
 background. These shells put only the last command on the line into the
 background, but wait for the first.
An easy way to test this is with the following command line, which
 waits for 15 seconds, then does an ls:
$ sleep 15; ls &
In Bourne-like shells, you won’t get your prompt back until the
 sleep (Section 25.9) command has
 finished.
With Bourne-type shells, the proper way to put a series of commands
 into the background is to group them with parentheses:
()
 Section 43.7
$ (sleep 15; ls)&
This may strike you as a defect, but in fact, it’s a sign of the
 greater precision of Bourne shell syntax, which makes it somewhat
 exasperating for interactive use but much better for programming.

	It doesn’t make any sense to run an interactive program such as an
 editor in the background. For example, if you type this from the C
 shell:
% vi &
[1] 3071
you’ll get a message like the following:
[1] + Stopped (tty output) vi
vi can be active only in the
 foreground. However, it does make sense to have vi
 stopped (Section 23.1) in the
 background.
If you are running vi or any other interactive program, you
 can quickly get back to the shell by typing CTRL-z to stop the program.
 The shell will take control of your terminal and print another shell
 prompt.
Stopping vi (Section 23.6) is more efficient
 than using its shell escape mechanism
 (Section 17.21), since it
 lets you go back to your original shell rather than starting a new one.
 Simply type fg to get back to where
 you were in editing.

	
 We have had the misfortune to
 share a system with new users who were overenthusiastic in their use of
 background processes, rather like the man who loved loving so much he
 sought many lovers. Because each background process is competing for the
 same resources, running many of them can be a drain on the system, and
 everything takes longer for everyone. We knew people who thought that if
 they ran three troff processes at
 once, they’d get their three files formatted faster than if they did
 them one after another. Boy, were they mistaken.[1]

	If you use the Bourne shell, any background processes you have running
 will normally be terminated when you log out. To avoid this, use the
 nohup (Section 23.10)
 command.

	Not all processes are created equal. Unix maintains a

 queue of processes
 ordered by priority. Foreground processes, such as a user typing a
 command at a prompt, often receive higher priority than background
 processes. However, you may want to run background processes at an even
 lower priority, by using nice
 (

 Section 26.5). This is a
 relatively painless way of being kind to other users — and making your
 foreground job run faster — though it will make your background tasks
 take a little longer.

—TOR and DD

The “Current Job” Isn’t Always What You Expect

%

 is the
 current stopped or background job, but not always the last one. If you’ve
 stopped any jobs, the current job is the most recently stopped job. Otherwise,
 it’s the most recent background job. For example, try stopping your editor (like
 vi), then putting another job in the
 background:
% vi afile
CTRL-z
Stopped
% sleep 1000 &
[2] 12345
% fg
and notice that the fg brings your editor
 to the foreground.
— JP

Job Control and autowrite: Real Timesavers!

 I see too many people using a series of
 commands like the ones that follow. Programmers do this when they write and
 compile programs. Writers use this when they’re making a draft file and running
 it through the formatter. They’re probably wasting a lot of time and
 effort:
% vi somefile
 ...Edit somefile, then quit vi...
% someprog somefile
 ...Process somefile...
% vi somefile
 ...Edit somefile again...
% someprog somefile
 ...Process somefile again...
Each
 time they restart vi, they have to reset
 options and move the cursor to the place they were working before. After they
 restart, vi has forgotten the previous search
 (the n command), the previous action (the . command), the
 previous regular expression, the named and numbered buffers...
In the same way, why quit any other program (that isn’t an editor) if you
 aren’t done with it? The programs lose their state. For instance, quitting a
 man (Section 2.1) or info (Section 2.9) command when you’re in the
 middle of a document means that when you start it again, it’ll be at the start.
 It will have forgotten the last term you searched for.
If your system has job control (Section 23.1), that solves all these
 problems. (If it doesn’t, you can still use a shell
 escape (Section
 17.21).) Instead of quitting vi, get
 into command mode and write your buffer with the :w command. Stop the editor with the CTRL-z command. Then process
 the file. When you’re ready to do more editing, bring your vi job back into the foreground with fg. The editor will be just where it was.
Even better, you can set vi’s
 autowrite option. If you’ve made any changes to the
 buffer before you press CTRL-z, vi will
 automatically write the buffer. You won’t need to remember to type :w before you stop the editor. You can set
 autowrite at a colon (:) prompt, but I set it in my
 .exrc file (Section 17.5) instead.
You don’t absolutely have to write your file before suspending vi. It’s a good piece of advice, but not required
 by the job control mechanism. Typing CTRL-z will suspend the editor whether
 you’ve written out your files or not.
— JP

System Overloaded? Try Stopping Some Jobs

 If your computer is barely crawling, you
 can kill (
 Section 24.12) some processes, but
 you’ll have to start them again later. On many Unix systems, you can renice (

 Section 26.7) the processes, but you
 won’t be able to raise the priority again later, after the system
 speeds up, unless you’re the superuser (Section 1.18).
If you don’t need your results right away (and you won’t get them, anyway, if
 the system is crawling!), try stopping some jobs. The best candidates are
 “CPU-eaters” like formatters, compilers, and any job that runs up a lot of time
 quickly in the ps (Section 24.5) or time (Section 26.2)
 reports. Start them again later, and the jobs will take up where they left
 off.

 If the job is in the foreground, just press
 CTRL-z (Section 23.3) to stop it. If the job is running in the background
 and you’re running csh or
 tcsh, use the shell’s stop command with a job identifier — for example,
 stop %3 or stop
 %cc.
On other shells — even shells without job control (!) — you can use kill (Section
 24.12) with the -STOP signal and either the job
 number or process ID number. The csh

 and
 tcsh command stop does this for you. On other shells, if you’d like, you can
 add an alias named stop to the shell
 setup file (Section 3.3). Later, when the system
 speeds up, put the job back into the background with bg or into the foreground with fg. For example:
bash$ alias stop='kill -STOP'
bash$ jobs
[1]+ Running g++ hugeprog.cc &
bash$ stop %1
[1]+ Stopped (signal) g++ hugeprog.cc
 ...later...
bash$ bg %1
[1]+ g++ hugeprog.cc &
— JP

Notification When Jobs Change State

 Normally, the shell tells you
 about changes to your background jobs whenever it prints its
 prompt. That is, when you do something that makes the shell give you a prompt,
 you’ll get a message like:
[1] + Stopped (tty input) rm -r
%
This message tells you that the rm -r command, which
 you’re running in the background, needs input; it has probably asked you whether
 or not to delete a read-only file, or something similar.
This default behavior is usually what you want. By waiting until it prints a
 prompt, the shell minimizes “damage” to your screen. If you want to be notified
 immediately when a job changes state, you should set the variable
 notify:
% set notify
 ...csh, tcsh
$ set -o notify
 ...bash, ksh
$ setopt notify
 ...zsh
The drawback, of course, is that you may be analyzing a screenful of output
 that you’ve laboriously constructed, only to have that screen “destroyed” by a
 lot of messages from the shell. Therefore, most users prefer to leave
 notify off (unset).
 To stop all background output, use stty tostop
 (Section 23.9).
— ML

Stop Background Output with stty tostop

 If you put a
 job in the background and don’t redirect (Section 43.1) its output, text that the
 job writes to its standard output and standard error comes to your screen. Those
 messages can mess up the screen while you’re using another program. You could
 lose the (maybe important) messages, too — they might scroll off your screen and
 be lost, or your foreground program may clear the screen and erase them.
Many Unix systems have the command stty tostop. Type that
 command at a prompt, or put it in your .login or
 .profile file.[2] After that, your shell’s background jobs that try to write to your
 terminal will be stopped. When you want to see the background job’s output,
 bring it into the foreground (with fg).
How will you know that the background job has been stopped? The shell will
 print a message like this just before it prints a prompt:
[1] + Stopped (tty output) somejob
%
The shell can also interrupt
 your foreground job with that message as soon as the background job is stopped.
 To make it do that, set notify (Section 23.8).
In C shell, you can turn off this
 feature and let background jobs write to your terminal any time with the
 command:
% stty -tostop
In bash
 , the command is similar:
$ stty tostop
— JP

nohup

 When Unix first started, even local
 terminals very often communicated with the system via short-haul modems. (After
 all, Unix was invented by the phone company.) When someone logged out, the modem
 hung up the phone — and conversely, if the modem hung up, a “hangup” signal was
 sent to the login shell, whereupon it terminated, bringing down all its
 child processes (Section 24.3) with it.
In the
 C shell, processes that you run in the background
 are immune to hangups, but in the Bourne shell, a process that you started in
 the background might be abruptly terminated.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 nohup
The nohup command (”no
 hangup“) allows you to circumvent this. (The
 GNU version is on the web site.) Simply type:
$ nohup command &

 Any output from
 command that would normally go to the terminal
 (i.e., has not been redirected) goes to a file named
 nohup.out in the current directory.
Of course, if you want to run jobs at off hours, you might do even better
 using at, cron, or batch.
nohup is sometimes handy in shell scripts
 to make them ignore the HUP and TERM signals
 (

 Section 24.10), though trap (Section
 35.17) is more versatile. (In System V, nohup causes a command to ignore HUP and QUIT, but not TERM.)
— TOR

Disowning Processes

 Job
 control isn’t always a good thing. For instance, I might want to start a long
 equipment-monitoring job running when I go home for the night. But if I simply
 put the job in the background and try to log out, zsh says zsh: you have running
 jobs. If I log out anyway, the shell sends my
 background job a HUP signal. I could use nohup
 (Section 23.10) to block the
 hangup signal, but there’s a simpler way: tell the shell, “Don’t use job control
 on this job.” This is also true of jobs that I know are there — a clock running
 on my X Window System display, for instance — and that I’ll never want to use
 job control on, so the jobs are just cluttering the jobs (Section 23.3)
 list.
To run a job without job control, the trick in most shells is to start the job
 in a subshell (Section 43.7), and put the job inside
 that subshell into the background. This is sometimes called “disowning” the job.
 Note that the ampersand (&) is
 inside the parentheses:
% (myprog -opts &)
The job won’t appear in the jobs list, but
 ps (
 Section 24.5) should show it running.
 (You might need to use a “show all jobs” option like ps
 -x or ps -e.) If you use
 ps -l for a “long” listing, you’ll see
 that the process’ PPID (the process ID number of the parent process (Section
 24.3)) is 1; this means that the process is now “owned” by init (Section
 24.2). On the other hand, if you’d started the job in the background
 normally (without the subshell trick), you’d see that its PPID was that of the
 shell you started it from.

 The Z shell
 has a more direct way: its &! and
 &| background operators. Both of them
 do the same thing: if you use one of those operators instead of plain &, the job will be disowned immediately; it
 won’t appear in the jobs list.
In most shells, once you start a job without the
 subshell trick, the shell that started the job will continue to be its parent.
 (Some shells, like the C shells, will give up ownership of a child process and
 let it keep running when you end the shell — that is, when you log out — and
 then init will “inherit” the process.) In
 zsh

 and
 bash Version 2, though, you can change
 your mind after you start a job by using the shell’s built-in disown
 command. Give disown the job number you want the shell to “forget.” For
 instance, I’ll start a background job and then disown it. It disappears from the
 job table, but giving ps its process ID shows
 that the job is still running:
zsh% myprog -opts&
[1] 28954
zsh% jobs
[1] + running myprog -opts
zsh% disown %1
zsh% jobs
zsh% ps 28954
 PID TTY STAT TIME COMMAND
28954 pts/5 S 0:09 myprog -opts
If you don’t give a job number, disown
 “forgets” the current job. The bash2 version
 of disown has options that zsh doesn’t: disown -a disowns all jobs, and disown -r disowns only running
 jobs.
 The
 bash2 option -h does a
 different job: instead of removing a job from the job table, the job won’t
 receive any HUP signal sent to the shell. This is similar to what the nohup command does.
— JP

Linux Virtual Consoles

 Your Linux workstation display may look like just
 one terminal. It’s actually seven terminals
 — or even more — in one. Linux has built-in virtual
 consoles, a series of ttys
 (Section 2.7) that you can log into
 separately: each one can have a login session, with its own shell, working at
 the same time as the others. You can see only one of these consoles at once; you
 bring a console into view by pressing a hot-key combination. For instance, I log
 into the first virtual console as root and the second as
 myself.
What Are They?

If your Linux system comes up after a reboot with a mostly blank screen
 something like this:
Red Hat Linux release 6.2 (Zoot)
Kernel 2.2.14-5.0 on an i686

penguin login:
you’re seeing one of the virtual consoles — in this case, it’s the first
 one you’ve seen since the reboot, so it has to be console number 1. On the
 other hand, if your system boots to an X Window display with a graphical
 xdm or gdm login box, you’re using a different virtual console,
 probably console number 7. All of this is configurable. But by default,
 consoles 1 through 6 are ttys, with getty (
 Section 24.2) processes running,
 ready to manage individual login sessions. Virtual console 7 is an X Window
 System display.
To switch between the consoles — to bring
 a differnt console “to the front” — use the hot-key combination CTRL-ALT-n,
 where n is the console number. (Actually, the only time
 you need the CTRL key is when the X Window console is in front. When you’ve
 got a nongraphical console in front, you can switch with just ALT-n. But if
 you find the difference hard to remember, there’s no problem with always
 using the CTRL key.)
Here’s one of the reasons I like to start my window system by typing a
 command (startx) at a shell prompt in a
 virtual console. The X server, and client applications running under X, will
 spit error messages onto the standard output (or standard error) at the
 console where I ran startx. So it’s easy
 for me to jump back to the console — by pressing CTRL-ALT-2 — to see error
 messages. Then I can jump back to X with CTRL-ALT-7. (I actually changed
 this setup, later, to log X errors to a file that I watch from a window, but
 that’s another story.)
When you log out of one of the tty
 -type consoles (by typing exit or logout), the getty process
 there prints a new login: prompt. But not
 every one of these ttys needs a login session. For
 instance, while the Red Hat Linux installation program is working, it uses
 the first four virtual consoles as logs that show different information
 about the installation process — and the fifth has a shell prompt where you
 can do work during the installation. Another handy example is this tip from
 Chris Hilts, posted to http://www.oreilly.com as a followup
 to a Linux feature in the summer of 2000. Add the following line to your
 /etc/syslog.conf file:
. /dev/tty9
After the next reboot or restart of syslog, all of your system’s syslog messages will appear on virtual console number 9 —
 where you can see them at any time by pressing CTRL-ALT-9.

Scrolling, Using a Mouse

 The
 tty-type virtual consoles have some other nice
 features. One is a scrolling buffer that lets you scroll back to see
 previous screens of text. Press SHIFT-PAGE UP to move to previous
 screenfuls, and SHIFT-PAGE DOWN to move toward the most recent
 screen.
The tty-type consoles also support

 copy-and-paste with your mouse. To copy
 an area, point to the first character and hold down the first mouse button;
 move to the end of the text block and release the button. The selected text
 should be shown in reverse video. To paste the copied text, click the third
 mouse button. You also can paste from one console into another with the same
 steps. You can’t paste from a tty-type console into the
 X Windows, or vice-versa, though. To do that, use a temporary file. For
 example, highlight (copy) an area of text, then use the command:
cat >
 Section 12.2
% cat > /tmp/paste-me
 ...paste the text...
CTRL-d
Then switch to the other console. Either read the file directly into an
 application, or output the file onto the screen (cat /tmp/paste-me) and copy from that redisplayed
 text.
— JP

Stopping Remote Login Sessions

 Once you start telnet, rlogin, rsh
 , and ssh
 for an interactive login, they basically “take over” your shell. Your keystrokes are sent to the
 shell running on the remote system. So if you type CTRL-z, it won’t stop the
 telnet (or whatever) job: it’ll stop the
 job running on the remote system.
It can be very handy to suspend a connection to a remote system and resume it,
 sometime later, with fg. Most of the remote
 login utilities let you do that.
To stop a telnet

 session, start by pressing the escape character. By default, this is CTRL-]
 (Control-right bracket). You should get a telnet command prompt. Type z to suspend the
 job, Here’s how that looks:
myhost$ telnet remhost
Trying 198.59.115.17...
Connected to remhost.
Escape character is '^]'.

SunOS 5.6

login: whoever
 ...
remhost% CTRL]
telnet> z

[1]+ Stopped telnet remhost

myhost$
You can use other commands at the telnet
 command prompt. For a list, see your manual page or type
 help at the prompt. If you get to that prompt
 accidentally and don’t want to stop the telnet session, simply press ENTER once.
Other remote-login utilities don’t have
 a command prompt. Their control commands start with ENTER-tilde (~) and one more control character. The command to
 stop the session is ENTER, then tilde, then CTRL-z. It won’t appear on your
 screen as you type it (if it does appear, it didn’t work . . . try again). For
 example:
myhost$ ssh remhost
Last login: Fri Dec 22 09:08:31 2000 from myhost
NetBSD 1.4.2A (GENERIC) #6: Wed May 31 06:12:46 EST 2000

remhost%
remhost% ~CTRL-z

[1]+ Stopped ssh remhost

myhost$
Notice the extra prompt: it shows me pressing ENTER first, before typing the
 tilde. That isn’t necessary if you pressed ENTER to complete the previous
 command line — but I tend to do it all the time, “just in case” I didn’t type
 that ENTER.
You can stop the remote session in the middle of an interactive job, like
 using a text editor. But I’d recommend getting to a shell prompt on the remote
 system first, if you can. (For example, stop the remote job with CTRL-z so
 you’ll get a shell prompt on the remote system.) Otherwise, if you bring the
 remote session into the foreground while you’re in the middle of a full-screen
 editing job there, for example, the remote system won’t know that it’s supposed
 to redraw the screen when you come back online. Worse, if you forget where you
 were on the remote system, you might type a key that could do something
 disastrous, like deleting lines of the file you’re editing. Stopping and
 starting from a known point — a shell prompt — is the best way I’ve
 found.
— JP

[1] In the old days, Unix systems gave all processes to a single
 CPU. Modern Unix systems can have multiple CPUs. On these
 systems, you may be able to do several jobs almost as quickly as
 one.

[2] This command sets the Unix terminal device driver for all processes
 started on it. You don’t need to set this for
 subshells (Section
 3.3).

Chapter 24. Starting, Stopping, and Killing Processes

What’s in This Chapter

Summary Box
We’ve already talked about so many of the topics in this chapter, here or
 there, that it may seem like a real hodgepodge. It’s a grab-bag of important
 things to know about processes — which you can think of as programs that are
 actually running, rather than sitting on the disk somewhere.
The chapter starts out with a couple of conceptual articles. They define
 some important terms that you’re likely to encounter in this chapter.
Then we talk about the ps command,
 which tells you what processes you have running and just what they are up to
 (Section 24.5, Section 24.6, Section 24.8).
The next few articles cover signals, which are one way processes
 communicate with one another. We cover topics like:
	What are signals (Section
 24.10)?

	How to send signals from the keyboard (Section 24.11 and Section 24.12; also see
 Section 5.8).

	How shell programs can “handle” signals (Section 24.13 and Section 35.17).

We go from there to a more general discussion of ways to kill
 processes:
	How to kill all your processes (Section 24.14).

	How to kill processes by name rather than by process ID (Section 24.16).

	How to stop runaway jobs (Section 24.17).

	Why some processes don’t seem to go away when you kill them (Section 24.18, Section 24.19).

	How to get rid of a frozen window (Section 24.22).

	How to make sure processes don’t die when you
 log out (Section
 23.10).

— TOR

fork and exec

 We
 discuss fork and exec in Section 27.2, but the concept comes up
 so often in this chapter that we thought we ought to have a closer cross
 reference.
Put simply, fork and
 exec are the Unix system calls (requests for operating
 system services) that Unix programs use to create new processes. When you start
 up a Unix system, it starts with only one process, a program called init.
How does init magically turn into the
 hundreds or perhaps even thousands of processes that make up a working Unix
 system? That’s where fork and exec
 come in.
One process spawns another (“spawn” is another term you should get used to
 seeing) either by replacing itself when it’s done — an exec
 — or, if it needs to stay around, by making a copy of itself — a
 fork.
 In the latter case, the forked copy
 commits polite suicide by execing the desired second
 program.
A good example of this whole
 sequence can be seen in the way a Unix system’s login procedure for terminals
 (non-network (Section 1.21) logins) works. The
 init process spawns a series of getty processes, each of which monitors a
 serial port (a
 tty), looking for activity. It’s the
 getty program that actually puts up the first
 login: prompt.
Once someone actually types a login name, getty’s job is done; it execs the login command. login prompts for a password (if the account has one) and, if the
 password is okay, execs the login shell. Whenever you start
 another program, the shell forks itself, and the copy
 execs whatever program you asked to run.
That’s why some commands are built into the
 shell (Section 1.9).
 There’s overhead involved in starting a new process. What’s more, because
 a child process can’t affect its parent’s
 environment (Section
 24.3), some commands don’t make sense as separate processes. For
 example, cd must be built in, or it couldn’t
 change the working directory for the current shell.
There’s an exec

 command that you can type at a shell
 prompt; see Section 36.5. Watch out,
 though: it will replace your shell with whatever command you exec, with no going back. This is useful only if
 you want to replace your shell with some other interactive command interpreter
 with similar powers, or if you’ll be ready to log out when the command you
 exec finishes.
— TOR

Managing Processes: Overall Concepts

As you know, when you log into your Unix account
 and start typing, you’re talking to the shell
 (Section 27.1). The shell you use
 may be a variant of the Bourne shell (such as a
 standard sh, ksh, or the GNU shell bash),
 or perhaps it is a variant of the C shell,
 csh (such as, perhaps, the tcsh
 shell that includes line- and history-editing
 features). Alternatively, you may be using a somewhat less common shell such as
 rc.
Your shell is a process, one of many individual programs
 running at the same time on the machine. Every process has certain pieces of
 information associated with it, including the following:
	
 The process ID
 (PID) is a number assigned to the process when it is started up. Process
 IDs are unique (that is, they cycle and are eventually reused, but no
 two processes have the same process ID at the same time).

	

 The user ID (UID) tells
 who the process belongs to. This determines what
 files and directories the process is allowed to read from or write
 to (Section
 50.1), as well as who is allowed to kill the process (Section 24.12) (tell it to stop running).

	

 The
 group ID (GID) is similar to the user ID but
 tells which group the process belongs to. On some systems, this controls
 the group assigned to files created by the process. See Section 50.2.

	
 The
 environment contains a list of variable names
 and associated values. For example, when you type echo
 $HOME at the shell and it prints out
 the name of your home directory (Section 1.15), it has told you
 the contents of the environment
 variable (Section
 35.3) called HOME.

	
 The current working directory (Section 31.3) is the directory
 that is currently the default. When you specify a filename to a program
 but do not say explicitly where to look for it with a pathname (Section 31.2), the program will look in the current working
 directory — if the PATH variable contains the
 current directory (Section
 35.6 explains).

	File descriptors
 are a record of which files a
 process has opened for reading or writing, as well as the current
 position in each file.

	

 Versions of Unix with job control (Section 23.1) have
 process groups. A process group is used for
 distribution of signals (
 Section 24.10, Section 24.11, Section 24.14). It’s also used
 to control which process can read from a terminal. A
 process that has the same process group as the terminal is “in the
 foreground” and can read from the
 terminal. Other processes are stopped when they try to read from the
 terminal.

 When you’re typing commands at the shell,
 it is the controlling process of your terminal, meaning
 that it (the shell) is the process that gets the input you type. See Section 24.6.

 Normally, when you type a command at the shell
 prompt, that command runs and is allowed by the shell to take over the terminal
 for its lifetime. For example, if you type
 more
 .login to view your
 .login file, the shell starts up the more program and then sits around waiting for it
 to finish; while more is running, you can
 type commands to page through the file and more (not the shell) will see them. The command you run is called
 a child

 or subprocess
 of the shell process, which is its parent. All process
 information (user ID, group ID, etc.) is inherited by the child from its parent,
 except for the process ID, since the child is assigned a new one. Built-in shell commands (Section 1.9) such as cd don’t start a child process.
Although the normal behavior is for the shell to
 wait until any command you run has finished before it becomes active again,
 there are some situations in which you don’t want this to occur. For example, if
 you’re using a window system such as X (Section 1.22) and want to start up a new
 xterm window from your shell, you don’t
 want to type just xterm, because then your
 original shell will wait until the xterm
 finishes before allowing you to type any more commands. This would mean that you
 still have only one shell to work in, thus defeating the purpose of starting the
 new xterm.

 When you
 don’t want a process to finish before getting back to the shell, you can run it
 in the background. You do this by putting an ampersand
 (&) character at the end of the
 command, for example, xterm
 &. The shell will start the child process
 and then immediately prompt you for another command. Note that in this
 situation, the shell retains control of the terminal, and the newly created
 background process cannot read input. Some shells have additional job control (

 Section 23.1) features (processes that
 are running in the background are often described as background
 jobs or just jobs) that enable you to do things such as kill jobs
 or bring a job from the background into the foreground so
 that it becomes the controlling process of the terminal and you can type input
 at it.
An important thing to remember is that
 although process information is inherited by children when they are
 started, it is impossible for the parent to affect its child’s
 process information (or vice versa) after that point. For example, if you
 start up the editor vi, suspend it (Section 24.6), and then use the cd command in the shell to change directories,
 vi will still have the old working
 directory when you bring it back into the foreground. Similarly, if you write a
 shell script that changes some environment variables, those variables will
 contain their old values in the shell when the shell script exits. This
 sometimes confuses MS-DOS users, since MS-DOS stores information such as the
 current directory in a global area that is referenced by all programs. If it is
 necessary to communicate information from a child back to a parent shell,
 other methods are needed (Section 24.10, Section 35.29).
One more useful concept: when a process exits, it returns a numeric exit status (Section 35.12)

 to its parent process. By convention, a zero
 status means success; nonzero means some kind of failure.
Just as there are ways to modify the environment and the current working
 directory of the shell, there are also useful ways to manipulate file descriptors (Section 36.16).
— JIK

Subshells

 In
 Unix, when a program starts another program (more exactly, when a process starts
 another process), the new process runs as a subprocess (Section
 24.3) or child process.[1] When a shell starts another shell, the new shell is called a
 subshell.[2]
So what? There are some important things to know about it: the child process gets a copy of its parent’s
 environment, and any changes in the environment of the child process aren’t
 passed to its parent. “Still,” I hear you say, “so what??”
	Shell scripts are run in a subshell
 (unless you use the source or .
 commands (Section
 35.29) to start the script). If the script makes changes to
 the environment of its (sub)shell, the parent shell won’t see those
 changes. If the script uses cd, it
 doesn’t change the current directory in the parent shell. If the script
 changes the value of the TZ (or any) environment
 variable, that won’t change TZ in the parent shell.
 The script can set a different
 umask than the parent shell — no
 problem.

	There are times you might want to start a subshell from your current
 shell. Maybe you have a special project where you need to work in a
 different current directory, reset environment variables, set a new home
 directory, reset some aliases, use a different PATH (Section
 35.6), whatever. When you end the subshell, the parent
 shell’s environment will be the way it was.

 If your parent shell has job control (Section 23.3), you can stop the
 subshell and pop back to your parent shell without losing the changes in
 the subshell. If the child shell has job control, too, the command
 suspend (or kill -STOP $$ (Section 27.17)) will stop it. Otherwise, just type CTRL-z at
 the subshell’s prompt. For example:
prompt
 Section 4.1
myprompt% csh
myprompt% set prompt="project% "
project% cd project-directory

project% setenv PRINTER plotter
project% set path=($path some-new-directories)
project% setenv EXINIT "se ts=4 sw=4 aw wm=0"
 ...do some work...
project% suspend

Stopped
 ...back to parent shell...
myprompt%
myprompt% fg %csh
 ...back to subshell...
project%
I use suspend so much that I’ve
 made a CTRL-z-like alias named z:
alias z suspend ...csh
alias z=suspend ...bash, ksh

	If you need a different type of shell temporarily, just type that
 shell’s name at a prompt. When you end the shell by typing exit or by suspending it (as shown above),
 you’re back to your usual shell. For example, you might normally use
 bash but want to use the zsh multiline editing for a few loops you
 need to run. As another example, I started a lot of different shells
 while I was writing this book — and suspended them, as above, when I
 wasn’t using them. Very handy.

	
 A shell
 escape (Section
 17.21) starts a subshell. Do whatever you want to the
 subshell’s environment. When you end the shell escape, the changes go
 away.

	The su command starts a subshell.
 cd anywhere, change environment
 variables, and so on.

If you use the exit command, a subshell (or any shell) will terminate. In a
 script, when the shell reads the end of file, that does an implicit exit. On the command line, an
 end-of-input character (usually CTRL-d)
 will do the same thing. Section 35.16
 explains how exit sets a shell’s exit
 status.
— JP

The ps Command

 The ps
 command varies from system to system. (The ps
 on one Red Hat Linux system reads a PS_PERSONALITY
 environment variable with 21 possible settings!) This article describes several
 different versions. Yours is probably different in some ways, so check your
 ps manual page for details.
The ps command produces a report summarizing execution
 statistics for current processes. The bare ps
 command lists the process ID, the terminal from which the command was started,
 how much CPU time it has used, and the command itself. The output looks
 something like this (it differs by system):
 PID TT STAT TIME COMMAND
 1803 p5 IW 0:00 -csh (csh)
 1883 p5 IW 0:04 vi outline
 1811 p6 IW 0:01 -csh (csh)
 5353 p6 TW 0:01 vi 4890
By default, ps lists only your own
 processes. There are many times, though, when it’s desirable to have a more
 complete listing with a lot of data about all of the processes currently running
 on the system. The options required to do this differ between BSD Unix and
 System V. Under
 BSD
 Unix, the command is ps -aux, which produces
 a table of all processes, arranged in order of decreasing CPU usage at the moment when the ps command was executed. [The -a
 option gives processes belonging to all users, -u gives a more
 detailed listing, and -x includes processes that no longer have
 a controlling terminal (Section 24.6). —
 TOR] It is often useful to pipe this output to head (Section
 12.12), which will display the most active processes:
% ps -aux | head -5
USER PID %CPU %MEM SZ RSS TTY STAT TIME COMMAND
martin 12923 74.2 22.5 223 376 p5 R 2:12 f77 -o foo foo.F
chavez 16725 10.9 50.8 1146 1826 p6 R N 56:04 g94 HgO.dat
ng 17026 3.5 1.2 354 240 co I 0:19 vi benzene.txt
gull 7997 0.2 0.3 142 46 p3 S 0:04 csh
The meanings of the fields in this output (as well as others displayed by the
 -l option to ps) are
 given in Table 24-1.
The first line of this output shows that user martin is
 running a FORTRAN compilation (f77). This
 process has PID (Section 24.3) 12923 and is currently
 either running or runnable. User chavez’s process (PID
 16725), executing the program g94, is also
 running or runnable, though at a lowered priority. From this display, it’s
 obvious who is using most system resources at this instant:
 martin and chavez have about 85%
 of the CPU and 73% of the memory between them. However, although it does display
 total CPU time, ps does not average the
 %CPU or %MEM values over time in any way.
Table 24-1. ps command output fields
	
 Column[3]

 	
 Contents

	
 USER (BSD)

 	
 Username of process owner

	
 UID (System V)

 	

 User ID (Section 24.3) of
 process owner

	
 PID

 	
 Process ID

	
 %CPU

 	
 Estimated fraction of CPU consumed (BSD)

	
 %MEM

 	
 Estimated fraction of system memory consumed (BSD)

	
 SZ

 	
 Virtual memory used in K (BSD) or pages (System V)

	
 RSS

 	
 Real memory used (in same units as SZ)

	
 TT, TTY

 	
 Terminal port associated with process

	
 STAT (BSD), S (System V)

 	
 Current process state; one (or more under BSD) of:

	 	
 R: Running or runnable

	 	
 S: Sleeping

	 	
 I: Idle (BSD); intermediate state (System V)

	 	
 T: Stopped (Section 23.1)

	 	
 Z: Zombie process (Section 24.19)

	 	
 D (BSD): Disk wait

	 	
 P (BSD): Page wait

	 	
 X (System V): Growing,waiting for memory

	 	
 K (AIX): Available kernel process

	 	
 W (BSD): Swapped out

	 	
 N (BSD): Niced (Section 26.5, Section 26.7),
 execution priority lowered

	 	
 > (BSD): Execution priority artificially raised (Section 26.7)

	
 TIME

 	
 Total CPU time used

	
 COMMAND

 	
 Command line being executed (may be truncated)

	
 STIME (System V)

 	
 Time or date process started

	
 C (System V), CP (BSD)

 	
 Short term CPU-use factor; used by scheduler for computing
 execution priority (PRI below)

	
 F

 	
 Flags associated with process (see ps manual page)

	
 PPID

 	
 Parent’s PID

	
 PRI

 	
 Actual execution priority (recomputed dynamically)

	
 NI

 	
 Process nice number
 (Section 26.5)

	
 WCHAN

 	
 Event process is waiting for

	[3] Some vendors add other fields, such as the
 processor number for multiprocessors and additional
 or different process states (as in the AIX K field).
 These codes may differ from vendor to vendor: for
 example, the 0 code under Stardent Unix means a
 process that is actually running (and R means
 runnable), while 0 under AIX means a nonexistent
 process.

 A vaguely similar listing is produced by
 the System V ps -ef command:
$ ps -ef
 UID PID PPID C STIME TTY TIME CMD
 root 0 0 0 09:36:35 ? 0:00 sched
 root 1 0 0 09:36:35 ? 0:02 /etc/init
 ...
 gull 7997 1 10 09:49:32 ttyp3 0:04 csh
martin 12923 11324 9 10:19:49 ttyp5 56:12 f77 -o foo foo.F
chavez 16725 16652 15 17:02:43 ttyp6 10:04 g94 HgO.dat
 ng 17026 17012 14 17:23:12 console 0:19 vi benzene.txt
The columns
 hold the username, process ID, parent’s PID (the PID of the process that created
 it), the current scheduler value, the time the process started, its associated
 terminal, its accumulated CPU time, and the command it is running. Note that the
 ordering is by PID, not resource usage.

 AIX’s version of the ps command supports both BSD and System V options. The BSD
 options are not preceded by a hyphen (which is a legal syntax variation), and
 the System V options are. Thus, under AIX, ps
 -au is not the same as ps au.
 The command is the System V version, however, even if its output is displayed
 with the BSD column headings. Thus, ps aux output is
 displayed in PID rather than %CPU order.

 ps is also useful in pipes; a common use
 is:
% ps -aux | grep chavez
to see what user chavez has currently running. Under
 System V, use ps -u chavez.
Another way to view the process information is with the top
 command. Unlike ps, top is an interactive
 screen program that updates its information every few seconds. It’s a good way
 to get a quick pulse of your system. Not only is process information displayed,
 but memory statistics and the system uptime
 are also shown. You can find the full range of available interactive commands by
 typing h once top has started. You can sort processes in a variety of ways
 including CPU and memory usage, as well as by user. You can even kill processes
 from within top.
—AF, from Essential System Administration
 (O’Reilly, 2002), and JJ

The Controlling Terminal

 In Section 24.5, we pointed out that the ps command needs special options (-x for
 BSD-derived versions and -e for System V-type) to list
 processes without a controlling terminal.

 But just what is a
 controlling terminal? Just what it sounds like: the terminal from which the
 process was started. In the ps listing, this
 is usually given as a tty, or terminal ID.
 That ps entry usually corresponds to a serial
 port, or a pty. A pty or
 “pseudo-terminal” is a construct that makes a window or network login (Section
 1.21) look to the operating system just like a terminal.
In the ps listing, a tty might appear as
 t1 for /dev/tty1,
 p3 for /dev/ttyp3,
 or as some other designation, such as co for
 /dev/console, the full-screen display of a workstation
 before any window system is started. Processes without a controlling terminal
 show a question mark (?).
How does a process “lose” its controlling
 terminal? Easy. Some processes, such as system “daemons” (Section
 1.10) never had one — they were started by system scripts that
 weren’t started from any terminal, or they disconnected themselves from their
 controlling terminals. But it’s also possible that you started a process running
 in the background, logged out, and logged back on later or on another terminal
 to find it still running without a controlling terminal.
 Disowned processes (Section 23.11) fit this category
 too.
The tty
 command can be used to report which “terminal” you’re currently connected to.
 For example:
% tty
/dev/ttyp2
Running tty without a controlling terminal
 gives the message not

 a
 tty.
— TOR

Tracking Down Processes

ps

 without arguments lists all
 processes started from the current terminal or pseudo-terminal. But since
 ps is not a shell command, it doesn’t correlate process
 IDs with the shell’s job numbers. It also doesn’t help you find the ID of the
 runaway process in another shell window.
To get this information, use ps
 -a (for “all”); this lists
 information on a different set of processes, depending on your Unix
 version.
System V

 Instead of listing all that were
 started under a specific terminal, ps
 -a on System V-derived systems lists all processes
 associated with any terminal that aren’t group leaders. For our purposes, a
 “group leader” is the parent shell of a terminal or window. Therefore, if
 you are using a windowing system, ps
 -a lists all jobs started in all windows (by all
 users), but not their parent shells.
Assume that, in the previous example, you have only one terminal or
 window. Then ps -a will
 print the same output as plain ps except
 for the first line, since that’s the parent shell. This doesn’t seem to be
 very useful.
But consider what happens when you have multiple windows open. Let’s say
 you have three windows, all running terminal emulators such as xterm for the X Window System. You start
 background jobs alice, duchess, and hatter in windows with pseudo-terminal numbers 1, 2, and 3,
 respectively. This situation is shown in Figure 24-1.
[image: Background jobs in multiple windows]

Figure 24-1. Background jobs in multiple windows

Assume you are in the uppermost window. If you type ps, you will see something like this:
 PID TTY TIME COMD
 146 pts/1 0:03 bash
 2349 pts/1 0:03 alice
 2390 pts/1 0:00 ps
But if you type ps -a,
 you will see this:
 PID TTY TIME COMD
 146 pts/1 0:03 bash
 2349 pts/1 0:03 alice
 2367 pts/2 0:17 duchess
 2389 pts/3 0:09 hatter
 2390 pts/1 0:00 ps
Now you should see how ps
 -a can help you track down and kill (Section
 24.12) a runaway process. If it’s hatter, you can type kill
 2389. If that doesn’t work, try kill
 -QUIT 2389, or in the worst case,
 kill -KILL 2389.

BSD

 On BSD-derived systems, ps -a lists all jobs that
 were started on any terminal; in other words, it’s a bit like concatenating
 the results of plain ps for every user on
 the system. Given the above scenario, ps
 -a will show you all processes that the System V
 version shows, plus the group leaders (parent shells).
Unfortunately, ps -a
 (on any version of Unix) will not report processes that are in certain
 conditions where they “forget” things such as what shell invoked them and
 what terminal they belong to. Such processes are known as zombies or orphans (

 Section 24.19). If you have a
 serious runaway process problem, it’s possible that the process has entered
 one of these states.
You need another option to ps to see it: on System V,
 it’s ps

 -e (“everything”); on BSD, it’s ps -ax.
These options tell ps to list processes that either
 weren’t started from terminals or “forgot” what terminal they were started
 from. The former category includes lots of basic processes that run the
 system and daemons (Section 1.10) that handle system
 services like mail, printing, network file systems, etc.
In fact, the output of ps
 -e or ps
 -ax is an excellent source of education about Unix
 system internals. Run the command on your system and, for each line of the
 listing that looks interesting, invoke man
 (Section 2.1) or info (Section
 2.9) on the process name.
User shells and processes are listed at
 the very bottom of ps -e
 or ps -ax output; this
 is where you should look for runaway processes. Notice that many processes
 in the listing have ? instead of a
 terminal. Either these aren’t supposed to have a terminal (such as the basic
 daemons), or they’re runaways. Therefore it’s likely that if ps -a doesn’t find a process
 you’re trying to kill, ps
 -e or ps
 -ax will list it with ? in the TTY (or TT) column. You can determine which process
 you want by looking at the COMD (or COMMAND) column.
Section 24.22 shows a similar
 thing: how to close windows by killing their process.

—CN and BR

Why ps Prints Some Commands in Parentheses

 There is a reason that some versions of
 ps, and thus derivatives such as w, sometimes print commands in parentheses:
% ps -f -u jerry
 UID PID PPID C STIME TTY TIME COMMAND
 jerry 29240 29235 0 07:56:19 ttyp1 0:01 sh find_mh_dupes
 jerry 29259 29240 23 07:57:52 ttyp1 0:07 (egrep)
The reason is that whoever wrote ps liked
 it that way. The parentheses indicate that the command overwrote its name, or
 ps could not find the name, and that
 ps is printing instead the "accounting name.” (The accounting name is
 the last component of the name given to the exec (Section 24.2)
 system call, and is the name used in the system resource usage accounting file.)
 Basically, ps does this in the C
 language:
if (proc->argv == NULL || strcmp(proc->acct_name, proc->argv[0]) != 0)
 printf("(%s)", proc->acct_name);
In the case of a large environment, ps is
 unable to find the argument vector. This is because it reads only the last few
 stack pages of each process.
Other versions of ps use completely
 different mechanisms for locating the command arguments and may never print
 parentheses.
— CT, in net.unix-wizards on Usenet, 13
 November 1983

The /proc Filesystem

 In Unix, it seems almost everything can be treated like a file (Section 1.19). On many modern Unix
 systems, even processes are files — well, sort of. A special filesystem named
 /proc doesn’t actually “contain”
 processes, but it lets you interact with them. Almost all of the “files” in
 /proc are plain text, so you can access
 them from scripts and programs, as well as from the command line. Of the systems
 I’ve checked, my Red Hat Linux 6.2 box (kernel version 2.2) seems
 to have the most in /proc, so I’ll cover
 it. Please check your documentation — a proc(5) manual page, for instance — for the story on your
 system.
All /proc filesystems have one
 subdirectory for each process currently running on the system. Each of those
 process subdirectories is named for its PID
 (Section 24.3). Some versions of
 /proc also have other named files and
 subdirectories — and my system has a lot of them. Here’s a partial listing of my
 /proc filesystem at the moment; I’ve
 left out a lot of the numbered subdirectories:
-F
 Section 8.10
$ ls -F /proc
1/ 17415/ 467/ cmdline ksyms pci
1047/ 2/ 482/ cpuinfo loadavg rtc
1052/ 3/ 5/ devices locks scsi/
1057/ 345/ 553/ dma mdstat self@
1287/ 370/ 593/ fb meminfo slabinfo
1289/ 379/ 594/ filesystems misc stat
14288/ 393/ 595/ fs/ modules swaps
14289/ 4/ 596/ ide/ mounts sys/
17409/ 4017/ 597/ interrupts mtrr tty/
17412/ 407/ 6/ ioports net/ uptime
17413/ 425/ apm kcore partitions version
17414/ 439/ bus/ kmsg
Linux system utilities like ps and pidof use information from /proc. Your programs can use it, too; there are
 some examples below. But it’s also useful when you want to know something about
 your system. The “files” in /proc are most
 useful there. Let’s look at a series of examples. We’ll end with the numbered
 per-process “directories.”
Memory Information

 The Linux free(1) utility shows your memory status. It simply reads the
 file /proc/meminfo and reformats the
 information. If you want an alias (Section 29.2) that simply shows how
 much memory is free, it’s probably simpler to read the meminfo file directly. For example:
grep
 Section 13.1
$ cat /proc/meminfo
 total: used: free: shared: buffers: cached:
Mem: 263929856 253022208 10907648 79675392 30797824 57868288
Swap: 394784768 14585856 380198912
MemTotal: 257744 kB
MemFree: 10652 kB
MemShared: 77808 kB
Buffers: 30076 kB
Cached: 56512 kB
BigTotal: 0 kB
BigFree: 0 kB
SwapTotal: 385532 kB
SwapFree: 371288 kB
$ alias memfree='grep Free: /proc/meminfo'
$ memfree
MemFree: 10616 kB
BigFree: 0 kB
SwapFree: 371288 kB
(The free RAM decreased a bit while I was writing the
 alias.)

Kernel and System Statistics

The /proc/stat

 file has statistics on the
 kernel and system. As with most of the rest of /proc, it’s updated constantly. For example, we can grep for the CPU
 statistics. The four fields on the cpu
 line show the number of jiffies
 (hundredths of a
 second) since the system was last rebooted: time spent in normal-priority
 user mode, niced user mode (Section 26.5), system (kernel) mode,
 and the idle task, respectively. You might want to use this information from
 a script that monitors your system’s utilization. Here’s an example:
 grepping for the
 CPU statistics, then the start of an awk (Section
 20.10) script that could watch the CPU usage:
!!
 Section 30.8
$ grep cpu /proc/stat
cpu 14693561 48135949 638573 4031301
$ awk '/^cpu/ { print $5 / 100 " seconds idle" }' /proc/stat
40318.7 seconds idle
$!!
awk '/^cpu/ { print $5 / 100 " seconds idle" }' /proc/stat
40323.8 seconds idle

Statistics of the Current Process

 The sections below describe
 per-process subdirectories in /proc.
 One special directory is /proc/self. It
 has the unusual property of giving a different answer for every process that
 examines it: information about the current process. (This “directory” is
 actually a symbolic link (Section 10.4) to the directory
 numbered for the process’ PID.)
For instance, a process can check its /proc/self/fd directory to see which files its file descriptors (
 Section 36.15) are currently
 pointing to. This isn’t just what type of file (disk
 file, tty (Section 2.7), pipe, etc.) but the
 actual full pathname of the file. If you’re new to Unix, this may not seem
 too earth-shaking, but it’s actually pretty amazing.
For a simple example, here’s a shell script that lists its input and
 outputs. It then redirects its standard input (file descriptor 0)
 from /dev/null (Section 43.12) and lists
 again.
$ pwd
/tmp
$ tty
/dev/pts/5
$ cat showfds
#!/bin/sh
cd /proc/self/fd
ls -l
exec 0</dev/null
ls -l
$./showfds < somefile
total 0
lr-x------ 1 jpeek jpeek 64 Dec 2 09:03 0 -> /tmp/somefile
lrwx------ 1 jpeek jpeek 64 Dec 2 09:03 1 -> /dev/pts/5
lrwx------ 1 jpeek jpeek 64 Dec 2 09:03 2 -> /dev/pts/5
lr-x------ 1 jpeek jpeek 64 Dec 2 09:03 3 -> /tmp/showfds
total 0
lr-x------ 1 jpeek jpeek 64 Dec 2 09:03 0 -> /dev/null
lrwx------ 1 jpeek jpeek 64 Dec 2 09:03 1 -> /dev/pts/5
lrwx------ 1 jpeek jpeek 64 Dec 2 09:03 2 -> /dev/pts/5
lr-x------ 1 jpeek jpeek 64 Dec 2 09:03 3 -> /tmp/showfds

Statistics of Processes by PID

 All versions of /proc that I’ve seen have subdirectories named for each
 process currently running on the system. Each subdirectory is named for the
 process PID (Section 24.3). Here are a series of
 examples of the useful info on my Linux system:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 showenv
	You can use printenv or env
 (

 Section 35.3) to find the
 environment of your current process. How about the environment of
 another process? Here’s a shell script called showenv

 that works like printenv:
#!/bin/sh
showenv - show environment of a process, by PID
If second argument given, show just that one environment variable.

f=/proc/$1/environ

if [! -r "$f"]; then
 echo "`basename $0`: can't access process $1" 1>&2
 exit 1
fi

case $# in
1) tr '\000' '\012' < $f | sort ;;
2) tr '\000' '\012' < $f | grep "^$2=" ;;
*) echo "Usage: `basename $0` pid [envariable-name]" 1>&2; exit 1 ;;
esac
The

 tr (Section 21.11) command
 translates the NUL-separated entries from the environ file into newline-separated
 lines. With one argument, the whole environment is shown. With two
 arguments, the script greps for
 the environment variable named in the second argument. Maybe you’d
 like to know what the EXINIT (Section 17.27) environment
 variable was set to in a vi
 process with PID 8984:
$ showenv 8984
DISPLAY=:0.0
ECIINI=/usr/lib/ViaVoiceTTS/eci.ini
EDITOR=vi
EXINIT=so ~/.lib/vi/exrc8
HISTFILESIZE=1000
 ...
$ showenv 8984 EXINIT
EXINIT=so ~/.lib/vi/exrc8

	The status file gives
 status information about the
 process. A lot of this information is available in ps (Section 24.5) output, but it’s broken out nicely here.
 For instance, maybe you’re wondering what group access process 918
 has, or what process started it (its parent
 PID (Section
 24.3)):
% cd /proc/918
% grep PPid status
PPid: 916
% grep Groups status
Groups: 1000 501 103
The PPID is 916. The process has the group
 numbers (can access resources with the group permissions of)
 GIDs 1000, 501, and 103.

	The command-line arguments of a process
 are in the cmdline file,
 separated by NUL characters. Hmmm, what files is that tail
 -f job, process
 861, watching? Let’s see...using echo (Section
 27.5) to add a final newline:

;
 Section 28.16
$ tr '\000' ' ' < /proc/861/cmdline; echo
tail -f /var/log/messages /var/log/maillog /u/jerry/tmp/startx.log

A Glimpse at Hardware

 If you are curious about your system’s
 hardware, a quick look at /proc/cpuinfo, /proc/interrupts, and /proc/ioports will help you size up the system. All the
 following examples came from a Red Hat Linux box, but you will find these
 proc files on most Linux and BSD systems. For
 instance, /proc/cpuinfo
 looks like this (on my system):
processor: 0
vendor_id: GenuineIntel
cpu family: 6
model: 6
model name: Celeron (Mendocino)
stepping: 0
cpu MHz: 400.918
cache size: 128 KB
fdiv_bug: no
hlt_bug: no
f00f_bug: no
coma_bug: no
fpu: yes
fpu_exception: yes
cpuid level: 2
wp: yes
flags: fpu vme de pse tsc msr pae mce cx8 sep mtrr pat pse36 mmx fxsr
bogomips: 799.53
The most important fields to notice are processor, model name, and
 cpu MHz since these identify how many
 CPUs are in the system, the model name (although this isn’t always so clear
 in older Pentium models), and the CPU speed of your machine.
The other three proc files are important if you are
 installing hardware or trying to configure recently installed hardware.
 /proc/interrupts lists the hardware
 interrupt numbers and shows which devices are using which interrupt. On my
 machine, this looks like:
 CPU0
 0: 92887036 XT-PIC timer
 1: 910141 XT-PIC keyboard
 2: 0 XT-PIC cascade
 3: 4 XT-PIC serial
 5: 4794267 XT-PIC eth0
 8: 11642728 XT-PIC rtc
 10: 65248789 XT-PIC es1371
 11: 0 XT-PIC usb-uhci
 12: 5109157 XT-PIC PS/2 Mouse
 14: 560048 XT-PIC ide0
 15: 408739 XT-PIC ide1
NMI: 0
ERR: 0
/proc/ioports lists the hardware I/O
 port ranges that all your systems devices use. This is a good file to
 examine if recently installed hardware can’t be found in your drivers.
 Here’s an abbreviated sample of my system’s /proc/ioports.
03f6-03f6 : ide0
03f8-03ff : serial(auto)
0cf8-0cff : PCI conf1
4000-403f : Intel Corporation 82371AB PIIX4 ACPI
5000-501f : Intel Corporation 82371AB PIIX4 ACPI
c000-cfff : PCI Bus #01
d000-d01f : Intel Corporation 82371AB PIIX4 USB
d400-d43f : Ensoniq ES1371 [AudioPCI-97]
d800-d807 : Lucent Microelectronics 56k WinModem
dc00-dcff : Lucent Microelectronics 56k WinModem
e000-e0ff : PCI device 1186:1300 (D-Link System Inc)
f000-f00f : Intel Corporation 82371AB PIIX4 IDE
This file makes it easy to diagnosis hardware conflicts. However, if your
 system is working well, you probably won’t be looking at any of these files
 much.

— JP

What Are Signals?

 Signals are a simple but important means of
 interprocess communication. Interprocess communication sounds fancy, but it’s
 really a simple concept: it’s the means by which one program sends a message to
 another program. It’s common to think of signals as special messages sent by the
 Unix kernel (Section 1.10) but, in fact, any program can signal any other
 program.
What kinds of messages can you send with a signal? Relatively few, in reality.
 Signals aren’t “arbitrary” messages, like letters; they are a small group of
 pre-defined messages, each with its own special meaning. System V Unix
 supports 16 signals, each of which is assigned a number; BSD-derived Unix
 implementations and SVR4 have 32 signals. Table 24-2 lists some of the more commonly used signals. It also
 lists keyboard characters that send common signals on BSD systems (these can be
 changed; see Section 5.8).

Table 24-2. Common signals
	
 Signal name

 	
 Number

 	
 Meaning and typical use

	
 HUP

 	
 1

 	
 Hangup — stop running. Sent when you log out or disconnect
 a modem.

	
 INT

 	
 2

 	
 Interrupt — stop running. Sent when you type
 CTRL-c.

	
 QUIT

 	
 3

 	
 Quit — stop running (and dump core). Sent when you type
 CTRL-\.

	
 KILL

 	
 9

 	
 Kill — stop unconditionally and immediately; a good
 “emergency kill.”

	
 SEGV

 	
 11

 	
 Segmentation violation — you have tried to access illegal
 memory.

	
 TERM

 	
 15

 	
 Terminate — terminate gracefully, if possible.

	
 STOP

 	
 17*

 	
 Stop unconditionally and immediately; continue with
 CONT.

	
 TSTP

 	
 18*

 	
 Stop — stop executing, ready to continue (in either
 background or foreground). Sent when you type CTRL-z.
 stty (Section 5.8) calls
 this susp.

	
 CONT

 	
 19*

 	
 Continue — continue executing after STOP or TSTP.

	
 CHLD

 	
 20*

 	
 Child — a child process’s status has changed.

Note that signal numbers — especially the
 ones above 15, marked with an asterisk in Table 24-2 — vary system-to-system. Use the signal name wherever you
 can.
While the list in Table 24-2 isn’t
 definitive, it shows you the types of things signals can do. Many signals, like
 SIGSEGV, are
 warning
 or error messages. You’ve probably seen the frustrating “segmentation violation”
 message. That message came when the kernel detected something wrong and sent
 your program a SIGSEGV signal; in response, your program
 quit. Others signals, like SIGTSTP, are generated in
 response to special characters on the keyboard. And a lot of signals just say,
 “Your time is up, goodbye!”
When a process receives a signal, it can take
 a number of actions; for example:
	It can take whatever default action is specified for the signal. By
 default, some signals kill the process that receives them. For some
 signals, the default action is to stop running and dump core.
 (SIGQUIT is an example of this.) Other signals
 have no effect by default.

	

 It can trap (Section
 35.17) the signal and run a special “signal handling”
 function — in which case, it can do whatever it wants. A signal handler
 often does whatever’s necessary to shut the program down nicely: make
 sure that files are closed and left in a consistent state, and so
 on.

	It can ignore the signal, in which case nothing happens.

You’ve probably read that the command kill -9

 is guaranteed to kill a process. Why? Two
 special signals in Table 24-2 can’t
 be caught or ignored: the KILL and
 STOP signals.
The kill (Section 24.12) command doesn’t kill — it really does nothing more
 than send signals. As you now know, signals often bring death and destruction,
 but there’s no necessary reason for them to do so.
— ML

Killing Foreground Jobs

 You
 probably know that typing CTRL-c (
 Section 24.10) will terminate your
 foreground job. But what actually happens when you type CTRL-c?
When you type CTRL-c, you’re sending the INT (interrupt)
 signal (Section 24.10)
 to the foreground process. Most well-designed programs “catch” the interrupt
 signal, which means that the program installs some special function (a “signal
 handler”) that is called whenever a signal arrives. The signal handler normally
 closes all open files, resets your terminal properly (if needed), and does
 anything else necessary so that the program can depart from this world in peace.
 Then the program terminates. The QUIT

 signal, sent by CTRL-\, works similarly but also makes a
 core
 file for debugging.

 Of
 course, it’s possible for the signal handler to do something else entirely: the
 program can decide not to quit, or it can implement some truly bizarre feature.
 In fact, editors such as vi or Emacs almost
 always ignore most signals. The trap
 (

 Section 35.17) command handles
 signals in the Bourne shell.
Whenever you send a signal from the keyboard, it’s sent to all processes in
 the same process group (
 Section 24.3). This may include the
 program’s child
 processes, but it may not. And, of course, child processes can choose to ignore
 signals on their own. But more often than not, killing the parent process kills
 its children.
Section 5.8 explains how to set the
 key that sends these and other signals. The kill (Section 24.12)
 command also sends signals.

—ML and JP

Destroying Processes with kill

 Sometimes it’s necessary to eliminate a
 process entirely or to signal a process (Section 24.13); this is the purpose of
 the kill command. You can use the kill command with or without a signal
 id:
% kill
 pid
% kill
 -signal pid
where pid is the process’ identification
 number, and signal (which is optional) is the signal to
 send to the process. The default signal is number 15, the
 TERM
 signal, which tells the process to terminate.
 On some systems, the signal must be specified numerically; others allow you to
 use either the signal number or its symbolic name. [Use kill
 -l for a list of signal names; unfortunately, the listing doesn’t
 show the correspondence of names and numbers. However, they are in order, so if
 you can count, you can figure it out. — TOR]
Sometimes, a process may still exist after a kill command. If this happens, execute the kill

 command with the -KILL or -9 option. This
 almost always guarantees that the process will be destroyed. However, it does
 not allow the dying process to clean up, and therefore may leave the process’
 files in an inconsistent state.
Occasionally, processes will not die even
 after being sent the KILL signal. The vast majority of such
 processes fall into one of three categories:
	

 Zombies. A process in the zombie state (Section 24.19) is displayed as
 Z status in BSD ps (
 Section 24.5) displays and as
 <defunct> under System V. When a process
 is exiting, it informs its parent of its imminent death; when it
 receives an acknowledgment, its PID is removed from the process table. A
 zombie process is one whose total resources have been freed, but whose
 parent process’ acknowledgment has not occurred. Usually, init will step in when the parent is gone,
 but very occasionally this fails to happen. Zombies are always cleared
 the next time the system is booted and do not adversely affect system
 performance.

	Processes waiting for unavailable NFS
 (Section 1.21) resources
 (for example, trying to write to a remote file on a system that has
 crashed) will not die if sent a KILL signal. Use
 the QUIT

 signal (3) or the
 INT (interrupt) signal (2) to kill such
 processes.

	Processes waiting for a device to complete an operation before
 exiting. Often this means waiting for a tape to finish rewinding.

Killing a process may also kill all of its
 children. Child processes may not die if they’re blocking or
 “catching” the signal you use — although, as explained above, the
 KILL signal (9) will usually terminate those processes.
 Killing a

 shell can therefore kill all the foreground
 and stopped background processes initiated from that shell (including other
 shells). Killing a user’s login shell is equivalent to logging the user out.
 This is a useful (if somewhat painful) way to recover from certain kinds of
 problems. For example, if a user manages to confuse his editor by mistyping
 control keys and escape sequences, or enters an infinite loop that he can’t
 terminate by normal means, killing his shell will let him regain control of the
 situation, possibly at the cost of some work. Use the ps command to determine which process is the offending user’s
 shell. Remember that you must be superuser
 (
 Section 1.18) to kill someone else’s
 process.
If you’re using the X Window System, Section 24.20 shows how to find which window has the processes you
 may need to kill.
—AF, from Essential System Adminstration
 (O’Reilly, 2002)

Printer Queue Watcher: A Restartable Daemon Shell Script

 [This article may not appear to have a lot to
 do with the subject of this chapter, but it illustrates the other side of signal
 handling — what a program or shell script can do when it receives a signal.
 Jerry’s script uses the trap (
 Section 35.17) command to catch
 several different signals and act differently depending on whether the signal is
 a “hangup” (HUP

 , or signal 1) or a TERM (signal 15). — TOR]
Unix systems run “daemon” programs such
 as cron(8) and syslogd(8) that wait in the background, looking for work to do.
 Many daemons read configuration files when they start up. System
 administrators sometimes change the configuration files and want the daemon to
 reread the file. One way to do that is by terminating and restarting the program
 — but that’s ugly and also means the daemon won’t be running for a few seconds
 until it’s restarted. So many daemons are designed to reread their configuration
 files and/or restart themselves when they get a signal (usually the HUP signal,
 signal 1). System administrators do this by getting the daemon’s process ID
 number and sending the signal with the kill
 command. Because the daemon “catches” the signal, the daemon isn’t actually
 killed.

 You can run a
 shell script as a daemon by putting it in the background.[4] Here’s a simple example, a shell script named watchq. It reads a file full of printer queue
 names and stores it in a shell variable. Every 30 seconds, it runs lpq (
 Section 45.2) on all printer queues
 listed. If any queues have an error, the script echoes a message and the output
 of lpq to a particular user with the
 write (Section 1.21) command. (You could change it to write to the system’s
 syslog by calling logger(1) instead of write. Or use xmessage (Section 36.26) to pop a notice window
 onto someone’s X Window System console. Etc., etc.)
The script uses numbers (0, 1, 15) instead of signal names
 (EXIT, HUP,
 TERM). This is for portability to older Unix shells
 that don’t understand names in trap commands.
 But if you write a script like this on a newer system, use signal names if you
 can.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 watchq
/dev/null
 Section 43.12
#! /bin/sh
watchq - "daemon" script that watches printer queue(s) for errors
temp=/tmp/WATCHQ$$ # Holds output of lpq
watch=/usr/local/lib/watchqs # Queue names to watch
writeto=lisa # User who gets notices about printer
queues="`cat $watch`" # Put list of queue names in $queues
trap 'queues="`cat $watch`"' 1 # Reset $queues if we get a SIGHUP
trap 'rm -f $temp; exit' 0 15 # Clean up temp file when killed

Loop forever (until someone kills script):
while :
do
 for queue in $queues
 do
 lpq -P$queue >$temp
 if egrep '(out of paper|error|warning)' $temp >/dev/null
 then echo "PRINTER QUEUE $queue:" | cat - $temp | write $writeto
 fi
 done
 sleep 30
done
Now let’s run the script. After the script has run for a while, the printer
 named office goes down. I edit the
 watchqs file and remove that printer so the poor user
 lisa won’t keep getting complaints about it. Then I
 send a signal to have the file reread:
kill
 Section 24.12
% echo office main lobby > /usr/local/lib/watchqs
% watchq &
[1] 4363
 ...
% echo main lobby > /usr/local/lib/watchqs
% kill -HUP 4363
 ...
% kill 4363
[1] Exit -48 watchq
In real life, the watchq script might be
 started from a system file like /etc/rc.local when the
 system reboots. Lisa would probably edit the watchqs file
 herself. The username that’s notified by write might also be resettable with a kill
 -HUP (or kill -1).
This isn’t foolproof, and you can run into subtle problems. For instance, the
 write

 command may not work on some
 Unixes if it’s running from a daemon without a controlling
 tty (Section 24.6).
 Also, the error messages that egrep (Section 13.4) searches for may not catch
 all problems, and they are system-dependent. If you use xmessage, a user who’s away from his workstation could come back
 to tens or hundreds of windows; you might want to make the script pause until
 the user acknowledges a window. But this script is just a demonstration — to
 show a great way to write a quick-and-dirty daemon.

— JP

Killing All Your Processes

 On
 many Unix systems, kill (Section 24.12) interprets the special
 “process ID” -1 as a command to signal all your processes (all processes with
 your user ID), except for the process sending the signal.
 For example, the following command will terminate all your processes:[5]
% kill -TERM -1
To see if your system supports this feature, type man 2
 kill (Section 2.1) to
 read the kill(2) manual page.
You can use this to prevent background
 jobs from continuing after you logout; just stick kill
 -TERM -1 into your .logout file. There are
 some good reasons not to do this though: if you use several
 terminals, this will kill all your processes when you log
 out from any terminal.
This command is also useful in desperate situations. If processes are spawning
 out of control, or if your terminal is locked, you can log in from another
 terminal and kill everything, without having to dig through ps (Section
 24.5) to find the right process. The zap (Section 24.16)
 script searches process lists and kills processes automatically.

 The special -1 process ID is defined differently
 for the superuser; if you’re root, it means “all processes
 except system processes.”
If you can’t use the -1 process ID, and you use the Bourne shell or another
 shell without job control, you can use a 0 (zero) process ID. That sends the
 signal to all members of the process group (that is, processes resulting from
 the current login). A 0 doesn’t work on shells, such as the C shell, that have
 job control (Section 23.3).
—ML, JP, and JIK

Killing Processes by Name?

 This article discusses a particular version of
 kill that has some problems. Your system
 may have a different kill and, possibly, a
 version of killall (Section 24.16) that doesn’t seem to
 have as many problems. But this article is worth reading anyway for what it
 shows you about process names and the ps
 command. It’s good info to keep in mind when you’re trying to kill processes in
 a hurry.
On my Linux system, the kill(1) manual page
 says I can send signals to processes either by PID numbers (as we showed in
 Section 24.12) or by process
 names. To an old stick-in-the-mud Unix user like me, who’s been killing
 processes by their PIDs for 20 years, this doesn’t seem very
 appealing. But hey, even I appreciate some of the new
 things Unix and Linux can do! ;-) So we’re
 saying that, if my system is slow and I want to temporarily stop the two
 gcc compiles I’m running in the
 background, I can just type:
$ kill -STOP gcc
[2] Stopped gcc -c bigprog.c sub1.c sub2.c ...
[4]- Stopped gcc -o something something.c
Not necessarily. This is not always as simple as it seems. For one, before you
 kill a process by name, you’d better be sure that there are no other processes
 by that name, owned by you, running at the same time — unless you want to kill
 them too. That includes processes on other windows and ttys
 you’re logged onto at the time; it also includes at, cron, or batch jobs that are running somewhere else on the
 system. Second, the process name may not be what you think it is. Third, even if
 your kill(1) manpage says that kill can do this, your shell may have a built-in
 kill that doesn’t understand how to kill
 processes by name.

 For example, let’s say I have a runaway shell
 script named cruncher. I’m running it twice,
 and I want to kill both instances. Watch:
&
 Section 23.2
1$ cruncher & cruncher &
[1] 21451
[2] 21456
2$ kill cruncher
bash2: kill: cruncher: no such pid
3$ type -all kill
kill is a shell builtin
kill is /bin/kill
4$ /bin/kill cruncher
kill: can't find process "cruncher"
5$ jobs
[1]- Running cruncher &
[2]+ Running cruncher &
6$ kill %1
[1]- Terminated cruncher
7$ ps
 ...
21456 pts/1 00:01:25 cruncher
8$ ps x
21456 pts/1 S 1:33 sh /u/jerry/.bin/cruncher
In command 1, I put the two jobs in the
 background. In command 2, I try to kill them by name. But my shell, bash2, is complaining “no such pid.” Hmmm; it’s
 using the shell’s built-in kill; the bash2 manpage seems to say that its kill only understands PID numbers. So, in command
 3, I run type -all and find
 that the system kill is /bin/kill. In command 4, I give the process name
 again, but /bin/kill can’t find it. Say what?
 Typing jobs, command 5, shows two crunchers running. And I can kill one of them by
 using its job number, in command 6. More confusing, running ps, in command 7, also shows cruncher running.
The story ends at command 8, where I ran the BSD version of
 ps (Section 24.5). It shows me what the default “friendly” System
 V-style ps (in command 7) didn’t: the
 complete command line is actually sh
 /u/jerry/.bin/cruncher. This is a shell script, so the script
 filename cruncher, with the executable’s
 directory from the PATH (Section 35.6) prepended, is passed to a shell as an argument (Section 27.3). So (whew): to kill these
 shell scripts, I should have typed kill sh.
 But do I really want to kill all running shells?
Another problem with killing a process by
 name is that a process can start a subprocess
 (Section 24.3) with a different
 name. For instance, if your make (Section 11.10) job starts a gcc compiler, and you type kill make, will that kill gcc too? Maybe — if the signal that make gets is passed to its subprocesses (if its subprocesses haven’t
 been disowned (Section 23.11), for instance). But
 unless all “smart” versions of kill are
 smarter than I think they are, they won’t kill subprocesses with different
 names.
And don’t think that you can just write an
 alias (Section 29.2) to override your shell’s kill with /bin/kill: if you
 do, you won’t be able to use job control (Section 23.1) numbers like %1 because the external kill doesn’t have access to your shell’s job table.
My advice? It might be easier to use the old way — running ps to find the process(es) and kill by PID number
 — or use a script like zap (Section 24.16) instead.
— JP

Kill Processes Interactively

 When you want to kill processes, it’s a
 pain in the neck to run ps (Section 24.5), figure out the process
 ID, and then kill the process — although sometimes you
 have to do it that way (Section 24.15). We’ll look at two easier ways.
killall -i

Many systems have a command named killall
 with a
 -i (“interactive”) option. Be
 careful, though, because there are several versions, and the
 most basic does just what it says: kills all processes on the system (when
 run as the superuser (Section 1.18)). Check killall’s manual page on your system.
The version of killall we’re talking
 about here accepts multiple process-name arguments on its command line.
 Without its -i option, the command sends a signal (by
 default, TERM
) to any process name that matches. The
 process name you give has to match completely. Unfortunately, killall sends a signal to any process with
 that name — even processes owned by other users, which you can’t kill
 (unless you’re the superuser); you’ll get the error Operation not permitted. For example:
&
 Section 23.2, [5]
 Section 23.3
1$ cruncher & sleep 60 &
[5] 2714
[6] 2715
$ killall crunch eep
crunch: no process killed
eep: no process killed
$ killall cruncher sleep
sleep(2708): Operation not permitted
sleep(2710): Operation not permitted
sleep(2712): Operation not permitted
[5] Terminated cruncher
[6] Terminated sleep 60
With -i, killall lists
 the PID number and gives you a choice of typing
 y to kill a process or n to
 leave it alone:
$ cruncher & sleep 60 &
[5] 2732
[6] 2733
$ killall -i cruncher sleep
Kill sleep(2727) ? (y/n) y
sleep(2727): Operation not permitted
Kill cruncher(2732) ? (y/n) y
Kill sleep(2733) ? (y/n) y
Kill sleep(2734) ? (y/n) n
[5] Terminated cruncher
[6] Terminated sleep 60

zap

 A more flexible way to kill processes
 interactively is the zap
 shell script,
 presented by
 Brian Kernighan and Rob Pike in their
 classic book The UNIX Programming Environment. The
 script uses egrep (
 Section 13.4) to pick the
 processes to kill; you can type extended expressions (Section 32.15) that match more than one process. The expressions
 can match partial or complete command names, any arguments to the commands,
 or, actually, any part of the command’s line in the ps output. For example:
% zap 'troff|fmat'
 PID TTY TIME CMD
 22117 01 0:02 fmat somefile? n
 22126 01 0:15 sqtroff -ms somefile? y
We reprint the script by permission of the authors:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 zap
'...'
 Section 36.24
#! /bin/sh
zap pattern: kill all processes matching pattern

PATH=/bin:/usr/bin
IFS='
' # just a newline
case $1 in
"") echo 'Usage: zap [-2] pattern' 1>&2; exit 1 ;;
-*) SIG=$1; shift
esac

echo ' PID TTY TIME CMD'
kill $SIG `pick \`ps -ag | egrep "$*"\` | awk '{print $1}'`
The ps
 -ag command displays all processes on the system. Leave off
 the a to get just your processes. Your
 version of ps may need different options (Section 24.5).
This shell version of zap calls another script, pick, shown below.[6]
 pick shows each of its command-line
 arguments and waits for you to type y,
 q, or anything else. Answering
 y writes the line to standard output, answering
 q aborts pick
 without showing more lines, and any other answer shows the next input line
 without printing the current one. zap
 uses awk (Section 20.10) to print the first
 argument (the process ID number) from any ps line you’ve selected with pick. The inner set of nested (Section
 36.24) backquotes (Section 28.14) in zap pass pick the output of ps,
 filtered through egrep. Because the
 zap script has set the IFS variable (Section 36.23) to just a newline, pick gets and displays each line of ps output as a single argument. The outer set of backquotes
 passes kill (Section 24.12) the output of
 pick, filtered through awk.
If you’re interested in shell programming and that explanation wasn’t
 detailed enough, take a careful look at the scripts — they’re really worth
 studying. (This book’s shell programming chapters, 35 through 37, may help,
 too.) Here’s the pick script:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 pick
/dev/tty
 Section 36.15
#!/bin/sh
pick: select arguments

PATH=/bin:/usr/bin

for i
do
 echo -n "$i? " >/dev/tty
 read response
 case $response in
 y*) echo $i ;;
 q*) break
 esac
done </dev/tty
— JP

Processes Out of Control? Just STOP Them

 Especially
 if you’re a programmer, you can run into a situation where you have processes forking (Section 24.2)
 out of control — more and more of them. By the time you kill one, fifty more
 fork.
	On systems with job control
 (
 Section 23.3), there’s a good
 answer: use the STOP signal to stop the
 processes:
kill
 Section 24.12
kill -STOP ...
Stop any process you can so that it can’t fork more processes. Stop
 them all. Then start cleaning up with kill
 -9.

	If your system manager has set a per-user process limit on your
 computer, the good news is that your processes won’t eventually crash
 the system. But the bad news is, when you try to run any command that
 isn’t built into the shell (Section 1.9) (like killall (Section 24.16), which would be nice to use in this
 situation, if you have it):
% killall -STOP myprog
No more processes.
you can’t because you’re already at your limit.
If that happens, log on to another account or ask someone to run a
 command that will give a list of your processes. Depending on your
 system, the command is probably like one of these two:
% ps -u yourname

 System V
% ps aux | grep yourname

 BSD
Then go back to your terminal
 and start stopping :-). If you get
 the No more
 processes error, your shell must not
 have a built-in kill command. Many
 shells do — including bash and
 csh.
 Carefully type the next commands to be sure
 that /bin/bash exists (assuming
 your shell has a built-in echo, this
 trick[7] bypasses the external ls
 command); then, if the shell is there, replace your shell with bash. Don’t make a mistake (if you do, you
 may not be able to log in again):
exec
 Section 36.5
$ echo /bin/bas?
/bin/bash
$ exec /bin/bash
bash$ kill ...

— JP

Cleaning Up an Unkillable Process

 You
 or another user might have a process that (according to ps (Section 24.5)) has
 been sleeping for several days, waiting for input. If you can’t kill (Section
 23.12) the process, even with kill -9, there may
 be a bug or some other problem.
	These processes can be unkillable because they’ve made a request for a
 hardware device or network resource. Unix has put them to sleep at a
 very high priority and the event that they are waiting on hasn’t
 happened (because of a network problem, for example). This causes
 all other signals to be held until the hardware
 event occurs. The signal sent by kill
 doesn’t do any good.

	If the problem is with a terminal and you can get to the
 back of the terminal or the back of the computer, try unplugging the
 line from the port. Also, try typing CTRL-q on the keyboard — if the
 user typed CTRL-s while
 getting a lot of output, this may free the process.

	Ask
 your vendor if there’s a special command to reset the device driver. If
 there isn’t, you may have to reboot the computer.

— JP

Why You Can’t Kill a Zombie

Processes in your ps output that are in the
 <exiting> or Z status are called zombies.
You cannot kill zombies; they are
 already dead.
“What is a zombie?” I hear you ask. “Why should a dead process stay
 around?”
Dead processes stick
 around for two principal reasons. The lesser of these is that they provide a
 sort of “context” for closing
 open file descriptors (Section 24.3) and shutting down other
 resources (memory, swap space, and so forth). This generally happens
 immediately, and the process remains only for its major purpose: to hold on to its name and exit
 status (Section
 35.12).

 A process is named by its process
 ID or PID. Each process also has associated with it a
 parent process ID. The parent PID, or PPID, is the PID
 of the process that created it via fork (Section 24.2); if that particular
 process has since vanished, the parent PID is 1 (the PID of init (Section
 24.2)). While the original parent is around, it can remember the PIDs
 of its children. These PIDs cannot be reused until the parent knows the children
 are done. The parent can also get a single byte of status (Section
 35.12) from each child. The wait system call looks
 for a zombie child, then “collects” it, making its PID available and returning
 that status. The
 init(8) program is always waiting, so that
 once a parent exits, init will collect all
 its children as they exit and promptly ignore each status.
So, to get rid of a zombie, you must wait for it. If you have already done so
 or if the process’ PPID is 1, the process is almost certainly stuck in a device
 driver close routine, and if it remains that way forever, the driver has a
 bug.
— CT

The Process Chain to Your Window

 Almost

 everything we cover in this book works as
 well from an old-style, full-screen terminal as it does from an terminal window
 (like xterm) under the X Window System (Section
 1.22). Actually, a lot of it works on an old printing teletype, too!
 In all of those cases, you’re interacting with a Unix shell. This article covers
 things you should know about using a shell from an X window. We’ll talk
 specifically about the X11R6 xterm client,
 but this generally applies to any window with a shell inside of it — like GNOME
 terminal. This is a guided tour, so it helps to be at a workstation or other X
 display. If you can’t take the tour, please scan through and look for the points
 I make along the way.
If you don’t have an xterm window open,
 open one (by clicking on an icon, choosing a menu entry, or however you usually
 do it). We’ll call this the “first window.” Find its tty (Section 2.7).
 Next, in this first window, set an environment
 variable (Section 35.3)
 with a unique name and any value you want. You might call it
 FAVCOLOR and set the value to
 purple. Then, in that same window, type cd /tmp to change your current directory to
 /tmp. Finally, type xterm -rv
 -sb (with no
 & after its name); this should open a
 second xterm window. Here’s what that first
 xterm should look like (we’ll show C
 shell syntax here):
% tty
/dev/pts/1
% setenv FAVCOLOR purple
% cd /tmp
% xterm -rv -sb
 (cursor sits here; there's no shell prompt)
When your new second xterm pops open, it
 should be in reverse video (swapped foreground/background colors, the
 -rv option) to make it easy to identify, with a scrollbar
 too. In it, type tty to get its
 tty number, which will be different from the previous
 xterm’s. Run env or
 printenv (Section
 35.3), and you should see the special environment variable (like
 FAVCOLOR) that you set. Type pwd; the current directory should be
 /tmp.[8]
If you’ve managed to follow this twisty series of steps, you’ve started a
 chain of processes (Section 24.3).
You can see that chain of processes by typing the command
 ps aux or ps -ef (Section 24.5). You should get lines
 something like these:
% tty
/dev/pts/3
% ps -ef
UID PID PPID C STIME TTY TIME CMD
jpeek 675 1 0 May13 ? 00:00:14 xterm
jpeek 681 675 0 May13 pts/1 00:00:00 zsh
jpeek 14850 681 0 15:58 pts/1 00:00:00 xterm -rv -sb
jpeek 14852 14850 0 15:58 pts/3 00:00:00 zsh
jpeek 14992 14852 0 16:07 pts/3 00:00:00 ps -ef
This is the chain of processes that led to the second window. Let’s start from
 the bottom and work up. From the ps -ef
 command,[9] you’ll see that the ps command
 itself had PID (process ID) 14992; its parent’s PID (PPID) was 14852. So the
 process that started the ps process is the
 shell running in that window: in my case, a Z shell, zsh, with PID 14852. Notice that both of these processes are
 running on the same tty (Section 2.7) named pts/3. That’s a way to find all the processes in a
 particular window: check the tty name. This zsh is the shell running in this particular xterm. When you exit the shell (by typing CTRL-d
 or exit), the window will close too — but
 don’t try that yet! Instead, find the parent of the shell; it’s the xterm process, which is running on — are you
 surprised? — another tty, pts/1. This makes
 sense, because you started xterm from another window, the
 first window. There’s a shell running in the first window too; it’s the zsh with PID 681. The parent of the first window’s
 shell is, yes, another xterm, PID 675. And
 its parent has PID 1; this is init (Section 24.2), the “grandparent” of all
 processes on your system.
Your window system may not work quite this way. The parent of the top-level
 xterm might not be init. Also, an xterm could be owned by root instead of by
 you. Still, you should have a “chain” of processes, something like the one I
 described, on your system.
Why did we go through all this? One reason is so you’ll know how to track the
 processes that lead to an xterm — and to know
 what to look for if you have to kill
 (
 Section 24.12) a hung window or a
 process in a window. It’s also to show that the environment from a parent window
 (here, the first window) — the current directory, environment variables, and so
 on — is passed to the child window (here, the second window). Finally, it’s to
 show what happens when you

 close a window by exiting the shell: the
 shell terminates, so its parent xterm process
 terminates too.
So what happens to a shell running in a window if you close the window by
 clicking the “X” box on the window frame or by choosing the
 close or destroy commands in the
 window manager? The xterm gets a signal (Section
 24.10), and the system hopes that it dies. But it may
 not die, and the process may stay around. Instead of
 trusting the window manager to kill a window and the processes in it, I tend to
 use ps so I know for sure that all the
 processes are gone. Knowing the stuff we’ve looked at here lets me identify a
 window and its processes.
But let’s not kill things! Instead, in the second window, type exit at the prompt. The window should go away.
 And, in the first window, you should have a new prompt. (If you had started the
 second xterm in the background (Section
 23.2), you could have kept working in the first window while the
 second window ran, too.

 But watch out for the zsh and ksh
 options named bg_nice and bgnice,
 respectively, which run background commands at lower priority. You probably
 don’t want your new windows to run at low priority, so be sure that option isn’t

 set.)

— JP

Terminal Windows Without Shells

xterm

 is an X client that runs a Unix process
 on a pty “inside” a window. By default, this process is a
 shell: an instance of the same shell you log into the system with. But it can be
 basically any Unix process. As you saw in Section 24.20, when the process exits, the xterm window closes because its child process has gone.
To override the default shell process in an xterm window, use the -e option
 (Section 5.22), followed by the
 command line to run the process. This must be the last thing on the xterm command line. If you want to open an
 xterm window with no scrollbar (the
 +sb option) and with the vi editor in it, to edit the log file named
 logfile, run the command below:
% xterm +sb -e vi logfile
%
An xterm window should open with vi running inside it. If you don’t know how to use
 vi, the best thing to do is to leave it alone until
 you’ve finished this example — then press the ESC key, type :q, and press ENTER to exit vi. When vi
 exits, its window should close too, and you’ll get another shell prompt.
I chose to have you run vi in a window
 because the vi process keeps running until
 you tell it to quit, and then the window closes. Other Unix processes that don’t
 wait for a “quit” command will terminate as soon as they’re done, and the window
 closes before you can see the process output. For example, let’s say you want to
 display a file in an xterm window with a
 scrollbar. Start by choosing a file and using wc
 -l (Section 16.6) to
 count the number of lines. Then open an xterm
 and a scrollbar, with the scrolling buffer length set to just the right number
 of lines:
cat
 Section 12.2
% wc -l somefile
 74 somefile
% xterm -sl 74 -sb -e cat somefile
%
What happened? Unless your window manager holds it there, the xterm window closes just after it opens. Why? Its
 child cat process exited, so the parent
 xterm did too. One easy answer is to use
 a shell that runs three commands. First is the command you want to run (here,
 cat). Next, echo a prompt. Finally, run
 the read command (Section 35.18) to pause until you give
 a dummy value — just pressing ENTER will be enough to satisfy read, and then the shell will exit. Here’s how:

% xterm -sl 76 -sb -e \
 sh -c 'cat somefile; echo "Press RETURN to exit..."; read dummy'
(First, two notes. The backslash (\) isn’t
 needed if you type the entire command on one line. And we’ve increased the
 scroll length to 76 because the echo and the
 newline after it add two lines of text.) Here, xterm starts a shell, but it’s not the default shell (whatever
 that happens to be): it’s the sh shell you
 specify after the xterm -e
 option. The sh option -c
 tells the Bourne shell to run the single command line from the following
 argument and then exit. The command line is in quotes to be sure the shell
 inside the xterm
 interprets it. The three commands are separated by semicolons (;) (Section
 28.16). If your command line is really complicated, you might want to
 change the sh -c '...' to run a little
 shell script (Section 35.1) instead, like sh $HOME/lib/catter.
— JP

Close a Window by Killing Its Process(es)

 In the X Window System,
 there’s a process controlling every window. If the window (or its process) is
 frozen and you can’t get rid of it, the easier way is usually to kill (Section
 24.12) the process. As Section
 24.20 explains, there may be a chain of processes running; the window
 could come from the parent process (as in the case of an xterm with a shell running inside of it) or it
 could be the child (such as when a shell script runs an X client like xmessage — as in the nup script below). Your job is to use ps (Section 24.5) to
 track down the process(es) behind the window and kill the right one(s). We’ll
 look at two different examples, then look at a shell script that opens a window
 and, later, closes the window by killing its process.
Example #1: An xterm Window

 Let’s say you’re running vi in an xterm
 window, and the window seems to be
 frozen. Start with some detective work: open up another xterm window and run ps
 alwx or ps
 -ef. (If you’re sure that all the processes in the window are
 owned by you — and none were set user ID
 (Section 1.17) — you can use
 run ps lwx, for example.) You want a
 listing that shows the chain of process IDs, parent-to-child, in that
 window. The tty (Section 2.7) of the shell inside the
 xterm will help you find the right
 one, if you know it. For example, I found vi
 0568.sgm running on the tty pts/5, so the shell I want (the parent of vi) must also be on pts/5. From the shell’s parent ID, I can find the PID of the
 xterm that started the shell. (I’ll
 cut some of the columns in this listing to make it easier to read.)
% ps alwx
 UID PID PPID STAT TTY TIME COMMAND
1000 11287 1 S tty2 0:44 xterm -sb -sl 2000
 ...
1000 11289 11287 S pts/5 0:04 bash2
 ...
1000 2621 11289 S pts/5 0:00 vi 0568.sgm
Note
A Unix system cycles its PIDs. A child process may
 have a lower
 PID than its parent! (Here, vi’s PID is 2621, but its parent’s
 PID is 11289.)

Now you need to decide what process to kill. You could simply kill them
 all, assuming you own them (on some systems, the xterm process may be owned by root, so
 you can’t kill it unless you can become superuser). But a little detective
 work can save trouble. For instance, see whether the xterm is still alive by trying to open its
 menus (Section 5.17). If a menu pops up,
 the problem is likely with the shell (here, bash2) or its child process (here, vi). Try killing the most junior process (here, vi) first:
-9
 Section 23.3
% kill 2671
% ps 2671
 PID TTY STAT TIME COMMAND
 2671 pts/5 S 0:00 vi 0568.sgm
% kill -9 2671
%
In this case, killing the process with a plain TERM
 signal didn’t do the job; ps showed it
 was still running. So I had to use kill
 -9. After this, if there’s a shell prompt in the formerly
 frozen window, you’re probably okay — although you may need to reset the
 terminal modes if it’s still acting weird. On the other hand, if the window
 is still frozen, kill the next-higher process — here, bash2. Continue killing from the bottom up
 until the window is unfrozen or until the window closes.

Example #2: A Web Browser

 The

 rule I gave in the
 previous section — killing the lowest child process first — is usually right
 for xterm windows, but not always right.
 For example, I’m using a development version of the Mozilla browser. It
 starts a series of child processes. But all the processes are designed to
 run as a unit, so killing the lowest child may just leave the browser in an
 unstable state. In cases like this, it’s better to kill the top-level
 process (or one of the top, as I’ll explain) and then check to be sure all
 the children have died.
Start with the long listing of processes. Find the parent and its
 children. Note that, depending on how they were started, they may not have a
 tty of their own — in general, a window doesn’t need a tty unless it’s
 running a shell-oriented utility. I’ve cut some lines and columns from the
 example to make it more readable:
% ps lwx
 UID PID PPID STAT TTY TIME COMMAND
1000 9526 752 S tty2 0:00 sh /usr/local/mozilla/...
1000 9536 9526 S tty2 11:49 /usr/local/mozilla/...
1000 9538 9536 S tty2 0:00 /usr/local/mozilla/...
1000 9539 9538 S tty2 0:03 /usr/local/mozilla/...
1000 19843 1 S tty2 0:00 ./psm
1000 19846 19843 S tty2 0:00 ./psm
1000 19847 19846 S tty2 0:00 ./psm
1000 19858 9538 S tty2 0:00 /usr/local/mozilla/...
1000 19859 19846 S tty2 0:00 ./psm
1000 19866 19846 S tty2 0:00 ./psm
1000 32316 9538 S tty2 0:00 /usr/local/mozilla/...
1000 5705 9538 S tty2 0:00 /usr/local/mozilla/...
I started Mozilla from a menu on the window system. The window system was
 started from tty2 (by typing startx in the second virtual
 console (Section
 23.12)). So the processes are “on” tty2,
 too. I happen to know that the ./psm
 processes are started by Mozilla. Although the parent psm is owned by the init (Section
 24.2) process (PID 1), these were either disowned (Section 23.11) by Mozilla, or somehow the top-level psm process “lost” its parent. Finding this
 sort of disconnected process can be hard. One clue is that its
 PID is close to other Mozilla processes. Another clue
 may come when you use an output format like ps
 ux, which shows the starting time (“wall clock” time — not the
 CPU
 TIME column above): you may see that the
 processes all started near the same time of day.
The first process in the list, the shell script (starting with sh), is what probably started the chain of
 processes running. Often, on Unix systems, a shell script sets the
 environment correctly, then starts another library program running. All the
 other processes here seem to have been started from the process with
 PID 9536, which has used 11 minutes 49 seconds of CPU
 time. Just to be safe, I’ll kill both top processes at once:
% kill 9526 9536
The browser window closed, to I’m close to done. I also need to do another
 ps to be sure the other processes
 have vanished; note that they may need a few seconds to die gracefully on
 their own. Sometimes you’ll get a zombie
 process (Section
 24.19) that can’t be killed, but it usually doesn’t hurt anything
 — unless your window’s processes have been doing some hardware accesses and
 the zombie is tying up the hardware. Section 24.18 has some ways to clean up in that case.

Closing a Window from a Shell Script

 A shell script that opens windows
 also may need a way to close them. The simplest way is by killing the
 window’s process. You should be sure that whatever this process does,
 killing it won’t cause it to leave old lock files and other “e-debris”
 around; it should exit cleanly when it gets a signal.
The xmessage client works well in a
 case like this. It opens a little window with a text message in it. If the
 user clicks a button in the window, xmessage terminates. But, in the example below, I want the
 shell script to close the window instead. Here’s how it works:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 nupndown
The shell script has two links (Section 10.4), or names: nup

 and ndown. I use them on my workstation, which no one else
 (usually) shares. When I run nup, the
 script brings the network up by dialing the modem and making a
 PPP connection. It also opens a red xmessage window with the message “network up”
 to remind me that my phone line is being tied up. When I’m done online, I
 run ndown. ndown disconnects the modem and closes the xmessage window by killing its process. Here’s
 the basic script:
$!
 Section 27.17, '...'
 Section 28.14
#!/bin/sh
pidfile=/tmp/.nup-pid

case "$0" in
*nup)
 xmessage -geometry 86x51+645+72 -fg white -bg red 'network up' &
 echo $! > $pidfile
 /sbin/ifup ppp0
 ;;
*ndown)
 pid=`cat $pidfile`
 case "`ps $pid`" in
 xmessage)
 kill $pid
 rm -f $pidfile
 ;;
 esac
 /sbin/ifdown ppp0
 ;;
esac
When the script is invoked as nup, it
 starts xmessage in the background (that
 is, disowned (Section 23.11)) and saves its
 PID in the temporary file. So xmessage will keep running after nup exits; its PID will be
 stored in the temporary file. Later, when the same script is invoked as
 ndown, it reads the temporary file to
 get the PID into a shell variable, runs ps to be sure that the process still exists
 and that its name still contains xmessage
 (in case another process has replaced xmessage in the meantime). If all’s well, it kills that
 process to close the xmessage window,
 then removes the temporary file. Finally it shuts down the network.
The point of this simple example script is to demonstrate how to close a
 window by killing its process. For instance, maybe your script opens an
 xclipboard window and wants to close
 it later if the user doesn’t do so first.

— JP

[1] This isn’t true when the subprocess is execd from
 the parent process without a fork first. Section 24.2 explains.

[2] When you use the shell’s exec (Section 35.5) command, it does
 not start a subprocess.

[4] It’s usually also a good idea to be sure that the input and outputs are redirected (Section 43.1, Section 36.16) away from the
 terminal, maybe to the system console instead. On systems and shells
 that kill background jobs when you log out, use nohup (Section
 23.10).

[5] Signal 15 is SIGTERM, which is the signal
 kill sends by default. In this
 command, you need to specify it explicitly, for obvious syntactic
 reasons.

[6] The MH email system also has a command named pick. If you use MH, or frontends like
 exmh or mh-e, you could
 rename this script to something like choose.

[7] This trick uses the shell’s built-in wildcard matching (Section 1.13) to show
 you the shell’s name — we hope. If you get an answer like
 /bin/bas?, or multiple
 answers that don’t include /bin/bash, try another shell name. (Maybe your
 bash is in /usr/local/bin, for instance.) If
 you get an answer like No more
 processes, though, your echo command probably isn’t built in.

[8] If your setup files assume you’re in your home
 directory (Section
 3.7), you may have some problems.

[9] Note that, if your system’s process ID numbers have “recycled” and
 started over from 1, the ps command
 may not have the highest number.

Chapter 25. Delayed Execution

Building Software Robots the Easy Way

If you are more
 familiar with desktop systems than Unix, the concept of delayed
 execution may be new to you. After all, the prime mover of all activity in the
 desktop metaphor is the user. In Unix, all kinds of processes start, execute,
 and report without any users on the system.
There are a few good reasons why you need to know about delayed execution. The
 first is that long, noninteractive jobs are best run when the fewest users are
 likely to be on the system. Humans find responsive systems desirable;
 processes aren’t as likely to complain
 about getting sporadic CPU time. The second situation in which delayed execution
 is desirable is when a resource you need is only available at certain times. For
 instance, your group of local workstations create tar archives for the day’s work, and you need to grab those files
 and copy them to tape. The third reason for delayed execution is when you need
 to push or pull information on a regular
 basis. This is the case with web masters who need to push their updated content
 to their production environment from their editing machine. The reverse may also
 hold true: you may need to collect Rich Site Summary files from a variety of
 web sites for a local cache. In all these cases, you need processes to start
 without you, like a band of relentless software
 robots.[1]
This chapter covers the following techniques of delayed execution:
	
 The venerable
 cron (
 Section 25.2) system schedules
 process for regular, periodic execution. It is the most frequently used
 utility for running programs after hours.

	For processes that only need to run once at some future date, the
 at (

 Section 25.5) command is
 ideally suited.

	For simple scripts that need to

 pause
 before continuing on, the sleep (Section 25.9) command is
 available.

— JJ

Periodic Program Execution: The cron Facility

 This article covers two different versions of
 cron. There are other versions around:
 Vixie cron,
 for instance, has some different features and is common in Linux distributions.
 A variation called anacron
 doesn’t assume (as cron does) that the system is running 24 hours a day; it’s
 especially nice on portable computers. Rather than trying to cover every flavor,
 this article has information on older, basic crons that should show you some of what to expect in whatever
 version you have.
cron allows you to schedule programs for
 periodic execution. For example, you can use cron to call rsync
 every hour to update your production web
 site with new articles or to perform any number of other tasks.
With redirection (
 Section 43.1), cron can send program output to a log file or to
 any username via email.
Note
cron

 jobs are run by a system program
 in an environment that’s much different from your normal login sessions. The
 search path (Section 27.6) is usually shorter;
 you may need to use absolute pathnames for programs that aren’t in standard
 system directories. Be careful about using command aliases, shell functions
 and variables, and other things that may not be set for you by the
 system.

Execution Scheduling

 The cron system is serviced by the cron
 daemon (

 Section 1.10). What to run and
 when to run it are specified to cron by
 crontab entries, which are stored in the system’s
 cron schedule. On older BSD systems,
 this consists of the files /usr/lib/crontab and
 /usr/lib/crontab.local; either file may be used to
 store
 crontab entries. Both are ASCII files and may be
 modified with any text editor. Since usually only root
 has access to these files, all cron
 scheduling must go through the system administrator. This can be either an
 advantage or a disadvantage, depending on the needs and personality of your
 site.
Under many other versions of Unix, any user may add entries to the
 cron schedule.
 crontab entries are stored in separate files for
 each user. The crontab
 files are not edited directly by
 ordinary users, but are placed there with the crontab
 command (described later in this section). [If your system is using
 Vixie cron, try creating a crontab file for
 yourself by typing crontab -l. This will
 create a new file with vi or the editor
 you’ve named in the EDITOR environment variable. Each
 line of this file should contain either a comment or a
 crontab entry (described below). When you save and
 exit the editor, your file will be added to the cron
 spool directory. — JJ] [In my experience, the current
 directory during these personal cron jobs
 is your home directory. If you read a file or redirect output to a file with
 a relative pathname (Section 31.2), it will probably be
 in your home directory. Check your system to be sure. —
 JP]
crontab
 entries direct cron to run commands at regular intervals.
 Each one-line entry in the crontab file has the
 following format:
 mins hrs day-of-month month weekday username cmd
 (BSD)
 mins hrs day-of-month month weekday cmd
 (other)

 Spaces separate the fields. However, the final field,
 cmd, can contain spaces within it (i.e., the
 cmd field consists of everything after the space
 following weekday); the other fields must not contain
 spaces. The username field is used in the original BSD
 version only and specifies the username under which to run the command. In
 other versions, commands are run by the user who owns the
 crontab in which they appear (and for whom it is
 named).
The first five fields specify the times at which cron should execute cmd. Their meanings
 are described in Table
 25-1.
Table 25-1. crontab entry time
 fields
	
 Field

 	
 Meaning

 	
 Range

	

 mins

 	
 The minutes after the hour

 	
 0-59

	

 hrs

 	
 The hour of the day

 	
 0-23 (0 = midnight)

	

 day-of-month

 	
 The day within a month

 	
 1-31

	

 month

 	
 The month of the year

 	
 1-12

	

 weekday

 	
 The day of the week

 	
 1-7 (1 = Monday) BSD

	 	 	
 0-6 (0 = Sunday) System V

These fields can contain a single number, a pair of numbers separated by a
 dash (indicating a range of numbers), a comma-separated list of numbers and
 ranges, or an asterisk (*, a wildcard
 that represents all valid values for that field). Some versions accept
 strings of letters: for instance, Vixie
 cron, at least, accepts month and day
 names instead of numbers.

 If the first character in an entry is
 a hash mark (#), cron will treat the
 entry as a comment and ignore it. This is an easy way to temporarily disable
 an entry without permanently deleting it.
Here are
 some example crontab entries (shown in non-BSD
 format):
/proc
 Section 24.9, 2>&1
 Section 36.16, \%
 Section 25.4
0,15,30,45 * * * * (echo -n ' '; date; cat /proc/loadavg) >/dev/console
0,10,20,30,40,50 7-18 * * * /usr/lib/atrun
7 0 * * * find / -name "*.bak" -type f -atime +7 -exec rm {} \;
12 4 * * * /bin/sh /usr/adm/ckdsk >/usr/adm/disk.log 2>&1
22 2 * * * /bin/sh /usr/adm/ckpwd 2>&1 | mail root
30 3 * * 1 /bin/csh -f /usr/lib/uucp/uu.weekly >/dev/null 2>&1
12 5 15-21 * * test `date +\%a` = Mon && /usr/local/etc/mtg-notice
#30 2 * * 0,6 /usr/lib/newsbin/news.weekend
The first entry displays the date on the console terminal every 15 minutes
 (on the quarter hour); notice that multiple commands are enclosed in
 parentheses to redirect their output as a group. (This runs the commands
 together in a subshell (Section 43.7).) The second entry
 runs /usr/lib/atrun every 10 minutes from
 7:00 a.m. to 6:50 p.m. daily. The third entry runs a find command at 7 minutes after midnight to
 remove all .bak files not accessed in 7 days. To cut
 wear and tear and load on your disk, try to combine
 find jobs (Section
 14.19). Also, as Section
 25.8 explains, try not to schedule your jobs
 at frequently chosen times like 1:00 a.m., 2:00 a.m., and so on; pick
 oddball times like 4:12 a.m.
The fourth and fifth lines run a shell script every day, at 4:12 a.m. and
 2:22 a.m., respectively. The shell to execute the script is specified
 explicitly on the command line in both cases; the system default shell,
 usually the Bourne shell, is used if none is explicitly specified. Both
 lines’ entries redirect standard output and standard error, sending it to a
 file in one case and mailing it to root in the
 other.
The sixth entry executes a C shell script named
 uu.weekly, stored in
 /usr/lib/uucp, at 3:30 a.m. on Monday mornings.
 Notice that the command format — specifically the output redirection — is
 for the Bourne shell, even though the script itself will be run under the C
 shell. The seventh entry runs on the third Monday of every month; there’s
 more explanation below. The final entry would run the command
 /usr/lib/newsbin/news.weekend at 2:30 a.m. on
 Saturday and Sunday mornings were it not disabled with a #. (# can
 also be used to add comments to your crontab.)
The fourth through sixth entries illustrate three output-handling
 alternatives: redirecting it to a file, piping it through mail, and
 discarding it to /dev/null (Section 43.12). If no output
 redirection is performed, the output is sent via mail to the user who ran
 the command.
The cmd field can be any Unix command or group of
 commands (properly separated with semicolons). The entire
 crontab entry can be arbitrarily long, but it must
 be a single physical line in the file.
One problem with the crontab syntax is that it lets
 you specify any day of the month and any day of the week; but it doesn’t let
 you construct cases like “the third Monday of every month.” You might think
 that the crontab entry:
12 5 15-21 * 1 your-command
would do the trick, but it won’t; this crontab entry
 runs your command on every Monday, plus the 15th through the 21st of each
 month.[2] An answer from Greg Ubben is shown in the seventh entry. He uses
 the test (Section 35.26) and date commands to compare the name of today
 (like Tue) to the day we want the entry
 to be executed (here, Mon). This entry
 will be run between the 15th and 21st of each month, but the
 mtg-notice command will run only on the Monday
 during that period. The shell’s &&
 operator (Section
 35.14) runs the mtg-notice command only when
 the previous test succeeds. Greg actually writes the entry as shown here,
 testing for failure of the test
 command:
12 5 15-21 * * test `date +\%a` != Mon || /usr/local/etc/mtg-notice
He did it that “backwards” way so the cron job’s exit status would be 0 (success) in the case when
 it doesn’t execute mtg-notice. You may need that
 technique, too.
The cron command starts the cron program. It has no options. Once started, cron never terminates. It is normally started
 automatically by one of the system initialization scripts. cron reads the crontab
 file(s) every minute to see whether there have been changes. Therefore, any
 change to its schedule will take effect within one minute.

A Little Help, etc.

 Some flavors of Unix, notably Red Hat and
 Debian Linux, have included an easy shortcut to creating periodic processes.
 In some systems, the /etc directory
 will contain the following directories:
	cron.daily
	cron.hourly
	cron.monthly
	cron.weekly

By placing programs and scripts in these directories, you can have those
 chosen processes occur at the interval designated by the extension of the
 directory name. By sacrificing granularity of when those processes occur,
 you gain ease of use. Of course, adding several resource-intensive programs
 to the same directory may bring an underpowered system to its knees.
 Excerise care.
In case you’re curious, these directories are really just an extension of
 the Vixie cron system. Looking inside /etc/crontab, we begin to see the
 magic:
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

run-parts
01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly
If you want to change when these various cron groups
 execute, this is the place to make your changes. The
 run-parts

 script is a little be more complicated, but it’s worth a brief look.
#!/bin/bash

run-parts - concept taken from Debian

keep going when something fails
set +e

if [$# -lt 1]; then
 echo "Usage: run-parts <dir>"
 exit 1
fi

if [! -d $1]; then
 echo "Not a directory: $1"
 exit 1
fi

Ignore *~ and *, scripts
for i in $1/*[^~,] ; do
 [-d $i] && continue
 # Don't run *.{rpmsave,rpmorig,rpmnew,swp} scripts
 ["${i%.rpmsave}" != "${i}"] && continue
 ["${i%.rpmorig}" != "${i}"] && continue
 ["${i%.rpmnew}" != "${i}"] && continue
 ["${i%.swp}" != "${i}"] && continue
 ["${i%,v}" != "${i}"] && continue

 if [-x $i]; then
 $i 2>&1 | awk -v "progname=$i" \
 'progname {
 print progname ":\n"
 progname="";
 }
 { print; }'
 fi
done

exit 0
The first dozen or so lines of this script are either comments or sanity
 checks to ensure that it was called with a directory name. The meat of the
 script is the loop that looks at all the non-tilde files in the given
 directory. As long as the file isn’t a relic from the Red Hat Package
 Manager or an RCS file, the file is run and its results sent to awk, so that a somewhat clean report can be
 mailed by cron. You now have the code to
 set up this system if your Unix doesn’t have
 it.

— AF, JP, and JJ

Adding crontab Entries

For a good tip on silencing cron job mailings, see Section 25.6.

 Most recent
 versions of Unix have a special command for maintaining the
 crontab file. To create a new
 crontab file, create a file containing the desired
 crontab entries. Then run the crontab
 command to install the file in the
 cron spool area. For example, if user
 chavez executes the command below, the file
 mycron will be installed as
 /usr/spool/cron/crontabs/chavez:
$ crontab mycron
If chavez had previously installed
 crontab entries, they will be
 replaced by those in mycron; thus,
 any current entries that chavez wishes to keep must also be
 present in mycron.
The -l option to crontab
 lists the current crontab entries, and redirecting its
 output to a file will allow them to be captured and edited:
$ crontab -l >mycron
$ vi mycron
$ crontab mycron

 The
 -r option will remove all current
 crontab entries. Many versions of the crontab have an additional -e
 option that lets you directly edit your current crontab
 entries in a single step.
On original BSD-based Unix implementations, there is no separate crontab command, nor does each user get a personal
 crontab file. It does distinguish between "
 global” crontab
 entries (in /usr/lib/crontab) and “local” entries (in
 /usr/lib/crontab.local) — however, you have to edit
 these files directly, which will probably require you to become superuser. It’s
 a good idea to collect personal and site-specific crontab
 entries in the crontab.local
 file.
— AF, from Essential System Administration
 (O’Reilly, 2002)

Including Standard Input Within a cron Entry

 Since crontab entries
 must be a single line long, it’s hard to include any standard input with them.
 Sure, you can use commands like:
0 22 * * * echo "It's 10PM; do you know where your children are?" | wall
but you can’t use “here documents” and other methods of generating multiline
 input; they intrinsically take several lines.
To solve this problem, cron allows you to include standard input directly
 on the command line. If the command contains a percent sign (%), cron uses
 any text following the sign as standard input for cmd.
 Additional percent signs can be used to subdivide this text into lines. For
 example, the following crontab entry:
30 11 31 12 * /etc/wall%Happy New Year!%Let's make next year great!
runs the wall command at 11:30 a.m. on
 December 31, using the text:
Happy New Year!
Let's make next year great!
as standard input. [If you need a literal percent sign in your entry, for a
 command like date +%a, escape the percent
 sign with a backslash: \%. —
 JP]

The at Command

 The at facility submits
 a command line (or a script) for execution at an arbitrary later time. It has
 the form:
% options time
This submits scriptfile for execution at a later
 time. The redirection (<) isn’t required on versions that can read directly from a
 file. By default, at reads the commands from
 its standard input. So if you don’t want to write a script, you can omit the
 file and type your commands on the terminal, terminated by CTRL-d:
% options time

Command 1
Command 2
...
CTRL-d
The time is most commonly a four-digit number
 representing a time on a 24-hour clock. For example, 0130 represents 1:30 a.m. and 1400 represents 2 p.m. You can also use abbreviations such as
 1am, 130pm, and so on.
— ML

Making Your at Jobs Quiet

 Most modern versions of at will mail you any output that your commands
 make. You might think of using the command line below to throw at output into the Unix trash can, /dev/null (Section 43.12):
>&
 Section 43.5
% sometime...
 ...wrong
but that won’t work because it throws away the output of the at command itself. at just saves your job in a file to be run later by a system
 program. The commands you want quiet are the commands stored in that file. One
 way to keep at quiet, if you use a shell like
 csh
 , is:
% sometime
at> some command
at> another command
at> ...etc...
at> CTRL-d
Bourne-type shells make it easier:
exec >
 Section 36.5
$ sometime
at> exec > /dev/null 2>&1
at> some command
at> another command
at> ...etc...
at> CTRL-d
Two notes:
	Some versions of at have a
 -s option that runs your job with the Bourne
 shell.

	Not all versions of at prompt you
 with at> as I showed above.

— JP

Checking and Removing Jobs

 From time to time, you’ll submit an
 at job and realize that there’s something
 wrong with it. How do you get it out of the queue? Two tools help you do this:
 atq, which reports the jobs that are in
 the queue, and atrm
 , which deletes jobs that are already in
 the queue.
atq is pretty simple; by default, it
 reports on all jobs that have been queued. Optionally, you can give it a user
 name as an argument; in this case it reports all the jobs queued by the given
 user. The report looks like this:
los% atq
 Rank Execution Date Owner Job # Queue Job Name
 1st Oct 9, 1996 22:27 mikel 4637 a stdin
 2nd Oct 10, 1996 01:08 mikel 4641 a stdin
 3rd Oct 10, 1996 02:34 judy 4663 a stdin
Note that atq has no objection to telling
 you about other users’ jobs. Although this might seem like a security hole, it’s
 actually useful — see Section 25.8.
 The jobs are ordered according to their execution date. With the
 -c option, atq orders
 jobs according to when they were queued — conceivably a useful feature.
 (atq -n just prints the number of jobs that are queued;
 I’m not sure when this would be useful.)
Once you’ve found out the job number, you can delete it with the command
 atrm. You can only delete your own jobs,
 not someone else’s:
% atrm 4637
4637: removed
% atrm 4663
4663: permission denied
The command atrm - removes all the jobs you
 submitted; it’s good for cleaning out your queue completely.
Note

 On
 some versions, use at -l to list your jobs (instead of
 atq) and at -r
 to delete your jobs (instead of atrm).
 Other systems may have different commands and options; check your
 manpage.
Some older BSD-based implementations may not support any of these options.
 Once you submit a job, you can delete it by finding its filename in the
 /usr/spool/at directory and emptying the file (Section 15.2). Or the superuser
 (Section 1.18) can go to the
 spool directory and delete the file by hand.

— ML

Avoiding Other at and cron Jobs

 atq and at
 -l (Section 24.7) are
 more important than they seem. They give you a way to decide when to run your
 jobs. I suggest that you check atq before
 picking a time to run your job. If you don’t, the system may have a dozen huge
 jobs starting at midnight or 1 a.m. They will bring the system to its knees when
 there’s no one around to help out. Here’s an example of what can happen, using
 the BSD-style at commands:
% atq
 Rank Execution Date Owner Job# Queue Job Name
 1st Sep 12, 1996 01:00 mikel 4529 a trashsys.sh
 2nd Sep 12, 1996 01:00 johnt 4531 a flame.sh
 3rd Sep 12, 1996 01:00 davek 4532 a stdin
 4th Sep 12, 1996 01:00 joek 4533 a troffit
 5th Sep 13, 1996 02:00 bobr 4534 a stdin
Four of the five users happened to pick 1 a.m. as their submission time.
 Therefore, four big jobs will start in the middle of the night. Will your system
 survive? Will any of these be done in the morning? These are good questions.
 Instead of submitting your jobs to run at 1 a.m., midnight, or some other
 integral number, start them at different times, and make them times like 3:48
 a.m. If your system administrator notices lots of jobs running at the same times
 on your system, she might delete some of them and ask you to reschedule.
If your system
 has personal crontab files (Section 25.2), you won’t be able to see
 other users’ cron jobs. The best way to cut
 system load is to pick strange times like 4:37 a.m. for your cron jobs.

— ML

Waiting a Little While: sleep

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 sleep

 The
 sleep command waits. That’s all it does.
 So what good is it?
	A quick-and-dirty reminder
 service when you don’t have leave.
 This will print the message Time to go
 now.... in 10 minutes (600 seconds):
() &
 Section 43.7, ;
 Section 28.16
% (sleep 600; echo Time to go now....)
&

	You can’t use at (Section 25.5), and you have to
 run a job later (say, in three hours):
% (sleep 10800; someprog) &

	To
 watch a program (usually a shell script) that’s running in the
 background and see what processes it runs:
!!
 Section 30.8
% prog &
[1] 12345
% sleep 5;ps
 PID TT STAT TIME COMMAND
18305 p4 S 0:01 -csh (csh)
18435 p4 S 0:00 /bin/sh prog
18437 p4 D 0:00 /bin/sort -r temp
18438 p4 R 0:00 ps
% !!;!!;!!;!!;!!
sleep 5; ps; sleep 5; ps; sleep 5; ps; sleep 5; ps; sleep 5; ps
 PID TT STAT TIME COMMAND
 ...
 ...5 seconds pass...
 PID TT STAT TIME COMMAND
 ...

	When you’re running a series of commands that could swamp the
 computer, to give it time to catch up. For instance, the mail (Section 1.21) program starts background processes to deliver
 the mail. If you’re sending a bunch of form letters, sleep five or ten
 seconds after each one:
foreach
 Section 28.9
% foreach name (`cat people`)
? formltrprog $name | mail $name
? sleep 10
? end
Or, to send print jobs while you’re at lunch — but give other people a
 chance to print between yours:
% lp bigfile1;sleep 600;lp bigfile2;sleep 600;lp bigfile3

— JP

[1] Thanks to Jeff Sumler for the phrase “software robots.”

[2] This strange behavior seems to be a System V peculiarity that
 somehow infected the rest of the world. Original BSD systems behave
 the way we explained earlier.

Chapter 26. System Performance and Profiling

Timing Is Everything

 Whether
 you
 are a system administrator or user, the responsiveness of your Unix system is
 going to be the primary criterion of evaluating your machine. Of course,
 “responsiveness” is a loaded word. What about your system is responsive?
 Responsive to whom? How fast does the system need to be to be responsive? There
 is no one silver bullet that will slay all system latencies, but there are tools
 that isolate performance bottlenecks — the most important of which you carry on
 your shoulders.
This chapter deals with issues that affect system performance generally and
 how you go about finding and attenuating system bottlenecks. Of course, this
 chapter cannot be a comprehensive guide to how to maximize
 your system for your needs, since
 that is far too dependent on the flavors of Unix and the machines on which they
 run. However, there are principles and programs that are widely available that
 will help you assess how much more performance you can expect from your
 hardware.
One of the fundamental illusions in a multiuser, multiprocessing operating
 system like Unix is that every user and every process is made to think that they
 are alone on the machine. This is by design. At the kernel level, a program
 called the
 scheduler attempts to juggle the needs of
 each user, providing overall decent performance of:
	Keeping interactive sessions responsive

	Processing batch jobs promptly

	Maximizing CPU utilization[1]

	Cranking through as many processes per hour as possible

	Preventing any particular process for dominating CPU time

System performance degrades when one of these goals overwhelms the others.
 These problems are very intuitive: if there are five times the normal number of
 users logged into your system, chances are that your session will be less
 responsive than at less busy times.
Performance tuning is a multifaceted problem. At its most basic, performance issues can be looked at as
 being either global or local problems.
 Global problems affect the system as a whole and can generally be fixed only by
 the system administrator. These problems include insufficient RAM or hard drive
 space, inadequately powerful CPUs, and scanty network bandwidth. The global
 problems are really the result of a host of local issues, which all involve how
 each process on the system consumes resources. Often, it is up to the users to
 fix the bottlenecks in their own processes.
Global problems are diagnosed with tools that report system-wide statistics.
 For instance, when a system appears sluggish, most administrators run uptime (
 Section 26.4) to see how many
 processes were recently trying to run. If these numbers are significantly higher
 than normal usage, something is amiss (perhaps your web server has been
 slashdotted).
If uptime suggests increased activity, the
 next tool to use is either ps or top
 to see if you can find the set of processes
 causing the trouble. Because it shows you “live” numbers, top can be particularly useful in this situation.
 I also recommend checking the amount of available
 free disk space with df, since a full filesystem is often an unhappy one, and its
 misery spreads quickly.
Once particular processes have been isolated as being problematic, it’s time
 to think locally. Process performance suffers when either there isn’t more CPU
 time available to finish a task (this is known as a
 CPU-bound
 process) or the process is waiting for
 some I/O resource (i.e.,
 I/O-bound), such as the hard drive or network. One
 strategy for dealing with CPU-bound processes, if you have the source code for
 them, is to use a
 profiler like GNU’s gprof. Profilers give an accounting for how much
 CPU time is spent in each subroutine of a given program. For instance, if I want
 to profile one of my programs, I’d first compile it with gcc and use the -pg
 compilation flag. Then I’d run the program. This creates the gmon.out data file that gprof can read. Now I can use gprof to give me a report with the following invocation:
$ gprof -b executable gmon.out
Here’s an abbreviated version of the output:
Flat profile:

Each sample counts as 0.01 seconds.
 no time accumulated

 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
 0.00 0.00 0.00 2 0.00 0.00 die_if_fault_occurred
 0.00 0.00 0.00 1 0.00 0.00 get_double
 0.00 0.00 0.00 1 0.00 0.00 print_values
Here, we see that three subroutines defined in this program (die_if_fault_occurred, get_double, and print_values)
 were called. In fact, the first subroutine was called twice. Because this
 program is neither processor- nor I/O-intensive, no significant time is shown to
 indicate how long each subroutine took to run. If one subroutine took a
 significantly longer time to run than the others, or one subroutine is called
 significantly more often than the others, you might want to see how you can make
 that problem subroutine faster. This is just the tip of the profiling iceberg.
 Consult your language’s profiler documentation for more details.
One less detailed way to look at processes is to get an accounting of how much
 time a program took to run in user space, in kernel space, and in real time. For
 this, the time (
 Section 26.2) command exists as part
 of both C and bash shells. As an external
 program, /bin/time gives a slightly less
 detailed report. No special compilation is necessary to use this program, so
 it’s a good tool to use to get a first approximation of the bottlenecks in a
 particular process.
Resolving I/O-bound issues is difficult for users. Only adminstrators can both
 tweak the low-level system settings that control system I/O buffering and
 install new hardware, if needed. CPU-bound processes might be improved by
 dividing the program into smaller programs that feed data to each other.
 Ideally, these smaller programs can be spread across several machines. This is
 the basis of distributed computing.
Sometimes, you want a particular process to hog all the system resources. This
 is the definition of a dedicated server, like one that hosts the Apache web
 server or an Oracle database. Often, server software will have configuration
 switches that help the administrator allocate system resources based on typical
 usage. This, of course, is far beyond the scope of this book, but do check out
 Web Performance Tuning and Oracle Performance
 Tuning from O’Reilly for more details. For more system-wide tips,
 pick up System Performance Tuning, also from
 O’Reilly.
As with so many things in life, you can improve performance only so much. In
 fact, by improving performance in one area, you’re likely to see performance
 degrade in other tasks. Unless you’ve got a machine that’s dedicated to a very
 specific task, beware the temptation to over-optimize.

— JJ

Timing Programs

 Two commands, time and /bin/time, provide
 simple timings. Their information is highly accurate, because no profiling
 overhead distorts the program’s performance. Neither program provides any
 analysis on the routine or trace level. They report the total execution time,
 some other global statistics, and nothing more. You can use them on any
 program.

 time and /bin/time differ primarily in that time is built into many shells, including bash. Therefore, it cannot be used in safely
 portable Bourne shell scripts or in makefiles. It also cannot be used if you
 prefer the Bourne shell (sh). /bin/time is an independent executable file and
 therefore can be used in any situation. To get a simple program timing, enter
 either time or /bin/time, followed by the command you would normally use to
 execute the program. For example, to time a program named analyze (that takes two command-line arguments, an
 input file and an output file), enter the following command:
% time analyze inputdata outputfile
9.0u 6.7s 0:30 18% 23+24k 285+148io 625pf+0w

 This result (in the default C shell
 format) indicates that the program spent 9.0 seconds on behalf of the user (user
 time), 6.7 seconds on behalf of the system (system time, or time spent executing
 Unix kernel routines on the user’s behalf), and a total of 30 seconds elapsed
 time. Elapsed time is the wall clock time from the moment you enter the command
 until it terminates, including time spent waiting for other users, I/O time,
 etc.
By definition, the elapsed time is greater than your total CPU time and can
 even be several times larger. You can set programs to be timed automatically
 (without typing time first) or change the
 output format by setting shell variables.
The example above shows the CPU time as a
 percentage of the elapsed time (18 percent). The remaining data reports virtual
 memory management and I/O statistics. The meaning varies, depending on your
 shell; check your online csh manual page or
 article.
In this example, under SunOS 4.1.1, the other fields show the amount of shared
 memory used, the amount of nonshared memory used (k), the number of block input and output operations (io), and the number of page faults plus the number
 of swaps (pf and w). The memory management figures are unreliable in many
 implementations, so take them with a grain of salt.
/bin/time reports only the real time
 (elapsed time), user time, and system time. For example:
% /bin/time analyze inputdata outputfile
 60.8 real 11.4 user 4.6 sys
[If you use a shell without a built-in time
 command, you can just type time. —
 JP] This reports that the program ran for 60.8 seconds
 before terminating, using 11.4 seconds of user time and 4.6 seconds of system
 time, for a total of 16 seconds of CPU time. On Linux and some other systems,
 that external time command is in /usr/bin/time and may make a more detailed
 report.
There’s a third timer on some systems:
 timex. It can give much more detail if
 your system has process accounting enabled. Check the timex(1) manpage.
— ML

What Commands Are Running and How Long Do They Take?

When
 your system is sluggish, you will want
 to see what users are on the system along with the processes they’re running. To
 get a brief snapshot of this information, the tersely named w can show you who is logged in, from where, how
 long they’ve been idle, and what programs they’re running. For instance, when I
 run w on my Red Hat box at home, I get this
 result:
 3:58pm up 38 days, 4:37, 6 users, load average: 0.00, 0.07, 0.07
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
jjohn tty2 - 13Feb02 7:03m 1.32s 0.02s /bin/sh /usr/X
jjohn pts/1 :0 8:55am 7:02m 0.06s 0.06s bash
jjohn pts/3 :0 8:55am 0.00s 51.01s 0.05s w
jjohn pts/0 :0 8:55am 7:02m 0.06s 0.06s bash
jjohn pts/4 :0 8:55am 2:25m 2:01 0.12s bash
jjohn pts/2 mp3.daisypark.ne Tue 4pm 3:41m 0.23s 0.23s -bash
Originally, I logged in at the console and started X. Most of the sessions are
 xterminals except for the last, which is an ssh session. The JCPU field
 accounts for the CPU time used by all the processes at that TTY. The PCPU simply accounts for the process named in the
 WHAT field. This is a quick and simple
 command to show you the state of your system, and it relies on no special
 process accounting from the kernel.
When you’re debugging a problem with a program, trying to figure out why your
 CPU usage bill is so high [in the days when CPU cycles were rented —
 JJ], or curious what commands someone (including yourself) is
 running, the
 lastcomm command on Berkeley-like Unixes can
 help (if your computer has its process accounting system running, that is).
 Here’s an example that lists the user lesleys:
% date
Mon Sep 4 16:38:13 EDT 2001
% lastcomm lesleys
emacs lesleys ttyp1 1.41 secs Wed Sep 4 16:28
cat X lesleys ttyp1 0.06 secs Wed Sep 4 16:37
stty lesleys ttypa 0.02 secs Wed Sep 4 16:36
tset lesleys ttypa 0.12 secs Wed Sep 4 16:36
sed lesleys ttypa 0.02 secs Wed Sep 4 16:36
hostname lesleys ttypa 0.00 secs Wed Sep 4 16:36
quota lesleys ttypa 0.16 secs Wed Sep 4 16:35
 ...
The processes are listed in the order completed, most recent first. The
 emacs process on the tty (Section
 2.7) ttyp1 started 10 minutes ago and took 1.41 seconds of CPU time.
 Sometime while emacs was on ttyp1,
 lesleys ran cat and
 killed it (the X shows that). Because
 emacs ran on the same terminal as
 cat but finished later, Lesley might have
 emacs (with CTRL-z)
 stopped (Section 23.3)
 to run cat. The processes on ttypa are the ones run from her
 .cshrc and .login files (though
 you can’t tell that from lastcomm). You don’t
 see the login shell for ttypa (csh) here because it hasn’t terminated yet; it
 will be listed after Lesley logs out of ttypa.
lastcomm can do more. See its manual
 page.
Here’s a hint: on a busy system with lots of users and commands being logged,
 lastcomm
 is pretty slow. If you pipe the output or
 redirect it into a file, like this:
tee
 Section 43.8
% lastcomm lesleys > lesley.cmds &
% cat lesley.cmds
 ...nothing...
% lastcomm lesleys | tee lesley.cmds
 ...nothing...
the lastcomm output may be written to the
 file or pipe in big chunks instead of line-by-line. That can make it look as if
 nothing’s happening. If you can tie up a terminal while lastcomm runs, there are two workarounds. If you’re using a
 window system or terminal emulator with a “log to file” command, use it while
 lastcomm runs. Otherwise, to copy the
 output to a file, start script (Section 37.7) and then run lastcomm:
% script lesley.cmds
Script started, file is lesley.cmds
% lastcomm lesleys
emacs lesleys ttyp1 1.41 secs Wed Sep 4 16:28
cat X lesleys ttyp1 0.06 secs Wed Sep 4 16:37
 ...

% exit
Script done, file is lesley.cmds
%
A final word: lastcomm can’t give
 information on commands that are built into the
 shell (Section 1.9).
 Those commands are counted as part of the shell’s execution time; they’ll be in
 an entry for csh, sh, etc. after the shell terminates.
—JP and JJ

Checking System Load: uptime

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 uptime

 The BSD command uptime, also available under System V Release 4, AIX, and some
 System V Release 3 implementations, will give you a rough estimate of the system
 load:
% uptime
3:24pm up 2 days, 2:41, 16 users, load average: 1.90, 1.43, 1.33

 uptime reports the current time, the amount
 of time the system has been up, and three load average figures. The load average
 is a rough measure of CPU use. These three figures report the average number of
 processes active during the last minute, the last 5 minutes, and the last 15
 minutes. High load averages usually mean that the system is being used heavily
 and the response time is correspondingly slow. Note that the system’s load
 average does not take into account the priorities and niceness (Section
 26.5) of the processes that are running.
What’s high? As usual, that depends on your system. Ideally, you’d like a load
 average under, say, 3, but that’s not always possible given what some systems
 are required to do. Higher load averages are usually more tolerable on machines
 with more than one processor. Ultimately, “high” means high enough that you
 don’t need uptime to tell you that the system
 is overloaded — you can tell from its response time.
Furthermore, different systems behave differently under the same load average.
 For example, on some workstations, running a single CPU-bound background job at
 the same time as the X Window System (Section 1.22) will bring response to a
 crawl even though the load average remains quite “low.” In the end, load
 averages are significant only when they differ from whatever is “normal” on your
 system.
— AF

Know When to Be “nice” to Other Users...and When Not To

 The BSD-System V split
 isn’t so obvious in modern Unixes, but the different priority systems still live
 in various flavors. This article should help you understand the system in
 whatever version you have.
If you are going to run a CPU-bound
 (
 Section 26.1) process that will
 monopolize the CPU from other processes, you may reduce the urgency of that more
 intensive process in the eyes of the process scheduler by using
 nice before you run the program. For
 example:
$ nice executable_filename

On most systems, no user can directly change a process’s priority (only the
 scheduler does that), and only the administrator can use nice to make a process more urgent. In practice,
 nice is rarely used on multiuser systems
 — the tragedy of the commons — but you may be able to get more processes running
 simultaneously by judicious use of this program.

 If you’re not familiar with Unix,
 you will find its definition of priority confusing — it’s the opposite of what
 you would expect. A process with a high nice number runs at
 low priority, getting relatively little of the processor’s attention; similarly,
 jobs with a low nice number run at high priority. This is
 why the nice number is usually called
 niceness: a job with a lot of niceness is very kind to
 the other users of your system (i.e., it runs at low priority), while a job with
 little niceness hogs the CPU. The term “niceness” is awkward, like the priority
 system itself. Unfortunately, it’s the only term that is both accurate
 (nice numbers are used to compute priorities but are
 not the priorities themselves) and avoids horrible circumlocutions (“increasing
 the priority means lowering the priority...”).
Many supposedly experienced users claim that nice has virtually no effect. Don’t listen to them. As a general
 rule, reducing the priority of an I/O-bound job (a job that’s
 waiting for I/O a lot of the time) won’t change things very much. The system
 rewards jobs that spend most of their time waiting for I/O by increasing their
 priority. But reducing the priority of a CPU-bound process can have a
 significant effect. Compilations, batch typesetting programs (troff, TEX, etc.),
 applications that do a lot of math, and similar programs are good candidates for
 nice. On a moderately loaded system, I
 have found that nice typically makes a
 CPU-intensive job roughly 30 percent slower and consequently frees that much
 time for higher priority jobs. You can often significantly improve keyboard
 response by running CPU-intensive jobs at low priority.
Note that System V Release 4 has a much more
 complex priority system, including real-time priorities. Priorities are managed
 with the priocntl command. The older nice command is available for compatibility. Other
 Unix implementations (including HP and Concurrent) support real-time scheduling.
 These implementations have their own tools for managing the scheduler.
The nice
 command sets a job’s niceness, which is used to compute its priority. It may be
 one of the most nonuniform commands in the universe. There are four versions,
 each slightly different from the others. BSD Unix has one nice that is built into the C shell, and another standalone
 version can be used by other shells. System V also has one nice that is built into the C shell and a separate
 standalone version.

 Under BSD
 Unix, you must also know about the renice(8)
 command (Section 26.7);
 this lets you change the niceness of a job after it is running. Under System V,
 you can’t modify a job’s niceness once it has started, so there is no
 equivalent.
Note
Think carefully before you nice an
 interactive job like a text editor. See Section 26.6.

We’ll tackle the different variations of nice in order.
BSD C Shell nice

 Under BSD Unix,
 nice numbers run from -20 to 20. The -20
 designation corresponds to the highest priority; 20 corresponds to the
 lowest. By default, Unix assigns the nice number 0 to
 user-executed jobs. The lowest nice

 numbers (-20 to -17) are unofficially reserved for system processes.
 Assigning a user’s job to these nice numbers can cause
 problems. Users can always request a higher nice number
 (i.e., a lower priority) for their jobs. Only the superuser (Section
 1.18) can raise a job’s priority.
To submit a job at a greater niceness, precede it with the modifier
 nice. For example, the following
 command runs an awk command at low
 priority:
% nice awk -f proc.awk datafile > awk.out
By default, the csh version of nice will submit this job with a
 nice level of 4. To submit a job with an arbitrary
 nice number, use nice one of these ways, where n is an
 integer between 0 and 20:
% nice + n command

% nice - n command

The +n designation requests a positive
 nice number (low priority); -n
 requests a negative nice number. Only a superuser may
 request a negative nice number.

BSD Standalone nice

 The
 standalone version of nice differs from C
 shell nice in that it is a separate
 program, not a command built in to the C shell. You can therefore use the
 standalone version in any situation: within makefiles (Section
 11.10), when you are running the Bourne shell, etc. The
 principles are the same. nice numbers run from -20 to
 20, with the default being 0. Only the syntax has been changed to confuse
 you. For the standalone version, -
 n requests a positive nice
 number (lower priority) and --
 n requests a negative nice number
 (higher priority — superuser only). Consider these commands:
$ nice -6 awk -f proc.awk datafile > awk.out
nice --6 awk -f proc.awk datafile > awk.out
The first command runs awk with a high
 nice number (i.e., 6). The second command, which
 can be issued only by a superuser, runs awk with a low nice number (i.e., -6).
 If no level is specified, the default argument is -10.

System V C Shell nice

 System V takes a slightly different view of
 nice
 numbers. nice levels
 run from 0 to 39; the default is 20. The numbers are different but their
 meanings are the same: 39 corresponds to the lowest possible priority, and 0
 is the highest. A few System V implementations support real-time submission
 via nice. Jobs submitted by root with
 extremely low nice numbers (-20 or below) allegedly get
 all of the CPU’s time. Systems on which this works properly are very rare
 and usually advertise support for real-time processing. In any case, running
 jobs this way will destroy multiuser performance. This feature is completely
 different from real-time priorities in System V Release 4.
With these exceptions, the C shell version of nice is the same as its BSD cousin. To submit a job at a low
 priority, use the command:
% nice command

This increases the command’s niceness by the default amount (4,
 the same as BSD Unix); command will run at
 nice level 24. To run a job at an arbitrary
 priority, use one of the following commands, where n is
 an integer between 0 and 19:
% nice + n command

% nice - n command

The +n entry requests a higher
 nice level (a decreased priority), while
 -n requests a lower nice level
 (a higher priority). Again, this is similar to BSD Unix, with one important
 difference: n is now relative to the default
 nice level. That is, the following command runs
 awk at nice
 level 26:
% nice +6 awk -f proc.awk datafile > awk.out

System V Standalone nice

Once again,
 the standalone version of nice is useful
 if you are writing makefiles or shell scripts or if you use the Bourne shell
 as your interactive shell. It is similar to the C shell version, with these
 differences:
	With no arguments, standalone nice increases the nice
 number by 10 instead of by 4;
 this is a significantly greater reduction in the program’s
 priority.

	With the argument -n, nice increases the
 nice number by n
 (reducing priority).

	With the argument - -n, nice decreases the
 nice number by n
 (increasing priority; superuser only).

Consider these commands:
$ nice -6 awk -f proc.awk datafile > awk.out
nice --6 awk -f proc.awk datafile > awk.out
The first command runs awk at a higher
 nice level (i.e., 26, which corresponds to a lower
 priority). The second command, which can be given only by the superuser,
 runs awk at a lower
 nice level (i.e., 14).
— ML

A nice Gotcha

Note

 It’s not a good idea to
 nice a foreground job (Section
 23.3). If the system gets busy, your terminal could “freeze”
 waiting to get enough CPU time to do something. You may not even be able to
 kill (Section 24.11) a nice‘d job on a very busy system because the
 CPU may never give the process enough CPU time to recognize the signal
 waiting for it! And, of course, don’t nice an interactive program like a text editor unless you
 like to wait... :-)

Changing a Running Job’s Niceness

 On
 Unix systems with BSD-style
 priority schemes, once a job is running, you can use the renice(8) command to change the job’s priority:
% /etc/renice priority-p pid

% /etc/renice priority -g pgrp

% /etc/renice priority -u uname

where priority is the new nice
 level (Section 26.5)
 for the job. It must be a signed integer between -20 and 20.
 pid is the ID number
 (Section 24.3) (as shown by
 ps (Section 24.5)) of the process you want to change.
 pgrp is the number of a process
 group (
 Section 24.3), as shown by
 ps -l; this version of the command modifies the
 priority of all commands in a process group. uname may be a
 user’s name, as shown in /etc/passwd; this form of the
 command modifies the priority of all jobs submitted by the user.
A nice level of 19 is the “nicest”: the process will run only when nothing
 else on the system wants to. Negative values make a process get a greater
 percentage of the CPU’s time than the default niceness (which is 0). Again, only
 the superuser can lower the nice
 number (raise a process’ priority). Users
 can only raise the nice number (lower the priority), and
 they can modify the priorities of only the jobs they started.

— ML

[1] This list is modified from Tanenbaum and Woodhull’s
 Operating Systems: Design and
 Implementation, Second Edition (Upper Saddle
 River: Prentice-Hall, Inc. 1997], 83).

Part VI. Scripting

Part VI contains the following
 chapters:
Chapter 27
Chapter 28
Chapter 29
Chapter 30
Chapter 31
Chapter 32
Chapter 33
Chapter 34
Chapter 35
Chapter 36
Chapter 37

Chapter 27. Shell Interpretation

What the Shell Does

As we’ve said, the shell is just another
 program. It’s responsible for interpreting the commands you type. There are
 several commonly used shells, primarily based on two or three major families and
 a wide variety of other projects:
	The

 Bourne shell (sh) and its derivatives and progeny
 (including bash, ash, and even the Korn shell ksh)

	The
 C shell (csh) and its progeny (including tcsh)

	The

 Korn shell (ksh) and variants (including pdksh and zsh
 [1])

	Specialized shells based on languages such
 as Python, TCL, perl, and so
 on.

	Shells invented to meet specific needs such as

 restricted command access (rsh), recovery after a system failure
 (sash), and downloading,
 installing, and configuring software libraries.

If you can think of a reason to have a specialized shell, someone probably has
 already written one to meet that need.

 Interpreting
 your commands might seem simple enough, but a lot of things happen between the
 time you press RETURN and the time the computer actually does what you want. The
 process of interpretation is very complex: the shell has to break the command
 into words and expand aliases (Section 29.2), history operators (Section
 30.8), and shell and environment
 variables (Section
 35.3, Section 35.9). It also
 sets up standard input and output streams
 (Section 43.1) and performs a lot
 of other tasks. Indeed, if a command looks right but doesn’t work right, the
 cause is probably either one of the following:
	File permissions are set
 incorrectly.

	You don’t understand how the shell is processing your command
 line.

I’d say that file permission problems are more common, but it’s a close call.
 File permission problems are usually easy to understand, once you know what to
 look for, but the rules by which a shell interprets your command line are
 another thing altogether. Lest I scare you, we’ll try to go slow with this
 material. Although it’s difficult, understanding how the shell parses your
 commands is important to becoming a power user.
In this chapter, we’ll look at how a Unix shell interprets commands. Shells
 have similar interpretation rules. The C shell can be tricky at times, mostly
 because its behavior isn’t as well defined as the others. And zsh has some twists that others don’t — they’re
 included by design, but they can surprise users of other shells. However,
 there’s nothing “magical” about these rules. Tomorrow morning, you may grab some
 new shell from the Net and find out that it has a new and different way of
 interpreting commands. For better or worse, that’s what Unix is all
 about.
As part of this discussion, we’ll cover quoting, which is the mechanism by
 which you can turn off the special meanings that the shell assigns to some
 characters. Quoting is an integral part of command-line processing; it allows
 you to control what the shell will do to your commands.
—ML and SJC

How the Shell Executes Other Commands

 When the shell executes an external command (Section 1.9), what happens?
Unix programs are executed through a combination of two

 system calls (low-level requests to the
 operating system) called fork and
 exec.
The exec system call tells the kernel to execute another
 program. However, the kernel replaces the calling program with the new one being
 called. This doesn’t work too well if you want to return to the original program
 after the new one has done its job.
To get around this problem, programs that want to stick around first copy
 themselves with the fork system call. Then the copied
 program execs the new program, terminating itself in the
 process.
You don’t really need to know this little tidbit about what goes on behind the
 scenes, but it sure helps to know about fork and
 exec when reading some Unix manuals. Section 24.2 has more
 information.
—TOR and SJC

What’s a Shell, Anyway?

A
 shell is a program that interprets your command lines
 and runs other programs. Another name for the shell is “command interpreter.”
 This article covers the two major Unix shell families, including discussion
 about how shells run, search for programs, and read shell script files.
How Shells Run Other Programs

 For each command it runs, a shell
 performs a series of steps. First, if the shell is reading commands from a
 terminal (interactively), it prints a prompt (such
 as % or $) and waits for you to type something. Next, the shell reads
 the command line (like cat -v afile bfile > cfile),
 interprets it (Section 27.1), and runs the result.
 When the command finishes running (unless the command is in the background (Section 23.2)), the shell is ready
 to read another command line.

Interactive Use Versus Shell Scripts

 A shell can read command lines from
 a terminal or it can read them from a file. When you put command lines into
 a file, that file is called a shell script
 (Section 35.1) or shell
 program. The shell handles the shell script just as it handles the commands
 you type from a terminal (though the shell uses its non-interactive mode (Section 3.4), which means, basically, that it doesn’t print the
 % or $ prompts, among other things). With this information, you
 already know how to write simple shell scripts — just put commands in a file
 and feed them to the shell!
In addition, though, there are a number of programming constructs that
 make it possible to write shell programs that are much more powerful than
 just a list of commands.

Types of Shells

There are two main shell families in
 Unix:
	The C shell

 and its derivatives (csh, tcsh) are considered very powerful for situations
 where you are interactively working on a terminal. csh will read shell scripts and has
 some useful features for programmers. Unfortunately, it has some
 quirks that can make shell programming tough.

	The Bourne shell

 (sh) and shells like it are probably used more often for
 shell programming. (Some newer sh-like shells, including ksh, zsh, and
 bash (Section 1.6), combine handy
 interactive C shell-like features with Bourne shell syntax.)

Shell Search Paths

As Section 26.6 explains, if the shell is trying to run a command,
 and the command isn’t built-in to the shell itself, the shell looks in a
 list of directories called a search path
 . Unix systems have standard directories
 with names like /bin and /usr/bin that hold standard Unix programs.
 Almost everyone’s search path includes these directories.
If you do much shell programming, you should make a directory on your
 account for executable files. Most people name theirs bin and put it under their home directory.
 See Section 7.4.

Bourne Shell Used Here

Most serious shell programmers write their
 scripts for the Bourne shell or its variants, such as bash

 or ksh.
 So do we.
Newer Bourne shells have features — such as shell
 functions (Section
 29.11), an unset command for
 shell variables, and others — that the earlier Version 7 Bourne shell
 didn’t. Most scripts in this book are written to work on all Bourne shells —
 for the sake of portability, some scripts don’t use these new features. It’s
 pretty rare to find such old shells around nowadays, though, so use your own
 judgment. It is pretty unlikely that if you’re writing a shell script for
 your own use on a new system you will ever need to back-port it to run on a
 V7 system.
For the rest of these introductory articles, it may be easier if you have
 a terminal close by so you can try the examples. If your account uses the
 Bourne shell or one of its relatives (ksh, bash, etc.), your
 prompt probably has a dollar
 sign ($) in it somewhere, unless you’ve
 modified the prompt yourself (Section 4.1). If your account isn’t
 running the Bourne shell, start one by typing sh
 . Your prompt should change to a dollar sign
 ($). You’ll be using the Bourne shell
 until you type CTRL-d at the start of a line:
% sh
$
$...Enter commands...
$ CTRL-d
%

Default Commands

 One more thing to note is that when
 dealing with shell scripts, which store sequences of commands that you want
 to be able to run at one time, you will likely need to specify the shell or
 other program that will run the commands by default. This is normally done
 using the special #! notation (Section 36.2) in the first line of
 the script.
#!/bin/sh
everything in this script will be run under the Bourne shell

...

#!/bin/tcsh
everything in this script will be run under tcsh

...

#!/usr/bin/perl
everything in this script will be interpreted as a perl command

...
—JP and SJC

Command Evaluation and Accidentally Overwriting Files

 Before
 getting into the
 details of command interpretation, I thought I’d give a very simple example of
 why it’s important. Here’s an error that occurs all the time. Let’s say you have
 two files, called file1 and file2. You want to create a new version of
 file1 that has file2 added to the end of it. That’s what
 cat
 is all about, so you give the
 command:
% cat file1 file2 > file1
 ...wrong
This looks like it should work. If you’ve ever tried it, you know it doesn’t;
 it erases file1, and then dumps file2 into it. Why? The shell (not cat) handles
 standard input and output:
	As the shell is processing the command, it sees that you’re redirecting standard output into
 file1, so it opens the file for
 writing, destroying the data that’s already in it.

	Later, after it’s finished interpreting the command line, the shell
 executes cat, passing file1 and file2 as arguments. But file1 is already empty.

	cat reads file1 (which is empty) and writes it on standard output
 (which goes into file1).

	cat reads file2 (which also goes into file1). At this point, cat is finished, so it exits.

file1 and file2 are identical, which isn’t what you wanted. But it’s what
 you got.
Some versions of cat give you a warning
 message in this situation (cat: file1:
 input file is output file). This might lead
 you to believe that somehow cat was smart and
 managed to protect you. Sadly, that’s not true. By the time cat figures out that an input file and an output
 file are the same, it’s too late: file1 is
 already gone. This bit of catty cleverness
 does have a function, though: it prevents commands like the following from
 creating infinitely long files:
% cat file1 file2 >> file2
— ML

Output Command-Line Arguments One by One

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 showargs

 When you’re experimenting with shell quoting,
 it’s nice to be able to see how arguments on a command line are quoted. Here’s a
 demo of a simple bash script[2] named showargs; you might want to
 save it in a file and run it yourself
 (Section 35.1). The script shows
 how many arguments were passed to it. Then it lists the arguments, one per line,
 surrounded by >> << to show
 leading or trailing spaces.
cat
 Section 12.2, &&
 Section 35.14, $#
 Section 35.20, path
 Section 35.7
% cat showargs
#!/bin/bash
test $# -ne 1 && s=s
echo "I got $# argument$s:"
for arg
do echo -E ">>$arg<<"
done
% showargs "Start of path:" $path[1-3] " that's it! "
I got 5 arguments:
>>Start of path:<<
>>/u/jpeek/bin<<
>>/bin<<
>>/usr/bin<<
>> that's it! <<
The output from your shell may differ from that shown above, which is the
 result of running showargs in tcsh. bash
 doesn’t have a $path variable, for example.
 And zsh expects a comma, rather than a
 hyphen, to separate the range. But as long as the arguments to showargs are quoted properly, you should get the
 result you’re looking for, with a little tweaking, of course!
—JP and SJC

Controlling Shell Command Searches

 Your search
 path (Section 35.6,
 Section 35.7) controls what
 directories — and in what order — the shell searches for external (Section 1.9)
 commands. You can set a search path that takes effect every time you log in by
 editing your shell setup file (Section 3.3). You might also want to
 change the path temporarily. Most shells also keep quick-reference lists of
 command locations that bypass the search path, so you’ll want to know how to
 manage these.
Changing the path set when you log in is simple: just add the new directory to
 the appropriate line in your shell’s startup
 files (

 Section 3.3). It’s not recommended to
 redefine the path completely, though, as some packages rely on their
 PATH being set correctly. Usually, it is best simply to
 add the new directory’s absolute path
 (
 Section 31.2) to the end of the
 existing PATH variable:
PATH=$PATH:$HOME/bin zsh, sh, ksh, bash
set path=($path ~/bin) zsh (omit the set), csh, tcsh
Note
If you’re configuring the superuser
 (root) account, be careful about using a path set
 by the parent process (through $PATH or
 $path). This path can be used in
 su shells, giving you part or all the
 path of the user you su‘ed from! Also
 watch out for a path set by a global setup file like
 /etc/profile: if it’s modified for other users and
 an insecure version of a system command is added, it could affect the
 superuser in unexpected ways.
Of course, there’s the opposite danger: forgetting to update the
 superuser’s path because you assume that changing the global path will do
 the job for root too. My advice is to think about it
 and decide what’s best for your system.

 For Bourne-type shells, load the updated
 PATH by typing a command like:
$.' .profile
 sh
$.' .bash_profile
 bash
For the
 C shell, type one of these commands, depending on
 which file you changed:
% source' .cshrc
% source' .tcshrc
% source' .login
Sometimes you’ll want to change the path in just your current shell, though,
 which is as easy as modifying any other shell or environment variable. Let’s
 assume that for the current session, you want to be able to execute commands
 being tested before deployment, and that those commands are in your
 $HOME/someprog/bin directory. Simply add that directory
 to the front of your existing path:
$ PATH=$HOME/someprog/bin:$PATH
 Bourne shells
$ export PATH

$ export PATH=$HOME/someprog/bin:$PATH
 bash, ksh

% set path=(~/xxx/alpha-test $path)
 C shells

 Searching the path (Section 27.6)
 takes time, especially if it’s long or if some filesytems are slow or mounted by
 a slow network link. Most shells have shortcuts to help them remember the
 locations of commands.
When the C shell starts, it builds a hash table of all the commands in its
 path: each command name and its absolute pathname. So, after you start a
 csh running, if new programs are added to
 directories along the path, you need to use the shell’s rehash command to rebuild its hash table. (The hash table is
 internal. If you have multiple csh shells
 running — say, in multiple windows — type rehash in each one.)

 In
 bash, the command location is
 automatically stored the first time you use it. This means you don’t need a
 rehash-type command. If a program is
 moved to a new directory while bash is
 running, however, you’ll need to use the internal command hash
 -r to make bash “forget” the
 old location.
Note
Running hash -r causes bash to forget all of its
 hashed commands, but you may also invoke it with the name of a specific
 command whose hash should be forgotten:
$ hash -r command

 The Korn shell uses tracked aliases to
 speed up command locating. When it is turned on with set -o trackall, every time that ksh finds a new command by doing a path search, it creates an
 alias for the command name whose value is the full pathname. In ksh88, you can turn alias tracking on and off, and
 you can mark a command to have an alias defined for it the first time it’s
 executed by using:
$ alias -t COMMAND
In ksh93, even though you can run the
 command set +o trackall, which turns off
 alias tracking in ksh88, the shell ignores
 the command, and alias tracking is always in effect.
All tracked aliases are cleared when a new value is assigned to the
 PATH variable. If all you wish to do is remove tracked
 aliases, use PATH=$PATH.
As you can
 see, shells’ command tracking varies! Check your shell’s manual page.

—JP and SJC

Wildcards Inside Aliases

 Here’s
 another example in which command-line parsing is important. Consider this shell
 alias for counting the number of words in all files:
wc
 Section 16.6
% alias words "wc -w *"
 csh, tcsh
$ alias words="wc -w *"
 ksh, bash
Right away, we can see one
 effect of command-line parsing. The shell sees the quotation marks and knows not
 to expand wildcards inside them. Therefore, words is aliased to wc -w *;
 the * isn’t evaluated when you create the
 alias. (If wildcards were processed before quotes, this wouldn’t work.)
Now, think about what happens when you execute the alias. You type:
% words
The shell starts working through its steps and eventually performs alias
 substitution. When this happens, it converts your command into:
wc -w *
Now, watch carefully. The shell continues working through the process of
 interpretation (redirection, variable substitution, command substitution) and
 eventually gets to filename expansion. At this point, the shell sees the
 * on the command line, expands it, and
 substitutes the files in the current directory. Seems simple enough. But think:
 you didn’t type this *; the shell put it
 there when it expanded the wildcard. What would have happened if the shell
 expanded wildcards before substituting aliases? The * would never have been expanded; by the time the shell put it on
 the command line, the wildcard expansion stage would be over, and you’d just
 count the words in a file named * (which
 probably doesn’t exist).
To me, the amazing thing is that all this works — and works well! The workings
 of the command line are intricate and complex, but the shell almost always does
 what you want — and without a lot of thought.
— ML

eval: When You Need Another Chance

 If
 you read the previous
 article (Section 27.7),
 you saw that, most of the time, the shell evaluates the command line “in the
 right order.” But what about when it doesn’t? Here’s a situation that the shell
 can’t handle. It’s admittedly contrived, but it’s not too different from what
 you might find in a shell program (Section 1.8):
% set b=\$a
% set a=foo
% echo $b
$a
When we use the variable $b, we’d like to
 get the variable $a, read it, and use its
 value. But that doesn’t happen. Variable substitution happens once, and it isn’t
 recursive. The value of $b is $a, and that’s it. You don’t go any
 further.
But there’s a loophole. The eval command
 says, in essence, “Give me another chance. Re-evaluate this line and execute
 it.” Here’s what happens if we stick eval
 before the echo:
% eval echo $b
foo
The shell converts $b into $a; then eval
 runs through the command-line evaluation process again, converting echo
 $a into echo
 foo — which is what we wanted in the first
 place!
Here’s a more realistic example; you see code like this fairly often in Bourne
 shell scripts:
...
command='grep $grepopts $searchstring $file'
for opt
do
 case "$opt" in
 file) output=' > $ofile' ;;
 read) output=' | more' ;;
 sort) postproc=' | sort $sortopts';;
 esac
done
...
eval $command $postproc $output
Do you see what’s happening? We’re constructing a command that will look
 something like:
grep $grepopts $searchstring $file | sort $sortopts > $ofile
But the entire command is “hidden” in shell variables, including the I/O
 redirectors and various options. If the eval
 isn’t there, this command will blow up in all sorts of bizarre ways. You’ll see
 messages like | not found, because variable
 expansion occurs after output redirection. The “nested” variables (like $ofile, which is used inside $output) won’t be expanded either, so you’ll also
 see $ofile not found. Putting an eval in front of the command forces the shell to
 process the line again, guaranteeing that the variables will be expanded
 properly and that I/O redirection will take place.
eval is incredibly useful if you have shell
 variables that include other shell variables, aliases, I/O redirectors, or all
 sorts of perversities. It’s commonly used within shell scripts to “evaluate”
 commands that are built during execution. There are more examples of eval in Section
 5.3 and others.
— ML

Which One Will bash Use?

 bash, like all shells, performs a series of
 steps when evaluating a command line. (Sorry, we don’t cover all of the Unix
 shells; we explain bash because it’s one of
 the most common. For other shells, check their manual pages.) This article takes
 a closer look at how you can control one part of those steps in bash: whether the shell will choose
 a
 shell function (Section 29.11), a built-in command (

 Section 1.9), or an external command (Section 1.9).
Let’s say that you want to write shell functions named cd, pushd, and
 popd. They will run the shell’s built-in
 cd, pushd, or popd command,
 respectively, each using the command-line arguments that were passed (via the
 $@ array reference). Next they execute
 another shell function named setvars to do
 some setup in the new directory:
cd() { pushd() { popd() {
 cd "$@" pushd "$@" popd "$@"
 setvars setvars setvars
} } }
But which cd will bash use when you type cd: the
 built-in cd or your cd function? (The same question goes for pushd and popd.) Worse, what
 if the cd <">$@<"> command inside
 the function makes bash call your cd function again, and that starts an endless loop? Well, that actually
 will start a loop — and you need to know how to prevent
 it.

 Typing command before the name of a command disables
 shell function lookup. bash will execute only
 a built-in command or an external command with that name. So, you could keep the
 functions from re-executing themselves by defining them this way:
cd() { pushd() { popd() {
 command cd "$@" command pushd "$@" command popd "$@"
 setvars setvars setvars
} } }
In the same way, if you don’t want to run your new pushd function for some reason, here’s how to use the built-in
 pushd once:
bash$ command pushd somewhere

The command command still allows bash to run an external command (from your
 PATH (Section 35.6)) with the name you give. To force bash to use a built-in command — but not a shell
 function or an external command — type builtin
 before the command name. Although bash will always choose a built-in command before
 an external command, you can specify the built-in echo unambiguously with:
builtin echo -n 'What next? '
What if you want the external echo command? The easiest way is probably to type its absolute
 pathname. For example, once I wanted to test four (!) different external
 versions of echo on a System V machine — and
 not get the built-in bash version. So I typed
 commands like this:
bash$ /bin/echo hi \\ there
Finally, you can enable or disable specific
 built-in bash commands with the enable command. Unlike command and builtin, the
 effect of enable lasts until you exit the
 shell. The command enable -n
 disables one or more built-in
 commands; give the command names as arguments. For example, in my experiments
 mentioned above, I could have made sure that I’d get an external echo every time by typing this first command
 once:
bash$ enable -n echo
bash$ type echo
echo is hashed (/bin/echo)
The -n
 disables the built-in command named as the following argument. The bash
 type command confirms that I’ll now be using
 the external echo. You can re-enable a
 disabled built-in with enable
 command-name. And enable -a
 lists the status of all bash
 built-ins.
— JP

Which One Will the C Shell Use?

[Section 27.9
 shows how to control whether
 bash uses a built-in command, a shell
 function, or an

 external command. The way you do that in the
 C shell is a little, errr, different. Chris Torek explains why, for example,
 \rm disables an alias for rm and \cd
 disables the built-in cd command. He starts
 with a fairly complex explanation, then gives some practical guidelines. At the
 end is a “review” that’s easy to follow and fun too. — JP]

 The C shell first breaks each input line into a
 word vector. It then matches against aliases. Since
 \rm does not match rm, any alias is ignored. Eventually the C shell
 fully applies any quoting (since an alias can include quotes, some of this work
 must be deferred; since an alias can include multiple words, more word vector
 work must be done as well; it all gets rather hairy).
The C shell implements quoting by setting the eighth bit (bit 7) of each byte
 of a quoted character. Since '*'|0x80 [a
 character ORed with 80 hex, a.k.a. 10000000 binary —
 JP] is not the same character as '*', this prevents filename expansion, further
 word breaking, and so on.
Eventually, the shell has a fully “parsed” line. It then compares word[0] [the first word on the command line —
 JP] against all the built-ins. If there is a match, it
 runs the corresponding built-in command (and it is up to that command to expand
 any remaining words; for instance, ls * in a
 directory containing only the file -l produces a long
 listing, but jobs * produces a usage
 message). If not, the shell performs globbing on the current word list,
 producing a new word list, and then:
	Strips the eighth bit of each byte of each word

	exec()s the resulting command.

This means that \cd not only bypasses any
 alias, but also reaches the built-in scanner as:
'c'|0x80, 'd', '\0'
which does not match the built-in command:
'c', 'd', '\0'
and so does not run the cd builtin. It is
 later stripped, and the shell looks for an external program called cd.
If you want to avoid alias substitution but not built-in matching, you can
 replace:
\cd foo or \rm foo
with:
''cd foo or ""rm foo
These do not match the aliases — during alias scanning they have quote pairs
 in front of them — but they do match any builtin because the quotes have by then
 been stripped (setting bit 7 of all the characters contained between the two
 quotes, here none).
Incidentally, since alias expansion occurs early, you can do some peculiar
 things with it:
% [
Missing]. . . . on some systems, there is a command named [, sometimes standalone,
 and sometimes symlinked to test.
% alias [echo foo
% [
foo . . . alias expansion occurs before globbing

% unalias [
unalias: Missing]. . . . unalias globs its arguments!

% unalias \[
% alias unalias echo foo
unalias: Too dangerous to alias that. . . . the C shell attempts caution...

% alias \unalias echo foo
% alias
unalias (echo foo)
% unalias unalias
foo unalias . . . but fails!

% ''unalias unalias
% alias
% . . . Fortunately, there is an exit.
Note
On some systems, there is a command named [, sometimes standalone, and
 sometimes symlinked to test.

— CT

Is It “2>&1 file” or “> file 2>&1”? Why?

 One
 of the common questions about Bourne-type shells is why only the second command
 shown below will redirect both stdout and
 stderr (

 Section 43.1) to a file:
$ cat food 2>&1 >file
cat: can't open food
$ cat food >file 2>&1
$

 Although some manual pages don’t mention this,
 the shell processes I/O redirections from left to right:
	On the first command line, the shell sees 2>&1 first. That means “make the standard error
 (file descriptor 2) go to the same place that the standard output (fd1)
 is going.” There’s no effect because both fd2 and fd1 are already going
 to the terminal. Then >file
 redirects fd1 (stdout) to file. But fd2 (stderr) is still
 going to the terminal.

	On the second command line, the shell sees >file first and redirects stdout
 to file. Next 2>&1 sends fd2
 (stderr) to the same place fd1 is going —
 that’s to the file. And that’s what you want.

Section 36.16 has much more about
 the m
 >&
 n operator.
— JP

Bourne Shell Quoting

 I
 can’t understand why some people see Bourne shell quoting as a scary, mysterious
 set of many rules. Quoting on Bourne-type shells is simple. (C shell quoting is
 slightly more complicated. See Section
 27.13.)

 The overall idea is this:
 quoting turns off (disables) the special meaning of
 characters. There are three quoting characters: single quote
 ('), double quote ("), and backslash (\). Note that a backquote (`)
 is not a quoting character — it does command substitution (
 Section 28.14).
Special Characters

Listed
 below are the characters that are
 special to the Bourne shell. You’ve probably already used some of them.
 Quoting these characters turns off their special meaning. (Yes, the last
 three characters are quoting characters. You can quote quoting characters;
 more on that later.)
& * ? [] () = | ^ ; < > ` $ " ' \
Space,
 tab, and newline also have special
 meaning as argument separators. A slash (/) has special meaning to Unix itself, but not
 to the shell, so quoting doesn’t change the meaning of slashes.
Newer shells have a few other special characters. For instance, bash has !
 for history
 substitution (Section
 30.8). It’s similar to the C shell
 ! (Section 27.13)
 except that, in bash, ! loses its special meaning inside single
 quotes. To find particular differences in your Bourne-type shell, see the
 quoting section of its manual page. In general, though, the rules below
 apply to all Bourne-type shells.

How Quoting Works

Table 27-1

 summarizes the rules; you might want to look back
 at it while you read the examples.
Table 27-1. Bourne shell quoting characters
	
 Quoting character

 	
 Explanation

	
 'xxx'

 	
 Disable all special characters in
 xxx.

	
 "xxx"

 	
 Disable all special characters in
 xxx except $, `, and \.

	
 \x

 	
 Disable the special meaning of character
 x. At end of line, a
 \ removes the
 newline character (continues line).

To understand which characters will be quoted, imagine this: the Bourne
 shell reads what you type at a prompt, or the lines in a shell script,
 character by character from first to last. (It’s actually more complicated
 than that, but not for the purposes of quoting.)
When the shell reads one of the three quoting characters, it does the
 following:
	Strips away that quoting character

	Turns off (disables) the special meaning of some or all other
 character(s) until the end of the quoted section, by the rules in
 Table 27-1

You also need to know how many characters will be quoted. The next few
 sections have examples to demonstrate those rules. Try typing the examples
 at a Bourne shell prompt, if you’d like. (Don’t use C shell; it’s different (Section 27.13).) If you need to
 start a Bourne-type shell, type sh; type
 exit when you’re done.
	A backslash (\)
 turns off the special meaning (if any) of the next character. For
 example, * is a literal
 asterisk, not a filename wildcard
 (Section 1.13). So,
 the first expr (Section 36.21) command gets
 the three arguments 79 * 45 and
 multiplies those two numbers:
$ expr 79 * 45
3555
$ expr 79 * 45
expr: syntax error
In the second example, without the backslash, the shell expanded
 * into a list of filenames —
 which confused expr. (If you want
 to see what I mean, repeat those two examples using echo (Section 27.5) instead of expr.)

	

 A
 single quote (') turns off the special meaning of
 all characters until the next single quote is found. So, in the
 command line below, the words between the two single quotes are
 quoted. The quotes themselves are removed by the shell. Although
 this mess is probably not what you want, it’s a good demonstration
 of what quoting does:
$ echo Hey! What's next? Mike's #1 friend has $$.
Hey! Whats next? Mikes
Let’s take a close look at what happened. Spaces outside the
 quotes are treated as argument separators; the shell ignores the
 multiple spaces. echo prints a
 single space between each argument it gets. Spaces inside the quotes
 are passed on to echo literally.
 The question mark (?) is quoted;
 it’s given to echo as is, not
 used as a wildcard.
So, echo printed its first
 argument Hey! and a single space.
 The second argument to echo is
 Whats next? Mikes; it’s all a
 single argument because the single quotes surrounded the spaces
 (notice that echo prints the two
 spaces after the question mark: ?
). The next argument, #1, starts
 with a hash mark, which is a comment
 character (Section
 35.1). That means the shell will ignore the rest of the
 string; it isn’t passed to echo.
(zsh users: The #
 isn’t treated as a comment
 character at a shell prompt unless you’ve run setopt interactive_comments
 first.)

	

 Double quotes (“) work almost like
 single quotes. The difference is that double quoting allows the
 characters $

 (dollar sign), ' (backquote), and \ (backslash) to keep their special
 meanings. That lets you do variable
 substitution (
 Section 35.9, Section 35.3) and command substitution (
 Section 28.14) inside
 double quotes — and also stop that substitution where you need
 to.
For now, let’s repeat the example above. This time, put double
 quotes around the single quotes (actually, around the whole
 string):
$ echo "Hey! What's next? Mike's #1 friend has $$."
Hey! What's next? Mike's #1 friend has 18437.
The opening double quote isn’t matched until the end of the
 string. So, all the spaces between the double quotes lose their
 special meaning, and the shell passes the whole string to echo as one argument. The single
 quotes also lose their special meaning because double quotes turn
 off the special meaning of single quotes! Thus, the single quotes
 aren’t stripped off as they were in the previous example; echo prints them.
What else lost its special meaning? The hash mark (#) did; notice that the rest of the
 string was passed to echo this
 time because it wasn’t “commented out.” But the dollar sign
 ($) didn’t lose its meaning;
 the $$ was expanded into the
 shell’s process ID number (Section 24.3) (in this
 shell, 18437).

In the previous example, what would happen if you put the $ inside the single quotes? (Single quotes
 turn off the meaning of $, remember.)
 Would the shell still expand $$ to its
 value? Yes, it would: the single quotes have lost their special meaning, so
 they don’t affect any characters between them:
$ echo "What's next? How many $$ did Mike's friend bring?"
What's next? How many 18437 did Mike's friend bring?
How can you make both the $$ and the
 single quotes print literally? The easiest way is with a backslash, which
 still works inside double quotes:
$ echo "What's next? How many \$\$ did Mike's friend bring?"
What's next? How many $$ did Mike's friend bring?
Here’s another way to solve the problem. A careful look at this will show
 a lot about shell quoting:
$ echo "What's next? How many "'$$'" did Mike's friend bring?"
What's next? How many $$ did Mike's friend bring?
To read that example, remember that a double quote quotes characters until
 the next double quote is found. The same is true for single quotes. So, the
 string What's next? How many (including
 the space at the end) is inside a pair of double quotes. The $$ is inside a pair of single quotes. The rest
 of the line is inside another pair of double quotes. Both of the
 double-quoted strings contain a single quote; the double quotes turn off its
 special meaning and the single quote is printed literally.

Single Quotes Inside Single Quotes?

You can’t put single quotes inside single quotes. A single quote turns off
 all special meaning until the next single quote.
 Use double quotes and backslashes.

Multiline Quoting

Once

 you
 type a single quote or double quote, everything is quoted. The quoting can
 stretch across many lines. (The C shell doesn’t work this way.)
For example, in the short script shown in Figure 27-1, you might think that the
 $1 is inside quotes, but it
 isn’t.
[image: Matching quotes]

Figure 27-1. Matching quotes

Actually, all argument text except
 $1 is in quotes. The gray shaded area
 shows the quoted parts. So $1 is expanded
 by the Bourne shell, not by awk.
Here’s another example. Let’s store a shell
 variable (
 Section 35.9) with a multiline
 message, the kind that might be used in a shell program. A shell variable
 must be stored as a single argument; any argument separators (spaces, etc.)
 must be quoted. Inside double quotes, $
 and ' are interpreted
 (before the variable is stored, by the way). The
 opening double quote isn’t closed by the end of the first line; the Bourne
 shell
 prints secondary prompts (Section 28.12) (>) until
 all quotes are closed:
$ greeting="Hi, $USER.
 > The date and time now
 > are: `date`."
$ echo "$greeting"
Hi, jerry.
The date and time now
are: Fri Sep 1 13:48:12 EDT 2000.
$ echo $greeting
Hi, jerry. The date and time now are: Fri Sep 1 13:48:12 EDT 2000.
$
The first echo command line uses double
 quotes, so the shell variable is expanded, but the shell doesn’t use the
 spaces and newlines in the variable as argument separators. (Look at the
 extra spaces after the word are:.) The
 second echo doesn’t use double quotes.
 The spaces and newlines are treated as argument separators; the shell passes
 14 arguments to echo, which prints them
 with single spaces between.
A backslash has a quirk you
 should know about. If you use it outside quotes, at the end of a line (just
 before the newline), the newline will be deleted.
 Inside single quotes, though, a backslash at the end of a line is copied as
 is. Here are examples. I’ve numbered the prompts (1$, 2$, and so on):
1$ echo "a long long long long long long
> line or two"
a long long long long long long
line or two
2$ echo a long long long long long long\
> line
a long long long long long longline
3$ echo a long long long long long long \
> line
a long long long long long long line
4$ echo "a long long long long long long\
> line"
a long long long long long longline
5$ echo 'a long long long long long long\
> line'
a long long long long long long\
line
You’ve seen an example like example 1 before. The newline is in quotes, so
 it isn’t an argument separator; echo
 prints it with the rest of the (single, two-line) argument. In example 2,
 the backslash before the newline tells the shell to delete the newline; the
 words long and line are passed to echo as
 one argument. Example 3 is usually what you want when you’re typing long
 lists of command-line arguments: Type a space (an argument separator) before
 the backslash and newline. In example 4, the backslash inside the double
 quotes is ignored (compare to example 1). Inside single quotes, as in
 example 5, the backslash has no special meaning; it’s passed on to

 echo.

— JP

Differences Between Bourne and C Shell Quoting

This

 article explains quoting in C-type shells by
 comparing them to Bourne-type shell quoting. If you haven’t read Section 27.12 about Bourne shell
 quoting, please do so now.
As in the Bourne shell, the overall idea of C shell quoting is this:
 quoting turns off (disables) the special meaning of
 characters. There are three quoting characters: a

 single quote
 ('), a double quote ("), and a backslash (\).
Special Characters

The

 C shell has a few more special characters
 in addition to the original Bourne shell:
! { } ~

How Quoting Works

Table 27-2

 summarizes the rules; you might want to look
 back at it while you read the examples.
Table 27-2. C shell quoting characters
	
 Quoting character

 	
 Explanation

	
 'xxx'

 	
 Disable all special characters in
 xxx except !.

	
 "xxx"

 	
 Disable all special characters in
 xxx except $, ', and !.

	
 \x

 	
 Disable special meaning of character
 x. At end of line, a
 \ treats the
 newline character like a space (continues line).

The major differences between C and Bourne shell quoting are the
 following:
	The exclamation point
 (!) character can be quoted
 only with a backslash. That’s true inside and outside single or
 double quotes. So you can use history
 substitution (Section 30.8) inside quotes. For example:
% grep intelligent engineering file*.txt
grep: engineering: No such file or directory
% grep '!:1-2' !:3
grep 'intelligent engineering' file*.txt
 ...

	In the Bourne shell, inside double quotes, a backslash (\) stops variable and command
 substitution (it turns off the special meaning of

 $ and ').
In the C shell, you can’t disable the special meaning of $ or ' inside double quotes. You’ll need a mixture of
 single and double quotes. For example, searching for the string
 use the `-c’ switch takes some work:
% fgrep "use the \`-c' switch" *.txt
Unmatched \`.
% fgrep 'use the \`-c\' switch' *.txt
Unmatched '.
% fgrep "use the "'`-c'"' switch" *.txt
hints.txt:Be sure to use the `-c' switch.
Section 29.10 shows an
 amazing pair of aliases that automate complicated C shell quoting
 problems like this.

	In the Bourne
 shell, single and double quotes include newline characters. Once you
 open a single or double quote, you can type multiple lines before
 the closing quote.
In the C shell, if the quotes on a command line don’t match, the
 shell will print an error unless the line ends with a backslash.
 In other
 words, to quote more than one line, type a backslash at the end of
 each line before the last line. Inside single or double quotes, the
 backslash-newline becomes a newline. Unquoted, backslash-newline is
 an argument separator:
% echo "one\
? two" three\
? four
one
two three four

Quoting Special Characters in Filenames

If

 you want to work with files that have
 spaces or special characters in the filenames, you may have to use quotes. For
 instance, if you wanted to create a file that has a space in the name, you could
 use the following:
/dev/null
 Section 43.12
% cp /dev/null 'a file with spaces in the name'
Normally, the shell uses spaces to determine the end
 of each argument. Quoting (Section 27.12, Section 27.13) changes that — for
 example, the cp command above has only two
 arguments. You can also use a backslash (\)
 before a special character. The example below will rename a file with a space in
 the name, changing the space to an underscore (_):
% mv a\ file a_file
Using the same techniques, you can deal with any character in a
 filename:
% mv '$a' a

 At worst, a space in a filename makes the filename
 difficult to use as an argument. Other characters are dangerous to use in a
 filename. In particular, using ? and * in a filename is playing with fire. If you want
 to delete the file a?, you may end up deleting more than
 the single file.
— BB

Verbose and Echo Settings Show Quoting

C-type
 shells have two variables that, when
 set, will help you follow the convoluted trail of variable and metacharacter
 expansion. This command will echo every command line before shell variables have
 been evaluated:
set
 Section 35.9
% set verbose
This command will display each line after the variables and metacharacters
 have been substituted:
% set echo
If you wish to turn the options off, use unset (Section 35.9)
 instead of set.
Bourne-type shell syntax
 is different. To turn on the verbose flag, use:
$ set -v
The command set

 -x turns on the echo flag. You can also type
 them together: set
 -xv.
If your version of Unix understands scripts that start with #!, and nearly all do, here’s a convenient way to
 turn these variables on from the first line of a script:
#!/bin/sh -xv
It is not necessary to modify the program. You can enable variable tracing in
 Bourne shell scripts by typing the shell name and options on the command
 line:
$ sh -v script

$ sh -x script

Not all Bourne shells let you turn these options off. If yours does (and it
 probably does), you can do it by using a plus sign instead of a minus
 sign:
set +xv

Here Documents

So

 far, we’ve talked about three different
 kinds of quoting: backslashes (\), single
 quotes ('), and double quotes ("). The shells support yet one more kind of
 quoting, called here documents. A here document is useful
 when you need to read something from standard input, but you don’t want to
 create a file to provide that input; you want to put that input right into your
 shell script (or type it directly on the command line). To do so, use the
 <<
 operator, followed by a
 special word:
sort >file <<EndOfSort
zygote
abacus
EndOfSort
This is very useful because variables (Section 35.9, Section 35.3) are evaluated during this
 operation. Here is a way to transfer a file using
 anonymous ftp (Section 1.21)[3] from a shell script:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 ftpfile
#!/bin/sh
Usage:
ftpfile machine file
set -x
SOURCE=$1
FILE=$2
GETHOST="uname -n"
BFILE=`basename $FILE`
ftp -n $SOURCE <<EndFTP
ascii
user anonymous $USER@`$GETHOST`
get $FILE /tmp/$BFILE
EndFTP
As you can see, variable and command
 substitutions (Section
 28.14) are done. If you don’t want those to be done, put a backslash
 in front of the name of the word:
cat >file <<\FunkyStriNG
Notice the funky string. This is done because it is very unlikely that I will
 want to put that particular combination of characters in any file. You should be
 warned that the C shell expects the matching word (at the end of the list) to be
 escaped the same way, i.e., \FunkyStriNG,
 while the Bourne shell does not. See Section
 36.19.

 Most Bourne shells also have the <<- operator. The dash (-) at the end tells the shell to strip any TAB
 characters from the beginning of each line. Use this in shell scripts to indent
 a section of text without passing those TABs to the command’s standard
 input.
Other shells, notably zsh and later
 versions of ksh, but in the future possibly
 also bash, support a method for taking input
 from a string:
$ tr ... <<< "$xyzzy" | ...
— BB

“Special” Characters and Operators

Before you learn about regular expressions
 (Section 32.1), you should
 understand how quoting (Section 27.12) works in Unix.
Regular
 expressions use metacharacters. The
 shells also have metacharacters.
 Metacharacters are simply characters that have a special meaning. The problem
 occurs when you want to use a regular expression in a shell script. Will the shell do something
 special with the character? Or will it be passed unchanged to the program? The
 $
 character is a good example of a regular
 expression metacharacter that is also used by the shell, but whose meaning is
 different depending upon who interprets it, the shell or other programs.
 It could be the beginning of a variable name or it
 could be part of a regular expression (Section 32.2). If you need a regular
 expression, you must know whether any of the characters of the expression are
 metacharacters, and must know the right way to quote that character so that it
 is passed to the program without being modified by the shell.

 Table 27-3

 is a table of

 special characters and
 operators in the shells
 covered by this book. (Because zsh acts
 basically like both C-type and Bourne-type shells, its name would show up in
 every entry. So we don’t list it here unless an entry applies only to zsh — or one or two other shells.) The chart also
 includes several combinations of characters just to be complete. But, to keep
 things simple, it doesn’t include:
	Arithmetic operators like +,
 -, and so on; see the articles on
 built-in arithmetic for a list.

	History substitution like !!,
 !$, and so on; see Section 30.8 instead.

As in other parts of this book, the sh
 entries apply to ksh and bash; the csh
 entries apply to tcsh.
Table 27-3. Special characters and their meanings
	
 Character

 	
 Where

 	
 Meaning

 	
 Articles

	
 ESC

 	
 csh

 	
 Filename completion.

 	

 Section 28.6

	
 RETURN

 	
 csh, sh

 	
 Execute command.

 	
	
 space

 	
 csh, sh

 	
 Argument separator.

 	
	
 TAB

 	
 csh, sh

 	
 Argument separator.

 	
	
 TAB

 	
 bash

 	
 Completion (in interactive shells).

 	

 Section 28.6

	
 #

 	
 csh, sh

 	
 Start a comment.

 	

 Section 35.1

	
 `

 	
 csh, sh

 	
 Command substitution (backquotes).

 	

 Section 28.14

	
 "

 	
 sh

 	
 Weak quotes.

 	

 Section 27.12

	
 "

 	
 csh

 	
 Weak quotes.

 	

 Section 27.13

	
 $var

 	
 csh, sh

 	
 Expand variable var.

 	

 Section 35.3,
 Section 35.9

	
 ${var}

 	
 csh, sh

 	
 Same as $
 var.

 	

 Section 35.9

	
 $var:mod

 	
 csh

 	
 Edit var with modifier
 mod

 	

 Section 28.5

	
 ${var-default}

 	
 sh

 	
 If var not set, use
 default.

 	

 Section 36.7

	
 ${var:-default}

 	
 bash

 	
 If var not set or null, use
 default.

 	

 Section 36.7

	
 ${var=default}

 	
 sh

 	
 If var not set, set it to
 default and use that value.

 	

 Section 36.7

	
 ${var:=default}

 	
 bash

 	
 If var not set or null, set it
 to default and use that value.

 	

 Section 36.7

	
 ${var+instead}

 	
 sh

 	
 If var set, use
 instead. Otherwise, null
 string.

 	

 Section 36.7

	
 ${var:+instead}

 	
 bash

 	
 If var set or not null, use
 instead. Otherwise, null
 string.

 	

 Section 36.7

	
 ${var?message}

 	
 sh

 	
 If var set, use its value. Else
 print message (or default) and
 exit.

 	

 Section 36.7

	
 ${var:?message}

 	
 bash

 	
 If var set or not null, use its
 value. Else print message (or
 default) and exit.

 	

 Section 36.7

	
 ${var#pat}

 	
 ksh, bash

 	
 Value of var with smallest
 pat deleted from start.

 	
	
 ${var##pat}

 	
 ksh, bash

 	
 Value of var with largest
 pat deleted from start.

 	
	
 ${var%pat}

 	
 ksh, bash

 	
 Value of var with smallest
 pat deleted from end.

 	
	
 ${var%%pat}

 	
 ksh, bash

 	
 Value of var with largest
 pat deleted from end.

 	
	
 ${^array}

 	
 zsh

 	
 Expand array in place, like
 rc_expand_param option.

 	

 Section 35.9

	
 ${=spec}

 	
 zsh

 	
 Turn on sh_word_split option while
 evaluating spec.

 	

 Section 35.9

	
 ${~array}

 	
 zsh

 	
 Turn on glob_subst option while
 evaluating spec.

 	

 Section 35.9

	
 |

 	
 csh, sh

 	
 Pipe standard output.

 	

 Section 1.5, Section 43.1

	
 |&

 	
 csh

 	
 Pipe standard output and standard error.

 	

 Section 43.5

	
 |&

 	
 ksh

 	
 Coroutine.

 	

 Section 24.4

	
 ^

 	
 sh only

 	
 Pipe character (obsolete).

 	
	
 ^

 	
 csh, bash

 	
 Edit previous command line.

 	

 Section 30.5

	
 &

 	
 csh, sh

 	
 Run program in background.

 	

 Section 23.2

	
 &!

 	
 zsh

 	
 Run program in background without job control.

 	

 Section 23.11

	
 &|

 	
 zsh

 	
 Run program in background without job control.

 	

 Section 23.11

	
 ?

 	
 csh, sh

 	
 Match one character.

 	

 Section 1.13,
 Section 33.2

	
 *

 	
 csh, sh

 	
 Match zero or more characters.

 	

 Section 1.13,
 Section 33.2

	
 ;

 	
 csh, sh

 	
 Command separator.

 	
	
 ;;

 	
 sh

 	
 End of case element.

 	

 Section 35.10

	
 ~

 	
 csh, ksh, bash

 	
 Home directory.

 	

 Section 31.11

	
 ~user

 	
 csh, ksh, bash

 	
 Home directory of user.

 	

 Section 31.11

	
 !

 	
 csh, bash

 	
 Command history.

 	

 Section 30.2

	
 !

 	
 bash, ksh93, zsh

 	
 Toggle exit status.

 	

 Section 35.12

	
 -

 	
 zsh

 	
 Make a login shell.

 	

 Section 3.19

	
 =

 	
 csh, sh

 	
 Assignment.

 	

 Section
 35.9,

	
 $#

 	
 csh, sh

 	
 Number of shell arguments or words in an array.

 	

 Section
 35.20,

	
 "$@"

 	
 sh

 	
 Original script arguments.

 	

 Section 35.20

	
 $*

 	
 csh, sh

 	
 Original script arguments, broken into words.

 	

 Section 35.20

	
 $?

 	
 sh

 	
 Status of previous command.

 	

 Section 35.12

	
 $$

 	
 csh, sh

 	
 Process identification number.

 	

 Section 27.12

	
 $!

 	
 sh

 	
 Process identification number of last background
 job.

 	

 Section 4.15

	
 $<

 	
 csh

 	
 Read input from terminal.

 	

 Section 28.9

	
 $_

 	
 bash, ksh, zsh

 	
 Last argument of previous command.

 	
	
 $n

 	
 sh

 	
 Argument n. 1 <= n <= 9
 for most shells; bash and ksh93 support ${n} for n >= 10.

 	
	
 $0

 	
 sh

 	
 Name of the shell or shell script.

 	
	
 cmd1 && cmd2

 	
 csh, sh

 	
 Execute cmd2 if
 cmd1 succeeds.

 	

 Section 35.14

	
 cmd1 || cmd2

 	
 csh, sh

 	
 Execute cmd2 if
 cmd1 fails.

 	

 Section 35.14

	
 $(..)

 	
 ksh, bash

 	
 Command substitution.

 	

 Section 36.24,
 Section 28.14

	
 . file

 	
 sh

 	
 Execute commands from file in
 this shell.

 	

 Section 35.29

	
 :

 	
 sh

 	
 Evaluate arguments, return true.

 	

 Section 35.6

	
 :

 	
 sh

 	
 Separate values in paths.

 	

 Section 31.5,
 Section 35.6

	
 :

 	
 csh

 	
 Variable modifier.

 	

 Section 28.5

	
 []

 	
 csh, sh

 	
 Match range of characters.

 	

 Section 1.13,
 Section 33.2

	
 []

 	
 sh

 	
 Test.

 	

 Section 35.26

	
 %n

 	
 csh, ksh, bash, zsh

 	
 Job number n.

 	

 Section 23.3

	
 (cmd;cmd)

 	
 csh, sh

 	
 Run cmd
 ;
 cmd in a subshell.

 	

 Section 43.7

	
 { }

 	
 csh, bash

 	
 In-line expansions.

 	

 Section 28.4

	
 >file

 	
 csh, sh

 	
 Redirect standard output.

 	

 Section 43.1

	
 >! file

 	
 csh

 	
 Output to file, even if
 noclobber set and
 file exists.

 	

 Section 43.6

	
 >| file

 	
 ksh, bash

 	
 Output to file, even if
 noclobber set and
 file exists.

 	

 Section 43.6

	
 >>file

 	
 csh, sh

 	
 Append standard output.

 	

 Section 43.1

	
 >>! file

 	
 csh

 	
 Append to file, even if
 noclobber set and
 file doesn’t exist.

 	

 Section 43.6

	
 <file

 	
 csh, sh

 	
 Redirect standard input.

 	

 Section 43.1

	
 <<word

 	
 csh, sh

 	
 Read until word, do command and
 variable substitution.

 	

 Section 27.16,
 Section 28.13

	
 <<\word

 	
 csh, sh

 	
 Read until word, no
 substitution.

 	

 Section 27.16

	
 <<-word

 	
 sh

 	
 Read until word, ignoring
 leading TABs.

 	

 Section 27.16

	
 <> file

 	
 ksh, bash, zsh

 	
 Open file for writing and
 reading.

 	
	
 >& file

 	
 csh, bash

 	
 Redirect standard output and standard error to
 file.

 	

 Section 43.5

	
 m> file

 	
 sh

 	
 Redirect output file descriptor
 m to
 file.

 	

 Section 36.16

	
 m>> file

 	
 sh

 	
 Append output file descriptor m
 to file.

 	
	
 m< file

 	
 sh

 	
 Redirect input file descriptor
 m from
 file.

 	
	
 <&m

 	
 sh

 	
 Take standard input from file descriptor
 m.

 	
	
 >&m

 	
 sh

 	
 Use file descriptor m as
 standard output.

 	

 Section 36.16

	
 >& -

 	
 sh

 	
 Close standard output.

 	

 Section 36.16

	
 m<& -

 	
 sh

 	
 Close input file descriptor
 m.

 	

 Section 36.16

	
 n>&m

 	
 sh

 	
 Connect output file descriptor
 n to file descriptor
 m.

 	

 Section 36.16

	
 m>& -

 	
 sh

 	
 Close output file descriptor
 m.

 	

 Section 36.16

How Many Backslashes?

 The problem with backslashes is that
 many different programs use them as quoting characters. As a result, it’s
 difficult to figure out how many backslashes you need in any situation.
Here’s an example, taken from
 System V Release 4. (Notice
 that I’m using the standard System V version of echo from /bin/echo. SVR4 has
 four versions of echo!)
% /bin/echo hi \ there
hi there
% /bin/echo hi \\ there
hi \ there
% /bin/echo hi \ there
hi \ there
In the first case, the shell uses the backslash to quote (Section 27.12)
 the following space character. The space before the backslash is a word
 separator. So echo gets two arguments:
 "hi" and "·there” (without the quotes) — where · is the space character that was quoted by the backslash. As
 always, echo prints a single space between
 each argument. The first space you see in the output is echo’s
 argument-separating space, and the second space came along with the second
 argument (thanks to the backslash).
In the second case, the shell converts \\
 to \; the first backslash tells the shell to
 quote (Section 27.12) (turn off the special meaning of) the second
 backslash. The echo command gets three
 arguments, "hi“, "\“, and "there“, and it echoes
 those arguments with a single space between each. (I’ve heard claims that, on
 some systems, this command wouldn’t print any backslashes, but I wasn’t able to
 reconstruct that situation.)
In the third case, the shell converts each pair of backslashes into a
 backslash, and runs the command echo hi \\
 there. But this is System V, and System V’s echo interprets backslashes as special characters.
 So when echo sees the remaining two
 backslashes, it converts them into a single backslash. So you see only a single
 backslash, even though you typed four. On BSD systems and on Linux, echo doesn’t do this; you’d see two backslashes.
 For that matter, if you’re using SVR4’s C shell, with its built-in echo command, you’ll see the BSD/Linux behavior.
 You’ll also see the BSD/Linux behavior if you’re using SVR4’s /usr/ucb/echo.
The terminal driver is also capable of “eating”
 backslashes if they appear before special characters. If a backslash precedes
 the “erase” character (normally CTRL-h) or the “kill” character (normally
 CTRL-u), the terminal driver will pass the control character to the shell,
 rather than interpreting it as an editing character. In the process, it “eats”
 the backslash. So if you type:
% echo \CTRL-u
The shell receives the line echo CTRL-u.
 There are certainly system-dependent variations, though. If your system has the
 termio(7) manual page, read it for more
 information.
What’s the point of this article? Well, backslashes are messy. The shell, the
 terminal driver, echo (sometimes), and
 several other utilities use them. If you think very carefully, you can figure
 out exactly what’s consuming them. If you’re not of a rigorous frame of mind,
 you can just add backslashes until you get what you want. (But, obviously, the
 nonrigorous approach has pitfalls.) I’ve seen situations in troff (which is another story altogether) where
 you need eight backslashes in order to have a single backslash left at the point
 where you want it!
(Extra credit: What happens when you put quotes (" or ') around the strings in
 the echo commands above? Especially, should
 quotes affect the way \CTRL-u is
 interpreted?)
—ML and JP

[1] It’s difficult to trace the development of all these shells in
 a simple manner. Their authors have borrowed ideas and syntax
 from the others — and sometimes code — and sometimes a shell
 starts out trying to emulate another but evolves away from its
 original inspiration (or the inspiration evolves away from the
 aspirant).

[2] The script uses bash because, as
 this article explains later, its built-in echo (Section
 27.5) command has the -E option to prevent
 interpretation of special characters.

[3] You might be better off using wget
 or curl for downloads, but this
 method can be useful for automated uploads.

Chapter 28. Saving Time on the Command Line

What’s Special About the Unix Command Line

Summary Box
One of
 Unix’s best features is the shell’s command line. Why? Nearly every modern
 operating system has a command line; we don’t use card readers with obscure
 job setup cards any more. What makes Unix’s special?
The Unix
 shell command line allows lots of shortcuts. Some of these you’ll find in
 other operating systems; some you won’t. In this chapter, we’ll introduce a
 lot of these shortcuts. Among other things, we’ll discuss:
	How to run commands more than
 once
 Section 28.8).

	Filename completion (
 Section 28.6, Section 28.7), which allows
 you to type the beginning of a filename and let the shell fill in
 the rest. (This is finally possible on certain Redmond-born OSes as
 well, but it usually involves a registry hack or two.)

	Command substitution (
 Section 28.14), which
 lets you use the output from one command as arguments to another.
 (Note that this is different from
 pipelining.)

	
 Process substitution in
 bash, and a script named
 ! for other shells, lets you
 put the output of a command into a temporary file and give that
 filename to a process.

	The ability to repeat commands with various
 methods (Section
 28.10, Section
 28.11).

	Handling of command lines that become too
 long (Section
 28.17).

Some fundamental command-line features that we aren’t discussing in this
 chapter, but which are discussed elsewhere, are:
	Job control (Section 23.3), which lets
 you run several commands at the same time.

	Aliases (Section 29.2), or
 abbreviations, for commands. Shell
 functions (Section 29.11) are similar.

	Command-line editing (Section 30.14) and
 history substitution (Section 30.8). These are two
 different ways (both useful) to “recall” previous commands.

	Quoting (Section 27.12, Section 27.13), the way you
 “protect” special characters from the Unix shell.

	Wildcards (Section 33.2).

You don’t need to be a command-line virtuoso to use Unix effectively. But
 you’d be surprised at how much you can do with a few tricks. If all you can
 do at the command line is type ls or
 start Mozilla or the Gimp, you’re missing out on a lot.
— ML

Reprinting Your Command Line with CTRL-r

 You’re logged in from home, running a
 program and answering a prompt. As you’re almost done, modem noise prints
 xDxD@! on your screen. Where were you? Or
 you’re typing a long command line and a friend interrupts you with write (Section
 1.21) to say it’s time for lunch. Do you have to press CTRL-u and
 start typing all over again?
If your system understands the rprnt character (usually
 set to CTRL-r), you can ask for the command line to be reprinted as it was. In
 fact, you can use CTRL-r any time you want to know what the system thinks you’ve
 typed on the current line — not just when you’re interrupted. But this only
 works in the normal cooked input mode; programs like
 vi that do their own input processing may
 treat CTRL-r differently. Here’s an example:
% egrep '(10394|29433|49401)' /work/symtower/

Message from alison@ruby on ttyp2 at 12:02 ...
how about lunch?
EOF
CTRL-r
egrep '(10394|29433|49401)' /work/symtower/logs/*
After the interruption, I just pressed CTRL-r. It reprinted the stuff I’d
 started typing. I finished typing and pressed RETURN to run it.
If you use a shell like the Korn shell that has interactive command editing,
 you can probably use it to reprint the command line, too. In bash and other commands that use the readline
 file, though, from vi editing mode, CTRL-r
 still seems to start an Emacs-style reverse search. So I added this fix to my
 ~/.inputrc file:
set editing-mode vi

By default, in vi text-input mode, ^R does Emacs "reverse-i-search".
In command mode, you can use the vi command ^L to redraw the line.
Fix it in text-input mode:
"\C-r": redraw-current-line
— JP

Use Wildcards to Create Files?

 The shells’ [
] (square bracket) wildcards will match a range of files. For
 instance, if you have files named afile,
 bfile, cfile, and dfile, you can
 print the first three by typing:
% lpr [a-c]file
Now, let’s say that you want to create some more files
 called efile, ffile, gfile, and hfile. What’s wrong with typing the command line
 below? Try it. Instead of vi, you can use
 your favorite editor or the touch (Section 14.8) command:
% vi [e-h]file
 Doesn't make those four files
% ls
afile bfile cfile dfile
Stumped? Take a look at Section 1.13
 about wildcard matching.
The answer: wildcards can’t match names that don’t exist yet. That’s
 especially true with a command like touch ?file
 (Section 14.8) or touch *file — think how many filenames those
 wildcards could possibly create!
Section 28.4 explains shell { } operators that solve this problem. And, by the
 way, if you just created one new file named [e-h]file, simply quote (Section 27.12) its name to remove
 it:
rm "[e-h]file"
— JP

Build Strings with { }

 I’ve been finding more and more uses for the
 {} pattern-expansion characters in
 csh

 , tcsh, zsh, and bash
 . They’re similar to *, ?, and [] (Section 33.2), but they don’t match filenames the way that *, ?, and
 [] do. You can give them arbitrary text
 (not just filenames) to expand — that “expand-anything” ability is what makes
 them so useful.
Here are some examples to get you thinking:
	To fix a typo in a filename (change fixbold5.c
 fixbold6.c):
% mv fixbold{5,6}.c
To see what the shell will do with {}, add echo (Section 27.5) before the
 mv:
% echo mv fixbold{5,6}.c
mv fixbold5.c fixbold6.c

	To copy filename to filename.bak without retyping filename:
% cp filename{,.bak}

	To print files from other directory(s)
 without retyping the whole pathname:
% lpr /usr3/hannah/training/{ed,vi,mail}/lab.{ms,out}
That would give lpr (Section 45.2) all of these
 files:
/usr3/hannah/training/ed/lab.ms
/usr3/hannah/training/ed/lab.out
/usr3/hannah/training/vi/lab.ms
/usr3/hannah/training/vi/lab.out
/usr3/hannah/training/mail/lab.ms
/usr3/hannah/training/mail/lab.out
...in one fell swoop!

	To edit ten new files that don’t exist yet:
% vi /usr/foo/file{a,b,c,d,e,f,g,h,i,j}
That would make /usr/foo/filea,
 /usr/foo/fileb, ... /usr/foo/filej. Because the files don’t
 exist before the command starts, the wildcard vi
 /usr/foo/file[a-j]
 would not work (Section 28.3).

	An easy way to step through three-digit numbers 000, 001, ..., 009,
 010, 011, ..., 099, 100, 101, ... 299 in the C shell is:
foreach
 Section 28.9
foreach n ({0,1,2}{0,1,2,3,4,5,6,7,8,9}{0,1,2,3,4,5,6,7,8,9})
 ...Do whatever with the number $n...
end
Yes, csh also has built-in
 arithmetic, but its @ operator
 can’t make numbers with leading
 zeros. This nice trick shows that the {} operators are good for more than just
 filenames.

	In zsh, {} also understands ..

 as an integer-range operator. So
 you could generate the 300 numbers in the previous example with {000..299}. The leading 00 tells zsh to pad all output numbers to three digits with
 leading zeros.
If you give the range in reverse order, like {299..0}, zsh will
 output the integers in descending order: 299, 298, and so on, down to 1
 and 0.

	To send a mail (Section
 1.21) message to multiple recipients where a part of each
 email address is repeated:
% mail -s "Link to me" webmaster@{foo,bar,baz}.com < msgfile

	If you’re using a graphical
 email program (not the command-line mail program shown above), and you’re sending an email
 message to lots of people at the same host, it can be a pain to type the
 same hostname over and over in the “To:” line. Let the shell’s {} operators do the dirty work! Use
 echo to output the addresses.
 (Note the comma (,) after each address.) Then copy all of them — except
 the final comma — with your mouse, and paste them into the GUI mail
 program:
% echo {jane,joe,jill,john,jean}@foo.org,
jane@foo.org, joe@foo.org, jill@foo.org, john@foo.org, jean@foo.org,

	To
 create sets of subdirectories:
% mkdir man
% mkdir man/{man,cat}{1,2,3,4,5,6,7,8}
% ls -F man
cat1/ cat3/ cat5/ cat7/ man1/ man3/ man5/ man7/
cat2/ cat4/ cat6/ cat8/ man2/ man4/ man6/ man8/

	Here’s how to

 copy the remote files file1.c, file12.c, file45.c,
 and file77.c from the subdirectory
 foo on the remote host
 remulac to the local system. Your local shell
 expands the strings (into remulac:foo/file1.c, remulac:foo/file12.c, etc.) and passes them to scp (Section 29.14):
.
 Section 1.16
% scp remulac:foo/file{1,12,45,77}.c .

	

 Here
 are two ways to print 10 copies of the file project_report if your lpr (
 Section 45.2) command doesn’t
 have a -#10 option. We showed the first way in the
 first two editions of this book. Dimi Shahbaz sent us the second one: 9
 commas give 10 filenames. (Thanks, Dimi!) Both of them work on all the
 shells I tried:
% lpr project_repor{t,t,t,t,t,t,t,t,t,t}
% lpr project_report{,,,,,,,,,}
Of course, this doesn’t just work for lpr or filenames. Remember that the shell expands the
 list of strings, so you can use these tricks anywhere you use {}.

In bash, the complete-into-braces editor command (which is bound to the
 M-{ key sequence by default in Emacs
 mode) expands a string into a list of matching filenames in braces. For
 example:
$ ls pr*
prog1.c prog2.c program1.c program2.c
$ cc pr META{
$ cc pr{og1.c,og2.c,ogram1.c,orgram2.c}
Then you can edit the brace expression.

String Editing (Colon) Operators

 When the C shells, zsh, and bash do history substitutions

 (Section 30.8) they can also edit the
 substitution. The C shells and zsh — but not
 bash — can also edit variable substitutions (
 Section 35.9). (bash has a different syntax, which zsh understands, too.) For instance, in the first
 example below, when !$ contains /a/b/c, adding the “head” operator :h will give just the head of the pathname,
 /a/b.
For a complete but very terse list of these operators, see the csh manual page. We hope the examples below will
 help you understand these useful operators.
	:h

 gives the head of a
 pathname (Section 31.2), as
 follows:
% echo /a/b/c
/a/b/c
% echo !$:h
echo /a/b
/a/b
That took off the filename and left the header. This also could be
 used with C shell variables (Section 35.9) as:
% set x = /a/b/c
% echo $x
/a/b/c
% echo $x:h
/a/b

	:r

 returns the root of a filename:
% echo xyz.c abc.c
xyz.c abc.c
% echo !$:r
echo abc
abc
The :r removed the .c from the last argument, leaving the
 root name. This could also be used in C shell variable names:
% set x = abc.c
% echo $x:r

	:g makes the operation global if you have more
 than one name. For example:
% set x = (a.a b.b c.c)
% echo $x:gr
a b c
The :gr operator stripped off all
 dot (.) suffixes. By the way, this use of g does not work with the history commands.
This is the C shell’s answer to the basename (Section
 36.13) command.

	:e returns the extension (the part of the name
 after a dot). Using csh
 variables:
% set x=(abc.c)
% echo $x:e
c
No luck using that within history, either.

	:t

 gives the tail of a
 pathname — the actual filename without the path:
% echo /a/b/c
/a/b/c
% echo !$:t
c
With csh variables:
% set x=(/a/b/c)
% echo $x:t
c
And with multiple pathnames, you can do it globally with:
% set x=(/a/b/c /d/e/f /g/h/i)
% echo $x:gt
c f i
The corresponding heads would be:
% set x=(/a/b/c /d/e/f /g/h/i)
% echo $x:gh

	:p

 prints the command but does not execute
 it (Section
 30.11):
% echo *
fn1 fn2 fn3
% !:p
echo fn1 fn2 fn3

	:q
 prevents further
 filename expansion or prints the command as is:
% echo *
fn1 fn2 fn3
% !:q
echo *
*
The first command echoed the files in the directory, and when the
 :q was applied, it echoed only
 the special character.

	:x

 is like :q, but it breaks the line into words.
 That is, when using :q, it is all one
 word, while :x will break it up into
 multiple words. :q and :x are more often used with C shell
 arrays.

[Wait, Dan, what about & on the
 right-hand side to repeat the previous substitution? And there’s more since Dan wrote this article
 (in 1983!). tcsh also has :u

 to convert the first lowercase letter to uppercase and :l to convert the first uppercase letter to lowercase. In
 zsh, :u converts all letters to uppercase and :l converts all letter to lowercase. zsh also has f and F to repeat a substitution until it fails — and
 even more. Check your shell’s manual page. — JP]

Automatic Completion

 If you hate typing long filenames,
 hostnames, command names — or almost anything on a command line — you should
 know about the shells’ “completion” feature.
The basics are pretty simple: just press (in most shells) the TAB key, and the
 shell should “do the right thing.” But how the shell decides what’s “right” can
 be complicated — especially in newer shells, and especially
 in the latest zsh
 ,
 which has incredibly customizable completion. As an example, when you press TAB
 in bash, the shell tries to complete a shell
 variable if the word begins with $, a
 username if the word begins with ~, a
 hostname if the word begins with @, or a
 command (including aliases and functions). If none of these works, bash finally tries filename completion. As another
 example, the original Korn shell does only simple filename
 completion, but the public domain Korn shell has more features.
On more-sophisticated shells, completion is actually a function of the shell’s
 built-in customizable command editor. For instance, in tcsh
 ,
 the TAB key is bound to (in other words, it runs) the editor’s complete-word command. This key binding can be
 changed. And tcsh, like other recent shells,
 has plenty of other completion-related editor commands.
bash

 allows for the customization of the different types of completions, as well; you
 can define a file containing the hostnames to check (in /etc/hosts format) when the shell is asked to
 complete a hostname. Just set the environment variable
 HOSTFILE to the name of the file you want. There are
 extensive built-in functions in bash, each
 associated with a key, to allow for extremely flexible management of
 completions.
As you can see, completion varies shell to shell, so we’ll give an overview
 here. For more details, see your shell’s manpage.
General Example: Filename Completion

 Let’s look at an example of one type
 of completion, filename completion. Other types of completion work in
 generally the same way.
Filename completion is one of the most common types.
 You can type the initial part of a filename and then press the TAB key. (In
 the C shell, first enable completion by setting the variable filec (Section
 30.9) or complete, then press ESC.) If the
 shell can figure out the complete filename from the part that you’ve typed,
 it will fill in the rest of the name. If not, it will fill in as much of the
 name as is unambiguous and then let you type some more. For example:
$ ls
alpha.c alpha.o beta.c
$ cc b TAB
$ cc beta.c Shell fills in the filename automatically
(With tcsh and csh, your terminal will beep if more than one file matches
 the name you’ve typed. If all this beeping drives you crazy, you can set the
 nobeep shell variable to turn it off.) In this
 case, only one filename begins with b, so the shell can
 fill in the entire name. This works with pathnames (Section
 1.16) too: each time you press TAB, the shell completes the name
 up to the next slash (/) if it
 can.
If you type part of a filename and then type CTRL-d (in bash, type TAB twice), the shell lists all the
 files that match whatever you’ve typed. It then redisplays your command line
 and lets you continue typing. For example:
% cc a CTRL-d
alpha.c alpha.o
% cc alpha.
Two files begin with the letter “a”; the shell lists them. It then
 redisplays the cc command, letting you
 finish the filename.
Note
Also, be forewarned that filename completion doesn’t always work
 correctly. For example, you can’t use filename completion within some
 older shell applications. You can’t mix filename completion with
 wildcards in any shell except zsh. We
 won’t go into detail about these rough edges, but if you’re aware that
 they exist, you won’t have trouble.

That last example shows a problem with filename completion: it’s matching
 the “.o file,” (Section 1.12) named alpha.o. It’s a type of file that most users
 wouldn’t want to manipulate from the command line; they’d rather the shell
 ignore all .o files. Section 28.7 explains the fignore list; it
 solves this problem in most cases. Section 31.10 shows an interesting shortcut to filename
 completion: cding to a directory by
 typing its “initials.”

Menu Completion

 The filename completion section
 showed how completion works by default: press TAB, and the shell completes
 as much as it can and then waits for you either to press TAB again (to see
 all possible completions) or to type enough of the word to make it
 unambigious.
Menu completion, supported by zsh with
 the -Y option, works differently. The name might be
 confusing at first: it doesn’t “complete a menu,” and it also doesn’t pop up
 a menu of possible completions. Instead, menu completion replaces the word
 to be completed with a single match from the list of possible completions.
 Each time you press TAB again, the shell shows you the next possible match,
 in turn, under your cursor. If you like one of the choices, just keep typing
 the rest of the command line (or press ENTER to execute it). When the shell
 has shown all the possible matches, it rings the bell and restores the
 original text without a match.
Menu completion doesn’t work just with filenames. If your shell supports
 it, menu completion probably works with all completion modes (filenames,
 hostnames, etc.).

Command-Specific Completion

tcsh

 and zsh let you customize completion even farther:
 specific completion instructions for each Unix command you define. For
 instance, the mail command wants email
 addresses on its command line, and you can declare a list of addresses that
 are available to complete (this could be a list of friends and associates
 you send a lot of mail to). You might use the ssh and telnet commands
 (Section 1.21) to connect to
 particular remote hosts, and you’d like to be able to complete the hostnames
 for those particular hosts. (The bash

 hostname completion feature reads
 hostnames from a file like /etc/hosts —
 but it only completes hostnames if the string starts with an @ character or if you use a special editor
 command for completing hostnames.)
The tcsh command complete
 defines these custom completions. The
 syntax is hairy, so I won’t try to explain all of it here. Instead, let’s
 look at an overall example from the MH email
 system (Section
 6.2). You use MH commands directly from a
 shell prompt instead of first starting an email command interpreter and
 entering commands at the interpreter’s own prompt, as you do with most other
 email packages. Most MH programs accept a mail folder name as one of their
 command-line arguments. A mail folder name starts with a + (plus sign)[1] and can appear anywhere in a command line.
MH mail folders can be stored anywhere on the filesystem — even on a
 networked filesystem on a remote computer. Here are the four lines that I
 put in my .tcshrc
 setup file (Section 3.3):
{ }
 Section 28.4
Set up MH folder name completion for "folder", "refile", "scan", "show":
folders -fast -recurse | \
 sed -e '/DELETE$/d' -e 's/^/+/' > $HOME/Mail/folderlist
complete {folder,refile,scan,show} 'C@*@`cat $HOME/Mail/folderlist`@'
The first command builds a file named folderlist with
 a list of strings (in this case, folder names) to complete. I don’t want
 completion to include folder names I’ll never look in, so I filtered the
 folder output with sed (Section
 34.1) to exclude the names I don’t want — in this case, folder
 names ending with DELETE. (This list is also useful in
 other places, it turns out, not just in tcsh completion.) A + is
 prepended to each folder name because folders doesn’t add the plus signs, but we need them for
 tcsh matching. So the first few lines
 of folderlist look like this:
+drafts
+inbox
+jobs
+jobs/bay-area
+jobs/miscellaneous
 ...
The second command, complete, starts
 with a list in braces of the commands that should complete folder names. The
 next argument is complex and has lots of possible variations; this one
 matches any pattern included with backquotes (Section
 28.14) from the cat (Section 12.2) command, which gives
 us the contents of folderlist. There are lots of
 variations! The bottom line is how this works... here’s an example of
 completing a folder name:
tcsh> scan +j TAB
tcsh> scan +jobs/m TAB
tcsh> scan +jobs/miscellaneous last:20
After completing the folder name (in two steps), tcsh leaves a space; I type the rest of the command line and
 press ENTER to run it.

Editor Functions for Completion

 Some shells have customizable, built-in
 command-line editors that use key bindings to control how and where
 completion takes place. For example, in tcsh, pressing TAB invokes the complete-word function, but you can change TAB to do menu
 completion (as explained above) by binding the editor function complete-word-fwd to TAB key.
In bash, TAB does basic completion with
 the editor’s complete function. But the
 bash editor has many more bindings
 than tcsh does. For instance, typing
 M-/ runs complete-filename, which treats the text before the cursor as
 a filename and does filename completion on it. Typing M-$ runs complete-variable, which treats the text before the cursor as
 a shell variable and does variable completion on it. There are plenty of
 variations — like C-x $, which invokes
 the possible-variable-completions
 function to list all shell variable names that could be completed. Section 28.4 has an example of
 M-{, the curly-brace completion
 function.
For details on your particular shell, check its manual page.
—JP, ML, and SJC

Don’t Match Useless Files in Filename Completion

The
 shell variable
 fignore in csh and
 zsh (FIGNORE in
 bash and also zsh) lets you tell the shell that you aren’t interested in some
 files when using filename completion (Section 28.6). For example, you may be
 more likely to refer to C language source files (whose names end with
 .c) than object files (.o files);
 you often need to edit your source files, while you may never need to look at
 your object modules. Set fignore to the suffixes that you
 want to ignore. For example, to ignore .o files in tcsh and csh,
 type:
set
 Section 35.9
% set fignore=(.o)
Once you’ve done this, file completion will ignore your
 .o files when you press the
 TAB key (ESC in csh) — unless a .o file is the only match it
 can find.
Most likely, there’s a whole list of suffixes that you don’t care about:
 .o (object modules), .out (random
 executables), .gz (gzipped files), ~ (Emacs backup files (Section 19.4)), and so on. Section 1.12 has a list of them. Here’s
 how to set fignore to a list of filenames:[2]
% set fignore=(.o .out .gz \~)
 ...tcsh, csh, zsh
$ FIGNORE='.o:.out:.gz:~'
 ...bash, zsh
fignore has no effect when you press CTRL-d to get a
 listing of the files that match in csh and
 tcsh. Those shells always give you a
 complete list of all possible completions.

Repeating Commands

 Let’s start with some obvious ways to run
 commands more than once:
	Type !! (Section 30.8) to repeat the
 previous command line, or repeat a cycle of
 commands with !-n (Section 30.9)

	Press the up-arrow key (Section 30.14) or a vi- or Emacs-style editing command

	Copy and paste the command line with your
 mouse (Section
 28.10)

Whether each of those methods will work depends on the shell you’re using and
 whether you have copy-and-paste built into your interface. All of those methods
 force you to take some action before each command line repeats — pressing the
 up-arrow key, for instance. That lets you control exactly when each command
 runs.
The next four articles show automated ways to repeat a command a certain
 number of times. You can “mix and match” some parts of different articles — the
 tips on read and sleep, for instance. Each article follows on to the one before,
 so we suggest glancing through all of them:
	In C shells, repeat a single command
 with the repeat
 command.

	zsh
 can repeat a series of commands
 with its repeat loop.

	Methods for Bourne-type shells use
 more-general shell features.

	An offbeat method that works with all shells is to output multiple
 commands using jot.

	The shells’ for and foreach loops

 (Section 28.9) can vary the
 commands they run by picking a string (a word, for instance) from a list
 of strings.

	To repeat a command and display its output in the same place on the
 screen — so it’s easy to spot differences over time — try vis
 (Section 28.11).

Finally, remember that you aren’t stuck with the login shell you chose. If you
 want a feature that your shell doesn’t have, you can use another shell
 temporarily by typing its name (like csh),
 running the commands you need, then typing exit to go back to your original shell.
— JP

Repeating and Varying Commands

A foreach Loop

 When

 some people

 need to repeat a
 command on several files, the first thing they think of is command line editing (Section 30.14) or — as we show here
 — history substitution (
 Section 30.5):
-v
 Section 12.4, less
 Section 12.3
% cat -t -v /usr/fran/report | less
 ...
% ^fran/report^rob/file3
cat -t -v /usr/rob/file3 | less
 ...
% ^3^21
cat -t -v /usr/rob/file21 | less
 ...
%
The second substitution (changing 3 to
 21) was quick to do, but the first one was longer.
 If there are lots of related commands like this, it can be easier to list
 all the variations at once — then let the shell do the dirty work. To do
 that, use the shell’s foreach loop in
 C-type shells — or, in Bourne-type shells, use a for loop, shown later in this article. (zsh has both foreach and for loops.)
 You give the loop a list of the words that will change each time the command
 line is run. In this example, it’s a list of filenames. The loop will step
 through the words, one by one, storing a word into a shell variable (Section
 35.9), then running the command(s). The loop goes on until it has
 read all the words. For example:
% foreach file (/usr/fran/report /usr/rob/file3 /usr/rob/file21)
? cat -t -v $file | less
? end
 ...Shell runs cat -t -v /usr/fran/report | less...
 ...Shell runs cat -t -v /usr/rob/file3 | less...
 ...Shell runs cat -t -v /usr/rob/file21 | less...
%

 The question marks (?) are secondary
 prompts (Section
 28.12); the shell will keep printing them until you type the
 command end. Then the loop runs.
The list between the parentheses doesn’t have to be filenames. Among other
 things, you can use wildcards (Section 1.13), backquotes (Section
 28.14) (command substitution), variables (Section
 35.9, Section 35.3),
 and the handy
 curly brace ({}) operators (Section 28.4). For example, you
 could have typed the above loop this way:
% foreach file (/usr/fran/report /usr/rob/file{3,21})
? cat -t -v $file | less
? end
If you want the loop to stop before or after running each command, add the
 C shell operator $<. It reads keyboard
 input and waits for a RETURN. In this case, you can probably ignore the
 input; you’ll use $< to make the loop
 wait. For example, to make the previous loop prompt before each command
 line:
set
 Section 35.9
% foreach file (/usr/fran/report /usr/rob/file{3,21})
? echo -n "Press RETURN to see $file--"
? set x="$<"
? cat -t -v $file | less
? end
Press RETURN to see /usr/fran/report--RETURN
 Shell runs cat -t -v /usr/fran/report | less...
Press RETURN to see /usr/rob/file3--RETURN
 Shell runs cat -t -v /usr/rob/file3 | less...
Press RETURN to see /usr/rob/file21--RETURN
 Shell runs cat -t -v /usr/rob/file21 | less...
The loop parameters don’t need to be
 filenames. For instance, you could send a personalized email (Section
 1.21) message to five people this way:[3]
cat
 -

 Section 12.2

% foreach person (John Cathy Agnes Brett Elma)
? echo "Dear $person," | cat - formletter | mail $person
? end
The first line of the first letter will be “Dear John,”; the second letter
 “Dear Cathy,”; and so on.
Want to take this idea further? It’s a part of shell
 programming (Section
 35.2). I usually don’t recommend shell programming with the C
 shell, but this is a handy technique to use interactively.

A for Loop

 The for loop
 in Bourne-type shells is like the
 foreach loop shown earlier: it loops
 through a list of words, running one or more commands for each word in the
 list. This saves time when you want to run the same series of commands
 separately on several files.
Let’s repeat an earlier example:
$ for file in /usr/fran/report /usr/rob/file2 /usr/rob/file3
> do
> cat -t -v $file | less
> done
 ...Shell runs cat -t -v /usr/fran/report | less...
 ...Shell runs cat -t -v /usr/rob/file2 | less...
 ...Shell runs cat -t -v /usr/rob/file3 | less...
$

 The greater-than signs (>) are secondary
 prompts (Section
 28.12); the Bourne shell will keep printing them until you type
 the command done. Then it runs the loop.
 You don’t have to press RETURN after the do; you can type the first command on the same line after
 it.
In a shell script, the loop body (the lines between do and done) is usually indented for clarity.
The list after the in doesn’t have to
 be filenames. Among other things, you can use backquotes (Section
 28.14) (command substitution), variables (Section
 35.9, Section 35.3),
 wildcards (Section 33.1), and, on shells like
 bash that have them, curly brace ({}) operators (
 Section 28.4). For example, you
 could have typed the previous loop this way:
$ for file in /usr/fran/report /usr/rob/file[23]
> do cat -t -v $file | less
> done
If you want the loop to stop before or after running each command, add the
 shell’s read command (
 Section 35.18). It reads keyboard
 input and waits for a RETURN. In this case, you can ignore the input; you’ll
 use read just to make the loop wait. For
 example, to make the above loop prompt before each command line:
$ for file in /usr/fran/report /usr/rob/file[23]
> do
> echo -n "Press RETURN to see $file--"
> read x
> cat -t -v $file | less
> done
Press RETURN to see /usr/fran/report--RETURN
 Shell runs cat -t -v /usr/fran/report | less...
Press RETURN to see /usr/rob/file2--RETURN
 Shell runs cat -t -v /usr/rob/file2 | less...
Press RETURN to see /usr/rob/file3--RETURN
 Shell runs cat -t -v /usr/rob/file3 | less...
Section 35.21 has more
 information about the for loop. Section 36.12 shows how to make a
 for loop that varies several
 parameters at
 once.
— JP

Repeating a Command with Copy-and-Paste

If

 you’re using an xterm
 window (Section 24.20)
 or another type of terminal emulator with easy copy-and-paste functionality,
 that might be the easiest way to repeat all or part of a previous command line.
 Just select the part you want to copy, and paste it at a new prompt, adding any
 other text before and after pasting. This can be easier than using the shell’s
 editing commands or history operators: what you see is what you get. Figure 28-1 shows
 copy-and-paste.[4]
[image: Copying and pasting a command]

Figure 28-1. Copying and pasting a command

You can reuse the copied text over and over, if you want; after copying it
 once, paste as many times and places as you need to. Also, if you’ve got
 multiple pieces of text to copy and paste, try using a scratchpad window or
 xclipboard (Section 5.19).
— JP

Repeating a Time-Varying Command

[image:] Go to http://examples.oreilly.com/upt3 for more information on: vis
Sometimes
 you
 find yourself repeating the same command over and over again — for example,
 ps (Section 24.5) to monitor the progress of your background processes,
 or lpq (Section 45.2) to know when your printout is finished. Instead of
 typing the same command repeatedly, or even using shell history (Section 30.2)
 to repeat it, use the vis command. For
 example:
% vis ps
The
 vis command takes over your screen and shows
 the output of the initial ps command. Every
 15 seconds, the command is executed again and your screen is updated with the
 new information. If this delay is too long for you, you can get vis
 to use a
 shorter delay using the -d option:
% vis -d 2 ps
The information will now be updated every 2 seconds. Your screen is cleared
 and you are shown the output of ps. On the
 top line, vis tells you the command being
 run, how long your delay is (if not the default), and how many times it has been
 executed. The Exec: line is incremented every
 time the command is repeated.
Command: ps Delay: 2 Exec: 1

 PID TT STAT TIME COMMAND
 2971 p1 S 0:06 -sh (csh)
 6139 p1 S 0:00 vis -d 2 ps
 6145 p1 R 0:00 ps
 3401 q0 IW 0:13 -sh (csh)
 5954 q0 S 0:01 vi ch01
14019 q5 IW 0:02 -sh (csh)
29380 r7 IW 0:00 -bin/csh (csh)
29401 rd IW 0:00 -bin/csh (csh)

 vis provides a few other command-line
 options. The -s option is particularly neat: using
 -s, any lines that have changed since the last iteration
 are printed in standout mode.

 Note that variations of this command have
 floated around in the public domain under several different names, such as
 display, rep, and watch. We found
 vis to be the most useful.
— LM

Multiline Commands, Secondary Prompts

 All
 shells support multiline commands. In Bourne-type shells, a newline following an
 open quote (' or "), pipe symbol (|), or
 backslash (\) will not cause the command to
 be executed. Instead, you’ll get a
 secondary prompt (from the
 PS2 shell variable, set to > by default), and you can continue the command on the next
 line. For example, to send a quick write (Section 1.21) message without making the
 other user wait for you to type the message, try this:
$ echo "We're leaving in 10 minutes. See you downstairs." |
> write joanne
In the C shells, you can continue a line by typing a
 backslash (\) before the newline (Section 27.13). In tcsh, you’ll see a secondary prompt, a question
 mark (?), on each continued line. The
 original csh doesn’t prompt in this
 case.
Obviously, this is a convenience if you’re
 typing a long command line. It is a minor feature and one easily overlooked;
 however, it makes it much easier to use a program like sed (Section 34.1) from
 the command line. For example, if you know you chronically make the typos “mvoe”
 (for “move”) and “thier” (for “their”), you might be inspired to type the
 following command:
nroff -ms
 Section 3.21, lp
 Section 45.2
$ sed '
> s/mvoe/move/g
> s/thier/their/g' myfile | nroff -ms | lp
More importantly, the ability to issue multiline commands lets you use the
 shell’s programming features interactively from the command line. In both the
 Bourne and C shells, multiline programming constructs automatically generate a
 secondary prompt (> in Bourne shells and
 ? in C shells) until the construct is
 completed. This is how our favorite programming constructs for non-programmers,
 the for and foreach loops

 (Section
 28.9), work. While a simple loop could be saved into a shell script (Section 1.8), it is often even easier to use it
 interactively.
Here’s an example with zsh
 , which
 makes secondary prompts that show the names of the construct(s) it’s continuing.
 This for loop prints files from the current
 directory. If a filename ends with .ps, it’s sent straight
 to the ps printer. Filenames ending with
 .tif are sent through netpbm (Section
 45.19) filters, then to the ps printer.
case
 Section 35.10, echo

 Section 27.5

zsh% for file in *
for> do case "$file" in
for case> *.ps) lpr -Pps "$file" ;;
for case> *.tif) tifftopnm "$file" | pnmtops | lpr -Pps ;;
for case> *) echo "skipping $file" ;;
for case> esac
for> done
skipping README
 ...
zsh%
zsh’s multiline editing makes it easy to go
 back and edit that multiline nested construct. In other shells, you might
 consider using a throwaway script or copying and pasting with a mouse if you
 have one.
—TOR and JP

Here Document Example #1: Unformatted Form Letters

[image:]
 <<
 Section 27.16
The here document
 operator

 << (Section 27.16) is often used in shell scripts — but it’s also handy
 at a shell prompt, especially with zsh
 multiline editing or a throwaway script. But you also can just type it in
 at a Bourne shell prompt (Section 28.12). (If you use csh or tcsh,
 you can either use a foreach loop (Section 28.9) or start a subshell (Section
 24.4).)
The example below shows a for loop
 (

 Section 28.9) that prints three
 friendly form letters with the lpr (Section 45.2) command. Each letter has a
 different person’s name and the current date at the top. Each line of the loop
 body starts with a TAB character, which the
 <<- operator removes before the printer
 gets the text:
for person in "Mary Smith" "Doug Jones" "Alison Eddy"
do
 lpr <<- ENDMSG

 `date`

 Dear $person,

 This is your last notice. Buy me pizza tonight or
 else I'll type "rm -r *" when you're not looking.

 This is not a joak.

 Signed,
 The midnight skulker
 ENDMSG
done
The shell reads the standard input until it finds the terminator word, which
 in this case is ENDMSG. The word ENDMSG has to be on a line all by itself. (Some
 Bourne shells don’t have the <<-
 operator to remove leading TAB characters. In that case, use << and don’t indent the loop body.) The
 backquotes (Section 28.14) run the date command and output its date; $person is replaced with the person’s name set at
 the top of the loop. The rest of the text is copied as is to the standard input
 of the lpr command.
— JP

Command Substitution

 A pair of backquotes (``) does
 command substitution. This is really useful — it lets
 you use the standard output from one command as arguments to another
 command.
Here’s an example. Assume you want to edit all files in the current directory
 that contain the word “error.” Type this:
-l
 Section 33.6
$ vi `grep -l error *.c`
3 files to edit
"bar.c" 254 lines, 28338 characters
 ...
$
But why does this work? How did we build the incantation above? First, think
 about how you’d do this without using any special techniques. You’d use grep to find out which commands contain the word “error”; then you’d use vi to edit this list:
$ grep error *.c
bar.c: error("input too long");
bar.c: error("input too long");
baz.c: error("data formatted incorrectly");
foo.c: error("can't divide by zero"):
foo.c: error("insufficient memory"):
$ vi bar.c baz.c foo.c
Is there any way to compress these into one command? Yes, by using command
 substitution. First, we need to modify our grep command so that it produces only a list of filenames, rather
 than filenames and text. That’s easy; use grep
 -l:
$ grep -l error *.c
bar.c
baz.c
foo.c
The -l
 option
 lists each filename only once, even if many lines in the file match. (This makes
 me think that grep -l was designed with
 precisely this application in mind.) Now, we want to edit these files; so we put
 the grep command inside backquotes, and use it as the argument to
 vi
 :
$ vi `grep -l error *.c`
3 files to edit
"bar.c" 254 lines, 28338 characters
 ...
$
You might be wondering about the difference between the “vertical” output from
 grep and the “horizontal” way that people
 usually type arguments on a command line. The shell handles this with no
 problems. Inside backquotes, both a newline and a space are argument separators.
The list you use with command substitution doesn’t have to be filenames. Let’s
 see how to send a mail message (Section 1.21) to all the users logged on
 to the system now. You want a command line like this:
% mail joe lisa franka mondo bozo harpo ...
Getting there takes a little thinking about what Unix commands you need to run
 to get the output you want. (This is real “Power Tools” stuff!) To get a list of
 those users, you could use who (
 Section 2.8). The who output also lists login time and other
 information — but you can cut that off with a command like cut (
 Section 21.14):
% who | cut -c1-8
joe
lisa
franka
lisa
joe
mondo
joe
...
Some users are logged on more than once. To get a unique list, use sort -u (Section
 22.6). You’re done. Just put the name-making command line between
 backquotes:
% mail `who | cut -c1-8 | sort -u`
If you aren’t sure how this works, replace the command you want to run with
 echo (Section 26.5):
% echo `who | cut -c1-8 | sort -u`
bozo franka harpo joe lisa mondo
After using Unix for a while, you’ll find that this is one of its most useful
 features. You’ll find many situations where you use one command to generate a
 list of words, then put that command in backquotes and use it as an argument to
 something else. Sometimes you’ll want to nest

 (Section 36.24) the backquotes — this is
 where the bash, ksh, bash, and zsh
 $()
 operators (which replace the opening and
 closing backquote, respectively) come in handy. There are some problems with
 command substitution, but you usually won’t run into them.
This book has many, many examples of command substitution. Here are some of them: making unique filenames (Section 8.17), removing some files from a list (Section 14.18), setting your shell prompt (Section 4.6, Section 4.8,
 Section 4.14), and setting variables (Section 4.8, Section
 36.23).
— JP

Handling Lots of Text with Temporary Files

 Sometimes you need to execute a command
 with a long list of files for arguments. Here’s an easy way to create that list
 without having to type each filename yourself — put the list in a temporary
 file:
'...'
 Section 28.14
% ls > /tmp/mikel
% vi /tmp/mikel
 ...edit out any files you don't want...
% process-the-files
 `cat /tmp/mikel`
% rm /tmp/mikel
I added the vi step to remind you that you
 can edit this list; for example, you may want to delete a few files that you
 don’t want to process.
Possible problems: if the list is long enough, you may end up with a command
 line that’s too long for your shell to process. If this happens, use xargs or a
 related solution. See article Section
 28.17.
— ML

Separating Commands with Semicolons

 When the shell sees a semicolon (;) on a command line, it’s treated as a command
 separator — basically like pressing the ENTER key to execute a command. When
 would you want to use a semicolon instead of pressing ENTER?
	It’s nice when you want to execute a series of commands, typing them
 all at once at a single prompt. You’ll see all of them on the same
 command line and they’ll be grouped together in the history list (Section 30.7). This makes it
 easy to see, later, that you intended this series of commands to be
 executed one after another. And you can re-execute them all with a
 simple history command.
As an example, here’s a series of commands that puts a listing of the
 current directory into a temporary file, emails the listing, then
 overwrites the previous version of the file:
$ ll > $tf-1; mail -s backup joe < $tf-1; mv $tf-1 listing
I can repeat that same command later by using a history substitution (Section 30.8) like !ll.

	It’s useful with sleep (
 Section 25.9) to run a command
 after a delay. The next example shows a series of commands in a C shell
 alias that you might use to print a warning and give the user a chance
 to abort before the last command (exit, which ends the current shell) is executed. Be sure
 to read the important note after this example:
alias bye 'echo "Type CTRL-c to abort logout"; sleep 10; exit'
Note that, in C-type shells and older Bourne-type shells, pressing
 your interrupt key (Section 24.10) — like CTRL-c —
 will stop execution of all jobs on the current command line. The alias
 above works in shells like that. But in some shells, like bash2, interrupting a command in a
 string of commands separated by semicolons will affect only that single
 command. So I couldn’t rewrite the alias above for bash2 because, if I pressed CTRL-c while
 the sleep command was executing, that
 would simply abort sleep — and
 proceed to run exit, which would log
 me out immediately!

	

 If you’re running a series of
 commands that take some time to complete, you can type all the commands
 at once and leave them to run unattended. For example, I have little
 shell scripts named nup and ndown
 (Section 24.22) (which
 run /sbin/ifup and /sbin/ifdown, respectively) to start and
 disable the network. On a system
 with a dialup modem and a long file transfer to perform, it’s nice to be
 able to type a series of commands that bring up the network, do a couple
 of file transfers, then bring down the network. I can type this string,
 go about my business somewhere else, and come back later:
$ nup;ptbk;getmail;ndown
After nup returns, the network is
 up (the modem has connected). So the shell runs ptbk (Section
 38.9) to make a backup of my work on this book. Next,
 getmail gets my email (it
 basically runs fetchmail). When
 getmail finishes, ndown hangs up the modem. This can take
 several minutes from start to finish, but the shell manages it all while
 I do something else. (If I didn’t have a windowing system with multiple
 xterms, I could have put that
 string of commands into a subshell
 (Section 43.7) in the
 background (Section 23.2).) This is one
 place that a GUI interface for network control really loses to
 command-line utilities and the shell.

Two related operators,

 && and || (Section 35.14), work like a semicolon,
 but they only execute the next command if the previous one succeeded or failed,
 respectively.
— JP

Dealing with Too Many Arguments

 Historically, one of the
 more annoying things about the design of many UNIX tools was their inability to
 handle large numbers of arguments. For example, if you wanted to print several
 hundred files using lpr, you either had to
 pass them a few at a time, perhaps using wildcards on the command line to split
 the list up into shorter groups, or call lpr
 once per file, perhaps using find or a loop.
 One other method, which is still useful today, involves the use of xargs.
xargs is one of those Unix utilities that
 seems pretty useless when you first hear about it — but turns into one of the
 handiest tools you can have.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 xargs
If your system doesn’t already have xargs,
 be sure to install it from the web site.
xargs reads a group of arguments from its
 standard input, then runs a Unix command with that group of arguments. It keeps
 reading arguments and running the command until it runs out of arguments. The
 shell’s backquotes (
 Section 28.14) do the same kind of
 thing, but they give all the arguments to the command at once. This can give you
 a Too many arguments error.
Here are some examples:
	If you want to print most of the files in a large directory, put the
 output of ls into a file. Edit the
 file to leave just the filenames you want printed. Give the file to
 xargs' standard input:
<
 Section 43.1
% ls > allfiles.tmp
% vi allfiles.tmp
% xargs lpr < allfiles.tmp
What did that do? With lines like these in
 allfiles.tmp:
% cat allfiles.tmp
afile
application
 ...
yoyotest
zapme
xargs ran one or more lpr commands, each with a group of
 arguments, until it had read every word in the file:
lpr afile application ...
 ...
lpr ... yoyotest zapme
This has another advantage for lpr:
 each print job is fairly short, so you can delete one from the print
 queue without losing all of them.

	The standard output of xargs is the
 standard output of the commands it runs. So, if you’d created
 allfiles.tmp above, but you wanted to format
 the files with pr (Section 45.6) first, you could
 type:
% xargs pr < allfiles.tmp | lpr
Then xargs would run all of these
 pr commands. The shell would pipe
 their standard outputs[5] to a single lpr
 command:
pr afile application ...
 ...

	In the next example, find (Section 9.1) gets a list of all
 files in the directory tree. Next, we use xargs to read those filenames and run grep -l (Section 33.6) to find which files contain the word
 “WARNING”. Next, we pipe that to a setup with pr and lpr, like the
 one in the previous example:
% find . -type f -print | xargs grep -l WARNING | xargs pr | lpr
“Huh?” you might say. Just take that step by step. The output of
 find is a list of filenames, like
 ./afile ./bfile/adir/zfile
 and so on. The first xargs gives
 those filenames to one or more grep
 -l commands:
grep -l WARNING ./afile ./bfile ...
 ...
grep -l WARNING ./adir/zfile ...
The standard output of all those greps is a (shortened) list of filenames that match.
 That’s piped to another xargs — it
 runs pr commands with the filenames
 that grep found.
Unix is weird and wonderful!

	Sometimes you don’t want
 xargs to run its command with as
 many arguments as it can fit on the command line. The
 -n

 option sets the maximum number of arguments xargs will give to each command. Another handy
 option,
 -p, prompts you before running each command.
Here’s a directory full of files with errors (whose names end with
 .bad) and corrected versions (named
 .fixed). I use ls to give the list of files to xargs; it reads two filenames at once, then asks whether
 I want to run diff -c
 to compare those two files. It keeps
 prompting me and running diff -c
 until it runs out of file pairs:
% ls
chap1.bad
chap1.fixed
chap2.bad
chap2.fixed
 ...
chap9.bad
chap9.fixed
% ls | xargs -p -n2 diff -c
diff -c chap1.bad chap1.fixed ?...y
 ...Output of diff command for chap1...
diff -c chap2.bad chap2.fixed ?...n
diff -c chap3.bad chap3.fixed ?...y
 ...Output of diff command for chap3...

Expect

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 expect

 Expect is a program to control
 interactive applications such as telnet (Section 1.21) and passwd. These and many other applications
 interactively prompt and expect a user to enter keystrokes in response. But you
 can write simple Expect scripts to automate these interactions. Then the Expect
 program can run the “interactive” program noninteractively. Expect can also be
 used to automate only parts of a dialogue, since control can be passed from the
 script to the keyboard and vice versa. This allows a script to do the drudgery
 and a user to do the fun stuff.
[image:] Go to http://examples.oreilly.com/upt3 for more information on: tcl,
 tk

 Expect programs
 can be written in any language but are almost always written in Tcl. Tcl is an
 interpreted language that is widely used in many other applications. If you
 already use a Tcl-based application, you won’t have to learn a new language for
 Expect.
Tcl is a very typical-looking shell-like language. There are commands
 to set variables (set), control flow
 (if, while, foreach, etc.), and
 perform the usual math and string operations. Of course, Unix programs can be
 called, too.
Expect is integrated on top of Tcl and provides additional commands for
 interacting with programs. Expect is named after the specific command that waits
 for output from a program. The expect
 command is the heart of the Expect
 program. It describes a list of patterns to watch for. Each pattern is followed
 by an action; if the pattern is found, the action is executed.
For example, the following fragment is from
 a script that involves a login. When executed, the script waits for the strings
 welcome, failed, or busy, and then it
 evaluates [(executes) — JP] one of the corresponding
 actions. The action associated with busy shows how multiple
 commands can be evaluated. The timeout

 keyword is a special pattern that
 matches if no other patterns match in a certain amount of time.
expect {
 "welcome" break
 "failed" abort
 timeout abort
 "busy" {
 puts "I'll wait - the system is busy!"
 continue
 }
}
Dialback

 It
 is surprising how little scripting is necessary to produce something useful.
 Below is a script that dials a phone. It is used to reverse the charges so
 that long-distance phone calls are charged to the computer. It is invoked
 with the phone number as its argument.
spawn tip modem
expect "connected"
send "ATD$argv\r"
modem takes a while to connect
set timeout 60
expect "CONNECT"

 The first line runs the tip program so that the output of a modem can
 be read by expect and its input written
 by send. Once tip says it is connected, the modem is told to dial using the
 command ATD followed by the phone number.
 The phone number is retrieved from argv, which is a
 variable predefined to contain the original argument with which the script
 was called.
The fourth line is just a comment noting that the variable being set in
 the next line controls how long expect
 will wait before giving up. At this point, the script waits for the call to
 complete. No matter what happens, expect
 terminates. If the call succeeds, the system detects that a user is
 connected and prompts with login:.
Actual scripts do more error checking, of course. For example, the script
 could retry if the call fails. But the point here is that it does not take
 much code to produce useful scripts. This six-line script replaced a 60 KB
 executable (written in C) that did the same thing!

Automating /bin/passwd

 Earlier I mentioned some programs
 that cannot be automated with the shell. It is difficult to imagine why you
 might even want to embed some of these programs in shell scripts. Certainly
 the original authors of the programs did not conceive of this need. As an
 example, consider passwd
 .
passwd is the command to change a
 password. The passwd program does not
 take the new password from the command line.[6] Instead, it interactively prompts for it — twice. Here is what
 it looks like when run by a system administrator. (When run by users, the
 interaction is slightly more complex because they are prompted for their old
 passwords as well.)
passwd libes
Changing password for libes on thunder.
New password:
Retype new password:
This is fine for a single password. But suppose you have accounts of your
 own on a number of unrelated computers and you would like them all to have
 the same password. Or suppose you are a system administrator establishing
 1,000 accounts at the beginning of each semester. All of a sudden, an
 automated passwd makes a lot of sense.
 Here is an Expect script to do just that: automate passwd so that it can be called from a shell script.
spawn passwd [lindex $argv 0]
set password [lindex $argv 1]
expect "password:"
send "$password\r"
expect "password:"
send "$password\r"
expect eof
The first line starts the passwd
 program with the username passed as an argument. The next line saves the
 password in a variable for convenience. As in shell scripts, variables do
 not have to be declared in advance.
In the third line, the expect command
 looks for the pattern password:. expect waits until the pattern is found before
 continuing.
After receiving the prompt, the next line sends a password to the current
 process. The \r indicates a carriage
 return. (Most of the usual C string conventions are supported.) There are
 two expect-send sequences because
 passwd asks the password to be typed
 twice as a spelling verification. There is no point to this in a
 noninteractive passwd, but the script has
 to do it because passwd assumes it is
 interacting with a human who does not type consistently.
The final command expect eof
 causes the script to wait for the
 end-of-file
 character in the output of passwd.
 Similar to timeout, eof is another
 keyword pattern. This final expect
 effectively waits for passwd to complete
 execution before returning control to the script.
Take a step back for a moment. Consider that this problem could be solved
 in a different way. You could edit the source to passwd (should you be so lucky as to have it) and modify it
 so that given an optional flag, it reads its arguments from the command line
 just the way that the Expect script does. If you lack the source and have to
 write passwd from scratch, of course,
 then you will have to worry about how to encrypt passwords, lock and write
 the password database, etc. In fact, even if you only modify the existing
 code, you may find it surprisingly complicated code to look at. The passwd program does some very tricky things.
 If you do get it to work, pray that nothing changes when your system is
 upgraded. If the vendor adds NIS, NIS+, Kerberos, shadow passwords, a
 different encryption function, or some other new feature, you will have to
 revisit the code.
Expect comes with several example scripts that demonstrate how you can do
 many things that are impossible with traditional shells. For example, the
 passmass

 script lets you update your password on
 many unrelated machines simultaneously. The rftp

 script provides your regular ftp client with additional commands to do
 recursive FTP in either direction. The cryptdir

 script
 encrypts all the files in a directory. And an amusing script is provided
 that lets two chess
 processes play each other. Expect has
 no limit to the number of interactive programs it can drive at the same
 time. The Unix system may limit Expect, though, by controlling the maximum
 number of processes or other system resources available.

Testing: A Story

 Many people use Expect for testing.
 You can test interactive programs as easily as you can automate them. And
 hardware lends itself to testing with Expect, too. For example, we solved a
 thorny problem when we had to deal with an unreliable bank of modems. We were receiving dozens of
 calls each week reporting “the modem is hung.” No indication of which modem,
 of course. And it was always too late for us to ask the user to try
 something to investigate the problem. The connection was gone by then. Our
 solution was an Expect script that connected to each modem hourly and
 exercised it. Any problems were recorded so that we had a clear and full
 history of each modem’s behavior. As soon as a defective or hung modem was
 encountered, the Expect script would send email to the system administrator.
 With this script in place, reports of modem problems from our users dropped
 to zero.

Other Problems

These are just a few of the problems that can be solved with Expect. And
 as with all Expect solutions, recompilation of the original programs is
 unnecessary. You don’t even need the source code! Expect handles many other
 problems as well. For example, Expect can wrap existing interactive tools
 with GUI wrappers.
 This means you can wrap interactive programs with graphic frontends to
 control applications by buttons, scrollbars, and other graphic elements. And
 Expect scripts work great as CGI scripts or from cron (
 Section 25.2) or inetd
 [the daemon that controls Internet services
 provided by a system — JP]. Finally, learning Expect
 may be easier than you think. Expect can watch you interact and then produce
 an Expect script for you. Interaction automation can’t get much easier than
 this!
More information on Expect is available in Exploring
 Expect, by Don Libes, from O’Reilly &
 Associates.

— DL

[1] An MH folder name can also start with an @ (at sign), but that use is less common. Besides,
 this is just an example!

[2] The ~ (for Emacs) has to be
 quoted ((Section 27.13) when it’s stored
 in the fignore array. Otherwise, the shell would
 expand it to your home directory path
 (Section 31.11).

[3] If you’re sending lots of mail messages with a loop, your system
 mailer may get overloaded. In that case, it’s a good idea to put a
 command like sleep 5 (Section 25.9) on a separate
 line before the end. That will
 give the mailer five seconds to send each message.

[4] This is Figure 2-3 from O’Reilly & Associates’ Learning
 the Unix Operating System, Fourth Edition.

[5] Actually, the shell is piping the standard output of xargs. As I said above, xargs sends the standard output of
 commands it runs to its own standard output.

[6] Newer versions will accept input from STDIN,
 however.

Chapter 29. Custom Commands

Creating Custom Commands

	
 In most shells, aliases are an easy
 way to shorten a long command line or do a short series of commands.
 Section 29.2 through Section 29.10 cover C shell
 aliases. Section 29.4 through
 Section 29.14 cover
 aliases in bash, pdksh, and zsh.

	All except the oldest Bourne-type shells have shell functions (Section 29.11), which are explained in Section 29.11 through Section 29.13. These are a
 cross between aliases and shell scripts. They’re good both for
 shortening command lines and for running a short or long series of
 commands.

—JP and SJC

Introduction to Shell Aliases

 All
 shells except the original Bourne shell have an “alias” facility that lets you
 define abbreviations for commands.
The simplest
 C shell
 aliases, which are similar to the alias facility in newer Bourne-type
 shells, are simply a short name for a command and, often, command options or
 arguments too. The C shell’s aliases can get very complicated. Section 29.3 describes how a C shell
 alias can use arguments from its command line as it’s invoked.
As we’ve said, aliases in Bourne-type shells (bash

 , zsh, and ksh)
 are simpler. Section 29.4 covers some
 of the differences between those shells and the C shells. Still, the ideas for
 custom C shell commands are useful in any kind of shell, and if you can’t write
 something in a simple Bourne-type alias, you almost certainly can do it in a
 shell function (
 Section 29.11).
You can define aliases from the command
 line, for use in just your current shell. Any aliases you define can also be
 placed in your shell setup file (Section 3.3), so they’ll be available
 whenever you’re using your shell.
Note that aliases are not passed to subprocesses (
 Section 3.3), so putting them in a
 setup file that’s read only by login shells or top-level shells probably isn’t
 what you want. (One exception is an alias for a command that you want to run
 only in a login shell. For instance, you could define
 an alias named X that starts your X Window
 System. If that alias isn’t defined in subshells, you’ll get a message like
 X: command not found if you try to start
 the window system from an existing window.)
A common approach is to create separate files for each shell that store your
 aliases (such as .bash_aliases for bash or .aliases.csh for the C shell), so that you may source them
 whenever you like.
Here’s one last note that applies to all shells. Anytime you want a list of
 the aliases currently set, just type alias
 .
—JP, ML, DG, and SJC

C-Shell Aliases with Command-Line Arguments

 It’s
 convenient for your aliases to use
 command-line arguments. For example, let’s think about an alias named phone:
alias phone 'cat ~/phonelist | grep -i'
After you define that alias, you could type phone
 smith. The shell would find the phone alias and execute it with the
 argument (smith) at the end (Section 29.2) this way:
cat ~/phonelist | grep -i smith
Using cat and a pipe that way is inefficient (Section 43.2). It might be more sensible to have an alias that
 worked like this:
grep -i name ~/phonelist

 How do
 we do this? The C shell’s history (Section 30.8) facility lets us use the
 notation !$ to refer to the last word in the
 previous command; the notation !* refers to
 all the arguments of the previous command. Assuming that we only want to look up
 aliases one at a time, we can use !$ and
 write our alias like this:
alias phone grep -i \!$ ~/phonelist
When we use the phone command, its final
 argument will be substituted into the alias. That is, when we type phone bill, the shell executes the command
 grep -i bill ~/phonelist.

 In
 this example, we needed another kind of
 quoting. We had to put a backslash before the exclamation point to prevent the
 shell from replacing !$ with the previous
 command’s last argument. That is, we don’t want the shell to expand !$ when we define the alias — that’s nonsense. We
 want the shell to insert the previous argument when we use the alias (in which
 case, the previous argument is just the argument for the alias itself —
 clear?).
But why couldn’t we just use single quotes or double
 quotes (Section
 27.12)? This isn’t the right place for a full explanation, but neither
 single quotes nor double quotes protect the exclamation point. The backslash does (Section 27.13). If you want to be
 convinced, experiment with some commands like:
% echo '!!'
 Print your last command
% echo '\!!'
 Print !!
The first echo command shows that the shell performs history substitution
 (i.e., replaces !! with your previous
 command) in spite of the single quotes. The second example shows that the
 backslash can prevent the shell from interpreting ! as a special character.
Let’s look at another alias. We want to pipe the output of ls -l into more. In this case, we would want all the arguments from the command
 line instead of merely the last argument (or the only argument). Here’s the
 alias:
alias lm 'ls -l \!* | more'

 This time, we needed both kinds of
 quoting: a backslash prevents the shell from interpreting the exclamation point
 immediately. Single quotes protect the pipe symbol and the asterisk (*). If you don’t protect them both, and protect
 only the pipe (with a backslash), look what happens:
% alias lm ls -l \!* | more
alias: No match.
Because the backslash temporarily stops the special meaning of the !, the shell next tries to find filenames that
 match the wildcard (Section 1.13) pattern !*. That fails (except in the unusual case when
 you have a file in the current directory whose name starts with a !).
Note
Here’s a good general rule for quoting aliases. Unless you’re trying to do
 something special with an alias and you understand quoting well, put single
 quotes (') around the whole definition
 and put a backslash before every exclamation point (\!).

If you want to pick one argument from the command line, use \!:n, where
 n is the number of the argument. Here’s a sample
 alias. It uses cat (Section 12.2) to add a header file to
 the file named in the first argument, then writes them both into the file named
 in the second argument:
~
 Section 31.11
alias addhead 'cat ~/txt/header \!:1 > \!:2'
This alias has two arguments: the file to which you want to add a header and
 the output file. When you type:
% addhead foo bar
the C shell substitutes the filename foo
 for \!:1, and the filename bar for \!:2,
 executing the command:
cat ~/txt/header foo > bar
Finally, if you need to append fixed text strings to these arguments, you need
 to separate the argument text from the fixed text. For instance, here’s an alias
 that tells the Netscape browser to go to a URL
 http://info/proj23/
 xxx1.html, where xxx is a
 word like report, summary, etc., that
 you’re typing on the command line (as an argument to the alias). For instance,
 to go to the page http://info/proj23/report1.html, you’d
 type:
% proj report
The first alias below shows the wrong way to do this. The second one shows how
 to quote the argument in curly braces ({}
) so the shell doesn’t think the 1 after the argument is part of the number (giving
 you argument 11 instead of what you want: argument 1 with the digit
 1 after it):
alias proj 'netscape -remote "openURL(http://info/proj23/\!:11.html)"' ...wrong
alias proj 'netscape -remote "openURL(http://info/proj23/\!{:1}1.html)"' ...right
If you haven’t seen this netscape
 -remote technique, by
 the way, it’s very handy. It sends a message to an already-open Netscape
 browser. You can use it from a command line (shell prompt) or by defining a
 button or menu item on your window system desktop. Recent Unix versions of
 Mozilla have also begun to support this API, as well. On the Macintosh, remote
 control is supported via Apple Events, but not from the command line as of this

 writing.

Setting and Unsetting Bourne-Type Aliases

 A lot of what we said about aliases in Section 29.2 applies to the Korn shell
 (ksh),
 zsh, and
 bash. This article, along with Section 29.5 and Section 29.6, have an overview of what’s
 different.
One thing that’s different from C shells is the syntax of the alias

 command, which is:
$ alias
 name
 =
 definition
That is, you need an equal sign (no
 spaces) between the name and the definition. A good guideline is to use
 single quotes (') around the definition
 unless you’re doing something specialized and you understand how quoting (Section
 27.12) works in aliases.
You can’t put arguments inside an alias as the C shell’s
 \! operator (
 Section 29.3) does. To do that, use a
 shell function (
 Section 29.11).
As in the C shells, unalias

 removes an
 alias. To remove all aliases, use unalias
 -a in ksh and bash or unhash
 -a in zsh. alias with no arguments lists aliases that are
 currently defined.
bash aliases are pretty basic; this section
 covers them. Korn shell and zsh aliases do
 more.
—JP and SC

Korn-Shell Aliases

pdksh

 (the public domain ksh)
 has three types of aliases. First is the regular
 command alias covered in Section
 29.4.

 Tracked aliases keep track of the
 locations of external (Section 1.9) executables. The shell has a
 default list of commands to track (see the ksh manpage). The first time ksh searches the PATH for an executable command that’s marked as
 a tracked alias, it saves the full path of that command. This saves the shell
 the trouble of performing the path search each time a command is invoked. The
 tracked aliases aren’t reset unless one becomes invalid or you change the PATH.
 The command alias

 -t lists and creates tracked aliases. Here’s an example
 with a newly invoked Korn shell:
$ alias -t
$ cat somefile > somewhere
$ alias -t
cat=/bin/cat
$ alias -t less
$ alias -t
cat=/bin/cat
less=/usr/bin/less
At first, there are no tracked aliases. But the cat command is marked for tracking; as soon as I use it, the
 shell saves its location, as the next alias
 -t shows. Next, I add a tracked alias for less (Section 12.3)
 (which isn’t one of the default commands to track). The Korn shell won’t track a
 command unless it’s one of the defaults or you mark it for tracking.
The third kind of alias,
 directory aliases, set with alias -d, let you use a
 tilde abbreviation like ~
 dir for any directory.
— JP

zsh Aliases

zsh

 has the
 regular command alias covered in Section
 29.4. zsh is compatible with the C
 shell in many ways, but it doesn’t accept csh
 alias syntax without an equal sign (=
) between the name and value. That’s
 probably because, as in other Bourne-type shells, zsh allows you to set multiple aliases with one command, like
 this:
zsh$ alias ri='rm -i' mi='mv -i'
 ...and so on
In zsh, alias
 -g defines a zsh
 global alias: a word that’s expanded
 anywhere (as long as it isn’t quoted). These are like a shell variable (Section
 35.9) that doesn’t need a dollar sign ($) to be expanded. Maybe you have a log file you read and edit often. You
 could make a global alias named log:
zsh$ alias -g log=/work/beta/p2/worklog

zsh$ less log
zsh$ cp log logtemp
Global aliases are expanded only when they stand alone and aren’t quoted. So
 if there’s a global alias dir for a directory, you cannot
 use emacs dir/file to refer to a file in that
 directory. Also, if you defined the global alias fserv for
 the hostname fserv.bkk.ac.uk, you could type telnet fserv — but if you type mail
 ed@fserv, the shell wouldn’t expand it into a
 hostname. Named directories and shell variables work better in cases like
 those.
alias

 -m lists aliases that match a wildcard-type pattern; alias -m 'hi*' shows all alias names that start with
 hi (like hi,
 hist, and so on). This matches regular command aliases
 as well as global aliases. You can use -m with unalias, too, to remove all aliases matching a
 pattern.
— JP

Sourceable Scripts

 Aliases are a
 powerful concept in csh. Another great
 capability is shell scripts (Section 1.8). Each has its strengths. An
 alias is just right for common sequences of commands, calling a command by a
 different name, and so on. Scripts are great for more flexible processing and
 batch processing. There are limitations to both, and I will show a way around
 them.
The limitation to aliases is that you are working
 pretty much with one command line. Consider this example, which manages various
 stages of changing directories, updating the prompt, and so forth:
alias pp 'set o2=$cwd; popd; set old=$o2; dir_number; record_dir pp; \\
 prompt_set; set cd_attempt=(\!*); if ($#cd_attempt > 0) cd $cd_attempt'
Now this works fine for me, and it served me well for a few years and
 thousands of invocations, but it’s at the point where I start thinking that a
 script is more suited to the job. This brings me to the limitation of
 scripts.
Shell
 scripts are great for accomplishing some task that might change a file, start a
 program, etc. They are limited by the fact that any changes they make to shell
 or environment variables are not visible (Section 24.3) to the parent shell that
 started them. In other words, you can write some really cool script that will
 change directories for you if you don’t touch the keyboard for five seconds, but
 once the script exits, you are still in the same place you started.
The answer is to combine the best of both worlds. Consider this:
alias pp 'set cd_attempt=(\!*); source ~/bin/pp_csh'
We set up a
 variable and source a script. The concept is this: put your command-line
 arguments into a variable and then source
 (
 Section 35.29) a script to accomplish
 something. The difference here is that because you are not starting a subshell (Section
 24.4) for the script, it can do everything an alias can and more.
 This is much like Bourne shell functions (Section 29.11).
Some hints on using this technique:
	Naming
	I like to name the script that is doing all of the work after the
 alias, with _csh or .csh
 at the end of its name. I put all of the scripts in my ~/bin (Section 7.4). [Instead of names ending in
 .csh, I put mine in a directory named
 ~/.lib/csh. —
 JP]

	Feedback
	You don’t want to execute the script directly. You want to source
 it. Here’s a good first line that detects this:
#! /bin/echo sorry,try:source

	Usage statement
	Check the variable that you expect to see from the alias. If it
 isn’t there, you can show a usage statement and do a
 goto to the end of the script:
<<
 Section 27.16
if ($#lg_args == 0) then
 cat << +++
usage: lg [-a][-p] pattern [command]
 -a lists all (.dot files)
 -p pipe resulting list into command
+++
 goto lg_end
endif
 ...
lg_end:

	Alias options
	You aren’t limited to
 what an alias can do, since you are sourcing a script. You gain some
 flexibility here. Here’s one way of handling options:
set
 Section 35.9
unset ls_arg
while (! $?ls_arg)
 switch ("$lg_args[1]")
 case "-a":
 set ls_arg="-a"
 shift lg_args
 case "-p":
 set use_pipe
 shift lg_args
 default:
 set ls_arg
 breaksw
 endsw
end

Have fun with this! You may find yourself tossing some old aliases and
 rewriting them as sourceable scripts. They’re also easier to

 maintain.
— DS

Avoiding C-Shell Alias Loops

Section 27.9 has similar information
 for bash.

 Here’s a situation that came up on the Net
 a while ago. Someone wanted an exit (Section 24.4) alias that would run a
 ~/.exit file (Section 31.13) before leaving the
 shell. The obvious solution is:
alias exit "source ~/.exit; exit"
This doesn’t work; when you use the exit alias, the C
 shell thinks that the alias is trying to execute itself. Recursive aliases aren’t allowed on many
 shells, so the C shell prints an error message (Alias
 loop) and gives up.
There are many ways to break the loop. Here’s the best (in my opinion):
alias exit 'source ~/.exit; ""exit'
Section 27.10 has the hairy details
 of what works and why. To summarize, if you need to use the alias’s name within
 a C shell alias, you can use:
	“”name
	Where name is the name of a built-in (Section 1.9) command or any
 “regular” command.

	\name
	Where name is the name of any “regular”
 command, but not a built-in command.

 Tempting as this all may sound (and I have
 to admit, if it didn’t sound a bit tempting, I wouldn’t be writing this
 article), I can’t really recommend the practice of “redefining” commands with
 aliases. You should leave the original commands as they are. The original author
 could have avoided all these problems by calling his alias
 quit rather than exit.
If you redefine commands with aliases and then use another account where your
 alias isn’t defined, it’s easy for things to go wrong. That’s especially true
 for commands that do something permanent — overwriting or removing files, for
 example. It also can cause problems if you let someone type a command on your
 account and the person isn’t expecting an aliased version.
Let me give one more example to show you what problems you can have. Let’s say
 you’ve aliased the exit command to source a .exit file before quitting. Fair enough. But now, let’s say that
 you’re not in your login shell, that you’ve set ignoreeof,
 and that, for no apparent reason, your .exit file disappears (maybe it develops a bad block, so the
 system can’t read it; such things happen).
Now you’re stuck. If you type exit, the
 source command will fail, and the “real”
 exit command will never be executed. You
 can’t leave the shell. Of course, if you remember what you did, you can always
 type unalias exit and get the original
 command back. Or you can type " "exit. Or
 finally, you could simply write the alias such that it tests for the existence
 of the file before trying to read it. But if you’ve foisted this alias on a
 beginner, he or she might not know that. All of a sudden, you’re stuck in some
 shell that you apparently can’t get out of.
The biggest virtue of Unix is that it’s infinitely extendable. However, you
 aren’t helping if your extensions hide the basic operations that make everything
 work. So — extend all you want. But when you write your extensions, give them
 new names. End of sermon.
— ML

How to Put if-then-else in a C-Shell Alias

 The C shell’s brain damage keeps you from
 using an if with an else in an alias. You have to use a sourceable script (Section
 29.7). Or that’s what I thought until I saw an article by Lloyd
 Zusman on comp.unix.questions in December 1987. He’d saved
 an earlier posting on that group (but without its author’s name) that showed
 how. The trick: use enough backslashes (\)
 and the eval (Section 27.8) command.
As an example, here’s an alias named C for compiling C
 programs. It needs the executable
 filename (like C
 prog), not the source filename (like
 C prog.c). If you type a filename ending
 in .c, it complains and quits. Else, it does the
 following:
	Renames any old prog file to prog.old.

	Prints the message prog
 SENT TO cc.

	Compiles prog.c.

	And — if there’s a prog file (if the
 compile succeeded) — runs chmod 311
 prog to protect the file from accidental reading with a
 command like cat * or more *.

Your alias doesn’t need to be as complicated. But this one shows some tricks,
 such as putting an if inside the if, that you might want to use.
 Watch
 your quoting — remember that the shell strips off one level of quoting when you set the alias (Section 29.3) and another during the
 first pass of the eval. Follow this example
 and you’ll probably be fine:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 if-else-alias.cs
COMPILE AND chmod C PROGRAMS; DON'T USE .c ON END OF FILENAME.
alias C 'eval "if (\!* =~ *.c) then \\
 echo "C quitting: no .c on end of \!* please." \\
else \\
 if (-e \!*) mv \!* \!*.old \\
 echo \!*.c SENT TO cc \\
 cc -s \!*.c -o \!* \\
 if (-e \!*) chmod 311 \!* \\
endif"'
— JP

Fix Quoting in csh Aliases with makealias and quote

 Getting quoting
 right in C shell aliases can be a real problem. Dan Bernstein wrote two aliases
 called makealias and quote that take care of this for you.
For example, here I use makealias to avoid
 having to quote ! and *:
% makealias mycat
cat `ls | sed '1,/!*/d'` | less
CTRL-d
alias mycat 'cat `ls | sed '\''1,/\!*/d'\''` | less'
I typed the makealias mycat command and the
 line starting with cat, then pressed CTRL-d
 and got back an alias definition with all the quoting done correctly.
The properly quoted alias definition is sent to the standard output. That line
 is what you would use to define the alias.[1]
Here are the quote and makealias aliases themselves:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 makealias.csh
alias quote "/bin/sed -e 's/\\!/\\\\\!/g' \\
 -e 's/'\\\''/'\\\'\\\\\\\'\\\''/g' \\
 -e 's/^/'\''/' -e 's/"\$"/'\''/'"
alias makealias "quote | /bin/sed 's/^/alias \!:1 /' \!:2*"
Pretty gross, but they do the job. On Darwin, as on many BSD-derived systems,
 sed
 is in /usr/bin, not /bin. You may
 wish simply to use the command name without the explicit path, or use the
 explicit (but correct) path. On Linux, the script above does not work with
 tcsh, which handles multi-line aliases
 anyway.

—JIK and SJC

Shell Function Basics

Most

 shells have aliases (
 Section 29.2). Almost all Bourne-type
 shells have functions, which are like aliases, but richer and more flexible.
 Here are four examples.
Simple Functions: ls with Options

Let’s start with two aliases from Section 29.2, changed into shell functions:

 The la function includes “hidden” files in ls listings. The lf
 function labels the names as
 directories, executable files, and so on.
function la () { ls -a "$@"; }
function lf () { ls -F "$@"; }
The
 spaces and the semicolon (;) are important. You don’t need them on some
 shells, but writing functions this way (or in the multiline format in later
 examples) is more portable.[2] The function keyword is not
 needed in the original Bourne shell but is required in later versions of
 bash. The “$@” (
 Section 35.20) is replaced by any
 arguments (other options, or directory and filenames) you pass to the
 function:
$ la -l somedir
 ...runs ls -a -l somedir

Functions with Loops: Internet Lookup

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 mx.sh
The mx function

 uses
 dig
 to look up the DNS MX (mail
 exchanger) record for a host, then sed
 (Section 34.1) to pull out the
 “ANSWER SECTION”, which has the hostname or hostnames:
for
 Section 35.21
function mx() {
Look up mail exchanger for host(s)
for host
do
 echo "==== $host ===="
 dig "$host" mx in |
 sed -n '/^;; ANSWER SECTION:/,/^$/{
 s/^[^;].* //p
 }'
done
}
mx takes one or more hostname
 arguments; it runs dig and sed on each hostname. For example, the mail
 exchangers for oreilly.com are
 smtp2.oreilly.com and
 smtp.oreilly.com. The mail exchanger for
 hesketh.com is
 mail.hesketh.com:
$ mx oreilly.com hesketh.com
==== oreilly.com ====
smtp2.oreilly.com.
smtp.oreilly.com.
==== hesketh.com ====
mail.hesketh.com.
This example shows how to write a function
 with more than one line. In that style, with the ending curly brace on its
 own line, you don’t need a semicolon after the last command. (The curly
 braces in the middle of the function are inside quotes, so they’re passed to
 sed as part of its script.)
The mx function looks like a little
 shell program (Section 35.2). Shell functions have
 the same syntax as a shell script, except for the enclosing
 function name and curly braces. In fact, a shell
 function can be defined and used within a shell script (Section 35.30). But, as we’ve seen,
 it’s also handy for interactive use.

Setting Current Shell Environment: The work Function

Like aliases, functions run in the current shell process — not in a
 subprocess as shell scripts do. So they can change your shell’s current
 directory, reset shell and environment variables, and do basically anything
 you could do at a shell prompt. (Section
 24.3 has details.)

 This next function is for a group of people
 who are all working on a project. A directory named
 /work has symbolic
 links (Section
 10.4) named for each worker — /work/ann,
 /work/joe, etc. — and each link points to the
 directory where that person is working. Each worker makes a function named
 work that, by default, cds to her directory and summarizes it. If the person gives
 an argument to the function — like work
 todo, for instance — the script edits the file named .todo in that directory. This setup also lets
 people quickly find out where others in the group are working.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 work.sh
Okay, I admit that I made this up as a demonstration for this article, as
 a way to show a lot of features in a small amount of space. Anyway, here’s
 the function:
if
 Section 35.13, '...'
 Section 28.14, wc
 Section 16.6
function work () {
 local status=0
 if [$# -eq 1 -a "$1" = todo]
 then
 ${VISUAL-vi} /work/$USER/.todo
 status=$? # return status from editor
 elif [$# -ne 0]
 then
 echo "Usage: work [todo]" 1>&2
 status=1
 else
 cd /work/$USER
 echo "You're in your work directory `pwd`."
 echo "`ls | wc -w` files to edit."
 status=0
 fi
 return $status
}
There are three points I should make about this example. First, the
 local
 command defines a shell variable named
 status that’s local to the function — which means
 its value isn’t available outside the function, so it’s guaranteed not to
 conflict with variables set other places in the shell. I’ve also set the
 value to 0, but this isn’t required. (In the original Korn shell, use the
 typeset command to set a local
 variable.) Second, when you run a function, the first argument you pass it is stored in
 $1
 , the second in $2, and so on (Section
 35.20). Shell and environment variables set outside of the
 function, and nonlocal variables set within the function, are passed to and
 from the function. Finally, the return
 command returns a status (
 Section 35.12) to the calling
 shell. (Without return, the function
 returns the status from the last command in the function.) For a function
 you use interactively, like this one, you may not care about the status. But
 you also can use return in the middle of
 a function to end execution and return to the calling shell
 immediately.

Functions Calling
 Functions: Factorials

 Okay, students,
 this example is “extra credit” ;-)...You
 can ignore this ramble unless you want some esoterica. (I’m actually not
 trying to waste your time. There are some useful bits of info in here about
 the internal workings of the shells.) Functions can call each other
 recursively, and local variables are passed to functions they call, but
 changes in a called function are not passed back to the calling function.
 When I say “recursion,” I’ve gotta show the classic demonstration: a
 factorial function.[3]
The fac function
 calculates the factorial of the number passed in $1. It
 writes the result to standard output, for two reasons. First, doing so lets
 you type fac
 n at the command line (why you’d need to
 calculate a factorial very often, though, I’m not sure!). Second, if the
 shells’ return command works like the
 Unix exit statuses (and I haven’t checked all versions of all shells), the
 values are only eight bits — so it’s better to return a string, which lets
 us handle bigger integers. I could put in more error checking, but since
 this is all theoretical anyway, here’s the simple version of fac:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 fac.sh
function fac () {
 if ["$1" -gt 0]
 then echo $(($1 * `fac $(($1 - 1))`))
 else echo 1
 fi
}
Then
 you can
 play:
$ fac 0
1
$ fac 15
2004310016
$ fac 18
-898433024
Oops:
 overflow. Try zsh

 instead of bash or ksh; zsh built-in arithmetic
 seems to have more
 capacity:
zsh$ fac 18
6402373705728000
You
 can do some simple tracing by typing set -x
 (Section 27.15) at a shell
 prompt. Then the shell will display the commands it executes. (This works
 best in bash because it puts one + character at the left edge of each line to
 show each level of recursion.) You also can add some tracing code that uses a local variable,
 level, to store the depth of recursion. The code
 echoes debugging messages that
 show the depth of recursion of each call. Note that because the “returned
 value” of each function is written to its standard output, these debugging
 messages have to be on the standard error! (To see what
 happens otherwise, remove the 1>&2
 operator (Section
 36.16).) Here’s fac with
 debugging code:
${..-..}
 Section
 36.7
fac () {
local level=${level-0}
echo "debug: recursion level is $((level += 1)). Doing fac of $1" 1>&2
if ["$1" -gt 0]
then echo $(($1 * `fac $(($1 - 1))`))
else echo 1
fi
echo "debug: leaving level $level." 1>&2
}
Let’s
 run the code with tracing. Note that changes to the value of
 level at deeper levels doesn’t affect the value at
 higher levels — and that level isn’t set at all in the
 top-level shell:
$ fac 3
debug: recursion level is 1. Doing fac of 3
debug: recursion level is 2. Doing fac of 2
debug: recursion level is 3. Doing fac of 1
debug: recursion level is 4. Doing fac of 0
debug: leaving level 4.
debug: leaving level 3.
debug: leaving level 2.
6
debug: leaving level 1.
$ echo $level
$

Conclusion

The next two articles cover specifics about functions in particular
 shells, and Section 29.14 shows
 how to simulate functions in shells that don’t have them.

 Here’s another overall note. Each shell
 has its own commands for working with functions, but in general, the
 typeset

 -f command
 lists the functions you’ve defined, and unset -f
 funcname deletes the definition of the function named
 funcname.
—JP and SJC

Shell Function Specifics

 Section 27.11 introduces shell
 functions for all Bourne-type shells. This article covers details of functions
 in specific shells.
	Read-only functions
	A bash

 and ksh function can be made read-only. In ksh, that means the function can’t be
 changed. In bash, it can’t be
 changed or removed. To make a function read-only, use the ksh command typeset -r
 funcname or use read-only -f
 funcname in bash, where funcname is the name
 of the function.
A system administrator might want to
 set read-only functions from a system-wide setup file (Section 3.3) like /etc/profile. bash users can’t unset read-only functions, though.
 So once a function foo has been
 defined, how can you define your own foo? As Section
 27.9 explains, you can type command foo to use a command named foo from your search path. Or define
 an alias named foo; aliases are
 used before functions. Finally, if you’d like to redefine the
 function, make an alias with the same name, then make the alias
 invoke a function with a (usually similar) name. For instance, to
 override a read-only function named foo:
alias foo=_foo
function _foo() {
 ...your foo function...
}

	Changing function environment
	If a function uses an environment variable — like VISUAL or EDITOR (Section 35.5), your standard
 text editor — you can set the value temporarily while the function
 executes. The syntax is the same for functions, but only in bash and zsh
 . For instance, if
 you usually use vi, but you want
 to use emacs as you run the
 work function (
 Section 29.11):
$ VISUAL=emacs work todo

	Resetting zsh options
	There are lots of zsh
 options. You may want to
 set some of them temporarily during a shell function without needing
 to reset them to their previous values when the function returns to
 the calling shell. To make that happen, set the LOCAL_OPTIONS option (run
 setopt local_options) in the
 function body.
For instance, maybe you use setopt
 nounset to make your interactive shell complain if you
 try to expand an unset shell variable. During your func function, though, you want to use
 the unset option to allow unset variables.
 Define the function like this:
function mullog() {
 setopt unset local_options
 ...do whatever...
}

— JP and SJC

Propagating Shell Functions

 One easy way
 to define shell functions that you’ll have every time you start a new shell is
 by defining them in your shell setup files
 (Section 3.3). Here are two other
 ways.
Exporting bash Functions

 In bash

 , you can export functions to
 other bash subshells (Section 24.4). (The original Korn
 shell, but not the public-domain version, supposedly does this too, but I
 haven’t had much luck with it.) Just use the command typeset -fx
 funcname, where funcname is the
 name of the function.
How does this work? It stores the function in an environment variable (Section 35.3) whose value starts with (
). You can see this with printenv or
 env (Section 35.3).
 For example, let’s define a simple function named dir, export it, start a subshell, run the function, and look
 for it in the environment:
bash$ function dir() { ls -F "$@"; }
bash$ typeset -fx dir
 ...export the function
bash$ bash
 ...start subshell
bash$ dir
 ...the function still works
,ptbk.last ch14.sgm ch36.ps.gz fmt/
,xrefs.list ch15.ps.gz ch36.sgm gmatlogs/
bash$ printenv
 ...lots of environment variables...
dir=() { ls -F "$@"
}

FPATH Search Path

 Both ksh and zsh will
 automatically search for functions in the PATH
 variable (
 Section 35.6). So you can put a
 function in a file with the same name as the function (for instance, put the
 function foo in a file named
 foo), and make the file executable (with chmod +x foo (Section 35.1)), and then the shell can find the function.

 I don’t like to use
 PATH for function-searching, though. One reason is
 that PATH is passed to all Unix
 processes — but if the process isn’t a shell and it tries to execute a
 function file, it’ll probably fail in an ugly way.[4] Also, making a file executable if you don’t tell the kernel how
 to execute it seems to me a recipe for trouble. A better way to help the
 shell find functions is to set a function search path in the
 FPATH

 environment variable; it has the same syntax as PATH.
 (In zsh, you can also set the
 fpath array — with the same syntax as
 path.) In FPATH, list
 directories that hold function files. In ksh, those
 files don’t even need execute permission! Then ksh and zsh will search
 the FPATH directories if they can’t find an executable
 file in the PATH.
Would you like the shells to search FPATH before
 PATH, so that a function will be executed before a
 standard command with the same name? (I would. After all, if I define a
 function from a shell prompt or shell setup file like .zshrc, that function will be run instead of
 a standard executable.) Here’s how to set that up. Tell the shell to
 autoload
 the function. Autoloading happens
 automatically if there’s no match found in
 PATH — because, as I said above, the shell falls
 back to FPATH if it doesn’t find a match in
 PATH. But if you want the shell to look for a
 particular name in FPATH before it tries
 PATH, you have to autoload the function.
 Autoloading a function doesn’t actually define the function (read the
 function body into the shell); it simply declares that the function exists —
 so the shell will remember that when you eventually want to execute the
 function.
This has a few twists, so let’s look at each shell separately. You might
 want to do this yourself and follow along: When I first played with
 FPATH, I made two subdirectories of /tmp named a and
 b. Each directory had three simple function files
 named func1, func2, and foo. The functions func1
 and func2 simply echo a message with their name and location. foo invokes a shell script of the same name,
 but first uses set -xv (Section 37.1) for debugging.
 func1 was a single-line function and
 func2 was multiline. The files in
 /tmp/a weren’t executable, and the
 ones in /tmp/b were executable. I set
 the FPATH environment variable (set the shell variable
 and exported it) to /tmp/a:/tmp/b — so the shells should try the
 nonexecutable function files before falling back to the executables. After
 setting that up, I started a ksh subshell
 and played around. Then I exited the
 ksh and started a zsh.
Korn shell

 Here’s what happened in pdksh
 . The
 standard ksh is similar but not as
 verbose:
$ echo $FPATH
/tmp/a:/tmp/b
$ type func1
func1 is a undefined (autoload from /tmp/a/func1) function
$ func1
This is func1 from /tmp/a, a single-line unexecutable function
$ type func1
func1 is a function

$ typeset -f func2
$ type func2
func2 is a undefined (autoload from /tmp/a/func2) function
$ func2
This is func2 from /tmp/a, a multi-line unexecutable function
$ typeset -f func2
func2() {
 echo "This is func2 from /tmp/a, a multi-line unexecutable function"
}

$ type foo
foo is /home/jpeek/.bin/foo
$ autoload foo
$ type foo
foo is a undefined (autoload from /tmp/a/foo) function
$ cat /tmp/a/foo
foo() { sh -xv $HOME/.bin/foo "$@"; }
$ foo
#!/bin/sh
echo "Welcome to the exciting $0 program..."
+ echo Welcome to the exciting /home/jpeek/.bin/foo program...
Welcome to the exciting /home/jpeek/.bin/foo program...
$ type foo
foo is a function
Here’s what happened with func1,
 func2, and foo:
	First, without autoloading, I use type (Section
 2.6) to see if the shell has found func1 anywhere. There’s no
 func1 along the
 PATH, so the shell searches
 FPATH — and finds it. So func1 is automatically marked for
 autoloading; note that I didn’t have to autoload it myself
 because there’s no func1 in a
 PATH directory. I run func1, then use type again; now the shell confirms
 that it’s read the function definition and func has been loaded into the
 shell.

	Next I played with func2.
 typeset -f (Section 29.11) shows
 that the shell doesn’t have a definition for the function yet,
 but type shows that the
 function declaration has been autoloaded. (This isn’t just
 academic. If you edit a function definition file, it’s good to
 know whether the shell has already loaded a copy of a previous
 definition.) I run the function, then use typeset to display the function,
 which has been loaded (of course!) by now.

	Because there’s a program named foo in my PATH, type shows that. But I want the
 shell to use my front-end foo
 function, so I run autoload — and then
 type confirms that the
 shell looked down FPATH and found the
 function in /tmp/a. The
 function definition hasn’t been loaded yet, so I use cat (Section 12.2) to display
 the function file. I run the foo function; because it set the shell’s verbose
 and echo flags, you can see the contents of the foo shell script and the commands
 that are executed. Finally, type shows that the shell will now run the
 function when I execute foo.

If you’d like to be sure that all the functions in your
 FPATH are autoloaded — especially if you add
 new ones pretty often — here’s a way to do it. Put code like this in
 your ENV
 setup file (Section 3.3):
IFS
 Section 36.23, for
 Section 28.9
Autoload all functions in FPATH directories.
Temporarily add a colon (:) to IFS to parse FPATH:
old_ifs="$IFS"; IFS=":$IFS"
for d in $FPATH
do autoload `ls $d`
done
IFS="$oldifs"; unset old_ifs
If a directory in FPATH is empty, autoload
 gets no arguments and, in that case,
 shows the function definitions it has already autoloaded. I only put a
 directory in my FPATH if it has functions to load.
 If you might have an empty directory in yours, you can avoid seeing the
 autoload output by editing that
 code to store the output of ls in a
 shell variable and running autoload
 only if the variable isn’t empty.

zsh

 The zsh
 system is mostly like ksh. The difference is that zsh doesn’t automatically search
 FPATH. You have to manually autoload any
 function that you want zsh to search
 for in FPATH.
zsh$ echo $FPATH
/tmp/a:/tmp/b
zsh$ type func1
func1 not found
zsh$ func1
zsh: command not found: func1
zsh$ autoload func1
zsh$ type func1
func1 is a shell function
zsh$ func1
This is func1 from /tmp/a, a single-line unexecutable function
zsh$ type func1
func1 is a shell function

zsh$ autoload func2
zsh$ typeset -f func2
undefined func2 () { }
zsh$ func2
This is func2 from /tmp/a, a multi-line unexecutable function
zsh$ typeset -f func2
func2 () {
 echo "This is func2 from /tmp/a, a multi-line unexecutable function"
}

zsh$ type foo
foo is /home/jpeek/.bin/foo
zsh$ autoload foo
zsh$ foo
#!/bin/sh
echo "Welcome to the exciting $0 program..."
+ echo Welcome to the exciting /home/jpeek/.bin/foo program...
Welcome to the exciting /home/jpeek/.bin/foo program...
zsh$ type foo
foo is a shell function
I won’t repeat all of the explanation from the ksh section. Instead, let’s just look at
 the differences:
	The first examples show that zsh won’t look down FPATH
 for func1. Once you autoload
 the function, type doesn’t
 give you a clue whether the function has been defined or just
 declared.

	In zsh, you can see whether
 a function has been defined by using typeset -f (instead of type). After autoloading it,
 func2 has been declared
 but not defined. As the example shows, running the function once
 loads the definition.

If you’d like to be sure that all the functions in your
 FPATH are autoloaded — especially if you add
 new ones pretty often — here’s how to do it in zsh. Put code like this in a per-shell setup file (Section 3.3) — typically .zshrc:
Autoload all functions in fpath directories:
for d in $fpath
do autoload `ls $d`
done
The code is simpler than in ksh
 because we can step through the fpath array without
 parsing it at colon (:) characters. As in ksh, though, you’ll want to tweak the code if a directory
 in fpath might be empty: store the output of
 ls in an array and run autoload only if the
 array has

 members.

— JP

Simulated Bourne Shell
 Functions and Aliases

 Until System V Release 2 (circa 1984), the
 Bourne shell had no way for users to set up their own built-in commands. If you
 have a Bourne shell with no functions (Section 29.11) or aliases (Section 29.2)
 and haven’t yet turned the host machine into a wet bar, CD/DVD storage case, or
 some other pragmatic but fun use for a 30-year-old computer, you can do a lot of
 the same things with shell variables and the eval (Section 27.8)
 command.
Let’s look at an example. First, here’s a shell function named cps (copy safely). If the destination file exists
 and isn’t empty, the function prints an error message instead of
 copying:
test
 Section
 35.26
cps()
{
 if test ! -s "$2"
 then cp "$1" "$2"
 else echo "cps: cannot copy $1: $2 exists"
 fi
}
If
 you use the same cps twice, the first time
 you’ll make bfile. The second time you try, you see the
 error:
$ cps afile bfile
 ...
$ cps afile bfile
cps: cannot copy afile: bfile exists
Here’s
 the same cps — stored in a shell variable
 instead of a
 function:
cps='
if test ! -s "$2"
then cp "$1" "$2"
else echo "cps: cannot copy $1: $2 exists"
fi
'
Because this fake function uses
 shell parameters, you have to add an extra step: setting the parameters. Simpler
 functions are easier to use:
set
 Section 35.25
$ set afile bfile
$ eval "$cps"
 ...
$ eval "$cps"
cps: cannot copy afile: bfile exists

[1] [The mycat alias runs cat on all files with names later in the
 alphabet than the argument you type. The output of cat is piped to the less (Section
 12.3) pager. For example, let’s say your current directory
 has the files afile, count, jim, and report.
 Typing mycat
 count would display the files
 jim and report. — JP]

[2] A function is a Bourne shell list construct.

[3] Factorial is the product of all integers from some nonnegative
 number through one. So the factorial of 6, written 6!, is 6 × 5 × 4 × 3 × 2 × 1 or 720.
 Also, zero factorial (0!) is
 defined as 1. In recursion, a function typically calls itself to get
 “the next value,” then waits for that value to be returned and
 returns its answer to the function that called
 it. If you ask a function to calculate 6!, it will call itself and
 ask for 5!, then call itself and ask for 4!, and so on. This can be
 confusing if you haven’t seen it before, but there’s information
 about it in almost every computer science textbook on basic
 programming techniques. It is also worth mentioning that recursion
 is a pretty poor way to calculate factorials in most languages,
 namely, those that lack support for tail recursion.

[4] zsh lets you define a function
 in a function file without the enclosing
 funcname
 () { and } syntax. Then the file could be
 directly executed in a subshell by some shell that doesn’t
 understand functions. I’m not sure I’d ever use this because running
 a function this way — as an external command
 instead of an internal command (Section 1.9) — means the
 function can’t access or modify the environment of the shell that’s
 running it, which is one of the reasons for writing a shell function
 in the first place! But, like everything in zsh, I’m sure someone had a good reason for making
 this work.

Chapter 30. The Use of History

The Lessons of History

 It has been said that “the only thing we learn
 from history is that people don’t learn from history.”
Fortunately, the original maxim that “history repeats itself” is more
 appropriate to Unix.
Most shells include a powerful history mechanism that lets you recall and
 repeat past commands, potentially editing them before execution. This can be a
 godsend, especially when typing a long or complex command.
All that is needed to set C shell history in motion is a command like this in
 your .cshrc (or .tcshrc) file,
 where
 n is the number of past commands that you want to
 save:
set history=n
In ksh and bash, the variable is HISTSIZE, and it’s
 already set for you; the default values are 128 and 500, respectively.
The history
 command (Section 30.7)
 lists the saved commands, each with an identifying number. (It’s also possible
 to configure the shells to print the history number of each command as part of your prompt (Section 4.3).)

 In
 tcsh, csh, and bash, you can
 repeat a past command by typing its number
 (or its name) preceded by an exclamation point (!). You can also select only parts of the command to be repeated
 and use various editing operators to modify it. Section 30.8 and Section 28.5 give quick tutorial
 summaries of some of the wonderful things you can do. Most of the rest of the
 chapter gives a miscellany of tips for using and abusing the shells’ history
 mechanism.
Most shells — except the original Bourne and C
 shells — also have

 interactive command-line editing (Section 30.14). Interactive editing
 might seem to be better than typing !vi or
 lpr !$. If you learn both systems,
 though, you’ll find plenty of cases where the ! system is faster and more useful than interactive
 editing.
— TOR

History in a Nutshell

Summary Box
The C shell and bash can save copies of
 the previous command lines you type. Later, you can ask for a copy of some
 or all of a previous command line. That can save time and retyping.
This feature is called history substitution
 , and it’s done when you type a
 string that starts with an exclamation point (!
 command). You can think of it like variable substitution ($varname) (Section 35.9) or command substitution ('command') (Section 28.14): the shell replaces
 what you type (like !$) with something
 else (in this case, part or all of a previous command line).
Section 30.1 is an introduction
 to shell history. These articles show lots of ways to use history
 substitution:
	We start with favorite uses from several contributors — Section 30.3, Section 30.4, Section 30.5, and Section 30.6.

	Section 30.8 starts with
 a quick introduction, then covers the full range of history
 substitutions with a series of examples that show the different
 kinds of things you can do with history.
(Back in Section 28.5
 are examples of csh/tcsh and bash operators such as :r. Many of these can be used to edit history
 substitutions.)

	See an easy way to repeat a set of csh/tcsh or
 bash commands in Section 30.9.

	Each shell saves its own history. To pass a shell’s history to
 another shell, see Section
 30.12 and Section
 30.13.

	You don’t have to use an exclamation point (!) for history. Section 30.15 shows how to
 use some other character.

	The Korn shell does history in a different way. Section 30.14 introduces
 part of that: command-line editing in ksh and bash.

One last note: putting the history number in your
 prompt (

 Section 4.3) makes it easy to reuse
 commands that haven’t scrolled off your screen.
— JP

My Favorite Is !$

 I
 use !$ so much that it’s almost a single
 character to me. It means “take the last thing on the previous command line.”
 Since most Unix commands have the filename last, you often need to type
 filenames only once, and then you can use !$
 in subsequent lines. Here are some examples of where it comes in handy:
	I get a lot of tar archives (Section
 39.2). To extract and edit a file from them, I first make a
 backup for easy comparison after editing:
% tar xzf prog.1.05.tar.gz foo.c
% cp -i !$!$.orig
cp -i foo.c foo.c.orig

	The same trick is also good when you’ve edited a file with vi and then want to check its
 spelling:
% vi fred.letter.txt
% ispell !$

	You often want to move a file to
 another directory and then cd to that
 directory. The !$ sequence can also
 be used to refer to a directory:
% mv grmacs.tar /usr/lib/tmac
% cd !$
cd /usr/lib/tmac

— AN

My Favorite Is !:n*

 I
 use !$ (Section 30.3) a lot, but my favorite history substitution is
 !:n
 *, where n is a
 number from 0 to 9. It means “take arguments n
 through the last argument on the previous command line.” Since I tend to use
 more than one argument with Unix commands, this lets me type the arguments
 (usually filenames) only once. For example, to use RCS (Section 39.5) and
 make an edit to article files named Section
 35.5 and Section 29.2 for
 this book, I did:
% co -l 1171.sgm 6830.sgm 2340.sgm
RCS/1171.sgm,v -> 1171.sgm
 ...
RCS/2340.sgm,v -> 2340.sgm
revision 1.8 (locked)
done
% vi !:2*
vi 1171.sgm 6830.sgm 2340.sgm
3 files to edit
 ...
% ci -m"Changed TERM xref." !*
ci -m"Changed TERM xref." 1171.sgm 6830.sgm 2340.sgm
 ...
In the first command line (co), I typed the
 filenames as arguments 2, 3, and 4. In the second command line (vi), I used !:2*; which grabbed arguments 2 through the last (in this case,
 argument 4) from the first command line. The result was a second command line
 that had those three filenames as its arguments 1, 2, and 3. So, in the third
 command line (ci), I used !* to pick arguments 1 through the last from the
 previous (second) command line. (!* is
 shorthand for !:1*.)
You can also grab arguments from previous command lines. For example, !em:2* grabs the second through last arguments on
 the previous emacs command line (command line
 starting with “em”). There are lots more of these in Section 30.8.
If these examples look complicated, they won’t be for long. Just learn to
 count to the first argument you want to grab. It took me years to start using
 these substitutions — but they’ve saved me so much typing that I’m sorry I
 didn’t get started earlier!
— JP

My Favorite Is ^^

Well, maybe it’s not my favorite,
 but it’s probably the history substitution I use most often. It’s especially
 handy if you have fumble-fingers on a strange keyboard:
% cat myflie
cat: myflie: No such file or directory
% ^li^il
cat myfile
Obviously, this doesn’t save much typing for a short command, but it can sure
 be handy with a long one. I also use ^^ with
 :p (
 Section 30.11) to recall an earlier
 command so I can change it. For example:
% !m:p
more gobbledygook.c
% ^k^k2
more gobbledygook2.c
The point is sometimes not to save typing, but to save the effort of
 remembering, such as, I want to print the file I looked at earlier, but don’t
 remember the exact name.
[My keyboard can repeat characters when I’m not expecting it. I use a single
 ^ to delete extra characters. For
 example:
% lpr sources/aproggg.c
lpr: sources/aproggg.c: no such file or directory
% ^gg
lpr sources/aprog.c
You could type ^gg^, but the second caret
 isn’t required. With a single caret, you don’t type a replacement string — just
 the string to delete. — JP]
— TOR

Using !$ for Safety with Wildcards

 We all know about using ls before a wildcarded rm to make sure that we’re only deleting what we want. But that
 doesn’t really solve the problem: you can type ls
 a* and then mistakenly type rm
 s* with bad consequences — it’s just a minor slip of your finger.
 But what will always work is:
% ls a*
a1 a2 a3
% rm !$
(ls -d a* (Section 8.5) will make less output if any subdirectory names match
 the wildcard.)
Using the history mechanism to grab the previous command’s arguments is a good
 way to prevent mistakes.
— ML

History by Number

Most of the history examples we’ve shown
 use the first few letters in a command’s name: !em to repeat the previous Emacs command, for example. But you
 also can recall previous commands by their numbered position in the history
 list. That’s useful when you have several command lines that start with the same
 command. It’s also more useful than interactive
 command-line editing (Section
 30.14) when you’d like to see a lot of previous commands at once and
 then choose one of them by number.
To list previous commands, use the history
 command. For instance, in bash and the C shells, history 20 shows your last 20 commands. In zsh and the Korn shell, use a hyphen before the
 number: history -20 (also see the discussion
 of fc, later in this article). Here’s an
 example:
$ history 8
 15 show last +upt/authors
 16 vi ../todo
 17 co -l 0444.sgm
 18 vi 0444.sgm
 19 ci -u 0444.sgm
 20 rcsdiff -u3.4 0444.sgm > /tmp/0444-diff.txt
 21 scp /tmp/0444-diff.txt webhost:adir/11.03-diff.txt
 22 getmail;ndown
$ rm !20:$
rm /tmp/0444-diff.txt
$!16
vi ../todo
The number at the start of each line is the history number. So, to remove the
 temporary file I created in command 20
 (the name of which I’d already forgotten!), I can use !20:$ (Section 30.8)
 to pass that filename as an argument to rm.
 And to repeat command 16 (vi ../todo), I can
 type !16.
This sort of thing is often faster than using arrow keys and editor commands
 to recall and edit previous commands. It lets me see several commands all at
 once, which makes it easier to spot the one(s) I want and to remember what I was
 doing as I worked. I use it so often that I’ve got a set of aliases that list
 bigger and bigger chunks of previous commands and an alias that searches
 history, giving me a chunk of matching command lines. Here they are in C shell
 syntax:
less
 Section 12.3, \!*
 Section 29.3
alias h history 5 # show last five lines
alias hi history 10 # show last ten lines
alias his history 20 # show last 20 lines
alias hist 'history 40 | less' # show last 40; pipe to 'less'
alias histo 'history 70 | less' # show last 70; pipe to 'less'
alias H 'history -r | fgrep "\!*"' # find something in history
The history
 -r option shows the list in
 reverse order: most
 recent first. If you don’t give a count of lines to list, you’ll see all of
 them.
Warning
Be careful! In bash
 , history -r reads the current history file
 and uses it as the history from that point onward, trashing any current
 history for that shell if it has not yet been written to the history file
 (defined in the environment variable HISTFILE).

To avoid typing the history command, you
 can include the history number in your prompt
 (

 Section 4.3). Then you can repeat a
 recent command by glancing up your screen to find the command number from its
 prompt.
There’s another way to see a list of your previous commands in bash

 , ksh,
 and zsh: the command fc
 -l (lowercase L, for
 “list”). (In ksh, the command history is actually just an alias that executes
 fc -l.) By itself, fc -l lists the previous 16 commands:
$ fc -l
 ...
19 ls -F
20 less expn.c
21 vi expn.c
22 make
23 expn info@oreilly.com
24 fc -l
For an even shorter list, give fc the first
 number or name you want to list. For instance, fc -l
 vi or fc -l 21 would give the
 last four lines above. You can also use a second argument that ends the range
 before the current line. If you type fc -l vi
 expn or fc -l 21 23, you’ll see
 commands 21 through 23.
tcsh and zsh automatically keep timestamps with their
 history. The tcsh command history
 shows the time of day by default. In
 zsh, you can see this info with the
 options -d, which shows the
 times, -f, which shows both
 dates and times, and -D, which shows elapsed
 times. For example, the scp command started
 running at 12:23 (PM) and took 1 minute 29 seconds to run:
% fc -l -f -4
 1003 10/23/2000 12:23 nup
 1004 10/23/2000 12:23 scp ../upt3_changes.html webhost:adir/.
 1005 10/23/2000 12:25 less /etc/hosts
 1006 10/23/2000 12:25 getmail;ndown
% fc -l -D -5
 1003 0:29 nup
 1004 1:29 scp ../upt3_changes.html webhost:adir/.
 1005 0:05 less /etc/hosts
 1006 0:21 getmail;ndown
 1007 0:00 fc -l -f -4
zsh also has several related options for
 fc that allow for the history to be
 written out to a file, read in from a file, et cetera. The other shells allow
 for even more extended functionality. In bash, for example, fc
 -e with
 appropriate options will start an editor (defined by the
 FCEDIT environment variable) and load up a new file
 containing the recent history items. Think of it is jump starting a script from
 a sequence of (hopefully) successfully executed commands. See the other shells’
 manual pages for more details.
—JP and SJC

History Substitutions

 Although most of the examples here use
 echo to demonstrate clearly just what is
 going on, you’ll normally use history with other Unix commands.

 The exclamation point (!) is the default (Section 30.15) history substitution
 character. This allows you to recall previously entered commands and re-execute
 them without retyping. To use the ! in a
 command line, you have several choices. Some of the following examples are more
 of a headache than they may be worth, but they are also used to select arguments from the command line in aliases
 (Section 29.3):
	!!
 repeats the last command.

	!: repeats the last command. This
 form is used if you want to add a modifier (Section
 28.5) like the following:
% echo xy
xy
% !:s/xy/yx
echo yx
yx
The second ! was left out.

	!so repeats the last command that
 starts with so.

	!?fn? repeats the last command that
 has fn anywhere in it. The string
 could be found in an argument or in the command name. This is opposed to
 !fn, in which !fn must be in a command name. (The last
 ? need not be there. Thus
 !?fn means the same
 thing.)

	!34executes command number 34. You
 can find the appropriate history number when you list your history using
 the history command, or by putting the history number in your prompt
 (Section 4.3).

	!! & adds an ampersand
 (&) to the end of the last
 command, which executes it and places it into the background. You can
 add anything to the end of a previous command. For example:
% cat -v foo
 ...
% !! | more
cat -v foo | more
 ...
In this case the shell will repeat the command to be executed and run
 it, adding the pipe through the more
 pager. Another common usage is:
% cat -v foo
 ...
% !! > out
cat -v foo > out
which returns the command but redirects the output into a file.

	!:0selects only the command name,
 rather than the entire command line.
% /usr/bin/grep Ah fn1
 ...
% !:0 Bh fn2
/usr/bin/grep Bh fn2
Note that as an operator (Section 28.5,), :0
 can be
 appended to these history substitutions as well. For example, !!:0 will give the last command name, and
 a colon followed by any number will give the corresponding argument. For
 example, !:3 gives the third
 argument:
% cat fn fn1 fn2
 ...
% more !:3
more fn2
 ...

	!:2-4 gives the second through the
 fourth argument; use any numbers you choose:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !:2-4
echo 2 3 4
2 3 4

	!:-3 gives zero through the third
 argument; use any number you wish:
% echo 1 2 3 4
1 2 3 4
% echo !:-3
echo echo 1 2 3
echo 1 2 3

	!^

 gives the first argument of the previous command. This is the same as
 !:1. Remember that just as the
 ^ (caret) is the
 beginning-of-line anchor in regular
 expressions (Section
 32.5), !^ gives the
 beginning history argument.
% cat fn fn1 fn2
 ...
% more !^
more fn
 ...

	!$

 gives the last argument of the last command. In the same way that
 $ (dollar sign) is the
 end-of-line anchor in regular expressions, !$ gives the ending history argument. Thus:
% cat fn
 ...
% more !$
more fn
 ...
The new command (more) is given the
 last argument of the previous command. This is also handy for pulling
 the last argument from earlier commands, which is typically a filename.
 To get the last argument from the previous vi command, for example, you’d use !vi:$. So you could type lpr !vi:$ to print the last file you
 edited with vi.

	!*
 is shorthand for the first through the
 last argument. This is used a lot in aliases:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !*
echo 1 2 3 4 5
1 2 3 4 5
In an alias:
alias vcat 'cat -v \!* | more'
This alias will pipe the output of cat
 -v (Section
 12.4) command through more. The backslash (\)
 has to be there to hide the history character, !, until the alias is used — see Section 29.3 for more
 information.

	!:2* gives the second through the
 last arguments; use any number you wish:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !:2*
echo 2 3 4 5
2 3 4 5

	!:2- is like 2* but the last argument is
 dropped:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !:2-
echo 2 3 4
2 3 4

	!?fn?% gives the first word found
 that has fn in it:
% sort fn1 fn2 fn3
 ...
% echo !?fn?%
echo fn1
fn1
That found the fn in fn1. You can get wilder with:
% echo 1 2 3 4 5
1 2 3 4 5
% echo !?ec?^
echo 1
1
That selected the command that had ec in it, and the caret (^) said to give the first argument of that command. You
 can also do something like this:
% echo fn fn1 fn2
fn fn1 fn2
% echo !?fn1?^ !$
echo fn fn2
fn fn2
That cryptic command told the shell to look for a command that had
 fn1 in it (!?fn1?), and gave the first argument of
 that command (^). Then it gave the
 last argument (!$).

	^xy^yx

 is the
 shorthand substitution (Section 30.3, Section 30.5) command. In the
 case of:
% echo xxyyzzxx
xxyyzzxx
% ^xx^ab
echo abyyzzxx
abyyzzxx
it replaced the first set of characters xx with ab. This makes
 editing the previous command much easier.

	!!:s/xx/ab/ is doing the same thing
 as the previous example, but it is using the substitute command instead of the
 ^. This works for any previous
 command, as in:
% more afile bfile
 ...
% echo xy
xy
% !m:s/b/c/
more afile cfile
You do not have to use the slashes (/); any character can act as a delimiter.
% !!:s:xy:yx
There we used colons (:), good when the characters you’re trying to
 edit contain a slash. If you want to add more to the replacement, use
 & to “replay it” and then add
 on whatever you like:
% echo xy
xy
% !!:s/xy/&yx
echo xyyx
xyyx
The & in the replacement part
 said to give what the search part found, which was the xy characters.
The search part, or left side, cannot include metacharacters (Section 32.3). You must type the actual string you are
 looking for.
Also, the example above replaces only the first occurrence of xy. To replace them all, use
 g:
% echo xy xy xy xy
xy xy xy xy
% !!:s/xy/yx/
echo yx xy xy xy
yx xy xy xy
% !!:gs/xy/yx/
echo yx yx yx yx
yx yx yx yx
The g command in this case meant “do all the
 xys.” And oddly enough, the
 g has to come before the s
 command. This may seem odd to those of you familiar with vi, so be careful.
Or you could have done this:
% echo xy xy xy xy
xy xy xy xy
% !!:s/xy/yx/
echo yx xy xy xy
yx xy xy xy
% !!:g&
echo yx yx yx yx
yx yx yx yx
In this example, we told the shell to globally (:g
) replace every matched string
 from the last command with the last substitution (&). Without the g
 command, the shells would have replaced just one more xy

 with yx.

— DR

Repeating a Cycle of Commands

The !!
 history substitution gives a copy of the previous command. Most people use it to
 re-execute the previous command line. Sometimes I want to repeat a cycle of two
 commands, one after the other. To do that, I just type !-2 (second-previous command) over and over:
% vi plot
 ...
% vtroff -w plot
 ...
% !-2
vi plot
 ...
% !-2
vtroff -w plot
 ...
You can cycle through three commands with !-3, four commands with !-4,
 and so on. The best part is that if you can count, you never have to remember
 what to do next. :-)
— JP

Running a Series of Commands on a File

[There are times when history is not the best way to repeat commands. Here,
 Jerry gives an example where a few well-chosen aliases can make a sequence of
 commands, all run on the same file, even easier to execute. — TOR]
While I was writing the articles for this book, I needed to look through a set
 of files, one by one, and run certain commands on some of those files. I
 couldn’t know which files would need which commands, or in what order. So I
 typed a few temporary aliases on the C shell command line. (I could have used
 shell functions (Section 29.11) on sh-like shells.) Most of these aliases run
 RCS (Section 39.5) commands, but they could run any Unix command
 (compilers, debuggers, printers, and so on).
% alias h 'set f="\!*";co -p -q "$f" | grep NOTE'
% alias o 'co -l "$f"'
% alias v 'vi "$f"'
% alias i 'ci -m"Fixed NOTE." "$f"'
The h alias stores the filename in a
 shell variable (Section 35.9). Then it runs a command on
 that file. What’s nice is that, after I use h
 once, I don’t need to type the filename again. Other aliases get the filename
 from $f:
% h ch01_summary
NOTE: Shorten this paragraph:
% o
RCS/ch01_summary,v -> ch01_summary
revision 1.3 (locked)
done
% v
"ch01_summary" 23 lines, 1243 characters
 ...
Typing a new h command stores a new
 filename.
If you always want to do the same commands on a file, you can store all the
 commands in one alias:
% alias d 'set f="\!*"; co -l "$f" && vi "$f" && ci "$f"'
% d ch01_summary
The

 && (two ampersands) (Section 35.14) means that the following
 command won’t run unless the previous command returns a zero (“success”) status.
 If you don’t want that, use ; (semicolon)
 (Section 28.16) instead of
 &&.
— JP

Check Your History First with :p

 Here’s how to be more sure of your history before
 you use it. First, remember that the history substitutions !/ and !fra are
 replaced with the most recent command lines that started with / and fra,
 respectively.
If your memory is like mine (not very good), you might not be sure that
 !/ will bring back the command you want.
 You can test it by adding :p to the end. The
 shell will print the substitution but won’t execute the command line. If you
 like what you got, type !! to execute it. For
 example:
!/:p
/usr/sbin/sendmail -qv
!!
/usr/sbin/sendmail -qv
Running id12345...
At the first prompt, the :p meant the
 command line was only printed. At the second prompt, I didn’t use :p and the sendmail command was executed. The :p works with all history operators — for instance, !?sendmail?:p.
— JP

Picking Up Where You Left Off

 If
 you want your command history to be
 remembered even when you log out, set the C shell’s
 savehist
 shell variable (Section 35.9) to the number of lines of
 history you want saved. Other shells save history automatically; you don’t need
 to set a variable. (If you want to change the number of lines saved by bash, set its HISTFILESIZE
 environment variable. In zsh

 , the variable is
 SAVEHIST. In ksh,
 the HISTSIZE variable sets the number of commands available
 to be recalled in your current shell as well the number saved for other
 shells.)
When you log out, the specified number of lines from the csh history list will be saved in a file called

 .history in your home directory. zsh, bash and
 ksh use the filename given in the
 HISTFILE environment variable. By default, bash calls the file .bash_history, and the original ksh uses .sh_history — but
 note that the new pdksh and zsh don’t save history unless you set
 HISTFILE to a filename. For zsh, I chose $HOME/.zsh_history, but you can use anything you want.
On modern windowing systems, this isn’t as trivial as it sounds. On an
 old-style terminal, people usually started only one main shell, so they could
 set the history-saving variable in their .login or .profile file and
 have it apply to their login shell.
However, under window systems like X or networked filesystems that share your
 home directory between several hosts, or on networked servers to which you might
 login via ssh, you may have multiple shells
 saving into the same history file. Linux systems with multiple virtual consoles (Section 23.12) logged on as the same user will have the same
 problem. The shells might be overwriting instead of appending, or appending
 instead of overwriting, or jumbling commands together when you want them
 separated. The sections below give some possible fixes.
bash, ksh, zsh

 Here’s the basic way to give a separate history file
 to each bash, zsh, or ksh shell:
 customize your setup file (Section 3.3) to set a different
 HISTFILE on each host or each window. Use names
 like $HOME/.sh_history.window
 n or ~/.bash_history.
 hostname to match each file to its window or
 host. If your setup is always the same each time you log in, that should
 give each window and/or host the same history it had on the last invocation.
 (There are related tips in Section
 3.18 and a series starting at Section 3.10.)
If you open random windows, though, you’ll have a harder time
 automatically matching a history file to a shell the next time you log in.
 Cook up your own scheme.
The simplest fix is to use $$ (Section 27.17) — which will
 probably expand differently in almost every shell you ever start — as a
 unique part of the filename. Here are two possibilities:
HISTFILE=/tmp/sh_hist.$$
HISTFILE=$HOME/.sh_hist.$$
The first example uses the system’s
 temporary-file directory. If your system’s /tmp is cleaned out often, you may be able to leave your
 history files there and let the system remove them; ask the administrator.
 Note that the history file may be world-readable (Section
 50.2) if your umask isn’t set to protect your files. If that
 matters to you, you could make the temporary files in your home directory
 (or some protected directory), as in the second example shown earlier.
 Alternately, at the end of each session, you might want to run a command
 that appends your shell’s history file to a global history file that you
 then read in at startup of a new session (see below).
Two more bits of trivia:
	The original Korn shell maintains the history file constantly,
 adding a new line to it as soon as you run a command. This means you
 share history between all your current shells with the same
 HISTFILE name, which can be a benefit or a
 problem.

	In most other shells, each shell process keeps its own history
 list in memory. History isn’t written to the history file (named by
 the HISTFILE variable in each shell) until the
 shell exits.
In bash, you can force a write
 with the command history -w. In
 the same way, if you have an existing history file (or, actually,
 any file full of command lines), you can read it into your current
 bash with history -r. Section 30.13 has another
 example. Each shell has its own way to do this, so check your manual
 page carefully and experiment to get it right.

C Shells

 In
 tcsh, you can set
 a history file name in the histfile variable; the
 default filename is .history in your
 home directory. To avoid conflicts between multiple saved tcsh histories, use a system like the one
 described earlier for Bourne shells.
The original C shell has only one possible filename for its automatic
 history file: .history. If you set the
 C shell variable savehist in each of your windows
 (e.g., by setting it in your .cshrc or
 .tcshrc), they will all try to
 write .history at once, leading to
 trouble. And even if that weren’t true, you get the history from every
 window or host, which might not be what you want.
Of course, you could set savehist manually in a
 single window when you thought you were doing work you might want to pick up
 later. But there is another way: use the C shell’s command history -h (which prints the history list
 without leading numbers, so it can be read back in later) and redirect the
 output to a file. Then use source -h to
 read it back into your history list when you log in.
Do you want to automate this? First, you’ll need to choose a system of
 filenames, like ~/.history.window
 n or ~/.history.
 hostname
 , to match each file to its window or host. If each of
 your C shells is a login shell (Section 3.4),[1] you can run history -h from
 your .logout file and source -h from your .login file. For nonlogin shells, automation is tougher —
 try this:
	Set the ignoreeof variable to force you to
 leave the shell with an exit (Section 24.4)
 command.

	Set an alias for exit (Section 29.8) that runs
 history -h before
 exiting.

	Run source -h from your
 .cshrc or .tcshrc file. Use a $?prompt test to be sure this runs
 only in interactive shells.

If you choose to run history -h and
 source -h by hand occasionally, they
 will allow you the kind of control you need to write a
 script (Section
 30.13) that saves and restores only what you want.
—JP, TOR, and SJC

Pass History to Another Shell

 Most shells can save a
 history of the commands you type (Section 30.12). You can add your own
 commands to some shells’ history lists without retyping them. Why would you do
 that?
	You might have a set of commands that you want to be able to recall
 and reuse every time you log in. This can be more convenient than
 aliases because you don’t have to think of names for the aliases. It’s
 handier than a shell script if you need to do a series of commands that
 aren’t always in the same order.

	You might have several shells running (say, in several windows) and
 want to pass the history from one shell to another
 shell (Section
 30.12).

Unfortunately, this isn’t easy to do in all shells. For instance, the new
 pdksh

 saves its history in a file with NUL-separated lines. And the tcsh

 history file has a
 timestamp-comment before each saved line, like this:
#+0972337571
less 1928.sgm
#+0972337575
vi 1928.sgm
#+0972337702
ls -lt | head
Let’s look at an example for two of the shells that make history editing easy.
 Use the csh command history -h, or the bash
 command history -w

 , to save
 the history from a shell to a file. Edit the file to take out commands you don’t
 want:
% mail -s "My report" bigboss $ mail -s "My report" bigboss

% history -h > history.std $ history -w history.std
% vi history.std $ vi history.std
 ...Clean up history...
 ...Clean up history...
Read that file into another shell’s history list with the csh command source
 -h

 or the bash command history -r
 :
% source -h history.std $ history -r history.std
% !ma $!ma
mail -s "My report" bigboss mail -s "My report" bigboss
Of course, you can also use bash
 interactive command-line editing (Section 30.14) on the saved
 commands.
— JP

Shell Command-Line Editing

 When Unix started, a lot of people used real
 teletypes — with a roll or box of paper instead of a glass screen. So there was
 no way to recall and edit previous commands. (You could see them on the paper,
 of course, but to reuse them you had to retype them.) The C shell added
 history substitution operators (Section 30.2) that were great on
 teletypes — and are still surprisingly useful on “glass teletypes” these days.
 All shells except the oldest Bourne shells still have history substitution,
 although it’s limited in the Korn shells.
Modern shells also have interactive command-line editing. That’s the ability
 to recall previous command lines and edit them using familiar vi or emacs
 commands. Arrow keys — along with Backspace and DELETE keys — generally work,
 too. So you don’t need to know emacs or
 vi to edit command lines. But —
 especially if you’re comfortable with Emacs-style commands (meta-this
 that, control-foo bar) — you’ll find that
 most shells let you do much more than simply editing command lines. Shells can
 automatically correct spelling, complete partially-typed
 filenames (Section
 28.6), and much more.
The basic idea of command-line editing is that the previous commands are
 treated like lines in a plain-text file, with the most recently typed commands
 at the “end” of the file. By using the editor’s “up line” commands (like
 k in vi or C-p in Emacs), you can bring copies of earlier
 commands under your cursor, where you can edit them or simply re-execute them
 without changes. (It’s important to understand that you’re not editing the
 original commands; you’re editing copies of them. You can
 recall a previous command as many times as you want to; its original version
 won’t be changed as you edit the copy.) When you’ve got a command you want to
 run, you simply press ENTER; your cursor doesn’t have to be at the end of the
 line. You can use CTRL-c (C-c in Emacs jargon) to cancel a command without running it and
 get a clean shell prompt.
It would be easy for us to fill a chapter with info on command-line editing.
 (In this book’s fourth edition, maybe we should!) Because every shell has its
 own way to do this, though, we’ve decided to stick to the basics — with a few of
 the bells and whistles tossed in as examples. To really dig into this, check
 your shell’s manpage or its Nutshell Handbook.
Another way to do history editing is with your own editor: use the fc command.
vi Editing Mode

 All shells with command-line editing have
 support for basic vi commands, but it’s
 usually not complete and historically not well documented. For instance,
 I’ve used some shells where the . (dot) command wouldn’t repeat the previous
 edit — and other shells where it would — but neither shell’s manual page
 mentioned this useful fact. Macros are limited, and you don’t define them
 with the usual map (Section 18.2) command; instead, the
 shell’s built-in key binding command controls which built-in shell editing
 function is executed when a key is pressed. (The Korn shell doesn’t allow
 any special vi bindings, though at least
 it has complete documentation.) Still, with all those caveats, you’ll
 probably find that vi editing is pretty
 comfortable if you already know vi. (If
 you don’t know vi, though, I’d recommend
 Emacs editing. See the next section.)
At a bare shell prompt, you’re effectively in vi text-input mode: the characters you type appear on the
 command line. If you want to edit, press ESC to go to command mode. Then you
 can use typical commands like dw to
 delete a word and ct. to change all
 characters to the next dot on the line. Commands like a, i, and
 c take you to text-input mode. You
 can execute a command line from either command mode or text-input mode: just
 press ENTER anywhere on the line.
One difference between the shell’s vi
 mode and real vi is that the direction of
 searches is opposite. In real vi, the
 motion command k and the search command
 ? (question mark) both move to
 previous commands. In shells, k still
 moves to a previous command, but /
 (slash) searches for previous commands. By the way, after you specify a
 search with \, press ENTER to do the
 search. These differences from real vi
 can be confusing at first, but with practice they soon become
 natural.
To choose vi mode, type set
 -o
 vi in Bourne-type shells and bindkey -v in tcsh. In bash, you may
 also use keymap
 editor, with a variety of
 different editor settings (Section 30.14.5), to set up the
 editing mode. To make this the default, store the command in your shell’s
 setup file (Section 3.3) (in bash, you can also edit your Readline
 inputrc file). You can switch back
 and forth between the two modes as you work; this is useful because the
 Emacs mode lets you do things you can’t do in vi.

Emacs Editing Mode

 If you know the Emacs (Section
 19.1) editor, you’ll feel right at home in the shells. Although
 the support isn’t complete — for instance, you can’t write eLisp code (and
 you can’t run psychoanalyze-pinhead (Section 19.13) :-)) — the emacs-mode commands act like a
 natural extension to traditional, simple shell editing commands. So, even if
 you don’t know emacs, you’ll probably be
 comfortable with emacs mode. Even many browsers nowadays use the traditional
 emacs mode commands for moving about in the Location field, so you may
 already know some of these even if you’re not aware that you do.
To move to the beginning of a line, use C-a (that’s CTRL-a in Emacs-speak); C-e moves to the end of a line. C-f moves forward a character, and C-b moves backward one character (without deleting). C-n moves forward to the next command, and
 C-p moves backward to the previous
 line. Your keyboard’s arrow keys probably also work. Your shell has at least
 one search command; try C-r to start a
 search and press ENTER to run the search.
Your keyboard’s usual delete key (Backspace or DEL) deletes one character
 backward, and C-d deletes one character
 forward. C-k deletes (“kills”) to the end
 of the line, and C-w deletes (“wipes”)
 backward to the start of the line.
To choose emacs mode, type set -o emacs
 in Bourne-type shells and bindkey -e in
 tcsh. In bash, use one of the keymap
 editor commands, such as keymap
 emacs. To make this the default, store the command in your
 shell’s setup file (Section 3.3) (in bash, you can also edit your Readline
 inputrc file). You can switch back
 and forth between emacs and vi modes as you work.

tcsh Editing

 The bindkey

 command is used to bind keys to
 built-in editor functions. With no arguments, it gives a list of all key
 bindings, like this:
tcsh> bindkey
Standard key bindings
"^@" -> set-mark-command
"^A" -> beginning-of-line
"^B" -> backward-char
 ...
"¡" to "^y" -> self-insert-command
Alternative key bindings
Multi-character bindings
"^[[A" -> up-history
"^[[B" -> down-history
 ...
"^X^D" -> list-choices-raw
Arrow key bindings
down -> down-history
up -> up-history
left -> backward-char
right -> forward-char
In this list, ^ (caret) starts control
 characters, so ^A means CTRL-a. ^[is an escape character (which is also
 generated when you press a function key, like F1 or up-arrow, on most
 keyboards). Thus, ^[[A is the sequence
 ESC left-bracket A (which is also sent by the
 up-arrow key on VT100-type keyboards). The “alternative key bindings” are
 used in vi command mode, which wasn’t
 enabled in the example above, because I made it while using emacs
 bindings.

 There’s
 a list of some editor functions in the tcsh manual page, but that list only includes “interesting”
 functions. To get a complete list, including “boring” functions like
 backward-char (to move backward one
 character), type the command bindkey
 -l (lowercase letter L); that lists all the editor
 functions and describes each one briefly:
tcsh> bindkey -l
backward-char
 Move back a character
backward-delete-char
 Delete the character behind cursor
 ...
You’ll probably want to redirect the output of those bindkey commands into a file — or pipe it to a
 pager such as less (Section 12.3) that lets you page
 through and do searches. (You could probably merge the output of bindkey and bindkey
 -l into one list with perl
 (Section 41.1) or awk (Section
 20.10) and an associative array, but I haven’t tried.)
To bind a key to an editor function,
 use bindkey with two arguments: the key
 to bind and the function name. The key can be the literal key you want to
 type, but that can be messy when you’re trying to put the definition in a
 shell setup file (which traditionally doesn’t have nonprintable characters
 in it) or when you’re trying to bind an arrow key or some other key. So you
 can represent a control character with two characters: a literal caret
 (^) followed by the letter — for
 example, ^A. You can use standard
 backslash escape sequences, such as \t
 for a TAB character, but remember to quote
 (Section 27.13) special
 characters. And the special option -k lets you name an
 arrow key: for instance, bindkey -k left
 for
 the left arrow.
Here’s an example of one of my favorite tcsh editor functions: magic-space
 . By default, it isn’t bound to
 a key, but it’s meant to be bound to the space key. The function expands any
 history substitutions (Section 30.8) in the command line,
 then lets you continue editing. In this example, I start by executing an
 ls command. Then I bind the space
 key. After that, I start a new command line. I type find and a space, but nothing happens yet because there are
 no history references. Then I type !ls:$,
 which is the history substitution for the last argument of the previous
 ls command; when I press the space
 key, that argument is expanded to /usr/local/bin, and I
 can type the rest of the command line:
tcsh> ls /usr/local/bin
acroread netscape rsh-add ssh
ex nex rsh-agent ssh-add
lcdctl nsgmls rsh-askpass ssh-add1
 ...
tcsh> bindkey " " magic-space
tcsh> find !ls:$ SPACE
tcsh> find /usr/local/bin -perm ...
You also can bind a key to a Unix command by using
 bindkey with its -c
 option. This is different from simply executing a
 command at a shell prompt. When a Unix command is bound to a key, the shell
 will run that command without disturbing the command line you’re editing!
 When the bound command finishes running, the command line you were editing
 is redisplayed as it was. For example, the binding below makes CTRL-x l run the command ls -lt | less:
bindkey -c ^Xl 'ls -lt | less'
There’s much, much more. The tcsh(1)
 manpage is too brief to teach this well (for me, at least). I recommend the
 O’Reilly book Using csh & tcsh; it doesn’t cover
 all of the newest tcsh, but it does a
 complete job on the

 command-line editor.

ksh Editing

 This section covers the public domain Korn shell, pdksh. The original Korn shell is
 similar.
The bind

 command binds keys to built-in Emacs
 editor functions. (You can’t re-bind in vi mode.) With no arguments, it gives a list of all key
 bindings, like this:
$ bind
^A = beginning-of-line
^B = backward-char
 ...
^[b = backward-word
^[c = capitalize-word
 ...
^XC = forward-char
^XD = backward-char
In that list, ^ (caret) starts control
 characters, so ^A means CTRL-a. And
 ^[is an escape character (which is
 also generated when you press a function key, like F1 or up-arrow, on most
 keyboards) — so ^[b is the sequence
 ESC b.
There’s a complete list of editor functions in the ksh manual page. You can also get a list from
 the command bind

 -l (lowercase letter L):
$ bind -l
abort
beginning-of-history
complete-command
 ...
To bind a key to an editor function, use bind with the string to bind, an equal sign (=), then the binding. The key can be the
 literal key you want to type, but that can be messy when you’re trying to
 put the definition in a shell setup file (which traditionally doesn’t have
 nonprintable characters in it) or when you’re trying to bind an arrow key or
 some other key. So you can represent a control character with two
 characters: a literal caret (^) followed
 by the letter — for example, ^A. The
 other special prefix supported is the two-character sequence ^[(caret left-square-bracket), which stands
 for the ESC or Meta key. And remember to quote (Section
 27.12) any special characters. So, if you want to make CTRL-r be
 the traditional Unix rprnt (Section 28.2) operation (to reprint
 the command line), and make META-r search the history (which is bound to
 CTRL-r by default in pdksh), you could
 use these two bindings:
bind '^R'=redraw
bind '^[r'=search-history

bash Editing

 The most permanent place to customize
 bash editing is in the
 Readline inputrc file. But you also can add temporary bindings from
 the command line with the bind command.
 These bindings work only in the current shell, until the shell exits. The
 bind syntax is the same as the
 inputrc file, but you have to put
 quotes (Section 27.12) around the whole
 binding — so watch out for quoting conflicts. For example, to make CTRL-o
 output a redirection (Section 43.1) command and
 pathname:
bash$ bind 'Control-o: ">> /usr/local/project/log"'
To get a list of all key bindings, use bind -P in Version 2 or bind -v in original bash. In the next example, for instance, you
 can see that CTRL-m (the ENTER key) and CTRL-j (the LINEFEED key) both
 accept the command line. Quite a few characters (CTRL-a, CTRL-b, etc.)
 simply insert themselves into the command line when you type them. If you
 need a literal control character, you may be able to type CTRL-v and then
 the character.
less
 Section 12.3
bash$ bind -P | less
abort is not bound to any keys
accept-line can be found on "\C-j", "\C-m".
 ...
backward-delete-char can be found on "\C-h", "\C-?".
 ...
self-insert can be found on "\C-a", "\C-b", "\C-c", "\C-e", "\C-f", ...
There are two bind options good for use
 with inputrc type files. To write all
 the current key bindings out to a file named inputrc.new, type bind -p >
 inputrc.new in bash2; use
 the -d option in original bash. (You can overwrite your default .inputrc file this way, too, if you want.) To
 read an inputrc file into the current
 shell (if you’ve just edited it, for instance), use bind -f and give the filename as an
 argument.
Finally, the bind option
 -m
 keymap chooses the keymap that subsequent bindings
 apply to. The keymap names that bash2
 understands are emacs,
 emacs-standard, emacs-meta,
 emacs-ctlx, vi,
 vi-move, vi-command, and
 vi-insert. (vi is the same as
 vi-command, and emacs is the
 same as emacs-standard.)

zsh Editing

 zsh, as you migh expect by now, has a
 wide variety of command-line editing capabilities, many similar to or the
 same as those found in ksh,
 tcsh, or bash. Emacs mode is the default, but vi mode may also be
 chosen, and all of the key commands found in either mode may
 be bound to any character you like using the bindkey

 -v command. See the zshzle manual
 page for a long list of these commands and their default

 bindings.
—JP and SJC

Changing History Characters with histchars

The

 existence
 of special characters (particularly !) can be
 a pain; you may often need to type commands that have exclamation points in
 them, and occasionally need commands with carets (^). These get the C shell confused unless you “quote” them
 properly. If you use these special characters often, you can choose different
 ones by setting the histchars variable.
 histchars is a two-character string; the first
 character replaces the exclamation point (the “history” character), and the
 second character replaces the caret (the “modification”
 character (Section
 30.5)). For example:
% set histchars='@#'
% ls file*
file1 file2 file3
% @@
 Repeat previous command (was
 !!
)
ls file*
file1 file2 file3
% #file#data#
 Edit previous command (was
 ^file^data^
)
ls data*
data4 data5

 zsh’s histchars is like
 the csh and tcsh version, but it has three characters. The third is the
 comment character — by default, #.
An obvious point: you can set histchars to any characters
 you like (provided they are different!), but it’s a good idea to choose
 characters that you aren’t likely to use often on command lines. Two good
 choices might be # (hash mark) and ,
 (comma).[2]
— ML

Instead of Changing History Characters

If you need to use ! (or your current
 history character) for a command (for example, if you still use uucp or send mail to someone who does, using the
 command-line mail (
 Section 1.21) command), you can type a
 backslash (\) before each history character.
 You can also drop into the Bourne or Korn shell quickly — assuming that you
 aren’t on a system that has replaced the real Bourne shell with a shell like
 bash that has history substitution built
 in. (If you’re stuck, you can use the command set
 +H

 in bash;
 this disables history substitution.) Either of these are probably easier than
 changing histchars. For example:
% mail ora\!ishtar\!sally < file1
 Quote the !s
% sh
 Start the Bourne shell
$ mail ora!ishtar!sally < file1
 ! not special here
$ exit
 Quit the Bourne shell
% And back to the C shell
The original Bourne shell doesn’t have any kind of history substitution, so
 ! doesn’t mean anything special; it’s
 just a regular character.
By the way, if you have a window system, you can probably copy and paste the command line (Section 28.10) instead of using

 shell history.
— ML

[1]
 xterm -ls
 Section 5.10 runs a login
 shell in your xterm
 window.

[2] In the C shell and tcsh, # is a comment
 character (Section
 35.1) only in noninteractive shells. Using it as a history
 character doesn’t conflict because history isn’t enabled in
 noninteractive shells.

Chapter 31. Moving Around in a Hurry

Getting Around the Filesystem

Summary Box

 How
 quickly can you move around the Unix filesystem? Can you locate any file or
 directory on your filesystem with both its absolute and relative pathnames?
 How can symbolic links help you and hurt you?
A lot of Unix users don’t realize how much they’ll be helped by completely
 understanding a few filesystem basics. Here are some of the most important
 concepts and tricks to know:
	Using relative and absolute pathnames: Section 31.2.

	What good is a current directory? Section 31.3.

	Saving time and typing when changing directories with
 cdpath: Section 31.5.

	Directory stacks keep a list of directories you’re using and let
 you get to them quickly: Section
 31.7, Section
 31.8.

	Quick cd aliases: Section 31.9.

	Using variables and a tilde (~)
 to help you find directories and files: Section 31.11.

	A mark alias to mark directory
 for cd‘ing back: Section 31.12.

	Automatic setup for entering and exiting a directory: Section 31.13.

— JP

Using Relative and Absolute Pathnames

 Everything in the Unix filesystem —
 files, directories, devices, named pipes, and so on — has two pathnames:
 absolute and relative. If you know how to find those names, you’ll know the best
 way to locate the file (or whatever) and use it. Even though pathnames are
 amazingly simple, they’re one of the biggest problems beginners have. Studying
 this article carefully can save you a lot of time and frustration. See Figure 31-1 for an illustration of the
 Unix filesystem.
[image: A Unix filesystem tree]

Figure 31-1. A Unix filesystem tree

Table 31-1 describes the two kinds
 of pathnames.
Table 31-1. Absolute and relative pathnames
	
 Absolute pathnames

 	
 Relative pathnames

	
 Start at the root directory.

 	
 Start at your current
 directory (Section 1.16).

	
 Always start with a slash (/).

 	
 Never start with a slash.

	
 The absolute pathname to some object (file, etc.) is
 always the same.

 	
 The relative pathname to an object depends on your current
 directory.

To make an absolute pathname:
	Start
 at the root directory (/) and work
 down.

	Put a slash (/) after every
 directory name — though if the path ends at a directory, the slash after
 the last name is optional.

For example, to get a listing of the directory highlighted in Figure 31-1, no matter what your current
 directory is, you’d use an absolute pathname like this:
% ls /home/jane/data
Sub a b c
To make a relative
 pathname:
	Start at your current directory.

	As you move down the tree, away from root, add subdirectory
 names.

	As you move up the tree toward root, add .. (two dots) for each directory.

	Put a slash (/) after every directory name — though if the path is to
 a directory, the slash after the last name is optional, as it is with
 absolute pathnames.

For example, if your current directory is the one shown in Figure 31-1, to get a listing of the
 Sub subdirectory, use a relative
 pathname:
% ls Sub
d e f
Without changing your current directory, you can use a relative pathname to
 read the file d in the Sub subdirectory:
% cat Sub/d
To change the current directory to Jim’s home directory, you could use a
 relative pathname to it:
% cd ../../jim
Using the absolute pathname, /home/jim,
 might be easier there.
The symbolic link (Section 10.4) adds a twist to pathnames.
 What two absolute pathnames would read the file that the symlink points to? The
 answer: /home/jane/.setup or /work/setups/generic. (The second pathname points
 directly to the file, so it’s a little more efficient.) If your current
 directory was the one shown in Figure
 31-1, what would be the easiest way to read that file with the
 more pager? It’s probably through the
 symlink:
% more ../.setup
Remember, when you need to use something in the filesystem, you don’t always
 need to use cd first. Think about using a
 relative or absolute pathname with the command; that’ll almost always work. If
 you get an error message, check your pathname carefully; that’s usually the
 problem.
— JP

What Good Is a Current Directory?

 People who think the cd command is all they need to know about current directories
 should read this article! Understanding how Unix uses the current directory can
 save you work.
Each Unix process has its own current directory. For instance, your shell has
 a current directory. So do vi, ls, sed, and
 every other Unix process. When your shell starts a process running, that child
 process starts with the same current directory as its parent. So how does
 ls know which directory to list? It uses
 the current directory it inherited from its parent process, the shell:
% ls
 ...Listing of ls's current directory appears,
 which is the same current directory as the shell.
Each process can change its current directory and that won’t change the
 current directory of other processes that are already running. So:
	Your shell script (which runs in a separate process) can cd to another directory without affecting
 the shell that started it. (So, the script doesn’t need to cd back to the directory where it started
 before it exits.)

	If you have more than one window or login session to the same
 computer, they probably run separate processes. So, they have
 independent current directories.

	When you use a subshell (Section 43.7, Section 24.4) or a shell escape,
 you can cd anywhere you want. After
 you exit that shell, the parent shell’s current directory won’t have
 changed. For example, if you want to run a command in another directory
 without cding there first (and having
 to cd back), do it in a
 subshell:
% pwd
/foo/bar
% (cd
 baz; somecommand
 > somefile)
% pwd
/foo/bar

When you really get down to it, what good is a current directory? Here it is:
 relative pathnames start at the current
 directory. Having a current directory means you can refer to a file by its
 relative pathname, like afile. Programs
 like ls access the current directory through
 its relative pathname . (dot) (
 Section 1.16). Without a current
 directory and relative pathnames, you’d always have to use absolute pathnames (Section
 31.2) like /usr/joe/projects/alpha/afile.
— JP

How Does Unix Find Your Current Directory?

[

 This
 article is about the standard Unix pwd
 command, an external (Section 1.9) command that isn’t built
 into your shell. (The external pwd is usually
 stored at /bin/pwd.) Most shells have an
 internal version of pwd that “keeps track” of
 you as you change your current directory; it doesn’t have to search the
 filesystem to find the current directory name. This article describes how the
 external version finds the pathname of its current directory. This isn’t just
 academic stuff: seeing how pwd finds its
 current directory should help you understand how the filesystem is put together.
 — JP]
A command like pwd inherits the current directory of the process that started it
 (usually a shell). It could be started from anywhere. How does pwd find out where it is in the filesystem? See
 Figure 31-2 for a picture of the
 current directory /usr/joe and its parent
 directories. The current directory doesn’t contain its own name, so that doesn’t
 help pwd. But it has an entry named . (dot),
 which gives the i-number of the directory
 (Section 10.2).
[image: Finding the current directory name]

Figure 31-2. Finding the current directory name

The current directory has i-number 234. Next, pwd asks Unix to open the parent directory file, the directory
 one level up, through the relative pathname (..). It’s looking for the name that goes with i-number 234. Aha:
 the current directory is named joe, so the
 end of the pathname must be joe.
Next step: pwd looks at the . entry in the directory one level up to get its
 i-number, 14. As always, the name of the one-level-up directory is in its parent
 (.., i-number 12). To get its name,
 pwd opens the directory two levels up and
 looks for i-number 14, usr. Now pwd has the pathname usr/joe.
Same steps: look in the parent, i-number 12. What’s its name? Hmmm. The
 i-number of its parent, 12, is the same as its own — and there’s only one
 directory on the filesystem like this: the root directory (/). So pwd adds
 a slash to the start of the pathname and it’s done: /usr/joe.
This explanation is really missing one or two parts: filesystems can be
 mounted on other filesystems, or they can be mounted across the network from
 other hosts. So at each step, pwd also needs
 to check the device that the current directory is mounted on. If you’re curious,
 see the stat(2) manual page or check a Unix internals book.
 Also see the last few paragraphs of Section
 10.4 for more about the links between directories.
— JP

Saving Time When You Change Directories: cdpath

 Some people make a shell alias (Section 29.2)
 for directories they cd to often. Other
 people set shell variables (Section 35.9) to hold the pathnames of
 directories they don’t want to retype. But both of those methods make you
 remember directory abbreviations — and make you put new aliases or shell
 variables in your shell startup files (Section 3.3) each time you want to add or
 change one. There’s another way: the C shell’s cdpath

 shell
 variable and the CDPATH

 variable in
 ksh, bash, and some versions of sh.
 (zsh understands both
 cdpath and CDPATH.) I’ll use the
 term “cdpath” to talk about all shells.
When you type the command cd
 foo, the shell first tries to go to the exact
 pathname foo. If that doesn’t work, and if
 foo is a relative pathname, the shell tries the
 same command from every directory listed in the cdpath. (If
 you use ksh or sh, see the note at the end of this article.)
Let’s say that your home directory is /home/lisa and your current directory is somewhere else. Let’s
 also say that your cdpath has the directories /home/lisa, /home/lisa/projects, and /books/troff. If your cd
 foo command doesn’t work in your current directory,
 your shell will try cd /home/lisa/
 foo, cd
 /home/lisa/projects/
 foo, and cd
 /books/troff/
 foo, in that order. If the shell finds one, it shows
 the pathname:
% cd foo
/home/lisa/foo
%
If there is more than one matching directory, the shell uses the first match;
 if this isn’t what you wanted, you can change the order of the directories in
 the cdpath.
Some Bourne shells don’t show the directory name. All shells print an error,
 though, if they can’t find any foo directory.
So, set your cdpath to a list of the parent directories
 that contain directories you might want to cd
 to. Don’t list the exact directories — list the parent
 directories
 (Section
 1.16). This list goes in your .tcshrc, .cshrc, or
 .profile file. For example,
 lisa’s .tcshrc
 could have:
~
 Section 31.11
set cdpath=(~ ~/projects /books/troff)
A Bourne shell user would have this in his .profile

 file:
CDPATH=:$HOME:$HOME/projects:/books/troff
export CDPATH
A bash user might have it in her .bashrc

 or
 .bash_profile.
(If your system doesn’t define $HOME, try
 $LOGDIR.)
Note
Note that the Bourne shell CDPATH in the above
 example starts with a colon (:) — which, as in the PATH
 variable, is actually an empty entry (Section 35.6) that stands for “the
 current directory.” Both the sh and
 ksh I tested required that. Without
 an empty entry, neither sh or ksh would cd into the current directory! (bash seemed to work like csh, though.) You could actually call this a feature. If
 there’s no empty entry in CDPATH, a user has to use
 cd
 ./subdirname to go to a subdirectory of the
 current directory.

—JP and SJC

Loop Control: break and continue

 Normally a for
 loop (Section 35.21)
 iterates until it has processed all its word arguments. while and until loops (Section 35.15) iterate until the loop control command returns a
 certain status. But sometimes — for instance, if there’s an error — you want a
 loop to immediately terminate or jump to the next iteration. That’s where you
 use break

 and continue, respectively.
break terminates the loop and takes control
 to the line after done. continue skips the rest of the commands in the
 loop body and starts the next iteration. Here’s an example of both. An outer
 loop is stepping through a list of directories. If we can’t cd to one of them, we’ll abort the loop with
 break. The inner loop steps through all
 entries in the directory. If one of the entries isn’t a file or isn’t readable,
 we skip it and try the next one.
'...'
 Section 28.14, ||
 Section 35.14, *
 Section 1.13, test
 Section 35.26
for dir in `find $HOME/projdir -type d -print`
do
 cd "$dir" || break
 echo "Processing $dir"
 for file in *
 do
 test -f "$file" -a -r "$file" || continue
 ...process $dir/$file...
 done
done
With nested loops (like the file
 loop above), which loop is broken or continued? It’s the loop being processed at
 that time. So, the continue here restarts the
 inner (file) loop. The break terminates the
 outer (directory) loop — which means the inner loop is also terminated. Note
 also that the -print argument to find is often redundant in the absence of another expression,
 depending on your version of find.
Here we’ve used break and continue within for loops, after the shell’s || operator. But you can use them anywhere within the body of any
 loop — in an if statement within a while loop, for instance.
— JP

The Shells’ pushd and popd Commands

How

 often do you need to move to
 some other directory temporarily,
 look at some file, and then move back to the directory where you started? If
 you’re like most users, you do this all the time. Most shells have pushd and popd
 commands to make this a lot easier. (If you use the original ksh
 , Learning the Korn Shell,
 by Bill Rosenblatt and Arnold Robbins and also published by
 O’Reilly, shows you shell functions that do the same
 thing.)

 These
 commands implement a “directory stack.” The classical analogy for a stack is one
 of those spring-loaded plate stackers in a school (or corporate) cafeteria. The
 last plate put (“pushed”) onto the stack is the first plate taken (“popped”)
 from the stack. It’s just the same with directories: each time you use pushd, the shell adds your current directory to
 the stack and moves you to the new directory. When you use popd, the shell takes the top directory off the
 stack and moves you to the directory underneath.[1]
You may as well learn about pushd the way I
 did: by watching. Let’s say that I’m in the directory ~/power, working on this book. I want to change to my Mail directory briefly, to look at some old
 correspondence. Let’s see how. (Note that if you have a cdpath (Section 31.5)
 that includes your home directory, ~ or
 $HOME, you won’t need to type the
 ~/ with arguments to pushd. In other words, pushd looks at your cdpath.)
los% pushd ~/Mail
 current directory becomes ~/Mail
~/Mail ~/power
pushd prints the entire stack, giving me
 some confirmation about where I am and where I can go. When I’m done reading the
 old mail, I want to move back:
los% popd
 current directory becomes ~/power
~/power
We’re back where we started; the Mail
 directory is no longer on the stack.
What if you want to move back and forth repeatedly? pushd, with no arguments, just switches the two top directories
 on the stack, like this:
los% pwd
 current directory is ~/power
/home/los/mikel/power
los% pushd ~/Mail
 current directory becomes ~/Mail
~/Mail ~/power
los% pushd
 current directory becomes ~/power
~/power ~/Mail
los% pushd
 current directory becomes ~/Mail
~/Mail ~/power
And so on.
If you like, you can let your directory stack get really long. In this case,
 two special commands are useful. popd +n deletes the
 n entry in the stack. Entries are counted “down”
 from the top, starting with zero; that is, your current directory is 0. So
 popd +0 and popd are
 the same. If n is greater than 0, your current
 directory does not change. This may seem surprising, but it isn’t; after all,
 you haven’t changed the top of the stack.
The command pushd +n “rotates” the stack, so that the
 nth directory moves to the top, becoming the
 current directory. Note that this is a “rotation”: the whole stack moves. I
 don’t find the +n commands too useful, but you should know
 about them.
The dirs
 command prints the directory stack. It’s a good way to find out where you are.
 (Some people like to put the dirs command in their
 prompt (Section 4.14),
 but I personally find incredibly long prompts more annoying than helpful.) If
 you’d like a numbered list of the directories on the stack, most shells support
 dirs -v.
The one drawback to pushd and popd is that you can easily build up a gigantic
 directory stack full of useless directories. I suppose this doesn’t really hurt
 anything, but it’s needless clutter. One way to clear the stack is to popd

 repeatedly. More to the point, the
 directories you’re most likely to want are at the top of the stack. With seven
 directories in the stack, you could conceivably do something like this to get
 rid of the bottom two elements:
% pushd +5 ; popd ; popd
The pushd moves the bottom two elements of
 a seven-directory stack to the top. A bit inconvenient.
The zsh
 commands cd +n
 and cd -n move a
 directory to the top of the stack and change to the “popped” directory. The
 + counts from the top (left end) of the
 stack (starting with zero), and - counts from the bottom. As you do this,
 remember that in zsh terminology, the current
 directory is not on the stack; it’s separate from the
 stack. As the previous footnote explains, this different interpretation of the
 stack takes some getting used to. Also see the zshbuiltins(1) manual page. Whew.
If the stack gets too messy, here’s an easy way to start over: In bash Version 2 and in tcsh, the command dirs -c

 clears the stack. In csh, you can use the
 built-in repeat
 command to clear the stack. For example, if
 the stack has seven directories, type:
% repeat 6 popd
—ML and JP

Nice Aliases for pushd

 The pushd
 command (Section 31.7)
 is nice for jumping around the filesystem, but some of the commands you might
 type a lot, like pushd +4, are sort of a pain
 to type. I saw these aliases (Section 29.2) in Daniel Gilly’s setup
 file. They looked so handy that I decided to steal them for this book. There are
 C shell versions in the first column and Bourne-type in the second:
alias pd pushd alias pd=pushd
alias pd2 'pushd +2' alias pd2='pushd +2'
alias pd3 'pushd +3' alias pd3='pushd +3'
alias pd4 'pushd +4' alias pd4='pushd +4'
 ...
So, for example, to swap the fourth
 directory on the stack, just type pd4.

— JP

Quick cds with Aliases

 If you do
 a lot of work in some particular directories, it can be handy to make aliases (Section
 29.2) that take you to each directory quickly. For example, this Korn
 shell alias lets you type pwr to change to
 the /books/troff/pwrtools directory:
alias pwr='cd /books/troff/pwrtools'
(If your shell doesn’t have aliases, you can use a shell
 function (Section
 29.11). A shell script (Section 1.8) won’t work, though, because
 it runs in a subshell (Section 24.4).)
When you pick the alias names, it’s a good idea not to conflict with command
 names that are already on the system. Section 35.27 shows how to pick a new name.
If you have a lot of these directory-changing aliases, you might want to put
 them in a separate file named something like .cd_aliases. Then add these lines to your shell setup file (Section
 3.3), like this C shell example for your .cshrc
 :
source
 Section 35.29, ~
 Section 31.11
alias setcds source ~/.cd_aliases
setcds
That reads your aliases into each shell. If you edit the .cd_aliases file, you can read the new file into
 your shell by typing setcds from any
 directory.
Finally, if you’re in a group of people who all work on the same directories,
 you could make a central alias file that everyone reads from their shell setup
 files as they log in. Just adapt the example above.
— JP

cd by Directory Initials

Here’s

 a handy shell function called
 c for people who cd
 all over the filesystem. (I first saw Marc Brumlik’s posting of it on Usenet
 years ago, as a C shell alias. He and I have both made some changes to it since
 then.) This function is great for shells that don’t have filename completion (Section
 28.6). This function works a bit like filename completion, but it’s
 faster because the “initials” match only directories and you don’t have to press
 TAB or ESC after each part of the pathname. Instead, you just type the initials
 (first letter or more) of each directory in the pathname. Start at the root
 directory. Put a dot (.) after each part.
Here are three examples. The first one shows that there’s no subdirectory of
 root whose name starts with q. The second
 one matches the directory /usr/include/hsfs
 and cds there:
$ c q.
c: no match for /q*/.
$ c u.i.h.
/usr/include/hsfs/.
$
In the next example, trying to change to /usr/include/pascal the abbreviations aren’t unique the first
 time. The function shows me all the matches; the second time, I add another
 letter (“a”) to make the name unique:
$ c u.i.p.
c: too many matches for u.i.p.:
/usr/include/pascal/. /usr/include/pixrect/. /usr/include/protocols/.
$ c u.i.pa.
/usr/include/pascal/.
$
[image:] Go to http://examples.oreilly.com/upt3 for more information on: c.csh,
 c.sh
The Bourne shell function is straightforward; it’s shown below.[2] The C shell alias needs some trickery, and there are two versions of
 it: one if you already have an alias for cd
 and another if you don’t. (The C shell if
 used in the c alias won’t work with a cd alias. Although the csh manual page admits it won’t work, I’d call that another C
 shell bug.)
set
 Section 35.25, $#
 Section 35.20
function c()
{
 dir="$1"

 # Delete dots. Surround every letter with "/" and "*".
 # Add a final "/." to be sure this only matches a directory:
 dirpat="`echo $dir | sed 's/\([^.]*\)\./\/\1*/g'`/."

 # In case $dirpat is empty, set dummy "x" then shift it away:
 set x $dirpat; shift

 # Do the cd if we got one match, else print error:
 if ["$1" = "$dirpat"]; then
 # pattern didn't match (shell didn't expand it)
 echo "c: no match for $dirpat" 1>&2
 elif [$# = 1]; then
 echo "$1"
 cd "$1"
 else
 echo "c: too many matches for $dir:" 1>&2
 ls -d "$@"
 fi

 unset dir dirpat
}
The function starts by building a wildcard pattern to match the directory
 initials. For example, if you type c u.i.h.,
 sed makes the pattern /u*/i*/h*/. in $dirpat. Next, the shell expands the wildcards onto its
 command-line parameters; the trailing dot makes sure the pattern matches only a
 directory. If the Bourne shell can’t match a wildcard pattern, it leaves the
 pattern unchanged; the first if test spots
 that. If there was just one match, there will be one command-line parameter
 left, and the shell cds there. Otherwise,
 there were too many matches; the function shows them so you can make your
 pattern longer and more specific.
— JP

Finding (Anyone’s) Home Directory, Quickly

 Most shells have a shortcut for the pathname to
 your home directory: a tilde (~), often
 called “twiddle” by Unix-heads. You can use ~
 in a pathname to the home directory from wherever you are. For example, from any
 directory, you can list your home directory or edit your .cshrc file in it by typing:
% ls ~
 ...
% vi ~/.cshrc

 If you’re
 using a very old Bourne shell, one that does not support the tilde convention,
 try the $HOME or $LOGDIR variables instead.
You could change your current directory to your home directory by typing
 cd ~ or cd
 $HOME, but all shells have a shorter shortcut: typing plain
 cd with no argument also takes you
 home.
If your shell understands the tilde, it should also have an abbreviation for
 other users’ home directories: a tilde with the username on the end. For
 example, the home directory for mandi, which might really
 be /remote/users/m/a/mandi, could be
 abbreviated ~mandi. On your account, if Mandi told you to
 copy the file named menu.c from her
 src directory, you could type:
% cp ~mandi/src/menu.c .

 Don’t confuse this with filenames like report~. Some programs, like the GNU Emacs (Section
 19.4) editor and vi, may create
 temporary filenames that end with a ~
 (tilde).

 Your version of the Bourne shell might
 also emulate the special “directory” /u — if your system
 administrator hasn’t already set up /u, that is. It’s a
 directory full of symbolic links (Section 10.4) to users’ home
 directories. For instance, /u/jane could be
 a link to /home/users/jane. Many systems
 are now using /home for home directories,
 in favor of the old /usr/users or /u conventions. Darwin uses /Users/username (note the uppercase
 U!), but the tilde works the same there, too.
If all else fails, here’s a trick that’s probably too ugly to type a lot, but
 it’s useful in Bourne shell scripts, where you don’t want to "hardcode” users’ home directory
 pathnames. This command calls the C shell to put mandi’s
 home directory pathname into $dir:
username=mandi
dir=`csh -fc "echo ~$username"`
In fact, using echo (Section 27.5) yourself is a good way to
 see how ~ works. Try echo ~, echo ~/xyz, echo ~xyz, and so on. Note that different shells
 do different things when ~
 user doesn’t match any user: some print an error,
 others return the unmatched string.
— JP

Marking Your Place with a Shell Variable

The

 following alias
 stores the current directory name in a variable:
alias mark 'set \!:1=$cwd'
so as to use a feature of the C shell:
% mark
 here
 ...
% cd
 here
One need not even type $
 here. If a directory does not exist, csh tries searching its cdpath (Section 31.5),
 then tries to evaluate the name as a variable.
(I generally use pushd and popd (Section 31.7) to store directory names;
 mark is more useful with commands that need to look in
 two different paths, and in that case $
 here is necessary anyway. Ah well.)
[In bash and zsh, you can do this by setting cdable_vars

 . In
 your shell setup file (Section 3.3), use cdable_vars=1 for bash or setopt cdable_vars or
 setopt
 -T for zsh. — JP]
— CT

Automatic Setup When You Enter/Exit a Directory

 If you work in a lot of different directories,
 here’s a way to make the shell do automatic setup when you enter a directory or
 do cleanup as you leave. We’ve broken it onto two lines for printing; enter it
 as one line. On bash, make a shell function
 instead.
[image:] Go to http://examples.oreilly.com/upt3 for more information on: csh_init,
 sh_init
alias cd 'if (-o .exit.csh) source .exit.csh; chdir \!*;
 if (-o .enter.csh) source .enter.csh'

function cd() {
 test -r .exit.sh && . .exit.sh
 builtin cd "$1" # builtin is a bash command
 test -r .enter.sh && . .enter.sh
}

 Then create .enter.csh and/or .exit.csh
 files in the directories where you want a custom setup. Bourne-type shell users,
 make .enter.sh and/or .exit.sh files instead. When you cd to a new directory, an .exit file is sourced (Section
 35.29) into your current shell before you leave the old directory. As
 you enter the new directory, a .enter file
 will be read if it exists. If you use pushd and
 popd (Section 31.7),
 you’ll probably want to make the same kind of aliases or functions for
 them.
The C shell alias tests to be sure you own the files; this helps to stop other
 users from leaving surprises for you! But if lots of users will be sharing the
 directory, they may all want to share the same files — in that case, replace the
 -o tests with -r (true if the file is
 readable).
Here’s a sample .enter.csh file:
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 .enter.csh, .enter.sh
Save previous umask; reset in .exit.csh:
set prevumask=`umask`

Let everyone in the group edit my files here:
umask 002
echo ".enter.csh: setting umask to 002"
Prompt (with blank line before) to keep me awake:
set prompt="\
$cwd - PROJECT DEVELOPMENT DIRECTORY. EDIT CAREFULLY...\
% "
Here’s the .exit.csh to go with
 it:
[image:] Go to http://examples.oreilly.com/upt3 for more information on: .exit.csh,
 .exit.sh
setprompt
 Section 4.7
.enter.csh file may put old umask in shell variable:
if ($?prevumask) then
 umask $prevumask
 echo ".exit.csh: setting umask to $prevumask"
 unset prevumask
endif
Reminder to come back here if need to:
echo "If you didn't check in the RCS files, type 'cd $cwd'."
Set generic prompt (setprompt alias comes from .cshrc file):
setprompt
Note

 The
 umask set in the .enter file for some directory will also set the permissions
 for files you create in other directories with commands that use pathnames —
 like vi
 /
 somedir
 /
 somefile.

Can more than one of your directories use the same .enter or .exit file?

 If they can, you’ll save disk space and
 redundant editing, as well as the risk of the files getting out of sync, by
 making hard links (Section 10.4) between the files. If the
 directories are on different filesystems, you’ll have to use a symbolic link (Section 10.4) — though that probably won’t save much disk space. If
 you link the files, you should probably add a comment that reminds you of the
 links when you make your next edit. When your .enter files get really long, you might be able to put a command
 like this in them:
source
 Section 35.29
source ~/.global_enter
where the .global_enter file in your home
 directory has a procedure that you want to run from a lot of your .enter files. (Same goes for .exit, of course.)
One last idea: if a lot of users share the same directory, they can make files
 with names like .enter.joanne, .exit.allan, and so on. Your aliases can test for
 a file named .enter.$user.

[1] Some people — the zsh maintainers,
 for instance — think of this with a different model. In this other
 model, the current directory isn’t at the top of the stack: it’s
 separate from the stack. The stack is just a list of “remembered”
 directories. So when you use pushd,
 that first puts the current directory onto the top of the stack, then
 cds to the directory given. And,
 when you use popd, the top of the
 stack is popped off to become the new current directory. Maybe you’d
 like to keep both of the models in mind as you read and experiment with
 directory stacks — and then decide which seems clearer to you.

[2] You may need to remove the function
 keyword in older Bourne shells, but it is required for bash.

Chapter 32. Regular Expressions (Pattern Matching)

That’s an Expression

When my
 young daughter is struggling to understand the meaning of an idiomatic
 expression, such as, “Someone let the cat out of the bag,” before I tell her
 what it means, I have to tell her that it’s an
 expression, that she’s not to interpret it literally. (As a
 consequence, she also uses “That’s just an expression” to qualify her own
 remarks, especially when she is unsure about what she has just said.)
An expression, even in computer terminology, is not something to be
 interpreted literally. It is something that needs to be evaluated.
Many Unix programs use a special “regular expression syntax” for specifying
 what you could think of as “wildcard searches” through files. Regular
 expressions describe
 patterns, or sequences of
 characters, without necessarily specifying the characters literally. You’ll also
 hear this process referred to as "
 pattern matching.”
In this chapter, we depart a bit from the usual “tips and tricks” style of the
 book to provide an extended tutorial about regular expressions that starts in
 Section 32.4. We did this because
 regular expressions are so important to many of the tips and tricks elsewhere in
 the book, and we wanted to make sure that they are covered thoroughly.
This tutorial article is accompanied by a few snippets of advice (Section 32.16 and Section 32.18) and a few tools that
 help you see what your expressions are matching (Section 32.17). There’s also a quick
 reference (Section 32.21) for those
 of you who just need a refresher.
For tips, tricks, and tools that rely on an understanding of regular
 expression syntax, you have only to look at:
	Chapter 13

	Chapter 17

	Chapter 20

	Chapter 34

	Chapter 41

O’Reilly’s Mastering Regular Expressions, by Jeffrey
 Friedl, is a gold mine of examples and specifics.
—DD and TOR

Don’t Confuse Regular Expressions with Wildcards

 Before we even start talking about regular
 expressions, a word of caution for beginners: regular expressions can be
 confusing because they look a lot like the file-matching patterns (“wildcards”)
 the shell uses. Both the shell and
 programs that use regular expressions have special meanings for the asterisk
 (*), question mark (?), parentheses ((
)), square brackets ([]), and
 vertical bar (|, the “pipe”).
Some of these characters even act the same way — almost.
Just remember, the
 shells, find, and some others generally use filename-matching patterns and not regular
 expressions.[1]
You also
 have to remember that shell
 wildcards are expanded before the shell
 passes the arguments to the program. To prevent this expansion, the special
 characters in a regular expression must be quoted (Section
 27.12) when passed as an argument from the shell.
The command:
$ grep [A-Z]*.c chap[12]
could, for example, be interpreted by the shell as:
grep Array.c Bug.c Comp.c chap1 chap2
and so grep would then try to find the
 pattern “Array.c” in files Bug.c, Comp.c, chap1, and chap2.
The simplest solution in most cases is to surround the regular expression with
 single quotes ('). Another is to use the echo
 command to echo
 your command line to see how the shell will interpret the special
 characters.
—BB and DG, TOR

Understanding Expressions

 You are probably familiar with the kinds of
 expressions that a calculator interprets. Look at the following arithmetic expression:
2 + 4
“Two plus four” consists of several constants or literal values and an
 operator. A calculator program must
 recognize, for instance, that 2 is a numeric constant and that the plus sign
 represents an operator, not to be interpreted as the + character.
An expression tells the computer how to produce a result. Although it is the
 sum of “two plus four” that we really want, we don’t simply tell the computer to
 return a six. We instruct the computer to evaluate the expression and return a
 value.
An expression can be more complicated than 2+4; in fact, it might consist of
 multiple simple expressions, such as the following:
2 + 3 * 4
A
 calculator normally evaluates an expression from left to right. However, certain
 operators have precedence over others: that is, they will be
 performed first. Thus, the above expression evaluates to 14 and not 20 because
 multiplication takes precedence over addition. Precedence can be overridden by
 placing the simple expression in parentheses. Thus, (2+3)*4 or “the sum of
 two plus three times four” evaluates to 20. The parentheses are symbols that
 instruct the calculator to change the order in which the expression is
 evaluated.
A regular expression, by contrast, is descriptive of a pattern or sequence of
 characters. Concatenation is the basic operation implied in
 every regular expression. That is, a pattern matches adjacent characters. Look
 at the following example of a regular expression:
ABE
Each literal character is a regular expression that matches only that single
 character. This expression describes “an A
 followed by a B followed by an E" or simply the string ABE. The term "string” means each character
 concatenated to the one preceding it. That a regular expression describes a
 sequence of characters can’t be emphasized enough.
 (Novice users are inclined to think in higher-level units such as words, and not
 individual characters.) Regular expressions are case-sensitive; A does not match a.
Programs such as grep (
 Section 13.2) that accept regular
 expressions must first evaluate the syntax of the regular expression to produce
 a pattern. They then read the input, line by line, trying to match the pattern.
 An input line is a string, and to see if a
 string matches the pattern, a program
 compares the first character in the string to the first character of the
 pattern. If there is a match, it compares the second character in the string to
 the second character of the pattern. Whenever it fails to make a match, it
 compares the next character in the string to the first character of the pattern.
 Figure 32-1 illustrates this
 process, trying to match the pattern abe on
 an input line.
[image: Interpreting a regular expression]

Figure 32-1. Interpreting a regular expression

A regular expression is not limited to literal characters. There is, for

 instance, a
 metacharacter
 — the dot (.) — that can be used as a “wildcard” to match any single character.
 You can think of this wildcard as analogous to a blank tile in Scrabble™ where
 it means any letter. Thus, we can specify the regular expression A.E, and it will match ACE, ABE, and ALE. It matches any character in the position
 following A.

 The metacharacter * (the asterisk) is used to match zero or more
 occurrences of the preceding regular expression, which
 typically is a single character. You may be familiar with *
 as a shell
 metacharacter, where it also means “zero or more characters.” But that meaning
 is very different from * in a regular
 expression. By itself, the metacharacter *
 does not match anything in a regular expression; it modifies what goes before
 it. The regular expression .* matches any
 number of characters. The regular expression A.*E matches any string that matches A.E but it also matches any number of characters between A and E:
 AIRPLANE, A, FINE, AE, A
 34-cent
 S.A.S.E, or A
 LONG
 WAY
 HOME, for example.
If you understand the difference between . and * in regular expressions, you already know about the two basic
 types of metacharacters: those that can be evaluated to a single character, and
 those that modify how characters that precede it are evaluated.
It should also be apparent that by use of metacharacters you can expand or
 limit the possible matches. You have more control over what is matched and what
 is not. In Section 32.4 and after,
 Bruce Barnett explains in detail how to use regular expression
 metacharacters.
— DD

Using Metacharacters in Regular Expressions

Summary Box

 There are three important
 parts to a regular expression:
	Anchors
	Specify the position of
 the pattern in relation to a line of text.

	Character sets
	Match one or more
 characters in a single position.

	Modifiers
	Specify how many times the
 previous character set is repeated.

The following regular expression demonstrates all three parts:
^#*
The caret (^) is an anchor that indicates the beginning of the line. The
 hash mark is a simple character set that matches the single character
 #. The asterisk (*) is a modifier. In a regular expression, it specifies that
 the previous character set can appear any number of times, including zero.
 As you will see shortly, this is a useless regular expression (except for
 demonstrating the syntax!).
There are two main types of regular expressions:
 simple
 (also known as
 basic) regular expressions and
 extended regular expressions. (As we’ll see in the
 next dozen articles, the boundaries between the two types have become
 blurred as regular expressions have evolved.) A few utilities like awk

 and egrep use the extended regular expression. Most use the
 simple regular expression. From now on, if I talk about a “regular
 expression” (without specifying simple or extended), I am describing a
 feature common to both types. For the most part, though, when using modern
 tools, you’ll find that extended regular expressions are the rule rather
 than the exception; it all depends on who wrote the version of the tool
 you’re using and when, and whether it made sense to worry about supporting
 extended regular expressions.
[The situation is complicated by the fact that simple regular expressions
 have evolved over time, so there are versions of “simple regular
 expressions” that support extensions missing from extended regular
 expressions! Bruce explains the incompatibility at the end of Section 32.15. —
 TOR]
The next eleven articles cover metacharacters and regular
 expressions:
	The anchor characters ^ and
 $ (Section 32.5)

	Matching a character with a character set (Section 32.6)

	Match any character with . (dot) (Section 32.7)

	Specifying a range of characters with [...] (Section
 32.8)

	Exceptions in a character set (Section 32.9)

	Repeating character sets with *
 (Section
 32.10)

	Matching a specific number of sets with \{ and \} (Section 32.11)

	Matching words with \< and
 \> (Section 32.12)

	Remembering patterns with \(,
 \), and \1 (Section 32.13)

	Potential problems (Section
 32.14)

	Extended regular expressions (Section 32.15)

— BB

Regular Expressions: The Anchor Characters ^ and $

 Most Unix text facilities are
 line-oriented. Searching for patterns that span several lines is not easy to do.
 [But it is possible (Section 13.9, Section 11.10). —
 JP] You see, the end-of-line character is not included
 in the block of text that is searched. It is a separator, and regular
 expressions examine the text between the separators. If you want to search for a
 pattern that is at one end or the other, you use anchors.
 The caret (^) is the
 starting anchor, and the dollar
 sign ($) is the end anchor. The regular
 expression ^A will match all lines that start
 with an uppercase A. The expression A$ will
 match all lines that end with uppercase A. If the anchor characters are not used
 at the proper end of the pattern, they no longer act as anchors. That is, the
 ^ is an anchor only if it is the first
 character in a regular expression. The $ is
 an anchor only if it is the last character. The expression $1 does not have an anchor. Neither does 1^. If you need to match a ^ at the beginning of the line or a $ at the end of a line, you must
 escape

 the special character by typing a
 backslash (\) before it. Table 32-1 has a summary.
Table 32-1. Regular expression anchor
 character examples
	
 Pattern

 	
 Matches

	

 ^A

 	
 An A at the beginning
 of a line

	

 A$

 	
 An A at the end of a
 line

	

 A

 	
 An A anywhere on a
 line

	

 $A

 	
 A $A anywhere on a
 line

	

 ^\^

 	
 A ^ at the beginning of
 a line

	

 ^^

 	
 Same as ^\^

	

 \$$

 	
 A $ at the end of a
 line

	

 $$

 	
 Same as \$$
 [2]

	[2] Beware! If your regular expression isn’t properly
 quoted, this means “process ID of current process.”
 Always quote your expressions properly.

The use of ^

 and $ as indicators of the beginning or end of a line is a convention
 other utilities use. The vi

 editor uses these two characters as
 commands to go to the beginning or end of a line. The C shell uses !^ to specify the first argument of the previous
 line, and !$ is the last argument on the
 previous line (Section 30.8
 explains).
It is one of those choices that other utilities go along with to maintain
 consistency. For instance, $ can refer to the
 last line of
 a file when using ed and sed. cat -v -e
 (
 Section 12.5, Section 12.4) marks ends of lines with a
 $. You might also see it in other
 programs.
— BB

Regular Expressions: Matching a Character with a Character Set

 The simplest character set is a single
 character. The regular expression the
 contains three character sets: t, h, and e. It
 will match any line that contains the string the, including the word other.
 To prevent this, put spaces (·) before and
 after the pattern: ·the·.
You can combine the string with an anchor.
 The pattern ^From:· will match the lines of a mail
 message (Section 1.21)
 that identify the sender. Use this pattern with grep to print every address in your incoming mailbox. [If your
 system doesn’t define the environment variable MAIL, try /var/spool/mail/$USER or possibly /usr/spool/mail/$USER. — SJC]
$USER
 Section 35.5
% grep '^From: ' $MAIL
Some characters have a special meaning in regular expressions. If you want to
 search for such a character as itself, escape it with a backslash (\).
— BB

Regular Expressions: Match Any Character with . (Dot)

The dot (.) is one of those special
 metacharacters. By itself it will
 match any character except the end-of-line character. The pattern that will
 match a line with any single character is ^.$.
— BB

Regular Expressions: Specifying a Range of Characters with [...]

 If you want to match specific
 characters, you can use
 square brackets, [], to identify the exact
 characters you are searching for. The pattern that will match any line of text
 that contains exactly one digit is ^[0123456789]$. This is longer than it has to be. You can use the
 hyphen between two characters to specify a range: ^[0-9]$. You can intermix explicit characters with character
 ranges. This pattern will match a single character that is a letter, digit, or
 underscore: [A-Za-z0-9_]. Character sets can
 be combined by placing them next to one another. If you wanted to search for a
 word that:
	started with an uppercase T,

	was the first word on a line,

	had a lowercase letter as its second letter,

	was three letters long (followed by a space character (·)), and

	had a lowercase vowel as its third letter,

the regular expression would be:
^T[a-z][aeiou]·
To be specific: a range is a contiguous series of characters, from low to
 high, in the ASCII character set.[3] For example, [z-a] is
 not a range because it’s backwards. The range [A-z] matches both uppercase and lowercase
 letters, but it also matches the six characters that fall between uppercase and
 lowercase letters in the ASCII chart: [,
 \,],
 ^, _,
 and '.
— BB

Regular Expressions: Exceptions in a Character Set

You can easily search for all characters except those in square brackets by
 putting a caret (^) as the first character
 after the left square bracket ([). To match
 all characters except lowercase vowels, use [^aeiou].
Like the anchors in places that can’t be considered an anchor, the right
 square bracket (]) and dash (-) do not have a special meaning if they directly
 follow a [. Table 32-2 has some examples.
Table 32-2. Regular expression character set examples
	
 Regular expression

 	
 Matches

	

 [0-9]

 	
 Any digit

	

 [^0-9]

 	
 Any character other than a digit

	

 [-0-9]

 	
 Any digit or a -

	

 [0-9-]

 	
 Any digit or a -

	

 [^-0-9]

 	
 Any character except a digit or a -

	

 []0-9]

 	
 Any digit or a]

	

 [0-9]]

 	
 Any digit followed by a]

	

 [0-99-z]

 	
 Any digit or any character between 9 and z

	

 []0-9-]

 	
 Any digit, a -, or a
]

Many languages have adopted the
 Perl regular expression syntax for ranges;
 for example, \w
 is equivalent to “any word character”
 or [A-Za-z0-9_], while \W
 matches anything
 but a word character. See the
 perlre(1) manual page for more details.
— BB

Regular Expressions: Repeating Character Sets with *

 The third part of a regular expression is the
 modifier. It is used to specify how many times you expect to see the previous
 character set. The special character *
 (asterisk) matches zero or more copies. That is, the
 regular expression 0* matches zero or more
 zeros, while the expression [0-9]* matches
 zero or more digits.
This explains why the pattern ^#* is useless
 (Section 32.4), as it matches any
 number of #s at the beginning of the line,
 including zero. Therefore, this will match every line, because every line starts
 with zero or more #s.
At first glance, it might seem that starting the count at zero is stupid. Not
 so. Looking for an unknown number of characters is very important. Suppose you
 wanted to look for a digit at the beginning of a line, and there may or may not
 be spaces before the digit. Just use ^·* to
 match zero or more spaces at the beginning of the line. If you need to match one
 or more, just repeat the character set. That is, [0-9]* matches zero or more digits and [0-9][0-9]* matches one or more digits.
— BB

Regular Expressions: Matching a Specific Number of Sets with \ { and \
 }

 You cannot specify a maximum
 number of sets with the * modifier. However,
 some programs (Section 32.20) recognize a special
 pattern you can use to specify the minimum and maximum number of repeats. This
 is done by putting those two numbers between \{ and \}.
Having convinced you that \{ isn’t a plot
 to confuse you, an example is in order. The regular expression to match four,
 five, six, seven, or eight lowercase letters is:
[a-z]\{4,8\}
Any numbers between 0 and 255 can be used. The second number may be omitted,
 which removes the upper limit. If the comma and the second number are omitted,
 the pattern must be duplicated the exact number of times specified by the first
 number.
Warning
The backslashes deserve a special discussion. Normally a backslash
 turns off the special meaning for a character. For
 example, a literal period is matched by \. and a literal asterisk is matched by *. However, if a backslash is placed before a <, >,
 {, }, (, or) or before a digit, the backslash
 turns on a special meaning. This was done because
 these special functions were added late in the life of regular expressions.
 Changing the meaning of {, }, (,
), <, and > would have
 broken old expressions. (This is a horrible crime punishable by a year of
 hard labor writing COBOL programs.) Instead, adding a backslash added
 functionality without breaking old programs. Rather than complain about the
 change, view it as evolution.

You must remember that modifiers like * and
 \{1,5\} act as modifiers only if they
 follow a character set. If they were at the beginning of a pattern, they would
 not be modifiers. Table 32-3 is a
 list of examples and the exceptions.
Table 32-3. Regular expression pattern repetition examples
	
 Regular expression

 	
 Matches

	

 *

 	
 Any line with a *

	

 *

 	
 Any line with a *

	

 \\

 	
 Any line with a \

	

 ^*

 	
 Any line starting with a *

	

 ^A*

 	
 Any line

	

 ^A*

 	
 Any line starting with an A*

	

 ^AA*

 	
 Any line starting with one A

	

 ^AA*B

 	
 Any line starting with one or more A’s followed by a B

	

 ^A\{4,8\}B

 	
 Any line starting with four, five, six, seven, or eight
 A’s followed by a B

	

 ^A\{4,\}B

 	
 Any line starting with four or more A’s followed by a B

	

 ^A\{4\}B

 	
 Any line starting with an AAAAB

	

 \{4,8\}

 	
 Any line with a {4,8}

	

 A{4,8}

 	
 Any line with an A{4,8}

— BB

Regular Expressions: Matching Words with \ < and \ >

 Searching for a word isn’t quite as simple as
 it at first appears. The string the will
 match the word other. You can put spaces
 before and after the letters and use this regular expression: ·the·. However, this does not match words at the
 beginning or the end of the line. And it does not match the case where there is
 a punctuation mark after the word.
There is an easy solution — at least in many versions of ed, ex,
 vi, and grep. The characters \< and
 \> are similar to the ^ and $
 anchors, as they don’t occupy a position of a character. They
 anchor the expression between to match only if it is on
 a word boundary. The pattern to search for the words the and The would be: \<[tT]he\>.
Let’s define a “word boundary.” The character before the t or T must be
 either a newline character or anything except a letter, digit, or underscore (
 _). The character after the e must also be a character other than a digit,
 letter, or underscore, or it could be the end-of-line character.
— BB

Regular Expressions: Remembering Patterns with \ (, \), and \1

 Another pattern that
 requires a special mechanism is searching for repeated words. The expression
 [a-z][a-z] will match any two lowercase
 letters. If you wanted to search for lines that had two adjoining identical
 letters, the above pattern wouldn’t help. You need a way to remember what you
 found and see if the same pattern occurs again. In some programs, you can mark
 part of a pattern using \(and \). You can recall the remembered pattern with
 \ followed by a single digit.[4] Therefore, to search for two identical letters, use \([a-z]\)\1. You can have nine different
 remembered patterns. Each occurrence of \(
 starts a new pattern. The regular expression to match a five-letter palindrome
 (e.g., “radar”) is: \([a-z]\)\([a-z]\)[a-z]\2\1. [Some versions of some programs
 can’t handle \(\) in the same regular
 expression as \1, etc. In all versions of
 sed, you’re safe if you use \(\) on the pattern side of an
 s command — and \1,
 etc., on the replacement side (Section
 34.11). — JP]
— BB

Regular Expressions: Potential Problems

Before I discuss the extensions that extended expressions (Section 32.15) offer, I want to mention
 two potential problem areas.
The \< and \> characters were introduced in the vi editor. The other programs didn’t have this ability at that
 time. Also, the \{
 min,max
 \} modifier is new, and earlier utilities
 didn’t have this ability. This makes it difficult for the novice user of regular
 expressions, because it seems as if each utility has a different convention. Sun
 has retrofitted the newest regular expression library to all of their programs,
 so they all have the same ability. If you try to use these newer features on
 other vendors’ machines, you might find they don’t work the same way.
The other potential point of confusion is the extent of
 the pattern matches (Section
 32.17). Regular expressions match the longest possible pattern. That
 is, the regular expression A.*B matches
 AAB as well as AAAABBBBABCCCCBBBAAAB. This doesn’t cause many problems using
 grep, because an oversight in a regular
 expression will just match more lines than desired. If you use sed, and your patterns get carried away, you may
 end up deleting or changing more than you want to. Perl answers this problem by
 defining a variety of "greedy” and “non-greedy” regular
 expressions, which allow you to specify which behavior you want. See the
 perlre(1) manual page for details.
— BB

Extended Regular Expressions

 At least two programs use extended regular
 expressions: egrep

 and awk.
 [perl uses expressions that are even more
 extended. — JP] With these extensions, special characters
 preceded by a backslash no longer have special meaning: \{, \}, \<, \>,
 \(, \), as well as \
 digit. There is a very good reason for this, which I
 will delay explaining to build up suspense.
The question mark (?) matches zero or one instance of the character
 set before it, and the plus sign (+) matches one or more copies of the character set. You can’t use
 \{ and \} in extended regular expressions, but if you could, you might
 consider ? to be the same as \{0,1\} and +
 to be the same as \{1,\}.
By now, you are wondering why the extended regular expressions are even worth
 using. Except for two abbreviations, there seem to be no advantages and a lot of
 disadvantages. Therefore, examples would be useful.
The three important characters in the expanded regular expressions are
 (, |,
 and).

 Parentheses are used to group
 expressions; the vertical bar acts an an OR operator. Together, they let you
 match a choice of patterns. As an example, you can use
 egrep to print all From: and Subject: lines from your incoming mail [which may also be in
 /var/spool/mail/$USER.
 — JP]:
% egrep '^(From|Subject): ' /usr/spool/mail/$USER
All lines starting with From: or Subject: will be printed. There is no easy way to
 do this with simple regular expressions. You could try something like ^[FS][ru][ob][mj]e*c*t*: and hope you don’t have
 any lines that start with Sromeet:. Extended
 expressions don’t have the \< and \> characters. You can compensate by using the

 alternation mechanism. Matching the word
 “the” in the beginning, middle, or end of a sentence or at the end of a line can
 be done with the extended regular expression (^|
)the([^a-z]|$). There are two choices before the word: a space or
 the beginning of a line. Following the word, there must be something besides a
 lowercase letter or else the end of the line. One extra bonus with extended
 regular expressions is the ability to use the *, +, and ? modifiers after a (...) grouping.
[If you’re on a Darwin system and use Apple Mail or one of the many other
 clients, you can grep through your mail files locally. For Mail, look in your
 home directory’s Library/Mail/ directory.
 There should be a subdirectory there, perhaps named something like iTools:example@mail.example.com, with an IMAP
 directory tree beneath it. IMAP stores messages individually, not in standard
 Unix mbox format, so there is no way to look for all matches in a single mailbox
 by grepping a single file, but fortunately, you can use regular expressions to
 construct a file list to search. :-) —
 SJC]
Here are two ways to match “a simple problem”, “an easy problem”, as well as
 “a problem”; the second expression is more exact:
% egrep "a[n]? (simple|easy)? ?problem" data
% egrep "a[n]? ((simple|easy))?problem" data
I promised to explain why the backslash characters don’t work in extended
 regular expressions. Well, perhaps the \{...\} and
 \<...\> could be added to the extended
 expressions, but it might confuse people if those characters are added and the
 \(...\) are not. And there is no way to
 add that functionality to the extended expressions without changing the current
 usage. Do you see why? It’s quite simple. If (has a special meaning, then \(must be the ordinary character. This is the opposite of the
 simple regular expressions, where (is
 ordinary and \(is special. The usage of the
 parentheses is incompatible, and any change could break old programs.
If the extended expression used (...|...)
 as regular characters, and \(...\|...\) for
 specifying alternate patterns, then it is possible to have one set of regular
 expressions that has full functionality. This is exactly what GNU Emacs (Section
 19.1) does, by the way — it combines all of the features of regular
 and extended expressions with one syntax.
— BB

Getting Regular Expressions Right

Writing regular expressions involves more than
 learning the mechanics. You not only have to learn how to describe patterns, but
 you also have to recognize the context in which they appear. You have to be able
 to think through the level of detail that is necessary in a regular expression,
 based on the context in which the pattern will be applied.
The same thing that makes writing regular expressions difficult is what makes
 writing them interesting: the variety of occurrences or contexts in which a
 pattern appears. This complexity is inherent in language itself, just as you
 can’t always understand an expression (Section 32.1) by looking up each word in
 the dictionary.
The process of writing a regular expression involves three steps:
	Knowing what you want to match and how it might appear in the
 text.

	Writing a pattern to describe what you want to match.

	Testing the pattern to see what it matches.

This process is virtually the same kind of process that a programmer follows
 to develop a program. Step 1 might be considered the specification, which should
 reflect an understanding of the problem to be solved as well as how to solve it.
 Step 2 is analogous to the actual coding of the program, and step 3 involves
 running the program and testing it against the specification. Steps 2 and 3 form
 a loop that is repeated until the program works satisfactorily.
Testing your description of what you want to match ensures that the
 description works as expected. It usually uncovers a few surprises. Carefully
 examining the results of a test, comparing the output against the input, will
 greatly improve your understanding of regular expressions. You might consider
 evaluating the results of a pattern-matching operation as follows:
	Hits
	The lines that I wanted to match.

	Misses
	The lines that I didn’t want to match.

	Misses that should be hits
	The lines that I didn’t match but wanted to match.

	Hits that should be misses
	The lines that I matched but didn’t want to match.

Trying to perfect your description of a pattern is something that you work at
 from opposite ends: you try to eliminate the “hits that should be misses” by
 limiting the possible matches, and you try to capture the “misses that should be
 hits” by expanding the possible matches.
The difficulty is especially apparent when you must describe patterns using
 fixed strings. Each character you remove from the fixed-string pattern increases
 the number of possible matches. For instance, while searching for the string
 what, you determine that you’d like to
 match What as well. The only fixed-string
 pattern that will match What and what is hat,
 the longest string common to both. It is obvious, though, that searching for
 hat will produce unwanted matches. Each
 character you add to a fixed-string pattern decreases the number of possible
 matches. The string them is going to produce
 fewer matches than the string the.
Using metacharacters in patterns provides greater flexibility in extending or
 narrowing the range of matches. Metacharacters, used in combination with
 literals or other metacharacters, can be used to expand the range of matches
 while still eliminating the matches that you do not want.
— DD

Just What Does a Regular Expression Match?

 One
 of the toughest things to learn about regular expressions is just what they do
 match. The problem is that a regular expression tends to find the longest
 possible match — which can be more than you want.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 showmatch
Here’s a simple script called showmatch
 that is useful for testing regular expressions, when writing sed scripts, etc. Given a regular expression and a
 filename, it finds lines in the file matching that expression, just like
 grep, but it uses a row of carets
 (^^^^) to highlight the portion of the
 line that was actually matched. Depending on your system, you may need to call
 nawk instead of awk; most modern systems have an awk that supports the syntax introduced by nawk, however.
#! /bin/sh
showmatch - mark string that matches pattern
pattern=$1; shift
awk 'match($0,pattern) > 0 {
 s = substr($0,1,RSTART-1)
 m = substr($0,1,RLENGTH)
 gsub (/[^\b-]/, " ", s)
 gsub (/./, "^", m)
 printf "%s\n%s%s\n", $0, s, m
}' pattern="$pattern" $*
For example:
% showmatch 'CD-...' mbox
and CD-ROM publishing. We have recognized
 ^^^^^^
that documentation will be shipped on CD-ROM; however,
 ^^^^^^
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 xgrep

 xgrep is a related script that simply
 retrieves only the matched text. This allows you to extract patterned data from
 a file. For example, you could extract only the numbers from a table containing
 both text and numbers. It’s also great for counting the number of occurrences of
 some pattern in your file, as shown below. Just be sure that your expression
 matches only what you want. If you aren’t sure, leave off the wc command and glance at the output. For example,
 the regular expression [0-9]* will match
 numbers like 3.2
 twice: once for the 3
 and again for the 2! You want to include a
 dot (.) and/or comma (,), depending on how your numbers are written. For
 example: [0-9][.0-9]* matches a leading
 digit, possibly followed by more dots and digits.
Note
Remember that an expression like [0-9]*
 will match zero numbers (because * means
 “zero or more of the preceding character”). That expression can make
 xgrep run for a very long time! The
 following expression, which matches one or more digits, is probably what you
 want instead:
 xgrep "[0-9][0-9]*"
 files
 | wc -l

The xgrep shell script runs the sed commands below, replacing $re with the regular expression from the command
 line and $x with a CTRL-b character (which is
 used as a delimiter). We’ve shown the sed
 commands numbered, like 5>; these are only for
 reference and aren’t part of the script:
 1> \xre$x!d
2> s//$x&$x/g
3> s/[^$x]*$x//
4> s/$x[^$x]*$x/\
 /g
5> s/$x.*//
Command 1 deletes all input lines that don’t contain a match. On the remaining
 lines (which do match), command 2 surrounds the matching text with CTRL-b
 delimiter characters. Command 3 removes all characters (including the first
 delimiter) before the first match on a line. When there’s more than one match on
 a line, command 4 breaks the multiple matches onto separate lines. Command 5
 removes the last delimiter, and any text after it, from every output
 line.
Greg Ubben revised showmatch and wrote
 xgrep.
—JP, DD, andTOR

Limiting the Extent of a Match

A regular expression tries to match the longest
 string possible, which can cause unexpected problems. For instance, look at the
 following regular expression, which matches any number of characters inside
 quotation marks:
".*"
Let’s imagine an HTML table with lots of entries, each of which has two quoted
 strings, as shown below:
<td>
All the text in each line of the table is the same, except the text inside the
 quotes. To match the line through the first quoted string, a novice might
 describe the pattern with the following regular expression:
<td>
However, the pattern ends up matching almost all of the entry because the
 second quotation mark in the pattern matches the last
 quotation mark on the line! If you know how many quoted strings there are, you
 can specify each of them:
<td>
Although this works as you’d expect, some line in the file might not have the
 same number of quoted strings, causing misses that should be hits — you simply
 want the first argument. Here’s a different regular expression that matches the
 shortest possible extent between two quotation marks:
"[^"]*"
It matches “a quote, followed by any number of characters that do not match a
 quote, followed by a quote.” Note, however, that it will be fooled by escaped
 quotes, in strings such as the following:
$strExample = "This sentence contains an escaped \" character.";
The use of what we might call “negated character classes” like this is one of
 the things that distinguishes the journeyman regular expression user from the
 novice.
—DD and JP

I Never Meta Character I Didn’t Like

Once you know regular expression syntax, you can match almost anything. But
 sometimes, it’s a pain to think through how to get what you want. Table 32-4 lists some useful regular
 expressions that match various kinds of data you might have to deal with in the
 Unix environment. Some of these examples work in any program that uses regular
 expressions; others only work with a specific program such as egrep. (Section 32.20 lists the metacharacters that each program accepts.)
 The · means to use a space as part of the
 regular expression. Bear in mind that you may also be able to use \< and \>
 to match on word boundaries.

 Note that these regular expressions are only
 examples. They aren’t meant to match (for instance) every occurrence of a city
 and state in any arbitrary text. But if you can picture what the expression does
 and why, that should help you write an expression that fits your text.
Table 32-4. Some useful regular expressions
	
 Item

 	
 Example

 	
 Regular expression

	
 U.S. state abbreviation

 	
 (NM)

 	
 ·[A-Z][A-Z]·

	
 U.S. city, state

 	
 (Portland, OR)

 	
 ^.*,·[A-Z][A-Z]

	
 Month day, year

 	
 (JAN 05, 1993); (January 5, 1993)

 	
 [A-Z][A-Za-z]\{2,8\}·[0-9]\{1,2\},·[0-9]\{4\}

	
 U.S. Social Security number

 	
 (123-45-6789)

 	
 [0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\}=

	
 U.S. telephone number

 	
 (547-5800)

 	
 [0-9]\{3\}-[0-9]\{4\}

	
 Unformatted dollar amounts

 	
 ($1); ($ 1000000.00)

 	
 \$·*[0-9]+(\.[0-9][0-9])?

	
 HTML/SGML/XML tags

 	
 (<h2>); (<UL COMPACT>)

 	
 <[^>]*>

	

 troff macro with first
 argument

 	
 (.SH “SEE ALSO”)

 	
 ^\.[A-Z12].·"[^"]*"

	

 troff macro with all
 arguments

 	
 (.Ah “Tips for” “ex & vi”)

 	
 ^\.[A-Z12].·".*"

	
 Blank lines

 	 	
 ^$

	
 Entire line

 	 	
 ^.*$

	
 One or more spaces

 	 	
 ··*

—DD and JP

Valid Metacharacters for Different Unix Programs

 Some regular expression
 metacharacters are valid for one program but not for another. Those that are
 available to a particular Unix program are marked by a check (✓) in Table 32-5. Quick reference
 descriptions of each of the characters can be found in Section 32.21.
[Unfortunately, even this table doesn’t give the whole story. For example, Sun
 has taken some of the extensions originally developed for ed, ex, and
 vi (such as the \< \> and \{
 min, max
 \} modifiers) and added them to other
 programs that use regular expressions. So don’t be bashful — try things out, but
 don’t be surprised if every possible regular expression feature isn’t supported
 by every program. In addition, there are many programs that recognize regular
 expressions, such as perl, emacs, more,
 dbx, expr, lex, pg, and less,
 that aren’t covered in Daniel’s table. — TOR]
Table 32-5. Valid metacharacters for different programs
	
 Symbol

 	
 ed

 	
 ex

 	
 vi

 	
 sed

 	
 awk

 	
 grep

 	
 egrep

 	
 Action

	

 .

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	
 Match any character.

	

 *

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	
 Match zero or more preceding.

	

 ^

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	
 Match beginning of line.

	

 $

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	
 Match end of line.

	

 \

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	
 Escape character following.

	

 []

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	

 ✓

 	
 Match one from a set.

	

 \(\)

 	

 ✓

 	

 ✓

 	 	

 ✓

 	 	 	 	
 Store pattern for later replay.

	

 \{\}

 	

 ✓

 	 	 	

 ✓

 	 	

 ✓

 	 	
 Match a range of instances.

	

 \<\>

 	

 ✓

 	

 ✓

 	

 ✓

 	 	 	 	 	
 Match word’s beginning or end.

	

 +

 	 	 	 	 	

 ✓

 	 	

 ✓

 	
 Match one or more preceding.

	

 ?

 	 	 	 	 	

 ✓

 	 	

 ✓

 	
 Match zero or one preceding.

	

 |

 	 	 	 	 	

 ✓

 	 	

 ✓

 	
 Separate choices to match.

	

 ()

 	 	 	 	 	

 ✓

 	 	

 ✓

 	
 Group expressions to match.

In ed

 , ex, and sed,
 note that you specify both a search pattern (on the left) and a replacement pattern
 (on the right). The metacharacters in Table
 32-5 are meaningful only in a search pattern. ed, ex, and
 sed support the additional metacharacters
 in Table 32-6 that are valid only in
 a
 replacement
 pattern.
Table 32-6. Valid metacharacters for replacement patterns
	
 Symbol

 	
 ex

 	
 sed

 	
 ed

 	
 Action

	

 \

 	

 ✓

 	

 ✓

 	

 ✓

 	
 Escape character following.

	

 \
 n

 	

 ✓

 	

 ✓

 	

 ✓

 	
 Reuse pattern stored by \(
 \) pair number \n.

	

 &

 	

 ✓

 	

 ✓

 	 	
 Reuse previous search pattern.

	

 ~

 	

 ✓

 	 	 	
 Reuse previous replacement pattern.

	

 \u \U

 	

 ✓

 	 	 	
 Change character(s) to uppercase.

	

 \l \L

 	

 ✓

 	 	 	
 Change character(s) to lowercase.

	

 \E

 	

 ✓

 	 	 	
 Turn off previous \U or
 \L.

	

 \e

 	

 ✓

 	 	 	
 Turn off previous \u or
 \l.

— DG

Pattern Matching Quick Reference with Examples

Section 32.4

 gives an introduction to regular
 expressions. This article is intended for those of you who need just a quick
 listing of regular expression syntax as a refresher from time to time. It also
 includes some simple examples. The characters in Table 32-7 have special meaning only in

 search patterns.
Table 32-7. Special characters in search patterns
	
 Pattern

 	
 What does it match?

	
 .

 	
 Match any single character except
 newline.

	

 *

 	
 Match any number (including none) of the single characters
 that immediately precede it. The preceding character can
 also be a regular expression. For example, since . (dot)
 means any character, .*
 means “match any number of any character.”

	

 ^

 	
 Match the following regular expression at the beginning of
 the line.

	

 $

 	
 Match the preceding regular expression at the end of the
 line.

	

 []

 	
 Match any one of the enclosed
 characters.

	 	
 A hyphen (-) indicates
 a range of consecutive characters. A caret (^) as the first character in
 the brackets reverses the sense: it matches any one
 character not in the list. A hyphen or
 a right square bracket (]) as the first character is treated as a member
 of the list. All other metacharacters are treated as members
 of the list.

	

 \{n,m
 \}

 	
 Match a range of occurrences of the single character that
 immediately precedes it. The preceding character can also be
 a regular expression. \{n\} will
 match exactly n occurrences,
 \{n,\} will match at least
 n occurrences, and
 \{n,m\}
 will match any number of occurrences between
 n and
 m.

	

 \

 	
 Turn off the special meaning of the character that follows
 (except for \{ and \(, etc., where it turns on the special
 meaning of the character that follows).

	

 \(\)

 	
 Save the pattern enclosed between \(and \) into a special
 holding space. Up to nine patterns can be saved on a single
 line. They can be “replayed” in substitutions by the escape
 sequences \1 to \9.

	

 \< \>

 	
 Match characters at beginning (\<) or end (\>) of a word.

	

 +

 	
 Match one or more instances of preceding regular
 expression.

	

 ?

 	
 Match zero or one instances of preceding regular
 expression.

	

 |

 	
 Match the regular expression specified before or
 after.

	

 (')

 	
 Apply a match to the enclosed group of regular
 expressions.

The characters in Table 32-8 have
 special meaning only in replacement patterns.

Table 32-8. Special characters in replacement patterns
	
 Pattern

 	
 What does it do?

	

 \

 	
 Turn off the special meaning of the character that
 follows.

	

 \
 n

 	
 Restore the nth pattern
 previously saved by \(
 and \).
 n is a number from 1 to 9,
 with 1 starting on the left.

	

 &

 	
 Reuse the string that matched the search pattern as part
 of the replacement pattern.

	

 \u

 	
 Convert first character of replacement pattern to
 uppercase.

	

 \U

 	
 Convert replacement pattern to uppercase.

	

 \l

 	
 Convert first character of replacement pattern to
 lowercase.

	

 \L

 	
 Convert replacement pattern to lowercase.

Note that many programs, especially perl

 ,
 awk, and sed, implement their own programming languages and often have
 much more extensive support for regular expressions. As such, their manual pages
 are the best place to look when you wish to confirm which expressions are
 supported or whether the program supports more than simple regular expressions.
 On many systems, notably those with a large complement of GNU tools, the regular
 expression support is astonishing, and many generations of tools may be
 implemented by one program (as with grep,
 which also emulates the later egrep in the
 same program, with widely varying support for expression formats based on how
 the program is invoked). Don’t make the mistake of thinking that all of these
 patterns will work everywhere in every program with regex support, or of
 thinking that this is all there is.
Examples of Searching

When used with grep

 or egrep, regular expressions are surrounded
 by quotes. (If the pattern
 contains a $, you must use single quotes
 from the shell; e.g., '
 pattern
 '.) When used with ed, ex,
 sed, and awk, regular expressions are usually surrounded by / (although any delimiter works). Table 32-9 has some example
 patterns.
Table 32-9. Search pattern examples
	
 Pattern

 	
 What does it match?

	

 bag

 	
 The string bag.

	

 ^bag

 	

 bag at beginning of
 line.

	

 bag$

 	

 bag at end of
 line.

	

 ^bag$

 	

 bag as the only word
 on line.

	

 [Bb]ag

 	

 Bag or bag.

	

 b[aeiou]g

 	
 Second letter is a vowel.

	

 b[^aeiou]g

 	
 Second letter is a consonant (or uppercase or
 symbol).

	

 b.g

 	
 Second letter is any character.

	

 ^...$

 	
 Any line containing exactly three characters.

	

 ^\.

 	
 Any line that begins with a . (dot).

	

 ^\.[a-z][a-z]

 	
 Same, followed by two lowercase letters (e.g.,
 troff requests).

	

 ^\.[a-z]\{2\}

 	
 Same as previous, grep or sed only.

	

 ^[^.]

 	
 Any line that doesn’t begin with a . (dot).

	

 bugs*

 	

 bug, bugs, bugss, etc.

	

 "word"

 	
 A word in quotes.

	

 "*word"*

 	
 A word, with or without quotes.

	

 [A-Z][A-Z]*

 	
 One or more uppercase letters.

	

 [A-Z]+

 	
 Same, extended regular expression format.

	

 [A-Z].*

 	
 An uppercase letter, followed by zero or more
 characters.

	

 [A-Z]*

 	
 Zero or more uppercase letters.

	

 [a-zA-Z]

 	
 Any letter.

	

 [^0-9A-Za-z]

 	
 Any symbol (not a letter or a number).

	

 [567]

 	
 One of the numbers 5, 6,
 or 7.

	

 Extended regular expression
 patterns:

 	
	

 five|six|seven

 	
 One of the words five, six, or seven.

	

 80[23]?86

 	
 One of the numbers 8086, 80286, or 80386.

	

 compan(y|ies)

 	
 One of the words company or companies.

	

 \<the

 	
 Words like theater
 or the.

	

 the\>

 	
 Words like breathe
 or the.

	

 \<the\>

 	
 The word the.

	

 0\{5,\}

 	
 Five or more zeros in a row.

	

 [0-9]\{3\}-[0-9]\{2\}-[0-9]\{4\}

 	
 U.S. Social Security number
 (nnn
 -
 nn
 -
 nnnn).

Examples of Searching and Replacing

Table 32-10

 shows the metacharacters available to sed

 or ex.
 (ex commands begin with a colon.) A
 space is marked by ·; a TAB is marked by
 tab.
Table 32-10. Search and replace commands
	
 Command

 	
 Result

	

 s/.*/(&)/

 	
 Redo the entire line, but add parentheses.

	

 s/.*/mv &
 &.old/

 	
 Change a word list into mv commands.

	

 /^$/d

 	
 Delete blank lines.

	

 :g/^$/d

 	

 ex version of
 previous.

	

 /^[·
 tab
]*$/d

 	
 Delete blank lines, plus lines containing only spaces
 or TABs.

	

 :g/^[·
 tab
]*$/d

 	

 ex version of
 previous.

	

 s/··*/·/g

 	
 Turn one or more spaces into one space.

	

 :%s/·*/·/g

 	

 ex version of
 previous.

	

 :s/[0-9]/Item &:/

 	
 Turn a number into an item label (on the current
 line).

	

 :s

 	
 Repeat the substitution on the first
 occurrence.

	

 :&

 	
 Same.

	

 :sg

 	
 Same, but for all occurrences on the line.

	

 :&g

 	
 Same.

	

 :%&g

 	
 Repeat the substitution globally.

	

 :.,$s/Fortran/\U&/g

 	
 Change word to uppercase, on current line to last
 line.

	

 :%s/.*/\L&/

 	
 Lowercase entire file.

	

 :s/\<./\u&/g

 	
 Uppercase first letter of each word on current line
 (useful for titles).

	

 :%s/yes/No/g

 	
 Globally change a word to No.

	

 :%s/Yes/~/g

 	
 Globally change a different word to No (previous replacement).

	

 s/die or do/do or
 die/

 	
 Transpose words.

	

 s/\([Dd]ie\) or \([Dd]o\)/\2
 or
 \1/

 	
 Transpose, using hold buffers to preserve case.

— DG

[1] Recent versions of many programs, including find, now support regex via special command-line options.
 For example, find
 on my Linux server supports the
 -regex and -iregex options, for
 specifying filenames via a regular expression, case-sensitive and
 -insensitive, respectively. But the find command on my OS X laptop does not. — SJC

[3] Some languages, notably Java and Perl, do support Unicode regular
 expressions, but as Unicode generally subsumes the ASCII 7-bit character
 set, regular expressions written for ASCII will work as well.

[4] In Perl, you can also use $1
 through $9 and even beyond, with the
 right switches, in addition to the backslash mechanism.

Chapter 33. Wildcards

File-Naming Wildcards

Wildcards

 (Section 1.13) are the shell’s way of
 abbreviating filenames. Just as in poker, where a wildcard is a special card
 that can match any card in the deck, filename wildcards are capable of matching
 letters or groups of letters in the alphabet. Rather than typing a long filename
 or a long chain of filenames, a wildcard lets you provide parts of names and
 then use some “wildcard characters” for the rest. For example, if you want to
 delete all files whose names end in .o, you can give the
 following command:
% rm *.o
You don’t have to list every filename.
I’m sure you already know that wildcards are useful in many situations. If
 not, they are summarized in Section
 33.2. Here are a few of my favorite wildcard applications:
	If you remember part of a filename, but not the whole name, you can
 use wildcards to help you find it. If I have a file on genetics saved in
 a directory with several hundred other files, a command like:
% ls *gene*
will often find what I want. It’s quicker and easier than find (Section 9.1).

	Wildcards are a natural when you want to work with groups of files. If
 I have a general purpose directory that’s full of filenames ending in
 .c and .h, I can make new
 subdirectories and use wildcards to move the files easily:
% mkdir c h
% mv *.c c

	Wildcards often help you to work with files with inconvenient
 characters in their names. Let’s say you have a file named abc
 x
 e, where x
 is some unknown control character. You can delete or rename that file by
 using the wildcarded name abc?e.
 (When you do this, be careful that your wildcard doesn’t match more than
 you intend, perhaps by running an ls
 using the pattern first.)

	
 Wildcards can appear in any component of a
 pathname. This can often be used to your advantage. For example, let’s
 say that you have a directory named /work, split into subdirectories for a dozen different
 projects. For each project, you have a schedule, in a file called
 (obviously enough) schedule.txt.
 You can print all the schedules with a command like:
% lpr /work/*/schedule.txt

	(However, you can occasionally run into
 problems (Section
 33.5).)

It’s
 a common misconception, particularly among new users, that application programs
 and utilities have something to do with wildcards. Given a command like grep ident *.c, many users think that grep handles the * and looks to see which files have names that end in
 .c. If you’re at all familiar with Unix’s workings,
 you’ll realize that this is the wrong picture. The shell interprets wildcards.
 That is, the shell figures out which files have names ending in
 .c, puts them in a list, puts that list on the command
 line, and then hands that command line to grep. As it processes the command line, the shell turns grep ident *.c into grep
 ident file1.c file2.c....
Since there are several shells, one might think (or fear!) that there should
 be several different sets of wildcards. Fortunately, there aren’t. The basic
 wildcards work the same for all shells.
— ML

Filename Wildcards in a Nutshell

 This article
 summarizes the wildcards that are used for filename expansion (see Table 33-1). The shells use the same
 basic wildcards, though most shells have some extensions. Unless otherwise
 noted, assume that wildcards are valid for all shells.
Table 33-1. Filename wildcards
	
 Wildcard

 	
 Shells

 	
 Description

	

 *

 	
 All

 	
 Match zero or more characters. For example, a* matches the files

 a, ab,
 abc, abc.d,
 and so on. (zsh users:
 also see x# and x##, below.)

	

 ?

 	
 All

 	

 Match exactly one
 character. For example, a? matches aa,
 ab, ac, etc.

	

 [12..a..z]

 	
 All

 	

 Match
 any character listed in the brackets. For example, a[ab] matches
 aa or ab.

	

 [a-z]

 	
 All

 	
 Match all characters between a and z, in a case-sensitive
 manner, based on the characters’ value in the ASCII
 character set. For example, a[0-9] matches a0,
 a1, and so on, up to
 a9.

	

 [!ab..z]

 	

 bash, ksh, zsh, newer sh

 	

 Match any
 character that does not appear within
 the brackets. For example, a[!0-9] doesn’t match a0
 but does match aa.

	

 [^ab..z]

 	

 tcsh, zsh

 	
 Match any character that does not
 appear within the brackets. For example, a[^0-9] doesn’t match
 a0, but does match
 aa.

	

 <
 m-n
 >

 	

 zsh

 	
 Any number in the range m to
 n. If
 m is omitted, this matches
 numbers less than or equal to n.
 If n is omitted, it matches
 numbers greater than or equal to
 m. The pattern <->
 matches all
 numbers.

	

 {
 word1,word2
 ...}

 	

 bash, csh, pdksh, zsh

 	

 Match
 word1, word2,
 etc. For example, a_{dog,cat,horse} matches the filenames
 a_dog, a_cat,
 and a_horse. These
 (
 Section 28.4)
 actually aren’t filename-matching wildcards. They expand to
 all strings you specify, including
 filenames that don’t exist yet, email addresses, and more.
 (If you want to match one or more of a group of filenames
 that already exist, see also the parenthesis operators
 () below.)

	

 ?(

 x
 |
 y
 |
 z
)

 	

 ksh, bash2

 	
 Match zero or one instance of any of the specified
 patterns. For example, w?(abc)w matches ww or
 wabcw. Also, ?(foo|bar) matches only
 foo, bar, and
 the empty string. In bash2, this works only if you’ve set the
 extglob option using shopt.

	

 *(

 x
 |
 y
 |
 z
)

 	

 ksh, bash2

 	
 Match zero or more instances of any of the specified
 patterns. For example, w*(abc)w matches ww,
 wabcw,
 wabcabcw, etc. Also, *(foo|bar) matches
 foo, bar,
 foobarfoo, etc., as well as the
 empty string. In bash2,
 this works only if you’ve set the
 extglob option using shopt.

	

 +(

 x
 |
 y
 |
 z
)

 	

 ksh, bash2

 	
 Match one or more instances of any of the specified
 patterns. For example, w+(abc)w matches wabcw,
 wabcabcw, etc. Also, +(foo|bar) matches
 foo, bar,
 foobarfoo, etc. In bash2, this works only if
 you’ve set the extglob option using
 shopt.

	

 @(

 x
 |
 y
 |
 z
)

 	

 ksh, bash2

 	
 Match exactly one of any of the specified patterns. For
 example, @(foo|bar)
 matches foo or
 bar. (See also {word1,word2...}.) In bash2, this works only if
 you’ve set the extglob option using
 shopt.

	

 !(

 x
 |
 y
 |
 z
)

 	

 ksh, bash2

 	
 Match anything that doesn’t contain any of the specified
 patterns. For example, w!(abc)w doesn’t match
 wabcw or
 wabcabcw, but it does match
 practically anything else that begins or ends with
 w. Also, !(foo|bar) matches all strings except
 foo and bar.
 In bash2, this works only
 if you’ve set the extglob option using
 shopt. (For other
 shells, see nom (Section 33.8).)

	

 ^
 pat

 	

 tcsh, zsh

 	

 Match any name that
 doesn’t match pat. In zsh, this only works if you’ve
 set the EXTENDED_GLOB option. In
 tcsh, the
 pat must include at least one
 of the wildcards *,
 ? and []. So, to match all except a
 single name in tcsh,
 here’s a trick: put brackets around one character. For
 instance, you can match all except abc
 with ^ab[c]. (For other
 shells, see nom (Section 33.8).)

	

 (
 x
 |
 y
)

 	

 zsh

 	

 Match either
 x or
 y. The vertical bar (|) must be used inside
 parentheses.

	

 **

 	

 zsh

 	

 Search recursively.

 zsh

 	

 Search recursively,
 following symbolic links to directories.

	

 x
 #

 	

 zsh

 	

 Matches zero or
 more occurrences of the pattern x
 (like the regular
 expresssion (Section 32.2) x*).
 The pattern can have parentheses (
) around it. You must have set the
 EXTENDED_GLOB option.

	

 x
 ##

 	

 zsh

 	
 Matches one or more occurrences of the pattern
 x (like the regular expresssion (Section 32.15) x+).
 The pattern can have parentheses (
) around it. You must have set the
 EXTENDED_GLOB option.

Note that wildcards do
 not match files whose names begin with a dot (.), like .cshrc. This prevents you from deleting (or otherwise mucking
 around with) these files by accident. The usual way to match those files is to
 type the dot literally. For example, .[a-z]*
 matches anything whose name starts with a dot and a lowercase letter. Watch out
 for plain .*, though; it matches the
 directory entries . and ... If you’re constantly needing to match
 dot-files, though, you can set the bash
 variable glob_dot_filenames and the zsh option GLOB_DOTS to
 include dot-files’ names in those shells’ wildcard expansion.
You can prevent wildcard expansion by quoting
 (

 Section 27.12, Section 27.13), of course. In the C
 shells, you can stop all wildcard expansion (which is also called
 globbing, by the way) without quoting if you set the
 noglob shell variable. In bash, ksh, and zsh, set the noglob

 option.

 And a final note: many
 operating systems (VAX/VMS and DOS included)
 consider a file’s name and extension
 to be different entities; therefore, you can’t use a single wildcard to match
 both. What do we mean? Consider the file abc.def. Under DOS
 or VMS, to match this filename you’d need the wildcard expression *.*. The first * matches the name (the part before the period), and the second
 matches the extension (the part after the period). Although Unix uses
 extensions, they aren’t considered a separate part of the filename, so a single
 * will match the entire name.

—JP, ML, and SJC

Who Handles Wildcards?

Wildcards (Section 1.13)

 are
 actually defined by the Unix shells, rather than the Unix filesystem. In theory,
 a new shell could define new wildcards, and consequently, we should discuss
 wildcarding when we discuss the shell. In practice, all Unix shells (including
 ksh, bash, and other variants (Section 1.6)) honor the same wildcard
 conventions, and we don’t expect to see anyone change the rules. (But most new
 shells also have extended wildcards (Section 33.2). And different shells do
 different things when a wildcard doesn’t match
 (Section 33.4).)
You may see different wildcarding if you have a special-purpose shell that
 emulates another operating system (for example, a shell
 that looks like the COMMAND.COM in MS-DOS) — in this case, your shell will obey
 the other operating system’s wildcard rules. But even in this case, operating
 system designers stick to a reasonably similar set of wildcard rules.
The fact that the shell defines wildcards, rather than the filesystem itself
 or the program you’re running, has some important implications for a few
 commands. Most of the time, a program never sees wildcards. For example, the
 result of typing:
% lpr *
is exactly the same as typing:
% lpr
 file1 file2 file3 file4 file5
In this case everything works as expected. But
 there are other situations in which wildcards don’t work at all. Assume you want
 to read some files from a tape, which requires the command tar x (Section 38.6),
 so you type the command tar x *.txt. Will you
 be happy or disappointed?
You’ll be disappointed — unless older versions of the files you want are
 already in your current directory (Section 1.16). The shell expands the
 wildcard *.txt, according to what’s in the
 current directory, before it hands the completed command line over to
 tar for execution. All tar
 gets is a list of files. But you’re probably not interested in the current
 directory; you probably want the wildcard *
 to be expanded on the tape, retrieving any *.txt files that the tape has.
There’s a way to
 pass wildcards to programs, without having them interpreted by the shell. Simply
 put *.txt in quotes (Section
 27.12).
 The quotes prevent the Unix shell from
 expanding the wildcard, passing it to the command unchanged. Programs that can
 be used in this way (like ssh and scp (Section 46.6)) know how to handle
 wildcards, obeying the same rules as the shell (in fact, these programs usually
 start a shell to interpret their arguments). You only need to make sure that the
 programs see the wildcards, that they aren’t stripped by the shell before it
 passes the command line to the program. As a more general rule, you should be
 aware of when and why a wildcard gets expanded, and you should know how to make
 sure that wildcards are expanded at an appropriate time.
Note

 If your shell understands the {} characters (Section 28.4), you can use them because they can generate any
 string — not just filenames that already exist. You have to type the unique
 part of each name, but you only have to type the common part once. For
 example, to extract the files called
 project/wk9/summary,
 project/wk14/summary, and
 project/wk15/summary from a tar tape or file, you might use:
% tar xv project/wk{9,14,15}/summary
x project/wk9/summary, 3161 bytes, 7 tape blocks
x project/wk14/summary, 878 bytes, 2 tape blocks
x project/wk15/summary, 2268 bytes, 5 tape blocks

Some versions of tar understand wildcards,
 but many don’t. There is a clever workaround
 (Section 38.10).

— ML

What if a Wildcard Doesn’t Match?

 I ran
 into a strange situation the other day. I was compiling a program that was
 core dumping. At some point, I decided to delete
 the object files and the core file, and
 start over, so I gave the command:
% rm *.o core
It works as expected most of the time, except when no object files exist. (I
 don’t remember why I did this, but it was probably by using !! (Section
 30.8) when I knew there weren’t any .o’s
 around.) In this case, you get No
 match, and the core file is not
 deleted.
It turns out, for C shell users,
 that if none of the wildcards can be expanded, you get a No match error. It doesn’t matter that there’s a
 perfectly good match for other name(s). That’s because, when csh can’t match a wildcard, it aborts and prints
 an error — it won’t run the command. If you create one .o
 file or remove the *.o from the command line,
 core will disappear happily.
On the other hand, if the Bourne shell can’t
 match a wildcard, it just passes the unmatched wildcard and other
 filenames:
*.o core
to the command (in this case, to rm) and
 lets the command decide what to do with it. So, with Bourne shell, what happens
 will depend on what your rm command does when
 it sees the literal characters *.o.
The Korn shell works like the Bourne shell.
You can make csh and tcsh
 act a lot
 like sh (and ksh) by setting the shell’s nonomatch
 option. Without nonomatch set, the shell sees a nonmatching
 wildcard and never runs ls at all. Then I set
 nonomatch and the shell passes the unmatched wildcard
 on to ls, which prints its own error
 message:
% ls a*
ls: No match.
% set nonomatch
% ls a*
ls: a*: No such file or directory
In bash
 Version 1, the option
 allow_null_glob_expansion converts nonmatching wildcard
 patterns into the null string. Otherwise, the wildcard is left as is without
 expansion. Here’s an example with echo (Section 27.5), which simply shows the
 arguments that it gets from the shell. In the directory where I’m running this
 example, there are no names starting with a, but there are
 two starting with s. In the first case below,
 allow_null_glob_expansion isn’t set, so the shell
 passes the unmatched a* to echo. After setting
 allow_null_glob_expansion, the shell removes the
 unmatched a* before it passes the results to
 echo:
bash$ echo a* s*
a* sedscr subdir
bash$ allow_null_glob_expansion=1
bash$ echo a* s*
sedscr subdir
bash Version 2 leaves nonmatching wildcard
 patterns as they are unless you’ve set the shell’s nullglob
 option (shopt -s nullglob). The
 nullglob option does the same thing that allow_null_glob_expansion=1 does in bash version 1.
zsh
 gives you all of those choices. See the
 options CSH_NULL_GLOB, NOMATCH and
 NULL_GLOB.
—ML and JP

Maybe You Shouldn’t Use Wildcards in Pathnames

 Suppose
 you’re giving a command like the one below (not necessarily rm — this applies to any Unix command):
% rm /somedir/otherdir/*
Let’s say that matches 100 files. The rm
 command gets 100 complete pathnames from the shell: /somedir/otherdir/afile, /somedir/otherdir/bfile, and so on. For each of these files, the
 Unix kernel has to start at the root directory, then search the somedir and otherdir directories before it finds the file to remove.
That can make a significant difference, especially if your disk is already
 busy. It’s better to cd to the directory
 first and run the rm from there. You can do
 it in a subshell (with parentheses) (Section 43.7) if you want to, so you
 won’t have to cd back to where you
 started:
&&
 Section 35.14
% (cd /somedir/otherdir && rm *)
There’s one more benefit to this second way: you’re not as likely to get the
 error Arguments too long. (Another way to
 handle long command lines is with the xargs
 (Section 28.17) command.)
— JP

Getting a List of Matching Files with grep -l

Normally

 when you run grep (Section 13.1) on
 a group of files, the output lists the filename along with the line containing
 the search pattern. Sometimes you want to know only the names of the files, and
 you don’t care to know the line (or lines) that match. In this case, use the
 -l (lowercase letter “l”) option to list only filenames
 where matches occur. For example, the following command:
% grep -l R6
 file1 file2 ...
 > r6.filelist
searches the files for a line containing the string R6, produces a list of those filenames, and stores the list in
 r6.filelist. (This list might represent
 the files containing Release 6 documentation of a particular product.) Because
 these Release 6 files can now be referenced by one list, you can treat them as a
 single entity and run various commands on them all at once:
'...'
 Section 28.14
% lpr `cat r6.filelist`
 Print only the Release 6 files
% grep UNIX `cat r6.filelist`
 Search limited to the Release 5 files
You don’t have to create a file list, though. You can insert the output of a
 grep directly into a command line with
 command substitution. For example, to edit only the subset of files containing
 R6, you would type:
% vi `grep -l R6
 file1 file2 ...`
(Of course, you also could use a wildcard like
 file* instead of a list of filenames.)
grep -l is also good for shell programs
 that need to check whether a file contains a particular string. The traditional
 way to do that test is by throwing away grep’s output and checking its exit status:
if grep something somefile >/dev/null
then ...
If somefile is huge, though, grep has to search all of it. Adding the grep -l option saves time because grep can stop searching after it finds the first
 matching line.
—DG and JP

Getting a List of Nonmatching Files

You can use the grep (

 Section 13.2) option
 -c to tell you how many occurrences of a pattern appear in
 a given file, so you can also use it to find files that
 don’t contain a pattern (i.e., zero occurrences of the
 pattern). This is a handy technique to package into a shell script.
Using grep -c

Let’s say you’re indexing a DocBook (SGML) document and
 you want to make a list of files that don’t yet contain indexing tags. What
 you need to find are files with zero occurrences of the string <indexterm>. (If your tags might be
 uppercase, you’ll also want the -i option
 (Section 9.22).) The following
 command:
% grep -c "<indexterm>" chapter*
might produce the following output:
chapter1.sgm:10
chapter2.sgm:27
chapter3.sgm:19
chapter4.sgm:0
chapter5.sgm:39
 ...
This is all well and good, but suppose you need to check index entries in
 hundreds of reference pages. Well, just filter grep’s output by piping it through another grep. The previous command can be modified as
 follows:
% grep -c "<indexterm>" chapter* | grep :0
This results in the following output:
chapter4.sgm:0
Using sed (Section 34.1) to truncate the
 :0, you can save the output as a list
 of files. For example, here’s a trick for creating a list of files that
 don’t contain index macros:
% grep -c "<indexterm>" * | sed -n 's/:0$//p' > ../not_indexed.list
The sed -n command prints only the
 lines that contain :0; it also strips the
 :0 from the output so that ../not_indexed.list contains a list of files,
 one per line. For a bit of extra safety, we’ve added a $ anchor (Section
 32.5) to be sure sed matches
 only 0 at the end of a line — and not,
 say, in some bizarre filename that contains :0. (We’ve quoted (Section 27.12) the $ for safety — though it’s not really
 necessary in most shells because $/ can’t
 match shell variables.) The .. pathname
 (Section 1.16) puts the
 not_indexed.list file into the
 parent directory — this is one easy way to keep grep from searching that file, but it may not be worth the
 bother.
To edit all files that need index macros added, you could type
 this:
% vi `grep -c "<indexterm>" * | sed -n 's/:0$//p'`
This command is more obvious once you start using backquotes a lot.

The vgrep Script

 You
 can put the grep -c
 technique into a little script named vgrep with a couple of
 safety features added:
"$@"
 Section 35.20
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 vgrep
#!/bin/sh
case $# in
0|1) echo "Usage: `basename $0` pattern file [files...]" 1>&2; exit 2 ;;
2) # Given a single filename, grep returns a count with no colon or name.
 grep -c -e "$1" "$2" | sed -n "s|^0\$|$2|p"
 ;;
*) # With more than one filename, grep returns "name:count" for each file.
 pat="$1"; shift
 grep -c -e "$pat" "$@" | sed -n "s|:0\$||p"
 ;;
esac
Now you can type, for example:
% vi `vgrep "<indexterm>" *`
One of the script’s safety features works around a problem that happens if
 you pass grep just one filename. In that
 case, most versions of grep won’t print
 the file’s name, just the number of matches. So the first sed command substitutes a digit 0 with the filename.
The second safety feature is the grep

 -e option. It tells grep that the following argument is the search pattern, even
 if that pattern looks like an option because it starts with a dash (-). This lets you type commands like vgrep -0123 * to find files that don’t contain
 the string -0123.
—DG and JP

nom: List Files That Don’t Match a Wildcard

[image:] Go to http://examples.oreilly.com/upt3 for more information on: nom
The nom
 (no match)

 script
 takes filenames (usually expanded by the shell) from its command line. It
 outputs all filenames in the current directory that don’t
 match. As Section 33.2 shows, some
 shells have an operator — ! or ^ — that works like nom, but other shells don’t. Here are some examples of nom:
	To get the names of all files that don’t end with
 .ms:
% nom *.ms

	To edit all files whose names don’t have any lowercase letters, use
 command substitution (Section 27.14):
% vi `nom *[a-z]*`

	To copy all files to a subdirectory named Backup (except Backup itself):
% cp `nom Backup` Backup

Here’s the script:
trap
 Section 35.17, case
 Section 35.11, $*
 Section 35.20, comm
 Section 11.8
#! /bin/sh
temp=/tmp/NOM$$
stat=1 # Error exit status (set to 0 before normal exit)
trap 'rm -f $temp; exit $stat' 0 1 2 15

Must have at least one argument, and all have to be in current directory:
case "$*" in
"") echo Usage: `basename $0` pattern 1>&2; exit ;;
/) echo "`basename $0` quitting: I can't handle '/'s." 1>&2; exit ;;
esac

ls gives sorted file list. -d=don't enter directories, -1=one name/line.
ls -d ${1+"$@"} > $temp # Get filenames we don't want to match
ls -1 | comm -23 - $temp # Compare to current dir; output names we want
stat=0
The -d option (Section 8.5) tells ls to list the names of any directories, not their
 contents. The ${1+"$@"} (Section 36.7) works around a problem in
 some Bourne shells. You can remove the -1 option on the
 script’s ls command line if your version of
 ls lists one filename per line by
 default; almost all versions of ls do that
 when they’re writing into a pipe. Note that nom doesn’t know about files whose names begin with a dot (.);
 you can change that if you’d like by adding the ls
 -A option (uppercase letter “A”, which isn’t
 on all versions of ls).
Finally, if you’ve got a shell with
 process substitution, such as bash, which is
 what we use below, you can rewrite nom
 without the temporary file and the trap:
#!/bin/bash
Must have at least one argument, and all have to be in current directory:
case "$*" in
"") echo Usage: `basename $0` pattern 1>&2; exit ;;
/) echo "`basename $0` quitting: I can't handle '/'s." 1>&2; exit ;;
esac

ls gives sorted file list. -d=don't enter directories, -1=one name/line.
Compare current directory with names we don't want; output names we want:
comm -23 <(ls -1) <(ls -d "$@")

Chapter 34. The sed Stream Editor

sed Sermon^H^H^H^H^H^HSummary

^H^H^H are ASCII backspace characters.

 Written
 printably in email and Usenet messages, they’re a tongue-in-cheek way of
 “erasing” the characters before without actually erasing them. They let you say
 “I didn’t want you to see that” when you actually do.
sed (stream
 editor) amazes me. Why? It’s not just that sed can edit data as it streams through a pipe
 (like all well-behaved Unix filters (Section 1.5) do). sed can test and branch and substitute and hold
 and exchange data as it streams through, but so can almost any scripting
 language. Maybe it’s the minimalist in me that loves a tiny program (by today’s
 standards, at least) with just a few operations — but operations so well-chosen
 that they make the tool powerful for its size. Sure, sure, Perl probably can do
 everything that sed can — and do each of
 those things in twenty different ways. Ah, I’ve got it: when I’m trying to do
 anything more than a simple substitution on data streaming by, sed’s elegant simplicity almost forces me to strip
 a problem to its basics, to think of what I really need to do. No functions, no
 libraries, nothing except beautifully simple functionality.
[As someone who learned Perl regular expressions before I learned sed, I can relate to what Jerry is saying. One of
 the things I like about the classic Unix toolbox programs like sed is that they really do force you into a sort
 of Shaker-like elegant simplicity; the best programs, no matter what the
 language, have a quality like a Shaker chair: pure function, but with a respect
 for the fact that function doesn’t have to be ugly. —
 SJC]
End of sermon. ;-) Even if you aren’t into
 elegance and simplicity, and you just wanna get the job done, what do we cover
 about sed that might be useful?
In this chapter, we start out with the basics: Section 34.2, Section 34.3, Section 34.4, Section 34.5, Section 34.6, and Section 34.7 show you how to get
 started, how to test your scripts, and how to structure more advanced scripts.
 Section 34.8 through Section 34.14 cover regular expressions
 and complex transformations. Section
 34.15 through Section
 34.24 deal with advanced topics such as multiline matching and
 deletions, tests, and exiting a script when you’re done.
—JP and SJC

Two Things You Must Know About sed

If you are already
 familiar with global edits in other editors like vi or ex, you know most of
 what you need to know to begin to use sed.
 There are two things, though, that make it very different:
	It doesn’t change the file it
 edits. It is just what its name says: a "stream
 editor” — designed to take a stream of data
 from standard input (Section 43.1) or a file,
 transform it, and pass it to standard
 output (Section
 43.1). If you want to edit a file, you have to write a
 shell wrapper (Section 34.4) to capture
 standard output and write it back into your original file.

	sed
 commands are implicitly global. In
 an editor like ex, the
 command:
s/old/new/
will change “old” to “new” only on the current line unless you use the
 global command or various addressing symbols to apply it to additional
 lines. In sed, exactly the opposite
 is true. A command like the one above will be applied to all lines in a
 file. Addressing symbols are used to limit the
 extent of the match. (However, like ex, only the first occurrence of a pattern on a given
 line will be changed unless the g flag is added to
 the end of the substitution command.)

If all you want to do is make simple substitutions, you’re ready to go. If you
 want to do more than that, sed has some
 unique and powerful commands.
This chapter makes no attempt to cover everything there is to know about
 sed. For the most part, this chapter
 simply contains advice on working with sed
 and extended explanations of how to use some of its more difficult
 commands.
— TOR

Invoking sed

 If you were
 using sed on the fly, as a stream editor (Section 34.2), you might execute it as simply as this:
% somecommand
 | sed 's/old/new/' |
 othercommand
Given filenames, sed will read them instead
 of standard input:
% sed 's/old/new/' myfile
A simple script can go right on the command line. If you want to execute more
 than one editing command, you can use the -e

 option:
% sed -e 's/old/new/' -e '/bad/d' myfile
Or you can use semicolons (;), which are a
 sed command separator:
% sed 's/old/new/; /bad/d' myfile
Or (especially useful in shell scripts (Section 1.8)) you can use the Bourne
 shell’s ability to understand multiline commands:
sed '
s/old/new/
/bad/d' myfile
Or you can put your commands into a file and tell sed to read that file with the -f

 option:
% sed -f scriptfile myfile
There’s only one other command-line option: -n
 . sed normally prints every line of its input
 (except those that have been deleted by the editing script). But there are times
 when you want only lines that your script has affected or that you explicitly
 ask for with the p command. In these cases, use
 -n to suppress the normal output.
— TOR

Testing and Using a sed Script: checksed, runsed

All but the simplest sed scripts are often invoked from a “shell
 wrapper,” a shell script (Section 35.2) that invokes sed and also contains the editing commands that
 sed executes. A shell wrapper is an easy
 way to turn what could be a complex command line into a single-word command. The
 fact that sed is being used might be
 transparent to users of the command.
Two shell scripts that you should immediately arm yourself with are described
 here. Both use a shell for loop (
 Section 35.21) to apply the same
 edits to any number of files. But the first just shows the changes, so you can
 make sure that your edits were made correctly. The second writes the edits back
 into the original file, making them permanent.
checksed

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 checksed

 The shell script checksed automates the process of checking the edits that
 sed makes. It expects to find the
 script file, sedscr, in the current directory and
 applies these instructions to the input files named on the command line. The
 output is shown by a pager program; the default pager is more

 .
#! /bin/sh
script=sedscr

for file
do
 echo "********** < = $file > = sed output **********"
 sed -f $script "$file" | diff "$file" -
done | ${PAGER-more}
For example:
$ cat sedscr
s/jpeek@ora\.com/jpeek@jpeek.com/g
$ checksed home.html new.html
********** < = home.html > = sed output **********
102c102
< Email it or use this form:
--
> Email it or use this form:
124c124
< Page created by: jpeek@ora.com>
--
> Page created by: jpeek@jpeek.com
********** < = new.html > = sed output **********
22c22
< Send comments to me!

> Send comments to me!
If you find that your script did not produce the results you expected,
 perfect the editing script and run checksed again.

runsed

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 runsed

 The
 shell script runsed was developed to make changes to a file permanently.
 It applies your sedscr to an input file, creates a
 temporary file, then copies that file over the original. runsed has several safety checks:
	It won’t edit the sed script
 file (if you accidentally include sedscr on the
 command line).

	It complains if you try to edit an empty file or something that
 isn’t a file (like a directory).

	If the sed script doesn’t
 produce any output, runsed aborts
 instead of emptying your original file.

runsed only modifies a file if your
 sedscr made edits. So, the file’s timestamp (
 Section 8.2) won’t change if the
 file’s contents weren’t changed.
Like checksed, runsed expects to find a sed script named sedscr in the directory
 where you want to make the edits. Supply the name or names of the files to
 edit on the command line. Of course, shell
 metacharacters (Section
 33.2) can be used to specify a set of files:
$ runsed *.html
runsed: editing home.html:
runsed: done with home.html
runsed: editing new.html:
runsed: done with new.html
runsed: all done
runsed does not protect you from
 imperfect editing scripts. You should use checksed first to verify your changes before actually making
 them permanent with runsed. (You could
 also modify runsed to keep backup copies
 of the original versions.)
—DD, JP, and TOR

sed Addressing Basics

 A sed
 command can specify zero, one, or two addresses. An address can be a line
 number, a line addressing symbol, or a regular
 expression (
 Section 32.4) that describes a
 pattern.
	If no address is specified, the command is applied to each
 line.

	If there is only one address, the command is applied to any line
 matching the address.

	If two comma-separated addresses are specified, the command is
 performed on the first matching line and all succeeding lines up to and
 including a line matching the second address. This range may match
 multiple times throughout the input.

	If an address is followed by an exclamation mark (!), the command is applied to all lines that do
 not match the address.

To illustrate how addressing works, let’s look at examples using the

 delete command, d. A
 script consisting of simply the d command and no
 address:
d
produces no output since it deletes all lines.
When a line number is supplied as an address, the
 command affects only that line. For instance, the following example deletes only
 the first line:
1d
The line number refers to an internal line count maintained by sed. This counter is not reset for multiple input
 files. Thus, no matter how many files were specified as input, there is only one
 line 1 in the input stream.
Similarly, the input stream has only one last line. It can be specified using
 the addressing symbol,
 $. The following example deletes the last
 line of input:
$d
The $ symbol should not be confused with
 the $ used in regular expressions, where it
 means the end of the line.
When a regular
 expression is supplied as an address, the command affects only the lines
 matching that pattern. The regular expression must be enclosed by slashes
 (/). The following delete command:
/^$/d
deletes only blank lines. All other lines are passed through untouched.
If you supply two addresses, you specify a range of lines over which the
 command is executed. The following example shows how to delete all lines
 surrounded by a pair of XHTML tags, in this case, and ,
 that mark the start and end of an unordered list:
/^/,/^<\/ul>/d
It deletes all lines beginning with the line matched by the first pattern up
 to and including the line matched by the second pattern. Lines outside this
 range are not affected. If there is more than one list (another pair of and after the first), those lists will also be
 deleted.
The following command deletes from line 50 to the last line in the
 file:
50,$d
You can mix a line address and a pattern address:
1,/^$/d
This example deletes from the first line up to the first blank line, which,
 for instance, will delete the header from an email message.
You can think of the first address as enabling the action and the second
 address as disabling it. sed has no way of
 looking ahead to determine if the second match will be made. The action will be
 applied to lines once the first match is made. The command will be applied to
 all subsequent lines until the second match is made. In
 the previous example, if the file did not contain a blank line, then all lines
 would be deleted.
An exclamation mark following an address reverses the sense of the match. For
 instance, the following script deletes all lines except
 those inside XHTML unordered lists:
/^/,/^<\/ul>/!d
Curly braces ({}) let you give more than
 one command with an address. For example, to search every line of a list,
 capitalize the word Caution on any of those
 lines, and delete any line with
:
/^/,/^<\/ul>/{
 s/Caution/CAUTION/g
 /<br \/>/d
}

Order of Commands in a Script

 Combining a series of edits in a script can have
 unexpected results. You might not think of the consequences one edit can have on
 another. New users typically think that sed
 applies an individual editing command to all lines of input before applying the
 next editing command. But the opposite is true. sed applies every editing command to the first input line before
 reading the second input line and applying the editing script to it. Because
 sed is always working with the latest
 version of the original line, any edit that is made changes the line for
 subsequent commands. sed doesn’t retain the
 original. This means that a pattern that might have matched the original input
 line may no longer match the line after an edit has been made.
Let’s look at an example that uses the substitute command. Suppose someone
 quickly wrote the following script to change pig to cow and cow to horse:
s/pig/cow/
s/cow/horse/
The first command would change pig to
 cow as expected. However, when the second
 command changed cow to horse on the same line, it also changed the
 cow that had been a pig. So, where the input file contained pigs and
 cows, the output file has only horses!
This mistake is simply a problem of the order of the commands in the script.
 Reversing the order of the commands — changing cow into horse before changing
 pig into cow — does the trick.
Another way to deal with this effect is to use a pattern you know won’t be in
 the document except when you put it there, as a temporary placeholder. Either
 way, you know what the “document” looks like after each step in the
 program.
s/pig/cXXXoXXXw/
s/cow/horse/
s/cXXXoXXXw/cow/
Some sed commands change the flow through
 the script. For example, the N command (Section 34.16) reads another line into
 the pattern space without removing the current line, so you can test for
 patterns across multiple lines. Other commands tell sed to exit before reaching the bottom of the script or to go to
 a labeled command. sed also maintains a
 second temporary buffer called the hold space. You can copy
 the contents of the pattern space to the hold space and retrieve it later. The
 commands that make use of the hold space are discussed in Section 34.14 and other articles after
 it.
— DD

One Thing at a Time

I find
 that when I begin to tackle a problem using sed, I do best if I make a mental list of all the things I want
 to do. When I begin coding, I write a script containing a single command that
 does one thing. I test that it works, then I add another command, repeating this
 cycle until I’ve done all that’s obvious to do. I say what’s obvious because my
 list is not always complete, and the cycle of implement-and-test often adds
 other items to the list. Another approach involves actually typing the list of
 tasks into a file, as comments, and then slowly replacing them with sed
 commands. If you’re one of the rare but highly appreciated breed that actually
 documents their code, you can just leave the comments in the script or expand on
 them.
It may seem to be a rather tedious process to work this way, and indeed there
 are a number of scripts where it’s fine to take a crack at writing the whole
 script in one pass and then begin testing it. However, the one-step-at-a-time
 method is highly recommended for beginners, because you isolate each command and
 get to easily see what is working and what is not. When you try to do several
 commands at once, you might find that when problems arise, you end up recreating
 the recommended process in reverse; that is, removing or commenting out commands
 one by one until you locate the problem.
— DD

Delimiting a Regular Expression

Whether in

 sed or vi,
 when using the substitution
 command, a delimiter is required to separate the
 search pattern from the replacement
 string. The delimiter can be any character except blank or a newline (vi
 seems to be more
 restrictive than sed, although vim is extremely flexible). However, the usual
 practice is to use the slash (/) as a delimiter (for example, s/
 search
 /
 replacement
 /).
When either the search pattern or the
 replacement string contains a slash, it is easier to change the delimiter
 character than to escape the slash. Thus, if the pattern was attempting to match
 Unix pathnames, which contain slashes, you could choose another character, such
 as a colon, as the delimiter:
s:/usr/mail:/usr2/mail:
Note that the delimiter appears three times and is required after the
 replacement. Regardless of which delimiter you use, if it does appear in the
 search pattern or the replacement, put a backslash (\) before it to escape it.
If you don’t know what characters the search pattern might have (in a shell
 program that handles any kind of input, for instance), the safest choice for the
 delimiter can be a control character.
You can use any delimiter for a pattern address (not just a slash). Put a
 backslash before the first delimiter. For example, to delete all lines
 containing /usr/mail, using a colon (:) as the
 delimiter:
\:/usr/mail:d
—DD and JP

Newlines in a sed Replacement

 The
 backslash (\) in the replacement string of
 the sed
 substitution command is generally
 used to escape other metacharacters, but it is also used to include a newline in
 a replacement string.
Given the following input line where each item is separated by a tab:
Column1 Column2 Column3 Column4
we can replace the second tab character on each line with a newline
 character:
2
 Section 34.12
s/TAB/\
/2
Note that no spaces are permitted after the backslash. This script produces
 the following result:
Column1 Column2
Column3 Column4
Another example comes from the conversion of a file for troff to HTML. It converts the following line for
 troff:
.Ah "Major Heading"
to a similar line for HTML:
<h1>Major Heading</h1>
The twist in this problem is that the line needs to be preceded and followed
 by a blank line. It is an example of writing a multiline replacement string:
/^\.Ah/{
s/\.Ah */\
\
<h1>
s/"//g
s@$@</h1>\
@
}
The first substitute command replaces .Ah
 with two newlines and <h1>. Each
 backslash at the end of the line is necessary to escape the newline. The second
 substitution removes the quotation marks. The last command matches end of line
 in the pattern space (not the embedded newline); it appends </h1> and a newline. We use @ as the delimiter, instead of /,
 to avoid conflicts with the / in </h1>.
— DD

Referencing the Search String in a Replacement

 As a metacharacter, the ampersand (&
) represents the extent of the
 pattern match, not the line that was matched. For instance, you might use it to
 match a word and surround it with troff
 requests. The following example surrounds a word with point-size
 requests:
s/UNIX/\\s-2&\\s0/g
Because backslashes are also replacement metacharacters, two backslashes are
 necessary to output a single backslash. The & in the replacement string refers to the string which was
 originally matched, UNIX. If the input line
 is:
on the UNIX Operating System.
the substitute command produces:
on the \s-2UNIX\s0 Operating System.
The ampersand is particularly useful when the regular expression matches
 variations of a word. It allows you to specify a variable replacement string
 that corresponds to what was actually matched. For instance, let’s say that you
 wanted to surround with parentheses any cross reference to a numbered section in
 a document. In other words, any reference such as See
 Section 1.4 or See Section 12.9
 should appear in parentheses, as (See Section
 12.9). A regular expression can match the different combination of
 numbers, so we use & in the replacement
 string and surround whatever was matched:
s/See Section [1-9][0-9]*\.[1-9][0-9]*/(&)/
The ampersand makes it possible to reference the entire match in the
 replacement string.
In the next example, the backslash is used to escape the ampersand, which
 appears literally in the replacement section:
s/ORA/O'Reilly \& Associates, Inc./g
It’s easy to forget about the ampersand appearing literally in the replacement
 string. If we had not escaped it in this example, the output would have been
 O'Reilly ORA Associates, Inc.
— DD

Referencing Portions of a Search String

 In sed, the
 substitution command provides metacharacters
 to select any individual portion of a string that is matched and recall it in
 the replacement string. A pair of escaped parentheses are used in sed to enclose any part of a regular expression
 and save it for recall. Up to nine “saves” are permitted for a single line.
 \
 n is used to recall the portion of the match that was
 saved, where n is a number from 1 to 9 referencing a
 particular “saved” string in order of use. (Section 32.13 has more information.)
For example, when converting a
 plain-text document into HTML, we could convert section numbers that appear in a
 cross-reference into an HTML hyperlink. The following expression is broken onto
 two lines for printing, but you should type all of it on one line:
s/\([sS]ee \)\(Section \)\([1-9][0-9]*\)\.\([1-9][0-9]*\)/
 \1\2\3.\4<\/a>/
Four pairs of escaped parentheses are specified. String 1 captures the word
 see with an upper- or lowercase s.
 String 2 captures the section number (because this is a fixed string, it could
 have been simply retyped in the replacement string). String 3 captures the part
 of the section number before the decimal point, and String 4 captures the part
 of the section number after the decimal point. The replacement string recalls
 the first saved substring as \1. Next starts
 a link where the two parts of the section number, \3 and \4, are separated by an
 underscore (_) and have the string SEC- before them. Finally, the link text replays
 the section number again — this time with a decimal point between its parts.
 Note that although a dot (.) is special in the search pattern and has to be
 quoted with a backslash there, it’s not special on the replacement side and can
 be typed literally. Here’s the script run on a short test document, using
 checksed (Section 34.4):
% checksed testdoc
********** < = testdoc > = sed output **********
8c8
< See Section 1.2 for details.

> See Section 1.2 for details.
19c19
< Be sure to see Section 23.16!

> Be sure to see Section 23.16!
We can use a similar technique to match parts of a line and swap them. For
 instance, let’s say there are two parts of a line separated by a colon. We can
 match each part, putting them within escaped parentheses and swapping them in
 the replacement:
% cat test1
first:second
one:two
% sed 's/\(.*\):\(.*\)/\2:\1/' test1
second:first
two:one
The larger point is that you can recall a saved substring in any order and
 multiple times. If you find that you need more than nine saved matches, or would
 like to be able to group them into matches and submatches, take a look at
 Perl.
Section 43.10, Section 31.10, Section 10.9, and Section 36.23 have examples.
—DD and JP

Search and Replacement: One Match Among Many

One of the more unusual options of sed’s substitution command is the numeric
 flag that allows you to point to one particular match when there are many
 possible matches on a particular line. It is used where a pattern repeats itself
 on a line and the replacement must be made for only one of
 those occurrences by position. For instance, a line, perhaps containing tbl input, might contain multiple tab characters.
 Let’s say that there are three tabs per line, and you’d like to replace the
 second tab with >. The following
 substitute command would do it:
s/TAB/>/2
TAB represents an actual tab character,
 which is otherwise invisible on the screen. If the input is a one-line file such
 as the following:
Column1TABColumn2TABColumn3TABColumn4
the output produced by running the script on this file will be:
Column1TABColumn2>Column3TABColumn4
Note that without the numeric flag, the substitute command would replace only
 the first tab. (Therefore, 1 can be
 considered the default numeric flag.) The range of the allowed numeric value is
 from 1 to 512, though this may be implementation-dependent.
— DD

Transformations on Text

 The transform command
 (y) is useful for exchanging lowercase letters for
 uppercase letters on a line. Effectively, it performs a similar function to
 tr (Section 21.11). It replaces any character found in the first string
 with the equivalent character in the second string. The command:
y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/
will convert any lowercase letter into the corresponding uppercase letter. The
 following:
y/abcdefghijklmnopqrstuvwxyz/nopqrstuvwxyzabcdefghijklm/
would perform a rot13 transformation — a simple form of
 encryption in which each alphabetic character is replaced by the character
 halfway through the alphabet. (rot13 encryption is
 sometimes used to keep offensive (or comical) news
 postings (Section 1.21)
 from being read except by someone who really means to (such as if you have read
 the joke and now want to read the punch line). Encryption and decryption are
 automatically supported by most news readers, but it’s fun to see how simple the
 encryption is. By the way, the command above handles only lowercase letters; if
 we’d shown uppercase as well, the command would have run past the
 margins!)
— TOR

Hold Space: The Set-Aside Buffer

 The
 pattern space is a buffer that contains the current
 input line. There is also a set-aside buffer called the hold
 space

 . The contents of the pattern space can be copied
 to the hold space, and the contents of the hold space can be copied to the
 pattern space. A group of commands allows you to move data between the hold
 space and the pattern space. The hold space is used for temporary storage, and
 that’s it. Individual commands can’t address the hold space or alter its
 contents.
The most frequent use of the hold space is to have it retain a duplicate of
 the current input line while you change the original in the pattern space. [It’s
 also used as a way to do the “move” and “copy” commands that most editors have —
 but which sed can’t do directly because it’s
 designed for editing a stream of input text line-by-line. —
 GU] The commands that affect the hold space are:
	

 Hold

 	

 h

 	
 Copy contents of pattern space to hold space, replacing
 previous.

	 	

 H

 	
 Append newline, then append contents of pattern space, to
 hold space.

	

 Get

 	

 g

 	
 Copy contents of hold space to pattern space, replacing
 previous.

	 	

 G

 	
 Append newline, then append contents of hold space, to
 pattern space.

	

 Exchange

 	
 x

 	
 Swap contents of hold space and pattern space.

Each of these commands can take an address that specifies a single line or a
 range of lines. The
 hold commands (h,
 H) move data into the hold space and the get commands
 (g, G) move data from the hold
 space back into the pattern space. The difference between the lowercase and
 uppercase versions of the same command is that the lowercase command overwrites
 the contents of the target buffer, while the uppercase command appends to the
 existing contents after adding a newline.
The hold command replaces the contents of the hold space with the contents of
 the pattern space. The get command replaces the contents of the pattern space
 with the contents of the hold space. The Hold command puts a newline followed by
 the contents of the pattern space after the contents of the hold space. (The
 newline is appended to the hold space even if the hold space is empty.) The Get
 command puts a newline followed by the contents of the hold space after the
 contents of the pattern space.
The

 exchange command (x) swaps
 the contents of the two buffers. It has no side effects on either buffer.
Here’s an example to illustrate putting lines into
 the hold space and retrieving them later. We are going to write a script that
 reads a particular HTML file and copies all headings to the end of the file for
 a summary. The headings we want start with <h1> or <h2>. For
 example:
...
<body>
<h1>Introduction</h1>
The blah blah blah
<h1>Background of the Project</h1>
 ...
<h2>The First Year</h2>
 ...
<h2>The Second Year</h2>
 ...
</body>
The object is to copy those headings into the hold space as sed reads them. When sed reaches the end of the body (at the </body> tag), output Summary:, then output the saved tags without the heading tags
 (<h1> or <h2>).
Look at the script:
/^<h[12]>/H
/^<\/body>/ {
 i\
Summary:
 x
 G
 s/<\/*h[12]>//g
}
Any line matching <h1> or <h2> is added to the hold space. (All those
 lines are also printed; that’s the default in sed unless lines have been deleted.[1]) The last part of the script watches for the </body> tag. When it’s reached,
 sed inserts the Summary: heading. Then the script uses x to exchange the pattern space (which has the </body> tag) with the saved headers from the
 hold space. Now the pattern space has the saved headers. Next, G adds the </body> tag to the end of the headers in the pattern space.
 Finally, a substitute command strips the <h1>, </h1>,
 <h2>, and </h2> tags. At the end of the script, the pattern space is
 printed by default.
The sequence of x followed by G is a
 way to find a matching line — in this case, </body> — and insert the contents of the hold space before
 the matched line. In other words, it’s like an i command
 that inserts the hold space at the current line.
The script could do more cleanup and formatting. For instance, it could make
 the saved headings into a list with and . But
 this example is mostly about the hold space.
Here’s the result of running the script on the sample file:
% sed -f sedscr report.html
 ...
<body>
<h1>Introduction</h1>
The blah blah blah
<h1>Background of the Project</h1>
 ...
<h2>The First Year</h2>
 ...
<h2>The Second Year</h2>
 ...
Summary:

Introduction
Background of the Project
The First Year
The Second Year
</body>
For other scripts that use the hold space, see Section 34.18. For a fanciful analogy
 that makes clear how it works, see Section 34.17.

—DD and JP

Transforming Part of a Line

 The
 transform command, y (Section 34.13), acts on the entire
 contents of the pattern space. It is something of a chore to do a
 letter-by-letter transformation of a portion of the line, but it is possible
 (though convoluted) as the following example demonstrates. [The real importance
 of this example is probably not the use of the y command,
 but the use of the hold space to isolate and preserve part of the
 line. — TOR]
While working on a programming guide, we found
 that the names of statements were entered inconsistently. They needed to be
 uppercase, but some were lowercase while others had an initial capital letter.
 While the task was simple — to capitalize the name of the statement — there were
 nearly a hundred statements and it seemed a tedious project to write that many
 explicit substitutions of the form:
s/find the Match statement/find the MATCH statement/g
The transform command could do the lowercase-to-uppercase conversion, but it
 applies the conversion to the entire line. The hold space makes this task
 possible because we use it to store a copy of the input line while we isolate
 and convert the statement name in the pattern space. Look at the script
 first:
capitalize statement names
/the .* statement/{
 h
 s/.*the \(.*\) statement.*/\1/
 y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/
 G
 s/\(.*\)\n\(.*the \).*\(statement.*\)/\2\1\3/
}
The address limits the procedure to lines that match the .* statement. Let’s look at what each command does:
	h
	The hold command copies the current input line into the hold
 space. Using the sample line find the Match
 statement, we’ll show what the contents of the pattern
 space and hold space contain. After the h
 command, the pattern space and hold space are identical.
	
 Pattern space

 	
 find the Match statement

	
 Hold space

 	
 find the Match statement

	s/.*the \(.*\)
 statement.*/\1/
	The substitute command extracts the name of the statement from the
 line and replaces the entire line with it.
	
 Pattern space

 	
 Match

	
 Hold space

 	
 find the Match statement

	y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/
	The transform command changes each lowercase letter to an
 uppercase letter.
	
 Pattern space

 	
 MATCH

	
 Hold space

 	
 find the Match statement

	G
	The
 Get command appends the line
 saved in the hold space to the pattern space. The embedded newline
 from the Get command is shown as \n.
	
 Pattern space

 	
 MATCH\nfind the Match statement

	
 Hold space

 	
 find the Match statement

	s/\(.*\)\n\(.*the \).*\(
 statement.*\)/\2\1\3/
	The substitute command matches three different parts of the
 pattern space: (1) all characters up to the embedded newline, (2)
 all characters following the embedded newline and up to and
 including the followed by a
 space, and (3) all characters beginning with a space and followed by
 statement up to the end of
 the pattern space. The name of the statement as it appeared in the
 original line is matched but not saved. The replacement section of
 this command recalls the saved portions and reassembles them in a
 different order, putting the capitalized name of the command in
 between the and statement.
	
 Pattern space

 	
 find the MATCH statement

	
 Hold space

 	
 find the Match statement

Let’s look at a test run. Here’s our sample file:
find the Match statement
Consult the Get statement.
using the Read statement to retrieve data
Running the script on the sample file produces:
find the MATCH statement
Consult the GET statement.
using the READ statement to retrieve data
As you can see from this script, the hold space can be skillfully used to
 isolate and manipulate portions of the input line.

— DD

Making Edits Across Line Boundaries

 Most programs that use regular expressions (Section 32.4) are able to match a
 pattern only on a single line of input. This makes it difficult to find or
 change a phrase, for instance, because it can start near the end of one line and
 finish near the beginning of the next line. Other patterns might be significant
 only when repeated on multiple lines.
sed has the ability to load more than one
 line into the pattern space. This allows you to match (and change) patterns that
 extend over multiple lines. In this article, we show how to create a multiline
 pattern space and manipulate its contents.
The multiline Next command,
 N, creates a multiline pattern space by reading a new
 line of input and appending it to the contents of the pattern space. The
 original contents of the pattern space and the new input line are separated by a
 newline. The embedded newline character can be matched in patterns by the escape
 sequence \n. In a multiline pattern space,
 only the metacharacter ^

 matches the newline at
 the beginning of the pattern space, and $
 matches the newline at the end. After the Next command is executed, control is
 then passed to subsequent commands in the script.
The Next command differs from the next command, n, which
 outputs the contents of the pattern space and then reads a new line of input.
 The next command does not create a multiline pattern space.
For our first example, let’s suppose that we wanted to change “Owner and
 Operator Guide” to “Installation Guide”, but we found that it appears in the
 file on two lines, splitting between Operator
 and Guide. For instance, here are a few lines
 of sample text:
Consult Section 3.1 in the Owner and Operator
Guide for a description of the tape drives
available on your system.
The following script looks for Operator at
 the end of a line, reads the next line of input, and then makes the
 replacement:
/Operator$/{
 N
 s/Owner and Operator\nGuide/Installation Guide/
}
In this example, we know
 where the two lines split and where to specify the embedded newline. When the
 script is run on the sample file, it produces the two lines of output, one of
 which combines the first and second lines and is too long to show here. This
 happens because the substitute command matches the embedded newline but does not
 replace it. Unfortunately, you cannot use \n
 to insert a newline in the replacement string. You must either use the backslash
 to escape the newline, as follows:
s/Owner and Operator\nGuide /Installation Guide\
/
or use the \(..\) operators (Section 34.11) to keep the
 newline:
s/Owner and Operator\(\n\)Guide /Installation Guide\1/
This command restores the newline after Installation
 Guide. It is also necessary to match a blank space following
 Guide so the new line won’t begin with a
 space. Now we can show the output:
Consult Section 3.1 in the Installation Guide
for a description of the tape drives
available on your system.
Remember, you don’t have to replace the newline, but if you don’t, it can make
 for some long lines.
What if there are other occurrences of “Owner and Operator Guide” that break
 over multiple lines in different places? You could change the address to match
 Owner, the first word in the pattern
 instead of the last, and then modify the regular expression to look for a space
 or a newline between words, as shown below:
/Owner/{
N
s/Owner *\n*and *\n*Operator *\n*Guide/Installation Guide/
}
The asterisk (*) indicates that the space
 or newline is optional. This seems like hard work though, and indeed there is a
 more general way. We can read the newline into the pattern space and then use a
 substitute command to remove the embedded newline, wherever it is:
s/Owner and Operator Guide/Installation Guide/
/Owner/{
N
s/ *\n/ /
s/Owner and Operator Guide */Installation Guide\
/
}
The first line of the script matches Owner and
 Operator Guide when it appears on a line by itself. (See the
 discussion at the end of the article about why this is necessary.) If we match
 the string Owner, we read the next line into
 the pattern space and replace the embedded newline with a space. Then we attempt
 to match the whole pattern and make the replacement followed by a newline. This
 script will match Owner and Operator Guide
 regardless of how it is broken across two lines. Here’s our expanded test
 file:
Consult Section 3.1 in the Owner and Operator
Guide for a description of the tape drives
available on your system.

Look in the Owner and Operator Guide shipped with your system.

Two manuals are provided, including the Owner and
Operator Guide and the User Guide.

The Owner and Operator Guide is shipped with your system.
Running the above script on the sample file produces the following
 result:
% sed -f sedscr sample
Consult Section 3.1 in the Installation Guide
for a description of the tape drives
available on your system.

Look in the Installation Guide shipped with your system.

Two manuals are provided, including the Installation Guide
and the User Guide.

The Installation Guide is shipped with your system.
In this sample script, it might seem redundant to have two substitute commands
 that match the pattern. The first command matches it when the pattern is found
 already on one line, and the second matches the pattern after two lines have
 been read into the pattern space. Why the first command is necessary is perhaps
 best demonstrated by removing that command from the script and running it on the
 sample file:
% sed -f sedscr2 sample
Consult Section 3.1 in the Installation Guide
for a description of the tape drives
available on your system.

Look in the Installation Guide
shipped with your system.
Two manuals are provided, including the Installation Guide
and the User Guide.
Do you see the two problems? The most obvious problem is that the last line
 did not print. The last line matches Owner,
 and when N is executed, there is not another input line to
 read, so sed quits. It does not even output
 the line. If this is the normal behavior, the Next command should be used as
 follows to be safe:
$!N
It excludes the last line ($) from the Next
 command. As it is in our script, by matching Owner and
 Operator Guide on the last line, we avoid matching Owner and applying the N
 command. However, if the word Owner appeared
 on the last line, we’d have the same problem unless we implement the $!N syntax.
The second problem is a little less conspicuous. It has to do with the
 occurrence of Owner and Operator Guide in the
 second paragraph. In the input file, it is found on a line by itself:
Look in the Owner and Operator Guide shipped with your system.
In the output shown above, the blank line following shipped with your system is missing. The reason for this is that
 this line matches Owner and the next line, a
 blank line, is appended to the pattern space. The substitute command removes the
 embedded newline, and the blank line has in effect vanished. (If the line were
 not blank, the newline would still be removed but the text would appear on the
 same line with shipped with your system.) The
 best solution seems to be to avoid reading the next line when the pattern can be
 matched on one line. That is why the first instruction attempts to match the
 case where the string appears all on
 one line.
— DD

The Deliberate Scrivener

 The
 operations of sed’s most difficult commands —

 hold (h or
 H), get (g or
 G), and exchange (x) — can be
 explained, somewhat fancifully, in terms of an extremely deliberate medieval
 scrivener or amanuensis toiling to make a copy of a manuscript. His work is
 bound by several spatial restrictions: the original manuscript is displayed in
 one room; the set of instructions for copying the manuscript are stored in a
 middle room; and the quill, ink, and folio are set up in yet another room. The
 original manuscript and the set of instructions are written in stone and cannot
 be moved about. The dutiful scrivener, being sounder of body than mind, is able
 to make a copy by going from room to room, working on only one line at a time.
 Entering the room where the original manuscript is, he removes from his robes a
 scrap of paper to take down the first line of the manuscript. Then he moves to
 the room containing the list of editing instructions. He reads each instruction
 to see if it applies to the single line he has scribbled down.
Each instruction, written in special notation, consists of two parts: a
 pattern
 and a procedure. The
 scrivener reads the first instruction and checks the pattern against his line.
 If there is no match, he doesn’t have to worry about the procedure, so he goes
 to the next instruction. If he finds a match, the scrivener follows the action
 or actions specified in the procedure.
He makes the edit on his piece of paper before trying to match the pattern in
 the next instruction. Remember, the scrivener has to read through a series of
 instructions, and he reads all of them, not just the first instruction that
 matches the pattern. Because he makes his edits as he goes, he is always trying
 to match the latest version against the next pattern; he doesn’t remember the
 original line.
When he gets to the bottom of the list of instructions, and has made any edits
 that were necessary on his piece of paper, he goes into the next room to copy
 out the line. (He doesn’t need to be told to print out the line.) After that is
 done, he returns to the first room and takes down the next line on a new scrap
 of paper. When he goes to the second room, once again he reads every instruction
 from first to last before leaving.
This is what he normally does, that is, unless he is told otherwise. For
 instance, before he starts, he can be told not to write out
 every line (the -n
 option). In
 this case, he must wait for an instruction that tells him to print
 (p

).
 If he does not get that instruction, he throws away his piece of paper and
 starts over. By the way, regardless of whether or not he is told to write out
 the line, he always gets to the last instruction on the list.
Let’s look at other kinds of instructions the scrivener has to interpret.
 First of all, an instruction can have zero, one, or two patterns
 specified:
	If no pattern is specified, the same procedure is followed for each
 line.

	If there is only one pattern, he will follow the procedure for any
 line matching the pattern.

	If a pattern is followed by a !,
 the procedure is followed for all lines that do not
 match the pattern.

	If two patterns are specified, the actions described in the procedure
 are performed on the first matching line and all succeeding lines until
 a line matches the second pattern.

The scrivener can work on only one line at a time, so you might wonder how he
 handles a range of lines. Each time he goes through the instructions, he tries
 to match only the first of two patterns. Now, after he has found a line that
 matches the first pattern, each time through with a new line he tries to match
 the second pattern. He interprets the second pattern as
 pattern
 !, so that the procedure is followed only if
 there is no match. When the second pattern is matched, he starts looking again
 for the first pattern.
Each procedure contains one or more commands or actions.
 Remember, if a pattern is specified with a procedure, the pattern must be
 matched before the procedure is executed. We have already shown many of the
 usual commands that are similar to other editing commands. However, there are
 several highly unusual commands.
For instance, the N

 command tells the scrivener
 to go, right now, and get another line, adding it to the same piece of paper.
 The scrivener can be instructed to “hold” on to a single piece of scrap paper.
 The h

 command tells him to make a copy of the line
 on another piece of paper and put it in his pocket. The x
 command tells him to exchange the extra piece of paper in his pocket with the
 one in his hand. The g

 command tells him to throw out the
 paper in his hand and replace it with the one in his pocket. The
 G command tells him to append the line he is holding to
 the paper in front of him. If he encounters a d

 command, he throws out the
 scrap of paper and begins again at the top of the list of instructions. A
 D command has effect when he has been instructed to
 append two lines on his piece of paper. The D command tells
 him to delete the first of those lines.
If you want the analogy converted back to computers, the first and last rooms
 in this medieval manor are standard input and standard output. Thus, the
 original file is never changed. The line on the scrivener’s piece of scrap paper
 is in the pattern space

 ; the line on the piece of paper that he
 holds in his pocket is in the hold space. The hold space
 allows you to retain a duplicate of a line while you change the original in the
 pattern space.
Section 34.18 shows a practical
 application of the scrivener’s work, a sed
 program that searches for a particular phrase that might be split across two
 lines.

— DD

Searching for Patterns Split Across Lines

 [Section
 13.9 introduced a script called cgrep

 , a general-purpose, grep-like program built with sed. It allows you to look for one or more words that appear on
 one line or across several lines. This article explains the sed tricks that are necessary to do this kind of
 thing. It gets into territory that is essential for any advanced applications of
 this obscure yet wonderful editor. Section
 34.14 through Section
 34.17 have background information. — JP]
Let’s review the two examples from Section
 13.9. The first command below finds all lines containing the word
 system in the file main.c and
 shows 10 additional lines of context above and below each match. The second
 command finds all occurrences of the word “awk” where it is followed by the word
 “perl” somewhere within the next 3 lines:
cgrep -10 system main.c
cgrep -3 "awk.*perl"
Now the script, followed by an explanation of how it works:
case
 Section 35.11, expr
 Section 36.21, shift
 Section 35.22, ${?}
 Section 36.7, \~..~
 Section 34.8, "$@"
 Section 35.20
#!/bin/sh
cgrep - multiline context grep using sed
Usage: cgrep [-context] pattern [file...]

n=3
case $1 in -[1-9]*)
 n=`expr 1 - "$1"`
 shift
esac
re=${1?}; shift

sed -n "
 1b start
 : top
 \~$re~{
 h; n; p; H; g
 b endif
 }
 N
 : start
 //{ =; p; }
 : endif
 $n,\$D
 b top
" "$@"
The sed script is embedded in a bare-bones
 shell wrapper (
 Section 35.19) to parse out the
 initial arguments because, unlike awk and
 perl, sed cannot directly access command-line parameters. If the first
 argument looks like a -context option, variable
 n is reset to one more than the number of lines
 specified, using a little trick — the argument is treated as a negative number
 and subtracted from 1. The pattern argument
 is then stored in $re, with the ${1?} syntax causing the shell to abort with an
 error message if no pattern was given. Any remaining arguments are passed as
 filenames to the sed command.
So that the $re and $n parameters can be embedded, the sed script is enclosed in double quotes (Section
 27.12). We use the -n option because we don’t want
 to print out every line by default, and because we need to use the n command in the script without its side effect of
 outputting a line.
The sed script itself looks rather
 unstructured (it was actually designed using a flowchart), but the basic
 algorithm is easy enough to understand. We keep a “window” of
 n lines in the pattern space and scroll this window
 through the input stream. If an occurrence of the pattern comes into the window,
 the entire window is printed (providing n lines of previous
 context), and each subsequent line is printed until the pattern scrolls out of
 view again (providing n lines of following context). The
 sed idiom N;D is used to advance the window, with the D not kicking in until the first
 n lines of input have been accumulated.
The core of the script is basically an if-then-else construct that
 decides whether we are currently “in context.” (The regular expression here is
 delimited by tilde (~) characters because
 tildes are less likely to occur in the user-supplied pattern than slashes.)
 If we are still in context, then the next line of input is read and output,
 temporarily using the hold space to save the window (and effectively doing an
 N in the process). Else we append the next input line (N) and search for the pattern again (an empty regular expression
 means to reuse the last pattern). If it’s now found, the pattern must have just
 come into view — so we print the current line number followed by the contents of
 the window. Subsequent iterations will take the “then” branch until the pattern
 scrolls out of the

 window.

— GU

Multiline Delete

The sed

 delete command, d,
 deletes the contents of the pattern space
 (
 Section 34.14) and causes a new line
 of input to be read, with editing resuming at the top of the script. The Delete
 command, D, works slightly differently: it deletes a
 portion of the pattern space, up to the first embedded
 newline. It does not cause a new line of input to be read; instead, it returns
 to the top of the script, applying these instructions to what remains in the
 pattern space. We can see the difference by writing a script that looks for a
 series of blank lines and outputs a single blank line. The version below uses
 the delete command:
reduce multiple blank lines to one; version using d command
/^$/{
 N
 /^\n$/d
}
When a blank line is encountered, the next line is appended to the pattern
 space. Then we try to match the embedded newline. Note that the positional
 metacharacters, ^ and $, match the beginning and the end of the pattern
 space, respectively. Here’s a test file:
This line is followed by 1 blank line.

This line is followed by 2 blank lines.

This line is followed by 3 blank lines.

This line is followed by 4 blank lines.

This is the end.
Running the script on the test file produces the following result:
% sed -f sed.blank test.blank
This line is followed by 1 blank line.

This line is followed by 2 blank lines.
This line is followed by 3 blank lines.

This line is followed by 4 blank lines.
This is the end.
Where there was an even number of blank lines, all the blank lines were
 removed. Only when there was an odd number of blank lines was a single blank
 line preserved. That is because the delete command clears the entire pattern
 space. Once the first blank line is encountered, the next line is read in, and
 both are deleted. If a third blank line is encountered, and the next line is not
 blank, the delete command is not applied, and thus a blank line is output. If we
 use the multiline Delete command, /^\n$/D, we
 get a different result, and the one that we wanted.
The reason the multiline Delete command gets the job done is that when we
 encounter two blank lines, the Delete command removes only the first of the two.
 The next time through the script, the blank line will cause another line to be
 read into the pattern space. If that line is not blank, both lines are output,
 thus ensuring that a single blank line will be output. In other words, when
 there are two blank lines in the pattern space, only the first is deleted. When
 a blank line is followed by text, the pattern space is output normally.
— DD

Making Edits Everywhere Except...

There are two ways in sed to avoid specified portions of a document while making the
 edits everywhere else. You can use the !
 command to specify that the edit applies
 only to lines that do not match the pattern. Another
 approach is to use the b

 (branch) command to skip over portions
 of the editing script. Let’s look at an example.
We’ve used sed to preprocess the input to
 troff so that double dashes (--
) are converted automatically to em-dashes (—) and straight quotes are converted to curly quotes.
 However, program examples in technical books are usually shown in a
 constant-width font that clearly shows each character as it appears on the
 computer screen. When typesetting a document, we don’t want sed to apply the same editing rules within these
 examples as it does to the rest of the document. For instance, straight quotes
 should not be replaced by curly quotes.
Because program examples are set off by a pair of macros (something like .ES
 and .EE, for “Example Start” and “Example End”), we can use those as the basis
 for exclusion. Here’s some sample text that includes an example:
.LP
The \fItrue\fP command returns a zero exit status.
As Joe says, "this is only useful in programming":
.ES
% \fBtrue\fP
% \fBecho "the status was $status"\fP
the status was 0
.EE
So you can say:
/^\.ES/,/^\.EE/!{
 s/^"/``/
 ...
 s/\\(em"/\\(em``/g
}
All of the commands enclosed in braces ({}
) will be subject to the initial pattern
 address.
There is another way to accomplish the same thing. The b

 command allows you to transfer control
 to another line in the script that is marked with an optional label. Using this
 feature, you could write the previous script like this:
/^\.ES/,/^\.EE/bend
s/^"/``/
 ...
s/\\(em"/\\(em``/g
:end
A label consists of a colon (:) followed by up to seven characters. If the
 label is missing, the b command branches to the end of the
 script. (In the example above, the label end
 was included just to show how to use one, but a label is not really necessary
 here.)
The b command is designed for flow control within the
 script. It allows you to create subscripts that will be applied only to lines
 matching certain patterns and not elsewhere. However, as in this case, it also
 provides a powerful way to exempt part of the text from the action of a
 single-level script.
The advantage of b over ! for this
 application is that you can more easily specify multiple conditions to avoid.
 The ! command can be applied to a single command or to the
 set of commands, enclosed in braces, that immediately follows. On the other
 hand, b gives you almost unlimited control over movement
 around the script.
— TOR

The sed Test Command

 The test command, t,
 branches to a label (or the end of the script) if a successful substitution has
 been made on the currently addressed line. It implies a conditional branch. Its
 syntax is as follows:
[address]t[label]

If no label is supplied, control falls through to
 the end of the script. If label is supplied,
 execution resumes at the line following the label.
Let’s look at a spelling corrector written by Greg Ubben.
 The script fixes common (in this example, silly) spelling goofs; the
 t command tells about corrections that were
 made:
h
s/seperate/separate/g
s/compooter/computer/g
s/said editor/sed editor/g
s/lable/label/g
t changed
b
: changed
p
g
s/.*/[WAS: &]/
t
First, h (Section 34.14) holds a copy of the current input line. Then, if any
 of the four substitutions succeed, the command t
 changed branches to the corresponding label (: changed) at the end of the script. Otherwise, if
 no s succeeded, the b command restarts the script on the next line (as always in
 sed, the input line is printed before the
 script restarts).
After the label, the script prints the current input line (the line with a
 spelling error — which, by now, has been corrected). Then g (Section 34.14)
 gets the original uncorrected line. An s
 command brackets that line [WAS:
 xxx
]. Here’s some sample output:
$ sed -f sedscr afile
This is a separate test.
[WAS: This is a seperate test.]
I put a label on my computer!
[WAS: I put a lable on my compooter!]
That's all for now.
The final t in the script is a work-around
 for a bug in some versions of sed. Greg says,
 “The t flag is supposed to be reset after either the
 t command is executed or a new line of input is read,
 but some versions of sed don’t reset it on a
 new line of input. So I added a do-nothing t
 to make sure it’s reset after the previous always-true s///.” Try the script without the extra t; if adding it makes the script work right, your sed has the bug and you might try a new version,
 like GNU sed.
—JP and DD

Uses of the sed Quit Command

 The quit command,
 q, causes sed to
 stop reading new input lines (and stop sending them to the output). Its syntax
 is:
[line-address]q

[image:]
 Section 34.23
It can take only a single-line address. Once the line matching address
 (line-address) is reached, the script will be
 terminated.
For instance, the following one-liner uses the quit command to print the first
 ten lines from a file:
% sed '10q' myfile
 ...
sed prints each line until it gets to line
 10 and quits.
The previous version is much more efficient than its functional
 equivalent:
-n
 Section 34.3
% sed -n '1,10p' myfile
(especially if myfile is a long file) because sed doesn’t need to keep reading its input once
 the patterns in the script are satisfied.
One possible use of q is to quit a script after you’ve
 extracted what you want from a file. There is some inefficiency in continuing to
 scan through a large file after sed has found
 what it is looking for.
— TOR

Dangers of the sed Quit Command

The sed quit command, q (Section 34.22), is
 very useful for getting sed to stop
 processing any more input once you’ve done what you want.
However, you need to be very careful not to use q in any
 sed script that writes its edits back to
 the original file. After q is executed, no further output
 is produced. It should not be used in any case where you want to edit the front
 of the file and pass the remainder through unchanged. Using
 q in this case is a dangerous beginner’s
 mistake.
— TOR

sed Newlines, Quoting, and Backslashes in a Shell Script

 Feeding sed (Section 34.1)
 newlines is easy; the real
 trick is getting them past the C shell and its
 derivatives (tcsh has the same problem, on
 the systems where we’ve tested it).
The sed documentation says that in order to
 insert newlines in substitute commands, you should quote them with backslashes.
 [Surround the commands with single quotes ('), as Chris has. If you use double quotes ("), this script will become s/foo/bar/ because of the way quoting works
 with backslashes and newlines (
 Section 27.12). —
 JP]:
sed -e 's/foo/b\
a\
r/'
Indeed, this works quite well in the Bourne shell and derivatives, such as
 bash, which do what I consider the proper thing (Section 27.12) with this input. The C shell, however, thinks it is
 smarter than you are and removes the trailing
 backslashes (Section
 27.13), and instead you must type:
sed -e 's/foo/b\\
a\\
r/'
Probably the best solution is to place your sed commands in a separate file
 (Section 34.3) to keep the shell’s
 sticky fingers off them.

[1] Note that this can lead to confusion when the same line is matched by
 several patterns and then printed, once per match!

Chapter 35. Shell Programming for the Uninitiated

Writing a Simple Shell Program

 A shell

 script
 need be no more than a command line saved in a file. For example, let’s assume
 that you’d like a compact list of all the users who are currently logged in on
 the system.
A command
 like this might do the trick:
% who | cut -c1-8 | sort -u | pr -l1 -8 -w78 -t
A list of logged-in users should come out in columns, looking something like
 this:
abraham appleton biscuit charlie charlott fizzie howard howie
hstern jerry kosmo linda ocshner peterson root ross
sutton yuppie

 We used four Unix commands joined with
 pipes:
	who (Section 2.8) gives a list of all
 users.

	cut -c1-8 (Section 21.14) outputs columns
 1-8 of the who output — the
 usernames.

	sort -u (Section 22.6) puts names in
 order and takes out names of users who are logged on more than
 once.

	pr -l1 -8 -w78 -t (Section 21.15, Section 45.6) takes the list of
 usernames, one per line, and makes it into 8 columns on
 78-character-wide lines. (The -l1 is
 the lowercase letter L followed by the digit
 1.)

If you wanted to do this frequently, wouldn’t it be better if all you had to
 do was type something like:
% loggedin
to get the same result? Here’s how:
	Start a text editor on a new file named loggedin.

	If your system
 supports the special #! notation (Section 36.2) (and it probably
 does), the first line of the script file should be:
#!/bin/sh
Otherwise, leave the first line blank. (When the first line of a
 script is blank, most shells will start a Bourne shell to read it. Section 36.2 has more
 information.)
I think that the second line of a
 shell script should always be a comment to explain what the script does.
 (Use more than one line, if you want.) A comment starts with a hash mark
 (#); all characters after it on
 the line are ignored. Oh, and try to make sure there’s a bit of
 whitespace between the comment character and the actual comment; that’s
 a pet peeve of mine:
loggedin - list logged-in users, once per user, in 8 columns
Put this on the third line, just like you did on the command
 line:
who | cut -c1-8 | sort -u | pr -l1 -8 -w78 -t

	Save the file and leave the editor. You’ve just written a shell
 script.

	

 Next, you need to
 make the shell script executable. The chmod (Section
 50.5) (change mode) command is used to change permissions on
 a file. The plus sign followed by an x (+x) makes the file executable:
% chmod +x loggedin

	

 If
 your login shell (Section 3.4) is csh or tcsh, you’ll need to reset its command search table. To
 do that, type:
rehash
 Section 27.6
% rehash

	Finally, try the script. Just type its name and it should run:
% loggedin
If that doesn’t run, your current directory may not be in your

 shell’s command
 search path (Section
 35.6, Section
 35.7). In that case, try this:
% ./loggedin
If it still doesn’t work, and you started the first line of your
 script with #!, be sure that the
 Bourne shell’s pathname on that line (like /bin/sh) is correct. Another common error is to swap the
 # and !, so check that, too. You should get an error like this,
 if that is the problem, although the script may itself run as well,
 depending on your system:
!#/bin/sh: No such file or directory

	If you want to run the script from somewhere other than the current
 directory, or if you want other programs and scripts you write to be
 able to use it, you need to put it in a directory that’s in your search
 path and/or change your search path
 (Section 27.6). If you’re
 the only person who plans to use the script, you should put it in your
 personal bin directory (Section 7.4). Otherwise, you
 might ask your system administrator if there’s a systemwide directory
 for local commands.

— JP

Everyone Should Learn Some Shell Programming

 One of the great things about Unix is that
 it’s made up of individual utilities, “building blocks” like cat and grep,
 that you run from a shell prompt. Using pipes, redirection, filters, and so on,
 you can combine those utilities to do an incredible number of things. Shell
 programming lets you take the same commands you’d type at a shell prompt and put
 them into a file you can run by just typing its name. You can make new programs
 that combine Unix programs (and other shell scripts) in your own way to do
 exactly what you need. If you don’t like the way a program works, you can write
 a shell script to do just what you want.
Because many Unix users use the shell every day, they don’t need to learn a
 whole new language for programming, just some tips and techniques. In fact, this
 chapter covers a lot of programming techniques that you’ll want to use even when
 you aren’t programming. For example, loops and tests are handy on the command
 line.
(This series of articles does assume that you’ve written programs in some
 language before or are generally familiar with programming concepts. If you
 haven’t and aren’t, you might start with a more comprehensive shell programming
 book.)
Summary Box

 Unix has plenty of other scripting
 languages — Perl, Python, and Tcl/Tk are some of the best known. So when
 should you write a script with the shell and when shouldn’t you? That’s a
 personal choice; as you learn more languages and their strengths and
 weaknesses, you’re better able to choose the best one for a situation. My
 rule of thumb is something like this. I write a shell script if:
	It’s a script I developed at the command line, so it’s easy to
 just drop those same commands into a file.

	I know some Unix utility that’ll do just what I want.

	It has to be portable to a system that might not have another
 scripting language I’d rather use.

	The (possibly) slower speed of forking processes to run Unix
 utilities (especially in loops) doesn’t matter.

	The script simply has to make a few decisions — like whether
 standard input is a tty (Section 2.7), checking
 options and arguments, or something else simple) — before the script
 ends by running some Unix utility.

	It just feels natural to write a shell script, for whatever
 reason.

On the other hand, maybe your script needs lots of pipes (|) (Section
 1.5) or temporary files, or you have out-of-band data that you
 have to keep passing in to each Unix utility (maybe because you can’t
 shoehorn multiple types of data into a single chain of pipelines between
 utilities). In that case, you’ll be happier with a scripting language that
 doesn’t depend on Unix utilities and pipes.
Some of the topics you need to learn about as a beginning shell programmer
 have already been covered in other chapters. Here are the articles you’ll
 probably want to read, in an order that makes sense if you’re looking for
 something of a tutorial:
	To see how to write a simple shell program, Section 35.1. To embed
 scripts from other languages such as sed and awk in a
 shell script, Section
 35.19.

	For explanation of shells in general, Section 27.3.

	To read about environment and shell variables, Section 35.3 and Section 35.9,
 respectively.

	Shell quoting is explained in Section 27.12.

	Stepping through arguments or any list of words with a for loop is discussed in Section 28.9 (as well as in
 Section 35.21, later
 in this chapter).

Then, once you’ve had your refresher, come on back and read the following
 articles:
	Test strings with a case
 statement, Section 35.10.
 Match patterns in a case
 statement, Section
 35.11.

	Use the output of one command as arguments to another command with
 command substitution, Section
 28.14.

	Find out whether a program worked or failed with its exit status,
 Section 35.12.

	Loop through a set of commands and use another command to control
 that loop, Section
 35.15.

	Set exit status of a shell (shell script), Section 35.16.

	Handle interrupts (like CTRL-c) and other signals, Section 35.17.

	Read input from the keyboard, Section 35.18.

	Handle command-line arguments (options, filenames, etc.), Section 35.20.

	Test a program’s exit status and do different things if it worked
 or failed, Section 35.13
 and Section 35.14.

	Handle arguments with the while
 and shift commands, Section 35.22.

	Handle command-line arguments in a more standard and portable way
 with getopt, Section 35.24.

	Set shell options and command-line arguments with the set command, Section 35.25.

	Test files and strings of characters with the test command, Section 35.26.

	Pick a name for a new command with no conflict, Section 35.27.

	Find the name of a program and use it in the script, Section 35.28.

	Use “subprograms” that can change the current environment, Section 35.29.

This chapter discusses only Bourne shell programming. We don’t cover many
 features from more advanced Bourne-type shells, like bash and zsh, because those
 can make your shell scripts nonportable; we stick to concepts that should work
 almost anywhere. Also, in most cases, the C shell isn’t great for shell
 programming.
A
 note about command versions: unfortunately, the same commands on different
 versions of Unix can have different options. Some Bourne shells are a little
 different from others. For instance, some test
 (Section 35.26) commands have a
 -x option to test for an executable file; others don’t.
 Some echo commands use a -n
 option to mean “no newline at the end of this string”; others have you put
 \c at the end of the string. And so on.
 Where there are differences, these articles generally use the commands in
 original Berkeley Unix from the 1980s. If a command doesn’t seem to work on your
 system, check its online manual page or the sh manual page.
— JP

What Environment Variables Are Good For

 Many Unix utilities, including the shell,
 need information about you and what you’re doing in order to do a reasonable
 job.
What kinds of information? Well, to start with, a lot of programs
 (particularly editors) need to know what kind of terminal you’re using. The
 shell needs to know where any commands you want to use are likely to be found.
 Lots of Unix programs (like mail programs) include a command to start an editor
 as a subprocess; they like to know your favorite editor. And so on.
Of course, one could always write programs that made you put all this
 information on the command line. For example, you might have to type commands
 like:
% mail -editor vi -term aardvark48 -favoritecolor blue_no_red
But your favorite editor probably doesn’t change every day. (Nor will your
 favorite color.) The terminal you use may change frequently, but it certainly
 won’t change from the time you log in until the time you log out. And you
 certainly wouldn’t want to type something like this whenever you want to send
 mail.
Rather than forcing you to type this
 information with every command, Unix uses environment
 variables to store information you’d rather not worry about. For
 example, the TERM (
 Section 5.2) environment variable tells
 programs what kind of terminal you’re using. Any programs that care about your
 terminal type know (or ought to know) that they can read this variable, find out
 your terminal type, and act accordingly.
Similarly, the directories that store the commands you want to execute are
 listed in the PATH (Section 35.6) variable. When you type a command, your shell
 looks through each directory in your PATH variable to find
 that command. Presumably, Unix wouldn’t need a PATH
 variable if all commands were located in the same directory, but you’ll soon be
 writing your own commands (if you aren’t already), and storing them in your own
 “private” command directories (Section 7.4), and you’ll need to tell the
 shell how to find them (Section 27.6).
Environment variables are managed by your shell.
 The difference between environment variables and
 regular shell variables (Section 35.9) is that a shell variable
 is local to a particular instance of the shell (such as a shell script), while
 environment variables are “inherited” by any program you start, including
 another shell (Section 24.4). That is, the new process
 gets its own copy of these variables, which it can read, modify, and pass on in
 turn to its own children. In fact, every Unix process (not just the shell)
 passes its environment variables to its child processes.
You can set environment variables with a command like this:
% setenv
 NAME value
 C-type shells
$ NAME=value
 ; export
 NAME
 all Bourne-type shells
$ export
 NAME=value
 newer Bourne-type shells
There’s nothing particularly special about the NAME; you
 can create environment variables with any names you want. Of course, these don’t
 necessarily do anything for you; variables like PATH and
 TERM are important because lots of programs have
 “agreed” (Section 35.5) that these names are
 important. But if you want to create an environment variable that holds the name
 of your lover, that’s your business:
% setenv LOVER Judy
If you’re so inclined, you could write a program called
 valentine that reads the LOVER
 environment variable and generates an appropriate message. If you like
 short-term relationships or tend to forget names, this might even be
 convenient!

 By
 convention, the names of environment variables use all uppercase letters.
 There’s nothing to enforce this convention — if you’re making your own names,
 you can use any capitalization you please. But there’s no advantage to violating
 the convention, either. The environment variables used by standard Unix programs
 all have uppercase names. Making shell variable names lowercase so it’s easy to
 tell the difference is helpful.
If you want the C shell to forget that an
 environment variable ever existed, use the command unsetenv
 NAME. The tcsh
 understands
 filename wildcard (Section 1.13)-type expressions — for
 instance, unsetenv VAR* would unset all
 environment variables whose names start with VAR. Most
 Bourne-type shells, but not all, have a similar command, unset
 NAME, but it doesn’t understand wildcards like the tcsh version. The bash
 version accepts multiple names as
 arguments, however, and can also unset functions with the -f
 option.
[image:] Go to http://examples.oreilly.com/upt3 for more information on: printenv,
 env
If you want to list all of your environment
 variables, use printenv or
 env. The printenv command also lets you ask about a particular variable.
 Here’s a typical report:
% printenv EDITOR
EDITOR=/usr/local/bin/emacs
% printenv
HOME=/home/los/mikel
SHELL=/bin/csh
TERM=sun
USER=mikel
PATH=/usr/local/bin:/usr/ucb:/bin:/usr/bin:.:/home/los/mikel/bin
LOGNAME=mikel
PWD=/home/los/mikel/power/articles
PRINTER=ps
EDITOR=/usr/local/bin/emacs

 The set
 (Section 35.9) command provides a
 similar listing of shell variables and functions (in newer Bourne-like shells
 such as bash).
You can also use the echo command to show the value of a particular
 variable by preceding the variable name with a dollar sign (which tells the
 shell to substitute the value of the variable):
% echo $TERM
xterm
Or — and this is particularly useful when you want a shell or environment
 variable’s value interpolated into a line — you can surround the variable name
 with curly brackets:
% echo ${TERM}
vt100
% echo ${TERM}-like
vt100-like
— ML

Parent-Child Relationships

 No, this is not about the
 psychology of computing. It’s just a reminder of one important point.
In the environment variable overview (Section 35.3) we said that each process
 gets its own copy of its parent’s environment variables. We chose those words
 carefully, and if you think about them, you won’t make one common
 mistake.
Sooner or later, almost everyone writes a shell script that gathers some
 information, sets a few environment variables, and quits. The writer then
 wonders why there’s no trace of the “new” environment variables to be found. The
 problem is simple. A Unix process (Section 24.3) cannot change its parent’s
 environment; a Unix process gets its own copy of the
 parent’s environment, and any changes it makes it keeps to itself. A process can
 make changes and pass them to its children, but there’s no way of going in
 reverse.
(You can’t teach an old dog new tricks.)
[This is important in window systems, too. Environment variables set in one
 window (more exactly, in one process) probably won’t affect
 any process running in any other window. To affect all windows, set the
 environment variable before you start the window system. For instance, if you
 log in and then type startx from a shell
 prompt to start X, you can set environment variables from that prompt or from
 that shell’s setup files (Section 3.3). —
 JP]
— ML

Predefined Environment Variables

 We’ve said that environment variables are used
 to store information that you’d rather not worry about, and that there are a
 number of standard environment variables that many Unix programs use. These are
 often called “predefined” environment variables — not because their values are
 predefined, but because their names and uses are predefined. Here are some
 important ones:
	
 PATH (Section 35.6)
	contains your command search path

 (Section 27.6). This is a list of directories in which
 the shell looks to find commands. It’s usually set in one of
 your shell setup files (Section 3.3).

	

 EDITOR and
 VISUAL
	can be loaded with the name of your favorite editor. They’re
 usually set in one of your shell setup files. Some programs
 distinguish between EDITOR (usually set to a
 line editor (Section 20.1) such as
 ed) and
 VISUAL (set to a full-screen editor like
 vi). Many people don’t follow
 that convention; they set both to the same editor. (The Korn shell
 checks VISUAL and EDITOR,
 in that order, to determine
 your command editing mode (Section 30.14).)

	

 PRINTER (Section 45.4) or LPDEST
	can be loaded with the name of your default printer. This is quite
 useful at a site with many printers — you don’t need to tell
 lpr or lp (Section 45.2) which printer
 to use. (PRINTER works on systems that print
 with lpr

 , and
 LPDEST is for lp.) This variable is usually set in one of your
 shell setup files.

	
 PWD
	may contain the absolute pathname of your current directory. It’s
 set automatically by the cd command in some Unix shells.
 PWD may be fooled by cding through symbolic links.

	

 HOME (Section 31.11) (called
 LOGDIR on some systems)
	contains the absolute pathname of your home directory. It’s set
 automatically when you log in.

	

 SHELL
	contains the absolute pathname of your login shell. It’s set
 automatically whenever you log in.

	

 USER or LOGNAME
	contains your username. It’s set automatically when you log
 in.

	TERM
	contains the name of your terminal type in the
 termcap or terminfo
 database. It’s usually set in a shell setup file. On Darwin, in the
 Terminal program, the TERM_PROGRAM variable is
 also set.

	
 TERMCAP
	is an environment variable that can be loaded with the complete
 termcap database entry for the terminal you
 are using. This may make some programs start up more quickly, but
 it’s not necessary. It’s set (under some conditions) by the
 tset command, which is usually run in your
 shell setup file.

	
 ENV
	contains the name of an initialization file to be executed
 whenever a new Korn shell is started. (See Section 3.3.) Korn shell
 only.

	

 BASH_ENV
	contains the name of an initialization file to be executed
 whenever a new bash shell is
 started. (See Section 3.3.)
 bash only. Often set to
 .bashrc by default.

	
 PAGER
	can be set to the name of your favorite page-by-page screen
 display program like
 less (Section 12.3) or more
 . (Programs like man (Section 2.1) use PAGER to determine
 which paging program to use if their output is longer than a single
 screen.)

	

 PS1
	contains the primary prompt (i.e., interactive command prompt) for
 Bourne-type shells. You also can set it in a particular shell, as a
 shell variable with the same name, but it won’t be passed to
 subshells automatically. (The C shell doesn’t store the prompt in an
 environment variable. It uses a shell variable called
 prompt because the .cshrc file (Section 3.3) is read to set up each instance of the
 shell. See Section
 4.4.)

	
 PS2 (Section 28.12)
	contains the secondary prompt (used within compound commands like
 while and for) for Bourne shells. Some
 Bourne-type shells also use PS3 and
 PS4. As with PS1,
 these don’t have to be stored in the environment.

	

 MANPATH (Section 3.21)
	if your man (Section 2.1) command supports
 it, is a colon-separated list of directories to search for manual
 pages.

	
 TZ
	contains the time zone. This is the name of a file in the
 zoneinfo directory that provides time zone
 information for your locality. It is read by commands such as
 date.

	
 DISPLAY
	is used by the X Window System
 (Section 1.22) to
 identify the display server (keyboard and screen handling program)
 that will be used for input and output by X applications. It may be
 set by ssh when you log into a
 remote system, as well.

	
 INPUTRC
	lets you choose a setup filename for the Readline library instead
 of the default $HOME/.inputrc.

	

 LS_COLORS (or
 LS_COLOURS)
	lists the colors used by the color ls
 command (Section
 8.6).

Because Bourne-type shells don’t make as strict
 a distinction between environment variables and shell variables as the C shell
 does, we’ve included a few things here that might not be on other people’s
 lists.
But we haven’t even tried to include everything. Here are two good ways to see
 what’s there. One is to look at the end of a command’s manual page (Section
 2.1) in the ENVIRONMENT section (if there is one). Another is to list
 your current environment variables (with env or
 printenv (Section
 35.3)) and make some guesses from the names and corresponding
 values.
We may have implied that environment variables are relatively constant (like
 your favorite editor). That’s not true. For example, in a windowing environment,
 the current length of your window might be kept in an environment variable. That
 can change as often as you resize your window. What is true (fortunately) is
 exactly what we’ve said: environment variables store information that you’d
 rather not have to worry about.

—ML, JP, and SJC

The PATH Environment Variable

 Of all the
 environment variables, the PATH and
 TERM variables are the most important. The others are
 often great conveniences, but PATH and
 TERM can make your life miserable if they get screwed
 up.
The PATH variable is just a list of directories separated
 by colon (:) characters. The shell searches through these directories in order
 whenever it needs to find a command. So, if you want to execute commands in
 /bin, /usr/bin, /usr/local, the
 current directory, and your personal bin
 directory, you would put a line like the one below in your .login file. An empty entry (: as the first or
 last character, or :: in the middle) means
 “the current directory.”
$HOME/bin
 Section 7.4
setenv PATH /bin:/usr/bin:/usr/local::$HOME/bin
Section 27.6 explains more about
 setting the path.
The most common problem with PATH is that, somehow, it
 gets deleted. This usually happens if you try to change
 PATH and do so incorrectly. When
 PATH is deleted, your shell can find only its built-in commands (Section 1.9) and commands for which you give the complete pathname.
 Here’s a demonstration:
% setenv PATH
 Set PATH to null accidentally
% ls
ls: Command not found.
Needless to say, this can be very frustrating — especially if you can’t figure
 out what’s going on. There are a couple of easy fixes. The easiest is just to
 log out and log back in again. (logout
 is a built-in C shell command, so you won’t
 have trouble finding it. If you get an error message like “Not login shell,” try
 exit instead.) Another fix is to
 read (Section 35.29) whichever initialization file defined your
 PATH variable, usually .login for C shell users or .profile or .bash_profile
 for Bourne or bash shell users,
 respectively:
% source ~/.login
$. $HOME/.profile
bash$. $HOME/.bash_profile
This will almost certainly give you some of your path
 back; the problem is that a lot of initialization files merely add a few
 “private” directories to a system-wide default path. In this case, just execute
 the system-wide initialization files first (if your system has them). Their
 pathnames vary:
+$ source /etc/profile
$ source /etc/profile.d/*.sh
$ source ~/.login
bash$ source ~/.bash_profile
Your best bet, if you’re unfamiliar with the quirks of your system and how it
 sets up your shell, is to simply log out and log back in again. Some newer Linux
 systems, for example, use /etc/profile for
 bash setup, inheriting the hardwired
 defaults set by the login
 command, and then go on to read
 shell-specific files (often in /etc/profile.d, for example). tcsh and csh are configured
 using the /etc/csh.login, /etc/csh.cshrc, and other files in /etc/profile.d in similar fashion to bash. This allows package managers to install
 package specific initialization without modifying (and potentially corrupting)
 the system’s default initialization.
The other common PATH problem is that users sometimes
 can’t find the commands they want. This happens most often when someone writes a
 new shell script with the same name as a standard Unix command — say, true. He or she tries to execute it and can’t; in
 fact, all that happens is:
% true
%
After staring at the script for a long time, the user sometimes gets the right
 idea: the script is fine; it’s the path that’s wrong. The
 PATH variable will look something like this:
% printenv PATH
/bin:/usr/local/bin:/usr/bin:/sbin::/home/schampeo/bin
The shell searches the PATH in order; therefore, it finds
 the system’s standard true command before
 seeing the new one. The new command never gets a chance. You
 could fix this problem by putting the current directory
 and $HOME/bin at the head of the search path, in which case
 commands in the current directory and your private bin directory will override the standard commands. However,
 that’s not recommended; it’s a well-known security
 hole.
So what is recommended? Nothing much, except that if you write shell scripts
 or other programs, give them names that are different from
 the standard Unix utilities (Section 35.27). If you really need an overlapping name, you can use
 a relative pathname (Section 1.16) to specify “the program
 called true in the current directory”:
% ./true
You can search your
 PATH for a command with which (Section 2.6),
 findcmd, and whereiz. Section 35.7
 explains the pair of path variables in csh and zsh.
—ML and SJC

PATH and path

 For csh and zsh, it’s slightly
 incorrect to say that PATH contains the search list for
 commands. It’s a bit more complicated. The PATH environment
 variable is used to set the path shell variable; that is,
 whenever you use setenv
 PATH (Section 35.6) in csh or
 export PATH in zsh,
 the shell modifies path accordingly. For example:
setenv PATH /bin:/usr/bin:/usr/local::$HOME/bin csh
export PATH=/bin:/usr/bin:/usr/local::$HOME/bin zsh
In PATH, an empty entry (::) stands for the current directory. The shells’
 path
 shell variable (Section 35.9) is the actual search list.
 Its syntax is slightly different; the list of directories is enclosed in
 parentheses ([XREF: UPT-ART-0508]), and the directories are separated by spaces.
 For example:
~
 Section 30.11
set path=(/bin /usr/bin /usr/local . ~/bin) csh

path=(/bin /usr/bin /usr/local . ~/bin) zsh
If you set the path shell variable, the shell will
 automatically set the PATH environment variable. You don’t
 need to set both. Many people set the shell variable instead of the environment
 variable.
— ML

The DISPLAY Environment Variable

 The most important environment variable for
 X Window System clients is DISPLAY. When a user logs in at an X terminal, the
 DISPLAY environment variable in each xterm
 window is set to her X terminal’s hostname followed by :0.0.
ruby:joan % echo $DISPLAY
ncd15.ora.com:0.0
When the same user logs in at the console of the workstation named
 sapphire that’s running X, the DISPLAY environment
 variable is defined as just :0.0:[1]
sapphire:joan % echo $DISPLAY
:0.0
The DISPLAY environment variable is used by all X clients to determine what X
 server to display on. Since any X client can connect to any X server that allows
 it, all X clients need to know what display to connect to upon startup. If
 DISPLAY is not properly set, the client cannot execute:
sapphire:joan % setenv DISPLAY foo:0
sapphire:joan % xterm
xterm Xt error: Can't open display:
You can override the value of DISPLAY by using the -display
 command-line option. For example:
sapphire:joan % xterm -display sapphire:0.0 &
The first part of the display name (up to and including the colon) identifies
 the type of connection to use and the host that the server is running on. The
 second part (in most cases, the string 0.0)
 identifies

 a server number
 and an optional screen number. In most cases, the server
 and screen numbers will both be 0. You can omit the screen number name if the
 default (screen 0) is correct.
Note that we used both :0.0 and sapphire:0.0 to access the local console display
 of the workstation named sapphire. Although both these
 names will work, they imply different ways of connecting to the X server.
	The : character without an initial hostname specifies that the client
 should connect using UNIX domain sockets (IPC).
Since processes can communicate via IPC only if they are running on
 the same host, you can use a leading colon or the unix keyword in a display name only if
 both the client and server are running on the same host — that is, for
 local clients displaying to the local console display of a
 workstation.

	Using the hostname followed by a colon (e.g., sapphire:) specifies that the client should connect using
 Internet domain sockets (TCP/IP). You can use TCP/IP connections for
 displaying clients on any X server on the TCP/IP network, as long as the
 client has permission to access that server.

Note that like all other environment variables set in your shell environment,
 the DISPLAY environment variable will propagate
 (Section 35.3) to all processes
 you start from that shell.
When you run clients from remote machines, some additional problems with the
 DISPLAY environment variable need to be addressed. See Section 6.10 for more information on
 running remote clients.

—LM and EP

Shell Variables

 Shell
 variables are really just the “general
 case” of environment variables (Section 35.3). If you’re a programmer,
 remember that a Unix shell really runs an interpreted programming language.
 Shell variables belong to the shell; you can set them, print them, and work with
 them much as you can in a C program (or a FORTRAN program or a BASIC program).
 If you’re not a programmer, just remember that shell variables are pigeonholes
 that store information for you or your shell to use.

 If you’ve read the articles on environment
 variables, you realize that we defined them in exactly the same way. How are
 shell variables different from environment variables?
 Whenever you start a new shell or a Unix program,
 it inherits all of its parent’s environment variables. However, it does
 not inherit any shell variables; it starts with a clean
 slate (except, possibly, variables in some shell setup
 files (Section 3.3)). If
 you’re a programmer, you can think of environment variables as “global”
 variables, while shell variables are “local” variables. By convention, shell
 variables have lowercase names.
Just as some programs use certain environment variables, the shell expects to
 use certain shell variables.

 For
 example, the C shell uses the history (Section 30.1) variable to determine how
 many of your previous commands to remember; if the noclobber (Section
 43.6) variable is defined, the C shell prevents you from damaging
 files by making mistakes with standard output. Most users insert code into their
 .cshrc or .tcshrc (Section 3.3) files to define these
 important variables appropriately. Alternatively, they split them up into
 context-specific files and then read them into their
 environment (Section
 35.29) as needed.
To set a shell variable, use one of these commands:
% set
 name
 =
 value
 C shell
$ name
 =
 value
 other shells
As a special case, if you omit value, the shell variable
 is set to a “null” value. For example, the following commands are valid:
% set
 name
 C shell
$ name
 =
 other shells
This is important: giving a variable a null value is not the same as deleting
 the value. Some programs look at variables to see whether or not they exist;
 they don’t care what the actual value is, and an empty value is as good as
 anything else.
Most
 newer shells — but not the original C and Bourne shells — let you prevent
 accidental changes in a variable by marking it read-only after you’ve stored its
 value:
% set -r
 name
 tcsh
$ readonly
 name
 other shells
(In zsh
 , you can mark a variable read-only as you
 initialize it: readonly
 name=value.) If you want to make the shell forget
 that a variable ever existed, use the unset
 command. Note that, in general, you can’t unset a read-only variable! Also,
 older Bourne shells don’t have a command like unset:
% unset
 name
 C shell
$ unset
 name
 others except old Bourne shell

 If you want to list all of your environment
 variables, use the command printenv or env
 (Section 35.3).[2] If you want to list all of your Bourne or C shell variables, just
 type set. Here’s a typical report in the C
 shell:
% set
argv ()
cwd /home/los/mikel/power/articles
history 40
home /home/los/mikel
noclobber
path (/home/los/mikel/bin /usr/local/bin /usr/ucb /bin /usr/bin .)
prompt los%
shell /bin/csh
status 0
term sun
user mikel
If you want to print the value of an individual variable, give the command:

% echo "$
 variablename
 "
(While the example above gives a C shell prompt, this command works in all
 Unix shells.) The quotes aren’t necessary for something as simple as an echo statement, but if you want the value
 captured, for example, so that you can apply it to another variable, they are
 recommended.

 Whenever you need the value of a shell
 variable — not just with echo — you need to
 put a dollar sign ($) in front of the name.
 Don’t use the dollar sign when you’re assigning a new value to a shell variable.
 You can also stick curly braces ({}) around
 the name if you want to (e.g., ${
 name
 }); when you’re writing shell programs, this
 can often make your code much clearer. Curly braces are mostly used when you
 need to separate the variable name from what comes after it.
But that’s getting us out of the range of interactive variable use and into
 shell programming (Section 35.2).

—ML and SJC

Test String Values with Bourne-Shell case

Each time
 you type a command line at a shell prompt,
 you can see what happens and decide what command to run next. But a shell script
 needs to make decisions like that itself. A case statement helps the script make decisions. A case statement compares a string (usually taken
 from a shell or environment variable (Section 35.9, Section 35.3)) to one or more patterns.
 The patterns can be simple strings (words, digits, etc.) or they can be
 case wildcard expressions (Section 35.11). When the case statement finds a pattern that matches the
 string, it executes one or more commands.
Here’s an example that tests your TERM
 (
 Section 5.2) environment variable. If
 you’re using a vt100 or tk4023 terminal, it runs a command to send some
 characters to your terminal. If you aren’t on either of those, it prints an
 error and quits:
exit
 Section 35.16
case "$TERM" in
vt100) echo 'ea[w' | tr 'eaw' '\033\001\027' ;;
tk4023) echo "*[p23" ;;
*) # Not a VT100 or tk4023. Print error message:
 echo "progname: quitting: you aren't on a VT100 or tk4023." 1>&2
 exit
 ;;
esac
Here are more details about how this works. The statement compares the string
 between the words case and in to the strings at the left-hand edge of the
 lines ending with a) (right parenthesis)
 character. If it matches the first case (in this example, if it’s the vt100), the command up to the ;; is executed. The ;; means “jump to the esac"
 (esac is “case” spelled backwards). You
 can put as many commands as you want before each ;;, but put each command on a separate line (or separate commands
 on a line with semicolons (Section 28.16)).
If the first pattern doesn’t match, the shell tries the next case — here,
 tk4023. As above, a match runs the command and jumps to
 the esac. No match? The next pattern is the
 wildcard *. It matches any answer other than
 vt100 or tk4023 (such as xterm or an empty string).
You can use as many patterns as you want to. The first one that matches is
 used. It’s okay if none of them match. The style doesn’t matter much. Pick one
 that’s readable and be consistent.
— JP

Pattern Matching in case Statements

 A case
 statement (
 Section 35.10) is good at string
 pattern matching. Its “wildcard” pattern-matching metacharacters work like the
 filename wildcards (Section 1.13) in the shell, with a few
 twists. Here are some examples:
	?)
	Matches a string with exactly one
 character like a, 3, !, and so on.

	?*)
	

 Matches a string with one or
 more characters (a nonempty string).

	[yY]|[yY][eE][sS])
	Matches y, Y or yes, YES, YeS, etc. The |
 means “or.”

	/*/*[0-9])
	Matches a file pathname, like /xxx/yyy/somedir/file2, that starts with a slash,
 contains at least one more slash, and ends with a digit.

	'What now?')
	Matches the pattern What now?. The
 quotes (Section 27.12) tell the
 shell to treat the string literally: not to break it at the space
 and not to treat the ? as a
 wildcard.

	"$msgs")
	Matches
 the contents of the msgs variable. The double
 quotes let the shell substitute the variable’s value; the quotes
 also protect spaces and other special characters from the shell. For
 example, if msgs contains first next, this would match the same
 string, first next.

To clarify: in bash, for example, the
 case statement uses the same pathname
 expansion rules it uses elsewhere in the shell, to determine how to expand the
 value. In other shells, such as ksh, there
 are minor differences (such as a relaxation of special treatment for . and
 / characters). See the manual page for
 your shell if you have any questions or concerns about what rules your shell
 will follow.
—JP and SJC

Exit Status of Unix Processes

When
 a Unix

 process (command) runs, it can return a
 numeric status value to the parent process that called (started) it. The status
 can tell the calling process whether the command
 succeeded or failed. Many
 (but not all) Unix commands return a status of zero if everything was okay and
 nonzero (1, 2, etc.) if something went wrong. A few commands, such as grep and diff,
 return a different nonzero status for different kinds of problems; see your
 online manual pages (or just experiment!) to find out.

 The Bourne shell puts the exit
 status of the previous command in the question mark (?) variable. You can get its value by preceding it with a dollar
 sign ($), just like any other shell variable.
 For example, when cp
 copies a
 file, it sets the status to 0. If something goes wrong, cp sets the status to 1:
$ cp afile /tmp
$ echo $?
0
$ cp afiel /tmp
cp: afiel: No such file or directory
$ echo $?
1

 In the C shell, use the
 status variable instead (tcsh supports both):
% cp afiel /tmp
cp: afiel: No such file or directory
% echo $status
1
tcsh> cp afiel /tmp
cp: afiel: No such file or directory
tcsh> echo $status
1
Of course, you usually don’t have to display the exit status in this way,
 because there are several ways (Section 35.13, Section 35.14, Section 35.15) to use the exit status
 of one command as a condition of further execution.
[image:] Go to http://examples.oreilly.com/upt3 for more information on: true,
 false

 Two simple Unix utilities do nothing but
 return an exit status. true returns a status
 of 0 (zero); false returns 1 (one). There are
 GNU versions on the web site — and no, they don’t have any amazing extra
 features. ;-)
bash

 and zsh
 have a handy way to reverse the status of a command line: put an exclamation point (!) before it. Let’s look at a simple example (of
 course, you’d use ! with something besides
 true or false):
bash$ true
bash$ echo $?
0
bash$! true
bash$ echo $?
1
bash$ false
bash$ echo $?
1
bash$! false
bash$ echo $?
0
tcsh and zsh have a handy feature for work with exit statuses. If you set
 the tcsh shell variable
 printexitvalue

 or
 the zsh shell option
 PRINT_EXIT_VALUE

 , the shell will print the exit status of
 any program that doesn’t return zero. For example:
zsh$ setopt printexitvalue
zsh$ grep '<title>' 0001.sgm
<title>Too Many Arguments for the Command Line</title>
zsh$ grep '<title>' 0000.sgm
grep: 0000.sgm: No such file or directory
zsh: exit 2 grep <title> 0000.sgm
zsh$ grep '<ttle>' 0001.sgm
zsh: exit 1 grep <ttle> 0001.sgm

tcsh% set printexitvalue
tcsh% true
tcsh% false
Exit 1

 You can’t test the exit status of a
 background job in the Bourne
 shell unless you use the wait command to wait
 for it (in effect, to bring the job out of the background). Pipelines, however,
 return the exit status of the last program in the pipeline.
— JP

Test Exit Status with the if Statement

 If
 you
 are
 going to write a shell script of any complexity at all, you need some way to
 write “conditional expressions.” Conditional expressions are nothing more than
 statements that have a value of “true” or “false”, such as “Am I wearing pants
 today?” or “Is it before 5 p.m.?” or “Does the file indata
 exist?” or “Is the value of $aardvark greater
 than 60?”
The Unix shell is a complete programming language. Therefore, it allows you to
 write “if” statements with conditional expressions — just like C, BASIC, Pascal,
 or any other language. Conditional expressions can also be used in several other
 situations, but most obviously, they’re the basis for any sort of if statement. Here’s the syntax of an if statement for the Bourne shell:
if conditional
then
 # do this if conditional returns a zero ("true") status
 one-or-more-commands
else
 # do this if conditional returns non-zero ("false") status
 one-or-more-commands
fi
Depending on how many different ways the command might exit, and thus the
 varying values its exit status may have, you may want to use either a case

 statement or
 elif (for testing multiple conditionals
 in a single if/else block.)

 You
 can omit the else

 and the block of code following it.
 However, you can’t omit the then or the
 fi. If you want to omit the then (i.e., if you want to do something special
 when condition is false, but nothing when it is true),
 write the statement like this:
if conditional
then
 : # do nothing
else
 # do this if conditional returns non-zero ("false") status
 one-or-more-commands
fi

 Note that this uses a special null command, a colon (:) (Section
 36.6). There’s another, more useful way of expressing the inverse of
 a condition (do something if conditional is not “true”),
 the || operator (Section 35.14) (two vertical bars). You
 can use this to write an if-type statement
 without the if!
Don’t forget the fi terminating the statement. This is a surprisingly common
 source of bugs (at least for me).
Another common debugging problem: the manual pages that discuss this material
 imply that you can smash the if, then, and else
 onto one line. Well, it’s true, but it’s not always easy. Do yourself a favor:
 write your if statements
 exactly like the one above. You’ll rarely be
 disappointed, and you may even start writing programs that work correctly the
 first time.

 Here’s a
 real-life example, a shell script named bkedit that makes a backup copy of a file before editing it. If
 cp returns a zero status, the script
 edits the file; otherwise, it prints a message. (The $1 is replaced with the first filename from the command line —
 see Section 35.20.)
#!/bin/sh
if cp "$1" "$1.bak"
then
 vi "$1"
else
echo "bkedit quitting: can't make backup?" 1>&2
fi
You can try typing that shell script in and running it. Or just type in the
 lines (starting with the if) on a terminal
 running the Bourne shell; use a real filename instead of $1.
The if statement is often used with a
 command named test (Section 35.26). The test command does a test and returns an exit status of 0
 or 1.

—ML, JP, and SJC

Testing Your
 Success

 The shells let you test for success right on the
 command line. This gives you a very efficient way to write quick and
 comprehensible shell scripts.
I’m referring to the || and && operators and in particular, the || operator. comm1
 ||
 comm2 is typically explained as “execute the command
 on the right if the command on the left failed.” I prefer to explain it as an
 “either-or” construct: “execute either comm1 or
 comm2.” While this isn’t really precise, let’s see what
 it means in context:[3]
cat filea fileb > filec || exit
This
 means “either cat the files or exit.” If you can’t cat the files (if cat returns
 an exit status of 1), you exit (Section 24.4). If you can cat the files, you don’t exit. You execute the
 left side or the right side.
I’m stretching
 normal terminology a bit here, but I think it’s necessary to clarify the purpose
 of ||. By the way, we could give the poor
 user an error message before flaming out (which, by the way, is a way to write
 an “inverse if (Section
 35.13)):
cat filea fileb > filec || {
 echo sorry, no dice 1>&2
 exit 1
}
Similarly,
 comm1
 &&
 comm2 means “execute comm1 AND
 comm2,” or execute comm2 if
 comm1 succeeds. (But if you can’t execute the first,
 don’t do any.) This might be helpful if you want to print a temporary file and
 delete it
 immediately.
lpr file && rm file
If
 lpr fails for some reason, you want to
 leave the file around. Again, I want to stress how to read this: print the file
 and delete it. (Implicitly: if you don’t print it, don’t delete
 it.)
— ML

Loops That Test Exit Status

 The Bourne shell has two kinds of loops
 that run a command and test its exit status. An until loop will continue until the command returns a zero status.
 A while loop will continue while the command
 returns a zero status.
Looping Until a Command Succeeds

The until loop runs a command repeatedly until it succeeds. That
 is, if the command returns a nonzero status, the shell executes the body of
 the loop and then runs the loop control command again. The shell keeps
 running the command until it returns a zero status, as shown in the
 following example:
% cat sysmgr
#!/bin/sh
until who | grep "^barb "
do sleep 60
done
echo The system manager just logged on.
% sysmgr
 &
[1] 2345
 ...time passes...
barb ttyp7 Jul 15 09:30
The system manager just logged on.
The loop runs who (Section 2.8) and pipes that output to
 grep (Section 13.1), which searches for
 any line starting with barb and a space. (The space
 makes sure that usernames like barbara don’t match.) If
 grep returns a nonzero status (no
 lines matched), the shell waits 60 seconds. Then the loop repeats, and the
 script tries the who
 |
 grep command again. It keeps doing this
 until grep returns a zero status — then
 the loop is broken and control goes past the done line. The echo
 command prints a message and the script quits. (I ran this script in the
 background so I could do something else while I waited for Barb.)
This is also a useful way to get someone with whom you share a machine to
 turn on their cell phone: just set a loop to wait until they login and then
 send them a write message (in case they
 don’t always check their email, like a few nocturnal system administrators I
 know).
[A Bourne shell until loop is
 not identical to the until construction in most programming languages, because the
 condition is evaluated at the top of the loop. Virtually all languages with
 an until loop evaluate the condition at
 the bottom. — ML]

Looping Until a
 Command Fails

[image:] Go
 to http://examples.oreilly.com/upt3 for more information on:
 catsaway

 The while loop is the opposite of the until loop. A while loop
 runs a command and loops until the command fails (returns a nonzero status).
 The catsaway program below uses a
 while loop to watch the who output for the system manager to log off.
 It’s the opposite of the sysmgr
 script.
/dev/null
 Section 43.12
% cat catsaway
#!/bin/sh
while who | grep "^barb " > /dev/null
do sleep 60
done
echo "The cat's away..."
% catsaway &
[1] 4567
 ...time passes...
The cat's away...
—
 JP

Set Exit Status of a Shell
 (Script)

Most standard Unix toolbox commands return a
 status (Section 35.12). Your shell script should, too. This section shows
 how to set the right exit status for both normal exits and error
 exits.
To end a shell script and set its exit status, use the
 exit command. Give exit the exit status that your script should have.
 If it has no explicit status, it will exit with the status of the last command
 run.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 bkedit
Here’s an example, a rewrite of the
 bkedit script from Section 35.13. If the script can make a
 backup copy, the editor is run and the script returns the exit status from
 vi (usually 0). If something goes wrong
 with the copy, the script prints an error and returns an exit status of 1.
 Here’s the script:
#!/bin/sh
if cp "$1" "$1.bak"
then
 vi "$1"
 exit # Use status from vi
else
 echo "bkedit quitting: can't make backup?" 1>&2
 exit 1
fi
Here’s
 what happens if I run it without a
 filename:
$ bkedit
cp: usage: cp fn1 fn2 or cp fn1 [fn2...] dir
bkedit quitting: can't make backup?
And
 here’s what’s left in the exit status
 variable:
$ echo $?
1
—
 JP

Trapping Exits Caused by Interrupts

If you’re running a shell script and you press
 your interrupt
 key (Section 5.8) (like
 CTRL-c), the shell quits right away. That can be a problem if you use temporary
 files in your script, because the sudden exit might leave the temporary files
 there. The trap
 command lets you tell the shell what to
 do before it exits. A trap can be used for a
 normal exit, too. See Table
 35-1.
Table 35-1. Some Unix signal numbers for
 trap commands
	
 Signal number

 	
 Signal name

 	
 Explanation

	
 0

 	
 EXIT

 	

 exit command

	
 1

 	
 HUP

 	
 When session disconnected

	
 2

 	
 INT

 	
 Interrupt — often CTRL-c

	
 3

 	
 QUIT

 	
 Quit — often CTRL-\

	
 9

 	
 KILL

 	
 Kill, often used as a way to stop an errant program (it
 cannot be caught, so don’t bother to trap it)

	
 15

 	
 TERM

 	
 From kill
 command

 Here’s
 a script named zmore that uses a temporary
 file named /tmp/zmore$$ in a system
 temporary-file directory. The shell will replace $$ with its process ID number
 (Section 24.3). Because no other
 process will have the same ID number, that file should have a unique name. The
 script uncompresses (Section 15.6) the file named on its
 command line, then starts the more file
 viewer.[4] The script uses traps, so it will
 clean up the temporary files, even if the user presses
 CTRL-c. The script also sets a default exit status of 1 that’s reset to 0 if
 more quits on its own (without an
 interrupt). If you are on a Linux system, you may find that gzcat is simply named zcat.
exit
 Section 35.16
#!/bin/sh
zmore - UNCOMPRESS FILE, DISPLAY WITH more
Usage: zmore file
stat=1 # DEFAULT EXIT STATUS; RESET TO 0 BEFORE NORMAL EXIT
temp=/tmp/zmore$$
trap 'rm -f $temp; exit $stat' 0
trap 'echo "`basename $0`: Ouch! Quitting early." 1>&2' 1 2 15

case $# in
1) gzcat "$1" >$temp
 more $temp
 stat=0
 ;;
*) echo "Usage: `basename $0` filename" 1>&2 ;;
esac
There are two traps
 in the script:
	The first trap, ending with the number 0, is executed for all shell exits — normal or
 interrupted. It runs the command line between the single quotes. In this
 example, there are two commands separated with a semicolon (;) (Section 28.16). The first command removes the temporary file
 (using the

 -f option (Section 14.10), so rm won’t give an error message if the file
 doesn’t exist yet). The second command exits with the value stored in
 the stat shell variable. Look ahead at the rest of
 the script — $stat will always be 1
 unless the more command quit on its
 own, in which case stat will be reset to 0.
 Therefore, this shell script will always return the right exit status —
 if it’s interrupted before it finishes, it’ll return 1; otherwise,
 0.[5]

	
 The second trap has the numbers 1
 2
 15 at the end. These are signal
 numbers that correspond to different kinds of interrupts. On newer
 shells, you can use signal names instead of the numbers. There’s a short
 list in Table 35-1. For a
 list of all signals, type kill -l
 (lowercase “L”) or see your online
 signal(3) or signal(2)
 manual page. Alternatively, look for a file named /usr/include/signal.h or /usr/include/linux/signal.h (which itself
 just includes /usr/include/asm/signal.h, which is where the constants
 themselves are defined).
This trap is done on an abnormal exit (like CTRL-c). It prints a
 message, but it could run any list of commands.

Shell
 scripts don’t always have two traps. Look at
 the nom (Section 33.8) script for an example.
I usually don’t trap signal 3 (QUIT) in scripts that I use myself. That gives
 me an easy way to abort the script without springing the trap (removing
 temporary files, etc.). In scripts for general use, though, I usually do trap
 it.

 Also, notice that the echo commands in the script have 1>&2 (Section 36.16) at the end. This is the standard way to make error
 messages. In this particular script, that doesn’t matter much because the script
 is used interactively. But it’s a good habit to get into for all of your
 scripts.
If your trap runs a series of commands,
 it’s probably neater to call a shell function
 (Section 29.11) than a list of
 commands:
trap funcname 1 2 15
—JP and SJC

read: Reading from the Keyboard

The Bourne shell read command reads a line of one or more words from the keyboard
 (or standard input)[6] and stores the words in one or more shell variables. This is usually
 what you use to read an answer from the keyboard. For example:
echo -n "Type the filename: "
read filename
Here is how the read command works:
	If you give the name of one shell variable, read stores everything from the line into that
 variable:
read varname

	If you name more than one variable, the first word typed goes into the
 first variable, the second word into the second variable, and so on. All
 leftover words go into the last variable. For example, with these
 commands:
echo -n "Enter first and last name: "
read fn ln
if a user types John
 Smith, the word
 John would be available from $fn and Smith would
 be in $ln. If the user types Jane
 de
 Boes, then Jane
 would be in $fn and the two words
 de Boes are in $ln.

Some Bourne shells have a built-in
 function named line that reads a line from
 standard input and writes it to standard output. Use it with command substitutions (Section 28.14):
value=`line`
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 grabchars
The grabchars program lets you read from the keyboard without needing
 to press RETURN.
— JP

Shell Script “Wrappers” for awk, sed, etc.

 Although most scripts for most languages
 can execute directly (Section 36.3) without needing the Bourne
 shell, it’s common to “wrap” other scripts in a shell script to take advantage
 of the shell’s strengths. For instance, sed
 can’t accept arbitrary text on its command line, only commands and filenames. So
 you can let the shell handle the command line
 (Section 35.20) and pass
 information to sed via shell variables,
 command substitution, and so on. Simply use correct quoting (Section
 27.12) to pass information from the shell into the “wrapped” sed script:
||
 Section 35.14
#!/bin/sh
seder - cd to directory in first command-line argument ($1),
read all files and substitute $2 with $3, write result to stdout
cd "$1" || exit
sed "s/$2/$3/g" *

 In SunExpert
 magazine, in his article on awk (January,
 1991), Peter Collinson suggests a stylization similar to this for awk programs in shell
 scripts (Section
 35.2):
#!/bin/sh
awkprog='
/foo/{print $3}
/bar/{print $4}'

awk "$awkprog" $*
He argues that this is more intelligible in long pipelines because it
 separates the program from the command. For example:
grep foo $input | sed | awk "$awkprog" - | ...
Not everyone is thrilled by the “advantages” of writing awk this way, but it’s true that there are
 disadvantages to writing awk the standard
 way.
Here’s an even more complex variation:
<<\
 Section 27.16
#!/bin/sh
temp=/tmp/awk.prog.$$
cat > $temp <<\END
/foo/{print $3}
/bar/{print $4}
END
awk -f $temp $1
rm -f $temp

 This
 version makes it a bit easier to create complex programs dynamically. The final
 awk command becomes the equivalent of a
 shell eval (Section 27.8); it executes something that has been built up at
 runtime. The first strategy (program in shell variable) could also be massaged
 to work this way.

 As another example, a program that I used
 once was really just one long pipeline, about 200 lines long. Huge awk scripts and sed scripts intervened in the middle. As a result, it was almost
 completely unintelligible. But if you start each program with a comment block
 and end it with a pipe, the result can be fairly easy to read. It’s more direct
 than using big shell variables or temporary files, especially if there are
 several scripts.
#
READ THE FILE AND DO XXX WITH awk:
#
awk '
 ...the indented awk program...
 ...
 ...
' |
#
SORT BY THE FIRST FIELD, THEN BY XXX:
#
sort +0n -1 +3r |
#
MASSAGE THE LINES WITH sed AND XXX:
#
sed '
 ...
Multiline pipes like that one are uglier
 in the C shell because each line has to end with a
 backslash (\) (Section
 27.13). Section 27.12 and
 Section 27.13 have more about
 quoting.
—ML and JP

Handling Command-Line Arguments in Shell Scripts

 To write flexible shell scripts, you
 usually want to give them command-line arguments. As you’ve seen in other articles (Section 35.16, Section
 35.17), $1 holds the first
 command-line argument. The Bourne shell can give you arguments through the
 ninth, $9. The Korn shell and some other
 newer Bourne-type shells understand ${10} for
 the tenth argument, and so on.
With the “$@” Parameter

If you’ve been
 reading this series (Section
 35.2) of articles in order, you saw the zmore (Section
 35.17) script that accepted just one command-line argument.
 If you
 put "$@" in a script, the shell will
 replace that string with a quoted (Section 27.12) set of the script’s
 command-line arguments. Then you can pass as many arguments as you want,
 including pathnames with unusual characters
 (Section 14.11):
% zmore report memo "savearts/What's next?"
The third argument has a perfectly legal filename; we see more and more of
 them on our system — especially filesystems that are networked to computers
 like the Macintosh, or on systems that use windowing systems to run
 graphical programs such as FrameMaker, where spaces and other “special”
 characters in filenames are common. Double-quoting all arguments through the
 script helps to be sure that the script can handle these unusual but legal
 pathnames.
In
 this case, we want the arguments to be passed to the GNU
 zcat command. Let’s change the zmore script to read:
zcat "$@" >$temp
When the shell runs the script with the arguments shown above, the command
 line will become:
zcat "report" "memo" "savearts/What's next?" >/tmp/zmore12345
Note
On
 some Bourne shells, if there are no command-line arguments, the "$@"
 becomes a single empty argument (Section 37.5), as if you’d typed
 this:
zcat "" >/tmp/zmore12345
In this case, the zcat command
 would complain that it can’t find a file. (Of course, in this script,
 the case would prevent this problem.
 But not all scripts test the number of arguments.)
On those shells, you can replace "$@" with ${1+"$@"}
 (Section 36.7). That means
 that if $1 is defined, "$@" should be used. A not-quite-as-good
 fix is to replace "$@" with $*. It gives you an unquoted list of
 command-line arguments; that’s usually fine but can cause trouble on
 pathnames with special characters in them.

With a Loop

 A for
 loop (Section
 35.21) can step through all command-line arguments, one by one.
 You can also use a while loop (Section 35.15) that tests $# (see below) and removes the arguments one
 by one with the shift command (Section 35.22). The getopt and getopts (Section 35.24) commands handle
 arguments in a more standard way.

Counting Arguments with $#

The $# parameter counts the number of command-line arguments. For
 instance, if there are three arguments, $# will contain 3. This is
 usually used for error-checking (as in the zmore script in Section
 35.17) with case (Section 35.10) or test (Section
 35.26).
— JP

Handling Command-Line Arguments with a for Loop

Sometimes you want a script that will step
 through the command-line arguments one by one. (The “$@”
 parameter (Section
 35.20) gives you all of them at once.) The Bourne shell for loop can do this. The for loop looks like this:
for arg in list
do
 ...handle $arg...
done
If you omit the in
 list, the loop steps through the command-line
 arguments. It puts the first command-line argument in arg
 (or whatever else you choose to call the shell
 variable (Section
 35.9)), then executes the commands from do to done. Then it puts the
 next command-line argument in arg, does the loop, and so
 on, ending the loop after handling all the arguments.
For an
 example of a for loop, let’s hack on the
 zmore (Section 35.17) script.
case
 Section 35.11
#!/bin/sh
zmore - Uncompress file(s), display with "more"
Usage: zmore [more options] file [...files]
stat=1 # Default exit status; reset to 0 before normal exit
temp=/tmp/zmore$$
trap 'rm -f $temp; exit $stat' 0
trap 'echo "`basename $0`: Ouch! Quitting early..." 1>&2' 1 2 15

files= switches=
for arg
do
 case "$arg" in
 -*) switches="$switches $arg" ;;
 *) files="$files $arg" ;;
 esac
done

case "$files" in
"") echo "Usage: `basename $0` [more options] file [files]" 1>&2 ;;
*) for file in $files
 do
 zcat "$file" | more $switches
 done
 stat=0
 ;;
esac
We added a for loop to get and check each
 command-line argument. For example, let’s say that a user typed the
 following:
% zmore -s afile ../bfile

 The first pass through
 the for loop, $arg is -s. Because the
 argument starts with a minus sign (-), the
 case treats it as an option. Now the
 switches variable is replaced by its
 previous contents (an empty string), a space, and -s. Control goes to the esac and the loop
 repeats with the next argument.
The next argument, afile, doesn’t look like
 an option. So now the files variable will
 contain a space and afile.
The loop starts over once more with ../bfile in $arg. Again, this
 looks like a file, so now $files has afile ../bfile. Because ../bfile was the last argument, the loop ends; $switches has the options and $files has all the other arguments.
Next, we added another for loop. This one
 has the word in followed by $files, so the loop steps through the contents of
 $files. The loop runs zcat on each file, piping it to more with any switches you gave.
Note that $switches isn’t quoted (Section
 27.12). This way, if $switches is
 empty, the shell won’t pass an empty argument to more. Also, if $switches has
 more than one switch, the shell will break the switches into separate arguments
 at the spaces and pass them individually to more.

 You can use a for loop with any space-separated (actually, IFS (Section
 36.23)-separated) list of words — not just filenames. You don’t have
 to use a shell variable as the list; you can use command
 substitution (Section
 28.14) (backquotes) or shell
 wildcards (Section
 33.2), or just “hardcode” the list of words:
lpr
 Section 45.2
for person in Joe Leslie Edie Allan
do
 echo "Dear $person," | cat - form_letter | lpr
done
The getopt and
 getopts (Section
 35.24) commands handle command-line arguments in a more standard way than
 for loops.
— JP

Handling Arguments with while and shift

 A for loop
 (Section 35.21) is great if you
 want to handle all of the command-line arguments to a script, one by one. But,
 as is often the case, some arguments are options that have their own arguments.
 For example, in the command grep -f
 filename, filename is an
 argument to -f; the option and its argument need to
 be processed together. One good way to handle this is with a combination of
 while (Section 35.15), test (Section 35.26), case (Section 35.10),
 and shift. Here’s the basic construct:
while [$# -gt 0]
do
 case "$1" in
 -a) options="$options $1";;
 ...
 -f) options="$options $1"
 argfile="$2"
 shift
 ;;
 *) files="$files $1";;
 esac
 shift
done
The trick is this: shift removes an argument from the script’s argument list,
 shifting all the others over by one ($1
 disappears, $2 becomes $1, $3 becomes
 $2, and so on). To handle an option with
 its own argument, do another shift. The
 while loop uses test (Section 35.26)
 to check that $# — the number of arguments —
 is greater than zero and keeps going until this is no longer true, which only
 happens when they have all been used up.
Meanwhile, all the case has to do is to test $1
 against the desired option strings. In the simple example shown above, we simply
 assume that anything beginning with a minus sign is an option, which we
 (presumably) want to pass on to some program that is being invoked by the
 script. So all we do is build up a shell variable that will eventually contain
 all the options. It would be quite possible to do something else instead,
 perhaps setting other shell variables or executing commands.
We assume that anything without a minus sign is a file. This last case could
 be written more robustly with a test to be
 sure the argument is a file. Here’s an example of a simple script that uses this
 construct to pass an option and some files to pr and from there to a program that converts text to PostScript
 and on to the print spooler (or you could convert SGML or XML files to PDF,
 whatever):
while [$# -ne 0]
do
 case $1 in
 +*) pages="$1" ;;
 *) if [-f "$1"]; then
 files="$files $1"
 else
 echo "$0: file $1 not found" 1>&2
 fi;;
 esac
 shift
done
pr $pages $files | psprint | lpr
This approach is perhaps obsolete if you
 have getopts (Section 35.24) (it’s built into
 bash, for instance), since getopts lets you recognize option strings like
 -abc as being equivalent to -a -b -c, but I still find it handy. [In this
 example, it’s essential. The pr option
 +page-list starts with a plus sign. getopt and getopts don’t support those old-style options. —
 JP]

—TOR and SJC

Loop Control: break and continue

 Normally a for
 loop (Section 35.21)
 iterates until it has processed all its word arguments. while and until loops (Section 35.15) iterate until the loop control command returns a
 certain status. But sometimes — for instance, if there’s an error — you want a
 loop to immediately terminate or jump to the next iteration. That’s where you
 use break

 and continue, respectively.
break terminates the loop and takes control
 to the line after done. continue skips the rest of the commands in the
 loop body and starts the next iteration. Here’s an example of both. An outer
 loop is stepping through a list of directories. If we can’t cd to one of them, we’ll abort the loop with
 break. The inner loop steps through all
 entries in the directory. If one of the entries isn’t a file or isn’t readable,
 we skip it and try the next one.
'...'
 Section 28.14, ||
 Section 35.14, *
 Section 1.13, test
 Section 35.26
for dir in `find $HOME/projdir -type d -print`
do
 cd "$dir" || break
 echo "Processing $dir"

 for file in *
 do
 test -f "$file" -a -r "$file" || continue
 ...process $dir/$file...
 done
done
With nested loops (like the file
 loop above), which loop is broken or continued? It’s the loop being processed at
 that time. So the continue here restarts the
 inner (file) loop. The break terminates the
 outer (directory) loop, which means the inner loop is also terminated. Note also
 that the -print argument to find is often redundant in the absence of another expression,
 depending on your version of find.
Here we’ve used break and continue within for loops, after the shell’s || operator. But you can use them anywhere within the body of any
 loop — in an if statement within a while loop, for instance.
— JP

Standard Command-Line
 Parsing

 Most shell scripts need to handle
 command-line arguments — options, filenames, and so on. Section 35.20, Section 35.21, and Section 35.22 show how to parse command
 lines with any Bourne shell. Those methods have two problems. You can’t combine
 arguments with a single dash, e.g., -abc
 instead of -a -b -c. You also can’t specify
 arguments to options without a space in between, e.g., -b
 arg in addition to -b
 arg.[7]
Your Bourne shell may
 have a built-in command named getopts.[8]
 getopts lets you deal with multiple complex
 options without these constraints. To find out whether your shell has getopts, see your online sh
 or getopts(1) manual page.
getopt
 takes two or more arguments. The first is a string that can
 contain letters and colons (:). Each letter names a valid option; if a letter is
 followed by a colon, the option requires an argument. The second and following
 arguments are the original command-line options; you’ll usually give “$@” (Section
 35.20) to pass all the arguments to getopt.

 getopt picks each option off the command
 line, checks to see if the option is valid, and writes the correct option to its
 standard output. If an option has an argument, getopt writes the argument after its option. When getopt finds the first nonoption argument (the
 first argument that doesn’t start with a -
 character), it outputs two dashes (--) and
 the rest of the arguments. If getopt finds an
 invalid option, or an option that should have an argument but doesn’t, it prints
 an error message and returns a nonzero status
 (Section
 35.12).
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 opttest
Your script can use a loop to parse the getopt output. Here’s an example script named
 opttest

 that shows how getopt
 works:
||
 Section 35.14, :
 Section 36.6
#!/bin/sh
set -- `getopt "ab:" "$@"` || {
 echo "Usage: `basename $0` [-a] [-b name] [files]" 1>&2
 exit 1
}
echo "Before loop, command line has: $*"
aflag=0 name=NONE
while :
do
 case "$1" in
 -a) aflag=1 ;;
 -b) shift; name="$1" ;;
 --) break ;;
 esac
 shift
done
shift # REMOVE THE TRAILING --
echo "aflag=$aflag / name=$name / Files are $*"
The
 script has two legal options. The -a option sets the variable
 named aflag to 1. The
 -b option takes a single argument; the argument is stored
 in the variable named name. Any other arguments are
 filenames.

 The
 script starts by running getopt inside
 backquotes (Section 28.14) and using the set (Section
 35.25) command to replace the command-line arguments with the
 getopt output. The first argument to
 set, -- (two
 dashes) (Section
 35.25), is important: it makes sure that set passes the script’s options to getopt instead of treating them as options to the shell itself.
 An echo command shows the output of getopt. Then the loop parses the getopt output, setting shell variables as it goes.
 When the loop finds the -- argument from
 getopt, it quits and leaves the remaining filenames (if
 any) in the command-line arguments. A second echo shows what’s in the shell variables and on the command line
 after the loop. Here are a few
 examples:
% opttest
Before loop, command line has: --
aflag=0 / name=NONE / Files are
% opttest -b file1 -a file2 file3
Before loop, command line has: -b file1 -a -- file2 file3
aflag=1 / name=file1 / Files are file2 file3
% opttest -q -b file1
getopt: illegal option -- q
Usage: opttest [-a] [-b name] [files]
% opttest -bfile1
Before loop, command line has: -b file1 --
aflag=0 / name=file1 / Files are
% opttest -ab
getopt: option requires an argument -- b
Usage: opttest [-a] [-b name] [files]
Some
 old Bourne shells have problems with an empty “$@”
 parameter (Section
 37.5). If the opttest script doesn’t
 work with an empty command line, as in the first example above, you can change
 the "$@" in the script to ${1+"$@"}. If you find you’re still having some
 trouble running the script, particularly with bash, try setting the GETOPT_COMPATIBLE
 environment variable, which sets GNU getopt
 to emulate the older, less featureful version. Also be sure to read the GNU
 getopt(1) manual page, as it details the support for
 POSIX-style long options (which let you do things like pass --
 longoptions to programs such as GNU getopt.)
The advantages of getopt are that it minimizes extra code necessary to process
 options and fully supports the standard Unix option syntax (as specified in
 intro

 of the User’s
 Manual).
—JP and BR

The Bourne Shell set Command

[Most of this article, except IFS and
 --, also applies to the C shell. —
 JP]
You can pass options and arguments to a shell as you start it, as in:
sh -v file1 file2
and also when a script is invoked with #!.
 The set command lets you set command-line
 parameters, including most[9] shell options, after you’ve started the shell. This simple idea has
 more uses than you might realize.
Setting Options

The Bourne shell command line can have
 options like -e (exit if any command returns nonzero
 status). It can also have other arguments; these are passed to shell
 scripts. You can set new command-line parameters while you’re typing
 interactive commands (at a shell prompt) or in a shell script.
To reset the command-line parameters, just type set followed by the new parameters. For example, to ask the
 shell to show expanded versions of command lines after you type them, set
 the -v (verbose) option (Section 27.15):
$ set -v
$ mail $group1 < message
mail andy ellen heather steve wilma < message
$ mail $group2 < message
mail jpeek@jpeek.com randy@xyz.edu yori@mongo.medfly.com < message
$ set +v
On many Bourne shells, typing set +v
 cancels the v option. On other (mostly early) shells,
 there’s no + feature. To work around that
 problem, you could start a subshell (Section 24.4) with sh -v, run the commands there, then exit the
 subshell to cancel the verbose option.

Setting (and Parsing) Parameters

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 users

 You
 can put filenames or any other strings in the
 command-line parameters interactively or from a shell script. That’s handy
 for storing and parsing the output of a Unix command with backquotes (Section 28.14). For example, you can get a list of all logged-in
 users from the parameters $1, $2, and so on. Use users

 (or rusers to find all the logged in users on the local network)
 if your system has it. Otherwise, use who
 (

 Section 2.8) and cut (Section
 21.14) to strip off everything but the usernames:
for
 Section 35.21
$ set `users`
$ set `who | cut -c1-8`
$ for u
> do
> ...do something with each user ($u)...
> done
You can save the original parameters in another variable and reset them
 later:
oldparms="$*"
set something new
 ...use new settings...
set $oldparms
Be sure to watch your quoting (as the next section explains).
If the first parameter you set starts with a dash, like -e, the shell will treat it as its own option
 instead of as a string to put into the command-line parameters. To avoid
 this, use -- (two dashes) as the first
 argument to set. In this example,
 $1 gets -e, and the
 filenames expanded from the wildcard pattern go into $2, $3,
 etc.:
set -- -e file*

(Avoiding?) set with No Arguments

If you type set by itself with no arguments, it will show
 a list of all currently set shell variables. In newer Bourne-type shells, it
 also shows shell functions (Section 29.11) and other shell
 settings.
This can cause you grief if you accidentally don’t pass arguments to
 set in the middle of a script, and
 screenfuls of variables spew onto the user’s screen. For example, your
 script runs set 'users' from a cron (Section
 25.2) job, in the middle of the night when no one is logged on.
 The users command returns an empty
 string, so set gets no arguments, so it
 outputs a long list of junk.
The standard workaround for this problem is to always use a dummy first
 parameter — typically, a single x — when
 you’re setting parameters. Then use shift
 (Section 35.22) to shift away
 the x, leaving the other parameters
 (possibly none). For example:
set x `users`
shift

Watch Your Quoting

 Because
 the shell parses and scans the
 new parameters before it stores
 them, wildcards (Section 33.2) and other special characters (Section 27.17) will be interpreted,
 so watch your quoting (Section 27.12). You can take
 advantage of this to parse lines of text into pieces that aren’t separated
 with the usual spaces and TABs — for instance, a line from a database with
 colon-separated fields — by setting the IFS
 (Section 36.23) variable
 before the set command.
If you want to save any special
 quoting on the original command line, be careful: the quoting will be lost
 unless you’re clever. For example, if $1
 used to be John Smith, it will be split after it’s
 restored: $1 will have
 John and $2 will
 be Smith. A better solution might be to use a subshell (Section 43.7) for the part of the script where you need to reset
 the command-line parameters:
reset command-line parameters during subshell only:
(set some new parameters
 ...do something with new parameters...
)
original parameters aren't affected from here on...

Can’t Set $0

One last note: set won’t set $0, the name of the script file.
— JP

test: Testing Files and Strings

 Unix
 has a command called test that does a lot of
 useful tests. For instance, test can check
 whether a file is writable before your script tries to write to it. It can treat
 the string in a shell variable as a number and do comparisons (“Is that number
 less than 1000?”). You can combine tests, too (“If the file exists
 and it’s readable and the message
 number is more than 500...”). Some versions of test have more tests than others. For a complete list, read your
 shell’s manual page (if your shell has test built
 in (Section 1.9)) or the
 online test(1) manual page.
The test command returns a zero status (Section
 35.12) if the test was true and a nonzero status otherwise, so people
 usually use test with if

 , while, or
 until. Here’s a way your program could
 check to see if the user has a readable file named .signature in the home directory:
$HOME
 Section 35.5, $myname
 Section 35.28
if test -r $HOME/.signature
then
 ...Do whatever...
else
 echo "$myname: Can't read your '.signature'. Quitting." 1>&2
 exit 1
fi
The
 test command also lets you test for
 something that isn’t true. Add an exclamation point
 (!) before the condition you’re testing.
 For example, the following test is true if the .signature file is not readable:
if test ! -r $HOME/.signature
then
 echo "$myname: Can't read your '.signature'. Quitting." 1>&2
 exit 1
fi

 Unix also
 has a version of test (a link to the same
 program, actually) named [. Yes, that’s a left
 bracket. You can use it interchangeably with the test command with one exception: there has to be a matching right
 bracket (]) at the end of the test. The
 second example above could be rewritten this way:
if [! -r $HOME/.signature]
then
 echo "$myname: Can't read your '.signature'. Quitting." 1>&2
 exit 1
fi
Be sure to leave space between the brackets and other text. There are a couple
 of other common gotchas caused by empty arguments; Section 37.3 and Section 37.4 have workarounds.
— JP

Picking a Name for a New
 Command

 When you write a new program or shell script,
 you’ll probably want to be sure that its name doesn’t conflict with any other
 commands on the system. For instance, you might wonder whether there’s a command
 named tscan. You can check by typing one of
 the commands in the following example. If you get output (besides an error) from
 one of them, there’s probably already a command with the same name. (The
 type command works on ksh, bash, and
 many Bourne shells; I’ve shown it with a dollar sign ($) prompt.)
which
 Section 2.6, whereis
 Section 2.3, alias
 Section 29.2
% man 1 tscan
No manual entry for tscan in section 1.
% which tscan
no tscan in . /xxx/ehuser/bin /usr/bin/X11 /usr/local/bin ...
% whereis tscan
tscan:
% alias tscan
%
% whatis tscan
tscan:
$ type tscan
tscan not found
—
 JP

Finding a Program Name and Giving Your Program Multiple Names

 A Unix program should use its name
 as the first word in error messages it prints. That’s important when the program
 is running in the background or as part of a pipeline — you need to know which
 program has the problem:
 someprog: quitting: can't read file xxxxxx
It’s tempting to use just the program name in the echo commands:
echo "someprog: quitting: can't read file $file" 1>&2
If you ever change the program name, however, it’s easy to forget to fix the
 messages. A better way is to store the program name in a shell variable at the
 top of the script file and use the variable in all messages:
myname=someprog
 ...
echo "$myname: quitting: can't read file $file" 1>&2
Even better, use the $0 parameter. The shell automatically puts the script’s name
 there. But $0 can have the absolute pathname
 of the script, such as /xxx/yyy/bin/someprog. The basename (Section
 36.13) program fixes this: basename strips off the head of a pathname — everything but the
 filename.
For example, if $0 is /u/ehuser/bin/sendit:
myname="`basename $0`"
would put sendit into the
 myname shell variable.

 Just as you can make links (Section
 10.3) to give Unix files several names, you can use links to
 give your program several names (Section 36.8). For instance, see the
 script named ll, lf, lg (...and so on). Use
 $0 to get the current name of the
 program.
— JP

Reading Files with the . and source Commands

 As Section 35.4 explains, Unix programs can never,
 ever modify the environment of their parents. A program can only
 modify the environment that later will be passed to its children. This is a
 common mistake that many new Unix users make: they try to write a program that
 changes a directory (or does something else involving an environment variable)
 and attempt to figure out why it doesn’t work. You can’t do this. If you write a
 program that executes the cd command, that
 cd will be effective within your program
 — but when the program finishes, you’ll be back in your original (parent)
 shell.

 One workaround is to “source” the shell script
 file (for csh and bash) or run it as a “dot” script (sh, ksh, and bash, too). For example, if the file named
 change-my-directory contains:
cd /somewhere/else
you could use the following commands to change the current directory of the
 current shell:
% source change-my-directory
$. change-my-directory
The source and .
 commands read a script file into the current shell instead of starting a child
 shell. These commands work only for shell script files (files containing command
 lines as you’d type them at a shell prompt). You can’t use source or . to
 read a binary (directly executable) file into the shell.

 If your shell doesn’t have shell functions (Section 29.11), you can simulate
 them (Section 29.14)
 with the . command. It acts a lot like a subroutine or function in a programming
 language.
—ML and JP

Using Shell Functions in Shell Scripts

 So far, we have discussed some shell function basics (Section 29.11), using examples such as
 the mx() function that uses sed and dig to
 find out what host accepts mail for a given address. In that example, we simply
 made a set of complex functionality available as a quick and easy (and short)
 call from the command line. But you can also define functions and use them
 within shell scripts, or you can use the . and source commands to include those functions from an external file
 (Section 35.29).
We’ve also discussed using functions to automate
 repetitive tasks (Section
 29.11), such as calculating factorials.
For now, let’s demonstrate both of these
 approaches specifically with respect to defining a function to automate a
 repetitive task and then sharing the function with other shell scripts. Using
 the mx() function we defined earlier, let’s
 put it into its own file, mx.sh, and store
 it in our personal shell function library directory (in this case, $HOME/lib):
$ cat > ~/lib/mx.sh
function mx() {
Look up mail exchanger for host(s)
for host
do
 echo "==== $host ===="
 dig "$host" mx in |
 sed -n '/^;; ANSWER SECTION:/,/^$/{
 s/^[^;].* //p
 }'
done
}
^D
$ more !$
function mx() {
Look up mail exchanger for host(s)
for host
do
 echo "==== $host ===="
 dig "$host" mx in |
 sed -n '/^;; ANSWER SECTION:/,/^$/{
 s/^[^;].* //p
 }'
done
}
$
Now the file ~/lib/mx.sh contains a
 function named mx() — fair enough, but let’s
 say we want to be able to pass a list of hosts (determined dynamically on a
 regular basis, say, from spam-fighting tools that find open SMTP proxies) to a
 shell script, and have that shell script email a form letter to the postmaster address at that host. We will call the
 shell script proxynotify, and call it as
 follows:
$ proxynotify < proxyList
proxylist contains a list of hosts, one per line,
 in the com domain. We want to iterate over
 them and mail the postmaster for the domain, rather than mailing directly to an
 address such as postmaster@[
 IP
], on the assumption that maybe the top-level
 postmaster can fix what may be an unmonitored relay. Just to verify that some
 other system isn’t responsible for delivering the mail, we will check using the
 mx() shell function. We’ve also included
 a quickie shell function named ip() that
 returns the IP address for a given hostname. As you can see, we use a local
 variable for the IP address, and we use the -z

 test for zero
 length of a string. We also check whether the file is readable, check the script
 arguments, and use a variety of other tricks.
#!/bin/sh
proxynotify demo

get our function
. $HOME/lib/mx.sh

function ip() {
 for host
 do
 local ip=`dig in host $host |\
 grep $host |\
 grep "TABATAB" |\
 awk '{print $5}'`
 echo $ip
 done
}

if [-z "$1"]
then
 echo "Usage: $0 [file]"
 exit 1
elif [-r "$1"]
then
 echo "found a file and it is readable"
else
 echo "file $1 not readable or does not exist"
 exit 1
fi

 for domain in `cat "$1"`
 do
 echo "processing $domain"
 themx=`mx $domain`
 echo "MX for $domain is '$themx'"
 if [! -z $themx]
 then
 cat formletter | mail -s "proxy" postmaster@$themx
 else
 echo "couldn't find MX for $domain,"
 echo "mailing direct-to-IP instead."
 theip=`ip $domain`
 if [! -z $theip]; then
 cat formletter | mail -s "proxy" postmaster@$theip
 else
 echo "giving up, can't find anyone to notify"
 echo "$domain" >> /tmp/proxybadlist.$$
 return 1
 fi
 fi
done
mail -s "bad proxies" <</tmp/proxybadlist.$$
rm /tmp/proxybadlist.$$

[1] Before X11 Release 5, the DISPLAY variable might appear as unix:0.0.

[2] printenv and env are external (Section
 1.9) commands; they work with any shell.

[3] Others refer to it as a “short-circuit” operator.

[4] The script could run gzcat $1 |
 more directly, but some versions of more can’t back up when reading from a
 pipe. You may prefer to use less, at
 any rate.

[5] It’s important to use single quotes rather than double quotes
 around the trap. That way,
 the value of $stat won’t be
 interpreted until the trap is actually executed when the script
 exits.

[6] Some early versions of read don’t
 handle < redirection (Section 43.1); they can only
 read from the terminal.

[7] Although most Unix commands allow this, it is actually contrary to the
 Command Syntax Standard Rules in intro of the
 User’s Manual. Check your shell’s manual pages for whether it supports
 getopts.

[8] Both bash and ksh have it. getopts replaces the old command getopt; it is better integrated into the shell’s syntax
 and runs more efficiently. C programmers will recognize getopts as very similar to the standard
 library routine getopt(3).

[9] Some options for some shells can be set only from the command line as
 the shell is invoked. Check the shell’s manual page.

Chapter 36. Shell Programming for the Initiated

Beyond the Basics

 This chapter has a bunch of
 tricks and techniques for programming with the Bourne shell. Some of them are
 documented but hard to find; others aren’t documented at all. Here is a summary
 of this chapter’s articles:
	The first group of articles is about making a file directly executable with #! on the first
 line. On many versions of Unix, an executable file can start with a
 first line like this:
#!/path/to/interpreter
The kernel will start the program named in that line and give it the
 file to read. Chris Torek’s Usenet classic, Section 36.2, explains how
 #! started. Section 36.3 explains that your
 “shell scripts” may not need a shell at all.

	The next bunch of articles are about processes and commands. The
 exec command, Section 36.5, replaces the shell
 with another process; it can also be used to change input/output
 redirection (see below). The : (colon) operator evaluates its arguments
 and returns a zero status — Section
 36.6 explains why you should care.

	Next are techniques for handling variables and parameters. Parameter
 substitution, explained in Section
 36.7, is a compact way to test, set, and give default values
 for variables. You can use the $0
 parameter and Unix links to give the same script multiple names and make
 it do multiple things; see Section
 36.8. Section 36.9
 shows the easy way to get the last command-line argument. Section 36.10 has an easy way
 to remove all the command-line arguments.

	Four articles cover sh loops. A
 for loop usually reads a list of
 single arguments into a single shell variable. Section 36.11 shows how to make
 the for loop read from standard
 input. Section 36.12 has
 techniques for making a for loop set
 more than one variable. The dirname
 and basename commands can be used to
 split pathnames with a loop; see Section 36.13. A while
 loop can have more than one command line at the start; see Section 36.14.

	Next is an assortment of articles about input/output. Section 36.15 introduces open
 files and file descriptors — there’s more to know about standard
 input/output/error than you might have realized! Section 36.16 has a look at
 file-descriptor handling in the Bourne shell, swapping standard output
 and standard error.

	The shell can read commands directly from a shell script file. As
 Section 36.17 points out,
 a shell can also read commands from its standard input, but that can
 cause some problems. Section
 36.18 shows one place scripts from stdin
 are useful: writing a script that creates another script as it
 goes.
Next are two articles about miscellaneous I/O. One gotcha with the
 here-document operator (for redirecting input from a script file) is
 that the terminators are different in the Bourne and C shells; Section 36.19 explains. Section 36.20 shows how to turn
 off echoing while your script reads a “secret” answer such as a
 password.

	Two articles — Section
 36.22 and Section
 36.23 — show uses for the versatile expr expression-handling command. Section 36.21 is a quick
 reference to expr. Section 36.24 covers multiple
 command substitution (Section 28.14).
Section 36.25 shows a trick
 for making one case statement (Section 35.10) test two things
 at once. Finally, Section
 36.27 has a simple technique for getting exclusive access to
 a file or other system resource.

— JP

The Story of : # #!

Once
 upon a time, there was the Bourne shell.
 Since there was only “the” shell, there was no trouble deciding how to run a
 script: run it with the shell. It worked, and everyone was
 happy.
Along came progress and wrote another shell. The people thought this was good,
 for now they could choose their own shell. So some chose the one, and some the
 other, and they wrote shell scripts and were happy. But one day someone who used
 the “other” shell ran a script by someone who used the “other other” shell, and
 alas! it bombed spectacularly. The people wailed and called upon their Guru for
 help.
“Well,” said the Guru, “I see the problem.
 The one shell and the other are not compatible. We need to make sure that the
 shells know which other shell to use to run each script. And lo! the one shell has a `comment’ called
 :, and the other a true comment called #. I
 hereby decree that henceforth, the one shell will run scripts that start with :,
 and the other those that start with #.” And
 it was so, and the people were happy.

 But progress was not finished. This time he
 noticed that only shells ran scripts and thought that if the kernel too could
 run scripts, this would be good, and the people would be happy. So he wrote more
 code, and now the kernel could run scripts but only if they began with the magic
 incantation #!
 , and if
 they told the kernel which shell ran the script. And it was so, and the people
 were confused.
For the #! looked like a “comment.” Though
 the kernel could see the #! and run a shell,
 it would not do so unless certain magic bits were set. And if the incantation
 were mispronounced, that too could stop the kernel, which, after all, was not
 omniscient. And so the people wailed, but alas! the Guru did not respond. And so
 it was, and still it is today. Anyway, you will get best results from a 4BSD
 machine by using
#! /bin/sh
or:
#! /bin/csh
as the first
 line of your script. #!
 /bin/csh -f is also helpful on occasion, and
 it’s usually faster because csh won’t read
 your .cshrc file (Section 3.3).
— CT

Don’t Need a Shell for Your Script? Don’t Use One

If your
 Unix understands files that start
 with:
#!/interpreter/program
(and nearly all of them do by now) you don’t have to use those lines to start
 a shell, such as #!/bin/sh. If your script is
 just starting a program like awk, Unix can
 start the program directly and save execution time. This is especially useful on
 small or overloaded computers, or when your script has to be called over and
 over (such as in a loop).
First, here are two scripts. Both scripts print the second word from each line
 of text files. One uses a shell; the other runs awk

 directly:
% cat with_sh
#!/bin/sh
awk '
{ print $2 }
' $*
% cat no_sh
#!/usr/bin/awk -f
{ print $2 }
% cat afile
one two three four five
Let’s run both commands and time (
 Section 26.2) them. (This is running
 on a very slow machine. On faster systems, this difference may be harder to
 measure — though the difference can still add up over time.)
% time with_sh afile
two
0.1u 0.2s 0:00 26%
% time no_sh afile
two
0.0u 0.1s 0:00 13%

 One of the
 things that’s really important to understand here is that when the kernel runs
 the program on the interpreter line, it is given the script’s filename as an
 argument. If the intepreter program understands a file directly, like /bin/sh does, nothing special needs to be done.
 But a program like awk or sed requires the -f option to
 read its script from a file. This leads to the seemingly odd syntax in the
 example above, with a call to awk -f with no
 following filename. The script itself is the input file!

 One implication of this usage is that the
 interpreter program needs to understand # as
 a comment, or the first interpreter-selection line itself will be acted upon
 (and probably rejected by) the interpreter. (Fortunately, the shells, Perl,
 sed, and awk, among other programs, do recognize this comment
 character.)
[One last comment: if you have GNU time or
 some other version that has a verbose mode, you can see that the major
 difference between the two invocations is in terms of the page faults each
 requires. On a relatively speedy Pentium III/450 running RedHat Linux, the version using a
 shell as the interpreter required more than twice the major page faults and more
 than three times as many minor page faults as the version calling awk directly. On a system, no matter how fast,
 that is using a large amount of virtual memory, these differences can be
 crucial. So opt for performance, and skip the shell when it’s not needed. —
 SJC]
—JP and SJC

Making #! Search the PATH

 As
 Section 36.3 explains, you can use
 #!
 /path/name to run a script with the interpreter
 located at /path/name in the filesystem.
 The problem comes if a new version of the interpreter is installed somewhere
 else or if you run the script on another system that has a different location.
 It’s usually not a problem for Bourne shell programmers: /bin/sh exists on every Unix-type system I’ve
 seen. But some newer shells — and interpreters like Perl — may be lurking almost
 anywhere (although this is becoming more and more standardized as Perl and other
 tools like it become part of standard Linux distributions and the like). If the
 interpreter isn’t found, you’ll probably get a cryptic message like scriptname:
 Command not found, where
 scriptname is the name of the script file.
The env

 command will search your PATH (Section 35.6) for an interpreter, then
 execute (exec (Section 24.2), replace itself) with the
 interpreter. If you want to try this, type env
 ls; env
 will find and run ls for you. This is pretty
 useless when you have a shell around to interpret your commands — because the
 shell can do the same thing without getting env involved. But when the kernel interprets an executable file
 that starts with #!, there’s no shell (yet!).
 That’s where you can use env. For instance,
 to run your script with zsh, you could start
 its file with:
#!/usr/bin/env zsh
 ...zsh script here...
The kernel execs /usr/bin/env, then env finds
 and execs the zsh it found. Nice trick, eh? What do you think the problem is?
 (You have ten seconds... tick, tick, tick...) The catch is: if the env command isn’t in /usr/bin on your system, this trick won’t work. So it’s not as
 portable as it might be, but it’s still handy and probably still better than
 trying to specify the pathname of a less common interpreter like zsh.
Running an interpreter this way can also be a security problem. Someone’s
 PATH might be wrong; for instance, it might execute
 some random command named zsh in the user’s
 bin directory. An intruder could change
 the PATH to make the script use a completely different
 interpreter with the same name.
One more problem worth mentioning: you can’t specify any options for the
 interpreter on the first line. Some shell options can be set later, as the
 script starts, with a command like set,
 shopt, and so on — check the shell’s
 manual page.
Finally, understand that using env like
 this pretty much erases any performance gains you may have achieved using the
 trick in the previous article.
—JP and SJC

The exec Command

The exec

 command
 executes a command in place of the current shell; that is, it terminates the
 current shell and starts a new process (Section 24.3) in its place.
Historically, exec was often used to
 execute the last command of a shell script. This would kill the shell slightly
 earlier; otherwise, the shell would wait until the last command was finished.
 This practice saved a process and some memory. (Aren’t you glad you’re using a
 modern system? This sort of conservation usually isn’t necessary any longer
 unless your system limits the number of processes each user can have.)
exec

 can be used to replace one shell with
 another shell:
% exec ksh
$
without incurring the additional overhead of having an unused shell waiting
 for the new shell to finish.
exec

 also manipulates file
 descriptors (Section
 36.16) in the Bourne shell. When you use exec to manage file descriptors, it does not replace the current
 process. For example, the following command makes the standard input of all
 commands come from the file formfile instead of the default
 place (usually, your terminal):
exec < formfile
—ML and JP

The Unappreciated Bourne Shell “:” Operator

Some people think that the Bourne
 shell’s
 : is a comment character. It isn’t, really.
 It evaluates its arguments and returns a zero exit
 status (Section
 35.12). Here are a few places to use it:
	Replace the Unix true

 command to make an endless while loop (Section 35.15). This is more
 efficient because the shell doesn’t have to start a new process each
 time around the loop (as it does when you use while true):
while :
do
 commands
done
(Of course, one of the commands will
 probably be break, to end the loop
 eventually. This presumes that it is actually a savings to have the
 break test inside the loop body
 rather than at the top, but it may well be clearer under certain
 circumstances to do it that way.)

	When you want to use the else in an
 if (

 Section 35.13) but leave the
 then empty, the : makes a nice
 “do-nothing” place filler:
if something
then :
else
 commands
fi

	
 If your Bourne shell doesn’t have a true
 # comment character (but nearly
 all of them do nowadays), you can use : to “fake it.” It’s safest to use
 quotes so the shell won’t try to interpret characters like > or | in your “comment”:
: 'read answer and branch if < 3 or > 6'

	Finally, it’s useful with parameter substitution (Section 35.7) like ${
 var
 ?} or ${
 var
 =
 default
 }. For instance, using this line in
 your script will print an error and exit if either the
 USER or HOME variables
 aren’t set:
: ${USER?} ${HOME?}

— JP

Parameter Substitution

 The Bourne shell has a handy set of
 operators for testing and setting shell variables. They’re listed in Table 36-1.
Table 36-1. Bourne shell parameter
 substitution operators
	
 Operator

 	
 Explanation

	

 ${
 var
 :-
 default
 }

 	
 If var is not set or is empty, use
 default instead.

	

 ${
 var
 :=
 default
 }

 	
 If var is not set or is empty, set it
 to default and use that value.

	

 ${
 var
 :+
 instead
 }

 	
 If var is set and is not empty, use
 instead. Otherwise, use nothing
 (null string).

	

 ${
 var
 :?
 message
 }

 	
 If var is set and is not empty, use
 its value. Otherwise, print message, if
 any, and exit from the shell. If
 message is missing, print a default
 message (which depends on your shell).

 If you omit the colon (:) from the expressions in
 Table 36-1, the shell doesn’t
 check for an empty parameter. In other words, the substitution happens whenever
 the parameter is set. (That’s how some early Bourne shells work: they don’t
 understand a colon in parameter substitution.)
To see how parameter substitution works, here’s
 another version of the bkedit script (Section 35.13, Section 35.16):
+#!/bin/sh
if cp "$1" "$1.bak"
then
 ${VISUAL:-/usr/ucb/vi} "$1"
 exit # Use status from editor
else
 echo "`basename $0` quitting: can't make backup?" 1>&2
 exit 1
fi
If the VISUAL (Section 35.5) environment variable is
 set and is not empty, its value (such as /usr/local/bin/emacs) is used and the command line becomes
 /usr/local/bin/emacs "$1". If
 VISUAL isn’t set, the command line defaults to /usr/ucb/vi "$1".
You can use parameter substitution operators in any command line. You’ll see
 them used with the colon (:) operator (Section 36.6), checking or setting
 default values. There’s an example below. The first substitution (${nothing=default}) leaves $nothing empty because the variable has been set.
 The second substitution sets $nothing to
 default because the variable has been set but is empty.
 The third substitution leaves $something set
 to stuff:
+nothing=
something=stuff
: ${nothing=default}
: ${nothing:=default}
: ${something:=default}

 Several Bourne-type shells have similar
 string editing operators, such as ${
 var##pattern
 }. They’re useful in shell programs, as well
 as on the command line and in shell setup files. See your shell’s manual page
 for more details.
— JP

Save Disk Space and Programming: Multiple Names for a Program

If you’re writing:

	several programs that do the same kinds of things,

	programs that use a lot of the same code (as you’re writing the
 second, third, etc., programs, you copy a lot of lines from the first
 program), or

	a program with several options that make big changes in the way it
 works,

you might want to write just one program and make
 links (Section 10.4, Section
 10.3) to it instead. The program can find the name you called it with
 and, through case or test commands, work in different ways. For instance, the

 Berkeley Unix commands ex, vi, view, edit, and
 others are all links to the same executable file. This takes less disk space and
 makes maintenance easier. It’s usually sensible only when most of the code is
 the same in each program. If the program is full of name tests and lots of
 separate code, this technique may be more trouble than it’s worth.

 Depending on how the script program is called,
 this name can be a simple relative pathname like prog or ./prog — it can also
 be an absolute pathname like /usr/joe/bin/prog (Section
 31.2 explains pathnames). There are a couple of ways to handle this
 in a shell script. If there’s just one main piece of code in the script, as in
 the lf script, a case that tests $0 might be
 best. The asterisk (*) wildcard at the start
 of each case (see Section 35.11)
 handles the different pathnames that might be used to call the script:
case "$0" in
*name1)
 ...do this when called as name1...
 ;;
*name2)
 ...do this when called as name2...
 ;;
 ...
*) ...print error and exit if $0 doesn't match...
 ;;
esac
You might
 also want to use basename (Section 36.13) to strip off any leading
 pathname and store the cleaned-up $0 in a
 variable called myname. You can test $myname anywhere in the script and also use it for
 error messages:
myname=`basename $0`
 ...
case "$myname" in
 ...

echo "$myname: aborting; error in xxxxxx" 1>&2
 ...
— JP

Finding the Last Command-Line
 Argument

 Do
 you need to pick up the last parameter $1, $2
 ... from the parameter list on the command
 line? It looks like eval \$$# would do
 it:
eval
 Section 27.8
$ set foo bar baz
$ eval echo \$$#
baz
except
 for a small problem with sh argument
 syntax:
$ set m n o p q r s t u v w x
$ echo $11
m1
$11 means ${1}1, not ${11}. Trying ${11} directly gives bad
 substitution. (More recent shells, such as bash, do support the ${11} syntax, however, to arbitrary lengths. Our copy of bash, for example, allowed at least 10240 command
 line arguments to set with recall of the last
 via ${10240}). Your mileage may
 vary.
The only reliable way to get at the last parameter in the
 Bourne shell is to use something like
 this:
for i do last="$i"; done
The
 for loop assigns each parameter to the
 shell variable named last; after the loop ends, $last will have the last parameter. Also, note
 that you won’t need this trick on all sh-like
 shells. The Korn shell, zsh, and bash understand ${11}.
— CT

How to Unset All Command-Line Parameters

 The shift
 (Section 35.22) command “shifts
 away” one command-line parameter. You can shift three times if there are three
 command-line parameters. Many shells also can take an argument, like
 shift 3, that tells how many times to shift; on those
 shells, you can shift $# (Section 35.20) to unset all
 parameters.
The portable way to unset all command-line parameters is probably to set (Section
 35.25) a single dummy parameter, then shift it away:
+set x
shift
Setting the single parameter wipes out whatever other parameters were set
 before.
— JP

Standard Input to a for Loop

 An
 obvious place to use a Bourne shell for loop (Section
 35.21) is to step through a list of arguments — from the command line
 or a variable. But combine the loop with backquotes (Section
 28.14) and cat (Section 12.2), and the loop will step
 through the words on standard input.
Here’s an example:
for x in `cat`
do
 ...handle $x
done

 Because this method splits the input into separate
 words, no matter how many words are on each input line, it can be more
 convenient than a while loop running the
 read command. When you use this script
 interactively, though, the loop won’t start running until you’ve typed all of
 the input; using while read will run the loop after each
 line of input.
— JP

Making a for Loop with
 Multiple Variables

 The normal Bourne shell for loop (Section
 35.21) lets you take a list of items, store the items one by one in a
 shell variable, and loop through a set of commands once for each
 item:
for file in prog1 prog2 prog3
do
 ...process $file
done
I
 wanted a for loop that stores several
 different shell variables and makes one pass through the loop for each
 set of variables (instead of one pass for each
 item, as a regular for loop does). This loop does the job:
set
 Section 35.25
for bunch in "ellie file16" "donna file23" "steve file34"
do
 # PUT FIRST WORD (USER) IN $1, SECOND (FILE) IN $2...
 set $bunch
 mail $1 < $2
done
If
 you have any command-line arguments and still need them, store them in another
 variable before you use the set command. Or
 you can make the loop this
 way:
while read line ; do
 eval $line
 mail -s "$s" $u < $f
done <<"EOF"
 u=donna f=file23 s=’a memo’
 u=steve f=file34 s=report
 u=ellie f=file16 s=’your files’done
EOF

 This script uses the shell’s eval (Section
 27.8) command to rescan the contents of the
 bunch variable and store it in separate variables.
 Notice the single quotes, as in s='your
 files'; this groups the words for eval. The shell removes the single quotes before it stores the
 value into the s variable.
—
 JP

Using basename and dirname

 Almost every Unix command can use relative and absolute pathnames (Section 31.2) to find a file or
 directory. There are times you’ll need part of a pathname — the head (everything
 before the last slash) or the tail (the name after the last slash). The
 utilities basename and dirname
 , available on most Unix systems, handle
 that.
Introduction to basename and dirname

 The basename command strips any “path” name
 components from a filename, leaving you with a “pure” filename. For
 example:
% basename /usr/bin/gigiplot
gigiplot
% basename /home/mikel/bin/bvurns.sh
bvurns.sh
basename can also strip a suffix from a
 filename. For example:
% basename /home/mikel/bin/bvurns.sh .sh
bvurns

 The dirname command strips the filename itself, giving you the
 “directory” part of the pathname:
% dirname /usr/bin/screenblank
/usr/bin
% dirname local
.
If you give dirname a “pure” filename
 (i.e., a filename with no path, as in the second example), it tells you that
 the directory is . (the current directory).
Note

 dirname and basename have a bug in some implementations. They don’t
 recognize the second argument as a filename suffix to strip. Here’s a
 good test:
% basename 0.foo .foo
If the result is 0, your basename implementation is good. If the
 answer is 0.foo, the implementation
 is bad. If basename doesn’t work,
 dirname won’t, either.

Use with Loops

 Here’s an example of basename and dirname.
 There’s a directory tree with some very large files — over 100,000
 characters. You want to find those files, run split (Section
 21.9) on them, and add huge. to the start of
 the original filename. By default, split
 names the file chunks xaa, xab,
 xac, and so on; you want to use the original
 filename and a dot (.) instead of x:
||
 Section 35.14, exit
 Section 35.16
for path in `find /home/you -type f -size +100000c -print`
do
 cd `dirname $path` || exit
 filename=`basename $path`
 split $filename $filename.
 mv -i $filename huge.$filename
done
The
 find command will output pathnames
 like these:
/home/you/somefile
/home/you/subdir/anotherfile
(The absolute pathnames are important here. The cd would fail on the second pass of the loop if you use
 relative pathnames.) In the loop, the cd
 command uses dirname to go to the
 directory where the file is. The filename variable,
 with the output of basename, is used
 several places — twice on the split
 command line.
If the previous code results in the error command
 line too long, replace the first lines with the two lines
 below. This makes a redirected-input loop:
find /home/you -type f -size +100000c -print |
while read path
—JP and ML

A while Loop with Several Loop Control Commands

 I used to think that the Bourne shell’s
 while loop (Section 35.15) looked like this, with a
 single command controlling the loop:
while command
do
 ...whatever
done

 But command
 can actually be a list of commands. The exit status of the
 last command controls the loop. This is handy for prompting users and reading
 answers. When the user types an empty answer, the read command returns “false” and the loop ends:
while echo -e "Enter command or CTRL-d to quit: \c"
 read command
do
 ...process $command
done
You may need a -e option to make echo
 treat escaped characters like \c the way you want. In this case, the character
 rings the terminal bell, however your terminal interprets that (often with a
 flash of the screen, for instance.)
Here’s a loop that runs who and does a
 quick search on its output. If the grep
 returns nonzero status (because it doesn’t find $who in $tempfile), the loop
 quits — otherwise, the loop does lots of processing:
while
 who > $tempfile
 grep "$who" $tempfile >/dev/null
do
 ...process $tempfile...
done
—JP and SJC

Overview: Open Files and File Descriptors

 This introduction is general and simplified. If
 you’re a technical person who needs a complete and exact description, read a
 book on Unix programming.

 Unix shells let you redirect the input and
 output of programs with operators such as > and |. How does that
 work? How can you use it better? Here’s an overview.

 When the Unix kernel starts any
 process (Section 24.3) — for example, grep, ls, or a shell — it sets up
 several places for that process to read from and write to, as shown in Figure 36-1.
[image: Open standard I/O files with no command-line redirection]

Figure 36-1. Open standard I/O files with no command-line redirection

These places are called open files. The kernel gives each
 file a number called a file descriptor. But people usually
 use names for these places instead of the numbers:
	
 The standard input
 or stdin (File
 Descriptor (F.D.) number 0) is the place where the process can read
 text. This might be text from other programs (through a pipe, on the
 command line) or from your keyboard.

	
 The standard output
 or stdout (F.D.
 1) is a place for the process to write its results.

	
 The standard error
 or stderr (F.D.
 2) is where the process can send error messages.

By default, as Figure 36-1 shows, the
 file that’s opened for stdin, stdout,
 and stderr is /dev/tty

 — a name for your terminal. This makes life
 easier for users — and programmers, too. The user doesn’t have to tell a program
 where to read or write because the default is your terminal. A programmer
 doesn’t have to open files to read or write from (in many cases); the programs
 can just read from stdin, write to
 stdout, and send errors to
 stderr.
It
 gets better. When the shell starts a process (when you type a command at a
 prompt), you can tell the shell what file to “connect to” any of those file
 descriptors. For example, Figure 36-2
 shows what happens when you run grep and make
 the shell redirect grep’s standard output
 away from the terminal to a file named grepout.
[image: Standard output redirected to a file]

Figure 36-2. Standard output redirected to a file

Programs can read and write files
 besides the ones on stdin, stdout, and
 stderr. For instance, in Figure 36-2, grep opened the file somefile itself — it
 didn’t use any of the standard file descriptors for
 somefile. A Unix convention is that if you don’t name
 any files on the command line, a program will read from its standard input.
 Programs that work that way are called filters.

 All
 shells can do basic redirection with stdin,
 stdout, and stderr. But as you’ll
 see in Section 36.16, the Bourne
 shell also handles file descriptors 3 through 9. (Newer shells have higher
 limits. For instance, read the description of ulimit
 -n in the bash manual page.) That’s useful sometimes:
	Maybe you have a few data files that you want to keep reading from or
 writing to. Instead of giving their names, you can use the file
 descriptor numbers.

	Once you open a file, the kernel remembers what place in the file you
 last read from or wrote to. Each time you use that file descriptor
 number while the file is open, you’ll be at the same place in the file.
 That’s especially nice when you want to read from or write to the same
 file with more than one program. For example, the line
 command on some Unix systems reads
 one line from a file — you can call line over and over, whenever you want to read the next
 line from a file. Once the file has been opened, you can remove its link
 (name) from the directory; the process can access the file through its
 descriptor without using the name.

	
 When Unix starts a new subprocess (Section 24.3), the open file
 descriptors are given to that process. A subprocess can read or write
 from file descriptors opened by its parent process. A redirected-I/O
 loop, as discussed in Section
 43.6, takes advantage of this.

— JP

n>&m: Swap Standard Output and Standard Error

 By default, a command’s
 standard error goes to your terminal. The standard output goes to the terminal
 or is redirected somewhere (to a file, down a pipe, into backquotes).
Sometimes you want the opposite. For instance, you may need to send a
 command’s standard output to the screen and grab the error messages (standard
 error) with backquotes. Or you might want to send a command’s standard output to
 a file and the standard error down a pipe to an error-processing command. Here’s
 how to do that in the Bourne shell. (The C shell can’t do this, although
 tcsh can.)
File
 descriptors 0, 1, and 2 are, respectively, the standard input, standard output,
 and standard error (Section 36.15
 explains). Without redirection, they’re all associated with the terminal file
 /dev/tty (Section 36.15). It’s easy to redirect
 any descriptor to any file — if you know the filename. For instance, to redirect
 file descriptor 2 to errfile, type:
$ command
 2>errfile

 You know that a pipe and backquotes also
 redirect the standard output:
$ command
 | ...
$ var=`
 command
 `
But there’s no filename associated with the pipe or backquotes, so you can’t
 use the 2> redirection. You need to
 rearrange the file descriptors without knowing the file (or whatever) that
 they’re associated with. Here’s how. You may find it useful to run this short
 Perl script, which simply prints “stdout” to standard output, and “stderr” to
 standard error:
#!/usr/bin/perl

print STDOUT "stdout\n";
print STDERR "stderr\n";
Let’s start slowly. We will combine both standard output and standard error,
 sending them both as output, to be used as the input to a pipe or as the output
 of backquotes. The Bourne shell operator n
 >&
 m rearranges the files and file descriptors. It says,
 “Make file descriptor n point to the same file as file
 descriptor m.” Let’s use that operator on the previous
 example. We’ll send standard error to the same place standard output is
 going:
$ command
 2>&1 | ...
$ var=`
 command
 2>&1`
In both those examples, 2>&1 means
 “send standard error (file descriptor 2) to the same place standard output (file
 descriptor 1) is going.” Simple, eh?
You can use more than one n
 >&
 m operator. The shell reads them left-to-right before
 it executes the command.
“Oh!” you might say. “To swap standard
 output and standard error — make stderr go down a pipe and
 stdout go to the screen — I could do this!”
$ command
 2>&1 1>&2 | ...
 wrong...
Sorry, Charlie. When the shell sees 2>&1
 1>&2, the shell first does 2>&1. You’ve seen that before — it makes file descriptor 2
 (stderr) go the same place as file descriptor 1
 (stdout). Then the shell does 1>&2. It makes stdout (1) go the same place as
 stderr (2)... but
 stderr is already going the same place as
 stdout, down the pipe.
This is one place the other file descriptors, 3 through 9 (and higher in
 bash), come in handy. They normally
 aren’t used. You can use one of them as a “holding place,” to remember where
 another file descriptor “pointed.” For example, one way to read the operator
 3>&2 is “make 3 point the same place as 2.” After you use 3>&2
 to grab the location of 2, you can make
 2 point somewhere else. Then make
 1 point where 2 used to (where 3 points
 now).
We’ll take that step-by-step below. The command line you want is one of
 these:
$ command
 3>&2 2>&1 1>&3 | ...
$ var=`
 command
 3>&2 2>&1 1>&3`
How does it work? Figure 36-3 through
 Figure 36-6 break the second
 command line (with the backquotes) into the same steps the shell follows as it
 rearranges the file descriptors. You can try these on your terminal, if you’d
 like. Each figure adds another n
 >&
 m operator and shows the location of each file
 descriptor after that operator.
[image: File descriptors before redirection]

Figure 36-3. File descriptors before redirection

[image: File descriptors after 3>&2 redirection]

Figure 36-4. File descriptors after 3>&2 redirection

The figures use a grep command reading two
 files. afone is readable, and grep finds one matching line in it; the line is written to the
 standard output. bfoen is misspelled and so is not
 readable; grep writes an error message to the
 standard error. In each figure, you’ll see the terminal output (if any) just
 after the variable-setting command with the backquotes. The text grabbed by the
 backquotes goes into the shell variable; the echo command shows that text.
[image: File descriptors after 3>&2 2>&1 redirection]

Figure 36-5. File descriptors after 3>&2 2>&1 redirection

By Figure 36-6 the redirection is
 correct. Standard output goes to the screen, and standard error is captured by
 the backquotes.
[image: File descriptors after 3>&2 2>&1 1>&3 redirection]

Figure 36-6. File descriptors after 3>&2 2>&1 1>&3
 redirection

Open files are automatically closed when a process exits, but it’s safer to
 close the files yourself as soon as you’re done with them. That way, if you
 forget and use the same descriptor later for something else (for instance, use
 F.D. 3 to redirect some other command, or a subprocess uses F.D. 3), you won’t
 run into conflicts. Use m
 <&- to close input file descriptor
 m and m
 >&- to close output file descriptor
 m. If you need to, you can close standard input
 with <&- and standard output with >&-.

A Shell Can Read a Script from Its Standard Input, but...

 Q:
 What is the difference between sh <
 file and sh
 file?

 A:The first way keeps the script from reading
 anything else from its input. Consider the stdin-demo script:
while read word
do
 echo $word | sed s/foo/bar/
done
If run as sh stdin-demo, it will read from
 your terminal, replacing foo with bar. If run as sh <
 stdin-demo, it will exit right away, since after reading the
 script, there’s no input left.
— CT

Shell Scripts On-the-Fly from Standard Input

[image:]
 Section 36.17

 The shell can read commands from
 its standard input or from a file. To run a series
 of commands that can change, you may want to use one program to create the
 command lines automatically — and pipe that program’s output to a shell, which
 will run those “automatic” commands.

 Here’s an example.[1] You want to copy files from a subdirectory and all its
 subdirectories into a single directory. The filenames in the destination
 directory can’t conflict; no two files can have the same name. An easy way to
 name the copies is to replace each slash (/)
 in the file’s relative pathname with a minus sign (-).[2] For instance, the file named lib/glob/aprog.c
 would be copied to a file named lib-glob-aprog.c. You can
 use sed (Section 34.2) to convert the filenames and output cp commands like these:
cp from/lib/glob/aprog.c to/lib-glob-aprog.c
cp from/lib/glob/aprog.h to/lib-glob-aprog.h
 ...
However, an
 even better solution can be developed using nawk (Section 20.11).
 The following example uses find (Section 9.1) to make a list of pathnames,
 one per line, in and below the copyfrom directory. Next it
 runs nawk to create the destination file
 pathnames (like to
 /lib-glob-aprog.c) and write the completed
 command lines to the standard output. The shell reads the command lines from its
 standard input, through the pipe.
This example is in a script file because it’s a little long to type at a
 prompt. But you can type commands like these at a prompt, too, if you want
 to:
#!/bin/sh
find copyfrom -type f -print |
awk '{
 out = $0
 gsub("/", "-", out)
 sub("^copyfrom-", "copyto/", out)
 print "cp", $0, out
}' |
sh

 If you change the last line to
 sh -v, the shell’s verbose option (Section
 37.1) will show each command line before executing it. If the last
 line has sh -e
 , the
 shell will quit immediately after any command returns a nonzero exit status (Section 35.12) — that might happen, for instance, if the disk fills
 up and cp can’t make the copy. Finally, you
 may need to use nawk rather than awk, depending on your system.
— JP

Quoted hereis Document Terminators: sh Versus csh

 When you need to quote your hereis document (Section 27.16) terminators, there’s an annoying problem: sh and csh
 demand different conventions. If you are using sh, you must not quote the terminator. For
 example,
#! /bin/sh
cat << 'eof'
Hi there.
eof
If you are using csh, however, you
 must quote the terminator. The following script prints
 three lines, not one:
#! /bin/csh
cat << \eof
Hi. You might expect this to be the only line, but it's not.
eof
'e'of
\eof
— CT

Turn Off echo for “Secret” Answers

 When
 you type your password, Unix turns off echoing so what you type won’t show on
 the screen. You can do the same thing in shell scripts with stty -echo.
stty
 Section 5.7, read
 Section 35.18
#!/bin/sh
 ...
trap 'stty echo; exit' 0 1 2 3 15
use the right echo for your Unix:
echo "Enter code name: \c"
#echo -n "Enter code name: "
stty -echo
read ans
stty echo
 ...
The response is stored in $ans. The
 trap (Section 35.17) helps to make sure that, if the user presses CTRL-c
 to abort the script, characters will be echoed again.
— JP

Quick Reference: expr

 expr is a very handy tool in shell
 programming, since it provides the ability to evaluate a wide range of
 arithmetic, logical, and relational expressions. It evaluates its arguments as
 expressions and prints the result.
Syntax

Here’s the
 syntax. The [brackets] mean “optional”; don’t type the brackets:
expr
 arg1 operator arg2
 [
 operator arg3
 ...]

Arguments and operators must be separated by spaces. In many cases, an
 argument is an integer, typed literally or represented by a shell variable.
 There are three types of operators: arithmetic, relational, and
 logical.

 Exit status (Section 35.12) values for expr are 0 if the expression evaluates nonzero
 and non-null, 1 if the expression evaluates to 0 or null, and 2 if the
 expression is invalid.
	

 Arithmetic operators
	Use these to produce mathematical expressions whose results
 are printed:
	+
	Add
 arg2 to
 arg1.

	-
	
 Subtract
 arg2 from
 arg1.

	*
	Multiply
 the arguments.

	/
	Divide
 arg1 by
 arg2.

	%
	
 Take the remainder when
 arg1 is divided by
 arg2 (modulus).

Addition and subtraction are evaluated last, unless they are
 grouped inside parentheses. The symbols *, (, and
) have meaning to the
 shell, so they must be escaped (preceded by a backslash or
 enclosed in quotes).

	

 Relational operators
	Use these to compare two arguments. Arguments can also be
 words, in which case comparisons assume a < z and A < Z. If the comparison
 statement is true, expr
 writes 1 to standard output
 (Section 43.1); if
 false, it writes 0. The symbols > and <
 must be escaped.
	=
	Are the arguments
 equal?

	!=
	Are the arguments
 different?

	>
	
 Is
 arg1 greater than
 arg2?

	>=
	Is
 arg1 greater than or
 equal to arg2?

	<
	
 Is
 arg1 less than
 arg2?

	<=
	Is
 arg1 less than or equal
 to arg2?

	

 Logical operators
	Use these to compare two arguments. Depending on the
 values, the result written to standard output can be
 arg1 (or some portion of it),
 arg2, or 0. The symbols | and & must be escaped.
	|
	
 Logical OR; if
 arg1 has a nonzero (and
 non-null) value, the output is
 arg1; otherwise, the
 output is arg2.

	&
	
 Logical AND; if both
 arg1 and
 arg2 have a nonzero
 (and non-null) value, the output is
 arg1; otherwise, the
 output is 0.

	:
	Sort of like
 grep (Section 13.1);
 arg2 is a regular expression (Section 32.4)
 to search for in arg1. If
 the arg2 pattern is
 enclosed in \(
 \), the output is the portion of
 arg1 that matches;
 otherwise, the output is simply the number of
 characters that match. A pattern match always
 applies to the beginning of the argument (the
 ^ symbol (Section 32.5)
 is assumed by default).

Examples

Division happens first; output is
 10:
$ expr 5 + 10 / 2
Addition
 happens first; output is 7 (truncated from
 7.5):
$ expr \(5 + 10 \) / 2
Add
 1 to variable i; this is how variables are incremented
 in Bourne shell
 scripts:
 i=`expr "$i" + 1`
Output 1 (true) if variable
 a is the string
 “hello”:
$ expr "$a" = hello
Output
 1 (true) if variable b plus 5 equals 10 or
 more:
$ expr "$b" + 5 \>= 10
In
 the examples below, variable p is the string
 “version.100”. This command returns the number of characters in
 p:
$ expr "$p" : '.*'
 Output is 11
Match
 all characters and print
 them:
$ expr "$p" : '\(.*\)'
 Output is "version.100"
Output
 the number of lowercase letters
 matched:
$ expr "$p" : '[a-z]*'
 Output is 7
Match
 a string of lowercase
 letters:
$ expr "$p" : '\([a-z]*\)'
 Output is "version"
Truncate
 $x if it contains five or more
 characters; if not, just output $x.
 (Logical OR uses the second argument when the first one is 0 or null, i.e.,
 when the match
 fails.)
$ expr "$x" : '\(.....\)' \| "$x"
— DG

Testing Characters in a String with expr

 The expr
 (Section 36.21) command does a
 lot of different things with expressions. One expression it handles has three
 arguments: first, a string; second, a colon (:); third, a regular
 expression (Section
 32.4). The string and regular expression usually need quotes.
expr can count the number of characters
 that match the regular expression. The regular expression is automatically
 anchored to the start of the string you’re matching, as if you’d typed a
 ^ at the start of it in grep, sed, and
 so on. expr is usually run with backquotes (Section 28.14) to save its output:
$ part="resistor 321-1234-00"
$ name="Ellen Smith"
 ...
$ expr "$part" : '[a-z]*[0-9]'
 ...character position of first number
10
$ len=`expr "$name" : '[a-zA-Z]*'`
$ echo first name has $len characters
first name has 5 characters
When a
 regular expression matches some character(s), expr returns a zero (“true”) exit
 status (Section
 35.12). If you want a true/false test like this, throw away the number
 that expr prints and test its exit
 status:
/dev/null
 Section 43.12
$ if expr "$part" : '.*[0-9]' > /dev/null
> then echo \$part has a number in it.
> else echo "it doesn't"
> fi
$part has a number in it.
— JP

Grabbing Parts of a String

 How can you parse (split, search) a string
 of text to find the last word, the second column, and so on? There are a lot of
 different ways. Pick the one that works best for you — or invent another one!
 (Unix has lots of ways to work with strings of text.)
Matching with expr

 The
 expr command

 (Section 36.21) can grab part of a
 string with a regular expression. The example below is
 from a shell script whose last command-line argument is a filename. The two
 commands below use expr to grab the last
 argument and all arguments except the last one. The "$*" gives expr a list of
 all command-line arguments in a single word. (Using “$@” (Section
 35.20) here wouldn’t work because it gives individually quoted
 arguments. expr needs all arguments in
 one word.)
last=`expr "$*" : '.* \(.*\)'` # LAST ARGUMENT
first=`expr "$*" : '\(.*\) .*'` # ALL BUT LAST ARGUMENT
Let’s look at the regular expression that gets the last word. The leading
 part of the expression, .* , matches as
 many characters as it can, followed by a space. This includes all words up
 to and including the last space. After that, the end of the expression,
 \(.*\), matches the last word.
The regular expression that grabs the first words is the same as the
 previous one — but I’ve moved the \(\)
 pair. Now it grabs all words up to but not including the last space. The end
 of the regular expression, .*, matches
 the last space and last word — and expr
 ignores them. So the final .* really
 isn’t needed here (though the space is). I’ve included the final .* because it follows from the first
 example.
expr is great when you want to split a
 string into just two parts. The .* also
 makes expr good for skipping a variable
 number of words when you don’t know how many words a string will have. But
 expr is poor at getting, say, the
 fourth word in a string. And it’s almost useless for handling more than one
 line of text at a time.

Using echo with awk or cut

 awk
 can split lines into words, but it has a lot
 of overhead and can take some time to execute, especially on a busy system.
 The cut (
 Section 21.14) command starts
 more quickly than awk but it can’t do as
 much.
Both those utilities are designed to handle multiple lines of text. You
 can tell awk to handle a single line with
 its pattern-matching operators and its NR variable. You
 can also run those utilities with a single line of text, fed to the standard
 input through a pipe from echo. For
 example, to get the third field from a colon-separated string:
string="this:is:just:a:dummy:string"
field3_awk=`echo "$string" | awk -F: '{print $3}'`
field3_cut=`echo "$string" | cut -d: -f3`
Let’s combine two echo commands. One
 sends text to awk or cut through a pipe; the utility ignores all
 the text from columns 1-24, then prints columns 25 to the end of the
 variable text. The outer echo prints The answer is and that
 answer. Notice that the inner double quotes are escaped with backslashes to
 keep the Bourne shell from interpreting them before the inner echo runs:
echo "The answer is `echo \"$text\" | awk '{print substr($0,25)}'`"
echo "The answer is `echo \"$text\" | cut -c25-`"

Using set and IFS

 The Bourne shell set (Section
 35.25) command can be used to parse a single-line string and
 store it in the command-line parameters (Section 35.20) "$@", $*, $1,
 $2, and so on. Then you can also loop
 through the words with a for loop (Section 35.21) and use everything
 else the shell has for dealing with command-line parameters. Also, you can
 set the Bourne shell’s IFS variable to control how the
 shell splits the string.
Note
The formats used by stty and the
 behavior of IFS may vary from
 platform to platform.

 By default, the
 IFS (internal field separator) shell variable holds
 three characters: SPACE, TAB, and NEWLINE. These are the places that the
 shell parses command lines.
If
 you have a line of text — say, from a database — and you want to split it
 into fields, you can put the field separator into IFS
 temporarily, use the shell’s set (Section 35.25) command to store the
 fields in command-line parameters, then restore the old
 IFS.
For example, the chunk of a shell script below gets current terminal
 settings from stty -g
 , which looks like
 this:
2506:5:bf:8a3b:3:1c:8:15:4:0:0:0:11:13:1a:19:12:f:17:16:0:0
In the next example, the shell parses the line returned from stty by the backquotes (Section
 28.14). It stores x in $1, which stops errors if stty fails for some reason. (Without the
 x, if stty made
 no standard output, the shell’s set
 command would print a list of all shell variables.) Then
 2506 goes into $2, 5 into $3, and so on. The original Bourne shell can handle only nine
 parameters (through $9); if your input
 lines may have more than nine fields, this isn’t a good technique. But this
 script uses the Korn shell, which (along with most other Bourne-type shells)
 doesn’t have that limit.
#!/bin/ksh
oldifs="$IFS"
Change IFS to a colon:
IFS=:
Put x in $1, stty -g output in $2 thru ${23}:
set x `stty -g`
IFS="$oldifs"
Window size is in 16th field (not counting the first "x"):
echo "Your window has ${17} rows."
Because you don’t need a subprocess to parse the output of stty, this can be faster than using an
 external command like cut (Section 21.14) or awk (Section
 20.10).
There are places where
 IFS can’t be used because the shell separates
 command lines at spaces before it splits at IFS. It
 doesn’t split the results of variable substitution or command substitution (Section 28.14) at spaces, though. Here’s an example — three
 different ways to parse a line from /etc/passwd:
% cat splitter
#!/bin/sh
IFS=:
line='larry:Vk9skS323kd4q:985:100:Larry Smith:/u/larry:/bin/tcsh'
set x $line
echo "case 1: \$6 is '$6'"
set x `grep larry /etc/passwd`
echo "case 2: \$6 is '$6'"
set x larry:Vk9skS323kd4q:985:100:Larry Smith:/u/larry:/bin/tcsh
echo "case 3: \$6 is '$6'"

% ./splitter
case 1: $6 is 'Larry Smith'
case 2: $6 is 'Larry Smith'
case 3: $6 is 'Larry'
Case 1 used variable substitution and case 2 used command substitution;
 the sixth field contained the space. In case 3, though, with the colons on
 the command line, the sixth field was split: $6 became Larry and $7 was Smith. Another
 problem would have come up if any of the fields had been empty (as in
 larry::985:100:etc...) — the shell would
 “eat” the empty field and $6 would
 contain /u/larry. Using sed with its escaped
 parentheses (Section
 34.11) to do the searching and the parsing could solve the last
 two problems.

Using sed

 The Unix sed (Section 34.1)
 utility is good at parsing input that you may or may not otherwise be able
 to split into words, at finding a single line of text in a group and
 outputting it, and many other things. In this example, I want to get the
 percentage-used of the filesystem mounted on /home.
 That information is buried in the output of the df (Section
 15.8) command. On my system,[3]
 df output looks like:
+% df
Filesystem kbytes used avail capacity Mounted on
 ...
/dev/sd3c 1294854 914230 251139 78% /work
/dev/sd4c 597759 534123 3861 99% /home
 ...
I want
 the number 99 from the line ending with
 /home. The sed
 address / \/home$/ will find that line
 (including a space before the /home makes sure the
 address doesn’t match a line ending with
 /something/home). The -n option
 keeps sed from printing any lines except
 the line we ask it to print (with its p command). I
 know that the “capacity” is the only word on the line that ends with a
 percent sign (%). A space after the first
 .* makes sure that .* doesn’t “eat” the first digit of the number
 that we want to match by [0-9]. The
 sed
 escaped-parenthesis operators (
 Section 34.11) grab that
 number:
usage=`df | sed -n '/ \/home$/s/.* \([0-9][0-9]*\)%.*/\1/p'`
Combining sed
 with eval (Section 27.8) lets you set several
 shell variables at once from parts of
 the same line. Here’s a command line that sets two shell variables from the
 df output:
eval `df |
sed -n '/ \/home$/s/^[^]* *\([0-9]*\) *\([0-9]*\).*/kb=\1 u=\2/p'`
The left-hand side of that substitution command has a regular expression
 that uses sed’s escaped parenthesis
 operators. They grab the “kbytes” and “used” columns from the df output. The right-hand side outputs the two
 df values with Bourne shell
 variable-assignment commands to set the kb and
 u variables. After sed finishes, the resulting command line looks like
 this:
eval kb=597759 u=534123
Now $kb gives you 597759, and
 $u contains
 534123.

Nested Command
 Substitution

 Section 28.14 introduced command
 substitution with a pair of backquotes ('').
 Let’s review. The shell runs a backquoted string as a command, then replaces the
 string with its output. Sometimes — though not as often — you’ll want to use the
 results from one backquoted string as arguments to another command, itself also
 inside backquotes. To do that, you need to nest the backquotes to tell the shell
 which command (which set of backquotes) should be done first, with its output
 given to the second command. This is tricky with backquotes; the Korn shell
 introduced an easier way that you’ll see below. Here’s a simple example — the
 first command line uses nested backquotes, and the next two commands show its
 parts:[4]
$ echo "Next year will be 200`expr \`date +%y\` + 1`."
Next year will be 2002.
$ date +%y
01
$ expr 01 + 1
2
The command to run first has escaped
 backquotes (\'\') around it. In the example
 above, that’s the date +%y command. date +%y outputs the year — in this case, 01 — and that value is passed to the expr command. expr adds 01 and 1 to get 2. Then that result (from the outer
 backquotes) is passed to echo, on its command
 line, and echo prints the
 message.
Why does the inner command, inside the escaped backquotes
 (\'\'), run first? It’s because the
 backslash before the backquote turns off the special
 meaning (Section
 27.12) of the backquote. When the shell first evaluates the command line,
 which backquotes does it see? It sees the unescaped backquotes, the ones around
 the expr command, and the shell runs the
 command:
expr `date +%y` + 1
But
 when the shell evaluates that command line, it sees the backquotes in it (now
 unescaped) and runs that command — date +%y. The date +%y command
 outputs 01. Next, the shell can finish the
 command expr 01 + 1. It outputs 2. Then the
 echo command can print its
 message.
Whew. Most newer Bourne-type shells have
 an easier way: the $(
 command
) operators. Use $(before the command, where you would use an opening backquote.
 Put the) after the command, in place of a
 closing backquote. You don’t have to escape these operators when you nest
 them.
Here’s the previous example with $(
), then a more real-life example:
2>&1
 Section 36.16
$ echo "Next year will be 200$(expr $(date +%y) + 1)."
Next year will be 2002.

$ tarout=$(tar cf /dev/rst1 $(find . -type f -mtime -1 -print) 2>&1)
 time passes...
$ echo "$tarout"
tar: ./files/145923: Permission denied
The inner command — in this case, the find (Section
 9.1) — is run first. Its output, a list of filenames, is put on the
 command line of the tar (Section 38.2) command. Finally, the
 output of tar (in this case, an error
 message) is stored in the tarout shell
 variable.
Beginners (and some long-time programmers too) might argue
 that you should never nest command substitution because it’s too confusing. I
 think there are times nesting is clearer. It’s more compact and doesn’t need
 temporary storage. And it’s not that hard to understand once you see what’s
 happening. There’s another nice example in Section 24.16.
— JP

Testing Two Strings with One case Statement

 The shell’s case
 statement (Section
 35.10) has some advantages over the test
 command (Section
 35.26) — for instance, case can do
 pattern matching. But test

 has the -a and
 -o “and” and “or” operators; those don’t seem easy to do
 with case. And test isn’t built in to some older shells, so using case may be faster.
Here’s a way to test two things with one case statement. It won’t solve all your problems. If you think
 carefully about the possible values the variables you’re testing can have,
 though, this might do the trick. Use a separator (delimiter) character between
 the two variables.
In the example below, I’ve picked a slash (/). You could use almost any character that isn’t used in
 case pattern matching (Section 35.11) and that won’t be stored
 in either $# or $1. The case below tests the
 command-line arguments of a script:
case "$#/$1" in
1/-f) redodb=yes ;;
0/) ;;
*) echo "Usage: $0 [-f]" 1>&2; exit 1 ;;
esac
If there’s one argument ($# is 1) and the argument ($1) is exactly -f, the first
 pattern matches, and the redodb variable is set. If there’s
 no argument, $# will be 0 and $1 will
 be empty, so the second pattern matches. Otherwise, something is wrong; the
 third pattern matches, the script prints an error and exits.
Of course, you can do a lot more this way than just testing command-line
 arguments.
— JP

Outputting Text to an X Window

 Unix has a lot of ways to
 output text from the command line into the terminal (or window) where
 a script is running. But there are times you’d like to pop open a new window
 (under the X Window System (Section 1.22)), give the user a message
 — and maybe let the user reply too. X comes with a standard client named
 xmessage that does this. It pops open a
 window like Figure 36-7 with a message,
 then waits for the user to click a button (possibly one of many) or press
 RETURN. For details, you can read the xmessage manual page. I’ll show how I integrated xmessage into a shell script.
[image: An xmessage window from xwrist]

Figure 36-7. An xmessage window from xwrist

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 xwrist

 A good way to prevent wrist injuries (from
 too much typing) is by taking periodic breaks. The xwrist script uses xmessage to
 remind me (every 10 minutes) to take a break — and prints a fortune for me to
 read while I do.
Let’s look at two parts of the script. First, the script checks to see if the
 X Window System DISPLAY environment
 variable (Section 35.5)
 is set; if not, it complains (with a message like xwrist: DISPLAY: unset? I only work under the X Window System)
 and exits:
:
 Section 36.6, ${..?..}
 Section 36.7
: ${DISPLAY?"unset? I only work under the X Window System"}
After checking the command-line arguments and setting some shell variables,
 the script does its main work with an endless loop:
`...`Section 28.14
while sleep $delay
do
 if xmessage -nearmouse -geometry $geometry -title "$title" \
 -buttons okay:1,quit:0 -default okay \
 "`/usr/games/fortune | fmt $fmtarg`"
 then exit 0
 fi
done
The while loop (

 Section 35.15) is endless because
 sleep
 normally returns
 0 (Section 35.12). As
 long as the user keeps clicking the okay button, a new
 xmessage window will pop up again
 $delay seconds after the previous one.
 The xmessage command line is split into three
 pieces. It’s run by an if statement (
 Section 35.13). On the second line,
 -buttons okay:1,quit:0 tells xmessage to make the two buttons. If the user
 clicks the quit button, xmessage returns 0 status and the if runs exit 0 to end the
 script. Otherwise, xmessage returns 1
 (because the user clicked okay or pressed RETURN; the
 -default okay sets this up) and the loop
 repeats.
(Here’s a fun enhancement, left as an
 exercise for you. Add a third button labeled mail this that
 uses mail(1) to send you
 ($USER) an email copy of the current fortune. You’ll
 need to change the if to a case statement (
 Section 35.10) that tests $? (Section
 35.12).)
The last xmessage argument is the text to
 put on the screen. fmt (
 Section 21.2) reformats the output of
 fortune roughly to fit the window.
 (There’s no fancy coding here to be sure that the text fits the window exactly; I just tweak the output
 width, set in the fmtarg variable, to match the window
 geometry, which is set in the geometry

 variable.) If you set the
 geometry to make a fairly wide window, you may not need fmt at all.

— JP

Shell Lockfile

 Here’s
 an efficient and portable
 way to create a lockfile from a shell script.[5] It’s also an interesting demonstration of the way that Unix umasks
 and file permissions (Section 50.2) are handled.
A lockfile can be used when a particular program might be
 run more than once at the same time and you need to be sure that only one
 instance of the program can do something (modify some file, access a printer,
 etc.). To really do this right, the program needs to both test for the lockfile
 and create it (if it doesn’t exist) in one atomic
 operation. If
 the test-and-set operation isn’t atomic — for instance, if a program tests for
 the lock file in one command and then creates the lock file in the next command
 — there’s a chance that another user’s program could do its
 test at the precise moment between the first program’s (non-atomic) test and set
 operations. The technique in this article lets you make a lockfile atomically
 from a shell script.
Note
This technique doesn’t work for scripts run as the superuser
 (root). It depends on the fact that a standard user
 can’t write a file without write permisson. But root
 can write any file, whether it has write permission or
 not. If there’s a chance that root might run your
 script, you might want to add a test of the UID — by running the id command, for instance — and be sure that
 the UID isn’t 0 (the superuser’s).

Let’s say you have a script called edmaster; it edits a master configuration file named
 config. To be sure that two users can’t modify the
 config file at the same time, the first edmaster checks whether the lockfile exists. If
 the lockfile doesn’t exist, edmaster creates
 it and modifies the config file. When it’s done editing, it
 removes the lockfile. If someone tries to run a second edmaster process, it sees the lockfile from the first edmaster, waits, and checks every few seconds to
 see if the lockfile is gone. Once the first edmaster removes the lockfile, the second edmaster can create the lockfile and do its
 editing of config. (Note that some editors — for instance,
 nvi-1.79

 under Linux — automatically get a write
 and/or read lock before you to edit a file.)

 Here are pieces
 of a script that check the lock, create it, and (later) remove it:
2>
 Section 36.16, /dev/null
 Section 43.12, set
 Section 35.25
set name of this program's lockfile:
myname=`basename $0`
LOCKFILE=/tmp/lock.$myname
 ...
Loop until we get a lock:
until (umask 222; echo $$ >$LOCKFILE) 2>/dev/null # test & set

do
 # Optional message - show lockfile owner and creation time:
 set x `ls -l $LOCKFILE`
 echo "Waiting for user $4 (working since $7 $8 $9)..."

 sleep 5
done

Do whatever we need exclusive access to do...
 ...
rm -f $LOCKFILE # unlock
If another user tried to run edmaster, and
 jpeek had run edmaster first, she might see:
% edmaster
Waiting for user jpeek (working since Aug 23 14:05)...
 ...a 5-second pause
Waiting for user jpeek (working since Aug 23 14:05)...
 another 5-second pause...
 ...then jpeek finishes and she can edit the file.

 How does it work? Almost all the action is in
 the first line of the loop. A umask of 222 creates files that are read-only
 (mode r--r--r--). Because the umask
 222 command is run in a subshell
 (Section 24.4), it affects only
 the lockfile that’s created in the subshell at the top of the loop. The rest of
 the shell script keeps its normal umask. And if the redirection fails (because
 the lock file exists), only the subshell will abort — not the parent shell
 running the script.
If the lockfile already exists (because another process has created it), the
 loop executes sleep 5; five seconds later, it
 tries to create the lock. If the lockfile exists, it will be read-only — so the
 command echo $$ >$LOCKFILE will return a
 nonzero status. A nonzero status is what keeps an until
 loop (
 Section 35.15) running. Once the
 other process (which has the lock) removes the lockfile, the echo command in the subshell writes the shell’s
 process ID number into the lockfile, and the until loop terminates.
But if the lockfile is read-only, how can it ever be created? That’s the other
 interesting part of this technique. The umask applies to the file only as it’s
 created; if the file doesn’t exist, the umask doesn’t apply to it (yet) and the
 file can be created. In fact, you can create a file with mode 000 by
 typing:
$ (umask 666; echo hi > afile)
$ ls -l afile
---------- 1 jpeek wheel 3 Aug 23 14:08 afile

— JP

[1] This isn’t recommended for systems with a 14-character filename limit.
 You may also want to watch out on Darwin, which, although it has the
 typical UNIX filename limits, only displays 31 characters on the Finder
 Desktop (munging the last few chars or inserting...to provide a unique
 <32-character filename).

[2] A replacement like CTRL-a would make unique filenames (legal, but also
 harder to type).

[3] If you are using something other than GNU df, you may need to use the -k
 switch.

[4] True, this won’t work after 2008. Also true, most shells have built-in
 arithmetic, and some can zero-pad results. But this
 is a simple example!

[5] Greg Ubben sent this idea.

Chapter 37. Shell Script Debugging and Gotchas

Tips for Debugging Shell Scripts

 Depending on the Bourne shell version you
 have, the error messages it gives can be downright useless. For instance, it
 might say just End
 of
 file
 unexpected. Here are a few tricks to use to
 get a little more information about what’s going on. Remember, it’s probably
 best for you to use one of shells derived from the Bourne shell, rather than the
 C shell, for scripting.
Use -xv

Start your script like this:
#!/bin/sh -xv
(If
 your Unix can’t handle #!, use the
 command set -xv (Section 35.25)). The -xv shows you what’s happening as the shell
 reads your script. The lines of the script will be shown as the shell reads
 them. The shell shows each command it executes with a plus sign (+) before the command.
Note that the shell reads an entire loop (for, while, etc.) before
 it executes any commands in the loop.
If
 you want to run a script with debugging but you don’t want to edit the
 script file, you can also start the shell explicitly from the command line
 and give the options there:
% sh -xv
 scrfile

 Debugging output is usually pretty long, more
 than a screenful, so I pipe it to a pager like less. But the shell sends its debugging output to
 stderr, so I pipe both stdout
 and stderr (Section
 43.4) to the pager.

$ scrfile
 2>&1 | less
Do you want to save the debugging
 output in a file and see it on your screen, too? Use tee (Section 43.8)
 to copy the scrfile stdout and stderr; add tee to the pipeline before the pager.
$ scrfile
 | tee
 outfile
 2>&1 |
 less

 If the script is slow, you can
 run it in the background. Redirect the shell’s output
 and errors (Section
 43.5, Section 27.11)
 into a temporary file. Use tail -f (Section 12.10) to “watch” the log
 file. If you want to do something else while the script runs, just kill the
 tail command (with CTRL-c or your
 interrupt key), do something else, then start another tail -f when you want to watch again.
Finally, if the script normally writes
 something to its standard output, you can split the
 normal and debugging outputs into two files (Section 43.1).

Unmatched Operators

 If the shell says End of file unexpected
 , look for a line in your script that
 has an opening quote but no closing quote. The shell is probably searching
 for but never finding the matching quote. Missing parentheses and braces
 ({}) can cause the same error.

Exit Early

If you’re getting an End of file
 unexpected

 error, put these two lines near the
 middle of the script:
echo "DEBUG: quitting early..." 1>&2
exit
Then run your script. Those lines will print a message and stop the shell
 where you put them. If you don’t get the End of
 file unexpected error anymore, you know that the problem is
 somewhere after the exit line, and you
 can move those two lines farther down and try again. Otherwise, move them
 up.

Missing or Extra esac, ;;, fi, etc.

 A message like line 23: ;; unexpected means that you have an unmatched piece
 of code somewhere before line 23. You’ll also see fi unexpected. Look at all nested if and case statements,
 and statements like them, to be sure that they end in the right
 places.

Line Numbers Reset Inside Redirected Loops

 The
 shell may give you an error that
 mentions “line 1” or another line number that seems way too small, when
 there’s no error close to the top of your script. Look at any loops or other
 structures with redirected inputs or
 outputs (Section
 43.6). Some Bourne shells start a separate shell to run these
 loops and lose track of the line numbers.
—JP and SJC

Bourne Shell Debugger Shows a Shell Variable

 If you have
 a shell script that sets several variables and you want to show the value of one
 of them, you can add a
 loop that asks you for variable names and displays their values
 (Section 36.14):
% cat myscript
#!/bin/sh
 ...
while echo "Pick a variable; just RETURN quits: \c"
 read var
do
 case "$var" in
 "") break ;;
 *) eval echo \$$var ;;
 esac
done
The loop prompts Pick a variable:, then
 reads a value; if you type an empty answer, the loop quits. Otherwise, the value
 of that variable is displayed; the eval (Section 27.8) command scans the echo command line twice.
This tip isn’t just good for debugging. It’s good in any shell script where
 you need to show the value of a variable by typing its name.
— JP

Stop Syntax Errors in Numeric Tests

 The test and [
 (square bracket) commands (

 Section 35.26) can compare
 two numbers. But it’s an error if one of the numbers you test is stored in a
 shell variable that’s empty or doesn’t exist. For example, an empty num variable
 here will give you a Syntax error:
if ["$num" -gt 0]
then ...
To stop syntax errors, add a leading zero, like this:
if ["0$num" -gt 0]
then ...
In that case, if $num is empty, the test
 will compare 0 to 0. If $num is 1, the test will be true (because 01 is greater than 0) — and so on, just as it should be.
The zero trick doesn’t work with negative numbers, though, so if you expect ever
 to need to deal with negative numbers, you may want to look into other methods
 of checking to see if a variable has a value, such as this method from the
 bash shell, which displays an error if
 the variable is
 null or unset, or the following
 method, which assigns a default value:
#!/bin/sh
 ...

check $num first, fail with error
tmp=${num:?"num not set"}

use a default
default=0
if [${num:-default} -gt 0]
then
 ...
—JP and SJC

Stop Syntax Errors in String Tests

 Using the test or [(square
 bracket) command (Section
 35.26) for a string test can cause errors if the variable starts with
 a dash (-). For example:
if ["$var" = something]
then ...
If $var starts with -r, the test
 command may think that you want to test for a readable file.
One common fix (that doesn’t always work; see below) is to put an extra
 character at the start of each side of the test. This means the first argument
 will never start with a dash; it won’t look like an option:
if ["X$var" = Xsomething]
then ...
That trick doesn’t work if you want the test to fail when the variable is
 empty or not set. Here’s a Bourne shell test that handles empty
 variables:
case "${var+X}" in
X) ...do this if variable is set...
 ;;

*) ...do this if variable is not set...
 ;;
esac
If $var is set (even if it has an empty
 string), the shell replaces ${var+X} (Section 36.7) with just X and the first part of the case succeeds. Otherwise the default case,
 *), is used.
See also Section 37.3 for a brief
 example of bash parameter expansion and
 dealing with unset or null values by reporting an error or by assigning default
 values.
— JP

Quoting and Command-Line
 Parameters

Q:

 I need to pass a shell script some arguments
 with multiple words. I thought that putting quotes (Section
 27.12) around command-line arguments would group them. The shell
 script seems to ignore the quoting, somehow. Here’s a simple
 example:
$ cat script
 ...
for arg in $*
do
 echo "Argument is $arg"
done
$ script '1 2 3' 4
 ...
Argument is 1
Argument is 2
Argument is 3
Argument is 4

 A: This is the way $* is defined to work. $*
 expands to:
$1 $2
[not
 "$1" "$2;"
 — JP] if there are two arguments. Hence the for loop
 reads:
for arg in 1 2 3 4
Note
 that the quotes are gone. What you wanted the shell to see
 was:
for arg in '1 2 3' 4
You
 can’t get that, but you can get something that is good
 enough:
"$@"
 Section
 35.20
for arg in "$@"
In effect,
 $@ expands
 to:
$1" "$2
Putting
 ""s around $@, the effect
 is:
for arg in "$1" "$2"

 Shell quoting is unnecessarily complex. The
 C shell actually has the right idea (variables can be set to “word lists”;
 argv is such a list), but its defaults and syntax for
 suppressing them make for an artless programming language:
foreach arg ($argv:q) # colon q ?!?
For
 the special case of iterating a shell variable over the argument list as it
 stands at the beginning of the iteration, the Bourne shell provides the
 construct for arg
 do [i.e., no in
 list
 —
 JP]:
for arg
do echo "Argument is $arg"
done
The
 example
 produces:
Argument is 1 2 3
Argument is 4

 "$@" is still needed for passing argument
 lists to other programs. Unfortunately, since $@ is defined as expanding
 to:
$1" "$2...$n-1" "$n
(where
 n is the number of arguments), when there are no
 arguments, "$@" expands to "", and ""
 produces a single argument. [Many Unix vendors considered this a bug and changed
 it so that it produces no arguments. —
 JP] The best solution for this is to use, for
 example:
% cat bin/okeeffe
#! /bin/sh
exec rsh okeeffe.berkeley.edu -l torek ${1+"$@"}
%
The
 construct ${1+"$@"} means “expand $1, but if $1
 is defined, use "$@" instead.” [You don’t
 need this on Bourne shells with the “bug fix” I mentioned, or on bash
 et al. — JP] Hence, if
 there are no arguments, we get $1 (which is
 nothing and produces no arguments); otherwise, we get "$@" (which expands as above). ${
 var
 +
 instead
 } is one of several sh
 “expansion shortcuts” (
 Section 36.7). Another more generally
 useful one is ${
 var-default
 }, which expands to $
 var, but if var is not set, to
 default instead. All of these can be found in the
 manual for sh, which is worth reading several
 times, experimenting as you go.
bash
 has a variety of similar but expanded
 mechanisms as well, involving a colon before the
 modifier:
foo=${bar:-baz} if bar set and non-null, substitute value, else substitute baz...
fum=${fee:=foe} if fee unset or is null, set it to foe, value then substituted...
fiend=${jeckyll::=hyde} set jeckyll to hyde, then substitute value... (zsh only)
${required?"error"} if required set or non-null, substitute its value,
 else return "error" and exit...
man=${fullmoon:+wolfman} if fullmoon set and non-null, substitute wolfman,
 else substitute nothing...
See
 the bash manual page’s section on parameter
 expansion. ksh, pdksh, and zsh also have
 support for the same syntax; zsh has an
 entire manual page devoted to just parameter expansions:
 zshexpn(1). Poke around; there’s lots of good stuff to
 explore.
—CT and SJC

How Unix Keeps Time

 Like all other operating systems, Unix has a
 concept of the time. And virtually all Unix systems, even the smallest, include
 a clock with some sort of battery backup built in.
All Unix systems keep time by counting the number of microseconds since
 midnight, January 1, 1970, Greenwich Mean Time. This date is commonly called the
 epoch
 , and it has folk-significance as the
 begining of the Unix era. Although the first work on Unix began in the late
 ’60s, the first versions of Unix were available (within Bell Laboratories) in
 the early ’70s.
This count gets updated roughly 60 times per second. The exact rate depends on
 your particular Unix system and is determined by the constant, HZ, defined in the header file
 /usr/include/sys/param.h:[1]
#define HZ 60
This is the time’s “resolution,” often referred to as the clock’s “tick.” Note
 that it has nothing to do with your system’s CPU clock rate. Time measurements
 are normally no more precise than your system’s clock resolution, although some
 systems have added facilities for more precise timing.
If your Unix system belongs to a
 network, it is important to keep all the
 clocks on the network “in sync.” [2] Strange things happen if you copy a file from one system to another
 and its date appears to be some time in the future. Many Unix systems run a
 time daemon (one of those mysterious helper programs (Section 1.10)) to take care of this.[3]
Unix automatically keeps track of daylight savings time (summer time), leap
 years, and other chronological trivia. When the system is installed, you have to
 tell it your time zone and the style of daylight savings time you want to
 observe. As Unix has become an international standard, the number of time zones
 (and obscure ways of handling daylight savings time) it can handle correctly has
 proliferated. In a few cases, you still have to handle these things by hand; for
 example, in Europe, as of this writing, the beginning and end of Summer Time
 were set periodically by the European Parliament, and so may change. Care for
 Libyan Standard Time?
Unix’s internal routines compute time in relation to the epoch, but there is
 no reason for you to worry about it unless you’re a C programmer. A library of
 time routines can convert between this internal representation and more usable
 representations; see the Unix manual page for ctime
 (3).
— ML

Copy What You Do with script

Are you typing a complicated set
 of commands that you need to show someone else or keep “on file” for
 documentation? Are you debugging a program that goes wrong somewhere — but the
 error message flashes by so fast that you can’t see it? Do you want to show a
 “prerecorded” demonstration of an interactive program? The script program can help with all of these
 problems.
Note
Versions of script on Unix systems
 without ptys aren’t as flexible as the version I’m
 explaining here. For instance, those versions won’t let you use job control (Section 23.3) during the script.

To copy everything you do into a file, just type:
% script
Script started, file is typescript
%

 Now
 you can type any Unix command that you’d use at a shell prompt. Everything you
 do is copied into a file named typescript
 in the current directory. (To use a different filename, type its pathname (Section
 1.16) on the command line, like script
 scriptfile.) When you’re done, type CTRL-d or
 exit (Section 24.4) at a shell prompt.
One thing that surprises people is that
 everything will be copied into the script file. That
 includes escape sequences that programs send to your terminal. This is both good
 and bad.
The good part is that you can “play back” whatever happened by catting (Section
 12.2) the script to your screen. When things get boring, you can run
 an interactive program like vi inside the
 script — then quit the script and play it back with cat
 typescript. The cursor will fly across the screen and your file
 will be re-edited before your eyes. (This is easier to see if the terminal is
 set to a slow data rate.)
The bad part is that errors you correct and other terminal-control sequences
 will be in the file, too. If you edit or print the script file, it may be full
 of “junk” such as ^M (carriage return) and
 ^H (backspace) characters. (A command
 like cat -v or od -c
 (Section 12.4) will show you these
 characters.) If the file has just a few of these characters, you can clean it up
 by hand with your text editor’s global substitution commands. You can also
 automate your “script cleaning” with techniques such as the ones in Section 21.11 and Section 37.8.
If you’re using xterm
 , it may have a built-in logger. Check its
 menus (Section 5.17).
— JP

Cleaning script Files

 As Section 37.7 explains, the files made by the script program can have stray control characters
 in them. The shell script called script.tidy can clean them
 up. Dan Bernstein wrote it and posted it to Usenet; I made a few changes. It
 reads from files or standard input and writes to standard output.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 script.tidy

 script.tidy uses the sed
 (Section 34.1) substitute command
 to remove CTRL-m (RETURN) characters from the ends of lines. It uses the
 sed
 test command (Section 34.21) to repeat a series of
 commands that delete a character followed by CTRL-h (BACKSPACE). If you use
 DELETE as your erase character (Section 5.8), change the script to eat
 DELETE instead of BACKSPACE. script.tidy uses a trick with
 echo and tr to store the control characters in

 shell variables. Because the sed script has doublequotes (Section
 27.12) around it, the shell variables are substituted in the right
 places before the shell starts sed.
eval
 Section 27.8, exec
 Section 36.5
#!/bin/sh

Public domain.

Put CTRL-M in $m and CTRL-H in $b.
Change \010 to \177 if you use DEL for erasing.
eval `echo m=M b=H | tr 'MH' '\015\010'`
exec sed "s/$m\$//
:x
s/[^$b]$b//
t x" $*
You can also hack the sed script in
 script.tidy to delete some of your terminal’s escape
 sequences. (A really automated script.tidy would read your
 termcap or terminfo entry and look
 for all those escape sequences in the script file.)
Bear in mind that script was designed to
 emulate a paper terminal; if you’ve modified your prompt, especially if you are using
 multiple-line prompts, your script output is
 going to be full of far worse junk than script.tidy can fix. If you find that script simply doesn’t do it for you, you should consider whether
 you want a complete record of all terminal input and output or just a record of
 what you typed. If the latter is more to your liking, you should look into the
 various history editing and printing capabilities provided by modern
 shells.
—JP and SJC

Making an Arbitrary-Size File for Testing

 The yes
 command (
 Section 14.5) outputs text over and
 over.[4] If you need a file of some size for testing, make it with yes and head
 (
 Section 12.12). For example, to make
 a file 100k (102,400) characters long, with 12,800 8-character lines (7 digits
 and a newline), type:
% yes 1234567 | head -12800 > 100k-file
Note
On some Unix systems, the command may “hang” and need to be killed with
 CTRL-c because head keeps reading input
 from the pipe. If it hangs on your system, replace head -12800 with sed
 12800q.

You might just want to use perl,
 instead:
$ perl -e 'print "1234567\n" x 12800' > file
For the Unix admin who has everything, here’s one more way, this time using
 the venerated dd
 command:
$ yes | dd of=file count=25
There are many variations on this theme. The preceding example simply copies
 25 blocks of 512 bytes each from standard input (the output of the yes command) to the file file. You could also specify a number of bytes to read at a
 time, using the ibs option, and then specify the number of
 records to write out, using count
 :
$ yes | dd ibs=1 of=file count=12800
There’s More Than One Way To Do It. Be careful, though — you can fill up a
 disk pretty quickly playing around with the dd command!

[1] It may be in a file included thereby; on Linux, a bit of
 hunting shows it in /usr/include/asm/param.h. The value may vary from system
 to system, as well.

[2] This is particularly true if your system runs public services such as
 mail or HTTP.

[3] A popular choice for network time synchronization is
 ntp, available from http://www.eecis.udel.edu/~ntp/.

[4] Believe it or not, it does have a purpose; it was originally designed
 to pipe “y” answers into interactive programs such as fsck before those programs provided the
 option to proceed with implicit approval. The FreeBSD 4.4 manual says of
 yes(1) that it “outputs
 expletive, or, by default, `y’”,
 forever.

Part VII. Extending and Managing Your Environment

Part VII contains the following
 chapters:
Chapter 38
Chapter 39
Chapter 40
Chapter 41
Chapter 42

Chapter 38. Backing Up Files

What Is This “Backup” Thing?

 Making copies of critical files
 in case the originals become inaccessible is called backing them up or making
 backups. Backups are insurance. They are time and effort you spend protecting
 yourself from things that might never happen. Your hard drive might never crash,
 but what vital things would you lose if it did?
Exactly what “making a backup” means varies depending on your circumstances.
 All of the following examples are ways to make backups applicable to some
 specific environment:
	Copying some files onto another disk on the same machine, so that if
 one hard drive dies you still have a copy. (A more sophisticated and
 automatic way of doing this, which you may have heard about, is called
 Redundant Array of Inexpensive Disks or
 RAID.)

	Making a compressed tar file and copying it to another machine, so
 that if one machine crashes you still have a copy.

	Writing copies of your files to a Zip drive, CD-RW, or DVD-RW.

	tarring (Section 38.2) files to a
 tape.

	Nightly automatic backups of everything that’s changed that day
 (called an incremental backup) to multiple tapes,
 with copies of the tapes stored in offsite secure storage.

If you are just trying to protect your files on your personal machine, simply
 making sure that critical files have copies on multiple physical disks or
 occasionally copying files onto another machine or removable storage is probably
 sufficient. If you’re administering a machine that has multiple users, regular
 backups are almost certainly a necessity. If those users are doing
 business-critical tasks, very regular backups and off-site copies are a
 requirement to protect the investment of time involved.
— DJPH

tar in a Nutshell

When
 many
 Unix users think of file archives, on tape or in an archive file, they think of
 the tar utility. There are other ways to make
 archives and handle tapes — including dump
 and dd. This article summarizes articles
 about tar in this chapter and others.
	Although tar is a
 tape archiver, one of its
 common uses is making an archive file on
 disk (Section
 39.2). Because tar “pads”
 its archives with NUL characters, on-disk tar archive files can be much bigger than the size of the
 individual files put together. Both to fix that and generally to save
 space, tar files are often compressed. The GNU
 tar (
 Section 39.3) can compress
 files while storing them and uncompress them while reading them,
 automatically. If you don’t have GNU tar, you may need to uncompress an archive manually. Note
 that a compressed tar archive
 can take less disk space
 (
 Section 15.7) than compressing
 individual small files.
Because tar keeps most of a file’s
 inode information, it can make a
 more complete copy (Section 10.13) of a file or
 directory tree than utilities such as cp.

	Yes, we do have articles about archives on tape. Section 38.3 has enough
 information to make your own archive, although you might need the
 details from Section 38.5,
 too. After you’ve made an archive, you’ll probably want to restore it,
 at least as a test to be sure your archive is okay. Section 38.6 explains
 how.
If there isn’t a tape drive on your computer, read Section 38.7 about using a drive
 on another computer.

	tar copies a directory tree, recursively, from top to
 bottom. What if you don’t want to archive everything? You can back up
 just some files by combining ls -lt and find. Some versions of tar have options for including or excluding certain files and directories
 (Section 39.3).

— JP

Make Your Own Backups

As someone who has been an end user and a system
 administrator, I strongly believe that every user should understand the
 importance of backups.
Note
If you have data that is important to you, you should have a known
 backup.

Accidents and oversights happen. Tapes can be damaged, lost, or mislabeled.
 Assume that your system administrator is top-notch. The best administrator can
 recover your lost data 99 percent of the time. There is still a small chance
 that the files you need might not be recovered. Can you afford to duplicate
 months of effort 1 percent of the time? No.
An experienced user learns to be pessimistic. Typically, this important
 perspective is learned the hard way. Perhaps a few hours are lost. Perhaps days.
 Sometimes months are lost.
Here are some common situations:
	A user works on a file all day. At the end of the day, the file is
 deleted by accident. The system manager cannot recover the file. A day’s
 work has been lost.

	A programmer tries to clean up a project directory. Instead of typing
 rm *.o the programmer types
 rm * .o and the entire directory
 is lost.

	A user deletes a file by accident. After a few days, the user asks the
 system administrator to recover the file. The incremental backup system
 has reused the only tape the missing file was on.

	A large project is archived on a magnetic tape and deleted from the
 disk. A year later, some of the information is needed. The tape has a
 bad block at the beginning. The system manager must learn how to recover
 data from a bad tape. The attempt is often unsuccessful. The information
 is lost forever, and must be re-created at the cost of months of
 effort.

	Someone breaks into a computer and alters or deletes crucial
 information.

	A fire breaks out in the computer room. The disks and
 all of the backup tapes are lost.

Gulp! I scared myself. Excuse me for a few minutes while I load a
 tape...
Ah! I feel better now. As I was saying, being pessimistic has its
 advantages.
Making a backup is easy. Get a blank tape and put a label on it. Learn how to
 load it into the tape drive. Then do the following:
% cd
% tar c .
Take the tape out. Write-protect the tape (usually, just slide the tab).
 That’s all.
[Well, okay, not exactly. That would back up only your home directory to the
 default tape device (usually something like /dev/rmt0). You may want to back up more than just your home
 directory, the tape drive may not be at the default device, and you may not have
 permission to write to the tape drive by default. The rest of the chapter talks
 about variations on the theme. — DJPH]
— BB

More Ways to Back Up

 Section 38.3 explains the minimal
 basics of using tar to make backups, but
 there are lots of variations that can be very useful.
To create a tar archive for copying to
 another disk or another machine:
% tar cvf 20020214-book.tar ./book
tar

 ’s c option stands for
 create, v for
 verbose, and the f option for
 file. 20020214-book.tar is the new archive file to create, and
 ./book says to archive the directory
 book in the current directory. Once you have an
 archive, you might want to compress it to save space. gzip

 and bzip2 are your best bets. (I use bzip2 here largely because it tends to give better compression,
 but be aware that gzip is more widely
 available and thus may be safer for backups.) You can compress it once you’ve
 made it:
% ls -l 20020214-book.tar
-rw-r--r-- 1 deb deb 19415040 Feb 14 23:15 20020214-book.tar
% bzip2 20020214-book.tar
% ls -l 20020214-book.tar.bz2
-rw-r--r-- 1 deb deb 4033775 Feb 14 23:15 20020214-book.tar.bz2
Or you can compress it as you make it. GNU tar supports gzip compression
 on the fly with the z
 or - -gzip
 options and bzip2 compression on the fly with
 the - -bzip2 option, or you can pipe into gzip or bzip2:
% tar czvf 20020214-book.tar.gz ./book

% tar cvf 20020214-book.tar.bz2 --bzip2 ./book

% tar cvf - ./book | bzip2 > 20020214-book.tar.bz2
Section 39.2 and Section 39.3 have more information on
 using tar.
You can get more protection from certain kinds of mishaps by using a

 version control system like RCS (Section
 39.5) or CVS (Section 39.7) to save every version of a
 file you are updating frequently. While it doesn’t protect you from disk
 crashes, a version control system provides the ability to back up to a previous
 version if something gets changed or deleted incorrectly.
— DJPH

How to Make Backups to a Local Device

 This article was written for Linux
 systems, but the advice applies everywhere. You may need to make some
 adjustments — in the names of the tape drive devices and some filesystem
 directories, for instance. If you’re making personal backups (of the files on
 your account, for instance), you can substitute your directory names for the
 system directories covered here, but the command names and techniques won’t
 change.
What to Back Up

As Section 38.3 says, the

 simplest way to make a backup is to use
 tar to archive all the files on the
 system or only those files in a set of specific directories. Before you do
 this, however, you need to decide what files to back up. Do you need to back
 up every file on the system? This is rarely necessary, especially if you
 have your original installation disks or CD-ROM. If you
 have made specific, important changes to the system, but everything else
 could simply be reinstalled in case of a problem, you could get by archiving
 only those files you have made changes to. Over time, however, it is
 difficult to keep track of such changes.
In general, you will be making changes to the system configuration files
 in /etc. There are other configuration
 files as well, and it can’t hurt to archive directories such as /usr/local (where various packages generally
 get installed) and /usr/X11R6/lib/X11
 (which contains the X Window System configuration files). You may want to do
 filtering on these directories and back up only the configuration files,
 since binaries in /usr/local and things
 like fonts in the X11 distribution can be reinstalled from their original
 packages easily enough.
You should also back up your kernel sources
 (if you have patched your kernel sources); these are found in /usr/src/linux (/usr/src/sys on *BSD). At the very least, you’ll want to
 back up your kernel configuration file if you’ve built your own kernel; it’s
 in /usr/src/linux/.config (or /usr/src/sys/
 platform/conf/KERNELNAME on *BSD).
It’s a good idea to keep notes on what features of the system you’ve
 changed so you can make intelligent choices when making backups. If you’re
 truly paranoid, go ahead and back up the whole system: that can’t hurt, but
 the cost of backup media might.
Of course, you should also back
 up the home directories for each user on the system; these are generally
 found in /home. If you have your system
 configured to receive electronic mail, you might want to back up the
 incoming mail files for each user. Many people tend to keep old and
 “important” electronic mail in their incoming mail spool, and it’s not
 difficult to accidentally corrupt one of these files through a mailer error
 or other mistake. These files are usually found in /var/spool/mail.

Backing Up to Tape

Assuming

 you know what files or directories to back up,
 you’re ready to roll. The tar command can
 be used directly, as we saw in Section
 39.2, to make a backup. For example, the command:
tar cvf /dev/rft0 /usr/src /etc /home
archives all of the files from /usr/src, /etc, and
 /home to /dev/rft0. /dev/rft0 is
 the first “floppy-tape” device — that is, for the type of tape drive that
 hangs off of the floppy controller. Many popular tape drives for the PC use
 this interface. If you have a SCSI tape drive, the device names are
 /dev/st0, /dev/st1, and so on, based on the drive number. Those tape
 drives with another type of interface have their own device names; you can
 determine these by looking at the documentation for the device driver in the
 kernel.
You can then read the archive back from the tape using a command such
 as:
tar xvf /dev/rft0
This is exactly as if you were dealing with a tar file on disk, as in
 Section 39.2.
When you use the tape drive, the tape is seen as a stream that may be read
 from or written to in one direction only. Once tar is done, the tape device will be closed, and the tape
 will rewind (if you’re using the default tape device; see below on how to
 prevent this). You don’t create a filesystem on a tape, nor do you mount it
 or attempt to access the data on it as files. You simply treat the tape
 device itself as a single “file” to create or extract archives from.
Be sure your tapes are formatted before
 you use them if you are using a tape drive that needs it. This ensures that
 the beginning-of-tape marker and bad-blocks information has been written to
 the tape. At the time of this writing, no tools exist for formatting
 QIC-80 tapes (those used with floppy tape drivers)
 under Linux; you’ll have to format tapes under MS-DOS or
 use preformatted tapes.
Creating one tar file per tape might be wasteful if the archive requires a
 fraction of the capacity of the tape. To place more than one file on a tape,
 you must first prevent the tape from rewinding after each use, and you must
 have a way to position the tape to the next “file marker,” both for tar file
 creation and for extraction.
The way to do this is to use the
 nonrewinding tape devices, which are named /dev/nrft0, /dev/nrft1,
 and so on for floppy-tape drivers, and /dev/nrst0, /dev/nrst1,
 and so on for SCSI tapes. When this device is used for reading or writing,
 the tape will not be rewound when the device is closed (that is, once
 tar has completed). You can then use
 tar again to add another archive to
 the tape. The two tar files on the tape won’t have anything to do with each
 other. Of course, if you later overwrite the first tar file, you may
 overwrite the second file or leave an undesirable gap between the first and
 second files (which may be interpreted as garbage). In general, don’t
 attempt to replace just one file on a tape that has multiple files on
 it.
Using the nonrewinding tape device, you can add as many files to the tape
 as space permits. To rewind the tape after use, use the mt command. mt is a general-purpose command that performs a number of
 functions with the tape drive. For example, the command:
mt /dev/nrft0 rewind
rewinds the tape in the first floppy-tape device. (In this case, you can
 use the corresponding rewinding tape device as well; however, the tape will
 rewind just as a side effect of the tape device being closed.)
Similarly, the command:
mt /dev/nrft0 reten
retensions the tape by winding it to the end and then rewinding it.
When reading files on a multiple-file
 tape, you must use the nonrewinding tape device with tar and the mt command to position the tape to the appropriate
 file.
For example, to skip to the next file on the tape, use the command:
mt /dev/nrft0 fsf 1
This skips over one file on the tape. Similarly, to skip over two files,
 use:
mt /dev/nrft0 fsf 2
Be sure to use the appropriate nonrewinding tape device with mt. Note that this command does not move to
 “file number two” on the tape; it skips over the next two files based on the
 current tape position. Just use mt to
 rewind the tape if you’re not sure where the tape is currently positioned.
 You can also skip back; see the mt manual
 page for a complete list of options.
You need to use mt every time you read
 a multifile tape. Using tar twice in
 succession to read two archive files usually won’t work; this is because
 tar doesn’t recognize the file marker
 placed on the tape between files. Once the first tar finishes, the tape is positioned at the beginning of the
 file marker. Using tar immediately will
 give you an error message, because tar
 will attempt to read the file marker. After reading one file from a tape,
 just use:
mt device fsf 1
to move to the next file.

Backing Up to Floppies or Zip Disks

 Just

 as we saw in the last section, the
 command:
tar cvf /dev/fd0 /usr/src /etc /home
makes a backup of /usr/src, /etc, and /home to /dev/fd0, the
 first floppy device. You can then read the backup using a command such
 as:
tar xvf /dev/fd0
If we use /dev/hdd instead of
 /dev/fd0 (and our Zip drive is the
 slave drive on the second IDE controller), we’ll be writing to and reading
 from a Zip disk instead of a floppy. (Your device name may vary depending on
 your OS.) Because floppies and Zip disks have a rather limited storage
 capacity, GNU
 tar allows you to create a “multivolume”
 archive. (This feature applies to tapes as well, but it is far more useful
 in the case of smaller media.) With this feature, tar prompts you to insert a new volume after reading or
 writing each disk. To use this feature, simply provide the
 M option to tar, as
 in:
tar cvMf /dev/fd0 /usr/src /etc /home
Be sure to label your disks well, and don’t get them out of order when
 attempting to restore the archive.
One caveat of this feature is that it
 doesn’t support the automatic gzip
 compression provided by the z option. However, there are
 various reasons why you may not want to compress your backups created with
 tar, as discussed later. At any rate,
 you can create your own multivolume backups using tar and gzip in
 conjunction with a program that reads and writes data to a sequence of disks
 (or tapes), prompting for each in succession. One such program is backflops, available on several Linux
 distributions and on the FTP archive sites. A
 do-it-yourself way to accomplish the same thing would be to write the backup
 archive to a disk file and use dd or a
 similar command to write the archive as individual chunks to each disk. If
 you’re brave enough to try this, you can figure it out for yourself. [Aw,
 come on, guys, have a heart! (Psst, readers: look at the end of Section 21.9.) —
 JP]

To gzip, or Not to gzip?

 There are good arguments both for and
 against compression of tar
 archives when making backups. The
 overall problem is that neither tar nor
 gzip is particularly fault-tolerant,
 no matter how convenient they are. Although compression using gzip can greatly reduce the amount of backup
 media required to store an archive, compressing entire tar files as they are written to floppy or
 tape makes the backup prone to complete loss if one block of the archive is
 corrupted, say, through a media error (not uncommon in the case of floppies
 and tapes). Most compression algorithms, gzip included, depend on the coherency of data across many
 bytes to achieve compression. If any data within a compressed archive is
 corrupt, gunzip may not be able to
 uncompress the file at all, making it completely unreadable to tar. The same applies to bzip2. It may compress things better than
 gzip, but it has the same lack of
 fault-tolerance.
This is much worse than if the tar file were uncompressed on the tape.
 Although tar doesn’t provide much
 protection against data corruption within an archive, if there is minimal
 corruption within a tar file, you can usually recover most of the archived
 files with little trouble, or at least those files up until the corruption
 occurs. Although far from perfect, it’s better than losing your entire
 backup.

 A
 better solution would be to use an archiving tool other than tar to make backups. There are several options
 available. cpio (
 Section 38.13) is an archiving
 utility that packs files together, much like tar. However, because of the simpler storage method used by
 cpio, it recovers cleanly from data
 corruption in an archive. (It still doesn’t handle errors well on gzipped
 files.)
The best solution may be to use a tool
 such as afio. afio supports multivolume backups and is similar in some
 respects to cpio. However, afio includes compression and is more reliable
 because each individual file is compressed. This means that if data on an
 archive is corrupted, the damage can be isolated to individual files,
 instead of to the entire backup.
These tools should be available with your Linux distribution, as well as
 from all of the Internet-based Linux archives. A number of other backup
 utilities, with varying degrees of popularity and usability, have been
 developed or ported for Linux. If you’re serious about backups, you should
 look into them.[1]

—MW, MKD, and LK

Restoring Files from Tape with tar

 When you create an archive, there are several
 ways to specify the directory. If the directory is under the current directory,
 you could type:
% tar c project
A similar way to specify the same directory is:
% tar c ./project
If you are currently in the directory you want archived, you can type:
% tar c .
Another way to archive the current directory is to type:
% tar c *
Here, the shell expands the asterisk (*) to
 the files in the current directory. However, it does not match files starting
 with a dot (.), which is why the previous technique is preferred.
This causes a problem when restoring a directory from a tar archive. You may not know whether an archive
 was created using . or the directory name.
I always check the names of the files before restoring an archive:
% tar t
If the archive loads the files into the current directory, I create a new
 directory, change to it, and extract the files.
If the archive restores the directory by name, then I restore the files into
 the current directory.
Restoring a Few Files

 If you want to restore a single file, get
 the pathname of the file as tar knows it, using the
 t flag. You must specify the exact filename, because
 filename and ./filename are not the same to tar. You can combine these two steps into one
 command by using:
% tar xvf /dev/rst0 `tar tf /dev/rst0 | grep
 filename`
Note that this may run very slowly, though, as the entire tar file has to
 be read once (and the tape rewound) before any restoration can happen. Be
 careful: you may also get a lot more than you expected; for example, if
 you’re looking for README using this
 technique, you’d also get README.Solaris and everything in the doc/READMEs directory, possibly overwriting
 files you wanted to keep.
Whenever you use tar to restore a
 directory, you must always specify some filename. If
 none is specified, no files are restored.
There is still the problem of
 restoring a directory whose pathname starts with a slash (/). Because tar restores a file to the pathname specified in the archive,
 you cannot change where the file will be restored. The
 danger is that either you may overwrite some existing files or you will not
 be able to restore the files because you don’t have permission.
You can ask the system administrator to rename
 a directory and temporarily create a symbolic link pointing to a directory
 where you can restore the files. Other solutions exist, including editing
 the tar archive and creating a new
 directory structure with a C program executing the
 chroot(2) system call. Another solution is to use
 GNU tar (Section 39.3), which allows you to
 remap pathnames starting with slash (/).
 It also allows you to create archives that are too large for a single tape,
 incremental archives, and a dozen other advantages.
But the best solution is never to create an archive of a directory that
 starts with slash (/) or tilde (~)
 (Section 31.11) (since the
 shell will expand ~ into an absolute path
 that starts with a /).

Remote Restoring

 To restore a

 directory from a remote host, use the
 following command:
rsh
 Section 1.21
% rsh -n
 host
 dd if=/dev/rst0 bs=20b | tar xvBfb - 20
 files
This runs dd
 on the remote host, reading from
 /dev/rst0 with a blocksize of
 twenty blocks, and pipes it to a local tar. It is difficult to read fixed-size blocks over a
 network. This is why tar uses the
 B flag to force it to read from the pipe until a block
 is completely filled. Some versions of tar, including GNU tar,
 handle remote drives automatically
 (Section 38.8).
— BB

Using tar to a Remote Tape Drive

 If your computer doesn’t
 have a tape drive connected, creating tar
 (Section 38.2) backup files is
 slightly more complicated. If you have an account on a machine with a tape
 drive, and the directory is mounted via NFS
 (
 Section 1.21), you can just rlogin (Section
 1.21) to the other machine and use tar to back up your directory.
If the directory is not NFS mounted, or it is mounted but you have permission problems accessing your own files,
 you can use tar, rsh (Section 1.21),
 and dd (Section 21.6) to solve this dilemma. The syntax is confusing, but if
 you forget, you can use man tar (Section 2.1) to refresh your memory. The
 command to dump the current directory to a tape in a remote machine called
 zephyrus is:
% tar cvfb - 20 . | rsh zephyrus dd of=/dev/rmt0 obs=20b
Here, the output file of tar is -, which tar
 interprets as standard input if tar is
 reading an archive or standard output if tar
 is creating an archive.
The dd command copies data from standard
 input to the device /dev/rmt0.
This example assumes you can use rsh
 without requiring a password. You can add your current
 machine’s name to the remote .rhosts file
 (Section 1.21) if you get a
 Password: prompt when you use rlogin to access this machine. You also can use
 ssh
 , which is generally more secure than
 rsh, and the ssh-agent utility to allow logins without a password.
— BB

Using GNU tar with a Remote Tape Drive

 If you’re using GNU tar, you can probably ignore the tips in Section 38.7 about using a tape drive on
 a remote system. GNU tar makes it easy to
 access a remote drive via rsh or a similar
 command like ssh.
When referring to a local host, the GNU tar
 f option takes a plain filename like
 foo.tar or a device name like
 /dev/rmt0. If you put a colon (:) before that name,
 though, you can prepend a remote hostname — and, optionally, a username. For
 example, to get a table of contents of the tape on the drive
 /dev/rmt8 on the remote host
 server2, logging into server2 as
 yourself, type:
% tar tf server2:/dev/rmt8
To specify a different username than the one on your local host, add it with
 an @ before the hostname. (This assumes
 you’re allowed to connect to the remote host without a password — because
 there’s a .rhosts file on the remote system, for instance.)
 For example, to connect to server2 as
 heather and extract the files
 reports/products.sgml and
 reports/services.sgml from
 /dev/rmt8:
{ }
 Section 28.4
% tar xf
 heather@server2:/dev/rmt8 reports/{products,services}.sgml
By default, GNU tar uses rsh, remsh, or
 nsh to access the remote machine, though
 that can be changed when tar is built and
 installed on your host. If you want another access command, like ssh, you can set that with the -
 -rsh-command option. The next example gets the contents of the
 archive on the drive /dev/rmt8 from the host
 capannole.it using ssh. Note that tar doesn’t
 check your search path (Section 27.6) for the
 rsh-command; you have to give its absolute pathname
 (which you can get with a command like which
 (Section 2.6)):
% tar -x --file=capannole.it:/dev/rmt8
 --rsh-command=/usr/bin/ssh
On the other hand, if you need to use a local filename with a colon in it, add
 the - -force-local option.
— JP

On-Demand Incremental Backups of a Project

 As I was working on
 this book, I was constantly editing lots of random files all through a directory
 tree. I archived some of the files in a revision control
 system (Section 39.4),
 but those archives, as well as the nonarchived files, still would be vulnerable
 if my disk crashed. (And naturally, close to a deadline, one hard disk started
 making whining noises...)
The answer I came up with was easy to use and simple to set up. It’s a script
 named ptbk

 , and
 this article explains it. To run the script, I just type its name. It searches
 my directory tree for files that have been modified since the last time I ran
 ptbk. Those files are copied into a dated
 compressed tar archive and copied to a remote
 system using scp. The process looks like
 this:
$ ptbk
upt/upt3_changes.html
upt/BOOKFILES
upt/art/0548.sgm
upt/art/1420.sgm
upt/art/1430.sgm
upt/art/0524.sgm
upt/BOOKIDS
upt/ulpt3_table
Now copying this file to bserver:
-rw-rw-r-- 1 jpeek 323740 Jan 3 23:08 /tmp/upt-200101032308.tgz
upt-200101032308.tgz | 316 KB | 63.2 kB/s | ETA: 00:00:00 | 100%

 The script actually doesn’t copy
 all of the files in my directory tree. I’ve set up a
 tar exclude file that makes the script
 skip some files that don’t need backing up. For instance, it skips any filename
 that starts with a comma (,). Here’s the file, named ptbk.exclude:
upt/ptbk.exclude
upt/tarfiles
upt/gmatlogs
upt/drv-jpeek-jpeek.ps
upt/drv-jpeek.3l
upt/BOOKFILES~
upt/ch*.ps.gz
upt/ch*.ps
upt/,*
upt/art/,*
After the script makes the tar file, it touches a timestamp file named ptbk.last. The next time the script runs, it uses find -newer (
 Section 9.8) to get only the files that
 have been modified since the timestamp file was touched.

 The script uses scp

 and ssh-agent
 to copy the archive without asking for a password. You could hack it to use
 another method. For instance, it could copy using rcp (Section 1.21) or
 simply copy the file to another system with cp via an NFS-mounted filesystem (Section 1.21).
This doesn’t take the place of regular backups, if only because re-creating
 days’ worth of work from the little individual archives would be tedious. But
 this system makes it painless to take snapshots, as often as I want, by typing a
 four-letter command. Here’s the ptbk
 script:
||
 Section 35.14, '...'
 Section 28.14
#!/bin/sh
ptbk - back up latest UPT changes, scp to $remhost

dirbase=upt
dir=$HOME/$dirbase
timestamp=$dir/ptbk.last # the last time this script was run
exclude=$dir/ptbk.exclude # file with (wildcard) pathnames to skip
remhost=bserver # hostname to copy the files to
remdir=tmp/upt_bak/. # remote directory (relative to $HOME)
cd $dir/.. || exit # Go to parent directory of $dir
datestr=`date '+%Y%m%d%H%M'`
outfile=/tmp/upt-$datestr.tgz

Don't send vim recovery files (.*.swp):
tar czvlf $outfile -X $exclude \
 `find $dirbase -type f -newer $timestamp ! -name '.*.swp' -print`
mv -f $timestamp $dir/,ptbk.last
echo "Timestamp file for $0. Don't modify." > $timestamp
echo "Now copying this file to $remhost:"
ls -l $outfile
scp $outfile ${remhost}:${remdir}
If the copy fails (because the remote machine is down, for instance), I have
 to either copy the archive somewhere else or wait and remember to copy the
 archive later. If you have an unreliable connection, you might want to modify
 the script to touch the timestamp file only if the copy succeeds — at the
 possible cost of losing a data file that was modified while the previous archive
 was (not?) being transferred to the remote host.

— JP

Using Wildcards with tar

 When
 extracting files from a tar archive, it’s
 handy to be able to use wildcards. You have to protect
 them (Section 27.12)
 from the shell, so that they are passed directly to tar.
Without GNU tar

In general, tar can’t do wildcard
 matching on the filenames within an archive. There’s a terribly ugly hack
 that you can use to select the files you want anyway. Try a command like
 this:
'...'
 Section 28.14
% tar xvf /dev/rst0 `tar tf /dev/rst0 | egrep 'lib/(foo|bar)'`
What you’re doing here is using
 tar twice. tar t
 will print the names of all the files on the tape. The pattern supplied to
 egrep (
 Section 13.4) selects the
 pathnames containg lib/foo or lib/bar, and the resulting filenames are
 passed to the first tar command, which
 actually extracts the files from the archive. Note that these patterns are
 regular expressions, not wildcards
 (Section 32.2).
Here’s another subtle but important point. Because the regular expression
 patterns in the example above are not anchored with ^
 or $ characters (Section
 32.4), they can match anywhere in the file pathnames. So lib/(foo|bar) would match a pathname like
 lib/foo as well as a pathname like
 /usr/lib/glib/foo.h.

With GNU tar

[image:] Go to http://examples.oreilly.com/upt3 for more information on: GNU
 tar

 One of the many improvements in GNU tar is that it understands wildcards in the
 names of files within an archive. (Remember that because you want tar, not the shell, to see these wildcards,
 you have to
 quote (Section 27.12) the filename arguments that have
 wildcards.)
Unlike the examples in the previous section, GNU tar uses wildcards, not regular
 expressions (Section
 32.2). Unlike shells, the wildcard expressions in GNU tar can match across slashes (/) in pathnames.
Here’s a demonstration of using wildcards:
 we want to extract all subdirectories named editor.
 Command 1 shows how you’d do it in non-GNU tar: list the exact pathnames of the subdirectories. Notice
 that tar extracts the directory and any
 subdirectories too. Command 2 shows the easy way to do the job with GNU
 tar: make a wildcard expression that
 ends with a slash and the directory name. As before, tar extracts the directory and any
 subdirectories. What if you want to extract anything with the string
 editor in its name — including individual files?
 Make a wildcard pattern without the slash and a filename surrounded by
 stars, as in command 3. Finally, command 4 shows an example of how
 (different than in shells) a wildcard can match across the / characters in pathnames. Command 4 extracts
 only directories named editor somewhere (possibly
 several layers) underneath a directory named
 skin:
>
 Section 28.12
1$ tar xvf mozilla.tar package/chrome/en-US/locale/en-US/editor \
> package/chrome/classic/skin/classic/content/editor \
> ...
package/chrome/en-US/locale/en-US/editor/
package/chrome/en-US/locale/en-US/editor/contents.rdf
package/chrome/en-US/locale/en-US/editor/editor.dtd
 ...
package/chrome/classic/skin/classic/editor/
package/chrome/classic/skin/classic/editor/EditModeTabs.css
 ...
package/chrome/classic/skin/classic/editor/images/
package/chrome/classic/skin/classic/editor/images/Map_Copy.gif
 ...
2$ tar xvf mozilla.tar '*/editor'
package/chrome/en-US/locale/en-US/editor/
package/chrome/en-US/locale/en-US/editor/contents.rdf
package/chrome/en-US/locale/en-US/editor/editor.dtd
 ...
package/chrome/classic/skin/classic/editor/
package/chrome/classic/skin/classic/editor/EditModeTabs.css
 ...
package/chrome/classic/skin/classic/editor/images/
package/chrome/classic/skin/classic/editor/images/Map_Copy.gif
 ...
3$ tar xvf mozilla.tar '*editor*'
package/defaults/pref/editor.js
package/components/editor.xpt
 ...
package/chrome/en-US/locale/en-US/editor/
package/chrome/en-US/locale/en-US/editor/contents.rdf
package/chrome/en-US/locale/en-US/editor/editor.dtd
 ...
package/chrome/comm/content/communicator/editorBindings.xul
package/chrome/comm/content/communicator/search/search-editor.js
 ...
4$ tar xvf mozilla.tar '*/skin/*/editor'
package/chrome/classic/skin/classic/editor/
package/chrome/classic/skin/classic/editor/EditModeTabs.css
 ...
package/chrome/classic/skin/classic/editor/images/
package/chrome/classic/skin/classic/editor/images/Map_Copy.gif
 ...
package/chrome/blue/skin/blue/editor/
package/chrome/blue/skin/blue/editor/contents.rdf
 ...
package/chrome/blue/skin/blue/editor/images/
package/chrome/blue/skin/blue/editor/images/Map_Copy.gif
 ...
package/chrome/modern/skin/modern/editor/
package/chrome/modern/skin/modern/editor/contents.rdf
 ...
There’s more about wildcard matching in the GNU tar
 info page (but not its
 manpage).

Wildcard Gotchas in GNU tar

One subtle (but sometimes important!) difference between GNU tar and other versions comes when you’re
 trying to extract a file whose name contains a wildcard character. You’ll
 probably have to type a backslash (\)
 before that name. Also, because the shell may also try to interpret that
 wildcard character — or at least the backslash — you also may need to quote
 the backslashed expression! (Section
 27.18 shows a situation like this one, with multiple layers of
 backslash interpretation.)
Here’s an example. We’re archiving the
 system binary file named [(or test) (Section 35.26):
5$ which [
/usr/bin/[
6$ cd /tmp
7$ tar cvf tartest.tar /usr/bin/[
tar: Removing leading `/' from member names
usr/bin/[
8$ tar xvf tartest.tar usr/bin/[
tar: usr/bin/[: Not found in archive
tar: Error exit delayed from previous errors
9$ tar xvf tartest.tar usr/bin/\[
tar: usr/bin/[: Not found in archive
tar: Error exit delayed from previous errors
10$ tar xvf tartest.tar 'usr/bin/\['
usr/bin/[
Storing the file in the archive, in command 7, is simple. The shell
 doesn’t have anything to expand; tar
 simply stores the name as-is because wildcards make sense only when tar is extracting from an
 archive. In command 8, though, when we try to extract the file into the
 current directory, tar says it isn’t
 there — because it’s now treating [as a
 wildcard pattern. Adding a single backslash in command 9 doesn’t help
 because the shell strips it off before tar sees it. We need to put quotes around the backslash, as
 in command 10, to make tar match the
 actual name.

Avoid Absolute Paths with tar

 One problem with most versions of tar: they can’t change a file’s pathname when
 restoring. Let’s say that you put your home directory in an archive (tape or
 otherwise) with a command like this:
% tar c /home/mike
What will these files be named when you restore them, either on your own
 system or on some other system? They will have exactly the
 same pathnames they had originally. So if /home/mike
 already exists, it will be destroyed. There’s no way to tell tar that it should be careful about overwriting
 files; there’s no way to tell tar to put the
 files in some other directory when it takes them off the tape, etc. If you use
 absolute pathnames (Section 31.2) when you create a tape,
 you’re stuck. If you use relative paths (Section 31.2) (for example, tar c .), you can restore the files in any
 directory you want.
This means that you should:
	Avoid using absolute paths when you create an archive (see
 below).

	Use tar t to see what files are on the tape
 before restoring the archive.

	Use GNU tar. It strips the leading / by default when creating archives. (You can give it the
 -P option to make it store absolute
 pathnames.)

Rather than giving a command like tar c
 /home/mike, do something like:
% cd /
% tar c home/mike
Or, even more elegant, use -C on the tar command line:
% tar c -C /home/mike .
This command tells tar to cd to the directory
 /home/mike before creating an archive of . (the current
 directory). If you want to archive several directories, you can use several
 -C options:
% tar c -C /home/mike ./docs -C /home/susan ./test
This command archives mike’s docs
 directory and susan’s test directory.
 [Note that it uses the subdirectory names, as we did in the second-previous
 example. When the files are extracted, they’ll be restored to separate
 subdirectories, instead of all being mixed into the same . (current) directory.
 — JP]
— ML

Getting tar’s Arguments in the Right Order

 tar’s command line is one of Unix’s little
 mysteries. It’s difficult to associate arguments with options. Let’s say you
 want to specify the block size (b), the output file (
 f), and an “exclude” file (X). Where do
 you put all this information? It’s easy enough to stick the option letters into
 a lump and put them into a command (tar
 cXbf). But where do you put the block size, the name of the
 exclude file, and so on?
List any arguments that you need after the block of key
 letters. You must place the arguments in the same order as
 the key letters, as shown in Figure
 38-1.
[image: tar options and arguments]

Figure 38-1. tar options and arguments

In this command, keepout goes with the
 X option, 20 goes
 with the b option, and archive.shar goes with the f option. If we put
 the options in a different order, we also have to put the arguments in a
 different order (see Figure
 38-2).
[image: The same command, rearranged]

Figure 38-2. The same command, rearranged

Note that the files you want to put on the tape (or the files you want to
 extract from the tape) always go at the end of the command.
 These are not arguments to c or X; they are
 part of the command itself.
The dump
 command and a few others work the same
 way.
GNU tar
 understands this traditional syntax as well as two syntaxes with separate
 options. For instance, the command line above could also be written in either of
 the following ways with GNU tar:
% tar -c -b 20 -X keepout -f archive.tar *.txt
% tar --create --block-size=20 --exclude-from=keepout \
 --file=archive.tar *.txt
— ML

The cpio Tape Archiver

 There was a time when people used to debate
 whether BSD tar (Section 38.2, Section 39.2) (tape archiver) or System
 V cpio (copy in/out) was the better file
 archive and backup program. At this point, though, no one ships out cpio archives over the
 Net (Section 1.21).
 tar is widespread, and there are free
 versions available, including GNU tar (Section 39.3).
There’s still a good reason to use cpio:
 it’s better at recovering backups from partially damaged
 media. If a block of your tape or disk archive goes bad, cpio can probably recover all files except the one
 with the bad block. A tar archive may not
 fare as well. Though we don’t give it much air time in this book, here are a few
 cpio basics:
	To write out an archive, use the -o option and
 redirect output either to a tape device or to an archive file. The list
 of files to be archived is often specified with find (Section
 9.1), but it can be generated in other ways — cpio expects a list of filenames on its
 standard input. For example:
% find . -name "*.old" -print | cpio -ocBv > /dev/rst8
or:
% find . -print | cpio -ocBv > mydir.cpio

	To read an archive in, use the -i option and redirect
 input from the file or tape drive containing the archive. The
 -d option is often important; it tells cpio to create directories as needed when
 copying files in. You can restore all files from the archive or specify
 a filename pattern (with wildcards quoted to protect them from the
 shell) to select only some of the files. For example, the following
 command restores from a tape drive all C source files:
% cpio -icdv "*.c" < /dev/rst8
Subdirectories are created if needed (-d), and
 cpio will be verbose
 (-v), announcing the name of each file that it
 successfully reads in.

	To copy an archive to another directory, use the -p
 option, followed by the name of the destination directory. (On some
 versions of cpio, this top-level
 destination directory must already exist.) For example, you could use
 the following command to copy the contents of the current directory
 (including all subdirectories) to another directory:
% find . -depth -print | cpio -pd newdir

There are lots of other options for things like resetting file access times or
 ownership or changing the blocking factor on the tape. See your friendly
 neighborhood manual page for details. Notice that options are typically
 “squashed together” into an option string rather than written out as separate
 options.
—TOR and JP

Industrial Strength Backups

 This book mostly focuses on tools like
 tar, because that’s what we expect most
 of you to use most of the time. However, there are other tools that are very
 important for large-scale backups that it’s good to know at least a little
 about.
dump
 is an old Unix standby and a complete if
 somewhat arcane tool for backing up file systems. It is extremely useful for
 system administrators and personal machines, and it is available as part of the
 operating system on nearly any Unix. For industrial-strength backups, no simple
 solution beats dump — it is the most reliable
 tool for ensuring data consistency and stability. It’s also a pain to use, so
 generally system administrators end up writing scripts around it to make it
 easier, or using a system like Amanda (see below).
The

 Advanced Maryland Automatic Network Disk
 Archiver, known as Amanda, is a free system for performing
 regular backups of one or more network-connected machines. Information on Amanda
 is generally available at http://www.amanda.org. Amanda uses
 tar or dump to do the actual work of backing up files; its job is to
 coordinate backups of multiple filesystems to one or more network-accessible
 tape drives on a regular basis.
Note also that full-scale backup processes need to address things such as tape
 lifetimes, electronic and physical security of backed-up data, off-site storage,
 incremental backup schemes and the like. Should you be in a position to need to
 set up such a process, read one of the good books on the subject — we might
 recommend O’Reilly’s Unix Backup and Recovery.

[1] Of course, this section was written after the author took the
 first backup of his Linux system in nearly four years of use!

Chapter 39. Creating and Reading Archives

Packing Up and Moving

The worst part of living in a nice big house is the headache
 of moving. The more stuff you’ve got room for, the more trouble it is to pack it
 up and take it with you.
The Unix operating system is a little bit like that. One of its real
 advantages is a filesystem that lets you organize your personal files into a
 hierarchical directory tree just like the much bigger tree that encompasses the
 entire filesystem. You can squirrel away all kinds of useful information into
 neat pigeonholes.
While your personal directory hierarchy is usually only two or three levels
 deep, for all practical purposes it can have as many levels as you like. And, as
 is true of any powerful and flexible tool, problems lie in wait for the
 sorcerer’s apprentice. Directories and files grow increasingly complex the
 longer you use the system, with more forgotten files and more detailed
 organization.
This chapter will tackle the problems that can arise when you want to move a
 block of files (in one or many directories) from one place to another.
Maybe you’re writing the files to a tape for
 safety (Section 38.3).
 In many cases though, this is a “backup and restore” problem. For example, if
 you were moving your account to another system, you might just ask the system
 administrator (if there is one) to archive your files to tape or floppy and
 restore them in the new location. Many new users are less aware that you can use
 the backup program tar (
 Section 38.2) to create online
 archives that you can move from one place to another.
This situation is most likely to arise in a
 networked environment. You might be packaging files to ship as a package to
 another user. The files might be going to Usenet or an archive site on the
 Internet, for distribution to many users. Whether you’re distributing an archive
 to lots of people or using it for yourself, though, most of the topics we cover
 in this chapter will apply.
— TOR

Using tar to Create and Unpack Archives

tar (Section 38.2) is a
 general-purpose
 archiving utility capable of packing many files into a single archive file,
 retaining information such as file permissions and ownership. The name tar stands for tape archive,
 because the tool was originally used to archive files as backups on tape.
 However, use of tar is not at all restricted
 to making tape backups, as we’ll see.
The format of the tar
 command
 is:
tar functionoptions
 files...
where function is
 a single letter indicating the operation to perform,
 options is a list of (single-letter) options to
 that function, and files is the list of files to pack
 or unpack in an archive. (Note that function is not
 separated from options by any space.)
function can be one of:
	c
	Create a new archive.

	x
	Extract files from an archive.

	t
	List the contents of an archive.

	r
	Append files to the end of an archive.

	u
	Update files that are newer than those in the archive.

	d
	Compare files in the archive to those in the filesystem.

The most commonly used functions are c

 reate, extract, and
 table-of-contents.
The most common options are:
	v
	Prints verbose information when packing or unpacking archives.
 This makes tar show the files it
 is archiving or restoring. It is good practice to use this option so
 that you can see what actually happens, though if you’re using
 tar in a shell script you
 might skip it so as to avoid spamming the user of your
 script.

	k
	Keeps any existing files when extracting — that is, prevents
 overwriting any existing files contained within the tar file.

	f
 filename
	Specifies that the tar file to be read or written is filename.

	z
	Specifies that the data to be written to the tar file should be
 compressed or that the data in the tar file is compressed with
 gzip. (Not available on all
 tars.)

There are other options, which we cover in Section 38.5. Section
 38.12 has more information about the order of tar options, and Section 39.3 has a lot more about GNU
 tar.
Although the tar syntax might appear
 complex at first, in practice it’s quite simple. For example, say we have a
 directory named mt, containing these
 files:
rutabaga% ls -l mt
total 37
-rw-r--r-- 1 root root 24 Sep 21 1993 Makefile
-rw-r--r-- 1 root root 847 Sep 21 1993 README
-rwxr-xr-x 1 root root 9220 Nov 16 19:03 mt
-rw-r--r-- 1 root root 2775 Aug 7 1993 mt.1
-rw-r--r-- 1 root root 6421 Aug 7 1993 mt.c
-rw-r--r-- 1 root root 3948 Nov 16 19:02 mt.o
-rw-r--r-- 1 root root 11204 Sep 5 1993 st_info.txt
We wish to
 pack the contents of this directory into a single tar archive. To do this, we use the following command:
tar cf mt.tar mt
The first argument to tar is the function
 (here, c, for create) followed by any
 options. Here, we use the one option f
 mt.tar, to specify that the resulting tar archive be named
 mt.tar. The last argument is the name
 of the file or files to archive; in this case, we give the name of a directory,
 so tar packs all files in that directory into
 the archive.
Note that the first argument to tar must be
 a function letter followed by a list of options. Because of this, there’s no
 reason to use a hyphen (-) to precede the
 options as many Unix commands require. tar
 allows you to use a hyphen, as in:
tar -cf mt.tar mt
but it’s really not necessary. In some versions of tar, the first letter must be the function, as in
 c, t, or x. In other
 versions, the order of letters does not matter as long as there is one and only
 one function given.
The function letters as described here follow the so-called “old option
 style.” There is also a newer “short option style,” in which you precede the
 function options with a hyphen. On some versions of tar, a “long option style” is available, in which you use long
 option names with two hyphens. See the manpage or info page (Section 2.9) for tar for more details if you are interested.
It is often a good idea to use the v option with tar to list each file as it is archived. For
 example:
rutabaga% tar cvf mt.tar mt
mt/
mt/st_info.txt
mt/README
mt/mt.1
mt/Makefile
mt/mt.c
mt/mt.o
mt/mt
On some tars, if you use v
 multiple times, additional information will be printed, as in:
rutabaga% tar cvvf mt.tar mt
drwxr-xr-x root/root 0 Nov 16 19:03 1994 mt/
-rw-r--r-- root/root 11204 Sep 5 13:10 1993 mt/st_info.txt
-rw-r--r-- root/root 847 Sep 21 16:37 1993 mt/README
-rw-r--r-- root/root 2775 Aug 7 09:50 1993 mt/mt.1
-rw-r--r-- root/root 24 Sep 21 16:03 1993 mt/Makefile
-rw-r--r-- root/root 6421 Aug 7 09:50 1993 mt/mt.c
-rw-r--r-- root/root 3948 Nov 16 19:02 1994 mt/mt.o
-rwxr-xr-x root/root 9220 Nov 16 19:03 1994 mt/mt
This is especially useful as it lets you verify that tar is doing the right thing.
In some versions of tar, f
 must be the last letter in the list of options. This is because tar expects the f option to be
 followed by a filename — the name of the tar file to read from or write to. If
 you don’t specify f
 filename at all, tar uses a default tape device (some versions of tar use /dev/rmt0 for historical reasons regardless of the OS; some have
 a slightly more specific default). Section
 38.5 talks about using tar in
 conjunction with a tape drive to make backups.
Now we can give the file mt.tar to other
 people, and they can extract it on their own system. To do this, they would use
 the command:
tar xvf mt.tar
This creates the subdirectory mt and
 places all the original files into it, with the same permissions as found on the
 original system. The new files will be owned by the user running tar xvf (you) unless you are running as
 root, in which case the original owner is generally
 preserved. Some versions require the o option to set ownership.
 The x option stands for “extract.” The v
 option is used again here to list each file as it is extracted. This
 produces:
courgette% tar xvf mt.tar
mt/
mt/st_info.txt
mt/README
mt/mt.1
mt/Makefile
mt/mt.c
mt/mt.o
mt/mt
We can see that tar saves the pathname of
 each file relative to the location where the tar file was originally created.
 That is, when we created the archive using tar
 cf mt.tar mt, the only input filename we
 specified was mt, the name of the directory
 containing the files. Therefore, tar stores
 the directory itself and all of the files below that directory in the tar file.
 When we extract the tar file, the directory mt is created and the files are placed into it, which is the
 exact inverse of what was done to create the archive.
If you were to pack up the contents of your /bin directory with the command:
tar cvf bin.tar /bin
you can cause terrible mistakes when extracting the tar file. Extracting a tar
 file packed as /bin could trash the
 contents of your /bin directory when you
 extract it. If you want to archive /bin,
 you should create the archive from the root directory, /, using the relative pathname
 (Section 1.16)
 bin (with no leading slash) — and if you really want to
 overwrite /bin, extract the tar file by
 cding to / first. Section
 38.11 explains and lists workarounds.
Another way to create the tar file mt.tar
 would be to cd into the mt directory itself, and use a command such
 as:
tar cvf mt.tar *
This way the mt subdirectory would not be
 stored in the tar file; when extracted, the files would be placed directly in
 your current working directory. One fine point of tar etiquette is always to pack tar files so that they contain a
 subdirectory, as we did in the first example with tar
 cvf mt.tar mt. Therefore, when the archive is extracted, the
 subdirectory is also created and any files placed there. This way you can ensure
 that the files won’t be placed directly in your current working directory; they
 will be tucked out of the way and prevent confusion. This also saves the person
 doing the extraction the trouble of having to create a separate directory
 (should they wish to do so) to unpack the tar file. Of course, there are plenty
 of situations where you wouldn’t want to do this. So much for etiquette.
When creating archives, you can, of course, give tar a list of files or directories to pack into the archive. In
 the first example, we have given tar the
 single directory mt, but in the previous
 paragraph we used the wildcard *, which the
 shell expands into the list of filenames in the current directory.
Before extracting a tar file, it’s usually a good idea to take a look at its
 table of contents to determine how it was packed. This way you can determine
 whether you do need to create a subdirectory yourself where you can unpack the
 archive. A command such as:
tar tvf tarfile
lists the table of contents for the named
 tarfile. Note that when using the
 t function, only one v is required to get
 the long file listing, as in this example:
courgette% tar tvf mt.tar
drwxr-xr-x root/root 0 Nov 16 19:03 1994 mt/
-rw-r--r-- root/root 11204 Sep 5 13:10 1993 mt/st_info.txt
-rw-r--r-- root/root 847 Sep 21 16:37 1993 mt/README
-rw-r--r-- root/root 2775 Aug 7 09:50 1993 mt/mt.1
-rw-r--r-- root/root 24 Sep 21 16:03 1993 mt/Makefile
-rw-r--r-- root/root 6421 Aug 7 09:50 1993 mt/mt.c
-rw-r--r-- root/root 3948 Nov 16 19:02 1994 mt/mt.o
-rwxr-xr-x root/root 9220 Nov 16 19:03 1994 mt/mt
No extraction is being done here; we’re just displaying the archive’s table of
 contents. We can see from the filenames that this file was packed with all files
 in the subdirectory mt, so that when we
 extract the tar file, the directory mt will
 be created, and the files placed there.
You can also extract individual files from a tar archive. To do this, use the
 command:
tar xvf tarfile
 files
where files is the list of files to extract. As
 we’ve seen, if you don’t specify any files, tar extracts the entire archive.
When specifying individual files to extract, you must give the full pathname
 as it is stored in the tar file. For example, if we wanted to grab just the file
 mt.c from the previous archive
 mt.tar, we’d use the command:
tar xvf mt.tar mt/mt.c
This would create the subdirectory mt and
 place the file mt.c within it.
tar has many more options than those
 mentioned here. These are the features that you’re likely to use most of the
 time, but GNU
 tar, in particular, has extensions that make
 it ideal for creating backups and the like. See the tar
 manpage or info
 page (Section 2.9) and
 the following chapter for more information.
MW, MKD, and LK

GNU tar Sampler

[image:] Go to http://examples.oreilly.com/upt3 for more information on: tar
GNU
 tar has plenty of features; some people
 would say “too many.” I don’t agree. GNU tar
 has features I wish I’d had for years in more “standard” versions. This article
 lists my favorites. For a complete list, check the info documentation for tar.
	Section 15.7 describes how
 to compress an archive file you’ve
 created. If you’re using GNU tar,
 this is even easier, since tar itself
 can do the compression. Simply use the z option
 when writing or reading archives. For example, to make the gzipped tar archive
 progs.tar.gz from all “.c” and “.h”
 files:
% tar cvzf progs.tar.gz *.c *.h
You can also use the long option - -gzip to get
 gzip compression, and the long
 option - -bzip2 to get bzip2 compression.

	
 I’ve made the classic mistake
 of archiving files with their absolute
 pathnames (Section
 38.11). GNU tar saves you
 from that goof. It always stores absolute pathnames as relative paths
 unless you add the - -absolute-names option.

	Often I want to make a tape backup of my most recent work on a big
 project, but not all the thousands of files in a directory tree. The
 clumsy way to do that is by using find -mtime to
 make an include-file for the standard tar -I
 option. GNU tar to the rescue: its - -after-date
 option lets me tell it what directories to look in and how recently the
 files should have been changed.

	When I extract an archive, I may be writing into a directory that has
 other files. The - -keep-old-files option tells GNU
 tar not to overwrite existing
 files.

One caution about GNU tar: it creates
 ANSI-format tar archives. Extracting one of
 these archives with the old V7 tar can cause
 warning messages like “tar: unexpected EOF.” But, of course, GNU tar has an option to create old-format archives:
 - -old-archive.
—JP and TOR

Managing and Sharing Files with RCS and CVS

 How many times have you wished
 that you could get a copy of a file the way it looked an hour ago, or yesterday,
 or last year? That includes times when you just deleted the file — and,
 especially, when the file is too new for your computer’s backup system to have
 made any copies of it. (You do have regular backups of your
 system, don’t you? ;-))
 RCS (Revision Control System) and CVS
 (Concurrent Version System) let you recover a previous version of a file from an
 archive. Many systems come with either RCS, CVS, or both installed already; if
 they don’t appear to be on your system either install the appropriate package or
 grab the most current versions from FSF’s website (http://www.fsf.org).
How does the archive get there? As you work, you periodically put a “snapshot”
 of the file into the archive. (The archive systems save the
 changes — not the whole file — so this doesn’t take as
 much disk space as it might.) The archive remembers the date and time you store
 each version. You can enter a log message to describe what’s changed since the
 last time you archived the file. You can do much more, but those are the
 basics.
When you need a previous version of the file, you read the archive log to
 decide which version is best (by date and time or by the log message). Then you
 use one command to get back that version. You don’t have to wait for the system
 manager to load a tape.
Of course, these tools can’t protect you from a disk crash or another
 disaster; that’s what reliable backups are for. RCS and
 CVS are best for protecting you from accidentally
 deleting or corrupting files. But they’re also great for group development
 projects: controlling who’s working on a file, who did what when, and so on.
 That’s especially true of CVS, which was designed to handle software developers
 from around the world collaborating on a project over a network — as well as a
 group of developers in the same office. One of my favorite features is the
 ability to see diff (
 Section 11.1) listings of what’s
 changed between versions.
Once you get started with these tools, you’ll wonder how you ever did without
 them. Section 39.5 explains how to
 protect your files with RCS. See Section
 39.7 for an introduction to CVS.
— JP

RCS Basics

 The Revision Control
 System (RCS) is a straightforward, file-based source-control system. It allows
 you to keep track of multiple snapshots or revisions of a
 file, so that you can back up to any previous version. It also allows you to
 note particular versions, so that you can do things such as reproduce the
 version of a file that you gave to someone else or released as part of a
 software release. Of course, it’s useful for more than just software
 development; any time you want to change a file or set of files, revision
 control can be useful. To place a file under revision control using RCS:
% ci
 filename

 The ci
 (checkin) program will prompt you for a short description of the file and commit
 your changes. It will by default also delete the working copy; if you want to
 keep a read-only copy, use the -u (unlocked) option.
To then get a working copy of the file from
 scratch:
% co
 filename
% co -l
 filename
The co

 (checkout) command will get a read-only
 copy of the file from RCS. If you want to edit the file, use the co
 -l command (the option is a lowercase L and stands for
 lock). While you have the file checked out and locked,
 no one else can edit it. When you’re done, return the file to RCS (check it in)
 using ci again. If you use the
 -l option to ci, it
 checks in your changes and checks out a new working copy, as if you did
 co -l again. When you check in the file, ci asks for a brief description of your changes.
 These can be very useful, later, to learn the history of revisions and to find a
 particular revision you might want to recover; the command rlog
 filename gives all of the stored change
 descriptions.
If you create a subdirectory called RCS
 in the directory where you keep the code or other text files you want to
 protect, the RCS files will be put there for you, rather than cluttering up your
 main directory.
It’s a good idea (but not required) to add the characters $Id $

 somewhere in the file you want to place under RCS. Put this in a comment field. That is, use /* $Id $ */
 in a C program and # $Id $

 in a shell or Perl script. RCS will substitute
 the revision of the file and other useful information wherever you put Id any time you check the file out; this allows
 you to look at a file later and know what revision it was.

 If you check out a file for editing and later
 on decide you didn’t want to change it, unlock the file using:
% rcs -u
 filename
% rm
 filename
If you want a list of all files currently checked out, use:
% rlog -L -R RCS/*
(If you don’t use RCS often, you may want to store those command lines in
 aliases or shell functions (Section 29.1) with names like
 Checkout, Checkedout, and so on.)
 That’s all there is to it!
If you are
 not using RCS or CVS, you should. They are an easy, ongoing way to protect
 yourself and do not require dozens of tapes. It is much easier just to
 type:
% co -r1.12
 filename

 than it is to try to restore that version
 from backup tapes after you’ve deleted it. With one command, version 1.12 is
 restored. If it’s not the right one, restore the version before or after the one
 you just grabbed. (If you would just like to see the file rather than get a
 copy, you can add the -p option to send the file to standard
 output. Don’t forget to pipe the co -p output to less or something similar, unless it is really
 short.)
If you are worried that you are keeping 12 versions of the file on the disk
 and that this will use up a lot of disk space, don’t be. RCS stores the
 differences between versions, not 12 separate copies of the file. It recovers
 earlier versions of the file on request by starting from a known point and
 applying patches, rather than just keeping every single revision.
Suppose you delete a file by accident. If
 the file is just checked out with co, it will
 be retrieved and marked read-only, so trying to delete the file will cause
 rm to ask you for confirmation. If you do
 delete it, you can just recover it with another co command. Suppose, however, you checked out a file with
 co -l, because you planned to change it. If this file
 gets deleted accidentally, you would lose the most recent changes. This is why
 you should check your files back into RCS frequently — several times a day or
 even more. Checking in a version whenever you make significant changes to the
 file, or if you make changes that would be difficult to remember, is the best
 insurance. Making hundreds of changes to a file without checking it back into
 the system is just begging for trouble.
This brief overview left out a lot of features and helpful information. For
 example, RCS can:
	Merge two or more peoples’ work into one with rcsmerge

 and co
 -j.

	Build a tree of revisions with multiple branches and sub-branches.
 This lets you make and store multiple independent revisions.

	Assign an arbitrary “state” to certain revisions — for example,
 alpha, released,
 stable.

	Name some or all revisions and refer to revisions by name instead of
 number. This is particularly good for naming files that went into a
 release.

	Keep a list of users who are allowed
 to manipulate a particular RCS file.

To find out more, see the RCS manual pages. rcsintro(1)
 gives a more complete overview; manpages like ci(1) have
 details on the many other useful features. Finally, O’Reilly & Associates’
 Applying RCS and SCCS is packed with tips and
 techniques for using revision control in group projects (where you’ll need it
 even more). Section 13.7 and Section 39.6 explain tools for searching
 RCS files.
If you’re doing a larger project, take a look at Section 39.7, which discusses CVS. CVS
 is much better at large project coordination and provides a whole suite of
 useful features beyond the simple source control RCS provides.
—DJPH and BB

List RCS Revision Numbers with rcsrevs

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 rcsrevs

 The
 rcsrevs script tells you all the revision
 numbers that are stored in an RCS (Section 39.5) file. For instance:
% rcsrevs myprog
1.3
1.2
1.1
1.2.1.1
What good is that? Here are two examples.
	rcsgrep -a (
 Section 13.7) uses rcsrevs when it’s searching all revisions
 of an RCS file. If you want to print all revisions, run a program across
 all revisions to do some kind of check, and so on, rcsrevs can give you the revision numbers
 to use in a loop (Section 28.9). The shell loop
 below gets all the revision numbers and stores them in the revnum

 shell variable one by one; it runs co
 -p (Section
 39.5) to send each revision to the pr
 -h (Section
 45.6) command for formatting with a custom header; the output
 of the commands in the loop goes to the printer.
'...'
 Section 28.14, >
 Section 27.12
$ for revnum in `rcsrevs
 somefile
 `
> do
> co -p -r$revnum
 | pr -h "
 somefile
 revision #$revnum"
> done | lpr

	You’d like to compare the two most
 recent revisions of several RCS files to see what the last change was,
 but the revision numbers in each file are different. (One file’s latest
 revision might be 2.4, another file could be at 1.7, etc.) Use head (Section 12.12) to grab the two highest revision numbers from
 the rcsrevs output, tail -r (Section 12.9) to reverse the order (put the older revision
 number first), and sed to make the
 revision numbers into a pair of -r options (like
 -r1.6' -r1.7). Then run rcsdiff
 to do the comparisons and
 email (Section 1.21) them to
 bigboss:
?
 Section 28.12
% foreach file (*.cc *.h Makefile)
? set revs=`rcsrevs $f | head -2 | tail -r | sed 's/^/-r/'`
? rcsdiff $revs $f | mail -s "changes to $file" bigboss
? end

rcsrevs accepts rlog options to control what revisions are shown. So
 rcsrevs -r2 somefile would list only revisions 2.0 and
 above, rcsrevs -sbeta would list the revisions in
 beta state, and so on.

— JP

CVS Basics

The

 Concurrent
 Version System, or CVS, is a version control system designed to support complex
 project structures or groups of people who are working together on a common set
 of files. Where RCS (Section 39.5) deals only with individual
 files, CVS allows you to work with entire projects as a whole. As we have
 mentioned before, while source control systems were originally developed
 primarily for use in developing software, they make a great deal of sense any
 time you want to keep track of changes to files. CVS is good for keeping track
 of changes to source files for a book or configuration files for qmail or apache, or for any number of other day-to-day tasks.
CVS stores its archives in a directory called
 a cvsroot. You tell CVS where to find the repository you
 want to use by setting the

 CVSROOT environment variable or using the
 -d option:
% setenv CVSROOT /home/cvsroot
% cvs checkout conf

% cvs -d /home/deb/cvs checkout book
Within a cvsroot are one or more repositories
 . Each repository is associated with a
 particular project (or in the case of a very complex project, a piece of a
 project). To work on a project, you much check out its repository to create a
 working area

 using cvs checkout,
 as in the example above. CVS is helpful and remembers which cvsroot you used for
 a particular checkout; future commands within that working
 area automatically use the right repository. For the record, the working area’s
 cvsroot overrides the CVSROOT environment variable; the
 -d option overrides them both.
Once you have a working area, you have a writable copy of every file in that
 project. Edit to your heart’s content. To incorporate changes made by other
 people, or see what you’ve changed, use cvs
 update:

% cd book
% cvs update
cvs update: Updating .
U ch18.sgm
M ch39.sgm
CVS update tells you a bit of information about each file that it touched or
 needs to touch. A U means that it updated
 your working copy from the repository; if you had also changed that file, it
 means that CVS successfully merged their changes with yours. A M means that you’ve modified that file in your
 working area.
To push your

 modifications into the
 repository, you use cvs commit. As the name suggests, this
 commits your changes. Generally you’ll want to do this often, so that you aren’t
 set back very far if you delete a file accidentally or make a change you later
 decide you don’t want.

 CVS does more, of
 course. For
 example,
 cvs log lets you read the log that shows differences
 between two revisions. cvs diff lets you see
 the differences between two revisions by comparing them with diff (Section
 11.1).
 cvs add (followed by cvs commit) adds
 a new file or directory to the repository.
 cvs remove removes a file or directory; be sure to remove
 any local copy first, or use cvs remove -f to have CVS
 remove your local copy for you.

 cvs init initializes a new cvsroot, and
 cvs import creates a new repository. Notifications can be
 emailed automatically when a file is changed. Part or all of the repository can
 be made read-only for all but a few users — so you can share files freely but
 prevent unauthorized changes. O’Reilly’s CVS Pocket
 Reference gives a summary of all this and much more about
 CVS.
— DJPH

More CVS

Here’s a slightly more complex example of how to use CVS. I’m working on this
 book, via CVS, with my two main coauthors (who are on the east and west coasts
 of the United States). The repository, which has almost 1,000 files, is on a
 computer in the O’Reilly office in Massachusetts.
	

 From the command line or in a
 shell setup file (Section 3.3), I need to set an
 environment variable (Section 35.3) named
 CVSROOT

 that tells CVS where the repository is and what my username is on that
 machine. In the C shell, for instance, I’d execute a command that sets
 my username to jpeek, the server hostname to
 bserver.east.oreilly.com, and the repository to
 /books/cvs. I’m also using ssh for secure access to the server, so I
 need to set the

 CVS_RSH environment variable and tell CVS to use
 the “ext” connection method:
setenv CVSROOT :ext:jpeek@bserver.east.oreilly.com:/books/cvs
setenv CVS_RSH ssh

	I have a directory where I keep my local copies of the book files. To
 start, I check out my copy of the ulpt3 repository
 from the server:
!$
 Section 30.3
% cd books
% cvs checkout ulpt3
cvs checkout: updating ulpt3
U ulpt3/0001.sgm
U ulpt3/0007.sgm
U ulpt3/0023.sgm
 ...more...
% cd !$
cd ulpt3

	Now my ulpt3 subdirectory has the same files that
 the repository does. I can edit any of them, just as I’d edit files that
 aren’t in CVS — but my changes don’t make it back to the repository
 until I use the CVS command to do that.
Let’s say I edit the file 0123.sgm. I’d like to
 write it back to the repository, where the other authors can grab it in
 case they’re printing that part of the book. First I should update my

 workspace. This brings in any changes
 by other authors. If another author has updated
 0123.sgm and put it in the archive before I do,
 CVS will merge the two files and expect me to
 resolve the differences:
% vi 0123.sgm
 ...edit the file...
% cvs update
cvs update: updating .
U ulpt/0075.sgm
RCS file: /books/cvs/ulpt3/0123.sgm,v
retrieving revision 3.6
retrieving revision 3.7
Merging differences between 3.6 and 3.7 into 0123.sgm
rcsmerge: warning: conflicts during merge
cvs update: conflicts found in 0123.sgm
C 0123.sgm
%
The U line shows that another
 author changed file 0075.sgm; CVS is updating my
 copy of it. As it happens, another author edited
 0123.sgm while I did — and committed his
 changes to the repository before I got there. CVS sees that the copy in
 the repository is newer than the one I fetched a while ago, so it merges
 the two versions. If the changes had been to different parts of the
 file, CVS wouldn’t have complained, just warned me that
 0123.sgm had been merged. As luck would have it
 (something to do with this being an example, I think ;-)) both changes were in the same place
 and CVS warned me that the merge failed; there was a conflict.

	This step only applies if there was a conflict during the update. Edit
 the file and search for a string of less-than signs (<<<<). You’ll see something
 like this:
 <para>
 <indexterm><primary>serial line modes</primary></indexterm>
<<<<<<< 0123.sgm
 But there is some overlap. For example, a terminal can be unusable
 because a program has left either the serial line modes or the
 terminal itself in an unexpected state. For this reason,
 <link linkend="UPT-ART-0079">terminal initialization</link>,
 as performed by the <command>tset</command> and
=======
 But there is some overlap. For example, a terminal can be unusable
 because a program has left the terminal in an "wedged"
 or unexpected state. The serial modes may be wrong too. This is why
 <link linkend="UPT-ART-0079">terminal initialization</link>,
 as performed by the <command>tset</command> and
>>>>>>> 3.7
 <command>tput</command> programs,
 initializes both the terminal and the serial line interface.
The text from your working file is at the top, after the <<<< characters. The
 conflicting text is after the ====
 characters. You decide that your text is better written, so you simply
 delete the markers and the second chunk of text. [In a slightly less
 contrived example, there would probably be a process for this. You might
 use cvs log

 to look at the log message on
 the conflicting change, talk to the author of the conflicting change or
 both. Sometimes you might have to look at cvs log
 to figure out who checked in the conflicting change, because there may
 have been several changes. — DJPH]

	Things look good. Now tell CVS to put all your changes from your local
 workspace into the repository by committing. You
 should give a message that describes the changes you made. You can give
 the message either as an argument to the -m option or
 by typing it into your text editor, like this:
% cvs commit
cvs commit: Examining .
 ...your text editor runs...
Checking in 0123.sgm;
/books/cvs/ulpt3/0123.sgm,v <-- 0123.sgm
new revision: 3.8; previous revision: 3.7
done

Chapter 40. Software Installation

/usr/bin and Other Software Directories

The location for
 certain types of

 installed files is very important. For
 instance, on many Unix systems, binary files
 accessible by users are located in the subdirectory
 /usr/bin or /usr/local/bin
 . If the applications aren’t in these
 places, they may not be in the PATH environment variable
 and not easily accessible from the command line.
On my FreeBSD system, I’ve installed a utility called dos2unix
 , a file-formatting application that
 converts DOS newline character combinations to the
 Unix newline character. I used the FreeBSD Ports
 system to install the application, which automatically placed the program in my
 application directory, in my case /usr/local/bin. When I
 want to execute the application, I can run it from the command line without
 having to provide the location of the file:
dos2unix some.txt > new.txt
This command reformats the newline character of the contents of
 some.txt, converting DOS linebreaks to Unix
 ones.
The /usr/bin subdirectory differs from the
 /bin directory located directly off of the main root
 directory. The /bin
 directory has basic installed binaries
 built into the Unix operating system, with commands such as
 cd to change directory and so on. When you install an
 optional software application, it should not install software in the top-level
 binary subdirectory, but in /usr/bin, instead.
According to the

 Filesystem Hierarchy Standard (FHS),
 subdirectories (Linux- and BSD-specific) shown in Table 40-1 are located directly off the
 root directory within a standardized
 directory hierarchy.
Table 40-1. FHS root subdirectories
	
 Subdirectory

 	
 Contents

	

 bin

 	
 Application binaries

	

 boot

 	
 Boot loader static files

	

 dev

 	
 Device files

	

 etc

 	
 System configuration files

	

 lib

 	
 Shared libraries and kernel modules

	

 mnt

 	
 Temporary mounting point for filesystems such as
 CD-ROMs

	

 opt

 	
 Larger static software packages

	

 sbin

 	
 System binaries

	

 tmp

 	
 Temporary files

	

 usr

 	
 User hierarchy, which has its own subdirectory with the
 following entries:

 	bin

	doc

	etc

	games

	include

	kerberos

	lib

	libexec

	local

	man

	sbin

	share

	src

	X11R6

	

 var

 	
 Variable data

If you install an application and the binaries aren’t placed into the bin
 directory, you’ll need to add the binary location to your
 PATH environment variable to access the application
 from the command line.
Note
For more information about FHS, see the home page at http://www.pathname.com/fhs/. Many Unix systems support this
 hierarchy, including the BSD systems such as
 FreeBSD and NetBSD, as well as Red Hat Linux and others. However,
 your own Unix admin may adjust this hierarchy to fit the needs of your
 enterprise, so you’ll want to check subdirectory locations before proceeding
 with manual software installation.

— SP

The Challenges of Software Installation on Unix

 If
 you’ve worked with multiple operating systems such as the Mac OS or Windows
 along with Unix, then you’re aware that software installation on a Unix system —
 Solaris, Linux, Darwin, and so on — isn’t necessarily as easy a task as it is on
 some of the other systems. The process can be difficult if you’re installing
 open source code that you download from the Internet; many times open source
 code isn’t packaged for ease in installation.
I’ve worked with Unix for years but still look at the process of installing a
 new piece of software as one would look at climbing a mountain: be prepared, be
 brave, and don’t look back.
— SP

Which make?

 Many applications and utilities within
 the Unix environment come as source code that needs to be compiled and installed
 on your system. Because of this, the make utility is probably the most important
 utility you have within your Unix toolkit. However, the make utility installed
 on your system may not necessarily be compatible with the make utility used when
 the creators tested the software installation.
In fact, one of the problems that can cause the most problems with software
 installation is that the software compiles cleanly with GNU make but not with
 other versions of make, because different features of the installation process
 are supported with GNU make. This happens but not some of the older, more
 system-specific makes.
For instance, BSD
 operating systems such as FreeBSD and Darwin, as
 well as Solaris, have their own version of make in addition to accessibility to
 GNU make. In some of the systems, such as Darwin, GNU make is installed as the
 default. In others, such as FreeBSD, BSD make is the default. GNU make is
 installed but is usually called gmake. This typically isn’t a problem because if
 the compilation fails, try gmake instead:
% gmake install
— SP

Simplifying the make Process

 One of the problems associated with building
 and installing software within a Unix environment is ensuring that all the
 necessary libraries are present, the makefile is modified to fit the environment, and so on. The
 general building process is simplified by two GNU utilities: autoconf

 and automake.
The autoconf utility takes an input file
 called configure.in
 containing macros that determine how a
 configure file is built. The configure file, usually called Makefile.in
 , is then used by automake to
 create a Makefile that can be used to compile the application.
A README file should provide instructions on building an application, but if
 one is absent, you know that the application supports autoconf if you see a
 configure.in file, or see a script file called
 configure. If the package creator built a configure
 script manually, instructions will most likely be included within the
 README.
As a demonstration, I downloaded a GNU library called
 plotutils that provides graphics capability. After
 running gunzip and tar on the package
 to decompress the files, I looked at the topmost directory and found a configure
 file. I ran this using the following command:
> ./configure
The application can actually take a bit of time, and when finished, Makefiles
 have been generated for the application directories. All that’s required at this
 point is to run make install as root:
> make install

 Once the build was finished, I cleaned up by
 typing:
> make clean
> make distclean
The first make cleans up any in-process installation files; the second cleans
 up the distribution files.
The autoconf and automake utilities have greatly simplified installation of
 GNU and open source functionality.
— SP

Using Debian’s dselect

 The dselect

 tool
 provides an easy-to-use,
 character-based graphical frontend for accessing dpkg (the traditional Debian installation package utility). To
 launch dselect, issue the command:
dselect
Figure 40-1 shows the screen that
 appears. The screen presents a simple menu with six items:
	Access
	Lets you choose the method used to access package files.

	Update
	Lets you update the list of available packages.

	Select
	Lets you choose packages for installation or removal.

	Install
	Initiates installation of selected packages.

	Config
	Initiates configuration of installed packages.

	Remove
	Initiates removal of packages selection for removal.

	Quit
	Exits dselect.

The menu items are generally used in the order in which they are
 presented.
[image: The dselect screen]

Figure 40-1. The dselect screen

Choosing the Access Method

 To
 choose the access method, use the arrow
 keys to highlight the Access menu item and press Enter. The screen shown in
 Figure 40-2 appears.
[image: Choosing the access method]

Figure 40-2. Choosing the access method

The most flexible access method — and the method that’s generally
 recommended — is apt. Other available options include:
	cdrom
	Lets you install packages from a CD-ROM. This access method
 has been deprecated; you should use multi_cd instead.

	multi_cd
	Lets you install packages from a multivolume set of
 CD-ROMs.

	nfs
	Lets you install packages residing on an NFS server.
 This access method has been deprecated; you should use multi_nfs instead.

	multi_nfs
	Lets you install packages residing on an NFS server that has
 access to a multivolume set of packages.

	harddisk
	Lets you install packages residing on a hard disk partition
 that is not currently mounted. This access method has been
 deprecated; you should use apt or multi_mount instead.

	mounted
	Lets you install packages residing on a currently mounted
 filesystem. This access method has been deprecated; you should
 use apt or multi_mount
 instead.

	multi_mount
	Lets you install packages from a multivolume set, one volume
 of which is currently mounted.

	floppy
	Lets you install packages from a set of floppy
 diskettes.

	ftp
	Lets you install packages residing on an FTP server.

To choose an access method, use the arrow keys to highlight the
 appropriate menu item and press Enter.
If you selected the apt access method, you’ll be
 asked if you want to change the sources.list
 file. If you’ve previously configured the
 file, you should respond No. If you’ve not configured the file, you can
 respond Yes, which initiates a dialog that builds a simple configuration.
 Here’s a sample dialog that shows the responses you should give to install
 packages :
I see you already have a source list.

source list displayed here: contents vary

Do you wish to change it?[y/N] y
 Set up a list of distribution source locations

 Please give the base URL of the debian distribution.
 The access schemes I know about are: http ftp file

 For example:
 file:/mnt/debian,
 ftp://ftp.debian.org/debian,
 http://ftp.de.debian.org/debian,

 URL [http://http.us.debian.org/debian]: file:/cdrom

 Please give the distribution tag to get or a path to the
 package file ending in a /. The distribution
 tags are typically something like: stable unstable frozen non-US

 Distribution [stable]: stable

 Please give the components to get
 The components are typically something like: main contrib non-free

 Components [main contrib non-free]: main contrib

 Would you like to add another source?[y/N] N
The sample dialog assumes that your CD-ROM has been mounted as
 /cdrom. If your CD-ROM is mounted differently,
 you’ll need to revise the dialog.
After dselect records your choice of access method,
 the main menu screen re-
 appears.

Updating Information on Available Packages

 After
 selecting the access method, you
 should instruct dselect to update information on
 available packages. To do so, use the arrow keys to highlight the Update
 menu item and press Enter. After a short time, the main menu will
 re-appear.

Choosing Packages for Installation or Removal

 Once you’ve updated the
 information on available packages, you’re ready to select packages for
 installation or removal. To do so, use the arrow keys to highlight the
 Select menu item and press Enter. The screen shown in Figure 40-3 appears.
[image: The introduction screen]

Figure 40-3. The introduction screen

This screen provides an overview of the package selection screens. When
 you’ve read its contents, press Space to go to the package selection screen,
 which is shown in Figure
 40-4.
This screen provides an overview of the package selection screens. When
 you’ve read its contents, press Space to go to the package selection screen,
 whih is shown in Figure
 40-4.
[image: The package selection screen]

Figure 40-4. The package selection screen

To use the package selection screen, use the arrow keys to highlight a
 package in the upper part of the screen. The lower part of the screen will
 display information about the highlighted package. To select the package for
 installation, press +; to select an
 installed package for removal, press -.
You can search the package database by typing a slash (/) followed by the
 string for which you wish to search. To find successive instances of the
 same string, type a backslash (\). For example, to find the first package
 that contains the string gnome in its name or
 description, type /gnome and press Enter.
If you select for installation a package that requires one or more other
 packages that are not installed, a
 dependency conflict
 results. Similarly, a dependency conflict results if you mark for removal a
 package required by an installed package or if you mark for installation a
 package that conflicts with an installed package. When
 dselect detects a dependency conflict, it presents
 the screen shown in Figure
 40-5.
[image: The dependency help screen]

Figure 40-5. The dependency help screen

The same screen appears if you select for installation a package that
 specifies recommended or suggested packages to be installed with it. A
 recommended package is one that most users install with the recommending
 package. A suggested package is one that is related to the suggesting
 package; suggested packages often extend or complement the functionality of
 the suggesting package.
When you press Space, you’re presented with the conflict resolution
 screen, shown in Figure 40-6. This
 screen lets you quickly select for installation or removal the packages
 involved in a dependency conflict. The screen also presents default choices
 for recommended and suggested packages.
[image: The dependency resolution screen]

Figure 40-6. The dependency resolution screen

Using the arrow keys to highlight an entry lets you view a list of
 dependencies related to the entry. By pressing + or -, you can select
 packages for installation or removal, just as on the selection screen. When
 you’re done working out dependencies, you can press Space to return to the
 selection
 screen.

Exiting the Select Function

 You can select the Select function in
 any of several ways. Pressing Space returns you to the main menu, where you
 can initiate installation or removal of packages. Pressing x cancels your
 selections and returns you to the main menu. This feature is useful if you
 change your mind about installing a package, possibly owing to conflicts
 associated with the package.

Installing Packages

 To begin installing the selected packages,
 use the arrow keys to highlight the Install menu item and press Enter. As
 packages are downloaded or installed, you’ll see messages on the
 screen.
If you’re using the apt access method, selecting
 Install actually initiates installation, removal, and configuration of
 packages. You can exit dselect after the installation
 process completes.
If you’re using some other access method, dselect may
 not install every selected package in a single operation. When the
 installation process completes, you should select Install and see if more
 packages are installed. When you select Install and no more packages are
 installed, you can proceed to the subsequent steps: configuration and
 removal.
When the installation process is complete, dselect
 prompts you to press Enter to return to the main menu.

Configuring Packages

 To begin configuring the installed
 packages, use the arrow keys to highlight the Configure menu item and press
 Enter. Packages that require configuration will prompt you for configuration
 choices. When the configuration process is complete,
 dselect prompts you to press Enter to return to the
 main menu.

Removing Packages

 To
 begin removing the packages selected for removal, use the arrow keys to
 highlight the Remove menu item and press Enter. When the removal process is
 complete, dselect prompts you to press Enter to return
 to the main menu.

Exiting dselect

 To exit
 dselect, use the arrow keys to highlight the Quit
 menu item and press

 Enter.

— SP

Installing Software with Debian’s Apt-Get

 The dselect
 program is
 useful, because it lets you browse a list of available packages, viewing their
 descriptions and dependencies, and selecting desired packages for installation.
 However, if you know the name of a package you want to install,
 apt-get is often the easiest way to install it. Before
 using apt-get, you must configure the
 sources.list file. This same file is used when you
 choose the apt access method of dselect. Even if you don’t
 plan on using apt-get, you’ll find the information in the
 following subsection useful.
Configuring the sources.list File

 The sources.list file
 resides in the /etc/apt

 directory. Like most other Linux configuration files, it can be revised by
 using an ordinary text editor, such as ae.
The file contains a series of lines, each specifying a source for
 packages. The lines are consulted serially, so it’s usually advantageous to
 place lines that specify local sources — such as a CD-ROM — ahead of lines
 that specify remote sources. Doing so can save many minutes of download
 time.
Each line has the form:
deb uri distribution components
The uri is a universal resource identifier (URI) that
 specifies the computer on which the packages reside, the location of the
 packages, and the
 protocol used for accessing the packages.
 It has the following form:
protocol://host/path
Four protocols — sometimes called URI types — are recognized:
	cdrom
	A local CD-ROM drive

	file
	A directory of the local
 filesystem

	http
	A web server

	ftp
	An FTP server

The host part of the URI and the preceding pair of
 slashes (//) are used only for the http and ftp protocols. There, the
 host part of the URI gives the name
 of the host that contains the packages.
The path part of
 the URI always appears, with the preceding slash (/). It specifies the
 absolute path of the directory that contains the packages.
Here are some examples of typical URIs:
cdrom:/cdrom
cdrom:/mnt/cdrom
file:/mnt
file:/debian
http://www.us.debian.org/debian
http://non-us.debian.org/debian-non-US
ftp://ftp.debian.org/debian
ftp://nonus.debian.org/debian-non-US
The distribution part of a sources.list
 line
 specifies the distribution release that contains the
 packages. Typical values include:
	stable
	The latest stable release; that is, one that is commonly
 regarded as having sufficiently few serious bugs for everyday
 use.

	unstable
	The latest unstable release. This release sometimes contains
 serious bugs and should not be installed by users who require
 high levels of system availability or reliability.

The components part of a sources.list
 line
 specifies the parts of the distribution that will be accessed. Typical
 values include:
	main
	The main set of packages.

	contrib
	Packages not an integral part of the distribution, but which
 may be useful.

	non-free
	Packages that contain software distributed under terms too
 restrictive to allow inclusion in the distribution, but which
 may be useful.

A typical sources.list file might
 contain the following entries:
deb file:/cdrom stable main contrib
deb http://www.us.debian.org/debian stable main contrib non-free
deb http://non-us.debian.org/debian-non-US stable non-US
This configuration allows rapid access to the distribution packages
 contained on the local CD-ROM. It also allows convenient access via the
 network to other packages and more recent package versions stored on web
 servers.

Using apt-get

Once you’ve configured sources.list, you can use
 apt-get to update information on available
 packages, install a package, or upgrade installed packages.
Updating information on available packages

To update information
 on available packages, issue the following command:
apt-get update

Installing a package

To install a specified package, issue the following command:
apt-get install package
where package specifies the name
 of the package to be installed.

Upgrading installed packages

To automatically upgrade all installed packages to the
 latest available version, issue the following command:
apt-get upgrade
—

Interruptable gets with wget

 The GNU utility
 wget can be used to access files through the Internet using
 HTTP, HTTPS, or FTP. The best thing about the
 utility is that if the process is interrupted and started again, it continues
 from where it left off.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 wget
The wget utility is installed by default in a lot of
 systems, but if you can’t find it, it can be downloaded from GNU, at http://www.gnu.org/software/wget/wget.html.
The basic syntax for wget is very simple: type wget followed by the URL of the file or files
 you’re trying to download:
wget http://www.somefile.com/somefile.htm
wget ftp://www.somefile.com/somefile
The file is downloaded and saved and a status is printed out to the
 screen:
--16:51:58-- http://dynamicearth.com:80/index.htm
 => `index.htm'
Connecting to dynamicearth.com:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 9,144 [text/html]

 0K -> [100%]

16:51:58 (496.09 KB/s) - `index.htm' saved [9144/9144]
The default
 use of wget downloads the file into your current location.
 If the download is interrupted, by default wget does not
 resume at the point of interruption. You need to specify an option for this
 behavior. The wget options can be found in Table 40-2. Short and long forms of
 each option are specified, and options that don’t require input can be grouped
 together:
> wget -drc URL
For those options that do require an input, you don’t have to separate the
 option and the input with whitespace:
> wget -ooutput.file URL
Table 40-2. wget options
	
 Option

 	
 Purpose

 	
 Examples

	

 -V

 	
 Get version of wget

 	
 wget -V

	

 -h or --help

 	
 Get listing of wget options

 	
 wget -help

	

 -b or --background

 	
 Got to background after start

 	
 wget -b url

	

 -e or --execute=
 COMMAND

 	
 Execute command

 	
 wget -e COMMAND url

	

 -o or --output-file=
 file

 	
 Log messages to file

 	
 wget -o filename url

	

 -a or --append-output=
 file

 	
 Appends to log file

 	
 wget -a filename url

	

 -d or --debug

 	
 Turn on debug output

 	
 wget -d url

	

 -q or --quiet

 	
 Turn off wget’s output

 	
 wget -q url

	

 -v or --verbose

 	
 Turn on verbose output

 	
 wget -v url

	

 -nv or -non-verbose

 	
 Turn off verbose output

 	
 wget -nv url

	

 -i or --input-file=
 file

 	
 Read urls from file

 	
 wget -I inputfile

	

 -F or --force-html

 	
 Force input to be treated as HTML

 	
 wget -F url

	

 -t or --tries=
 number

 	
 Number of re-tries to get file

 	
 wget -t 3 url

	

 -O or --output-document=
 file

 	
 Output all documents to the named file

 	
 wget -O savedfile -i inputfile

	

 -nc or --no-clobber

 	
 Don’t clobber existing file

 	
 wget -nc url

	

 -c or --continue

 	
 Continue getting file

 	
 wget -c url

	

 --dot-style=
 style

 	
 Retrieval indicator

 	
 wget -dot-style=binary url

	

 -N or --timestamping

 	
 Turn on time-stamping

 	
 wget -N url

	

 -S or --server-response

 	
 Print HTTP headers, FTP responses

 	
 wget -S url

	

 --spider

 	
 Wget behaves as a web spider, doesn’t download

 	
 wget --spider url

	

 -T or --timeout=
 seconds

 	
 Set the time out

 	
 -wget -T 30 url

	

 -w or --wait=
 seconds

 	
 Wait specified number of seconds

 	
 wget -w 20 url

	

 -Y or --proxy=
 on/off

 	
 Turn proxy on or off

 	
 wget -Y on url

	

 -Q or --quota=
 quota

 	
 Specify download quota size

 	
 wget -Q2M url

	

 -nd or --no-directories

 	
 Do not create directories in recursive download

 	
 wget -nd url

	

 -x or --
 force-directories

 	
 Opposite of -nd

 	
 wget -x url

	

 -nh or --no-host-directories

 	
 Disable host-prefixed directories

 	
 wget -nh url

	

 --cut-dirs=
 number

 	
 Ignore number directories

 	
 wget -cur-dirs=3 url

	

 -P or --directory-prefix=
 prefix

 	
 Set directory to prefix

 	
 wget -P test url

	

 --http-user=
 user
 --http-passwd=
 passwd

 	
 Set username and password

 	
 wget --http-user=user --http-passwd=password
 url

The curl Application and One-Step GNU-Darwin Auto-Installer for OS X

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 curl

 The cURL, or
 curl, application acts similar to
 wget, except that it works with more protocols, including FTPS, GOPHER, DICT, TELNET, FILE, and LDAP, as well as HTTP, HTTPS, and
 FTP (Section 40.8). It
 also supports kerberos, cookies, user authentication, file transfer resume and
 so on. You can access the application at http://curl.haxx.se,
 though curl is installed by default on some systems,
 including Mac OS X Darwin.
In particular, curl is used to
 download and install the
 GNU-Darwin auto-installer for OS X, otherwise known as One-Step.
The following command starts the process of installing the basefiles for
 One-Step. Note that the One-Step installation can take a considerable length of
 time, and you might get messages about needing to modify certain aspects of the
 installation, such as adding a font path and so on. Still, the instructions are
 very clear and once the installation is finished, you’ll then be able to use
 One-Step.
curl http://gnu-darwin.sourceforge.net/one_stop | csh
You can CTRL-c at any time during the download portion, and continue the
 installation at a later time. Use caution, though, with interrupting the
 installation during the final build portion. You can view the installation
 script for One-Step at http://gnu-darwin.sourceforge.net/one_stop/.
One of the applications installed during the process is
 pkg_add, which you can use to add additional packages
 at a later time by specifying the command followed by the URL of the
 package:
pkg_add url
— SP

Installation with FreeBSD Ports

The

 FreeBSD operating system has a terrific
 software installation system known as the FreePSD Ports. You can download the
 entire distribution collection as root giving a specific command within the
 /usr/ports directory:
/stand/sysinstall
Once the Ports collection is installed, you can then easily install software
 by changing directory to the specific application and typing make install:
cd /usr/ports
cd lang
cd ruby
make install
make clean
make distclean
Not only will the Ports application install the application — in this case
 support for the Ruby programming language — it also pulls in any dependent files
 that might not exist on the system.
You may have problems downloading the distribution file because your system
 setup may not allow you to write to the /usr/ports/distfiles subdirectory for some reason. To install
 the distribution to a different location, set the DISTDIR

 environment variable to a different location:
make DISTDIR=/local/dir/with/write/permission install
To removed an installed application, again change to the ports subdirectory of
 the application and type:
make deinstall
— SP

Installing with FreeBSD Packages

 Instead of using the Ports you can install
 applications individually as packages, using the pkg_add
 utility, similar to that shown in
 (40.08).
To install using pkg_add, download the package by ftp’ing
 to the FreeBSD FTP server at ftp://ftp2.FreeBSD.org, and then
 change to the /pub/ports/packages
 directory. At that point, the directory at the FTP server should be similar to
 the Ports collection directory organization. Change directory to the category
 (such as “lang”). Get the gzipped tar (Section 15.7) file of the package for
 your application, using binary transfer. For instance, the Ruby scripting
 language interpretor is ruby-1.7.2.2002.05.23.tgz, which is then downloaded:
ftp > get /pub/ports/packages/lang/ruby-1.7.2.2002.05.23.tgz
Once the file is downloaded, type pkg_add
 and the package name:
pkg_add ruby-1.7.2.2002.05.23.tgz
Instead of downloading the file manually, you can use the
 -r option to have the pkg_add
 application look for the latest build of an application and automatically
 download necessary dependent files and the target application itself:
pkg_add -r ruby-1.7.2.2002.05.23.tgz
Note, though, that the newest versions of an application may not be in the
 stable build directory. If you want an application not on this tree, you’ll have
 to download the application file manually.
— SP

Finding and Installing RPM Packaged Software

[image:] Go to http://examples.oreilly.com/upt3 for more information on: rpm
A popular tool used to find and

 install software packages — particularly in Linux —
 is RPM (at http://www.rpm.org/). In addition to working with
 Linux, RPM also works with Solaris, HP-UX, FreeBSD, NetBSD, and other
 systems.
To use RPM to install software, just type the following command:
rpm -i application.rpm
The -i option flags RPM to install the package. To
 uninstall the application, use:
rpm -e application.rpm
To upgrade a package, use the -U option:
rpm -U application.rpm

Chapter 41. Perl

High-Octane Shell Scripting

Perl[1] is

 an
 ecclectic, interpreted language with deep roots in Unix. It was originally
 written by Larry Wall, creator of other Unix staples such as patch and rn,
 to help with system administration tasks. Because many of its variables are
 prefixed with $, Perl often looks like an
 awk program or even a Bourne shell
 script. Like all appearances, this too can be deceiving. Perl is a complete
 programming language that supports both structured and object oriented
 programming. Getting started with Perl is easy, since many of the Bourne shell
 tricks you’ve seen will work (after a fashion) under Perl. As your knowledge
 grows, you’ll find that Perl will help you scratch increasingly obscure itches.
 Because Perl has been ported to many different platforms, it brings a Unix-like
 API to whichever operating system is hosting it. Perl makes cross-platform
 programming a reality.
The complete guide to Perl is O’Reilly’s Programming
 Perl, a book that weighs in at over 1500 pages. Therefore, only
 the barest of essentials can be presented here to help you identify your Perl
 installation, tinker with existing scripts, and install new modules. Luckily,
 Perl always comes with documentation
 that can be accessed through the perldoc (Section 41.10) system.
— JJ

Checking your Perl Installation

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 perl
Before presenting the details of Perl
 syntax, it would be prudent to check whether or not Perl is on your system and
 learn how to install it if it isn’t. Perl is an interpreted language whose

 interpreter is called perl. It is this program that reads, compiles and runs Perl
 source code. Normally, perl will be in your
 shell’s path. It can often be found lurking in /usr/bin or /usr/local/bin.
 Use your system’s find or locate command to track down perl if it doesn’t appear in your command path. To
 see what version of
 Perl
 you have, use the -v flag like this:
$ perl -v

This is perl, v5.6.1 built for i686-linux

Copyright 1987-2001, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using `man perl' or `perldoc perl'. If you have access to the
Internet, point your browser at http://www.perl.com/, the Perl Home Page.
This Perl is the latest stable version, 5.6.1. Perl is under very active
 development and newer versions may soon be available. As with all software
 projects, there is an unstable, developer’s version of Perl that currently is
 5.7.3. The version number scheme follows the pattern:
	Revision number
	These change only when the language is substantially
 redefined.

	Version number
	Even numbers indicate a stable, production-quality release. Odd
 numbers should only be used by Perl developers and the curious.
 Version numbers indicate an important change in the language that
 may affect scripts written to run under a previous version of Perl.
 Be sure to check out the perldelta manpage for details.

	Subversion level
	This number is better thought of as the patch level for a given
 version. Only bug fixes will appear with each new patch level
 release. of perl.

Local configuration information about
 perl can be obtained with the -V flag. A slightly abbreviated version of that
 command’s output appears below.
$ perl -V
Summary of my perl5 (revision 5.0 version 6 subversion 1) configuration:
 Platform:
 osname=linux, osvers=2.4.2-2, archname=i686-linux
 uname='linux marian 2.4.2-2 #1 sun apr 8 20:41:30 edt 2001 i686 unknown '
 config_args=''
 hint=recommended, useposix=true, d_sigaction=define
 ...

 Compiler:
 cc='cc', ccflags ='-fno-strict-aliasing ...'
 optimize='-O2',
 cppflags='-fno-strict-aliasing'
 intsize=4, longsize=4, ptrsize=4, doublesize=8, byteorder=1234
 ...

Characteristics of this binary (from libperl):
 Compile-time options: USE_LARGE_FILES
 Built under linux
 Compiled at Oct 1 2001 16:15:45
 @INC:
 /usr/local/lib/perl5/5.6.1/i686-linux
 /usr/local/lib/perl5/5.6.1
 /usr/local/lib/perl5/site_perl/5.6.1/i686-linux
 /usr/local/lib/perl5/site_perl/5.6.1
 /usr/local/lib/perl5/site_perl
 .
The sections followed by ellipses have been
 truncated. What’s important to note here is that the configuration, compiler,
 and linker options are available (and are used by the perlbug program if you need to file a bug report about Perl). Of
 more practical use is the section beginning with @INC

 . This lists
 the directories in which perl will look for
 library modules, described later in Section
 41.11.
— JJ

Compiling Perl from Scratch

If
 you don’t have Perl already or you’d like to install the latest version, you
 have a few options. The first is to get a precompiled version for your platform.
 This is an option of last resort, since you lose the opportunity to configure
 Perl for your system. Most Unix systems will compile the Perl source code
 cleanly.
To compile Perl, you will need to fetch the latest Perl source for the
 Comprehensive Perl Archive Network

 (CPAN) (Section 41.11). You can find the gzipped tar archive of the source
 code at http://www.cpan.org/src/stable.tar.gz. The archive is
 several megabytes, so those on a slow modem link need to plan accordingly.
 Unpack the archive with the following command:
$ gzip -dc stable.tar.gz | tar xvf -
You should now have a new subdirectory called perl-X.Y.Z
 (whatever the current version of Perl is). Change into this directory and you
 will be be ready to configure the build process for perl.
Like many Unix utilities, compiling Perl requires configuring a Makefile
 and then executing make
 . The Perl source comes with a robust
 Configure shell script that will prompt you to confirm
 information it finds about your system. Often, all the defaults are fine so you
 can tell the Configure not to prompt you for confirmation
 by passing the -de flag. If all goes well
 with the configuration stage, you’ll want to start compiling the source with
 make. These steps can be effectively
 combined into to following idiom:
$./Configure -de && make test
Recall that the double ampersand is a
 kind of flow control operator in the shell that allows the make to happen only if the Configure succeeds. The Perl source comes with a
 test suite that attempts to verify that the build went according to plan. Since
 the test suite needs perl to be built, this
 command is similiar to typing:
$./Configure -de && make && make test
The configuration stage may report missing libraries (like those needed to
 make NDBM files or read shadowed password files). Generally, these messages are
 harmless. If an important dependency is missing, the Configure script will halt. You will need to read the error
 message to figure out what’s missing from your system that Perl requires.
 Generally, Perl will configure and compile without much intervention from
 you.
If the make
 test command succeeds, you are ready to install your new Perl.
 Typically, installation requires administrative privileges since you’ll be
 writing files in /usr/local (the default
 installation root). One way to do this is to use the su command like this:
$ su -c 'make install'
This will prompt you for root’s password. During the installation process, you
 will be asked if you want Perl installed as /usr/bin/perl. On a system that didn’t have Perl to begin with,
 you can safely answer yes to this question. On a system that already had Perl,
 you might wish to answer no here. The new Perl interpreter will still be
 installed in /usr/local/bin/perl. You
 should now have the latest
 version
 of Perl on your system. Use /path/to/newly_installed/perl -v to verify this.
— JJ

Perl Boot Camp, Part 1: Typical Script Anatomy

It is impossible to present a complete
 guide to programming Perl in this one small section, but you can glean enough
 information here to be able to modify existing Perl scripts and evaluate whether
 you’d like to learn more about this incredibly handy language.
Perl scripts bare a passing resemblence to Bourne shell scripts. Example 41-1 a script called
 writewav.pl

 that comes with the Perl
 module Audio::SoundFile. It converts a given
 sound file into WAV format. The details of what it’s doing aren’t important, but
 it does demonstrate some common Perl structures that you should understand at a
 high level.
Example 41-1. A sample Perl script
#!/usr/bin/perl -w

=head1 NAME

 writewav - Converts any sound file into .wav format

=cut

use Audio::SoundFile;
use Audio::SoundFile::Header;

my ($buffer, $length, $header, $reader, $writer);
my $BUFFSIZE = 16384;
my $ifile = shift @ARGV || usage();
my $ofile = shift @ARGV || usage();

$reader = Audio::SoundFile::Reader->new($ifile, \$header);
$header->{format} = SF_FORMAT_WAV | SF_FORMAT_PCM;
$writer = Audio::SoundFile::Writer->new($ofile, $header);

while ($length = $reader->bread_pdl(\$buffer, $BUFFSIZE)) {
 $writer->bwrite_pdl($buffer);
}

$reader->close;
$writer->close;

sub usage {
 print "usage: $0 <infile> <outfile>\n";
 exit(1);
}

The first line of Example 41-1 should
 be familiar to shell hackers; it’s the
 shebang line. When the first two bytes of
 a file are the characters #!, the shell uses
 the rest of that file’s first line to determine which program should be used to
 interpret the rest of the file. In this case, the path to the Perl interpreter
 is given. Command line arguments can be given to the interpreter. Here -w

 instructs Perl to print warning messages when it finds code that is likely to be
 incorrect. This includes such common gaffes as trying to write to a read-only
 file handle, subroutines that recurse more than 100 times, and attempts to get
 the value of a scalar variable that hasn’t been assigned a value yet. This flag
 is a new Perl programmer’s best friend and should be used in all
 programs.
All lines that start with = in the left
 margin are part of

 Perl’s Plain Old Documentation (POD) system.
 Everything between the directives =head1 and
 =cut are documentation and do not affect
 how the script runs. There are Perl tools like pod2text and pod2man that will
 format the POD found in a script into the particular output format given in the
 command’s name. There’s even a pod2man
 program used during the Perl installation procedure that creates all the Perl
 manpages on the target system.
The next two lines begin with actual Perl code. To use Perl library files
 called modules (

 Section 41.10), scripts invoke the
 use module statement. Perl searches the paths listed in
 the global variable

 @INC (Section 41.2) for these modules, which typically have the extension
 .pm.
In Perl,

 variables
 don’t need to be declared before being used. Although this behavior is
 convenient for small scripts, larger scripts can benefit from the disciplined
 approach of declaring variables. Perl 5 — that is, Perl revision 5 — introduced
 the my
 operator as a way of
 declaring a variable. Declaring variables allows the -w flag to help catch misspelled variable names, which are a
 common source of bugs in Perl scripts.
A variable that holds a single value is called a scalar

 and is always prefixed with a $ (even in assignments), unlike variables in the
 Bourne shell.

 The =
 is the assignment operator (when it’s not appearing as a POD directive). Another
 kind of variable,
 called an array, can be used to hold many scalar values.
 Array variables begin with @
 .
 One example of a global array variable is @ARGV

 , which
 holds the list of command-line arguments passed into the Perl script.
Continuing with Example 41-1, the two
 variables $ifile and $ofile get values from the command line. The shift

 operator removes values from the beginning of
 the @ARGV array. If there aren’t enough
 values on the command line, the user defined subroutine usage(
) is called.
Perl supports object oriented programming (OOP). The hallmark of
 OOP is that both the data and the subroutines (called
 methods
 in OOP jargon) for processing that
 data are accessed through an object. In traditional
 procedural programming, data structures are stored separately from functions
 that manipulate them. Fortunately, using object oriented Perl modules is often
 straightforward. In Example 41-1, the
 scalar $reader is a new
 Audio::SoundFile::Reader object. Unlike other OOP languages, Perl’s objects are
 not opaque: the user can set or get values internal to the object. This is what
 is happening on the next line. The ->

 dereferencing operator is used
 both to get at values that are pointed to by references (
 Section 41.5.4) and to make method
 calls. Here, the key format is set to a value
 that is created by the
 bitwise or of
 the values returned by the subroutines SF_FORMAT_WAV and SF_FORMAT_PCM. Another object, $writer, is created on the following line.
The heart of the program is the while
 loop which, in English, reads, “While reading
 more chunks of the source file, translate that chunk into WAV data and write it
 to the outfile.” When the loop finishes, those objects are no longer needed, so
 the close()

 method is called on each of them to release any
 resources used by those objects. This is the end of the program’s execution, but
 there’s a bit more to this script.
Perl allows for
 user
 defined subroutines. Although they can be anywhere in the file, subroutine
 definitions typically come after the main block of code. Here, a subroutine
 called usage() is defined that simply prints
 some help to the user and quits. Inside of
 double quoted strings, Perl interpolates
 scalar and array values. This is a fancy way of saying that Perl replaces
 variables with their values. Because Perl tries to do the right thing with
 interpolation, there may be occasions when Perl’s rules surprise you. Take a
 look at the perldata
 manpage for the definitive
 rules governing variable interpolation and a peek at the perltrap manpage for common interpolation
 mistakes. You can prevent interpolation by putting a backslash
 in front of the variable name (e.g. \$foo is
 $foo) or use single quotes, which never interpolate variables.
 Finally, the exit(1)

 function halts the script before the subroutine
 can return to the caller and returns the value 1 to the operating system.
That’s the 50,000-foot view of a Perl script. To confidently modify existing
 Perl scripts, it is necessary to understand some of the basic components of Perl
 better.
— JJ

Perl Boot Camp, Part 2: Variables and Data Types

 Data
 types are the kinds of values Perl supports. Common data types include
 arbitrarily long

 strings (e.g., "hi,
 bob"), intergers (e.g., 42) and
 floating point numbers (e.g., 3.14). Perl is
 a loosely typed

 language, which means that Perl works hard to let you forget about what kind of
 data you’re dealing with. For the most part, you will be dealing with strings,
 which plays to Perl’s strengths. To manipulate data, variables are employed.
 Table 41-1 lists the most common
 variable types in Perl. For the full story on Perl data types, read the
 perldata manpage.
Table 41-1. Common Perl
 variables
	
 Name

 	
 Example

 	
 Description

	

 scalar

 	

 $lastname, $PI

 	
 Holds single values

	

 array

 	

 @people, $peple[0]

 	
 Holds an ordered sequence of scalar values

	

 hash

 	

 %cgi_params, $cgi_params{'action'}

 	
 Holds a set of key-value pairs

Scalars

 When you want
 to store single values, like any of those given in the previous paragraph,
 you will use a scalar variable. Scalars
 are labeled with a $ followed by a letter
 and any sequence of letters, numbers, and underscores. Scalars defined at the top of scripts
 are often used as constants. You may need to tweak some of
 them, particularly those containing filesystem paths, to get third-party
 scripts to run on your system.
Of course, values can be compared to each other or added together. Perl
 has

 relational operators that treat
 values as numbers and other relational operators that treat values as
 strings. Although Perl has different operators for numbers and strings, Perl
 makes scalar values do the right thing most of the time. For example, you
 want to create a series of filenames like mail_num. The
 following code does this.
foreach my $num (1..10) {
 print "mail_" . $num . "\n";
}
Even though $num is a number, the
 string concatenation operator is able to use it as a string. Table 40-2 shows string operators,
 and Table 41-3 shows the
 numerical ones. See the perlop manpage
 for the full story.
Table 41-2. String
 operators
	
 Operator

 	
 Example

 	
 Description

	

 .

 	

 $saluation . " Jones"

 	
 String concatenation

	

 eq

 	

 $foo eq $bar

 	
 String equality test

	

 ne

 	

 $bar ne $baz

 	
 String inequality test

	

 gt

 	

 $name gt "Bob"

 	
 True if left string comes after right in ASCII

	

 lt

 	

 $name lt "Xavier"

 	
 True if left string comes before right in ASCII

	

 cmp

 	

 $name cmp "Wilson"

 	
 Return -1 if left operand ASCII-sorts before the
 right; 0 if right and left are equal; 1 if right sorts
 before left

	

 lc

 	

 lc "Bob"

 	
 Return an all-lowercase copy of the given
 string

	

 uc

 	

 uc "lorrie"

 	
 Return an all-uppercase copy of the given
 string

Table 41-3. Numerical
 operators
	
 Operator

 	
 Example

 	
 Description

	

 +

 	

 $a + 1

 	
 Numerical addition

	

 -

 	

 $c - 2

 	
 Numerical subtraction

	

 *

 	

 3 * $b

 	
 Numerical multiplication

	

 /

 	

 4/$non_zero

 	
 Numerical division

	

 ++

 	

 $a++

 	
 Autoincrement; adds one to a number

	

 ==

 	

 $a == $b

 	
 Numeric equality test

	

 !=

 	

 $p != $q

 	
 Numeric inequality test

	

 <

 	

 $diff < 32

 	
 Numeric less-than test

	

 >

 	

 $sum > 64

 	
 Numeric greater-than test

	

 <=>

 	

 $sum <=> 64

 	
 Return -1 if left is numerically less than right; 0 if
 left equals right; 1 if right is less than left

	

 <=

 	

 $sum <= 64

 	
 True if left operand is numerically less than or equal
 to right

	

 >=

 	

 $sum >= 64

 	
 True if left is numerally greater than or equal to
 right

You may have noticed that some of the operators in the previous tables
 were described as returning
 true or false values. A true value in Perl
 is any value that isn’t false, and there are only 4 kinds of false values in
 Perl:
	values that are numerically zero

	values that are empty strings

	values that are undef

	empty lists

Like many other languages, Perl supports

 Boolean operators (see Table 41-3) that return true or
 false values. Typically, you encounter these in if statements like the following:
if ($temp < 30 && $is_rainy) {
 print "I'm telecommuting today\n";
}
Another common use of Boolean operators is to short-circuit two
 expressions. This is a way to prevent the right operand from executing
 unless the left operand returns a desired truth value. Consider the very
 ordinary case of opening a filehandle for reading. A common idiom to do this
 is:
open (FH, "filename") || die "Can't open file";
This short-cut operation depends on the open function returning a true value if it can open the
 requested file. Only if it cannot is the right side of the || operator executed (die prints whatever message you provide and halts the
 program).
Table 41-4. Boolean operators
	
 Operator

 	
 Example

 	
 Description

	

 &&

 	

 $a && $b

 	
 True if both $a and $b are true

	

 ||

 	

 $a || $b

 	
 True if either $a or $b is true

	

 !

 	

 !$a

 	
 True if $a is false

	

 and

 	

 $a and $b

 	
 Same as &&, but with a lower precedence

	

 or

 	

 $a or $b

 	
 Same as ||, but with a lower precedence

	

 not

 	

 not $a

 	
 Same as !, but with a lower precedence

 Looking at Table 41-4, you will notice that
 there appear to be redundant operators. The operators that are English words
 have a lower precedence that the symbolic ones. Precedence is simply the
 order in which Perl executes expressions. You are
 probably familiar with precedence rules from mathematics:
1 + 2 * 3 + 4 = 11
(1 + 2) * (3 + 4) = 21
Similarly, Perl’s operators have precedence as well, as shown in Example 41-2.
Example 41-2. Precedence
lc $a || "BB" # like (lc $a) || ("BB")
lc ($a || "BB")

Because || has a lower precedence that
 the lc operator, the first line of Example 41-2 is a Boolean test between
 two expressions. In the second line, the Boolean || operator is used to create a default argument to lc should $a be a false value.
Because Perl doesn’t require
 parentheses around built-in operators and functions, you will often see code
 like:
open FH, "> " . "filename" or die "Can't open file";
print FH "[info]: disk write error\n";
Precedence ambiguities can be resolved by using parentheses where doubt
 occurs.
Although Perl has many special variables, the one you’ll encounter most is
 $_
 . Many operators and functions, such as
 lc and print

 ,
 will operate on $_ in the absence of an
 explicit parameter, as in Example
 41-3.
Example 41-3. Simple echo loop
while(<>){
 print
}

In this example, every line read from standard input with the <> operator is available inside the
 while (Section 41.7) loop through $_. The print function, in the absence of an explicit argument,
 echoes the value of $_. Note that
 $_ can be assigned to (e.g., $_ = "Hello, Perl“) just like any other
 scalar.

Arrays

 When
 you want to collect more than one value into a variable, you have two ways
 to go in Perl. If you need an ordered set of values, you will choose to use
 a Perl array. These variables start with @

 and are followed by a label that follows the same convention as a scalar.
 Two global arrays have already been mentioned: @INC and @ARGV. Since
 arrays hold multiple values, getting and setting values is a little
 different from scalars. Here’s an example of creating an array with values,
 looking at one, and assigning a new value to that array index.
@things = ('phone', 'cat', 'hard drive');
print "The second element is: ", $things[1], "\n";

$things[1] = 'dog';
print "The second element is now: ", $things[1], "\n";
In the first line, the array @things is
 initialized with a list of three scalar values. Array indexes begin with
 zero, so the second element is accessed through the index value of 1. Arrays
 will grow as needed, so you could have added a fourth element like
 this:
$things[3] = 'DVD player';
Why is a $ used here and not @? Use @
 only when referring to the whole array variable. Each element is a scalar
 whose name is $things[
 index]. This rule comes up again when dealing
 with hashes.

 Typically you will want to iterate
 through all the values in an array, which is done with loops (

 Section 41.7). Although there are
 several looping constructs, the most common idiom to examine all the values
 in an array sequentially is shown in Example 41-4.
Example 41-4. Using foreach to loop through an array
print "Paths Perl checks for modules\n";
foreach my $el (@INC) {
 print $el, "\n";
}

 Lists are a data type that is closely
 related to arrays. Lists are sequences of scalar values enclosed in
 parentheses that are not associated with an array variable. They are used to
 initialize a new array variable. Common
 array
 operators are listed in Table
 41-5.
my @primes = (1,3,5,7,9,11);
my @empty_list = ();
Table 41-5. Common array operators
	
 Name

 	
 Example

 	
 Description

	

 pop

 	

 $last = pop @array;

 	
 Return last element of array; remove that element from
 array

	

 push

 	

 push @array, @
 new_elements
 ;

 	
 Add the contents of
 @new_elements to the end
 of target array

	

 shift

 	

 $first = shift
 @array;

 	
 Return the first element of array; shift all elements
 one index lower (removing the first element)

	

 unshift

 	

 unshift @array, @
 new_elements
 ;

 	
 Add @new_elements to the
 beginning of target array

Hashes

Associative
 arrays, or

 hashes, are
 a collection of scalar values that are arranged in key-value pairs. Instead of using
 integers to retrieve values in a hash, strings are used. Hashes begin with
 %. Example 41-5 shows a hash variable in action.
Example 41-5. Using hashes
my %birthdays = (
 'mom' => 'JUN 14',
 'archie' => 'JUN 12',
 'jay' => 'JUL 11',
);

print "Archie's birthday is: ", $birthdays{'archie'}, "\n";
$birthday{'joe'} = 'DEC 12';
print "My birthday is: ", $birthdays{'joe'}, "\n";

Hashes are a funny kind of list. When initializing a hash with values, it
 is common to arrange the list in key-value pairs. The strange-looking
 =>
 operator is often called a
 “fat comma” because
 these two lines of Perl do the same thing:
%birthdays = ('jay' => 'JUL 11');
%birthdays = ('jay', 'JUL 11');
Use the fat comma when initializing hashes since it conveys the
 association between the values better. As an added bonus, the fat comma
 makes unquoted barewords on its left into quoted strings.
Example 41-6 shows some quoting
 styles for hash keys.
Example 41-6. Various quoting styles for hash keys
my %baz = (foo => 1,
 'bar', 2,
 'boz' => 3);

Unlike arrays, hashes use strings to index
 into the list. So to retrieve the birthday of “jay”, put the key inside
 curly braces, like this:
print "Jay's birthday is: ", $birthdays{'jay'}, "\n";
Because Perl assumes that barewords used as a key when retrieving a hash
 value are autoquoted, you may omit quotes between the curly braces (e.g.,
 $birthday{jay}). Like arrays, hashes
 will grow as you need them to. Whenever you need to model a set or record
 the number of event occurrences, hashes are the variable to use.
Like arrays, you will often need to
 iterate over the set of key-value pairs in a
 hash. Two common techniques for doing this are shown in Example 41-7. Table 41-6 lists common Perl hash
 functions.
Example 41-7. Iterating over a hash
my %example = (foo => 1, bar => 2, baz => 3);

while (my ($key, $value) = %example) {
 print "$key has a value of $value\n";
}

foreach my $key (keys %example) {
 print "$key has a value of $example{$key}\n";
}

Table 41-6. Common Perl hash
 functions
	
 Name

 	
 Example

 	
 Description

	

 delete

 	

 delete $hash{{
 key“}

 	
 Delete the key-value pair from hash that is indexed on
 key

	

 each

 	

 ($key, $value) = each
 %hash

 	
 Return the next key-value pair in hash; the pairs
 aren’t usefully ordered

	

 exists

 	

 print "key found" if exists
 $hash{"
 key“}

 	
 Return true if hash has
 key, even if that key’s value
 if undefined

	

 keys

 	

 @keys = keys %hash

 	
 Return the list of keys in the hash; not
 ordered

	

 values

 	

 @values = values
 %hash

 	
 Return the list of values in the hash; values will be
 in the same order as keys fetched by keys %hash

References

 As odd
 as it may first seem, it is sometimes necessary to have variables for
 variables. A funny kind of scalar, a reference is a sort of IOU that
 promises where the original variable’s data can be found. References are
 primarily used in cases. First, because hashes and arrays store only scalar
 values, the only way to store one multivalued data type in another is to
 store a reference instead (see the perldsc manpage for more details). Second, when the size of
 a data structure makes a variable inefficient to pass into subroutines, a
 reference is passed instead. Third, because arguments passed into
 subroutines are really just copies of the original, there’s no way to change
 the original values of the arguments back in the calling context. If you
 give a subroutine a reference as an argument, it can change that value in
 the caller. Consult the perlref and
 perlreftut manpages for more
 details on references.
Taking a reference to a variable is straightforward. Simply use the
 reference operator, \, to create a
 reference. For example:
$scalar_ref = \$bob;
$array_ref = \@things;
$hash_ref = \%grades;
You can even create references without variables:
$anonymous_array = ['Mojo Jo-Jo', 'Fuzzy Lumpkins', 'Him'];
$anonymous_hash = { 'pink' => 'Blossom',
 'green' => 'Buttercup',
 'blue' => 'Bubbles',
 };

 The square brackets return a reference to the
 list that they surround. The curly braces create a reference to a hash.
 Arrays and hashes created in this way are called
 anonymous because there is no named variable to
 which these references refer.
There are two ways of

 dereferencing references (that is, getting back the original values). The
 first way is to use {}
 . For instance:
print "Your name is: ", ${$scalar_ref};

foreach my $el (@{$anonymous_array}) {
 print "Villian: $el\n";
}

while (my ($key, $value) = each %{$anonymous_hash}) {
 print "$key is associated with $value\n";
}
The second way, using
 ->, is useful only for references to
 collection types.
print "$anonymous_hash->{'pink'} likes the color pink\n"; # 'Blossom'
print "The scariest villian of all is $anonymous_array->[2]\n"; # 'Him'

Perl Boot Camp, Part 3: Branching and Looping

 To do any interesting stuff with data,
 Perl needs to be able to branch and loop. Perl supports the C-like if
 -then-else construct, as the following shows:
if ($password eq 'secret') {
 print "Come on in\n";
} else {
 print "Incorrect password\n";
}
You can also invert simple tests that only have one statement in the then block.
print "Don't I know you?\n" if $user eq 'joe';
You can invert the logic of if by using
 unless
 :
print "Please supply command line arguments\n" unless @ARGV;
The print happens only if @ARGV is empty.

 Sometimes you need to iterate through each
 element of a list. This can be done with the foreach loop:
foreach my $thing (@my_room) {
 print "dusting $thing\n";
 dust($thing);
}
A synonym for foreach is for
 . Bourne shell hackers (or those who don’t like
 typing) may feel more comfortable using for
 rather than then foreach.
Each time through the loop, $thing is
 aliased to the next element in @my_room. Any
 change to $thing will change that element in
 the array, so be careful. If you don’t supply a scalar variable like $thing, Perl will set $_

 for you each time through the loop. The previous example could also be
 written:
foreach (@my_room) {
 print "dusting $_\n";
 dust($_);
}
Sometimes you need to continue looping while an event is happening, like
 reading input from standard input:
while (my $line = <STDIN>) {
 print "I got: $line";
}
Each
 line of input a user provides is stored in $line, including the newline at the end. When the user hits the
 end-of-file control key (CTRL-D), the loop exits. Like the foreach loop, you can leave off the scalar
 variable while reading from a filehandle,[2] and $_ will be set to the next
 line of input each time through the loop.
while (<>) {
 print "I got: $_";
}

 Sometimes you need to interrupt the execute
 flow of your loop. Perl gives you three operators to do that (see Table 41-7).
Table 41-7. Loop flow-control operators
	
 Operator

 	
 Example

 	
 Description

	

 next

 	
 while(<>){
 next if $_ ne "continue\n";
}

 	
 Jump to the top of the loop and iterate normally

	

 last

 	
 while(<>){
 last if $_ eq "quit\n"
}

 	
 Jump out of the loop to the next line of the
 program

	

 redo

 	
 for $url (@urls){
 unless($content = get($url)){
 print "couldn't fetch page - retrying\n";
 redo;
 }
}

 	
 Jump to the top of the loop, but don’t evaluate the loop
 condition

Perl Boot Camp, Part 4: Pattern Matching

 Perl is
 excellent
 at finding patterns in text. It does this with regular expressions, similar to
 the ones used by grep and awk. Any scalar can be matched against a regular
 expression with the matching binding
 operator,
 =~. For example:
if($user =~ /jjohn/){
 print "I know you";
}
Without the matching binding operator, regular expressions match against the
 current value of $_. For example:
while (<>) {
 if (/quit/i) {
 print "Looks like you want out.\n";
 last;
 }
}
In this code, each line of input is examined for the character sequence
 quit. The /i modifier at the end of the regular expression makes the
 matching case-insensitive (i.e., Quit matches
 as well as qUIT).
As with regular expressions in other utilities, Perl attempts to find the
 leftmost and longest match for your pattern against a given string. Patterns are
 made up of characters (which normally match themselves) and special
 metacharacters, including those found in Table 41-8.
Table 41-8. Common Perl regular expression
 metacharacters
	
 Operator

 	
 Description

	

 ^

 	
 Pattern must match at the beginning of the line.

	

 $

 	
 Pattern must match at the end of the line.

	

 .

 	
 Match any character (expect the newline).

	

 pat1

 |
 pat2

 	
 Alternation: match the pattern on either the left or
 right.

	

 (

 pattern
)

 	
 Group this pattern together as one (good for quantifiers
 and capturing).

	

 [

 synbols
]

 	
 Define a new character class: any of the symbols given can
 match one character of input (e.g. /[aeiou]/ matches a string with at least one
 regular vowel).

	

 \w

 	
 Match a letter, number and underscore.

	

 \d

 	
 Match a number.

	

 \s

 	
 Match a whitespace character: space, tab, \n, \r.

	

 pattern
 *

 	
 Match 0 or more consecutive occurences of
 pattern.

	

 pattern
 +

 	
 Match 1 or more consecutive occurrences of
 pattern.

	

 pattern
 ?

 	
 Optionally match
 pattern.

A very common task for which regular expressions are used is extracting
 specific information from a line of text. Suppose you wanted to get the first
 dotted quad that appears in this ifconfig
 command:
$ ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:A0:76:C0:1A:E1
 inet addr:192.168.1.50 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:365079 errors:0 dropped:0 overruns:0 frame:0
 TX packets:426050 errors:0 dropped:0 overruns:0 carrier:0
 collisions:3844 txqueuelen:100
 Interrupt:9 Base address:0x300
The output of a command can be captured
 into an array using the backtick operator. Each line of the command’s output
 will be an element of the array. One way to extract the IP address from that
 line is with the following code:
my @ifconfig = `/sbin/ifconfig eth0`;
for (@ifconfig) {
 if (/(\d+\.\d+\.\d+\.\d+)/) {
 print "Quad: $1\n";
 last;
 }
}
This regular expression looks for one or
 more digits (\d+) followed by a literal dot
 (rather than the regular expression metacharacter), followed by two more
 digit/dot pairs, followed by one or more digits. If this pattern is found in the
 current line, the part that was matched is captured (thanks to the parentheses)
 into the special variable $1. You can capture
 more patterns in a regular expression with more parentheses. Each captured text
 appears in a sequential higher scalar (i.e., the next paren-captured match will
 be $2).
Sometimes, you need to find all the matches for your pattern in a given
 string. This can be done with the /g

 regular expression modifier. If you
 wanted to find all the dotted quads in the ifconfig output, you could use the following code:
my @ifconfig = `/sbin/ifconfig eth0`;
for (@ifconfig) {
 while(/(\d+\.\d+\.\d+\.\d+)/g){
 print "Quad: $1\n";
 }
}
Here, the if block is replaced with a
 while
 loop. This is important for /g to work as expected. If the current line has
 something that looks like a dotted quad, that value is capture in $1, just as before. However, the /g modifier remembers where in the string it made
 the last match and looks after that point for another one.
Perl’s regular expression support has set the standard for other langauges. As
 such, it is impossible to give a comprehensive guide to Perl regular expressions
 here, but see O’Reilly’s Mastering Regular Expressions or
 the perlre manpage.

Perl Boot Camp, Part 5: Perl Knows Unix

There are many built-in Perl operators that
 mimic Unix system calls and standard utilities, as are partially listed in Table 41-9. Those that aren’t hardcoded
 into the language are often available through modules (Section
 41.9). In fact, there are too many Unix-like operators to describe here,
 but this sampling should give you a good start.

Table 41-9. Perl filesystem functions
	
 Function

 	
 Example

 	
 Description

	

 chmod

 	

 chmod 0775,
 filenames

 	
 Change file permission on given file or list of files;
 same as the system command.

	

 chown

 	

 chown
 UID
 ,
 GID
 ,
 filenames

 	
 Change
 owner and
 group on given list of filenames; same as the system
 command.

	

 rename

 	

 rename
 oldname
 ,
 newname

 	

 Change a file’s name; similiar
 to mv.

	

 unlink

 	

 unlink
 filenames

 	

 Unlink given filenames;
 deletes files that aren’t hard linked elsewhere.

	

 system

 	

 system(
 executable
)

 	
 Create a subshell to execute an external command whose
 ouput isn’t accessible to Perl.

	

 qx()

 	

 @output = qc(
 executable
)

 	
 Create a subshell to execute external command and return
 lines of output as an array to Perl; same as ''.

One advantage Perl has over shell scripting is that Perl has filehandles. In Perl, files can only be
 created, edited, or read through special variables called filehandles. These
 variables have no funny punctuation prefixing them. It is customary to make
 filehandles all uppercase. The code below shows a typical way to read an
 existing file and echo its contents to the screen:
my $file = "your_filename";
open (IN, $file) || die "can't open $file: $!";
while (<IN>) {
 print;
}
close (IN);
In this simple code, the open function is
 used to associate the filehandle IN with
 whatever filename you choose. If the open
 fails, the expression to the right of the logical OR will execute. The die function halts the program with the string
 provided. Here, that string includes the special variable $!, which contains the error message from the last
 failed system call (which here is open). If
 the open succeeds, IN can be read from with the <> operator. As noted earlier, this operator populates
 $_ with the next line of input each time
 through the loop until there are no more lines to read. The print function will use $_ if no other argument is passed to it. Although Perl will free
 all filehandles when the script exits, it’s a good habit to close all
 filehandles you open.
Writing to files is almost as easy as reading from them. Consider this
 code:
my $file = "your_filename";
open (OUT, "> ". $file) || die "can't make $file: $!";
print OUT "<html><body><h1>hello, world</h1></body></html>\n";
close(OUT);
This snippet starts in a familiar way, but the open call is a little different. To tell Perl you want to create
 a new file or overwrite an existing one, simply prefix the filename with a
 >. If you wanted to append to an
 existing file, use >> instead. Now you
 can print to that file by passing the filehandle to print (notice there’s no comma after the filehandle). Here, a
 simple HTML file is being created.
You can also read directories in Perl. The following code looks in the current
 directory and describes each file as a directory, symbolic link, or regular
 file.
opendir (DIR, ".") || die "error: $!";

while (my $file = readdir(DIR)) {
 print "$file -> ";

 if (-d $file) {
 print "directory\n";

 } elsif (-l $file) {
 print "symlink\n";

 } else{
 print "file\n"
 }
}
closedir (DIR);
To read directories, use the opendir
 function, which has a similiar interface to open’s. Unfortunately, the <> operator won’t work on directory handles, so use the
 readdir command to iterate over each file
 in the directory. Perl provides file test operators, like those in the Bourne
 shell, to determine what kind of file its argument is. The -d operator tests whether a file is a directory,
 while the -l operator tests whether a file is
 symbolic link. Perl doesn’t have a switch operator like C, but you can tack on
 as many elsif blocks as you need. What’s not
 shown here is how to create a directory. Just as you would at the shell prompt,
 Perl provides a mkdir function that takes an
 octal number (which must start with zero!) and the name of the directory to
 create. Pretty simple.
In /etc/passwd and in password files for CVS and Apache,
 user passwords are stored as a string that has been passed through a one-way
 hashing algorithm (such as DES), usually using the system’s crypt(3) system call. Perl provides access to this
 system call with a function of the same name. The following code prompts users
 for a new password for a fictional program and creates its own password
 file.
print "Username: \n";
my $user = <>;
print "Password: \n";
my $pass = <>;

chomp($user, $pass);
my $crypt = crypt($pass, substr($user, 0, 2));
open (OUT, ">>passwd") || die "error: $_";
print OUT "$user;$crypt;". localtime() . "\n";
close (OUT);
After collecting the username and password from the user, the chomp function removes the trailing newline from
 the input just collected. The crypt function
 expects the string to be hashed and a random two-character salt. Here, the first
 two characters of the username are used, via the substr function. The line written to the password file consists
 of a semicolon-separated list of the username, the hashed password, and a date
 stamp of when the account was added. Here, the localtime function call is used in scalar context because of the
 concatenation operator. This produces a human-readable string like Sat Mar 16 21:17:44
 2002. Used in list context, localtime returns a nine element list that’s not
 easily consumed by human eyes (see Programming Perl,
 published by O’Reilly, for more details on scalar versus list context).
This section hardly scratched the surface of using Perl as a system
 administration tool. Many books have been written on this very topic, including
 O’Reilly’s Perl for System Administration.
— JJ

Perl Boot Camp, Part 6: Modules

Modules are Perl’s way of extending functionality, in the same way C has
 library files. Modules can be used to encapsulate a set of related function
 calls (the way Data::Dumper does), implement pragmas (like use strict), or create object classes (like
 HTML::TokeParser). Whatever a module does, it must first be installed on your system (Section 41.11) before you can use
 it.
Using a module in Perl is often straightforward. For example, the Data::Dumper
 module has a function called Dumper that
 takes a reference to a variable and deconstructs the entire structure into a
 printable string. This is an invaluable debugging tool. The following code shows
 Data::Dumper in action:
use Data::Dumper;
print "The current environment is: ", Dumper(\%ENV), "\n";
An abbreviated version of the output from this code is this:
The current enviroment is: $VAR1 = {
 'DISPLAY' => ':0',
 'COLORTERM' => 'gnome-terminal',
 'QTDIR' => '/usr/lib/qt-2.3.0',
 'PVM_RSH' => '/usr/bin/rsh',
 'OSTYPE' => 'linux-gnu',
 'PWD' => '/home/jjohn/docs/unix_powertools/upt',
 'EDITOR' => 'emacs -nw',
 'LOGNAME' => 'jjohn',
 'MACHTYPE' => 'i386-redhat-linux-gnu',
 'SHELL' => '/bin/bash',
 'MAIL' => '/var/spool/mail/jjohn',
 '_' => '/usr/local/bin/perl',
 'HISTSIZE' => '1000',
 'CVS_RSH' => 'ssh1',
 'HOSTNAME' => 'marian',
 'TERM' => 'xterm',
 ...
 };
In this code, the Data::Dumper is made available to your script with the
 use statement. You should be aware that
 use happens at the script’s compile time, meaning that
 you can’t use this statement to dynamically load modules at runtime (but this is
 possible; see Programming Perl for details). Data::Dumper
 automatically makes the function Dumper
 available to your script. Here the global hash %ENV, which contains all your shell’s environment variables, is
 deconstructed. Dumper can take multiple
 variables, so when looking at a hash or array, be sure to prefix the variable
 with the reference operator (Section 41.5.4) \. Without a passed reference, the output of
 Dumper won’t exactly what you
 expect.
Many Perl modules are object oriented. Although writing object classes may not
 be trivial, using them is. Here, the CGI module is used to create a very simple
 HTML page.
use CGI;
$q = CGI->new;
print
 $q->header,
 $q->start_html,
 $q->h1("hello, world!"),
 $q->end_html;
There’s no difference in how object classes are brought into your script with
 use. New objects are created through a method
 traditionally called new
 (new is not an operator, as it is in other languages).
 Sometimes, new will require arguments. Once
 the object ($q) is created, all method access
 must be made through it, using the ->
 operator. That’s all there is too it. Of course every module is different, so
 you will need to use perldoc modulename (Section 41.10) to the module’s
 documentation.
Infrequently, you may need to find the module files on your system. Modules
 are usually files that have the extension .pm and are found in one of the directories listed in the
 @INC array. Every module should declare
 its own namespace, so that its variables and functions don’t overwrite the ones
 you define in the scripts that use the modules. These namespaces are
 hierarchical, so so that the module Data::Dumper belongs to the Data module
 group.[3] When the Data::Dumper module is installed on your system, it is
 placed somewhere with the rest of your Perl modules in a directory called
 Data, in which a file called Dumper.pm will be copied. Generally, :: in a module name translates to a / on the filesystem. You can also use perldoc -l
 modulename to list the module’s filesystem
 path.
There are many good reasons to learn Perl, but the ace up a Perl programmer’s
 sleeve is the Comprehensive Perl Archive
 Network (Section
 41.11) (CPAN), which is the central repository for Perl modules. There
 are hundreds of modules on CPAN, ranging from the essential (IO::Socket) to the
 useful (LWP, DBI, mod_perl), to the frivolous (Acme::Buffy). The main CPAN
 server is accessible on the web at http://www.cpan.org. CPAN is
 mirrored all over the world, so look for a mirror near you.
— JJ

Perl Boot Camp, Part 7: perldoc

We all need a little help sometimes, and it’s at those times that perldoc comes in handy. Normally, core Perl and
 module documentation is accessible through your system’s manpage system, but you can also use the perldoc program, which has a few convenient
 features that you should be aware of. Like man, perldoc takes the name of
 a module or core Perl document as an argument.
Your system’s perl comes bundled with
 hundreds of pages of very readable documentation. The top of the document tree
 can be accessed with either perldoc perl or
 man perl. This page is little more than a
 table of contents[4] for the rest of the perl documentation. There
 are over 40 documents listed there, but there are a couple that will be
 immediately useful to novice Perl programmers, as Table 41-10 shows.
Table 41-10. Frequently used Perl manpages
	
 Name

 	
 Description

	
 perlsyn

 	
 The complete guide to Perl syntax

	
 perldata

 	
 Perl’s data types explained

	
 perlop

 	
 Perl’s operators and their precedence

	
 perlfunc

 	
 The complete guide to all of Perl’s built-in functions

	
 perlre

 	
 The complete guide to Perl’s regular expressions

In many cases (such as the ones above), perldoc doesn’t do anything man can’t. However with perldoc, you can easily look up built-in Perl functions with the
 -f flag (-t formats any POD elements for a text console). For instance, to
 see the entry on print, try this:
$ perldoc -tf print
You’ll get back something like the following (which has been
 abbreviated):
print FILEHANDLE LIST
print LIST
print Prints a string or a list of strings. Returns
 true if successful. FILEHANDLE may be a scalar
 variable name, in which case the variable contains
 the name of or a reference to the filehandle, thus
 introducing one level of indirection.
 ...
Perl has quite a large FAQ. You can read each of the nine sections
 (perlfaq1 through perlfaq9) to
 find the answer to your question or you can use the -q flag to keyword search all of the FAQ.
$ perldoc -q fork
Found in /usr/local/lib/perl5/5.6.1/pod/perlfaq8.pod
 How do I fork a daemon process?

 If by daemon process you mean one that's detached (disas-
 sociated from its tty), then the following process is
 reported to work on most Unixish systems. Non-Unix users
 should check their Your_OS::Process module for other solu-
 tions.
 ...
Do take advantage of the copious documentation already on your system: you
 will be reward many times over.
— JJ

CPAN

The Comprehensive Perl Archive Network (CPAN), whose URL is http://www.cpan.org, is the place to get modules, scripts, and the
 Perl source code. This system is mirrored all over the world, so consult http://www.cpan.org/SITES.html or http://mirror.cpan.org for the server nearest you. There is a really
 complete CPAN FAQ that can be found at http://www.cpan.org/misc/cpan-faq.html.
This section covers obtaining and installing modules from CPAN. If your
 installation of Perl is up to date, module installation is trivial. If you’ve
 got a “unique” system, you may need to take matters into your own hands.
Installing Modules the Easy Way

In a fit of inspired genius (or madness), the CPAN module was created to
 automate the task of fetching and installing modules. If you want to install
 the Text::AutoFormat suite, it’s as easy as becoming superuser on your
 system and typing:
perl -MCPAN -e 'install Text::AutoFormat'
Perl has many command-line switches. Here, -M (equivalent to use
 module) and -e
 (execute the next argument as perl code) are used. If
 you’ve never run the CPAN module before, be prepared to answer a lot of
 questions about your network setup and where certain system binaries are.
 Luckily, you can usually accept the defaults safely. Once that’s done, the
 CPAN module will go to the CPAN mirror you specified; find the latest
 version of the module you asked for; and download, unpack, configure, and
 install it for you with no additional typing. Now that’s
 twenty-first-century library management! If your module depends on other
 modules not installed on your system, CPAN will attempt to fetch and install
 the missing modules. In fact, you can update the CPAN module itself
 with:
perl -MCPAN -e 'install Bundle::CPAN'
The CPAN module also has an interactive shell you can access like
 this:
$ perl -MCPAN -e shell
Why bother with the interactive shell? Sometimes you want to install
 several unrelated modules at once. This is done more conveniently in the
 CPAN shell. Alternately, you may want only to download module archives
 without actualling installing them. The entire range of shell options can be
 found with the h command inside the
 shell. One of the most useful shell functions, the search function, can be
 used to look up available CPAN modules. For instance:
$ sudo perl -MCPAN -e shell

cpan shell -- CPAN exploration and modules installation (v1.59)
ReadLine support enabled

cpan> i /Text/
CPAN: Storable loaded ok
Going to read /usr/local/cpan/Metadata
Module AddressBook::DB::Text (D/DL/DLEIGH/AddressBook-0.16.tar.gz)
Module AnyData::Format::Text (J/JZ/JZUCKER/AnyData-0.05.tar.gz)
Module Apache::PrettyText (C/CH/CHTHORMAN/Apache-PrettyText-1.03...
...

401 items found
cpan> quit
Here, we use the i command to search
 for the regular expression /Text/ in all
 the module names.
When you first run the CPAN module, you will be asked a series of
 configuration questions. The first question you’ll be asked when configuring
 CPAN is to name a CPAN build and cache directory (where CPAN unpacks fetched
 module archives and builds them). Put this in a sensible place where you and
 other users can can get to it, such as /usr/local/cpan. You’ll be asked to name the maximum size
 for the cache directory (the default is 10MB). The next question will ask
 when to perform size checks on the cache, atstart or never. Unless
 you have a compelling reason not to remove old module builds, accept the
 default of atstart. You then be asked
 whether CPAN metadata should be cached, and again, accept the default of
 yes.
The next question asks about what character set your terminal expects.
 Again, you should accept the default of yes. The configuration then asks what it should do when
 unfulfilled dependencies are encountered during a module installation. CPAN
 can automatically fetch the missing modules (follow), ask for confirmation before downloading them
 (ask), or do nothing (ignore). If you are on a fast Internet
 connection, you may want to set the policy to follow. The safest policy, and one that guards against
 runaway module fetching sessions, is ask.
The next several questions ask for the location of certain binaries (like
 lynx, make, gzip, etc.). Answer
 these appropriately. The next set of questions ask for additional make parameters. Again, accept the defaults.
 You will then be asked about your network setup. If you are behind a
 firewall that uses SOCKs or proxy servers for FTP and HTTP, you will need to
 enter those server names. CPAN will ask you to pick a CPAN mirror closest to
 you, by asking you for continent and country information. You’ll be
 presented with a list of CPAN mirrors, and you can enter the numbers of the
 URLs in which you are interested. Generally, you’ll only need to give one or
 two mirrors. The last question is about the WAIT system, to which you can
 safely accept the default. This concludes the CPAN configuration.

Installing Modules the Hard Way

Most modules on CPAN are gzipped tar
 archives that have some common files in them that makes installing them
 fairly simple. To install a CPAN module, unpack your archive and
 cd to the new directory that was just created. Now
 type:
$ perl Makefile.PL && make test
This is a similiar configure and compile idiom to the one shown in Section 41.3. If the tests all
 succeed, change to root and install the module with:
make install
The module is now available to your system.

Browsing the CPAN Web Site

There’s something to be said for browsing the CPAN archive with a web
 browser. In fact, there are all kinds of ancillary tidbits that are
 available only on the web site. However, CPAN’s main purpose is to store and
 serve modules.
Modules on CPAN are arranged by author name, module name, category, and
 recentness. Of these, module name and category are perhaps the most useful
 for CPAN newbies. The full Perl documentation is linked to from CPAN, but
 you should have this on your system already. Of course, no serious web site
 these days is missing a search engine, and CPAN is no exception. In fact,
 the search engine has its own URL: http://search.cpan.org.
 This is an excellent resource for quickly finding modules that may solve
 your problem.
CPAN is an ocean of code that awaits your exploration.
— JJ

Make Custom grep Commands (etc.) with Perl

All of the various grep-like utilities
 perform pretty much the same function, with minor differences — they search for
 a specified pattern in some or all of a file and display that pattern with
 varying amounts of surrounding context.
As you use Unix more and more, you will find yourself wanting to do an
 increasing number of grep-like tasks, but no
 particular Unix utility will quite suit them all (hence the need for the various
 grep utilities discussed earlier). You’ll
 start accumulating C programs, awk scripts,
 and shell scripts to do these different tasks, and you’ll be craving one utility
 that can easily encompass them all so you don’t have to waste the disk space for
 all of those binaries. That utility is Perl
 (Section 41.1), the “Practical
 Extraction and Report Language” developed by Larry Wall. According to the
 documentation accompanying Perl, it is “an interpreted language optimized for
 scanning arbitrary text files, extracting information from those text files, and
 printing reports based on that information.”
For example, to search for a pattern in the header of a Usenet message:
perl -ne 'exit if (/^$/); print if (/pattern/);' filename
[This works because mail and Usenet (Section 1.21) messages always use a
 blank line — indicated by ^$ in regular
 expression syntax — to separate the header from the body of the message. —
 TOR]
[The -n flag tells perl to wrap the contents of -e into the body of a while(<>){
 ... } loop. — JJ]
To do a search for a pattern and print the paragraphs in which it
 appears:
perl -ne '$/ = "\n\n"; print if (/pattern/);' filename
[This assumes that paragraphs are delimited by a double linefeed — that is, a
 blank line. You’d have to adjust this script for a troff or TEX document where paragraphs are
 separated by special codes. — TOR]
Searching through files is one of Perl’s strengths, but certainly not its only
 strength. Perl encompasses all the functionality of sed, awk, grep, find, and
 other Unix utilities. Furthermore, a Perl program to do something originally
 done with one or more of these utilities is usually faster and easier to read
 than the non-Perl solution.
— JIK

Perl and the Internet

Because Perl supports Berkeley sockets, all kinds of networking tasks can be
 automated with Perl. Below are some common idioms to show you what is possible
 with Perl and a little elbow grease.
Be Your Own Web Browser with LWP

The suite of classes that handle all the aspects of HTTP are collectively
 known as LWP (for libwww-perl library). If your Perl installation doesn’t
 currently have LWP, you can easily install it with the CPAN module (Section
 41.11) like this:
perl -MCPAN -e 'install Bundle::LWP'
If you also included an X widget library such as Tk, you could create a
 graphic web browser in Perl (an example of this comes with the Perl Tk
 library). However, you don’t need all of that if you simply want to grab a
 file from a web server:
use LWP::Simple;
my $url = "http://slashdot.org/slashdot.rdf";
getstore($url, "s.rdf");
This example grabs the Rich Site Summary file from the popular tech news
 portal, Slashdot, and saves it to a local file called s.rdf. In fact, you don’t even need to bother
 with a full-fledged script:
$ perl -MLWP::Simple -e 'getstore("http://slashdot.org/slashdot.rdf", "s.rdf")'
Sometimes you want to process a web page to extract information from it.
 Here, the title of the page given by the URL given on the command line is
 extracted and reported:
use LWP::Simple;
use HTML::TokeParser;

$url = $ARGV[0] || 'http://www.oreilly.com';
$content = get($url);
die "Can't fetch page: halting\n" unless $content;

$parser = HTML::TokeParser->new(\$content);
$parser->get_tag("title");
$title = $parser->get_token;
print $title->[1], "\n" if $title;
After bringing in the library to fetch the web page (LWP::Simple) and the
 one that can parse HTML (HTML::TokeParser), the command line is inspected
 for a user-supplied URL. If one isn’t there, a default URL is used. The
 get function, imported implicitly
 from LWP::Simple, attempts to fetch the URL. If it succeeds, the whole page
 is kept in memory in the scalar $content.
 If the fetch fails, $content will be
 empty, and the script halts. If there’s something to parse, a reference to
 the content is passed into the HTML::TokeParser object constructor.
 HTML::TokeParser deconstructs a page into individual HTML elements. Although
 this isn’t the way most people think of HTML, it does make it easier for
 both computers and programmers to process web pages. Since nearly every web
 page has only one <title> tag, the
 parser is instructed to ignore all tokens until it finds the opening
 <title> tag. The actual title
 string is a text string and fetching that piece requires getting the next
 token. The method get_token returns an
 array reference of various sizes depending on the kind of token returned
 (see the HTML::TokeParse manpage for details). In this case, the desired
 element is the second one.
One important word of caution: these scripts are very simple web crawlers,
 and if you plan to be grabbing a lot of pages from a web server you don’t
 own, you should do more research into how to build polite web robots. See
 O’Reilly’s Perl & LWP.

Sending Mail with Mail::Sendmail

Often, you may find it necessary to send an email reminder from a Perl
 script. You could do this with sockets only, handling the whole SMTP
 protocol in your code, but why bother? Someone has already done this for
 you. In fact, there are several SMTP modules on CPAN, but the easiest one to
 use for simple text messages is Mail::Sendmail. Here’s an example:
use Mail::Sendmail;

my %mail = (
 Subject => "About your disk quota"
 To => "jane@hostname.com, fred@hostname.com"
 From => "admin@hostname.com",
 Message => "You've exceeded your disk quotas",
 smtp => "smtp-mailhost.hostname.com",
);

sendmail(%mail) or die "error: $Mail::Sendmail::error";
print "done\a\n";
Since most readers will be familiar with the way email works, this module
 should be fairly easy to adapt to your own use. The one field that may not
 be immediately clear is smtp. This field
 should be set to the hostname or IP address of a machine that will accept
 SMTP relay requests from the machine on which your script is running. With
 the proliferation of email viruses of mass destruction, mail administrators
 don’t usually allow their machines to be used by unknown parties. Talk to
 your local system administrator to find a suitable SMTP host for your
 needs.

CGI Teaser

What Perl chapter would be complete without some mention of CGI? The
 Common Gateway Interface is a standard by which web servers, like Apache,
 allow external programs to interact with web clients. The details of CGI can
 be found in O’Reilly’s CGI Programming with Perl, but
 the code below uses the venerable CGI module to create a simple form and
 display the results after the user has hit the submit button. You will need
 look through your local web server’s configuration files to see where such a
 script needs to be in order for it to work. Unfortunately, that information
 is very system-dependent.
use CGI;

$cgi = CGI->new;
$name = $cgi->param("usrname");

print
 $cgi->header, $cgi->start_html,
 $cgi->h1("My First CGI Program");

if($name){
 print $cgi->p("Hello, $name");
}

print
 $cgi->start_form,
 $cgi->p("What's your name: "), $cgi->textfield(-name => "usrname"),
 $cgi->submit, $cgi->end_form,
 $cgi->end_html;
CGI scripts are unlike other scripts with which you are probably more
 familiar, because these programs have a notion of programming state. In
 other words, when the user first accesses this page, $name will be empty and a blank form with a
 text box will be displayed. When the user enters something into that textbox
 and submits the form, the user’s input will be stored under the key usrname. After the user presses the form’s
 submit button, the values of that form are available through the CGI method
 param. Here, the desired value is
 stored under the key usrname. If this
 value is populated, a simple message is displayed before showing the form
 again.
Now you have nearly all the tools necessary to create your own Internet
 search engine. I leave the details of creating a massive data storage and
 retrieval system needed to catalog millions of web pages as an exercise for
 the reader.
— JJ

[1] A word on casing: “Perl” refers to the language as an abstract
 concept; "perl" refers to the program
 installed on your machine.

[2] STDIN is normally assumed here.

[3] Well, that’s the theory anyway. In practice, modules that aren’t
 written by the same group of people often have somewhat arbitrary
 top-level namespaces.

[4] There’s actually a more complete table of contents available: man perltoc.

Chapter 42. Python

What Is Python?

Python is an interpreted scripting language, much like
 Perl or Tcl. Python’s primary focus is on clear, concise code, and it has a
 feature set and wide variety of available modules designed to support this goal.
 In many ways, Python is an extremely scalable language; complex systems can be
 relatively easily built in Python without losing maintainability. From the
 Python home page (http://www.python.org):
Python is an interpreted, interactive,
 object-oriented programming language. It is often compared to
 Tcl, Perl, Scheme or Java.
Python combines remarkable power with very clear syntax. It has modules,
 classes, exceptions, very high level dynamic data types, and dynamic typing.
 There are interfaces to many system calls and libraries, as well as to
 various windowing systems (X11, Motif, Tk, Mac, MFC). New built-in
 modules
 are easily written in C or C++. Python is also usable as an extension
 language for applications that need a programmable interface.
The Python implementation is portable: it runs on
 many brands of UNIX, on Windows, DOS, OS/2, Mac, Amiga... If your favorite
 system isn’t listed here, it may still be supported, if there’s a C compiler
 for it. Ask around on comp.lang.python — or just try compiling Python
 yourself.
Python is copyrighted but freely usable and distributable, even for
 commercial use.

— DJPH

Installation and Distutils

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 python

 Installing
 Python is generally very simple. Either install the appropriate binary package
 for your platform, or download the latest source from http://www.python.org. (Note that some Linux distributions include Python by
 default.) A source install is as simple as untarring the distribution, then
 running:
% ./configure
% make
% make install
You can run the Python interpreter
 interactively and find out what version you have and details about its
 compilation. As an example, on my laptop (which runs Windows but also has a
 Cygwin Unix-like environment installed), Python reports:
% python
Python 2.2 (#1, Dec 31 2001, 15:21:18)
[GCC 2.95.3-5 (cygwin special)] on cygwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
To see which modules are compiled into your
 version of Python, examine sys.builtin_module_names:
>>> import sys
>>> print sys.builtin_module_names
('_ _builtin_ _', '_ _main_ _', '_socket', '_sre', '_symtable', 'exceptions',
 'gc', 'imp', 'marshal', 'new', 'posix', 'signal', 'sys', 'xxsubtype')
These are just the modules that are
 an integral part of your version of the interpreter. For a complete list of
 modules installed in your Python, look in all of the directories listed in
 sys.path:
>>> print sys.path
['', '/usr/lib/python2.2', '/usr/lib/python2.2/plat-cygwin',
 '/usr/lib/python2.2/lib-tk', '/usr/lib/python2.2/lib-dynload',
 '/usr/lib/python2.2/site-packages']
Generally, checking the documentation for the version of Python you have will
 tell you which modules are normally installed; the site-packages
 directory is where further packages
 installed on your machine will likely have been installed.

 There is a large repository of modules
 (and other Python code resources) for Python available at the Vaults of
 Parnassus (http://www.vex.net/parnassus/), which includes a
 search mechanism for finding what you’re looking for. Most modules will use
 Distutils to package their
 distributions.
If you download a module source distribution, you can tell pretty quickly if
 it was packaged and distributed with Distutils. First, the distribution’s name
 and version number will be featured prominently in the name of the downloaded
 archive, for example, foo-1.0.tar.gz or
 widget-0.9.7.zip. Next, the archive
 will unpack into a similarly-named directory: foo-1.0 or widget-0.9.7.
 Additionally, the distribution will contain a setup script, setup.py, and a README, which should explain that building and installing the
 module distribution is a simple matter of running:
% python setup.py install
Modules that are not packaged using the standard Distutils will generally
 include detailed instructions for installing them.
— DJPH

Python Basics

If you’ve written code in a procedural or
 functional language before, many parts of Python will seem familiar. Here’s a
 quick overview of the flavor of the language. There is a lot of both reference
 and tutorial information available on the web (start at http://www.python.org) as well as in books like O’Reilly’s
 Programming Python. In fact, much of the information
 in this chapter was gleaned or paraphrased from the official Python reference
 documentation.
Indentation

 The number one complaint of Python
 detractors is almost always its use of indentation as a significant part of
 its syntax. Most languages use begin/end tags or curly braces ({}) to mark blocks of code and have
 line termination punctuation (many use the semicolon (;) as a line termination marker). In Python,
 indentation is used to define blocks of code, and lines are terminated with
 a return. The actual amount of indentation within a block is arbitrary, but
 it must be consistent:
if a:
 statement1
 statement2 # Consistent indentation
else:
 statement3
 statement4 # Inconsistent indentation (error)
Python assumes eight-space tab characters. If you have your editor set to
 four-space tabs, for example, this can bite you if there are mixed spaces
 and tabs. Either use eight-space tabs, or stick to spaces.
Long statements can span multiple lines by using the backslash (\) to continue the line:
>>> a = math.cos(3 * (x - n)) + \
... math.sin(3 * (y - n))
Lines that are already grouped within triple-quotes, parentheses (...),
 brackets [...], or braces {...} can span multiple lines without needing to
 use the backslash.
Python’s
 indentation requirements take a little getting used to, but they guarantee a
 certain level of readability, and editors like vim and emacs can keep track
 of the details for you trivially. (vim has a syntax configuration for
 editing Python, and emacs and xemacs both have a python-mode specifically
 for dealing with Python.)

Functions

 Both
 procedural and functional languages organize programs by dividing
 them into smaller units called functions. Python’s
 approach to functions is inspired by functional languages like Lisp and
 Scheme, where anonymous functions (lambdas) and
 operations like eval, apply, map, and reduce are fundamentals of the
 language.

 Functions
 are defined with the def statement. To
 define an add function that adds together
 two arguments and returns the result:
>>> def add(a, b):
... return a + b
This defines a function and attaches it to the name add in the current namespace; anything with
 access to this namespace can call this function by simply passing arguments
 to it:
>>> print add(3, 5)
8
Function arguments can be defined with
 default values, and variable-length argument lists and keyword arguments are
 also supported.
Procedural programming languages like
 Perl and C
 generally leave functions at that. Functional languages like Lisp, Scheme,
 and Python take functions to the next level; functions are first-class
 objects and can be directly manipulated and stored.

 Anonymous functions, which are not
 automatically attached to the current namespace, are created with the
 lambda statement:
>>> add = lambda a, b: a + b
Lambdas are very useful for traditional functional programming tricks such
 as using map()
 . map(
) takes its first argument (which should be a function or
 lambda) and runs it over and over, passing each element of the list to the
 function in turn, generating a new list of the results:
>>> def timesThree(a):
... return 3 * a
>>> def sum(x, y):
... return x + y

>>> ints = [1, 2, 3, 4, 5]
>>> multiples = map(timesThree, ints)
>>> print multiples
[3, 6, 9, 12, 15]
>>> print reduce(sum, multiples)
45
If you use functions like map() and
 its cousins apply(), reduce(), and filter() a lot, your code can get pretty messy before long.
 Using a lambda allows you to use these functions without having to define a
 named function with def; instead

 you
 can just put the lambda right into the function call as an argument:
>>> ints = [1, 2, 3, 4, 5]
>>> multiples = map(lambda a: 3 * a, ints)
>>> print multiples
[3, 6, 9, 12, 15]
>>> print reduce(lambda x, y: x + y, multiples)
45

 Lambdas are limited to a single
 expression, though that expression may be complex. Multiple statements and
 nonexpression statements like print and
 while can’t be used in a
 lambda.

Everything’s an Object

 Everything
 in Python is an object. Each object has an
 identity

 , a type, and a
 value. For example, a =
 42 creates an object of type integer with the value 42. You
 can think of the identity of an object as its address in memory; in this
 case, we’ve given the name a to that
 identity. Python’s built-in types include fundamental building blocks such
 as numbers, strings, lists, dictionaries, and files, as well as structuring
 types like functions, modules, lambdas, and metaclasses. (Yes, a function is
 an object; it’s just an object that implements the “function call”
 operator.)
Python allows the creation of new
 types of objects via the class statement.
 User-defined classes can have class variables

 and methods,
 which are shared across all instances of that class. In
 Python,
 methods are just functions that happen
 to be associated with a class (and generally take an instance of that class as the first
 argument). Instances can also have their own instance
 variables

 , specific to each instance.
Instances
 are created by calling the class object as if it were a function, which
 creates a new object and calls the _ _init_ _(
)
 method of the class (if one is
 defined):
class Account:
 "A simple example class"
 kind = "Checking"
 def _ _init_ _(self, accountHolder, startingBalance):
 self.accountHolder = accountHolder;
 self.balance = startingBalance;

>>> account = Account("Deb", 86753.09)
This creates a new Account object and
 sets the accountHolder instance variable
 to Deb and the balance instance variable to $86,753.09. Now, in order to be
 able to do anything with our Account, we
 need to define methods to allow manipulation of the balance:
class Account:
 ...
 def deposit(self, depositAmount):
 "Deposit money"
 self.balance = self.balance + depositAmount
 def withdraw(self, withdrawalAmount):
 "Withdraw money"
 self.balance = self.balance - withdrawalAmount
 def inquireBalance(self):
 "Balance inquiry"
 return self.balance

>>> account.deposit(1504.36)
>>> account.withdraw(40.00)
>>> print "Account balance is now $%.2f" % account.inquireBalance()
Account balance is now $88217.45

Modules and Packages

Modules

 and packages allow you to organize your code more
 effectively. Generally, software for Python is also distributed as a module
 or a package. A module groups a set of functions and classes; a package is a
 collection of modules and subpackages.
Any Python source file is a module, if you load it using the import
 statement. Importing a module creates an isolated namespace for the symbols within that
 file and attaches that namespace to the name of the module. It also executes
 the code within that module, defining variables, functions, and classes. For
 example, we might put our Account class
 in a file account.py, and then, in
 another file:
import account

checking = account.Account("Deb", 86753.09)
Note that we can’t refer to Account
 directly; we have to refer to it through its imported name, account.Account. If, for convenience, we’d
 like to access the Account class
 directly, we can tell Python to import the class into our current namespace
 as well:
from account import Account

checking = Account("Deb", 86753.09)
Modules are compiled into bytecodes the first time they are imported,
 allowing them to run faster and be more compact.
Given that a Python module is just a file, it will probably come as no
 surprise that a Python package is simply a directory with modules in it. To
 tag a directory as a package rather than just any directory, create a file
 called _ _init_ _.py (the same name as
 the method to initialize an object) within that directory. Code within
 _ _init_ _.py will get run whenever
 any part of its package is imported. Subpackages are, of course, just
 subdirectories with their own _ _init_
 _.py files.

I/O and Formatting

 Dealing with input and output in Python
 is fairly straightforward; files are objects, and there is a set of methods
 for dealing with file objects that will be familiar to anyone who’s ever
 done any Unix I/O. Files are opened with open(), closed with close(), and read with methods such as read() and readline(
).
Unix

 standard input, standard output and
 standard error are represented by file objects in the sys module: sys.stdin

 , sys.stdout, and sys.stderr, respectively.
The print statement prints its
 arguments to standard output. print can
 print any object by printing its string
 representation. Nicely formatted strings are generated using the string
 formatting (%) operator. % works a lot
 like C’s sprintf() routine; you provide
 a string with special keywords in it and the objects to format and you get
 back a formatted string:
>>> print "Account balance is now $%.2f" % account.inquireBalance()
Account balance is now $86753.09
>>> print "Error: %s(%s)." % (error, error.number)
Error: File not found(2)
% takes a string and a list of
 arguments. (If there’s only one argument, it can be any object instead of a
 list.) Any place that you might want to use a string, you can use the string
 formatting operator. For example:
>>> obj.name = "MyObject: %s" % name
>>> url = urlopen("%s://%s:%d/%s" % (protocol, host, port, path))

wxPython

 Python has a couple of ways to build
 graphical user interfaces. The first was to use Tk, the GUI toolkit from
 Tcl. More recently, a Python interface to the wxWindows toolkit has been
 developed and has become very popular.
Extensive information about wxPython is available at http://wxpython.org including documentation and the wxPython
 distribution itself.
— DJPH

Python and the Web

 Python has a number of core modules designed to deal
 with interacting with the web. Python can act as a web client, pulling down web
 resources and POSTing form results. Python has support for SSL connections in a
 reasonably transparent fashion. CGI scripts are easy to write in Python, and
 there is also an Apache module for running Python scripts within the webserver
 itself.
	urllib (

 Section 42.5) provides basic
 functions for opening and retrieving web resources via their
 URLs.

	urllib2 (

 Section 42.6) provides an
 extended, extensible interface for accessing web resources.

	htmllib

 and HTMLParser (Section
 42.7) provide the ability to parse HTML.

	cgi (Section 42.8) provides functions
 for writing CGI scripts.

	mod_python (

 Section 42.9) is an Apache
 module for running Python within the Apache webserver, rather than
 seperately as with CGI scripts.

— DJPH

urllib

The application-level access to most web client
 activities is through modules called urllib and
 urllib2 (Section 42.6).
 urllib is the simple web interface; it
 provides basic functions for opening and retrieving web resources via their
 URLs.
The primary functions in urllib are
 urlopen(), which opens an URL and
 returns a file-like object, and urlretrieve(
), which retrieves the entire web resource at the given URL. The
 file-like object returned by urlopen supports the following methods: read(), readline(
), readlines(), fileno(), close(
), info(), and geturl(). The first five methods work just like
 their file counterparts. info() returns a
 mimetools.Message object, which for HTTP
 requests contains the HTTP headers associated with the URL. geturl() returns the real URL of the resource,
 since the client may have been redirected by the web server before getting the
 actual content.
urlretrieve() returns a tuple (filename, info), where filename is the local file to which the web resource was copied
 and info is the same as the return value from
 urlopen’s info() method.
If the result from either urlopen() or
 urlretrieve() is HTML, you can use
 htmllib to parse it.
urllib also provides a function urlencode(), which converts standard tuples or
 dictionaries into properly URL-encoded queries. Here is an example session that
 uses the GET method to retrieve a URL containing parameters:
>>> import urllib
>>> params = urllib.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)
>>> print f.read()
The following example performs the same query but uses the POST method
 instead:
>>> import urllib
>>> params = urllib.urlencode({'spam': 1, 'eggs': 2, 'bacon': 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)
>>> print f.read()
— DJPH

urllib2

urllib2

 provides an extended, extensible interface to web resources. urllib2’s application-level interface is
 essentially identical to urllib’s urlopen()
 function (Section
 42.5). Underneath, however, urllib2
 explicitly supports proxies, caching, basic and digest authentication, and so
 forth.
urllib2 uses an Opener, made up of a series of Handlers, to open a URL; if you know you want to use a particular
 set of features, you tell urllib2 which
 Handlers to use before you call urlopen(). urllib2 is extensible largely because if you need to deal with
 some odd set of interactions, you can write a Handler object to deal with just those interactions and
 incorporate it into an Opener with existing
 Handlers. This allows you to deal with
 complex behavior by just combining very simple sets of code.
For example, to retrieve a web resource that requires basic authentication
 over a secure socket connection:
>>> import urllib2
>>> authHandler = urllib2.HTTPBasicAuthHandler()
>>> authHandler.add_password("private, "https://www.domain.com/private",
... "user", "password")
>>> opener = urllib2.build_opener(authHandler)
>>> urllib2.install_opener(opener)
>>> resource = urllib2.urlopen("https://www.domain.com/private/foo.html")
>>> print resource.read()
To implement a new Handler, you simply
 subclass from urllib2.BaseHandler and
 implement the methods appropriate to the behavior you want to handle.
— DJPH

htmllib and HTMLParser

 Python provides the htmllib module for parsing HTML content, which is
 often useful when dealing with web resources. Python also has an HTMLParser module, which handles both XHTML and
 HTML and provides a slightly lower-level view of the content. HTMLParser is also slightly simpler to use, since
 htmllib uses sgmllib and thus understands many of the complexities of
 SGML.
HTMLParser provides a class that the user
 subclasses from, defining methods that are called as tags are found in the
 input. The example below is a very basic HTML parser that uses the HTMLParser.HTMLParser class to print out tags as
 they are encountered:
from HTMLParser import HTMLParser

class MyHTMLParser(HTMLParser):
 def handle_starttag(self, tag, attrs):
 print "Encountered the beginning of a %s tag" % tag
 def handle_endtag(self, tag):
 print "Encountered the end of a %s tag" % tag
— DJPH

cgi

Python provides the cgi module for writing

 CGI scripts.
 Much of the grunt work of writing a CGI script is in dealing with parsing the
 parameters handed to the script by the web server. The cgi module deals with all of those details and more.
Note
To use the cgi module, use import
 cgi rather than from
 cgi
 import*. The cgi module defines a lot of symbols (many for backwards
 compatibility) that you don’t want polluting your namespace.

When you write a new script, consider adding the line:
import cgitb; cgitb.enable()
This activates a special exception handler that will display detailed reports
 in the web browser if any errors occur. If you’d rather not show the guts of
 your program to users of your script, you can have the reports saved to files
 instead, with a line like this:
import cgitb; cgitb.enable(display=0, logdir="/tmp")
It’s very helpful to use this feature during script development. The reports
 produced by cgitb provide information that
 can save you a lot of time tracking down bugs. You can always remove the
 cgitb line later when you have tested
 your script and are confident that it works correctly.
To get to information submitted to the CGI script, instantiate a FieldStorage object:
form = cgi.FieldStorage()
The FieldStorage object acts much like a dictionary of CGI information; it
 implements the methods has_key() and
 keys() and can be accessed using the
 [] operator. For instance, the following
 code (which assumes that the Content-Type:
 header and blank line have already been printed) checks that the fields name and addr
 are both set to a non-empty string:
form = cgi.FieldStorage()
if not (form.has_key("name") and form.has_key("addr")):
 print "<H1>Error</H1>"
 print "Please fill in the Name and Address fields."
 return
print "<p>Name: %s</p>" % form["name"].value
print "<p>Address: %s</p>" % form["addr"].value
...further form processing here...
The cgi module also supports ways to deal
 with multiple-selection form elements and uploaded files.
— DJPH

mod_python

mod_python

 is an
 Apache module
 for running Python within the Apache webserver. It’s much faster than CGI
 scripts and generally uses less resources overall. mod_python also allows advanced functionality such as maintaining
 persistent database connections across web requests and access to internal
 Apache APIs. Information on mod_python and
 distributions are available at http://www.modpython.org.
Apache’s basic methodology for handling web requests is to deal with them in
 phases. There is a phase for each significant element of handling the request,
 including authentication, content generation, and logging. Apache modules can
 provide a seperate handler for each phase; mod_python simply allows you to write those handlers in Python.
 This allows complete control over everything Apache does to process a
 request.
A mod_python handler is a function that
 takes the Request object as an argument; a
 Request represents a single web request
 and contains all the information Apache knows about that request (requested URL,
 method, headers, and so forth).
Each phase’s handler has a specific name that Apache recognizes (and uses in
 its configuration file): PythonHandler,
 PythonAuthenHandler, PythonLogHandler and so forth. Most mod_python scripts need to implement only the main
 handler, PythonHandler.
mod_python finds the appropriate function
 to call by dropping the leading Python from
 the handler name, and using an all-lowercase function name. Thus, most mod_python scripts will look something like
 this:
from mod_python import apache

def handler(request):
 request.content_type = "text/plain"
 request.send_http_header()
 request.write("Hello World!")
 return apache.OK
This handler simply imports the apache API
 and then responds to every request with a plain text Hello World!. It returns apache.OK to tell Apache that the request was successful.
For more information on dealing with mod_python, read the documentation.
Note
One gotcha: mod_python’s way of
 installing a mod_python handler is a
 little counterintuitive due to the way Apache handlers work. Make sure you
 understand how mod_python finds which
 module to import.

— DJPH

What About Perl?

 Comparing
 languages can generate a lot of heat and very little light. However, “Why not
 just use Perl?” is such a common question that I’ll try to provide at least a
 basic understanding of the relative strengths and weaknesses of Python versus
 Perl. Remember that you can write good code or bad code in pretty much any
 language, but understanding whether your tool is best at driving nails or screws
 is always useful.
Perl’s driving motto is “There’s more than one way to do it.” Because of this
 priority and the huge archive of Perl modules on CPAN, Perl is an incredibly
 useful tool for building quick one-off scripts or hacking together tools in a
 very short time. However, it also means that it’s very easy to write Perl code
 that will be impenetrable six months down the road. Perl provides very little
 assistance to someone who wants to write complex systems clearly. Features like
 perl
 -w (warnings), use
 strict, and Perl’s module support help maintainability, but it
 still requires a great deal of care and discipline.
Python’s support for maintainability, on the other hand, is excellent.
 Python’s rich collection of modules and the fact that it’s an interpreted
 language allow relatively fast development, if not quite as fast as in Perl.
 Generally, the more complex the system you’re trying to build and the longer you
 expect to use it, the more potential there is for gain in using Python over
 Perl.
Personally, when tossing together quick one-offs or scripts that are very
 regular expression-heavy, I use Perl. Perl’s regular expression support is so
 fundamental to the language that it’s worth it, and its Swiss-Army-knife nature
 is perfect for things I don’t expect to need again later. I also tend to use
 Perl when I want to write a very portable script, as most Unixes include Perl as
 part of the base system these days, whereas Python, while just as portable,
 tends to need to be installed seperately. When I want to build more complex
 scripts or larger systems, and maintainability is thus a higher priority, I use
 Python. I often use Python even for smaller things if I intend to keep them
 around for a while.
In the end, of course, it comes down to a matter of personal taste and
 judgment. Personally, I value being able to understand my code six months (or
 six years!) down the road far more than having every tool imaginable at my
 fingertips, so I tend to lean towards languages that help you write clear,
 readable code, like Python.
— DJPH

Part VIII. Communication and Connectivity

Part VIII contains the following
 chapters:
Chapter 43
Chapter 44
Chapter 45
Chapter 46
Chapter 47

Chapter 43. Redirecting Input and Output

Using Standard Input and Output

There is
 basically
 no difference between reading data from a
 file and reading data from a

 terminal.[1] Likewise, if a program’s output consists entirely of alphanumeric
 characters and punctuation, there is no difference between writing to a file,
 writing to a terminal, and writing to the input of another program (as in a
 pipe).

 The
 standard I/O facility provides some simple defaults for
 managing input/output. There are three default I/O streams: standard input,
 standard output, and standard error. By
 convention, standard output (abbreviated stdout) consists
 of all “normal” output from your program, while standard error
 (stderr) consists of error messages. It is often a convenience to
 be able to handle error messages and standard output separately. If you don’t do
 anything special, programs will read standard input from your keyboard, and they
 will send standard output and standard error to your terminal’s display.
Standard input (stdin) normally comes from your keyboard. Many programs
 ignore stdin; you name files directly on their command line
 — for instance, the command cat file1 file2 never reads its
 standard input; it reads the files directly. But without filenames on the
 command line, Unix commands that need input will
 usually read stdin. Standard input normally comes from your
 keyboard, but the shell can redirect stdin from a file.
 This is handy for Unix commands that can’t open files directly — for instance,
 mail (
 Section 1.21). To mail a file to
 joan, use <
 filename — to tell the shell to attach the file,
 instead of your keyboard, to mail’s standard
 input:
% mail joan < myfile
The real virtue of standard I/O is that it allows you to
 redirect input or output away from your terminal to a
 file. As we said, Unix is file-based (Section 1.19). Because terminals and
 other I/O devices are treated as files, a program doesn’t even need to
 know[2] if it is sending its output to a terminal or to a file. For example,
 if you want to run the command cat file1 file2, but you
 want to place the output in file3 rather than sending it to
 your terminal, give the command:
% cat file1 file2 > file3
This is called redirecting standard output to
 file3. If you give this command and look at
 file3 afterward, you will find the contents of
 file1, followed by the contents of
 file2 — exactly what you would have seen on your screen
 if you omitted the > file3 modifier. (The
 Z shell takes this further with multiple-file redirection.)
One of the best-known forms of
 redirection in Unix is the pipe. The shell’s vertical bar
 (|) operator makes a pipe. For example,
 to send both file1 and file2 together
 in a mail message for joan, type:
% cat file1 file2 | mail joan
The pipe says, “Connect the standard output of the process at the left
 (cat) to the standard input of the
 process at the right (mail).”
Section 36.15 has diagrams and more
 information about standard I/O and redirection. Table 43-1 shows the most common ways
 of redirecting standard I/O, for both the C shell and the Bourne shell, which
 also apply to derivatives like tcsh and
 bash.
Table 43-1. Common standard I/O redirections
	
 Function

 	
 csh

 	
 sh

	
 Send stdout to
 file

 	

 prog >
 file

 	

 prog >
 file

	
 Send stderr to
 file

 	 	

 prog 2 >
 file

	
 Send stdout and
 stderr to file

 	

 prog >&
 file

 	

 prog >
 file
 2>&1

	
 Take stdin from
 file

 	

 prog <
 file

 	

 prog <
 file

	
 Send stdout to end of
 file

 	

 prog >>
 file

 	

 prog >>
 file

	
 Send stderr to end of
 file

 	 	

 prog 2 >>
 file

	
 Send stdout and
 stderr to end of
 file

 	

 prog >>&
 file

 	

 prog >>
 file
 2>&1

	
 Read stdin from keyboard until
 c (see Section 27.16)

 	

 prog <<
 c

 	

 prog <<
 c

	
 Pipe stdout to
 prog2

 	

 prog | prog2

 	

 prog | prog2

	
 Pipe stdout and
 stderr to
 prog2

 	

 prog |& prog2

 	

 prog 2>&1 | prog2

Be aware that:
	While standard I/O is a basic feature of Unix, the syntax used to
 redirect standard I/O depends on the shell you are using.

 Bourne shell syntax and C shell
 syntax differ, particularly when you get into the less commonly used
 features. The Korn shell and bash are
 the same as the Bourne shell, but with a few twists of their own. The
 Z shell generally understands both
 syntaxes (and, in its usual manner, adds even more).

	You can redirect standard input and standard output in the same
 command line. For example, to read from the file
 input and write to the file
 output, give the command:
% prog < input > output

	The Bourne shell will let you go further and write
 stderr to a third file:
$ prog < input > output 2> errors

	The C shell doesn’t give you an easy way to redirect standard output
 without redirecting standard error. A simple trick will help you do
 this. To put standard output and standard error in different files, give
 a command like:
% (prog > output) >& errors

	We’ll discuss commands like this in Section 43.3 and Section
 43.5.

	Many implementations of both shells don’t care what order the
 redirections appear in, or even where they appear on the command line.
 For example, SunOS lets you type <
 input
 >
 output
 prog. However, clarity is a virtue
 that computer users have never appreciated enough. It will be easiest to
 understand what you are doing if you type the command name first — then
 redirect standard input, followed by standard output, followed by
 standard error.

There
 are some more complex forms of standard I/O redirection,
 particularly for the Bourne shell (Section 36.16).
Of course, programs aren’t restricted to
 standard I/O. They can open other files, define their own special-purpose pipes,
 and write directly to the terminal. But standard I/O is the glue that allows you
 to make big programs out of smaller ones, and it is therefore a crucial part of
 the operating system. Most Unix utilities read their data from standard input
 and write their output to standard output, allowing you to combine them easily.
 A program that creates its own special-purpose pipe may be very useful, but it
 cannot be used in combination with standard utilities.
Many Unix systems, and utilities such as
 gawk (
 Section 20.11), support special
 filenames like /dev/stdin,
 /dev/stdout, and /dev/stderr.[3] You can use these just as you’d use other files. For instance, to
 have any ordinary command read from the file afile, then
 standard input (from the keyboard, for example), then the file
 bfile:
% somecmd
 afile /dev/stdin bfile
In the same way, a process can write to its standard output through
 /dev/stdout and the standard error via
 /dev/stderr.
Because reading from standard input and standard output is so common, there is
 a more general convention for redirecting to these two devices: using - where a program expects a filename. If the
 program was expecting the name of an input file, it will read from standard
 input instead. If it was expecting an output file, it will write to standard
 output. A very common place this is seen is in the unpacking of

 tar
 gzipped archives:
$ gzip -dc filename.tar.gz | tar -xvf -
Here, the -c flag tells gzip to stream the uncompressed file to standard
 output, which is then piped to tar. The
 -f flag of tar is used to specify the
 source tar file, which, because of the -, is
 standard input.

—ML and JP

One Argument with a cat Isn’t Enough

 What’s wrong with this command line?
cat
 Section 12.2
% cat filename | tr -d '\015' > newfile
As Tom Christiansen wrote in a Usenet article:

A wise man once said: if you find yourself calling cat with just one argument, then you’re
 probably doing something you shouldn’t.

The command line above only uses cat to
 feed the file to the standard input of tr.
 It’s a lot more efficient to have the shell do the redirection for you with its

 < character (Section 43.1):
% tr -d '\015' < filename > newfile
—JP and TC

Send (Only) Standard Error Down a Pipe

 A vertical bar character (|) on a command line pipes the standard output of
 a process to another process. How can you pipe the standard error but not the
 standard output? You might want to put a long-running cruncher command in the background, save the output
 to a file, and mail yourself a copy of the errors. In the C shell, run the
 command in a subshell (Section 43.7). The standard output of
 the command is redirected inside the subshell. All that’s left outside the
 subshell is the standard error; the |&
 operator (Section 43.5)
 redirects it (along with the empty standard output) to the mail (Section 1.21)
 program:
% (cruncher >
 outputfile
) |& mail
 yourname &
[1] 12345
Of course, you don’t need to put that job in the background. If you want the
 standard output to go to your terminal instead of a text file, use
 /dev/tty (Section 36.15) as the outputfile.
The Bourne
 shell gives you a lot more flexibility and lets you do just what you need. The
 disadvantage is the more complicated syntax
 (Section 36.16). Here’s how to
 run your cruncher program, route the
 stderr through a pipe to the mail program, and leave stdout going to your
 screen:
$ (cruncher 3>&1 1>&2 2>&3 3>&-) | mail
 yourname
 &
12345
If this example makes your head hurt a little,
 you’re not alone. The key to understanding this arcana is to know that programs
 don’t refer to files by name like users do. Instead, when a program wants to
 read or write to a file, it must ask the operating system for a file stream that
 has an integer file descriptor associated with it. Every
 program has three file streams opened by default: standard input, standard
 output, and standard error. The file descriptors associated with standard input
 and standard error are 1 and 2, respectively. These file streams may be
 duplicated; that is, the data stream pointed by the file descriptor on the left
 will now go to data stream pointed to by the file descriptor on the right. If
 you wanted to redirect both standard error and standard output to more, you might do this:
$ command
 2>&1 | more
To redirect stdout to an output file and send
 stderr down a pipe, try this:
$ (cruncher 3>&1 >
 outputfile
 2>&3 3>&-) | mail
 yourname
 &
12345
— JP

Problems Piping to a Pager

 If your window onto Unix (terminal, X
 window, communications program, whatever) doesn’t have a way to show you the
 previous screenful, using a pager program like more

 , pg, or less
 (Section 12.3) can be mighty
 handy. But piping to a pager doesn’t always work the way you want it to.
Here’s a grep
 command line that searches several files.
 What’s wrong with it?
% grep "^set" */.cshrc | more
That wasn’t a fair question because you can’t tell what’s wrong. The problem
 (it turns out) is that the files named barney/.cshrc,
 edie/.cshrc, and gail/.cshrc are
 read-protected (Section 50.2). But as the first part of
 Figure 43-1

 shows, the error messages scroll off your
 screen and the pager doesn’t stop them.
[image: Standard error bypassing pipe, going through pipe]

Figure 43-1. Standard error bypassing pipe, going through pipe

Unless your display is reallllly
 sloooowww, the error messages are lost, and you never know they were there, or
 the errors are jumbled up with the “good” grep output. That’s because you’ve told the shell to send only
 the standard output of grep to the pager
 program. And
 grep writes its errors to the standard error (
 Section 36.15)! But both
 stdout and stderr go to the screen
 at once. The errors on stderr scroll away with the output
 from the pager. The pager can’t count the lines of errors, so it outputs a
 complete screenful of stdout (the “good stuff”). If
 grep’s standard output (from the files it
 could read) is at least a screenful, as it is here, there are too many lines to
 fit on the screen — and some lines will scroll off.

 The better way to do this is to combine
 grep’s stdout and
 stderr and give them both to the pager. These command
 lines (in csh and sh) both do that:
% grep "^set" */.cshrc |& more
$ grep "^set" */.cshrc 2>&1 | more
(The Z shell understands both.) The second part of Figure 43-1 shows how this works. Any
 time I pipe a command’s output to a pager, I usually combine the
 stdout and stderr this
 way.

— JP

Redirection in C Shell: Capture Errors, Too?

 The

 > (right angle bracket) operator redirects
 the standard output of a process to a file. It doesn’t affect the standard error. If you’re logged in and can
 see any messages written to standard error, that’s okay:
% nroff -ms report.ms > report.out &
[1] 10316
 ...Later...
nroff: can't open file /hoem/jpeek/report.data
But if you log out and leave the job running, you’ll never see those errors
 unless you use the csh operator >&
 . It redirects both
 standard output and standard error to a file. For example:
make
 Section 11.10
% make >& make.output &
[1] 10329
% logout
 ...Later...
% cat make.output
 cc -O -c random.c
 cc -O -c output.c
"output.c", line 46: syntax error
"output.c", line 50: time_e undefined
"output.c", line 50: syntax error
 ...
You might also use the >& operator
 while you’re logged in and watch the output file with tail
 -f (
 Section 12.10). If you don’t want the
 errors mixed with other output, you can split them to two files; see Section 43.1.

 The C shell also has a pipe operator, |&, that redirects both standard output and
 standard error. It’s great for running a job in the background or on another
 computer and mailing (Section 1.21) any output to me:
% make |& mailx -s "'make bigprog' output" jpeek@jpeek.com &
[1] 29182 29183
If I’d used plain | instead of |&, any text on the standard error wouldn’t go
 into the mail message.
— JP

Safe I/O Redirection with noclobber

 Have
 you ever destroyed a file accidentally? If you set the
 noclobber C shell variable or the
 noclobber option in bash, zsh, and ksh, it can help you avoid these mistakes. Setting
 noclobber prevents you from destroying a file when you
 are redirecting standard output (Section 43.1).
Consider the following situation:
% anycommand
 > outputfile
The command above overwrites the old outputfile. If you
 have misspelled the name of your output file, or if you have forgotten that the
 file already exists and contains important data, or (most common) if you really
 meant to type >> instead of > (i.e., if you really meant to append to the
 end of outputfile, rather than start a new one), tough
 luck; your old data is gone.
Setting noclobber prevents this problem. If
 noclobber is set, the shell will not allow I/O
 redirection to destroy an existing file, unless you explicitly tell it to by
 adding an exclamation point (!) after the C
 shell redirect symbol or by adding a vertical bar (|)
 in ksh and bash. (The Z shell understands both.) Here are examples. The left
 column shows csh and tcsh; the right column is for bash (ksh is similar):
% set noclobber $ set -o noclobber
% ls $ ls
filea fileb filea fileb
% anyprogram > fileb $ anyprogram > fileb
fileb: File exists. bash: fileb: Cannot clobber existing file
% anyprogram >! fileb $ anyprogram >| fileb
% $
Be sure to put space after the !. If you
 don’t, the C shell thinks you’re making a history reference and it (usually)
 prints an error like fileb: Event not
 found.
Remember that noclobber is not an environment variable,
 so any new shells you create won’t inherit it
 (Section 35.9). Therefore, if you
 want this feature, put the set command
 (above) in your shell’s setup file (Section 3.3).
Note
In some shells, noclobber will prevent you from
 redirecting standard output to /dev/null
 (Section 43.12) or to a
 terminal unless you add the !.

The noclobber variable has one other feature that’s worth
 noting. Normally, shells let you append to a file that doesn’t exist. If
 noclobber is set under csh, tcsh, and zsh, it won’t; you can append only to files that
 already exist unless you use an exclamation point:
% ls
filea fileb
% anyprogram
 >> filec
filec: No such file or directory
% anyprogram
 >>! filec
%
—ML and JP

The () Subshell Operators

 A useful shell trick is to use
 parentheses, (
), to group commands.
Combining Several Commands

The parentheses start a subshell (Section 24.4) that, in effect,
 “collects” the output of all the commands inside. (It does the same thing
 for the

 standard input and
 standard error.) The output of the entire group can be passed together into
 a single pipeline. For example:
echo
 Section 27.5
$ (cat file1; echo .bp; cat file2) | nroff
This will interpose the nroff
 .bp (break page) request between two
 files to be formatted.[4]
Parentheses are also useful in the Bourne shell if you want to put an
 entire sequence of commands separated by semicolons
 (;) (Section
 28.16) into the background. In the C shell, the command line below
 will go immediately into the background.
% nroff -ms file1; nroff -ms file2 &
But in the Bourne shell, the background request (&) will apply only to the second command, forcing you to
 wait for completion of the first job before you get back the system prompt.
 To get right back to work, you can type:
$ (nroff -ms file1; nroff -ms file2) &

Temporary Change of Directory and Environment

 Commands that run between the parentheses
 won’t affect the parent shell’s environment. For instance, to run a command
 in another directory without changing your active
 shell’s current directory (Section 24.3):
% pwd
/home/trent
% (cd
 somewhere-else
 ; nroff -ms file1 > file.out) &
[1] 22670
% pwd
/home/trent
The file file.out will be created in the
 somewhere-else directory.
—TOR and JP

Send Output Two or More Places

[image:] Go to http://examples.oreilly.com/upt3 for more information on: tee

 If you’re
 running a program and you want to send its output to a file — but you want to
 see the output on your screen, too, so you can stop the program if something
 goes wrong — you can use tee. The tee program reads its standard input and writes it to one or more
 files. (The web site has the GNU version.)
Note

 A pipe may buffer the
 output of a program, collecting it in chunks and spitting it out every so
 often. If the program’s output comes slowly and feeds tee through a pipe, there might be long delays
 before you see any output. In that case, it’s better to use > to redirect output to a file, put the
 program into the background, and watch the output with tail -f (Section
 12.10). Or use a program like script (Section
 37.7).

Use tee for saving results in the middle of
 a long pipeline of commands. That’s especially good for debugging. For example,
 you could type:
% prog
 | tee prog.out | sed -f sedscr | tee sed.out | ...
to save the output of prog in the file
 prog.out and also pipe it to the sed command, save sed’s output in sed.out and also pipe it,
 and so on.
Here are two other notes about tee. If you
 want to add to a file that already exists, use the -a option.
 tee can write to more than one file if
 you give all of the filenames as arguments
Z shell
 users usually don’t need tee because they
 have the zsh MULTIOS option. For instance,
 here’s how to write the pipeline above:
zsh% setopt multios
zsh% prog

 > prog.out | sed -f sedscr > sed.out | ...
— JP

How to tee Several Commands into One Place

The tee (Section 43.8) command
 writes its standard input to a file
 and writes the same text to its standard output. You might want to collect
 several commands’ output and tee them all to
 the same file, one after another. The obvious way to do that is with the
 -a option:
$ some-command
 | tee teefile
$ another-command
 | tee -a teefile
$ a-third--command
 | tee -a teefile
A more efficient way is:
>
 Section 28.12
$ (
 some-command
> another-command
> a-third-command
) | tee teefile

 The subshell
 operators (Section
 43.7) collect the standard output of the three commands. The output all
 goes to one tee command. This has two
 differences from the first method. First, you need two fewer pipes, two fewer
 tees, and one more subshell. Second, you
 can pipe the output of the single tee command
 to another process — for example, to print it.
Unfortunately, the C shell doesn’t make this quite as easy. If you can type
 all the commands on one line, you can do it this way (the same thing works in
 the Bourne shell):
% (
 command1; command2; command3
) | tee teefile
Otherwise, use a semicolon and backslash (;\) at the end of each line:
% (
 ;\

 ;\

) | tee teefile
In all these examples, remember that if you don’t need to see the output of
 the commands, you don’t need tee. Use the
 subshell as above, but replace | tee teefile
 with > outfile or | somecommand.
— JP

Redirecting Output to More Than One Place

 What if you want to use the output of a
 program more than once, and you don’t want to deal with an intermediary file?
 For example, suppose I have some large, compressed PostScript files. I want to
 print the files, but I also want to know how many pages they are. I know that
 the number of pages appears on a line following %%Pages: at the end of the file. Using bzcat (Section 15.6)
 to uncompress the file to standard output, I can type the following commands
 into a for loop (Section 28.9) (or put them into a shell
 script). This loop sends each file to the printer and uses sed to capture the correct line:
-n
 Section 34.3
for f
do
 bzcat $f | lpr
 bzcat $f | sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"
done
But this ends up running bzcat twice, which
 takes some time. I can expand the file with bunzip2 first, but frankly I’m not sure I have the disk space for
 that.

 Using process substitution and tee (Section
 43.8), I can do it in one line, without wasting processes and without
 eating disk space:
for f
do
 bzcat $f | tee >(lpr) | sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"
done
From running this script, as each file is sent to the printer I receive the
 following messages on my screen:
ch01.ps.gz: 44 pages
ch02.ps.gz: 51 pages
ch03.ps.gz: 23 pages
 ...
Because tee can write to more than one
 file, it can write to more than one process with process substitution. For
 instance, maybe you want to send the file to both a black-and-white printer and
 a color printer at the same time:
bzcat $f | tee >(lpr -Pbw) >(lpr -Pcolor) | \
 sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 tpipe

 If
 your shell doesn’t have process substitution, maybe you have a shell like
 bash or zsh that does. (Write a shell script. Or type the shell’s name at
 your shell prompt, then type exit when you’re
 done with the temporary shell.) Otherwise, you can use tpipe; it’s available online [see http://examples.oreilly.com/upt3]. tpipe is similar to tee (Section 43.8), but instead of putting a
 copy of standard input in a file, it passes the input to a new pipe. Give
 tpipe the name of the command (here,
 lpr) that will read the text from its
 standard input:
bzcat $f | tpipe lpr | sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"
You can also simulate tpipe by using
 awk (Section 20.10). Write a little awk script that reads each input line and writes the text both to
 a command and to awk’s standard
 output:
bzcat $f | awk "{ print | \"lpr\" ; print }" | \
 sed -n "s/^%%Pages: \([0-9][0-9]*\)/$f: \1 pages/p"
This is much slower and only works on text files, but it does the job.
—LM and JP

Named Pipes: FIFOs

 When you type a pipe
 symbol (|) on a command line, the two
 processes that communicate through the pipe must both have been started from
 that same shell. Newer versions of Unix have a way to let two unrelated
 processes (processes not started from the same parent process) communicate: a
 named pipe or FIFO
 (First In
 First Out).
A FIFO works like a pipe, but its interface looks like a
 file. It has a filename and permissions (Section 1.17), and it’s in a directory.
 Once you make the FIFO, one process can write to it (with the
 shell’s > operator, or directly) and
 another process can read from it (the shell’s < operator, or directly). Unlike a regular file, though, a
 FIFO doesn’t “fill up” with data as a process writes to
 it: if there’s no process waiting to read the data, the data is lost. So, when
 you use a FIFO between two processes, the processes still
 need to coordinate with each other. There are times that temporary files are
 better.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 mkfifo
The command to make a FIFO is mkfifo
 . Like other files, the default permission
 is set by your umask. There’s also a -m option that sets the
 permissions — with a numeric or symbolic mode like chmod (Section 50.5)
 uses. To remove a FIFO, use — you guessed it — rm.
Let’s look at an example that, although it’s made up, shows some important
 things to know about FIFOs. If you’re using a window system,
 you’ll use two terminal windows (like xterm
 (Section 24.20)); you’ll write to
 the FIFO from one window and read it from the other. Or if
 you have two terminals, you can use both of them. Otherwise, with a single
 terminal, you can put the writing process in the background (Section
 23.2) and run the reading process in the foreground.[5]
Start by making the FIFO. You can make it from any window.
 (The FIFO stays in the filesystem until you remove it. You
 can use it over and over again, though only one pair of processes can use it at
 any one time.) Then have a look with ls; the
 FIFO has zero size, it has a p type in the -l output and a | symbol from -F:
-F
 Section 8.10
$ mkfifo /tmp/fifo
$ ls -l /tmp/fifo
prw-rw-r-- 1 jpeek jpeek 0 Dec 30 00:25 /tmp/fifo
$ ls -F /tmp/fifo
/tmp/fifo|
Next, start the process that reads from the FIFO. Like a
 program that’s reading from a regular (anonymous) pipe, the process will block
 (sit there doing nothing) until there’s something to read. For now, plain
 cat (Section 12.2) is a good choice:
$ cat /tmp/fifo
 ...nothing (yet)...

 To write to the FIFO,
 here’s a little shell script (Section 35.1) that sends the current
 date and time to its standard output every three seconds. You could name it
 dater:
while
 Section 35.15, sleep
 Section 24.9
#!/bin/sh

while sleep 3
do date
done
In the other window or terminal, start dater and redirect its output to the FIFO. The
 process will run, writing data to the FIFO
 periodically:
$ dater > /tmp/fifo
In your window running cat, the dates
 should start to appear. When you kill the writing process (or it finishes by
 itself), the reader should terminate.
Also try reading from the FIFO with any other Unix program,
 like the pr (Section 45.6) formatter with its -l15 option (to
 make output pages 15 lines long, so you don’t have to wait too long to see the
 next page header). This makes a nice illustration of the way that standard
 pipes, as well as named pipes, work: dribbling output to the reading process as
 the writing process makes it. (Standard pipes may be
 buffered, though, passing output in larger
 chunks.)
If you have a third terminal or window, and you start another reading process
 (like cat /tmp/fifo) there, it will block
 until you kill the first reading process (the previous cat /tmp/fifo).
This can be good food for thought. For instance, what output do you see when
 tail (Section 12.8) reads from a pipe or FIFO? (Answer:
 nothing until the writing process dies.)
To review, though, a FIFO is useful anytime two processes
 need to communicate but those processes weren’t started from the same parent
 process, so a traditional pipe can’t work (because the second process can’t
 access the open file descriptor from the first process).
— JP

What Can You Do with an Empty File?

 It isn’t a file, actually, though you can use it
 like one. /dev/null
 is a Unix device.[6] It’s not a physical device. /dev/null is a
 special device that “eats” any text written to it and returns “end-of-file” (a
 file of length 0) when you read from it. So what the heck can you use it
 for?
	Empty another file.

 Just copy
 /dev/null “on top of” the other file (Section 15.2).

	Make another program “quiet” by redirecting its output there. For
 instance, if you’re putting a program into the background and you don’t
 want it to bother you, type:

% progname
 > /dev/null &
	That redirects (Section 43.1) standard output
 but leaves standard error hooked to your terminal, in case there is an
 error.

	Answer a program that asks a lot of questions — you know you’ll just
 press RETURN at each prompt. In a lot of cases, you can redirect the
 program’s standard input from /dev/null:
% progname
 < /dev/null
Want the default setup? If yes, press RETURN:
Enter filename or press RETURN for default:
 ...

	You should test that with each program, though, before you assume this
 trick will work. (If it doesn’t work, try yes (Section
 14.5).)

	Where a program needs an extra filename but you don’t want it to read
 or write an actual file. For instance, the grep (Section
 13.1) programs won’t give the name of the file where they
 find a match unless there are at least two filenames on the command
 line. When you use a wildcard in a directory where maybe only one file
 will match, use /dev/null to be sure that grep
 will always see more than one (Section 9.21):

% grep "
 outputfile
 " * /dev/null
	You’re guaranteed that grep won’t
 match its regular expression in /dev/null.

	Section 15.3 shows even more
 uses for /dev/null.

 Another interesting device (mostly for
 programmers) is /dev/zero. When you read it, you’ll get

 ASCII zeros (NUL characters) forever.
 There are no newlines either. For both of those reasons, many Unix commands have
 trouble reading it. If you want to play, the
 command below will give you a start (and head
 (Section 12.12) will give you a
 stop!):[7]
od
 Section 12.4
% fold -20 /dev/zero | od -c | head
— JP

[1] If a program’s input consists entirely of alphanumeric characters and
 punctuation (i.e., ASCII data or international (non-English)
 characters).

[2] But it can find out.

[3] On Linux, at least, those are symbolic
 links (Section
 10.4) to /proc/self/fd/0,
 /proc/self/fd/1, and
 /proc/self/fd/2, respectively.

[4] If you’re using only cat and a
 single echo, you can use this
 command instead:

[5] This may take some juggling because your system may require you to
 start the reading process before the writing process. If it does, and if
 your system has job control (Section 23.3), do this: start
 the reading process, stop it with CTRL-z, start the writing process in
 the background, then bring the reading process to the foreground.

[6] Well, okay. It’s a device file.

[7] On some Unix versions, the head
 program may not terminate after it has printed the first 10 lines. In
 that case, use sed 10q instead of
 head.

Chapter 44. Devices

Quick Introduction to Hardware

Your Unix machine can likely talk
 to a wide collection of
 hardware:

 disk controllers and disks (Section 44.4,
 Section 44.5), CD-ROMs (Section
 44.6), ethernet cards (Section 44.8), modems (Section
 44.10), sound cards (Section 44.13), and so on. Each device
 needs its own little piece of software within the kernel, called a device
 driver. Some device drivers are simple, and some are very complex; some cover
 multiple devices, and some are specific to one particular piece of
 hardware.
Many modern Unix platforms use loadable
 kernel modules for most device drivers,
 so that drivers can be loaded at run time rather than compiled into the
 kernel.
Many devices also have

 user-space tools to configure them, like
 ifconfig (Section 44.8) for network devices (Section
 44.6, Section 44.7),
 mount (Section 44.9) for disks and so forth.
In this chapter we’ll give you the whirlwind overview of devices on Unix.
 Since there are so many devices and so many platforms, we’ll gloss over a lot of
 details, but hopefully this will give you enough to get started with and a few
 hints as to where to find more information.
— DJPH

Reading Kernel Boot
 Output

 As your Unix machine boots up, it will
 display a message for each device driver as it initializes. This is a good way
 to tell what devices your kernel was able to find. The exact output varies, but
 here is the output for hard

 drive controllers, hard drives, and
 network cards from a FreeBSD machine and a Debian Linux
 machine:
FreeBSD
atapci0: <Intel ICH ATA66 controller> port 0xffa0-0xffaf at device 31.1 on pci0
ata0: at 0x1f0 irq 14 on atapci0
ata1: at 0x170 irq 15 on atapci0
ad0: 19569MB <ST320430A> [39761/16/63] at ata0- master UDMA66
afd0: 239MB <IOMEGA ZIP 250 ATAPI> [239/64/32] at ata0-slave using PIO3
acd0: CDROM <ATAPI CDROM> at ata1-master using PIO4
rl0: <D-Link DFE-530TX+ 10/100BaseTX> port 0xbc 00-0xbcff
 mem 0xefdfff00-0xefdfffff irq 11 at device 4.0 on pci1

Linux
PIIX4: IDE controller on PCI bus 00 dev 39
PIIX4: not 100% native mode: will probe irqs later
 ide0: BM-DMA at 0xf000-0xf007, BIOS settings: hda:DMA, hdb:pio
 ide1: BM-DMA at 0xf008-0xf00f, BIOS settings: hdc:pio, hdd:pio
hda: WDC WD307AA-32BAA0, ATA DISK drive
ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
hda: WDC WD307AA-32BAA0, 29333MB w/2048kB Cache, CHS=3739/255/63, UDMA
Partition check:
 hda: hda1 hda2 hda3
rtl8139.c:v1.07 5/6/99 Donald Becker
 http://cesdis.gsfc.nasa.gov/linux/drivers/rtl8139.html
eth0: RealTek RTL8139 Fast Ethernet at 0xd400, IRQ 11, 00:50:ba:d3:9e:14.
More
 specifically, in the
 line:
atapci0: <Intel ICH ATA66 controller> port 0xffa0-0xffaf at device 31.1 on pci0
atapci is the name of the device; 0 is the number of the device (devices are
 generally numbered sequentially with the first one probed getting the number 0);
 <Intel ICH ATA66 controller> is the
 name of the specific driver that successfully attached to this device; port 0xffa0-0xffaf at device 31.1 is physical
 address information about where this particular device is located; and finally,
 on
 pci0 tells us this device is attached to the
 first PCI bus (since pci is the device name
 of a PCI bus and 0 is the number assigned to the first PCI bus
 probed).
Note that in both FreeBSD and Linux, each line gives
 information about which driver is being used, hardware addresses, and options.
 Other platforms give similar information during boot. Often if you have a
 device that’s not being recognized, you
 will see a line in the boot output telling you that a device was found but no
 driver for it could be found. If you would like more information, you may be
 able to boot your machine with boot -v
 from the bootstrap prompt — the BSDs and
 Solaris support -v. This enables verbose booting, which prints
 out a lot more information during device probing and may help you understand why
 a device driver couldn’t be found. Linux doesn’t have any straightforward
 way to get verbose information like this, but you can use lspci to show every device on the PCI bus, whether
 there’s an active driver for that device or not.
—
 DJPH

Basic Kernel Configuration

 Generally a Unix kernel is made up of
 some core, which handles fundamental functionality like virtual memory, and a
 lot of modules for various devices. A kernel configuration file is used to build
 a kernel and, on some platforms, a set of loadable kernel modules.
A kernel configuration file has a list of kernel
 options and then a list of devices and device options. The kernel build process
 uses this file to determine exactly what to build; this way you can have a
 kernel that supports exactly the hardware you have in your machine but isn’t
 using any extra resources to support hardware you don’t have.
Some example device lines from various kernel configuration files:
#
FreeBSD samples
#
maxusers 128
options INCLUDE_CONFIG_FILE
options INET #InterNETworking
device isa
device pci
device ata0 at isa? port IO_WD1 irq 14
device ata
device atadisk # ATA disk drives
device atapicd # ATAPI CDROM drives
device atapifd # ATAPI floppy drives
device atapist # ATAPI tape drives
options ATA_STATIC_ID #Static device numbering

#
Linux samples
#
Loadable module support
CONFIG_MODULES=y
CONFIG_MODVERSIONS=y
CONFIG_KMOD is not set

General setup
CONFIG_NET=y
CONFIG_PCI=y

Block devices
CONFIG_BLK_DEV_FD=m
CONFIG_BLK_DEV_IDE=y
CONFIG_BLK_DEV_HD_IDE is not set
CONFIG_BLK_DEV_IDEDISK=y
CONFIG_BLK_DEV_IDECD=m
CONFIG_BLK_DEV_IDETAPE=m
CONFIG_BLK_DEV_IDEFLOPPY=m
CONFIG_BLK_DEV_IDESCSI is not set
CONFIG_BLK_DEV_IDEPCI=y
CONFIG_BLK_DEV_IDEDMA=y
CONFIG_IDEDMA_AUTO=y
The kernel build process involves setting up an appropriate configuration file
 for your platform and then using a tool (generally config(8); check the manpage) to create a kernel build setup from
 the configuration file. Then you simply run make within the kernel build setup and you have a new kernel.
 Once the new kernel is installed, you reboot the machine, and poof, you’re
 running on a sleek new customized kernel.
To understand how to configure the kernel on your platform, consult the
 documentation for that platform. Note that many platforms have tools or even
 GUIs for helping you configure your kernel. For the free Unixes, search the Web.
 There are extensive HOWTOs available describing how to configure your kernel in
 excruciating detail.
Linux has a very detailed HOWTO for
 kernel configuration at http://www.tldp.org/HOWTO/Kernel-HOWTO.html. The short version is that the configuration file mentioned above is stored
 in the .config file at the top of the
 kernel source tree (usually /usr/src/linux). Generally you don’t have to edit it directly;
 instead you’d use make
 menuconfig or make
 xconfig, again at the top of the kernel
 source tree, to use the fancy kernel configuration tools.
— DJPH

Disk Partitioning

 A
 physical disk can be divided into smaller blocks, called
 partitions. Unix disk devices operate on partitions,
 where each device is a single partition. The simplest configuration is one big
 partition for the entire disk.
The advantage to having filesystems on separate partitions is that different
 parts of your operating system are somewhat protected from each other. If your
 users have filled up /home, programs
 writing log files in /var aren’t affected
 if /home and /var are separate partitions. If your disk gets corrupted, only
 the corrupted partition is damaged. The disadvantage is that, in most cases, if
 you mistakenly allocated too little disk space for a partition, you can’t steal
 space from your /var to give you more room
 on /home once your system is set up.
On non-PC hardware, partitioning is generally simple enough; use format or disklabel to write a partition table onto the disk.
 Traditionally, partitions are named with a letter following the device name, for
 example, /dev/ad0a, /dev/ad0c and so forth. By convention, partition
 a is for a root filesystem (/), b is for
 swap space, c represents the whole disk, and
 so forth. Of course, every current platform changes this in some way. Check the
 manpages for the various tools mentioned for more details on what to do for your
 specific platform.
Solaris’s disk device naming scheme is
 /dev/dsk/c?t?d?s?, where each ? is a number. The c is for controller, the t for
 target (a physical address on the controller), the d for disk, and the s for
 slice, another concept like partition. In this case, rather than partition
 c representing the whole disk, slice
 2 does. This set of four numbers uniquely
 identifies a specific partition (slice) on a specific disk. Solaris uses
 format to manipulate partition
 tables.

 On
 PC hardware, it’s a bit more complicated, because the PC BIOS has a concept of
 partitions built into its understanding of disks. Unixes like Linux and FreeBSD
 that run on this hardware need to coexist with this partition table, especially
 if you want a machine that can dual-boot Unix and Windows. The BIOS understands no more than
 four primary partitions
 on each disk, due to the way it
 addresses partitions. To get around this limitation, one primary partition can
 be set to be an extended partition
 , which can then serve as a container for
 a different partition addressing scheme. Partitions within an extended partition
 are called logical partitions and have a few restrictions,
 but they aren’t limited to four. The BIOS requires a primary partition to boot;
 it can’t boot from a logical partition.
Linux names the IDE hard drives /dev/hda through /dev/hdd and the SCSI drives /dev/sda through /dev/sdg.
 Higher letters are possible with extra controllers. The device name itself
 represents the whole disk, as partition c and
 slice 2 did above. Linux uses the BIOS
 nomenclature and uses primary partitions, extended partitions and logical
 partitions. Primary partitions get partition numbers one through four, and thus
 partition two on the second IDE disk would be /dev/hdb2. Logical partitions get numbers higher than four.
 Linux uses fdisk to manipulate partition
 tables.
FreeBSD
 calls the BIOS primary partitions slices and doesn’t use
 extended or logical partitions. Its own partitions within a slice are then just
 called partitions. This has the advantage of allowing a
 fairly traditional a through h partitioning, which just lives in a particular
 slice. So the swap partition within the second BIOS slice of the first IDE drive
 would be /dev/ad0s2b. FreeBSD uses fdisk to deal with slices and disklabel to manipulate partition tables.
As you can see, each platform has its own idiosyncrasies, but each
 unambiguously defines a scheme for uniquely referring to a particular partition
 on a particular disk. This lets us decide where we want our filesystems and
 refer to them in mount commands and in
 /etc/fstab (Section 44.5).
— DJPH

Filesystem Types and /etc/fstab

 A filesystem is the
 scheme used to organize files on the disk. In the Windows world, FAT, FAT32, and
 NTFS are all filesystems. Various Unixes have their own filesystems with a
 forest of names: ufs, ext2fs,
 vxfs, ffs,
 nfs, mfs,
 ISO9660 (which most CD-ROMs use) and special
 filesystems like tmpfs, procfs, and
 devfs.
Filesystems like ufs (Unix File System),
 ffs (Fast File System), vxfs
 (Veritas Extended File System), and ext2fs (Extended File
 System, Version 2) are simply ways of organizing inodes and bytes with various
 strengths and weaknesses. nfs (Network File System) is a
 filesystem for making remote files appear to be available locally.
 mfs (Memory File System) is a filesystem for ramdisks,
 that is, file storage in memory instead of on disk. tmpfs
 (Temporary File System) is a file system often used for /tmp which shares
 filespace and swap space dynamically. procfs (Process File
 System) simulates a filesystem, but with process information in it instead of
 files. (procfs on Linux is different from
 procfs on the BSDs; FreeBSD has a
 linprocfs to simulate part of Linux’s
 procfs.) devfs is similar, but for
 devices instead of processes.

 Standard mounts are configured using
 /etc/fstab (or, on some platforms,
 /etc/vfstab). fstab is just a list of filesystems that should be mounted,
 along with where they should get mounted, what type of filesystem each device
 contains, and any options. My FreeBSD fstab
 looks like this:
Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad2s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/ad2s1e /home ufs rw 2 2
/dev/ad0s1f /usr ufs rw 2 2
/dev/ad0s1e /var ufs rw 2 2
/dev/acd0c /cdrom cd9660 ro,noauto 0 0
proc /proc procfs rw 0 0
I have two swap partitions, /dev/ad0s1b
 and /dev/ad2s1b. My /, /home,
 /usr, and /var are all separate ufs filesystems, and
 I have a CD-ROM
 that can be mounted on /cdrom (but must be
 manually mounted (Section 44.6)) and a standard
 procfs. The last two columns determine priority for
 backups and for being consistency checked by fsck. The ufs filesystems are all fscked, with / first; the rest of my filesystems are types that don’t need to
 be fscked.
On other platforms, the options may be different, and the device names will
 certainly be different, but the basic gist of fstab will be the same.
Some filesystem types support “soft updates,” which changes slightly the way
 the filesystem writes files out to the disk and can dramatically increase your
 effective disk speed. Consider looking at the documentation for your platform
 and turning on soft updates (generally this is done via tunefs).
— DJPH

Mounting and Unmounting Removable Filesystems

 Removable disks are prevalent in Unix
 machines;

 CD-ROMs, DVD-ROMs, Zip disks, and
 floppies are all removable disks. When a Unix system boots, normal filesystems
 are all mounted automatically. By definition, removable filesystems may not even
 be in the machine at boot time, and you certainly don’t want to have to reboot
 your machine just to change CDs.
To do this, you use mount and umount
 . The -t option allows you
 to specify the type of filesystem. On my FreeBSD machine, I can mount a
 FAT-formatted Zip disk with:
mount -t msdos /dev/afd0s4 /zip
If I’ve formatted the Zip disk with a BSD ufs filesystem
 instead, I don’t need the -t option, since
 ufs is the default on FreeBSD, and I would use the BSD
 partitioning scheme (/dev/afd0c) instead of
 the BIOS partitions (/dev/afd0s4).
If you use your removable disk regularly, you can add it to your fstab and make this simpler:
/dev/acd0c /cdrom cd9660 ro,noauto 0 0
/dev/afd0c /zip ufs rw,noauto 0 0
/dev/afd0s4 /mszip msdos rw,noauto 0 0
Note that I’ve set up my fstab for both ufs-formatted and
 FAT-formatted Zip disks, and that the Zip drive and the CD-ROM are both set
 noauto to keep them from being
 automatically mounted. Having these in my fstab means I can just type mount /zip or
 mount /cdrom to mount a Zip disk or CD-ROM. Don’t
 forget to create the directories /cdrom,
 /zip, and /mszip!
Generally the mount and umount commands must be run as root. However,
 you’d often like normal users to be able to mount and unmount removable disks.
 Linux has an easy way to do this: just add user to the options field in /etc/fstab and normal users will be able to mount and unmount
 that device. (Incidentally, Linux also has an auto filesystem type, which is very handy for removable devices,
 because it does its best to dynamically figure out what filesystem is on the
 removable media.) On other platforms, it can be a little more complex.
 Generally, the trick is to set the permissions on the device file properly. On
 FreeBSD you also need to use sysctl to set
 vfs.usermount, which will allow users to
 mount properly chmoded devices on directories
 they own; similar tricks may be needed on other platforms. To set the floppy
 drive to allow anyone to mount it and the CD-ROM to allow anyone in the cdrom group to mount it, you’d do something like
 this:
chmod 666 /dev/fd0

chgrp cdrom /dev/acd0c
chmod 640 /dev/acd0c
Then, as a normal user in group cdrom, you
 could:
% mkdir ~/cdrom
% mount -t cd9660 /dev/acd0c ~/cdrom
Solaris has a

 daemon, vold, which handles all of the messy details of removable media
 for you. At the time of this writing, very current versions of Linux have automount daemons and devfsd to handle such things; check your platform’s current
 documentation.
— DJPH

Loopback Mounts

 Some platforms provide the capability to
 mount a file as if it were a block device (like a disk
 partition (Section
 44.4)). This allows mounting a file as if it were a hard disk, CD-ROM, or
 any other physical media. The primary advantage to this is that it’s a simple
 way to create or work with a floppy, Zip, or
 CD-ROM image without needing the physical
 device. You can mount a CD image without having to burn an actual CD or
 manipulate a floppy boot image. Of course, different platforms call it different
 things and use different tools.
Mounting file images on Linux uses the loop device and is
 called a loop mount or a loopback
 mount. To mount an existing image as a filesystem, use the
 loop option to mount:
% mount -t iso9660 -o loop image.iso /mnt
% ls /mnt
To create a new image, you first create an empty file of the correct size
 (this is effectively creating a partition
 (Section 44.4) — in this case, a
 100 megabyte image. You then attach the image to one of the available loop
 device and use mkfs to create a new
 filesystem in the image. Then you can mount the image normally. In this example,
 we’ll release the loop device we had to allocate specifically and let the mount
 find an available loop device automatically.
% dd if=/dev/zero of=
 image.file
 bs=1k count=100000
% losetup /dev/loop
 image.file
% mkfs -c /dev/loop
 100000
% losetup -d /dev/loop
% mount -o loop
 image.file /mnt
FreeBSD has a similar capability, called vnode disks,
 with very similar syntax, but you use /dev/vn instead of /dev/loop and vnconfig
 instead of losetup. See FreeBSD’s vnconfig(8) manpage.
Solaris also has loop devices as of Solaris 8. The device is /dev/lofi instead of /dev/loop, and you use lofiadm to configure it. See Solaris’s lofiadm(1M) and lofi(7D)
 manpages.
FreeBSD and Solaris don’t provide an equivalent to the loop option to mount; instead you just use vnconfig or lofiadm to
 explicitly associate a particular block device with the file and mount the
 specific block device just like any other device.
— DJPH

Network Devices — ifconfig

ifconfig

 is
 used to configure network devices
 such as Ethernet cards. While booting, the kernel will find a device driver for
 the actual device, but it will still need to be assigned an IP address, and any protocol options need
 to be configured. Various platforms have different ways to store this
 configuration information, but most use ifconfig somewhere in the startup scripts to do the actual
 work.
The primary use of ifconfig is to set up a
 network device to use a particular IP address. ifconfig can also be used to set network options and aliases. To
 bring up an interface (in this case, rl0) on
 192.168.1.1 with normal settings for a /24 network:
ifconfig rl0 inet 192.168.1.1 netmask 255.255.255.0 broadcast 192.168.1.255 up
To temporarily bring a network interface down and then back up later,
 something that can be useful for maintenance:
ifconfig rl0 down
...maintenance operations...
ifconfig rl0 up
— DJPH

Mounting Network Filesystems — NFS, SMBFS

 Network filesystems provide the illusion
 that files on a remote host are on your disk. Except for mounting and unmounting
 such a filesystem and but for a few low-level details, they can be treated like
 any local filesystem, albeit on a very slow disk. The two most common network
 filesystems available on Unix platforms are the Network File System (NFS) and

 Server Message Block File System
 (SMBFS).
NFS has been around for a long time and is available on every Unix system I’ve
 seen in the past ten years. Its interface is simple: an NFS server has a set of
 exported filesystems (usually listed in /etc/exports), and any permitted client can mount those
 filesystems using a straightforward mount
 invocation. Simply specify
 host:/filesystem as
 the device, and tell mount that the
 filesystem is of type nfs:
mount -t nfs orange:/home /orange
For more details on NFS on your platform, take a look at the manpages for
 exports(5) and mount_nfs(8) or nfs(5).
NFS mounts can hang up entirely if the NFS server goes down or if you lose
 your net connection to it. Often this can require rebooting your machine to fix.
 To avoid this, use the soft option when
 mounting NFS filesystems. soft tells the NFS
 client system to use timeouts, so that losing touch with the NFS server just
 causes I/O requests to time out instead of hanging your machine.
Note
NFS by itself is extremely insecure. Be aware
 that running NFS without any other precautions on a publicly accessible
 network opens you up to a wide variety of attacks. http://nfs.sourceforge.net/nfs-howto/security.html addresses
 some of the issues involved and has links to other good information on the
 subject.

SMB is the primary file and printer sharing protocol used by Windows. Chapter 47 details Samba, the primary tool used to deal
 with SMB on Unix systems. smbfs
 is the tool used to mount SMB-shared filesystems
 (including Windows shared drives and the like) as if they were Unix filesystems.
 Much like NFS, smbfs allows you to use
 mount; in this case, you provide the
 share name as the device:
mount -t smbfs //yellow/Public /yellow
smbfs is only supported on some platforms;
 check your installation of Samba for details.
Note that both filesystem types can be included in /etc/fstab
 ,
 just like any other filesystem:
Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/acd0c /cdrom cd9660 ro,noauto 0 0
orange:/home /orange nfs rw 0 0
//yellow/Public /yellow smbfs rw 0 0
— DJPH

Win Is a Modem Not a Modem?

 The
 word “modem” is a contraction of “modulator-demodulator.” The fundamental job of
 a modem is to turn a digital signal into an analog signal and send that analog
 signal across a phone line (modulation) and to receive an analog signal from a
 phone line and turn it back into the original digital signal
 (demodulation).
Controller-based modems do all of the digital signal processing, D/A and A/D
 conversion, and phone-line interfacing in hardware. Generally, these modems
 either are external modems that plug into a serial port or have a serial port
 chip included and thus just look like an extra serial port to the CPU.
 Configuring
 these modems under Unix is easy; just set up whatever program uses the serial
 port to use the port speed and serial options you want.

 Host-based modems, often called
 “Winmodems,” provide some level of hardware support (at a minimum, the physical
 phone line interface) and then emulate some or all of the hardware modulation
 and demodulation in software. There are a variety of specifications related to
 “soft” modems, and current information on things like available drivers, issues,
 standards, and whether a modem is a hard or soft modem are available at http://www.idir.net/~gromitkc/winmodem.html and http://www.linmodems.org.
The problem that soft modems present to Unix is that the software that makes
 up the fundamental functionality of the modem is almost always Windows software.
 These modems are widely available and cheap and do have some advantages, though,
 so there are efforts to provide Unix software for some set of them. Unix
 soft-modem software is highly in flux at the time of this writing. Before you
 buy a modem, be sure that you check the current information on that modem and
 available drivers for the Unix platform you want to use before you buy. Or spend
 a bit more and buy a modem that doesn’t have these issues.
— DJPH

Setting Up a Dialup PPP Session

 Point-to-Point Protocol (PPP) is the way
 ISPs usually provide dialup access (largely because this is the default protocol
 Windows dialup uses). Unixes that can do dialup provide a PPP client, which you
 configure to call the ISP and set up a PPP connection. An established connection
 functions as a network connection — you can use ifconfig (Section
 44.8, Section 46.3) to examine
 it and packets will be routed to the PPP connection by default, and tools like
 traceroute (Section 46.4) can be used across
 it.
Unixes provide two ways to run PPP: kernel PPP, where the PPP code resides in the
 kernel and is therefore very fast but limited in features, and user PPP, where
 packets have to be copied back and forth between kernel space and user space,
 but a wide feature set can be provided. We’ll give a quick overview of
 both.
Kernel PPP uses pppd and a fairly simple
 set of configuration commands. You provide pppd with the information needed to dial your modem appropriately
 and with whatever login information your ISP has provided you, and it connects.
 Generally you then have to set up /etc/resolv.conf to point to your ISP’s DNS (Section 46.9)
 server. Some implementations of pppd don’t
 even know how to dial the phone, and you’ll have to use something like kermit to dial the phone first. pppd must also be run as root. Look at your
 platform’s documentation for pppd for details
 on setting up kernel PPP on that platform.
Platforms that provide a user-space PPP client are a little easier to work
 with. User-space PPP clients can be run by users other than root (usually
 limited to a specific group); they tend to configure default routes, /etc/resolv.conf, and other details
 automatically; and they generally deal with PAP or CHAP authentication (which
 many ISPs use) a little more easily. Usually the user-space PPP client is just
 called ppp; look for its manpage to see what
 it requires to configure it.
— DJPH

USB Configuration

Many

 PCs
 support the
 Universal Serial Bus (USB). USB is a
 hot-swappable standard; devices can be plugged in and unplugged while the
 machine is running, and the system is supposed to recognize the new device or no
 longer recognize the now disconnected device.
Unixes deal with this requirement with low-level device drivers to actually
 interface with the devices and with a daemon, usbd, to monitor for changes on the fly or, on Linux, the hotplug
 facility (http://linux-hotplug.sourceforge.net).
Generally, there is very little configuration required for supported USB
 devices. If you have the correct kernel modules
 (Section 44.3) loaded (and on many
 platforms they’re loaded by default), just plug in the device. Check your
 platform’s supported hardware before buying a USB device, as such devices are
 changing rapidly at the time of this writing and may or may not have Unix
 drivers implemented yet.
Specific issues you might run into include
 that USB disks may need to use a special filesystem type (usbdevfs) and that specific devices may require
 tools to actually use the device. Webcams and scanners are a good example, as
 the device driver provides only low-level access to the device; you still need a
 tool that can pull images off of the device and do something useful with them.
 Extensive information is available on the Web about using many USB devices on
 the free Unixes (http://www.linux-usb.org for Linux and the USB chapter in the FreeBSD handbook
 are places to start), and it stays fairly up to date.
— DJPH

Dealing with Sound Cards and Other Annoying Hardware

 There are a lot of devices available for PCs
 that were never designed for an operating system like Unix to use. Often these
 devices’ manufacturers simply provide Windows drivers and never expect you to
 need anything else. Luckily, there is a large community of developers for the
 various free Unixes, and they implement device drivers for many of these
 devices. Availability of a driver for a particular piece of hardware, however,
 depends entirely on whether someone happened to write a driver for it.
Sound cards are one bit of hardware that commonly has this problem. Most free
 Unixes have a set of drivers that support a selection of sound cards and one or
 two other drivers that support a lowest common denominator to get minimal
 functionality out of most sound cards. If you want real support for your sound
 card, look at the supported devices list for the OS you want to install before
 you buy a card, and pick one that someone’s written a full driver for.
On Linux, take a look at the sndconfig utility, which can probably configure
 your sound card for you. Take a peek at http://www.linuxheadquarters.com/howto/basic/sndconfig.shtml for
 details.
Other hardware that falls into the “check your
 supported hardware list before buying” includes frame grabbers, multi-serial
 boards, AD/DA converters, X-10 controllers and any hardware that’s brand new
 (and thus may not have had time for someone to create a Unix driver). All of the
 free Unixes have extensive supported hardware lists — check before you
 buy.
— DJPH

Decapitating Your Machine — Serial Consoles

 Often server machines are placed in a rack
 in a colocation facility, in some back closet, or in some other out of the way
 place. This can make it really inconvenient to access the server’s console
 should something go wrong or need diagnosing; hauling a monitor and keyboard
 into your server storage area is a real pain. If you’ve got your server mounted
 in a rack, there are devices that are essentially a flat screen monitor,
 keyboard, and mouse mounted in a sliding rack shelf, which work well, but
 they’re expensive.
A simple and cheap solution is to change the console from the normal
 monitor/keyboard/mouse to one of the serial ports. The serial port can be hooked
 via null modem to a terminal server or another machine, allowing controlled
 access, or you can just plug your laptop into it with a null modem when you need
 to diagnose problems or reboot.
Linux has a howto describing details of
 dealing with serial consoles at http://www.linuxdoc.org/HOWTO/Remote-Serial-Console-HOWTO/.
 Essentially, you provide options to the boot loader and kernel to tell them to
 use your serial port as a console, and then configure getty to accept logins on that serial port. The HOWTO shows
 various potential configurations and demonstrates proper setup on each.
FreeBSD’s handbook has a chapter on setting up
 serial consoles. Again, you have to tell the boot loader and the kernel to use
 the serial port, and then edit /etc/ttys to
 enable getty on that serial port. FreeBSD can
 also be configured to decide whether to use a normal console or serial console
 based on whether or not a keyboard is plugged in. NetBSD and OpenBSD are
 configured similarly.
Solaris is even easier: just unplug the
 keyboard before you boot the machine. Solaris uses a serial console by default
 if no keyboard is plugged in at boot time. If you want to set it explicitly to
 use a serial console even if the keyboard is plugged in, just set input-device and output-device to ttya (or
 ttyb if you want it on the second serial
 port) in the boot eeprom.
— DJPH

Chapter 45. Printing

Introduction to Printing

This chapter discusses printing,
 which is a surprisingly complicated subject. To understand why printing is so
 complicated, though, let’s think a little bit about what you might want to
 print.
First, in the “olden days,” we had line printers and their relatives:
 daisy-wheel printers, dot-matrix printers, and other pieces of equipment that
 generated typewriter-like output. Printing a simple text file was easy: you
 didn’t need any special processing; you only needed some software to shove the
 file into the printer. If you wanted, you might add a banner page and do a
 little simple formatting, but that was really pretty trivial.
The one area of complexity in the printing system was the "
 spooling system,” which had to do several things
 in addition to force-feeding the printer. Most printers were (and still are)
 shared devices. This means that many people can send jobs to the printer at the
 same time. There may also be several printers on which your file gets printed;
 you may care which one is used, or you may not. The spooling system needs to
 manage all this: receiving data from users, figuring out whether or not an
 appropriate printer is in use, and sending the file to the printer (if it’s
 free) or storing the file somewhere (if the printer isn’t free).
Historical note: why is this called the “spooling system”? Dave Birnbaum, a
 Principal Scientist at Xerox, says:
“SPOOL (Simultaneous Printing Off and On Line)” It was written for
 the early IBM mainframes (of the 3-digit, i.e., 709 kind) and extended to
 the early 1401 machines. Output for the printer was sent to the spool
 system, which either printed it directly or queued it (on tape) for later
 printing (hence the on/off line). There was also a 2nd generation version
 where the 1401 would act as the printer controller for the (by then) 7094.
 The two were usually connected by a switchable tape drive that could be
 driven by either machine.” [There’s some controversy about exactly what the
 acronym means, but Dave’s is as good as any I’ve heard. —
 JP]

The first few articles in this chapter, Section 45.2, Section
 45.3, Section 45.4, and Section 45.5, discuss the basic Unix
 spooling system and how to work with it as a user.
The next few articles talk about how to format articles for printing — not the
 kind of fancy formatting people think of nowadays, but simpler things like
 pagination, margins, and so on, for text files that are to be sent to a line
 printer or a printer in line-printer emulation mode. Section 45.6 describes this kind of
 simple formatting, and Section 45.7
 gets a little more complicated on the same subject.
Historical
 note number two: why is the print spooler called lp or lpr? It typically
 spooled text to a line printer, a fast printer that used a wide head to print an
 entire line at a time. These printers are still common in data processing
 applications, and they can really fly!
In the mid-1970s, lots of Unix people got excited about typesetting. Some typesetters
 were available that could be connected to computers, most notably the C/A/T
 phototypesetter. Programs like troff and
 TEX were developed to format texts for phototypesetters.
 Typesetting tools are still with us, and still very valuable, though these days
 they generally work with laser printers via languages like PostScript. They’re
 discussed in Section 45.10 through
 Section 45.17, along with the
 ramifications of fancy printing on Unix.
Finally, Section 45.19 is about the
 netpbm package. It’s a useful tool for people who deal
 with graphics files. netpbm converts between different
 graphics formats.
— ML

Introduction to Printing on Unix

Unix used a print spooler to allow many users to share a single printer long
 before Windows came along. A user can make a printing request at any time, even
 if the printer is currently busy. Requests are queued and processed in order as
 the printer becomes available.
Unix permits multiple printers to be connected to the same system. If there is
 more than one printer, one printer is set up as the default printer, and print
 jobs are sent there if no printer is specified.
lpr-Style Printing Commands

Many

 systems use the lpr command to queue a print job. When you use lpr, it spools the file for printing.
$ lpr notes
The lpq command tells you the status of
 your print jobs by showing you the print queue for a given printer.
$ lpq
lp is ready and printing
Rank Owner Job Files Total Size
active fred 876 notes 7122 bytes
1st alice 877 standard input 28372 bytes
2nd john 878 afile bfile ... 985733 bytes
The word active in the Rank column shows the job that’s currently
 printing. If your job does not appear at all on the listing, it means your
 job has finished printing or has been completely written into the printer’s
 input buffer (or perhaps that you accidentally printed it to a different
 queue). If a job is not active, it’s still in the
 queue.
You can remove a job with the lprm command. (Run lpq first to get the job number.)
$ lprm 877
dfA877host dequeued
cfA877host dequeued
The
 command lpc status (Section 45.3) can be used to
 determine which printers are connected to your system and their names. If
 there is more than one printer, you can then use the -P
 option with lpr, lpq and lprm to specify a
 printer destination other than the default. For instance, if a laser printer
 is configured as laserp, you can enter:
$ lpr -Plaserp myfile
If you’ll be using a certain printer often, put its name in the PRINTER environment variable (Section 45.4).
If you’re using an older system that has only lp (see below), or if you’d like a fancier lpr that supports all sorts of handy features,
 take a peek at LPRng (available at http://www.lprng.com). It supports everything standard lpr does and more, including a GUI for
 detailed configuration.

lp-Style Printing Commands

 The
 System V-style print system, which Solaris uses by default, has the lp command to queue a print job. (Solaris also
 optionally includes lpr-style printing
 commands, if you install the BSD compatibility package.) When you use
 lp, it spools the file for printing
 and returns the request id of your print job. The request id can later be
 used to cancel the print job, if you decide to do so.
$ lp notes
request-id is lp-2354 (1 file)
The lpstat command can be used to check
 on the status of your print jobs. Like lpq, it will tell whether your job is in the queue or fully
 sent to the printer. Unlike lpq, it shows
 you only your own jobs by default:
$ lpstat
lp-2354 14519 fred on lp
The message on lp indicates that the
 job is currently printing. If your job does not appear at all on the
 listing, it means your job has either finished printing or has been
 completely written into the printer’s input buffer (or you accidentally
 printed it to a different queue). If the job is listed, but the on lp message does not appear, the job is
 still in the queue. You can see the status of all jobs in the queue with the
 -u option. You can cancel a job with the cancel command.
$ lpstat -u
lp-2354 14519 fred on lp
lp-2355 21321 alice
lp-2356 9065 john
$ cancel lp-2356
lp-2356: cancelled
The lpstat command can be used to determine what printers are
 connected to your system and their names. If there is more than one printer,
 you can then use the -d option with lp to specify a printer destination other than
 the default. For instance, if a laser printer is configured as
 laserp, then you can enter:
$ lp -dlaserp myfile
If you’ll be using a certain printer often, put its name in the LPDEST environment variable (Section 45.4).
— DD, TOR, and JP

Printer Control with lpc

The lpc

 (8) command, for lpr-style printing setups, is mostly for the superuser. (You may
 find it in a system directory, like /usr/sbin/lpc.) Everyone can use a few of its commands; this
 article covers those.
You can type lpc commands at the lpc> prompt; when you’re done, type exit (or CTRL-d):
% lpc
lpc> help status
status show status of daemon and queue
lpc> ...
lpc> exit
%
Or you can type a single lpc command from
 the shell prompt:
% lpc status imagen
imagen:
 queuing is enabled
 printing is enabled
 no entries
 no daemon present
%

 The printer daemon (Section 1.10)
 watches the queue for jobs that people submit with lpr (Section 45.2). If
 queueing is disabled (usually by the system administrator), lpr won’t accept new jobs.
lpc controls only printers on your local
 host. lpc won’t control printers connected to
 other hosts, though you can check the queue of jobs (if any) waiting on your
 local computer for the remote printer.

 The commands
 anyone can use are:
	restart [printer]
	This tries to start a new printer daemon. Do this if something
 makes the daemon die while there are still jobs in the queue
 (lpq or lpc
 status will tell you this). It’s worth trying when
 the system administrator is gone and the printer doesn’t seem to be
 working. The printer name can be all to restart
 all printers. The printer name doesn’t need an extra
 P. For example, to specify the
 foobar printer to lpr, you’d type lpr -Pfoobar.
 With lpc, use a command like
 restart foobar.

	status [printer]
	Shows the status of daemons and queues on the local computer (see
 the preceding example). The printer name can be
 all to show all printers.

	help [command]
	By default, gives a list of lpc
 commands, including ones for the superuser only. Give it a command
 name and it explains that command.

	exit
	Quits from lpc.

— JP

Using Different Printers

Each printer on your system should have
 a name. By default, commands that send a file to a printer assume that the
 printer is named lp (a historical artifact;
 it stands for “Line Printer”). If you’re using a single-user workstation and
 have a printer connected directly to your workstation, you can name your printer
 lp and forget about it.
In many environments, there are more options available: e.g., there are
 several printers in different locations that you can choose from. Often, only
 one printer will be able to print your normal documents: you may need to send
 your print jobs to a PostScript printer, not the line printer that the
 accounting department uses for billing.
There are two ways to choose a printer:
	Printing commands in the lpr family
 accept the option -P
 printer. This includes lpr (Section
 45.2), various scripts to format typeset documents, etc. For
 example, lpr -Pps file.ps sends the file
 file.ps to the printer named
 ps.

	Commands in the lpr family
 recognize the PRINTER
 environment variable (Section 35.3); if
 PRINTER is defined, the command will read its
 value and choose a printer accordingly. So the command:
% setenv PRINTER ps
 — or
$ PRINTER=ps ; export PRINTER
ensures that the lpr-style print
 commands will send your documents to the printer named
 ps. The -P option overrides
 this environment variable, in case you need to send a particular print
 job to a different printer.

	Commands in the lp family use the
 -d option to select a printer. So lp -d prfile.ps sends
 file.ps to the printer named
 pr; it’s equivalent to the previous lpr example.

	Commands in the lp family look for
 an environment variable named LPDEST, rather than
 PRINTER. So:
% setenv LPDEST ps
 — or
$ LPDEST=ps ; export LPDEST
ensures that the lp-style print
 commands will send your documents to the printer named
 ps. The -d option overrides
 this environment variable.

Note that Solaris and others that use lp
 can include both the lp and lpr print commands. This can make things
 confusing, particularly if you’re using a script to process documents, and that
 script automatically sends your documents to the printer. Unless you know how
 the script works, you won’t know which variable to set. I’d suggest setting both
 PRINTER and LPDEST for these
 systems.
By the way, if you have only one printer, but you’ve given it some name other
 than lp, the same solution works: just set
 PRINTER or LPDEST to the
 appropriate name.
— ML

Using Symbolic Links for Spooling

 When you print a file, the file is copied to a
 “spooling directory.” This can be a problem if you want to print a very large
 file: the copy operation might take a long time, or the act of copying might
 fill the spooling directory’s filesystem.
Systems with the lpr family of commands
 provide a workaround for this problem. The -s option makes a
 symbolic link (Section 10.4) to your file from the
 spooling directory.
Here’s such a command:
% lpr -s directions
Rather than copying directions, lpr creates a symbolic link to directions.
 The symbolic link is much faster, and you’re unlikely to get a “filesystem full”
 error.
Using a symbolic link has one important side effect. Because the file isn’t
 hidden away in a special spooling directory, you can delete or modify it after
 you give the lpr command and before the
 printer is finished with it. This can have interesting side effects; be careful
 not to do it.
Of course, this warning applies only to the file that actually goes to the
 printer. For example, when you format a troff
 file (Section 45.16)
 for a PostScript printer and then print using -s, you can
 continue to modify the troff file, because
 it’s the resulting PostScript file that actually goes to the printer (thus the
 PostScript file, not the troff file, is
 symbolically linked).
— ML

Formatting Plain Text: pr

 The line printer
 spooler (Section 45.2)
 prints what you send it. If you send it a continuous stream of text (and the
 printer is set up to print text files rather than PostScript), that’s probably
 just what you’ll get: no page breaks, indenting, or other formatting
 features.
That’s where pr comes in. It’s a simple
 formatter that breaks its input into “pages” that will fit onto a 66-line page.
 (You can change that length.) It adds a header that automatically includes the
 date and time, the filename, and a page number. It also adds a footer that
 ensures that text doesn’t run off the bottom of the page.
This is just what you want if you are sending program source code or other
 streams of unbroken text to a printer. For that matter, pr is often very handy for sending text to your screen. In
 addition to its default behavior, it has quite a few useful options. Here are a
 few common options:
	-f
	Separate pages using formfeed character (^L) instead of a series
 of blank lines. (This is handy if your pages “creep” down because
 the printer folds some single lines onto two or three printed
 lines.)

	-h
 str
	Replace default header with string str. See
 Section 21.15.

	-l
 n
	Set page length to n (default is 66).

	-m
	Merge files, printing one in each column (can’t be used with
 -num and -a). Text is chopped
 to fit. See Section
 21.15. This is a poor man’s paste (Section
 21.18).

	-s
 c
	Separate columns with c (default is a
 tab).

	-t
	Omit the page header and trailing blank lines.

	-w
 num
	Set line width for output made into columns to
 num (default is 72).

	+
 num
	Begin printing at page num (default is
 1).

	-n
	Produce output having n columns (default is
 1). See Section
 21.15.

Some versions of pr also support these
 options:
	-a
	Multicolumn format; list items in rows going across.

	-d
	Double-spaced format.

	-e
 cn
	Set input tabs to every nth position (default
 is 8), and use c as field delimiter (default is
 a tab).

	-F
	Fold input lines (avoids truncation by -a or
 -m).

	-i
 cn
	For output, replace whitespace with field delimiter
 c (default is a tab) every
 nth position (default is 8).

	-n
 cn
	Number lines with numbers n digits in length
 (default is 5), followed by field separator c
 (default is a tab). See also nl
 (Section
 12.13).

	-o
 n
	Offset each line n spaces (default is
 0).

	-p
	Pause before each page. (pr
 rings the bell by writing an ALERT character to standard error and
 waits for a carriage-return character to be read from /dev/tty (Section 36.15).)

	-r
	Suppress messages for files that can’t be found.

Let’s put this all together with a couple of examples:
	Print a side-by-side list, omitting heading and extra lines:
 pr -m -t list.1 list.2 list.3

	Alphabetize a list of states; number the lines in five columns.
 sort states_50 | pr -n -5
If you have an old pr that doesn’t
 support -n, you can use cat
 -n (Section
 12.13) to supply the line numbers:
 sort states_50 | cat -n | pr -5

Formatting Plain Text: enscript

 enscript is a handy program that takes your
 text files and turns them into PostScript. enscript comes with a wide variety of formatting options. There
 is a GNU version available, and a few Unixes include a version by default.
 enscript is particularly useful when your
 main printer speaks primarily PostScript.
Detailed information on everything enscript
 can do is available in its manpage, but here are a few examples:
% enscript -G stuff.txt
 Fancy ("Gaudy") headers
% enscript -2r stuff.txt
 Two-up printing -- two pages side-by-side on each page of paper
% enscript -2Gr stuff.txt
 Two-up with fancy headers
% enscript -P otherps stuff.txt
 Print to the
 otherps
 printer instead of the default
% enscript -d otherps stuff.txt
 Ditto
% enscript -i 4 stuff.txt
 Indent every line four spaces
% enscript --pretty-print=cpp Object.cc
 Pretty print C++ source code
% enscript -E doit.pl
 Pretty print doit.pl (and automagically figure out that it's Perl from the .pl suffix)
One thing to watch for: enscript’s default
 page size is A4, and in the United States most printers want
 letter-sized pages. You can set the
 default page size to letter when installing enscript (many U.S. pre-built binary packages do this for you),
 or you can use the -M letter or -
 -media=letter option when you call enscript.
If you want a default set of flags to be passed to enscript, set the
 ENSCRIPT environment variable. Anything you pass on the
 command line will override values in ENSCRIPT.
— DJPH

Printing Over a Network

 Sometimes you’d like to be able to print to a
 printer that’s physically attached to another Unix machine. lpd

 , the
 print spool daemon, supports this easily.
lpd is configured using the printcap
 printer capabilities database, generally
 stored in /etc/printcap. Generally, a local
 printer is given a line that looks something like this:
lp|local line printer:\
 :lp=/dev/lpt0:\
 :sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:
The first line sets the printer name, in this case lp, and gives it a more descriptive name (local line printer) as well. The rest of the lines
 define various parameters for this printer using a
 parameter=value
 format. lp specifies the printer device — in
 this case, /dev/lpt0. sd specifies the local spool directory, that is,
 where lpd will store spooled files while it’s
 working with them. lf specifies the log file,
 where lpd will write error messages and the
 like for this printer.
To set up a remote printer, all you have to do is provide a remote machine
 (rm) and a remote printer (rp) instead of a printer device:
rlp|printhost|remote line printer:\
 :rm=printhost.domain.com:rp=lp:\
 :sd=/var/spool/output/printhost:lf=/var/log/lpd-errs:
Note that we added another name; since this is the default printer for the
 host printhost, either rlp or printhost will work as
 printer names. We also used a different spool directory, to keep files spooled
 for printhost separate from local files; this isn’t
 strictly necessary, but it’s handy. Don’t forget to create this spool directory
 before trying to spool anything to this printer!
Some network connected printers have lpd-compatible spoolers built in. Talking to one of these printers is
 just as easy; just provide the printer’s hostname for rm. Generally you won’t have to provide rp unless the printer supports different printing modes by using
 different remote printer names, since the default name lp is almost always supported by these sorts of printers.
— DJPH

Printing Over Samba

 Samba provides SMB networking to Unix boxes; in
 English, that means it allows Unix machines to share disks and printers with
 Windows machines and vice versa. Chapter 49
 details Samba; here we’ll talk a bit about tricks for printing over Samba, since
 it’s so useful and parts of it are fairly arcane.
Printing to Unix Printers from Windows

 This is the easy one. Simply configure your printer normally
 using printcap, then set this in your
 smb.conf:
 load printers = yes
This tells Samba to read the printcap
 file and allow printing to any printer defined there. The default [printers] section automatically advertises
 all printers found and allows anyone with a valid login to print to them.
 You may want to make them browsable or printable by guest if you’re not
 particularly worried about security on your network. Some Windows
 configurations will need guest access to browse, since they use a guest
 login to browse rather than your normal one; if you can’t browse your Samba
 printers from your Windows client, try setting up guest access and see if
 that fixes it.
If you want to get really fancy, current versions of Samba can support
 downloading printer drivers to clients, just like Windows printer servers
 do. Take a look at the PRINTER_DRIVER2.txt file in the Samba distribution for more
 about how to do this.

Printing to Windows Printers from Unix

 This one’s a little more tricky. lpd doesn’t know how to print to a Windows
 printer directly, or how to talk to Samba. However, lpd

 does know how to run files through a filter (Section 45.17). So what we’ll do is
 provide a filter that hands the file to Samba, and then send the print job
 right to /dev/null:
laserjet:remote SMB laserjet via Samba\
 :lp=/dev/null:\
 :sd=/var/spool/lpd/laser:\
 :if=/usr/local/samba/bin/smbprint:
Samba comes with a sample filter called smbprint

 ;
 it’s often installed in an examples directory and will need to be moved to
 somewhere useful before setting this up. smbprint does exactly what we want; it takes the file and
 uses smbclient to send it to the right
 printer.
How does smbprint know which printer to
 send it to? It uses a file called .config in the given spool directory, which looks something
 like this:
server=WINDOWS_SERVER
service=PRINTER_SHARENAME
password="password"
The smbprint script is reasonably well
 documented in its comments. Look through it and tweak it to fit your own
 needs.
— DJPH

Introduction to Typesetting

 Once
 upon a time, printers were simple. You hooked them up to your machine and dumped
 text out to them, and they printed the text. Nothing fancy, and not very pretty
 either. As printers got smarter, they became capable of more things, printing in
 a different font, perhaps. Printing got a bit more complex. If you wanted to use
 fancy features, you had to embed special characters in your text, specific to
 the printer.
Printers got even smarter, and could draw pictures, print images, and use all
 sorts of fonts. They started using complex
 languages (Section
 45.14) to print, which made dealing with them more complex but at
 least somewhat more consistent. People wrote tools to
 convert text (Section
 45.7) so it could be printed.
Webster defines typesetting as “the process of setting material in type or
 into a form to be used in printing,” literally, the setting of type into a
 printing press. As computers have gotten more sophisticated, it has come to
 include the formatting of text and images to send to typesetting machines and
 then, later, smart printers. These days, your average printer is pretty smart
 and can handle everything the typesetters of old could do and more. Windows systems provide What You See Is What
 You Get (WYSIWYG, pronounced whiz-ee-wig) editors as a matter of course, most of
 which do all of their typesetting without any user intervention (and often
 badly, to boot).
On Unix, typesetting generally involves describing the formatting you want
 using a formatting language and then processing the source file to generate
 something that a printer can understand. There are a variety of tools and
 languages that do this, with various purposes, strengths, and weaknesses. Many
 formatting languages are markup languages, that is, they introduce formatting
 information by “marking up” the text you want formatted.
There is an entire science (and art) of typography that we won’t try to get
 into here. My personal favorite books on the subject are Robert Bringhurst’s
 The Elements of Typographic Style for general
 typography and Donald Knuth’s Digital Typography for
 issues of typesetting with computers.
What we will try to cover are formatting languages (Section 45.12 and Section 45.13), printer languages
 (Section 45.14), and ways to use
 Unix to get those formatting languages out to your printer usefully (Section 45.15 through Section 45.17).
Relatively recently, open source WYSIWYG tools have become available for Unix.
 OpenOffice, available at http://www.openoffice.org, is a good
 example. OpenOffice does its own typesetting behind the scenes and dumps out
 PostScript. If you don’t have a PostScript printer and you’re interested in
 using something like OpenOffice, Section
 45.18 might help.
— DJPH

A Bit of Unix Typesetting History

 Unix was one of the first operating
 systems to provide the capability to drive a typesetter. troff is both a markup language and a tool for
 generating typesetter output.
Originally, troff was designed to drive a
 device called a C/A/T phototypesetter, and thus it generated a truly frightening
 collection of idiosyncratic commands. For a while, there were several version of
 troff
 and troff-related tools, including tools to translate C/A/T output
 into something useful, versions of troff that
 output slightly saner things than C/A/T, and so forth. It was all very
 confusing.
Most systems these days still have a version of troff, often GNU’s groff,
 which outputs PostScript and other device-independent formats. Unix manpages are
 still written in nroff, a related tool that
 takes the same input and spits out ASCII-formatted text, using the
 man macro package. However, most people don’t use
 troff and its related tools for general
 text formatting much any more.
So why do we care about troff?
 The Jargon Dictionary (Version 4.2.2) has this to
 say:
troff
 /T’rof/ or /trof/ n.
The gray eminence of Unix text processing; a formatting and
 phototypesetting program, written originally in PDP-11 assembler and then in
 barely-structured early C by the late Joseph Ossanna, modeled after the
 earlier ROFF which was in turn modeled after the Multics and CTSS program
 RUNOFF by Jerome Saltzer (that name came from the expression “to run off a
 copy”). A companion program, nroff, formats output for terminals and line
 printers.
In 1979, Brian Kernighan modified troff so that it could drive
 phototypesetters other than the Graphic Systems CAT. His paper describing
 that work (“A Typesetter-independent troff,” AT&T CSTR #97) explains
 troff’s durability. After discussing the program’s “obvious deficiencies — a
 rebarbative input syntax, mysterious and undocumented properties in some
 areas, and a voracious appetite for computer resources” and noting the
 ugliness and extreme hairiness of the code and internals, Kernighan
 concludes:
“None of these remarks should be taken as denigrating Ossanna’s
 accomplishment with TROFF. It has proven a remarkably robust tool,
 taking unbelievable abuse from a variety of preprocessors and being
 forced into uses that were never conceived of in the original design,
 all with considerable grace under fire.”
The success of TEX and desktop publishing systems
 have reduced troff’s relative importance, but this tribute perfectly
 captures the strengths that secured troff a place in hacker folklore;
 indeed, it could be taken more generally as an indication of those qualities
 of good programs that, in the long run, hackers most admire.

— DJPH

Typesetting Manpages: nroff

 The definitive documentation
 system for every Unix is manpages. (Much GNU software is documented fully in
 info pages instead, but manpages are so
 foundational that even those packages generally provide some sort of manpage.)
 What is a manpage, then?
A manpage is a text file, marked up with nroff commands, specifically using the man macro package. (Well,
 technically, using the tmac.an standard
 macro package — t/nroff takes a
 -m option to specify which tmac.* macro package to use. Thus, man uses nroff -man.) A simple manpage (in
 this case, the yes(1) manpage from FreeBSD)
 looks something like this:
.Dd June 6, 1993
.Dt YES 1
.Os BSD 4
.Sh NAME
.Nm yes
.Nd be repetitively affirmative
.Sh SYNOPSIS
.Nm
.Op Ar expletive
.Sh DESCRIPTION
.Nm Yes
outputs
.Ar expletive ,
or, by default,
.Dq y ,
forever.
.Sh HISTORY
The
.Nm
command appeared in
.At 32v .
This collection of difficult-to-read nroff
 commands, when formatted by nroff via the
 man command on my FreeBSD machine, looks
 something like this:
YES(1) FreeBSD General Commands Manual YES(1)

NAME
 yes - be repetitively affirmative

SYNOPSIS
 yes [expletive]

DESCRIPTION
 Yes outputs expletive, or, by default, "y", forever.

HISTORY
 The yes command appeared in Version 32V AT&T UNIX.

4th Berkeley Distribution June 6, 1993 1
The various nroff/man macros allow you to define things such as the name of the
 command, the short description of what it does, the list of arguments, and so
 forth, and formats it all into the standard look of a manpage. To write your own
 manpages, take a look at existing manpages for examples, and read the man(1) and man(7) manpages.
— DJPH

Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On

 Section 45.12 shows an example of a
 simple formatting markup language; the one used by
 man via nroff. Don’t laugh — it may seem arcane, but it is fairly simple.
 Like all markup languages, it attempts to abstract out certain things, to allow
 you to describe what you’d like the end result to look like. Manpages are simple
 to describe, so the markup language for them is relatively simple.
Full troff
 is somewhat more complex, both because
 it allows expressing far more complex ideas, and because it allows definition of
 macros to extend the core markup language. Similarly, TEX (pronounced “tek”) is
 essentially a programming language for typesetting. It provides a very thorough
 model of typesetting and the ability to, essentially, write programs that
 generate the output you want.
Available on top of TEX is LATEX
 (pronounced “lah-tek” or “lay-tek”), a complex macro package focused on general
 document writing. It allows you to describe the general structure of your
 document and let LATEX (and
 underneath, TEX) sort out the “proper” way to typeset
 that structure. This sort of markup is very different to deal with than working
 in a WYSIWYG word processor, where you have to do all of the formatting
 yourself. As an example, a simple
 LATEX document looks
 something like this (taken from The Not So Short Introduction to
 LATEX2e):
\documentclass[a4paper,11pt]{article}
% define the title
\author{H.~Partl}
\title{Minimalism}
\begin{document}
% generates the title
\maketitle
% insert the table of contents
\tableofcontents
\section{Start}
Well, and here begins my lovely article.
\section{End}
\ldots{} and here it ends.
\end{document}
Much like the nroff input earlier, this
 describes the structure of the document by inserting commands into the text at
 appropriate places. The LyX editor (http://www.lyx.org) provides what they call
 What You See Is What You
 Mean (WYSIWYM, or whiz-ee-whim) editing by sitting on
 top of LATEX. Lots of
 information about TEX and
 LATEX is available at the
 TEX Users’ Group web site, http://www.tug.org. TEX software is available
 via the

 Comprehensive
 TEX Archive Network, or CTAN, at http://www.ctan.org. I strongly recommend the
 teTEX distribution as a simple way to get a complete
 installation of everything you need in one swell foop.
In contrast, while HTML is also a markup language, its
 markup is focused primarily on display and hypertext references rather than
 internal document structure. HTML is an application of
 SGML; you probably know about it already
 because it is the primary display markup language used on the web. The following
 is essentially the same as the sample
 LATEX document, but marked
 up using HTML formatting:
<html>
<head>
<title>Minimalism</title>
</head>
<body>
<h1>Minimalism</h1>
...table of contents...
<h2>Start</h2>
<p>Well, and here begins my lovely article.</p>
<h2>End</h2>
<p>… and here it ends.</p>
</body>
</html>
Other markup languages common on Unixes include
 DocBook, which is also an application of
 SGML or XML, and in which a lot of Linux documentation is written, and texinfo,
 the source language of info pages, in which most GNU documentation is written.
 The manuscript for this edition of Unix Power Tools is
 written in a variant of SGML-based DocBook, in fact.
— DJPH

Printing Languages — PostScript, PCL, DVI, PDF

Printing languages, also sometimes called
 page description languages, are
 representations of exactly what needs to be on the screen or printed page. They
 are generally a collection of drawing commands that programs can generate, often
 with extra features to make drawing complex pictures or doing fancy things with
 text easier.
PostScript was developed by Adobe in the
 early 1980s to provide some sort of generic page description language. It is a
 fairly complete language; I’ve written complex PostScript programs by hand. This
 makes it much easier to write software that can generate PostScript output.
 Modern troffs can generate PostScript, and
 ghostscript can be used to process
 PostScript into printer-specific output for certain non-PostScript printers, so
 PostScript is a very useful output form.

 Printer Command Language, or PCL, was
 originally developed by Hewlett-Packard, also in the early 1980s, to provide a
 generic printer language for their entire range of printers. Early versions were
 very simple, but PCL 3 was sophisticated enough that other printer manufacturers
 started to emulate it, and it became a de facto standard. PCL’s more current
 incarnations are quite flexible and capable. Incidentally, ghostscript can turn PostScript into PCL, and most
 printers that can’t speak PostScript can speak some form of PCL these days. My
 primary printer these days speaks PCL 5E, and I use it from both Windows
 machines and Unix machines.
DVI stands for
 “device
 independent” and is the primary output from TEX (and thus
 LATEX). Like PostScript,
 it’s a generic language for describing the printed page. There are converters
 that convert DVI into PostScript, PCL and PDF.

 PDF is Adobe’s successor to PostScript. PDF
 has a special place on the web, because it’s been promoted as a way to
 distribute documents on the web and have them displayed consistently in a wide
 variety of environments, something not possible in HTML. This consistency is
 possible for the same reasons any page
 description language can provide it: the focus of such a language is on
 describing exactly what the page should look like rather than being human
 readable or editable, like most markup languages. However, Adobe has provided
 Acrobat Reader free for multiple platforms and promoted PDF extensively, so it
 is the de facto standard for page description languages on the web these
 days.
— DJPH

Converting Text Files into a Printing Language

 Section 45.7 introduced one tool that
 can convert plain text into PostScript for printing. In general, if your printer
 isn’t an old text-only printer and you want to be able to print text files,
 you’ll need some sort of filter (or filters) to convert the text into something
 useful.
If your printer supports PostScript, tools like a2ps and enscript
 (Section 45.7) can do what you
 need. If your printer supports PCL or another printer language, you may want to
 add ghostscript to the mix. ghostscript can read PostScript and PDF and output
 correct representations to a variety of printers. Incidentally, ghostscript can also do a host of other useful
 things, like create PDFs from PostScript and the like.
Here’s an example of using enscript,
 ghostscript, and lpr to print the background.txt file to my printer (an HP LaserJet 6L):
% enscript -2Gr background.txt -o background.ps
% gs -q -dNOPAUSE -sDEVICE=ljet4 -sOutputFile=background.lj4 background.ps -c quit
% lpr background.lj4
% rm background.lj4 background.ps
-2Gr tells enscript that I
 want two-up pages with fancy headers, and -o sends the output
 to background.ps (remember that enscript generates PostScript).
 -q tells gs to run
 quietly. -dNOPAUSE disables ghostscript’s usual behaviour of pausing and prompting at the end
 of each page. -sDEVICE=ljet4 says to create output for a
 ljet4 device.
 -sOutputFile=background.lj4 redirects the output of
 ghostscript to background.lj4, and -c quit says to quit once
 background.ps is done. Then we use
 lpr to spool the now-ready output file,
 delete the temporary files, and we’re all done.
Seems like sort of a pain, but it does show all of the steps needed to get
 that output to go to the printer properly. Section 45.17 shows how to arrange for most of that to be done for
 you by the spooler automatically.
— DJPH

Converting Typeset Files into a Printing Language

 Section 45.15 showed the steps
 necessary to convert plain text into something printable. Generally the steps
 involved are similar for a typeset source file, with perhaps an extra step or
 two.
troff generates PostScript by default in
 most installations these days, or it can be made to easily enough. GNU troff (groff)
 can also generate PCL, DVI, and HTML by using the appropriate
 -T option.
TEX generates DVI; the teTEX
 package includes dvips to convert DVI into
 PostScript, dvilj4 to convert it into PCL,
 dvipdf to convert it into PDF, and
 several others.
HTML can be converted into PostScript
 using html2ps.
An example of using LATEX,
 dvilj4, and lpr to print the article.tex
 file to my printer (an HP LaserJet 6L):
% latex article.tex
% dvilj4 article.dvi
% lpr article.lj
% rm article.lj article.dvi
This time it’s slightly simpler than the example in Section 45.15, because the default
 options all do what we want. Even so, it can be made even simpler; Section 45.17 shows how.
— DJPH

Converting Source Files Automagically Within the Spooler

 Section 45.15 and Section 45.16 showed what sorts of
 steps are required to get files into a printable form. They seem tedious,
 however, and computers are really quite good at tedium, so how can we make the
 spooler do all this for us automatically?
There are a couple of options. One of the more well-known is apsfilter

 ,
 which is a set of filter scripts designed to work with lpd

 to automatically convert incoming source files to an appropriate output format
 before dumping them to the printer. Extensive information is available at http://www.apsfilter.org, and apsfilter has its own automatic setup scripts, but I’ll give a
 quick overview to give you an idea of what configuring lpd’s filters looks like.
In Section 45.9, we used an input
 filter trick to print to a Samba printer by putting a if entry in the printcap

 for that printer. if stands for “input
 filter,” and there are several other kinds of filters available in standard
 lpd, including a ditroff filter, a
 Fortran filter (!), and an output filter.
apsfilter installs itself as the input
 filter for any printer it manages, and looks at the source file. It decides
 based on a number of pieces of information what kind of source file it is,
 automatically processes it with the right set of programs, and poof, you have
 correct output coming out of your printer. There’s a reason this kind of tool is
 called a “magic filter” (and why the title of this chapter says
 “Automagically”). Having a magic filter installed makes life so much
 easier.
If you look at your printcap once apsfilter
 is installed, you’ll notice this entry (or something much like it):
lp|local line printer:\
 ...
 :if=/usr/local/sbin/apsfilter:\
 ...
That’s all it takes to hook into lpd and
 tell the spooler to give apsfilter a shot at
 the text on the way through. apsfilter looks
 at the incoming file and its configuration for the printer queue and converts
 the source into the appropriate printer language using whatever filter or set of
 filters are needed.
Other magic filters include LPD-O-Matic and magicfilter. http://www.linuxprinting.org has all sorts of information about this
 and other printing subjects. Don’t be fooled by the name — much of the
 information it provides can help you with printing on any Unix system, not just
 Linux.
— DJPH

The Common Unix Printing System (CUPS)

The

 Common Unix Printing System (CUPS) is
 a full network-capable printing package available for a
 wide variety of Unix platforms. From their web page:
CUPS is available at:

	http://www.cups.org/

CUPS provides a portable printing layer for UNIX-based operating systems.
 It has been developed by Easy Software Products to promote a standard
 printing solution for all UNIX vendors and users. CUPS provides the System V
 and Berkeley command-line interfaces.
CUPS uses the Internet Printing Protocol (“IPP”) as the basis for managing
 print jobs and queues. The Line Printer Daemon (“LPD”) Server Message Block
 (“SMB”), and AppSocket (a.k.a. JetDirect) protocols are also supported with
 reduced functionality. CUPS adds network printer browsing and PostScript
 Printer Description (“PPD”) based printing options to support real-world
 printing under UNIX.

CUPS is headed towards becoming the Linux standard for printing, and it is an
 easy way to configure all your printing tools at once regardless of your
 platform. Visit their web page for extensive information.
— DJPH

The Portable Bitmap Package

 There are dozens of formats used for
 graphics files across the computer industry. There are tiff
 files, PICT files, and gif files.
 There are different formats for displaying on different hardware, different
 formats for printing on different printers, and then there are the internal
 formats used by graphics programs. This means that importing a graphics file
 from one platform to another (or from one program to another) can be a large
 undertaking, requiring a filter written specifically to convert
 from one format to the next.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 netpbm
The netpbm
 package can be used to convert between a
 wide variety of graphics formats. netpbm evolved from the
 original Portable Bitmap Package, pbmplus, written by Jef
 Poskanzer. A group of pbmplus
 users on the Internet cooperated to
 upgrade pbmplus; the result was
 netpbm. netpbm has relatively recently
 seen some active development again on SourceForge, and its current home page is
 http://netpbm.sourceforge.net.
The idea behind pbm is to use a set of very basic
 graphics formats that (almost) all formats can be converted into and then
 converted back from. This is much simpler than having converters to and from
 each individual format. These formats are known as pbm,
 pgm, and
 ppm: the

 portable bitmap, graymap, and pixmap
 formats. (A bitmap is a two-dimensional representation of an image; a graymap
 has additional information encoded that gives grayscale information for each
 bit; a pixmap encodes color information for each bit.) The name
 pnm is a generic name for all three portable
 interchange formats (with the n standing for
 “any”), and programs that work with all three are said
 to be “anymap” programs.
The netpbm package contains well over a hundred
 conversion programs. There are three basic kinds of programs:
	Programs that convert a graphics file to one of the
 pnm formats. For example, if I had a
 tiff file and wanted to convert it to
 PostScript, I might start the process by using
 tifftopnm:
% tifftopnm Hobbes.tiff > Hobbes.pnm

	Programs that convert from one of the pnm formats
 to another format. For example, if I wanted to convert the
 Hobbes.pnm file directly to PostScript, I could
 use pnmtops:
% pnmtops Hobbes.pnm > Hobbes.ps

	Programs used to manipulate the image in pnm
 format. For example, if I wanted to crop the image, I could use pnmcut before I converted the file to
 PostScript and printed it:
% tifftopnm Hobbes.tiff > Hobbes.pnm
% pnmcut 10 10 200 200 Hobbes.pnm > Hobbes.cut
% pnmtops Hobbes.cut > Hobbes.ps
% lpr Hobbes.ps
Or, on one command line (and without cluttering your disk with
 intermediary files):
% tifftopnm Hobbes.tiff | pnmcut 10 10 200 200 | pnmtops | lpr

I frequently like to create X11 (Section 1.22) bitmaps out of pictures in
 newspapers or magazines. The way I do this is first to scan the picture in on a
 Macintosh and save it as tiff or PICT
 format. Then I ftp (Section 1.21) the file to our Unix
 system and convert it to pnm format, and then use pbmtoxbm to convert it to X bitmap format. If the
 picture is too big, I use pnmscale on the
 intermediary pnm file. If the picture isn’t right-side-up,
 I can use pnmrotate and sometimes pnmflip before converting the
 pnm file to X11 bitmap format.
There are far too many programs provided with the netpbm
 package to discuss in detail, and some of these formats are ones that you’ve
 probably never even heard of. However, if you need to fiddle with image files
 (or, now, video files!), netpbm almost certainly has a
 converter for it. Take a peek through the documentation

 sometime.
—LM and JP

Chapter 46. Connectivity

TCP/IP — IP Addresses and Ports

TCP/IP
 networking is a part of the Open Systems
 Interconnection (OSI) Model. Much like you can string
 together lots of little single-purpose Unix tools to do complex tasks, the OSI
 Model is made up of specific single-purpose layers that work together. Each
 layer builds on the layers below. Layers 1 and 2 are concerned with hardware;
 physical standards such as required voltages and low-level protocols like
 Ethernet reside there. Layers 3 and 4 are networking layers, which this article
 introduces. Layers 5 through 7 are application layers, where networking
 interfaces such as BSD sockets and applications such as web browsers, telnet
 clients, and diagnostic tools live.
For most Unixes, the fundamentals of networking (once you get past the network
 device drivers) are the
 Layer 3 Internet Protocol (IP) and a
 Layer 4 protocol on top of it, either the

 Transport Control
 Protocol (TCP), the

 User Datagram Protocol
 (UDP), or the IP Control Message Protocol (ICMP). These four protocols are so
 commonly treated as one unit that you’ll often see them referred to together as
 TCP/IP.
Internet Protocol (IP)

IP’s job is to get small chunks of data, called packets,
 from one machine to another. It is a “best effort” protocol; that is, it
 makes its best effort to deliver each packet to the right host, and if it
 can’t, it simply drops the packet on the floor. It may seem like losing bits
 of your data would be a bad thing, but it turns out that this feature is
 part of what allows the Internet to route traffic around problems;
 higher-level protocols and applications notice that packets are being
 dropped and resend them, sometimes through better routes.

 IP
 identifies machines through IP addresses
 . Every
 machine that wants to communicate with another machine via TCP/IP must have
 a unique IP address, unless it’s using Network Address
 Translation (NAT) (

 Section 46.1). When you dial up
 your ISP with a modem, your ISP assigns you a dynamic IP address, good for that modem
 session. When you have a dedicated broadband connection, often your ISP will
 assign you a small block of static IP
 addresses to use as you like. Each ISP is in turn assigned large blocks of
 IP addresses for them to dole out to their users, and traffic on the
 Internet travels from ISP to ISP based on the addresses they hold.
The current standard version of IP is Version 4 (IPv4), which uses 32-bit
 addresses. With the explosion of the Internet, addresses are being used up
 at quite an impressive rate; remember that normally every single machine
 connected to the Internet needs its own IP address. Version 6 (IPv6) is, at the
 time of this writing, a proposed standard that uses 128-bit addresses. For
 the purposes of this book, we’ll gloss over the differences, since they
 mostly don’t matter at this level. Our examples will use IPv4 addresses,
 since that’s what you’re most likely to be dealing with for a little while
 yet.

Layer 4 Protocols: TCP, UDP, and ICMP

 TCP, UDP, and ICMP
 all “sit on top” of IP; that is, they use IP to actually deliver the
 packets.
TCP’s job is to provide ordered and guaranteed delivery. Ordered delivery
 means that the application at the other end of the TCP connection reads data
 in the same order as it was sent. Guaranteed delivery means that TCP keeps
 track of which packets arrived at the other end and resends packets that
 were dropped. Together, these two characteristics provide a network
 communication mechanism that acts very much like a Unix pipe from an
 application’s point of view; you simply write bytes in one end and they come
 out the other. Many common network applications sit on top of TCP and use
 these services, including telnet, HTTP servers and web browsers, SSH (Section
 46.6), and email (Section 46.8).
UDP provides application access to the basic delivery mechanism of IP and
 adds port addressing (see below). Some applications don’t need guaranteed
 delivery and want the lower overhead of UDP, or want the low-level control
 of network error recovery UDP can provide, or need to be able to do certain
 kinds of broadcast. Services like DNS
 (Section 46.9) and DHCP (Section
 46.10) use UDP rather than TCP, as do many Internet games.
Both TCP and UDP provide addressing of their
 own above and beyond IP addresses; these addresses are called
 ports

 . Generally,
 simply getting a packet to a machine isn’t quite enough; if you want two
 programs to communicate, they need a rendezvous point; there can be a lot of
 programs running on the destination machine, and TCP and UDP need to know to
 which program packets should be delivered. An IP address and a port provide
 the means for two programs to hook up and start talking. Every communication
 needs a port on each machine; one side “listens” on a well-known port and
 the other side “connects” to that port, generating a random port of its
 own.
Ports are represented by an integer number.
 Ports below 1024 are usually accessible only by programs running as root and
 are thus mostly reserved for system services and the like. /etc/services (Section 46.2) lists most of the well-known ports used by the
 main system services.
Finally, ICMP provides
 diagnostic and traffic control messages. ICMP is primarily used by
 applications such as ping and traceroute
 (Section 46.4) to diagnose
 problems, check network status, and the like. Routers can also use ICMP to
 control traffic.

/etc/services Is Your Friend

After you’ve been dealing with Internet services for a while, you come to
 remember certain well-known port numbers off of the top of your head. SMTP (Section
 46.8) is port 25, HTTP is port 80, and so on. However, unless your
 memory is far better than mine, you won’t remember them all.
Luckily, that’s part of what /etc/services

 is for. It’s a database of well-known ports with symbolic names; any
 program that can take a port number should be able to take the appropriate
 symbolic name instead. If you want to make sure your SMTP server is up, the
 following two commands are equivalent:
% telnet localhost 25
% telnet localhost smtp
The definitive database of well-known ports is
 currently available at http://www.iana.org/assignments/port-numbers. On most Unixes, /etc/services is just a
 snapshot taken at the time that version of that Unix was released. When
 installing new services, often you’ll want to tweak your local copy of /etc/services to reflect the new service, if it’s
 not already there, even if only as a reminder.
The format of the /etc/services is
 simple:
 service name
 port/protocol
 aliases
Comments within the file start with a pound sign (#). As an example, a few common entries from /etc/services:
ftp-data 20/tcp #File Transfer [Default Data]
ftp-data 20/udp #File Transfer [Default Data]
ftp 21/tcp #File Transfer [Control]
ftp 21/udp #File Transfer [Control]
ssh 22/tcp #Secure Shell Login
ssh 22/udp #Secure Shell Login
telnet 23/tcp
telnet 23/udp
smtp 25/tcp mail #Simple Mail Transfer
smtp 25/udp mail #Simple Mail Transfer
— DJPH

Status and Troubleshooting

ifconfig
 can be used to configure
 network devices (

 Section 44.8), but it also can be used
 to see the current network device configuration. ifconfig
 -a is very useful for this. Here’s some sample output on a
 FreeBSD machine:
% ifconfig -a
rl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 192.168.1.1 netmask 0xffffffc0 broadcast 192.168.1.255
 inet 192.168.1.5 netmask 0xffffffff broadcast 192.168.1.255
 inet 192.168.1.6 netmask 0xffffffff broadcast 192.168.1.255
 inet 192.168.1.7 netmask 0xffffffff broadcast 192.168.1.255
 ether 0a:5c:da:a3:53:11
 media: autoselect (100baseTX <full-duplex>) status: active
 supported media: autoselect 100baseTX <full-duplex> 100baseTX 10baseT/UTP
 <full-duplex> 10baseT/UTP 100baseTX <hw-loopback>
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
 inet 127.0.0.1 netmask 0xff000000
This shows two network devices: rl0, which
 is an Ethernet card, and lo0, which is the
 loopback device. rl0’s primary IP address is
 192.168.1.1, and it has aliases (that is, it also answers to) 192.168.1.5
 through 192.168.1.6. This also shows me that both network devices believe that
 they’re actively sending and receiving packets (UP) and shows various options set on each device.
The output on Linux is slightly different, but similar
 enough to easily find the same information. Linux also adds a few statistics to
 its ifconfig output that otherwise require a
 netstat to see. Especially useful are
 packets received and transmitted:
eth0 Link encap:Ethernet HWaddr 0a:5c:da:a3:53:11
 inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:18999386 errors:28965 dropped:0 overruns:0 frame:28965
 TX packets:33955631 errors:0 dropped:0 overruns:0 carrier:0
 collisions:29132 txqueuelen:100
 RX bytes:1496731954 (1.3 GiB) TX bytes:2477239809 (2.3 GiB)
 Interrupt:10 Base address:0xda00

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:3924 Metric:1
 RX packets:107211318 errors:0 dropped:0 overruns:0 frame:0
 TX packets:107211318 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:2880669120 (2.6 GiB) TX bytes:2880669120 (2.6 GiB)
Note that on Linux 2.4 kernels, ipconfig and route (see below) are being phased out in favor of iproute2. See the manpage for iproute2 if you’re on a 2.4 machine and want to be
 up to date.
netstat

 can be used to get a variety of useful
 information. By default, netstat displays a
 list of active sockets, thus showing you what is currently connected to your
 machine (and what your machine is currently connected to). netstat -r can show your routing tables, which is
 particularly useful when trying to understand why your machine can’t seem to
 talk to anything. If the interface appears to be up, and you can ping (Section
 46.4) other machines on your local network, but you can’t get out,
 check your routing tables. It’s quite possible that you don’t have a default
 route, or your default route doesn’t point to your gateway (Section
 46.11). For a private LAN running NAT (Section 46.11),
 your routing table might look something like this (the -n
 option says to show IP addresses instead of attempting to resolve them into
 hostnames):
% netstat -rn
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGSc 17 543792 rl0
127.0.0.1 127.0.0.1 UH 2 2869882 lo0
192.168.1.0/24 link#1 UC 0 0 rl0 =>
Again, on Linux the output is slightly
 different but similar to interpret. The only thing to note is that 0.0.0.0
 represents the default route when we use -n:
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0
route
 lets you manipulate the routing table. If,
 for example, you didn’t see the default route when you used netstat
 -rn, you could add it with:
% route add default 192.168.1.1
route allows a variety of ways to
 manipulate the routing table; see its manpage for details. Note that Linux’s route has a syntax for some commands that’s slightly different
 than any other route.
Finally, dig

 allows you to easily make very specific
 DNS (Section 46.9) queries. For example, to find out information about
 www.oreilly.com:
% dig www.oreilly.com
...
;; ANSWER SECTION:
www.oreilly.com. 6H IN A 209.204.146.22

;; AUTHORITY SECTION:
oreilly.com. 6H IN NS ns.oreilly.com.
oreilly.com. 6H IN NS ns1.sonic.net.
...

 This shows us the address (A) record and the nameservers (NS)
 that have authority over this particular address. If we want to find out the
 hostname for that IP address,
 we can do this:
% dig -x 209.204.146.22
;; ANSWER SECTION:
...
22.146.204.209.in-addr.arpa. 6H IN PTR www.oreilly.com.

;; AUTHORITY SECTION:
146.204.209.in-addr.arpa. 6H IN NS ns.oreilly.com.
146.204.209.in-addr.arpa. 6H IN NS ns1.sonic.net.
...
This automatically deals with the details of reverse DNS lookups for us and
 shows us the
 pointer (PTR) record for that IP address, which tells us the canonical
 hostname. If we want to find out where mail should go:
% dig oreilly.com mx
...
;; ANSWER SECTION:
oreilly.com. 6H IN MX 20 smtp2.oreilly.com.

;; AUTHORITY SECTION:
oreilly.com. 6H IN NS ns.oreilly.com.
oreilly.com. 6H IN NS ns1.sonic.net.
...
This shows us the
 mail exchanger (MX) record, which is where we ought to be sending
 mail. Any information stored in DNS can be found out with the right dig query; browse the manpage to get an
 idea.
DJPH

Where, Oh Where Did That Packet Go?

ping

 is a very
 simple tool and often the first used to diagnose a network problem. ping sends one or more ICMP (Section 46.1)
 Echo Request messages to a particular IP address. If there is a machine at that
 IP address listening for ICMP messages (and no firewall filtering out packets in
 the middle), ping gets back Echo Reply
 messages, thus telling you that basic IP communication is functional between the
 two machines. If you can’t ping something
 close by and you know you don’t have a firewall
 (Section 46.12) filtering out
 your packets, it’s generally not worth trying anything more complex; start
 looking for interfaces down or routing problems
 (Section 46.3) or, possibly,
 unplugged cables or the like.
traceroute

 does what you might expect from the
 name: it traces the route between your machine and another machine, using ICMP
 messages, and shows you each step of the way. Sometimes, when you can’t get to
 another machine that’s far away, you can use traceroute to see what’s going on.
mtr
 stands for Matt’s
 traceroute and is a more sophisticated
 traceroute. Not only does it show you each hop along
 the way, but it also sends multiple messages and gives you an ongoing display of
 latency at each hop. I use mtr instead of
 traceroute pretty exclusively. It’s
 available at http://www.bitwizard.nl/mtr/, or your Unix may have
 a binary package of it available.
For serious network
 debugging, take a look at tcpdump and ethereal. tcpdump can take
 apart packets as they go by and show you what’s going on in excruciating detail,
 and ethereal provides a nice GUI on top of
 tcpdump.
— DJPH

The Director of Operations: inetd

 inetd is the primary manager of Internet
 services on most Unix installations. Its job is to listen on a selection of
 ports (Section 46.1) and start up the appropriate server when a connection
 comes in. This frees servers that run under inetd from
 having to deal directly with networking issues and sockets.
inetd is configured via /etc/inetd.conf

 , which lists all the ports inetd should manage, the server associated with
 each port, and any special options for that server. For specific details, read
 the manpage, inetd.conf(5). As an example,
 here are a few fairly standard entries from inetd.conf on my FreeBSD system:
ftp stream tcp nowait root /usr/libexec/ftpd ftpd -l
telnet stream tcp nowait root /usr/libexec/telnetd telnetd
finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd -s
tftp dgram udp wait nobody /usr/libexec/tftpd tftpd /tftpboot
A common package included in many inetd
 distributions (and easily added to others) is called tcp_wrappers

 . tcp_wrappers allows you to create access rules to control
 incoming connections (generally stored in /etc/hosts.allow
)
 and deny connections from unauthorized hosts. This can be very handy even for
 machines behind a firewall (Section 46.12), as it provides extra
 security by guaranteeing that certain kind of connections will not be allowed
 into your machine. As an example, my home firewall allows SMTP (Section 46.8)
 and SSH (Section 46.6) connections in, but my hosts.allow denies connections from hosts that cannot be
 reverse resolved (Section 46.9), thus requiring a certain
 level of legitimacy before my machine will talk to a host.
— DJPH

Secure Shell (SSH)

telnet
 was the original application for
 connecting to a remote machine via the Internet. (rsh was developed as a quick hack because telnet wasn’t quite ready, and so became popular
 enough to be included in distributions going forward, but telnet was always supposed to be the “real”
 application.) In its normal mode, telnet
 connects to an inetd (Section 46.5)-managed daemon called
 telnetd, which manages the login
 process.
Unfortunately, the login process happens entirely in cleartext, as does all
 interaction with the remote shell program. Anyone tapping into the connection
 could get access to the user’s password and thus gain illicit access to the
 remote system. To prevent this, Secure
 Shell (SSH) was developed. SSH uses

 Secure Sockets Layer (SSL),
 the same security mechanism that web browsers use. All interactions between your
 machine and the remote machine are encrypted, thus protecting your passwords and
 any other sensitive information. Its syntax is much like rsh’s:
% ssh gabriel
 Logs into gabriel using your local username.
% ssh deb@bits.oreilly.com
 Logs into bits.oreilly.com using the login name deb.
% ssh michael ls /tmp
 Runs ls /tmp on michael.
% ssh deb@eli grep deb /etc/passwd
 Runs grep deb /etc/passwd on eli, using the login name deb.
SSL uses public key encryption, which means that connections
 are protected with operations based on a public/private key
 pair. Information encrypted with the public key can be decoded with the private
 key and vice versa. A server runs sshd
 , which, much like telnetd, accepts connections and manages the login process.
 (Unlike telnetd, sshd is generally not managed by inetd, because sshd’s startup
 is complex and thus too slow to do every single time a connection is created.
 Because of this limitation, sshd has access
 rules much like tcp_wrappers' built in —
 generally by just linking with tcp_wrappers.)
 Each server has its own public/private key pair, allowing a user
 connecting to that server to verify its identity. This allows you to be sure
 that someone hasn’t managed to redirect your connection to their machine instead
 (where they could collect your password, for example).
You can also set up your own keypair using ssh-keygen
 , which will create an identity for you. Usually
 this identity is stored in $HOME/.ssh/identity (for the private key) and $HOME/.ssh/identity.pub (for the public key).
 Some newer versions of SSH have different keytypes and so use id_rsa/id_rsa.pub, and id_dsa/id_dsa.pub instead.
 The advantage to having an identity set up is that you can then allow that
 identity to log in to other machines without a password, much like .rhosts allowed with rsh, only more securely. Simply add your public key to the
 $HOME/.ssh/authorized_keys file on the
 remote host.

 SSH also provides a simple file copy
 mechanism, scp. Login is the same as with
 ssh; identities are used if available, or
 password exchanges are encrypted. scp’s
 syntax is much like cp’s, except that an
 account specification can be prepended to a filename:
% scp gabriel:buffoon.txt .
% scp frobnitz deb@michael:/tmp
The first command copies buffoon.txt from
 my home directory on gabriel into the current directory.
 The second copies frobnitz in the current
 directory into michael’s /tmp directory, logging in as deb.
I configure my machines to disallow telnet
 and rsh access, and I use SSH
 exclusively.
— DJPH

Configuring an Anonymous FTP Server

 Providing an anonymous FTP server allows
 anyone to anonymously download (and possibly upload) files. Normally, logging
 into an FTP server requires an account. Anonymous FTP creates an anonymous
 account and carefully limits its capabilities, so that you don’t have to create
 a full account for everyone you might want to allow access to.
An anonymous FTP connection operates within a chroot
 , that is, an isolated area (see the
 manpage for chroot(8) and chroot(2) for more details on what a chroot is). A
 few basic things need to be provided within the chroot: a copy of ls, minimal versions of /etc/passwd (sans passwords) and /etc/group to allow ls to
 display files properly, and so forth.
Some platforms provide a simple anonymous FTP setup. RedHat has an RPM called anonftp-* that installs a proper chroot. FreeBSD’s
 install tool can set up an anonymous FTP chroot for you. Check your platform
 documentation to see if it has a simple setup for you. Failing that, refer to
 CERT’s guide on safely setting up
 anonymous FTP at http://www.cert.org/tech_tips/anonymous_ftp_config.html.
— DJPH

Mail — SMTP, POP, and IMAP

 Email is one of the most well-known and
 commonly used Internet services. The core of Internet

 email is the Simple Message Transfer
 Protocol (SMTP), which defines a simple, extensible mechanism by which hosts can
 exchange mail messages. SMTP is spoken by programs known as
 Message Transfer Agents (MTAs); sendmail
 is the most well known of these and is
 included with the vast majority of Unixes. qmail

 , postfix,
 and exim are other common MTAs (I use
 qmail on all of my systems). Configuring an MTA generally involves
 telling it your default domain name for outgoing email, setting up whether it
 allows relaying and if so, under what limits (see below), possibly setting up
 spam filtering, and the like. It may also involve setting up MX records (
 Section 46.9) for your
 domain(s).
Relaying is when an MTA allows someone to connect and send an email to an
 email address not served by that MTA. If you want to allow someone on your local
 machine or local subnet to send outgoing email via your MTA, this is a very good
 thing. An open relay allows anyone to
 send outgoing email, and this allows spammers to use your machine to send their
 spam. As you might guess, this is a Very Bad Thing. All MTAs have ways of
 limiting relaying so that local users can send email but spammers can’t use your
 machine. Check your MTA’s documentation, or take a peek at http://www.mail-abuse.org for more
 information.

 Mail User Agents (MUAs or just UAs) provide
 the interface between users and MTAs. On Unix, these include programs such as
 mail, mailx, elm, and mutt, all of which work directly with the
 filesystem. Webmail clients are also MUAs, but they run under a webserver to
 provide networked access to mail. Often, though, you want to be able to use a
 MUA on another workstation that may or may not be a Unix machine, in which case
 you need some sort of MUA proxy to manage the mail and communicate with the
 remote MUA.
Post Office Protocol (POP or POP3)
 and Internet Message Access
 Protocol (IMAP) are two different ways of providing access to remote MUAs. POP
 is focused on retrieving messages from a mail server and having the MUA store
 them, where IMAP is focused on managing mail on a mail server remotely rather
 than copying it to the client machine. Freely
 available POP servers include qmail-pop3d
 (which comes with qmail) and qpopper (the Berkeley POP3 server, now maintained
 by Qualcomm), along with a wide variety of others, depending what you’re looking
 for. Freely available IMAP servers
 include courier-imap and the University of
 Washington IMAP server (imap-uw).
— DJPH

Domain Name Service (DNS)

 Usually, when you want to refer to a
 machine, you want to use its hostname, rather than having
 to remember its IP address (

 Section 46.1). However, IP only
 understands IP addresses, not hostnames, so some mapping from hostname to IP
 address is necessary. /etc/hosts
 provides a simple mapping from hostname to
 IP address, but it has the disadvantage of being local to your machine. It would
 be impossible to maintain an /etc/hosts
 file that actually reflected the constantly changing reality of the Internet.
 (In fact, historically, /etc/hosts was a
 list of every single machine on the Internet, downloaded regularly from a
 central source. This system broke down when the number of hosts on the Internet
 surpassed a few hundred.)
The
 Domain Name Service (DNS) is a specification for a loosely coordinated,
 distributed database mapping host names to IP addresses. Generally, it’s
 implemented by the
 Berkeley Internet Name Daemon
 (bind), running on hundreds of hosts.
 Each DNS server has authority over a small piece of the database, and
 coordination is accomplished through delegation. The root
 servers

 know which DNS servers have authority over
 the top-level domains (TLDs), such as .com, .net,
 .org, and so forth. Each of those DNS
 servers knows which DNS server has authority over each subdomain, and so on. DNS
 servers also cache information, so that a full, time-intensive search through
 the large distributed database isn’t necessary every time you want to access a
 host’s IP address.
DNS also stores other records, including Mail
 Exchanger (MX) records for routing mail (Section 46.8). MTAs use MX records when resolving where to send an
 email by looking up MX records on the domain for which the email is destined.
 Typically a DNS administrator creates an address record for mail.
 domain.com, points it at a machine configured to
 catch mail for domain.com, and then adds an MX record
 pointing to mail.domain.com
 on each host within domain.com.
DNS can affect you in a few obvious ways. The first is that you might need to
 diagnose problems if for some reason your machine can’t look up hostnames.
 host
 is a simple tool for making DNS queries.
 host hostname.domain.com will return the IP address for
 hostname.domain.com. While host can do slightly more complicated queries, I
 recommend dig (
 Section 46.3) for anything more
 complicated than a quick query. whois
 can show you registration information for
 a domain; comparing this information to a dig
 on that domain can tell you if your
 DNS
 cache is stale (or if the root servers haven’t been updated):
% whois oreilly.com
...
Registrant:
O'Reilly & Associates (OREILLY6-DOM)
 101 Morris Street
 Sebastopol, CA 95472
 US

 Domain Name: OREILLY.COM
...
 Record last updated on 20-Mar-2002.
 Record expires on 28-May-2003.
 Record created on 27-May-1997.
 Database last updated on 28-Mar-2002 15:33:00 EST.

 Domain servers in listed order:

 NS.OREILLY.COM 209.204.146.21
 NS1.SONIC.NET 208.201.224.11

% dig oreilly.com ns
...
;; ANSWER SECTION:
oreilly.com. 3h42m10s IN NS ns2.sonic.net.
oreilly.com. 3h42m10s IN NS ns.oreilly.com.
oreilly.com. 3h42m10s IN NS ns1.sonic.net.
...
You might also want to set up a local DNS cache by configuring bind

 to resolve only. (You can also use
 dnscache, available at http://cr.yp.to/djbdns.html.) To do this, make sure you have
 bind installed and then put these lines
 into your named.conf

 :
options {
 ...
 allow-query { localnets; };
 allow-transfer { none; };
 allow-recursion { localnets; };
 ...
}
zone "." {
 type hint;
 file "named.root";
};

zone "0.0.127.IN-ADDR.ARPA" {
 type master;
 file "localhost.rev";
};
This allows machines on your local network to query this bind and will look up queries for them (which is
 what allow-recursion means). It also provides
 the normal basic root servers list (necessary for bind to do full DNS queries for its clients) and the reverse
 lookup for 127.0.0.1/localhost.
If you need to run your own DNS server, you’ll want to configure bind to be authoritative for your domain or
 domains. An example is beyond the scope of this book, though; refer to the
 bind documentation or to O’Reilly’s
 DNS and Bind.

Dynamic Host Configuration Protocol (DHCP)

 Most servers have one
 or more static IP addresses, which are generally set in one
 of the boot configuration files. However, it’s not uncommon to have one or more
 workstations on your network, and its often convenient to configure their
 addresses in a central place. DHCP allows workstations to dynamically discover
 their IP addresses.
If you have a cable modem,
 it’s quite possible you get your IP address via DHCP. Your cable provider has a
 DHCP server, and any machine you plug into your cable modem becomes a DHCP
 client, automatically getting an IP address from your provider’s DHCP server.
 Section 46.11 describes NAT,
 which can let you run multiple machines on your home network in a case like
 this.
To run
 your own DHCP server, you need a
 DHCP daemon. isc-dhcpd is available at http://www.isc.org/products/DHCP/ and allows a variety of
 configurations. I have a variety of machines on my network at home, including
 servers with static IP addresses, workstations that use DHCP but always get the
 same IP address, and a few IP addresses dynamically allocated to random machines
 plugged into my network (handy for building a new machine or for friends
 visiting with their laptops).
Fixed dynamic addresses are extremely useful. Most of the normal workstations
 I have at home are configured to have

 fixed dynamic addresses: they get their IP
 addresses from the DHCP server, but the server recognizes each machine’s
 Ethernet address (otherwise known as its MAC address) and hands out the same IP
 address each time. This allows me to have a centralized database of workstation
 addresses and makes configuration of those workstations trivial, while still
 giving me consistent IP addresses for all of my workstations.
— DJPH

Gateways and NAT

 For two separate networks to
 communicate, a gateway is needed. A gateway has two
 network interfaces (two network cards,
 a network card and a modem, or so forth) and routes packets between the two
 networks as appropriate. Routers and cable modems both function
 as gateways.
Unix machines can also function as gateways. There are several reasons to use
 your Unix machine as your gateway: it is generally more flexible than the
 built-in gateways in cable modems and
 DSL routers; it can function as a firewall
 (
 Section 46.12); and if you have a
 limited number of IP addresses, it can perform

 Network Address Translation (NAT)
 for you.
NAT allows the machines on your LAN to use private
 addresses
 , that is, the address ranges set out in
 RFC1918 as reserved for private networks. These include 192.168.0.0 with netmask
 255.255.0.0 (also known as 192.168.0.0/16), 172.16.0.0 with netmask 255.240.0.0
 (also known as 172.16.0.0/12), and 10.0.0.0 with netmask 255.0.0.0 (also known
 as 10.0.0.0/8). Within the private network, you can have as many IP addresses as
 you need. The gateway runs a NAT server, which translates all the
 private addresses into a single public address (the address of the public side
 of the gateway) on the way out and back into the correct private addresses on
 the way back in. If you use DHCP (
 Section 46.10) to configure your
 workstations, you can easily configure your gateway and NAT server to be your
 DHCP server also and hand out private addresses to your LAN.
Note that you can really only use private
 NAT for workstations. Servers that need to be externally
 accessible will need public IP addresses. If you are using a private network on
 your internal network, you can configure your NAT server to map a particular
 public address to a particular private address, allowing access to your server
 while still keeping the server behind your gateway/firewall. However, for a
 straightforward setup, each server will still need its own distinct public IP
 address, plus the main public IP address for the gateway. At the very least, you
 will need one public static IP address for the gateway; it is possible to
 configure natd to direct specific ports on
 the gateway to ports on private servers.
 This way you can have a private web server
 and a private mail server and direct incoming port 80 (HTTP) requests to the web
 server and incoming port 25 (SMTP) requests to the mail server. Read the
 natd documentation for more details on
 how to do complex configuration like this.
In
 FreeBSD, enabling gatewaying is as simple
 as putting the line gateway_enable="YES" in
 your /etc/rc.conf. Most Linux distributions
 provide a simple way to adjust the proper sysctl variable (net/ipv4/ip_forward) during startup as well. On other
 architectures you may need to recompile your
 kernel (
 Section 44.3) to turn on IP
 forwarding, or it may be on by default.
Generally all that’s required to run natd
 is to add it to your startup files and tell it which network device it should
 consider to be the “outside world”:
natd -interface rl0

 Linux doesn’t use natd for NAT. Instead, it uses IP
 masquerading. Read the masquerading HOWTO at http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO/ for more
 information on how to deal with NAT on Linux.
— DJPH

Firewalls

Gateways (

 Section 46.11) route packets from one network to
 another. Firewalls prevent some packets from being routed, based on a set of
 rules. Generally these rules are based on which direction the packet is going,
 to which port (
 Section 46.1) it is destined or from
 which port it came, which protocol the packet is using (TCP, UDP, or ICMP for
 low-level protocols, though sometimes firewalls also recognize higher-level
 protocols like HTTP), and so forth.
A
 fairly standard firewall ruleset would allow outgoing packets from all machines
 on the LAN, disallow incoming packets that weren’t part of an established
 connection (which allows machines on the LAN to establish connections going out,
 but keeps outsiders from establishing incoming connections), and then
 specifically allow things like incoming connections to port 25 (the SMTP (Section
 46.8) port) on the mail server machine, ports 80 and 443 (the HTTP
 and HTTPS ports) on the web server machine, and port 22 (the SSH (Section
 46.6) port) on any server that should be able to receive SSH
 logins.

 Cable modems and DSL routers generally have
 simple firewalls built in; a Unix machine functioning as a gateway can also firewall and often has
 much more complex capabilities. Firewall software varies enough that detailed
 configuration of a firewall is beyond the scope of this book; things to look for
 include the documentation for ipfw, ipchains (Linux 2.2 kernel), or iptables (Linux 2.4 kernel).
— DJPH

Gatewaying from a Personal LAN over a Modem

Often you have only dialup access but would like your home network to be able
 to access the Internet. A simple way to do this is to configure one Unix machine
 as a gateway (Section 46.11), with one side of the

 gateway your LAN and the other side the
 modem connection. If you then set up the modem connection to dial on demand, you
 have a simple way to share your connection between all of the machines on the
 LAN.
All that’s required is that you set up your PPP
 connection (
 Section 44.11), turn on PPP’s
 NAT (Section 46.11) handling and then turn on
 gatewaying (Section
 46.11). Make sure that all your LAN machines point to the gateway as
 their default gateway (handing out addresses via DHCP (Section 46.10)
 is an easy way to ensure this). Any attempt to access the Internet by any
 machine on the LAN will then cause your gateway to dial up your ISP, if the
 modem isn’t currently connected.
Note that I said that you had to turn on
 NAT handling. A dialup almost always
 means that your dialup machine will be getting a dynamic address, and the only
 way to have multiple machines behind a dynamic address is NAT. Because this is
 so common, some PPP clients have NAT built in; no configuration is required and
 no separate natd needs to be run. NAT simply
 has to be enabled, generally with the -nat option. (Linux’s
 pppd does not support NAT by itself. Read
 the masquerading HOWTO at http://www.linuxdoc.org/HOWTO/IP-Masquerade-HOWTO/ for more
 information on how to deal with NAT on Linux.)
— DJPH

Chapter 47. Connecting to MS Windows

Building Bridges

Too often, it seems, the discussion of
 operating systems devolves into accusations, recriminations, and hurt feelings.
 However, the reality of a heterogeneous computing environment makes cooperation
 among the various operating
 systems critically important. There are a number of ways that Unix machines can
 interact with and partipate in Windows networks. Many of those connections work
 in reverse, too, so that Windows users can begin to experience Unix without
 abandoning their preferred desktop. Polemics aside, operating systems are only a
 means to an end that is defined by your business. Fortunately, interoperability
 is becoming increasingly easier. The following sections will show some of the
 options available to you.
— JJ

Installing and Configuring Samba

[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 Samba

 Samba is an open source project that implements the

 Session Message Block (SMB)
 protocol, which is the core networking language of the Microsoft Windows family.
 Of course, the dominant networking protocol in Unix is the Transmission Control Protocol/Internet
 Protocol (TCP/IP). The challenge of the Samba project is to map SMB traffic onto
 TCP/IP networks. This is no small feat since SMB was designed for small,
 nonsegmented networks. Because all SMB network machine names exist in one global
 namespace, the practical size of an SMB network is quite limited.

 Although there are workgroups and NT domains
 (dolled-up workgroups with a domain controller), these groups don’t partition a
 network in the same way that IP subnets do. Workgroups are simply an
 organizational grouping of machine names (although NT domains can also exercise
 some access control over the resources within their jurisdiction).
Despite these limitations, most offices these days have a very large installed
 base of Windows servers and workstations. With Samba, your Unix machine can
 participate in Windows file sharing and print services. In fact, Samba can
 replace Windows file and print servers in many cases. For the full reference on
 Samba (plus a good number of useful tips), pick up a copy of Using
 Samba from O’Reilly & Associates.
Samba consists mainly of two daemons and a host of supporting programs. The
 smbd

 daemon
 is responsible for making your machine’s filesystem and printers available to a
 Windows network. The nmbd

 daemon handles the mapping of SMB machine names into the IP namespace and
 browsing other SMB resources. Some Unix systems, like
 Linux, are also able to mount other SMB
 drives onto their local filesystems using the smbmnt command.
Samba is available for all popular Unix
 platforms. The project web site, http://www.samba.org, is
 mirrored throughout the world, so you should be able to find a server near you.
 The current stable release of samba will be available as a link called samba-latest.tar.gz. As of this writing, the
 latest release is 2.2.3a.
After unpacking the archive file, change into the newly created samba subdirectory, become the root user, and
 type:
./configure && make
This bit of shell logic simply means, “Execute the program configure
 in the current directory. It is important
 to run the configure as root, since there will be certain tests done that
 require root access. If it succeeds, run make
 .”
 If the compilation proceeds without error, you should install the Samba
 components with:
make install
Now you can
 configure Samba to share your system’s directories and printers with your
 Windows neighbors.

 There is only one configuration script for
 both Samba daemons: smb.conf. The Samba
 build process does not normally create this file for you. However, there are
 several example smb.conf files in the
 examples directory of the unpacked
 source code. These can be easily modified for your system. Alternatively, you
 may wish to use the web administration tool SWAT (
 Section 47.4) to configure your
 installation. It is worth understanding a bit about how to configure smb.conf by hand.
Perhaps the best example configuration to start with is the file called
 smb.conf.default. Lines that start with
 a semicolon or pound sign (#) are comments and are ignored by the Samba
 daemons entirely. Blocks of related options begin
 with a line that has a label in square brackets. A special block called [global] precedes blocks that define individual
 shared resources. Global configuration options include what workgroup your
 machine is part of, what guest account to use for public shares, and which IP
 addresses are allowed to connect to your SMB service. For instance:
[global]
 workgroup = MYGROUP
; hosts allow = 192.168.1. 192.168.2. 127.
 guest account = pcguest
 log file = /usr/local/samba/var/log.%m
 max log size = 50
 security = user
; encrypt passwords = yes
Here, all the shares that will be described later in the configuration file
 will be advertised in the MYGROUP workgroup. Although the
 next line is commented out, you can use the host
 allow

 directive to
 permit only certain hosts or subnets access to your SMB shares. In this example,
 machines would have to be in either one of the two class C networks (IPs
 beginning with 192.168.1 and 192.168.2) or in the class A network (IPs beginning
 with 127) to even connect to your Samba daemons. Sometimes you will create
 public shares that won’t require a authentication. For these shares, some real
 Unix account is needed. That account is specified with guest account
 and is usually a nonprivileged account,
 like pcguest.
A good rule of thumb when customizing your smb.conf
 is to leave the defaults in place where you
 don’t fully understand the directive. The defaults err on the side of caution.
 Unless you have a good reason for changing them, leave the log file

 and max log size directives as is. The security and encrypt passwords
 directives are important and are talked about in more detail in Section 47.6. For now, keep the
 defaults.
Sharing one of your local
 directories with the SMB network is easy.
 For instance:
[tmp]
 comment = Temporary file space
 browseable = yes
 path = /tmp
 read only = no
 public = yes
This block describes sharing the local system’s /tmp
 directory with your SMB network. The
 comment option is a human-readable
 description of the share that is available to SMB browsers (like the Network
 Neighborhood application in Windows). The path
 directive indicates the local path you
 wish to share. The browseable
 option, which defaults to yes anyway,
 makes sure that this share appears in browse lists. The read only statement is set to no, making the share writable by
 SMB clients that are able to connect (Section 47.6). When the public

 directive is set to yes, passwords are
 not required to access this resource.
There are far too many configuration options to detail here. See the Samba
 documention or Using Samba for the full story.

 After you have finished configuring the
 system, you are ready to run the SMB daemons. You can run these servers (as
 root) directly from the command line with the following:
/path/to/samba/bin/smbd -D;
/path/to/samba/bin/nmbd -D;
You can also have inetd

 run them. Simply add the following lines to /etc/services:
netbios-ssn 139/tcp
netbios-ns 137/udp
Add the following lines to /etc/inetd.conf
 :
netbios-snn stream tcp nowait root /path/to/samba/bin/smbd smbd
netbios-ns dgram upd wait root /path/to/samba/bin/nmbd nmbd
Simply restart inetd to begin answering SMB
 requests.
To verify that your SMB services are running, use the command-line tool
 smbclient

 to browse yourself.
$ smbclient -L netbios-name
Your machine’s

 NETBIOS
 name (that is, the name by which SMB peers are known) will be your DNS
 hostname or whatever you set the global directive netbios name to be. If prompted for a password, you can simply
 hit Enter for now. If your service is running, you should see your shares
 displayed in a similiar way to the following:
[jjohn@marian upt]$ smbclient -L marian
added interface ip=192.168.1.50 bcast=192.168.1.255 nmask=255.255.255.0
Password:
Anonymous login successful
Domain=[WORKGROUP] OS=[Unix] Server=[Samba 2.2.2]

 Sharename Type Comment
 --------- ---- -------
 homes Disk Home Directories
 IPC$ IPC IPC Service (Samba Server)
 ADMIN$ Disk IPC Service (Samba Server)
 lp Printer hp
 tmp Disk Temporary file space
 Server Comment
 --------- -------
 MARIAN Samba Server

 Workgroup Master
 --------- -------
 WORKGROUP MARIAN
— JJ

Securing Samba

 The
 topic of
 security under Samba falls mainly into two categories: how to make the SMB
 server secure and how clients authenticate with the SMB server. Since the
 authentication issue is the thorniest,
 let’s talk about it first.
In
 the [global] section of the smb.conf

 file, there is a directive called security
 that can take one of four values: share,
 user, server, or
 domain. Choosing share means that
 each shared resource has a set of passwords associated with it. Users must
 present one of those passwords to use the resource. User
 security requires users to provide a username and password to gain access to any
 of the shares. Samba can ask another SMB server to authenticate user
 credentials, instead of using local files, by selecting the
 server security setting. If you choose this security
 option, you will need to provide the password
 server directive a space-separated list of NETBIOS machine names
 that will do the authentication. The last security option is
 domain. In this model, your machine joins an existing
 NT domain that does all the user credential authentication.
If you are new to Samba, your
 best bet is to use user security. The ugliest problem of
 Samba now rears its head: to use encrypted passwords or not to. The issue here
 is that older Windows clients (early Windows 95 and pre-SP3 NT 4.0) send user
 passwords over the network in clear text. The good news about clear text
 passwords is that Samba can use your system’s /etc/passwd
 to authenticate users. All real accounts on your
 system will use their Unix username and password to connect to your SMB shares.
 The problems with this approach are:
	Passwords can be easily snooped from the network.

	Every SMB user requires a real account on your system.

	Newer SMB clients will need to be patched to connect to your
 shares.

If the first two reasons don’t scare you off using clear text passwords, the
 last reason is pretty daunting if you need to patch a lot of workstations.
 However, if you still want to go this route, you need to add the elements listed
 in Table 47-1 to each client’s
 registry (using
 REGEDIT.EXE).
Table 47-1. Registry settings for clear text
 SMB passwords
	
 Operating system

 	
 Registry hack

	
 Windows 95, Windows 98, Windows Me

 	
 Create a new field called EnablePlainTextPassword with the
 dword value 1 in the registry key:
 \HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\VNETSUP\

	
 Windows NT

 	
 Create a new field called EnablePlainTextPassword with a
 dword value of 1 in the registry
 key: HKEY_LOCAL_MACHINE\system\CurrentControlSet\Services\Rdr\Parameters\

	
 Windows 2000

 	
 Create a new field EnablePlainTextPassword with a
 dword value of 1 in the registry
 key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LanmanWorkStation\Parameters\

If you’re not sold on clear text passwords, you will need to create a separate
 password file for SMB users. Luckily, there’s a utility called smbpasswd
 that can manage this file for you. Adding
 a new SMB user who already has a Unix account on your system is as simple
 as:
smbpasswd username
You will then be prompted for a password for this account. The drawback to
 this approach is the added maintenance of keeping the SMB passwords in sync with
 the Unix passwords. See Using Samba for some guidance here.
 The hope of the near future is to use an LDAP server (either Microsoft’s Active
 Directory or a Unix LDAP server) for all system passwords. This is the dream of
 single-source logins and something the Samba team is working towards
 supporting.
After authentication issues, the big security concerns about Samba involve
 access control.
 Some of the ways to handle access control have been shown in the configuration
 section of this article. Additionally, each share can use the valid users directive to limit the set of users to
 a space-separated list. You might also consider making the share read only and then put only a few users on the
 write
 list.
— JJ

SWAT and GUI SMB Browsers

 Modern versions of Samba come bundled with a
 web adminstration tool called swat. swat doesn’t need any web server to run, but you
 will need to configure your system’s inetd.
 As with any new service, you’ll need to define a name and a port for it
 in
 /etc/services. For instance:
swat 901/tcp
You are now ready to make inetd serve
 swat. Add the following to /etc/inetd.conf
 :
swat stream tcp nowait.400 root /path/to/samba/bin/swat swat
Now, restart inetd and point your web
 browser to http://localhost:901. You will be asked for the root
 username and password. If all is successful, you will see a screen that has
 seven
 navigation icons: home, globals,
 shares, printers, status, view, and password, as shown in Figure 47-1.
[image: SWAT’s globals page]

Figure 47-1. SWAT’s globals page

swat will be on the
 globals page first. Here you can set the global
 directives, such as workgroup name and security type. There is online help,
 should an option not be immediately clear. Clicking on the
 shares icon shows you the services you are currently
 advertising and allows you to add more. Clicking on
 printers
 allows you to configure which
 printers you share with the SMB network. You can even restart the server from
 swat.
Third-party browsing tools are also
 available for Samba. Some of these, like smb2www, are web
 applications that show you the local SMB neighborhood. Others, like gsnhood and
 xSMBrowser, are X11 programs that work somewhat like the Windows Network
 Neighborhood application. One of the advantages of the X11 browsers is that they
 can be configured to allow users to mount SMB drives (if your Unix supports the
 smbfs filesystem). You will certainly be rewarded by
 searching the web for third-party SMB tools.
— JJ

Printing with Samba

 Sharing Unix printers with a SMB network is
 pretty straightforward. You can use swat
 to select the printer you want to share. If
 your /etc/printcap is configured correctly,
 swat will allow you to select one of
 those printers from a drop-down menu. You will then be able to set access
 controls over that printer, as well as make the printer browsable. Be sure to
 click the Commit Changes button when you’re finished to save your settings. If
 you’re running the SMB daemons as standalone processes,
 you can restart them from the status section of swat. In any case, your printers won’t be shared
 until the daemons are restarted.
Of course, you can also edit the smb.conf
 file directly. Here’s how to share your
 default printer with the SMB network:
[lp]
 printable = Yes
 printer name = lp
 ; printing = BSD
 ; print command = /usr/bin/lpr -r %s
 path = /var/spool/samba
 guest ok = Yes
 read only = No
 comment = hp
The block should start off with the lpr
 queue name. The most important directive for print shares is printable, which identifies this block as defining
 a print share. The printer name needs to
 match the Unix printer queue name for the printer you wish to share. If you have
 defined a global directive printing (which
 defaults to BSD style print queues), you don’t need to worry about explicitly
 telling Samba how to print to the queue. In the commented-out print command directive, the %s stands for the file you wish to print. The
 path directive defines the samba print
 spool directory. This directory needs to be writable by the smbd process. Both guest
 ok and read only directives are
 simple access controls. The comment block is
 self-explanatory.
After saving your changes and restarting the Samba servers (if needed), your
 shares should be browsable by the SMB network. From Unix, you can print to SMB
 printers with the following command:
$ smbclient //netbios-name/printer
smb: \> print filename-to-print
Here the smbclient
 program (described in more detail below) is
 used to connect to the SMB printer. Using the interactive shell, the
 print command will send any file you specify to the
 printer. On some systems, you may find a program called smbprint that is a Bourne shell wrapper around smbclient.
— JJ

Connecting to SMB Shares from Unix

 From Unix, you can connect to SMB shares
 with the smbclient
 command. It provides an ftp-like interactive environment for transferring
 files between your Unix system and the SMB share. It also is an excellent tool
 for debugging your Samba setup. For instance, you can see what shares are
 available from an SMB host with the following:
$ smbclient -L //netbios-name -U SMB_username
The -L flag request the list of available
 shares from the machine specified by its NETBIOS name. You may optionally
 provide an SMB username name with the -U
 flag. If no explicit username is provided, your Unix account name is
 used.
Once you have found a directory share
 that interests you, you can “log in” to it:
$ smbclient //netbios-name/share -U SMB_username
smb: />
You will be prompted for the SMB password associated with whichever account
 you used. If successful, you will be at an interactive prompt. You may type
 ? or help to get all the options available to you. Use the
 get

 command to copy files from the remote host
 to your Unix machine and put to copy files in the other
 direction. Like ftp, Samba also provides the
 filename wildcard variants mget and
 mput to allow you to handle multiple files
 easily.
— JJ

Sharing Desktops with VNC

[image:] Go to http://examples.oreilly.com/upt3 for more information on: VNC

 Virtual Network Computing (VNC) is
 an open source project from AT&T Labs in Cambridge, England. It is a
 client/server system that allows users to manipulate desktop environments
 remotely. There are VNC servers for Unix, Windows, and
 pre-MacOS X environments. The options for clients are even wider since
 there is a Java applet VNC client. This can be used on
 any system that supports a modern web browser and Java. There is also a native
 VNC client for Unix, Windows, and pre-MacOS X machines. VNC provides a
 platform-independent way to control a heterogeneous network from any client
 platform.
VNC provides a live picture of a desktop. When you move your mouse on the
 client end, the mouse also moves on the server. The VNC client gets a kind of
 “graphic diff” of the change on the remote desktop and applies that to its
 current notion of the desktop. As you might guess, VNC isn’t ideal for
 high-performance video games, but it is very serviceable for system
 administration and development.
You can get either precompiled binaries or the source code at http://www.uk.research.att.com/vnc/download.html. If you choose to
 compile VNC from the source, you will need to get and unpack the tar archive
 from the above site. To build the source, change into the unpacked archive
 directory and type:
$ xmkmf
$ make World && cd Xvnc && make World
If the compile goes cleanly, change to root and install:
make install
Connecting to a Windows VNC server

Setting up a
 VNC server on a Windows machine is fairly
 straightforward. Simply grab the appropriate binary from the VNC download
 page, unzip the archive, and run the SETUP.EXE program in the vncserver folder. VNC will create a folder in the Start menu
 in which you’ll find the VNC server program. When started, this program will
 ask you for a password that clients will need to be able to use your Windows
 machine.
Connecting to any VNC server requires
 three things. The first is the server’s hostname or IP address. The second
 is the display number of the remote desktop. Windows
 and Macintosh servers can only have one display (the desktop), while Unix
 machines can have many VNC servers active at once (just like they can have
 many X sessions running concurrently). Display numbers begin at zero.
 The last piece of information needed
 is the password. Be advised that this password is in no way secure, nor is
 the VNC network traffic encrypted.
To connect to a VNC server requires running X. From an Xterm, type the
 following:
$ vncviewer hostname:display_number
If the VNC server is running on that machine, you’ll be prompted for a
 password. You should see something like Figure 47-2.
[image: Unix VNC client connecting to a Windows server]

Figure 47-2. Unix VNC client connecting to a Windows server

VNC desktops are also available through Java applets that can be accessed
 through modern web browsers. The URL for that applet is comprised of
 the hostname of the VNC server and a port number that is the display number
 plus 5800. For example, the URL for connecting to the VNC server on a
 Windows machine called karl.oreilly.com would be
 http://karl.oreilly.com:5800.

Setting up VNC on Unix

It is sometimes convenient to be able to connect to
 a Unix desktop remotely from a machine that isn’t running X. Fortunately,
 setting up VNC on UNIX can be as straightforward as:
$ vncserver
VNC will pick the next available display number for your VNC server and
 report this to you.
New 'X' desktop is marian:1

Starting applications specified in /home/jjohn/.vnc/xstartup
Log file is /home/jjohn/.vnc/marian:1.log
If you haven’t picked one before, you will be prompted for a password.
 Again, this has nothing to do with your system’s /etc/passwd. Keep in mind that the new server is running
 under the account that started it. The security issues are manifold, so
 think carefully about how you deploy this very useful service.
By default, VNC runs the very lean window manager twm

 . The fewer the needless graphic
 elements, the better network performance you can expected. However, you can
 adjust the details of that desktop by looking in your home directory for the
 .vnc directory. There, you’ll find
 the VNC log, pid, and password files. More importantly, you’ll find the
 xstartup file, which works just
 like xinitrc. You can start X programs,
 set the desktop color, and choose the window manager to run from this file.
 Here’s an example of the kinds of customizations you can do:
#!/bin/sh
xrdb $HOME/.Xresources
xsetroot -solid gray85 &
xterm -fg blue -bg lightyellow -g 80x25+0+0 &
xterm -fg red -bg lightyellow -g 80x25+0-0 &
xterm -fg darkgreen -bg lightyellow -g 80x25-0+0 &
xclock -digital -update 5 -bg lightyellow -g -0-300 &
exec twm
Here, three Xterms and xclock are
 arranged in a convenient way. VNC will also look in your .twmrc, if you’re using the default window
 manager, for further customizations.

— JJ

Of Emulators and APIs

Sometimes you will need to use a Windows application
 that hasn’t been ported to Unix. While you can buy an additional Windows machine
 just for that program, there are a few Unix solutions that will allow you access
 to the Windows environment from the comfort of X. While none of the solutions
 offered below have the performance of Windows running natively on dedicated
 hardware, each is worth mentioning.
VMWare

What’s the next best thing to having another machine run Windows? Having a

 virtual machine running Windows.
 VMWare, Inc., has produced software called vmware for Intel Linux that creates a virtual
 i386-class machine on which Windows can be installed. All your hardware is
 virtualized, so the virtual machine created is a somewhat slower clone of
 the host. Still, the performance is adequate for Office applications and
 development. vmware creates a private
 network on your machine so that, with Samba
 (Section 47.2), you can get to
 your Unix filesystem from your virtual Windows machine. You can get an
 evaluation copy at http://www.vmware.com.

Wine

If a virtual machine is overkill for your needs, you might want to look
 into the open source project called wine

 . A recursive acronym for
 Wine Is Not an Emulator, the wine project
 also runs only on Intel machines, and it tries to emulate the Windows API
 for Windows-native applications. This project has been under development for
 a long time and isn’t quite ready for mission-critical applications yet.
 However, many Windows projects can mostly function under wine, including some video games, such as
 Blizzard’s StarCraft. You will find more information about wine at http://www.winehq.com.
— JJ

Citrix: Making Windows Multiuser

 Unix users needing to access Windows
 applications will find that VNC is not a workable solution in all instances. The
 reason for this is that Windows operating systems were not designed to be
 multiuser; they do not allow multiple concurrent user sessions. When you have
 more than a few users needing to run a Windows application, such as Outlook to
 connect to corporate email, your options are to put a Windows PC on every desk,
 run Windows under a virtual machine, or set up Windows Terminal Services
 (WTS).
WTS is the current name of the multiuser software Microsoft provides with the
 Windows 2000 Server product family. Its former iteration was Windows NT 4.0
 Terminal Server. Similar to VNC, WTS provides a Windows 2000 desktop to a
 connecting client, but does it in true multiuser fashion. Dozens of users can be
 connected to the same machine, running different processes, all independent of
 the other. However, WTS is only part of the solution for Unix users. This is
 because Microsoft only allows connections to a WTS server via the Remote Desktop Protocol (RDP) but doesn’t
 provide any non-Windows clients that use RDP.
On the flip side, Citrix provides a Unix client
 program that can connect to a WTS server, but it only uses the Independent
 Computing Architecture (ICA) protocol. For that client to work, a server add-on
 product to WTS called
 Citrix Metaframe must be installed.
 Thankfully, Metaframe provides additional features to a WTS server besides ICA
 connectivity that helps to justify the additional cost.

 One
 thing to be careful of when
 implementing a WTS solution is licensing. Microsoft is very strict in its rules
 about what machines can connect under which circumstances. Like tollbooths on
 the highway, Microsoft wants to get paid no matter how you get on, or which
 vehicle you’re driving. To put licensing simply, you must have a Windows 2000
 Server license for each server, a Windows 2000 Server Client Access License for
 each machine connecting to the server, a Terminal Services License for each
 machine actually using WTS, and, if you are using Office, each machine that runs
 Office off the WTS server must have a license. These are not concurrent
 licenses: if 50 machines are going to use Office at some point, all 50 must have
 licenses, not just the 10 that are connected at any given moment. Citrix
 licenses are in addition to Microsoft licenses but are thankfully more friendly.
 Citrix allows the use of concurrent licenses, which means 20 licenses could
 cover the needs of 50 users, if only 20 are going to be connected at a time.
 Full details about Microsoft licensing in a WTS environment can be found at
 http://www.microsoft.com/windows2000/server/howtobuy/pricing/tsfaq.asp.
Citrix Metaframe

 Assuming that you have a properly
 installed and configured Citrix Metaframe server to connect to, you should
 download and install the appropriate
 ICA
 client for your operating system from http://www.citrix.com/download/. Installation is very simple and
 adequately explained in the provided documentation.
After installation, as a user, run wfcmgr
 from program directory you installed
 to. This will launch the configuration program for the ICA client; see Figure 47-3.
[image: Existing entries in wfcmgr]

Figure 47-3. Existing entries in wfcmgr

To create a new entry, select New from the Entry menu. You will see Figure 47-4. Though all settings are
 important, be sure to adjust the settings pertaining to the Window
 properties. A good tip is to set up your screen to be 90 percent of your
 display size, to use a shared palette of colors, and to map drive letters to
 your home directory, floppy, and CD-ROM. Using full-screen mode will disable
 the use of multiple desktops on your Unix system, so it is not a good idea.
 Using a shared palette prevents odd coloring on your display. Mapping to
 your local devices is useful for transferring files between the WTS server
 and your workstation. The settings to do this are under the Option menu
 after you’ve saved the entry.
[image: Creating a new entry in wfcmgr]

Figure 47-4. Creating a new entry in wfcmgr

Running wfcmgr also creates a .ICAClient directory in the user’s home
 directory. Copy this directory to /etc/skel to insure that new users are automatically setup
 with default settings to access WTS. For existing users, copy the directory
 to their home directory and give ownership to that user.
Create a symbolic link, such as /usr/local/bin/citrix, in your default path that points to
 wfcmgr. Give it an easy name like
 citrix. Using this link name, you can launch saved
 configurations in wfcmgr with a single
 command.
$ citrix desc
 description_name
description_name, in this instance, is the
 descriptive name you gave your entry in wfcmgr (see Figure
 47-3). It is case-sensitive.
Metaframe offers many additional features, such as load balancing,
 application publishing, automatic updates of ICA clients, and a web-based
 client, that may help justify its cost. Citrix even sells a Metaframe for
 Unix that provides Unix programs to Windows clients that don’t have an X
 Server.

rdesktop

The fact that Microsoft has not provided an
 RDP client for Unix has not
 stopped enterprising programmers in the Open Source community from creating
 one. This program, called rdesktop

 , is available at http://www.rdesktop.org. In everyday use this program has proven
 to be as useful as the ICA client, though it lacks support for sound, high
 color depths, drive mapping, or client-side support for serial and parallel
 ports. If these features are important to you, you will need Metaframe; if
 not, this free program is an excellent alternative.

Hob

Another RDP client, called

 HOBLink JWT, is available from
 Hobsoft, http://www.hobsoft.com. The most interesting feature
 of this program is that it is written in Java. This means that any client
 that has a browser with a working Java runtime should be able to run this
 program. Hobsoft has provided a lot of features in this product, and it is a
 viable alternative to Citrix Metaframe.

— DB

Part IX. Security

Part IX contains the following
 chapters:
Chapter 48
Chapter 49
Chapter 50
Chapter 51

Chapter 48. Security Basics

Understanding Points of Vulnerability

Rather
 than being impregnable
 fortresses of steel, most computers are about as leaky as old wooden fishing
 boats. Though the press has focused primarily on Windows security violations in
 the last few years, Unix boxes are just as vulnerable and require as much, or
 more, effort to keep safe.
If your Unix box sits in your home, it is protected from unauthorized access,
 you live alone, and you never connect to the Internet, security probably isn’t a
 concern for you. However, chances are your Unix box is fairly easy to access
 physically, and your system is most likely connected to the Internet through a
 modem or other network connection. In both these cases, this chapter and those
 that follow are of extreme interest to you.
Anytime
 you have a multiuser system, your account is vulnerable to others in the system
 and to anyone who might break into the system from outside your organization.
 The only way to protect accounts is to ensure that good account management
 practices are in place, such as removing accounts when people are no longer with
 the organization and using difficult-to-hack passwords, as well as making sure
 that sensitive data is protected by accidental or deliberate access.
For single-user systems, you’ll want to make sure that someone can’t
 accidentally or deliberately log into your machine at home or work. Chances are
 no one would try, but particularly if you have something such as Linux installed
 on a laptop, you’re going to want to keep the snoops out.
More importantly, before you
 connect to the Internet, you have to know what you’re doing with your system,
 particularly if you run applications such as web servers on your system. All you
 need is one harmful worm or virus, or to have a cracker break into your system,
 to have all your work and effort compromised.
The above areas of vulnerability — account, machine, and system — probably
 don’t surprise you. But are you aware that you’re vulnerable to yourself?
How many times have you accidentally deleted a file? Now, how many times have
 you deleted a file and not had backup in place? Security isn’t just a protection
 against external intrusion. Used effectively, security is also an effective
 means to protect the system and the data and applications from internal error
 and blunder.
Before you install your Unix operating system and turn on your machine, you
 need to have a security plan in place, starting with a security checklist (Section
 48.2).
— SP

CERT Security Checklists

If you can stand the access times, one of the most valuable web sites for Unix
 security information is the
 CERT (Computer Emergency Response
 Team) web site at http://www.cert.org. At this site you’ll be
 able to find information about the latest security
 alerts (Section 48.3),
 where to get security patches for your operating system, and the CERT Unix
 Security Checklist.
The CERT Unix Security Checklist is a step-by-step overview of what security
 procedures you need to implement for your Unix system, regardless of the type of
 system you have.
There’s no magic formula in the Checklist, just good common sense. First of
 all, keep your system up to date with the most recent security patches. Always
 apply the most restrictive permission
 (
 Section 50.5) on a file: if a file
 only needs to be read-only, make sure its file permissions are set to read-only,
 and so on. Other tips are disabling Internet services you’re not using and
 protecting your system so it can’t be used to launch denial-of-service attacks (DoS) (
 Section 48.5).
Above all, the Checklist emphasizes an attitude of “Go ahead, be paranoid —
 someone is out to break into your system.” If your Unix box is connected in any
 way to the Internet, the Checklist is the first thing you should print out and
 review, one step at a time, before you install your Unix
 operating system or turn on your machine. Definitely before you connect to the
 Internet.
Note
The CERT web site has extremely slow access times. I imagine this is
 because it’s a popular site. I can also imagine that the site is the target
 of every cracker in the world. Regardless of the cause of the slowness,
 access the site only during non-peak hours, if there is such a thing with a
 24-hour-a-day Internet.

— SP

Keeping Up with Security Alerts

 If
 you have a Microsoft Windows system, you’re probably familiar with the frequent
 security bulletins from Microsoft’s Security division. One of the nice things
 about Microsoft’s security is that you can get security alerts emailed to you so
 that you’re made aware of new vulnerabilities as soon as
 Microsoft acknowledges them.
In the Unix world, you may have to make a little more effort to keep up with
 the security alerts for various flavors of Unix; however, keeping up with the
 alerts isn’t a horrendous amount of work. It’s just a case of knowing where to
 look for them.
I’ve already mentioned CERT (

 Section 48.2). This web site has some
 of the best information about new security vulnerabilities, and if you’re
 managing a multiuser Unix system, you should check this site at least once a
 day. Even if you only have a single-use Unix box, you should check the site
 frequently. Note, though, that CERT publicizes all security vulnerabilities, not
 just Unix ones. On the day I wrote this, when I checked at CERT’s Advisories
 page (at http://www.cert.org/advisories/), there were advisories
 on Oracle, the zlib Compression library, PHP, and Microsoft’s Internet Explorer,
 to name just a few.
If you’re running a Linux system, you can check Linux Security at
 http://www.linuxsecurity.com for up-to-date information on
 security problems related to Linux operating systems. In addition, you can read
 articles on Linux security and download security-related utilities. When I
 accessed the site, the current reported exploit was related to a vulnerability
 with Apache, and the most current advisory was warning about a potential buffer overflow (Section 48.4) problem related to
 FreeBSD’s squid port.
What I particularly like about Linux Security is that it shows security
 advisories categorized by flavor of Unix/Linux. Among the categories are Corel,
 Caldera, Red Hat, Slackware, Debian, FreeBSD, NetBSD, and so on. Since I run a
 Red Hat Linux box as well as a FreeBSD web server, it is particularly helpful
 for me to see what I need to be aware of in both of these environments.
O’Reilly publishes information about Unix and open source at the Linux
 DevCenter at the O’Reilly Network (at http://linux.oreillynet.com). Rather than list all vulnerabilities, this site tends to focus on specific
 instances and then covers each in more detail than you’ll normally get at the
 other security sites.
— SP

What We Mean by Buffer Overflow

 You can’t run any operating
 system without getting security alerts related to buffer overflow
 vulnerabilities. Unless you’re into system hacking, you’re probably not aware of
 what this means and why buffer overflow is the base cause of so many
 alerts.
In a procedural language, such as the C
 programming language used to create Unix, functionality is broken down into
 separate, reusable functions. These functions are then called whenever that
 functionality is needed. Data is passed between the application and the function
 through function arguments.
Function arguments are pushed onto a section of memory called the stack. Additionally, the return point
 for the function — that place in the application where the function is called —
 is also pushed onto the stack. Finally, data internal to the function is also
 pushed onto the stack.
A buffer is allocated on the stack to store function parameters. If a
 parameter exceeds the buffer size, the data overwrites the other stack contents,
 including the function return call, resulting in an application failure. Many
 functions commonly used in C, such as scanf
 or strcpy, don’t ensure that the buffer
 meets the size of the data copied, and if the application developer doesn’t
 perform this check herself, the application will most likely fail the first time
 the data copied exceeds the size of the buffer.
An example of this type of problem is an application that opens and copies the
 contents of a file using one of the C functions that don’t do buffer size
 checking. As long as the file contents are small enough, the application doesn’t
 generate an error. However, if a file’s contents are too large, the application
 will fail, abruptly, leaving application support personnel scratching their
 heads wondering why an application that worked to a certain point stopped
 working.
An application failure is not the worst that can happen in this situation.
 Crackers with a good understanding of how the stack works and knowledge of
 assembly code can exploit this vulnerability by writing code to the stack beyond
 the function arguments and function return address. In addition, they can
 rewrite the function return address to point to the address of the beginning of
 this malicious code. When the function finishes, the address of the new hacked
 code is pushed to the processor rather than the return location of the function,
 and the hacked code is executed, usually with disastrous results.
To prevent both application crashes and buffer-overflow vulnerabilities,

 boundary-checking versions of most C
 functions are used rather than the unsafe functions. The application developer
 also adds boundary checking to his or her own code, such as checking the size of
 the application file before processing it from our example application.
 Unfortunately, this doesn’t always happen.
When you read about or receive an alert about buffer-overflow vulnerability in
 a Unix utility or application, what’s happened is that crackers — or security
 personnel — have discovered that the application contains code that isn’t
 testing the boundaries of the data being processed. Usually a patch that
 replaces the defective code accompanies this alert.
— SP

What We Mean by DoS

Another major security problem is one in which users of a Unix system can’t
 access the functionality because access attempts are being blocked in some way.
 These blocking efforts are called, appropriately enough, denial-of-service attacks, usually
 abbreviated DoS.
CERT defines three types of DoS attacks:
	An attack that consumes all resources

	Manipulation of configuration information

	Manipulation of network components

Resources in a networked system include memory, bandwidth, Internet
 connections, and so on. In a DoS attack, the attacker seeks to use these
 resources in such a way that no one else can connect to the system. Famous
 examples of this type of attack involve a concept known as the
 distributed
 denial-of-service attack, DDoS.
In a DDoS attack, several machines that have not been properly secured against
 external control are compromised, and an application is placed on each. This
 application lies dormant until triggered by the attacker. When this happens,
 these compromised machines — known as handlers — direct
 other compromised machines — known as agents

 — to run an application that generates
 network packets, all of which are directed to a specific target. These packets
 overwhelm the available bandwidth of the victim, and they may also overwhelm
 routers in the path to the victim to the point where entire sections of the
 Internet may be negatively impacted.
Though Windows-based rather than Unix, the Code Red worm that caused so many
 problems in 2001 was based on the premise of DDoS.
Though disabling, DoS attacks based
 on overutilizing ephemeral resources such as bandwidth deny access but don’t
 permanently damage a machine’s infrastructure. However, another DoS attack is
 one in which an attacker gains root access to a machine and modifies configuration
 information such as usernames and passwords, in such a way that no one can
 access the network.
How simple is it to access configuration
 information? Accessing the password file on a system can be as easy as using
 TFTP (Trivial File Transfer
 Protocol) to download the password file unless TFTP is disabled or configured to
 prevent unauthorized access.
In fact, a DDoS attack is dependent on the attacker getting access to several
 machines in order to launch an attack. Keeping your system clean and protected
 not only prevents invasion of your own systems, but prevents your Unix boxes
 from being used to launch attacks on others.
The third type of DoS attack is based on
 physical attack. Literally, if someone comes after your wires with an axe, no
 security software is going to protect your system. However, axe-wielding
 intruders are beyond the scope of this book, so we’ll concentrate primarily on
 software and system adjustments to protect against DoS attacks.
— SP

Beware of Sluggish Performance

 Contrary to popular myth,
 systems don’t just start to fail for no reason. If your system is starting to
 perform poorly, chances are it’s because of something that’s been initiated. In
 most cases, the cause has innocuous roots, such as a poorly designed script;
 however, sluggish performance could also mean an external attack. Regardless of
 the origin of the decreasing efficiency, you’ll want to take steps to locate the
 problem and remove it before it takes your system down.
If you notice that your systems performance is degrading, there are several
 built-in utilities you can use to troubleshoot possible problems. Probably the
 most commonly used utility is ps (Section 24.5); however, there are other
 utilities that can provide useful information.
Check Processes

 The first check to perform if you
 think that you have a destructive agent running on your machine is the
 processes currently in operation. You’ll use the basic ps
 command to do this, after first
 checking to make sure that ps itself
 hasn’t been replaced by a bogus program (check installation date, location,
 and size to see if the ps utility has
 been replaced).
Running the ps command with the flags
 -aux shows each user’s processes, the CPU and memory
 usage, time started and command. Here’s an example of output:
> ps -aux

root 6910 0.0 0.1 2088 516 ?? IsJ 30Apr02 1:04.80 /usr/sbin/sshd
root 6955 0.0 0.0 2600 384 ?? IsJ 30Apr02 0:06.67 /usr/local/sbin/xinetd -pidfile
/var/run/xinetd.pid
root 6970 0.0 0.0 624 0 #C1- IWJ - 0:00.00 /bin/sh /usr/virtual/share/
pkgs/installed/mysql-server/3.22.32/bin/
mysql 6994 0.0 0.0 11216 144 #C1- SJ 30Apr02 0:35.83 /usr/local/libexec/
mysqld --basedir=/usr/local --datadir=/var/db/my
root 7003 0.0 0.3 10028 2616 ?? SsJ 30Apr02 3:33.55 /usr/local/www/bin/httpd -DSSL
nobody 38060 0.0 0.3 10324 3116 ?? SJ 12:01PM 0:08.60 /usr/local/www/bin/httpd -DSSL
nobody 38061 0.0 0.3 10332 2612 ?? SJ 12:01PM 0:08.23 /usr/local/www/bin/httpd -DSSL
nobody 38062 0.0 0.3 11212 2656 ?? SJ 12:01PM 0:08.89 /usr/local/www/bin/httpd -DSSL
nobody 38117 0.0 0.2 10352 2580 ?? SJ 12:01PM 0:09.37 /usr/local/www/bin/httpd -DSSL
nobody 38314 0.0 0.2 10332 2596 ?? SJ 12:03PM 0:08.98 /usr/local/www/bin/httpd -DSSL
root 62104 0.0 0.0 2112 400 ?? SJ 9:57AM 0:00.16 sshd: shelleyp@ttyp2 (sshd)
In this listing, several processes are being run by root, but all are
 normal processes and accounted for. In addition, several processes are being
 run by "nobody,”
 which is the generic user used with HTTP web page access. Using additional
 ps flags displays additional
 information, including -e for environment and
 -f for command-line and environment information of
 swapped-out processes.

Checking Swap Space

 If your system
 is under DoS attack, your
 swap space is a vulnerable point. This hard
 disk space is reserved for use by the operating system and to provide space
 for temporary files. If your system is sluggish
 and you suspect a possible DoS attack — or just a badly behaving script that
 results in a lot of temporary files — the first thing you should check is
 how much swap space you have.
The pstat
 utility can be used to check swap
 space when using the -s option on the command line:
pstat -s
The result will be a listing of swap areas by device with available and
 used swap space. If the percentage of used space is much higher than normal,
 you probably have a bad script or external interference. Additional
 utilities can help you determine which.
Within
 FreeBSD and other Unix systems,
 swapinfo returns the same information
 as pstat
 -s. If you’re running a Mac OS X
 system, instead of pstat, you’ll use the
 ls command and check the contents of
 /var/vm:
ls -l /var/vm
-rw-------T 1 root wheel 000000000 Jun 4 12:56 swapfile0
Since the system wasn’t under load, the swap space didn’t have any
 contents at the time this command was run.

Check Network Connections

 Another check you can run
 if your system is running sluggishly and you think you might be under attack
 is netstat
 . This command will return activity on
 Unix sockets as well as all of the active
 Internet connections, including referrals if the connection occurs through
 HTTP.
Here’s an example of netstat
 output:
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 burningbird.http a25253.upc-a.che.3617 TIME_WAIT
tcp4 0 0 burningbird.http pm66.internetsee.4301 TIME_WAIT
tcp4 0 0 burningbird.http strider.ccs.neu..4492 TIME_WAIT
tcp4 0 0 burningbird.http strider.ccs.neu..4491 TIME_WAIT
tcp4 0 0 burningbird.http strider.ccs.neu..4490 TIME_WAIT
tcp4 0 0 burningbird.http mailgate.ltsbfou.57600 FIN_WAIT_2
tcp4 0 0 burningbird.http mailgate.ltsbfou.57595 FIN_WAIT_2
tcp4 0 20 burningbird.ssh adsl-64-168-24-1.1076 ESTABLISHED
tcp4 0 0 burningbird.submission *.* LISTEN
tcp4 0 0 burningbird.smtp *.* LISTEN
tcp4 0 0 burningbird.domain *.* LISTEN
tcp4 0 0 burningbird.http *.* LISTEN
tcp4 0 0 burningbird.https *.* LISTEN
tcp4 0 0 burningbird.pop3s *.* LISTEN
tcp4 0 0 burningbird.ssh *.* LISTEN
udp4 0 0 burningbird.domain *.*
udp4 0 0 burningbird.syslog *.*
Active UNIX domain sockets
Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
e5ed4cc0 stream 0 0 e5f0cbc0 0 0 0 /tmp/mysql.sock
e5ed4d40 stream 0 0 0 0 0 0
e5e08380 dgram 0 0 0 e5ed4dc0 0 e5e083c0
e5e083c0 dgram 0 0 0 e5ed4dc0 0 e5ed4d80
e5ed4d80 dgram 0 0 0 e5ed4dc0 0 0
e5ed4dc0 dgram 0 0 e556c040 0 e5e08380 0 /var/run/log
Specifying netstat with the command
 line option -s provides a detailed report of per-protocol —
 TCP, UDP, IP, and so on — usage statistics.
The netstat program is helpful not only
 for determining if someone is trying to break into your system, but also for
 determining if your system is having basic communication problems.

Other Checks

 You can use iostat to check I/O statistics on your various devices. For
 instance, to check to see what kind of activity is occurring on all devices
 every three seconds for nine runs, issue the following command:
iostat -odICTw 2 -c 9
 tty mlxd0 acd0 fd0 md0 cpu
 tin tout blk xfr msps blk xfr msps blk xfr msps blk xfr msps us ni sy in id
 0 0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 224 12 167 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 568 36 55.8 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 144 5 402 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 112 7 287 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 48 3 670 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 240 15 134 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 192 12 168 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
 0 0 96 6 335 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0 0 0
The result allows you to compare I/O over a period of time. Note that in
 some systems, iostat may be io_stat, instead.

 Another check is vmstat (vm_stat), which displays the
 virtual memory statistics for a
 machine. As with iostat, running the
 command several times over a period of time can show if there is unusual
 activity within virtual memory. For instance, if the free memory
 unexpectedly decreases, no known user is running a process, the occurrence
 of the free memory use is consistent (occurring at a set time of day), and
 no other system processes or cron jobs are known to be
 running, you probably have an intruding application running somewhere on the
 system. Other tests can then be used to help you determine what the
 application is.

— SP

Intruder Detection

 From the CERT Intruder detection checklist at
 http://www.cert.org/tech_tips/intruder_detection_checklist.html comes a variety of helpful steps to take to determine if your system has had
 an intruder.
Check logfiles first, and then check for any unusual setgid (Section 49.5)
 or setuid files.
A key symptom that something is wrong with
 your system is when something appears that doesn’t belong. This includes files,
 directories, users, and groups. Unfortunately, these are also almost impossible
 to detect unless they occur in obviously incorrect locations.
You can search for modified files based on a time range using the find (
 Section 9.1) command. For instance, the
 following two commands will find all files that have been changed in the last
 two days excluding today. The results are piped to cat for
 easier reading:
> find / -mtime -2 -mtime +1 -exec ls -ld {} \; | cat
> find / -ctime -2 -ctime +1 -exec ls -ldc {} \; | cat
Running these commands as root will ensure you have access to all files and
 directories. Note that depending on the size of your system, the command can
 take a considerable amount of time.
Also check for hidden files, those beginning with a period. The following
 command searches every directory but NFS mounted ones for files beginning with a
 period (.):
find / -name ".*" -print -xdev | cat -v
In addition, review critical files such as /etc/passwd and the crontab
 file (Section 25.3),
 checking for new and unusual entries. You might want to keep off-disk copies of
 the files to use for comparison; online versions can also be compromised.
Check binaries for possible changes and replacements — including backups — and
 changes to files such as xinetd.conf,
 allowing services such as telnet that were originally disallowed.
In other words, according to CERT, knowing your system and checking for
 changes using built-in utilities can be the best approach to take to detect
 intrusion.
— SP

Importance of MOTD

 If you live in the United States, and depending
 on which state you live in, if you include the word “welcome” within the MOTD,
 this can legally be construed as an invitation, which means that anyone can come
 into the system if they can find a username and password. And since usernames
 and passwords are transmitted in plain text using telnet or a similar service,
 you’re basically leaving your system open. If someone breaks in, they may not
 even be prosecutable.
Avoid the use of the word “welcome” in your message; instead use a message
 that specifically states that only authorized personnel are allowed access to
 the system. In addition, you’ll also want to consider removing operating system
 information from the MOTD: no need to tell people more about your system then
 they need to know.
— SP

The Linux proc Filesystem

 Linux contains a /proc filesystem with virtual files that maintain the current
 state of the system. You can actually access the proc
 system directly and view the command, command-line parameters, and other
 information.
In particular, if you have a suspicious process (detected using ps (Section
 49.6)), you can investigate the process more thoroughly using the
 Linux proc filesystem. For instance, if ps
 -ux returns the following procecss:
Root 1684 0.0 0.7 7492 3888 ? S 13:44 0.00 rp3
you can change to the process directory by using the process number:
bash# cd /proc/1684
Once there, typing ls will show several
 entries, including ones titled cwd,
 exe, and cmdline. At that point
 you can use cat (Section 11.2) to print out the
 cmdline entry, which will show the command, including
 parameters that kicked off the process:
bash# cat cmdline
rp3
Typing ls -l on cwd
 results in:
lrwxrwxrwx 1 root root 9 June 4 17:44 cwd-> /root
Typing ls-1 on exe
 results in:
lrwxrwxrwx 1 root root 9 June 4 17:44 cwd-> /usr/bin/rp3
The proc filesystem is extremely helpful, not only for
 security reasons, but also for general system usage.
— SP

Disabling inetd

 Any remote access that takes a plain
 text password increases the vulnerability of your system. This includes the use
 of telnet and FTP.
If your flavor of Unix is running the inet daemon, you can disable telnet,
 ftp, rlogin, and so on by
 accessing the /etc/rc.conf file and setting
 the inetd_enable value to no:
inetd_enable=no
You can disable individual services by accessing the inetd.conf file and setting the associated line to no, or
 commenting the line out, as shown in Darwin and BSD environments such as OpenBSD
 or FreeBSD:
#telnet stream tcp nowait root /usr/libexe/tcpd telnetd
— SP

Disallow rlogin and rsh

The
 remote access tools such as rlogin, to login remotely, and rsh
 , to execute commands on a remote system,
 are handy. For instance, with rlogin
 , if your username is the same on the remote
 machine as it is on the local machine, you don’t have to provide your username
 and password.
However, the very simplicity of the rlogin and rsh commands
 makes them security risks. If you’re concerned about the security of your Unix
 box, you’ll want to disable these.
Disable both rlogin and rsh by commenting out their entries in inetd.conf or xinetd.conf, depending on which your system is running.
— SP

TCP Wrappers

 TCP Wrappers are programs that work with
 inetd to monitor and filter
 telnet, ftp,
 rlogin, and other services. In particular, TCP
 wrappers provide log information
 showing access using these services, particularly helpful if you’re trying to
 determine if someone’s attempting to break into your system.
In FreeBSD, the TCP wrapper tcpd

 (documented at http://www.freebsddiary.org/tcpwrapper.php) is
 built into the system starting with FreeBSD 3.2 release, and is configured
 through the /etc/syslog.conf file. The
 following lines from an existing file show that TCP logging is turned on for all
 remote access such as telnet, putting the log messages into
 a file called auth.log:
 auth.* /var/log/auth.log
mail.info /var/log/maillog
lpr.info /var/log/lpd-errs
Since I have telnet, rlogin, etc. disabled from my system, nothing
 shows in the log file.
The TCP wrapper is also installed by default in Mac OS X. The
 tcpd daemon is installed in place of the service — such
 as in place of fingerd — or the entry for the service is
 adjusted to point to tcpd in /etc/inetd.conf:
finger stream tcp nowait nobody /some/where/tcpd in.fingerd
By default, all unprotected external sources are wrapped with the TCP
 wrapper.
In some systems, the TCP wrapper is controlled by the /etc/hosts.allow and /etc/hosts.deny files instead of within syslog.conf. You’ll want to check
 tcpd for your system by accessing the manpage for
 it:
man tcpd
The same configuration and TCP wrapper (Section
 46.5) — known as the Wietse Venema’s network logger — is used with
 Debian (downloadable at http://packages.debian.org/stable/base/tcpd.html) and Linux, as well
 as other operating systems.
— SP

Chapter 49. Root, Group, and User Management

Unix User/Group Infrastructure

 Unix users are given unique
 usernames and also added to one or more Unix groups (Section 49.7).
 Both a user and a group own all content within a system. If you list information
 about a file, you’ll see both user and group ownership:
> ls -l
-rw-r--r-- 1 root weblog.burningbi 32230 May 22 13:58 access_log
-rw-r----- 1 shelleyp weblog.burningbi 3995 May 12 11:08 analog.cfg
-rw-r--r-- 1 root weblog.burningbi 0 May 22 12:01 error_log
In this listing, the users are root and
 shelleyp, and the group (truncated) is
 weblog.burningbird.net.
You’re assigned a primary group when you’re added to a system. In addition,
 you can also be assigned to one or more secondary groups. Depending on the type
 of Unix system, you can either work with files that are owned by any one of the
 groups you belong to or you can work with files of your primary group
 only.
BSD-based Unix systems allow you to
 work with files from primary and secondary groups; this includes Darwin as well
 as the popular PC-based BSD systems, FreeBSD, and OpenBSD. System V systems
 restrict you to working with a primary group only.
For the majority of Unix systems, user and group membership is controlled
 through a couple of files, passwd and
 group, stored in the /etc directory. This directory has root write access only, but
 read and execute access by all users.
— SP

When Does a User Become a User

A user is added to the system when they’re
 given an entry in the passwd

 file, as in the following entry:
mike:*:1007:1007:Mike User:/usr/home/mike:/usr/local/bin/bash
The elements, delimited by colons that make up this record, are:
	Username
	Name used to login to system

	Password entry
	Encrypted password, asterisk symbolizing bad password or use of
 shadow file, or exclamation point (!) to signify that the password
 is in /etc/security/passwd or
 in /etc/master.passwd in
 FreeBSD systems

	UID
	Unique user identifier

	Primary group ID
	ID of group that will be primary group for user

	Comment
	General text holding name, address, and so on

	User’s home directory
	

	User’s startup shell
	

In the example, “mike” has a
 UID of
 1007, belongs to group 1007, has a home directory in /usr/home/mike, and logs into a bash shell. In this FreeBSD
 system, the password is stored in a separate shadow file.

 Usernames
 are usually no more than 8 characters, though this differs based on type of
 system. Usernames consist of alphanumeric characters and are case-sensitive.
 Case sensitivity also applies with passwords, which can be longer and use other
 characters.
The UID must be unique, as would be expected. When a new user is added, the
 next available UID is usually used, but there’s no restriction on having gaps or
 using order with UIDs. However, if the Unix box is part of a network, it is
 essential that the person’s UID be unique across the network. The same
 constraints apply to the group ID: in most cases a new group ID equal to the UID
 is assigned the person. Addition to other groups occurs after the person is
 added to the system.
The UID of 0 (zero) is the superuser, root. The GID of 0 (zero) is wheel, the superuser group.
The user’s name, address, office location, etc. can be included in the comment
 field, and the default home directory (created before adding the user) and
 person’s startup shell is added to the record.
Adding users varies widely between systems. Apple’s Darwin uses a separate system called
 NetInfo, an open source application
 (available at http://sourceforge.net/projects/netinfo4unix/) to
 manage users, groups, directories, and so on. A daemon uses information from
 NetInfo to control user access; the user “flat files,” as
 passwd and group are known in this
 system, are used only in single-user environments.
In
 Linux, Solaris, and other systems, the process
 of adding a user is simplified with a utility, adduser
 (or useradd
). The simple form of the utility
 is:
adduser
 username
The utility is called with the username of the new user. Based on the system,
 the user is then added with defaults or you’re interactively asked for more
 information. Or you can specify information on the command line that’s used to
 create the user.
In Red Hat Linux, adduser is an alias for useradd. Default values are used for each user, such as a home
 location of /home/username and a default shell
 (bash), unless specified otherwise on the command line.
 In the following example, a new user, testuser, is added.
 Command-line options are used to override the default information:
useradd -c "Test User" -d /home/local/testuser -G 501, 502 -p changepassword
 -s /bin/bash -e 2002-05-24
In this example, -c is used to add a
 username comment (the user’s full name), -G
 specifies what groups to add the person to, -p adds a password, -s sets
 the person’s default shell, and -e specifies
 that the username expires on a certain date. The person is added to their own
 group — 503 in this example. To override this I would use the -g command-line parameter — the -G only adds the person to additional groups, it
 doesn’t override default behavior.
Within
 Mac OS X, user and group
 management is handled through Netinfo. Find out more about Netinfo at http://www.opensource.apple.com/projects/documentation/howto/html/netinfo.html. The command-line utility to add a user via Netinfo is niutil. An example of
 its use is:
shelleyp% niutil-create//users/newbie
Use the system’s manpages to see if useradd or adduser is
 installed and the command line parameters supported.
— SP

Forgetting the root Password

 If a person forgets their password, it’s easy
 for root to reset it using passwd, but what
 happens if you forget root’s password?
Depending on the security implemented for a system, you can log in to
 single user mode and then use passwd
 to reset the root password. Or you can
 manually edit the password file to remove the password for root. Once you reboot
 and login to the system as root, you can then use passwd to change the password to something more
 restrictive.
In Redhat Linux, access single-user mode by
 typing linux single at the boot prompt. In
 Solaris, enter single-user mode by
 pressing STOP-a and then typing boot-s at the
 prompt. FreeBSD
 boots in this mode by booting with the -s option and then
 mounting the file system in read/write mode. Check your system documentation to
 see how to do this for your particular flavor of Unix.
This approach works only if the system doesn’t password-protect single-user
 mode. However, if you have access to the physical machine and the installation
 disks, booting with the install disk will usually allow you access to the
 partitions. Once you have this access, edit the password file and remove the
 root password.
As an
 example, Debian requires a password in single-user mode. To reset the root
 password with Debian, put the installation disk into the machine and boot. Mount
 the /root partition and manually edit the
 shadow file, setting the password to a blank password. After rebooting into the
 system, reset the password using passwd.
— SP

Setting an Exact umask

You can use the umask

 command to set the default mode for
 newly created files. Its argument is a three-digit numeric mode that represents
 the access to be inhibited — masked out — when a file is
 created. Thus, the value it wants is the octal complement of the numeric file
 mode you want. To determine this, you simply figure out the numeric equivalent
 for the file mode you want and then subtract it from 777. For example, to get
 the mode 751 by default, compute 777-751 = 026; this is the value you give to
 umask.
% umask 026
Once this command is executed, all future files created will be given this
 protection automatically. System administrators can put a umask command in the system initialization file
 to set a default for all users.
You can set your own umask in your shell
 setup files to override defaults.
— AF

Group Permissions in a Directory with the setgid Bit

 If you work on a Unix system with lots of
 users, you may be taking advantage of Unix group permissions to let users in one
 group write to files in a directory, but not let people in other groups write
 there.
How does Unix determine what group should own the
 files you create? There are (at least!) two ways:
	The effective group ID of the process determines the ownership of the
 files you create. (Your effective GID is your primary group
 membership unless you’re running a SGID program.)

	The group that owns the directory in which you create the file owns
 files.

The system administrator decides which of the methods a filesystem will use
 for group ownership. There are other wrinkles, too. A good place to look for the
 gory details is your system’s open manpage help, but it’s
 probably easier to just create an empty new file and then check the group
 ownership with ls
 -l or -lg.
You may be able to use the directory’s set group ID
 (setgid) bit to control group ownership. In those cases, if the bit is set, the
 rule in point 2 applies. If the bit is not set, the rule in point 1 applies. To
 set and remove the setgid bit, use the commands chmod
 g+s and chmod g-s,
 respectively.
> chmod g+s mt.pl
> ls -l mt.pl
-rwxr-sr-x 1 shelleyp shelleyp 1939 Apr 28 22:55 mt.pl
You can use the chgrp command to change a
 file’s group.
> chgrp wheel mt.pl
> ls -l mt.pl
-rwxr-xr-x 1 shelleyp wheel 1939 Apr 28 22:55 mt.pl
However, you must own the file, and you must also be a member of the file’s
 new group. If you’ve reset directory mode bits, it’s possible to wind up with
 ls
 -l permissions that have an uppercase S, like drwxr-S. What’s that? (It’s often a mistake.) The
 directory’s setgid bit is set, but the execute bit isn’t set. If you want the
 directory to be group-accessible, add execute permission with chmod g+x. Otherwise, you may want to clear the
 setgid bit with chmod g-s.
—JP, SP

Groups and Group Ownership

 Group membership is an important part of
 Unix security. All users are members of one or more groups, as determined by
 their entries in /etc/passwd and the
 /etc/group files.
To find the GID number of your primary
 group, grep your entry in /etc/passwd:
> grep shelleyp /etc/passwd
shelleyp:*:1000:1000:Shelley Powers:/usr/home/shelleyp:/bin/tcsh</screen>
The fourth field (the second number) is your primary group
 ID. Look up this number in the /etc/group file:
> grep 1000 /etc/group
> shelleyp:*:1000:
On my FreeBSD system, my primary group is a group of which I’m the only
 member, shelleyp. Therefore, when I log in, my group ID is
 set to 1000.
To see what other groups you belong to, use the groups
 command if your Unix version has it. If
 not, you can get groups from the Free
 Software Directory at http://www.gnu.org/directory/index.html.
 Otherwise, look for your name in /etc/group:
> grep shelleyp /etc/group
wheel:*:0:root,shelleyp
webadmin:*:900:shelleyp,burningbird
ftpadmin:*:901:shelleyp,burningbird
mailadmin:*:903:shelleyp,burningbird
sysadmin:*:905:shelleyp,burningbird
pkgadmin:*:906:shelleyp,burningbird
shelleyp:*:1000:
In the output, you can see that I’m a member of several groups, including
 wheel, webadmin, and so on. These
 are my secondary groups. The output also shows that the user “burningbird” is
 also a member of several of the same groups as myself.
On BSD-derived Unix systems (OpenBSD, FreeBSD,
 Darwin, and so on), you’re always a member of all your groups. This means that I
 can access files that are owned by webadmin,
 wheel, and so on, without doing anything in particular.
 Under System V Unix, you
 can only be “in” one group at a time, even though you can be a member of
 several.
Within System V and
 Linux, if you need to access files that are
 owned by another group, use the newgrp
 command to change your primary group:
> newgrp
 groupname
The newgrp command starts a subshell.
 When you’re done, type exit to leave the
 subshell. newgrp can be important for
 another reason: your primary group may own any new files you create. So
 newgrp is useful on any system where
 you want to set your group (for creating files, for example, when you aren’t
 using a directory that sets its own group). If you can’t use newgrp, the chgrp command will change a file’s group owner.
The ls -l command shows a file’s owner (and, in many
 versions, the filefs group too; if yours doesn’t, add the
 -g option). The GNU ls -nl option
 shows a file’s numeric UID and GID instead of the username and group
 name:
$ ls -l
total 38
-rw-r--r-- 1 root weblog.burningbi 33922 May 23 13:52 access_log
-rw-r----- 1 shelleyp weblog.burningbi 3995 May 12 11:08 analog.cfg
-rw-r--r-- 1 root weblog.burningbi 0 May 23 12:01 error_log
$ ls -ln
total 37
-rw-r--r-- 1 0 501 32890 May 23 13:50 access_log
-rw-r----- 1 1000 501 3995 May 12 11:08 analog.cfg
-rw-r--r-- 1 0 501 0 May 23 12:01 error_log
(System V-based Unixes even let you change to groups that you don’t belong to.
 In this case, you have to give a group password. Group passwords are rarely
 used: usually the password field is filled with a *, which effectively says that there are no valid passwords for
 this group.)
On most systems, there are groups for major projects or departments, groups
 for system administration, and maybe one or two groups for visitors. BSD-based
 systems often have a wheel
 group; to become root, you must belong to
 wheel. Many systems make terminals
 writable only by the owner and a special group named tty;
 this prevents other users from sending characters to your terminal without using
 an approved setgid program

 like write.
—JP, SP

Add Users to a Group to Deny Permissions

 Usually, Unix group access allows a group of
 users to access a directory or file that they couldn’t otherwise access. You can
 turn this around, though, with groups that deny
 permission.
This trick works only on Unix systems, like BSD (FreeBSD, Darwin, OpenBSD, and
 so on), that let a user belong to more than one group at the same time.
For example, you might work on a computer that has some proprietary files and
 software that “guest” accounts shouldn’t be able to use. Everyone else on the
 computer should have access. To do this, put the software in a directory owned
 by a group named something like deny. Then use chmod to deny permission to that group:
chmod 705 /usr/local/somedir
ls -lgd /usr/local/somedir
drwx---r-x 2 root deny 512 Mar 26 12:14 /usr/local/somedir
Finally, add the guest accounts to the deny group.
Unix checks permissions in the order user-group-other. The first applicable
 permission is the one used, even if it denies permission rather than grant it.
 In this case, none of the guest accounts are root (we hope!).
They’re members of the group called deny, however; that
 permission (---) is checked and the group
 members are shut out. Other users who aren’t members of
 deny are checked for “other” access (r-x); they can get into the directory.
The same setup works for individual files (like programs). Just be careful
 about changing system programs that are SUID or SGID.
— JIK

Care and Feeding of SUID and SGID Scripts

 Scripts may need to run within a root
 environment but be executed by system users other than root. To allow a nonroot
 user or group of users executable access of the script, its SUID or SGID bit can
 be set.
The SUID bit is set using the following command:
chmod u+s somefile
Running ls -l on the file afterwards
 displays the following (within FreeBSD):
-rwSr--r-- 1 root somegroup 7219 Oct 29 2001 somefile
Now, any user can execute the file, and the file runs with root
 permissions.
A more restricted version of SUID is SGID, set as follows:
-rwx-r-Sr-- 1 root somegroup 7219 Oct 29 2001 somefile
Users belong to the specified group, somegroup, can execute the file now, and it runs with root
 permissions.
As handy as SUID and SGID scripts are, they are also dangerous. For instance,
 SUID scripts are considered so dangerous that the Linux kernel won’t even honor
 them. This is because environmental variables are easily manipulated within
 scripts, particularly C shell scripts, as discussed in Section 50.9. And since the scripts can
 be run by anybody, and run as root, they represent extreme points of
 vulnerability.
To see where you have SUID and SGID scripts, use the following command (pulled
 from the Linux Security HOWTO document at http://www.cpmc.columbia.edu/misc/docs/linux/security-howto.html):
find / -type f \(-perm -04000 -o -perm -02000 \)
To do a thorough scan, you need to have root permissions.
You’ll be surprised at the number of applications returned from the search.
 Among those in my FreeBSD system were:
/usr/virtual/share/usr/sbin/pstat
/usr/virtual/share/usr/sbin/swapinfo
/usr/virtual/share/usr/sbin/sliplogin
/usr/virtual/share/usr/sbin/timedc
/usr/virtual/share/usr/sbin/traceroute
However, a quick check shows that the files — sharable across different
 FreeBSD installations — are all SGID: not as dangerous as SUID files long as the
 group is restricted.
— SP

Substitute Identity with su

 You don’t have to login as a specific user — you
 can login as yourself and then issue a su
 command to login as another person.
Invoke su with a username and you’ll be
 prompted for that person’s password. If you invoke su without a username, the system logs you in as root and asks
 you for root’s password. Without passing in any other flags, you’ll be logged in
 with your environment variables, except for HOME,
 SHELL, and USER. If you want to
 emulate the full environment of the user — for debugging purposes or whatever —
 use the -l flag with su:
bash-2.04$ su -l
Password:
Using su to emulate another person’s
 account is an effective debugging solution if you’re trying to
 determine why a person is having problems accessing an application. In addition,
 it’s also an effective way of logging into root without logging in from a
 console or remotely from another machine or terminal.
You exit the su shell by typing exit or
 hitting CTRL-d.
SP, JP

Never Log In as root

 The easiest way to allow a cracker into
 your system is to provide external root login access. In particular, if you
 allow root access through an unprotected and open protocol such as telnet,
 you’re almost guaranteeing that your Unix box is going to be violated at some
 point.
To prevent this, most Unix systems don’t allow remote login into the system as
 root. Instead, you log in under another username and then su to root once you’re within the system.
Disabling root access differs between systems. If your box has an /etc/securetty

 file, this lists ttys that allow root access. Removing this file or removing its
 contents will disable root access.
In Solaris, a line within /etc/default/login file is commented out if remote root login is
 allowed:
#CONSOLE=/dev/console
Uncomment the line to allow root access through the system console. To
 completely disable console access, remove the /dev/console from the line:
CONSOLE=
— SP

Providing Superpowers with sudo

 You may not want to give people access to
 the root password just to give them access to specific superuser powers. In
 cases such as this, you should consider using sudo — an application that enables specified users to execute
 applications that normally require root privileges.
The sudo application isn’t installed by
 default on all systems, but it is available for most. You can find out if it’s
 installed on your system by typing sudo at
 the command line. If it isn’t installed, check online for versions that run on
 your machine. The application’s home is at http://www.courtesan.com/sudo/index.html.
The sudo configuration file is called
 sudoers and is installed in the
 /etc subdirectory. In Darwin, the
 default sudoers file has the following
 settings:
root ALL=(ALL) ALL
%admin ALL=(ALL) ALL
In the file, root has open access to all applications. In addition, all
 members of the admin group (equivalent to
 wheel within Darwin) can also run all commands.
Without getting into too much detail (an online sudoers manual is at http://www.courtesan.com/sudo/man/sudoers.html), the sudoers file can consist of a set of aliases,
 used to define groups of people, commands, hosts, or run as options. It then
 defines rules by which specific users or group of users can run specific
 commands. There are four types of aliases:
	User_Alias
	List of specific users

	Runas_Alias
	List of users to emulate

	Host_Alias
	List of servers

	Cmnd_Alias
	Command list

Examples of aliases are:
User_Alias SYSADMINS = shelleyp, mike, tomd
Runas_Alias OP = root
Host_Alias BB = burningbird
Cmnd_Alias SU = /usr/bin/su
Following the aliases are override rules in reference to system defaults. For
 instance, warnings and “lectures” can be attached to certain commands to ensure
 that people are aware of the repercussions of their actions. However, people who
 are sysadmins shouldn’t be subjected to these rules; the lectures can be turned
 off for them:
Defaults:SYSADMINS !lecture
Neither aliases nor default overriding rules are required in the sudoers file. The only statements that are
 required are the command rules. In the Darwin file, the rules allowed root and
 admin access of all commands. Other
 rules that can be created are:
sysadmins can run all commands, without password
SYSADMINS ALL = NOPASSWD: ALL

chris can run anything on the burningbird machine as OP (root)
chris BB = (OP) ALL

joe can run SU on burningbird as root
joe BB = (root) SU
To edit the sudoers file, you use a
 specialized editing tool, visudo (see
 manual at http://www.courtesan.com/sudo/man/visudo.html), while
 logged in as root. The editor prevents collision between multiple authors and
 also verifies the correctness of the edits.
To work with sudo (manual at http://www.courtesan.com/sudo/man/sudo.html), type sudo and the command you want to exit:
% sudo vi test
Depending on your setup, you’ll get a warning or a password prompt, or the
 command will fail or execute.
One interesting side effect of sudo is
 that if you allow root access to an application that has shell escape, such as
 vi, you are indirectly giving that
 person access to a root shell. Use sudo
 with caution.
— SP

Enabling Root in Darwin

 The
 majority of Mac OS X users are never going to access the built-in Unix Terminal
 and never directly access the Darwin core of the operating system. Instead,
 they’ll work within the GUI. However, Mac OS X developers and superusers will operate
 directly with Darwin quite extensively, and at times, they’ll need to have root
 access.
By default, root access in Darwin is disabled. Trying to use su to change to root within the Terminal will
 fail. You have to enable root first using NetInfo.
To enable root within Mac OS X, access the Go menu option of Finder, and
 double-click on Applications. When the Applications window
 opens, double-click on the Utilities folder. In this
 folder, select and open NetInfo.
When NetInfo opens, select the Domain menu item and then Security. You’ll need
 to authenticate yourself to the system first by selecting the Authenticate
 submenu option. Once you provide a password (and the system determines you have
 the authority to enable or disable root), accessing the Security menu again will
 show a newly enabled option: Enable Root User. Clicking on this enables root.
 However, you’ll need to reauthenticate one more time to ensure the change goes
 through.
Once root is enabled for the system, it stays enabled until you disable it
 again. With root enabled, you’ll be able to use su to login as root.
— SP

Disable logins

You can temporarily disable logins by creating an entry in /etc/nologin

 (Section
 3.1) and copying a message to this location. When a user attempts to
 log in, he will get this message and the system will prevent entry.
— SP

Chapter 50. File Security, Ownership, and Sharing

Introduction to File Ownership and Security

 Because
 Unix is a multiuser system, you need some way of protecting users from one
 another: you don’t want other users to look at the wrong files and find out
 compromising information about you, or raise their salaries, or something
 equivalently antisocial. Even if you’re on a single-user system, file ownership
 still has value: it can often protect you from making mistakes, like deleting
 important executables.
In
 this chapter, we’ll describe how file ownership works: who owns files, how to
 change ownership, how to specify which kinds of file access are allowed, and so
 on. We’ll also discuss some other ways to prevent people from “prying,” like
 clearing your screen.
In my opinion, most security breaches arise from mistakes that could easily
 have been avoided: someone discovers that anyone can read
 the boss’s email, including the messages to his bookie. Once you’ve read this
 chapter, you’ll understand how to avoid the common mistakes and protect yourself
 from most intruders.
— ML

Tutorial on File and Directory Permissions

 Regardless
 of how much you think you know about file permissions, there’s always something
 new to learn.

 There
 are three basic attributes for plain file permissions: read, write, and execute.
 Read and write permission obviously let you read the data from a file or write
 new data to the file. When you have execute permission, you can use the file as
 a program or shell script. The characters used to describe these permissions are
 r, w,
 and x, for
 execute.
Directories use these same permissions, but they have a different meaning.

 If a directory has read permission,
 you can see what files are in the directory. Write permission means you can add,
 remove, or rename files in the directory. Execute allows you to use the
 directory name when accessing files inside that directory. (Section 10.2 has more information about
 what’s in a directory.) Let’s examine this more closely.
Suppose you have read access to a directory but don’t have execute access to
 the files contained in it. You can still read the directory, or
 inode information for that file, as returned by the
 stat(2) system call. That is, you can see the file’s
 name, permissions, size, access times, owner and group, and number of links. You
 just cannot read the contents of the file.
Write permission in a directory allows you to change
 the contents in it. Because the name of the file is stored in the directory and
 not the file, write permission in a directory allows creation,
 renaming, or deletion of files. To be specific, if someone has
 write permission to your home directory, they can rename or delete your
 .login file and put a new file in its place. The
 permissions of your .login file do not matter in this
 regard. Someone can rename a file even if they can’t read the contents of a
 file. (See Section 50.9.)
Execute permission on a directory is sometimes called

 search permission. If a directory gives you
 execute but not read permission, you can use any file in that directory;
 however, you must know the name. You cannot look inside the
 directory to find out the names of the files. Think of this type of directory as
 a black box. You can throw filenames at this directory, and sometimes you find a
 file, sometimes you don’t. (See Section
 50.10.)
User, Group, and World

All

 files have an owner and group
 associated with them. There are three sets of read/write/execute
 permissions: one set for the user or owner of the file, one set for the
 group (Section 49.6) of the file, and one
 set for everyone else. These permissions are determined by nine bits in the
 inode information and are represented by the
 characters rwxrwxrwx in an ls
 -l
 listing:[1]
% ls -l
drwxr-xr-x 3 jerry books 512 Feb 14 11:31 manpages
-rw-r--r-- 1 jerry books 17233 Dec 10 2001 misc.Z
-rwxr-xr-x 1 tim books 195 Mar 29 18:55 myhead
The first character in the ls -l listing specifies the type of file (Section 9.13). The first three of
 the nine permissions characters that follow specify the user; the middle
 three, the group; and the last three, the world. If the permission is not
 true, a dash is used to indicate lack of privilege. If you want to have a
 data file that you can read or write but don’t want anyone else to access,
 the permissions would be rw-------.

 An easier way to specify these nine bits is
 with three octal digits instead of nine characters. (Section 1.17 has diagrams of
 permission bits and explains how to write permissions as an octal number.)
 The order is the same, so the above permissions can be described by the
 octal number 600. The first number specifies the owner’s permission. The
 second number specifies the group’s permission. The last number specifies
 permission to everyone who is not the owner or not in the group of the file
 [although permissions don’t apply to the superuser (Section
 1.18), who can do anything to any file or directory. —
 JP].
This last point is subtle. When testing for permissions, the system looks
 at the groups in order. If you are denied permission, Unix does not examine
 the next group. Consider the case of a file that is owned by user
 jo, is in the group guests,
 and has the permissions -----xrwx, or 017
 in octal. This has the result that user jo cannot use
 the file, anyone in group guests can execute the
 program, and everyone else besides jo and
 guests can read, write, and execute the program.

 This is not a very common set of
 permissions, but some people use a similar
 mechanism (Section
 49.7) to deny one group of users from accessing or using a file.
 In the above case, jo cannot read or write the file she
 owns. She could use the chmod (
 Section 50.5) command to grant
 herself permission to read the file. However, if the file was in a directory
 owned by someone else, and the directory did not give
 jo read or search permission, she would not be able
 to find the file to change its permission.
The above example is an extreme case. Most of the time permissions fall
 into four cases:
	
 The information is personal.
 Many people have a directory or two in which they store information
 they do not wish to be public. Mail should probably be confidential,
 and all of your mailbox files should be in a directory with
 permissions of 700, denying everyone but yourself and the superuser
 read access to your letters. (See Section 7.5.)

	The
 information is not personal, yet no one should be able to modify the
 information. Most of my directories are set up this way, with the
 permissions of 755.

	The files are managed
 by a team of people. This means group-write permission, or
 directories with the mode 775.

	In the previous case, for confidential projects, you may want to
 deny access to people outside the group. In this case, make
 directories with mode 770.

You could just create a directory with the proper permissions and put the
 files inside the directory, hoping the permissions of the directory will
 “protect” the files in the directory. This is not adequate. Suppose you had
 a directory with permissions 755 and a file with permissions 666 inside the
 directory. Anyone could change the contents of this file because the world
 has
 search access on the directory and
 write access to the file.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 umask.csh, umask.sh
What is needed is a mechanism to prevent any new file from having
 world-write access. This
 mechanism exists with the
 umask command. If you consider that a new
 directory would get permissions of 777, and that new files would get
 permissions of 666, the umask command
 specifies permissions to “take away” from all new files. To “subtract”
 world-write permission from a file, 666 must have 002 “subtracted” from the
 default value to get 664. To subtract group and world write, 666 must have
 022 removed to leave 644 as the permissions of the file. These two values of
 umask are so common that it is useful to have some
 aliases (Section 49.4) defined:
alias open umask 002
alias shut umask 022
With these two values of umask, new directories will
 have permissions of 775 or 755. Most people have a
 umask value of one of these two values.
In a friendly work group, people tend to
 use the umask of 002, which allows others in your group
 to make changes to your files. Someone who uses the mask of 022 will cause
 grief to others working on a project. Trying to compile a program is
 frustrating when someone else owns files that you must delete but can’t. You
 can rename files if this is the case or ask the system administrator for
 help.
Members of a team who normally
 use a default umask of 022 should find a means to change the mask value when
 working on the project (or else risk flames from your fellow workers!).
 Besides the open alias above, some people
 have an alias that changes directories and sets the mask to group-write
 permission:
alias proj "cd /usr/projects/proj;umask 002"
This isn’t perfect, because people forget to use aliases. You could have a
 special cd alias and a private shell file
 in each project directory that sets the umask when you
 cd there. Other people could have
 similar files in the project directory with different names. Section 31.13 shows how.
Still another method is to run find
 (
 Section 9.1) three times a day and
 search for files owned by you in the project directory that have the wrong
 permission:
$USER
 Section 35.5, xargs
 Section 28.17, chmod
 Section 50.5
% find /usr/projects -user $USER ! -perm -020 -print | \
 xargs chmod g+w
You can use the command crontab -e
 (
 Section 25.2) to define when to
 run this command.

Which Group is Which?

 Since
 group-write permission is so important in a team project, you might be
 wondering how the group of a new file is determined. The answer depends on
 several factors. Before I cover these, you should note that Berkeley and AT&T-based systems
 would use different mechanisms to determine the default group.
Originally Unix required you to specify a new group with the newgrp
 command. If there was a password for
 this group in the /etc/group

 file, and you were not listed as one of the members of the group, you had to
 type the password to change your group.
Berkeley-based versions of Unix would use the current directory to determine the
 group of the new file. That is, if the current directory has
 cad as the group of the directory, any file created
 in that directory would be in the same group. To change the default group,
 just change to a different directory.
Both mechanisms had their good points and bad points. The Berkeley-based
 mechanism made it convenient to change groups automatically. However, there
 is a fixed limit of groups one could belong to. SunOS
 4 has a limit of 16 groups. Earlier versions had a limit of 8 groups.
SunOS and System V Release 4 support both
 mechanisms. The entire disk can be mounted with either the AT&T or the
 Berkeley mechanism. If it is necessary to control this on a
 directory-by-directory basis, a special bit in the file permissions is used.
 If a disk partition is mounted without the Berkeley group mechanism, a
 directory with this special bit will make new files have the same group as
 the directory. Without the special bit, the group of all new files depends
 on the current group of the user.
— BB

Who Will Own a New File?

 If
 you share files with other users, it’s good to be able to tell who will own each
 file. On many systems, this is even more important because only the superuser can change file ownership (Section 50.14, Section 50.15).
	When you create a new file, it belongs to you.

	When you append to a file with >>
 file, the owner doesn’t change because Unix
 doesn’t have to create a new file.

	When you
 rename a file with mv, the ownership doesn’t change.
Exception: if you use mv to move a
 file to another filesystem, the moved file will belong to you, because
 to move across filesystems, mv
 actually has to copy the file and delete the original.

	When you copy a file, the copy belongs to you because you created
 it (Section
 50.9).

	

 When you edit a file:
	With an editor like vi (Section 17.2), the file
 keeps its original owner because a new file is never
 created.

	An editor like Emacs (Section 19.1), which
 makes a backup copy, can be different. The backup copy could
 belong to you or to the original owner. If you replace the
 edited file with its backup, the file’s ownership
 might have changed:
% emacs filea
 ...Edit a lot, then decide you don't want your changes...
% mv filea~ filea

If you aren’t sure, use ls -l (Section 50.2).
— JP

Protecting Files with the Sticky Bit

 Unix directory access permissions specify that a
 person with write access to the directory can rename or remove files there —
 even files that don’t belong to the person (see Section 50.9). Many newer versions of
 Unix have a way to stop that. The owner of a directory can set its
 sticky bit (mode
 (Section 1.17) 1000). The only
 people who can rename or remove any file in that directory are the file’s owner,
 the directory’s owner, and the superuser.
Here’s an example: the user jerry makes a world-writable directory and sets the
 sticky bit (shown as t here):
jerry% mkdir share
jerry% chmod 1777 share
jerry% ls -ld share
drwxrwxrwt 2 jerry ora 32 Nov 19 10:31 share
Other people create files in it. When jennifer tries to
 remove a file that belongs to ellie, she can’t:
jennifer% ls -l
total 2
-rw-r--r-- 1 ellie ora 120 Nov 19 11:32 data.ellie
-rw-r--r-- 1 jennifer ora 3421 Nov 19 15:34 data.jennifer
-rw-r--r-- 1 peter ora 728 Nov 20 12:29 data.peter
jennifer% rm data.ellie
data.ellie: override 644 mode ? y
rm: data.ellie not removed.
Permission denied
— JP

Using chmod to Change File Permission

 To change a

 file’s permissions, you need to use the
 chmod command, and you must be the file’s
 owner or root. The command’s syntax is pretty simple:
% chmod
 new-mode file(s)
The new-mode
 describes the access permissions you want after the change.
 There are two ways to specify the mode: you can use either a numeric
 mode

 or some
 symbols that describe the changes. I generally prefer the numeric mode (because
 I’m strange, I suppose). To use a numeric mode, decide what permissions you want
 to have, express them as an octal number
 (
 Section 1.17, Section 50.2), and give a command like
 this one:
% chmod 644 report.txt
This gives read and write access to the owner of
 report.txt and read-only access to everyone
 else.
Many users prefer to use the symbolic mode

 to
 specify permissions. A symbolic chmod command
 looks like this:
% chmod g-w report.txt
This means “take away write access for group members.” The symbols used in
 mode specifications are shown in Table
 50-1.
Table 50-1. chmod symbolic modes
	
 Category

 	
 Mode

 	
 Description

	
 Who

 	

 u

 	
 User (owner) of the file.

	 	

 g

 	
 Group members.

	 	

 o

 	
 Others.

	 	

 a

 	
 All (i.e., user, group, and others).

	
 What to do

 	

 -

 	
 Take away this permission.

	 	

 +

 	
 Add this permission.

	 	

 =

 	

 Set exactly this permission
 (Section
 50.6).

	
 Permissions

 	

 r

 	
 Read access.

	 	

 w

 	
 Write access.

	 	

 x

 	
 Execute access.

	 	

 X

 	
 Give (or deny) execute permission to directories, or to
 files that have another “execute” bit set.

	 	

 s

 	
 Set user or group ID (only valid with + or -).

	 	

 t

 	
 Set the “sticky bit”
 (Section 50.4,
 Section 1.17).

(Section 50.2 explains the “Who” and
 “Permissions” categories.) Here are a few example symbolic modes:
	o=r
	Set others access to read-only, regardless of what other bits are
 set.

	o+r
	Add read access for others.

	go-w
	Take away write access for group members and others.

	a=rw
	Give everyone (user, group, and others) read-write (but not
 execute) access.

Remember that + and - add or
 delete certain permissions but leave the others untouched. The commands below
 show how permissions are added and subtracted:
% ls -l foo
-rwx-----x 1 mikel 0 Mar 30 11:02 foo
% chmod a+x foo
% ls -l foo
-rwx--x--x 1 mikel 0 Mar 30 11:02 foo
% chmod o-x,g+r foo
% ls -l foo
-rwxr-x--- 1 mikel 0 Mar 30 11:02 foo
%
Note the last chmod command. It shows
 something we haven’t mentioned before. With symbolic mode, you’re allowed to
 combine two (or more) specifications, separated by commas. This command says
 “take away execute permission for others, and add read access for group
 members.”

 On occasion, I’ve wanted to change the
 permissions of a whole directory tree: all the files in a directory and all of
 its subdirectories. In this case, you want to use chmod -R
 (the R stands for recursive) or find
 -exec (
 Section 9.9, Section 50.6). You won’t need this
 often, but when you do, it’s a real lifesaver.
— ML

The Handy chmod = Operator

 Let’s say
 you have a set of files. Some are writable by you; others are read-only. You
 want to give people in your group the same permissions
 you have — that is, they can write writable files but can only read the
 read-only files. It’s easy with an underdocumented feature of chmod:
% chmod g=u *
That means “for all files (*), set the
 group permissions (g) to be the same as the
 owner permissions (u).” You can also use the
 letter o for others, which is everyone who’s
 not the owner or in the owner’s group. Section 50.2 explains these categories.

 If your
 chmod has a -R
 (recursive) option, you can make the same change to all files and directories in
 your current directory and beneath. If you don’t have chmod
 -R, use this find (Section 9.9):
% find . -exec chmod g=u {} \;
— JP

Protect Important Files: Make
 Them Unwritable

 A
 good way to prevent yourself from making mistakes is to make certain files
 read-only. If you try to delete a read-only file, you will get a warning. You
 will also get a warning if you try to move a file onto another file that is
 write-protected. If you know you want to remove or move a file, even though the
 file is read-only, you can use the -f option with

 rm or mv
 to force the change without
 warnings.

 Manually changing the permissions of files
 all the time is counterproductive. You could create two aliases to make it
 easier to type:
[image:] Go to http://examples.oreilly.com/upt3 for more information on: chmod.csh,
 chmod.sh
change mode to read only
alias -w chmod -w
change mode to add write permission
alias +w chmod u+w
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 chmod_edit
[These are really handy! I use a script named c-w and cw,
 respectively, instead. For shell programming, I also added cx that does chmod +x. Section 50.8 explains the script.
 — JP] It is a good idea to remove write permission from
 some files. Occasionally some files contain information difficult to replace.
 These files might be included with other, easily replaceable files. Or you might
 want to protect some files that rarely change. Combined with directory permissions and
 the current value of umask (Section 49.4), you can find some file
 that might be protected in this manner. You can always create a script that adds
 write permission, edits the file, and
 removes write permission:
"$@"
 Section 35.20, ${..=..}
 Section
 36.7
#!/bin/sh
add write permission to the files
chmod u+w "$@"
edit the files; use vi if VISUAL not defined
${VISUAL=vi} "$@"
remove write permission
chmod -w "$@"
—
 BB

cx, cw, c-w: Quick File Permission Changes

 Here’s a short script that I use a lot. To
 make a new
 shell script executable, for example, I
 type:
% cx scriptfile
Using cw adds write permission; c-w takes it away. This is the single script file
 for all three commands:
#! /bin/sh
case "$0" in
*cx) chmod +x "$@" ;;
*cw) chmod +w "$@" ;;
*c-w) chmod -w "$@" ;;
*) echo "$0: Help! Shouldn't get here!" 1>&2; exit 1 ;;
esac
The script has three links. Put it in a file named cx. Then type:
% chmod +x cx
% ln cx cw
% ln cx c-w
The script tests the name it was called with, in $0, to decide which chmod
 command to run. This trick saves disk space. You can add other commands, too, by
 adding a line to the case and another link.
 Or you can use aliases (Section 50.7).
— JP

A Loophole: Modifying Files Without Write Access

 No one said that Unix is perfect (
 Section 1.20), and one of its nagging
 problems has always been security. Here’s one glitch that you
 should be aware of. If you don’t have write access to a file, you can’t modify
 it. However, if you have write access to the directory, you can get around this
 as follows:
% ls -l unwritable
-r--r--r-- 1 john 334 Mar 30 14:57 unwritable
% cat > unwritable
unwritable: permission denied
% cat unwritable > temp
% vi temp
 ...
% mv temp unwritable
override protection 444 for unwritable? y
% cat unwritable
John wrote this originally, and made the file read-only.
But then Mike came along and wrote:
I should not have been able to do this!!!
I
 couldn’t write the file unwritable directly. But I was able
 to copy it, and then use vi to make whatever
 changes I wanted. After all, I had read access, and to copy a file, you only
 need to be able to read it. When I had my own copy, I could (of course) edit it
 to my heart’s content. When I was done, I was able to mv
 the new file on top of
 unwritable. Why? Renaming a file requires only that you
 be able to write the file’s directory. You don’t need to be able to write the
 file itself. (Note that cp wouldn’t work —
 copying requires unwritable to be writable, if it already
 exists.) This is one reason to watch directory access fairly closely.
As you can see, allowing directory-write access to others can be dangerous. If
 this is a problem for you, solve it by setting your umask (Section 49.4)
 correctly and using chmod (Section 50.5) to fix permissions of
 existing directories. Or you may be able to leave the directory writable and
 set the directory’s sticky bit (Section 50.4).
— ML

A Directory That People Can Access but Can’t List

 Do you need to let someone use a file of
 yours, but you don’t want everyone on the system to be able to snoop around in
 the directory? You can give execute permission, but not read permission, to a
 directory. Then, if a file
 in the directory is accessible, a person can use the file by typing the exact
 filename. ls will say the directory is
 “unreadable.” Wildcards won’t work.
Here’s an example. Let’s say that your home directory has rwxr-xr-x permissions (everyone can access and
 list files in it). Your username is hanna. You have a
 subdirectory named project; you set its permissions so that
 everyone else on the system has execute-only permission.
-d
 Section 8.5
hanna% pwd
/home/hanna
hanna% chmod 711 project
hanna% ls -ld project project/myplan
drwx--x--x 2 hanna 512 Jul 26 12:14 project
-rw-r--r-- 1 hanna 9284 Jul 27 17:34 project/myplan
Now you tell the other user, toria, the exact name of
 your file, myplan. Like everyone else on the system, she
 can access your project directory. She can’t list it
 because she doesn’t have read permission. Because she knows the exact filename,
 she can read the file because the file is readable (anyone else could read the
 file, too, if they knew its exact name):
toria% cd /home/hanna/project
toria% pwd
pwd: can't read .
toria% ls
ls: . unreadable
toria% more myplan
 ...File appears...
toria% ln myplan /home/toria/project.hanna/plan
(We’re using the “real” pwd command that
 reads the filesystem to find your current directory. That’s why it complains
 can't
 read
 .. If you’re using the shell’s shortcut
 pwd, you probably won’t get the error
 shown above. Section 31.4 has
 details.)
In the example above, toria made a hard link (Section
 10.5) to the myplan file, with a different name,
 in her own project.hanna directory. (She could have copied,
 printed, or used any other command that reads the file.) Now, if you
 (hanna) want to, you can deny everyone’s permission to
 your project directory. toria still
 has her link to the file, though. She can read it any time she wants to, follow
 the changes you make to it, and so on:
toria% cd
toria% ls -ld project.hanna project.hanna/plan
drwx------ 2 toria 512 Jul 27 16:43 project.hanna
-rw-r--r-- 2 hanna 9284 Jul 27 17:34 project.hanna/plan
toria% more project.hanna/plan
 ...File appears...
toria has protected her
 project.hanna directory so that other users can’t find
 her link to hanna’s file.
Note
If hanna denies permission to her directory,
 toria can still read the file through her hard
 link. If toria had made a symbolic link, though, she
 wouldn’t be able to access the file any more. That’s because a hard link keeps the file’s i-number (Section 10.2) but a symbolic link
 doesn’t.

You
 might also want to
 give other users permission to list and access the files in a directory, but not
 make the directory open to all users. One way to do this is to put a fully
 accessible directory with an unusual name inside an unreadable directory. Users
 who know the exact name of the fully accessible directory can cd to it; other users can’t find it without its
 name:
hanna% chmod 711 project
hanna% chmod 777 project/pLaN
hanna% ls -ld project project/pLaN
drwx--x--x 3 hanna 512 Jul 27 17:36 project
drwxrwxrwx 2 hanna 512 Jul 27 17:37 project/pLaN
Users who type cd /home/hanna/project/pLaN
 can list the directory’s contents with ls.
 With the permissions you’ve set, other users can also create, delete, and rename
 files inside the pLaN directory — though you could have
 used more restrictive permissions like drwxr-xr-x instead.
This setup can still be a little confusing. For instance, as Section 31.4 explains, the pwd command won’t work for users in the
 pLaN directory because pwd can’t read the project directory.
 Variables like $cwd and $PWD (Section 35.5) will probably have the
 absolute pathname. If another user gets lost in a restricted directory like
 this, the best thing to do is cd to the home
 directory and start again.
— JP

Juggling Permissions

 Like any security feature, Unix
 permissions occasionally get in your way. When you want to let people use your
 apartment, you have to make sure you can get them a key; and when you want to
 let someone into your files, you have to make sure they have read and write
 access.
In the ideal world, each file would have a list of users who can access it,
 and the file’s owner could just add or delete users from that list at will. Some
 secure versions of Unix are configured this way, but standard Unix systems don’t
 provide that degree of control. Instead, we have to know how to juggle Unix file
 permissions to achieve our ends.
For example, suppose I have a file called ch01 that I
 want edited by another user, joe. I tell him that the file
 is /books/ptools/ch01, but he reports to me that he can’t
 access it.
joe % cd /books/ptools
joe % more ch01
ch01: Permission denied
The reason joe can’t read the file is that it is set to
 be readable only by me. joe can check the permissions on
 the file using the -l option to the ls command:
joe % ls -l ch01
-rw------- 1 lmui 13727 Sep 21 07:43 ch01
joe asks me (lmui) to give him read
 and write permission on the file. Only the file owner and
 root can change permission for a file. Now, what’s the
 best way to give joe access to
 ch01?
The fastest and most sure-fire way to give another user permission is to
 extend read and write permission to everyone:
lmui % chmod 666 ch01
lmui % ls -l ch01
-rw-rw-rw- 1 lmui 13727 Sep 21 07:43 ch01
But this is sort of like leaving your front door wide open so your cat can get
 in and out. It’s far better to extend read and write access to a common group
 instead of to the entire world. I try to give joe access to
 the file by giving group read and write access:
lmui % chmod 660 ch01
lmui % ls -l ch01
-rw-rw---- 1 lmui 13727 Sep 21 07:43 ch01
But joe reports that it still doesn’t work:
joe % more ch01
ch01: Permission denied
What happened? Well, I gave read and write permission to the file’s group, but
 joe doesn’t belong to that group. You can find out the
 group a file belongs to using the -lg option to ls.
 (This is the default on many systems
 when you type ls -l. Other systems are
 different. For instance, the GNU ls command
 ignores -g and has a -G option for when you
 don’t want to see the group name.)
joe % ls -lg ch01
-rw-rw---- 1 lmui power 13727 Sep 21 07:43 ch01
You can use the groups command (Section
 49.6) to find out what groups a user belongs to:
% groups joe
joe : authors ora
% groups lmui
lmui : authors power wheel ora
The ch01 file belongs to group
 power. joe isn’t a member of this
 group, but both lmui and joe are in
 the authors group. To give joe access
 to the file ch01, therefore, I need to put the file in
 group authors. To do that, I use the chgrp (Section 1.17)
 command:
lmui % chgrp authors ch01
lmui % ls -lg ch01
-rw-rw---- 1 lmui authors 13727 Sep 21 07:43 ch01
Now joe can read and write the file. (On some systems, he
 may need to run newgrp (Section 49.4) first.)
— LM

File Verification with md5sum

How can you know if a file has been corrupted — by accident or by a malicious
 user? You can check the number of characters with ls
 -l (Section 50.2), but
 the corrupted file could have the same number of characters, just some
 different ones. You can check the last-modification date (Section 8.2), but that’s easy to change, to any time you want, with
 touch. And, of course, you can read
 through the file, unless it’s a binary (nonprintable) file or it’s just too
 long.
[image:] Go to http://examples.oreilly.com/upt3 for more information on:
 md5sum
The easy way is to compute a checksum — an electronic
 fingerprint or message digest —
 that identifies the file at a time you know it’s correct. Save that checksum in
 a secure place (on an unwritable CD-ROM, on a filesystem with write protection
 disabled in hardware, or just on a piece of paper). Then, when you want to
 verify the file, recompute the checksum and compare it to the original. That’s
 just what the md5sum utility does.
md5sum is a more secure version of the
 earlier Unix sum program, and it’s also
 handier to use. By default, you give md5sum a
 list of pathnames; it will write checksums to its standard output. Later, use
 the md5sum -c (“check”)
 option to compare the files to their checksums. The first command below
 calculates checksums for some gzipped
 tar archives and saves it in a temporary
 file. (If we were doing this “for real,” I’d copy that temporary file someplace
 more secure!) The second command shows the file. The third command compares the
 files to their stored checksums:
$?
 Section 35.12
$ md5sum *.tar.gz > /tmp/sums.out
$ cat /tmp/sums.out
018f4aee79e049095a7b16ed1e7ec925 linux-ar-40.tar.gz
52549f8e390db06f9366ee83e59f64de nvi-1.79.tar.gz
856b4af521fdb78c978e5576f269c1c6 palinux.tar.gz
61dcb5614a61bf123e1345e869eb99d4 sp-1.3.4.tar.gz
c22bc000bee0f7d6f4845eab72a81395 ssh-1.2.27.tar.gz
e5162eb6d4a40e9e90d0523f187e615f vmware-forlinux-103.tar.gz
 ...sometime later, maybe...
$ md5sum -c /tmp/sums.out
linux-ar-40.tar.gz: OK
nvi-1.79.tar.gz: OK
palinux.tar.gz: OK
sp-1.3.4.tar.gz: OK
ssh-1.2.27.tar.gz: OK
vmware-forlinux-103.tar.gz: OK
$ echo $?
0
If all the files match, md5sum returns an
 exit status of 0. Files that don’t match give a FAILED message and a nonzero exit status.
The exit status — as well as the options -- status (no
 output, only return statuses) and -w (warn if the checksum line
 is improperly formatted) — can help you set up an automated checking system.
 Some software downloading and distribution systems, like RPM (Section 40.11),
 can do this for you (although in automated systems, it’s worth thinking about
 the integrity of the checksum: does it come from a system you can trust?). If
 you’re a system administrator, look into Tripwire, a tool for tracking MD5
 checksums of lots of files on your system.
— JP

Shell Scripts Must Be Readable and (Usually) Executable

 Almost everyone knows that you need to make a
 program file executable — otherwise, Unix won’t execute it. Well, that’s true
 for directly executable binary files like C and Pascal programs, but it’s not
 quite true for interpreted programs like shell scripts.
The Unix kernel can read an executable binary directly: if there’s execute
 permission, the kernel is happy; it doesn’t need read permission. But a shell
 script has to be read by a user’s Unix program (a shell). To read a file, any
 Unix program has to have read permission. So shell scripts must be
 readable.
[image:]
 Section 35.17
Shell scripts don’t need execute permission if you start the shell and give it
 the script file to read:
% sh
 scriptfile
% sh <
 scriptfile
The execute permission is a sign for the kernel that it can try to execute the
 file when you type only the filename:
% scriptfile
So shell scripts don’t need to be executable — it’s just handy.
— JP

Why Can’t You Change File Ownership?

 This
 restriction is not bogus, because the system supports disk
 quotas (Section
 15.11). If you could give away your own files, you could do something
 like the following:
% mkdir .hide; chmod 700 .hide
% cd .hide
% create_huge_file >foo
% chown prof1 foo
% create_huge_file >bar
% chown prof2 bar
% create_huge_file >baz
% chown prof3 baz
All you would need do is find someone with a high quota or no quota (such as a
 professor) who does not often check his own usage (such as a professor) and
 probably does not care that the disk is 99 percent full (such as a, er, well,
 never mind), and then give away files as necessary to keep under your own quota.
 You could regain ownership of the file by copying it to another disk partition,
 removing the original, and copying it back.
If you need to change ownership, there is a workaround (Section
 50.15) that doesn’t require root access.
— CT

How to Change File Ownership Without chown

 Unix systems with
 disk quotas (Section 15.11) won’t let you change the owner (Section 50.14) of a file; only the
 superuser can use chown. Here’s a workaround
 for those systems.
-d
 Section 8.5, -f
 Section 14.10
	The file’s current owner should make sure that the new owner has write
 permission on the directory where the file is and read permission on the
 file itself:
jerry% ls -dl . afile
drwxr-xr-x 2 jerry 512 Aug 10 12:20 .
-rw-r--r-- 1 jerry 1934 Aug 10 09:34 afile
jerry% chmod go+w .

	The new owner (logged in as herself) should rename the file, make a
 copy, and delete the original file. If the new owner is there at the
 same time, su (Section 49.9) is probably the
 fastest way to change accounts:
jerry% su laura
Password:
laura% mv afile afile.tmp
laura% cp -p afile.tmp afile
laura% ls -l afile
-rw-r--r-- 1 laura 1934 Aug 10 09:34 afile
laura% rm -f afile.tmp
laura% exit
jerry% chmod go-w .

The
 cp -p (Section 10.12) command preserves the file’s original permissions and
 last modification time. After the new owner (laura) is done
 copying, the old owner (jerry) takes away the directory’s
 write permission again. Now laura can edit
 afile, change its modes, and so on: she owns it.
— JP

[1] On some Unix systems, ls -l produces an
 eight-column listing without the group name (here, books). Use ls
 -lg to get the listing format shown here.

Chapter 51. SSH

Enabling Remote Access on Mac OS X

Enabling SSH (
 Section 46.6) on
 Mac OS X is fairly simple. Access the System
 Preferences from the Apple menu and double-click the Sharing folder. When this
 opens, click the Application tab and check the box labeled “Allow remote login.”
 Quit System Preferences, and the machine is now configured for SSH access,
 remotely.
To enable telnet

 , rsh, or
 rlogin (if you’re sure you want these
 processes), open the Terminal window and edit the /etc/inetd.conf

 file (using sudo (Section 49.11) if you’re logged in as a
 member of the administration group (Section 49.7) or login as root). Remove
 the pound sign (#) from in front of whatever remote service you want to
 enable:
#ftp stream tcp nowait root /usr/libexec/tcpd ftpd -L
You’ll need to restart the server, or you can restart inetd (Section 46.5)
 by typing:
kill -HUP `cat /var/run/inetd.pid`
— SP

Protecting Access Through SSH

 The
 problems
 associated with telnet and ftp, such as passing plain text passwords, can be
 overcome through the use of SSH (Section 46.6). SSH encrypts any
 communication between the client and the server, preventing anyone from
 capturing the information in transit. You should always use SSH to connect to
 your system remotely.
SSH
 works by authenticating the client using one of several authentication schemes,
 including a simple authentication that looks for a client machine within
 /etc/hosts.equiv. If the user on the
 local machine matches the username on the remote machine, they’re allowed in.
 This isn’t particularly safe, but it does provide encryption of transmitted
 data.
A second authentication scheme verifies that the login would normally validate
 with the $HOME/.rhosts — as with rlogin — and that the client can verify the host’s key; if so,
 login is permitted. This is safer than the first authentication scheme.
However, a better method is RSA-based authentication using public-private
 keys. Regardless, once SSH is enabled, you can then use it to telnet or rlogin
 to the server machine, and all data transmitted is safe from snooping.
— SP

Free SSH with OpenSSH

In some systems, such as Mac OS X, SSH
 (

 Section 46.6) is built-in. In other
 cases you can use commercial products, such as SecureCRT. However, there is a
 freely available application you can download called OpenSSH, available at
 http://www.openssh.com.
There are installation packages for OpenSSH for

 Linux,
 Solaris, FreeBSD, AIX — in fact, most versions of Unix.
OpenSSH has multiple tools, used in place of existing connectivity
 applications:
	ssh
	Replaces telnet and
 rlogin

	scp
	Replaces rcp for copying files

	sftp
	Replaces ftp

In addition, the installation features the necessary server-side installation
 as well as utilities to assist in the setup and maintenance of the
 application.
To configure OpenSSH with FreeBSD, check the documentation page at http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/openssh.html. To use OpenSSH with Redhat Linux, check the web pages at http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/ch-openssh.html. Check your Unix system documentation for OpenSSH installation specific to
 your environment.
— SP

SSH Problems and Solutions

In the next sections, we cover a wide range
 of difficulties, organized by category. We list what, in our experience, are the
 most frequently asked of the frequently asked questions. We focus on problems
 that may occur in many versions of the SSH software on diverse operating
 systems. We don’t address issues like this one, which rapidly become
 obsolete:
Compilation problems specific to one operating system, such as
 “HyperLinux beta 0.98 requires the -- with-woozle flag”
In all questions, we assume you have already used debug or verbose mode (e.g.,
 ssh -v) to isolate the problem. (If you haven’t, you
 should!)
— SP

General and Authentication Problems

 Q: The commands
 ssh (Section
 46.6), scp, ssh-agent, ssh-keygen, etc., aren’t doing
 what I expect. Even the help messages look weird.
A: Maybe they are SSH2 programs when you are
 expecting SSH1, or vice versa. Locate the executables and do an ls
 -l. If they are plain files, they are most likely from SSH1 or
 OpenSSH. If they are symbolic links, check whether they point to SSH1 or SSH2
 files. (SSH2 files have names ending in “2”.)
Q: When I try to connect to an SSH server, I
 get the error “Connection refused.”
A: No SSH server is running where you tried
 to connect. Double-check the hostname and TCP port number: perhaps the server is
 running on a port different from the default?
Q: When I log in, the message of the day
 (/etc/motd) prints twice.
A: Both sshd

 and the login
 program are printing it. Disable sshd’s printing by setting
 the serverwide configuration keyword PrintMotd to no.
Q: When I log in, I see two messages about
 email, such as “No mail” or “You have mail.”
A: Both sshd
 and the login program
 are checking for mail. Prevent sshd from checking by
 setting the serverwide configuration keyword CheckMail to no.
Q: The SSH1 server says “Permission denied”
 and exits.
A: This occurs if all authentication
 techniques have failed. Run your client in debug mode and read the diagnostic
 messages, looking for clues. Also read our solutions to specific authentication
 problems in the rest of this section.
Q: How do I authenticate without typing a
 password or passphrase?
A: The four available authentication methods
 for this are:
	Public-key with ssh-agent

	Public-key with an unencrypted key on disk (empty passphrase)

	Trusted-host

	Kerberos (SSH1 and OpenSSH/1 only)

Automatic authentication has a number of important issues you should carefully
 consider before selecting from the preceding list.
Q: I get prompted for my password or
 passphrase, but before I have time to respond, the SSH server closes the
 connection.
A: Your server’s idle timeout value may be
 too short. If you are a system administrator of the server machine, set IdleTimeout to a larger value in the serverwide
 configuration file. If you are an end user of SSH1 or OpenSSH, set an
 idle-timeout value in authorized_keys.
Q: RequiredAuthentications doesn’t
 work.
A: This feature was broken in SSH2 2.0.13,
 causing authentication always to fail. This problem was fixed in 2.1.0.
Q: SilentDeny doesn’t seem to work for any
 authentication method.
A:
 SilentDeny has nothing to do with
 authentication. It applies only to access control using AllowHosts and DenyHosts. If a
 connection is denied access by an AllowHosts
 or DenyHosts value, SilentDeny controls whether the client sees an informative
 failure message or not.
Q: Password authentication isn’t
 working.
A: Use ssh -v. If the
 connection is being refused altogether, the SSH server is probably not running,
 or you are connecting to the wrong port. Port 22 is the default, but the remote
 system administrator might have changed it. If you see “permission denied,”
 password authentication might be disabled in the server.
Make sure the server permits password authentication in the serverwide
 configuration file (PasswordAuthentication
 yes for SSH1 and OpenSSH, AllowedAuthentications password for SSH2). Also check your client
 configuration file to make sure you don’t have PasswordAuthentication no.
If you are prompted for your password, but it is rejected, you might
 accidentally be connecting to the wrong account. Does your local username differ
 from the remote username? If so, you must specify the remote username when
 connecting:
$ ssh -l my_remote_username server.example.com
$ scp myfile my_remote_username@server.example.com:
If this still doesn’t work, check your local client configuration file
 (~/.ssh/config or
 ~/.ssh2/ssh2_config) to make sure you haven’t
 accidentally set the wrong value for the User
 keyword. In particular, if your configuration file contains Host values with wildcards, check that your
 current command line (the one that isn’t working) isn’t matching the wrong
 section in the file.
One common problem on the server side involves OpenSSH and

 Pluggable Authentication Modules
 configuration. PAM is a general system for performing authentication,
 authorization, and accounting in an application-independent fashion. If your
 operating system supports PAM (as Linux and HPUX do, for example), OpenSSH will
 probably have been automatically compiled to use it. Unless you take the extra
 step of configuring PAM to support SSH, all password authentications will
 mysteriously fail. This is usually just a matter of copying the appropriate
 sshd.pam

 file from the contrib
 directory in the OpenSSH distribution, naming the copy sshd
 and placing it in the PAM configuration directory (usually
 /etc/pam.d). The contrib
 directory contains several example files for different flavors of Unix. For
 example, on a RedHat Linux system:
cp contrib/redhat/sshd.pam /etc/pam.d/sshd
chown root.root /etc/pam.d/sshd
chmod 644 /etc/pam.d/sshd
If OpenSSH isn’t using PAM, and password authentication still isn’t working,
 the compilation switches --with-md5-passwords
 or --without-shadow might be relevant. These
 make no difference if PAM support is enabled in OpenSSH, because they deal with
 how OpenSSH reads the Unix passwd map. When using PAM, the
 OpenSSH code doesn’t read the passwd map directly; the PAM
 libraries do it instead. Without PAM, though, if your system is using MD5-hashed
 passwords instead of the more traditional crypt (DES) hash,
 you must use --with-md5-passwords. You can
 tell which hash your system is using by inspecting the
 /etc/passwd and /etc/shadow files.
 The hashed password is the second field in each entry; if the password field in
 /etc/passwd is just “x”, the real entry is in
 /etc/shadow instead. MD5 hashes are much longer and
 contain a wider range of characters:
/etc/shadow, MD5 hash
test:1tEMXcnZB$rDEZbQXJzUz4g2J4qYkRh.:...
/etc/shadow, crypt hash
test:JGQfZ8DeroV22:...
Finally, you can try --without-shadow if
 you suspect OpenSSH is trying to use the shadow password file, but your system
 doesn’t use it.
Q: The

 server won’t let me use an
 empty password.
A: Empty passwords are insecure and should be
 avoided. Nevertheless, you can set PermitEmptyPasswords
 yes in the serverwide configuration file.
Q:

 Trusted-host authentication isn’t working
 (SSH1 RhostsRSA, SSH2 hostbased).
A: Use ssh -v. If
 everything looks right, check the following. Suppose the client user is
 orpheus@earth, and the target account is orpheus@hades — that is, on host
 earth, user orpheus invokes ssh
 hades.
Q: For SSH1 and OpenSSH/1
A: The SSH client program must be setuid
 root.
RhostsRSAAuthentication yes belongs in the
 server and client configurations.
The client’s public host key must be in the server’s known hosts list. In this
 case, hades:/etc/ssh_known_hosts must contain an entry
 associating the name “earth” with earth’s public host key, like this:
earth 1024 37 71641647885140363140390131934...
The entry may be in the target account’s known hosts file instead, i.e., in
 hades:~orpheus/.ssh/known_hosts. Take care that “earth”
 is the canonical name of the client host from the server’s point of view. That
 is, if the SSH connection is coming from the address 192.168.10.1,
 gethostbyname(192.168.10.1) on hades must return
 “earth”, not a nickname or alias for the host (e.g., if the hostname is
 river.earth.net, the lookup must not return just
 “river”). Note that this can involve multiple naming services, since gethostbyname can be configured to consult
 multiple sources to determine a translation (e.g., DNS, NIS,
 /etc/hosts). See
 /etc/nsswitch.conf. If your systems don’t agree on
 canonical hostnames, you’ll have no end of trouble with RhostsRSA. You can work
 around such problems to an extent by manually adding extra host nicknames to the
 known hosts file, like this:
earth,gaia,terra 1024 37 71641647885140363140390131934...
Edit hades:/etc/shosts.equiv or
 hades:~orpheus/.shosts to allow the login. Adding earth
 to shosts.equiv allows any nonroot user on earth to access
 the account by the same name on hades. Adding earth to
 .shosts allows orpheus@earth to access
 orpheus@hades.
Some firewalls reject outbound connections from privileged ports. This
 prevents RhostsRSA authentication from working, since it relies on privileged
 source ports. You can use ssh -P to get a connection to the
 SSH server via a nonprivileged port, but you will have to use a different kind
 of authentication.
Q: For SSH2
A:
 AllowedAuthentications hostbased in the
 server and client configurations.
ssh2 doesn’t need to be setuid root, but
 ssh-signer2 does. More precisely, it needs to be able
 to read the private host key, which in the normal installation means it must be
 setuid root.
A copy of earth’s public host key in
 hades:/etc/ssh2/knownhosts/earth.ssh-dss.pub (or
 hades:~orpheus:/.ssh2/knownhosts/earth.ssh-dss.pub, if
 you specified “UserKnownHosts yes” on the server).
Regarding canonical hostnames, the same comments as for RhostsRSA
 apply.
Q: For OpenSSH/2
A:
 DSAAuthentication yes belongs in the server
 and client configurations.
ssh must be setuid root (or otherwise able to read the
 client hosts’s private host key in /etc/ssh_host_dsa_key ;
 it doesn’t require a privileged source port).
A copy of earth’s public host key in
 hades:/etc/ssh_known_hosts2 (or
 hades:~orpheus:/.ssh/known_hosts2).
The same comments as for RhostsRSA apply, regarding canonical
 hostnames.
Q:
 How do I install my public key file on the
 remote host the first time?
A: Here’s the general method:
	Generate a key pair.

	Copy the text of the public key into your computer’s clipboard or
 other cut/paste buffer.

	Log into the remote host via SSH with password authentication, which
 doesn’t require any special files in your remote account.

	Edit the appropriate authorization and key files on the remote
 host:
	For SSH1 and OpenSSH/1, append the public key to
 ~/.ssh/authorized_keys.

	For OpenSSH/2, append the public key to
 ~/.ssh/authorized_keys2.

	For SSH2, paste the public key into a new
 .pub file in
 ~/.ssh2 (say,
 newkey.pub), and append the line “Key
 newkey.pub” to
 ~/.ssh2/authorization.

	Log out from the remote host.

	Log back into the remote host using public-key authentication.

When editing the remote authorization file, make sure your text editor doesn’t
 insert line breaks into the middle of a public key. SSH1 and OpenSSH public keys
 are very long and must be kept on a single line.
Q: I put my SSH public key file mykey.pub
 into my remote SSH directory, but public-key authentication doesn’t work.
A: Placing a valid public key file (e.g.,
 mykey.pub) in your SSH directory isn’t sufficient. For
 SSH1 and OpenSSH/1, you must append the key (i.e., the contents of
 mykey.pub) to
 ~/.ssh/authorized_keys. For OpenSSH/2, append the key
 to ~/.ssh/authorized_keys2. For SSH2, you must add a line
 of text to ~/.ssh2/authorization, Key mykey.pub.
Q:
 Public-key authentication isn’t
 working.
A: Invoke the client in debug mode
 (ssh -v). Make sure:
	Your local client is using the expected identity file.

	The correct public key is on the remote host in the right
 location.

	Your remote home directory, SSH directory, and other SSH-related files
 have the correct permissions.

Q:
 I’m being prompted for my login password instead
 of my public key passphrase. Or, my connection is rejected with the error
 message “No further authentication methods available.” (SSH2)
A: There are several possible causes for both
 of these problems.
Public-key authentication must be enabled in both the client and server
 (SSH1/OpenSSH RSAAuthentication yes, SSH2
 AllowedAuthentications publickey).
Specify your remote username with -l (lowercase L) if it
 differs from your local username, or else the SSH server will examine the wrong
 remote account:
$ ssh -l jones server.example.com
Check the file permissions in your server account. If certain files or
 directories have the wrong owner or careless access permissions, the SSH server
 refuses to perform public-key authentication. This is a security feature. Run
 ssh in verbose mode to reveal the problem:
$ ssh -v server.example.com
...
server.example.com: Remote: Bad file modes for /u/smith/.ssh
In your server account, make sure that the following files and directories are
 owned by you and aren’t world writable: ~, ~/.ssh,
 ~/.ssh/authorized_keys, ~/.ssh2,
 ~/.rhosts, and ~/.shosts.
For SSH2, if you use the -i option to specify an
 identification file:
$ ssh2 -i my-identity server.example.com
check that my-identity is an identification file, not a
 private key file. (In contrast, ssh -i for SSH1 and OpenSSH
 expects a private key file.) Remember that SSH2 identification files are text
 files containing the names of private keys.
Q: I’m being prompted for the passphrase of
 the wrong key.
A: Make sure your desired public key is in
 your authorization file on the SSH server machine.
Check for SSH agent problems. Are you running an agent and trying to specify
 another key with ssh -i or the IdentityFile keyword? The presence of an agent prevents
 -i and IdentityFile
 from working. Terminate your agent and try again.
For SSH1 and OpenSSH, if any options are specified in
 ~/.ssh/authorized_keys, check for typographical errors.
 A mistyped option causes the associated key line to be skipped silently.
 Remember that options are separated by commas, not whitespace.
Q: After the PGP passphrase prompt, I am
 being prompted for my login password.
A: If you get prompted for your PGP key, and
 then your password:
Passphrase for pgp key "mykey": ********
smith's password:
and you know you’re typing your passphrase correctly, first make sure you’re
 typing your PGP passphrase correctly. (For instance, encrypt a file with that
 public key and decrypt it.) If so, then there might be an incompatibility
 between the PGP implementations on your client and server machines. We’ve seen
 this behavior when the PGP key (generated on the client machine) doesn’t have
 sufficient bits for the PGP implementation on the server machine. Generate a new
 key on the server machine.
Q: I get “Invalid pgp key id number
 `0276C297’”.
A: You probably forgot the leading “0x” on
 the key ID, and SSH is trying to interpret a hexadecimal number as a decimal.
 Use PgpKeyId 0x0276C297 instead.

Key and Agent Problems

Q:

 I generated a key with SSH1 and tried using
 it with another SSH1 client, such as NiftyTelnet SSH, F-Secure SSH Client, or
 SecureCRT, but the client complains that the key is in an invalid format.
A: First, make sure you generated the key
 using ssh-keygen1, not ssh-keygen2.
 SSH1 and SSH2 keys aren’t compatible.
Next, make sure you transferred the key file using an appropriate
 file-transfer program. If you used FTP, confirm that the private key file was
 transferred in binary mode, or the copy will contain garbage. The public key
 file should be transferred in ASCII mode.
Q: I generated an SSH1 key and tried using it
 with SSH2, but it didn’t work. (Or vice versa.)
A: This is normal. SSH1 and SSH2 keys aren’t
 compatible.
Q: I specified a key manually, using -i or
 IdentityFile, but it never gets used!
A: Are you running an agent? If so,
 -i and IdentityFile
 don’t have any effect. The first applicable key in the agent takes
 precedence.
Q: Each time I run ssh-keygen, it overwrites
 my default identity file.
A: Tell ssh-keygen to
 write its output to a different file. For ssh-keygen in
 SSH1 and OpenSSH, use the -f option. For
 ssh-keygen2, specify the filename as the last argument
 on the command line; no option is needed.
Q: Can I change the passphrase for a key
 without regenerating the key?
A: Yes. For ssh-keygen
 in SSH1 and OpenSSH, use the -N option, and for
 ssh-keygen2, use the -p
 option.
Q: How do I generate a host key?
A: Generate a key with an empty passphrase
 and install it in the correct location:
SSH1, OpenSSH
$ ssh-keygen -N '' -b 1024 -f /etc/ssh_host_key
SSH2 only
$ ssh-keygen2 -P -b 1024 /etc/ssh2/hostkey
Q: Generating a key takes a long time.
A: Yes it may, depending on the speed of your
 CPU and the number of bits you have requested. DSA keys tend to take longer than
 RSA keys.
Q: How many bits should I make my
 keys?
A: We recommend at least 1024 bits for strong
 security.
Q: What does oOo.oOo.oOo.oOo mean, as printed
 by ssh-keygen2?
A: The manpage calls it a “progress
 indicator.” We think it’s an ASCII representation of a sine wave. Or the sound
 of a chattering gorilla. You can hide it with the -q
 flag.
Q: My ssh-agent isn’t terminating after I log
 out.
A: If you use the single-shell method to
 start an agent, this isnormal. You must terminate the agent yourself, either
 manually (bleah)or by including appropriate lines in your
 shell configurationfiles (Section 6.3). If you use thesubshell method, the agent automatically
 terminates when you log out(actually, when you exit the
 subshell) (Section
 6.3).
Q: When I invoke ssh-add and type my
 passphrase, I get the error message “Could not open a connection to your
 authentication agent.”
A: Follow this debugging process.
Make sure you are running an ssh-agent process:
$ /usr/bin/ps -ef | grep ssh-agent
smith 22719 1 0 23:34:44 ? 0:00 ssh-agent
If not, you need to run an agent before ssh-add will
 work.
Check that the agent’s environment variables are set:
$ env | grep SSH
SSH_AUTH_SOCK=/tmp/ssh-barrett/ssh-22719-agent
SSH_AGENT_PID=22720
If not, you probably ran ssh-agent incorrectly, like
 this:
Wrong!
$ ssh-agent
For the single-shell method, you must use eval with
 backquotes:
$ eval `ssh-agent`
Or, for the subshell method, you must instruct ssh-agent
 to invoke a shell:
$ ssh-agent $SHELL
Make sure the agent points to a valid socket:
$ ls -lF $SSH_AUTH_SOCK
prwx-- -- -- 1 smith 0 May 14 23:37 /tmp/ssh-smith/ssh-22719-agent|
If not, your SSH_AUTH_SOCK variable might be pointing to
 an old socket from a previous invocation of ssh-agent, due
 to user error. Terminate and restart the agent properly.
Q: My per-account server configuration isn’t
 taking effect.
A: You might be confused about which versions
 of SSH use which files:
	SSH1, OpenSSH/1: ~/.ssh/authorized_keys
	SSH2: ~/.ssh2/authorization
	OpenSSH/2: ~/.ssh/authorized_keys2
 (note this isn’t in ~/.ssh2)

Remember that the authorized_keys and
 authorized_keys2 files contains keys, whereas the SSH2
 authorization file contains directives referring to
 other key files.
You might have a typographical error in one of these files. Check the spelling
 of options, and remember to separate SSH1 authorized_keys
 options with commas, not whitespace. For example:
correct
no-x11-forwarding,no-pty 1024 35 8697511247987525784866526224505...
INCORRECT (will silently fail)
no-x11-forwarding no-pty 1024 35 8697511247987525784866526224505...
ALSO INCORRECT (note the extra space after "no-x11-forwarding,")
no-x11-forwarding, no-pty 1024 35 8697511247987525784866526224505...

Server and Client Problems

Q:

 How do I get
 sshd to recognize a new configuration
 file?
A: You can terminate and restart
 sshd, but there’s quicker way: send the “hangup” signal
 (SIGHUP) to sshd with kill
 -HUP.
Q: I changed the sshd config file and sent
 SIGHUP to the server. But it didn’t seem to make any difference.
A:
 sshd may have been invoked with a command-line option that
 overrides that keyword. Command-line options remain in force and take precedence
 over configuration file keywords. Try terminating and restarting
 sshd.
Q: A feature of ssh or scp isn’t working, but
 I’m sure I’m using it correctly.
A: The feature might have been disabled by a
 system administrator, either when the SSH software was compiled (Chapter 4) or during serverwide configuration
 (Chapter 5). Compile-time flags cannot be
 checked easily, but serverwide configurations are found in the files
 /etc/sshd_config (SSH1, OpenSSH) or
 /etc/ssh2/sshd2_config (SSH2). Ask your system
 administrator for assistance.
Q: ssh or scp is behaving unexpectedly, using
 features I didn’t request.
A: The program might be responding to
 keywords specified in your client configuration
 file (Section 7.1).
 Remember that multiple sections of the config file apply if
 multiple Host lines match the remote machine
 name you specified on the command line.
Q: My SSH1 .ssh/config file doesn’t seem to
 work right.
A: Remember that after the first use of a
 “Host” directive in the config file, all statements are
 inside some Host block, because a Host block is only terminated by the start of
 another Host block. The
 ssh1 manpage suggests that you put defaults at the end
 of the config file, which is correct; when looking up a
 directive in the config file, ssh1
 uses the first match it finds, so defaults should go after any Host blocks. But don’t let your own indentation or
 whitespace fool you. The end of your file might look like:
last Host block
Host server.example.com
 User linda
defaults
User smith
You intend that the username for logging into
 server.example.com is “linda”, and the default username
 for hosts not explicitly listed earlier is “smith”. However, the line “User
 smith” is still inside the “Host server.example.com” block. And since there’s an
 earlier User statement for
 server.example.com, “User smith” doesn’t ever match
 anything, and ssh appears to ignore it. The right thing to
 do is this:
last Host block
Host server.example.com
 User linda
defaults
Host *
 User smith
Q: My .ssh2/ssh2_config file doesn’t seem to
 work right.
A: See our answer to the previous question
 for SSH1. However, SSH2 has the opposite precedence rule: if multiple
 configurations match your target, the last, not the first,
 prevails. Therefore your defaults go at the beginning of the file.
Q: I want to suspend ssh with the escape
 sequence, but I am running more than two levels of ssh (machine to machine to
 machine). How do I suspend an intermediate ssh?
A: One method is to start each
 ssh with a different escape character; otherwise, the
 earliest ssh client in the chain interprets the escape
 character and suspends.
Or you can be clever. Remember that if you type the escape character twice,
 that’s the meta-escape: it allows you to send the escape character itself,
 circumventing its usual special function. So, if you have several chained
 ssh sessions, all using the default escape character ~,
 you can suspend the nth one by pressing the Return key,
 then n tildes, then Control-Z.
Q: I ran an ssh command in the background on
 the command line, and it suspended itself, not running unless I “fg” it.
A: Use the -n
 command-line option, which instructs ssh not to read from
 stdin (actually, it reopens stdin on /dev/null instead of
 your terminal). Otherwise, the shell’s job-control facility suspends the program
 if it reads from stdin while in the background.
Q: ssh prints “Compression level must be from
 1 (fast) to 9 (slow, best)” and exits.
A: Your CompressionLevel is set to an illegal value for this host,
 probably in your ~/.ssh/config file. It must be an integer
 between 1 and 9, inclusive.
Q: ssh prints “rsh not available” and
 exits.
A: Your SSH connection attempt failed, and
 your client was configured to fall back to an rsh
 connection. However, the server was compiled without rsh
 fallback support or with an invalid path to the rsh
 executable.
If you didn’t expect your SSH connection to fail, run the client in debug mode
 and look for the reason. Otherwise, the SSH server is just not set up to receive
 rsh connections.
Q: ssh1 prints “Too many identity files
 specified (max 100)” and exits.
A: SSH1 has a hardcoded limit of 100 identity
 files (private key files) per session. Either you ran an
 ssh1 command line with over 100 -i
 options, or your configuration file ~/.ssh/config has an
 entry with over 100 IdentityFile keywords.
 You should never see this message unless your SSH command lines and/or
 configuration files are being generated automatically by another application,
 and something in that application has run amok. (Or else you’re doing something
 really funky.)
Q: ssh1 prints “Cannot fork into background
 without a command to execute” and exits.
A: You used the -f flag
 of ssh1, didn’t you? This tells the client to put itself
 into the background as soon as authentication completes, and then execute
 whatever remote command you requested. But, you didn’t provide a remote command.
 You typed something like:
This is wrong
$ ssh1 -f server.example.com
The -f flag makes sense only when you give
 ssh1 a command to run after it goes into the
 background:
$ ssh1 -f server.example.com /bin/who
If you just want the SSH session for port-forwarding purposes, you may not
 want to give a command. You have to give one anyway; the SSH1 protocol requires
 it. Use sleep 100000. Don’t use an infinite loop like the
 shell command while true; do false; done. This gives you
 the same effect, but your remote shell will eat all the spare CPU time on the
 remote machine, annoying the sysadmin and shortening your account’s life
 expectancy.
Q: ssh1 prints “Hostname or username is
 longer than 255 characters” and exits.
A:
 ssh1 has a static limit of 255 characters for the name of a
 remote host or a remote account (username). You instructed
 ssh1, either on the command line or in your
 configuration file, to use a hostname or username that’s longer than this
 limit.
Q: ssh1 prints “No host key is known for
 <server name> and you have requested strict checking (or `cannot confirm
 operation when running in batch mode'),” and exits.
A: The client can’t find the server’s host
 key in its known-hosts list, and it is configured not to add it automatically
 (or is running in batch mode and so can’t prompt you about adding it). You must
 add it manually to your per-account or systemwide known-hosts files.
Q: ssh1 prints “Selected cipher type . . .
 not supported by server” and exits.
A: You requested that
 ssh1 use a particular encryption cipher, but the SSH1
 server doesn’t support it. Normally, the SSH1 client and server negotiate to
 determine which cipher to use, so you probably forced a particular cipher by
 providing the -c flag on the ssh1
 command line or by using the Cipher keyword
 in the configuration file. Either don’t specify a cipher and let the client and
 server work it out, or select a different cipher.
Q: ssh1 prints
 “channel_request_remote_forwarding: too many forwards” and exits.
A:
 ssh1 has a static limit of 100 forwardings per session, and
 you’ve requested more.
Q:
 scp printed an error message: “Write failed
 flushing stdout buffer. write stdout: Broken pipe” or “packet too long”.
A: Your shell startup file (e.g.,
 ~/.cshrc, ~/.bashrc), which is run
 when scp connects, might be writing a message on standard
 output. These interfere with the communication between the two
 scp1 programs (or scp2 and
 sftp-server). If you don’t see any obvious output
 commands, look for stty or tset
 commands that might be printing something.
Either remove the offending statement from the startup file or suppress it for
 noninteractive sessions:
if ($?prompt) then
 echo 'Here is the message that screws up scp.'
endif
The latest versions of SSH2 have a new server configuration statement,
 AllowCshrcSourcingWithSubsystems, which
 should be set to no to prevent this
 problem.
Q: scp printed an error message, “Not a
 regular file.”
A: Are you trying to copy a directory? Use
 the -r option for a recursive copy. Otherwise, you may be
 trying to copy a special file that it doesn’t make sense to copy, such as a
 device node, socket, or named pipe. If you do an ls -l of
 the file in question and the first character in the file description is
 something other than - (for a regular file)
 or d (for a directory), this is probably
 what’s happening. You didn’t really want to copy that file, did you?
Q: Why don’t wildcards or shell variables
 work on the scp command line?
A: Remember that wildcards and variables are
 expanded by the local shell first, not on the remote
 machine. This happens even before scp runs. So if you
 type:
$ scp server.example.com:a* .
the local shell attempts to find local files matching the pattern server.example.com:a*. This is probably not what
 you intended. You probably wanted files matching a* on server.example.com to be copied to the
 local machine.
Some shells, notably C shell and its derivatives, simply report “No match” and
 exit. Bourne shell and its derivatives (sh,
 ksh, bash), finding no match, will
 actually pass the string server.example.com:a* to the server as you’d hoped.
Similarly, if you want to copy your remote mail file to the local machine, the
 command:
$ scp server.example.com:$MAIL .
might not do what you intend. $MAIL is
 expanded locally before scp executes. Unless (by
 coincidence) $MAIL is the same on the local
 and remote machines, the command won’t behave as expected.
Don’t rely on shell quirks and coincidences to get your work done. Instead,
 escape your wildcards and variables so the local shell won’t attempt to expand
 them:
$ scp server.example.com:a* .
$ scp 'server.example.com:$MAIL' .
Q: I used scp to copy a file from the local
 machine to a remote machine. It ran without errors. But when I logged into the
 remote machine, the file wasn’t there!
A: By any chance, did you omit a colon?
 Suppose you want to copy the file myfile from the local
 machine to server.example.com. A correct command is:
$ scp myfile server.example.com:
but if you forget the final colon:
This is wrong!
$ scp myfile server.example.com
myfile gets copied locally to a file called server.example.com. Check for such a file on the
 local machine.
Q: How can I give somebody access to my
 account by scp to copy files but not give full login permissions?
A: Bad idea. Even if you can limit the access
 to scp, this doesn’t protect your account. Your friend
 could run:
 $
 scp evil_authorized_keys you@your.host:.ssh/authorized_keys
Oops, your friend has just replaced your authorized_keys
 file, giving himself full login permissions. Maybe you can accomplish what you
 want with a clever forced command, limiting the set of programs your friend may
 run in your account.
Q:
 scp -p preserves file timestamps and modes. Can
 it preserve file ownership?
A: No. Ownership of remote files is
 determined by SSH authentication. Suppose user smith has accounts on local
 computer L and remote computer R. If
 the local smith copies a file by scp to the remote smith
 account, authenticating by SSH, the remote file is owned by the
 remote smith. If you want the file to be owned by a
 different remote user, scp must authenticate as that
 different user. scp has no other knowledge of users and
 uids, and besides, only root can change file ownership (on most modern Unix
 variants, anyway).
Q: Okay, scp -p doesn’t preserve file
 ownership information. But I am the superuser, and I’m trying to copy a
 directory hierarchy between machines (scp -r) and the files have a variety of
 owners. How can I preserve the ownership information in the copies?
A: Don’t use scp for
 this purpose. Use tar and pipe it through
 ssh. From the local machine, type:
tar cpf - local_dir | (ssh remote_machine "cd remote_dir; tar xpf -")
Q: sftp2 reports “Cipher <name> is not
 supported. Connection lost.”
A: Internally, sftp2
 invokes an ssh2 command to contact
 sftp-server. It searches the user’s PATH to locate the
 ssh2 executable rather than a hardcoded location. If
 you have more than one version of SSH2 installed on your system,
 sftp2 might invoke the wrong ssh2
 program. This can produce the error message shown.
For example, suppose you have both SSH2 and F-Secure SSH2 installed. SSH2 is
 installed in the usual place, under /usr/local, whereas
 F-Secure is installed under /usr/local/f-secure. You
 ordinarily use SSH2, so /usr/local/bin is in your PATH, but
 /usr/local/f-secure isn’t. You decide to use the
 F-Secure version of scp2 because you want the CAST-128
 cipher, which SSH2 doesn’t include. First, you confirm that the SSH server in
 question supports CAST-128:
$ /usr/local/f-secure/bin/ssh2 -v -c cast server
 ...
debug: c_to_s: cipher cast128-cbc, mac hmac-sha1, compression none
debug: s_to_c: cipher cast128-cbc, mac hmac-sha1, compression none
Satisfied, you try scp2 and get this:
$ /usr/local/f-secure/bin/scp2 -c cast foo server:bar
FATAL: ssh2: Cipher cast is not supported.
Connection lost.
scp2 is running the wrong copy of
 ssh2 from /usr/local/bin/ssh2,
 rather than /usr/local/f-secure/bin/ssh2. To fix this,
 simply put /usr/local/f-secure/bin earlier in your PATH
 than /usr/local/bin, or specify the alternative location of
 ssh2 with scp2 -S.
The same problem can occur in other situations where SSH programs run other
 programs. We have run afoul of it using host-based authentication with both
 2.1.0 and 2.2.0 installed. The later ssh2 ran the earlier
 ssh-signer2 program, and the client/signer protocol had
 changed, causing it to hang.
Q: sftp2 reports “ssh_packet_wrapper_input:
 invalid packet received.”
A: Although this error appears mysterious,
 its cause is mundane. A command in the remote account’s shell startup file is
 printing something to standard output, even though stdout isn’t a terminal in
 this case, and sftp2 is trying to interpret this unexpected
 output as part of the SFTP packet protocol. It fails and dies.
You see, sshd uses the shell to start the
 sftp-server subsystem. The user’s shell startup file
 prints something, which the SFTP client tries to interpret as an SFTP protocol
 packet. This fails, and the client exits with the error message; the first field
 in a packet is the length field, which is why it’s always that message.
To fix this problem, be sure your shell startup file doesn’t print anything
 unless it’s running interactively. tcsh, for example, sets
 the variable $interactive if stdin is a
 terminal. This problem has been addressed in SSH 2.2.0 with the AllowCshrcSourcingWithSubsystems flag, which
 defaults to no, instructing the shell not to
 run the user’s startup file.
Q:
 I’m trying to do port forwarding, but ssh
 complains: “bind: Address already in use.”
A: The port you’re trying to forward is
 already being used by another program on the listening side (the local host if
 it’s a -L forwarding or the remote host if it’s a
 -R). Try using the netstat -a
 command, available on most Unix implementations and some Windows platforms. If
 you see an entry for your port in the LISTEN state, you know that something else
 is using that port. Check to see whether you’ve inadvertently left another
 ssh command running that’s forwarding the same port.
 Otherwise, just choose another, unused port to forward.
This problem can occur when there doesn’t appear to be any other program using
 your port, especially if you’ve been experimenting with the forwarding feature
 and have repeatedly used the same ssh to forward the same
 port. If the last one of these died unexpectedly (you interrupted it, or it
 crashed, or the connection was forcibly closed from the other side, etc.), the
 local TCP socket may have been left in the TIME_WAIT state (you may see this if
 you used the netstat program as described earlier). When
 this happens, you have to wait a few minutes for the socket to time out of this
 state and become free for use again. Of course, you can just choose another port
 number if you’re impatient.
Q: How do I secure FTP with port forwarding?
A: This is a complex topic. FTP has two types
 of TCP connections, control and data. The control connection carries your login
 name, password, and FTP commands; it is on TCP port 21 and can be forwarded by
 the standard method. In two windows, run:
$ ssh -L2001:name.of.server.com:21 name.of.server.com
$ ftp localhost 2001
Your FTP client probably needs to run in passive mode (execute the passive command). FTP data connections carry the
 files being transferred. These connections occur on randomly selected TCP ports
 and can’t be forwarded in general, unless you enjoy pain. If firewalls or NAT
 (network address translation) are involved, you may need additional steps (or it
 may not be possible).
Q:
 X forwarding isn’t working.
A: Use ssh -v, and see
 if the output points out an obvious problem. If not, check the following.
Make sure you have X working before using SSH. Try running a simple X client
 such as xlogo or xterm first. Your
 local DISPLAY variable must be set, or SSH doesn’t attempt
 X forwarding.
X forwarding must be turned on in the client and server, and not disallowed by
 the target account (that is, with no-X11-forwarding in the authorized_keys
 file).
sshd must be able to find the xauth
 program to run it on the remote side. If it can’t, this should show up when
 running ssh -v. You can fix this on the server side with
 the XAuthLocation directive (SSH1, OpenSSH),
 or by setting a PATH (that contains xauth) in your remote
 shell startup file.
Don’t set the DISPLAY variable yourself on the remote
 side. sshd automatically sets this value correctly for the
 forwarding session. If you have commands in your login or shell startup files
 that unconditionally set DISPLAY, change the code to set it
 only if X forwarding isn’t in use.
OpenSSH sets the remote XAUTHORITY variable as well,
 placing the xauth credentials file under
 /tmp. Make sure you haven’t overridden this setting,
 which should look like:
$ echo $XAUTHORITY
/tmp/ssh-maPK4047/cookies
Some flavors of Unix actually have code in the standard shell startup files
 (e.g., /etc/bashrc, /etc/csh.login) that unconditionally
 sets XAUTHORITY to ~/.Xauthority. If
 that’s the problem, you must ask the sysadmin to fix it; the startup file should
 set XAUTHORITY only if the variable is unset.
If you are using an SSH startup file (/etc/sshrc or
 ~/.ssh/rc), sshd doesn’t run
 xauth for you on the remote side to add the proxy key;
 one of these startup files must do it, receiving the proxy key type and data on
 standard input

 from sshd

— SP

Glossary

A - M
	AIX
	A version of Unix from the IBM Corporation.

	argument
	Zero or more characters passed to a program or function as a single unit.
 The shell breaks a command line into arguments by cutting it at unquoted
 whitespace.

	array
	An ordered collection of data items. An array has a single overall name;
 each item in it is called an element or
 member. For instance, the C shell stores its
 command search path in an array named path. The first array member is named
 $path[1], the second is $path[2], and so on. Some arrays are indexed
 from zero (e.g., C, Perl).

	ASCII text file
	Formally, a text file containing only ASCII characters. More commonly (in
 the U.S., at least), a file containing text that’s printable, viewable, and
 has no “binary” (non-ASCII) characters. ASCII characters use only seven of
 the bits in a (8-bit) byte.

	backquote
	The character `. Not the same as a single quote ('). Used in pairs, does command
 substitution.

	backslash
	The character \. In Unix, it changes
 the interpretation of the next character in some way. See
 also
 Section 27.18.

	batch queue
	A mechanism for sequencing large jobs. A batch queue receives job requests
 from users. It then executes the jobs one at a time. Batch queues go back to
 the earliest days of data processing. They are an extremely effective, if
 uncomfortable, way to manage system load.

	bin directory
	A directory for storing executable programs. See also
 Section 7.4.

	binaries, binary file
	A file with nontext characters. Often, a directly executable file that can
 be run as a program. Binary characters use all the bits in a (8-bit)
 byte.

	block size
	The largest amount of data that a Unix filesystem will always allocate
 contiguously. For example, if a filesystem’s block size is 8 KB, files of
 size up to 8 KB are always physically contiguous (i.e., in one place),
 rather than spread across the disk. Files that are larger than the
 filesystem’s block size may be fragmented: 8 KB pieces of the file are
 located in different places on the disk. Fragmentation limits filesystem
 performance. Note that the filesystem block size is different from a disk’s
 physical block size, which is almost always 512 bytes.

	brain-damaged
	How a program with poor design or other errors can be described.

	BSD Unix
	The versions of Unix developed at the University of California, Berkeley.
 BSD (Berkeley Software Distribution) Unix has been dominant in academia and
 has historically had some features more advanced than System V: BSD
 introduced virtual memory, TCP/IP networking, and the “fast filesystem” to
 the Unix community. It is also the system on which Sun OS was based. System
 V Release 4 and some vendors’ earlier System V versions also have Berkeley
 features.

	buffer
	A temporary storage place such as a file or an area of the computer’s
 memory. Most text editors store the file you’re editing in a buffer; when
 you’re done editing, the edited buffer is copied over (i.e., replaces) the
 original file.

	command line
	The text you type at a shell prompt. A Unix shell reads the command line,
 parses it to find the command name (which is usually the first word on the
 command line, though it can be a variable assignment), and executes the
 command. A command line may have more than one command joined by operators
 such as semicolons (;), pipes (|), or doubleampersands
 (&&).

	control character
	A character you make by holding down the keyboard CTRL (Control) key while
 pressing a letter or another character key.

	core file, core dump
	The file made when a program terminates abnormally. The
 core file can be used for debugging. This comes
 from ancient “core” memory, where the contents of memory were stored in a
 magnetized ferrite core. See also
 Section 15.4.

	.cshrc file
	See Section 3.3.

	daemon
	A program that is invisible to users but provides important system
 services. Daemons manage everything from paging to networking to
 notification of incoming mail. See also
 Section 1.10.

	data switch
	Hardware that is something like a telephone switchboard. A data switch
 connects many terminals to two or more computers. The user, on a terminal or
 through a modem, tells the data switch to which computer she wants a
 connection. A data switch is also called a terminal
 multiplexor. Computers without data switches usually have one
 terminal connected to each tty port; characteristics
 like the terminal type can be set in system files. Conversely, computers
 with data switches can’t know in advance what sort of terminal is connected
 to each tty port.

	default
	In a program that gives you more than one choice, the one you get by not
 choosing. The default is usually the most common choice. As an example, the
 default file for many Unix programs is the standard input. If you don’t give
 a filename on the command line, a program will read its standard
 input.

	dot (.) files (.cshrc, .login, .profile)
	Files that are read when you start a program (including when you log in
 and start a shell). These set up your environment and run any other Unix
 commands (for instance, tset). If your account uses the
 C shell, it will read .cshrc and
 .login. Accounts that use the
 Bourne shell and shells like it read .profile. See also
 Section 3.6.

	double quote
	The " character. This isn’t the same as
 two single quotes ('') together. The
 " is used around a part of a Unix
 command line where the shell should do variable and command substitution
 (and, on the C shell, history substitution), but no other interpretation.
 See also
 Section 27.12 and Section 27.13.

	escape
	Using escape on a character or a string of
 characters is a way to change how it is interpreted. This can take away its
 special meaning, as in shell quoting; or it can add
 special meaning, as in terminal escape sequences.

	flag
	In programming, a flag variable is set to signal that
 some condition has been met or that something should be done. For example, a
 flag can be set (“raised”) if the user has entered something wrong; the
 program can test for this flag and not continue until the problem has been
 fixed.

	flame
	A heated or irrational statement.

	Free Software Foundation (FSF)
	A group that develops the freely available GNU software. Their address is:
 675 Massachusetts Avenue, Cambridge, MA 02139 USA.

	full-duplex
	Communications between a terminal and a computer where data flows in both
 directions at the same time. Half-duplex
 communications, where data flows in only one direction at a time, are
 unusual these days.

	GNU
	Gnu’s Not Unix, a system of software planned eventually to be a freely
 available substitute for Unix.

	gotcha
	A “catch,” difficulty, or surprise in the way that a program works.

	hardcoded
	In general, a value that can’t be changed. For example, in a shell script
 with the command grep jane, the value
 jane is hardcoded;
 grep will always search for
 jane. But in the command grep $USER, the text that grep searches
 for is not hardcoded; it’s a variable value.

	hash table
	Hashing data into the format of a hash table lets
 specially designed programs search for data quickly. A hash table assigns a
 special search code to each piece of data. For example, the C shell uses a
 hash table to locate commands more quickly; the rehash
 command rebuilds the hash table after you add a new command.

	I/O
	Input/output of text from software or hardware.

	inode
	A data structure that describes a file. Within any filesystem, the number
 of inodes, and hence the maximum number of files, is set when the filesystem
 is created.

	i-number
	A Unix file has a name (for people to identify it) and an i-number (for
 Unix to identify it). Each file’s i-number is stored in a directory, along
 with the filename, to let Unix find the file that you name.

	job
	One Unix command. It is easy to be sloppy and use the terms job, process,
 and program interchangeably. I do it, and I’m sure you do, too. Within Unix
 documentation, though, the word “job” is usually used to mean one, and only
 one, command line. Note that one command line can be complex. For
 example:
 pic a.ms | tbl | eqn | troff -ms
is one command, and hence one job, that is formed from four
 processes.

	job number
	Shells with job control assign a job number to every command that is
 stopped or running in the background. You can use job
 numbers to refer to your own commands or groups of commands. Job numbers are
 generally easier to use than process IDs; they are much smaller (typically
 between 1 and 10) and therefore easier to remember. The C-shell
 jobs command displays job numbers. See
 also
 Section 23.2.

	kernel
	The part of the Unix operating system that provides memory management, I/O
 services, and all other low-level services. The kernel is the “core” or
 “heart” of the operating system. See also
 Section 1.10.

	kludge
	A program or a solution to a problem that isn’t written carefully, doesn’t
 work as well as it should, doesn’t use good programming style, and so
 on.

	library function
	Packages of system calls (and of other library functions) for programmers
 in C and other languages. In general (though not always), a library function
 is a “higher-level operation” than a system call.

	load average
	A measure of how busy the CPU is. The load average is useful, though
 imprecise. It is defined as the average number of jobs in the run queue plus
 the average number of jobs that are blocked while waiting for disk I/O. The
 uptime command shows the load average.

	.login file
	See the “dot (.) files (.cshrc, .login, .profile)”
 entry in this glossary and Section
 3.4.

	mode
	In Unix, an octal number that describes what access a file’s owner, group,
 and others have to the file. See also
 Section 1.17.

	modulo
	Think back to your fourth grade arithmetic. When you divide two numbers,
 you have a dividend (the number on top), a
 divisor (the number on the bottom), a
 quotient (the answer), and a
 remainder (what’s left over). In computer science,
 this kind of division is very important. However, we’re usually more
 interested in the remainder than in the quotient. When we’re interested in
 the remainder, we call the operation a modulus (or
 modulo, or mod). For instance,
 one of the examples in your fourth grade arithmetic text might have been
 13 ÷ 3 =
 4 (with a remainder of 1). As computer users, we’re more
 interested in 13 mod 3 = 1. It’s really
 the same operation, though. Modulo is also used in
 expressions like “modulo wildcards,” which means “everything but
 wildcards.”

N - Z
	NFS
	Network File
 System. NFS allows Unix systems and many non-Unix
 systems to share files via a TCP/IP network. Subject to certain security
 restrictions, systems are allowed complete access to another system’s files.
 See also
 Section 1.21 and Section 44.9.

	newline
	The character that marks the end of a line of text in most Unix files.
 (This is a convention, not a requirement.) Usually expressed as “\n” or
 LF.

	null
	Empty, zero-length, with no characters — for example, a null
 string. This is not the same as an ASCII
 NUL character.

	octal number
	The base 8 numbering system. Octal numbers are made with the digits 0
 through 7,and begin with O. For example, the decimal (base 10) number
 12 is the same as the octal number
 14. ASCII character codes are often
 shown as octal numbers.

	option switch
	Typed on a command line to modify the way that a Unix command works.
 Usually starts with a dash (-). The terms
 option and switch are more or
 less interchangeable. An option may have several settings, but a switch
 usually has two settings: on or off, enabled or disabled, yes or no,
 etc.

	panic
	Unix jargon for a “crash.” A panic is really a special kind of a crash.
 Panics occur when Unix detects some irreconcilable inconsistency in one of
 its internal data structures. The kernel throws up its hands and shuts the
 system down before any damage can be done. As it is going down, it prints a
 “panic” message on the console.

	parse
	To split into pieces and interpret.

	partition
	A portion of a disk drive. Unix disk drives typically have eight
 partitions, although not all are in use.

	path, search
	See
 Section 35.6.

	pipe
	A Unix mechanism for sending the output of one program directly to the
 input of another program, without using an intermediate file. All Unix
 systems support pipes. System V and Sun OS also provide “named pipes,” which
 are FIFO (first-in/first-out) buffers that have names and can be accessed
 via the filesystem.

	portable
	A program that’s portable can be used on more than
 one version of Unix or with more than one version of a command.

	POSIX
	POSIX is not an OS, but a standard for how Unix-like OSes should behave at
 various levels. As an effort to counter the balkanization of Unix from
 vendor to vendor, POSIX defines the ways in which Unix-like OSes should
 expose their interfaces, from the kernel up to program- and shell-argument
 level.

	priority
	A number that determines how often the kernel will run a process. A
 higher-priority process will run more often — and, therefore, will finish
 faster — than a low-priority process.

	process
	A lot of the time, a process is nothing more than another name for a
 program that is running on the system. But there is a more formal
 definition: a process is a single execution thread or a single stream of
 computer instructions. One job may be built from many different processes.
 For example, a command line with pipes starts two or more processes.
 See also
 Section 24.3.

	process ID (PID)
	Unix assigns every process an ID number (called a PID) when it starts.
 See also
 Section 24.3. This number allows
 you to refer to a process at a later time. If you need to
 kill a runaway program, you refer to it by its
 process ID. The ps command displays process IDs.

	.profile file
	See Section 3.4.

	prompt
	How a program asks you for information: by printing a short string like
 Delete afile? to the terminal and
 waiting for a response. See also “shell prompt” in this
 glossary.

	pseudo-code
	A way to write out program text, structured like a program, without using
 the actual programming language. Pseudo-code usually explains a
 program.

	read-only filesystem
	Filesystems are usually set up to allow write access to users who have the
 proper permissions. The system administrator can mount
 a filesystem read-only; then no user can make changes
 to files there.

	recursive
	A program or routine that re-executes itself or repeats an action over and
 over. For example, the find program moves through a
 directory tree recursively, doing something in each directory.

	reverse video
	On a video display, reversed foreground and background colors or tones.
 Reverse video is used to highlight an area or to identify text to be used or
 modified. For instance, if text is usually shown with black letters on a
 white background, reverse video would have white letters on a black
 background.

	SCSI
	Small Computer Systems Interface, a standard interface for disk and tape
 devices now used on many Unix (and non-Unix) systems.

	search path
	A list of directories that the shell searches to find the program file you
 want to execute. See also
 Section 17.29 and Section 35.6.

	shell
	A program that reads and interprets command lines and also runs programs.
 See also
 Section 27.3.

	shell prompt
	A signal from a shell (when it’s used interactively) that the shell is
 ready to read a command line. By default, the percent sign (%) is the default C-shell prompt and the
 dollar sign ($) is the default
 Bourne-shell prompt. The default bash-shell prompt is
 also the dollar sign ($).

	slash
	The character /. It separates elements
 in a pathname. See also
 Section 1.16.

	single quote
	The ' character. This isn’t the same as
 a backquote (`). The single quote is used around a part of a Unix command
 line where the shell should do no interpretation (except history
 substitution in the C shell). See also
 Section 27.12 and Section 27.13.

	special file
	An entity in the filesystem that accesses I/O devices. There is a special
 file for every terminal, every network controller, every partition of every
 disk drive, and every possible way of accessing every tape drive.
 See also
 Section 1.19.

	string
	A sequence of characters.

	subdirectory
	A directory within a directory. See also
 Section 1.16 and Section 7.7.

	swapping
	A technique that the Unix kernel uses to clean up physical memory. The
 kernel moves pages from memory to disk and then reassigns the memory to some
 other function. Processes that have been idle for more than a certain period
 of time may be removed from memory to save space. Swapping is also used to
 satisfy extreme memory shortages. When the system is extremely short of
 memory, active processes may be “swapped out.”

	system call
	The lowest-level access to the Unix operating system. Everything else in
 Unix is built on system calls.

	System V Unix
	A version of Unix from AT&T. The most recent Release of System V is
 Release 4, known as V.4 or SVR4.

	TCP/IP
	Transmission Control Protocol/Internet Protocol. A network protocol that
 is commonly used for communications via an Ethernet. TCP/IP is also called
 the “Internet protocol.” It is also common to use TCP/IP over leased lines
 for long-distance communications.

	termcap
	Stands for terminal
 capabilities, an early (and still common) way to
 describe terminals to Unix.

	terminal emulator
	A program that makes a computer display emulate (act like) a terminal. For
 example, many terminal-emulator programs emulate the Digital Equipment
 Corporation VT100 terminal.

	terminfo
	A newer way to describe terminal capabilities to Unix.

	the Net
	A term for two particular networks: Usenet and
 Internet. For instance, “I read it on the Net” or “You can
 get that file on the Net.”

	timestamp
	The Unix filesystem stores the times that each file was last modified,
 accessed, or had a change to its inode. These times — especially the
 modification time — are often called timestamps.

	truncate
	To cut, to shorten — for example, “truncate a file after line 10” means to
 remove all lines after line 10.

	uuencode, uudecode
	Utilities that encode files with binary (8-bit) characters into an ASCII
 (7-bit) format and decode them back into the original binary format. This is
 used for transferring data across communications links that can’t transfer
 binary (8-bit) data. See also
 Section 39.2.

	VAX/VMS
	A popular computer operating system from the Digital Equipment
 Corporation.

	wedged
	A terminal or program is wedged when it’s “frozen” or
 “stuck.” The normal activity stops and often can’t be restarted without
 resetting the terminal or killing the program.

	whitespace
	A series of one or more space or TAB characters.

	word
	Similar to a word in a spoken language like English, a word is a unit made
 up of one or more characters. But unlike English, words in Unix can contain
 whitespace; they can also have no characters (a
 zero-length word).

	XENIX
	One of the first versions of Unix to run on IBM PCs, and one of the few
 that will run on 80286 systems. XENIX descends from Version 7 Unix, a
 version developed by AT&T in the late 1970s. It has many resemblances to
 BSD Unix. Over time, XENIX has been rewritten as a variant of System
 V.2.

	zombies
	Dead processes that have not yet been deleted from the process table.
 Zombies normally disappear almost immediately. However, at times it is
 impossible to delete a zombie from the process table, so it remains there
 (and in your ps output) until you reboot. Aside from
 their slot in the process table, zombies don’t require any of the system’s
 resources. See also
 Section 24.20.

 Index

A note on the digital index

 A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers,
 it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text
 in which the marker appears.

 Symbols
	! (exclamation
 point), X Resource Syntax, How to Use find, Exact File-Time Comparisons, Finding Text That Doesn’t Match, Filtering Text Through a Unix Command, Patterns, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Special Characters, How Quoting Works, C-Shell Aliases with Command-Line Arguments, C-Shell Aliases with Command-Line Arguments, My Favorite Is !$, My Favorite Is !:n*, Using !$ for Safety with Wildcards, History Substitutions, History Substitutions, History Substitutions, History Substitutions, History Substitutions, Regular Expressions: The Anchor Characters ^ and $, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, sed Addressing Basics, Making Edits Everywhere Except..., Exit Status of Unix Processes, test: Testing Files and Strings, Syntax, Scalars, Scalars
		! (Boolean NOT)
 operator, Patterns
	! (logical negation)
 operator, How to Use find, Exact File-Time Comparisons, Scalars
		with find
 command, Exact File-Time Comparisons

	!$, specifying last argument on previous
 line, Regular Expressions: The Anchor Characters ^ and $
	!= (not equal)
 operator, Alphabetical Summary of Commands, Syntax, Scalars
	!~
 (pattern-matching)
 operator, Alphabetical Summary of Commands
	in C
 shell quoting, How Quoting Works
	command line exit status, reversing in bash
 and zsh, Exit Status of Unix Processes
	filename
 wildcard, Filename Wildcards in a Nutshell
	filtering vi text through Unix
 command, Filtering Text Through a Unix Command
	find command operator, Finding Text That Doesn’t Match
	history substitution
 commands, Special Characters, C-Shell Aliases with Command-Line Arguments, C-Shell Aliases with Command-Line Arguments, My Favorite Is !$, My Favorite Is !:n*, Using !$ for Safety with Wildcards, History Substitutions, History Substitutions, History Substitutions, History Substitutions, History Substitutions
		!! and !\:
 sequences, History Substitutions
	!$ notation, C-Shell Aliases with Command-Line Arguments
	!$ sequence, My Favorite Is !$, Using !$ for Safety with Wildcards, History Substitutions
	!* notation, C-Shell Aliases with Command-Line Arguments
	!*
 sequence, History Substitutions
	!\:n* sequence, My Favorite Is !:n*
	!^ sequence, History Substitutions
	bash shell quoting
 and, Special Characters

	regular expression
 metacharacter, Making Edits Everywhere Except...
		sed editor
 replacements, Making Edits Everywhere Except...

	sed address followed
 by, sed Addressing Basics
	test command using, test: Testing Files and Strings
	in X Window System
 comments, X Resource Syntax
	[!]
 filename wildcards, Filename Wildcards in a Nutshell

	" (quotes,
 double), Communication with Unix, Static Prompts, Faster Prompt Setting with Built-ins, Multiline Shell Prompts, Highlighting and Color in Shell Prompts, Can’t Access a File? Look for Spaces in the Name, Expanding Ranges, Renaming, Copying, or Comparing a Set of Files, Extended Searching for Text with egrep, Setting Up vi with the .exrc File, Splitting Files by Context: csplit, Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C Shell Quoting, How Quoting Works, Who Handles Wildcards?, Making Edits Everywhere Except..., Pattern Matching in case Statements, Cleaning script Files, Perl Boot Camp, Part 1: Typical Script Anatomy
		$ and ' inside, in C shell
 quoting, How Quoting Works
	around filenames, renaming files
 and, Renaming, Copying, or Comparing a Set of Files
	converting straight quotes to curly quotes
 with sed, Making Edits Everywhere Except...
	for comments in vi .exrc
 file, Setting Up vi with the .exrc File
	in command
 arguments, Communication with Unix
	in prompts, Static Prompts, Faster Prompt Setting with Built-ins, Multiline Shell Prompts, Highlighting and Color in Shell Prompts
	in regular
 expressions, Extended Searching for Text with egrep
	in sed scripts, Cleaning script Files
	in shell quoting, Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C Shell Quoting
	ls -Q command output, Can’t Access a File? Look for Spaces in the Name
	passing wildcards to
 programs, Who Handles Wildcards?
	search patterns in csplit
 program, Splitting Files by Context: csplit
	shell arrays, expanded
 values, Expanding Ranges
	variable interpolation in
 Perl, Perl Boot Camp, Part 1: Typical Script Anatomy
	wildcard pattern
 matching in case statements, Pattern Matching in case Statements

	# (hash
 mark), Dynamic Prompts, Setting Your Erase, Kill, and Interrupt Characters, Editing Multiple Files with vi, Execution Scheduling, Default Commands, How Quoting Works, Filename Wildcards in a Nutshell, Writing a Simple Shell Program, The Story of : # #!, The Story of : # #!, The Unappreciated Bourne Shell “:” Operator, RCS Basics, Perl Boot Camp, Part 1: Typical Script Anatomy
		# and ## filename
 wildcards, Filename Wildcards in a Nutshell
	#! notation, Default Commands, Writing a Simple Shell Program, The Story of : # #!, Perl Boot Camp, Part 1: Typical Script Anatomy
		in
 Bourne shell scripts, Writing a Simple Shell Program
	in Perl
 scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

	in
 comments, The Story of : # #!, RCS Basics
		# $Id $, commenting RCS files in a shell
 or Perl script, RCS Basics

	dynamic prompts in tcsh and zsh
 shells, Dynamic Prompts
	erase character, Setting Your Erase, Kill, and Interrupt Characters
	in crontab entries, Execution Scheduling
	shell prompt for zsh
 shells, How Quoting Works
	vi editor, alternate
 filename, Editing Multiple Files with vi
	\: (colon) used in place
 of, The Unappreciated Bourne Shell “:” Operator

	$ (dollar
 sign), Which Shell Am I Running?, Interactive Shells, Dynamic Prompts, Can’t Access a File? Look for Spaces in the Name, How Quoting Works, How Quoting Works, “Special” Characters and Operators, Command Substitution, Simple Functions: ls with Options, Setting Current Shell Environment: The work Function, Regular Expressions: The Anchor Characters ^ and $, Regular Expressions: The Anchor Characters ^ and $, Valid Metacharacters for Different Unix Programs, sed Addressing Basics, Making Edits Across Line Boundaries, What Environment Variables Are Good For, Shell Variables, Pattern Matching in case Statements, Exit Status of Unix Processes, Set Exit Status of a Shell
 (Script), Handling Command-Line Arguments in Shell Scripts, With the “$@” Parameter, With the “$@” Parameter, Counting Arguments with $#, Standard Command-Line
 Parsing, Finding a Program Name and Giving Your Program Multiple Names, Matching with expr, Matching with expr, Nested Command
 Substitution, Quoting and Command-Line
 Parameters, Quoting and Command-Line
 Parameters, RCS Basics, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Perl Boot Camp, Part 3: Branching and Looping, Perl Boot Camp, Part 4: Pattern Matching
		$# command-line
 argument, Counting Arguments with $#
	$() command substitution
 operator, Command Substitution, Nested Command
 Substitution
	$* argument, Matching with expr, Quoting and Command-Line
 Parameters
	$- variable, displaying current
 flags, Interactive Shells
	$0 parameter, script names
 in, Finding a Program Name and Giving Your Program Multiple Names
	$1 command-line
 arguments, Set Exit Status of a Shell
 (Script), Handling Command-Line Arguments in Shell Scripts
	$1, $2, etc., command-line arguments
 in, Setting Current Shell Environment: The work Function
	$@
 argument, Simple Functions: ls with Options, With the “$@” Parameter, With the “$@” Parameter, Standard Command-Line
 Parsing, Matching with expr, Quoting and Command-Line
 Parameters
		passing
 arguments to getopt, Standard Command-Line
 Parsing
	replacement by arguments passed to
 function, Simple Functions: ls with Options

	$Id $ in RCS files, RCS Basics
	$_ variables in
 Perl, Scalars, Perl Boot Camp, Part 3: Branching and Looping
	in bash shell
 prompt, Which Shell Am I Running?, Dynamic Prompts
	inside double
 quotes in C shell quoting, How Quoting Works
	end of line anchor in regular
 expressions, Regular Expressions: The Anchor Characters ^ and $
	end of line indicator in various
 utilities, Can’t Access a File? Look for Spaces in the Name, Regular Expressions: The Anchor Characters ^ and $
	metacharacter in regular expressions and
 shells, “Special” Characters and Operators
	quoting in Bourne
 shell, How Quoting Works
	regular expression
 metacharacter, Valid Metacharacters for Different Unix Programs, Making Edits Across Line Boundaries, Perl Boot Camp, Part 4: Pattern Matching
		matching at end
 of line (Perl), Perl Boot Camp, Part 4: Pattern Matching
	matching newline at the end of
 multiline pattern space, Making Edits Across Line Boundaries
	use in Unix
 programs, Valid Metacharacters for Different Unix Programs

	sed addressing
 symbol, sed Addressing Basics
	value of Bourne shell exit status variable
 (?), getting, Exit Status of Unix Processes
	variable
 names, preceding, What Environment Variables Are Good For, Shell Variables, Perl Boot Camp, Part 1: Typical Script Anatomy
	as
 wildcard, Pattern Matching in case Statements

	$HOME environment
 variable, Use Absolute Pathnames in Shell Setup Files, Many Homes
	$HOME/.rhosts
 file, Starting a Remote Client with rsh and ssh
	$LOGDIR environment
 variable, Use Absolute Pathnames in Shell Setup Files
	% (percent
 sign), Which Shell Am I Running?, Dynamic Prompts, Dynamic Prompts, Highlighting and Color in Shell Prompts, Editing Multiple Files with vi, Using jobs Effectively, Syntax, I/O and Formatting
		%?, prefixing job
 numbers, Using jobs Effectively
	arithmetic operator
 (modulus), Syntax
	formatting operator in
 Python, I/O and Formatting
	in shell prompts, Which Shell Am I Running?, Dynamic Prompts, Dynamic Prompts, Highlighting and Color in Shell Prompts
		%! for
 zsh hisotry number, Dynamic Prompts
	%#
 (dynamic prompt), tcsh and zsh shells, Dynamic Prompts
	%{
 and %} delimiters for nonprinting escape
 sequences, Highlighting and Color in Shell Prompts
	C (csh)
 shell, Which Shell Am I Running?

	vi editor, current
 filename, Editing Multiple Files with vi

	&
 (ampersand), Copying Directory Trees with tar and Pipes, Patterns, Job Control in a Nutshell, Using Job Control from Your Shell, Disowning Processes, Disowning Processes, Managing Processes: Overall Concepts, Separating Commands with Semicolons, Running a Series of Commands on a File, Referencing the Search String in a Replacement, Testing Your
 Success, Syntax, Compiling Perl from Scratch, Scalars
		& (logical
 AND) operator, Syntax
	&! background operator, Z
 shell, Disowning Processes
	&& (Boolean AND)
 operator, Copying Directory Trees with tar and Pipes, Patterns, Separating Commands with Semicolons, Running a Series of Commands on a File, Testing Your
 Success, Compiling Perl from Scratch, Scalars
	&| background operator, Z
 shell, Disowning Processes
	commands ending
 with, Job Control in a Nutshell, Using Job Control from Your Shell, Managing Processes: Overall Concepts
	metacharacter in regular
 expressions, Referencing the Search String in a Replacement

	' (quotes,
 single), Static Prompts, Multiline Shell Prompts, Highlighting and Color in Shell Prompts, Preprompt, Pre-execution, and Periodic Commands, Running Commands on What You Find, Renaming, Copying, or Comparing a Set of Files, Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C Shell Quoting, How Quoting Works, C-Shell Aliases with Command-Line Arguments, Setting and Unsetting Bourne-Type Aliases, Don’t Confuse Regular Expressions with Wildcards, Who Handles Wildcards?, Pattern Matching in case Statements
		;
 (semicolon), using with in C shell, Running Commands on What You Find
	around filenames, renaming files
 and, Renaming, Copying, or Comparing a Set of Files
	in alias quoting, C-Shell Aliases with Command-Line Arguments, Setting and Unsetting Bourne-Type Aliases
	in bash pre-prompt
 commands, Preprompt, Pre-execution, and Periodic Commands
	in prompts, Static Prompts, Multiline Shell Prompts, Highlighting and Color in Shell Prompts
	in shell quoting, Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C Shell Quoting, How Quoting Works
		inside double quotes (C
 shell), How Quoting Works

	passing wildcards to
 programs, Who Handles Wildcards?
	regular expressions,
 quoting, Don’t Confuse Regular Expressions with Wildcards
	strings in case
 statements, Pattern Matching in case Statements

	()
 (parentheses), Shell Setup Files — Which, Where, and Why, How to Use find, Extended Searching for Text with egrep, grepping for a List of Patterns, Why ps Prints Some Commands in Parentheses, Understanding Expressions, Regular Expressions: Remembering Patterns with \ (, \), and \1, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Valid Metacharacters for Different Unix Programs, Referencing Portions of a Search String, Using sed, Scalars, Perl Boot Camp, Part 4: Pattern Matching, The () Subshell Operators, How to tee Several Commands into One Place
		commands printed in by
 ps, Why ps Prints Some Commands in Parentheses
	grouping
 operator, grepping for a List of Patterns, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern Matching, The () Subshell Operators
		combining commands
 with, The () Subshell Operators
	extended regular
 expressions, Extended Regular Expressions
	Perl regular
 expressions, Perl Boot Camp, Part 4: Pattern Matching
	use in Unix
 programs, Valid Metacharacters for Different Unix Programs

	nesting
 regular expressions in, Extended Searching for Text with egrep
	operator precedence, overriding
 with, Understanding Expressions
	Perl operators, resolving
 ambiguity in, Scalars
	subshell
 operator, Shell Setup Files — Which, Where, and Why, How to tee Several Commands into One Place
	\(\), How to Use find, Regular Expressions: Remembering Patterns with \ (, \), and \1, Valid Metacharacters for Different Unix Programs, Referencing Portions of a Search String, Using sed
		escaped-parenthesis
 operators in sed, Referencing Portions of a Search String, Using sed
	find
 command operator, How to Use find
	regular
 expression metacharacters, Regular Expressions: Remembering Patterns with \ (, \), and \1, Valid Metacharacters for Different Unix Programs

	($?CSHRC_READ)
 prompt test, Gotchas in set prompt Test
	*
 (asterisk), Wildcards, Useful ls Aliases, Wildcards with “Fast find” Database, Understanding Expressions, Understanding Expressions, Using Metacharacters in Regular Expressions, Regular Expressions: Repeating Character Sets with *, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Syntax, Scalars, Perl Boot Camp, Part 4: Pattern Matching
		** filename wildcard
 (zsh), Filename Wildcards in a Nutshell
	*** filename wildcard
 (zsh), Filename Wildcards in a Nutshell
	arithmetic operator
 (multiplication), Syntax
	executable files,
 denoting in ls -F listings, Useful ls Aliases
	filename
 wildcard, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell
	multiplication
 operator, Scalars
	regular expression
 metacharacter, Understanding Expressions, Using Metacharacters in Regular Expressions, Regular Expressions: Repeating Character Sets with *, Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern Matching
		quantifier in
 Perl, Perl Boot Camp, Part 4: Pattern Matching
	repeating character sets
 with, Regular Expressions: Repeating Character Sets with *
	use in Unix
 programs, Valid Metacharacters for Different Unix Programs

	shell
 metacharacter, Understanding Expressions
	wildcard
 character, Wildcards, Wildcards with “Fast find” Database

	+ (plus
 sign), Picking a Unique Filename
 Automatically, Finding Text That Doesn’t Match, Extended Searching for Text with egrep, Using jobs Effectively, Understanding Expressions, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Syntax, Scalars, Scalars, Perl Boot Camp, Part 4: Pattern Matching
		+ operator (one or
 more), Finding Text That Doesn’t Match
	++
 (autoincrement) operator, Scalars
	addition (arithmetic)
 operator, Understanding Expressions, Syntax, Scalars
	data command option, Picking a Unique Filename
 Automatically
	filename
 wildcard, Filename Wildcards in a Nutshell
	in job numbers, Using jobs Effectively
	regular
 expression metacharacter, Extended Searching for Text with egrep, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern Matching
		quantifier in
 Perl, Perl Boot Camp, Part 4: Pattern Matching

	, (comma)
 in filenames, Filenames
	-
 (dash), Handling a Filename Starting with a Dash (-), Here Documents, Making Edits Everywhere Except..., Handling Command-Line Arguments with a for Loop, Handling Arguments with while and shift, Standard Command-Line
 Parsing, Syntax, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, References
		- numerical
 subtraction operator, Scalars
	-> (dereferencing)
 operator, Perl Boot Camp, Part 1: Typical Script Anatomy, References
	command-line arguments starting
 with, Handling Command-Line Arguments with a for Loop, Handling Arguments with while and shift, Standard Command-Line
 Parsing
	double dashes,
 converting to em-dashes in sed, Making Edits Everywhere Except...
	filenames starting
 with, Handling a Filename Starting with a Dash (-)
	subtraction
 arithmetic operator, Syntax
	with <<
 operator, Here Documents

	-1 process
 ID, Killing All Your Processes
	-atime operator (find
 command), The Times That find Finds
	-ctime operator (find
 command), The Times That find Finds
	-exec operator (find
 command), Running Commands on What You Find, Running Commands on What You Find, Using
 -exec to Create Custom Tests, Finding Many Things with One Command, Duplicating a Directory Tree
		creating custom
 tests, Using
 -exec to Create Custom Tests
	using with -type and
 -name, Finding Many Things with One Command
	xargs command vs., Running Commands on What You Find
	{ } operator, using
 with, Duplicating a Directory Tree

	-fstype operator (find
 command), Keeping find from Searching Networked Filesystem
	-group operator (find
 command), Searching by Owner and Group
	-inum operator (find
 command), Running Commands on What You Find, Finding the (Hard) Links to a File, Removing a Strange File by its i-number
	-ls operator (find
 command), Searching for Files by Type
	-man macros
 (troff), Make Your Own Manpages Without Learning troff
	-mtime operator (find
 command), Searching for Old Files, The Times That find Finds
	-name operator (find
 command), Be an Expert on find Search Operators, Finding Many Things with One Command, Finding Many Things with One Command, Finding Text That Doesn’t Match
		-print operator, combining
 with, Finding Many Things with One Command
	using with -exec, Finding Many Things with One Command

	-name option, effect on
 resources, How -name Affects Resources
	-newer operator (find
 command), Exact File-Time Comparisons
	-nouser or -nogroup
 operators (find command), Searching by Owner and Group
	-ok operator (find
 command), Running Commands on What You Find
	-p (parents) option
 (mkdir command), Making Directories Made Easier
	-perm operator (find
 command), Searching for Files by Permission
	-print operator (find
 command), Finding Many Things with One Command, Finding the (Hard) Links to a File
		-name operator, using
 with, Finding Many Things with One Command

	-prune operator (file
 command), Quick finds in the Current Directory
		quick finds in current
 directory, Quick finds in the Current Directory

	-prune operator (find
 command), Finding Files with -prune, Keeping find from Searching Networked Filesystem
		preventing networked filesystem
 searches, Keeping find from Searching Networked Filesystem

	-sb option
 (scrollbar) for xterms, Working with Scrollbars
	-size operator (find
 command), Searching for Files by Size
	-sl option (save
 lines) for xterms, How Many Lines to Save?
	-type operator (find
 command), Finding Many Things with One Command, Searching for Files by Type
	-user operator (find
 command), Searching by Owner and Group
	-v (verbose)
 option, Shell Scripts On-the-Fly from Standard Input
	-xdev operator (find
 command), Finding the (Hard) Links to a File, Keeping find from Searching Networked Filesystem
		preventing networked filesystem
 searches, Keeping find from Searching Networked Filesystem

	.
 (dot), Filenames, Wildcards, Making Pathnames, Showing Hidden Files with ls -A and -a, What’s Really in a Directory?, Links to a Directory, Handling a Filename Starting with a Dash (-), Problems Deleting Directories, Get Back What You Deleted with Numbered Buffers, Build Strings with { }, What Good Is a Current Directory?, Understanding Expressions, Regular Expressions: Match Any Character with . (Dot), Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Reading Files with the . and source Commands, Scalars, Perl Boot Camp, Part 4: Pattern Matching
		. (string
 concatenation) operator, Scalars
	. and .. in
 directories, What’s Really in a Directory?, Links to a Directory
	. and .. in
 pathnames, Making Pathnames
	. command, reading files
 with, Reading Files with the . and source Commands
	.. (integer-range) operator in
 zsh, Build Strings with { }
	./ (dot slash), filenames beginning
 with, Handling a Filename Starting with a Dash (-)
	in
 filenames, Filenames, Wildcards
	filenames beginning
 with, Showing Hidden Files with ls -A and -a, Problems Deleting Directories, Filename Wildcards in a Nutshell
		ls command and, Showing Hidden Files with ls -A and -a
	wildcards
 and, Filename Wildcards in a Nutshell

	regular expression
 metacharacter, Understanding Expressions, Regular Expressions: Match Any Character with . (Dot), Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern Matching
		matching any
 character (except newline) in
 Perl, Perl Boot Camp, Part 4: Pattern Matching
	matching any character
 with, Regular Expressions: Match Any Character with . (Dot)
	use in Unix
 programs, Valid Metacharacters for Different Unix Programs

	relative pathname for current
 directory, What Good Is a Current Directory?
	repeat command in vi
 editor, Get Back What You Deleted with Numbered Buffers

	.bashrc
 file, Setup Files Aren’t Read When You Want?, Saving Time When You Change Directories: cdpath
		CDPATH variable, Saving Time When You Change Directories: cdpath
	logout file, making all top-level interactive
 shells read, Setup Files Aren’t Read When You Want?

	.bash_login file, Shell Setup Files — Which, Where, and Why
	.bash_profile file, Shell Setup Files — Which, Where, and Why, Saving Time When You Change Directories: cdpath
		CDPATH variable, Saving Time When You Change Directories: cdpath

	.csh filename
 extension, Filename Extensions
	.cshdirs
 file for tcsh shells, Shell Setup Files — Which, Where, and Why
	.cshrc
 file, Shell Setup Files — Which, Where, and Why, Setup Files Aren’t Read When You Want?, Gotchas in set prompt Test, Multiline Shell Prompts, dirs in Your Prompt: Better Than $cwd, Checklist: Terminal Hangs When I Log In, Color ls, Quick cds with Aliases
		cd aliases in, Quick cds with Aliases
	color, setting in, Color ls
	if (! $?prompt) exit
 test, Gotchas in set prompt Test
	multiline prompt showing directory
 stack, dirs in Your Prompt: Better Than $cwd
	prompt setting, Multiline Shell Prompts
	set echo verbose
 command, Checklist: Terminal Hangs When I Log In

	.cshrc
 files, Shell Setup Files — Which, Where, and Why
		tcsh shells, use
 of, Shell Setup Files — Which, Where, and Why

	.cshrc.$HOST
 file, A .cshrc.$HOST File for Per Host Setup
	.dircolorsrc
 file, Configuring It, Configuring It
	.emacs initialization
 file, Customizations and How to Avoid Them
	.emacs_ml file, Mike’s Favorite Timesavers
	.enter
 file, Automatic Setup When You Enter/Exit a Directory
	.exit
 file, Automatic Setup When You Enter/Exit a Directory
	.exrc
 file, Local Settings for vi, Setting Up vi with the .exrc File
		local settings for vi, Local Settings for vi
	setting up vi editor
 with, Setting Up vi with the .exrc File

	.history
 file, Shell Setup Files — Which, Where, and Why, Picking Up Where You Left Off
		tcsh shells, Shell Setup Files — Which, Where, and Why

	.hushlogin
 file, What Happens When You Log In
	.inputrc
 file, Shell Setup Files — Which, Where, and Why
	.login file, Shell Setup Files — Which, Where, and Why, Login Shells, Setup Files Aren’t Read When You Want?, Terminal Setup: Testing TERM, Show Subshell Level with $SHLVL, Querying Your Terminal Type: qterm
		interactive C shells
 and, Setup Files Aren’t Read When You Want?
	SHLVL variable,
 resetting, Show Subshell Level with $SHLVL
	TERM environment variable,
 testing, Terminal Setup: Testing TERM
	terminal type, setting with
 qterm, Querying Your Terminal Type: qterm

	.logout
 file, Setup Files Aren’t Read When You Want?, Running Commands When You Log Out
		reading when last top-level shell
 exits, Setup Files Aren’t Read When You Want?
	running commands when logging
 out, Running Commands When You Log Out

	.logout file (C
 shell), Shell Setup Files — Which, Where, and Why
	.profile
 file, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Login Shells, Terminal Setup: Testing TERM, Querying Your Terminal Type: qterm, Checklist: Terminal Hangs When I Log In, Setting Your Erase, Kill, and Interrupt Characters, Saving Time When You Change Directories: cdpath
		bash shell, Shell Setup Files — Which, Where, and Why
	Bourne shells, Terminal Setup: Testing TERM
		testing TERM
 variable with case statement, Terminal Setup: Testing TERM

	CDPATH variable
 in, Saving Time When You Change Directories: cdpath
	hung terminal
 and, Checklist: Terminal Hangs When I Log In
	Korn shells, Shell Setup Files — Which, Where, and Why
	login
 shells, Login Shells
	stty commands in, Setting Your Erase, Kill, and Interrupt Characters
	terminal type, setting with
 qterm, Querying Your Terminal Type: qterm

	.qtermtab file, Querying Your Terminal Type: qterm, Querying Your Terminal Type: qterm
		editing, Querying Your Terminal Type: qterm

	.rhosts file, Running a Single Command with
 xterm -e, Starting a Remote Client with rsh and ssh, Using tar to a Remote Tape Drive
	.sh filename extension, Filename Extensions
	.shosts
 file, Starting a Remote Client with rsh and ssh
	.sh_logout
 file, Stop Accidental Bourne-Shell Logouts
	.tcshrc file, Show Subshell Level with $SHLVL, dirs in Your Prompt: Better Than $cwd, Checklist: Terminal Hangs When I Log In
		multiline prompt showing directory
 stack, dirs in Your Prompt: Better Than $cwd
	set echo verbose
 command, Checklist: Terminal Hangs When I Log In
	shlvl shell
 variable, Show Subshell Level with $SHLVL

	.tcshrc
 files, Shell Setup Files — Which, Where, and Why
	.Xdefaults
 file, X Resource Syntax, Setting X Resources: Overview
		xrdb utility vs., Setting X Resources: Overview

	.Xresources
 file, X Resource Syntax
	.Z file extension
 (compress program), Compressing Files to Save Space
	.zlogin
 file, Shell Setup Files — Which, Where, and Why
	.zprofile
 file, Shell Setup Files — Which, Where, and Why
	.zshenv
 file, Shell Setup Files — Which, Where, and Why
	.zshrc
 file, Shell Setup Files — Which, Where, and Why, Faster Prompt Setting with Built-ins, Preprompt, Pre-execution, and Periodic Commands
	/ (slash), Internal and External Commands, Filenames, Wildcards, Making Pathnames, Useful ls Aliases, Wildcards with “Fast find” Database, Using Search Patterns and Global Commands, Special Characters, Using Relative and Absolute Pathnames, Delimiting a Regular Expression, Pattern Matching in case Statements, Syntax, Restoring a Few Files, With GNU tar, RCS Basics, Scalars
		/* $Id $ */, commenting C program RCS
 files, RCS Basics
	/*/* wildcard metacharacters in
 case statements, Pattern Matching in case Statements
	arithmetic
 operator (division), Syntax
	arithmetic
 opertor (division), Scalars
	Bourne-type
 shells, quoting and, Special Characters
	delimiter for regular
 expressions in sed, Delimiting a Regular Expression
	directory, denoting in
 ls -F listings, Useful ls Aliases
	in
 filenames, Filenames, Wildcards
	in
 pathnames, Making Pathnames, Using Relative and Absolute Pathnames, With GNU tar
		wildcard matching
 across, With GNU tar

	in pathnames, Internal and External Commands, Restoring a Few Files
		absolute
 pathnames, Internal and External Commands
	tar archives
 and, Restoring a Few Files

	search patterns in vi editor,
 delimiting, Using Search Patterns and Global Commands
	shell, treatment of, Wildcards with “Fast find” Database

	/bin
 directory, Internal and External Commands, Starting a Remote Client with rsh and ssh, A bin Directory for Your Programs and Scripts, Timing Programs, Automating /bin/passwd–Automating /bin/passwd, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories
		/bin/passwd,
 automating, Automating /bin/passwd–Automating /bin/passwd
	/bin/time utility, Timing Programs
	programs in, Internal and External Commands
	remote shell
 (rsh), Starting a Remote Client with rsh and ssh

	/boot directory, /usr/bin and Other Software Directories
	/dev
 directory, Looping Until a
 Command Fails, Shell Lockfile, /usr/bin and Other Software Directories, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe, What Can You Do with an Empty File?, What Can You Do with an Empty File?
		/dev/null
 file, Looping Until a
 Command Fails, Shell Lockfile, What Can You Do with an Empty File?
		examples, Looping Until a
 Command Fails, Shell Lockfile
	redirecting output
 to, What Can You Do with an Empty File?

	/dev/tty file, Send (Only) Standard Error Down a Pipe
	/dev/zero file, What Can You Do with an Empty File?

	/dev/null
 file, grepping a Directory Tree, lookfor: Which File Has That Word?, Save Space with “Bit Bucket” Log Files and Mailboxes
		grep command, using
 with, lookfor: Which File Has That Word?
	replacing log files with symbolic links
 to, Save Space with “Bit Bucket” Log Files and Mailboxes

	/dev/tty
 file, Overview: Open Files and File Descriptors
	/etc directory, /usr/bin and Other Software Directories
	/etc/apt
 directory, Configuring the sources.list File
	/etc/csh.cshrc
 file, Shell Setup Files — Which, Where, and Why
	/etc/csh.login
 file, Shell Setup Files — Which, Where, and Why
	/etc/fstab
 file, Filesystem Types and /etc/fstab, Mounting Network Filesystems — NFS, SMBFS
		shared filesystems in, Mounting Network Filesystems — NFS, SMBFS

	/etc/hosts
 file, Domain Name Service (DNS)
		IP address to hostname
 mapping, Domain Name Service (DNS)

	/etc/hosts.allow
 file, The Director of Operations: inetd
		hosts.allow
 file, The Director of Operations: inetd
		tcp_wrappers package, The Director of Operations: inetd

	/etc/hosts.equiv
 file, Starting a Remote Client with rsh and ssh
	/etc/inetd.conf
 file, The Director of Operations: inetd, Installing and Configuring Samba, SWAT and GUI SMB Browsers, Enabling Remote Access on Mac OS X
		Samba daemons, adding
 to, Installing and Configuring Samba
	swat, adding to, SWAT and GUI SMB Browsers

	/etc/inputrc file, Shell Setup Files — Which, Where, and Why
	/etc/man.config
 file, The man Command
	/etc/nologin
 file, What Happens When You Log In, Disable logins
	/etc/passwd
 file, Which Shell Am I Running?, File Access Permissions, The man Command, Securing Samba
		documentation on System V machine,
 reading, The man Command
	Samba authentication, using
 for, Securing Samba
	storing passwords on Mac OS
 X, Which Shell Am I Running?

	/etc/profile file, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why
		Korn
 shell, Shell Setup Files — Which, Where, and Why

	/etc/securetty
 file, Never Log In as root
		disabling root access, Never Log In as root

	/etc/services
 file, /etc/services Is Your Friend, SWAT and GUI SMB Browsers
		swat tool, SWAT and GUI SMB Browsers

	/etc/ttys
 file, What tty Am I On?, Terminal Setup: Searching Terminal Table
	/etc/ttytab
 file, Terminal Setup: Searching Terminal Table
	/g regular expression
 modifier, Perl Boot Camp, Part 4: Pattern Matching
	/lib directory, /usr/bin and Other Software Directories
	/mnt directory, /usr/bin and Other Software Directories
	/opt
 directory, Searching Online Manual
 Pages, /usr/bin and Other Software Directories
	/proc filesystem, The /proc Filesystem–A Glimpse at Hardware, Memory Information, Kernel and System Statistics, Statistics of the Current Process, Statistics of Processes by PID, A Glimpse at Hardware, The Linux proc Filesystem
		/stat file (statistics on the kernel
 and system), Kernel and System Statistics
	hardware, A Glimpse at Hardware
	memory
 information, Memory Information
	security checks
 using, The Linux proc Filesystem
	statistics by
 PID, Statistics of Processes by PID
	statistics on current
 process, Statistics of the Current Process

	/sbin directory, /usr/bin and Other Software Directories
	/tmp
 directory, bash, ksh, zsh, /usr/bin and Other Software Directories, Installing and Configuring Samba
		history files
 in, bash, ksh, zsh
	sharing with SMB
 network, Installing and Configuring Samba

	/u
 directory, Finding (Anyone’s) Home Directory, Quickly
	/usr
 directory, Internal and External Commands, whatis: One-Line Command Summaries, Searching Online Manual
 Pages, Searching Online Manual
 Pages, Searching Online Manual
 Pages, Listing the Current Resources for a Client: appres, Starting a Remote Client with rsh and ssh, Linking Directories, Linking Directories, How Do I Spell That Word?, Inside spell, Execution Scheduling, Execution Scheduling, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories
		/usr/bin
 directory, Internal and External Commands, Linking Directories, /usr/bin and Other Software Directories
		local programs and, Linking Directories
	programs in, Internal and External Commands

	/usr/bsd
 directory, Starting a Remote Client with rsh and ssh
		remote shell
 (rsh), Starting a Remote Client with rsh and ssh

	/usr/dict/words
 file, How Do I Spell That Word?
	/usr/lib/crontab
 file, Execution Scheduling
	/usr/lib/crontab.local
 file, Execution Scheduling
	/usr/lib/spell
 directory, Inside spell
	/usr/lib/X11/app-defaults
 file, Listing the Current Resources for a Client: appres
	/usr/libexec/makewhatis
 file, whatis: One-Line Command Summaries
	/usr/local
 directory, Linking Directories
	/usr/local/bin
 directory, /usr/bin and Other Software Directories
	/usr/local/man
 directory, Searching Online Manual
 Pages
	/usr/man directory, Searching Online Manual
 Pages
	/usr/share/man
 directory, Searching Online Manual
 Pages

	/var directory, /usr/bin and Other Software Directories
	/var/log/lastlog
 file, What Happens When You Log In
	/var/log/wtmp
 file, What Happens When You Log In
	/var/run/utmp
 file, What Happens When You Log In
	0 (zero) process
 ID, Killing All Your Processes
	;
 (semicolon), Trying It, Running Commands on What You Find, Patterns, Separating Commands with Semicolons, Simple Functions: ls with Options, Test String Values with Bourne-Shell case, Trapping Exits Caused by Interrupts
		code separator in color escape
 sequences, Trying It
	separating awk
 procedures, Patterns
	separating
 commands, Running Commands on What You Find, Separating Commands with Semicolons, Test String Values with Bourne-Shell case, Trapping Exits Caused by Interrupts
		in case statements, Test String Values with Bourne-Shell case
	find -exec and, Running Commands on What You Find

	in shell
 functions, Simple Functions: ls with Options

	< > (angle
 brackets), Which Shell Am I Running?, X Event Translations, Appending to an Existing File, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Here Documents, Here Documents, A for Loop, Here Document Example #1: Unformatted Form Letters, Here Document Example #1: Unformatted Form Letters, Regular Expressions: Matching Words with \ < and \ >, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Syntax, Syntax, Syntax, Syntax, Scalars, Scalars, Scalars, Scalars, Scalars, One Argument with a cat Isn’t Enough, Redirection in C Shell: Capture Errors, Too?, Redirection in C Shell: Capture Errors, Too?
		<, Alphabetical Summary of Commands, Alphabetical Summary of Commands, Here Documents, Here Documents, Here Document Example #1: Unformatted Form Letters, Here Document Example #1: Unformatted Form Letters, Syntax, Syntax, Scalars, Scalars, One Argument with a cat Isn’t Enough
		<
 (less than) operator, Alphabetical Summary of Commands, Syntax, Scalars
	< redirection
 character, One Argument with a cat Isn’t Enough
	<< (here
 document) operator, Here Documents, Here Document Example #1: Unformatted Form Letters
	<<-
 operator, removing tab characters, Here Documents
	<<-
 operator, removing TABs with, Here Document Example #1: Unformatted Form Letters
	<=
 (less than or equal to) operator, Alphabetical Summary of Commands, Syntax, Scalars

	< >, enclosing event
 names, X Event Translations
	<-> filename
 wildcard, Filename Wildcards in a Nutshell
	<=>
 (comparison) operator in
 Perl, Scalars
	>, Which Shell Am I Running?, Appending to an Existing File, Alphabetical Summary of Commands, A for Loop, Syntax, Syntax, Scalars, Scalars, Redirection in C Shell: Capture Errors, Too?, Redirection in C Shell: Capture Errors, Too?
		>
 (greater than) operator, Syntax, Scalars
	>
 (redirection) operator, Redirection in C Shell: Capture Errors, Too?
	>
 as Bourne shell secondary prompt, A for Loop
	> tcsh shell
 prompt, Which Shell Am I Running?
	>&
 (redirection) operator, Redirection in C Shell: Capture Errors, Too?
	>=
 (greater than or equal to)
 operator, Alphabetical Summary of Commands, Syntax, Scalars
	>> (Unix
 redirect and append) operator, Appending to an Existing File

	\< \\\> regular expression
 metacharacters, Regular Expressions: Matching Words with \ < and \ >, Valid Metacharacters for Different Unix Programs

	<defunct> status under System
 V, Destroying Processes with kill
	=
 (equal sign), Useful ls Aliases, Alphabetical Summary of Commands, Setting and Unsetting Bourne-Type Aliases, zsh Aliases, Syntax, Examples, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Hashes, Perl Boot Camp, Part 4: Pattern Matching
		==
 (numeric equality)
 operator, Scalars
	== (relational)
 operator, Alphabetical Summary of Commands
	=> (fat comma) operator in
 Perl, Hashes
	=~ (pattern binding)
 operator, Perl Boot Camp, Part 4: Pattern Matching
	in alias
 definitions, Setting and Unsetting Bourne-Type Aliases, zsh Aliases
	assignment
 operator, Perl Boot Camp, Part 1: Typical Script Anatomy
	relational
 operator, Syntax, Examples
	socket
 files, Useful ls Aliases

	? (question
 mark), Wildcards, Showing Nonprintable Characters in Filenames, Wildcards with “Fast find” Database, Extended Searching for Text with egrep, A foreach Loop, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Pattern Matching in case Statements, Pattern Matching in case Statements, Exit Status of Unix Processes, Perl Boot Camp, Part 4: Pattern Matching
		?) wildcard
 metacharacters in case
 statements, Pattern Matching in case Statements
	?*) wildcard
 metacharacters in case statements, Pattern Matching in case Statements
	Bourne shell variable for command exit
 status, Exit Status of Unix Processes
	filename
 wildcard, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell
	nonprinting characters, converting to with ls
 -q, Showing Nonprintable Characters in Filenames
	regular
 expression metacharacter, Extended Searching for Text with egrep, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern Matching
		quantifier in
 Perl, Perl Boot Camp, Part 4: Pattern Matching
	use in
 Unix programs, Valid Metacharacters for Different Unix Programs

	as secondary shell
 prompt, A foreach Loop
	shell wildcard, matching with fast find
 commands, Wildcards with “Fast find” Database
	wildcard character, Wildcards

	@ (at
 sign), Setting Your Erase, Kill, and Interrupt Characters, Useful ls Aliases, Build Strings with { }, Filename Wildcards in a Nutshell, Checking your Perl Installation, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Arrays
		@ARGV array, Perl Boot Camp, Part 1: Typical Script Anatomy
	@INC array, Checking your Perl Installation, Perl Boot Camp, Part 1: Typical Script Anatomy
	csh built-in
 operator, Build Strings with { }
	filename
 wildcard, Filename Wildcards in a Nutshell
	files as symbolic
 links, in ls -F listings, Useful ls Aliases
	for array names, Arrays
	in Perl array values, Perl Boot Camp, Part 1: Typical Script Anatomy
	kill character, Setting Your Erase, Kill, and Interrupt Characters

	[]
 (brackets), Highlighting and Color in Shell Prompts, Wildcards with “Fast find” Database, Hacking on Characters with tr, Use Wildcards to Create Files?, Regular Expressions: Specifying a Range of Characters with [...], Regular Expressions: Exceptions in a Character Set, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, test: Testing Files and Strings, Stop Syntax Errors in Numeric Tests, Stop Syntax Errors in String Tests, References, Perl Boot Camp, Part 4: Pattern Matching
		bash shell prompts, nonprinting
 characters, Highlighting and Color in Shell Prompts
	range
 operator, Hacking on Characters with tr
	references to lists in
 Perl, References
	regular expression
 metacharacters, Regular Expressions: Specifying a Range of Characters with [...], Regular Expressions: Exceptions in a Character Set, Valid Metacharacters for Different Unix Programs, Perl Boot Camp, Part 4: Pattern Matching
		character
 classes, Perl Boot Camp, Part 4: Pattern Matching
	range,
 specifying, Regular Expressions: Specifying a Range of Characters with [...]
	^ (caret)
 within, Regular Expressions: Exceptions in a Character Set

	wildcards, Wildcards with “Fast find” Database, Use Wildcards to Create Files?, Filename Wildcards in a Nutshell
		fast find
 commands, using with, Wildcards with “Fast find” Database

	[command, test: Testing Files and Strings, Stop Syntax Errors in Numeric Tests, Stop Syntax Errors in String Tests
		numeric
 tests, syntax errors, Stop Syntax Errors in Numeric Tests
	string
 text syntax errors, Stop Syntax Errors in String Tests

	[^] filename
 wildcard, Filename Wildcards in a Nutshell

	\
 (backslash), External Commands Send Signals to Set Variables, X Resource Syntax, Bourne Shell Quoting, How Quoting Works, Multiline Quoting, Differences Between Bourne and C Shell Quoting, How Quoting Works, How Many Backslashes?, C-Shell Aliases with Command-Line Arguments, C-Shell Aliases with Command-Line Arguments, Setting and Unsetting Bourne-Type Aliases, Regular Expressions: The Anchor Characters ^ and $, Regular Expressions: Matching a Specific Number of Sets with \ { and \
 }, Regular Expressions: Matching Words with \ < and \ >, Regular Expressions: Remembering Patterns with \ (, \), and \1, Regular Expressions: Remembering Patterns with \ (, \), and \1, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Valid Metacharacters for Different Unix Programs, Valid Metacharacters for Different Unix Programs, Delimiting a Regular Expression, sed Newlines, Quoting, and Backslashes in a Shell Script, Shell Script “Wrappers” for awk, sed, etc., Perl Boot Camp, Part 1: Typical Script Anatomy, Indentation
		in alias
 quoting, C-Shell Aliases with Command-Line Arguments
	escaping regular expression delimiters
 in sed, Delimiting a Regular Expression
	escaping regular expression
 metacharacters, Regular Expressions: The Anchor Characters ^ and $
	extended regular expressions
 and, Extended Regular Expressions
	in X Window System resource
 definitions, X Resource Syntax
	multiline pipes in C shell
 scripts, Shell Script “Wrappers” for awk, sed, etc.
	multiple-line statements in
 Python, Indentation
	before newline,
 shell quoting and, Multiline Quoting, How Quoting Works
	Perl
 variables, preventing interpolation in, Perl Boot Camp, Part 1: Typical Script Anatomy
	in prompt
 settings, External Commands Send Signals to Set Variables
	quoting
 newlines in sed, sed Newlines, Quoting, and Backslashes in a Shell Script
	regular expression
 metacharacters, Regular Expressions: Matching Words with \ < and \ >, Valid Metacharacters for Different Unix Programs
		use in Unix
 programs, Valid Metacharacters for Different Unix Programs
	\< \\\>, matching words
 with, Regular Expressions: Matching Words with \ < and \ >

	in shell
 quoting, Bourne Shell Quoting, How Quoting Works, Differences Between Bourne and C Shell Quoting
		Bourne
 shell, How Quoting Works
	C shell, Differences Between Bourne and C Shell Quoting

	shell, terminal and program quoting,
 conflicts in, How Many Backslashes?
	\! operator (C
 shell), C-Shell Aliases with Command-Line Arguments, Setting and Unsetting Bourne-Type Aliases
	\(\), Regular Expressions: Remembering Patterns with \ (, \), and \1
		regular
 expression metacharacters, Regular Expressions: Remembering Patterns with \ (, \), and \1

	\(\) regular
 expression metacharacters, Valid Metacharacters for Different Unix Programs
	\1, \2, ... metacharacters, recalling
 remembered patterns, Regular Expressions: Remembering Patterns with \ (, \), and \1
	\{ \} regular expression
 metacharacters, Regular Expressions: Matching a Specific Number of Sets with \ { and \
 }, Valid Metacharacters for Different Unix Programs

	\ (backspace), stripping from formatted
 manpages, Searching Online Manual
 Pages
	\:
 (colon), Which Shell Am I Running?, Setting the Terminal Type When You Log In, Checklist: Terminal Hangs When I Log In, X Event Translations, Configuring It, What We Cover, Setting Up vi with the .exrc File, Useful ex
 Commands, String Editing (Colon) Operators, Check Your History First with :p, Test Exit Status with the if Statement, Standard Command-Line
 Parsing, The Story of : # #!, The Unappreciated Bourne Shell “:” Operator, Parameter Substitution, Syntax, Examples
		between item=attribute
 values, Configuring It
	Bourne shell
 operator, The Unappreciated Bourne Shell “:” Operator, Parameter Substitution
		parameter substitution, use
 in, Parameter Substitution

	command in
 vi, What We Cover, Setting Up vi with the .exrc File
	in command-line
 options, Standard Command-Line
 Parsing
	ex commands, issuing from
 vi, Useful ex
 Commands
	logical
 operator, Syntax, Examples
	as null
 character, Test Exit Status with the if Statement
	separating fields, Which Shell Am I Running?, Checklist: Terminal Hangs When I Log In
	separating terminal type
 values, Setting the Terminal Type When You Log In
	shell script
 comments, The Story of : # #!
	string editing
 operators, String Editing (Colon) Operators
	translation table, event and action
 mappings, X Event Translations
	\:p operator, printing command without
 executing it, Check Your History First with :p

	\:0 (zero)
 operator, in history substitutions, History Substitutions
	\:g (global)
 operator, History Substitutions
	\:gt operator (C
 shell), dirs in Your Prompt: Better Than $cwd
	\:p operator, My Favorite Is ^^, Check Your History First with :p
		^^ history
 substitution, using with, My Favorite Is ^^

	\:q (quote) string
 modifier (C shell), Expanding Ranges
	\:q (string
 editing) operator, String Editing (Colon) Operators
	\:x (string
 editing) operator, breaking line into
 words, String Editing (Colon) Operators
	\d (matching numbers) in Perl regular
 expressions, Perl Boot Camp, Part 4: Pattern Matching
	\s (matching whitespace characters) in
 Perl regular expressions, Perl Boot Camp, Part 4: Pattern Matching
	\W (non-word
 character character), Regular Expressions: Exceptions in a Character Set
	\w in regular
 expressions, Regular Expressions: Exceptions in a Character Set, Perl Boot Camp, Part 4: Pattern Matching
	^
 (caret), Setting Your Erase, Kill, and Interrupt Characters, Trying It, My Favorite Is ^^, History Substitutions, Using Metacharacters in Regular Expressions, Regular Expressions: The Anchor Characters ^ and $, Regular Expressions: The Anchor Characters ^ and $, Regular Expressions: Exceptions in a Character Set, Limiting the Extent of a Match, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Making Edits Across Line Boundaries, Perl Boot Camp, Part 4: Pattern Matching
		beginning of line anchor in regular
 expressions, Using Metacharacters in Regular Expressions, Regular Expressions: The Anchor Characters ^ and $
	beginning of line indicator in various
 utilities, Regular Expressions: The Anchor Characters ^ and $
	filename
 wildcard, Filename Wildcards in a Nutshell
	in control keys, Setting Your Erase, Kill, and Interrupt Characters
	regular expression
 metacharacter, Regular Expressions: Exceptions in a Character Set, Limiting the Extent of a Match, Valid Metacharacters for Different Unix Programs, Making Edits Across Line Boundaries, Perl Boot Camp, Part 4: Pattern Matching
		matching at
 beginning of line (Perl), Perl Boot Camp, Part 4: Pattern Matching
	matching newline at the beginning of
 a multiline pattern space, Making Edits Across Line Boundaries
	negating character classes
 with, Limiting the Extent of a Match
	use in Unix
 programs, Valid Metacharacters for Different Unix Programs
	within []
 metacharacters, Regular Expressions: Exceptions in a Character Set

	[^] filename
 wildcard, Filename Wildcards in a Nutshell
	^xy^yx, shorthand substitution
 command, History Substitutions
	^[(ESC
 character), Trying It
	^^ sequence in history
 substitution, My Favorite Is ^^

	_
 (underscore), Filenames, Defining What Makes Up a Word for Selection Purposes
		ASCII class
 for, Defining What Makes Up a Word for Selection Purposes
	in
 filenames, Filenames

	` (backquotes), Setting the Terminal Type When You Log In, Picking a Unique Filename
 Automatically, Delving Through a Deep Directory Tree, Removing Every File but One, How Quoting Works, Command Substitution, Command Substitution, Dealing with Too Many Arguments, Standard Command-Line
 Parsing, Standard Input to a for Loop, n>&m: Swap Standard Output and Standard Error, Testing Characters in a String with expr, Nested Command
 Substitution, Perl Boot Camp, Part 4: Pattern Matching
		arguments,
 reading, Dealing with Too Many Arguments
	capturing command output in an
 array, Perl Boot Camp, Part 4: Pattern Matching
	command substitution
 operators, Setting the Terminal Type When You Log In, Picking a Unique Filename
 Automatically, Removing Every File but One, Command Substitution, Command Substitution, Standard Command-Line
 Parsing
		excluding files from
 deletion, Removing Every File but One
	getopt, using with, Standard Command-Line
 Parsing
	nesting, Command Substitution

	command substitution
 with, Delving Through a Deep Directory Tree
	expr
 command, running with, Testing Characters in a String with expr
	for loops combined
 with, Standard Input to a for Loop
	quoting in Bourne
 shell, How Quoting Works
	redirecting standard
 output, n>&m: Swap Standard Output and Standard Error
	\` \`, nested command
 substitution, Nested Command
 Substitution

	{ }
 (braces), Wildcards, Running Commands on What You Find, Running Commands on What You Find, Duplicating a Directory Tree, Patterns, Build Strings with { }, A foreach Loop, A for Loop, C-Shell Aliases with Command-Line Arguments, Functions with Loops: Internet Lookup, Regular Expressions: Matching a Specific Number of Sets with \ { and \
 }, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Who Handles Wildcards?, Making Edits Everywhere Except..., What Environment Variables Are Good For, References
		awk procedures,
 enclosing, Patterns
	dereferencing, use
 in, References
	filename
 wildcards, Filename Wildcards in a Nutshell
	find command, Running Commands on What You Find, Duplicating a Directory Tree
	GNU find command
 and, Running Commands on What You Find
	in shells, Wildcards, Who Handles Wildcards?
	pattern-expansion
 characters, Build Strings with { }, A foreach Loop, A for Loop
		building strings
 with, Build Strings with { }
	for loop, using
 with, A for Loop
	foreach loop, using
 with, A foreach Loop

	quoting alias argument
 in, C-Shell Aliases with Command-Line Arguments
	sed commands enclosed
 in, Making Edits Everywhere Except...
	shell functions, using
 in, Functions with Loops: Internet Lookup
	variable values,
 interpolating, What Environment Variables Are Good For
	\{ \} regular expression
 metacharacters, Regular Expressions: Matching a Specific Number of Sets with \ { and \
 }, Valid Metacharacters for Different Unix Programs

	| (vertical
 bar), Programs Are Designed to Work Together, Useful ls Aliases, Extended Searching for Text with egrep, grepping for a List of Patterns, Useful Global Commands (with Pattern Matches), Protecting Keys from Interpretation by ex, Patterns, Separating Commands with Semicolons, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs, Filename Wildcards in a Nutshell, Pattern Matching in case Statements, Test Exit Status with the if Statement, Testing Your
 Success, n>&m: Swap Standard Output and Standard Error, n>&m: Swap Standard Output and Standard Error, Syntax, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Perl Boot Camp, Part 4: Pattern Matching, Redirection in C Shell: Capture Errors, Too?, Safe I/O Redirection with noclobber
		alternation operator, Extended Searching for Text with egrep, grepping for a List of Patterns, Perl Boot Camp, Part 4: Pattern Matching
	bitwise or
 operator, Perl Boot Camp, Part 1: Typical Script Anatomy
	command separator in ex
 editor, Useful Global Commands (with Pattern Matches)
	filename
 wildcard, Filename Wildcards in a Nutshell
	files, named pipe
 (FIFO), Useful ls Aliases
	logical OR
 operator, Syntax
	noclobber variable
 and, Safe I/O Redirection with noclobber
	pipes, Programs Are Designed to Work Together, n>&m: Swap Standard Output and Standard Error, n>&m: Swap Standard Output and Standard Error
		redirecting standard
 output, n>&m: Swap Standard Output and Standard Error, n>&m: Swap Standard Output and Standard Error

	regular expression
 metacharacter, Extended Regular Expressions, Valid Metacharacters for Different Unix Programs
		alternation in pattern
 matching, Extended Regular Expressions
	use in
 Unix programs, Valid Metacharacters for Different Unix Programs

	separating multiple ex editor
 commands, Protecting Keys from Interpretation by ex
	wildcard metacharacter in
 case statements, Pattern Matching in case Statements
	|& operator, Redirection in C Shell: Capture Errors, Too?
	|| (Boolean OR)
 operator, Patterns, Separating Commands with Semicolons, Test Exit Status with the if Statement, Testing Your
 Success, Scalars
		testing scripts
 with, Testing Your
 Success

	~ (tilde), Filename Extensions, Making Pathnames, Use Absolute Pathnames in Shell Setup Files, Many Homes, Some GNU ls Features, Alphabetical Summary of Commands, Korn-Shell Aliases, Finding (Anyone’s) Home Directory, Quickly, Finding (Anyone’s) Home Directory, Quickly
		abbreviation for any
 directory, Korn-Shell Aliases
	filenames
 ending with, Filename Extensions, Some GNU ls Features, Finding (Anyone’s) Home Directory, Quickly
		Emacs backup
 files, Filename Extensions, Some GNU ls Features

	for home
 directory, Use Absolute Pathnames in Shell Setup Files, Finding (Anyone’s) Home Directory, Quickly
	for home
 directory, Many Homes
	in
 pathnames, Making Pathnames
	~ and !~ (pattern-matching)
 operators, Alphabetical Summary of Commands

	“device
 independent” (DVI) printer language, Printing Languages — PostScript, PCL, DVI, PDF
	“fat comma” operator
 (=>), Hashes
	“inverse if”
 statement, Test Exit Status with the if Statement, Testing Your
 Success
	“Syntax error” error
 message, Stop Syntax Errors in Numeric Tests

 A
	abbreviations for words, vi
 editor, Local Settings for vi, vi Word Abbreviation–Fixing Typos with vi Abbreviations, Using vi Abbreviations as Commands (Cut and Paste Between vi’s), Fixing Typos with vi Abbreviations
		.exrc files, saving
 in, Local Settings for vi
	commands, using
 as, Using vi Abbreviations as Commands (Cut and Paste Between vi’s)
	fixing typos
 with, Fixing Typos with vi Abbreviations

	abbreviations in
 pathnames, Making Pathnames
	absolute pathnames, Internal and External Commands, Use Absolute Pathnames in Shell Setup Files, Stale Symbolic Links, Showing the Actual Filenames for Symbolic Links, Unset PWD Before Using Emacs, Controlling Shell Command Searches, Using Relative and Absolute Pathnames, Using Relative and Absolute Pathnames, Using Relative and Absolute Pathnames, Avoid Absolute Paths with tar, GNU tar Sampler
		archiving
 with, GNU tar Sampler
	creating, Using Relative and Absolute Pathnames
	to directory containing
 new search path, Controlling Shell Command Searches
	Emacs and, Unset PWD Before Using Emacs
	links
 to, Stale Symbolic Links, Showing the Actual Filenames for Symbolic Links
	in shell setup
 files, Use Absolute Pathnames in Shell Setup Files
	tar, avoiding with, Avoid Absolute Paths with tar

	access
 control, Starting a Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh, The Director of Operations: inetd, Secure Shell (SSH), Firewalls, Installing and Configuring Samba, Securing Samba, Protect Important Files: Make
 Them Unwritable, Protecting Access Through SSH
		files, Protect Important Files: Make
 Them Unwritable (see permissions)
	firewalls, using, Firewalls
	host-based, rsh command
 and, Starting a Remote Client with rsh and ssh
	incoming connections, with
 tcp_wrappers, The Director of Operations: inetd
	remote
 access, Protecting Access Through SSH (see ssh)
	Samba, Installing and Configuring Samba, Securing Samba
	sshd
 program, Secure Shell (SSH)
	user-based, xauth command
 and, Starting a Remote Client with rsh and ssh

	access method for software package files,
 choosing, Choosing the Access Method–Choosing the Access Method
	access modes
 for files, Private (Personal) Directories, Private (Personal) Directories, Making Directories Made Easier, Finding Many Things with One Command, How Unix Keeps Track of Files: Inodes
		(see also permissions)
	private
 directory, Private (Personal) Directories
	setting for files with
 find, Finding Many Things with One Command
	supplying with mkdir
 command, Making Directories Made Easier

	access times for files, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, Be an Expert on find Search Operators, Deleting Stale Files
		-atime operator with
 find, Be an Expert on find Search Operators, Deleting Stale Files
		locating files by, Deleting Stale Files

	last-access time,
 showing, Finding Oldest or Newest Files with ls -t and ls -u

	accidental
 file deletion, protecting against, Tricks for Making rm Safer
	accounting name for
 commands, Why ps Prints Some Commands in Parentheses
	accounts, Tip for Changing Account Setup: Keep a Shell Ready, Tip for Changing Account Setup: Keep a Shell Ready, Understanding Points of Vulnerability
		(see also groups;
 users)
	protecting, Understanding Points of Vulnerability
	setup,
 changing, Tip for Changing Account Setup: Keep a Shell Ready

	addresses, sed Addressing Basics, Internet Protocol (IP), Layer 4 Protocols: TCP, UDP, and ICMP, Status and Troubleshooting, Status and Troubleshooting, Domain Name Service (DNS), Gateways and NAT, Gateways and NAT, Gatewaying from a Personal LAN over a Modem
		IP, Internet Protocol (IP), Status and Troubleshooting, Status and Troubleshooting, Domain Name Service (DNS)
		displayed
 with netstart -n, Status and Troubleshooting
	displaying
 with dig, Status and Troubleshooting
	hostname
 mapping to, Domain Name Service (DNS)

	NAT (Network Address
 Translation), Gateways and NAT, Gateways and NAT, Gatewaying from a Personal LAN over a Modem
	sed
 editor, sed Addressing Basics
	TCP and
 UDP, Layer 4 Protocols: TCP, UDP, and ICMP

	addressing lines for
 batch editing, Line Addressing
	adduser (or useradd)
 utility, When Does a User Become a User
	Adobe Acrobat Reader
 and PDF, Printing Languages — PostScript, PCL, DVI, PDF
	Advanced
 Maryland Automatic Network Disk Archiver (Amanda), Industrial Strength Backups
	afio
 utility, To gzip, or Not to gzip?
	age of
 files, Listing Files by Age and Size
	agents, On-Demand Incremental Backups of a Project, What We Mean by DoS, Key and Agent Problems–Server and Client Problems
		-agent option,
 ssh, On-Demand Incremental Backups of a Project
	compromised machines in DDoS
 attacks, What We Mean by DoS
	SSH, problems
 with, Key and Agent Problems–Server and Client Problems

	agrep
 command (approximate grep), Different Versions of grep, Approximate grep: agrep, Approximate grep: agrep, Approximate grep: agrep, Compound Searches, Narrowing a Search Quickly
		-d option, Approximate grep: agrep
	compound searches
 with, Compound Searches, Narrowing a Search Quickly
	multiple patterns with
 AND (or OR) queries, Approximate grep: agrep

	AIX, The ps Command, Free SSH with OpenSSH
		OpenSSH, Free SSH with OpenSSH
	ps
 command, The ps Command

	alias
 command, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Korn-Shell Aliases, Korn-Shell Aliases, zsh Aliases, zsh Aliases
		-d (directory)
 option, Korn-Shell Aliases
	-g (global) option in zsh
 shell, zsh Aliases
	-m (match) option, zsh Aliases
	-t (tracked) option, Korn-Shell Aliases
	Bourne-type shells, Setting and Unsetting Bourne-Type Aliases

	aliases, Internal and External Commands, Shell Setup Files — Which, Where, and Why, What Goes in Shell Setup Files?, Setup Files Aren’t Read When You Want?, Gotchas in set prompt Test, Multiline Shell Prompts, Session Info in Window Title or Status Line, dirs in Your Prompt: Better Than $cwd, Preprompt, Pre-execution, and Periodic Commands, The Simple Way to Pick a Font, A csh Alias to List Recently Changed Files, Useful ls Aliases, newer: Print the Name of the Newest File, Finding Text That Doesn’t Match, A Faster Way to Remove Files Interactively, Deleting Stale Files, Killing Processes by Name?, Controlling Shell Command Searches, Wildcards Inside Aliases, Which One Will the C Shell Use?, Introduction to Shell Aliases–Fix Quoting in csh Aliases with makealias and quote, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments, Setting and Unsetting Bourne-Type Aliases, Setting and Unsetting Bourne-Type Aliases, Korn-Shell Aliases, zsh Aliases, Sourceable Scripts, Sourceable Scripts, Avoiding C-Shell Alias Loops, Avoiding C-Shell Alias Loops, How to Put if-then-else in a C-Shell Alias, How to Put if-then-else in a C-Shell Alias, Fix Quoting in csh Aliases with makealias and quote, Shell Function Basics, Shell Function Basics, Simulated Bourne Shell
 Functions and Aliases, History Substitutions, Nice Aliases for pushd, Quick cds with Aliases, User, Group, and World, Protect Important Files: Make
 Them Unwritable
		!*
 sequence in, History Substitutions
	Bourne-type
 shells, Setting and Unsetting Bourne-Type Aliases, Setting and Unsetting Bourne-Type Aliases
		removing, Setting and Unsetting Bourne-Type Aliases

	C
 shell, Shell Setup Files — Which, Where, and Why, What Goes in Shell Setup Files?, C-Shell Aliases with Command-Line Arguments, How to Put if-then-else in a C-Shell Alias
		if-then-else in, How to Put if-then-else in a C-Shell Alias
	with
 command-line arguments, C-Shell Aliases with Command-Line Arguments

	for cd
 command, Quick cds with Aliases
	for cd
 command, Session Info in Window Title or Status Line
	changing to shell
 functions, Shell Function Basics
	clean, removing stale files
 with, Deleting Stale Files
	for constant-width
 fonts, The Simple Way to Pick a Font
	defined on command
 lines, Introduction to Shell Aliases
	file-deletion, A Faster Way to Remove Files Interactively
	findpt, Finding Text That Doesn’t Match
	group-write
 permissions, User, Group, and World
	inside the ($?prompt)
 test, Gotchas in set prompt Test
	kill command
 and, Killing Processes by Name?
	Korn shell, Korn-Shell Aliases
	limitations
 of, Sourceable Scripts
	lr, listing recently changed
 files, A csh Alias to List Recently Changed Files
	ls command, Useful ls Aliases
	newer (printing newest
 filename), newer: Print the Name of the Newest File
	permission changes, handling
 with, Protect Important Files: Make
 Them Unwritable
	precmd (tcsh
 shell), Preprompt, Pre-execution, and Periodic Commands
	prompt set
 inside, Multiline Shell Prompts
	for pushd
 command, Nice Aliases for pushd
	quoting, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments, How to Put if-then-else in a C-Shell Alias, Fix Quoting in csh Aliases with makealias and quote
		fixing
 in csh with makealias and quote, Fix Quoting in csh Aliases with makealias and quote

	reading logout file when using
 exit command, Setup Files Aren’t Read When You Want?
	recursive, Avoiding C-Shell Alias Loops
	redefining commands, problems
 with, Avoiding C-Shell Alias Loops
	setprompt, dirs in Your Prompt: Better Than $cwd
	shell functions
 and, Shell Function Basics
	simulating in Bourne
 shell, Simulated Bourne Shell
 Functions and Aliases
	sourceable scripts,
 options for, Sourceable Scripts
	tracked, Controlling Shell Command Searches
	wildcards
 in, Wildcards Inside Aliases
	word vectors
 and, Which One Will the C Shell Use?
	zsh, zsh Aliases

	alphabetic sorting
 vs. numeric, Alphabetic and Numeric Sorting
	ALT key in
 Emacs, Emacs: The Other Editor
	alternation in
 regular expression pattern matching, Extended Regular Expressions, Perl Boot Camp, Part 4: Pattern Matching
	alternation operator
 (|), Extended Searching for Text with egrep, grepping for a List of Patterns
	Amanda (Advanced
 Maryland Automatic Network Disk Archiver), Industrial Strength Backups
	anacron
 system, Periodic Program Execution: The cron Facility
	anchors (in regular
 expressions), Using Metacharacters in Regular Expressions, Regular Expressions: The Anchor Characters ^ and $, Regular Expressions: The Anchor Characters ^ and $
		anchor
 characters, examples of, Regular Expressions: The Anchor Characters ^ and $
	^ and $ anchor
 characters, Regular Expressions: The Anchor Characters ^ and $

	and (-a) operator,
 case command, Testing Two Strings with One case Statement
	AND
 operator, Be an Expert on find Search Operators, Approximate grep: agrep, Patterns, Separating Commands with Semicolons, Running a Series of Commands on a File, Syntax
		&
 (logical AND)
 operator, Syntax
	&& (Boolean)
 AND, Patterns, Separating Commands with Semicolons, Running a Series of Commands on a File
	agrep command,
 searching for multiple patterns, Approximate grep: agrep

	and operator
 (Boolean), Scalars
	Ange-ftp mode
 (Emacs), Emacs Features: A Laundry List
	anonymous
 FTP, Here Documents, Configuring an Anonymous FTP Server
		server,
 configuring, Configuring an Anonymous FTP Server

	anonymous
 functions (Python), Functions
	Apache
 webserver, module for running Python, Python and the Web, mod_python
	append
 command (ex), Useful ex
 Commands
	applications, Communication with Unix, How -name Affects Resources, Listing the Current Resources for a Client: appres, Starting Remote X Clients
		default files for
 resources, Listing the Current Resources for a Client: appres
	names of, resources
 and, How -name Affects Resources
	relationship with kernel,
 shell, and utilities, Communication with Unix
	running remotely and viewing
 on local display, Starting Remote X Clients

	appres (application
 resource) utility, Listing the Current Resources for a Client: appres
	approximate patterns, searching
 for, Approximate grep: agrep (see agrep command)
	apsfilter
 script, Converting Source Files Automagically Within the Spooler
	apt-get tool, Installing Software with Debian’s Apt-Get–Choosing Packages for Installation or Removal
	archives, Filename Extensions, Filename Extensions, Deleting Stale Files, Save Space: tar and compress a Directory Tree, On-Demand Incremental Backups of a Project, The cpio Tape Archiver, Industrial Strength Backups, Packing Up and Moving, Packing Up and Moving, Managing and Sharing Files with RCS and CVS, RCS Basics–List RCS Revision Numbers with rcsrevs, CVS Basics, Compiling Perl from Scratch
		Amanda
 system, Industrial Strength Backups
	copying without asking for
 password, On-Demand Incremental Backups of a Project
	CPAN (Comprehensive Perl Archive
 Network), Compiling Perl from Scratch
	cpio tape
 archiver, The cpio Tape Archiver
	deleted files on
 tape, Deleting Stale Files
	filename
 extensions, Filename Extensions
	packing up and moving
 files, Packing Up and Moving
	shell, Filename Extensions
	tar, Save Space: tar and compress a Directory Tree (see tar
 utility)
	version control
 systems, Managing and Sharing Files with RCS and CVS, RCS Basics–List RCS Revision Numbers with rcsrevs, CVS Basics
		CVS, CVS Basics
	RCS, RCS Basics–List RCS Revision Numbers with rcsrevs

	arguments, Anyone Can Program the Shell, Delving Through a Deep Directory Tree, Output Command-Line Arguments One by One, Is It “2>&1 file” or “> file 2>&1”? Why?, Is It “2>&1 file” or “> file 2>&1”? Why?, Special Characters, How Quoting Works, Quoting Special Characters in Filenames, Quoting Special Characters in Filenames, Command Substitution, Dealing with Too Many Arguments, Dealing with Too Many Arguments, Setting Current Shell Environment: The work Function, Finding the Last Command-Line
 Argument, Quoting and Command-Line
 Parameters, Quoting and Command-Line
 Parameters, Functions, Functions
		(see also command line;
 commands)
	executing as commands (xarg
 command), Delving Through a Deep Directory Tree
	filenames
 in, Quoting Special Characters in Filenames
	finding
 last, Finding the Last Command-Line
 Argument
	iterating shell variables
 over, Quoting and Command-Line
 Parameters
	maximum
 allowable, Dealing with Too Many Arguments
	passed to
 scripts, Anyone Can Program the Shell
	passing lists to other programs
 with $@, Quoting and Command-Line
 Parameters
	Python
 functions, Functions, Functions
		lambdas as, Functions

	reading by
 shells, Is It “2>&1 file” or “> file 2>&1”? Why?
	separators
 for, Special Characters, How Quoting Works, Quoting Special Characters in Filenames, Command Substitution
		C shell quoting
 and, Quoting Special Characters in Filenames
	inside
 backquotes, Command Substitution

	showargs
 script, Output Command-Line Arguments One by One
	stored in $1, $2,
 etc., Setting Current Shell Environment: The work Function
	too many, dealing
 with, Dealing with Too Many Arguments

	arguments too long
 error message, Delving Through a Deep Directory Tree
	@ARGV
 array (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy
	argv, variables set
 to, Quoting and Command-Line
 Parameters
	arithmetic
 (built-in) for shells, Functions Calling
 Functions: Factorials
	arithmetic operators, Syntax
	array indexes, Perl, Cutting Columns or Fields
	arrays, Using Shell Arrays to Browse Directories–Expanding Ranges, Expanding Ranges, Variables and Array Assignments, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 2: Variables and Data Types, Arrays, Arrays, Arrays, Arrays
		awk utility
 and, Variables and Array Assignments
	Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 2: Variables and Data Types, Arrays, Arrays, Arrays, Arrays
		iterating
 through, Arrays
	lists
 vs., Arrays
	operators
 used with, Arrays

	shell, Using Shell Arrays to Browse Directories–Expanding Ranges, Expanding Ranges
		browsing
 directories with, Using Shell Arrays to Browse Directories–Expanding Ranges
	expanding
 ranges, Expanding Ranges

	arrow
 keys, Text-Input Mode Maps, Text-Input Mode Cursor Motion with No Arrow Keys, Emacs: The Other Editor
		cursor motion in vi text-input mode without
 using, Text-Input Mode Cursor Motion with No Arrow Keys
	Emacs editor, moving around
 in, Emacs: The Other Editor
	mapping in vi, Text-Input Mode Maps

	ASCII, Anyone Can Program the Shell, Filename Extensions, Defining What Makes Up a Word for Selection Purposes, Show Nonprinting Characters with cat -v or od -c, Using unlink to Remove a File with a Strange Name, Encoding “Binary” Files into ASCII–MIME Encoding, uuencoding, MIME Encoding–MIME Encoding, Text Conversion with dd, What Can You Do with an Empty File?
		(see also non-ASCII
 characters)
	converting to EBCDIC with
 dd, Text Conversion with dd
	encoding binary files
 into, Encoding “Binary” Files into ASCII–MIME Encoding, uuencoding, MIME Encoding–MIME Encoding
		MIME encoding, MIME Encoding–MIME Encoding
	uuencoding, uuencoding

	end-of-line
 characters, Anyone Can Program the Shell
	filename
 extension, Filename Extensions
	printable representation of
 unprintable and non-ASCII characters, Show Nonprinting Characters with cat -v or od -c
	xterm table of characters and
 character classes, Defining What Makes Up a Word for Selection Purposes
	zeros (NUL
 characters), What Can You Do with an Empty File?

	ash
 shell, There Are Many Shells, What the Shell Does
	aspell
 utility, Check Spelling Interactively with ispell, How Do I Spell That Word?
		-a option, How Do I Spell That Word?

	Assembly language code
 extension, Filename Extensions
	assignment operator
 (=), Perl Boot Camp, Part 1: Typical Script Anatomy
	associative
 arrays, Counting Files by Types, Variables and Array Assignments, Hashes
		(see also hashes)
	awk
 utility, Variables and Array Assignments

	at
 commands, Other Ideas, Building Software Robots the Easy Way, The at Command–Avoiding Other at and cron Jobs, Making Your at Jobs Quiet, Checking and Removing Jobs, Checking and Removing Jobs, Checking and Removing Jobs, Checking and Removing Jobs, Avoiding Other at and cron Jobs
		-l option, Checking and Removing Jobs
	-r option, Checking and Removing Jobs
	atq command, Checking and Removing Jobs, Avoiding Other at and cron Jobs
	atrm command, removing jobs in
 queue, Checking and Removing Jobs
	limiting file
 size, Other Ideas
	quieting output, Making Your at Jobs Quiet

	AT environment
 variable, Gotchas in set prompt Test
	atan2 command
 (awk), Alphabetical Summary of Commands
	atomic operation,
 testing for and creating lockfile, Shell Lockfile
	attribute code (bold, underscore,
 etc.), Configuring It
	Audio\:\:SoundFile
 module, Perl Boot Camp, Part 1: Typical Script Anatomy
	authentication, Securing Samba, Protecting Access Through SSH, General and Authentication Problems, General and Authentication Problems
		PAM (Pluggable
 Authentication Modules), General and Authentication Problems
	with SMB
 server, Securing Samba
	SSH, Protecting Access Through SSH, General and Authentication Problems
		problems
 with, General and Authentication Problems

	auto-save file
 (Emacs), Backup and Auto-Save Files
	autoconf
 utility, Simplifying the make Process
	autoincrement (++)
 operator, Scalars
	autoloading shell
 functions, FPATH Search Path, Korn shell
		Korn
 shells, Korn shell

	automake
 utility, Simplifying the make Process
	automated deletion
 commands, risks of, Deleting Stale Files
	automatic directory
 setup, Automatic Setup When You Enter/Exit a Directory
	automating
 /bin/passwd, Automating /bin/passwd–Automating /bin/passwd
	autowrite (vi), job
 control and, Job Control and autowrite: Real Timesavers!
	awk
 utility, Counting Files by Types, Counting Files by Types, Numbering Lines, Different Versions of grep, Compound Searches, Finding a Character in a Column, Looking for Closure, Why Line Editors Aren’t Dinosaurs, Quick Reference: awk, Command-Line Syntax, Patterns and Procedures, Procedures, awk System Variables, Operators, Operators, Variables and Array Assignments, Variables and Array Assignments, Centering Lines in a File, Straightening Jagged Columns, lensort: Sort Lines by Length, Using Metacharacters in Regular Expressions, Extended Regular Expressions, Pattern Matching Quick Reference with Examples, Shell Script “Wrappers” for awk, sed, etc., Shell Script “Wrappers” for awk, sed, etc., Don’t Need a Shell for Your Script? Don’t Use One, Don’t Need a Shell for Your Script? Don’t Use One, Using echo with awk or cut
		-f option, Don’t Need a Shell for Your Script? Don’t Use One
	arrays and, Variables and Array Assignments
	associative arrays, Counting Files by Types
	centering lines, Centering Lines in a File
	command-line
 syntax, Command-Line Syntax
	counting files by
 types, Counting Files by Types
	echo command, using
 with, Using echo with awk or cut
	eval compared to, Shell Script “Wrappers” for awk, sed, etc.
	extended regular expressions, use
 of, Using Metacharacters in Regular Expressions, Extended Regular Expressions
	grep programs, Different Versions of grep
	lexical analyzer, Looking for Closure
	line-by-line and search
 using, Compound Searches
	line-numbering with, Numbering Lines
	operators, Operators, Operators
	patterns, Patterns and Procedures
	procedures, Procedures
	regular expressions, documentation
 for, Pattern Matching Quick Reference with Examples
	running directly, Don’t Need a Shell for Your Script? Don’t Use One
	searching for a character in a
 column, Finding a Character in a Column
	sorting lines by
 length, lensort: Sort Lines by Length
	straightening
 columns, Straightening Jagged Columns
	variables, awk System Variables, Variables and Array Assignments
	wrappeing awk programs in shell
 scripts, Shell Script “Wrappers” for awk, sed, etc.

 B
	b (branch) command,
 sed editor, Making Edits Everywhere Except..., Making Edits Everywhere Except...
	background color, Configuring It
	background jobs, Job Control in a Nutshell, Job Control in a Nutshell, Job Control in a Nutshell, Job Control in a Nutshell, Using Job Control from Your Shell, Notification When Jobs Change State, Managing Processes: Overall Concepts
		bringing into foreground with fg
 command, Using Job Control from Your Shell
	killing, Job Control in a Nutshell
	listing with
 their job numbers, Job Control in a Nutshell
	notification of state
 change in, Notification When Jobs Change State
	putting into
 foreground, Job Control in a Nutshell
	suspending
 with stop command, Job Control in a Nutshell

	background processes, The Kernel and Daemons–The Kernel and Daemons, Job Control in a Nutshell, Job Control in a Nutshell, Using Job Control from Your Shell, Using Job Control from Your Shell, Some Gotchas with Job Control, Some Gotchas with Job Control, Stop Background Output with stty tostop, Managing Processes: Overall Concepts, Killing All Your Processes, Waiting a Little While: sleep, Exit Status of Unix Processes, Exit Status of Unix Processes
		exit status, Exit Status of Unix Processes
		testing
 with if statement, Exit Status of Unix Processes

	exit status of, Exit Status of Unix Processes
	listing with jobs
 command, Using Job Control from Your Shell
	output from,
 stopping, Stop Background Output with stty tostop
	overloading system
 with, Some Gotchas with Job Control
	preventing continuation after
 logout, Killing All Your Processes
	running at lower priority with
 nice command, Some Gotchas with Job Control
	shell capabilities for
 manipulating, Using Job Control from Your Shell
	stopping
 automatically upon attempt to write to
 screen, Job Control in a Nutshell
	watching, Waiting a Little While: sleep

	backquotes, Setting the Terminal Type When You Log In (see `, under Symbols)
	BACKSPACE key, A .cshrc.$HOST File for Per Host Setup, Setting Your Erase, Kill, and Interrupt Characters, Emacs: The Other Editor, Cleaning script Files
		Emacs
 editor, Emacs: The Other Editor
	erase character, Cleaning script Files
	location
 for, A .cshrc.$HOST File for Per Host Setup

	backup
 files, Filename Extensions, Some GNU ls Features, Check Spelling Interactively with ispell, File-Backup Macros, Backup and Auto-Save Files, Test Exit Status with the if Statement, Who Will Own a New File?
		bkedit script, Test Exit Status with the if Statement
	Emacs, Filename Extensions, Some GNU ls Features, Backup and Auto-Save Files
		ignoring with ls
 -B, Some GNU ls Features

	file ownership
 and, Who Will Own a New File?
	ispell program, Check Spelling Interactively with ispell
	macro for creation in vi
 editor, File-Backup Macros

	backup
 option (xrdb), Setting Resources with xrdb
	backups, Tricks for Making rm Safer, What Is This “Backup” Thing?, tar in a Nutshell, Make Your Own Backups, More Ways to Back Up, More Ways to Back Up, How to Make Backups to a Local Device–To gzip, or Not to gzip?, What to Back Up, Backing Up to Tape, Backing Up to Floppies or Zip Disks, To gzip, or Not to gzip?, To gzip, or Not to gzip?, Restoring Files from Tape with tar, Restoring a Few Files, Remote Restoring, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive, On-Demand Incremental Backups of a Project–On-Demand Incremental Backups of a Project, On-Demand Incremental Backups of a Project, Using Wildcards with tar, Avoid Absolute Paths with tar, Avoid Absolute Paths with tar, Getting tar’s Arguments in the Right Order, The cpio Tape Archiver, Industrial Strength Backups, Managing and Sharing Files with RCS and CVS
		compression, advantages and
 disadvantages of, To gzip, or Not to gzip?
	cpio tape
 archiver, The cpio Tape Archiver
	excluding files
 from, On-Demand Incremental Backups of a Project
	GNU tar, using with remote tape
 drive, Using GNU tar with a Remote Tape Drive
	incremental, On-Demand Incremental Backups of a Project–On-Demand Incremental Backups of a Project
	industrial
 strength, Industrial Strength Backups
	making to a local
 device, How to Make Backups to a Local Device–To gzip, or Not to gzip?, What to Back Up, Backing Up to Tape, Backing Up to Floppies or Zip Disks
		deciding what to back
 up, What to Back Up
	floppies or zip
 disks, Backing Up to Floppies or Zip Disks
	tape, Backing Up to Tape

	making your
 own, Make Your Own Backups
	protecting against
 accidental file deletions, Tricks for Making rm Safer
	RCS and
 CVS, Managing and Sharing Files with RCS and CVS
	to remote tape drive using tar, Using tar to a Remote Tape Drive
	restoring files from tape with
 tar, Restoring Files from Tape with tar, Restoring a Few Files, Remote Restoring
		remote restoring, Remote Restoring
	restoring a few
 files, Restoring a Few Files

	tar
 utility, tar in a Nutshell, More Ways to Back Up, Using Wildcards with tar, Avoid Absolute Paths with tar, Avoid Absolute Paths with tar, Getting tar’s Arguments in the Right Order
		absolute pathnames,
 avoiding, Avoid Absolute Paths with tar
	avoiding absolute
 pathnames, Avoid Absolute Paths with tar
	options for, More Ways to Back Up
	tar command line arguments, order
 of, Getting tar’s Arguments in the Right Order
	wildcards, using, Using Wildcards with tar

	utilities
 for, To gzip, or Not to gzip?
	versions control systems,
 using, More Ways to Back Up

	barewords used as hash
 keys, Hashes
	base64
 encoding, MIME Encoding
	basename
 program, Save Disk Space and Programming: Multiple Names for a Program, Using basename and dirname, Introduction to basename and dirname, Use with Loops
		bugs in, Introduction to basename and dirname
	examples, Save Disk Space and Programming: Multiple Names for a Program
	loops, using
 with, Use with Loops

	bash (Bourne-again
 shell), There Are Many Shells, There Are Many Shells, Which Shell Am I Running?, Shell Setup Files — Which, Where, and Why, Login Shells, Setup Files Aren’t Read When You Want?, Automatic Setups for Different Terminals, Terminal Setup: Searching Terminal Table, Static Prompts, Simulating Dynamic Prompts, Multiline Shell Prompts, Highlighting and Color in Shell Prompts, Highlighting and Color in Shell Prompts, Show Subshell Level with $SHLVL, Show Subshell Level with $SHLVL, dirs in Your Prompt: Better Than $cwd, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and Periodic Commands, Running Commands When You Log Out, Stop Accidental Bourne-Shell Logouts, Checklist: Terminal Hangs When I Log In, Using the Stored Lists, Expanding Ranges, limit and ulimit, limit and ulimit, Job Control in a Nutshell, Stop Background Output with stty tostop, Disowning Processes, Killing Processes by Name?, What the Shell Does, Bourne Shell Used Here, Output Command-Line Arguments One by One, Controlling Shell Command Searches, Controlling Shell Command Searches, Which One Will bash Use?, “Special” Characters and Operators, What’s Special About the Unix Command Line, Build Strings with { }, String Editing (Colon) Operators, Automatic Completion, Command-Specific Completion, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Shell Function Specifics, Shell Function Specifics, Exporting bash Functions, History by Number, History by Number, History Substitutions, bash, ksh, zsh, Pass History to Another Shell, bash Editing, Filename Wildcards in a Nutshell, What if a Wildcard Doesn’t Match?, What Environment Variables Are Good For, Predefined Environment Variables, Exit Status of Unix Processes, Parameter Substitution, Quoting and Command-Line
 Parameters, Using Standard Input and Output
		(see also bsh; shell scripts;
 shells)
	.bashrc
 file, Shell Setup Files — Which, Where, and Why
	.bashrc or
 .bash_profile, hung terminals and, Checklist: Terminal Hangs When I Log In
	aliases, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases
	arrays, Using the Stored Lists, Expanding Ranges
		browsing
 directories with, Using the Stored Lists
	expanding
 ranges, Expanding Ranges

	bash2, built-in kill
 command, Killing Processes by Name?
	BASH_ENV
 variable, Predefined Environment Variables
	case statements, Automatic Setups for Different Terminals
	choosing built-in, external, or shell
 functions, Which One Will bash Use?
	command history, History Substitutions (see history of
 commands)
	command-line
 editing, bash Editing
	completion features, Automatic Completion, Command-Specific Completion
		hostnames, Command-Specific Completion

	disown command, Disowning Processes
	dynamic prompts,
 simulating, Simulating Dynamic Prompts
	editing history
 substitutions, String Editing (Colon) Operators
	environment variables for shell
 functions, changing, Shell Function Specifics
	environment variables,
 unsetting, What Environment Variables Are Good For
	exit status of command line,
 reversing, Exit Status of Unix Processes
	exporting shell
 functions, Exporting bash Functions
	fc -l command, listing previous commands
 with, History by Number
	forcing to use internal exit
 command, Setup Files Aren’t Read When You Want?
	globbing (wildcard expansion),
 preventing, Filename Wildcards in a Nutshell
	hash command, Controlling Shell Command Searches
	history -r command,
 cautions about, History by Number
	history
 file, bash, ksh, zsh
	ignoreeof
 variable, Stop Accidental Bourne-Shell Logouts
	job control
 commands, Job Control in a Nutshell
	limiting file
 size, limit and ulimit
	loading changed
 PATH, Controlling Shell Command Searches
	login and
 nonlogin, startup files, Login Shells
	logout file, running commands when logging
 out, Running Commands When You Log Out
	octal character
 strings, Highlighting and Color in Shell Prompts
	parameter expansion
 shortcuts, Quoting and Command-Line
 Parameters
	passing command history
 to, Pass History to Another Shell
	pre-prompt commands, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and Periodic Commands
	process
 substitution, What’s Special About the Unix Command Line
	prompts, Which Shell Am I Running?, Static Prompts, Multiline Shell Prompts, Highlighting and Color in Shell Prompts, Show Subshell Level with $SHLVL, dirs in Your Prompt: Better Than $cwd
		$
 in, Which Shell Am I Running?
	newline (\n)
 character in, Multiline Shell Prompts
	nonprinting
 escape characters, Highlighting and Color in Shell Prompts
	showing
 directory stack, dirs in Your Prompt: Better Than $cwd
	subshell level,
 showing, Show Subshell Level with $SHLVL

	read-only
 functions, Shell Function Specifics
	redirecting standard
 I/O, Using Standard Input and Output
	scripts in this
 book, Bourne Shell Used Here
	SHLVL environment
 variable, Show Subshell Level with $SHLVL
	showargs script, Output Command-Line Arguments One by One
	special
 characters/operators, “Special” Characters and Operators
	string editing
 operators, Parameter Substitution
	stty tostop command, background jobs writing
 to terminal, Stop Background Output with stty tostop
	terminal port type, putting into ttykind
 shell variable, Terminal Setup: Searching Terminal Table
	ulimit -c command, removing
 limits on core dumps, limit and ulimit
	wildcards, failing to
 match, What if a Wildcard Doesn’t Match?
	{ } (pattern-expansion
 characters), Build Strings with { }

	BASH_ENV
 environment variable, Predefined Environment Variables
	batch editing, Why Line Editors Aren’t Dinosaurs, Writing Editing Scripts, Line Addressing, Useful ex
 Commands–Useful ex
 Commands, Running Editing Scripts Within vi, Change Many Files by Editing Just One–Change Many Files by Editing Just One, ed/ex Batch Edits: A Typical Example, ed/ex Batch Edits: A Typical Example, Batch Editing Gotcha: Editors Fail on Big Files, patch: Generalized Updating of Files That Differ, Quick Reference: awk, Command-Line Syntax, Patterns and Procedures, awk System Variables, Operators, Operators
		awk
 utility, Quick Reference: awk, Command-Line Syntax, Patterns and Procedures, awk System Variables, Operators, Operators
		command-line
 syntax, Command-Line Syntax
	operators, Operators, Operators
	patterns and
 procedures, Patterns and Procedures
	system
 variables, awk System Variables

	changing many files by
 editing one, Change Many Files by Editing Just One–Change Many Files by Editing Just One
	ed
 editor, ed/ex Batch Edits: A Typical Example, Batch Editing Gotcha: Editors Fail on Big Files
		example, ed/ex Batch Edits: A Typical Example
	failure on big files, Batch Editing Gotcha: Editors Fail on Big Files

	ex
 editor, Useful ex
 Commands–Useful ex
 Commands, ed/ex Batch Edits: A Typical Example
		example, ed/ex Batch Edits: A Typical Example
	useful commands, Useful ex
 Commands–Useful ex
 Commands

	line addressing, Line Addressing
	patch program, patch: Generalized Updating of Files That Differ
	running scripts in
 vi, Running Editing Scripts Within vi
	scripts, writing, Writing Editing Scripts

	BEGIN and END patterns,
 awk, Patterns
	behead
 script, Remove Mail/News Headers with behead, MIME Encoding
	Bell Labs research
 operating system (Plan 9), There Are Many Shells
	Berkeley Internet Name Daemon (bind), Domain Name Service (DNS), Domain Name Service (DNS)
		DNS cache, setting up
 local, Domain Name Service (DNS)

	Berkeley-based Unix, Hacking on Characters with tr, Save Disk Space and Programming: Multiple Names for a Program, lpr-Style Printing Commands, Which Group is Which?
		ex, vi, view, edit commands, linked to same
 executable file, Save Disk Space and Programming: Multiple Names for a Program
	group file
 ownership, Which Group is Which?
	printing
 commands, lpr-Style Printing Commands
	tr
 command, ranges in, Hacking on Characters with tr

	bg
 command, Program Waiting for Input?, Job Control in a Nutshell, Using Job Control from Your Shell
		putting jobs in
 background, Program Waiting for Input?

	bgnice option
 (ksh), The Process Chain to Your Window
	bg_nice option
 (zsh), The Process Chain to Your Window
	binary characters,
 inserting into Emacs files, Inserting Binary Characters into Files
	binary
 files, Finding Words Inside Binary Files, Deleting Stale Files, Encoding “Binary” Files into ASCII–MIME Encoding, uuencoding, MIME Encoding–MIME Encoding, Wildcard Gotchas in GNU tar, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories
		accessible
 by users in /usr/bin subdirectory, /usr/bin and Other Software Directories
	archiving system test
 file, Wildcard Gotchas in GNU tar
	encoding into
 ASCII, Encoding “Binary” Files into ASCII–MIME Encoding, uuencoding, MIME Encoding–MIME Encoding
		MIME encoding, MIME Encoding–MIME Encoding
	uuencoding, uuencoding

	executables, access time
 updates, Deleting Stale Files
	searching for words in, Finding Words Inside Binary Files
	system,
 in /sbin directory, /usr/bin and Other Software Directories

	bind (Berkeley
 Internet Name Daemon), Domain Name Service (DNS), Domain Name Service (DNS)
		DNS cache, setting
 up, Domain Name Service (DNS)

	bind
 command, ksh Editing, ksh Editing
		-l option, ksh Editing

	binding operator (=~), Perl Boot Camp, Part 4: Pattern Matching
	bindkey command, tcsh Editing–tcsh Editing, tcsh Editing, tcsh Editing, tcsh Editing, zsh Editing
		-c option, tcsh Editing
	-k option, tcsh Editing
	-l option, tcsh Editing
	-v option, zsh Editing
	tcsh
 editing, tcsh Editing–tcsh Editing

	bit
 bucket, Save Space with “Bit Bucket” Log Files and Mailboxes
	bitmaps, The Portable Bitmap Package
	bitwise or (|) operator, Perl Boot Camp, Part 1: Typical Script Anatomy
	bkedit
 script, Test Exit Status with the if Statement, Set Exit Status of a Shell
 (Script), Parameter Substitution
		ending and setting exit
 status, Set Exit Status of a Shell
 (Script)
	parameter substitution
 in, Parameter Substitution

	blank lines,
 squashing extras, Squash Extra Blank Lines
	blank shell
 prompts, What Good Is a Blank Shell Prompt?
	blocks, Finer Control on tail, Moving Blocks of Text by Patterns, Indentation, Installing and Configuring Samba
		of bytes, counting with tail -b
 command, Finer Control on tail
	of code,
 defining in Python, Indentation
	of text, defining
 with patterns, Moving Blocks of Text by Patterns
	of related options
 in smb.conf files, Installing and Configuring Samba

	body of email,
 forming properly, MIME Encoding
	bold text, VT Fonts Menu, Trying It
	Boolean
 operators, Patterns, Scalars
		combining awk patterns
 with, Patterns

	boot -v
 command, Reading Kernel Boot
 Output
	boundary-checking
 versions of C functions, What We Mean by Buffer Overflow
	Bourne
 shells, There Are Many Shells, Shell Setup Files — Which, Where, and Why, Multiline Shell Prompts, What the Shell Does, Types of Shells, Types of Shells, Bourne Shell Used Here
		(see also bash; ksh; sh;
 zsh)
	newlines in
 prompts, Multiline Shell Prompts
	profile
 file, Shell Setup Files — Which, Where, and Why
	scripts in this book, running
 on, Bourne Shell Used Here
	types of, Types of Shells

	branch (b) command,
 sed editor, Making Edits Everywhere Except..., Making Edits Everywhere Except...
	break
 command, Alphabetical Summary of Commands, Loop Control: break and continue, Loop Control: break and continue
		awk, Alphabetical Summary of Commands

	broken
 links, Creating and Removing Links
	browseable option
 (smb.conf), Installing and Configuring Samba
	browsers, Tips for Copy and Paste Between Windows, Example #2: A Web Browser, SWAT and GUI SMB Browsers, SWAT and GUI SMB Browsers
		closing window by killing its
 processes, Example #2: A Web Browser
	for
 Samba, SWAT and GUI SMB Browsers
	SMB
 network, SWAT and GUI SMB Browsers
	text copied from,
 reformatting, Tips for Copy and Paste Between Windows

	BSD
 Unix, The ps Command, BSD, BSD, What Are Signals?, Know When to Be “nice” to Other Users...and When Not To, Know When to Be “nice” to Other Users...and When Not To, BSD C Shell nice, BSD Standalone nice, Changing a Running Job’s Niceness, /usr/bin and Other Software Directories, Which make?, Unix User/Group Infrastructure, Groups and Group Ownership, Why Can’t You Change File Ownership?
		file ownership, Why Can’t You Change File Ownership?
	Filesystem Hierarchy
 Standard, support of, /usr/bin and Other Software Directories
	group
 membership, Groups and Group Ownership
	make utility, versions
 of, Which make?
	nice
 command, Know When to Be “nice” to Other Users...and When Not To, BSD C Shell nice, BSD Standalone nice
		C
 shell, BSD C Shell nice

	ps -a command, BSD
	ps -aux command, The ps Command
	ps ax
 command, BSD
	renice command, Know When to Be “nice” to Other Users...and When Not To, Changing a Running Job’s Niceness
	signals, What Are Signals?
	user/group
 infrastructure, Unix User/Group Infrastructure

	bsplit
 utility, Splitting Files at Fixed Points: split
	buffer overflow,
 security vulnerability, What We Mean by Buffer Overflow
	buffers, Using Buffers to Move or Copy Text, Get Back What You Deleted with Numbered Buffers, Keep Your Original File, Write to a New File, Be Careful with vi -r Recovered Buffers, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Send Output Two or More Places
		edited, saving as files in
 vi, Keep Your Original File, Write to a New File
	hold space in
 sed, Hold Space: The Set-Aside Buffer
	numbered, recovering vi editor
 deletions in, Get Back What You Deleted with Numbered Buffers
	pattern space in
 sed, Hold Space: The Set-Aside Buffer
	pipes, buffering of
 output, Send Output Two or More Places
	recovered with vi -r, cautions
 about, Be Careful with vi -r Recovered Buffers
	vi editor, using to copy and move
 text, Using Buffers to Move or Copy Text

	buildhash
 script, Adding Words to ispell’s Dictionary
	built-in
 commands, Internal and External Commands, Faster Prompt Setting with Built-ins, Which One Will bash Use?, Which One Will bash Use?, Which One Will bash Use?, Which One Will the C Shell Use?
		builtin command, forcing use
 with, Which One Will bash Use?
	C shell, determining whether to
 use, Which One Will the C Shell Use?
	faster prompt setting
 with, Faster Prompt Setting with Built-ins
	shells, Internal and External Commands

	bunzip2 file
 decompression program, Compressing Files to Save Space
	button presses, Defining Keys and Button Presses with xmodmap–Defining Keys and Button Presses with xmodmap
		defining with
 xmodmap, Defining Keys and Button Presses with xmodmap–Defining Keys and Button Presses with xmodmap

	byte order,
 converting with dd, Text Conversion with dd
	bzip2
 utility, Compressing Files to Save Space, More Ways to Back Up, To gzip, or Not to gzip?

 C
	c function (for
 changing directories), cd by Directory Initials
	C
 language, The Core of Unix, There Are Many Shells, There Are Many Shells, There Are Many Shells, There Are Many Shells, Filename Extensions, Filename Extensions, Looking for Closure, Emacs Features: A Laundry List
		C mode for
 programming in Emacs, Emacs Features: A Laundry List
	csh
 shell, There Are Many Shells, There Are Many Shells
	interoperability of programs on different
 Unix systems, The Core of Unix
	lexical analyzer for syntax
 checking, Looking for Closure
	program file
 extensions, Filename Extensions, Filename Extensions
	tcsh shell, There Are Many Shells, There Are Many Shells

	C shell
 (csh), Which Shell Am I Running?, Filename Extensions, Shell Setup Files — Which, Where, and Why, What Goes in Shell Setup Files?, Setup Files Aren’t Read When You Want?, Setup Files Aren’t Read When You Want?, Terminal Setup: Testing TERM, Terminal Setup: Testing Port, Static Prompts, C-Shell Prompt Causes Problems in vi, rsh, etc., Faster Prompt Setting with Built-ins, Session Info in Window Title or Status Line, dirs in Your Prompt: Better Than $cwd, Running Commands When You Log Out, Stop Accidental Bourne-Shell Logouts, Setting the Terminal Type When You Log In, Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs When I Log In, Aborting Programs, A bin Directory for Your Programs and Scripts, Running Commands on What You Find, Using the Stored Lists, Expanding Ranges, Renaming, Copying, or Comparing a Set of Files, limit and ulimit, Using Job Control from Your Shell, Managing Processes: Overall Concepts, What the Shell Does, Types of Shells, Controlling Shell Command Searches, Controlling Shell Command Searches, Controlling Shell Command Searches, Which One Will the C Shell Use?, Differences Between Bourne and C Shell Quoting, Special Characters, How Quoting Works, Quoting Special Characters in Filenames, Verbose and Echo Settings Show Quoting, Here Documents, “Special” Characters and Operators, Build Strings with { }, String Editing (Colon) Operators–String Editing (Colon) Operators, Repeating Commands, A foreach Loop, Multiline Commands, Secondary Prompts, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments, Avoiding C-Shell Alias Loops, How to Put if-then-else in a C-Shell Alias, The Lessons of History, History Substitutions, C Shells, Pass History to Another Shell, Changing History Characters with histchars, Regular Expressions: The Anchor Characters ^ and $, Filename Wildcards in a Nutshell, sed Newlines, Quoting, and Backslashes in a Shell Script, What Environment Variables Are Good For, Shell Variables, Exit Status of Unix Processes, Using Standard Input and Output, Redirection in C Shell: Capture Errors, Too?, Safe I/O Redirection with noclobber
		(see also shell scripts; shells; tcsh
 shell)
	!^ and !$, specifying first and last arguments
 on previous line, Regular Expressions: The Anchor Characters ^ and $
	.cshrc
 file, Shell Setup Files — Which, Where, and Why
	.login file, Terminal Setup: Testing TERM
		TERM
 variable, testing, Terminal Setup: Testing TERM

	.logout file, Running Commands When You Log Out
	aliases, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments, How to Put if-then-else in a C-Shell Alias
		if-then-else
 in, How to Put if-then-else in a C-Shell Alias
	with
 command-line arguments, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments

	arrays, Using the Stored Lists, Expanding Ranges
		expanding
 ranges, Expanding Ranges

	avoiding alias loops, Avoiding C-Shell Alias Loops
	background
 processing, Using Job Control from Your Shell
	built-in string
 operators, Faster Prompt Setting with Built-ins
	choosing among built-in commands, external
 commands, or shell functions, Which One Will the C Shell Use?
	command history, History Substitutions (see history of
 commands)
	configuration
 files, What Goes in Shell Setup Files?, Setup Files Aren’t Read When You Want?
		aliases, What Goes in Shell Setup Files?

	csh command
 name, Aborting Programs
	current directory, updating
 in status line, Session Info in Window Title or Status Line
	defining
 variables, Shell Variables
	editing history and variable
 substitutions, String Editing (Colon) Operators–String Editing (Colon) Operators
	environment
 variables, unsetting, What Environment Variables Are Good For
	eval command, Setting the Terminal Type When You Log In
	exit status of previous
 command, Exit Status of Unix Processes
	forcing to use internal exit
 command, Setup Files Aren’t Read When You Want?
	foreach loop, A foreach Loop
	globbing (wildcard
 expansion), Filename Wildcards in a Nutshell
	history, The Lessons of History (see history of
 commands)
	history characters, Changing History Characters with histchars
	history file, C Shells
	ignoreeof shell
 variable, Stop Accidental Bourne-Shell Logouts
	limiting file size, limit and ulimit
	multiline commands, Multiline Commands, Secondary Prompts
	passing command history
 to, Pass History to Another Shell
	port, testing, Terminal Setup: Testing Port
	prompt, Which Shell Am I Running?, Static Prompts, C-Shell Prompt Causes Problems in vi, rsh, etc.
		%
 in, Which Shell Am I Running?
	problems caused
 by, C-Shell Prompt Causes Problems in vi, rsh, etc.
	setting, Static Prompts

	quotation marks around
 filenames, Renaming, Copying, or Comparing a Set of Files
	quoting
 in, Differences Between Bourne and C Shell Quoting, Special Characters, How Quoting Works, Quoting Special Characters in Filenames, Verbose and Echo Settings Show Quoting, Here Documents
		here documents, Here Documents
	rules for, How Quoting Works
	showing with verbose and echo
 settings, Verbose and Echo Settings Show Quoting
	special
 characters, Special Characters
	special characters in
 filenames, Quoting Special Characters in Filenames

	redirecting standard
 I/O, Using Standard Input and Output, Redirection in C Shell: Capture Errors, Too?, Safe I/O Redirection with noclobber
		noclobber variable, Safe I/O Redirection with noclobber

	rehash
 command, A bin Directory for Your Programs and Scripts, Controlling Shell Command Searches
	repeating commands with repeat
 command, Repeating Commands
	script file extension, Filename Extensions
	search path for commands,
 changing, Controlling Shell Command Searches
	sed newlines quoting and
 backslashes in shell script, sed Newlines, Quoting, and Backslashes in a Shell Script
	set echo verbose
 command, Checklist: Terminal Hangs When I Log In
	special characters/operators
 in, “Special” Characters and Operators
	su -f stucklogin
 command, Checklist: Terminal Hangs When I Log In
	\:gt operator, dirs in Your Prompt: Better Than $cwd
	{ and } and
 ; (with find command), Running Commands on What You Find
	{ } (pattern-expansion characters), building
 strings with, Build Strings with { }

	cable
 modems, Dynamic Host Configuration Protocol (DHCP), Gateways and NAT, Firewalls
		DHCP and, Dynamic Host Configuration Protocol (DHCP)
	firewalls, Firewalls
	gateways, Gateways and NAT

	cache, DNS, Domain Name Service (DNS)
	cancel command
 (System V), lp-Style Printing Commands
	canonical
 hostname, Status and Troubleshooting
	capitalization, Check Spelling Interactively with ispell (see case)
	CAPS LOCK key, Defining Keys and Button Presses with xmodmap, Typing in Uppercase Without CAPS LOCK
	capturing in
 patterns, Perl Boot Camp, Part 4: Pattern Matching
	carriage
 returns, Anyone Can Program the Shell, Hacking on Characters with tr
		Macintosh, ASCII character
 for, Anyone Can Program the Shell
	translating to
 newlines, Hacking on Characters with tr

	case, Filenames, Faking Case-Insensitive Searches, Check Spelling Interactively with ispell, Capitalizing Every Word on a Line, Filtering Text Through a Unix Command, vi Line Commands Versus Character Commands, Typing in Uppercase Without CAPS LOCK, Alphabetical Summary of Commands, Hacking on Characters with tr, Text Conversion with dd, Alphabetic and Numeric Sorting, Case-Insensitive Sorts, String Editing (Colon) Operators, String Editing (Colon) Operators, Understanding Expressions, Transforming Part of a Line, Scalars, Scalars
		case
 sensitivity, Filenames
	case-insensitive searches,
 faking, Faking Case-Insensitive Searches
	case-insensitive
 sorts, Case-Insensitive Sorts
	case-sensitivity, Understanding Expressions
		in
 regular expressions, Understanding Expressions

	converting to/from uppercase or
 lowercase, Filtering Text Through a Unix Command, Alphabetical Summary of Commands, Text Conversion with dd, Transforming Part of a Line
		awk
 utility, Alphabetical Summary of Commands
	dd
 utility, Text Conversion with dd
	filtering vi text through tr
 command, Filtering Text Through a Unix Command
	sed transform
 command, Transforming Part of a Line

	converting to/from
 uppercase or lowercase, Hacking on Characters with tr
		(see also tr
 command)

	ispell program
 and, Check Spelling Interactively with ispell
	lc
 operator, Scalars
	sort command, sort
 order, Alphabetic and Numeric Sorting
	uc
 operator, Scalars
	uppercase letters in vi character and
 line commands, vi Line Commands Versus Character Commands
	uppercase without CAPS LOCK in
 vi, Typing in Uppercase Without CAPS LOCK
	vi and ex editors, capitalizing
 words, Capitalizing Every Word on a Line
	\:l operator, String Editing (Colon) Operators
	\:u operator, String Editing (Colon) Operators

	case
 statements, Automatic Setups for Different Terminals, Automatic Setups for Different Terminals, Terminal Setup: Testing TERM, Terminal Setup: Testing Port, Faster Prompt Setting with Built-ins, Pattern Matching in case Statements, Test Exit Status with the if Statement, Handling Arguments with while and shift, Save Disk Space and Programming: Multiple Names for a Program, Testing Two Strings with One case Statement, Outputting Text to an X Window, Missing or Extra esac, ;;, fi, etc.
		adding to .profile to test TERM
 variable, Terminal Setup: Testing TERM
	debugging, Missing or Extra esac, ;;, fi, etc.
	port,
 testing, Terminal Setup: Testing Port
	testing exit status for
 commands, Test Exit Status with the if Statement
	testing pathnames for calling a
 script, Save Disk Space and Programming: Multiple Names for a Program
	testing tty
 name, Faster Prompt Setting with Built-ins
	testing two strings
 using, Testing Two Strings with One case Statement
	in while loop, handling
 arguments with, Handling Arguments with while and shift
	wildcard pattern
 matching, Pattern Matching in case Statements
	in xmessage command line, Outputting Text to an X Window

	cat
 command, Communication with Unix, Trying It, Can’t Access a File? Look for Spaces in the Name, What Good Is a cat?, Show Nonprinting Characters with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c, What’s in That Whitespace?, Squash Extra Blank Lines, Numbering Lines, MIME Encoding, Command Evaluation and Accidentally Overwriting Files, Regular Expressions: The Anchor Characters ^ and $, Testing Your
 Success, Standard Input to a for Loop, One Argument with a cat Isn’t Enough, One Argument with a cat Isn’t Enough
		-e option, marking ends of lines with
 $, Can’t Access a File? Look for Spaces in the Name
	-n option, Numbering Lines
	-s option, squashing extra blank
 lines, Squash Extra Blank Lines
	-t and -e options, displaying
 whitespace, Show Nonprinting Characters with cat -v or od -c
	-v -e options, Regular Expressions: The Anchor Characters ^ and $
	-v -t and -e options, displaying
 whitespace, What’s in That Whitespace?
	-v option, Trying It, Show Nonprinting Characters with cat -v or od -c
	creating
 mail header with, MIME Encoding
	exit status,
 testing, Testing Your
 Success
	file, adding to end of another
 file, Command Evaluation and Accidentally Overwriting Files
	for loops combined
 with, Standard Input to a for Loop
	redirecting
 I/O, One Argument with a cat Isn’t Enough
	starting
 pipelines, One Argument with a cat Isn’t Enough

	CBLKWID
 (comment block width) environment
 variable, The recomment Script
	cd
 command, Internal and External Commands, Session Info in Window Title or Status Line, What Good Is a Current Directory?, Saving Time When You Change Directories: cdpath, The Shells’ pushd and popd Commands, Quick cds with Aliases, Predefined Environment Variables
		+n and -n options
 (zsh), The Shells’ pushd and popd Commands
	aliases for, Quick cds with Aliases
	cdpath variable
 and, Saving Time When You Change Directories: cdpath
	PWD environment variable
 and, Predefined Environment Variables

	CD-ROMs, Configuring the sources.list File, Quick Introduction to Hardware, Filesystem Types and /etc/fstab, Mounting and Unmounting Removable Filesystems, Loopback Mounts
		cdrom
 protocol, Configuring the sources.list File
	loopback
 mounts, Loopback Mounts
	mounting, Filesystem Types and /etc/fstab, Mounting and Unmounting Removable Filesystems

	cdable_vars shell
 variable, Marking Your Place with a Shell Variable
	CDPATH environment
 variable, Saving Time When You Change Directories: cdpath
	cdpath shell
 variable, Saving Time When You Change Directories: cdpath
	centering lines,
 script for, Centering Lines in a File
	CERT, Configuring an Anonymous FTP Server, CERT Security Checklists, Keeping Up with Security Alerts, Intruder Detection
		intruder detection
 checklist, Intruder Detection
	safely setting up anonymous FTP,
 guide for, Configuring an Anonymous FTP Server
	security
 checklists, CERT Security Checklists
	security vulnerabilities, information
 about, Keeping Up with Security Alerts

	CGI scripts, Python module
 for, Python and the Web, cgi
	cgrep
 script, A Multiline Context grep Using sed, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines
	chain of processes to a window, The Process Chain to Your Window–The Process Chain to Your Window
	change command
 (ex), Useful ex
 Commands
	change times for files, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, Searching for Old Files
		inode
 information, Finding Oldest or Newest Files with ls -t and ls -u, Searching for Old Files
		find
 -ctime, accessing with, Searching for Old Files

	character
 classes, Defining What Makes Up a Word for Selection Purposes, Perl Boot Camp, Part 4: Pattern Matching
		for ASCII
 characters, Defining What Makes Up a Word for Selection Purposes
	defining in Perl regular
 expressions, Perl Boot Camp, Part 4: Pattern Matching

	character commands in
 vi, vi Line Commands Versus Character Commands
	character sets (in regular
 expressions), Using Metacharacters in Regular Expressions, Regular Expressions: Matching a Character with a Character Set, Regular Expressions: Exceptions in a Character Set, Regular Expressions: Repeating Character Sets with *
		exceptions to, indicating with [^
], Regular Expressions: Exceptions in a Character Set
	matching a character
 with, Regular Expressions: Matching a Character with a Character Set
	repeating with
 *, Regular Expressions: Repeating Character Sets with *

	character
 strings, Using sed (see strings)
	characters, Anyone Can Program the Shell, Showing Nonprintable Characters in Filenames, Showing Nonprintable Characters in Filenames, Show Nonprinting Characters with cat -v or od -c–Show Nonprinting Characters with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c, Finer Control on tail, Counting Lines, Words, and Characters: wc, Counting Lines, Words, and Characters: wc, Emacs: The Other Editor, Low-Level File Butchery with dd, Hacking on Characters with tr, Regular Expressions: Specifying a Range of Characters with [...]
		converting with tr
 command, Anyone Can Program the Shell
	counting with tail -c
 command, Finer Control on tail
	counting with wc
 command, Counting Lines, Words, and Characters: wc, Counting Lines, Words, and Characters: wc
	deleting from a file with
 dd, Low-Level File Butchery with dd
	deleting in
 Emacs, Emacs: The Other Editor
	nonprintable, Show Nonprinting Characters with cat -v or od -c
		displaying
 with od c command, Show Nonprinting Characters with cat -v or od -c

	nonprinting, Showing Nonprintable Characters in Filenames, Show Nonprinting Characters with cat -v or od -c–Show Nonprinting Characters with cat -v or od -c
		(see also special
 characters)
	showing
 with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c–Show Nonprinting Characters with cat -v or od -c

	ranges of, specifying for
 regular expressions, Regular Expressions: Specifying a Range of Characters with [...]
	special, Showing Nonprintable Characters in Filenames (see special
 characters)
	translating with tr
 command, Hacking on Characters with tr

	charClass resource (xterm), Defining What Makes Up a Word for Selection Purposes
	checkout command (co)
 in RCS, RCS Basics
	checkout, CVS
 repository, CVS Basics
	checksed
 script, checksed
	chess
 script, Automating /bin/passwd
	chgrp
 command, File Access Permissions
	child
 processes, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Subshells, Killing Foreground Jobs, Destroying Processes with kill, What Environment Variables Are Good For, Overview: Open Files and File Descriptors
		changes to environment
 of, Subshells
	environment variables, inheritance
 of, What Environment Variables Are Good For
	exit status returned to
 parent, Managing Processes: Overall Concepts
	file descriptors given
 to, Overview: Open Files and File Descriptors
	killing parent
 of, Destroying Processes with kill
	relationship to
 parent, Managing Processes: Overall Concepts
	signals and, Killing Foreground Jobs

	child
 signal, What Are Signals?
	CHLD (child)
 signal, What Are Signals?
	chmod
 command, Anyone Can Program the Shell, A bin Directory for Your Programs and Scripts, A bin Directory for Your Programs and Scripts, Writing a Simple Shell Program, User, Group, and World, Using chmod to Change File Permission, Using chmod to Change File Permission, Using chmod to Change File Permission, Using chmod to Change File Permission, Using chmod to Change File Permission, The Handy chmod = Operator, The Handy chmod = Operator
		-R option, Using chmod to Change File Permission, The Handy chmod = Operator
		changing
 permissions for directory tree, Using chmod to Change File Permission

	= operator, The Handy chmod = Operator
	adding and subtracting
 permissions, Using chmod to Change File Permission
	go+rx bin to give other users access to bin
 directory, A bin Directory for Your Programs and Scripts
	go-w bin, write access to bin
 directory, A bin Directory for Your Programs and Scripts
	numeric mode, Using chmod to Change File Permission
	permissions,
 changing, User, Group, and World
	symbolic modes, Using chmod to Change File Permission

	chmod function
 (Perl), Perl Boot Camp, Part 5: Perl Knows Unix
	chopping columns out of a
 file, Searching Online Manual
 Pages
	chown
 command, How to Change File Ownership Without chown
	chown function
 (Perl), Perl Boot Camp, Part 5: Perl Knows Unix
	Christiansen, Tom, One Argument with a cat Isn’t Enough
	chroot, anonymous FTP
 connections, Configuring an Anonymous FTP Server
	ci (checkin) command
 (RCS), RCS Basics
	Citrix, Citrix: Making Windows Multiuser, Citrix: Making Windows Multiuser, Citrix Metaframe
		Metaframe, Citrix: Making Windows Multiuser, Citrix Metaframe

	class methods
 (Python), Everything’s an Object
	class of objects,
 application resources associated with, X Resource Syntax
	class variables
 (Python), Everything’s an Object
	classes
 (Python), Everything’s an Object
	clean alias, removing
 stale files with, Deleting Stale Files
	cleanup script, Using find to Clear Out Unneeded Files
	clear
 command, Running Commands When You Log Out
	clear text SMB passwords, Securing Samba
	CLICOLOR
 environment variable, Another color ls
	clients, Starting Remote X Clients–Starting a Remote Client with rsh and ssh, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, Python and the Web, Sharing Desktops with VNC, Citrix Metaframe, rdesktop, Hob, Server and Client Problems–Server and Client Problems
		ICA, Citrix Metaframe
	Python as web
 client, Python and the Web
	RDP, for Unix
 (rdesktop), rdesktop
	RDP, HOBLink
 JWT, Hob
	remote, starting for X window
 systems, Starting Remote X Clients–Starting a Remote Client with rsh and ssh, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh
		from interactive
 logins, Starting Remote X Clients from Interactive Logins
	with rsh and
 ssh, Starting a Remote Client with rsh and ssh

	SSH, problems
 with, Server and Client Problems–Server and Client Problems
	VNC (Virtual
 Network Computing), Sharing Desktops with VNC

	CLIPBOARD selection
 (xterm), Working with xclipboard
	clock in
 Unix, How Unix Keeps Time
	close command
 (awk), Alphabetical Summary of Commands
	close() method (for
 Perl objects), Perl Boot Camp, Part 1: Typical Script Anatomy
	closing windows, The Process Chain to Your Window, Close a Window by Killing Its Process(es)–Closing a Window from a Shell Script
		by exiting the
 shell, The Process Chain to Your Window
	by killing window
 processes, Close a Window by Killing Its Process(es)–Closing a Window from a Shell Script

	cmd field in
 crontab entries, Execution Scheduling
	cmp operator
 (Perl), Scalars
	cmp
 program, cmp and diff
	co (checkout) command
 (RCS), RCS Basics, RCS Basics, RCS Basics
		-j option, merging file
 versions with, RCS Basics
	-p option, sending file to standard
 output, RCS Basics

	Collinson,
 Peter, Shell Script “Wrappers” for awk, sed, etc.
	color, Highlighting and Color in Shell Prompts, Color ls–Another color ls, Configuring It, Predefined Environment Variables
		displaying names of with ls
 command, Color ls–Another color ls
	in shell
 prompts, Highlighting and Color in Shell Prompts
	LS_COLORS environment
 variable, Configuring It, Predefined Environment Variables

	columns, Searching Online Manual
 Pages, List All Subdirectories with ls -R, Useful ls Aliases, Finding a Character in a Column, Cutting Columns or Fields, Making Text in Columns with pr–Order Lines Across Columns: -l, Make Columns Automatically with column, Make Columns Automatically with column, Straightening Jagged Columns, Pasting Things in Columns
		chopping out of a
 file, Searching Online Manual
 Pages
	column utility, creating
 with, Make Columns Automatically with column, Make Columns Automatically with column
		rebalancing into table with variable-width
 columns, Make Columns Automatically with column

	cutting, Cutting Columns or Fields
	ls -C command, listing output
 in, List All Subdirectories with ls -R, Useful ls Aliases
	pasting data
 into, Pasting Things in Columns
	searching files for character
 in, Finding a Character in a Column
	straightening, Straightening Jagged Columns
	text in, with pr
 command, Making Text in Columns with pr–Order Lines Across Columns: -l

	COLUMNS environment
 variable, Terminal Setup: Testing Window Size
	comma (,) in
 filenames, Filenames
	comma, “fat
 comma” operator (=>), Hashes
	command
 characters, Showing Nonprintable Characters in Filenames (see special characters)
	command command,
 disabling shell function lookup, Which One Will bash Use?
	command
 directories, What Environment Variables Are Good For
	command editing
 mode, Predefined Environment Variables
	command
 interpreters, Communication with Unix (see shells)
	command
 line, Communication with Unix, There Are Many Shells, Anyone Can Program the Shell, Highlighting and Color in Shell Prompts, Emacs Features: A Laundry List, Command Completion, Command-Line Syntax, The at Command, Wildcards Inside Aliases, What’s Special About the Unix Command Line–Other Problems, What’s Special About the Unix Command Line, Reprinting Your Command Line with CTRL-r, Build Strings with { }, String Editing (Colon) Operators, Automatic Completion, General Example: Filename Completion, Menu Completion, Command-Specific Completion, Editor Functions for Completion, Don’t Match Useless Files in Filename Completion, Repeating Commands, A foreach Loop–A for Loop, Repeating a Command with Copy-and-Paste, Repeating a Time-Varying Command, Multiline Commands, Secondary Prompts, Handling Lots of Text with Temporary Files, Separating Commands with Semicolons, Dealing with Too Many Arguments, Expect–Other Problems, C-Shell Aliases with Command-Line Arguments, The Lessons of History, Shell Command-Line Editing, vi Editing Mode, Emacs Editing Mode, tcsh Editing–zsh Editing, ksh Editing, bash Editing, zsh Editing, Invoking sed, Writing a Simple Shell Program, Finding the Last Command-Line
 Argument, How to Unset All Command-Line Parameters
		aliases for
 arguments, C-Shell Aliases with Command-Line Arguments
	as shell scripts, Writing a Simple Shell Program
	awk, Command-Line Syntax
	building strings with {
 }, Build Strings with { }
	completion
 features, Emacs Features: A Laundry List, Command Completion, Automatic Completion, General Example: Filename Completion, Menu Completion, Command-Specific Completion, Editor Functions for Completion, Don’t Match Useless Files in Filename Completion
		command-specific
 completion, Command-Specific Completion
	editor functions
 for, Editor Functions for Completion
	Emacs, Command Completion
	Emacscommand
 completion, Emacs Features: A Laundry List (see command line)
	filename
 completion, General Example: Filename Completion
	filename completion, ignoring file
 suffixes, Don’t Match Useless Files in Filename Completion
	menu completion, Menu Completion

	editing on, There Are Many Shells, Highlighting and Color in Shell Prompts, The Lessons of History, Shell Command-Line Editing, vi Editing Mode, Emacs Editing Mode, tcsh Editing–zsh Editing, ksh Editing, bash Editing, zsh Editing
		bash
 shell, bash Editing
	Emacs
 editing mode, Emacs Editing Mode
	ksh (Korn
 shell), There Are Many Shells, ksh Editing
	tcsh shell, tcsh Editing–zsh Editing
	vi editing
 mode, vi Editing Mode
	zsh
 shell, zsh Editing

	executing commands with long list of files as
 arguments, Handling Lots of Text with Temporary Files
	finding last
 argument on, Finding the Last Command-Line
 Argument
	interactive applications,
 controlling with Expect program, Expect–Other Problems
	interpretation by shell, Communication with Unix
	multiline commands and secondary
 prompts, Multiline Commands, Secondary Prompts
	parameters,
 unsetting, How to Unset All Command-Line Parameters
	parsing, Wildcards Inside Aliases
	repeating commands, Repeating Commands, A foreach Loop–A for Loop, Repeating a Command with Copy-and-Paste, Repeating a Time-Varying Command
		at set intervals, Repeating a Time-Varying Command
	copy and paste,
 using, Repeating a Command with Copy-and-Paste
	with variations, A foreach Loop–A for Loop

	reprinting wilth CTRL-r, Reprinting Your Command Line with CTRL-r
	saving to file, Anyone Can Program the Shell
	sed editor, Invoking sed
	separating commands with semicolon
 (\:), Separating Commands with Semicolons
	shortcuts, What’s Special About the Unix Command Line
	string-editing (\:)
 operators, String Editing (Colon) Operators
	submitting for execution at a later
 time, The at Command
	too many arguments, dealing
 with, Dealing with Too Many Arguments

	command
 search path, Predefined Environment Variables (see search
 path)
	command
 substitution, Delving Through a Deep Directory Tree, Removing Every File but One, Bourne Shell Quoting, How Quoting Works, What’s Special About the Unix Command Line, Command Substitution, Command Substitution, Command Substitution, Handling Command-Line Arguments with a for Loop, Nested Command
 Substitution
		Bourne shell quoting
 and, How Quoting Works
	examples
 of, Command Substitution
	excluding files from rm
 command, Removing Every File but One
	find command output, using
 with, Delving Through a Deep Directory Tree
	in for
 loops, Handling Command-Line Arguments with a for Loop
	grep command, using in vi
 editor, Command Substitution
	nested, Nested Command
 Substitution

	command-line arguments, Statistics of Processes by PID, Handling Command-Line Arguments in Shell Scripts–Handling Arguments with while and shift, With a Loop, Handling Command-Line Arguments with a for Loop, Standard Command-Line
 Parsing–Standard Command-Line
 Parsing, Setting (and Parsing) Parameters, Setting (and Parsing) Parameters, Watch Your Quoting, Watch Your Quoting, Finding the Last Command-Line
 Argument, Using set and IFS, Testing Two Strings with One case Statement, Quoting and Command-Line
 Parameters, Getting tar’s Arguments in the Right Order, Perl Boot Camp, Part 1: Typical Script Anatomy
		@ARGV array passed to Perl
 scripts, Perl Boot Camp, Part 1: Typical Script Anatomy
	finding
 last, Finding the Last Command-Line
 Argument
	handling in Bourne
 shell scripts, Handling Command-Line Arguments in Shell Scripts–Handling Arguments with while and shift, With a Loop
		for loops, using, With a Loop

	parsing, Watch Your Quoting
	parsing
 standard, Standard Command-Line
 Parsing–Standard Command-Line
 Parsing
	of a
 process, Statistics of Processes by PID
	quoting, Watch Your Quoting, Quoting and Command-Line
 Parameters
	setting and
 parsing, Setting (and Parsing) Parameters
	starting with -
 (dash), Handling Command-Line Arguments with a for Loop, Setting (and Parsing) Parameters
	storing single-line string
 in, Using set and IFS
	tar, correct order
 for, Getting tar’s Arguments in the Right Order
	testing with case
 statement, Testing Two Strings with One case Statement

	command-line
 parameters, Setting (and Parsing) Parameters (see command-line arguments)
	commands, Communication with Unix, Communication with Unix, Internal and External Commands, whereis: Finding Where a Command Is Located, Which Version Am I Using?, What Goes in Shell Setup Files?, Faster Prompt Setting with Built-ins, A “Menu Prompt” for Naive Users, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and Periodic Commands, Running Commands When You Log Out, Running Commands at Bourne/Korn Shell Logout, A bin Directory for Your Programs and Scripts, Filtering Text Through a Unix Command, Shell Escapes: Running One UnixCommand While Using Another, vi Line Commands Versus Character Commands, Neatening Lines, Setting Up vi with the .exrc File, Setting Up vi with the .exrc File, Save Time and Typing with the
 vi map Commands–File-Backup Macros, Emacs Features: A Laundry List, Useful ex
 Commands–Useful ex
 Commands, Procedures, Stopping Remote Login Sessions, fork and exec, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Why ps Prints Some Commands in Parentheses, What Commands Are Running and How Long Do They Take?, What the Shell Does–How Many Backslashes?, What the Shell Does, How the Shell Executes Other Commands, How the Shell Executes Other Commands, How Shells Run Other Programs, Interactive Use Versus Shell Scripts, Default Commands, Command Evaluation and Accidentally Overwriting Files, Output Command-Line Arguments One by One, Controlling Shell Command Searches–Controlling Shell Command Searches, Wildcards Inside Aliases, eval: When You Need Another Chance, Which One Will bash Use?, Which One Will the C Shell Use?, Is It “2>&1 file” or “> file 2>&1”? Why?, Bourne Shell Quoting–Multiline Quoting, Differences Between Bourne and C Shell Quoting, Here Documents, String Editing (Colon) Operators, A foreach Loop, Expect, Creating Custom Commands, Setting and Unsetting Bourne-Type Aliases, Korn-Shell Aliases, zsh Aliases, Sourceable Scripts–Sourceable Scripts, Avoiding C-Shell Alias Loops, How to Put if-then-else in a C-Shell Alias, Shell Function Basics–Simulated Bourne Shell
 Functions and Aliases, Conclusion, The Lessons of History–Instead of Changing History Characters, tcsh Editing, Order of Commands in a Script, The Deliberate Scrivener–The Deliberate Scrivener, The Deliberate Scrivener, Writing a Simple Shell Program, Writing a Simple Shell Program, Writing a Simple Shell Program, Everyone Should Learn Some Shell Programming, The PATH Environment Variable, Exit Status of Unix Processes, Test Exit Status with the if Statement, Picking a Name for a New
 Command, A while Loop with Several Loop Control Commands, Using Standard Input and Output, The () Subshell Operators, How to tee Several Commands into One Place, lp-Style Printing Commands
		ampersand (&) character at
 the end of, putting into background with, Managing Processes: Overall Concepts
	awk utility, categories
 of, Procedures
	binding to
 keys, tcsh Editing
	built-in, Communication with Unix, Faster Prompt Setting with Built-ins, fork and exec
		faster
 prompt setting with, Faster Prompt Setting with Built-ins

	combining with grouping ()
 operator, The () Subshell Operators
	custom,
 creating, Creating Custom Commands, Setting and Unsetting Bourne-Type Aliases, Korn-Shell Aliases, zsh Aliases, Sourceable Scripts–Sourceable Scripts, How to Put if-then-else in a C-Shell Alias, Shell Function Basics–Simulated Bourne Shell
 Functions and Aliases
		Bourne-type aliases, Setting and Unsetting Bourne-Type Aliases
	if-then-else, putting in C shell
 alias, How to Put if-then-else in a C-Shell Alias
	Korn shell aliases, Korn-Shell Aliases
	shell functions, Shell Function Basics–Simulated Bourne Shell
 Functions and Aliases
	sourceable scripts, Sourceable Scripts–Sourceable Scripts
	zsh aliases, zsh Aliases

	default, specifying shell
 with #!, Default Commands
	displaying running
 commands, What Commands Are Running and How Long Do They Take?
	ex editor, Useful ex
 Commands–Useful ex
 Commands
	exit status
 of, Exit Status of Unix Processes
	external, shell execution
 of, How the Shell Executes Other Commands
	filtering text through with vi
 editor, Filtering Text Through a Unix Command, Neatening Lines
		fmt command, neatening lines
 with, Neatening Lines

	finding where
 located, whereis: Finding Where a Command Is Located
	functions, working
 with, Conclusion
	history
 of, The Lessons of History–Instead of Changing History Characters
	in .exrc file
 for vi editor, Setting Up vi with the .exrc File
	interactive, Communication with Unix
	internal and
 external, Internal and External Commands
	interpretation by
 shells, What the Shell Does–How Many Backslashes?, What the Shell Does, How the Shell Executes Other Commands, How Shells Run Other Programs, Interactive Use Versus Shell Scripts, Command Evaluation and Accidentally Overwriting Files, Output Command-Line Arguments One by One, Controlling Shell Command Searches–Controlling Shell Command Searches, Wildcards Inside Aliases, eval: When You Need Another Chance, Which One Will bash Use?, Which One Will the C Shell Use?, Is It “2>&1 file” or “> file 2>&1”? Why?, Bourne Shell Quoting–Multiline Quoting, Differences Between Bourne and C Shell Quoting, Here Documents
		arguments passed to a script,
 showing, Output Command-Line Arguments One by One
	Bourne shell quoting, Bourne Shell Quoting–Multiline Quoting
	C shell
 quoting, Differences Between Bourne and C Shell Quoting
	choosing built-in, external or shell
 functions in bash, Which One Will bash Use?
	choosing built-in, external, or shell
 functions in C shell, Which One Will the C Shell Use?
	evaluation of command
 line, eval: When You Need Another Chance
	executing external
 commands, How the Shell Executes Other Commands
	interactive use vs. shell
 scripts, Interactive Use Versus Shell Scripts
	overwriting files
 accidentally, Command Evaluation and Accidentally Overwriting Files
	quoting with here
 documents, Here Documents
	redirections, Is It “2>&1 file” or “> file 2>&1”? Why?
	running other
 programs, How Shells Run Other Programs
	search path for
 commands, Controlling Shell Command Searches–Controlling Shell Command Searches
	wildcards in aliases, Wildcards Inside Aliases

	joining with
 pipes, Writing a Simple Shell Program
	in .logout
 file, Running Commands When You Log Out
	logout file, creating for Bourne
 and Korn shells, Running Commands at Bourne/Korn Shell Logout
	multiple control commands, while
 loops with, A while Loop with Several Loop Control Commands
	naming, Picking a Name for a New
 Command
	null, Test Exit Status with the if Statement
	PATH environment
 variable, The PATH Environment Variable
	periodic, Preprompt, Pre-execution, and Periodic Commands
	preprompt, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and Periodic Commands
	printed in parentheses by
 ps, Why ps Prints Some Commands in Parentheses
	printing, String Editing (Colon) Operators, lp-Style Printing Commands
		without executing (\:p
 operator), String Editing (Colon) Operators
	System
 V, lp-Style Printing Commands

	putting names of into shell
 prompts, A “Menu Prompt” for Naive Users
	redefining with aliases, problems
 with, Avoiding C-Shell Alias Loops
	redirection, How to tee Several Commands into One Place (see redirecting
 input and output)
	remote-login
 utilities, Stopping Remote Login Sessions
	repeating, A foreach Loop (see repeating
 commands)
	running at
 login, What Goes in Shell Setup Files?
	running one while using another
 with shell escapes, Shell Escapes: Running One UnixCommand While Using Another
	search
 path, A bin Directory for Your Programs and Scripts, Writing a Simple Shell Program
		rehash command, updating
 with, A bin Directory for Your Programs and Scripts

	search table (C shells),
 resetting, Writing a Simple Shell Program
	sed
 editor, The Deliberate Scrivener–The Deliberate Scrivener, The Deliberate Scrivener
		operations of, The Deliberate Scrivener–The Deliberate Scrivener

	sed, order
 of, Order of Commands in a Script
	sequences of,
 executing automatically with
 Emacs, Emacs Features: A Laundry List
	standard input,
 reading, Using Standard Input and Output
	storing for startup of
 vi, Setting Up vi with the .exrc File
	Tcl, Expect
	typing at the shell
 prompt, Managing Processes: Overall Concepts
	versions, Everyone Should Learn Some Shell Programming
	versions
 of, Which Version Am I Using?
	vi
 editor, vi Line Commands Versus Character Commands, Save Time and Typing with the
 vi map Commands–File-Backup Macros
		custom,
 creating, Save Time and Typing with the
 vi map Commands–File-Backup Macros
	line vs. character, vi Line Commands Versus Character Commands

	commenting, X Resource Syntax, Changing History Characters with histchars, Writing a Simple Shell Program, Shell Script “Wrappers” for awk, sed, etc., The Story of : # #!, Don’t Need a Shell for Your Script? Don’t Use One, The Unappreciated Bourne Shell “:” Operator, RCS Basics, Installing and Configuring Samba
		#, shell understanding
 of, Don’t Need a Shell for Your Script? Don’t Use One
	Bourne
 shell, The Unappreciated Bourne Shell “:” Operator
		using \: in place of
 #, The Unappreciated Bourne Shell “:” Operator

	for ease of
 use, Shell Script “Wrappers” for awk, sed, etc.
	in zsh, Changing History Characters with histchars
	RCS
 files, RCS Basics
	shell
 scripts, Writing a Simple Shell Program
	smb.conf
 files, Installing and Configuring Samba
	in X resource
 files, X Resource Syntax
	\: and #, beginning
 with, The Story of : # #!

	comments, Setting Up vi with the .exrc File, Mike’s Favorite Timesavers, Clean Up Program Comment Blocks, Execution Scheduling
		in crontab
 entries, Execution Scheduling
	in Emacs
 editor, Mike’s Favorite Timesavers
	in .exrc file for vi
 editor, Setting Up vi with the .exrc File
	lines in program
 comment block, cleaning up, Clean Up Program Comment Blocks

	committing
 modifications to CVS files, CVS Basics
	Common Unix Printing
 System (CUPS), The Common Unix Printing System (CUPS)
	communicating with
 Unix, Communication with Unix
	communications
 utilities, Unix Networking and Communications
	compare, List RCS Revision Numbers with rcsrevs
		two most recent revisions
 of several RCS files, List RCS Revision Numbers with rcsrevs

	comparing, Exact File-Time Comparisons, Renaming, Copying, or Comparing a Set of Files, Checking Differences with diff, cmp and diff, make Isn’t Just for Programmers!–Even More Uses for make, Counting Lines, Words, and Characters: wc, What Is (or Isn’t) Unique?, Understanding Expressions, Stop Syntax Errors in Numeric Tests
		file-times,
 exact comparisons, Exact File-Time Comparisons
	files, Renaming, Copying, or Comparing a Set of Files, Checking Differences with diff, cmp and diff, make Isn’t Just for Programmers!–Even More Uses for make
		cmp
 program, using, cmp and diff
	diff
 commands, using, Checking Differences with diff
	make
 program, using, make Isn’t Just for Programmers!–Even More Uses for make

	lines for uniqueness (uniq
 command), What Is (or Isn’t) Unique?
	numbers, Stop Syntax Errors in Numeric Tests
	strings for pattern
 matching, Understanding Expressions
	word counts in two
 files, Counting Lines, Words, and Characters: wc

	complete
 command, Command-Specific Completion
	completion features of shells, Automatic Completion, General Example: Filename Completion, Menu Completion, Editor Functions for Completion, Don’t Match Useless Files in Filename Completion
		editor functions
 for, Editor Functions for Completion
	filename
 completion, General Example: Filename Completion, Don’t Match Useless Files in Filename Completion
		ignoring file
 suffixes, Don’t Match Useless Files in Filename Completion

	menu
 completion, Menu Completion

	Comprehensive
 Perl Archive Network (CPAN), Sorting a List of People by Last Name, Compiling Perl from Scratch
	Comprehensive
 TEX Archive Network (CTAN), Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	compress
 command, Compressing Files to Save Space
	compressed
 files, Filename Extensions, Searching Online Manual
 Pages, uuencoding, tar in a Nutshell, More Ways to Back Up
		encoding into 7-bit
 representation, uuencoding
	filename extensions, Filename Extensions
	manpage,
 finding with grep -Z, Searching Online Manual
 Pages
	tar
 archive, tar in a Nutshell
	tar utility, More Ways to Back Up
		gzip and
 bzip2 utilities, More Ways to Back Up

	compressing a
 directory tree, Save Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning
		fine-tuning, Compressing a Directory Tree: Fine-Tuning

	compressing files, Compressing Files to Save Space–Compressing Files to Save Space
	compression, Compressing Files to Save Space, To gzip, or Not to gzip?, GNU tar Sampler, Using Standard Input and Output
		bzip2
 utility, Compressing Files to Save Space
	GNU tar
 archives, GNU tar Sampler
	gzip, Using Standard Input and Output
		unpacking
 tar archives, Using Standard Input and Output

	tar archives, advantages
 and disadvantages, To gzip, or Not to gzip?

	Computer Emergency Response
 Team, CERT Security Checklists (see CERT)
	concatenate, What Good Is a cat? (see cat
 command)
	concatenating strings with .
 operator, Scalars
	concatenation in regular
 expressions, Understanding Expressions
	Concurrent Version
 System, Managing and Sharing Files with RCS and CVS (see CVS)
	conditional
 expressions, Test Exit Status with the if Statement (see expressions, conditional)
	configuration files, The man Command, Shell Setup Files — Which, Where, and Why–Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, What Goes in Shell Setup Files?, Use Absolute Pathnames in Shell Setup Files, Setup Files Aren’t Read When You Want?, Automatic Setups for Different Terminals, A .cshrc.$HOST File for Per Host Setup, Local Settings for vi, Setting Up vi with the .exrc File, Printer Queue Watcher: A Restartable Daemon Shell Script, /usr/bin and Other Software Directories, Simplifying the make Process, Configuring the sources.list File, Basic Kernel Configuration, Status and Troubleshooting, The Director of Operations: inetd, Domain Name Service (DNS), Installing and Configuring Samba, Enabling Remote Access on Mac OS X
		.exrc for vi editor, Setting Up vi with the .exrc File
	/etc/inetd.conf file, The Director of Operations: inetd
	bash
 shell, Shell Setup Files — Which, Where, and Why
	C shells, Setup Files Aren’t Read When You Want?
		reading at
 different times, Setup Files Aren’t Read When You Want?

	configure.in file
 (Makefile.in), Simplifying the make Process
	daemons, rereading
 of, Printer Queue Watcher: A Restartable Daemon Shell Script
	etc/inetd.conf file, Enabling Remote Access on Mac OS X
	ifconfig, for network
 devices, Status and Troubleshooting
	kernel, device lines
 from, Basic Kernel Configuration
	Korn
 shell, Shell Setup Files — Which, Where, and Why
	login shells, What Goes in Shell Setup Files?
		contents
 of, What Goes in Shell Setup Files?

	man
 (/etc/man.config), The man Command
	named.conf, Domain Name Service (DNS)
	pathnames in, Use Absolute Pathnames in Shell Setup Files
	shells, Shell Setup Files — Which, Where, and Why–Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Automatic Setups for Different Terminals, A .cshrc.$HOST File for Per Host Setup
		.cshrc.$HOST file
 for per host setup, A .cshrc.$HOST File for Per Host Setup
	automatic terminal
 setups, Automatic Setups for Different Terminals
	C
 shell, Shell Setup Files — Which, Where, and Why
	system-wide
 setup, Shell Setup Files — Which, Where, and Why

	smb.conf, Installing and Configuring Samba
	sources.list, Configuring the sources.list File
	system, /usr/bin and Other Software Directories
	tcsh
 shell, Shell Setup Files — Which, Where, and Why
	for vi editor
 (.exrc), Local Settings for vi
	zsh
 shells, Shell Setup Files — Which, Where, and Why

	configuration information,
 manipulation in DoS attacks, What We Mean by DoS
	configure
 command, Installing and Configuring Samba
	configuring, Configuring It, Configuring Packages, Quick Introduction to Hardware, Basic Kernel Configuration, Filesystem Types and /etc/fstab, Network Devices — ifconfig, Win Is a Modem Not a Modem?, USB Configuration, Configuring an Anonymous FTP Server, Mail — SMTP, POP, and IMAP, Dynamic Host Configuration Protocol (DHCP)
		anonymous FTP
 server, Configuring an Anonymous FTP Server
	color
 ls, Configuring It
	devices, user-space tools
 for, Quick Introduction to Hardware
	filesystem
 mounts, Filesystem Types and /etc/fstab
	installed software
 packages, Configuring Packages
	kernel, Basic Kernel Configuration
	Message Transfer Agents
 (MTAs), Mail — SMTP, POP, and IMAP
	modems, Win Is a Modem Not a Modem?
	network devices with
 ifconfig, Network Devices — ifconfig
	USB, USB Configuration
	workstations with
 DHCP, Dynamic Host Configuration Protocol (DHCP)

	configuring terminals, There’s a Lot to Know About Terminals–Don’t Quote Arguments to
 xterm -e, Setting the Terminal Type When You Log In, Querying Your Terminal Type: qterm, Querying Your xterm Size: resize, Checklist: Terminal Hangs When I Log In–Aborting Programs, Find Out Terminal Settings with stty, Working with xterm and Friends–Don’t Quote Arguments to
 xterm -e, The Simple Way to Pick a Font, The xterm Menus–The xterm Menus, Changing Fonts Dynamically–Enabling Escape Sequence and Selection, Working with xclipboard, Tips for Copy and Paste Between Windows
		finding terminal settings with stty
 command, Find Out Terminal Settings with stty
	hung terminals,
 fixing, Checklist: Terminal Hangs When I Log In–Aborting Programs
	querying terminal type with
 qterm, Querying Your Terminal Type: qterm
	size of xterm
 windows, Querying Your xterm Size: resize
	terminal type,
 setting, Setting the Terminal Type When You Log In
	xterm, Working with xterm and Friends–Don’t Quote Arguments to
 xterm -e, The xterm Menus–The xterm Menus, Changing Fonts Dynamically–Enabling Escape Sequence and Selection, Working with xclipboard, Tips for Copy and Paste Between Windows
		copy and paste
 between windows, Tips for Copy and Paste Between Windows
	fonts changing
 dynamically, Changing Fonts Dynamically–Enabling Escape Sequence and Selection
	menus, The xterm Menus–The xterm Menus
	xclipboard, Working with xclipboard

	xterms, The Simple Way to Pick a Font
		fonts
 selecting, The Simple Way to Pick a Font

	confirming, Remove Some, Leave Some, Confirming Substitutions in vi
		file deletions with rm
 -i, Remove Some, Leave Some
	substitutions in
 vi, Confirming Substitutions in vi

	connectivity, TCP/IP — IP Addresses and Ports–Gatewaying from a Personal LAN over a Modem, TCP/IP — IP Addresses and Ports, /etc/services Is Your Friend, Status and Troubleshooting–Status and Troubleshooting, Where, Oh Where Did That Packet Go?, The Director of Operations: inetd, Secure Shell (SSH), Configuring an Anonymous FTP Server, Mail — SMTP, POP, and IMAP, Domain Name Service (DNS), Dynamic Host Configuration Protocol (DHCP), Gateways and NAT, Firewalls, Gatewaying from a Personal LAN over a Modem
		/etc/services (database of
 well-known ports), /etc/services Is Your Friend
	configuring anonymous FTP
 server, Configuring an Anonymous FTP Server
	DHCP (Dynamic Host
 Configuration Protocol), Dynamic Host Configuration Protocol (DHCP)
	diagnosing network problems
 with ping and traceroute, Where, Oh Where Did That Packet Go?
	DNS (Domain Name
 Service), Domain Name Service (DNS)
	firewalls, Firewalls
	gatewaying form personl LAN
 over a modem, Gatewaying from a Personal LAN over a Modem
	gateways and
 NAT, Gateways and NAT
	inetd file, managing Internet
 services, The Director of Operations: inetd
	mail, Mail — SMTP, POP, and IMAP
	SSH (Secure
 Shell), Secure Shell (SSH)
	status and
 troubleshooting, Status and Troubleshooting–Status and Troubleshooting
	TCP/IP addresses and
 ports, TCP/IP — IP Addresses and Ports

	consoles, Decapitating Your Machine — Serial Consoles
		serial, Decapitating Your Machine — Serial Consoles

	constant-width
 fonts, The Simple Way to Pick a Font, VT Fonts Menu, VT Fonts Menu
		in
 xterm, VT Fonts Menu

	constants, scalars defined as in Perl
 scripts, Scalars
	CONT (continue)
 signal, What Are Signals?
	context diffs, Context diffs–cmp and diff
	continue
 command, Loop Control: break and continue, Loop Control: break and continue
	continue command
 (awk), Alphabetical Summary of Commands
	control
 characters, Programs Are Designed to Work Together, X Event Translations, Show Nonprinting Characters with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c, Protecting Keys from Interpretation by ex, Inserting Binary Characters into Files, Inserting Binary Characters into Files, Cleaning script Files
		Emacs and, Inserting Binary Characters into Files
	ex and vi editors
 and, Protecting Keys from Interpretation by ex
	od -c command, displying
 with, Show Nonprinting Characters with cat -v or od -c
	quoting in
 Emacs, Inserting Binary Characters into Files
	storing in shell
 variables, Cleaning script Files
	X event
 translations, X Event Translations

	controlling
 process, Managing Processes: Overall Concepts
	controlling
 terminal, The Controlling Terminal
	controlling tty,
 write command and, Printer Queue Watcher: A Restartable Daemon Shell Script
	Conway,
 Damian, Alternatives to fmt
	Cooper,
 Michael, Querying Your Terminal Type: qterm
	copy and
 paste, Simple Copy and Paste in xterm, Keymaps for Pasting into a Window Running vi, Scrolling, Using a Mouse, Repeating a Command with Copy-and-Paste
		configuring xterms
 for, Simple Copy and Paste in xterm
	repeating command
 with, Repeating a Command with Copy-and-Paste
	in tty-type virtual
 consoles, Scrolling, Using a Mouse
	into windows running
 vi, Keymaps for Pasting into a Window Running vi

	copy
 command (ex), Useful ex
 Commands
	copying, What’s So Complicated About Copying Files, What’s Really in a Directory?, Renaming, Copying, or Comparing a Set of Files, Copying Directory Trees with cp -r, Copying Directory Trees with tar and Pipes, Using Buffers to Move or Copy Text, Build Strings with { }, Shell Scripts On-the-Fly from Standard Input, Copy What You Do with script, On-Demand Incremental Backups of a Project, Secure Shell (SSH), Who Will Own a New File?
		archives, without asking for
 password, On-Demand Incremental Backups of a Project
	directory trees with tar and
 pipes, Copying Directory Trees with tar and Pipes
	everything you do
 into a file with script, Copy What You Do with script
	files, What’s So Complicated About Copying Files, What’s Really in a Directory?, Renaming, Copying, or Comparing a Set of Files, Secure Shell (SSH), Who Will Own a New File?
		between
 filesystems, What’s Really in a Directory?
	ownership
 of copy, Who Will Own a New File?
	scp
 utility, Secure Shell (SSH)

	files to different
 directories, Shell Scripts On-the-Fly from Standard Input
	links, Copying Directory Trees with cp -r
	remote files, shortcut
 for, Build Strings with { }
	text with vi
 editor, Using Buffers to Move or Copy Text

	copying text, Simple Copy and Paste in xterm, Working with xclipboard–Working with xclipboard, Tips for Copy and Paste Between Windows
		between xterm
 windows, Tips for Copy and Paste Between Windows
	button combinations for
 selecting in xterms, Simple Copy and Paste in xterm
	xclipboard, using in
 xterms, Working with xclipboard–Working with xclipboard

	core dumps, limit and ulimit, limit and ulimit, Killing Foreground Jobs, What if a Wildcard Doesn’t Match?
		eliminating
 entirely, limit and ulimit
	files, wildcard matching
 and, What if a Wildcard Doesn’t Match?
	limiting file
 size, limit and ulimit
	QUIT signal, creating
 with, Killing Foreground Jobs

	core flavors of
 Unix, The Core of Unix
	corrupt
 files, To gzip, or Not to gzip?
	cos command
 (awk), Alphabetical Summary of Commands
	count
 command, Making an Arbitrary-Size File for Testing
	count.it script, Counting Lines, Words, and Characters: wc
	counting, Counting Lines, Words, and Characters: wc
		characters, lines, and words in
 files, Counting Lines, Words, and Characters: wc

	counting occurrences with vi
 editor, Counting Occurrences; Stopping Search Wraps
	cp
 command, Unix Networking and Communications, Unix Networking and Communications, Renaming, Copying, or Comparing a Set of Files, Exit Status of Unix Processes, How to Change File Ownership Without chown
		-p option, How to Change File Ownership Without chown
	exit status, Exit Status of Unix Processes
	i option, Renaming, Copying, or Comparing a Set of Files

	cpio
 command, The cpio Tape Archiver
	cpio operator
 (find command), Deleting Stale Files
	cpio
 utility, To gzip, or Not to gzip?
	cps shell
 function, Simulated Bourne Shell
 Functions and Aliases
	CPU, The ps Command, A Glimpse at Hardware
		/proc/cpuinfo
 file, A Glimpse at Hardware
	listing usage by
 processes, The ps Command

	CPU
 time, Timing Programs
	CPU-bound
 process, Timing Is Everything, Know When to Be “nice” to Other Users...and When Not To
		lowering scheduling priority with
 nice, Know When to Be “nice” to Other Users...and When Not To

	create function
 (tar), Using tar to Create and Unpack Archives
	cron
 command, GNU tail File Following, Execution Scheduling
	cron
 daemon, Execution Scheduling
	cron
 system, Safe Delete: Pros and Cons, Other Ideas, Building Software Robots the Easy Way, Periodic Program Execution: The cron Facility, Periodic Program Execution: The cron Facility, Execution Scheduling, Adding crontab Entries, Including Standard Input Within a cron Entry, Other Problems
		crontab entries,
 adding, Adding crontab Entries
	execution
 scheduling, Execution Scheduling
	Expect scripts,
 using, Other Problems
	jobs, running on system
 environment, Periodic Program Execution: The cron Facility
	limiting file
 size, Other Ideas
	standard input, including in cron
 entry, Including Standard Input Within a cron Entry
	trash directory, cleaning
 out, Safe Delete: Pros and Cons

	crontab
 command, Adding crontab Entries
	crontab
 entries, Execution Scheduling, Execution Scheduling, Execution Scheduling, Execution Scheduling, Adding crontab Entries, Adding crontab Entries, Adding crontab Entries
		adding, Adding crontab Entries
	editing, Adding crontab Entries
	example, Execution Scheduling
	removing, Adding crontab Entries
	time
 fields, Execution Scheduling

	crontab files, Deleting Stale Files, Execution Scheduling, Avoiding Other at and cron Jobs
		find
 commands, adding to, Deleting Stale Files
	personal, Avoiding Other at and cron Jobs

	crontab
 system, User, Group, and World
		-e option, User, Group, and World
		finding
 your files with wrong permissions, User, Group, and World

	crontab.local
 file, Adding crontab Entries
	cryptdir
 script, Automating /bin/passwd
	cryptography, Key and Agent Problems
		keys, problems with on
 SSH, Key and Agent Problems

	csh (C
 shell), limit and ulimit, limit and ulimit, Unset PWD Before Using Emacs, Job Control in a Nutshell, System Overloaded? Try Stopping Some Jobs, Stop Background Output with stty tostop, nohup, Making Your at Jobs Quiet, BSD C Shell nice, System V C Shell nice, What if a Wildcard Doesn’t Match?, Shell Variables, Quoting and Command-Line
 Parameters
		at command output,
 quieting, Making Your at Jobs Quiet
	hangups, background processes
 and, nohup
	job control
 commands, Job Control in a Nutshell
	limiting file
 size, limit and ulimit
	nice command, BSD C Shell nice, System V C Shell nice
		BSD
 Unix, BSD C Shell nice
	System
 V, System V C Shell nice

	PWD
 environment variable, Unset PWD Before Using Emacs
		Emacs
 and, Unset PWD Before Using Emacs

	quoting in scripts, Quoting and Command-Line
 Parameters
	shell
 variables, Shell Variables
		listing, Shell Variables

	stop command, System Overloaded? Try Stopping Some Jobs
	stty -tostop command, background jobs writing
 to terminal, Stop Background Output with stty tostop
	unlimit coredumpsize
 command, limit and ulimit
	wildcards, failing to
 match, What if a Wildcard Doesn’t Match?

	csh
 shell, There Are Many Shells
	csh time
 variable, Timing Programs
	CSHRC_READ environment
 variable, Gotchas in set prompt Test
	csplit program, Splitting Files by Context: csplit, Splitting Files by Context: csplit, Splitting Files by Context: csplit
		-f option, Splitting Files by Context: csplit
	-s option, Splitting Files by Context: csplit

	CTAN (Comprehensive
 TEX Archive Network), Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	ctime (change time
 for files), The Three Unix File Times
	ctime
 command, How Unix Keeps Time
		time conversion
 routines, How Unix Keeps Time

	CTRL -\ (to
 quit), Aborting Programs
	CTRL
 key, Setting Your Erase, Kill, and Interrupt Characters
		specifying with stty
 command, Setting Your Erase, Kill, and Interrupt Characters

	CTRL-c
 command, Aborting Programs, Job Control in a Nutshell, Killing Foreground Jobs, Shell Command-Line Editing
		aborting
 programs, Aborting Programs
	canceling commands
 with, Shell Command-Line Editing
	INT signal, sending, Killing Foreground Jobs
	killing foreground
 job, Job Control in a Nutshell

	CTRL-command, sending
 QUIT signal, Killing Foreground Jobs
	CTRL-d (end-of-input
 character), Subshells
	CTRL-d command, Bourne Shell Used Here, Copy What You Do with script
		ending scripts, Copy What You Do with script
	exiting Bourne
 shell, Bourne Shell Used Here

	CTRL-g in Emacs, canceling entire
 operation, Emacs Features: A Laundry List
	Ctrl-M
 character, When Is a File Not a File?
	CTRL-q (Emacs
 quoting command), Inserting Binary Characters into Files
	CTRL-q
 command, Cleaning Up an Unkillable Process
		killing
 processes, Cleaning Up an Unkillable Process

	CTRL-q command,
 restarting stopped output, Output Stopped?
	CTRL-r (reprint)
 character, Reprinting Your Command Line with CTRL-r
	CTRL-s
 command, Output Stopped?, Cleaning Up an Unkillable Process
		stopping output, Output Stopped?

	CTRL-v, Protecting Keys from Interpretation by ex, Typing in Uppercase Without CAPS LOCK
		escaping keys in vi
 mappings, Protecting Keys from Interpretation by ex
	temporarily disabling vi
 keymaps, Typing in Uppercase Without CAPS LOCK

	CTRL-x in Emacs
 macros, Emacs Features: A Laundry List
	CTRL-z
 command, Program Waiting for Input?, Job Control in a Nutshell, Using Job Control from Your Shell, Some Gotchas with Job Control, Subshells, What Are Signals?
		putting jobs in
 background, Program Waiting for Input?
	stopping a
 subshell, Subshells

	CUPS (Common Unix
 Printing System), The Common Unix Printing System (CUPS)
	curl
 application, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
	current
 directory, Making Pathnames, Simulating Dynamic Prompts, Multiline Shell Prompts, Session Info in Window Title or Status Line, dirs in Your Prompt: Better Than $cwd, dirs in Your Prompt: Better Than $cwd, Quick finds in the Current Directory, What’s Really in a Directory?, Links to a Directory, Managing Processes: Overall Concepts, What Good Is a Current Directory?, How Does Unix Find Your Current Directory?, Marking Your Place with a Shell Variable, Predefined Environment Variables, Which Group is Which?
		advantages of, What Good Is a Current Directory?
	alias for, storing in shell
 variable, Marking Your Place with a Shell Variable
	determining group file
 ownership, Which Group is Which?
	finding, How Does Unix Find Your Current Directory?
	in C-shell status
 line, Session Info in Window Title or Status Line
	links to, Links to a Directory
	PWD environment
 variable, Predefined Environment Variables
	quick finds in, Quick finds in the Current Directory
	in shell
 prompts, Simulating Dynamic Prompts, Multiline Shell Prompts, dirs in Your Prompt: Better Than $cwd
		dirs command output,
 using, dirs in Your Prompt: Better Than $cwd
	multiline C-shell
 prompt, Multiline Shell Prompts

	current
 job, Using jobs Effectively, The “Current Job” Isn’t Always What You Expect
	current
 process, Statistics of the Current Process
		statistics on, Statistics of the Current Process

	cursor for xterm
 windows, Working with xterm and Friends (see pointer)
	cursors, Text-Input Mode Cursor Motion with No Arrow Keys
		moving in vi text-input mode
 without arrow keys, Text-Input Mode Cursor Motion with No Arrow Keys

	custom commands,
 creating, Creating Custom Commands, Setting and Unsetting Bourne-Type Aliases, Korn-Shell Aliases, zsh Aliases, Sourceable Scripts–Sourceable Scripts, How to Put if-then-else in a C-Shell Alias, Shell Function Basics–Simulated Bourne Shell
 Functions and Aliases, Functions with Loops: Internet Lookup, Functions Calling
 Functions: Factorials–Functions Calling
 Functions: Factorials, Propagating Shell Functions, Exporting bash Functions, FPATH Search Path–zsh, Simulated Bourne Shell
 Functions and Aliases
		Bourne-type
 aliases, Setting and Unsetting Bourne-Type Aliases
	if-then-else, putting in C shell
 alias, How to Put if-then-else in a C-Shell Alias
	Korn shell
 aliases, Korn-Shell Aliases
	propagating
 shell functions, Propagating Shell Functions, Exporting bash Functions, FPATH Search Path–zsh
		exporting bash
 functions, Exporting bash Functions
	FPATH search
 path, FPATH Search Path–zsh

	shell
 functions, Shell Function Basics–Simulated Bourne Shell
 Functions and Aliases, Functions with Loops: Internet Lookup, Functions Calling
 Functions: Factorials–Functions Calling
 Functions: Factorials, Simulated Bourne Shell
 Functions and Aliases
		functions calling
 functions, Functions Calling
 Functions: Factorials–Functions Calling
 Functions: Factorials
	loops, using, Functions with Loops: Internet Lookup
	simulating in Bourne
 shell, Simulated Bourne Shell
 Functions and Aliases

	sourceable
 scripts, Sourceable Scripts–Sourceable Scripts
	zsh aliases, zsh Aliases

	customization, Emacs Features: A Laundry List, Customizations and How to Avoid Them, Mike’s Favorite Timesavers, Rational Searches
		Emacs, Emacs Features: A Laundry List, Customizations and How to Avoid Them, Mike’s Favorite Timesavers, Rational Searches
		and
 how to avoid, Customizations and How to Avoid Them
	searches, Rational Searches

	customizing, X Resource Syntax
		X Window
 System, X Resource Syntax

	cut
 command, Searching Online Manual
 Pages, Cutting Columns or Fields, Command Substitution, Setting (and Parsing) Parameters, Using echo with awk or cut
		who command output,
 cutting, Command Substitution

	cutting and pasting
 text, Using vi Abbreviations as Commands (Cut and Paste Between vi’s)
		between vi’s, Using vi Abbreviations as Commands (Cut and Paste Between vi’s)

	CVS, Emacs Features: A Laundry List
		Emacs support
 of, Emacs Features: A Laundry List

	cvs, CVS Basics, More CVS, More CVS, More CVS, More CVS
		CVSROOT environment
 variable, CVS Basics, More CVS
	CVS_RSH environment
 variable, More CVS
	remote
 repositories, More CVS
	repositories, More CVS

	CVS (Concurrent Version Control)
 system, Change Many Files by Editing Just One
	CVS (Concurrent
 Version System), Managing and Sharing Files with RCS and CVS, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, CVS Basics, More CVS
		archiving
 files, Managing and Sharing Files with RCS and CVS
	cvs add
 command, CVS Basics
	cvs checkout
 command, CVS Basics
	cvs commit
 command, CVS Basics
	cvs diff, CVS Basics
	cvs import command, CVS Basics
	cvs init command, CVS Basics
	cvs log
 command, CVS Basics, More CVS
		conflicting change, examining log
 message on, More CVS

	cvs remove command, CVS Basics
	cvs update
 command, CVS Basics
	cvsroot directory for archive
 storage, CVS Basics

	cvs diff command, Context diffs
	CVSROOT environment variable, CVS Basics, More CVS
	CVS_RSH environment variable, More CVS
	cwd shell
 variable, dirs in Your Prompt: Better Than $cwd
	cwdcmd alias for tcsh
 shell status line updates, Session Info in Window Title or Status Line
	cx
 script, cx, cw, c-w: Quick File Permission Changes

 D
	d or D (delete)
 command, sed editor, Multiline Delete
	d or D (delete)
 commands, sed editor, The Deliberate Scrivener
	daemons, The Kernel and Daemons–The Kernel and Daemons, The Controlling Terminal, Printer Queue Watcher: A Restartable Daemon Shell Script, Execution Scheduling, Mounting and Unmounting Removable Filesystems, Mounting and Unmounting Removable Filesystems, Printer Control with lpc, Printing Over a Network, Converting Source Files Automagically Within the Spooler, Dynamic Host Configuration Protocol (DHCP), Installing and Configuring Samba, Installing and Configuring Samba, Installing and Configuring Samba, Printing with Samba, Disabling inetd, TCP Wrappers, General and Authentication Problems, General and Authentication Problems, Server and Client Problems
		controlling terminal
 and, The Controlling Terminal
	cron
 daemon, Execution Scheduling
	DHCP, Dynamic Host Configuration Protocol (DHCP)
	inetd, Disabling inetd
		disabling
 for security, Disabling inetd

	lpd, Printing Over a Network, Converting Source Files Automagically Within the Spooler
		filters, Converting Source Files Automagically Within the Spooler

	nmbd, Installing and Configuring Samba
	printer, Printer Control with lpc
	removable media on
 Linux, Mounting and Unmounting Removable Filesystems
	restarting with the kill
 command, Printer Queue Watcher: A Restartable Daemon Shell Script
	Samba, Printing with Samba
		restarting
 to share printers, Printing with Samba

	SMB, Installing and Configuring Samba
	SMB,
 running, Installing and Configuring Samba
	sshd, General and Authentication Problems, Server and Client Problems
		.pam
 file, General and Authentication Problems
	problems
 with, Server and Client Problems

	sshd, disabling printing and mail
 checking for, General and Authentication Problems
	tcpd, TCP Wrappers
	vold, for removable
 media, Mounting and Unmounting Removable Filesystems

	Darwin, What’s Special About Unix?, The Core of Unix, When Does a User Become a User, Enabling Root in Darwin
		adding users to
 system, When Does a User Become a User
	enabling root access
 in, Enabling Root in Darwin

	data
 types, Everything’s an Object
		Python, Everything’s an Object

	data types (Perl), Perl Boot Camp, Part 2: Variables and Data Types, Scalars–Scalars, Arrays, Hashes, References
		hashes, Hashes
	lists, Arrays
	references, References
	scalars, Scalars–Scalars

	databases, Finding Files (Much) Faster with a find Database–Finding Files (Much) Faster with a find Database, Even More Uses for make
		distributed,
 updating, Even More Uses for make
	find
 command, Finding Files (Much) Faster with a find Database–Finding Files (Much) Faster with a find Database

	date and time, External Commands Send Signals to Set Variables
		Bourne
 shell prompts, putting in, External Commands Send Signals to Set Variables

	date and time, including in shell
 prompt, Dynamic Prompts
	date
 command, Simulating Dynamic Prompts, External Commands Send Signals to Set Variables, Picking a Unique Filename
 Automatically
		+ option, Picking a Unique Filename
 Automatically
	current date in dynamic shell
 prompt, Simulating Dynamic Prompts

	dater
 script, Named Pipes: FIFOs
	dd
 command, Making an Arbitrary-Size File for Testing, Remote Restoring, Using tar to a Remote Tape Drive
		creating file for debugging
 purposes, Making an Arbitrary-Size File for Testing
	restoring files from remote tape
 drives, Using tar to a Remote Tape Drive
	restoring files
 remotely, Remote Restoring

	dd
 utility, Low-Level File Butchery with dd, Splitting Files at Fixed Points: split, Text Conversion with dd
		splitting files
 with, Splitting Files at Fixed Points: split

	DDoS (distributed
 denial-of-service attack), What We Mean by DoS
	dead links,
 listing, oldlinks: Find Unconnected Symbolic Links
	dead
 processes, Why You Can’t Kill a Zombie (see zombies)
	Debian dselect tool, Using Debian’s dselect (see dselect
 tool)
	Debian
 Linux, Using Debian’s dselect (see Linux)
	debugging, Checklist: Terminal Hangs When I Log In, Using xev to Learn Keysym Mappings, limit and ulimit, Emacs Features: A Laundry List, Functions Calling
 Functions: Factorials, Test Exit Status with the if Statement, Tips for Debugging Shell Scripts, Use -xv, Use -xv, Unmatched Operators, Missing or Extra esac, ;;, fi, etc., Line Numbers Reset Inside Redirected Loops, Bourne Shell Debugger Shows a Shell Variable, Bourne Shell Debugger Shows a Shell Variable, Stop Syntax Errors in Numeric Tests, Stop Syntax Errors in String Tests, Quoting and Command-Line
 Parameters, How Unix Keeps Time, Copy What You Do with script, Making an Arbitrary-Size File for Testing, Where, Oh Where Did That Packet Go?, Substitute Identity with su
		Bourne shell
 scripts, Test Exit Status with the if Statement, Tips for Debugging Shell Scripts, Use -xv, Use -xv, Unmatched Operators, Missing or Extra esac, ;;, fi, etc., Line Numbers Reset Inside Redirected Loops, Bourne Shell Debugger Shows a Shell Variable, Bourne Shell Debugger Shows a Shell Variable, Stop Syntax Errors in Numeric Tests, Stop Syntax Errors in String Tests, Quoting and Command-Line
 Parameters, How Unix Keeps Time, Copy What You Do with script, Making an Arbitrary-Size File for Testing
		copying your work with script
 program, Copy What You Do with script
	line numbers reset in redirected
 loops, Line Numbers Reset Inside Redirected Loops
	making a file for
 testing, Making an Arbitrary-Size File for Testing
	numeric tests, errors
 in, Stop Syntax Errors in Numeric Tests
	output, piping to
 pager, Use -xv
	quoting command line
 arguments, Quoting and Command-Line
 Parameters
	saving output in file and displaying on
 screen, Use -xv
	shell variable, Bourne Shell Debugger Shows a Shell Variable
	shell variables, Bourne Shell Debugger Shows a Shell Variable
	string test syntax
 errors, Stop Syntax Errors in String Tests
	time keeping on Unix
 systems, How Unix Keeps Time
	unmatched code or fi unexpected
 errors, Missing or Extra esac, ;;, fi, etc.
	unmatched
 operators, Unmatched Operators

	core dumps
 and, limit and ulimit
	keysyms, Using xev to Learn Keysym Mappings
	network
 connectivity, Where, Oh Where Did That Packet Go?
	Perl code in Emacs
 editor, Emacs Features: A Laundry List
	recursion
 depth, messages about, Functions Calling
 Functions: Factorials
	setup files for account
 with hung terminal, Checklist: Terminal Hangs When I Log In
	su command, using to emulate
 accounts, Substitute Identity with su

	decimal numbers, Alphabetic and Numeric Sorting
		sorting
 with sort, Alphabetic and Numeric Sorting

	declaring variables
 in Perl, Perl Boot Camp, Part 1: Typical Script Anatomy
	decoding
 uuencoded tar files, uuencoding
	decompressing
 files, Compressing Files to Save Space
		bunzip2 program, Compressing Files to Save Space

	dedent script,
 removing whitespace from text, Tips for Copy and Paste Between Windows
	deferencing references, References
	defining, Functions
		Python
 functions, Functions

	DEL
 character, Show Nonprinting Characters with cat -v or od -c
	delayed execution, Building Software Robots the Easy Way–Waiting a Little While: sleep, Periodic Program Execution: The cron Facility, The at Command–Avoiding Other at and cron Jobs, Waiting a Little While: sleep
		at
 command, The at Command–Avoiding Other at and cron Jobs
	cron
 system, Periodic Program Execution: The cron Facility
	sleep command, Waiting a Little While: sleep

	delete (d or D)
 commands, sed editor, The Deliberate Scrivener, Multiline Delete
		multiline
 delete, Multiline Delete

	delete command
 (awk), Alphabetical Summary of Commands
	delete
 command (ex), Useful ex
 Commands
	delete function
 (Perl), Hashes
	DELETE
 key, A .cshrc.$HOST File for Per Host Setup, Setting Your Erase, Kill, and Interrupt Characters, Using xev to Learn Keysym Mappings, Emacs: The Other Editor, Cleaning script Files
		Emacs editor, Emacs: The Other Editor
	erase character, Cleaning script Files
	location
 for, A .cshrc.$HOST File for Per Host Setup
	redefined, debugging with
 xevBACKSPACE, Using xev to Learn Keysym Mappings

	delete
 script, A Faster Way to Remove Files Interactively
	deleted
 files, Deleting Stale Files
		archiving on
 tape, Deleting Stale Files

	deleted text,
 recovering with vi editor, Get Back What You Deleted with Numbered Buffers
	deleting, Filenames, Showing Nonprintable Characters in Filenames, oldlinks: Find Unconnected Symbolic Links, Running Commands on What You Find, Differences Between Hard and Symbolic Links, The Cycle of Creation and Destruction, rm and Its Dangers, Tricks for Making rm Safer, Answer “Yes” or “No” Forever with yes, Answer “Yes” or “No” Forever with yes, Problems Deleting Directories, Deleting Stale Files, Emacs Features: A Laundry List, Low-Level File Butchery with dd, What Is (or Isn’t) Unique?, lensort: Sort Lines by Length, Conclusion, My Favorite Is ^^, sed Addressing Basics, RCS Basics
		characters from a file with
 dd, Low-Level File Butchery with dd
	d command, sed
 editor, sed Addressing Basics
	directories, Problems Deleting Directories
	duplicate
 lines, What Is (or Isn’t) Unique?, lensort: Sort Lines by Length
		Perl script, using, lensort: Sort Lines by Length

	extra characters
 with ^, My Favorite Is ^^
	files, Filenames, Running Commands on What You Find, The Cycle of Creation and Destruction, rm and Its Dangers, Tricks for Making rm Safer, Answer “Yes” or “No” Forever with yes, Answer “Yes” or “No” Forever with yes, Deleting Stale Files, Emacs Features: A Laundry List, RCS Basics
		(see also removing
 files)
	-inum
 and -exec operators, using with find command, Running Commands on What You Find
	by
 last access date, Deleting Stale Files
	confirmation
 before deleting, Answer “Yes” or “No” Forever with yes
	with Emacs, Emacs Features: A Laundry List
	preventing
 by making directories
 unwritable, Tricks for Making rm Safer
	program
 for, Answer “Yes” or “No” Forever with yes
	RCS
 system, RCS Basics
	wildcards
 and, rm and Its Dangers

	files with nonprint characters in
 names, Showing Nonprintable Characters in Filenames
	function
 definitions, Conclusion
	linked
 files, Differences Between Hard and Symbolic Links
	unconnected symbolic
 links, oldlinks: Find Unconnected Symbolic Links

	deleting
 files, Deleting Stale Files
		archiving deleted files with
 tar, Deleting Stale Files

	denial-of-service attacks
 (DoS), CERT Security Checklists, What We Mean by DoS, What We Mean by DoS, What We Mean by DoS, What We Mean by DoS, Checking Swap Space
		comsuming
 all resources, What We Mean by DoS
	manipulation of configuration
 information, What We Mean by DoS
	physical
 attacks on equipment, What We Mean by DoS
	swap
 space vulnerability in, Checking Swap Space

	dependency conflicts in package
 installation/removal, Choosing Packages for Installation or Removal
	dereferencing
 operator (->), Perl Boot Camp, Part 1: Typical Script Anatomy
	deroff
 command, Just the Words, Please
	deroff w command, Inside spell
	desktops, The Kernel and Daemons, Sharing Desktops with VNC, Connecting to a Windows VNC server, Connecting to a Windows VNC server, Setting up VNC on Unix, rdesktop
		display
 numbers, Connecting to a Windows VNC server
	Gnome and Enlightenment
 programs, The Kernel and Daemons
	rdesktop (RDP client for
 Unix), rdesktop
	sharing with
 VNC, Sharing Desktops with VNC, Connecting to a Windows VNC server, Setting up VNC on Unix
		connecting to Windows VNC
 server, Connecting to a Windows VNC server
	setting VNC up on
 Unix, Setting up VNC on Unix

	destroying processes
 with kill, Destroying Processes with kill
	device
 drivers, Quick Introduction to Hardware
	device
 drivers, resetting to kill processes, Cleaning Up an Unkillable Process
	devices, Quick Introduction to Hardware–Decapitating Your Machine — Serial Consoles, Reading Kernel Boot
 Output, Reading Kernel Boot
 Output, Basic Kernel Configuration, Disk Partitioning, Filesystem Types and /etc/fstab, Mounting and Unmounting Removable Filesystems, Loopback Mounts, Network Devices — ifconfig, Mounting Network Filesystems — NFS, SMBFS, Win Is a Modem Not a Modem?, Setting Up a Dialup PPP Session, USB Configuration, Dealing with Sound Cards and Other Annoying Hardware, Decapitating Your Machine — Serial Consoles
		dialup PPP session, setting
 up, Setting Up a Dialup PPP Session
	disk
 partitioning, Disk Partitioning
	filesystem types and
 /etc/fstab, Filesystem Types and /etc/fstab
	filesystems, Mounting and Unmounting Removable Filesystems
		removable,
 mounting/umounting, Mounting and Unmounting Removable Filesystems

	kernel boot output,
 reading, Reading Kernel Boot
 Output
	kernel
 configuration, Basic Kernel Configuration
	loopback
 mounts, Loopback Mounts
	modems, Win Is a Modem Not a Modem?
	network filesystems,
 mounting, Mounting Network Filesystems — NFS, SMBFS
	network,
 configuring with ifconfig, Network Devices — ifconfig
	not recognized by
 kernel, Reading Kernel Boot
 Output
	serial
 consoles, Decapitating Your Machine — Serial Consoles
	sound
 cards, Dealing with Sound Cards and Other Annoying Hardware
	Universal Serial Bus (USB),
 configuring, USB Configuration

	df
 command, Timing Is Everything, Using sed
		output,
 parsing with sed, Using sed

	DHCP (Dynamic Host
 Configuration Protocol), Dynamic Host Configuration Protocol (DHCP), Gateways and NAT
		NAT
 and, Gateways and NAT

	dialback
 script, Dialback
	dialup session,
 setting up, Setting Up a Dialup PPP Session
	dialup terminal
 type, Setting the Terminal Type When You Log In
	dictionaries, How Do I Spell That Word?, Inside spell, Adding Words to ispell’s Dictionary
		ispell program, adding words
 to, Adding Words to ispell’s Dictionary
	spell
 program, Inside spell
	system word
 file, How Do I Spell That Word?

	dictionary files
 for spell command, The Unix spell Command
	dictionary order,
 sorting in, Dictionary Order
	dierctory
 hierarchy, /usr/bin and Other Software Directories
	diff
 command, Renaming, Copying, or Comparing a Set of Files, Renaming, Copying, or Comparing a Set of Files, Checking Differences with diff–cmp and diff, Checking Differences with diff, Comparing Three Different Versions with diff3, Context diffs–cmp and diff, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Side-by-Side diffs: sdiff, Problems with diff and Tabstops, cmp and diff, Change Many Files by Editing Just One–Change Many Files by Editing Just One, patch: Generalized Updating of Files That Differ, Dealing with Too Many Arguments, Managing and Sharing Files with RCS and CVS, CVS Basics
		-c
 option, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs, Dealing with Too Many Arguments
		added lines, listing
 of, Context diffs
	changed lines, marking
 of, Context diffs
	deletions, listing
 of, Context diffs
	difference sections, marking
 of, Context diffs
	listings, start
 of, Context diffs
	running on lists of
 files, Dealing with Too Many Arguments

	-e option, Checking Differences with diff
	-u
 option, Context diffs, Context diffs, Context diffs, Context diffs, Context diffs
		added lines, listing
 of, Context diffs
	changed lines, marking
 of, Context diffs
	deletions, listing
 of, Context diffs
	difference sections, marking
 of, Context diffs
	listings, start
 of, Context diffs

	batch editing, use
 in, Change Many Files by Editing Just One–Change Many Files by Editing Just One
	cmp program vs., cmp and diff
	comparing sets of
 files, Renaming, Copying, or Comparing a Set of Files
	context
 diffs, Context diffs–cmp and diff
	cvs, CVS Basics
	CVS, use with, Managing and Sharing Files with RCS and CVS
	diff3 script, Comparing Three Different Versions with diff3
	output, feeding to patch
 program, patch: Generalized Updating of Files That Differ
	r option, Renaming, Copying, or Comparing a Set of Files
	sdif command, Side-by-Side diffs: sdiff
	tabstops, problems
 with, Problems with diff and Tabstops

	dig
 command, Functions with Loops: Internet Lookup, Status and Troubleshooting, Domain Name Service (DNS)
		DNS queries with, Status and Troubleshooting

	dircolors
 command, Configuring It, Configuring It
		-p option, Configuring It
	LS_COLORS environment variable,
 setting, Configuring It

	dircolors command
 (GNU), Highlighting and Color in Shell Prompts
	directories, The Tree Structure of the Filesystem, Your Home Directory, Your Home Directory, Searching Online Manual
 Pages, Checklist: Terminal Hangs When I Log In, What? Me, Organized?–Making Directories Made Easier, Access to Directories, A bin Directory for Your Programs and Scripts, Private (Personal) Directories, Naming Files, Make More Directories!, Making Directories Made Easier, Everything but the find Command–Picking a Unique Filename
 Automatically, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, List All Subdirectories with ls -R, The ls -d Option, Some GNU ls Features, A csh Alias to List Recently Changed Files, Delving Through a Deep Directory Tree, Duplicating a Directory Tree, grepping a Directory Tree, Using Shell Arrays to Browse Directories–Expanding Ranges, Skipping Parts of a Tree in find, What’s Really in a Directory?, Differences Between Hard and Symbolic Links, Links to a Directory, Linking Directories, Renaming, Copying, or Comparing a Set of Files, Copying Directory Trees with tar and Pipes, Safer File Deletion in Some Directories, Problems Deleting Directories, Other Ideas, Save Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning, Counting Lines, Words, and Characters: wc, Out of Temporary Space? Use Another Directory, Emacs Features: A Laundry List, Directories for Emacs Hacks, Managing Processes: Overall Concepts, Controlling Shell Command Searches, Build Strings with { }, Build Strings with { }, Korn-Shell Aliases, My Favorite Is !$, Using Relative and Absolute Pathnames, How Does Unix Find Your Current Directory?, Saving Time When You Change Directories: cdpath, cd by Directory Initials, Finding (Anyone’s) Home Directory, Quickly, Finding (Anyone’s) Home Directory, Quickly, Marking Your Place with a Shell Variable, Automatic Setup When You Enter/Exit a Directory–Automatic Setup When You Enter/Exit a Directory, Introduction to basename and dirname, tar in a Nutshell, Restoring a Few Files, On-Demand Incremental Backups of a Project, Temporary Change of Directory and Environment, Installing and Configuring Samba, Connecting to SMB Shares from Unix, Tutorial on File and Directory Permissions, Tutorial on File and Directory Permissions, Tutorial on File and Directory Permissions, User, Group, and World, Who Will Own a New File?, Protecting Files with the Sticky Bit, Using chmod to Change File Permission, A Directory That People Can Access but Can’t List, A Directory That People Can Access but Can’t List
		!$
 sequence, My Favorite Is !$
	/u, Finding (Anyone’s) Home Directory, Quickly
	absolute pathnames
 and, Using Relative and Absolute Pathnames
	aliases
 for, Korn-Shell Aliases
	archived on tape drives,
 restoring, Restoring a Few Files
	automatic setup for entering
 and exiting, Automatic Setup When You Enter/Exit a Directory–Automatic Setup When You Enter/Exit a Directory
	backing
 up, On-Demand Incremental Backups of a Project
		excluding files from
 backup, On-Demand Incremental Backups of a Project

	browsing with shell
 arrays, Using Shell Arrays to Browse Directories–Expanding Ranges
	changing, Saving Time When You Change Directories: cdpath, Marking Your Place with a Shell Variable
	changing with c (shell
 function), cd by Directory Initials
	comparing with diff -r
 command, Renaming, Copying, or Comparing a Set of Files
	contents
 of, What’s Really in a Directory?
	counting files
 in, Counting Lines, Words, and Characters: wc
	current, How Does Unix Find Your Current Directory?
		(see also current
 directory)

	current
 directory, Managing Processes: Overall Concepts
	deep directory tree, finding
 files in, Delving Through a Deep Directory Tree
	deleting, Problems Deleting Directories
	directory
 tree, grepping a Directory Tree, Skipping Parts of a Tree in find, Copying Directory Trees with tar and Pipes, Save Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning, tar in a Nutshell, Using chmod to Change File Permission
		archives/backups
 of, tar in a Nutshell
	changing permissions of, Using chmod to Change File Permission
	compressing, Save Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning
	copying with tar and
 pipes, Copying Directory Trees with tar and Pipes
	grepping, grepping a Directory Tree
	skipping parts with find
 command, Skipping Parts of a Tree in find

	directory tree,
 duplicating, Duplicating a Directory Tree
	dirname
 command, Introduction to basename and dirname
	Emacs editor,
 viewing and manipulating in, Emacs Features: A Laundry List
	emacs
 hacks, Directories for Emacs Hacks
	files
 in, The Tree Structure of the Filesystem
	files,
 finding, Everything but the find Command–Picking a Unique Filename
 Automatically, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, List All Subdirectories with ls -R
		change and modification
 times, The Three Unix File Times
	oldest and newest with ls -t and ls
 -u, Finding Oldest or Newest Files with ls -t and ls -u
	subdirectories, listing with ls
 -R, List All Subdirectories with ls -R

	finding
 files, The ls -d Option, Some GNU ls Features, A csh Alias to List Recently Changed Files
		GNU ls command, features
 of, Some GNU ls Features, A csh Alias to List Recently Changed Files
	listing directories with ls
 -d, The ls -d Option

	home, Your Home Directory, Finding (Anyone’s) Home Directory, Quickly
		finding
 (for anyone), Finding (Anyone’s) Home Directory, Quickly

	linking, Linking Directories
	links
 to, Links to a Directory
	listing contents with ls
 -lai command, Differences Between Hard and Symbolic Links
	manual page files, searching
 for, Searching Online Manual
 Pages
	organization
 of, What? Me, Organized?–Making Directories Made Easier, Access to Directories, A bin Directory for Your Programs and Scripts, Private (Personal) Directories, Naming Files, Make More Directories!, Making Directories Made Easier
		access, Access to Directories
	bin directory for programs and
 scripts, A bin Directory for Your Programs and Scripts
	creating many, Make More Directories!
	creating new, Making Directories Made Easier
	naming files, Naming Files
	private or personal, Private (Personal) Directories

	ownership, Who Will Own a New File?
	permissions, Tutorial on File and Directory Permissions, Tutorial on File and Directory Permissions, Tutorial on File and Directory Permissions, User, Group, and World, Protecting Files with the Sticky Bit, A Directory That People Can Access but Can’t List, A Directory That People Can Access but Can’t List
		(see also permissions)
	execute
 without read permission, A Directory That People Can Access but Can’t List
	fully
 accessible directory within unreadable, A Directory That People Can Access but Can’t List
	search
 access, User, Group, and World
	search
 permission, Tutorial on File and Directory Permissions
	sticky
 bit and, Protecting Files with the Sticky Bit

	printing files
 to, Build Strings with { }
	remotely mounted, hung
 terminals and, Checklist: Terminal Hangs When I Log In
	safer file deletion
 in, Safer File Deletion in Some Directories
	in search
 path, Controlling Shell Command Searches
	sharing local with SMB
 network, Installing and Configuring Samba
	sharing with SMB
 network, Connecting to SMB Shares from Unix
	subdirectories, Your Home Directory, Build Strings with { }
		creating, Build Strings with { }

	temporary changes
 in, Temporary Change of Directory and Environment
	temporary, setting different
 for vi, Out of Temporary Space? Use Another Directory
	write permission, denying
 to limit file creation, Other Ideas

	directory stack, The Shells’ pushd and popd Commands–Nice Aliases for pushd, The Shells’ pushd and popd Commands, The Shells’ pushd and popd Commands
		clearing with dirs -c, The Shells’ pushd and popd Commands
	clearing with popd
 command, The Shells’ pushd and popd Commands

	directorys, The Shells’ pushd and popd Commands
		moving to temporarily with
 pushd and popd commands, The Shells’ pushd and popd Commands

	Dired mode (Emacs), Emacs Features: A Laundry List
	dirname
 command, Using basename and dirname, Introduction to basename and dirname, Use with Loops
		bugs in, Introduction to basename and dirname
	loops, using
 with, Use with Loops

	dirs
 command, dirs in Your Prompt: Better Than $cwd, The Shells’ pushd and popd Commands, The Shells’ pushd and popd Commands
		-c option, clearing the
 stack, The Shells’ pushd and popd Commands
	output in prompt,
 using, dirs in Your Prompt: Better Than $cwd

	dirsfile
 variable for tcsh shells, Shell Setup Files — Which, Where, and Why
	disabling bash
 built-in commands, Which One Will bash Use?
	disk controllers, Quick Introduction to Hardware
	disk
 quotas, Why Can’t You Change File Ownership?, How to Change File Ownership Without chown
		file
 permissions, changing without chown, How to Change File Ownership Without chown

	disk
 space, How Much Disk Space?, Automatic Setup When You Enter/Exit a Directory, Checking Swap Space
		hard links vs. symbolic
 links, Automatic Setup When You Enter/Exit a Directory
	reports on, How Much Disk Space?
	swap space for temporary
 files, Checking Swap Space

	disk space, optimizing, Disk Space Is Cheap–Disk Quotas, Instead of Removing a File, Empty It, Save Space with “Bit Bucket” Log Files and Mailboxes, Save Space with a Link, Limiting File Sizes, Compressing Files to Save Space–Compressing Files to Save Space, Save Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning, Save Space in Executable Files with strip, Disk Quotas, tar in a Nutshell
		compressed tar
 archive, tar in a Nutshell
	compressing a directory
 tree, Save Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning
		fine-tuning, Compressing a Directory Tree: Fine-Tuning

	compressing
 files, Compressing Files to Save Space–Compressing Files to Save Space
	emptyig files, Instead of Removing a File, Empty It
	executable binaries,
 stripping, Save Space in Executable Files with strip
	limiting file
 sizes, Limiting File Sizes
	links and, Save Space with a Link
	log files and, Save Space with “Bit Bucket” Log Files and Mailboxes
	quotas on disk
 usage, Disk Quotas

	disks, Quick Introduction to Hardware, Disk Partitioning, Disk Partitioning, Mounting and Unmounting Removable Filesystems
		partitioning, Disk Partitioning, Disk Partitioning
		PCs, Disk Partitioning

	removable,
 mounting/unmounting, Mounting and Unmounting Removable Filesystems

	disown
 command, Disowning Processes, Disowning Processes
		vs. nohup, Disowning Processes

	disowned
 processes, The Controlling Terminal, Killing Processes by Name?
		controlling terminal
 and, The Controlling Terminal
	killing parent processes by
 name, Killing Processes by Name?

	display command,
 vis vs., Repeating a Time-Varying Command
	DISPLAY environment
 variable, Terminal Setup: Testing Environment Variables, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, Predefined Environment Variables, The DISPLAY Environment Variable, Outputting Text to an X Window
		checking setting in xwrist
 script, Outputting Text to an X Window
	hard-coded into
 shell setup file on remote machine, Starting a Remote Client with rsh and ssh
	setting for remote X
 client, Starting Remote X Clients from Interactive Logins

	DISTDIR environment
 variable, Installation with FreeBSD Ports
	distributed database,
 updating, Even More Uses for make
	distributed
 denial-of-service attacks (DDoS), What We Mean by DoS
	distribution release for software
 packages, Configuring the sources.list File
	Distutils
 program, Installation and Distutils
	dmesg command, How to Look at the End of a File: tail
		getting last ten lines
 from, How to Look at the End of a File: tail

	DNS (Domain Name
 Service), Status and Troubleshooting, Domain Name Service (DNS), Installing and Configuring Samba
		cache, checking, Domain Name Service (DNS)
	NETBIOS name, Installing and Configuring Samba
	queries, making with
 dig, Status and Troubleshooting

	DNS MX (mail exchanger)
 record for a host, looking up, Functions with Loops: Internet Lookup
	do command
 (awk), Alphabetical Summary of Commands
	DocBook, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	doctor
 program, An Absurd Amusement
	documentation, High-Octane Shell Scripting, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy
		(see also (see also manual
 pages)
	Perl, High-Octane Shell Scripting, Perl Boot Camp, Part 1: Typical Script Anatomy

	domains,
 NT, Installing and Configuring Samba
	Doman Name
 Service, Domain Name Service (DNS) (see DNS)
	DoS, What We Mean by DoS (see denial-of-service
 attacks)
	dos2unix
 application, /usr/bin and Other Software Directories
	dot
 (.), Showing Hidden Files with ls -A and -a (see ., Under Symbols)
	dot (.)
 files, Showing Hidden Files with ls -A and -a, Differences Between Hard and Symbolic Links, Filename Wildcards in a Nutshell
		showing with ls -a
 option, Showing Hidden Files with ls -A and -a, Differences Between Hard and Symbolic Links
	wildcard
 matching and, Filename Wildcards in a Nutshell

	double
 quotes, How Quoting Works, How Quoting Works (see “, under Symbols)
	doubled word typing
 errors, finding, Find a a Doubled Word
	downloading files from
 the Internet with wget, Interruptable gets with wget
	drive controllers, Reading Kernel Boot
 Output
		kernel boot output
 for, Reading Kernel Boot
 Output

	dselect tool, Using Debian’s dselect–Exiting dselect, Choosing the Access Method–Choosing the Access Method, Updating Information on Available Packages, Choosing Packages for Installation or Removal, Exiting the Select Function, Installing Packages, Configuring Packages, Removing Packages, Exiting dselect
		access method,
 choosing, Choosing the Access Method–Choosing the Access Method
	choosing packages for
 installation or removal, Choosing Packages for Installation or Removal
	configuring
 packages, Configuring Packages
	exiting, Exiting dselect
	exiting select
 function, Exiting the Select Function
	installing
 packages, Installing Packages
	removing packages, Removing Packages
	updating information on available
 packages, Updating Information on Available Packages

	du
 command, How Much Disk Space?, How Much Disk Space?, Counting Lines, Words, and Characters: wc
		-k option, How Much Disk Space?
	-s option, How Much Disk Space?

	dump
 command, Getting tar’s Arguments in the Right Order, Industrial Strength Backups
		arguments, correct order
 for, Getting tar’s Arguments in the Right Order
	industrial strength backups
 with, Industrial Strength Backups

	dumping files to the screen, Cracking the Nut, What Good Is a cat?
		cat command, What Good Is a cat?

	duplicate lines,
 deleting, What Is (or Isn’t) Unique?, Dealing with Repeated Lines, lensort: Sort Lines by Length
		Perl script, using, lensort: Sort Lines by Length

	DVD-ROMs, Mounting and Unmounting Removable Filesystems
	DVI (“device
 independent”) printer language, Printing Languages — PostScript, PCL, DVI, PDF
	DVORAK
 keyboards, Defining Keys and Button Presses with xmodmap, Defining Keys and Button Presses with xmodmap
	dynamic expansion in
 Emacs, Command Completion
	Dynamic Host
 Configuration Protocol (DHCP), Dynamic Host Configuration Protocol (DHCP)
	dynamic IP
 addresses, Internet Protocol (IP)
	dynamic
 prompts, Dynamic Prompts, Simulating Dynamic Prompts
		simulating, Simulating Dynamic Prompts

 E
	each function
 (Perl), Hashes
	EBCDIC,
 converting ASCII to, Text Conversion with dd
	echo
 command, Session Info in Window Title or Status Line, A bin Directory for Your Programs and Scripts, Showing Nonprintable Characters in Filenames, Which One Will bash Use?, How Many Backslashes?, Don’t Confuse Regular Expressions with Wildcards, What Environment Variables Are Good For, Shell Variables, Trapping Exits Caused by Interrupts, Trapping Exits Caused by Interrupts, Standard Command-Line
 Parsing, A while Loop with Several Loop Control Commands, Turn Off echo for “Secret” Answers, Using echo with awk or cut, Cleaning script Files
		awk or cut, using
 with, Using echo with awk or cut
	backslashes (\) in shell quoting and
 argument separation, How Many Backslashes?
	checking shell interpretation of regular
 expression special characters, Don’t Confuse Regular Expressions with Wildcards
	ending with n\\>&m
 operator, Trapping Exits Caused by Interrupts
	escaped characters,
 handling, A while Loop with Several Loop Control Commands
	external versions
 of, Which One Will bash Use?
	opttest script
 (example), Standard Command-Line
 Parsing
	PATH for directory,
 finding, A bin Directory for Your Programs and Scripts
	printing value of individual shell
 variable, Shell Variables
	showing values of
 variables, What Environment Variables Are Good For
	storing control characters in shell
 variables, Cleaning script Files
	testing filenames with wildcards in
 them, Showing Nonprintable Characters in Filenames
	turning off for secret
 answers, Turn Off echo for “Secret” Answers
	writing special escape
 sequences, Session Info in Window Title or Status Line
	zmore script, use
 in, Trapping Exits Caused by Interrupts

	echo shell variable, Verbose and Echo Settings Show Quoting
	ed
 editor, Checking Differences with diff, Why Line Editors Aren’t Dinosaurs, Useful ex
 Commands, Change Many Files by Editing Just One, ed/ex Batch Edits: A Typical Example, Batch Editing Gotcha: Editors Fail on Big Files, Valid Metacharacters for Different Unix Programs
		batch editing, example
 of, ed/ex Batch Edits: A Typical Example
	diff command, using with
 script, Change Many Files by Editing Just One
	ex commands and, Useful ex
 Commands
	failure on big
 files, Batch Editing Gotcha: Editors Fail on Big Files
	search and replacement patterns, regular
 expression metacharacters in, Valid Metacharacters for Different Unix Programs

	edit option
 (xrdb), Setting Resources with xrdb
	editing, There Are Many Shells, The Unix spell Command, Looking for Closure, Emacs Features: A Laundry List, Writing Editing Scripts, And Why Not?–Rotating Text, Alternatives to fmt, Clean Up Program Comment Blocks, Clean Up Program Comment Blocks, Remove Mail/News Headers with behead, offset: Indent Text, Centering Lines in a File, Splitting Files by Context: csplit–Splitting Files by Context: csplit, Hacking on Characters with tr, Encoding “Binary” Files into ASCII–MIME Encoding, Text Conversion with dd, Cutting Columns or Fields, Making Text in Columns with pr–Order Lines Across Columns: -l, Make Columns Automatically with column, Straightening Jagged Columns, Pasting Things in Columns, Joining Lines with join, What Is (or Isn’t) Unique?, Rotating Text, String Editing (Colon) Operators–String Editing (Colon) Operators, The Lessons of History, Shell Command-Line Editing
		advanced techniques in
 Emacs, Emacs Features: A Laundry List
	columns, creating automatically
 with column, Make Columns Automatically with column
	command-line, with
 ksh, There Are Many Shells
	history and variable substitutions
 with \: (colon) string editing operators, String Editing (Colon) Operators–String Editing (Colon) Operators
	interactive, on command
 line, The Lessons of History
	interactive, on shell command
 line, Shell Command-Line Editing
		command history, Shell Command-Line Editing

	paired item checking in
 text, Looking for Closure
	scripts
 for, Writing Editing Scripts, And Why Not?–Rotating Text, Alternatives to fmt, Clean Up Program Comment Blocks, Clean Up Program Comment Blocks, Remove Mail/News Headers with behead, offset: Indent Text, Centering Lines in a File, Splitting Files by Context: csplit–Splitting Files by Context: csplit, Hacking on Characters with tr, Encoding “Binary” Files into ASCII–MIME Encoding, Text Conversion with dd, Cutting Columns or Fields, Making Text in Columns with pr–Order Lines Across Columns: -l, Straightening Jagged Columns, Pasting Things in Columns, Joining Lines with join, What Is (or Isn’t) Unique?, Rotating Text
		behead script, removing mail/news
 headers, Remove Mail/News Headers with behead
	centering lines, Centering Lines in a File
	cutting columns or
 fields, Cutting Columns or Fields
	encoding binary files into
 ASCII, Encoding “Binary” Files into ASCII–MIME Encoding
	fmt.sh, Alternatives to fmt
	joining lines with join, Joining Lines with join
	making text in columns with
 pr, Making Text in Columns with pr–Order Lines Across Columns: -l
	offset script, indenting
 text, offset: Indent Text
	pasting into columns, Pasting Things in Columns
	program comment blocks, cleaning
 up, Clean Up Program Comment Blocks, Clean Up Program Comment Blocks
	rotating text with rot, Rotating Text
	splitting files by context
 (csplit), Splitting Files by Context: csplit–Splitting Files by Context: csplit
	straightening jagged columns
 columns, Straightening Jagged Columns
	text conversion with
 dd, Text Conversion with dd
	translating characters with
 tr, Hacking on Characters with tr
	uniq command, What Is (or Isn’t) Unique?
	writing, Writing Editing Scripts

	spell
 checking, The Unix spell Command (see spell checking)

	editing
 modes (command), Predefined Environment Variables
	editing
 modes, Emacs, Emacs Features: A Laundry List
	EDITOR
 environment variable, Predefined Environment Variables
	editors, The vi Editor: Why So Much Material?, The vi Editor: Why So Much Material?, The vi Editor: Why So Much Material?, The vi Editor: Why So Much Material?, Emacs: The Other Editor–An Absurd Amusement, Emacs Features: A Laundry List, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Line Addressing, Useful ex
 Commands, Running Editing Scripts Within vi, Killing Foreground Jobs, Editor Functions for Completion, sed Sermon^H^H^H^H^H^HSummary, Predefined Environment Variables, Shell Lockfile, Indentation, Who Will Own a New File?
		batch, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Why Line Editors Aren’t Dinosaurs, Line Addressing, Useful ex
 Commands
		(see also entries
 under individual editor names)
	awk, Why Line Editors Aren’t Dinosaurs
	ed, Why Line Editors Aren’t Dinosaurs
	ex, Why Line Editors Aren’t Dinosaurs
	line
 addressing, Line Addressing
	patch, Why Line Editors Aren’t Dinosaurs
	sed, Why Line Editors Aren’t Dinosaurs

	completion, functions
 for, Editor Functions for Completion
	EDITOR environment
 variable, Predefined Environment Variables
	Emacs, The vi Editor: Why So Much Material?, Emacs: The Other Editor–An Absurd Amusement, Emacs Features: A Laundry List
		(see also Emacs
 editor)

	file ownership
 and, Who Will Own a New File?
	ignoring
 signals, Killing Foreground Jobs
	locking files before
 editing, Shell Lockfile
	Python, Indentation
	sed, sed Sermon^H^H^H^H^H^HSummary
	vi, The vi Editor: Why So Much Material?, The vi Editor: Why So Much Material?, Running Editing Scripts Within vi
		(see also vi
 editor)
	running ex
 scripts in, Running Editing Scripts Within vi

	vim, The vi Editor: Why So Much Material?

	egrep
 command, Searching Online Manual
 Pages, grepping a Directory Tree, lookfor: Which File Has That Word?, Different Versions of grep, Extended Searching for Text with egrep, grepping for a List of Patterns, rcsgrep, rcsegrep, rcsfgrep, Faking Case-Insensitive Searches, Removing Every File but One, zap, Using Metacharacters in Regular Expressions, Extended Regular Expressions, Examples of Searching, Without GNU tar
		-f option, grepping for a List of Patterns
	-i
 option, Searching Online Manual
 Pages
	-v option, Removing Every File but One
		excluding
 files from deletion, Removing Every File but One

	case-insensitive searches,
 faking, Faking Case-Insensitive Searches
	extended regular expressions, use
 of, Using Metacharacters in Regular Expressions, Extended Regular Expressions
	picking processes to
 kill, zap
	regular expression, building
 for, lookfor: Which File Has That Word?
	regular
 expressions to match tar archive filenames, Without GNU tar
	regular expressions used with, search
 pattern examples, Examples of Searching
	running on RCS
 files, rcsgrep, rcsegrep, rcsfgrep

	eight-bit filenames,
 deleting files with, Using unlink to Remove a File with a Strange Name
	elapsed
 time, Timing Programs
	elif
 statement, Test Exit Status with the if Statement
	else
 statement, Test Exit Status with the if Statement, The Unappreciated Bourne Shell “:” Operator
		using while leaving
 then empty, The Unappreciated Bourne Shell “:” Operator

	Emacs
 editor, Filename Extensions, Some GNU ls Features, The vi Editor: Why So Much Material?, Emacs: The Other Editor–An Absurd Amusement, Emacs: The Other Editor, Emacs: The Other Editor, Emacs: The Other Editor, Emacs: The Other Editor, Emacs: The Other Editor, Emacs: The Other Editor, Emacs: The Other Editor, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Customizations and How to Avoid Them, Backup and Auto-Save Files, Putting Emacs in Overwrite Mode, Command Completion, Mike’s Favorite Timesavers, Rational Searches, Rational Searches, Unset PWD Before Using Emacs, Inserting Binary Characters into Files, Making Word Abbreviations Part of Your Startup, Directories for Emacs Hacks, An Absurd Amusement, Killing Foreground Jobs, Emacs Editing Mode, ksh Editing, Finding (Anyone’s) Home Directory, Quickly, Who Will Own a New File?
		.emacs file, Rational Searches, Making Word Abbreviations Part of Your Startup
		abbreviations
 in, Making Word Abbreviations Part of Your Startup
	search
 customization file, adding to, Rational Searches

	advantages of, Emacs: The Other Editor
	backup and auto-save
 files, Backup and Auto-Save Files
	backup files, Filename Extensions, Some GNU ls Features
		ignoring
 with ls -B, Some GNU ls Features

	built-in editor functions in pdksh
 shell, ksh Editing
	command completion, Command Completion
	command-line
 editing, Emacs Editing Mode
	customization, Customizations and How to Avoid Them, Mike’s Favorite Timesavers
		and how to
 avoid, Customizations and How to Avoid Them

	deleting characters and
 lines, Emacs: The Other Editor
	directories for
 hacks, Directories for Emacs Hacks
	exiting, Emacs: The Other Editor
	features, listing of, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List, Emacs Features: A Laundry List
		cusomization, Emacs Features: A Laundry List
	editing modes, Emacs Features: A Laundry List
	FTP, Emacs Features: A Laundry List
	HTTP, Emacs Features: A Laundry List
	keyboard macros and advanced
 editing, Emacs Features: A Laundry List
	mail, Emacs Features: A Laundry List
	mouse, not having to use
 with, Emacs Features: A Laundry List
	windows, Emacs Features: A Laundry List

	file
 ownership, Who Will Own a New File?
	insert mode vs.
 overwrite, Putting Emacs in Overwrite Mode
	inserting binary characters into
 files, Inserting Binary Characters into Files
	moving around
 in, Emacs: The Other Editor
	online help,
 key bindings abbreviations vs. those used in this
 book, Emacs: The Other Editor
	psychotherapist
 program, An Absurd Amusement
	PWD, unsetting before
 using, Unset PWD Before Using Emacs
	searches, customization
 of, Rational Searches
	shells, running
 in, Emacs Features: A Laundry List
	signals, ignoring, Killing Foreground Jobs
	starting, Emacs: The Other Editor
	temporary files generated
 by, Finding (Anyone’s) Home Directory, Quickly
	undoing
 actions, Emacs: The Other Editor

	email, Tips for Copy and Paste Between Windows, Tips for Copy and Paste Between Windows, MIME Encoding, Build Strings with { }, Command-Specific Completion, Mail — SMTP, POP, and IMAP
		(see also mail)
	header and body, proper
 formation of, MIME Encoding
	MH system, command completion
 for, Command-Specific Completion
	reformatting messages for
 xterms, Tips for Copy and Paste Between Windows
	shortcut for multiple
 addresses, Build Strings with { }
	SMTP (Simple
 Message Transfer Protocol), Mail — SMTP, POP, and IMAP

	empty files, grepping a Directory Tree, What Can You Do with an Empty File?
	empty num variable, numeric
 test error, Stop Syntax Errors in Numeric Tests
	empty passwords, SSH
 server and, General and Authentication Problems
	emptying
 files, Instead of Removing a File, Empty It
	emulating Windows
 API (wine program), Wine
	enable
 command, Which One Will bash Use?
	encoding, Encoding “Binary” Files into ASCII–MIME Encoding, uuencoding, MIME Encoding–MIME Encoding, MIME Encoding
		binary files into
 ASCII, Encoding “Binary” Files into ASCII–MIME Encoding, uuencoding, MIME Encoding–MIME Encoding
		MIME encoding, MIME Encoding–MIME Encoding
	uuencoding, uuencoding

	full binary text with
 base64, MIME Encoding

	encrypting all
 files in a directory (crypdir script), Automating /bin/passwd
	end anchor ($) in
 regular expressions, Regular Expressions: The Anchor Characters ^ and $
	end of a file, displaying with tail
 command, How to Look at the End of a File: tail
	End of file
 unexpected error, Tips for Debugging Shell Scripts, Exit Early
		exit early, using to find
 error, Exit Early

	END
 pattern, awk, Patterns
	end-of-file
 character (expect eof command), Automating /bin/passwd
	end-of-input character
 (usually CTRL-d), Subshells
	end-of-line
 characters, Anyone Can Program the Shell (see newlines)
	endless
 loops, Which One Will bash Use?, The Unappreciated Bourne Shell “:” Operator
		starting with shell
 functions, Which One Will bash Use?

	Enlightenment, The Kernel and Daemons
	enscript
 program, Formatting Plain Text: enscript
	entering directories, automatic setup
 for, Automatic Setup When You Enter/Exit a Directory–Automatic Setup When You Enter/Exit a Directory
	env
 command, Terminal Setup: Testing Environment Variables, Statistics of Processes by PID, What Environment Variables Are Good For, Shell Variables, Making #! Search the PATH
		checking for environment changes at
 different systems, Terminal Setup: Testing Environment Variables
	running scripts from
 kernel, Making #! Search the PATH

	ENV environment
 variable, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Predefined Environment Variables
		Bourne shells, setting
 up, Shell Setup Files — Which, Where, and Why
	Korn shells,
 setting, Shell Setup Files — Which, Where, and Why

	environment, Managing Processes: Overall Concepts, Statistics of Processes by PID, Temporary Change of Directory and Environment
		current process,
 finding for, Statistics of Processes by PID
	temporary changes
 in, Temporary Change of Directory and Environment

	environment
 variables, The man Command, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, What Goes in Shell Setup Files?, Use Absolute Pathnames in Shell Setup Files, Gotchas in set prompt Test, Gotchas in set prompt Test, Automatic Setups for Different Terminals, Terminal Setup: Testing Environment Variables, Terminal Setup: Testing Window Size, Terminal Setup: Setting and Testing Window Name, A .cshrc.$HOST File for Per Host Setup, Make Your Own Manpages Without Learning troff, Show Subshell Level with $SHLVL, The Idea of a Terminal Database, Querying Your xterm Size: resize, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, Many Homes, Configuring It, Another color ls, Another color ls, Check Spelling Interactively with ispell, Adding Words to ispell’s Dictionary, Local Settings for vi, Out of Temporary Space? Use Another Directory, Unset PWD Before Using Emacs, The recomment Script, Managing Processes: Overall Concepts, Setting Current Shell Environment: The work Function, Shell Function Specifics, FPATH Search Path–zsh, The Lessons of History, Picking Up Where You Left Off, Picking Up Where You Left Off, Picking Up Where You Left Off, Saving Time When You Change Directories: cdpath, Finding (Anyone’s) Home Directory, Quickly, Finding (Anyone’s) Home Directory, Quickly, What Environment Variables Are Good For–The DISPLAY Environment Variable, What Environment Variables Are Good For, What Environment Variables Are Good For, Predefined Environment Variables–Predefined Environment Variables, Predefined Environment Variables, The PATH Environment Variable, PATH and path, The DISPLAY Environment Variable, Shell Variables, Reading Files with the . and source Commands, CVS Basics, More CVS, More CVS, Installation with FreeBSD Ports
		$HOME, Many Homes
	$HOME and $LOGDIR, Use Absolute Pathnames in Shell Setup Files
	AT, Gotchas in set prompt Test
	CBLKWID
 (comment block width), The recomment Script
	CDPATH, Saving Time When You Change Directories: cdpath
	CLICOLOR, Another color ls
	in
 .cshrc.$HOST file, A .cshrc.$HOST File for Per Host Setup
	CSHRC_READ, Gotchas in set prompt Test
	CVSROOT, CVS Basics, More CVS
	CVS_RSH, More CVS
	DISPLAY, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, The DISPLAY Environment Variable
		setting
 for remote X client, Starting Remote X Clients from Interactive Logins

	DISTDIR, Installation with FreeBSD Ports
	EDITOR, Predefined Environment Variables
	ENV, for
 Bourne shells, Shell Setup Files — Which, Where, and Why
	EXINIT, Local Settings for vi, Out of Temporary Space? Use Another Directory
	FPATH, FPATH Search Path–zsh
	HISTFILESIZE, Picking Up Where You Left Off
	HISTSIZE, The Lessons of History, Picking Up Where You Left Off
	HOME, Finding (Anyone’s) Home Directory, Quickly
	LINES and COLUMNS, Terminal Setup: Testing Window Size
	LOGDIR, Finding (Anyone’s) Home Directory, Quickly
	LSCOLORS, Another color ls
	LS_COLORS, Configuring It
	MANPATH, The man Command, Make Your Own Manpages Without Learning troff
	modification by
 programs, Reading Files with the . and source Commands
	names, What Environment Variables Are Good For
	PATH, The PATH Environment Variable, PATH and path
		path shell
 variable and, PATH and path

	predefined, listing
 of, Predefined Environment Variables–Predefined Environment Variables
	PWD, Unset PWD Before Using Emacs
	SAVEHIST (zsh), Picking Up Where You Left Off
	setting in shell setup
 files, What Goes in Shell Setup Files?
	SHELL, Querying Your xterm Size: resize
	shell functions
 and, Setting Current Shell Environment: The work Function
	shell functions, changing
 for, Shell Function Specifics
	shell variables
 vs., What Environment Variables Are Good For, Shell Variables
	SHLVL, Show Subshell Level with $SHLVL
	system-wide
 setup, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why
		C
 shells, Shell Setup Files — Which, Where, and Why

	TERM, Automatic Setups for Different Terminals, The Idea of a Terminal Database
	terminal setup, testing
 for, Terminal Setup: Testing Environment Variables
	WINNAME, Terminal Setup: Setting and Testing Window Name
	WORDLIST, Check Spelling Interactively with ispell, Adding Words to ispell’s Dictionary
	zsh
 shells, Shell Setup Files — Which, Where, and Why

	epoch, How Unix Keeps Time
	eq operator, Scalars
	equality, Scalars
		ne (string
 inequality test) operator, Scalars

	erase character, Setting Your Erase, Kill, and Interrupt Characters, Cleaning script Files, Cleaning script Files
		#
 as, Setting Your Erase, Kill, and Interrupt Characters
	BACKSPACE, Cleaning script Files
	DELETE, Cleaning script Files

	erase
 character, setting automatically for X
 terminals, Automatic Setups for Different Terminals
	erase characters,
 setting, Setting Your Erase, Kill, and Interrupt Characters
	error
 messages, What Are Signals?, Finding a Program Name and Giving Your Program Multiple Names, Using Standard Input and Output, Problems Piping to a Pager
		(see also standard
 error)
	program names included
 in, Finding a Program Name and Giving Your Program Multiple Names
	scrolling off
 screen, Problems Piping to a Pager
	signals as, What Are Signals?

	errors, What if a Wildcard Doesn’t Match?, Tips for Debugging Shell Scripts, Unmatched Operators, Exit Early, Missing or Extra esac, ;;, fi, etc., Missing or Extra esac, ;;, fi, etc., Stop Syntax Errors in Numeric Tests, Stop Syntax Errors in String Tests, Send (Only) Standard Error Down a Pipe
		End of file
 unexpected, Tips for Debugging Shell Scripts, Unmatched Operators, Exit Early
		exit early, using to find
 error, Exit Early
	unmatched operators as
 cause, Unmatched Operators

	fi
 unexpected, Missing or Extra esac, ;;, fi, etc.
	line #\: ;;
 unexpected, Missing or Extra esac, ;;, fi, etc.
	numeric test syntax
 errors, Stop Syntax Errors in Numeric Tests
	stderr, Send (Only) Standard Error Down a Pipe (see standard
 error)
	string test syntax
 errors, Stop Syntax Errors in String Tests
	wildcard matching
 failure, What if a Wildcard Doesn’t Match?

	ESC key, Don’t Match Useless Files in Filename Completion
		file completion
 and, Don’t Match Useless Files in Filename Completion

	ESC Z
 string, Querying Your Terminal Type: qterm
	ESC-x in
 Emacs, Emacs: The Other Editor
	escape
 sequences, Session Info in Window Title or Status Line, Highlighting and Color in Shell Prompts, Highlighting and Color in Shell Prompts, Setting the Titlebar and Icon Text, Enabling Escape Sequence and Selection, Trying It, Copy What You Do with script
		copied by script program into
 files, Copy What You Do with script
	for colors, Trying It
	nonprinting, in shell
 prompts, Highlighting and Color in Shell Prompts
	prompt settings
 and, Highlighting and Color in Shell Prompts
	titlebar text, changing in
 xterms, Setting the Titlebar and Icon Text
	writing with echo
 command, Session Info in Window Title or Status Line
	xterm VT Fonts
 menu, Enabling Escape Sequence and Selection

	escaping regular
 expression metacharacters, Regular Expressions: The Anchor Characters ^ and $
	etc/group
 file, Which Group is Which?
		passwords, Which Group is Which?

	ethereal
 program, Where, Oh Where Did That Packet Go?
	Ethernet
 address, Dynamic Host Configuration Protocol (DHCP)
	ethernet
 cards, Quick Introduction to Hardware
	eval
 command, Setting the Terminal Type When You Log In, Querying Your xterm Size: resize, eval: When You Need Another Chance, Shell Script “Wrappers” for awk, sed, etc., Finding the Last Command-Line
 Argument, Making a for Loop with
 Multiple Variables, Using sed
		awk compared to, Shell Script “Wrappers” for awk, sed, etc.
	last parameter from command line,
 picking, Finding the Last Command-Line
 Argument
	resize output,
 evaluating, Querying Your xterm Size: resize
	scanning contents of
 variables, Making a for Loop with
 Multiple Variables
	sed, using
 with, Using sed

	evaluating, Finding Many Things with One Command, Expect, Understanding Expressions
		expressions, Finding Many Things with One Command, Understanding Expressions
	multiple
 commands, Expect

	event translations, X Event Translations–X Event Translations, X Event Translations, X Event Translations
		overriding
 default, X Event Translations
	translation
 table, X Event Translations

	events, X Event Translations
	ex command,
 line-numbering with, Numbering Lines
	ex
 editor, Editing Multiple Files with vi, Edits Between Files, Local Settings for vi, Local Settings for vi, Using Search Patterns and Global Commands, Global Searches, Confirming Substitutions in vi, Saving Part of a File, Appending to an Existing File, Moving Blocks of Text by Patterns, Capitalizing Every Word on a Line, Per-File Setups in Separate Files, vi File Recovery Versus Networked Filesystems, Protecting Keys from Interpretation by ex, Protecting Keys from Interpretation by ex, Typing in Uppercase Without CAPS LOCK, Why Line Editors Aren’t Dinosaurs, Line Addressing, Line Addressing, Useful ex
 Commands–Useful ex
 Commands, Running Editing Scripts Within vi, ed/ex Batch Edits: A Typical Example, Valid Metacharacters for Different Unix Programs, Examples of Searching and Replacing
		appending to file, Appending to an Existing File
	batch editing, example
 of, ed/ex Batch Edits: A Typical Example
	capitalizing words, Capitalizing Every Word on a Line
	commands, Useful ex
 Commands–Useful ex
 Commands
	confirming
 substitutions, Confirming Substitutions in vi
	deleting by
 patterns, Moving Blocks of Text by Patterns
	ex command mode in vi, Typing in Uppercase Without CAPS LOCK
	file
 recovery, vi File Recovery Versus Networked Filesystems
	global
 command, Global Searches
	line
 addressing, Line Addressing, Line Addressing
	multiple setup files, Per-File Setups in Separate Files
	protecting vi keymaps from interpretation
 by, Protecting Keys from Interpretation by ex
	quoting | (vertical
 bar), Protecting Keys from Interpretation by ex
	regular expressions used
 in, Examples of Searching and Replacing
		search and replace
 commands, Examples of Searching and Replacing

	running scripts in vi, Running Editing Scripts Within vi
	saving part of file, Saving Part of a File
	search and replacement patterns, regular
 expression metacharacters in, Valid Metacharacters for Different Unix Programs
	search patterns and global commands,
 using, Using Search Patterns and Global Commands
	settings, Local Settings for vi
	startup commands, Local Settings for vi
	switching between
 files, Editing Multiple Files with vi
	yank buffers, Edits Between Files

	exchange command
 (x), sed editor, Hold Space: The Set-Aside Buffer, The Deliberate Scrivener
	excluding files from
 deletion, Removing Every File but One
	exec
 command, fork and exec, The exec Command, The exec Command, The exec Command
		manipulation of file
 descriptors, The exec Command
	replacing one shell with
 another, The exec Command
	typing at shell
 prompt, fork and exec

	exec system
 call, fork and exec, How the Shell Executes Other Commands
		typing at a shell
 prompt, fork and exec

	executable files, Anyone Can Program the Shell, whereis: Finding Where a Command Is Located, Finding Oldest or Newest Files with ls -t and ls -u, Save Space in Executable Files with strip, Korn-Shell Aliases, Writing a Simple Shell Program, Beyond the Basics, Save Disk Space and Programming: Multiple Names for a Program
		#!, making directly executable
 with, Beyond the Basics
	chmod
 command, Anyone Can Program the Shell
	external, tracking locations with
 aliases, Korn-Shell Aliases
	last-access
 time, Finding Oldest or Newest Files with ls -t and ls -u
	locating for programs, whereis: Finding Where a Command Is Located
	multiple commands linked to a
 file, Save Disk Space and Programming: Multiple Names for a Program
	permissions on, Writing a Simple Shell Program
	strip command, Save Space in Executable Files with strip

	execute
 permission, Tutorial on File and Directory Permissions, Using chmod to Change File Permission, cx, cw, c-w: Quick File Permission Changes, A Directory That People Can Access but Can’t List, Shell Scripts Must Be Readable and (Usually) Executable
		changing with
 chmod, Using chmod to Change File Permission
	for
 directories, Tutorial on File and Directory Permissions
	script for
 changing, cx, cw, c-w: Quick File Permission Changes
	shell
 scripts, Shell Scripts Must Be Readable and (Usually) Executable
	without read
 permission, A Directory That People Can Access but Can’t List

	execution
 statistics, report summarizing, The ps Command
	execution,
 delayed, Building Software Robots the Easy Way (see delayed execution)
	exim
 program, Mail — SMTP, POP, and IMAP
	EXINIT environment
 variable, Local Settings for vi, Out of Temporary Space? Use Another Directory
	exists function
 (Perl), Hashes
	exit () function
 (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy
	exit
 command, Setup Files Aren’t Read When You Want?, Alphabetical Summary of Commands, Subshells, Copy What You Do with script, Printer Control with lpc
		awk
 utility, Alphabetical Summary of Commands
	effect on
 subshells, Subshells
	ending scripts, Copy What You Do with script
	lpc, Printer Control with lpc
	reading logout file when
 using, Setup Files Aren’t Read When You Want?

	exit
 status, cmp and diff, Deletion with Prejudice: rm -f, Managing Processes: Overall Concepts, Why You Can’t Kill a Zombie, Exit Status of Unix Processes, Exit Status of Unix Processes, Exit Status of Unix Processes, Exit Status of Unix Processes, Test Exit Status with the if Statement–Test Exit Status with the if Statement, Loops That Test Exit Status, Loops That Test Exit Status, The Unappreciated Bourne Shell “:” Operator, A while Loop with Several Loop Control Commands, Shell Scripts On-the-Fly from Standard Input, Syntax, Testing Characters in a String with expr
		dead processes
 and, Why You Can’t Kill a Zombie
	diff and cmp, returned
 by, cmp and diff
	of
 loops, A while Loop with Several Loop Control Commands
	of
 pipelines, Exit Status of Unix Processes
	printing for any program not returning
 zero, Exit Status of Unix Processes
	returned by processes, Managing Processes: Overall Concepts
	returned by \:
 operator, The Unappreciated Bourne Shell “:” Operator
	reversing for command line in bash and
 zsh, Exit Status of Unix Processes
	rm
 and rm -f command, Deletion with Prejudice: rm -f
	sh -e command, Shell Scripts On-the-Fly from Standard Input
	testing with if
 statement, Test Exit Status with the if Statement–Test Exit Status with the if Statement
	testing with loops, Loops That Test Exit Status
	of Unix
 processes, Exit Status of Unix Processes
	values for expr, Syntax, Testing Characters in a String with expr
	zero, Loops That Test Exit Status

	exit test, if (!
 $?prompt), Gotchas in set prompt Test
	exiting, Emacs: The Other Editor, The Process Chain to Your Window, Automatic Setup When You Enter/Exit a Directory–Automatic Setup When You Enter/Exit a Directory, Perl Boot Camp, Part 3: Branching and Looping
		directories, automatic setup
 for, Automatic Setup When You Enter/Exit a Directory–Automatic Setup When You Enter/Exit a Directory
	Emacs, Emacs: The Other Editor
	loops, Perl Boot Camp, Part 3: Branching and Looping
	shell to close a
 window, The Process Chain to Your Window

	exp command (awk), Alphabetical Summary of Commands
	expansion of
 wildcards by shells, Wildcards Inside Aliases, Don’t Confuse Regular Expressions with Wildcards, Quoting and Command-Line
 Parameters
		quoting regular expressions to
 prevent, Don’t Confuse Regular Expressions with Wildcards
	shortcuts, Quoting and Command-Line
 Parameters

	expect
 command, Expect
	expect eof
 command, Automating /bin/passwd
	Expect programs, Expect–Other Problems, Expect, Dialback, Automating /bin/passwd–Automating /bin/passwd, Automating /bin/passwd, Automating /bin/passwd, Automating /bin/passwd, Testing: A Story
		automating
 /bin/passwd, Automating /bin/passwd–Automating /bin/passwd
	cryptdir script, Automating /bin/passwd
	dialback script, Dialback
	passmass script, Automating /bin/passwd
	rftp script, Automating /bin/passwd
	Tcl language, writing
 in, Expect
	testing interactive
 programs, Testing: A Story

	exporting bash
 shell functions, Exporting bash Functions
	expr
 command, Counting Lines, Words, and Characters: wc, Quick Reference: expr, Syntax, Syntax, Syntax, Syntax, Syntax, Examples, Testing Characters in a String with expr, Matching with expr, Matching with expr, Matching with expr
		arguments, Matching with expr, Matching with expr
		$*, Matching with expr
	$@, Matching with expr

	arithmetic operators used
 with, Syntax
	examples
 of, Examples
	exit status
 values, Syntax
	logical operators used
 with, Syntax
	matching parts of strings with regular
 expressions, Matching with expr
	relational operators used
 with, Syntax
	syntax, Syntax
	testing character
 strings, Testing Characters in a String with expr

	expressions, Finding Many Things with One Command, Finding Many Things with One Command, That’s an Expression, Understanding Expressions, Test Exit Status with the if Statement, Test Exit Status with the if Statement–Test Exit Status with the if Statement, Scalars, Functions
		(see also operators)
	conditional, Test Exit Status with the if Statement, Test Exit Status with the if Statement–Test Exit Status with the if Statement
	order of
 evaluation in Perl, Scalars
	in Python
 lambdas, Functions
	regular expressions
 vs., Understanding Expressions

	extended expressions, matching more than one
 process, zap
	extended grep, Different Versions of grep (see egrep
 command)
	extended
 partition, Disk Partitioning
	extended regular
 expressions, Using Metacharacters in Regular Expressions, Extended Regular Expressions
	extensions,
 filename, Filename Extensions, String Editing (Colon) Operators, Filename Wildcards in a Nutshell
		wildcard matching
 and, Filename Wildcards in a Nutshell
	\:e string editing
 operator, String Editing (Colon) Operators

	external
 commands, Internal and External Commands, Faster Prompt Setting with Built-ins, External Commands Send Signals to Set Variables, How the Shell Executes Other Commands, Which One Will bash Use?, Which One Will the C Shell Use?, Perl Boot Camp, Part 5: Perl Knows Unix
		C shell, determining
 whether to use, Which One Will the C Shell Use?
	creating subshell for
 execution in Perl, Perl Boot Camp, Part 5: Perl Knows Unix
	executing, How the Shell Executes Other Commands
	setting shell variables
 with, External Commands Send Signals to Set Variables

	extract function
 (tar), Using tar to Create and Unpack Archives

 F
	factorial functions, Functions Calling
 Functions: Factorials–Functions Calling
 Functions: Factorials
	failure of commands,
 indication in exit status, Exit Status of Unix Processes
	false (exit status)
 utility, Exit Status of Unix Processes
	false values in
 Perl, Scalars
	fast find
 commands, Using “Fast find” Databases, Wildcards with “Fast find” Database, Finding Files (Much) Faster with a find Database
		database
 for, Finding Files (Much) Faster with a find Database
	databases
 for, Using “Fast find” Databases
	matching shell
 wildcards, Wildcards with “Fast find” Database

	fc
 command, History by Number, History by Number
		-e option, starting editor and loading file
 with recent history, History by Number
	-l option, listing previous
 commands, History by Number

	fg
 command, Job Control in a Nutshell, Using Job Control from Your Shell, Using jobs Effectively
		job numbers, supplying
 to, Using jobs Effectively

	fgrep
 command, grepping a Directory Tree, Different Versions of grep, rcsgrep, rcsegrep, rcsfgrep
		running on RCS
 files, rcsgrep, rcsegrep, rcsfgrep

	fgrep command (fixed
 grep), grepping for a List of Patterns
		-f option, grepping for a List of Patterns

	fi
 statements, Test Exit Status with the if Statement
	fi unexpected
 error, Missing or Extra esac, ;;, fi, etc.
	fields, Checklist: Terminal Hangs When I Log In, Cutting Columns or Fields, Sort Fields: How sort Sorts, Changing the sort Field Delimiter, Execution Scheduling
		in crontab
 entries, Execution Scheduling
	cutting, Cutting Columns or Fields
	separating with \:
 (colon), Checklist: Terminal Hangs When I Log In
	sort
 command, Sort Fields: How sort Sorts, Changing the sort Field Delimiter
		changing delimiter, Changing the sort Field Delimiter

	fignore shell
 variable, Don’t Match Useless Files in Filename Completion
	file access
 mode, Private (Personal) Directories (see permissions)
	file
 descriptors, Managing Processes: Overall Concepts, Statistics of the Current Process, Why You Can’t Kill a Zombie, The exec Command, Overview: Open Files and File Descriptors, Overview: Open Files and File Descriptors, Overview: Open Files and File Descriptors, Overview: Open Files and File Descriptors, n>&m: Swap Standard Output and Standard Error–n>&m: Swap Standard Output and Standard Error
		closing, Why You Can’t Kill a Zombie
	files currently pointing to,
 viewing, Statistics of the Current Process
	manipulation by exec
 command, The exec Command
	open files
 and, Overview: Open Files and File Descriptors, Overview: Open Files and File Descriptors, Overview: Open Files and File Descriptors, Overview: Open Files and File Descriptors
		standard error or
 stderr, Overview: Open Files and File Descriptors
	standard input or
 stdin, Overview: Open Files and File Descriptors
	standard output or
 stdout, Overview: Open Files and File Descriptors

	redirecting, n>&m: Swap Standard Output and Standard Error–n>&m: Swap Standard Output and Standard Error

	file
 permissions, Shell Lockfile (see permissions)
	file protection
 mode, supplying for directories, Making Directories Made Easier
	file protocol (URI
 types), Configuring the sources.list File
	file
 utility, Finding File Types
	filehandles in
 Perl, Perl Boot Camp, Part 5: Perl Knows Unix
	filenames, Communication with Unix, Filenames–Filenames, Filename Extensions, Naming Files, Can’t Access a File? Look for Spaces in the Name, Hacking on Characters with tr, Quoting Special Characters in Filenames, What’s Special About the Unix Command Line, General Example: Filename Completion, How to Put if-then-else in a C-Shell Alias, Finding (Anyone’s) Home Directory, Quickly, File-Naming Wildcards, Filename Wildcards in a Nutshell–Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Who Handles Wildcards?–Who Handles Wildcards?, What if a Wildcard Doesn’t Match?, Maybe You Shouldn’t Use Wildcards in Pathnames, Getting a List of Matching Files with grep -l, The vgrep Script, nom: List Files That Don’t Match a Wildcard, With the “$@” Parameter, Finding a Program Name and Giving Your Program Multiple Names, Introduction to basename and dirname, Introduction to basename and dirname, Perl Boot Camp, Part 5: Perl Knows Unix
		changing
 with rename function
 (Perl), Perl Boot Camp, Part 5: Perl Knows Unix
	completion by
 shells, What’s Special About the Unix Command Line, General Example: Filename Completion
	conventions, Filenames–Filenames
	converting form uppercase to
 lowercase, Hacking on Characters with tr
	ending with
 ~, Finding (Anyone’s) Home Directory, Quickly
	executable vs.
 source, How to Put if-then-else in a C-Shell Alias
	extensions
 for, Filename Extensions
	finding with cat
 command, Communication with Unix
	links
 and, Finding a Program Name and Giving Your Program Multiple Names
	path name components,
 stripping with basename, Introduction to basename and dirname
	special characters, quoting in C
 shell, Quoting Special Characters in Filenames
	stripped from
 pathnames, Introduction to basename and dirname
	symbols
 in, With the “$@” Parameter
	whitespace
 in, Can’t Access a File? Look for Spaces in the Name
	wildcards
 for, File-Naming Wildcards, Filename Wildcards in a Nutshell–Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Who Handles Wildcards?–Who Handles Wildcards?, What if a Wildcard Doesn’t Match?, Maybe You Shouldn’t Use Wildcards in Pathnames, Getting a List of Matching Files with grep -l, The vgrep Script, nom: List Files That Don’t Match a Wildcard
		failing to match, What if a Wildcard Doesn’t Match?
	file’s name and extension as separate
 entities, Filename Wildcards in a Nutshell
	grep -l command, listing matching
 files, Getting a List of Matching Files with grep -l
	listing of, Filename Wildcards in a Nutshell–Filename Wildcards in a Nutshell
	nom script, listing nonmatching
 files, nom: List Files That Don’t Match a Wildcard
	pathnames, not using in, Maybe You Shouldn’t Use Wildcards in Pathnames
	shell handling of, Who Handles Wildcards?–Who Handles Wildcards?
	vgrep script, listing nonmatching
 files, The vgrep Script

	files, Filename Extensions, When Is a File Not a File?, Starting a Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh, Everything but the find Command–Picking a Unique Filename
 Automatically, The Three Unix File Times, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, List All Subdirectories with ls -R, Some GNU ls Features, A csh Alias to List Recently Changed Files, Showing Hidden Files with ls -A and -a, Useful ls Aliases, Can’t Access a File? Look for Spaces in the Name, Showing Nonprintable Characters in Filenames, Counting Files by Types, Listing Files by Age and Size, newer: Print the Name of the Newest File, oldlinks: Find Unconnected Symbolic Links, Picking a Unique Filename
 Automatically, How to Use find, What’s Really in a Directory?, Files with Two or More Names, Files with Two or More Names–Files with Two or More Names, More About Links, Links to a Directory, Creating and Removing Links, Stale Symbolic Links, Linking Directories, Showing the Actual Filenames for Symbolic Links, Renaming, Copying, or Comparing a Set of Files, Renaming a List of Files Interactively, Checking Differences with diff, cmp and diff, make Isn’t Just for Programmers!–Even More Uses for make, Cracking the Nut, What Good Is a cat?, “less” is More–“less” is More, Show Nonprinting Characters with cat -v or od -c–Show Nonprinting Characters with cat -v or od -c, Finding File Types, Squash Extra Blank Lines, How to Look at the End of a File: tail, Printing the Top of a File, Numbering Lines, Different Versions of grep–A Highlighting grep, Search RCS Files with rcsgrep, Finding a Character in a Column, Fast Searches and Spelling Checks with “look”, Finding Words Inside Binary Files, The Cycle of Creation and Destruction, How Unix Keeps Track of Files: Inodes, Deleting Stale Files, Instead of Removing a File, Empty It, Limiting File Sizes, Compressing Files to Save Space–Compressing Files to Save Space, Counting Lines, Words, and Characters: wc, Editing Multiple Files with vi, Keep Your Original File, Write to a New File, Saving Part of a File, Appending to an Existing File, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered Buffers, File-Backup Macros, Emacs Features: A Laundry List, Backup and Auto-Save Files, Batch Editing Gotcha: Editors Fail on Big Files, Splitting Files by Context: csplit–Splitting Files by Context: csplit, Command Evaluation and Accidentally Overwriting Files, Use Wildcards to Create Files?, Build Strings with { }, Build Strings with { }, Build Strings with { }, Handling Lots of Text with Temporary Files, Finding (Anyone’s) Home Directory, Quickly, Automatic Setup When You Enter/Exit a Directory, File-Naming Wildcards, Trapping Exits Caused by Interrupts, test: Testing Files and Strings, Overview: Open Files and File Descriptors, Shell Scripts On-the-Fly from Standard Input, Shell Lockfile, What Is This “Backup” Thing?, On-Demand Incremental Backups of a Project, Using tar to Create and Unpack Archives, I/O and Formatting, Using Standard Input and Output, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe, What Can You Do with an Empty File?, Intruder Detection, Setting an Exact umask, Tutorial on File and Directory Permissions, User, Group, and World
		appending to existing with vi
 editor, Appending to an Existing File
	backing
 up, Filename Extensions, File-Backup Macros, What Is This “Backup” Thing?, On-Demand Incremental Backups of a Project
		(see also backup files)
	excluding from, On-Demand Incremental Backups of a Project
	vi
 editor, macro for, File-Backup Macros

	backup and auto-save,
 Emacs, Backup and Auto-Save Files
	binary,
 searching, Finding Words Inside Binary Files
	comparing, Checking Differences with diff, cmp and diff, make Isn’t Just for Programmers!–Even More Uses for make
		cmp
 program, using, cmp and diff
	diff
 commands, using, Checking Differences with diff
	make
 program, using, make Isn’t Just for Programmers!–Even More Uses for make

	compressing, Compressing Files to Save Space–Compressing Files to Save Space
	copying from subdirectories to
 single directory, Shell Scripts On-the-Fly from Standard Input
	counting number in
 a directory, Counting Lines, Words, and Characters: wc
	creating, using
 wildcards, Use Wildcards to Create Files?
	deleted, archiving on
 tape, Deleting Stale Files
	directory contents, explanation
 of, What’s Really in a Directory?
	Emacs editor, viewing
 and manipulating in, Emacs Features: A Laundry List
	empty, What Can You Do with an Empty File?
	emptying, Instead of Removing a File, Empty It
	finding, Everything but the find Command–Picking a Unique Filename
 Automatically, The Three Unix File Times, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, List All Subdirectories with ls -R, Some GNU ls Features, A csh Alias to List Recently Changed Files, Showing Hidden Files with ls -A and -a, Useful ls Aliases, Can’t Access a File? Look for Spaces in the Name, Showing Nonprintable Characters in Filenames, Counting Files by Types, Listing Files by Age and Size, newer: Print the Name of the Newest File, oldlinks: Find Unconnected Symbolic Links, Picking a Unique Filename
 Automatically
		access
 times, The Three Unix File Times
	by age
 and size, Listing Files by Age and Size
	change
 and modification times, The Three Unix File Times
	counting
 by types, Counting Files by Types
	GNU ls
 command, features of, Some GNU ls Features, A csh Alias to List Recently Changed Files
	listing
 subdirectories with ls -R, List All Subdirectories with ls -R
	newest
 file, printing name of, newer: Print the Name of the Newest File
	nonprintable
 characters in filenames, showing, Showing Nonprintable Characters in Filenames
	oldest
 or newest with ls -t or ls -u, Finding Oldest or Newest Files with ls -t and ls -u
	showing
 hidden files with ls -a or ls -A, Showing Hidden Files with ls -A and -a
	spaces
 in filenames, Can’t Access a File? Look for Spaces in the Name
	symbolic
 links, unconnected, oldlinks: Find Unconnected Symbolic Links
	type of
 file in each directory, listing with ls -F, Useful ls Aliases
	unique
 filenames, picking automatically, Picking a Unique Filename
 Automatically

	finding with find
 command, How to Use find (see find command)
	hosts.equiv, Starting a Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh
	inodes, How Unix Keeps Track of Files: Inodes
	linking, Files with Two or More Names, Files with Two or More Names–Files with Two or More Names, More About Links, Links to a Directory, Creating and Removing Links, Stale Symbolic Links, Linking Directories, Showing the Actual Filenames for Symbolic Links
		creating
 and removing links, Creating and Removing Links
	directories,
 linking, Linking Directories
	directory,
 links to, Links to a Directory
	filenames
 for symbolic links, Showing the Actual Filenames for Symbolic Links
	links,
 types of, More About Links
	reasons
 for, Files with Two or More Names–Files with Two or More Names
	stale
 symbolic links, Stale Symbolic Links

	lockfiles, Shell Lockfile
	modification by attackers, checking
 for, Intruder Detection
	names
 for, File-Naming Wildcards (see filenames)
	newly created, setting default mode
 in unmask, Setting an Exact umask
	old and new version, saving with vi
 editor, Keep Your Original File, Write to a New File
	open, and file
 descriptors, Overview: Open Files and File Descriptors
	overwriting
 accidentally, Command Evaluation and Accidentally Overwriting Files
	ownership
 of, User, Group, and World (see ownership, file)
	packing up and
 moving, Using tar to Create and Unpack Archives (see archives)
	permissions
 for, Automatic Setup When You Enter/Exit a Directory (see permissions)
	printing, Build Strings with { }, Build Strings with { }
		(see also printing)
	shortcut
 for, Build Strings with { }

	Python, opening, closing and
 reading, I/O and Formatting
	reading to/writing
 from, Using Standard Input and Output, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe
		(see also redirecting input and
 output)

	recovering with vi -r
 command, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered Buffers
		recovered buffers, cautions
 about, Be Careful with vi -r Recovered Buffers

	remote, copying to local
 system, Build Strings with { }
	removing, The Cycle of Creation and Destruction (see deleting
 removing files rm command)
	renaming, Renaming, Copying, or Comparing a Set of Files, Renaming a List of Files Interactively
		copying
 or comparing set of, Renaming, Copying, or Comparing a Set of Files
	interactively, Renaming a List of Files Interactively

	saving part of with vi
 editor, Saving Part of a File
	searching, Different Versions of grep–A Highlighting grep, Search RCS Files with rcsgrep, Finding a Character in a Column, Fast Searches and Spelling Checks with “look”
		by
 column, using awk, Finding a Character in a Column
	with grep commands, Different Versions of grep–A Highlighting grep
	look
 program, Fast Searches and Spelling Checks with “look”
	rcsgrep
 script, Search RCS Files with rcsgrep

	security, Tutorial on File and Directory Permissions (see security)
	showing
 contents of, Cracking the Nut, What Good Is a cat?, “less” is More–“less” is More, Show Nonprinting Characters with cat -v or od -c–Show Nonprinting Characters with cat -v or od -c, Finding File Types, Squash Extra Blank Lines, How to Look at the End of a File: tail, Printing the Top of a File, Numbering Lines
		cat -v or od -c, showing nonprinting
 characters, Show Nonprinting Characters with cat -v or od -c–Show Nonprinting Characters with cat -v or od -c
	cat command, What Good Is a cat?
	displaying end with tail
 command, How to Look at the End of a File: tail
	file types, finding, Finding File Types
	head, displaying beginning
 with, Printing the Top of a File
	less and more pagers, “less” is More–“less” is More
	numbering lines, Numbering Lines
	squashing extra blank lines with cat
 -s, Squash Extra Blank Lines

	size
 of, Limiting File Sizes, Batch Editing Gotcha: Editors Fail on Big Files
		batch
 editing and, Batch Editing Gotcha: Editors Fail on Big Files
	limiting, Limiting File Sizes

	splitting by context
 (csplit), Splitting Files by Context: csplit–Splitting Files by Context: csplit
	switching among with vi
 editor, Editing Multiple Files with vi
	temporary, Handling Lots of Text with Temporary Files, Finding (Anyone’s) Home Directory, Quickly
		handling
 text with, Handling Lots of Text with Temporary Files

	testing, test: Testing Files and Strings
	uncompressing, Trapping Exits Caused by Interrupts

	filesystem check
 (fsck) program, The Kernel and Daemons
	Filesystem Hierarchy
 Standard (FHS), /usr/bin and Other Software Directories, /usr/bin and Other Software Directories
		web site information
 on, /usr/bin and Other Software Directories

	filesystems, Change Many Files by Editing Just One, The /proc Filesystem–A Glimpse at Hardware, Getting Around the Filesystem, Using Relative and Absolute Pathnames, What Good Is a Current Directory?, How Does Unix Find Your Current Directory?, Saving Time When You Change Directories: cdpath, Loop Control: break and continue, The Shells’ pushd and popd Commands–Nice Aliases for pushd, Quick cds with Aliases, cd by Directory Initials, Finding (Anyone’s) Home Directory, Quickly, Marking Your Place with a Shell Variable, Automatic Setup When You Enter/Exit a Directory, Perl Boot Camp, Part 5: Perl Knows Unix, Filesystem Types and /etc/fstab, Mounting and Unmounting Removable Filesystems, Mounting Network Filesystems — NFS, SMBFS, USB Configuration
		/proc, The /proc Filesystem–A Glimpse at Hardware
	navigating Unix
 filesystem, Getting Around the Filesystem, Using Relative and Absolute Pathnames, What Good Is a Current Directory?, How Does Unix Find Your Current Directory?, Saving Time When You Change Directories: cdpath, Loop Control: break and continue, The Shells’ pushd and popd Commands–Nice Aliases for pushd, Quick cds with Aliases, cd by Directory Initials, Finding (Anyone’s) Home Directory, Quickly, Marking Your Place with a Shell Variable, Automatic Setup When You Enter/Exit a Directory
		cd, speeding up with
 aliases, Quick cds with Aliases
	changing
 directories, Saving Time When You Change Directories: cdpath
	changing directories with c (shell
 function), cd by Directory Initials
	current directory, What Good Is a Current Directory?
	current directory,
 finding, How Does Unix Find Your Current Directory?
	directories, automatic setup when
 entering/exiting, Automatic Setup When You Enter/Exit a Directory
	home directory, finding (for
 anyone), Finding (Anyone’s) Home Directory, Quickly
	loop control, break and
 continue, Loop Control: break and continue
	marking your place with shell
 variable, Marking Your Place with a Shell Variable
	relative and absolute
 pathnames, Using Relative and Absolute Pathnames
	shell pushd and popd
 commands, The Shells’ pushd and popd Commands–Nice Aliases for pushd

	NFS and SMBFS,
 mounting, Mounting Network Filesystems — NFS, SMBFS
	Perl functions
 for, Perl Boot Camp, Part 5: Perl Knows Unix
	removable,
 mounting/unmounting, Mounting and Unmounting Removable Filesystems
	synchronizing with rsync
 program, Change Many Files by Editing Just One
	for
 USBs, USB Configuration

	File\:\:Find module
 (Perl), oldlinks: Find Unconnected Symbolic Links
	filtering text
 through Unix
 commands, Compound Searches, Keymaps for Pasting into a Window Running vi
		fmt
 command, Keymaps for Pasting into a Window Running vi
	greps, Compound Searches

	filters, Programs Are Designed to Work Together, Searching for Text with grep, Overview: Open Files and File Descriptors, Printing to Windows Printers from Unix, Converting Source Files Automagically Within the Spooler, The Portable Bitmap Package
		apsfilter, Converting Source Files Automagically Within the Spooler
	for
 graphics, The Portable Bitmap Package
	grep command
 as, Searching for Text with grep
	lpd daemon, running files
 through, Printing to Windows Printers from Unix

	find
 command, oldlinks: Find Unconnected Symbolic Links, How to Use find–Keeping find from Searching Networked Filesystem, How to Use find–How to Use find, Delving Through a Deep Directory Tree, Delving Through a Deep Directory Tree, Delving Through a Deep Directory Tree, Looking for Files with Particular Names, Searching for Old Files, Searching for Old Files, Be an Expert on find Search Operators–Be an Expert on find Search Operators, The Times That find Finds, Exact File-Time Comparisons, Running Commands on What You Find, Using
 -exec to Create Custom Tests, Custom -exec Tests Applied, Finding Many Things with One Command, Searching for Files by Type, Searching for Files by Size, Searching for Files by Permission, Searching by Owner and Group, Searching by Owner and Group, Duplicating a Directory Tree, Using “Fast find” Databases, Wildcards with “Fast find” Database, Finding Files (Much) Faster with a find Database–Finding Files (Much) Faster with a find Database, grepping a Directory Tree, lookfor: Which File Has That Word?, Finding the (Hard) Links to a File, Finding Files with -prune, Quick finds in the Current Directory, Skipping Parts of a Tree in find, Keeping find from Searching Networked Filesystem, Finding Text That Doesn’t Match, Answer “Yes” or “No” Forever with yes, Removing a Strange File by its i-number, Removing a Strange File by its i-number, Removing a Strange File by its i-number, Deleting Stale Files, Deleting Stale Files, Using find to Clear Out Unneeded Files, Compressing a Directory Tree: Fine-Tuning, Don’t Confuse Regular Expressions with Wildcards, Don’t Confuse Regular Expressions with Wildcards, Use with Loops, Nested Command
 Substitution, On-Demand Incremental Backups of a Project, Intruder Detection, User, Group, and World, Using chmod to Change File Permission, The Handy chmod = Operator
		$() operator, used
 with, Nested Command
 Substitution
	-atime
 operator, Deleting Stale Files
		locating files based on last access
 time, Deleting Stale Files

	-exec operator, Using
 -exec to Create Custom Tests, Custom -exec Tests Applied
		creating
 custom tests, Using
 -exec to Create Custom Tests
	large
 recursive greps, using for, Custom -exec Tests Applied

	-exec
 option, Using chmod to Change File Permission, The Handy chmod = Operator
		changing permissions for directory
 tree, Using chmod to Change File Permission

	-inum operator, Removing a Strange File by its i-number
	-mtime operator, Searching for Old Files
	-name operator, Looking for Files with Particular Names
	-newer
 option, using in incremental file backups, On-Demand Incremental Backups of a Project
	-nouser or -nogroup
 operators, Searching by Owner and Group
	-ok option, Answer “Yes” or “No” Forever with yes
	-perm operator, Searching for Files by Permission
	-prune operator, Finding Files with -prune, Quick finds in the Current Directory, Removing a Strange File by its i-number
		quick
 find in current directory, Quick finds in the Current Directory

	-size operator, Searching for Files by Size
	-type operator, Searching for Files by Type
	-user and -group
 operators, Searching by Owner and Group
	clearing out unneeded files
 with, Using find to Clear Out Unneeded Files
	cpio
 operator, Deleting Stale Files
		archiving deleted files on
 tape, Deleting Stale Files

	directory
 tree, delving through, Delving Through a Deep Directory Tree
	duplicating a directory
 tree, Duplicating a Directory Tree
	fast find
 commands, Delving Through a Deep Directory Tree, Wildcards with “Fast find” Database, Finding Files (Much) Faster with a find Database–Finding Files (Much) Faster with a find Database
		database for, Finding Files (Much) Faster with a find Database–Finding Files (Much) Faster with a find Database
	matching shell
 wildcards, Wildcards with “Fast find” Database

	fast find databases,
 using, Using “Fast find” Databases
	features and basic
 operators, How to Use find–How to Use find
	filename-matching
 patterns, Don’t Confuse Regular Expressions with Wildcards
	files for
 compression, Compressing a Directory Tree: Fine-Tuning
	files you own with wrong
 permissions, User, Group, and World
	finding many things with one
 command, Finding Many Things with One Command
	grepping a directory
 tree, grepping a Directory Tree
	hard links to a file,
 finding, Finding the (Hard) Links to a File
	lookfor script, using
 in, lookfor: Which File Has That Word?
	loops using, Use with Loops
	maxdepth operator, Removing a Strange File by its i-number
	modified
 files, checking for, Intruder Detection
	networked filesystem, preventing from
 searching, Keeping find from Searching Networked Filesystem
	old files, searching
 for, Searching for Old Files
	operators, Finding Text That Doesn’t Match
	regex and iregex
 options, Don’t Confuse Regular Expressions with Wildcards
	running commands on
 results, Running Commands on What You Find
	search
 operators, Be an Expert on find Search Operators–Be an Expert on find Search Operators
	skipping parts of directory
 tree, Skipping Parts of a Tree in find
	time operators (-mtime, -atime, and
 -ctime), The Times That find Finds, Exact File-Time Comparisons
		exact file-time
 comparisons, Exact File-Time Comparisons

	unconnected symbolic links,
 finding, oldlinks: Find Unconnected Symbolic Links
	xargs command, using
 with, Delving Through a Deep Directory Tree

	finding, Finding File Types, How Does Unix Find Your Current Directory?, Finding (Anyone’s) Home Directory, Quickly
		current
 directory, How Does Unix Find Your Current Directory?
	file
 types, Finding File Types
	home directory (for
 anyone), Finding (Anyone’s) Home Directory, Quickly

	findpt
 alias, Finding Text That Doesn’t Match
	firewalls, Gateways and NAT, Firewalls
		gateways functioning
 as, Gateways and NAT

	fixed dynamic addresses, Dynamic Host Configuration Protocol (DHCP)
	fixed
 grep, Different Versions of grep (see fgrep command)
	fixed
 length records, converting to/from variable-length
 records, Text Conversion with dd
	flags, Interactive Shells
		displaying
 current, Interactive Shells

	flavors of
 Unix, The Core of Unix
	floating-point
 numbers, Alphabetic and Numeric Sorting, Perl Boot Camp, Part 2: Variables and Data Types
		Perl data
 type, Perl Boot Camp, Part 2: Variables and Data Types
	sort command
 and, Alphabetic and Numeric Sorting

	floppies, Backing Up to Floppies or Zip Disks, Mounting and Unmounting Removable Filesystems, Loopback Mounts
		backing up
 to, Backing Up to Floppies or Zip Disks
	loopback
 mounts, Loopback Mounts

	flow-control
 operators for loops (in Perl), Perl Boot Camp, Part 3: Branching and Looping
	fmt
 command, Neatening Lines, Keymaps for Pasting into a Window Running vi, Neatening Text with fmt, Neatening Text with fmt, Neatening Text with fmt, Neatening Text with fmt, Neatening Text with fmt, Clean Up Program Comment Blocks, fmt -p, Outputting Text to an X Window
		-p option, reformatting program source
 code, Neatening Text with fmt, Clean Up Program Comment Blocks, fmt -p
	-tuw options, Neatening Text with fmt
	disk initializer
 command, Neatening Text with fmt
	ending punctuation for sentences
 and, Neatening Text with fmt
	filtering text from vi editor
 through, Keymaps for Pasting into a Window Running vi
	filtering vi text
 through, Neatening Lines
	reformatting fortune
 with, Outputting Text to an X Window

	fmt.sh
 script, Alternatives to fmt
	fmtarg variable
 (xmessage utility), Outputting Text to an X Window
	fold
 utility, Neatening Text with fmt
	font resource
 (xterm), The Simple Way to Pick a Font, Changing Fonts Dynamically
	fonts, The Simple Way to Pick a Font, The Simple Way to Pick a Font, The xterm Menus, The xterm Menus, Changing Fonts Dynamically–Enabling Escape Sequence and Selection, VT Fonts Menu
		default, The Simple Way to Pick a Font
	selecting, The Simple Way to Pick a Font
	xterm, changing
 dynamically, Changing Fonts Dynamically–Enabling Escape Sequence and Selection, VT Fonts Menu
		VT Fonts
 menu, VT Fonts Menu

	xterm, VT Fonts
 menu, The xterm Menus, The xterm Menus

	for
 command (awk), Alphabetical Summary of Commands
	for
 loops, Anyone Can Program the Shell, Alphabetical Summary of Commands, Repeating Commands, A for Loop, Multiline Commands, Secondary Prompts, Here Document Example #1: Unformatted Form Letters, Loop Control: break and continue, Testing and Using a sed Script: checksed, runsed, With a Loop, Handling Command-Line Arguments with a for Loop, Handling Command-Line Arguments with a for Loop, Handling Arguments with while and shift, Loop Control: break and continue, Standard Input to a for Loop, Making a for Loop with
 Multiple Variables, Perl Boot Camp, Part 3: Branching and Looping
		break and continue commands
 in, Loop Control: break and continue
	break and continue, controlling
 with, Loop Control: break and continue
	command-line arguments, handling
 with, Handling Command-Line Arguments with a for Loop, Handling Arguments with while and shift
	commands, varying while
 repeating, Repeating Commands, A for Loop
	here documents, using to print form
 letters, Here Document Example #1: Unformatted Form Letters
	in command-line
 arguments, With a Loop
	with multiple variables, Making a for Loop with
 Multiple Variables
	sed scripts, use in, Testing and Using a sed Script: checksed, runsed
	standard input, stepping
 through, Standard Input to a for Loop
	wildcards, using with, Handling Command-Line Arguments with a for Loop

	forcing file
 removal/moving without warnings, Protect Important Files: Make
 Them Unwritable
	foreach
 loop, A foreach Loop
	foreach
 loops, A foreach Loop, Multiline Commands, Secondary Prompts, Arrays, Perl Boot Camp, Part 3: Branching and Looping
		commands, varying while
 repeating, A foreach Loop
	iterating through
 arrays, Arrays
	iterating through list
 elements, Perl Boot Camp, Part 3: Branching and Looping

	foreground color, Configuring It
	foreground
 jobs, Stop Background Output with stty tostop, Killing Foreground Jobs, A nice Gotcha
		interrupting with notification of state change
 in background job, Stop Background Output with stty tostop
	killing, Killing Foreground Jobs
	nice command and, A nice Gotcha

	foreground
 processes, Job Control in a Nutshell, Managing Processes: Overall Concepts
		process group
 and, Managing Processes: Overall Concepts

	fork system
 call, fork and exec, Processes Out of Control? Just STOP Them, How the Shell Executes Other Commands
		processes forking out of
 control, Processes Out of Control? Just STOP Them

	format, Backing Up to Tape
		tape
 drives, Backing Up to Tape

	formatted manpage
 files, Searching Online Manual
 Pages
	formatting, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
		markup languages
 for, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On

	formatting Python
 output, I/O and Formatting
	Fortran program source
 file extension, Filename Extensions
	fpath array
 (zsh), FPATH Search Path
	FPATH
 environment variable, FPATH Search Path, FPATH Search Path–zsh, Korn shell, zsh, zsh
		Korn
 shell, Korn shell
	zsh
 shell, zsh, zsh

	free disk space, Timing Is Everything
		checking
 with df, Timing Is Everything

	free
 memory, Memory Information
		information
 about, Memory Information

	Free Software Foundation
 website, Managing and Sharing Files with RCS and CVS
	FreeBSD, The Core of Unix, The man Command
		sections,
 searching in manpages, The man Command

	FreeBSD
 Unix, The info Command, Finding Words Inside Binary Files, /usr/bin and Other Software Directories, Installation with FreeBSD Ports, Installing with FreeBSD Packages, Reading Kernel Boot
 Output, Disk Partitioning, Decapitating Your Machine — Serial Consoles, Status and Troubleshooting, The Director of Operations: inetd, Gateways and NAT, Checking Swap Space, Forgetting the root Password, Free SSH with OpenSSH
		disk partitions, Disk Partitioning
	enabling gatewaying, Gateways and NAT
	ifconfig file
 output, Status and Troubleshooting
	inetd.conf
 file, The Director of Operations: inetd
	info command, The info Command
	installing software with FreeBSD
 packages, Installing with FreeBSD Packages
	kernel boot output for
 devices, Reading Kernel Boot
 Output
	OpenSSH, Free SSH with OpenSSH
	serial
 consoles, Decapitating Your Machine — Serial Consoles
	single user mode, Forgetting the root Password
	software installation with FreeBSD
 Ports, Installation with FreeBSD Ports
	software
 installation with Ports system, /usr/bin and Other Software Directories
	strings
 utility, searching for words in binary
 files, Finding Words Inside Binary Files
	swapinfo utility, Checking Swap Space

	fsck (filesystem
 check) program, The Kernel and Daemons
	FTP, Unix Networking and Communications, Emacs Features: A Laundry List, Here Documents, Configuring the sources.list File, Configuring an Anonymous FTP Server, Server and Client Problems
		anonymous
 ftp, Here Documents
	anonymous FTP server,
 configuring, Configuring an Anonymous FTP Server
	Emacs facility
 for, Emacs Features: A Laundry List
	ftp
 program, Unix Networking and Communications
	ftp protocol (URI
 types), Configuring the sources.list File
	securing with port
 forwarding, Server and Client Problems

	function keys,
 mapping in vi, Command Mode Maps
	functional
 programming languages, functions in, Functions
	functions, Internal and External Commands, vi @-Functions–Newlines in an @-Function, Defining and Using Simple @-Functions, Combining @-Functions, Reusing a Definition, Newlines in an @-Function, Which One Will bash Use?, Shell Function Basics, tcsh Editing–tcsh Editing, Using tar to Create and Unpack Archives, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Hashes, Perl Boot Camp, Part 5: Perl Knows Unix, Functions, Functions, Functions, Everything’s an Object, What We Mean by Buffer Overflow, What We Mean by Buffer Overflow
		@-functions, vi
 editor, vi @-Functions–Newlines in an @-Function, Defining and Using Simple @-Functions, Combining @-Functions, Reusing a Definition, Newlines in an @-Function
		combining, Combining @-Functions
	defining and using
 simple, Defining and Using Simple @-Functions
	newlines in, Newlines in an @-Function
	reusing
 definition, Reusing a Definition

	buffer overflow,
 causing, What We Mean by Buffer Overflow
	built-in editor functions,
 tcsh, tcsh Editing–tcsh Editing
	C language, boundary
 checking, What We Mean by Buffer Overflow
	Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Hashes, Perl Boot Camp, Part 5: Perl Knows Unix
		exit(
), Perl Boot Camp, Part 1: Typical Script Anatomy
	filesystem, Perl Boot Camp, Part 5: Perl Knows Unix
	hash
 functions, Hashes
	print, Scalars

	Python, Functions, Functions, Functions, Everything’s an Object
		anonymous,
 creating, Functions
	class
 methods, Everything’s an Object
	defining, Functions

	shell, Internal and External Commands, Which One Will bash Use?, Shell Function Basics
		(see also shell
 functions)

	tar
 utility, Using tar to Create and Unpack Archives

 G
	g or G (get) commands, sed
 editor, History Substitutions, Transforming Part of a Line, The Deliberate Scrivener, The Deliberate Scrivener
		G (Get)
 command, Transforming Part of a Line

	gateways, Gateways and NAT, Firewalls, Gatewaying from a Personal LAN over a Modem
		functioning as
 firewalls, Firewalls
	personal LAN over a
 modem, Gatewaying from a Personal LAN over a Modem

	gawk
 utility, Looking for Closure, Quick Reference: awk, awk System Variables, Versions of awk, Using Standard Input and Output
		paired item check
 script, Looking for Closure
	standard
 I/O, Using Standard Input and Output
	variables, awk System Variables
	version
 history, Versions of awk

	geometry variable
 (xmessage utility), Outputting Text to an X Window
	get (g or
 G) commands, sed editor, Transforming Part of a Line, The Deliberate Scrivener, The Deliberate Scrivener
		G (Get)
 command, Transforming Part of a Line

	get
 command, Connecting to SMB Shares from Unix
		copying files from remote host to Unix
 machine, Connecting to SMB Shares from Unix

	getline
 command (nawk), Alphabetical Summary of Commands
	getopt
 command, Handling Command-Line Arguments with a for Loop, Standard Command-Line
 Parsing
		parsing output, Standard Command-Line
 Parsing

	getopts
 command, Handling Arguments with while and shift, Standard Command-Line
 Parsing
	getty
 program, Job Control in a Nutshell, How Job Control Works, What Are They?, fork and exec
		Linux
 virtual consoles, use in, What Are They?

	GID (group
 ID), Managing Processes: Overall Concepts, When Does a User Become a User, Groups and Group Ownership
		primary group, finding
 for, Groups and Group Ownership
	zero, for
 superuser group, When Does a User Become a User

	global (\:g) string
 editing operator, String Editing (Colon) Operators
	global
 aliases, zsh Aliases
	global
 command (ex), Useful ex
 Commands
	global commands with pattern matches, Useful Global Commands (with Pattern Matches)
	global commands,
 using in vi editor, Using Search Patterns and Global Commands, Global Searches
		global
 searches, Global Searches

	global crontab
 entries, Adding crontab Entries
	global
 initializations (Emacs), disabling, Customizations and How to Avoid Them
	global
 replacements, Global Searches
	globbing, Filename Wildcards in a Nutshell, What if a Wildcard Doesn’t Match?
		enabling/preventing in
 shells, Filename Wildcards in a Nutshell
	shell failure to
 match wildcards and, What if a Wildcard Doesn’t Match?

	Gnome, The Kernel and Daemons
	GNU, Highlighting and Color in Shell Prompts, Color ls–Another color ls, Some GNU ls Features, Can’t Access a File? Look for Spaces in the Name, Running Commands on What You Find, Using “Fast find” Databases, Using “Fast find” Databases, How to Look at Files as They Grow, GNU tail File Following, GNU tail File Following, Printing the Top of a File, GNU Context greps, Save Space: tar and compress a Directory Tree, The Unix spell Command, The vi Editor: Why So Much Material?, tar in a Nutshell, More Ways to Back Up, Using GNU tar with a Remote Tape Drive, With GNU tar–Wildcard Gotchas in GNU tar, Avoid Absolute Paths with tar, Getting tar’s Arguments in the Right Order, Simplifying the make Process, Interruptable gets with wget
		autoconf and automake
 utilities, Simplifying the make Process
	context greps, GNU Context greps
	dircolors
 command, Highlighting and Color in Shell Prompts
	Emacs, The vi Editor: Why So Much Material? (see Emacs
 editor)
	fast find utility
 (locate), Using “Fast find” Databases
	find command, {}
 and, Running Commands on What You Find
	head command, Printing the Top of a File
	ls
 command, Color ls–Another color ls, Some GNU ls Features, Can’t Access a File? Look for Spaces in the Name
		-Q
 (quoting) option, Can’t Access a File? Look for Spaces in the Name
	displaying color
 names, Color ls–Another color ls

	slocate
 command, Using “Fast find” Databases
	spell, download site
 for, The Unix spell Command
	tail
 program, How to Look at Files as They Grow, GNU tail File Following, GNU tail File Following
		follow option, GNU tail File Following
	follow=name and retry
 options, GNU tail File Following

	tar command, Save Space: tar and compress a Directory Tree
	tar
 utility, tar in a Nutshell, More Ways to Back Up, Using GNU tar with a Remote Tape Drive, With GNU tar–Wildcard Gotchas in GNU tar, Avoid Absolute Paths with tar, Getting tar’s Arguments in the Right Order
		command-line arguments, order
 of, Getting tar’s Arguments in the Right Order
	gzip
 and bzip2 options, More Ways to Back Up
	remote tape drive, using
 with, Using GNU tar with a Remote Tape Drive
	storing absolute
 pathnames, Avoid Absolute Paths with tar
	wildcards, using
 with, With GNU tar–Wildcard Gotchas in GNU tar

	wget
 utility, Interruptable gets with wget

	GNU
 Readline, Shell Setup Files — Which, Where, and Why
	GNU-Darwin auto-installer
 for OS X (One-Step), The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
	GNUS
 (Emacs Usenet client), Emacs Features: A Laundry List
	gprof
 profiler, Timing Is Everything
	grabchars
 program, read: Reading from the Keyboard
	graphical user
 interfaces, Communication with Unix (see GUIs)
	graphics, The Portable Bitmap Package–The Portable Bitmap Package
		conversion
 programs, The Portable Bitmap Package–The Portable Bitmap Package

	graymaps, The Portable Bitmap Package
	greater than (>)
 operator, Syntax, Scalars
	greater than or equal to (>=)
 operator, Scalars
	greedy and non-greedy regular
 expressions, Regular Expressions: Potential Problems
	grep
 command, Searching Online Manual
 Pages, Who’s
 On?, Custom -exec Tests Applied, grepping a Directory Tree, lookfor: Which File Has That Word?, Numbering Lines, Different Versions of grep–A Highlighting grep, Removing Every File but One, Command Substitution, Command Substitution, Understanding Expressions, Regular Expressions: Matching a Character with a Character Set, Examples of Searching, Getting a List of Matching Files with grep -l, Getting a List of Nonmatching Files, The vgrep Script, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines, Overview: Open Files and File Descriptors, Problems Piping to a Pager
		-c option, Getting a List of Nonmatching Files
		listing
 nonmatching files, Getting a List of Nonmatching Files

	-e option, The vgrep Script
	-exec operator (find command), using
 for, Custom -exec Tests Applied
	-l option, Command Substitution, Getting a List of Matching Files with grep -l
		listing
 matching files, Getting a List of Matching Files with grep -l

	-n option, number lines
 with, Numbering Lines
	-Z option for compressed
 files, Searching Online Manual
 Pages
	cgrep
 script, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines
	finding commands containing the word
 “error”, Command Substitution
	finding file with particular word or string
 in it, grepping a Directory Tree
	lookfor script, using
 in, lookfor: Which File Has That Word?
	piping output to
 pager, Problems Piping to a Pager
	redirecting output, Overview: Open Files and File Descriptors
	regular expressions used with, search
 pattern examples, Examples of Searching
	regular expressions, evaluating and
 matching, Understanding Expressions
	regular expressions, use
 of, Regular Expressions: Matching a Character with a Character Set
		printing every address in your incoming
 mailbox, Regular Expressions: Matching a Character with a Character Set

	v
 option, Removing Every File but One
		excluding files from
 deletion, Removing Every File but One

	who command, using
 with, Who’s
 On?

	grep
 commands, Communication with Unix, Different Versions of grep, Different Versions of grep, Different Versions of grep, Different Versions of grep, Different Versions of grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep, Extended Searching for Text with egrep, grepping for a List of Patterns, Approximate grep: agrep, Search RCS Files with rcsgrep–rcsegrep.fast, rcsgrep, rcsegrep, rcsfgrep, GNU Context greps, GNU Context greps, GNU Context greps, GNU Context greps, A Multiline Context grep Using sed, Compound Searches, Narrowing a Search Quickly, Narrowing a Search Quickly, Faking Case-Insensitive Searches, A Highlighting grep
		agrep, Different Versions of grep, Approximate grep: agrep
	case-insensitive
 searches, Faking Case-Insensitive Searches
	compound searches, Compound Searches, Narrowing a Search Quickly
	egrep, Different Versions of grep, Extended Searching for Text with egrep
	egrep -f
 and fgrep -f, grepping for a List of Patterns
	fgrep, Different Versions of grep
	GNU context greps, GNU Context greps, GNU Context greps, GNU Context greps, GNU Context greps
		-A option, GNU Context greps
	-B option, GNU Context greps
	-C option, GNU Context greps

	grep, Different Versions of grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep, Searching for Text with grep, Narrowing a Search Quickly
		-c
 option, Searching for Text with grep
	-i
 option, Searching for Text with grep
	-l
 option, Searching for Text with grep
	-v
 option, Searching for Text with grep, Narrowing a Search Quickly
	-w
 option, Searching for Text with grep
	ps command, using
 with, Searching for Text with grep

	highlighting text with
 hgrep, A Highlighting grep
	multiline context grep using
 sed, A Multiline Context grep Using sed
	rcsgrep, Different Versions of grep, Search RCS Files with rcsgrep–rcsegrep.fast
	running on RCS files with rcsgrep
 script, rcsgrep, rcsegrep, rcsfgrep
	searching files for matching line of
 text, Communication with Unix

	group
 ID, Managing Processes: Overall Concepts (see GID)
	grouping operator ((
)), Be an Expert on find Search Operators, grepping for a List of Patterns, Extended Regular Expressions
	groups, Access to Directories, Managing Processes: Overall Concepts, Perl Boot Camp, Part 5: Perl Knows Unix, Unix User/Group Infrastructure, Group Permissions in a Directory with the setgid Bit, Groups and Group Ownership–Groups and Group Ownership, Add Users to a Group to Deny Permissions, User, Group, and World, User, Group, and World, Which Group is Which?, The Handy chmod = Operator, Juggling Permissions
		denying permissions
 with, Add Users to a Group to Deny Permissions
	file
 ownership, User, Group, and World
	file ownership,
 determining, Which Group is Which?
	group ownership
 and, Groups and Group Ownership–Groups and Group Ownership
	ownership of files in
 directories, Access to Directories
	ownership of
 files, changing, Perl Boot Camp, Part 5: Perl Knows Unix
	permissions, Group Permissions in a Directory with the setgid Bit, User, Group, and World, The Handy chmod = Operator, Juggling Permissions
		denying, User, Group, and World
	directory
 with setgid bit, Group Permissions in a Directory with the setgid Bit
	listing
 for files, Juggling Permissions
	setting
 to same as file owner, The Handy chmod = Operator

	process
 groups, Managing Processes: Overall Concepts
	Unix user/group
 infrastructure, Unix User/Group Infrastructure

	groups
 command, Groups and Group Ownership, Juggling Permissions
	gsub command (awk), Alphabetical Summary of Commands
	gt operator (Perl), Scalars
	guest
 accounts, Installing and Configuring Samba
	GUIs (graphical user
 interfaces), Power Grows on You, Communication with Unix, There Are Many Shells, Other Problems, wxPython
		operating
 systems, Power Grows on You
	Python, wxPython
	Tcl/Tk commands for, using in wish
 shell, There Are Many Shells
	wrapping interactive
 programs with, using Expect, Other Problems

	gunzip
 utility, Compressing Files to Save Space, Compressing Files to Save Space, Compressing Files to Save Space, uuencoding
		-c option, writing uncompressed data to
 standard output, Compressing Files to Save Space
	-N option, Compressing Files to Save Space
	recreating original tar files
 with, uuencoding

	gzcat
 command, Compressing Files to Save Space
	gzip
 utility, Compressing Files to Save Space, Compressing Files to Save Space, More Ways to Back Up, Backing Up to Floppies or Zip Disks, To gzip, or Not to gzip?, Using Standard Input and Output
		gzip -c command, Using Standard Input and Output
	gzip -l command, Compressing Files to Save Space

 H
	h or H (hold)
 commands, sed editor, The Deliberate Scrivener, The Deliberate Scrivener
		h
 command, The Deliberate Scrivener

	hacking, Power Grows on You
	handlers for DDoS
 attacks, What We Mean by DoS
	hangups, What Are Signals? (see HUP signals)
	hangups, background
 processes and, nohup
	hard disk
 quota limits, Disk Quotas
	hard
 drives, Reading Kernel Boot
 Output
	hard
 links, Finding the (Hard) Links to a File, More About Links, Differences Between Hard and Symbolic Links, Creating and Removing Links, Stale Symbolic Links, Copying Directory Trees with cp -r, Safer File Deletion in Some Directories, Save Space with a Link, Save Space: tar and compress a Directory Tree, Automatic Setup When You Enter/Exit a Directory
		-i file in home directory for confirmation of
 file deletion, Safer File Deletion in Some Directories
	broken, Creating and Removing Links
	copying, Copying Directory Trees with cp -r
	disk space
 and, Save Space with a Link
	finding for files, Finding the (Hard) Links to a File
	symbolic links vs., Differences Between Hard and Symbolic Links
	tar -l command, printing messages
 about, Save Space: tar and compress a Directory Tree
	to .enter and .exit
 files, Automatic Setup When You Enter/Exit a Directory

	hardware, A Glimpse at Hardware, Quick Introduction to Hardware, Reading Kernel Boot
 Output, Basic Kernel Configuration, Disk Partitioning, Disk Partitioning, Filesystem Types and /etc/fstab, Network Devices — ifconfig, Mounting Network Filesystems — NFS, SMBFS, Win Is a Modem Not a Modem?, Setting Up a Dialup PPP Session, USB Configuration, Dealing with Sound Cards and Other Annoying Hardware, Dealing with Sound Cards and Other Annoying Hardware, Decapitating Your Machine — Serial Consoles
		/proc filesystem
 files, A Glimpse at Hardware
	dialup PPP
 sessions, Setting Up a Dialup PPP Session
	disk
 partitioning, Disk Partitioning, Disk Partitioning
		PCs, Disk Partitioning

	filesystem types and
 /etc/fstab, Filesystem Types and /etc/fstab
	filesystems, Mounting Network Filesystems — NFS, SMBFS
		mounting
 NFS and SMBFS, Mounting Network Filesystems — NFS, SMBFS

	kernel boot output for
 devices, Reading Kernel Boot
 Output
	kernel configuration to
 support, Basic Kernel Configuration
	modems, Win Is a Modem Not a Modem?
	network devices,
 configuring, Network Devices — ifconfig
	serial
 consoles, Decapitating Your Machine — Serial Consoles
	sound cards and
 other, Dealing with Sound Cards and Other Annoying Hardware
	supported hardware
 lists, Dealing with Sound Cards and Other Annoying Hardware
	USB
 configuration, USB Configuration

	hash codes, Inside spell
	hash
 command, Controlling Shell Command Searches
	hashes (Perl), Perl Boot Camp, Part 2: Variables and Data Types, Hashes, Hashes, Hashes
		functions
 for, Hashes
	iterating
 over, Hashes

	head
 command, newer: Print the Name of the Newest File, Printing the Top of a File, Printing the Top of a File, Printing the Top of a File, Printing the Top of a File, Making an Arbitrary-Size File for Testing, What Can You Do with an Empty File?
		c option to print
 characters/bytes, Printing the Top of a File
	GNU version, c nk and c nm
 options, Printing the Top of a File
	n option to control number of lines
 displayed, Printing the Top of a File

	head of a
 pathname (\:h operator), String Editing (Colon) Operators
	headers, mail, Remove Mail/News Headers with behead, MIME Encoding, MIME Encoding
		creating with
 cat, MIME Encoding
	proper formation of, MIME Encoding
	removing
 with behead script, Remove Mail/News Headers with behead

	help, The man Command–The info Command, The man Command, whatis: One-Line Command Summaries, whereis: Finding Where a Command Is Located, Searching Online Manual
 Pages, How Unix Systems Remember Their Names, Which Version Am I Using?, What tty Am I On?, Who’s
 On?, The info Command–The info Command
		command
 versions, Which Version Am I Using?
	info
 commands, The info Command–The info Command
	man
 command, The man Command
	searching online manual
 pages, Searching Online Manual
 Pages
	terminals, tty
 command, What tty Am I On?
	Unix system
 names, How Unix Systems Remember Their Names
	whatis
 command, whatis: One-Line Command Summaries
	whereis
 command, whereis: Finding Where a Command Is Located
	who
 command, Who’s
 On?

	help command
 (lpc), Printer Control with lpc
	here
 documents, Here Documents, Here Document Example #1: Unformatted Form Letters
	hereis document
 terminators, Quoted hereis Document Terminators: sh Versus csh
	hgrep
 script, A Highlighting grep
	hidden files, listing
 with and ls -a and ls -A, Showing Hidden Files with ls -A and -a
	hierarchy,
 filesystem, /usr/bin and Other Software Directories
	highlighting, Highlighting and Color in Shell Prompts, Trying It, A Highlighting grep
		hgrep script,
 using, A Highlighting grep
	in shell
 prompts, Highlighting and Color in Shell Prompts

	histchars shell
 variable, changing history characters with, Changing History Characters with histchars
	histfile
 shell variable (tcsh), Shell Setup Files — Which, Where, and Why
	HISTFILESIZE
 environment variable, Picking Up Where You Left Off
	history
 command, The Lessons of History, History by Number, History by Number, History by Number, History by Number, Pass History to Another Shell, Pass History to Another Shell, Pass History to Another Shell
		-d and -f options, showing dates and
 times, History by Number
	-D option, showing elapsed
 time, History by Number
	-h option, Pass History to Another Shell
	-r (reverse)
 option, History by Number, Pass History to Another Shell
		bash shell, cautions about
 using, History by Number

	-w option, Pass History to Another Shell
	listing specified number of previous
 commands, History by Number

	history
 number in shell prompts, Dynamic Prompts, Multiline Shell Prompts, History in a Nutshell, History by Number
		multiline C-shell
 prompt, Multiline Shell Prompts

	history of
 commands, There Are Many Shells, Making Directories Made Easier, Narrowing a Search Quickly, Repeating a Time-Varying Command, The Lessons of History–Instead of Changing History Characters, My Favorite Is !$, My Favorite Is !:n*, Using !$ for Safety with Wildcards, History by Number–History by Number, History Substitutions–History Substitutions, Check Your History First with :p, Picking Up Where You Left Off–C Shells, bash, ksh, zsh, C Shells, Pass History to Another Shell, Shell Command-Line Editing–zsh Editing, vi Editing Mode, Emacs Editing Mode, tcsh Editing–zsh Editing, ksh Editing, bash Editing, zsh Editing, Changing History Characters with histchars
		!$ sequence for safety with
 wildcards, Using !$ for Safety with Wildcards
	changing history characters with
 histchars, Changing History Characters with histchars
	checking with \:p
 operator, Check Your History First with :p
	history
 numbers, History by Number–History by Number
	history
 substitution, Making Directories Made Easier, My Favorite Is !$, My Favorite Is !:n*
		!$ sequence, My Favorite Is !$
	!\:n* sequence, My Favorite Is !:n*
	mkdir command, using
 with, Making Directories Made Easier

	history
 substitutions, History Substitutions–History Substitutions
	narrowing searches
 with, Narrowing a Search Quickly
	passing to other
 shells, Pass History to Another Shell
	repeating commands
 with, Repeating a Time-Varying Command
	saving history in
 history file, Picking Up Where You Left Off–C Shells, bash, ksh, zsh, C Shells
		bash, ksh, and zsh
 shells, bash, ksh, zsh
	C shells, C Shells

	shell command
 line-editing, Shell Command-Line Editing–zsh Editing, vi Editing Mode, Emacs Editing Mode, tcsh Editing–zsh Editing, ksh Editing, bash Editing, zsh Editing
		bash, bash Editing
	Emacs editing
 mode, Emacs Editing Mode
	ksh (Korn
 shell), ksh Editing
	tcsh shell, tcsh Editing–zsh Editing
	vi editing
 mode, vi Editing Mode
	zsh, zsh Editing

	history shell
 variable, Shell Variables
	history substitution, String Editing (Colon) Operators–String Editing (Colon) Operators, A foreach Loop, C-Shell Aliases with Command-Line Arguments, History in a Nutshell, History Substitutions–History Substitutions, Instead of Changing History Characters
		disabling in
 bash, Instead of Changing History Characters
	editing substitutions
 in C shells, zsh, and bash, String Editing (Colon) Operators–String Editing (Colon) Operators
	for loop, using
 for, A foreach Loop

	HISTSIZE environment variable, The Lessons of History, Picking Up Where You Left Off
	HOBLink JWT RDP
 client, Hob
	hold (h or H) commands, sed editor, Hold Space: The Set-Aside Buffer, The Deliberate Scrivener, The Deliberate Scrivener
		h
 command, The Deliberate Scrivener

	HOLD SCREEN
 button, Output Stopped?
	hold space (sed
 editor), Transforming Part of a Line, The Deliberate Scrivener
		transforming part of a line, use
 in, Transforming Part of a Line

	home
 directory, Your Home Directory, Use Absolute Pathnames in Shell Setup Files, Many Homes, A bin Directory for Your Programs and Scripts, Finding (Anyone’s) Home Directory, Quickly, Predefined Environment Variables
		bin subdirectory,
 creating, A bin Directory for Your Programs and Scripts
	finding, Many Homes, Finding (Anyone’s) Home Directory, Quickly
	HOME environment
 variable, Predefined Environment Variables
	pathname
 of, Use Absolute Pathnames in Shell Setup Files

	HOME environment
 variable, Finding (Anyone’s) Home Directory, Quickly, Predefined Environment Variables
	host allow
 directive, Installing and Configuring Samba
	host
 tool, Domain Name Service (DNS)
	host-based access control, Starting a Remote Client with rsh and ssh
	host-based
 modems, Win Is a Modem Not a Modem?
	hostname
 command, How Unix Systems Remember Their Names
	hostnames, Terminal Setup: Testing Remote Hostname and X Display, Static Prompts, Multiline Shell Prompts, Command-Specific Completion, Status and Troubleshooting, Domain Name Service (DNS), Installing and Configuring Samba
		completion by
 shells, Command-Specific Completion
	for IP address,
 finding with dig -x, Status and Troubleshooting
	mapped to IP addresses by
 DNS, Domain Name Service (DNS)
	NETBIOS, Installing and Configuring Samba
	in shell
 prompts, Static Prompts, Multiline Shell Prompts
		multiline
 C-shell prompt, Multiline Shell Prompts

	showing with who am i
 command, Terminal Setup: Testing Remote Hostname and X Display

	hosts, A .cshrc.$HOST File for Per Host Setup, General and Authentication Problems
		.cshrc.$HOST file for per host
 setup, A .cshrc.$HOST File for Per Host Setup
	trusted-host authentication on
 SSH, General and Authentication Problems

	hosts.equiv
 file, Starting a Remote Client with rsh and ssh
	HTML, Filename Extensions, ed/ex Batch Edits: A Typical Example, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On, Converting Typeset Files into a Printing Language
		converted into
 PostScript, Converting Typeset Files into a Printing Language
	editing files with batch editing
 script, ed/ex Batch Edits: A Typical Example
	file
 extensions, Filename Extensions

	htmllib and
 HTMLParser modules, Python and the Web
	HTMLParser
 module, htmllib and HTMLParser
	HTTP, Emacs Features: A Laundry List, Configuring the sources.list File
		Emacs facility
 for, Emacs Features: A Laundry List
	URI protocol
 types, Configuring the sources.list File

	hung terminals, fixing, Checklist: Terminal Hangs When I Log In, Output Stopped?, Job Stopped?, Program Waiting for Input?, Stalled Data Connection?, Aborting Programs
		aborting programs, Aborting Programs
	output stopped by HOLD SCREEN or SCROLL
 LOCK button, Output Stopped?
	program waiting for
 input, Program Waiting for Input?
	stalled data
 connection, Stalled Data Connection?
	stopped jobs, checking
 for, Job Stopped?

	HUP (hangup)
 signals, nohup, What Are Signals?, Printer Queue Watcher: A Restartable Daemon Shell Script
		ignoring with nohup
 command, nohup

	hyphen , under
 symbols), Handling Command-Line Arguments with a for Loop (see - (dash)
	HZ constant, frequency of
 system time updates, How Unix Keeps Time

 I
	i-number (inodes), How Unix Keeps Track of Files: Inodes
	i-numbers, Removing a Strange File by its i-number
		deleting files
 by, Removing a Strange File by its i-number

	I/O-bound
 processes, Timing Is Everything, Know When to Be “nice” to Other Users...and When Not To
		nice
 command, effect of, Know When to Be “nice” to Other Users...and When Not To

	ICA client,
 installing, Citrix Metaframe
	ICMP (Internet Control
 Message Protocol), TCP/IP — IP Addresses and Ports, Layer 4 Protocols: TCP, UDP, and ICMP, Layer 4 Protocols: TCP, UDP, and ICMP
		diagnostic
 and traffic control messages, Layer 4 Protocols: TCP, UDP, and ICMP

	icons, Setting the Titlebar and Icon Text, SWAT and GUI SMB Browsers
		navigation, for resources shared
 with SMB network, SWAT and GUI SMB Browsers
	text, setting for
 xterms, Setting the Titlebar and Icon Text

	IDE
 (Integrated Development Environment), Emacs
 as, Emacs Features: A Laundry List
	identifiers, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts
		(see also entries under identifier
 names)
	group ID
 (GID), Managing Processes: Overall Concepts
	process ID
 (PID), Managing Processes: Overall Concepts
	user IDs
 (UIDs), Managing Processes: Overall Concepts

	identity, Python
 objects, Everything’s an Object
	if (! $?prompt) exit
 test, Gotchas in set prompt Test
	if
 command (awk), Alphabetical Summary of Commands
	if statements, Test Exit Status with the if Statement–Test Exit Status with the if Statement, Test Exit Status with the if Statement, test: Testing Files and Strings, The Unappreciated Bourne Shell “:” Operator, Outputting Text to an X Window, Missing or Extra esac, ;;, fi, etc.
		debugging, Missing or Extra esac, ;;, fi, etc.
	syntax for
 Bourne shell, Test Exit Status with the if Statement
	test command, using
 with, test: Testing Files and Strings
	testing exit status
 with, Test Exit Status with the if Statement–Test Exit Status with the if Statement
	in xmessage command
 line, Outputting Text to an X Window
	\: used as do-nothing place
 filler, The Unappreciated Bourne Shell “:” Operator

	if-then-else
 loops, How to Put if-then-else in a C-Shell Alias, Searching for Patterns Split Across Lines, Perl Boot Camp, Part 3: Branching and Looping
		cgrep
 script, using in, Searching for Patterns Split Across Lines
	csh aliases, use in, How to Put if-then-else in a C-Shell Alias
	Perl scripts, using
 in, Perl Boot Camp, Part 3: Branching and Looping

	if/else block,
 testing multiple conditionals in, Test Exit Status with the if Statement
	ifconfig
 tool, Quick Introduction to Hardware, Network Devices — ifconfig, Status and Troubleshooting
	IFS (internal
 field separator) shell variable, Using set and IFS
	ignoreeof
 variable, Stop Accidental Bourne-Shell Logouts
	ignoring filenames
 in ls command listing, Some GNU ls Features
	@INC
 array (Perl), Checking your Perl Installation, Perl Boot Camp, Part 1: Typical Script Anatomy
		module paths in, Perl Boot Camp, Part 1: Typical Script Anatomy

	incremental backups, On-Demand Incremental Backups of a Project–On-Demand Incremental Backups of a Project
	incremental searches in
 Emacs, Rational Searches
	indentation, offset: Indent Text, Here Documents, Indentation
		in Bourne
 shell scripts with <<- operator, Here Documents
	Perl script for
 text, offset: Indent Text
	in Python
 scripts, Indentation

	index
 command (awk), Alphabetical Summary of Commands
	indexes, Using the Stored Lists, Using the Stored Lists, Hashes
		Bourne shell
 arrays, Using the Stored Lists
	C shell
 arrays, Using the Stored Lists
	hashes, Hashes

	industrial strength
 backups, Industrial Strength Backups
	inequality, Scalars, Scalars
		!=
 operator, Scalars
	ne
 operator, Scalars

	inetd
 daemon, Other Problems, The Director of Operations: inetd, Installing and Configuring Samba, Disabling inetd
		disabling for security
 reasons, Disabling inetd
	Expect scripts
 with, Other Problems
	running Samba daemons, Installing and Configuring Samba

	infinite
 loops, How to Look at Files as They Grow
		tail -f command, creating
 with, How to Look at Files as They Grow

	info command, The info Command–The info Command
	inheritance, Managing Processes: Overall Concepts, Shell Variables
		process
 information, Managing Processes: Overall Concepts
	variables, Shell Variables

	_ _init_ _() method (Python
 classes), Everything’s an Object
	init
 program, Job Control in a Nutshell, How Job Control Works, fork and exec, Why You Can’t Kill a Zombie
		collecting child processes after parent
 exits, Why You Can’t Kill a Zombie

	initialization
 files (Emacs), Customizations and How to Avoid Them
	initializing new
 cvsroot, CVS Basics
	inodes, Finding Oldest or Newest Files with ls -t and ls -u, Searching for Old Files, What’s Really in a Directory?, Differences Between Hard and Symbolic Links, Links to a Directory, How Unix Keeps Track of Files: Inodes, How Unix Keeps Track of Files: Inodes, tar in a Nutshell, User, Group, and World
		-ctime (change
 time) operator, using with find, Searching for Old Files
	file permissions
 in, User, Group, and World
	i-numbers for parent directory
 entries, Links to a Directory
	information
 in, How Unix Keeps Track of Files: Inodes
	ls -c command
 for, Finding Oldest or Newest Files with ls -t and ls -u
	ls -i command, listing number
 for each directory entry, Differences Between Hard and Symbolic Links
	tar utility
 and, tar in a Nutshell

	input, Using Standard Input and Output (see input/output standard
 input)
	input
 events, X Event Translations
	input/output
 (I/O), Programs Are Designed to Work Together, Searching Online Manual
 Pages, Output Stopped?, Running Commands on What You Find, Stop Background Output with stty tostop, nohup, Making Your at Jobs Quiet, Overview: Open Files and File Descriptors, I/O and Formatting, Using Standard Input and Output, Other Checks
		(see also standard error; standard input; stardard
 output)
	checking statistics for security
 problems, Other Checks
	find command -print0
 option, Running Commands on What You Find
	output from at command,
 quieting, Making Your at Jobs Quiet
	output from background jobs,
 stopping, Stop Background Output with stty tostop
	output from command, sending to nohup.out
 file, nohup
	piping shell loop output to
 pager, Searching Online Manual
 Pages
	Python, I/O and Formatting
	redirecting, Using Standard Input and Output (see redirecting input
 and output)
	redirecting for
 programs, Overview: Open Files and File Descriptors
	stopped terminal output,
 debugging, Output Stopped?

	INPUTRC
 environment variable, Predefined Environment Variables
	inputrc
 file, bash Editing
		customizing bash editing
 in, bash Editing

	insert
 command (ex), Useful ex
 Commands
	insert mode for pasting
 text, Simple Copy and Paste in xterm
	insertion mode
 (Emacs), Putting Emacs in Overwrite Mode
	installing, Installation and Distutils
		Python, Installation and Distutils

	installing
 Perl, Compiling Perl from Scratch
	installing software, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories, The Challenges of Software Installation on Unix, Which make?, Simplifying the make Process, Using Debian’s dselect–Exiting dselect, Choosing the Access Method–Choosing the Access Method, Updating Information on Available Packages, Choosing Packages for Installation or Removal–Choosing Packages for Installation or Removal, Exiting the Select Function, Installing Packages, Configuring Packages, Removing Packages, Exiting dselect, Installing Software with Debian’s Apt-Get, Configuring the sources.list File, Interruptable gets with wget, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X, Installation with FreeBSD Ports, Installing with FreeBSD Packages, Finding and Installing RPM Packaged Software
		/usr/bin and other directories
 for, /usr/bin and Other Software Directories
	challenges of, The Challenges of Software Installation on Unix
	curl application,
 using, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
	Debian apt-get tool,
 using, Installing Software with Debian’s Apt-Get, Configuring the sources.list File
		configuring sources.list
 file, Configuring the sources.list File

	Debian dselect tool,
 using, Using Debian’s dselect–Exiting dselect, Choosing the Access Method–Choosing the Access Method, Updating Information on Available Packages, Choosing Packages for Installation or Removal–Choosing Packages for Installation or Removal, Exiting the Select Function, Installing Packages, Configuring Packages, Removing Packages, Exiting dselect
		access method,
 choosing, Choosing the Access Method–Choosing the Access Method
	choosing packages for installation or
 removal, Choosing Packages for Installation or Removal–Choosing Packages for Installation or Removal
	configuring
 packages, Configuring Packages
	exiting, Exiting dselect
	exiting select
 function, Exiting the Select Function
	installing
 packages, Installing Packages
	removing packages, Removing Packages
	updating information on available
 packages, Updating Information on Available Packages

	FreeBSD packages,
 using, Installing with FreeBSD Packages
	FreeBSD Ports,
 using, Installation with FreeBSD Ports
	GNU wget utility,
 using, Interruptable gets with wget
	make utility, problems with differing
 versions, Which make?
	RPM,
 using, Finding and Installing RPM Packaged Software
	simplifying the make
 process, Simplifying the make Process

	instance of an object,
 application resources associated with, X Resource Syntax
	instance
 variables (Python), Everything’s an Object
	instances of Python
 classes, Everything’s an Object
	INT (interrupt)
 signal, What Are Signals?, Killing Foreground Jobs, Destroying Processes with kill
		killing processes waiting
 for NFS resources, Destroying Processes with kill
	sending with CTRL-c
 command, Killing Foreground Jobs

	int command (awk), Alphabetical Summary of Commands
	Integrated Development Environment (IDE), Emacs
 as, Emacs Features: A Laundry List
	interactive
 command-line editing, The Lessons of History, Shell Command-Line Editing, vi Editing Mode, Emacs Editing Mode, tcsh Editing–zsh Editing, ksh Editing, bash Editing, zsh Editing
		bash, bash Editing
	Emacs editing
 mode, Emacs Editing Mode
	ksh (Korn
 shell), ksh Editing
	tcsh
 shell, tcsh Editing–zsh Editing
	vi editing
 mode, vi Editing Mode
	zsh
 shell, zsh Editing

	interactive
 commands, Communication with Unix
	interactive
 logins, Starting Remote X Clients from Interactive Logins
		starting remote X clients
 from, Starting Remote X Clients from Interactive Logins

	interactive mode
 for shells, Interactive Use Versus Shell Scripts
	interactive
 programs, A nice Gotcha, Expect–Other Problems, Testing: A Story
		controlling with
 Expect program, Expect–Other Problems
	nice command
 and, A nice Gotcha
	testing with
 Expect, Testing: A Story

	interactive renaming
 of files, Renaming a List of Files Interactively
	interactive shells, Shell Setup Files — Which, Where, and Why, Login Shells, Interactive Shells, Interactive Shells, Interactive Shells, Setup Files Aren’t Read When You Want?
		Bourne
 shell, Shell Setup Files — Which, Where, and Why
		ENV environment
 variable, Shell Setup Files — Which, Where, and Why

	setup files, reading at
 different times, Setup Files Aren’t Read When You Want?

	interactive spell
 checking, Check Spelling Interactively with ispell
	interation in
 loops, Loop Control: break and continue
	intergers in
 Perl, Perl Boot Camp, Part 2: Variables and Data Types
	internal
 commands, Internal and External Commands
	internal field
 separator (IFS) shell variable, Using set and IFS
	Internet, Unix Networking and Communications
	Internet Control Message
 Protocol, TCP/IP — IP Addresses and Ports (see ICMP)
	Internet Message
 Access Protocol (IMAP), Mail — SMTP, POP, and IMAP
	Internet Protocol
 (IP), TCP/IP — IP Addresses and Ports
	interoperability, The Core of Unix
		POSIX
 standard, The Core of Unix

	interpolating
 variables, Perl Boot Camp, Part 1: Typical Script Anatomy
	interpretation of
 commands by shells, What the Shell Does (see commands)
	interpreted
 languages, What Is Python?
	interpreter, Installation and Distutils
		Python, Installation and Distutils

	interpreter,
 perl, Checking your Perl Installation
	interrupt characters,
 setting, Setting Your Erase, Kill, and Interrupt Characters
	interrupting
 commands, Separating Commands with Semicolons
		in a string of commands separated
 by semicolons, Separating Commands with Semicolons

	interrupting
 jobs, Stop Background Output with stty tostop
	interrupts, Trapping Exits Caused by Interrupts
		shell scripts, trapping exits
 caused by, Trapping Exits Caused by Interrupts

	intr
 key, Setting Your Erase, Kill, and Interrupt Characters
	intruder
 detection, Intruder Detection
	invalid symbolic
 links, Stale Symbolic Links
	invisible
 files, Problems Deleting Directories
	IP (Internet
 Protocol), Network Devices — ifconfig, TCP/IP — IP Addresses and Ports, Internet Protocol (IP), Internet Protocol (IP), Internet Protocol (IP), Layer 4 Protocols: TCP, UDP, and ICMP, Layer 4 Protocols: TCP, UDP, and ICMP, Status and Troubleshooting, Domain Name Service (DNS), Dynamic Host Configuration Protocol (DHCP), Gateways and NAT, Gateways and NAT
		addresses, Network Devices — ifconfig, Status and Troubleshooting, Domain Name Service (DNS), Dynamic Host Configuration Protocol (DHCP), Gateways and NAT
		DHCP
 and, Dynamic Host Configuration Protocol (DHCP)
	displaying
 with dig, Status and Troubleshooting
	mapping
 hostnames to, Domain Name Service (DNS)
	network
 devices, Network Devices — ifconfig
	private
 network addresses and, Gateways and NAT

	addresses and
 ports, TCP/IP — IP Addresses and Ports, Internet Protocol (IP), Layer 4 Protocols: TCP, UDP, and ICMP
		addresses, Internet Protocol (IP)
	ports, Layer 4 Protocols: TCP, UDP, and ICMP

	IP masquerading on
 Linux, Gateways and NAT
	TCP, UDP, and ICMP
 with, Layer 4 Protocols: TCP, UDP, and ICMP
	Version 4
 (IPv4), Internet Protocol (IP)
	Version 6
 (IPv6), Internet Protocol (IP)

	IP Control Message
 Protocol, TCP/IP — IP Addresses and Ports (see ICMP)
	irc
 utility, Unix Networking and Communications
	IRIX
 systems, Starting a Remote Client with rsh and ssh
		restricted shell
 (rsh), Starting a Remote Client with rsh and ssh

	isc-dhcpd
 daemon, Dynamic Host Configuration Protocol (DHCP)
	ispell
 program, Check Spelling Interactively with ispell
	iterating, Arrays, Hashes, Perl Boot Camp, Part 3: Branching and Looping
		through
 arrays, Arrays
	through
 key-value pairs in hashes, Hashes
	through list elements with
 foreach, Perl Boot Camp, Part 3: Branching and Looping

	iterating shell
 variables over arguments, Quoting and Command-Line
 Parameters

 J
	Java, Sharing Desktops with VNC, Hob
		applet VNC
 client, Sharing Desktops with VNC
	HOBLink JWT (RDP
 client), Hob

	jiffies
 (hundredths of a second), Kernel and System Statistics
	job
 control, Shell Escapes: Running One UnixCommand While Using Another, Job Control in a Nutshell–Stopping Remote Login Sessions, Job Control Basics, How Job Control Works, Using Job Control from Your Shell, Some Gotchas with Job Control, Job Control and autowrite: Real Timesavers!, Disowning Processes, Linux Virtual Consoles, Stopping Remote Login Sessions, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Processes Out of Control? Just STOP Them
		autowrite and, Job Control and autowrite: Real Timesavers!
	basics of, Job Control Basics, How Job Control Works, Using Job Control from Your Shell
		how it
 works, How Job Control Works
	using
 from your shell, Using Job Control from Your Shell

	Linux virtual consoles, use
 in, Linux Virtual Consoles
	potential problems
 with, Some Gotchas with Job Control
	process
 groups, Managing Processes: Overall Concepts
	remote login sessions,
 stopping, Stopping Remote Login Sessions
	running background jobs
 without, Disowning Processes
	shell
 features for, Managing Processes: Overall Concepts
	STOP signal, using to stop forking
 processes, Processes Out of Control? Just STOP Them

	job
 numbers, Using jobs Effectively
		putting job into foreground or background
 with, Using jobs Effectively

	job numbers, assignment to background
 processes, Using jobs Effectively
	jobs, Setting Your Erase, Kill, and Interrupt Characters, Job Control in a Nutshell, Using jobs Effectively–Using jobs Effectively, Using jobs Effectively, Using jobs Effectively, The “Current Job” Isn’t Always What You Expect, System Overloaded? Try Stopping Some Jobs, Notification When Jobs Change State, Stop Background Output with stty tostop, Disowning Processes, Managing Processes: Overall Concepts, Killing Foreground Jobs, Making Your at Jobs Quiet, Checking and Removing Jobs, Avoiding Other at and cron Jobs
		at command, checking and
 removing, Checking and Removing Jobs
	at command, making
 quiet, Making Your at Jobs Quiet
	current job, Using jobs Effectively, The “Current Job” Isn’t Always What You Expect
	deciding when to
 run, Avoiding Other at and cron Jobs
	effective use
 of, Using jobs Effectively–Using jobs Effectively
	foreground, Killing Foreground Jobs
		killing, Killing Foreground Jobs

	killing by process ID
 number, Job Control in a Nutshell
	notification of changed job
 state, Notification When Jobs Change State
	output from background jobs,
 stopping, Stop Background Output with stty tostop
	previous job, Using jobs Effectively
	running without job
 control, Disowning Processes
	stopping to relieve overloaded
 system, System Overloaded? Try Stopping Some Jobs
	terminating or
 stopping, control keys
 for, Setting Your Erase, Kill, and Interrupt Characters

	jobs
 command, Job Stopped?, Job Control in a Nutshell, Using Job Control from Your Shell, Using jobs Effectively
		stopped jobs, checking
 for, Job Stopped?

	join
 command, Joining Lines with join
	jot utility, Repeating Commands
		commands, repeating
 with, Repeating Commands

	Joy,
 Bill, The Idea of a Terminal Database

 K
	kernel, Communication with Unix, Communication with Unix, The Kernel and Daemons–The Kernel and Daemons, Kernel and System Statistics, What Are Signals?, Timing Is Everything, The Story of : # #!, The Story of : # #!, Don’t Need a Shell for Your Script? Don’t Use One, Making #! Search the PATH, Overview: Open Files and File Descriptors, What to Back Up
		backing
 up, What to Back Up
	daemons, The Kernel and Daemons–The Kernel and Daemons
	relationship with shell, utilities,
 and applications, Communication with Unix
	running scripts
 from, The Story of : # #!, The Story of : # #!, Don’t Need a Shell for Your Script? Don’t Use One, Making #! Search the PATH
		env command, using, Making #! Search the PATH
	script filename as
 argument, Don’t Need a Shell for Your Script? Don’t Use One

	scheduler
 program, Timing Is Everything
	signals
 and, What Are Signals?
	starting
 processes, Overview: Open Files and File Descriptors
	statistics on (/proc/stat
 file), Kernel and System Statistics

	kernel boot output
 for, Reading Kernel Boot
 Output
	kernels, Quick Introduction to Hardware, Reading Kernel Boot
 Output, Basic Kernel Configuration, Setting Up a Dialup PPP Session, Gateways and NAT
		boot output,
 reading, Reading Kernel Boot
 Output
	configuration, Basic Kernel Configuration
	modules for
 device drivers, Quick Introduction to Hardware
	PPP code
 in, Setting Up a Dialup PPP Session
	recompiling to turn on IP
 forwarding, Gateways and NAT

	Kernighan, Brian, zap
	key bindings, tcsh Editing–tcsh Editing, ksh Editing
		bindkey
 command, tcsh Editing–tcsh Editing
	to built-in Emacs
 editor functions in Korn shell, ksh Editing

	key bindings in
 Emacs, Emacs: The Other Editor, Rational Searches
		for incremental searches, Rational Searches

	key
 definitions, “less” is More
	key
 mappings, Local Settings for vi
		.exrc file for vi editor, saving
 in, Local Settings for vi

	key-value pairs for
 hashes, Hashes
	keybindings, zsh Editing
		zsh command-line
 editing, zsh Editing

	keyboard
 macros, Emacs, Emacs Features: A Laundry List
	keyboard
 shortcuts, Save Time and Typing with the
 vi map Commands–What You Lose When You Use map!, Protecting Keys from Interpretation by ex–vi Macro for Splitting Long Lines, Command Completion
		command completion in
 Emacs, Command Completion
	vi map
 commands, Save Time and Typing with the
 vi map Commands–What You Lose When You Use map!, Protecting Keys from Interpretation by ex–vi Macro for Splitting Long Lines

	keycode
 keyword, Defining Keys and Button Presses with xmodmap
	keymap table,
 maintained by X server, Defining Keys and Button Presses with xmodmap
	keymapping, Why Type More Than You Have To?
	keymaps,
 vi, Keymaps for Pasting into a Window Running vi, Keymaps for Pasting into a Window Running vi, Protecting Keys from Interpretation by ex, Maps for Repeated Edits, More Examples of Mapping Keys in vi, Repeating a vi Keymap, Text-Input Mode Cursor Motion with No Arrow Keys, Don’t Lose Important Functions with vi Maps: Use noremap
		(see also map commands, vi)
	cursor motion in text-input mode without arrow
 keys, Text-Input Mode Cursor Motion with No Arrow Keys
	further examples of, More Examples of Mapping Keys in vi
	noremap command and, Don’t Lose Important Functions with vi Maps: Use noremap
	pasting text into window system running
 vi, Keymaps for Pasting into a Window Running vi
	protecting from interpretation by
 ex, Protecting Keys from Interpretation by ex
	for repeated
 edits, Maps for Repeated Edits
	repeating, Repeating a vi Keymap

	keys, Defining Keys and Button Presses with xmodmap–Defining Keys and Button Presses with xmodmap, Secure Shell (SSH)
		defining with
 xmodmap, Defining Keys and Button Presses with xmodmap–Defining Keys and Button Presses with xmodmap
	public/private key
 pair for encrypted information, Secure Shell (SSH)

	keys function
 (Perl), Hashes
	keys, cryptographic, Key and Agent Problems
		SSH, problems
 with, Key and Agent Problems

	keysym mappings, Defining Keys and Button Presses with xmodmap–Using xev to Learn Keysym Mappings
	keysyms, Using xev to Learn Keysym Mappings
		debugging, Using xev to Learn Keysym Mappings

	kill 9
 command, What Are Signals?
	kill character, @ (at
 sign) as, Setting Your Erase, Kill, and Interrupt Characters
	kill
 command, Aborting Programs, Job Control in a Nutshell, Job Control in a Nutshell, Using Job Control from Your Shell, System Overloaded? Try Stopping Some Jobs, Managing Processes: Overall Concepts, Subshells, What Are Signals?, Destroying Processes with kill, Destroying Processes with kill, Printer Queue Watcher: A Restartable Daemon Shell Script–Printer Queue Watcher: A Restartable Daemon Shell Script, Killing All Your Processes, Killing All Your Processes, Killing Processes by Name?, Kill Processes Interactively, zap, Cleaning Up an Unkillable Process, The Process Chain to Your Window, Close a Window by Killing Its Process(es)–Closing a Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser, Closing a Window from a Shell Script, Trapping Exits Caused by Interrupts
		%num, Job Control in a Nutshell
	-l option, signals
 for, Trapping Exits Caused by Interrupts
	-STOP $$, Subshells
	aborting
 programs, Aborting Programs
	closing window by killing its
 processes, Close a Window by Killing Its Process(es)–Closing a Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser, Closing a Window from a Shell Script
		shell script,
 using, Closing a Window from a Shell Script
	web browser
 (example), Example #2: A Web Browser
	xterm window
 (example), Example #1: An xterm Window

	hung window or process in a window,
 killing, The Process Chain to Your Window
	jobs, killing by job
 number, Using Job Control from Your Shell
	KILL or 9 option, Destroying Processes with kill
	killall -i, Kill Processes Interactively
	killing all
 processes, Killing All Your Processes
	killing processes by
 name, Killing Processes by Name?
	pid, Job Control in a Nutshell
	process ID-1 and, Killing All Your Processes
	restarting
 daemons, Printer Queue Watcher: A Restartable Daemon Shell Script–Printer Queue Watcher: A Restartable Daemon Shell Script
	stopping
 jobs on overloaded system, System Overloaded? Try Stopping Some Jobs
	unkillable processes, Cleaning Up an Unkillable Process
	user ID
 and, Managing Processes: Overall Concepts
	zap script,
 using, zap

	kill
 key, Setting Your Erase, Kill, and Interrupt Characters
	KILL
 signal, What Are Signals?, Destroying Processes with kill
	killall command,
 i (interactive) option, killall -i
	ksh (Korn
 shell), There Are Many Shells, Shell Setup Files — Which, Where, and Why, Terminal Setup: Searching Terminal Table, Static Prompts, Simulating Dynamic Prompts, Highlighting and Color in Shell Prompts, Running Commands at Bourne/Korn Shell Logout, Running Commands at Bourne/Korn Shell Logout, Stop Accidental Bourne-Shell Logouts, Using the Stored Lists, Expanding Ranges, limit and ulimit, limit and ulimit, Job Control in a Nutshell, The Process Chain to Your Window, What the Shell Does, Bourne Shell Used Here, Controlling Shell Command Searches, Is It “2>&1 file” or “> file 2>&1”? Why?, “Special” Characters and Operators, Automatic Completion, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Korn-Shell Aliases, Shell Function Specifics, Korn shell, History by Number, History Substitutions, bash, ksh, zsh, Pass History to Another Shell, ksh Editing, The Shells’ pushd and popd Commands, Filename Wildcards in a Nutshell, What if a Wildcard Doesn’t Match?, Predefined Environment Variables, Predefined Environment Variables, Handling Command-Line Arguments in Shell Scripts, Parameter Substitution, Using set and IFS, Using Standard Input and Output
		.profile
 file, Shell Setup Files — Which, Where, and Why
	alias command, Controlling Shell Command Searches
	aliases, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Korn-Shell Aliases
	arrays, Using the Stored Lists, Expanding Ranges
		expanding
 ranges, Expanding Ranges

	bgnice option, The Process Chain to Your Window
	command history, History Substitutions (see history of
 commands)
	command-line arguments in shell
 scripts, Handling Command-Line Arguments in Shell Scripts
	command-line
 editing, ksh Editing
	completion
 features, Automatic Completion
	dynamic prompts,
 simulating, Simulating Dynamic Prompts
	ENV variable, Predefined Environment Variables
	environment
 variables, Predefined Environment Variables
	fc -l command, listing previous commands
 with, History by Number
	FPATH search path for shell
 functions, Korn shell
	globbing (wildcard expansion),
 preventing, Filename Wildcards in a Nutshell
	history file, bash, ksh, zsh
	ignoreeof
 variable, Stop Accidental Bourne-Shell Logouts
	job control
 commands, Job Control in a Nutshell
	limiting file
 size, limit and ulimit
	logging out of, Running Commands at Bourne/Korn Shell Logout
	logout, running commands
 at, Running Commands at Bourne/Korn Shell Logout
	parsing strings,
 using set and IFS, Using set and IFS
	passing command history
 to, Pass History to Another Shell
	prompt, setting, Static Prompts
	prompts, Highlighting and Color in Shell Prompts
		nonprinting
 characters in, Highlighting and Color in Shell Prompts

	read-only
 functions, Shell Function Specifics
	reading arguments, Is It “2>&1 file” or “> file 2>&1”? Why?
	redirecting standard
 I/O, Using Standard Input and Output
	scripts in this
 book, Bourne Shell Used Here
	shell functions for pushd and popd
 commands, The Shells’ pushd and popd Commands
	special
 characters/operators in, “Special” Characters and Operators
	string editing
 operators, Parameter Substitution
	terminal port type, putting into ttykind
 shell variable, Terminal Setup: Searching Terminal Table
	ulimit -c command, removing limits on
 core dumps, limit and ulimit
	wildcards, failing to
 match, What if a Wildcard Doesn’t Match?

 L
	la
 function, Simple Functions: ls with Options
	lambda statement
 (Python), Functions
	lambda
 statements (Python), Functions
		as function
 arguments, Functions

	last access time for
 files, Finding Oldest or Newest Files with ls -t and ls -u, Deleting Stale Files
		deleting files by, Deleting Stale Files

	last line of a
 file (ed and sed), referring to with $, Regular Expressions: The Anchor Characters ^ and $
	last
 modification time for files, Listing Files by Age and Size, Listing Files by Age and Size
		(see also timestamps)

	last operator (Perl), Perl Boot Camp, Part 3: Branching and Looping
	lastcomm
 command, What Commands Are Running and How Long Do They Take?, What Commands Are Running and How Long Do They Take?
		piping output or redirecting to a
 file, What Commands Are Running and How Long Do They Take?

	LATEX, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	Layer 3 Internet Protocol (IP), TCP/IP — IP Addresses and Ports
	Layer 4
 protocols, TCP/IP — IP Addresses and Ports, Layer 4 Protocols: TCP, UDP, and ICMP
	lc operator, Scalars
	LDAP server for system
 passwords, Securing Samba
	leave function, Right-Side Prompts
	length command
 (awk), Alphabetical Summary of Commands
	lensort
 script, lensort: Sort Lines by Length
	less command, A Highlighting grep, Compressing Files to Save Space
		highlighting
 matched patterns, A Highlighting grep
	zless, for compressed
 files, Compressing Files to Save Space

	less
 program, Programs Are Designed to Work Together, List All Subdirectories with ls -R, “less” is More–“less” is More, “less” is More, Squash Extra Blank Lines, Numbering Lines, Predefined Environment Variables, Problems Piping to a Pager
		-N option, numbering lines
 with, Numbering Lines
	-s option for squashing extra blank
 lines, Squash Extra Blank Lines
	PAGER environment
 variable, Predefined Environment Variables
	piping ls command output
 to, List All Subdirectories with ls -R
	piping to, Problems Piping to a Pager

	less than (<)
 operator, Syntax, Scalars
	less than or equal to (<=)
 operator, Scalars
	lesskey program, “less” is More
	letter-sized
 pages, Formatting Plain Text: enscript
	letters, ASCII class
 for, Defining What Makes Up a Word for Selection Purposes
	lexical analyzer (lex), Looking for Closure
	lf
 function, Simple Functions: ls with Options, Simple Functions: ls with Options
	libraries, Using Shell Functions in Shell Scripts, Perl Boot Camp, Part 1: Typical Script Anatomy
		Perl
 modules, Perl Boot Camp, Part 1: Typical Script Anatomy
		using in scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

	shell
 functions, Using Shell Functions in Shell Scripts

	licenses, Citrix: Making Windows Multiuser, Citrix: Making Windows Multiuser
		Citrix, Citrix: Making Windows Multiuser
	Microsoft, in a WTS
 environment, Citrix: Making Windows Multiuser

	lightweight varieties
 of Unix, The Core of Unix
	limit and ulimit
 system calls, limit and ulimit
	line #\: ;;
 unexpected error, Missing or Extra esac, ;;, fi, etc.
	line
 command, Overview: Open Files and File Descriptors
	line commands in
 vi, vi Line Commands Versus Character Commands
	line editors, Why Line Editors Aren’t Dinosaurs (see batch
 editing)
	line
 function, read: Reading from the Keyboard
	line
 numbers, sed Addressing Basics, Line Numbers Reset Inside Redirected Loops
		resetting, Line Numbers Reset Inside Redirected Loops
	in sed
 addresses, sed Addressing Basics

	line termination
 characters, Anyone Can Program the Shell (see newlines)
	line termination in
 Python, Indentation
	line-by-line and search using sed, awk, or
 perl, Compound Searches
	linefeeds (Unix), ASCII character
 for, Anyone Can Program the Shell
	lines, Numbering Lines, Counting Lines, Words, and Characters: wc, vi Macro for Splitting Long Lines, Emacs: The Other Editor, Line Addressing, Joining Lines with join, What Is (or Isn’t) Unique?, Dealing with Repeated Lines, lensort: Sort Lines by Length, lensort: Sort Lines by Length
		addressing for batch
 editing, Line Addressing
	comparing for
 uniqueness, What Is (or Isn’t) Unique?
	counting with wc
 command, Counting Lines, Words, and Characters: wc
	deleting
 duplicate, lensort: Sort Lines by Length
		Perl script,
 using, lensort: Sort Lines by Length

	deleting
 duplicates, Dealing with Repeated Lines
	deleting in
 Emacs, Emacs: The Other Editor
	joining with join
 command, Joining Lines with join
	macro for wrapping in vi
 editor, vi Macro for Splitting Long Lines
	numbering in file
 printout, Numbering Lines
	sorting by
 length, lensort: Sort Lines by Length

	LINES and COLUMNS
 environment variables, Terminal Setup: Testing Window Size, Querying Your xterm Size: resize
		resizing/resetting for
 windows, Querying Your xterm Size: resize

	lines
 of text retained by scrollbar, How Many Lines to Save?
	Lingua\:\:EN\:\:NameParse Perl module, Sorting a List of People by Last Name
	link count, Differences Between Hard and Symbolic Links
	linking
 files, What’s So Complicated About Copying Files, Files with Two or More Names, Files with Two or More Names–Files with Two or More Names, More About Links, More About Links, Differences Between Hard and Symbolic Links, Links to a Directory, Creating and Removing Links, Stale Symbolic Links, Linking Directories, Showing the Actual Filenames for Symbolic Links
		creating and removing
 links, Creating and Removing Links
	directories, linking, Linking Directories
	directory, links
 to, Links to a Directory
	filenames for symbolic links,
 showing, Showing the Actual Filenames for Symbolic Links
	hard links, More About Links
	hard links vs. symbolic
 links, Differences Between Hard and Symbolic Links
	reasons
 for, Files with Two or More Names–Files with Two or More Names
	symbolic links, More About Links, Stale Symbolic Links
		stale, Stale Symbolic Links

	linkname, ln command
 and, Creating and Removing Links
	links, Searching for Old Files, Finding the (Hard) Links to a File, Copying Directory Trees with cp -r, How Unix Keeps Track of Files: Inodes, Save Space with a Link, Save Space with a Link, Save Space: tar and compress a Directory Tree, Local Settings for vi, Finding a Program Name and Giving Your Program Multiple Names, Finding a Program Name and Giving Your Program Multiple Names, Save Disk Space and Programming: Multiple Names for a Program, Save Disk Space and Programming: Multiple Names for a Program, Perl Boot Camp, Part 5: Perl Knows Unix
		-links operator (find
 command), Searching for Old Files
	copying, Copying Directory Trees with cp -r
	disk space
 and, Save Space with a Link
	to .exrc
 files, Local Settings for vi
	to
 filenames, Finding a Program Name and Giving Your Program Multiple Names, Save Disk Space and Programming: Multiple Names for a Program
	to
 files, How Unix Keeps Track of Files: Inodes
		inodes
 and, How Unix Keeps Track of Files: Inodes

	hard
 links, Finding the (Hard) Links to a File
		finding to files, Finding the (Hard) Links to a File

	optimizing disk space
 with, Save Space with a Link
	to
 programs, Finding a Program Name and Giving Your Program Multiple Names, Save Disk Space and Programming: Multiple Names for a Program
	tar -l command, printing messages
 about hard links, Save Space: tar and compress a Directory Tree
	unlinking in
 Perl, Perl Boot Camp, Part 5: Perl Knows Unix

	Linux, What’s Special About Unix?, The Core of Unix, There Are Many Shells, The Kernel and Daemons, The info Command, Terminal Setup: Testing Port, Show Subshell Level with $SHLVL, There’s a Lot to Know About Terminals, Setting Your Erase, Kill, and Interrupt Characters, Defining Keys and Button Presses with xmodmap, Defining Keys and Button Presses with xmodmap, Color ls, How to Look at the End of a File: tail, Using jobs Effectively, Linux Virtual Consoles, Scrolling, Using a Mouse, The /proc Filesystem–A Glimpse at Hardware, A Little Help, etc.–A Little Help, etc., Don’t Need a Shell for Your Script? Don’t Use One, Shell Lockfile, How Unix Keeps Time, How to Make Backups to a Local Device–To gzip, or Not to gzip?, What to Back Up, Backing Up to Tape, Backing Up to Floppies or Zip Disks, To gzip, or Not to gzip?, To gzip, or Not to gzip?, /usr/bin and Other Software Directories, Using Debian’s dselect–Exiting dselect, Installing Software with Debian’s Apt-Get–Upgrading installed packages, Finding and Installing RPM Packaged Software, Installation and Distutils, Reading Kernel Boot
 Output, Reading Kernel Boot
 Output, Basic Kernel Configuration, Disk Partitioning, Mounting and Unmounting Removable Filesystems, USB Configuration, Dealing with Sound Cards and Other Annoying Hardware, Decapitating Your Machine — Serial Consoles, Status and Troubleshooting, Status and Troubleshooting, Status and Troubleshooting, Status and Troubleshooting, Configuring an Anonymous FTP Server, Gateways and NAT, Gateways and NAT, Installing and Configuring Samba, VMWare, Keeping Up with Security Alerts, The Linux proc Filesystem, TCP Wrappers, When Does a User Become a User, When Does a User Become a User, Forgetting the root Password, Forgetting the root Password, Groups and Group Ownership, Free SSH with OpenSSH, General and Authentication Problems
		/proc
 filesystem, The Linux proc Filesystem
	adding users to
 system, When Does a User Become a User
	automount daemons and devfsd for
 removable media, Mounting and Unmounting Removable Filesystems
	backups to a local
 device, How to Make Backups to a Local Device–To gzip, or Not to gzip?, What to Back Up, Backing Up to Tape, Backing Up to Floppies or Zip Disks, To gzip, or Not to gzip?, To gzip, or Not to gzip?
		compression, advantages/disadvantages
 of, To gzip, or Not to gzip?
	deciding what to back
 up, What to Back Up
	floppies or zip
 disks, Backing Up to Floppies or Zip Disks
	tape, Backing Up to Tape
	utilities for, To gzip, or Not to gzip?

	bash
 shell, There Are Many Shells
	color names,
 displaying with GNU ls command, Color ls
	Debian
 Linux, Using Debian’s dselect–Exiting dselect, Installing Software with Debian’s Apt-Get–Upgrading installed packages, Reading Kernel Boot
 Output, Forgetting the root Password
		apt-get tool, Installing Software with Debian’s Apt-Get–Upgrading installed packages
	dselect tool for accessing dpkg installation
 package, Using Debian’s dselect–Exiting dselect
	kernel
 boot output for
 devices, Reading Kernel Boot
 Output
	single-user mode, Forgetting the root Password

	devices on PCIbus,
 showing, Reading Kernel Boot
 Output
	disk
 partitions, Disk Partitioning
	displaying latest entries from
 kernel ring buffer, How to Look at the End of a File: tail
	enabling
 gatewaying, Gateways and NAT
	groups, changing primary with
 newgrp, Groups and Group Ownership
	HOWTO for kernel
 configuration, Basic Kernel Configuration
	HOWTO for serial
 consoles, Decapitating Your Machine — Serial Consoles
	HZ constant
 for system time updates, How Unix Keeps Time
	ifconfig file
 output, Status and Troubleshooting
	info command, The info Command
	installing software with
 RPM, Finding and Installing RPM Packaged Software
	IP
 masquerading, Gateways and NAT
	ipconfig and route files (2.4
 kernels), Status and Troubleshooting
	listing all processes running
 on, The Kernel and Daemons
	loadkeys
 command, Setting Your Erase, Kill, and Interrupt Characters, Defining Keys and Button Presses with xmodmap, Defining Keys and Button Presses with xmodmap
		system-level changes to key
 mappings, Defining Keys and Button Presses with xmodmap

	mounting SMB drives onto their local
 filesystems with smbmnt, Installing and Configuring Samba
	netstart, displaying routing
 information with, Status and Troubleshooting
	nvi-1.79 editor, locking files
 before editing, Shell Lockfile
	OpenSSH, Free SSH with OpenSSH
	port, testing
 for, Terminal Setup: Testing Port
	Python, inclusion
 of, Installation and Distutils
	Red Hat and Debian, shortcut to
 creating periodic processes, A Little Help, etc.–A Little Help, etc.
	Red Hat
 Linux, The /proc Filesystem–A Glimpse at Hardware, Don’t Need a Shell for Your Script? Don’t Use One, /usr/bin and Other Software Directories, Configuring an Anonymous FTP Server, When Does a User Become a User, Forgetting the root Password, General and Authentication Problems
		/contrib directory, sshd.pam
 file, General and Authentication Problems
	/proc filesystem (in Version
 6.2), The /proc Filesystem–A Glimpse at Hardware
	adduser (or useradd)
 utility, When Does a User Become a User
	Filesystem Hierarchy Standard (FHS),
 support of, /usr/bin and Other Software Directories
	installing chroot with anonftp-*
 (RPM), Configuring an Anonymous FTP Server
	performance issues, shell as
 interpreter, Don’t Need a Shell for Your Script? Don’t Use One
	single user mode,
 accessing, Forgetting the root Password

	route
 command, Status and Troubleshooting
	security, web site information
 on, Keeping Up with Security Alerts
	signal 15
 (termination), Using jobs Effectively
	sound card
 configuration, Dealing with Sound Cards and Other Annoying Hardware
	TCP
 wrappers, TCP Wrappers
	USB devices
 on, USB Configuration
	virtual
 consoles, Show Subshell Level with $SHLVL, There’s a Lot to Know About Terminals, Linux Virtual Consoles, Scrolling, Using a Mouse
		switching between, There’s a Lot to Know About Terminals
	tty-type, scrolling, and copy and
 paste operations, Scrolling, Using a Mouse

	virtual machine
 running Windows, VMWare

	LISP
 programming language, Emacs Features: A Laundry List
		Emacs
 customization, Emacs Features: A Laundry List

	lists, Arrays, References
		references
 to, References

	ln
 command, Creating and Removing Links, Creating and Removing Links, Stale Symbolic Links
		-s option, Stale Symbolic Links
	s option, Creating and Removing Links

	lndir
 program, Linking Directories
	load averages,
 system, Checking System Load: uptime
	load option
 (xrdb), Setting Resources with xrdb
	loadkeys
 command, Defining Keys and Button Presses with xmodmap
	local
 command, Setting Current Shell Environment: The work Function
	local crontab
 entries, Adding crontab Entries
	local dictionary
 files, The Unix spell Command
	local programs, Linking Directories
	LOCAL_OPTIONS
 option (zsh), Shell Function Specifics
	locate
 command, Delving Through a Deep Directory Tree, Using “Fast find” Databases, Using “Fast find” Databases, Wildcards with “Fast find” Database, Finding Files (Much) Faster with a find Database
		database for, Finding Files (Much) Faster with a find Database
	shell wildcards,
 matching, Wildcards with “Fast find” Database
	updating database
 for, Using “Fast find” Databases

	lockfiles, creating, Shell Lockfile
	locking files
 (RCS), RCS Basics
	log command
 (awk), Alphabetical Summary of Commands
	log
 files, GNU tail File Following, Save Space with “Bit Bucket” Log Files and Mailboxes, zsh Aliases, CVS Basics, More CVS, Installing and Configuring Samba
		CVS, CVS Basics
	CVS, examining for conflicting
 changes, More CVS
	disk space and, Save Space with “Bit Bucket” Log Files and Mailboxes
	global alias
 for in zsh, zsh Aliases
	monitoring with tail
 -f, GNU tail File Following
	smb.conf, settings for, Installing and Configuring Samba

	log-file-monitoring
 programs, How to Look at Files as They Grow
		tail -f, How to Look at Files as They Grow

	LOGDIR environment
 variable, Finding (Anyone’s) Home Directory, Quickly, Predefined Environment Variables
	logging (xterm),
 elimination for security reasons, The xterm Menus
	logging in, Automatic Setups for Different Terminals–Terminal Setup: Setting and Testing Window Name, fork and exec
		changing login
 sequence, Automatic Setups for Different Terminals–Terminal Setup: Setting and Testing Window Name

	logging
 out, Some Gotchas with Job Control, Destroying Processes with kill
		background processes in Bourne shells,
 avoiding termination of, Some Gotchas with Job Control
	by killing user’s login
 shell, Destroying Processes with kill

	logical expressions,
 evaluating, Finding Many Things with One Command
	logical
 operators, Syntax
	login
 command, The PATH Environment Variable
	login
 shells, What Happens When You Log In, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Login Shells, Interactive Shells, Login Shells, What Goes in Shell Setup Files?, Making a “Login” Shell, Login xterms and rxvts, Destroying Processes with kill, Writing a Simple Shell Program, Predefined Environment Variables
		bash, Shell Setup Files — Which, Where, and Why
	C shell,
 setting up, Shell Setup Files — Which, Where, and Why
	command search table, resetting for
 scripts, Writing a Simple Shell Program
	killing, Destroying Processes with kill
	Korn
 shell, Shell Setup Files — Which, Where, and Why
	setup files, Login Shells
	setup files, contents
 of, What Goes in Shell Setup Files?
	SHELL environment
 variable, Predefined Environment Variables
	xterm or rxvt, running
 on, Login xterms and rxvts
	zsh shell,
 setting up, Shell Setup Files — Which, Where, and Why

	login(l)
 command, system-wide setup, Shell Setup Files — Which, Where, and Why
	logins, What Happens When You Log In, Highlighting and Color in Shell Prompts, Checklist: Terminal Hangs When I Log In, Starting Remote X Clients from Interactive Logins, Stopping Remote Login Sessions, fork and exec, Never Log In as root, Disable logins
		disabling, Disable logins
	external root login
 access, Never Log In as root
	interactive, Starting Remote X Clients from Interactive Logins
		starting
 remote X clients from, Starting Remote X Clients from Interactive Logins

	procedure for terminals
 (non-network), fork and exec
	remote, Stopping Remote Login Sessions
		stopping
 sessions, Stopping Remote Login Sessions

	root, Highlighting and Color in Shell Prompts
	shells
 disallowing, What Happens When You Log In
	terminal hangs
 during, Checklist: Terminal Hangs When I Log In

	loginsh variable
 (tcsh shell), Login Shells
	loginshell
 variable, setting, Login Shells
	LOGNAME
 environment variable, Predefined Environment Variables
	logout command (C
 shell), The PATH Environment Variable
	logout files, creating
 for Bourne and Korn shells, Running Commands at Bourne/Korn Shell Logout
	logouts, Shell Setup Files — Which, Where, and Why, Stop Accidental Bourne-Shell Logouts
		accidental, from Bourne
 shells, Stop Accidental Bourne-Shell Logouts
	bash
 shell, Shell Setup Files — Which, Where, and Why

	long listing (-l
 option), Finding Oldest or Newest Files with ls -t and ls -u
	long listing, ls -l
 command, Useful ls Aliases
	look
 command, Fast Searches and Spelling Checks with “look”, How Do I Spell That Word?, How Do I Spell That Word?
		df options, How Do I Spell That Word?

	lookfor shell
 script, lookfor: Which File Has That Word?
	loopback
 mounts, Loopback Mounts
	loops, Anyone Can Program the Shell, A foreach Loop, A foreach Loop, A for Loop, Avoiding C-Shell Alias Loops, How to Put if-then-else in a C-Shell Alias, Functions with Loops: Internet Lookup, Loop Control: break and continue, Loops That Test Exit Status, Loop Control: break and continue, Use with Loops, A while Loop with Several Loop Control Commands, Outputting Text to an X Window, Line Numbers Reset Inside Redirected Loops, Arrays, Perl Boot Camp, Part 3: Branching and Looping, Perl Boot Camp, Part 3: Branching and Looping
		alias
 definition, Avoiding C-Shell Alias Loops
	basename and dirname used
 with, Use with Loops
	controlling with break and
 continue, Loop Control: break and continue, Loop Control: break and continue
	endless, Outputting Text to an X Window
	exit status
 of, A while Loop with Several Loop Control Commands
	for loops in Bourne-type shells,
 repeating commands with, A for Loop
	foreach loops, repeating
 commands with variations, A foreach Loop
	if-then-else, putting in C shell
 aliases, How to Put if-then-else in a C-Shell Alias
	iterating through
 arrays, Arrays
	parameters
 for, A foreach Loop
	in Perl
 scripts, Perl Boot Camp, Part 3: Branching and Looping, Perl Boot Camp, Part 3: Branching and Looping
		flow-control
 operators, Perl Boot Camp, Part 3: Branching and Looping

	redirected input/output, line
 numbers reset in, Line Numbers Reset Inside Redirected Loops
	running command and testing exit
 status, Loops That Test Exit Status
	in shell
 functions, Functions with Loops: Internet Lookup

	loosely typed
 language, Perl Boot Camp, Part 2: Variables and Data Types
	lp
 command, Predefined Environment Variables, lp-Style Printing Commands
		LPDEST environment
 variable, Predefined Environment Variables

	lpc
 commands, lpr-Style Printing Commands, Printer Control with lpc, Printer Control with lpc, Printer Control with lpc, Printer Control with lpc
		exit, Printer Control with lpc
	help, Printer Control with lpc
	restart, Printer Control with lpc
	status, lpr-Style Printing Commands

	lpd
 daemon, Printing Over a Network, Printing to Windows Printers from Unix, Converting Source Files Automagically Within the Spooler
		filter scripts, Converting Source Files Automagically Within the Spooler
	running files through
 filter, Printing to Windows Printers from Unix

	LPDEST
 environment variable, Predefined Environment Variables
	lpq command, Printer Queue Watcher: A Restartable Daemon Shell Script
	lpr command, Build Strings with { }, Here Document Example #1: Unformatted Form Letters, Predefined Environment Variables, lpr-Style Printing Commands
		for loop, using with, Here Document Example #1: Unformatted Form Letters
	PRINTER environment
 variable, Predefined Environment Variables
	printing 10 file
 copies, shortcut for, Build Strings with { }

	lprm
 command, lpr-Style Printing Commands
	lpstat
 command, lp-Style Printing Commands
	lr
 alias, A csh Alias to List Recently Changed Files
	ls
 command, Internal and External Commands, Wildcards, Checklist: Terminal Hangs When I Log In, Finding Oldest or Newest Files with ls -t and ls -u, Finding Oldest or Newest Files with ls -t and ls -u, Finding Oldest or Newest Files with ls -t and ls -u, Finding Oldest or Newest Files with ls -t and ls -u, List All Subdirectories with ls -R, List All Subdirectories with ls -R, The ls -d Option, Color ls–Another color ls, Color ls, Color ls, Configuring It, Another color ls, Some GNU ls Features, A csh Alias to List Recently Changed Files, Showing Hidden Files with ls -A and -a, Showing Hidden Files with ls -A and -a, Useful ls Aliases, Useful ls Aliases, Useful ls Aliases, Useful ls Aliases, Useful ls Aliases, Can’t Access a File? Look for Spaces in the Name, Showing Nonprintable Characters in Filenames, Showing Nonprintable Characters in Filenames, Showing Nonprintable Characters in Filenames, Listing Files by Age and Size, Delving Through a Deep Directory Tree, Running Commands on What You Find, Searching for Files by Size, Using “Fast find” Databases, Differences Between Hard and Symbolic Links, How Unix Keeps Track of Files: Inodes, How Unix Keeps Track of Files: Inodes, Using unlink to Remove a File with a Strange Name, Using unlink to Remove a File with a Strange Name, Problems Deleting Directories, Counting Lines, Words, and Characters: wc, Counting Lines, Words, and Characters: wc, Simple Functions: ls with Options, User, Group, and World, Juggling Permissions, Juggling Permissions
		-- color option, Color ls
	-A option, Showing Hidden Files with ls -A and -a, Problems Deleting Directories
		filenames
 beginning with . (dot), Problems Deleting Directories

	-b option, Showing Nonprintable Characters in Filenames, Using unlink to Remove a File with a Strange Name
		listing
 filenames with nonASCII characters, Using unlink to Remove a File with a Strange Name
	printing
 octal values of nonprinting characters, Showing Nonprintable Characters in Filenames

	-c option, Finding Oldest or Newest Files with ls -t and ls -u
	-C option (output in
 columns), List All Subdirectories with ls -R
	-d option (listing
 directories), The ls -d Option
	-F (tcsh built-in), Color ls, Configuring It
	-i option, How Unix Keeps Track of Files: Inodes
	-il option, Running Commands on What You Find
	-l
 option, Checklist: Terminal Hangs When I Log In, Finding Oldest or Newest Files with ls -t and ls -u, Listing Files by Age and Size, Using “Fast find” Databases, How Unix Keeps Track of Files: Inodes, Counting Lines, Words, and Characters: wc, User, Group, and World, Juggling Permissions
		character count for
 files, Counting Lines, Words, and Characters: wc
	checking startup files for
 ownership, Checklist: Terminal Hangs When I Log In
	file
 permissions and, Using “Fast find” Databases
	file
 permissions, listing, User, Group, and World, Juggling Permissions
	listing files
 by last modification time, Listing Files by Age and Size

	-lai option, Differences Between Hard and Symbolic Links
	-lg
 option, Juggling Permissions
	-Q (quoting) option, Can’t Access a File? Look for Spaces in the Name
	-q option, Showing Nonprintable Characters in Filenames, Using unlink to Remove a File with a Strange Name
		converting
 nonprinting characters to ?, Showing Nonprintable Characters in Filenames
	nonASCII characters, Using unlink to Remove a File with a Strange Name

	-R option (listing
 subdirectories), List All Subdirectories with ls -R
	-s option, Searching for Files by Size
	-t option, Finding Oldest or Newest Files with ls -t and ls -u
	-u option, Finding Oldest or Newest Files with ls -t and ls -u
	aa option, Showing Hidden Files with ls -A and -a
	aliases
 for, A csh Alias to List Recently Changed Files, Useful ls Aliases, Useful ls Aliases, Useful ls Aliases, Useful ls Aliases, Useful ls Aliases
		-C
 option, Useful ls Aliases
	-F option
 with, Useful ls Aliases
	-la (for ls -a or -A), Useful ls Aliases
	ll (for ls
 -l), Useful ls Aliases
	lr, A csh Alias to List Recently Changed Files

	color, displaying names
 in, Color ls–Another color ls, Another color ls
		-G option, Another color ls

	filenames and, Wildcards
	find command, using
 with, Delving Through a Deep Directory Tree
	GNU, Some GNU ls Features
	piping output to wc
 command, Counting Lines, Words, and Characters: wc
	shell functions with
 options, Simple Functions: ls with Options
	System V Unix, nonprinting characters
 and, Showing Nonprintable Characters in Filenames

	ls flag (for login
 shell), Login xterms and rxvts
	LSCOLORS
 environment variable, Another color ls
	LS_COLORS
 environment variable, Configuring It, Configuring It, Predefined Environment Variables
		setting with dircolors
 command, Configuring It

	lt operator (Perl), Scalars
	LyX editor, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On

 M
	m (ending escape
 sequence), Trying It
	m (map) option
 (tset command), Setting the Terminal Type When You Log In
	m command, marking
 place in vi editor, Finding Your Place with Undo
	M-x in
 Emacs, Emacs: The Other Editor (see ESC-x in Emacs)
	MAC (Ethernet)
 address, Dynamic Host Configuration Protocol (DHCP)
	Mac OS X, What’s Special About Unix?, The Core of Unix, Which Shell Am I Running?, The Mac OS X Terminal Application, Highlighting and Color in Shell Prompts, Running Commands When You Log Out, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X, Checking Swap Space, When Does a User Become a User, Enabling Root in Darwin, Enabling Remote Access on Mac OS X
		Darwin, The Core of Unix, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X, Enabling Root in Darwin
		downloading and
 installing One-Step, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
	enabling root access
 to, Enabling Root in Darwin

	passwords, storing, Which Shell Am I Running?
	SSH on, Enabling Remote Access on Mac OS X
	swap space,
 checking contents of /var/vm with ls, Checking Swap Space
	Terminal application, The Mac OS X Terminal Application, Highlighting and Color in Shell Prompts, Running Commands When You Log Out
		color
 capabilities, Highlighting and Color in Shell Prompts
	command-k to delete scrollback
 buffer, Running Commands When You Log Out

	user and group management through
 Netinfo, When Does a User Become a User

	Macintosh, Anyone Can Program the Shell, Defining Keys and Button Presses with xmodmap, Hacking on Characters with tr
		carriage returns in text files,
 translating to newlines, Hacking on Characters with tr
	keyboards, CTRL and CAPS
 LOCK, Defining Keys and Button Presses with xmodmap
	Microsoft Word
 file, converting for Unix, Anyone Can Program the Shell

	macros, Make Your Own Manpages Without Learning troff, Emacs Features: A Laundry List
		Emacs, Emacs Features: A Laundry List
	troff -man, Make Your Own Manpages Without Learning troff

	magic-space tcsh
 editor function, tcsh Editing
	mail, Make More Directories!, Emacs Features: A Laundry List, Remove Mail/News Headers with behead, Mail — SMTP, POP, and IMAP, Mail — SMTP, POP, and IMAP, User, Group, and World
		directory
 for, Make More Directories!
	Emacs
 facility, Emacs Features: A Laundry List
	headers, removing with behead
 script, Remove Mail/News Headers with behead
	permissions for
 files, User, Group, and World
	SMTP (Simple Message Transfer
 Protocol), Mail — SMTP, POP, and IMAP

	mail exchanger (MX) records, Status and Troubleshooting, Mail — SMTP, POP, and IMAP, Domain Name Service (DNS)
		stored by DNS, Domain Name Service (DNS)

	mail program, Unix Networking and Communications, Build Strings with { }, Instead of Changing History Characters, Outputting Text to an X Window, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe
		redirecting
 input for, Using Standard Input and Output
	redirecting
 standard error to, Send (Only) Standard Error Down a Pipe
	sending yourself email copy of
 fortune, Outputting Text to an X Window
	shortcut for multiple
 addresses, Build Strings with { }
	\
 (backslash) before history characters, Instead of Changing History Characters

	Mail User Agents
 (MUAs or UAs), Mail — SMTP, POP, and IMAP
	mailboxes, disk space
 and, Save Space with “Bit Bucket” Log Files and Mailboxes
	mailto
 utility, MIME Encoding
	Main Options menu
 (xterm), The xterm Menus
	make utility, make Isn’t Just for Programmers!–Even More Uses for make, Which make?, Simplifying the make Process, Simplifying the make Process, Compiling Perl from Scratch, Installing and Configuring Samba
		configuring source
 code, Compiling Perl from Scratch
	installing Samba, Installing and Configuring Samba
	make clean command, Simplifying the make Process
	make distclean
 command, Simplifying the make Process
	software installation problems with
 differing versions, Which make?

	makealias
 command, Fix Quoting in csh Aliases with makealias and quote
	Makefile.in
 (configure file), Simplifying the make Process
	Makefiles (or makefiles), make Isn’t Just for Programmers!–Even More Uses for make, Even More Uses for make, Compiling Perl from Scratch
		for NIS, Even More Uses for make
	for Perl, Compiling Perl from Scratch

	makewhatis
 utility, whatis: One-Line Command Summaries
	man
 command, The man Command, The man Command
		command-line
 options, The man Command

	MANPATH environment
 variable, The man Command, Make Your Own Manpages Without Learning troff, Predefined Environment Variables
		adding, Make Your Own Manpages Without Learning troff

	manual
 pages, whereis: Finding Where a Command Is Located, Searching Online Manual
 Pages, Searching Online Manual
 Pages, Dynamic Prompts, Predefined Environment Variables, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Typesetting Manpages: nroff
		formatted with nroff
 commands, Typesetting Manpages: nroff
	locating for a
 program, whereis: Finding Where a Command Is Located
	MANPATH environment
 variable, Predefined Environment Variables
	Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy
		perldata manpage for
 variable interpolation, Perl Boot Camp, Part 1: Typical Script Anatomy
	on Unix system, Perl Boot Camp, Part 1: Typical Script Anatomy

	searching, Searching Online Manual
 Pages
	for shell
 prompts, Dynamic Prompts
	types
 of, Searching Online Manual
 Pages

	map commands, vi, Save Time and Typing with the
 vi map Commands–What You Lose When You Use map!, Command Mode Maps, Text-Input Mode Maps, Text-Input Mode Maps, Text-Input Mode Maps, What You Lose When You Use map!, Keymaps for Pasting into a Window Running vi, Protecting Keys from Interpretation by ex
		(see also keymaps, vi)
	arrow key mappings in text-input mode,
 disadvantages of, What You Lose When You Use map!
	command mode maps, Command Mode Maps
	text-input mode
 maps, Text-Input Mode Maps, Text-Input Mode Maps, Text-Input Mode Maps, Protecting Keys from Interpretation by ex
		arrow keys,
 mapping, Text-Input Mode Maps
	disabling
 temporarily, Text-Input Mode Maps
	|
 (vertical bar), quoting in, Protecting Keys from Interpretation by ex

	map()
 function, Functions
	mappings, keyboard
 events at server level, Defining Keys and Button Presses with xmodmap (see keysym mappings)
	mark command, Marking Your Place with a Shell Variable
	markup
 languages, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	master password
 file, File Access Permissions
	master word list,
 ispell program, Adding Words to ispell’s Dictionary
	match command (awk), Alphabetical Summary of Commands
	matching, Communication with Unix (see grep commands pattern matching regular
 expressions)
	max log size
 directive (smb.conf), Installing and Configuring Samba
	maxdepth operator
 (find command), Removing a Strange File by its i-number
	maximum file
 size, setting in shells, limit and ulimit
	memory, Memory Information, Other Checks
		information about from meminfo
 file, Memory Information
	virtual memory statistics,
 checking, Other Checks

	menu
 completion, Menu Completion
	menu
 prompts, A “Menu Prompt” for Naive Users
	menus, The xterm Menus–The xterm Menus
		xterm, The xterm Menus–The xterm Menus

	merge
 option (xrdb), Setting Resources with xrdb
	merging
 files, RCS Basics, More CVS
		in
 CVS, More CVS
	in RCS, RCS Basics

	Message Transfer Agents
 (MTAs), Mail — SMTP, POP, and IMAP, Domain Name Service (DNS)
		MX records, use
 of, Domain Name Service (DNS)

	META key in
 Emacs, Emacs: The Other Editor (see ESC-x in Emacs)
	metacharacters, X Event Translations, Show Nonprinting Characters with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c, Splitting Files by Context: csplit, “Special” Characters and Operators, “Special” Characters and Operators, Understanding Expressions, Understanding Expressions, Using Metacharacters in Regular Expressions, Regular Expressions: The Anchor Characters ^ and $, Regular Expressions: Match Any Character with . (Dot), I Never Meta Character I Didn’t Like, Valid Metacharacters for Different Unix Programs, Examples of Searching and Replacing, Pattern Matching in case Statements, Perl Boot Camp, Part 4: Pattern Matching
		.
 (dot), Splitting Files by Context: csplit
		csplit search patterns, escaping
 in, Splitting Files by Context: csplit

	display by cat -v
 command, Show Nonprinting Characters with cat -v or od -c
	displayed by od
 -c, Show Nonprinting Characters with cat -v or od -c
	in regular
 expressions, Regular Expressions: The Anchor Characters ^ and $
		^ and $ anchor
 characters, Regular Expressions: The Anchor Characters ^ and $

	in regular
 expressions, “Special” Characters and Operators, Understanding Expressions, Using Metacharacters in Regular Expressions, Regular Expressions: Match Any Character with . (Dot), I Never Meta Character I Didn’t Like, Valid Metacharacters for Different Unix Programs, Examples of Searching and Replacing, Perl Boot Camp, Part 4: Pattern Matching
		. (dot), matching any
 character with, Regular Expressions: Match Any Character with . (Dot)
	examples of
 use, I Never Meta Character I Didn’t Like
	Perl, Perl Boot Camp, Part 4: Pattern Matching
	search and replace commands for sed or
 ex, Examples of Searching and Replacing
	valid metacharacters for
 different Unix programs, Valid Metacharacters for Different Unix Programs

	shell, Understanding Expressions
	in
 shells, “Special” Characters and Operators
	wildcard pattern matching
 in case statements, Pattern Matching in case Statements
	in X event
 translations, X Event Translations

	Metaframe
 (Citrix), Citrix: Making Windows Multiuser, Citrix Metaframe
	Metamail
 utilities, MIME Encoding
	methods, Perl Boot Camp, Part 1: Typical Script Anatomy, Everything’s an Object
		Python, Everything’s an Object

	Microsoft, Anyone Can Program the Shell, Citrix: Making Windows Multiuser, Citrix: Making Windows Multiuser, Keeping Up with Security Alerts
		licensing, strictness
 of, Citrix: Making Windows Multiuser
	security, Keeping Up with Security Alerts
	Windows, Citrix: Making Windows Multiuser (see Windows)
	Word (Macintosh) file,
 converting to Unix, Anyone Can Program the Shell

	MIME encoding, MIME Encoding–MIME Encoding
	mimencode
 utility, MIME Encoding
	minus sign , under
 Symbols), Scalars (see - (dash)
	MIT (Massachusetts
 Institute of Technology), The X Window System
	mkdir (2) system
 call, adding directories and their hard links, Links to a Directory
	mkdir
 command, Making Directories Made Easier, Making Directories Made Easier, Making Directories Made Easier, Making Directories Made Easier, Duplicating a Directory Tree
		-m option, Making Directories Made Easier
	-p (parents) option, Making Directories Made Easier
	history substitution, Making Directories Made Easier

	mkfifo
 command, Named Pipes: FIFOs
	modem input,
 written with send, Dialback
	modem output,
 reading by expect, Dialback
	modems, Testing: A Story, Quick Introduction to Hardware, Win Is a Modem Not a Modem?, Gatewaying from a Personal LAN over a Modem
		personal LAN over, gatewaying
 from, Gatewaying from a Personal LAN over a Modem
	testing with Expect
 program, Testing: A Story

	modems, checking
 for stalled data connections, Stalled Data Connection?
	modes, The xterm Menus, Access to Directories, Emacs Features: A Laundry List, Using chmod to Change File Permission
		access permissions after
 chmod, Using chmod to Change File Permission
	editing modes in
 Emacs, Emacs Features: A Laundry List
	for
 directories, Access to Directories
	xterm menus, setting
 with, The xterm Menus

	modification times for
 files, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, A csh Alias to List Recently Changed Files, Listing Files by Age and Size, newer: Print the Name of the Newest File, Searching for Old Files
		-mtime operator (find
 command), Searching for Old Files
	csh alias to list recently
 changed, A csh Alias to List Recently Changed Files
	finding files by, Listing Files by Age and Size
	listing newest
 file, newer: Print the Name of the Newest File
	sorting files by (ls
 -t), Finding Oldest or Newest Files with ls -t and ls -u

	modifiers (in regular
 expressions), Using Metacharacters in Regular Expressions
	modifiers for
 patterns, Perl Boot Camp, Part 4: Pattern Matching
	modules, Sorting a List of People by Last Name, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, What Is Python?, Installation and Distutils, Modules and Packages, Python and the Web, Python and the Web, Python and the Web, urllib2, htmllib and HTMLParser, cgi, mod_python, Quick Introduction to Hardware, General and Authentication Problems
		kernel, for device
 drivers, Quick Introduction to Hardware
	PAM (Pluggable Authentication
 Modules), General and Authentication Problems
	Perl, Sorting a List of People by Last Name, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy
		Audio\:\:SoundFile, Perl Boot Camp, Part 1: Typical Script Anatomy
	CPAN
 (Comprehensive Perl Archive Network), Sorting a List of People by Last Name
	use
 module statement in scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

	Python, What Is Python?, Installation and Distutils, Modules and Packages, Python and the Web, Python and the Web, Python and the Web, urllib2, htmllib and HTMLParser, cgi, mod_python
		cgi, cgi
	checking
 your version for, Installation and Distutils
	htmllib
 and HTMLParser, Python and the Web, htmllib and HTMLParser
	mod_python, mod_python
	urllib, Python and the Web
	urllib2, Python and the Web, urllib2

	modulus (%)
 operator, Syntax
	mod_python
 module, Python and the Web, mod_python
	month order,
 sorting in, Month Order
	more
 command, Faking Case-Insensitive Searches
		case-insensitive searches,
 faking, Faking Case-Insensitive Searches

	more program, “less” is More–“less” is More, Squash Extra Blank Lines, Managing Processes: Overall Concepts, checksed, Predefined Environment Variables, Problems Piping to a Pager
		-s option for squashing extra blank
 lines, Squash Extra Blank Lines
	PAGER environment
 variable, Predefined Environment Variables
	piping to, Problems Piping to a Pager
	sed output,
 displaying, checksed
	starting, Managing Processes: Overall Concepts

	MOTD, security
 and, Importance of MOTD
	mount
 command, Quick Introduction to Hardware, Loopback Mounts
		loop option, Loopback Mounts

	mounting, Mounting Network Filesystems — NFS, SMBFS
		Network File
 System, Mounting Network Filesystems — NFS, SMBFS

	mounting
 filesystems, Checklist: Terminal Hangs When I Log In, Filesystem Types and /etc/fstab, Mounting and Unmounting Removable Filesystems
		Network File
 System, Checklist: Terminal Hangs When I Log In

	mouse, Emacs Features: A Laundry List, Scrolling, Using a Mouse
		copy and past in tty-type
 virtual terminals with, Scrolling, Using a Mouse
	Emacs editors, not
 having to use in, Emacs Features: A Laundry List

	mouse for
 xterms, Working with xterm and Friends
	move
 command (ex), Useful ex
 Commands
	moving blocks of text
 delimited by patterns, Moving Blocks of Text by Patterns
	moving
 files and directories, What’s So Complicated About Copying Files, What’s Really in a Directory?, What’s Really in a Directory?
		between
 filesystems, What’s Really in a Directory?
	file, moving into another
 directory, What’s Really in a Directory?

	moving text with vi
 editor, Using Buffers to Move or Copy Text
	Mozilla browser, closing window by
 killing its processes, Example #2: A Web Browser
	mt
 command, Backing Up to Tape
	MTAs, Mail — SMTP, POP, and IMAP (see Message Transfer
 Agents)
	mtr (Matt’s
 traceroute), Where, Oh Where Did That Packet Go?
	MUAs (Mail User
 Agents), Mail — SMTP, POP, and IMAP
	multiline
 commands, Multiline Commands, Secondary Prompts, Invoking sed
		secondary prompts
 and, Multiline Commands, Secondary Prompts
	sed
 editor, Invoking sed

	multiline quoting, Bourne shell, Multiline Quoting–Multiline Quoting
	multiline replacement strings, sed
 editor, Newlines in a sed Replacement
	multiline shell
 prompts, Multiline Shell Prompts
	multiple-line patterns, grep using
 sed, A Multiline Context grep Using sed
	multiprocessing on Unix, Job Control in a Nutshell
	Multipurpose Internet Mail
 Extensions, MIME Encoding (see MIME encoding)
	munchlist script, Adding Words to ispell’s Dictionary
	mv
 command, Can’t Access a File? Look for Spaces in the Name, What’s Really in a Directory?, Renaming, Copying, or Comparing a Set of Files, Renaming, Copying, or Comparing a Set of Files, Who Will Own a New File?, Protect Important Files: Make
 Them Unwritable, A Loophole: Modifying Files Without Write Access
		-f option, Protect Important Files: Make
 Them Unwritable
	file ownership
 and, Who Will Own a New File?
	i option, Renaming, Copying, or Comparing a Set of Files
	modifying file without write
 permission, A Loophole: Modifying Files Without Write Access
	renaming files, Can’t Access a File? Look for Spaces in the Name
	renaming groups of files
 and, Renaming, Copying, or Comparing a Set of Files

	MX, Status and Troubleshooting (see mail
 exchanger record)
	mx
 function, Functions with Loops: Internet Lookup
	my operator (Perl
 variable declaration), Perl Boot Camp, Part 1: Typical Script Anatomy

 N
	n or N (next)
 commands, sed editor, The Deliberate Scrivener
	named buffers,
 transferring text among with vi editor, Using Buffers to Move or Copy Text
	named pipes
 (FIFOs), Named Pipes: FIFOs
	named.conf
 file, Domain Name Service (DNS)
	names, How Unix Systems Remember Their Names, How -name Affects Resources, Finding a Program Name and Giving Your Program Multiple Names, Domain Name Service (DNS), Installing and Configuring Samba, When Does a User Become a User
		of
 applications and resources, How -name Affects Resources
	computers on
 network, How Unix Systems Remember Their Names
	Domain Name Service
 (DNS), Domain Name Service (DNS)
	of programs, in
 error messages, Finding a Program Name and Giving Your Program Multiple Names
	SMB peers
 (NETBIOS), Installing and Configuring Samba
	usernames, When Does a User Become a User

	nameservers
 (NS), Status and Troubleshooting
	namesort
 script, Sorting a List of People by Last Name
	namespaces in
 Python, Modules and Packages
	naming, Naming Files, What Environment Variables Are Good For, Picking a Name for a New
 Command, Picking a Name for a New
 Command, Picking a Name for a New
 Command
		commands, Picking a Name for a New
 Command, Picking a Name for a New
 Command
	environment
 variables, What Environment Variables Are Good For
	files, Naming Files
	shell
 scripts, Picking a Name for a New
 Command

	NAT, Internet Protocol (IP) (see Network Address
 Translation)
	natd
 daemon, Gateways and NAT
	navigating Unix filesystem, Getting Around the Filesystem, Using Relative and Absolute Pathnames, What Good Is a Current Directory?, How Does Unix Find Your Current Directory?, Saving Time When You Change Directories: cdpath, Loop Control: break and continue, The Shells’ pushd and popd Commands–Nice Aliases for pushd, Quick cds with Aliases, cd by Directory Initials, Finding (Anyone’s) Home Directory, Quickly, Marking Your Place with a Shell Variable, Automatic Setup When You Enter/Exit a Directory
		automatic directory
 setup, Automatic Setup When You Enter/Exit a Directory
	cd, speeding up with
 aliases, Quick cds with Aliases
	changing
 directories, Saving Time When You Change Directories: cdpath
	changing directories with c (shell
 function), cd by Directory Initials
	current directory, What Good Is a Current Directory?, How Does Unix Find Your Current Directory?
		finding, How Does Unix Find Your Current Directory?

	finding (anyone’s) home
 directory, Finding (Anyone’s) Home Directory, Quickly
	loop control, break and
 continue, Loop Control: break and continue
	marking your place with shell
 variable, Marking Your Place with a Shell Variable
	relative and absolute
 pathnames, Using Relative and Absolute Pathnames
	shell pushd and popd
 commands, The Shells’ pushd and popd Commands–Nice Aliases for pushd

	navigation
 icons for resources shared with SMB network, SWAT and GUI SMB Browsers
	nawk
 utility, Quick Reference: awk, awk System Variables, Versions of awk, Shell Scripts On-the-Fly from Standard Input
		awk variables, support
 of, awk System Variables
	examples, Shell Scripts On-the-Fly from Standard Input
	version history, Versions of awk

	ndown (network
 down) script, Closing a Window from a Shell Script
	ndown
 script, Separating Commands with Semicolons
	ne (inequality)
 operator, Scalars
	neatening text, Neatening Text with fmt (see editing fmt
 command)
	negative numbers as variable
 values, Stop Syntax Errors in Numeric Tests
	nested command
 substitution, Nested Command
 Substitution
	nested loops,
 breaking or continuing, Loop Control: break and continue, Loop Control: break and continue
	nesting, Command Substitution
		` `
 (backquotes), Command Substitution

	NETBIOS name, Installing and Configuring Samba
	Netinfo, Mac OS X
 user/group management with, When Does a User Become a User
	Netinfo, storing MacOS
 X passwords, Which Shell Am I Running?
	netpbm
 package, The Portable Bitmap Package
	netscape -remote
 technique, C-Shell Aliases with Command-Line Arguments
	netstat
 command, Status and Troubleshooting, Check Network Connections
	Network Address Translation
 (NAT), Internet Protocol (IP), Gateways and NAT, Gateways and NAT, Gatewaying from a Personal LAN over a Modem
		for PPP connections, Gatewaying from a Personal LAN over a Modem
	private
 addresses, Gateways and NAT

	network cards, kernel
 boot output for, Reading Kernel Boot
 Output
	network
 devices, Network Devices — ifconfig
		configuring with
 ifconfig, Network Devices — ifconfig

	network devices,
 configuring, Quick Introduction to Hardware
	Network
 File System, Unix Networking and Communications (see NFS)
	Network Information
 Service (NIS), Which Shell Am I Running?
	network interfaces
 for gateways, Gateways and NAT
	network time
 synchronization, How Unix Keeps Time
	networking language (SMB on
 Windows), Installing and Configuring Samba
	networking
 utilities, Unix Networking and Communications
	networks, How Unix Systems Remember Their Names, Separating Commands with Semicolons, Packing Up and Moving, Printing Over a Network, The Common Unix Printing System (CUPS), Status and Troubleshooting, Where, Oh Where Did That Packet Go?, Where, Oh Where Did That Packet Go?, Check Network Connections
		(see also connectivity)
	archiving files
 for, Packing Up and Moving
	checking connections for
 security breaches, Check Network Connections
	computers, names
 of, How Unix Systems Remember Their Names
	configuration of
 network devices (ifconfig file), Status and Troubleshooting
	diagnosing problems with ping and
 traceroute, Where, Oh Where Did That Packet Go?
	printing
 over, Printing Over a Network, The Common Unix Printing System (CUPS)
		CUPS
 package, The Common Unix Printing System (CUPS)

	starting and disabling
 for dialup connections, Separating Commands with Semicolons

	newer alias (printing
 newest filename), newer: Print the Name of the Newest File
	newgrp
 command, Groups and Group Ownership, Which Group is Which?
	newlines, Anyone Can Program the Shell, When Is a File Not a File?, Multiline Shell Prompts, Multiline Shell Prompts, X Event Translations, Newlines in an @-Function, Patterns, Hacking on Characters with tr, Special Characters, How Quoting Works, Newlines in a sed Replacement, Making Edits Across Line Boundaries–Making Edits Across Line Boundaries, sed Newlines, Quoting, and Backslashes in a Shell Script, /usr/bin and Other Software Directories
		as argument
 separators, Special Characters
	awk procedures,
 separating, Patterns
	in
 Bourne shell quoting, How Quoting Works
	different characters
 for, When Is a File Not a File?
	DOS, converting to
 Unix, /usr/bin and Other Software Directories
	Mac vs.
 Unix, Anyone Can Program the Shell
	quoted in sed, shell
 interpretation of, sed Newlines, Quoting, and Backslashes in a Shell Script
	in sed
 replacement, Newlines in a sed Replacement, Making Edits Across Line Boundaries–Making Edits Across Line Boundaries
	translating Mac carriage returns
 to, Hacking on Characters with tr
	in vi
 @-functions, Newlines in an @-Function
	\n, Multiline Shell Prompts, Multiline Shell Prompts, X Event Translations
		in bash
 shell prompt, Multiline Shell Prompts
	in
 Bourne-type shells, Multiline Shell Prompts
	in event
 translation tables, X Event Translations

	news, Emacs Features: A Laundry List, Remove Mail/News Headers with behead
		Emacs facility
 for, Emacs Features: A Laundry List
	removing headers with behead
 script, Remove Mail/News Headers with behead

	next
 (n or N) commands, sed editor, Making Edits Across Line Boundaries, The Deliberate Scrivener
	next command
 (awk), Alphabetical Summary of Commands
	next operator (Perl), Perl Boot Camp, Part 3: Branching and Looping
	nextdir
 command, Using the Stored Lists
	NFS
 (Network File System), Unix Networking and Communications, Checklist: Terminal Hangs When I Log In, Keeping find from Searching Networked Filesystem, Using tar to a Remote Tape Drive, Choosing the Access Method, Mounting Network Filesystems — NFS, SMBFS
		directories remotely mounted by,
 hung terminals and, Checklist: Terminal Hangs When I Log In
	directories, backups to remote tape
 drive, Using tar to a Remote Tape Drive
	find command, preventing from
 searching, Keeping find from Searching Networked Filesystem
	installing packages
 residing on server, Choosing the Access Method
	mounting, Mounting Network Filesystems — NFS, SMBFS

	NFS (Network File Systems), vi File Recovery Versus Networked Filesystems
		file recovery,
 vi -r command vs., vi File Recovery Versus Networked Filesystems

	nice
 command, Some Gotchas with Job Control, System Overloaded? Try Stopping Some Jobs, Know When to Be “nice” to Other Users...and When Not To, Know When to Be “nice” to Other Users...and When Not To, BSD C Shell nice, BSD Standalone nice, System V Standalone nice, A nice Gotcha, Changing a Running Job’s Niceness
		background processes
 and, Some Gotchas with Job Control
	BSD Unix, BSD C Shell nice, BSD Standalone nice
		C
 shell, BSD C Shell nice
	standalone, BSD Standalone nice

	foreground jobs
 and, A nice Gotcha
	renice command, System Overloaded? Try Stopping Some Jobs, Know When to Be “nice” to Other Users...and When Not To, Changing a Running Job’s Niceness
	System
 V, System V Standalone nice
		standalone, System V Standalone nice

	nice
 numbers, Know When to Be “nice” to Other Users...and When Not To, BSD C Shell nice, BSD Standalone nice, System V C Shell nice, System V Standalone nice, Changing a Running Job’s Niceness
		BSD C shell nice, BSD C Shell nice
	BSD standalone
 nice, BSD Standalone nice
	System V C shell
 nice, System V C Shell nice
	System V standalone
 nice, System V Standalone nice

	niceness, Know When to Be “nice” to Other Users...and When Not To, System V C Shell nice
		System V, C
 shell nice, System V C Shell nice

	NIS (Network Information
 Service), Which Shell Am I Running?
	nl program
 (line-numbering), Numbering Lines
	nmbd
 daemon, Installing and Configuring Samba
	nobody
 (generic user for HTTP web pages), Check Processes
	noclobber shell
 variable, Safer File Deletion in Some Directories, Safe I/O Redirection with noclobber
	noglob
 option, Filename Wildcards in a Nutshell
	nohup
 command, Some Gotchas with Job Control, nohup, Disowning Processes
		background processes, avoiding
 termination of, Some Gotchas with Job Control
	disown vs., Disowning Processes

	nohup.out
 file, nohup
	nom
 script, nom: List Files That Don’t Match a Wildcard, Trapping Exits Caused by Interrupts
		trap command in, Trapping Exits Caused by Interrupts

	non-ASCII characters
 in filenames, deleting files with, Using unlink to Remove a File with a Strange Name
	non-rewinding
 tape devices, Backing Up to Tape
	noninteractive
 shells, Interactive Shells
	nonlogin
 files, Shell Setup Files — Which, Where, and Why
		bash, Shell Setup Files — Which, Where, and Why

	nonlogin
 shells, Shell Setup Files — Which, Where, and Why, Login Shells, Login xterms and rxvts
		Bourne shell, .profile file
 and, Shell Setup Files — Which, Where, and Why
	startup files, Login Shells
	xterm, configuring
 for, Login xterms and rxvts

	nonprintable
 characters, Show Nonprinting Characters with cat -v or od -c
		displaying with od
 command, Show Nonprinting Characters with cat -v or od -c

	nonprintable
 characters in filenames, Showing Nonprintable Characters in Filenames
	nonprintable or control
 characters, Programs Are Designed to Work Together
	nonprinting characters, Showing Nonprintable Characters in Filenames, Showing Nonprintable Characters in Filenames, Show Nonprinting Characters with cat -v or od -c, Squash Extra Blank Lines, Problems Deleting Directories
		erasing with sed to eliminate extra blank
 lines, Squash Extra Blank Lines
	filenames with, file deletion
 and, Problems Deleting Directories
	ls
 command, System V Unix, Showing Nonprintable Characters in Filenames
	octal values of, printing with ls
 -b, Showing Nonprintable Characters in Filenames
	showing with cat
 -v, Show Nonprinting Characters with cat -v or od -c

	nonprinting escape sequences in a
 prompt, Highlighting and Color in Shell Prompts
	noremap command
 (vi), Don’t Lose Important Functions with vi Maps: Use noremap
	not a tty
 message, The Controlling Terminal
	not equal to (!=)
 operator, Scalars
	NOT
 operator, Be an Expert on find Search Operators
	not operator, Scalars
	NOT operator
 (!), Patterns
	NOT operator (!), using with find
 command, Exact File-Time Comparisons
	notification of
 changed job state, Notification When Jobs Change State
	notification of job-state
 changes, Job Control in a Nutshell
	nroff
 program, Searching Online Manual
 Pages, Make Your Own Manpages Without Learning troff, Alternatives to fmt, Typesetting Manpages: nroff
		-man macros, Make Your Own Manpages Without Learning troff
	commands in, Searching Online Manual
 Pages
	formatting text with
 sed, Alternatives to fmt

	NT
 domains, Installing and Configuring Samba
	NUL
 characters, Running Commands on What You Find, Show Nonprinting Characters with cat -v or od -c, What Can You Do with an Empty File?
		delimiters, using
 as, Running Commands on What You Find

	null
 command, Test Exit Status with the if Statement
	null
 or unset variables, errors caused by, Stop Syntax Errors in Numeric Tests
	numbering
 lines, Numbering Lines
	numbers, Defining What Makes Up a Word for Selection Purposes
		ASCII class
 for, Defining What Makes Up a Word for Selection Purposes

	numeric exit status, Managing Processes: Overall Concepts
	numeric mode
 (chmod), Using chmod to Change File Permission
	numeric
 operators, Scalars
	numeric sorting,
 alphabetic vs., Alphabetic and Numeric Sorting
	numeric tests,
 syntax errors in, Stop Syntax Errors in Numeric Tests
	nup (network up)
 script, Closing a Window from a Shell Script
	nup
 script, Separating Commands with Semicolons
	n\\>&m
 operator, Trapping Exits Caused by Interrupts, n>&m: Swap Standard Output and Standard Error, Nested Command
 Substitution
		echo commands ending
 with, Trapping Exits Caused by Interrupts
	examples, Nested Command
 Substitution
	redirecting
 standard output and standard error, n>&m: Swap Standard Output and Standard Error

 O
	object oriented programming (OOP) in
 Perl, Perl Boot Camp, Part 1: Typical Script Anatomy
	objects, Filename Extensions, X Resource Syntax, Everything’s an Object, Everything’s an Object, I/O and Formatting
		file
 extension, Filename Extensions
	Python, Everything’s an Object, Everything’s an Object, I/O and Formatting
		creating, Everything’s an Object
	file
 objects, I/O and Formatting

	resources in applications,
 association with, X Resource Syntax

	objects, Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy
		releasing resources with close(
), Perl Boot Camp, Part 1: Typical Script Anatomy

	octal character
 strings, Highlighting and Color in Shell Prompts
	octal
 number, Using chmod to Change File Permission
		permissions written
 as, Using chmod to Change File Permission

	octal
 numbers, Showing Nonprintable Characters in Filenames, User, Group, and World
		permissions, writing
 as, User, Group, and World
	values of nonprinting
 characters, Showing Nonprintable Characters in Filenames

	od -c command,
 displalying nonprintable files, Show Nonprinting Characters with cat -v or od -c, Show Nonprinting Characters with cat -v or od -c
	od c command, dumping
 raw directory contets to screen, What’s Really in a Directory?
	od
 command, Using unlink to Remove a File with a Strange Name
		-c option, Using unlink to Remove a File with a Strange Name

	offset
 script, offset: Indent Text
	oldlinks
 script, oldlinks: Find Unconnected Symbolic Links
	on-disk address of file data
 blocks, How Unix Keeps Track of Files: Inodes
	One-Step (GNU-Darwin
 auto-installer for OS X), The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
	online
 documentation, The man Command (see info command manual pages)
	online manual source
 file extension, Filename Extensions
	open
 files, Overview: Open Files and File Descriptors
		file descriptors and, Overview: Open Files and File Descriptors

	OpenSSH, Free SSH with OpenSSH, General and Authentication Problems
		Pluggable
 Authentication Modules (PAM), problems
 with, General and Authentication Problems

	operating
 systems, Power Grows on You, The Core of Unix, Filename Wildcards in a Nutshell, Who Handles Wildcards?, Which make?, Building Bridges
		BSD Unix, versions of
 make utility, Which make?
	filename wildcards, Filename Wildcards in a Nutshell, Who Handles Wildcards?
		shells emulating operating
 systems, Who Handles Wildcards?

	graphical interfaces, Power Grows on You
	interoperability, Building Bridges
	POSIX standard for
 interoprability, The Core of Unix

	operators, Shell Setup Files — Which, Where, and Why, Faster Prompt Setting with Built-ins, dirs in Your Prompt: Better Than $cwd, How to Use find–How to Use find, Looking for Files with Particular Names, Be an Expert on find Search Operators–Be an Expert on find Search Operators, The Times That find Finds, Exact File-Time Comparisons, Running Commands on What You Find, Expanding Ranges, Copying Directory Trees with tar and Pipes, Finding Text That Doesn’t Match, Appending to an Existing File, Operators, Operators, Alphabetical Summary of Commands, “Special” Characters and Operators, String Editing (Colon) Operators, Here Document Example #1: Unformatted Form Letters, Understanding Expressions, Understanding Expressions, Parameter Substitution, Parameter Substitution, Syntax, Syntax, Syntax, Unmatched Operators, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars, Scalars, Scalars, Scalars, Scalars, Arrays, Perl Boot Camp, Part 3: Branching and Looping
		&&, Copying Directory Trees with tar and Pipes
	() (subshell)
 operator, Shell Setup Files — Which, Where, and Why
	<< (here document)
 operator, Here Document Example #1: Unformatted Form Letters
	= (assignment)
 operator, Perl Boot Camp, Part 1: Typical Script Anatomy
	arithmetic, Syntax
	array, Arrays
	array-expanding, Expanding Ranges
	awk
 utility, Operators, Operators
	Boolean, Scalars
	in
 expressions, Understanding Expressions, Understanding Expressions
		precedence
 of, Understanding Expressions

	for find
 command, How to Use find–How to Use find, Looking for Files with Particular Names, Be an Expert on find Search Operators–Be an Expert on find Search Operators, The Times That find Finds, Exact File-Time Comparisons, Running Commands on What You Find
		-exec, Running Commands on What You Find
	-name, Looking for Files with Particular Names
	search
 operators, Be an Expert on find Search Operators–Be an Expert on find Search Operators
	time (-mtime, -atime, and
 -ctime), The Times That find Finds, Exact File-Time Comparisons

	find
 command, Finding Text That Doesn’t Match
		! and -name, Finding Text That Doesn’t Match

	flow-control, for loops in
 Perl, Perl Boot Camp, Part 3: Branching and Looping
	if command,
 awk, Alphabetical Summary of Commands
	logical, Syntax
	numerical, Scalars
	parameter
 substitution (Bourne shell), Parameter Substitution
	precedence
 of, Scalars
		Boolean operators in
 Perl, Scalars

	redirect and append
 (>>), Appending to an Existing File
	relational, Syntax, Scalars
	in shells,
 listing with definitions, “Special” Characters and Operators
	shift
 (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy
	string, Faster Prompt Setting with Built-ins, Scalars
	string
 editing, Parameter Substitution
	unmatched, Unmatched Operators
	\: (colon), string
 editing, String Editing (Colon) Operators
	\:gt operator (C
 shell), dirs in Your Prompt: Better Than $cwd

	optimizing disk space, Disk Space Is Cheap–Disk Quotas, Save Space with a Link, Limiting File Sizes, Compressing Files to Save Space–Compressing Files to Save Space, Save Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning, Save Space in Executable Files with strip, Disk Quotas
		compressing a directory
 tree, Save Space: tar and compress a Directory Tree, Compressing a Directory Tree: Fine-Tuning
		fine-tuning, Compressing a Directory Tree: Fine-Tuning

	compressing
 files, Compressing Files to Save Space–Compressing Files to Save Space
	executable binaries,
 stripping, Save Space in Executable Files with strip
	limiting files sizes, Limiting File Sizes
	links, using, Save Space with a Link
	quotas on disk usage, Disk Quotas

	opttest
 script, Standard Command-Line
 Parsing
	or (-o) operator,
 case command, Testing Two Strings with One case Statement
	OR
 operator, Be an Expert on find Search Operators, Finding Many Things with One Command, Approximate grep: agrep, Extended Regular Expressions, Syntax
		agrep command, searching for
 multiple patterns, Approximate grep: agrep
	evaluating OR
 expressions, Finding Many Things with One Command
	|
 (logical OR)
 operator, Syntax
	| in extended regular
 expressions, Extended Regular Expressions

	or operator (Boolean
 or), Scalars
	or operator
 (|), Extended Searching for Text with egrep
	OR operator
 (||), Patterns, Separating Commands with Semicolons
	orphans, BSD
	out-of-date
 links, Creating and Removing Links (see symbolic links, stale)
	output, Running Commands on What You Find (see input/output standard
 output)
	overriding event
 translations, X Event Translations
	overwrite mode
 (Emacs), Putting Emacs in Overwrite Mode
	overwriting
 files, Command Evaluation and Accidentally Overwriting Files
	ownership,
 file, How Unix Keeps Track of Files: Inodes, Perl Boot Camp, Part 5: Perl Knows Unix, Group Permissions in a Directory with the setgid Bit, Groups and Group Ownership–Groups and Group Ownership, Introduction to File Ownership and Security, Tutorial on File and Directory Permissions, User, Group, and World, Which Group is Which?, Who Will Own a New File?, Protecting Files with the Sticky Bit, Why Can’t You Change File Ownership?, How to Change File Ownership Without chown, Server and Client Problems
		changing with chown
 function in Perl, Perl Boot Camp, Part 5: Perl Knows Unix
	changing without chown
 command, How to Change File Ownership Without chown
	determining, Who Will Own a New File?
	directory, setting sticky
 bit, Protecting Files with the Sticky Bit
	disk quotas and, Why Can’t You Change File Ownership?
	groups, Groups and Group Ownership–Groups and Group Ownership, Which Group is Which?
	groups, determining
 for, Group Permissions in a Directory with the setgid Bit
	permissions, Tutorial on File and Directory Permissions
	remote files, scp -p command
 and, Server and Client Problems
	security and, Introduction to File Ownership and Security
	user, group, and
 world, User, Group, and World

 P
	p (print) command, sed
 editor, The Deliberate Scrivener
	packages, Modules and Packages
		Python, Modules and Packages

	packed file
 extension, Filename Extensions
	packets, Internet Protocol (IP)
	packing
 files, Using tar to Create and Unpack Archives (see archives compression)
	page description
 languages, Printing Languages — PostScript, PCL, DVI, PDF, Printing Languages — PostScript, PCL, DVI, PDF
		consistency of, Printing Languages — PostScript, PCL, DVI, PDF

	page size for
 printing, Formatting Plain Text: enscript
	PAGER
 environment variable, Predefined Environment Variables
	pager
 programs, checksed
		more, checksed
		displaying
 sed output, checksed

	pagers, “less” is More–“less” is More, Squash Extra Blank Lines, Use -xv, Problems Piping to a Pager–Problems Piping to a Pager
		-s option to
 squash extra blank lines, Squash Extra Blank Lines
	redirecting input/output
 to, Problems Piping to a Pager–Problems Piping to a Pager
	shell debugging output, piping
 to, Use -xv

	pagers, piping shell
 loop output to, Searching Online Manual
 Pages
	paircheck
 script, Looking for Closure
	paired item
 checking, Looking for Closure
	PalmOS, The Idea of a Terminal Database
		terminal emulators
 on, The Idea of a Terminal Database

	PAM (Pluggable
 Authentication Modules), General and Authentication Problems
	paragraphs, preserving with
 fmt, Neatening Text with fmt
	parameter
 expansion, Quoting and Command-Line
 Parameters, Quoting and Command-Line
 Parameters
		command-line argument quoting, errors
 caused
 by, Quoting and Command-Line
 Parameters
	shortcuts, Quoting and Command-Line
 Parameters

	parameter
 substitution, The Unappreciated Bourne Shell “:” Operator, Parameter Substitution, Parameter Substitution
		examples of, Parameter Substitution
	\: (colon) used
 in, The Unappreciated Bourne Shell “:” Operator
	\: used in, Parameter Substitution

	parameters,
 command-line, Setting (and Parsing) Parameters (see command-line
 arguments)
	parent directory, Making Pathnames, Making Directories Made Easier, What’s Really in a Directory?, Links to a Directory, Saving Time When You Change Directories: cdpath
		creating, Making Directories Made Easier
	links to, Links to a Directory
	listing in cdpath
 variable, Saving Time When You Change Directories: cdpath

	parent
 process, Managing Processes: Overall Concepts, The ps Command
		PID for, The ps Command

	parent process ID
 (PPID), Why You Can’t Kill a Zombie
	parent-child
 relationships, Parent-Child Relationships
		environment variables
 and, Parent-Child Relationships

	parsing, Wildcards Inside Aliases, Standard Command-Line
 Parsing–Standard Command-Line
 Parsing, Setting (and Parsing) Parameters, Watch Your Quoting, Using set and IFS, Using sed, Python and the Web, htmllib and HTMLParser
		command-line, Wildcards Inside Aliases
	command-line
 arguments, Standard Command-Line
 Parsing–Standard Command-Line
 Parsing, Setting (and Parsing) Parameters, Watch Your Quoting
	HTML,
 Python module for, Python and the Web, htmllib and HTMLParser
	strings using sed
 editor, Using sed
	strings with set
 command, Using set and IFS

	partitioning
 disks, Disk Partitioning
	passmass
 script, Automating /bin/passwd
	passwd
 command, Automating /bin/passwd
	passwd
 file, File Access Permissions, When Does a User Become a User, Forgetting the root Password
		root password,
 resetting, Forgetting the root Password
	users, adding entry for, When Does a User Become a User

	passwords, Which Shell Am I Running?, Installing and Configuring Samba, Securing Samba, Securing Samba, Connecting to a Windows VNC server, What We Mean by DoS, Forgetting the root Password, Which Group is Which?, General and Authentication Problems
		access by
 attackers, What We Mean by DoS
	for VNC
 server, Connecting to a Windows VNC server
	empty, General and Authentication Problems
		SSH
 server not allowing, General and Authentication Problems

	groups, Which Group is Which?
	local resources shared with SMB
 network, Installing and Configuring Samba
	root,
 forgetting, Forgetting the root Password
	Samba, Securing Samba
		clear
 text vs. encrypted, Securing Samba

	for SMB
 server, Securing Samba
	system
 file, Which Shell Am I Running?

	paste
 program, Pasting Things in Columns
	pasting
 text, Using vi Abbreviations as Commands (Cut and Paste Between vi’s), Keymaps for Pasting into a Window Running vi, Scrolling, Using a Mouse
		between vi’s, Using vi Abbreviations as Commands (Cut and Paste Between vi’s)
	from window
 systems into vi, Keymaps for Pasting into a Window Running vi
	in tty-type virtual consoles with the
 mouse, Scrolling, Using a Mouse

	pasting text in
 xterm windows, Simple Copy and Paste in xterm, Working with xclipboard, Tips for Copy and Paste Between Windows–Tips for Copy and Paste Between Windows
		between
 windows, Tips for Copy and Paste Between Windows–Tips for Copy and Paste Between Windows
	xclipboard,
 using, Working with xclipboard

	patch
 program, Context diffs, Why Line Editors Aren’t Dinosaurs, patch: Generalized Updating of Files That Differ
		context diffs, use
 of, Context diffs

	PATH environment
 variable, Which Version Am I Using?, FPATH Search Path, FPATH Search Path, What Environment Variables Are Good For, Predefined Environment Variables, The PATH Environment Variable, PATH and path, Making #! Search the PATH
		command version,
 getting, Which Version Am I Using?
	finding
 commands, What Environment Variables Are Good For
	path shell variable
 and, PATH and path
	searching with #!, Making #! Search the PATH
	shell
 functions, searching for, FPATH Search Path

	path shell
 variable, PATH and path
	pathnames, Internal and External Commands, Use Absolute Pathnames in Shell Setup Files, Faster Prompt Setting with Built-ins, Showing the Actual Filenames for Symbolic Links, Unset PWD Before Using Emacs, String Editing (Colon) Operators, String Editing (Colon) Operators, Using Relative and Absolute Pathnames, Using Relative and Absolute Pathnames, File-Naming Wildcards, Maybe You Shouldn’t Use Wildcards in Pathnames, Predefined Environment Variables, With the “$@” Parameter, Save Disk Space and Programming: Multiple Names for a Program, Introduction to basename and dirname, Introduction to basename and dirname, Restoring a Few Files, Using GNU tar with a Remote Tape Drive, With GNU tar, Avoid Absolute Paths with tar, GNU tar Sampler
		absolute, Internal and External Commands, Avoid Absolute Paths with tar, GNU tar Sampler
		avoiding
 in archives, GNU tar Sampler
	tar
 utility, avoiding use with, Avoid Absolute Paths with tar

	editing, Faster Prompt Setting with Built-ins
	Emacs, PWD variable
 and, Unset PWD Before Using Emacs
	filenames stripped
 from, Introduction to basename and dirname
	files archived on tape
 drives, Restoring a Few Files
	GNU tar backups to remote tape
 drive, Using GNU tar with a Remote Tape Drive
	head of, returning with
 \:h operator, String Editing (Colon) Operators
	links
 to, Showing the Actual Filenames for Symbolic Links
	login
 shell, Predefined Environment Variables
	matching
 with wildcard expressions in GNU
 tar, With GNU tar
	relative, Using Relative and Absolute Pathnames, Using Relative and Absolute Pathnames
		(see also relative
 pathnames)
	absolute
 vs., Using Relative and Absolute Pathnames

	script, testing
 for, Save Disk Space and Programming: Multiple Names for a Program
	in shell setup
 files, Use Absolute Pathnames in Shell Setup Files
	stripped from
 filenames, Introduction to basename and dirname
	symbols
 in, With the “$@” Parameter
	tail of, returning with
 \:t operator, String Editing (Colon) Operators
	wildcards
 in, File-Naming Wildcards, Maybe You Shouldn’t Use Wildcards in Pathnames
		reasons not to use, Maybe You Shouldn’t Use Wildcards in Pathnames

	paths, dirs in Your Prompt: Better Than $cwd, Checklist: Terminal Hangs When I Log In, A bin Directory for Your Programs and Scripts, Shell Search Paths, Controlling Shell Command Searches–Controlling Shell Command Searches, Controlling Shell Command Searches, Controlling Shell Command Searches, Configuring the sources.list File, Scalars, Installing and Configuring Samba
		changing in shell startup
 files, Controlling Shell Command Searches
	echo $PATH command, finding
 directory pathnames, A bin Directory for Your Programs and Scripts
	local, sharing with SMB
 network, Installing and Configuring Samba
	in Perl
 scripts, Scalars
	search paths,
 shells, Shell Search Paths, Controlling Shell Command Searches–Controlling Shell Command Searches, Controlling Shell Command Searches
		(see also search path)

	set path command, hung
 terminals and, Checklist: Terminal Hangs When I Log In
	tail of each path in dirs output for
 C shell prompt, dirs in Your Prompt: Better Than $cwd
	in
 URIs, Configuring the sources.list File

	pattern
 matching, Using Search Patterns and Global Commands, Global Searches, Moving Blocks of Text by Patterns, Useful Global Commands (with Pattern Matches), Capitalizing Every Word on a Line, vi Compound Searches, That’s an Expression, That’s an Expression, Extended Regular Expressions, Pattern Matching Quick Reference with Examples–Examples of Searching and Replacing, Pattern Matching Quick Reference with Examples, Pattern Matching Quick Reference with Examples, Examples of Searching and Replacing, Pattern Matching in case Statements, Testing Two Strings with One case Statement
		(see also regular
 expressions)
	in case
 statements, Testing Two Strings with One case Statement
	compound searches with
 vi, vi Compound Searches
	global commands useful
 with, Useful Global Commands (with Pattern Matches)
	lowercase
 letters, Capitalizing Every Word on a Line
	quick
 reference, Pattern Matching Quick Reference with Examples–Examples of Searching and Replacing, Pattern Matching Quick Reference with Examples, Pattern Matching Quick Reference with Examples, Examples of Searching and Replacing
		replacement
 patterns, Pattern Matching Quick Reference with Examples
	search and replace
 commands, Examples of Searching and Replacing
	search
 patterns, Pattern Matching Quick Reference with Examples

	replacement
 patterns, Extended Regular Expressions
	search patterns in vi
 editor, Using Search Patterns and Global Commands, Global Searches
		global searches, Global Searches

	wildcards in case
 statements, Pattern Matching in case Statements

	pattern space (sed
 editor), Hold Space: The Set-Aside Buffer, Making Edits Across Line Boundaries–Making Edits Across Line Boundaries, The Deliberate Scrivener, Multiline Delete, Multiline Delete
		deleting contents with d
 command, Multiline Delete
	deleting portion of with D
 command, Multiline Delete
	edits across
 line boundaries, Making Edits Across Line Boundaries–Making Edits Across Line Boundaries

	pattern-expansion characters ({ }), Build Strings with { }
	pattern-matching operators ~
 and !~, Alphabetical Summary of Commands
	patterns, Patterns and Procedures, Splitting Files by Context: csplit–Splitting Files by Context: csplit, Using jobs Effectively, Expect, zsh Aliases, That’s an Expression, That’s an Expression, Don’t Confuse Regular Expressions with Wildcards, Valid Metacharacters for Different Unix Programs, The Deliberate Scrivener
		(see also regular expressions; replacement
 patterns; search patterns)
	aliases matching a wildcard-type
 pattern in zsh, zsh Aliases
	awk
 utility, Patterns and Procedures
	csplit program, for
 searches, Splitting Files by Context: csplit–Splitting Files by Context: csplit
	job control mechanism, use
 of, Using jobs Effectively
	matching in Expect
 program, Expect
	regular expressions vs. wildcards
 (file-matching patterns), Don’t Confuse Regular Expressions with Wildcards
	replacement, valid regular
 expression metacharacters for, Valid Metacharacters for Different Unix Programs
	in
 sed, The Deliberate Scrivener

	pausing scripts, Building Software Robots the Easy Way
	pbm (portable bitmap)
 format, The Portable Bitmap Package
	pbmplus
 package, The Portable Bitmap Package
	PCL (Printer Command
 Language), Printing Languages — PostScript, PCL, DVI, PDF
	PCs, Defining Keys and Button Presses with xmodmap, Hacking on Characters with tr, Disk Partitioning, USB Configuration
		keyboard, CTRL and CAPS
 LOCK, Defining Keys and Button Presses with xmodmap
	partitioning PC BIOS
 disk, Disk Partitioning
	text files, removing carriage returns
 from, Hacking on Characters with tr
	Universal Serial Bus (USB), support
 of, USB Configuration

	PDF, Printing Languages — PostScript, PCL, DVI, PDF
	pdksh (public domain
 Korn shell), There Are Many Shells, What the Shell Does, Korn-Shell Aliases, Korn shell, Pass History to Another Shell, ksh Editing
		aliases, Korn-Shell Aliases
	command-line
 editing, ksh Editing
	FPATH environment
 variable for shell functions, Korn shell
	history file, Pass History to Another Shell

	performance, Timing Is Everything–Changing a Running Job’s Niceness, Timing Is Everything–Timing Is Everything, Timing Is Everything, Timing Programs, What Commands Are Running and How Long Do They Take?, Checking System Load: uptime, Know When to Be “nice” to Other Users...and When Not To, Beware of Sluggish Performance–Other Checks, Check Processes, Checking Swap Space, Check Network Connections, Other Checks, Other Checks
		displaying running
 commands, What Commands Are Running and How Long Do They Take?
	global and local
 problems, Timing Is Everything
	problems with, checking for
 security breaches, Beware of Sluggish Performance–Other Checks, Check Processes, Checking Swap Space, Check Network Connections, Other Checks, Other Checks
		I/O
 statistics, Other Checks
	network
 connections, Check Network Connections
	processes, Check Processes
	swap
 space, Checking Swap Space
	virtual memory
 statistics, Other Checks

	process scheduling at lower
 priority with nice, Know When to Be “nice” to Other Users...and When Not To
	system load, checking with
 uptime, Checking System Load: uptime
	timing
 processes, Timing Is Everything–Timing Is Everything
	timing
 programs, Timing Programs

	period (.) , under
 Symbols), Understanding Expressions (see . (dot)
	PERIOD shell
 variable, Preprompt, Pre-execution, and Periodic Commands
	periodic
 commands, Preprompt, Pre-execution, and Periodic Commands
	periodic execution of programs, Periodic Program Execution: The cron Facility, A Little Help, etc.–A Little Help, etc., Adding crontab Entries, Including Standard Input Within a cron Entry
		crontab entries,
 adding, Adding crontab Entries
	shortcuts to
 creating, A Little Help, etc.–A Little Help, etc.
	standard input, including in cron
 entry, Including Standard Input Within a cron Entry

	Perl, oldlinks: Find Unconnected Symbolic Links, Showing the Actual Filenames for Symbolic Links, Different Versions of grep, Compound Searches, Using unlink to Remove a File with a Strange Name, Emacs Features: A Laundry List, Alternatives to fmt, offset: Indent Text, Cutting Columns or Fields, lensort: Sort Lines by Length, Sorting a List of People by Last Name, Sorting a List of People by Last Name, Regular Expressions: Exceptions in a Character Set, Pattern Matching Quick Reference with Examples, RCS Basics, High-Octane Shell Scripting–CGI Teaser, High-Octane Shell Scripting, Checking your Perl Installation, Checking your Perl Installation, Checking your Perl Installation, Checking your Perl Installation, Checking your Perl Installation, Compiling Perl from Scratch, Compiling Perl from Scratch, Compiling Perl from Scratch, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 2: Variables and Data Types, Perl Boot Camp, Part 2: Variables and Data Types, Scalars–Scalars, Arrays, Hashes, Perl Boot Camp, Part 3: Branching and Looping, Perl Boot Camp, Part 4: Pattern Matching, Perl Boot Camp, Part 4: Pattern Matching, Perl Boot Camp, Part 5: Perl Knows Unix, What About Perl?
		branching and
 looping, Perl Boot Camp, Part 3: Branching and Looping
	bug reports,
 filing, Checking your Perl Installation
	commenting RCS
 files, RCS Basics
	compiling, Compiling Perl from Scratch
	configuration
 information, Checking your Perl Installation
	configuring, Compiling Perl from Scratch
		Configure
 shell script, Compiling Perl from Scratch

	CPAN, library modules
 on, Sorting a List of People by Last Name
	data types, Perl Boot Camp, Part 2: Variables and Data Types
	documentation, Perl Boot Camp, Part 1: Typical Script Anatomy
		Plain
 Old Documentation (POD) system, Perl Boot Camp, Part 1: Typical Script Anatomy

	documentation (perldoc
 system), High-Octane Shell Scripting
	fields,
 cutting, Cutting Columns or Fields
	File\:\:Find
 module, oldlinks: Find Unconnected Symbolic Links
	grep, simulating actions
 of, Different Versions of grep
	installation,
 checking, Checking your Perl Installation
	interpreter
 (perl), Checking your Perl Installation
	line-by-line and search
 using, Compound Searches
	modules, Perl Boot Camp, Part 1: Typical Script Anatomy
		using in
 scripts, Perl Boot Camp, Part 1: Typical Script Anatomy

	offset
 script, offset: Indent Text
	pattern
 matching, Perl Boot Camp, Part 4: Pattern Matching (see regular expressions)
	programming in Emacs,
 editing modes for, Emacs Features: A Laundry List
	Python vs., What About Perl?
	regular expression
 syntax for ranges, Regular Expressions: Exceptions in a Character Set
	regular
 expressions, Pattern Matching Quick Reference with Examples, Perl Boot Camp, Part 4: Pattern Matching
		documentation
 for, Pattern Matching Quick Reference with Examples

	scripts, Perl Boot Camp, Part 1: Typical Script Anatomy
		anatomy
 of typical, Perl Boot Camp, Part 1: Typical Script Anatomy

	sl script, Showing the Actual Filenames for Symbolic Links
	sorting lines by
 length, lensort: Sort Lines by Length
	sorting names by surname, script
 for, Sorting a List of People by Last Name
	Text\:\:Autoformat
 module, Alternatives to fmt
	Unix-like
 operators, Perl Boot Camp, Part 5: Perl Knows Unix
	unlink() system call,
 using, Using unlink to Remove a File with a Strange Name
	variables, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 2: Variables and Data Types, Scalars–Scalars, Arrays, Hashes
		arrays, Arrays
	hash, Hashes
	scalar, Scalars–Scalars

	versions, Checking your Perl Installation, Compiling Perl from Scratch

	perl
 interpreter, Checking your Perl Installation
	permissions, Running Commands on What You Find, Searching for Files by Permission, What the Shell Does, Automatic Setup When You Enter/Exit a Directory, Writing a Simple Shell Program, Shell Lockfile, Using tar to a Remote Tape Drive, CERT Security Checklists, Group Permissions in a Directory with the setgid Bit, Add Users to a Group to Deny Permissions, Tutorial on File and Directory Permissions, User, Group, and World, User, Group, and World, User, Group, and World, User, Group, and World, User, Group, and World, User, Group, and World, Which Group is Which?, Protecting Files with the Sticky Bit, Using chmod to Change File Permission, The Handy chmod = Operator, Protect Important Files: Make
 Them Unwritable, Protect Important Files: Make
 Them Unwritable, A Loophole: Modifying Files Without Write Access, A Directory That People Can Access but Can’t List, A Directory That People Can Access but Can’t List, Juggling Permissions, Shell Scripts Must Be Readable and (Usually) Executable
		changes, handling with
 aliases, Protect Important Files: Make
 Them Unwritable
	changing with
 chmod, Using chmod to Change File Permission, The Handy chmod = Operator
		= operator, The Handy chmod = Operator

	for executable files, Writing a Simple Shell Program
	execute
 permission, A Directory That People Can Access but Can’t List
		without read
 permission, A Directory That People Can Access but Can’t List

	files managed by
 team of people, User, Group, and World
	finding files
 by, Searching for Files by Permission
	fully accessible directory
 within unreadable directory, A Directory That People Can Access but Can’t List
	group, in directory with
 setgid bit, Group Permissions in a Directory with the setgid Bit
	group-write, Running Commands on What You Find, Which Group is Which?
		searching
 for and removing, Running Commands on What You Find

	groups that
 deny, Add Users to a Group to Deny Permissions, User, Group, and World
	information
 neither personal nor modifiable, User, Group, and World
	lockfiles, Shell Lockfile
	managing, Juggling Permissions
	modifying files without write
 access, A Loophole: Modifying Files Without Write Access
	octal number, writing
 as, User, Group, and World
	personal
 information, User, Group, and World
	read-only, Protect Important Files: Make
 Them Unwritable
	remote directory backups
 and, Using tar to a Remote Tape Drive
	security
 and, CERT Security Checklists
	set
 incorrectly, What the Shell Does
	shell
 scripts, Shell Scripts Must Be Readable and (Usually) Executable
	sticky
 bit, Protecting Files with the Sticky Bit
	umask
 command, Automatic Setup When You Enter/Exit a Directory, User, Group, and World

	personal
 directories, Private (Personal) Directories
	personal word list,
 ispell program, Adding Words to ispell’s Dictionary
	pg
 program, Problems Piping to a Pager
		piping to, Problems Piping to a Pager

	pgm (graymap)
 format, The Portable Bitmap Package
	pick
 script, zap
	PID, Managing Processes: Overall Concepts (see process ID)
	pid
 (process ID), Job Control in a Nutshell
		killing jobs
 by, Job Control in a Nutshell

	pid (process
 IDs), Using Job Control from Your Shell
	Pike,
 Rob, zap
	ping
 program, Where, Oh Where Did That Packet Go?
	pipelines, Exit Status of Unix Processes, One Argument with a cat Isn’t Enough
		exit status
 of, Exit Status of Unix Processes
	starting with cat
 command, One Argument with a cat Isn’t Enough

	pipes, Programs Are Designed to Work Together, List All Subdirectories with ls -R, Searching for Files by Type, Using “Fast find” Databases, Copying Directory Trees with tar and Pipes, Copying Directory Trees with tar and Pipes, The ps Command, Writing a Simple Shell Program, Using Standard Input and Output, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe, Problems Piping to a Pager–Problems Piping to a Pager, Redirection in C Shell: Capture Errors, Too?, Send Output Two or More Places, Redirecting Output to More Than One Place, Named Pipes: FIFOs
		buffering
 output, Send Output Two or More Places
	commands joined
 with, Writing a Simple Shell Program
	copying directory
 trees, Copying Directory Trees with tar and Pipes, Copying Directory Trees with tar and Pipes
	find output to xargs ls
 -l, Searching for Files by Type
	locate command output to
 xargs, Using “Fast find” Databases
	ls command
 output, List All Subdirectories with ls -R
	ps command
 in, The ps Command
	redirecting
 input/output, Using Standard Input and Output, Using Standard Input and Output, Problems Piping to a Pager–Problems Piping to a Pager, Redirection in C Shell: Capture Errors, Too?, Redirecting Output to More Than One Place, Named Pipes: FIFOs
		named pipes
 (FIFOs), Named Pipes: FIFOs
	to pagers, Problems Piping to a Pager–Problems Piping to a Pager
	tpipe command, Redirecting Output to More Than One Place
	|&
 operator, Redirection in C Shell: Capture Errors, Too?

	redirecting standard error (but not
 standard output), Send (Only) Standard Error Down a Pipe

	pixmaps, The Portable Bitmap Package
	pkg_add
 utility, Installing with FreeBSD Packages
	Plan 9 operating
 system, There Are Many Shells, There Are Many Shells
	Pluggable Authentication Modules
 (PAM), General and Authentication Problems
	plus
 sign, Finding Text That Doesn’t Match (see +, under Symbols)
	pnm graphic
 format, The Portable Bitmap Package
	Point-to-Point
 Protocol (PPP), Setting Up a Dialup PPP Session, Gatewaying from a Personal LAN over a Modem
		configuring
 connection for gatewaying, Gatewaying from a Personal LAN over a Modem
	setting up dialup
 session, Setting Up a Dialup PPP Session

	pointers, Working with xterm and Friends, Linking Directories, Status and Troubleshooting
		to other files or
 directories, Linking Directories (see symbolic links)
	PTR record for IP
 address, Status and Troubleshooting
	for
 screen navigation, Working with xterm and Friends

	pop operator
 (Perl), Arrays
	popd
 command, Session Info in Window Title or Status Line, dirs in Your Prompt: Better Than $cwd, The Shells’ pushd and popd Commands–Nice Aliases for pushd, The Shells’ pushd and popd Commands
		clearing directory stack
 with, The Shells’ pushd and popd Commands

	portable bitmap format, The Portable Bitmap Package
	Portable Bitmap Package, The Portable Bitmap Package–The Portable Bitmap Package
	portable graymap
 format, The Portable Bitmap Package
	portable pixmap
 formats, The Portable Bitmap Package
	ports, Terminal Setup: Testing Port, Terminal Setup: Searching Terminal Table, Layer 4 Protocols: TCP, UDP, and ICMP, Layer 4 Protocols: TCP, UDP, and ICMP, /etc/services Is Your Friend, Gateways and NAT, Gateways and NAT, Firewalls, Server and Client Problems
		firewalls
 and, Firewalls
	HTTP
 requests, Gateways and NAT
	IP addresses
 and, Layer 4 Protocols: TCP, UDP, and ICMP
	numbers
 for, Layer 4 Protocols: TCP, UDP, and ICMP
	port forwarding, problems
 with, Server and Client Problems
	SMTP
 requests, Gateways and NAT
	terminal, listing of
 types, Terminal Setup: Searching Terminal Table
	testing port (tty) numbers for
 terminal setup, Terminal Setup: Testing Port
	well-known, database in
 /etc/services, /etc/services Is Your Friend

	POSIX
 (Portable Operating System Interface), The Core of Unix
	Post Office Protocol
 (POP or POP3), Mail — SMTP, POP, and IMAP
	postfix
 program, Mail — SMTP, POP, and IMAP
	PostScript, Filename Extensions, Formatting Plain Text: enscript, Printing Languages — PostScript, PCL, DVI, PDF, Converting Text Files into a Printing Language
		converting text files
 to, Converting Text Files into a Printing Language
	page description
 language, Printing Languages — PostScript, PCL, DVI, PDF
	source file extension
 (.ps), Filename Extensions
	text files, converting
 to, Formatting Plain Text: enscript

	ppm (pixmap) format, The Portable Bitmap Package
	pr
 command, Numbering Lines, Making Text in Columns with pr–Order Lines Across Columns: -l, One File per Column: -m, One File per Column: -m, One File per Column: -m, One File, Several Columns: -number, Order Lines Across Columns: -l, Formatting Plain Text: pr
		-h (heading)
 option, One File per Column: -m
	-l option (page
 length), Order Lines Across Columns: -l
	-m option (one file per
 column), One File per Column: -m
	-number option for
 columns, One File, Several Columns: -number
	sX option (setting column separator to
 x), One File per Column: -m
	t and n options, Numbering Lines

	precedence of
 operators, Understanding Expressions, Scalars
		Boolean operators in
 Perl, Scalars

	predefined environment variables, Predefined Environment Variables–Predefined Environment Variables
	preprompt
 commands, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and Periodic Commands
		setting, Preprompt, Pre-execution, and Periodic Commands

	previous
 job, Using jobs Effectively
	primary groups, Groups and Group Ownership
	primary
 partitions, Disk Partitioning
	print command (awk), Alphabetical Summary of Commands
	print
 function, Scalars
	printcap
 file, Printing Over a Network, Converting Source Files Automagically Within the Spooler
		apsfilter, installing, Converting Source Files Automagically Within the Spooler

	printenv
 command, Terminal Setup: Testing Environment Variables, Statistics of Processes by PID, What Environment Variables Are Good For, Shell Variables
		checking for environment changes at
 different systems, Terminal Setup: Testing Environment Variables

	Printer Command
 Language (PCL), Printing Languages — PostScript, PCL, DVI, PDF
	PRINTER
 environment variable, Predefined Environment Variables
	printer queue,
 watching for errors (watchq script), Printer Queue Watcher: A Restartable Daemon Shell Script
	printexitvalue shell
 variable (tcsh), Exit Status of Unix Processes
	printf command
 (awk), Alphabetical Summary of Commands, Centering Lines in a File
	printing, Build Strings with { }, String Editing (Colon) Operators, Check Your History First with :p, Introduction to Printing–The Portable Bitmap Package, Introduction to Printing, Introduction to Printing, lpr-Style Printing Commands, lp-Style Printing Commands, Printer Control with lpc, Using Different Printers, Using Symbolic Links for Spooling, Formatting Plain Text: pr, Formatting Plain Text: enscript, Printing Over a Network, Printing Over Samba, Printing to Unix Printers from Windows, Printing to Windows Printers from Unix, Introduction to Typesetting, A Bit of Unix Typesetting History, Typesetting Manpages: nroff, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On, Printing Languages — PostScript, PCL, DVI, PDF, Converting Text Files into a Printing Language, Converting Typeset Files into a Printing Language, Converting Source Files Automagically Within the Spooler, The Common Unix Printing System (CUPS), The Portable Bitmap Package–The Portable Bitmap Package, SWAT and GUI SMB Browsers, Printing with Samba
		commands without
 executing them (\:p operator), String Editing (Colon) Operators, Check Your History First with :p
	Common Unix Printing System
 (CUPS), The Common Unix Printing System (CUPS)
	files, shortcut
 for, Build Strings with { }
	formatting plain text with
 enscript, Formatting Plain Text: enscript
	formatting plain text with
 pr, Formatting Plain Text: pr
	languages
 for, Printing Languages — PostScript, PCL, DVI, PDF, Converting Text Files into a Printing Language, Converting Typeset Files into a Printing Language
		converting text files
 into, Converting Text Files into a Printing Language
	converting typeset files
 into, Converting Typeset Files into a Printing Language

	lp-style
 commands, lp-Style Printing Commands
	lpc
 commands, Printer Control with lpc
	lpr-style
 commands, lpr-Style Printing Commands
	markup languages, formatting
 with, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	network, Printing Over a Network
	Portable Bitmap
 Package, The Portable Bitmap Package–The Portable Bitmap Package
	printers, configuring to share
 with SMB network, SWAT and GUI SMB Browsers
	over
 Samba, Printing Over Samba, Printing to Unix Printers from Windows, Printing to Windows Printers from Unix, Printing with Samba
		from Unix to Windows
 printer, Printing to Windows Printers from Unix
	to Unix
 printers, Printing to Unix Printers from Windows

	spooling
 system, Introduction to Printing, Converting Source Files Automagically Within the Spooler
		converting source
 files, Converting Source Files Automagically Within the Spooler
	lp and lpr, Introduction to Printing

	spooling system
 for, Introduction to Printing, Using Symbolic Links for Spooling
		symbolic links, using, Using Symbolic Links for Spooling

	typesetting, Introduction to Typesetting, A Bit of Unix Typesetting History, Typesetting Manpages: nroff
		manpages
 with nroff commands, Typesetting Manpages: nroff
	Unix
 hitory of, A Bit of Unix Typesetting History

	using different
 printers, Using Different Printers

	PRINT_EXIT_VALUE
 option (zsh), Exit Status of Unix Processes
	priocntl
 command, Know When to Be “nice” to Other Users...and When Not To
	priority of processes, Know When to Be “nice” to Other Users...and When Not To, Know When to Be “nice” to Other Users...and When Not To, Changing a Running Job’s Niceness
		changing with renice
 command, Changing a Running Job’s Niceness
	Unix definition of, Know When to Be “nice” to Other Users...and When Not To

	priority
 ordering for processes, Some Gotchas with Job Control, System Overloaded? Try Stopping Some Jobs
		stopped
 jobs and, System Overloaded? Try Stopping Some Jobs

	private
 addresses, Gateways and NAT
	private
 directories, Private (Personal) Directories
	private keys, Secure Shell (SSH) (see public-key
 cryptography)
	procedural programming languages,
 functions in, Functions
	procedures
 (awk utility), Procedures
	process
 groups, Managing Processes: Overall Concepts, Killing Foreground Jobs, Changing a Running Job’s Niceness
		priority of processes in,
 modifying, Changing a Running Job’s Niceness
	signals sent from
 keyboard, Killing Foreground Jobs

	process ID (PID), External Commands Send Signals to Set Variables, Picking a Unique Filename
 Automatically, Managing Processes: Overall Concepts, Statistics of Processes by PID, Destroying Processes with kill, Killing All Your Processes, Why You Can’t Kill a Zombie, Trapping Exits Caused by Interrupts
		-1, Killing All Your Processes
	kill
 command, feeding to, Destroying Processes with kill
	statistics of process
 by, Statistics of Processes by PID
	unique
 filenames, use in, Picking a Unique Filename
 Automatically
	zmore script (example), Trapping Exits Caused by Interrupts

	process
 substitution, What’s Special About the Unix Command Line, nom: List Files That Don’t Match a Wildcard, Redirecting Output to More Than One Place
		in nom script
 example, nom: List Files That Don’t Match a Wildcard
	tee command, using
 with, Redirecting Output to More Than One Place

	processes, The Kernel and Daemons, Job Control in a Nutshell, How Job Control Works, How Job Control Works, Using jobs Effectively, Some Gotchas with Job Control, Disowning Processes, fork and exec, fork and exec, Managing Processes: Overall Concepts–Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, The ps Command, The Controlling Terminal, Tracking Down Processes–BSD, System V, BSD, BSD, BSD, BSD, Why ps Prints Some Commands in Parentheses, The /proc Filesystem–A Glimpse at Hardware, Statistics of Processes by PID, A Glimpse at Hardware, What Are Signals?–Killing Foreground Jobs, What Are Signals?, What Are Signals?, Destroying Processes with kill, Printer Queue Watcher: A Restartable Daemon Shell Script–Printer Queue Watcher: A Restartable Daemon Shell Script, Killing All Your Processes, Killing Processes by Name?, Kill Processes Interactively, zap, Processes Out of Control? Just STOP Them, Cleaning Up an Unkillable Process, The Process Chain to Your Window–The Process Chain to Your Window, Terminal Windows Without Shells, Close a Window by Killing Its Process(es)–Closing a Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser, Closing a Window from a Shell Script, Building Software Robots the Easy Way, Building Software Robots the Easy Way, Building Software Robots the Easy Way, Timing Is Everything–Timing Is Everything, Know When to Be “nice” to Other Users...and When Not To, Parent-Child Relationships, Exit Status of Unix Processes, Overview: Open Files and File Descriptors, Named Pipes: FIFOs, Check Processes
		/proc
 filesystem, The /proc Filesystem–A Glimpse at Hardware, Statistics of Processes by PID, A Glimpse at Hardware
		hardware
 information, A Glimpse at Hardware
	statistics by
 PID, Statistics of Processes by PID

	background, Managing Processes: Overall Concepts (see background processes)
	background and
 foreground, Job Control in a Nutshell
	chain leading to your
 window, The Process Chain to Your Window–The Process Chain to Your Window
	checking for security
 breaches, Check Processes
	cleaning up
 unkillable, Cleaning Up an Unkillable Process
	closing a window by killing its
 processes, Close a Window by Killing Its Process(es)–Closing a Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser, Closing a Window from a Shell Script
		shell script,
 using, Closing a Window from a Shell Script
	web browser
 (example), Example #2: A Web Browser
	xterm window
 (example), Example #1: An xterm Window

	commands printed in parentheses
 by ps, Why ps Prints Some Commands in Parentheses
	controlling
 process, Managing Processes: Overall Concepts
	controlling
 terminal, The Controlling Terminal
	creating new with fork and exec
 calls, fork and exec
	defined, How Job Control Works
	destroying with kill
 command, Destroying Processes with kill
	disowning, Disowning Processes
	exit status
 of, Exit Status of Unix Processes
	exit status returned
 by, Managing Processes: Overall Concepts
	foreground, Managing Processes: Overall Concepts (see foreground
 processes)
	interactively killing those
 matching a pattern, Kill Processes Interactively
	killing
 all, Killing All Your Processes
	killing by
 name, Killing Processes by Name?
	killing
 interactively, zap
		zap script,
 using, zap

	listing with ps
 command, The Kernel and Daemons, The ps Command
	managing, overview
 of, Managing Processes: Overall Concepts–Managing Processes: Overall Concepts
	open files for reading
 from/writing to, Overview: Open Files and File Descriptors
	parent-child
 relationships, Parent-Child Relationships
	priority, lowering with nice
 command, Know When to Be “nice” to Other Users...and When Not To
	queue by
 priority, Some Gotchas with Job Control
	restarting daemon shell script
 with kill command, Printer Queue Watcher: A Restartable Daemon Shell Script–Printer Queue Watcher: A Restartable Daemon Shell Script
	scheduling, Building Software Robots the Easy Way, Building Software Robots the Easy Way, Building Software Robots the Easy Way
		at
 command, running once with, Building Software Robots the Easy Way
	regular,
 periodic execution with cron, Building Software Robots the Easy Way

	signals
 and, What Are Signals?–Killing Foreground Jobs, What Are Signals?, What Are Signals?
		actions in response to
 signals, What Are Signals?
	kill-9 command, sending KILL and STOP
 signals, What Are Signals?

	spawning, fork and exec
	stopped vs.
 terminated, Using jobs Effectively
	stopping, Processes Out of Control? Just STOP Them
	terminal windows without
 shells, Terminal Windows Without Shells
	timing, Timing Is Everything–Timing Is Everything
	tracking down with ps
 command, Tracking Down Processes–BSD, System V, BSD, BSD, BSD, BSD
		-a option, on BSD
 systems, BSD
	-a option, on System
 V, System V
	-ax option on
 BSD, BSD
	-e option, on System
 V, BSD
	runaway
 processes, BSD

	Unix handling
 of, How Job Control Works
	unrelated,
 communicating through FIFOs, Named Pipes: FIFOs

	profiler (GNU gprof), Timing Is Everything
	programming, Power Grows on You
		Unix, Power Grows on You
		(see also shell scripts)

	programming languages, Emacs Features: A Laundry List, Expect, Perl Boot Camp, Part 2: Variables and Data Types, Functions
		Emacs as
 IDE for, Emacs Features: A Laundry List
	functions
 in, Functions
	loosely typed, Perl Boot Camp, Part 2: Variables and Data Types
	Tcl, Expect

	programming, shell, Writing a Simple Shell Program (see shell
 scripts)
	programming,
 Unix, Power Grows on You
	programs, Communication with Unix–Programs Are Designed to Work Together, Programs Are Designed to Work Together, Programs Are Designed to Work Together, There Are Many Shells, Program Waiting for Input?, Aborting Programs, A bin Directory for Your Programs and Scripts, Answer “Yes” or “No” Forever with yes, Periodic Program Execution: The cron Facility, A Little Help, etc.–A Little Help, etc., Adding crontab Entries, Including Standard Input Within a cron Entry, Timing Programs, How Shells Run Other Programs, Who Handles Wildcards?, Finding a Program Name and Giving Your Program Multiple Names, Finding a Program Name and Giving Your Program Multiple Names, Reading Files with the . and source Commands, Save Disk Space and Programming: Multiple Names for a Program, Overview: Open Files and File Descriptors
		aborting, Aborting Programs
	bin directory
 for, A bin Directory for Your Programs and Scripts
	environment,
 modifying, Reading Files with the . and source Commands
	file
 deletion, Answer “Yes” or “No” Forever with yes
	filename wildcards, passing to
 without shell interpretation, Who Handles Wildcards?
	filters, Programs Are Designed to Work Together
	links
 to, Save Disk Space and Programming: Multiple Names for a Program
	names of, Finding a Program Name and Giving Your Program Multiple Names, Finding a Program Name and Giving Your Program Multiple Names
		giving multiple names with
 links, Finding a Program Name and Giving Your Program Multiple Names
	in
 error messages, Finding a Program Name and Giving Your Program Multiple Names

	periodic execution with
 cron, Periodic Program Execution: The cron Facility, A Little Help, etc.–A Little Help, etc., Adding crontab Entries, Including Standard Input Within a cron Entry
		crontab entries, adding, Adding crontab Entries
	shortcuts to
 creating, A Little Help, etc.–A Little Help, etc.
	standard input, including in cron
 entry, Including Standard Input Within a cron Entry

	redirecting input and output
 of, Overview: Open Files and File Descriptors
	shells
 running, How Shells Run Other Programs
	timing, Timing Programs
	Unix, Communication with Unix–Programs Are Designed to Work Together, Programs Are Designed to Work Together, There Are Many Shells
		(see also shells)
	as
 tools, Programs Are Designed to Work Together

	waiting for
 input, Program Waiting for Input?

	prompt shell
 variable, Interactive Shells, Gotchas in set prompt Test, Gotchas in set prompt Test, Basics of Setting the Prompt
		if (! $?prompt) exit
 test, Gotchas in set prompt Test
	setting to see aliases hidden in the
 ($?prompt) test, Gotchas in set prompt Test

	promptpid variable, External Commands Send Signals to Set Variables
	prompts, Which Shell Am I Running?, Basics of Setting the Prompt–Preprompt, Pre-execution, and Periodic Commands, Static Prompts, Dynamic Prompts, Simulating Dynamic Prompts, C-Shell Prompt Causes Problems in vi, rsh, etc., Faster Prompt Setting with Built-ins, Multiline Shell Prompts, Session Info in Window Title or Status Line, A “Menu Prompt” for Naive Users, Highlighting and Color in Shell Prompts, Right-Side Prompts, Show Subshell Level with $SHLVL, What Good Is a Blank Shell Prompt?, dirs in Your Prompt: Better Than $cwd, External Commands Send Signals to Set Variables, Preprompt, Pre-execution, and Periodic Commands, Preprompt, Pre-execution, and Periodic Commands, Managing Processes: Overall Concepts, How Shells Run Other Programs, Bourne Shell Used Here, Multiline Quoting, A foreach Loop, A for Loop, Multiline Commands, Secondary Prompts, History in a Nutshell, History by Number, Predefined Environment Variables, Predefined Environment Variables, Cleaning script Files
		$ (dollar sign), in Bourne
 shell prompts, Bourne Shell Used Here
	blank, What Good Is a Blank Shell Prompt?
	Bourne-type shells,
 primary, Predefined Environment Variables
	C-shell, stray prompt
 problems, C-Shell Prompt Causes Problems in vi, rsh, etc.
	characters
 displayed in different sehlls, Which Shell Am I Running?
	current directory in, using dirs
 command output, dirs in Your Prompt: Better Than $cwd
	dynamic, Dynamic Prompts, Simulating Dynamic Prompts
		simulating, Simulating Dynamic Prompts

	external commands sending signals
 to set variables, External Commands Send Signals to Set Variables
	faster setting
 with built-ins, Faster Prompt Setting with Built-ins
	highlighting and color
 in, Highlighting and Color in Shell Prompts
	history number
 in, History in a Nutshell, History by Number
	menu prompt for naive
 users, A “Menu Prompt” for Naive Users
	modified, script
 program and, Cleaning script Files
	multiline, Multiline Shell Prompts
	preprompt commands,
 setting, Preprompt, Pre-execution, and Periodic Commands
	preprompt,
 preexecution and periodic commands, Preprompt, Pre-execution, and Periodic Commands
	PS1, PS2
 variables, Predefined Environment Variables
	right-side, Right-Side Prompts
	secondary, Multiline Quoting, A foreach Loop, A for Loop, Multiline Commands, Secondary Prompts
		>
 as, A for Loop
	?
 as, A foreach Loop
	Bourne
 shell quoting and, Multiline Quoting
	multiline
 commands and, Multiline Commands, Secondary Prompts

	session info in
 window title or status line, Session Info in Window Title or Status Line
	static, Static Prompts
	subshell level,
 showing, Show Subshell Level with $SHLVL
	typing commands
 at, Managing Processes: Overall Concepts

	PROMPT_COMMAND (bash
 shell variable), Preprompt, Pre-execution, and Periodic Commands
	propagating shell functions, Propagating Shell Functions–zsh, Exporting bash Functions, FPATH Search Path–zsh, Korn shell, zsh
		exporting bash
 functions, Exporting bash Functions
	FPATH
 search path, FPATH Search Path–zsh, Korn shell, zsh
		Korn shell, Korn shell
	zsh shell, zsh

	protocols, Configuring the sources.list File, Configuring the sources.list File, Interruptable gets with wget, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
		(see also individual protocol
 names)
	curl application, support
 of, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
	URI
 types, Configuring the sources.list File
	wget utility, support
 of, Interruptable gets with wget

	prune operator
 (find command), Removing a Strange File by its i-number
	ps
 command, The Kernel and Daemons, The Kernel and Daemons, The Kernel and Daemons, Aborting Programs, Starting a Remote Client with rsh and ssh, Searching for Text with grep, Disowning Processes, The ps Command, The ps Command, The ps Command, The ps Command, The ps Command, The ps Command, Tracking Down Processes–BSD, Tracking Down Processes, BSD, BSD, BSD, Why ps Prints Some Commands in Parentheses, Destroying Processes with kill, Killing Processes by Name?, zap, The Process Chain to Your Window, Check Processes
		-a (all) option, Tracking Down Processes, BSD
		BSD-derived
 systems, BSD
	System
 V, Tracking Down Processes

	-ag options, displaying all processes on
 system, zap
	-ax option, BSD
	-ef options (System
 V), The ps Command
	-el options, The Kernel and Daemons
	AIX version of, The ps Command
	aux options (Berkeley
 style), The ps Command
	aux options
 (Berkeley-style), The Kernel and Daemons
	aux or -ef options, listing chain of
 processes, The Process Chain to Your Window
	checking current processes for security
 breaches, Check Processes
	checking for application running
 on remote display, Starting a Remote Client with rsh and ssh
	commands printed in
 parentheses, Why ps Prints Some Commands in Parentheses
	displaying
 programs, Aborting Programs
	e (everything)
 option, BSD
	grep, using
 with, Searching for Text with grep
	listing of
 command output fields, The ps Command
	in
 pipes, The ps Command
	runaway shell
 script, locating, Killing Processes by Name?
	showing all
 jobs with -x or -e options, Disowning Processes
	x option, The Kernel and Daemons
	zombies,
 listing, Destroying Processes with kill

	PS1 environment
 variable, Basics of Setting the Prompt, Predefined Environment Variables
	PS2
 environment variable, Predefined Environment Variables
	pseudo-terminal, The Controlling Terminal
	pstat
 utility, Checking Swap Space
	psychotherapist
 program, Emacs, An Absurd Amusement
	ptbk script (for
 incremental backups), On-Demand Incremental Backups of a Project
	pty, The Controlling Terminal
	public directive
 (smb.conf), Installing and Configuring Samba
	public key
 cryptography, Secure Shell (SSH), General and Authentication Problems, General and Authentication Problems, General and Authentication Problems
		authentication, not working on
 SSH, General and Authentication Problems
	installing key file on remote
 host, General and Authentication Problems
	passphrase, problems
 with, General and Authentication Problems
	SSL, use
 of, Secure Shell (SSH)

	public-domain version
 of Korn shell, There Are Many Shells (see pdksh)
	punctuation in
 filenames, Filenames
	push operator
 (Perl), Arrays
	pushd
 command, Session Info in Window Title or Status Line, dirs in Your Prompt: Better Than $cwd, dirs in Your Prompt: Better Than $cwd, The Shells’ pushd and popd Commands–Nice Aliases for pushd, Nice Aliases for pushd
		aliases for, Nice Aliases for pushd

	pushing or pulling
 information, Building Software Robots the Easy Way
	put
 command, Using Buffers to Move or Copy Text, Connecting to SMB Shares from Unix
		copying files to remote host from
 Unix, Connecting to SMB Shares from Unix
	restoring text with vi
 editor, Using Buffers to Move or Copy Text

	pwd
 command, Linking Directories, How Does Unix Find Your Current Directory?
	PWD environment
 variable, Simulating Dynamic Prompts, Unset PWD Before Using Emacs, Predefined Environment Variables
		storing in prompt to give current
 directory, Simulating Dynamic Prompts
	unsetting before using
 Emacs, Unset PWD Before Using Emacs

	Python, What Is Python?–What About Perl?, What Is Python?, Installation and Distutils, Installation and Distutils, Installation and Distutils, Python Basics–wxPython, Indentation, Functions, Everything’s an Object, Modules and Packages, I/O and Formatting, wxPython, Python and the Web, urllib, urllib2, htmllib and HTMLParser, cgi, mod_python, What About Perl?
		installation, Installation and Distutils, Installation and Distutils, Installation and Distutils
		Disutils
 program and, Installation and Distutils
	modules,
 checking for, Installation and Distutils

	overview of
 language, Python Basics–wxPython, Indentation, Functions, Everything’s an Object, Modules and Packages, I/O and Formatting, wxPython
		functions, Functions
	GUIs, wxPython
	I/O and
 formatting, I/O and Formatting
	indentation, Indentation
	modules and
 packages, Modules and Packages
	objects, Everything’s an Object

	Perl vs., What About Perl?
	portability
 of, What Is Python?
	web, interacting
 with, Python and the Web, urllib, urllib2, htmllib and HTMLParser, cgi, mod_python
		cgi module, cgi
	htmllib and HTMLParser
 modules, htmllib and HTMLParser
	mod_python module, mod_python
	urllib
 module, urllib
	urllib2 module, urllib2

 Q
	qmail
 program, Mail — SMTP, POP, and IMAP
	qterm
 program, Automatic Setups for Different Terminals, Querying Your Terminal Type: qterm, Querying Your Terminal Type: qterm
		+usrtab option, Querying Your Terminal Type: qterm

	query
 option (xrdb), Setting Resources with xrdb
	querying terminal type
 (qterm), Querying Your Terminal Type: qterm
	queues, Some Gotchas with Job Control, lpr-Style Printing Commands, Printer Control with lpc
		printing
 jobs, lpr-Style Printing Commands, Printer Control with lpc
	processes by
 priority, Some Gotchas with Job Control

	quieting at
 jobs, Making Your at Jobs Quiet
	quit
 command, Useful ex
 Commands, Uses of the sed Quit Command
		ex, Useful ex
 Commands
	sed, Uses of the sed Quit Command

	quit
 key, Setting Your Erase, Kill, and Interrupt Characters
	QUIT
 signal, nohup, What Are Signals?, Killing Foreground Jobs, Destroying Processes with kill
		ignoring in System V with nohup
 command, nohup
	killing processes waiting for NFS
 resources, Destroying Processes with kill

	quota
 command, Disk Quotas
	quota systems for
 disk usage, Disk Quotas
	quote
 command, Fix Quoting in csh Aliases with makealias and quote
	quoting, Tips for Copy and Paste Between Windows, Inserting Binary Characters into Files, Output Command-Line Arguments One by One, Bourne Shell Quoting–Multiline Quoting, Special Characters, How Quoting Works–Single Quotes Inside Single Quotes?, Multiline Quoting–Multiline Quoting, Differences Between Bourne and C Shell Quoting, Special Characters, How Quoting Works, Quoting Special Characters in Filenames, Verbose and Echo Settings Show Quoting, Here Documents, “Special” Characters and Operators, How Many Backslashes?, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments, How to Put if-then-else in a C-Shell Alias, Fix Quoting in csh Aliases with makealias and quote, tcsh Editing, Don’t Confuse Regular Expressions with Wildcards, Examples of Searching, Filename Wildcards in a Nutshell, Pattern Matching in case Statements, Watch Your Quoting, Quoted hereis Document Terminators: sh Versus csh, Quoting and Command-Line
 Parameters, Quoting and Command-Line
 Parameters, With GNU tar
		aliases, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments, How to Put if-then-else in a C-Shell Alias, Fix Quoting in csh Aliases with makealias and quote
		C
 shell, How to Put if-then-else in a C-Shell Alias
	fixing
 in csh with makealias and quote, Fix Quoting in csh Aliases with makealias and quote

	in Bourne
 shell, Bourne Shell Quoting–Multiline Quoting, Special Characters, How Quoting Works–Single Quotes Inside Single Quotes?, Multiline Quoting–Multiline Quoting
		multiline, Multiline Quoting–Multiline Quoting
	rules
 for, How Quoting Works–Single Quotes Inside Single Quotes?
	special
 characters, Special Characters

	in C
 shell, Differences Between Bourne and C Shell Quoting, How Quoting Works, Quoting Special Characters in Filenames, Quoting and Command-Line
 Parameters
		rules
 for, How Quoting Works
	special
 characters, Quoting Special Characters in Filenames

	in case
 statement wildcard pattern
 matching, Pattern Matching in case Statements
	command-line
 arguments, Watch Your Quoting, Quoting and Command-Line
 Parameters
		errors caused
 by, Quoting and Command-Line
 Parameters

	control characters in
 Emacs, Inserting Binary Characters into Files
	filename arguments containing
 wildcards, With GNU tar
	hereis document
 terminators, Quoted hereis Document Terminators: sh Versus csh
	in C
 shell, Special Characters
		special characters
 quoting, Special Characters

	in shells, How Many Backslashes?
		\
 (backslashes) quoting, How Many Backslashes?

	preventing wildcard expansion
 with, Filename Wildcards in a Nutshell
	quote characters from Windows,
 formatting for Unix, Tips for Copy and Paste Between Windows
	regular expression special
 characters to prevent shell expansion of, Don’t Confuse Regular Expressions with Wildcards
	regular expressions used with
 grep or egrep, Examples of Searching
	in
 shells, Verbose and Echo Settings Show Quoting, Here Documents, “Special” Characters and Operators
		here
 documents, Here Documents
	showing with verbose and
 echo settings, Verbose and Echo Settings Show Quoting
	special characters and
 their meanings, “Special” Characters and Operators

	showing results with
 showargs, Output Command-Line Arguments One by One
	special characters in key
 bindings, tcsh Editing

	QWERTY
 keyboards, Defining Keys and Button Presses with xmodmap, Defining Keys and Button Presses with xmodmap
	qx() function, Perl Boot Camp, Part 5: Perl Knows Unix

 R
	rand command
 (awk), Alphabetical Summary of Commands
	random
 numbers in nawk (srand), Alphabetical Summary of Commands
	ranges, Expanding Ranges, Hacking on Characters with tr, Hacking on Characters with tr, Build Strings with { }, Regular Expressions: Specifying a Range of Characters with [...], Regular Expressions: Exceptions in a Character Set
		.. (integer-range) operator
 in zsh, Build Strings with { }
	character ranges
 (hyphen-separated), Hacking on Characters with tr
	character ranges
 in regular expressions, Hacking on Characters with tr, Regular Expressions: Specifying a Range of Characters with [...]
	expanding, Expanding Ranges
	Perl regular expression syntax
 for, Regular Expressions: Exceptions in a Character Set

	rc shell, There Are Many Shells
	rcp
 command, Unix Networking and Communications, Copying Directory Trees with cp -r
		-r
 option, Copying Directory Trees with cp -r

	RCS (Revision
 Control System), Finding File Types, Search RCS Files with rcsgrep–rcsegrep.fast, Emacs Features: A Laundry List, One File per Column: -m, Managing and Sharing Files with RCS and CVS, RCS Basics–List RCS Revision Numbers with rcsrevs, RCS Basics, RCS Basics, RCS Basics, RCS Basics, List RCS Revision Numbers with rcsrevs
		archiving files, Managing and Sharing Files with RCS and CVS
	ci (checkin)
 command, RCS Basics
	co (checkout
 command), RCS Basics
		-p option, sending file to standard
 output, RCS Basics

	comparing directory with subdirectory,
 using pr, One File per Column: -m
	Emacs support
 for, Emacs Features: A Laundry List
	file utility, recognizing archives
 with, Finding File Types
	listing revision numbers with
 rcsrevs script, List RCS Revision Numbers with rcsrevs
	merging two or more file
 versions with rcsmerge and co -j, RCS Basics
	searching
 files with rcsgrep commands, Search RCS Files with rcsgrep–rcsegrep.fast
	unlocking
 files, RCS Basics

	rcsdiff
 command, Context diffs, List RCS Revision Numbers with rcsrevs
	rcsegrep.fast
 script, rcsegrep.fast
	rcsgrep
 command, Different Versions of grep, Search RCS Files with rcsgrep–rcsegrep.fast, List RCS Revision Numbers with rcsrevs
		-a option, List RCS Revision Numbers with rcsrevs

	rcsgrep
 script, rcsgrep, rcsegrep, rcsfgrep
	RD (Receive Data)
 light, Stalled Data Connection?
	rdesktop (RDP
 client for Unix), rdesktop
	read
 command, Useful ex
 Commands, A for Loop, read: Reading from the Keyboard, Standard Input to a for Loop
		ex
 editor, Useful ex
 Commands
	reading from the
 keyboard, read: Reading from the Keyboard
	while loops
 using, Standard Input to a for Loop

	read
 permission, Access to Directories, Searching for Files by Permission, Tutorial on File and Directory Permissions, Using chmod to Change File Permission, A Directory That People Can Access but Can’t List, Shell Scripts Must Be Readable and (Usually) Executable
		changing
 with chmod, Using chmod to Change File Permission
	for
 directories, Access to Directories, Tutorial on File and Directory Permissions
	execute permission
 without, A Directory That People Can Access but Can’t List
	finding files
 by, Searching for Files by Permission
	shell scripts, Shell Scripts Must Be Readable and (Usually) Executable

	read-only files, Protect Important Files: Make
 Them Unwritable
	read-only
 functions, Shell Function Specifics
	reading files, access time and, The Three Unix File Times
	reading from
 terminals, Managing Processes: Overall Concepts
		process groups
 and, Managing Processes: Overall Concepts

	reading-tar
 process, Copying Directory Trees with tar and Pipes
	readline
 command, Setting Your Erase, Kill, and Interrupt Characters
	Readline
 library, bash Editing, Predefined Environment Variables
		inputrc file, bash Editing
	setup filename,
 choosing, Predefined Environment Variables

	recomment
 script, The recomment Script
	recovering
 files, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered Buffers, Backup and Auto-Save Files, The cpio Tape Archiver
		cpio tape
 archive, The cpio Tape Archiver
	Emacs, using, Backup and Auto-Save Files
	vi -r command, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered Buffers
		recovered
 buffers, cautions about, Be Careful with vi -r Recovered Buffers

	recursion, tracing depth
 of, Functions Calling
 Functions: Factorials
	recursive
 aliases, Avoiding C-Shell Alias Loops
	recursive functions, Functions Calling
 Functions: Factorials–Functions Calling
 Functions: Factorials
	recursive permission
 changing, Using chmod to Change File Permission
	recursive searching
 with grep, Custom -exec Tests Applied
	Red
 Hat Linux, Defining Keys and Button Presses with xmodmap (see Linux)
	redirect operator
 (>>), Appending to an Existing File
	redirecting input and
 output, Periodic Program Execution: The cron Facility, Command Evaluation and Accidentally Overwriting Files, Is It “2>&1 file” or “> file 2>&1”? Why?, Overview: Open Files and File Descriptors, Overview: Open Files and File Descriptors, n>&m: Swap Standard Output and Standard Error, Use -xv, Line Numbers Reset Inside Redirected Loops, Using Standard Input and Output–What Can You Do with an Empty File?, Using Standard Input and Output–Using Standard Input and Output, One Argument with a cat Isn’t Enough, Send (Only) Standard Error Down a Pipe, Problems Piping to a Pager–Problems Piping to a Pager, Redirection in C Shell: Capture Errors, Too?, Safe I/O Redirection with noclobber, The () Subshell Operators, Send Output Two or More Places, Redirecting Output to More Than One Place, Named Pipes: FIFOs, What Can You Do with an Empty File?
		C shell, Redirection in C Shell: Capture Errors, Too?
	cat command, One Argument with a cat Isn’t Enough
	commands combined with grouping (())
 operator, The () Subshell Operators
	cron system output, Periodic Program Execution: The cron Facility
	to
 /dev/null, What Can You Do with an Empty File?
	FIFOs, using, Named Pipes: FIFOs
	line numbers in redirected
 loops, Line Numbers Reset Inside Redirected Loops
	to multiple
 processes, Redirecting Output to More Than One Place
	noclobber, using, Safe I/O Redirection with noclobber
	pagers,
 piping to, Problems Piping to a Pager–Problems Piping to a Pager
	of
 programs, Overview: Open Files and File Descriptors
	shell
 capabilities, Overview: Open Files and File Descriptors
	shell output and errors into
 temporary file, Use -xv
	standard error (only),
 piping, Send (Only) Standard Error Down a Pipe
	standard
 input and standard output, using, Using Standard Input and Output–Using Standard Input and Output
	standard output and standard
 error, Is It “2>&1 file” or “> file 2>&1”? Why?, n>&m: Swap Standard Output and Standard Error
		Bourne shells, Is It “2>&1 file” or “> file 2>&1”? Why?

	standard output, shell processing
 of, Command Evaluation and Accidentally Overwriting Files
	tee program, Send Output Two or More Places

	redo operator (Perl), Perl Boot Camp, Part 3: Branching and Looping
	references (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy, References, References
		dereferencing, References

	reformatting text from one window before
 pasting it into another, Tips for Copy and Paste Between Windows
	registry settings
 for clear text SMB passwords, Securing Samba
	regular
 expressions, lookfor: Which File Has That Word?, Searching for Text with grep, Finding Text That Doesn’t Match, Extended Searching for Text with egrep, Approximate grep: agrep, Approximate grep: agrep, Narrowing a Search Quickly, Using Search Patterns and Global Commands, Patterns, Alphabetical Summary of Commands, Alphabetical Summary of Commands, “Special” Characters and Operators, That’s an Expression–Examples of Searching and Replacing, Don’t Confuse Regular Expressions with Wildcards, Don’t Confuse Regular Expressions with Wildcards, Understanding Expressions, Understanding Expressions, Understanding Expressions, Using Metacharacters in Regular Expressions, Using Metacharacters in Regular Expressions, Regular Expressions: Matching a Character with a Character Set, Regular Expressions: Specifying a Range of Characters with [...], Regular Expressions: Repeating Character Sets with *, Regular Expressions: Matching a Specific Number of Sets with \ { and \
 }, Regular Expressions: Matching Words with \ < and \ >, Regular Expressions: Remembering Patterns with \ (, \), and \1, Regular Expressions: Potential Problems, Extended Regular Expressions, Extended Regular Expressions, Getting Regular Expressions Right, Just What Does a Regular Expression Match?, Just What Does a Regular Expression Match?, Limiting the Extent of a Match, I Never Meta Character I Didn’t Like, Valid Metacharacters for Different Unix Programs, Pattern Matching Quick Reference with Examples–Examples of Searching and Replacing, Pattern Matching Quick Reference with Examples, Pattern Matching Quick Reference with Examples, Examples of Searching, Examples of Searching and Replacing, sed Addressing Basics, sed Addressing Basics, Delimiting a Regular Expression, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines, Testing Characters in a String with expr, Matching with expr, Without GNU tar, Perl Boot Camp, Part 4: Pattern Matching, Perl Boot Camp, Part 4: Pattern Matching
		(see also pattern
 matching)
	agrep command, Approximate grep: agrep, Approximate grep: agrep
	awk
 utility, Patterns
	egrep command, lookfor: Which File Has That Word?, Extended Searching for Text with egrep
	examples of, I Never Meta Character I Didn’t Like
	expr
 command, Testing Characters in a String with expr, Matching with expr
		matching parts of
 strings, Matching with expr
	testing character
 strings, Testing Characters in a String with expr

	expressions,
 understanding, Understanding Expressions
	extended, Extended Regular Expressions, Extended Regular Expressions
		alternation
 mechanism, Extended Regular Expressions

	filename-matching patterns
 vs., Don’t Confuse Regular Expressions with Wildcards
	finding lines that don’t match a
 pattern, Finding Text That Doesn’t Match
	globally substituting
 for each match, Alphabetical Summary of Commands
	limiting extent of
 match, Limiting the Extent of a Match
	matching a character with a character
 set, Regular Expressions: Matching a Character with a Character Set
	matching specific number of sets with \{
 \}, Regular Expressions: Matching a Specific Number of Sets with \ { and \
 }
	matching words with \<
 \\\>, Regular Expressions: Matching Words with \ < and \ >
	metacharacters, “Special” Characters and Operators, Understanding Expressions, Using Metacharacters in Regular Expressions, Valid Metacharacters for Different Unix Programs
		for
 different Unix programs, Valid Metacharacters for Different Unix Programs

	pattern
 context, Getting Regular Expressions Right
	pattern matching,
 quick reference, Pattern Matching Quick Reference with Examples–Examples of Searching and Replacing, Pattern Matching Quick Reference with Examples, Pattern Matching Quick Reference with Examples, Examples of Searching, Examples of Searching and Replacing
		replacement
 patterns, Pattern Matching Quick Reference with Examples
	search and replace
 commands, Examples of Searching and Replacing
	search
 patterns, Pattern Matching Quick Reference with Examples, Examples of Searching

	Perl, Perl Boot Camp, Part 4: Pattern Matching, Perl Boot Camp, Part 4: Pattern Matching
		metacharacters
 in, Perl Boot Camp, Part 4: Pattern Matching

	potential problem
 areas, Regular Expressions: Potential Problems
	range of characters, specifying with [
], Regular Expressions: Specifying a Range of Characters with [...]
	repeated patterns, matching with
 \(\), Regular Expressions: Remembering Patterns with \ (, \), and \1
	repeating character sets with
 *, Regular Expressions: Repeating Character Sets with *
	retrieving only matched text with xgrep
 script, Just What Does a Regular Expression Match?
	sed editor, Narrowing a Search Quickly, sed Addressing Basics, sed Addressing Basics, Delimiting a Regular Expression, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines
		addresses, sed Addressing Basics, sed Addressing Basics
	delimiting, Delimiting a Regular Expression
	searching for patterns split across
 lines, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines

	sequence of characters,
 describing, Understanding Expressions
	showmatch script, testing
 with, Just What Does a Regular Expression Match?
	simple vs.
 extended, Using Metacharacters in Regular Expressions
	substituting for matches
 in nawk, Alphabetical Summary of Commands
	tar archive files, matching
 filenames of, Without GNU tar
	wildcards
 vs., Don’t Confuse Regular Expressions with Wildcards

	rehash
 command, A bin Directory for Your Programs and Scripts, Controlling Shell Command Searches, Writing a Simple Shell Program
		resetting command search
 table, Writing a Simple Shell Program

	relational
 operators, Alphabetical Summary of Commands, Syntax, Scalars
		if command,
 awk, Alphabetical Summary of Commands

	relative pathnames, Making Pathnames, Use Absolute Pathnames in Shell Setup Files, Stale Symbolic Links, Showing the Actual Filenames for Symbolic Links, Using Relative and Absolute Pathnames, Using Relative and Absolute Pathnames, What Good Is a Current Directory?
		creating, Using Relative and Absolute Pathnames
	current directory
 and, What Good Is a Current Directory?
	links, avoiding invalidation
 of, Stale Symbolic Links
	in shell setup
 files, Use Absolute Pathnames in Shell Setup Files
	symbolic links
 to, Showing the Actual Filenames for Symbolic Links

	remainder, modulus (%)
 operator, Syntax
	remote
 access, Disallow rlogin and rsh, Protecting Access Through SSH, Protecting Access Through SSH
		conrolling, Protecting Access Through SSH (see ssh)
	disallowing for
 security, Disallow rlogin and rsh
	rsh, Protecting Access Through SSH (see rsh)

	remote clients, starting for X window
 systems, Starting Remote X Clients–Starting a Remote Client with rsh and ssh
	Remote Desktop Protocol
 (RDP), Citrix: Making Windows Multiuser, rdesktop
		client for Unix
 (rdesktop), rdesktop

	remote
 directories, hung terminals and, Checklist: Terminal Hangs When I Log In
	remote files, Emacs Features: A Laundry List, Build Strings with { }
		Emacs, opening
 with, Emacs Features: A Laundry List
	shortcut for
 copying, Build Strings with { }

	remote logins, Session Info in Window Title or Status Line, Stopping Remote Login Sessions
		status line
 updates, Session Info in Window Title or Status Line
	stopping sessions, Stopping Remote Login Sessions

	remote
 restoration of backup files, Remote Restoring
	remote
 shells, Setup Files Aren’t Read When You Want?, Setup Files Aren’t Read When You Want?
		(see also rsh; ssh)
	setup files for, Setup Files Aren’t Read When You Want?

	remote tape drive,
 tar backups to, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive
	remove
 option (xrdb), Setting Resources with xrdb
	removing, With a Loop, Choosing Packages for Installation or Removal
		command-line
 arguments, With a Loop
	software packages, dependency
 conflicts caused by, Choosing Packages for Installation or Removal

	removing files, The Cycle of Creation and Destruction–Using find to Clear Out Unneeded Files, rm and Its Dangers, Tricks for Making rm Safer, Answer “Yes” or “No” Forever with yes, Remove Some, Leave Some, A Faster Way to Remove Files Interactively, Safer File Deletion in Some Directories, Safe Delete: Pros and Cons, Deletion with Prejudice: rm -f, Deleting Files with Odd Names–Removing Every File but One, Handling a Filename Starting with a Dash (-), Using unlink to Remove a File with a Strange Name, Removing a Strange File by its i-number, Problems Deleting Directories, Deleting Stale Files, Removing Every File but One, Using find to Clear Out Unneeded Files, Instead of Removing a File, Empty It, Protecting Files with the Sticky Bit
		confirmation before
 deletion, Answer “Yes” or “No” Forever with yes
	deleting
 directories, Problems Deleting Directories
	deleting files with odd
 names, Deleting Files with Odd Names–Removing Every File but One, Handling a Filename Starting with a Dash (-), Using unlink to Remove a File with a Strange Name, Removing a Strange File by its i-number
		eight-bit filenames, Using unlink to Remove a File with a Strange Name
	filenames starting with -
 (dash), Handling a Filename Starting with a Dash (-)
	i-numbers, using, Removing a Strange File by its i-number

	directory sticky bit permission
 and, Protecting Files with the Sticky Bit
	emptying files instead
 of, Instead of Removing a File, Empty It
	excluding some files
 from, Removing Every File but One
	find command and, Using find to Clear Out Unneeded Files
	interactively, with file-deletion script or
 alias, A Faster Way to Remove Files Interactively
	rm command, rm and Its Dangers, Tricks for Making rm Safer, Deletion with Prejudice: rm -f
		-f option (no
 confirmation), Deletion with Prejudice: rm -f
	dangers
 of, rm and Its Dangers
	safety
 techniques for, Tricks for Making rm Safer

	safe delete
 program, Safe Delete: Pros and Cons
	safer file deletion in some
 directories, Safer File Deletion in Some Directories
	selective deletion
 of, Remove Some, Leave Some
	stale files,
 deleting, Deleting Stale Files

	rename function, Perl Boot Camp, Part 5: Perl Knows Unix
	renaming
 files, Can’t Access a File? Look for Spaces in the Name, Showing Nonprintable Characters in Filenames, What’s So Complicated About Copying Files, Renaming, Copying, or Comparing a Set of Files, Renaming a List of Files Interactively, Who Will Own a New File?, Protecting Files with the Sticky Bit, A Loophole: Modifying Files Without Write Access
		directory sticky bit permission
 and, Protecting Files with the Sticky Bit
	groups of, What’s So Complicated About Copying Files, Renaming, Copying, or Comparing a Set of Files
	interactively, Renaming a List of Files Interactively
	mv command, using, Can’t Access a File? Look for Spaces in the Name
	with nonprinting
 characters in names, Showing Nonprintable Characters in Filenames
	ownership
 and, Who Will Own a New File?
	write access and, A Loophole: Modifying Files Without Write Access

	renice command, System Overloaded? Try Stopping Some Jobs, Know When to Be “nice” to Other Users...and When Not To, Changing a Running Job’s Niceness
	rep command, vis
 command vs., Repeating a Time-Varying Command
	repeat
 command, Get Back What You Deleted with Numbered Buffers, Repeating Commands, The Shells’ pushd and popd Commands
		. (dot), in vi, Get Back What You Deleted with Numbered Buffers
	clearing directory stack with
 popd, The Shells’ pushd and popd Commands

	repeating
 commands, Repeating Commands, A foreach Loop–A for Loop, A foreach Loop, A for Loop, Repeating a Command with Copy-and-Paste, Repeating a Time-Varying Command, The Lessons of History, History Substitutions–History Substitutions, Repeating a Cycle of Commands
		at set intervals, Repeating a Time-Varying Command
	copy and paste,
 using, Repeating a Command with Copy-and-Paste
	cycle of
 commands, Repeating a Cycle of Commands
	with history
 substitution, History Substitutions–History Substitutions
	with
 variations, A foreach Loop–A for Loop, A foreach Loop, A for Loop
		for loop,
 using, A for Loop
	foreach loop,
 using, A foreach Loop

	replacement
 patterns, Valid Metacharacters for Different Unix Programs, Pattern Matching Quick Reference with Examples, Delimiting a Regular Expression
		sed editor,
 delimiting, Delimiting a Regular Expression
	special characters
 in, Pattern Matching Quick Reference with Examples
	valid regular expression metacharacters
 for, Valid Metacharacters for Different Unix Programs

	replacements, Global Searches, Confirming Substitutions in vi, Useful Global Commands (with Pattern Matches), Useful ex
 Commands, Useful ex
 Commands, Newlines in a sed Replacement, Referencing the Search String in a Replacement, Referencing Portions of a Search String, Search and Replacement: One Match Among Many
		(see also substitution
 commands)
	confirming in vi
 editor, Confirming Substitutions in vi
	global, with vi
 editor, Global Searches
	patterns, matching
 for, Useful Global Commands (with Pattern Matches)
	sed
 editor, Newlines in a sed Replacement, Referencing the Search String in a Replacement, Referencing Portions of a Search String, Search and Replacement: One Match Among Many
		newlines in, Newlines in a sed Replacement
	referencing portions of search string
 in, Referencing Portions of a Search String
	referencing the search string
 in, Referencing the Search String in a Replacement
	specifying one match among many possible
 matches, Search and Replacement: One Match Among Many

	repositories, CVS
 archives, CVS Basics, CVS Basics, More CVS
		modifications, commiting and pushing
 into, CVS Basics
	setting
 up, More CVS

	reprint character
 (CTRL-r), Reprinting Your Command Line with CTRL-r
	requote shell
 script, Tips for Copy and Paste Between Windows, Tips for Copy and Paste Between Windows
		fmt width option, Tips for Copy and Paste Between Windows

	resize
 command, Terminal Setup: Testing Window Size, Querying Your xterm Size: resize, Querying Your xterm Size: resize
		c or u options to force use of C- or
 Bourne-shell syntax, Querying Your xterm Size: resize
	xterm windows, Querying Your xterm Size: resize

	resources, X Resource Syntax–X Resource Syntax, X Resource Syntax, X Event Translations, Setting X Resources: Overview–Listing the Current Resources for a Client: appres, Setting X Resources: Overview, Setting X Resources: Overview, Setting Resources with the -xrm Option, How -name Affects Resources, Setting Resources with xrdb–Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources with xrdb, Listing the Current Resources for a Client: appres, System Overloaded? Try Stopping Some Jobs
		overloaded, System Overloaded? Try Stopping Some Jobs
	removing
 definitions, Setting Resources with xrdb
	setting for X Window
 System, X Resource Syntax–X Resource Syntax, X Resource Syntax, X Event Translations, Setting X Resources: Overview–Listing the Current Resources for a Client: appres, Setting X Resources: Overview, Setting Resources with the -xrm Option, How -name Affects Resources, Setting Resources with xrdb–Setting Resources with xrdb, Setting Resources with xrdb, Listing the Current Resources for a Client: appres
		-name, effect on
 resources, How -name Affects Resources
	appres (application resource)
 utility, Listing the Current Resources for a Client: appres
	event translations,
 overview, X Event Translations
	querying resource
 database, Setting Resources with xrdb
	resource database
 manager, X Resource Syntax
	resources file
 (example), Setting X Resources: Overview
	xrdb utility,
 using, Setting Resources with xrdb–Setting Resources with xrdb
	xrm command-line
 option, Setting Resources with the -xrm Option

	setting for X Window
 system, Setting X Resources: Overview
		resource database
 manager, Setting X Resources: Overview

	RESOURCE_MANAGER
 property, Setting Resources with xrdb
	restart command
 (lpc), Printer Control with lpc
	restoring
 files, Restoring Files from Tape with tar, Restoring Files from Tape with tar, Using tar to a Remote Tape Drive, RCS Basics
		(see also backups;
 tar utility)
	RCS, using, RCS Basics
	from remote tape
 drives, Using tar to a Remote Tape Drive
	from tape with
 tar, Restoring Files from Tape with tar

	restricted command
 access (rsh) shell, What the Shell Does
	restricted
 shell, Starting a Remote Client with rsh and ssh
	RETURN
 characters (in .exrc file for vi editor), Setting Up vi with the .exrc File
	return command, Alphabetical Summary of Commands, Setting Current Shell Environment: The work Function
		awk
 utility, Alphabetical Summary of Commands
	shell function, use
 in, Setting Current Shell Environment: The work Function

	reverse order,
 command history listed in, History by Number
	reversing
 patch, patch: Generalized Updating of Files That Differ
	reversing sort
 order, Reverse Sort
	revision control, Tricks for Making rm Safer (see CVS
 RCS)
	revision
 control programs, Filenames
		file versions
 and, Filenames

	Revision Control
 System, Managing and Sharing Files with RCS and CVS (see RCS)
	revnum shell
 variable, List RCS Revision Numbers with rcsrevs
	rftp
 script, Automating /bin/passwd
	Rich Site Summary files,
 collecting, Building Software Robots the Easy Way
	right-side
 prompts, Right-Side Prompts
	rlogin
 utility, Tip for Changing Account Setup: Keep a Shell Ready, Terminal Setup: Testing Port, Stalled Data Connection?, Starting Remote X Clients from Interactive Logins, Disallow rlogin and rsh, Enabling Remote Access on Mac OS X
		disabling for security
 reasons, Disallow rlogin and rsh
	enabling on Mac OS
 X, Enabling Remote Access on Mac OS X
	logging in to host again from same
 terminal, Tip for Changing Account Setup: Keep a Shell Ready
	network ports for, Terminal Setup: Testing Port
	stalled connection
 with, Stalled Data Connection?

	rm command, Differences Between Hard and Symbolic Links, Creating and Removing Links, rm and Its Dangers, Tricks for Making rm Safer, Answer “Yes” or “No” Forever with yes, Safer File Deletion in Some Directories, Deletion with Prejudice: rm -f, Handling a Filename Starting with a Dash (-), Using unlink to Remove a File with a Strange Name, Using unlink to Remove a File with a Strange Name, Problems Deleting Directories, Problems Deleting Directories, Removing Every File but One, Trapping Exits Caused by Interrupts, Protect Important Files: Make
 Them Unwritable
		-f option, Deletion with Prejudice: rm -f, Trapping Exits Caused by Interrupts, Protect Important Files: Make
 Them Unwritable
	-i option, Answer “Yes” or “No” Forever with yes, Safer File Deletion in Some Directories, Using unlink to Remove a File with a Strange Name
		confirmation
 of deletions, Answer “Yes” or “No” Forever with yes
	creating -i
 file for, Safer File Deletion in Some Directories

	-r option, Problems Deleting Directories
	excluding files from
 deletion, Removing Every File but One
	filenames beginning with -
 (dash), Handling a Filename Starting with a Dash (-)
	filenames beginning with .
 (dot), Problems Deleting Directories
	linked
 files, deleting, Differences Between Hard and Symbolic Links
	links, removing, Creating and Removing Links
	rf option, Using unlink to Remove a File with a Strange Name
	safety techniques
 for, Tricks for Making rm Safer

	rmdir (remove
 directory) command, Problems Deleting Directories
	rmstar
 variable (tcsh shell), Tricks for Making rm Safer
	root
 access, Highlighting and Color in Shell Prompts, Forgetting the root Password, Never Log In as root, Providing Superpowers with sudo, Enabling Root in Darwin
		enabling in Darwin, Enabling Root in Darwin
	logins, Highlighting and Color in Shell Prompts
	logins, external, Never Log In as root
	password,
 forgetting, Forgetting the root Password
	providing
 with sudo application, Providing Superpowers with sudo

	root
 directory, Making Pathnames, /usr/bin and Other Software Directories
		subdirectories located directly
 off, /usr/bin and Other Software Directories

	root of a
 filename (\:r string editing operator), String Editing (Colon) Operators
	root servers
 (DNS), Domain Name Service (DNS)
	rot
 program, Rotating Text
	route
 command, Status and Troubleshooting
	routers, Gateways and NAT, Firewalls
		DSL,
 firewalls, Firewalls
	functioning as
 gateways, Gateways and NAT

	routing, Where, Oh Where Did That Packet Go?, Firewalls
		diagnosing routes with
 traceroute, Where, Oh Where Did That Packet Go?
	packets, preventing with
 firewalls, Firewalls

	routing tables, displaying
 with netstart -r, Status and Troubleshooting
	RPM, finding and
 installing packaged software, Finding and Installing RPM Packaged Software
	rprnt
 key, Setting Your Erase, Kill, and Interrupt Characters
	rsh, Unix Networking and Communications, Starting a Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh, Copying Directory Trees with tar and Pipes, Change Many Files by Editing Just One, Stopping Remote Login Sessions, What the Shell Does, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive, Disallow rlogin and rsh, Enabling Remote Access on Mac OS X
		disabling for security
 reasons, Disallow rlogin and rsh
	display
 option, Starting a Remote Client with rsh and ssh
	enabling on Mac OS
 X, Enabling Remote Access on Mac OS X
	n
 option, Starting a Remote Client with rsh and ssh
	remote tape drive, accessing with GNU
 tar, Using GNU tar with a Remote Tape Drive
	restoring files from remote tape
 drives, Using tar to a Remote Tape Drive
	rsync program, Change Many Files by Editing Just One
	running reading- or
 writing-tar on remote system, Copying Directory Trees with tar and Pipes
	starting remote X
 clients, Starting a Remote Client with rsh and ssh
	stopping
 sessions, Stopping Remote Login Sessions

	rsync
 command, Change Many Files by Editing Just One, Periodic Program Execution: The cron Facility
	run-parts
 script, A Little Help, etc.
	runaway
 processes, BSD, Killing Processes by Name?
		killing by name, Killing Processes by Name?

	runsed
 script, runsed
	rusers
 command, Setting (and Parsing) Parameters
	rxvt terminal
 program, Working with xterm and Friends, Login xterms and rxvts, VT Fonts Menu
		fonts and command-line
 options, VT Fonts Menu
	login shell, running, Login xterms and rxvts

 S
	safe delete
 program, Safe Delete: Pros and Cons
	safer rm command,
 techniques for, Tricks for Making rm Safer
	Samba, Mounting Network Filesystems — NFS, SMBFS, Printing Over Samba, Printing to Unix Printers from Windows, Printing to Windows Printers from Unix, Installing and Configuring Samba, Installing and Configuring Samba, Installing and Configuring Samba, Installing and Configuring Samba, Installing and Configuring Samba, Securing Samba, Securing Samba, SWAT and GUI SMB Browsers, Connecting to SMB Shares from Unix
		connecting to SMB shares from
 Unix, Connecting to SMB Shares from Unix
	installing and
 configuring, Installing and Configuring Samba, Installing and Configuring Samba, Installing and Configuring Samba, Installing and Configuring Samba
		configuration script for daemons
 (smb.conf), Installing and Configuring Samba
	NETBIOS names (SMB peer
 names), Installing and Configuring Samba
	running SMB
 daemons, Installing and Configuring Samba

	mounting SMB-shared
 filesystems, Mounting Network Filesystems — NFS, SMBFS
	printing
 over, Printing Over Samba, Printing to Unix Printers from Windows, Printing to Windows Printers from Unix
		from Windows to Unix
 printers, Printing to Unix Printers from Windows
	to Windows printer from
 Unix, Printing to Windows Printers from Unix

	project web
 site, Installing and Configuring Samba
	security, Securing Samba, Securing Samba
		security
 settings in smb.conf, Securing Samba

	swat tool, SWAT and GUI SMB Browsers

	sash
 shell, What the Shell Does
	save lines (-sl
 option) for xterms, How Many Lines to Save?
	SAVEHIST environment
 variable, Picking Up Where You Left Off
	savehist shell
 variable, Picking Up Where You Left Off
	saveLines (xterm
 resource), How Many Lines to Save?
	saving command lines
 to file, Anyone Can Program the Shell
	scalar variables in
 Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Scalars–Scalars, Scalars, Scalars, Scalars, Scalars
		Boolean operators used
 with, Scalars
	comparing with relational
 operators, Scalars
	numerical operators used
 with, Scalars
	string
 operators used with, Scalars

	sched
 command, Right-Side Prompts
	scheduler
 program, Timing Is Everything, Know When to Be “nice” to Other Users...and When Not To
		process
 priority, lowering with nice, Know When to Be “nice” to Other Users...and When Not To

	scheduling
 processes, Building Software Robots the Easy Way, Building Software Robots the Easy Way, Building Software Robots the Easy Way
		at command, running once
 with, Building Software Robots the Easy Way
	regular, periodic execution with
 cron, Building Software Robots the Easy Way

	scientific
 notation, Alphabetic and Numeric Sorting
	scp
 command, Unix Networking and Communications, On-Demand Incremental Backups of a Project, Secure Shell (SSH), General and Authentication Problems, Server and Client Problems
		copying archives, On-Demand Incremental Backups of a Project
	problems and solutions on
 SSH, General and Authentication Problems, Server and Client Problems

	screen
 editors, The Idea of a Terminal Database
	screens, Running Commands When You Log Out, The DISPLAY Environment Variable
		clearing, Running Commands When You Log Out

	script
 program, Faster Prompt Setting with Built-ins, Copy What You Do with script, Copy What You Do with script, Cleaning script Files
		cleaning files, Cleaning script Files
	ending, Copy What You Do with script

	script.tidy
 script, Cleaning script Files
	scripting
 languages, Scripting, Everyone Should Learn Some Shell Programming, High-Octane Shell Scripting, What About Perl?
		Perl, High-Octane Shell Scripting (see Perl)
	Python, What About Perl? (see Python)
	shell scripts
 vs., Everyone Should Learn Some Shell Programming

	scripts, Anyone Can Program the Shell, A bin Directory for Your Programs and Scripts, Finding Oldest or Newest Files with ls -t and ls -u, oldlinks: Find Unconnected Symbolic Links, Finding Files (Much) Faster with a find Database, lookfor: Which File Has That Word?, rcsegrep.fast, A Multiline Context grep Using sed, A Highlighting grep, A Faster Way to Remove Files Interactively, Using find to Clear Out Unneeded Files, Adding Words to ispell’s Dictionary, Adding Words to ispell’s Dictionary, Counting Lines, Words, and Characters: wc, Find a a Doubled Word, Looking for Closure, Why Line Editors Aren’t Dinosaurs, Writing Editing Scripts, And Why Not?–Rotating Text, Alternatives to fmt, Remove Mail/News Headers with behead, offset: Indent Text, Centering Lines in a File, Splitting Files by Context: csplit–Splitting Files by Context: csplit, Hacking on Characters with tr, Encoding “Binary” Files into ASCII–MIME Encoding, Text Conversion with dd, Cutting Columns or Fields, Making Text in Columns with pr–Order Lines Across Columns: -l, Make Columns Automatically with column, Straightening Jagged Columns, Pasting Things in Columns, Joining Lines with join, What Is (or Isn’t) Unique?, Rotating Text, lensort: Sort Lines by Length, Sorting a List of People by Last Name, Building Software Robots the Easy Way, A Little Help, etc., Default Commands, Output Command-Line Arguments One by One, Verbose and Echo Settings Show Quoting, Separating Commands with Semicolons, Dialback, Automating /bin/passwd, Sourceable Scripts–Sourceable Scripts, Just What Does a Regular Expression Match?, Just What Does a Regular Expression Match?, The vgrep Script, nom: List Files That Don’t Match a Wildcard, checksed, runsed, Order of Commands in a Script, Hold Space: The Set-Aside Buffer–Hold Space: The Set-Aside Buffer, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines, Writing a Simple Shell Program, Everyone Should Learn Some Shell Programming, Shell Script “Wrappers” for awk, sed, etc., Standard Command-Line
 Parsing, Don’t Need a Shell for Your Script? Don’t Use One, A Shell Can Read a Script from Its Standard Input, but..., Outputting Text to an X Window, On-Demand Incremental Backups of a Project, List RCS Revision Numbers with rcsrevs, High-Octane Shell Scripting, Perl Boot Camp, Part 1: Typical Script Anatomy, cgi, Printing to Windows Printers from Unix, Care and Feeding of SUID and SGID Scripts, Protect Important Files: Make
 Them Unwritable, cx, cw, c-w: Quick File Permission Changes
		#! notation on first
 line, Default Commands, Verbose and Echo Settings Show Quoting
		turning on verbose and echo
 settings, Verbose and Echo Settings Show Quoting

	batch
 editing, Why Line Editors Aren’t Dinosaurs, Writing Editing Scripts
		writing, Writing Editing Scripts

	bin directory
 for, A bin Directory for Your Programs and Scripts
	buildhash, Adding Words to ispell’s Dictionary
	CGI, Python module
 for, cgi
	cgrep, A Multiline Context grep Using sed, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines
	checksed, checksed
	cleanup, Using find to Clear Out Unneeded Files
	converting characters in
 files, Anyone Can Program the Shell
	count.it, Counting Lines, Words, and Characters: wc
	dialback, Dialback
	editing, And Why Not?–Rotating Text, Alternatives to fmt, Remove Mail/News Headers with behead, offset: Indent Text, Centering Lines in a File, Splitting Files by Context: csplit–Splitting Files by Context: csplit, Hacking on Characters with tr, Encoding “Binary” Files into ASCII–MIME Encoding, Text Conversion with dd, Cutting Columns or Fields, Making Text in Columns with pr–Order Lines Across Columns: -l, Make Columns Automatically with column, Straightening Jagged Columns, Pasting Things in Columns, Joining Lines with join, What Is (or Isn’t) Unique?, Rotating Text
		behead
 script, removing mail/news headers, Remove Mail/News Headers with behead
	centering
 lines, Centering Lines in a File
	columns,
 making automatically with column, Make Columns Automatically with column
	cutting
 columns or fields, Cutting Columns or Fields
	encoding
 binary files into ASCII, Encoding “Binary” Files into ASCII–MIME Encoding
	fmt.sh, Alternatives to fmt
	indenting
 text with offset script, offset: Indent Text
	joining
 lines with join, Joining Lines with join
	pasting
 data into columns, Pasting Things in Columns
	rotating
 text with rot, Rotating Text
	splitting
 files by context, Splitting Files by Context: csplit–Splitting Files by Context: csplit
	straightening, Straightening Jagged Columns
	text
 conversion with dd, Text Conversion with dd
	text
 in columns with pr, Making Text in Columns with pr–Order Lines Across Columns: -l
	translating
 characters with tr, Hacking on Characters with tr
	uniq
 command, What Is (or Isn’t) Unique?

	Expect
 program, Automating /bin/passwd
	file permissions,
 changing, Protect Important Files: Make
 Them Unwritable, cx, cw, c-w: Quick File Permission Changes
		cx and cw scripts, cx, cw, c-w: Quick File Permission Changes

	file-deletion, A Faster Way to Remove Files Interactively
	file-time
 comparisons in, Finding Oldest or Newest Files with ls -t and ls -u
	hgrep, A Highlighting grep
	lensort, lensort: Sort Lines by Length
	lookfor shell
 script, lookfor: Which File Has That Word?
	munchlist, Adding Words to ispell’s Dictionary
	namesort, Sorting a List of People by Last Name
	ndown and
 nup, Separating Commands with Semicolons
	nom, nom: List Files That Don’t Match a Wildcard
	opttest, Standard Command-Line
 Parsing
	paircheck, Looking for Closure
	pausing, Building Software Robots the Easy Way
	Perl, High-Octane Shell Scripting (see Perl)
	ptbk, On-Demand Incremental Backups of a Project
	rcsegrep.fast, rcsegrep.fast
	rcsrevs, List RCS Revision Numbers with rcsrevs
	run-parts, A Little Help, etc.
	running without the
 shell, Don’t Need a Shell for Your Script? Don’t Use One
	runsed, runsed
	sed
 editor, Order of Commands in a Script, Hold Space: The Set-Aside Buffer–Hold Space: The Set-Aside Buffer
		hold space,
 using, Hold Space: The Set-Aside Buffer–Hold Space: The Set-Aside Buffer
	order of commands, Order of Commands in a Script

	shell, Writing a Simple Shell Program (see shell
 scripts)
	shell script wrappers
 for, Shell Script “Wrappers” for awk, sed, etc.
	shells reading from standard
 input, A Shell Can Read a Script from Its Standard Input, but...
	showargs, Output Command-Line Arguments One by One
	showmatch, Just What Does a Regular Expression Match?
	smbprint, Printing to Windows Printers from Unix
	sourceable, Sourceable Scripts–Sourceable Scripts
	SUID and
 SGID, Care and Feeding of SUID and SGID Scripts
	unconnected symbolic links,
 finding, oldlinks: Find Unconnected Symbolic Links
	updatedb or locate.updatedb shell
 script, Finding Files (Much) Faster with a find Database
	vgrep, The vgrep Script
	writeway.pl, Perl Boot Camp, Part 1: Typical Script Anatomy
	writing in other scripting
 languages, Everyone Should Learn Some Shell Programming
	ww.sh, Find a a Doubled Word
	xgrep, Just What Does a Regular Expression Match?
	xwrist, Outputting Text to an X Window

	SCROLL LOCK
 button, Output Stopped?
	scrollbars
 (xterm), Working with Scrollbars, How Many Lines to Save?
	scrolling error
 messages, Problems Piping to a Pager
	scrolling in
 tty-type virtual consoles, Scrolling, Using a Mouse
	SD (Send Data)
 light, Stalled Data Connection?
	sdiff
 command, Side-by-Side diffs: sdiff, Side-by-Side diffs: sdiff, Choosing Sides with sdiff
		-w
 option, Side-by-Side diffs: sdiff
	building one file from two compared
 files, Choosing Sides with sdiff

	search access to
 directories, Access to Directories, User, Group, and World
	search and
 replace, Confirming Substitutions in vi, Confirming Substitutions in vi, Examples of Searching and Replacing
		(see also replacement patterns; search
 patterns)
	regular expressions used in sed or
 ex, Examples of Searching and Replacing
	undoing in vi editor, Confirming Substitutions in vi

	search operators with find command, Be an Expert on find Search Operators–Be an Expert on find Search Operators
	search
 path, Internal and External Commands, What Goes in Shell Setup Files?, A .cshrc.$HOST File for Per Host Setup, A bin Directory for Your Programs and Scripts, Shell Search Paths, Controlling Shell Command Searches–Controlling Shell Command Searches, FPATH Search Path–zsh, Korn shell, zsh, Writing a Simple Shell Program, Predefined Environment Variables
		configuring in shell setup
 files, What Goes in Shell Setup Files?
	in
 .cshrc.$HOST file, A .cshrc.$HOST File for Per Host Setup
	FPATH (for
 functions), FPATH Search Path–zsh, Korn shell, zsh
		Korn
 shell, Korn shell
	zsh shell, zsh

	PATH environment
 variable, Predefined Environment Variables
	setting for
 shells, Controlling Shell Command Searches–Controlling Shell Command Searches
	updating with rehash, A bin Directory for Your Programs and Scripts

	search patterns, Using Search Patterns and Global Commands, Global Searches, Useful Global Commands (with Pattern Matches), vi Compound Searches, Splitting Files by Context: csplit–Splitting Files by Context: csplit, Valid Metacharacters for Different Unix Programs, Examples of Searching, Delimiting a Regular Expression, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines
		csplit
 program, Splitting Files by Context: csplit–Splitting Files by Context: csplit
	for ed, ex,
 and sed, regular expression metacharacters
 in, Valid Metacharacters for Different Unix Programs
	global commands
 with, Useful Global Commands (with Pattern Matches)
	regular expressions in
 (examples), Examples of Searching
	sed
 editor, Delimiting a Regular Expression, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines
		delimiting, Delimiting a Regular Expression
	split across
 lines, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines

	vi
 editor, Using Search Patterns and Global Commands, Global Searches, vi Compound Searches
		compund
 searches, vi Compound Searches
	global
 searches, Global Searches

	search
 permission, Tutorial on File and Directory Permissions, Tutorial on File and Directory Permissions
		(see also execute
 permission)

	search strings in sed,
 referencing portions of in replacement, Referencing Portions of a Search String
	search wraps,
 stopping in vi, Counting Occurrences; Stopping Search Wraps
	search.el
 file, Rational Searches
	searching, Searching Online Manual
 Pages, Different Versions of grep–A Highlighting grep, Fast Searches and Spelling Checks with “look”, Find a a Doubled Word, Rational Searches, Unset PWD Before Using Emacs
		for doubled
 word typing errors, Find a a Doubled Word
	in
 Emacs, Rational Searches, Unset PWD Before Using Emacs
		PWD variable
 and, Unset PWD Before Using Emacs

	grep commands,
 using, Different Versions of grep–A Highlighting grep
	look program,
 using, Fast Searches and Spelling Checks with “look”
	manual
 pages, Searching Online Manual
 Pages

	secondary
 prompts, Multiline Quoting, A foreach Loop, A for Loop, Multiline Commands, Secondary Prompts
		> (greater than sign)
 as, A for Loop
	? (question mark)
 as, A foreach Loop
	Bourne shell quoting
 and, Multiline Quoting
	multiline commands
 and, Multiline Commands, Secondary Prompts

	sections in
 documentation, The man Command
	secure keyboard mode
 (xterm), The xterm Menus
	Secure Shell (SSH), Secure Shell (SSH) (see ssh)
	Secure Sockets
 Layer, Secure Shell (SSH) (see SSL)
	security, What Happens When You Log In, The xterm Menus, Starting a Remote Client with rsh and ssh, A bin Directory for Your Programs and Scripts, Mounting Network Filesystems — NFS, SMBFS, Securing Samba, Securing Samba, Understanding Points of Vulnerability–TCP Wrappers, Understanding Points of Vulnerability, CERT Security Checklists, Keeping Up with Security Alerts, What We Mean by Buffer Overflow, Beware of Sluggish Performance–Other Checks, Check Processes, Checking Swap Space, Check Network Connections, Other Checks, Other Checks, Intruder Detection, Importance of MOTD, The Linux proc Filesystem, Disabling inetd, Disallow rlogin and rsh, TCP Wrappers, Introduction to File Ownership and Security, Introduction to File Ownership and Security, Protecting Files with the Sticky Bit, Protect Important Files: Make
 Them Unwritable, A Loophole: Modifying Files Without Write Access, Juggling Permissions
		bin directory, preventing
 unauthorized file operations, A bin Directory for Your Programs and Scripts
	buffer
 overflow, What We Mean by Buffer Overflow
	CERT
 checklists, CERT Security Checklists
	disallowing rlogin and
 rsh, Disallow rlogin and rsh
	files, Introduction to File Ownership and Security, Introduction to File Ownership and Security, Protecting Files with the Sticky Bit, Protect Important Files: Make
 Them Unwritable, A Loophole: Modifying Files Without Write Access, Juggling Permissions
		(see also permissions)
	making
 them unwritable, Protect Important Files: Make
 Them Unwritable
	managing
 permissions, Juggling Permissions
	modifying
 files without write access, A Loophole: Modifying Files Without Write Access
	sticky
 bit permission, Protecting Files with the Sticky Bit

	host listings in .rhosts file
 or /etc/hosts.equiv file, Starting a Remote Client with rsh and ssh
	inetd daemon,
 disabling, Disabling inetd
	intruder
 detection, Intruder Detection
	keeping up with security
 alerts, Keeping Up with Security Alerts
	Linux /proc filesystem, viewing
 current state of system, The Linux proc Filesystem
	login program, checks performed
 by, What Happens When You Log In
	MOTD, importance
 of, Importance of MOTD
	NFS
 and, Mounting Network Filesystems — NFS, SMBFS
	performance problems,
 checking, Beware of Sluggish Performance–Other Checks, Check Processes, Checking Swap Space, Check Network Connections, Other Checks, Other Checks
		I/O statistics, Other Checks
	network
 connections, Check Network Connections
	processes, Check Processes
	swap space, Checking Swap Space
	virtual memory
 statistics, Other Checks

	Samba, Securing Samba, Securing Samba
		security
 settings in smb.conf, Securing Samba

	TCP wrapper programs, checking
 logs, TCP Wrappers
	vulnerabilities, Understanding Points of Vulnerability
	xterm, The xterm Menus

	sed
 editor, Terminal Setup: Testing Remote Hostname and X Display, Tips for Copy and Paste Between Windows, newer: Print the Name of the Newest File, Duplicating a Directory Tree, Squash Extra Blank Lines, Numbering Lines, Different Versions of grep, A Multiline Context grep Using sed, Compound Searches, Why Line Editors Aren’t Dinosaurs, Running Editing Scripts Within vi, Alternatives to fmt, Multiline Commands, Secondary Prompts, Fix Quoting in csh Aliases with makealias and quote, Valid Metacharacters for Different Unix Programs, Pattern Matching Quick Reference with Examples, Examples of Searching and Replacing, sed Sermon^H^H^H^H^H^HSummary, Two Things You Must Know About sed, Two Things You Must Know About sed, Invoking sed, Invoking sed, Invoking sed, Invoking sed, Testing and Using a sed Script: checksed, runsed, checksed, runsed, sed Addressing Basics, sed Addressing Basics, Order of Commands in a Script, One Thing at a Time, Delimiting a Regular Expression, Newlines in a sed Replacement, Referencing the Search String in a Replacement, Referencing Portions of a Search String, Search and Replacement: One Match Among Many, Transformations on Text, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer, Transforming Part of a Line–Transforming Part of a Line, Making Edits Across Line Boundaries–Making Edits Across Line Boundaries, The Deliberate Scrivener–The Deliberate Scrivener, The Deliberate Scrivener, The Deliberate Scrivener, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines, Multiline Delete, Making Edits Everywhere Except..., The sed Test Command, Uses of the sed Quit Command, sed Newlines, Quoting, and Backslashes in a Shell Script, Shell Script “Wrappers” for awk, sed, etc., Don’t Need a Shell for Your Script? Don’t Use One, Using sed, Using sed, Cleaning script Files
		-e option, Invoking sed
	-f option, Invoking sed, Don’t Need a Shell for Your Script? Don’t Use One
	-n option, Invoking sed, The Deliberate Scrivener, Using sed
	addressing, sed Addressing Basics
	command line, Invoking sed
	commands, operations of
 (deliberate scrivener analogy), The Deliberate Scrivener–The Deliberate Scrivener
	dedent script, Tips for Copy and Paste Between Windows
	delete commands, sed Addressing Basics, Multiline Delete
	delimiting regular
 expressions, Delimiting a Regular Expression
	edit non-matching
 lines, Making Edits Everywhere Except...
	extra blank lines,
 squashing, Squash Extra Blank Lines
	files, not changing by
 editing, Two Things You Must Know About sed
	fmt.sh
 script, Alternatives to fmt
	general-purpose batch
 editing, Running Editing Scripts Within vi
	global
 commands, Two Things You Must Know About sed
	grep program, multiline
 context, A Multiline Context grep Using sed
	grep programs, Different Versions of grep
	hold (h or H)
 commands, Hold Space: The Set-Aside Buffer
	hold space, Hold Space: The Set-Aside Buffer, Hold Space: The Set-Aside Buffer
	line-by-line and search
 using, Compound Searches
	line-numbering with, Numbering Lines
	lq command, newer: Print the Name of the Newest File
	makealias and quote
 aliases, Fix Quoting in csh Aliases with makealias and quote
	mkdir command, inserting into find command
 output, Duplicating a Directory Tree
	multiple matches on a
 line, Search and Replacement: One Match Among Many
	newlines in a
 replacement, Newlines in a sed Replacement
	newlines quoting and backslashes, shell
 interpretation of, sed Newlines, Quoting, and Backslashes in a Shell Script
	order of commands in a
 script, Order of Commands in a Script
	parsing strings, Using sed
	pattern space, Hold Space: The Set-Aside Buffer, Making Edits Across Line Boundaries–Making Edits Across Line Boundaries
		making edits across line
 boundaries, Making Edits Across Line Boundaries–Making Edits Across Line Boundaries

	print (p) command, The Deliberate Scrivener
	quit (q) command, Uses of the sed Quit Command
	referencing portions of a search
 string, Referencing Portions of a Search String
	referencing the search string in a
 replacement, Referencing the Search String in a Replacement
	regular expressions used
 in, Valid Metacharacters for Different Unix Programs, Pattern Matching Quick Reference with Examples, Examples of Searching and Replacing
		documentation for, Pattern Matching Quick Reference with Examples
	metacharacters, Valid Metacharacters for Different Unix Programs
	search and replace
 commands, Examples of Searching and Replacing

	searching for patterns split
 across lines, Searching for Patterns Split Across Lines–Searching for Patterns Split Across Lines
	substitute command, Cleaning script Files
	test (t) command, The sed Test Command
	testing and
 using a script, Testing and Using a sed Script: checksed, runsed, checksed, runsed
		checksed
 script, checksed
	runsed
 script, runsed

	transformation on
 text, Transformations on Text
	using from command
 line, Multiline Commands, Secondary Prompts
	wrapping sed scripts in shell
 scripts, Shell Script “Wrappers” for awk, sed, etc.
	writing scripts, One Thing at a Time
	x (exchange) command, Hold Space: The Set-Aside Buffer
	y (transform)
 command, Transforming Part of a Line–Transforming Part of a Line

	SEGV (segmentation
 violation) signal, What Are Signals?
	selecting text in
 xterms, Simple Copy and Paste in xterm, Defining What Makes Up a Word for Selection Purposes, Problems with Large Selections
		word selection, changing word definition
 for, Defining What Makes Up a Word for Selection Purposes
	xclipboard, problems with large
 selections, Problems with Large Selections

	selection of
 fonts, enabling for xterm, Enabling Escape Sequence and Selection
	send
 command, Dialback
	sendmail
 program, MIME Encoding, Mail — SMTP, POP, and IMAP
	Server Message
 Block File System (SMBFS), Mounting Network Filesystems — NFS, SMBFS
	server number (X
 Window System), The DISPLAY Environment Variable
	servers, Starting Remote X Clients from Interactive Logins, Python and the Web, mod_python, Configuring an Anonymous FTP Server, Mail — SMTP, POP, and IMAP, Mail — SMTP, POP, and IMAP, Domain Name Service (DNS), Dynamic Host Configuration Protocol (DHCP), Gateways and NAT, Sharing Desktops with VNC, General and Authentication Problems, Server and Client Problems–Server and Client Problems
		access
 control, Starting Remote X Clients from Interactive Logins
	anonymous
 FTP, Configuring an Anonymous FTP Server
	Apache, running Python
 in, Python and the Web, mod_python
	DHCP, Dynamic Host Configuration Protocol (DHCP)
	DNS, Domain Name Service (DNS)
	IMAP, Mail — SMTP, POP, and IMAP
	NAT (Network Address
 Translation), Gateways and NAT
	POP, Mail — SMTP, POP, and IMAP
	SSH, General and Authentication Problems
		empty
 passwords, problems with, General and Authentication Problems

	SSH, problems
 with, Server and Client Problems–Server and Client Problems
	VNC (Virtual Network
 Computing), Sharing Desktops with VNC

	services, /etc/services Is Your Friend, The Director of Operations: inetd, Installing and Configuring Samba
		/etc/services
 file, /etc/services Is Your Friend
	inetd file, managing Internet
 services, The Director of Operations: inetd
	SMB,
 verifying, Installing and Configuring Samba

	Session Message
 Block (SMB) protocol, Installing and Configuring Samba
	sessions, information
 about in window title or status line, Session Info in Window Title or Status Line
	set
 command, Terminal Setup: Testing Window Size, Checklist: Terminal Hangs When I Log In, Verbose and Echo Settings Show Quoting, Instead of Changing History Characters, What Environment Variables Are Good For, Shell Variables, Standard Command-Line
 Parsing, Setting Options, (Avoiding?) set with No Arguments, Making a for Loop with
 Multiple Variables, Using set and IFS, Shell Lockfile, Use -xv
		+H option, disabling history substitution in
 bash, Instead of Changing History Characters
	-x option, turning on echo
 flag, Verbose and Echo Settings Show Quoting
	-xv option, Use -xv
	listing shell
 variables, Shell Variables
	listing shell variables and
 functions, What Environment Variables Are Good For
	lockfiles, creating, Shell Lockfile
	multiple variables in for
 loop, Making a for Loop with
 Multiple Variables
	with no
 arguments, (Avoiding?) set with No Arguments
	opttest script
 (example), Standard Command-Line
 Parsing
	parsing single-line strings
 with, Using set and IFS
	window size, Terminal Setup: Testing Window Size
	xv option, Checklist: Terminal Hangs When I Log In
		hung
 terminals and, Checklist: Terminal Hangs When I Log In

	set directory
 command, Out of Temporary Space? Use Another Directory
	set noglob
 command, Setting the Terminal Type When You Log In
	set
 notify command, Job Control in a Nutshell
	set path
 command, Checklist: Terminal Hangs When I Log In
	setgid bit, group
 permissions for directory, Group Permissions in a Directory with the setgid Bit
	setprompt
 alias, dirs in Your Prompt: Better Than $cwd
	setprompt
 function, Faster Prompt Setting with Built-ins
	setstatline alias, Session Info in Window Title or Status Line
	settitle
 alias, Session Info in Window Title or Status Line
	setup files
 (multiple) for vi and ex, Per-File Setups in Separate Files
	setup files for
 shells, Shell Setup Files — Which, Where, and Why (see configuration files)
	SGID bit for directories, Access to Directories
	SGID
 scripts, Care and Feeding of SUID and SGID Scripts
	SGML, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	sh (Bourne shell), There Are Many Shells, There Are Many Shells, Filename Extensions, Filename Extensions, Searching Online Manual
 Pages, Shell Setup Files — Which, Where, and Why, Automatic Setups for Different Terminals, Terminal Setup: Testing TERM, Terminal Setup: Testing Port, Static Prompts, External Commands Send Signals to Set Variables, External Commands Send Signals to Set Variables, Running Commands at Bourne/Korn Shell Logout, Stop Accidental Bourne-Shell Logouts, Setting the Terminal Type When You Log In, Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs When I Log In, Using the Stored Lists, Renaming, Copying, or Comparing a Set of Files, Safe Delete: Pros and Cons, Using Job Control from Your Shell, Some Gotchas with Job Control, nohup, Managing Processes: Overall Concepts, Killing Foreground Jobs, Terminal Windows Without Shells, Making Your at Jobs Quiet, What the Shell Does, Controlling Shell Command Searches, Is It “2>&1 file” or “> file 2>&1”? Why?, Bourne Shell Quoting–Multiline Quoting, Special Characters, How Quoting Works–Single Quotes Inside Single Quotes?, Multiline Quoting–Multiline Quoting, Verbose and Echo Settings Show Quoting, “Special” Characters and Operators, Repeating Commands, A for Loop, Multiline Commands, Secondary Prompts, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Simulated Bourne Shell
 Functions and Aliases, What if a Wildcard Doesn’t Match?, Writing a Simple Shell Program, Writing a Simple Shell Program, Predefined Environment Variables, Beyond the Basics, Making #! Search the PATH, Parameter Substitution, Tips for Debugging Shell Scripts, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe
		#!, seraching the PATH
 with, Making #! Search the PATH
	-c option, Terminal Windows Without Shells
	.profile
 file, Shell Setup Files — Which, Where, and Why
	aliases, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases
	arrays, Using the Stored Lists
	at command output,
 quieting, Making Your at Jobs Quiet
	background
 processing, Using Job Control from Your Shell, Some Gotchas with Job Control
	case
 statements, Automatic Setups for Different Terminals, Terminal Setup: Testing TERM, Terminal Setup: Testing Port
		port
 name, testing, Terminal Setup: Testing Port
	testing
 TERM variable, Terminal Setup: Testing TERM

	date formats, External Commands Send Signals to Set Variables
	debugging
 scripts, Tips for Debugging Shell Scripts
	for loop, A for Loop
	hangups in, nohup
	loading changed PATH, Controlling Shell Command Searches
	logouts, Running Commands at Bourne/Korn Shell Logout, Stop Accidental Bourne-Shell Logouts
		accidental, Stop Accidental Bourne-Shell Logouts
	running commands
 at, Running Commands at Bourne/Korn Shell Logout

	multiline commands, Multiline Commands, Secondary Prompts
	piping output of shell loops to
 pagers, Searching Online Manual
 Pages
	prompts, Static Prompts, Predefined Environment Variables
		primary
 prompt, Predefined Environment Variables

	quoting in, Renaming, Copying, or Comparing a Set of Files, Bourne Shell Quoting–Multiline Quoting, Special Characters, How Quoting Works–Single Quotes Inside Single Quotes?, Multiline Quoting–Multiline Quoting, Verbose and Echo Settings Show Quoting
		multiline, Multiline Quoting–Multiline Quoting
	rules for, How Quoting Works–Single Quotes Inside Single Quotes?
	showing with
 verbose and echo settings, Verbose and Echo Settings Show Quoting
	special
 characters, Special Characters

	reading .profile
 file, Checklist: Terminal Hangs When I Log In
	reading arguments, Is It “2>&1 file” or “> file 2>&1”? Why?
	redirecting standard
 I/O, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe (see redirecting input and output)
		standard error, Send (Only) Standard Error Down a Pipe

	repeating
 commands, Repeating Commands
	safe delete
 program, Safe Delete: Pros and Cons
	script file extension, Filename Extensions, Filename Extensions
	scripts,
 writing, Writing a Simple Shell Program, Writing a Simple Shell Program, Beyond the Basics
		(see also shell scripts)

	simulated shell functions and
 aliases, Simulated Bourne Shell
 Functions and Aliases
	special
 characters/operators in, “Special” Characters and Operators
	string editing
 operators, Parameter Substitution
	su stucklogin
 command, Checklist: Terminal Hangs When I Log In
	TERM variable, setting with tset
 command, Setting the Terminal Type When You Log In
	trap command, External Commands Send Signals to Set Variables, Killing Foreground Jobs
	wildcards, failing to
 match, What if a Wildcard Doesn’t Match?

	sh
 command, Aborting Programs, Renaming, Copying, or Comparing a Set of Files, Bourne Shell Used Here, Use -xv
		-xv options, Use -xv
	starting Bourne shell
 with, Bourne Shell Used Here
	v option, Renaming, Copying, or Comparing a Set of Files

	sharing, Installing and Configuring Samba, Sharing Desktops with VNC
		desktops with
 VNC, Sharing Desktops with VNC
	directories and printers with
 Windows network, Installing and Configuring Samba (see Samba)

	sharing directories
 and printers with Windows network, Printing Over Samba
		printing over
 Samba, Printing Over Samba

	shebang line in scripts, #!
 characters, Perl Boot Camp, Part 1: Typical Script Anatomy
	SHELL environment
 variable, Querying Your xterm Size: resize, Predefined Environment Variables
		resize command and, Querying Your xterm Size: resize

	shell
 escapes, Shell Escapes: Running One UnixCommand While Using Another, Subshells
		starting a
 subshell, Subshells

	shell
 functions, Internal and External Commands, Find a a Doubled Word, Which One Will bash Use?, Which One Will the C Shell Use?, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, Shell Function Basics–Simulated Bourne Shell
 Functions and Aliases, Simple Functions: ls with Options, Functions with Loops: Internet Lookup, Setting Current Shell Environment: The work Function, Functions Calling
 Functions: Factorials–Functions Calling
 Functions: Factorials, Shell Function Specifics, Propagating Shell Functions, Exporting bash Functions, FPATH Search Path–zsh, cd by Directory Initials, What Environment Variables Are Good For, Reading Files with the . and source Commands, Using Shell Functions in Shell Scripts
		C shell, determining whether to
 use, Which One Will the C Shell Use?
	c, changing directories
 with, cd by Directory Initials
	custom
 commands in, Introduction to Shell Aliases
	functions calling
 functions, Functions Calling
 Functions: Factorials–Functions Calling
 Functions: Factorials
	listing, What Environment Variables Are Good For
	loops in, Functions with Loops: Internet Lookup
	ls with
 options, Simple Functions: ls with Options
	propagating, Propagating Shell Functions, Exporting bash Functions, FPATH Search Path–zsh
		exporting
 bash functions, Exporting bash Functions
	FPATH
 search path, FPATH Search Path–zsh

	putting
 arguments inside a Bourne-type alias, Setting and Unsetting Bourne-Type Aliases
	simulating with . (dot)
 command, Reading Files with the . and source Commands
	specific shells, information
 on, Shell Function Specifics
	using in shell
 scripts, Using Shell Functions in Shell Scripts
	work, setting current shell
 environment, Setting Current Shell Environment: The work Function
	ww function, finding
 doubled words, Find a a Doubled Word

	shell
 metacharacters, Understanding Expressions (see wildcards)
	shell parameters, with
 simulated functions, Simulated Bourne Shell
 Functions and Aliases
	shell
 prompts, Faster Prompt Setting with Built-ins (see prompts)
	shell
 scripts, Anyone Can Program the Shell, Anyone Can Program the Shell, Interactive Shells, Tips for Copy and Paste Between Windows, A bin Directory for Your Programs and Scripts, Finding Oldest or Newest Files with ls -t and ls -u, lookfor: Which File Has That Word?, Deleting Stale Files, Save Space in Executable Files with strip, Subshells, Statistics of Processes by PID, Printer Queue Watcher: A Restartable Daemon Shell Script, Killing Processes by Name?, zap, Closing a Window from a Shell Script, The at Command, Interactive Use Versus Shell Scripts, “Special” Characters and Operators, Sourceable Scripts–Sourceable Scripts, Sourceable Scripts, Sourceable Scripts, Functions with Loops: Internet Lookup, Finding (Anyone’s) Home Directory, Quickly, Writing a Simple Shell Program, Writing a Simple Shell Program, Writing a Simple Shell Program, Writing a Simple Shell Program, Writing a Simple Shell Program, Everyone Should Learn Some Shell Programming, What Environment Variables Are Good For–The DISPLAY Environment Variable, Parent-Child Relationships, Shell Variables–Shell Variables, Test String Values with Bourne-Shell case–Pattern Matching in case Statements, Test String Values with Bourne-Shell case, Pattern Matching in case Statements, Exit Status of Unix Processes–Looping Until a
 Command Fails, Test Exit Status with the if Statement–Test Exit Status with the if Statement, Test Exit Status with the if Statement–Test Exit Status with the if Statement, Test Exit Status with the if Statement, Testing Your
 Success, Loops That Test Exit Status, Set Exit Status of a Shell
 (Script), Trapping Exits Caused by Interrupts, Shell Script “Wrappers” for awk, sed, etc., Handling Command-Line Arguments in Shell Scripts–Handling Arguments with while and shift, Picking a Name for a New
 Command, Reading Files with the . and source Commands, Using Shell Functions in Shell Scripts, Beyond the Basics, The Story of : # #!, The Story of : # #!, The Story of : # #!, Don’t Need a Shell for Your Script? Don’t Use One, Making #! Search the PATH, The exec Command, The Unappreciated Bourne Shell “:” Operator, Parameter Substitution, Save Disk Space and Programming: Multiple Names for a Program, Finding the Last Command-Line
 Argument, Standard Input to a for Loop, Making a for Loop with
 Multiple Variables, Using basename and dirname, A while Loop with Several Loop Control Commands, A Shell Can Read a Script from Its Standard Input, but..., Shell Scripts On-the-Fly from Standard Input, Shell Scripts On-the-Fly from Standard Input, Turn Off echo for “Secret” Answers, Quick Reference: expr, Testing Characters in a String with expr, Grabbing Parts of a String, Nested Command
 Substitution, Testing Two Strings with One case Statement, Shell Lockfile, Tips for Debugging Shell Scripts, Bourne Shell Debugger Shows a Shell Variable, RCS Basics, High-Octane Shell Scripting, Named Pipes: FIFOs, cx, cw, c-w: Quick File Permission Changes, Shell Scripts Must Be Readable and (Usually) Executable
		#!, searching the PATH
 with, Making #! Search the PATH
	arguments
 passed to, Anyone Can Program the Shell
	basename and dirname,
 using, Using basename and dirname
	bin directory for, A bin Directory for Your Programs and Scripts
	bkedit, Test Exit Status with the if Statement
	case statements, Test String Values with Bourne-Shell case–Pattern Matching in case Statements, Test String Values with Bourne-Shell case, Pattern Matching in case Statements
		pattern matching
 in, Pattern Matching in case Statements
	testing
 string values with, Test String Values with Bourne-Shell case

	closing
 window from, Closing a Window from a Shell Script
	command lines as
 scripts, Writing a Simple Shell Program
	command-line arguments,
 handling, Handling Command-Line Arguments in Shell Scripts–Handling Arguments with while and shift
	commenting, The Story of : # #!
	commenting RCS files, RCS Basics
	conditional expressions in
 if statements, Test Exit Status with the if Statement–Test Exit Status with the if Statement
	dater, Named Pipes: FIFOs
	debugging, Tips for Debugging Shell Scripts
	environment
 variables, What Environment Variables Are Good For–The DISPLAY Environment Variable
	exec command, The exec Command
	exit status of Unix
 processes, Exit Status of Unix Processes–Looping Until a
 Command Fails, Test Exit Status with the if Statement–Test Exit Status with the if Statement, Loops That Test Exit Status
		loops, testing
 with, Loops That Test Exit Status
	testing with if
 statement, Test Exit Status with the if Statement–Test Exit Status with the if Statement

	exit status,
 setting, Set Exit Status of a Shell
 (Script)
	exits caused by interrupts,
 trapping, Trapping Exits Caused by Interrupts
	expr
 command, Quick Reference: expr
	finding last command-line
 argument, Finding the Last Command-Line
 Argument
	for loop with multiple
 variables, Making a for Loop with
 Multiple Variables
	with GNU tar, archiving
 deleted files on tape, Deleting Stale Files
	hardcoding users’ home directory
 pathnames, Finding (Anyone’s) Home Directory, Quickly
	interactive use
 vs, Interactive Use Versus Shell Scripts
	last-access
 times, Finding Oldest or Newest Files with ls -t and ls -u
	limitations of, Sourceable Scripts
	lockfiles, creating
 from, Shell Lockfile
	lookfor, lookfor: Which File Has That Word?
	making executable, cx, cw, c-w: Quick File Permission Changes
	multiple names for, Save Disk Space and Programming: Multiple Names for a Program
	naming, Picking a Name for a New
 Command
	nested command
 substitution, Nested Command
 Substitution
	for
 noninteractive shells, Interactive Shells
	parameter
 substitution, Parameter Substitution
	parent-child
 relationships, Parent-Child Relationships
	Perl,
 using, High-Octane Shell Scripting (see Perl)
	permissions, Writing a Simple Shell Program, Shell Scripts Must Be Readable and (Usually) Executable
	reading from standard
 input, Shell Scripts On-the-Fly from Standard Input, Shell Scripts On-the-Fly from Standard Input
	regular expressions metacharacters
 in, “Special” Characters and Operators
	requote, Tips for Copy and Paste Between Windows
	runaway, killing by
 name, Killing Processes by Name?
	running, The Story of : # #!
	running as a daemon, Printer Queue Watcher: A Restartable Daemon Shell Script
	scripts
 without the shell, Don’t Need a Shell for Your Script? Don’t Use One
	scripts written in other scripting
 languages vs, Everyone Should Learn Some Shell Programming
	shell functions
 vs., Functions with Loops: Internet Lookup
	shell functions, using
 in, Using Shell Functions in Shell Scripts
	shell reading script from standard
 input, A Shell Can Read a Script from Its Standard Input, but...
	shell
 variables, Shell Variables–Shell Variables
	showenv, Statistics of Processes by PID
	simple, examples of, Writing a Simple Shell Program
	sourceable, Sourceable Scripts–Sourceable Scripts
	sourcing, Sourceable Scripts, Reading Files with the . and source Commands
	standard input to a for
 loop, Standard Input to a for Loop
	strings, working
 with, Grabbing Parts of a String
	stripper, Save Space in Executable Files with strip
	submitting for execution at a later
 time, The at Command
	testing character strings with
 expr, Testing Characters in a String with expr
	testing for
 success, Testing Your
 Success
	testing two strings with a case
 statement, Testing Two Strings with One case Statement
	turning off echo, Turn Off echo for “Secret” Answers
	variables set by, Bourne Shell Debugger Shows a Shell Variable
	while loop with several loop control
 commands, A while Loop with Several Loop Control Commands
	wrappers for awk, sed and other
 scripts, Shell Script “Wrappers” for awk, sed, etc.
	writing
 simple, Writing a Simple Shell Program
	zap, zap
	\: (Bourne shell)
 operator, The Unappreciated Bourne Shell “:” Operator
	\:, #, and #!, The Story of : # #!

	shell
 variables, A .cshrc.$HOST File for Per Host Setup, eval: When You Need Another Chance, Multiline Quoting, Picking Up Where You Left Off, Changing History Characters with histchars, Saving Time When You Change Directories: cdpath, Marking Your Place with a Shell Variable, Marking Your Place with a Shell Variable, What Environment Variables Are Good For, What Environment Variables Are Good For, PATH and path, Shell Variables, Shell Variables–Shell Variables, Shell Variables, Shell Variables, Shell Variables, Shell Variables, Shell Variables, Shell Variables, Shell Variables, Exit Status of Unix Processes, Using set and IFS, Using sed, Bourne Shell Debugger Shows a Shell Variable, Quoting and Command-Line
 Parameters, Cleaning script Files, List RCS Revision Numbers with rcsrevs, Safe I/O Redirection with noclobber
		$ (dollar sign), preceding name
 with, Shell Variables
	cdable_vars, Marking Your Place with a Shell Variable
	cdpath, Saving Time When You Change Directories: cdpath
	in .cshrc.$HOST
 file, A .cshrc.$HOST File for Per Host Setup
	current directory, storing
 in, Marking Your Place with a Shell Variable
	environment variables
 vs., What Environment Variables Are Good For, Shell Variables
	eval command and, eval: When You Need Another Chance
	histchars, Changing History Characters with histchars
	history, Shell Variables
	IFS (internal field
 separator), Using set and IFS
	iterating over
 arguments, Quoting and Command-Line
 Parameters
	listing with set
 command, What Environment Variables Are Good For, Shell Variables
	multiline quoting in
 Bourne shell and, Multiline Quoting
	names, Shell Variables
	noclobber, Safe I/O Redirection with noclobber
	path, PATH and path
	printexitvalue, Exit Status of Unix Processes
	printing value of individual with
 echo, Shell Variables
	read-only, Shell Variables
	revnum, List RCS Revision Numbers with rcsrevs
	savehist (C shell), Picking Up Where You Left Off
	set by shell scripts,
 debugging, Bourne Shell Debugger Shows a Shell Variable
	setting, Shell Variables
	setting with combined use of sed and
 eval, Using sed
	storing
 control characters in, Cleaning script Files

	shell
 wrappers, Testing and Using a sed Script: checksed, runsed, Searching for Patterns Split Across Lines
		invoking sed scripts
 from, Testing and Using a sed Script: checksed, runsed
	sed script
 embedded in, Searching for Patterns Split Across Lines

	shells, Communication with Unix, Communication with Unix, Communication with Unix, Communication with Unix, Programs Are Designed to Work Together, There Are Many Shells, Which Shell Am I Running?, Anyone Can Program the Shell, Anyone Can Program the Shell, Internal and External Commands, Internal and External Commands, Filename Extensions, Wildcards, What Happens When You Log In–Writing a Simple Manpage with the -man Macros, What Happens When You Log In, The Mac OS X Terminal Application, Shell Setup Files — Which, Where, and Why–Shell Setup Files — Which, Where, and Why, Login Shells, Interactive Shells, Login Shells, Interactive Shells, What Goes in Shell Setup Files?, Tip for Changing Account Setup: Keep a Shell Ready, Setup Files Aren’t Read When You Want?, Automatic Setups for Different Terminals–Terminal Setup: Setting and Testing Window Name, A .cshrc.$HOST File for Per Host Setup, Making a “Login” Shell, Highlighting and Color in Shell Prompts, Checklist: Terminal Hangs When I Log In, Starting a Remote Client with rsh and ssh, Delving Through a Deep Directory Tree, Wildcards with “Fast find” Database, Using Shell Arrays to Browse Directories–Expanding Ranges, Expanding Ranges, limit and ulimit, Emacs: The Other Editor, Emacs Features: A Laundry List, Job Control in a Nutshell, Using Job Control from Your Shell, System Overloaded? Try Stopping Some Jobs, Disowning Processes, Stopping Remote Login Sessions, fork and exec, Managing Processes: Overall Concepts, Managing Processes: Overall Concepts, Subshells, Destroying Processes with kill, Killing All Your Processes, Processes Out of Control? Just STOP Them, The Process Chain to Your Window–The Process Chain to Your Window, The Process Chain to Your Window, Terminal Windows Without Shells, Know When to Be “nice” to Other Users...and When Not To, What the Shell Does, What’s a Shell, Anyway?, Types of Shells, Command Evaluation and Accidentally Overwriting Files, “Special” Characters and Operators, “Special” Characters and Operators, Introduction to Shell Aliases–Fix Quoting in csh Aliases with makealias and quote, Conclusion, The Lessons of History, The Lessons of History, Pass History to Another Shell, Shell Command-Line Editing, The Shells’ pushd and popd Commands–Nice Aliases for pushd, Don’t Confuse Regular Expressions with Wildcards, File-Naming Wildcards, File-Naming Wildcards, Who Handles Wildcards?–Who Handles Wildcards?, Who Handles Wildcards?, sed Newlines, Quoting, and Backslashes in a Shell Script, Predefined Environment Variables, Don’t Need a Shell for Your Script? Don’t Use One, Don’t Need a Shell for Your Script? Don’t Use One, The exec Command, Overview: Open Files and File Descriptors, A Shell Can Read a Script from Its Standard Input, but..., Shell Scripts On-the-Fly from Standard Input, Shell Scripts On-the-Fly from Standard Input
		-v (verbose)
 option, Shell Scripts On-the-Fly from Standard Input
	aliases, Introduction to Shell Aliases–Fix Quoting in csh Aliases with makealias and quote
	archives, filename
 extension, Filename Extensions
	arrays, Using Shell Arrays to Browse Directories–Expanding Ranges, Expanding Ranges
		expanding
 ranges, Expanding Ranges

	built-in
 commands, Communication with Unix, Internal and External Commands
	command argument lists,
 providing, Delving Through a Deep Directory Tree
	command-line
 editing, Highlighting and Color in Shell Prompts, The Lessons of History, Shell Command-Line Editing
		calculating prompt string
 width, Highlighting and Color in Shell Prompts

	commands for working with
 functions, Conclusion
	as controlling
 process, Managing Processes: Overall Concepts
	curly braces ({ })
 in, Wildcards, Who Handles Wildcards?
	debugging, Checklist: Terminal Hangs When I Log In (see debugging)
	defined, What’s a Shell, Anyway?
	determining which is
 running, Which Shell Am I Running?
	disowning
 jobs, Disowning Processes
	Emacs, running
 in, Emacs: The Other Editor, Emacs Features: A Laundry List
	exiting to close a
 window, The Process Chain to Your Window
	filename-matching
 patterns, Don’t Confuse Regular Expressions with Wildcards
	history
 mechanism, The Lessons of History (see history of commands)
	interactive, Login Shells, Interactive Shells
	interpretation of
 commands, Command Evaluation and Accidentally Overwriting Files (see commands)
	interpreting the command
 line, Communication with Unix
	job
 control, Using Job Control from Your Shell (see job control)
	kill command,
 built-in, Processes Out of Control? Just STOP Them
	killing, Destroying Processes with kill
	limiting file
 sizes, limit and ulimit
	metacharacters
 in, “Special” Characters and Operators
	passing command history
 to, Pass History to Another Shell
	priority, setting with
 nice, Know When to Be “nice” to Other Users...and When Not To
	as
 processes, Managing Processes: Overall Concepts
	programming, Anyone Can Program the Shell, Anyone Can Program the Shell
		(see also shell
 scripts)

	pushd and popd
 commands, The Shells’ pushd and popd Commands–Nice Aliases for pushd
	quoting
 in, sed Newlines, Quoting, and Backslashes in a Shell Script (see quoting)
	reading scripts from standard
 input, A Shell Can Read a Script from Its Standard Input, but..., Shell Scripts On-the-Fly from Standard Input
	redirecting standard
 I/O, Overview: Open Files and File Descriptors (see redirecting input and output)
	relationship with
 kernel, utilities, and applications, Communication with Unix
	remote login sessions,
 stopping, Stopping Remote Login Sessions
	remote,
 running, Starting a Remote Client with rsh and ssh
	replacing one with another, using
 exec, The exec Command
	replacing with exec
 command, fork and exec
	running scripts
 without, Don’t Need a Shell for Your Script? Don’t Use One
	setting
 up, What Happens When You Log In–Writing a Simple Manpage with the -man Macros, What Happens When You Log In, The Mac OS X Terminal Application, Shell Setup Files — Which, Where, and Why–Shell Setup Files — Which, Where, and Why, Login Shells, Interactive Shells, What Goes in Shell Setup Files?, Tip for Changing Account Setup: Keep a Shell Ready, Setup Files Aren’t Read When You Want?, Automatic Setups for Different Terminals–Terminal Setup: Setting and Testing Window Name, A .cshrc.$HOST File for Per Host Setup, Making a “Login” Shell
		.cshrc.$HOST file for per host
 setup, A .cshrc.$HOST File for Per Host Setup
	account setup, changing, Tip for Changing Account Setup: Keep a Shell Ready
	contents of setup
 files, What Goes in Shell Setup Files?
	interactive shells, Interactive Shells
	login shells, Login Shells, Making a “Login” Shell
	logins, What Happens When You Log In
	Mac OS X Terminal
 application, The Mac OS X Terminal Application
	reading setup files at different
 times, Setup Files Aren’t Read When You Want?
	setup files,
 understanding, Shell Setup Files — Which, Where, and Why–Shell Setup Files — Which, Where, and Why
	terminals, automatic setups
 for, Automatic Setups for Different Terminals–Terminal Setup: Setting and Testing Window Name

	setup
 files, Internal and External Commands, Predefined Environment Variables
		PATH environemt
 variable, Predefined Environment Variables

	special characters and their
 meanings, “Special” Characters and Operators
	specialized, based on
 languages such as Python, TCL,
 Perl, What the Shell Does
	stopping jobs
 on, System Overloaded? Try Stopping Some Jobs
	subshells, Subshells
	suspending with suspend
 command, Job Control in a Nutshell
	terminal windows
 without, Terminal Windows Without Shells
	types
 of, There Are Many Shells, Types of Shells
	understanding # as
 comment, Don’t Need a Shell for Your Script? Don’t Use One
	Unix programs working independently
 of, Programs Are Designed to Work Together
	wildcards, Wildcards with “Fast find” Database, File-Naming Wildcards, File-Naming Wildcards, Who Handles Wildcards?–Who Handles Wildcards?
		(see also wildcards)
	handling
 of, Who Handles Wildcards?–Who Handles Wildcards?
	matching
 with fast find commands, Wildcards with “Fast find” Database

	without job control, using 0 (zero)
 PID to kill all processes, Killing All Your Processes
	X window, using
 from, The Process Chain to Your Window–The Process Chain to Your Window

	shift
 command, Using the Stored Lists, With a Loop, Handling Arguments with while and shift, Handling Arguments with while and shift, How to Unset All Command-Line Parameters
		removing command-line
 arguments, With a Loop
	unsetting command-line
 parameters, How to Unset All Command-Line Parameters
	in while
 loops, Handling Arguments with while and shift, Handling Arguments with while and shift

	shift operator
 (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy, Arrays
	SHLVL
 variable, Login Shells
	shorthand
 substitution command (^xy^yx), History Substitutions
	showargs
 script, Output Command-Line Arguments One by One
	showenv
 shell script, Statistics of Processes by PID
	showmatch
 script, Just What Does a Regular Expression Match?
	shutdown
 program, The Kernel and Daemons
	side-by-side file
 comparisons (sdiff command), Side-by-Side diffs: sdiff
	Sierra,
 Mike, Multiline Shell Prompts
	signals, Managing Processes: Overall Concepts, What Are Signals?–Killing Foreground Jobs, What Are Signals?, What Are Signals?, What Are Signals?, Destroying Processes with kill, Printer Queue Watcher: A Restartable Daemon Shell Script–Printer Queue Watcher: A Restartable Daemon Shell Script, Killing All Your Processes, Killing Processes by Name?, Kill Processes Interactively, Processes Out of Control? Just STOP Them, Cleaning Up an Unkillable Process, Trapping Exits Caused by Interrupts, Trapping Exits Caused by Interrupts
		common, listing
 of, What Are Signals?
	distribution of, using
 process groups, Managing Processes: Overall Concepts
	handling, What Are Signals?
	kill command, using
 with, Destroying Processes with kill, Printer Queue Watcher: A Restartable Daemon Shell Script–Printer Queue Watcher: A Restartable Daemon Shell Script, Killing All Your Processes, Killing Processes by Name?, Kill Processes Interactively, Processes Out of Control? Just STOP Them, Cleaning Up an Unkillable Process
		killing all processes, Killing All Your Processes
	killing processes by
 name, Killing Processes by Name?
	killing processes
 interactively, Kill Processes Interactively
	restarting daemon shell
 script, Printer Queue Watcher: A Restartable Daemon Shell Script–Printer Queue Watcher: A Restartable Daemon Shell Script
	STOP signal, Processes Out of Control? Just STOP Them
	unkillable processes, Cleaning Up an Unkillable Process

	numbers, variations among
 systems, What Are Signals?
	for trap
 commands, Trapping Exits Caused by Interrupts, Trapping Exits Caused by Interrupts

	simulating dynamic
 prompts, Simulating Dynamic Prompts
	sin
 command (awk), Alphabetical Summary of Commands
	single
 quotes, How Quoting Works (see ', under Symbols)
	single user
 mode, Forgetting the root Password
	site-packages
 directory, Installation and Distutils
	size, Querying Your xterm Size: resize, The Simple Way to Pick a Font, VT Fonts Menu, Listing Files by Age and Size, Making an Arbitrary-Size File for Testing
		finding files
 by, Listing Files by Age and Size
	fonts, The Simple Way to Pick a Font, VT Fonts Menu
	limits for
 files, Making an Arbitrary-Size File for Testing
	xterm windows, Querying Your xterm Size: resize

	sl
 script, Showing the Actual Filenames for Symbolic Links
	sleep command, Running Commands When You Log Out, Building Software Robots the Easy Way, Waiting a Little While: sleep, Separating Commands with Semicolons, Outputting Text to an X Window
		endless while loop, using
 in, Outputting Text to an X Window
	forcing
 shell to wait before exiting, Running Commands When You Log Out
	in strings of
 commands separated by semicolons (;), Separating Commands with Semicolons
	uses of, Waiting a Little While: sleep

	sleeping, The Kernel and Daemons
	slocate
 command, Using “Fast find” Databases, Finding Files (Much) Faster with a find Database
	SMB (Session Message
 Block) protocol, Installing and Configuring Samba
	smb.conf
 files, Installing and Configuring Samba, Installing and Configuring Samba, Installing and Configuring Samba, Securing Samba, Printing with Samba
		default printer, sharing with SMB
 network, Printing with Samba
	defaults, leaving in
 place, Installing and Configuring Samba
	security directive, Securing Samba
	sharing local directory with SMB
 network, Installing and Configuring Samba

	smbclient
 program, Installing and Configuring Samba, Printing with Samba, Connecting to SMB Shares from Unix
		connecting to SMB
 printer, Printing with Samba

	smbd
 daemon, Installing and Configuring Samba
	SMBFS (Servr Message
 Block File System), Mounting Network Filesystems — NFS, SMBFS
	smbfs
 tool, Mounting Network Filesystems — NFS, SMBFS
	smbmnt
 command, Installing and Configuring Samba
	smbpasswd
 utility, Securing Samba
	smbprint
 script, Printing to Windows Printers from Unix
	SMTP (Simple Message
 Transfer Protocol), Mail — SMTP, POP, and IMAP
	sockets, Status and Troubleshooting, Secure Shell (SSH), Check Network Connections
		displaying active with
 netstart, Status and Troubleshooting
	returning activity on with
 netstat, Check Network Connections
	Secure Sockets
 Layer, Secure Shell (SSH) (see SSL)

	soft disk quota
 limits, Disk Quotas
	soft
 links, More About Links (see symbolic links)
	soft mounting of
 NFS, Checklist: Terminal Hangs When I Log In
	software installation, /usr/bin and Other Software Directories, /usr/bin and Other Software Directories, The Challenges of Software Installation on Unix, Which make?, Simplifying the make Process, Using Debian’s dselect–Exiting dselect, Choosing the Access Method–Choosing the Access Method, Updating Information on Available Packages, Choosing Packages for Installation or Removal–Choosing Packages for Installation or Removal, Exiting the Select Function, Installing Packages, Configuring Packages, Removing Packages, Exiting dselect, Installing Software with Debian’s Apt-Get, Configuring the sources.list File, Interruptable gets with wget, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X, Installation with FreeBSD Ports, Installing with FreeBSD Packages, Finding and Installing RPM Packaged Software
		/usr/bin and other directories
 for, /usr/bin and Other Software Directories
	challenges of, The Challenges of Software Installation on Unix
	curl application,
 using, The curl Application and One-Step GNU-Darwin Auto-Installer for OS X
	Debian apt-get tool,
 using, Installing Software with Debian’s Apt-Get, Configuring the sources.list File
		configuring sources.list
 file, Configuring the sources.list File

	Debian dselect tool,
 using, Using Debian’s dselect–Exiting dselect, Choosing the Access Method–Choosing the Access Method, Updating Information on Available Packages, Choosing Packages for Installation or Removal–Choosing Packages for Installation or Removal, Exiting the Select Function, Installing Packages, Configuring Packages, Removing Packages, Exiting dselect
		access method,
 choosing, Choosing the Access Method–Choosing the Access Method
	choosing packages for installation
 or removal, Choosing Packages for Installation or Removal–Choosing Packages for Installation or Removal
	configuring
 packages, Configuring Packages
	exiting, Exiting dselect
	exiting select
 function, Exiting the Select Function
	installing
 packages, Installing Packages
	removing packages, Removing Packages
	updating information on available
 packages, Updating Information on Available Packages

	FreeBSD packages,
 using, Installing with FreeBSD Packages
	FreeBSD Ports,
 using, Installation with FreeBSD Ports
	GNU wget utility,
 using, Interruptable gets with wget
	make utility, versions
 of, Which make?
	RPM,
 using, Finding and Installing RPM Packaged Software
	simplifying the make
 process, Simplifying the make Process

	software robots, Building Software Robots the Easy Way
	Solaris, Disk Partitioning, Mounting and Unmounting Removable Filesystems, Decapitating Your Machine — Serial Consoles, When Does a User Become a User, Forgetting the root Password, Free SSH with OpenSSH
		adding users to
 system, When Does a User Become a User
	disk device naming
 scheme, Disk Partitioning
	OpenSSH, Free SSH with OpenSSH
	serial
 consoles, Decapitating Your Machine — Serial Consoles
	single user mode,
 entering, Forgetting the root Password
	vold daemon for removable
 media, Mounting and Unmounting Removable Filesystems

	sort
 command, Inside spell, Sort Fields: How sort Sorts, Changing the sort Field Delimiter, Alphabetic and Numeric Sorting, Alphabetic and Numeric Sorting, Alphabetic and Numeric Sorting, Dealing with Repeated Lines, Ignoring Blanks, Case-Insensitive Sorts, Dictionary Order, Month Order, Reverse Sort
		-b option (ignoring
 blanks), Alphabetic and Numeric Sorting, Ignoring Blanks
	-d option (dictionary
 order), Dictionary Order
	-g option, sorting numbers in scientific
 notation, Alphabetic and Numeric Sorting
	-M option (month
 order), Month Order
	-r option (reverse
 order), Reverse Sort
	-t option, changing sort field
 delimiter, Changing the sort Field Delimiter
	-u option, eliminating duplicate
 lines, Dealing with Repeated Lines
	alphabetic vs.
 numeric, Alphabetic and Numeric Sorting
	case-insensitive
 sorts, Case-Insensitive Sorts
	fields, Sort Fields: How sort Sorts
	u option, Inside spell

	sorting, Finding Oldest or Newest Files with ls -t and ls -u, Sort Fields: How sort Sorts–Reverse Sort, lensort: Sort Lines by Length, Sorting a List of People by Last Name
		files, Finding Oldest or Newest Files with ls -t and ls -u
	by last name
 (namesort script), Sorting a List of People by Last Name
	lines by length (lensort
 script), lensort: Sort Lines by Length
	sort
 command, Sort Fields: How sort Sorts–Reverse Sort

	sound
 cards, Quick Introduction to Hardware, Dealing with Sound Cards and Other Annoying Hardware
	source code, locating
 for programs, whereis: Finding Where a Command Is Located
	source command, Shell Setup Files — Which, Where, and Why, Useful ex
 Commands, Sourceable Scripts, Pass History to Another Shell, Reading Files with the . and source Commands
		-h (history) option, Pass History to Another Shell
	ex
 editor, Useful ex
 Commands
	reading
 aliases file into C shell, Shell Setup Files — Which, Where, and Why
	scripts, using on, Sourceable Scripts
	shell scripts, using
 on, Reading Files with the . and source Commands

	source filename, How to Put if-then-else in a C-Shell Alias
	sourceable scripts, Sourceable Scripts–Sourceable Scripts
	sources.list
 file, Choosing the Access Method, Configuring the sources.list File, Configuring the sources.list File, Configuring the sources.list File
		components, Configuring the sources.list File
	configuring, Configuring the sources.list File
	distribution, Configuring the sources.list File

	spawning
 processes, fork and exec
	special
 characters, Filenames, Dynamic Prompts, Faster Prompt Setting with Built-ins, Showing Nonprintable Characters in Filenames, Deleting Files with Odd Names–Removing a Strange File by its i-number, Special Characters, Special Characters, Quoting Special Characters in Filenames, “Special” Characters and Operators, Don’t Confuse Regular Expressions with Wildcards
		in Bourne shell
 (sh), Special Characters
	C shell, Special Characters
	C shell filenames, quotiing
 in, Quoting Special Characters in Filenames
	in
 filenames, Filenames, Showing Nonprintable Characters in Filenames, Deleting Files with Odd Names–Removing a Strange File by its i-number
		deleting files, Deleting Files with Odd Names–Removing a Strange File by its i-number

	in shell
 prompts, Dynamic Prompts, Faster Prompt Setting with Built-ins
	in
 shells, listing with definitions, “Special” Characters and Operators, Don’t Confuse Regular Expressions with Wildcards

	spell
 checking, Fast Searches and Spelling Checks with “look”, The Unix spell Command–Adding Words to ispell’s Dictionary, The Unix spell Command, The Unix spell Command, Check Spelling Interactively with ispell, Check Spelling Interactively with ispell, How Do I Spell That Word?, How Do I Spell That Word?, How Do I Spell That Word?, Inside spell–Inside spell, Inside spell, Inside spell, Inside spell, Inside spell, Inside spell, Inside spell, Adding Words to ispell’s Dictionary, Adding Words to ispell’s Dictionary, Adding Words to ispell’s Dictionary, The sed Test Command
		aspell utility, Check Spelling Interactively with ispell
	ispell
 program, Check Spelling Interactively with ispell, How Do I Spell That Word?, Adding Words to ispell’s Dictionary, Adding Words to ispell’s Dictionary, Adding Words to ispell’s Dictionary
		-a option, How Do I Spell That Word?, Adding Words to ispell’s Dictionary
	-d
 option, providing master spelling list, Adding Words to ispell’s Dictionary
	adding words to
 dictionary, Adding Words to ispell’s Dictionary

	look command, Fast Searches and Spelling Checks with “look”, How Do I Spell That Word?
	sed editor, corrector
 program, The sed Test Command
	spell command, The Unix spell Command, The Unix spell Command, How Do I Spell That Word?, Inside spell–Inside spell, Inside spell, Inside spell, Inside spell, Inside spell, Inside spell, Inside spell
		-v
 option, Inside spell
	-x
 option, Inside spell
	b option
 (British usage), Inside spell
	dictionary files for special words and
 terms, The Unix spell Command
	spellhist file, Inside spell
	spellprog program, Inside spell
	stop
 list for typical misspellings, Inside spell

	split
 command, Alphabetical Summary of Commands, Splitting Files at Fixed Points: split, Use with Loops
		awk, Alphabetical Summary of Commands
	loops
 using, Use with Loops
	variants
 of, Splitting Files at Fixed Points: split

	split
 function, Variables and Array Assignments
	splitting
 strings, Using set and IFS, Using set and IFS
		IFS, places in which it can’t be
 used, Using set and IFS
	into fields, Using set and IFS

	SPOOL (Simultaneous
 Printing Off and On Line), Introduction to Printing
	spooling system for
 printing, Introduction to Printing, lpr-Style Printing Commands, Using Symbolic Links for Spooling, Printing Over a Network, Converting Source Files Automagically Within the Spooler
		converting source files
 within, Converting Source Files Automagically Within the Spooler
	lpd daemon, Printing Over a Network
	lpr-style
 commands, lpr-Style Printing Commands
	symbolic links, Using Symbolic Links for Spooling

	spreadsheet modes in
 Emacs, Emacs Features: A Laundry List
	sprintf command
 (awk), Alphabetical Summary of Commands
	sqrt command
 (awk), Alphabetical Summary of Commands
	srand command (nawk), Alphabetical Summary of Commands
	ssh, Unix Networking and Communications, Terminal Setup: Testing Port, Stalled Data Connection?, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, Starting a Remote Client with rsh and ssh, Copying Directory Trees with tar and Pipes, Change Many Files by Editing Just One, Stopping Remote Login Sessions, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive, On-Demand Incremental Backups of a Project, Secure Shell (SSH), Secure Shell (SSH), Enabling Remote Access on Mac OS X–Server and Client Problems, Enabling Remote Access on Mac OS X, Protecting Access Through SSH, Free SSH with OpenSSH, SSH Problems and Solutions, General and Authentication Problems, Key and Agent Problems, Server and Client Problems–Server and Client Problems
		-agent option, copying archives
 without password, On-Demand Incremental Backups of a Project
	-keygen
 option, Secure Shell (SSH)
	backups to remote tape
 drive, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive
		accessing with GNU
 tar, Using GNU tar with a Remote Tape Drive

	differences from
 rsh, Starting a Remote Client with rsh and ssh
	enabling on Mac OS
 X, Enabling Remote Access on Mac OS X
	interactive
 login, Starting Remote X Clients from Interactive Logins
	OpenSSH, Free SSH with OpenSSH
	port numbers
 for, Terminal Setup: Testing Port
	problems and
 solutions, SSH Problems and Solutions, General and Authentication Problems, Key and Agent Problems, Server and Client Problems–Server and Client Problems
		general and
 authentication, General and Authentication Problems
	key and agent
 problems, Key and Agent Problems
	server and client
 problems, Server and Client Problems–Server and Client Problems

	protecting access
 through, Protecting Access Through SSH
	rsync program, Change Many Files by Editing Just One
	running reading- or
 writing-tar on remote system, Copying Directory Trees with tar and Pipes
	scp file copy
 mechanism, Secure Shell (SSH)
	stalled data connection
 with, Stalled Data Connection?
	starting remote X
 clients, Starting a Remote Client with rsh and ssh
	suspending
 jobs, Stopping Remote Login Sessions

	sshd
 daemon, Secure Shell (SSH), General and Authentication Problems, General and Authentication Problems, General and Authentication Problems, Server and Client Problems
		.pam file, General and Authentication Problems
	mail checking,
 disabling, General and Authentication Problems
	printing, disabling
 for, General and Authentication Problems
	problems
 with, Server and Client Problems

	SSL (Secure Sockets
 Layer), Python and the Web, Secure Shell (SSH)
		Python support
 for, Python and the Web

	stacks, The Shells’ pushd and popd Commands–Nice Aliases for pushd, What We Mean by Buffer Overflow
		directory, The Shells’ pushd and popd Commands–Nice Aliases for pushd
	function parameter buffers,
 overflowing, What We Mean by Buffer Overflow

	stale files,
 deleting, Deleting Stale Files
	stale symbolic
 links, Stale Symbolic Links
	stalled data
 connections, Stalled Data Connection?
	standard
 error, Interactive Shells, Is It “2>&1 file” or “> file 2>&1”? Why?, Functions Calling
 Functions: Factorials, Overview: Open Files and File Descriptors, n>&m: Swap Standard Output and Standard Error, Use -xv, I/O and Formatting, Using Standard Input and Output, Using Standard Input and Output, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe, Problems Piping to a Pager, Problems Piping to a Pager, Redirection in C Shell: Capture Errors, Too?, Combining Several Commands
		combining with stdout and piping to
 pagers, Problems Piping to a Pager
	grep
 command output, Problems Piping to a Pager
	for interactive and
 noninteractive shells, Interactive Shells
	redirecting, Is It “2>&1 file” or “> file 2>&1”? Why?, n>&m: Swap Standard Output and Standard Error, Using Standard Input and Output, Send (Only) Standard Error Down a Pipe, Redirection in C Shell: Capture Errors, Too?, Combining Several Commands
		()
 subshell operators, using, Combining Several Commands
	Bourne
 and C shells, Using Standard Input and Output
	Bourne-type
 shells, Is It “2>&1 file” or “> file 2>&1”? Why?
	in C
 shell, Redirection in C Shell: Capture Errors, Too?
	to a
 pipe, Send (Only) Standard Error Down a Pipe

	shell debugging output, piping to
 pager, Use -xv
	sys.stderr file object
 (Python), I/O and Formatting
	writing debugging
 messages to, Functions Calling
 Functions: Factorials
	writing to
 via /dev/stderr, Using Standard Input and Output

	standard
 input, Programs Are Designed to Work Together, Compressing Files to Save Space, Including Standard Input Within a cron Entry, Command Evaluation and Accidentally Overwriting Files, Standard Input to a for Loop, Overview: Open Files and File Descriptors, A Shell Can Read a Script from Its Standard Input, but..., A Shell Can Read a Script from Its Standard Input, but..., Shell Scripts On-the-Fly from Standard Input, Shell Scripts On-the-Fly from Standard Input, I/O and Formatting, Using Standard Input and Output–Using Standard Input and Output, Combining Several Commands, Send Output Two or More Places
		compressing/uncompressing files
 from, Compressing Files to Save Space
	to a for loop, Standard Input to a for Loop
	including directly on cron command
 line, Including Standard Input Within a cron Entry
	reading scripts from, Shell Scripts On-the-Fly from Standard Input
	redirecting, Using Standard Input and Output–Using Standard Input and Output, Combining Several Commands, Send Output Two or More Places
		()
 subshell operators, using, Combining Several Commands
	tee program,
 using, Send Output Two or More Places

	shell
 handling of, Command Evaluation and Accidentally Overwriting Files
	shells reading scripts
 from, A Shell Can Read a Script from Its Standard Input, but..., A Shell Can Read a Script from Its Standard Input, but..., Shell Scripts On-the-Fly from Standard Input
	sys.stdin file object
 (Python), I/O and Formatting

	standard
 output, Programs Are Designed to Work Together, Interactive Shells, Setting the Terminal Type When You Log In, Compressing Files to Save Space, Command Evaluation and Accidentally Overwriting Files, Is It “2>&1 file” or “> file 2>&1”? Why?, Overview: Open Files and File Descriptors, n>&m: Swap Standard Output and Standard Error, Use -xv, Use -xv, RCS Basics, I/O and Formatting, Using Standard Input and Output–Using Standard Input and Output, Problems Piping to a Pager, Problems Piping to a Pager, Redirection in C Shell: Capture Errors, Too?, Combining Several Commands, Redirecting Output to More Than One Place, What Can You Do with an Empty File?
		combining with stderr and piping to
 pagers, Problems Piping to a Pager
	compressing/uncompressing files
 from, Compressing Files to Save Space
	for interactive and noninteractive shells, Interactive Shells
	normal and debugging, splitting into two
 files, Use -xv
	printing
 terminal type output for tset command, Setting the Terminal Type When You Log In
	RCS file, sending to, RCS Basics
	redirecting, Is It “2>&1 file” or “> file 2>&1”? Why?, n>&m: Swap Standard Output and Standard Error, Using Standard Input and Output–Using Standard Input and Output, Problems Piping to a Pager, Redirection in C Shell: Capture Errors, Too?, Combining Several Commands, Redirecting Output to More Than One Place, What Can You Do with an Empty File?
		()
 subshell operators, using, Combining Several Commands
	Bourne-type
 shells, Is It “2>&1 file” or “> file 2>&1”? Why?
	in C
 shell, Redirection in C Shell: Capture Errors, Too?
	piping to
 pager program, Problems Piping to a Pager
	to
 /dev/null file, What Can You Do with an Empty File?
	to multiple
 processes, Redirecting Output to More Than One Place

	shell
 debugging, piping to pager, Use -xv
	shell handling
 of, Command Evaluation and Accidentally Overwriting Files
	sys.stdout file object
 (Python), I/O and Formatting

	starting anchor (^) in
 regular expressions, Regular Expressions: The Anchor Characters ^ and $
	startup command for
 vi and ex editors, Local Settings for vi
	startup files for shells, changing path
 in, Controlling Shell Command Searches
	statements in
 Python lambdas, Functions
	static IP addresses, Internet Protocol (IP)
	static
 prompts, Static Prompts
	statistics, Kernel and System Statistics, Statistics of the Current Process, Statistics of Processes by PID
		current
 process, Statistics of the Current Process
	kernel and system
 (/proc/stat file), Kernel and System Statistics
	processes by
 PID, Statistics of Processes by PID

	status, Alphabetical Summary of Commands, Setting Current Shell Environment: The work Function, Exit Status of Unix Processes
		command execution,
 in nawk, Alphabetical Summary of Commands
	exit status of Unix
 processes, Exit Status of Unix Processes
	returning to calling
 shell, Setting Current Shell Environment: The work Function

	status command
 (lpc), Printer Control with lpc
	status file, information on current
 process, Statistics of Processes by PID
	status lines, session
 info in, Session Info in Window Title or Status Line
	stderr, Overview: Open Files and File Descriptors (see standard
 error)
	stdin, Overview: Open Files and File Descriptors (see standard
 input)
	stdout, Overview: Open Files and File Descriptors (see standard
 output)
	stem-derivative rules for spelling
 words, Inside spell
	sticky
 bit, Protecting Files with the Sticky Bit
	stop
 command, Job Control in a Nutshell, System Overloaded? Try Stopping Some Jobs
	stop list, spelling, Inside spell
	STOP
 signal, What Are Signals?, Processes Out of Control? Just STOP Them
		stopping out of control
 processes, Processes Out of Control? Just STOP Them

	stopped
 jobs, Job Control in a Nutshell, Job Control in a Nutshell, Job Control in a Nutshell, Using jobs Effectively, The “Current Job” Isn’t Always What You Expect
		continuing in
 background, Job Control in a Nutshell
	current job and, The “Current Job” Isn’t Always What You Expect
	listing with their job
 numbers, Job Control in a Nutshell
	putting into
 foreground, Job Control in a Nutshell
	termination vs., Using jobs Effectively

	stopping, System Overloaded? Try Stopping Some Jobs, Stopping Remote Login Sessions
		jobs, System Overloaded? Try Stopping Some Jobs
	remote login
 sessions, Stopping Remote Login Sessions

	stream
 editor, Two Things You Must Know About sed (see sed editor)
	string concatenation (.)
 operator, Scalars
	string
 operators, Faster Prompt Setting with Built-ins
	strings, Searching for Text with grep, Alphabetical Summary of Commands, Build Strings with { }, String Editing (Colon) Operators, Understanding Expressions, Understanding Expressions, test: Testing Files and Strings, Using Shell Functions in Shell Scripts, Testing Characters in a String with expr, Grabbing Parts of a String, Matching with expr, Using echo with awk or cut, Using set and IFS, Using sed, Testing Two Strings with One case Statement, Stop Syntax Errors in String Tests, Perl Boot Camp, Part 2: Variables and Data Types, Scalars, I/O and Formatting
		building with {
 }, Build Strings with { }
	comparing for
 pattern matching, Understanding Expressions
	editing with \: (colon)
 operators, String Editing (Colon) Operators
	grabbing parts
 of, Grabbing Parts of a String, Matching with expr, Using echo with awk or cut, Using set and IFS, Using sed
		echo, using with awk or
 cut, Using echo with awk or cut
	matching with expr, Matching with expr
	parsing using sed
 editor, Using sed
	parsing with set and
 IFS, Using set and IFS

	matching a regular expression,
 finding with grep, Searching for Text with grep
	Perl, Perl Boot Camp, Part 2: Variables and Data Types, Scalars
		operators
 for, Scalars

	Python, I/O and Formatting
	substr command,
 awk, Alphabetical Summary of Commands
	testing, test: Testing Files and Strings, Using Shell Functions in Shell Scripts, Testing Characters in a String with expr, Testing Two Strings with One case Statement, Stop Syntax Errors in String Tests
		case
 statement, using, Testing Two Strings with One case Statement
	characters
 with expr, Testing Characters in a String with expr
	errors
 in syntax, Stop Syntax Errors in String Tests
	for zero length, Using Shell Functions in Shell Scripts

	strings utility, Show Nonprinting Characters with cat -v or od -c, Finding Words Inside Binary Files
	strip
 command, Save Space in Executable Files with strip
	stripper
 script, Save Space in Executable Files with strip
	stty
 command, Terminal Setup: Testing Window Size, Setting the Terminal Type When You Log In, Find Out Terminal Settings with stty, Setting Your Erase, Kill, and Interrupt Characters, Setting Your Erase, Kill, and Interrupt Characters, Job Control in a Nutshell, Stop Background Output with stty tostop, Using set and IFS
		-g option, Using set and IFS
		parsing
 output using set and IFS, Using set and IFS

	control keys,
 setting, Setting Your Erase, Kill, and Interrupt Characters
	data rate for dialup
 terminals, Setting the Terminal Type When You Log In
	erase, kill, and interrupt
 characters, Setting Your Erase, Kill, and Interrupt Characters
	finding out terminal settings
 with, Find Out Terminal Settings with stty
	stty tostop
 command, Job Control in a Nutshell, Stop Background Output with stty tostop

	su
 command, Tip for Changing Account Setup: Keep a Shell Ready, Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs When I Log In, Subshells, Substitute Identity with su
		account changes,
 testing, Tip for Changing Account Setup: Keep a Shell Ready
	starting a
 subshell, Subshells
	su f
 stucklogin, Checklist: Terminal Hangs When I Log In
	su
 stucklogin, Checklist: Terminal Hangs When I Log In
	substituting identify
 with, Substitute Identity with su

	sub command (awk), Alphabetical Summary of Commands
	subdirectories, List All Subdirectories with ls -R, Delving Through a Deep Directory Tree, /usr/bin and Other Software Directories
		listing with ls
 -R, List All Subdirectories with ls -R
	root, in FHS
 standard, /usr/bin and Other Software Directories
	searching for in
 directories with find command, Delving Through a Deep Directory Tree

	subprocesses, Managing Processes: Overall Concepts, Killing Processes by Name?, Introduction to Shell Aliases, Overview: Open Files and File Descriptors
		aliases
 and, Introduction to Shell Aliases
	file descriptors
 given to, Overview: Open Files and File Descriptors
	killing parent processes by
 name, Killing Processes by Name?

	subroutines, Reading Files with the . and source Commands, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy
		dot (.) command compared
 to, Reading Files with the . and source Commands
	in
 Perl, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 1: Typical Script Anatomy
		user defined, Perl Boot Camp, Part 1: Typical Script Anatomy

	subshells, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Login Shells, Gotchas in set prompt Test, Session Info in Window Title or Status Line, Show Subshell Level with $SHLVL, Subshells, Watch Your Quoting, Shell Lockfile, The () Subshell Operators, How to tee Several Commands into One Place
		()
 operators, Shell Setup Files — Which, Where, and Why, The () Subshell Operators, How to tee Several Commands into One Place
	CSHRC_READ environment
 variable, setting for, Gotchas in set prompt Test
	environment
 variables, inheritance of, Shell Setup Files — Which, Where, and Why
	levels, showing in
 prompt, Show Subshell Level with $SHLVL
	setting command-line
 arguments, Watch Your Quoting
	startup
 files, Login Shells
	status line
 updates, Session Info in Window Title or Status Line
	umask command, running
 in, Shell Lockfile

	substitution commands, Useful ex
 Commands, Alphabetical Summary of Commands, Alphabetical Summary of Commands, History Substitutions, Two Things You Must Know About sed, Delimiting a Regular Expression, Newlines in a sed Replacement, Referencing Portions of a Search String, Search and Replacement: One Match Among Many, Cleaning script Files
		delimiting search
 pattern from replacement string, Delimiting a Regular Expression
	ex
 editor, Useful ex
 Commands
	gsub
 command in nawk, Alphabetical Summary of Commands
	history substitution, using
 in, History Substitutions
	sed
 editor, Two Things You Must Know About sed, Newlines in a sed Replacement, Referencing Portions of a Search String, Search and Replacement: One Match Among Many, Cleaning script Files
		-g (global)
 flag, Two Things You Must Know About sed
	newlines in
 a replacement, Newlines in a sed Replacement
	referencing
 portions of a search string in the
 replacement, Referencing Portions of a Search String
	script.tidy
 using in, Cleaning script Files
	specifying one match among many
 possibilities, Search and Replacement: One Match Among Many

	sub
 command, nawk, Alphabetical Summary of Commands

	substitutions,
 confirming in vi editor, Confirming Substitutions in vi
	substr command
 (awk), Alphabetical Summary of Commands
	success or failure of commands, indication in
 exit status, Exit Status of Unix Processes
	sudo
 application, Providing Superpowers with sudo
	SUID
 scripts, Care and Feeding of SUID and SGID Scripts
	SunOS, Using Standard Input and Output, Which Group is Which?
		groups, Which Group is Which?
	redirecting standard
 I/O, Using Standard Input and Output

	superuser, Dynamic Prompts, Highlighting and Color in Shell Prompts, Private (Personal) Directories, Destroying Processes with kill, Controlling Shell Command Searches, When Does a User Become a User, Providing Superpowers with sudo, Who Will Own a New File?
		configuring, paths set by
 parent process and, Controlling Shell Command Searches
	file ownership,
 changing, Who Will Own a New File?
	killing others’
 processes, Destroying Processes with kill
	private
 directories, access to, Private (Personal) Directories
	shell prompt
 for, Highlighting and Color in Shell Prompts
	sudo
 application, Providing Superpowers with sudo
	tcsh and zsh shell
 prompts, Dynamic Prompts
	UID and GID of
 zero, When Does a User Become a User

	susp
 key, Setting Your Erase, Kill, and Interrupt Characters
	suspend
 command, Job Control in a Nutshell, Subshells
	suspending, Job Control in a Nutshell, Job Control in a Nutshell, Using Job Control from Your Shell
		background jobs
 with stop command, Job Control in a Nutshell
	current foreground
 job with CTRL-z command, Job Control in a Nutshell, Using Job Control from Your Shell

	swap space,
 checking for security breaches, Checking Swap Space
	swapinfo
 utility, Checking Swap Space
	swat tool, Installing and Configuring Samba, SWAT and GUI SMB Browsers, Printing with Samba
		configuring smb.conf file
 installation, Installing and Configuring Samba
	printers, selecting for
 sharing, Printing with Samba

	symbolic links, Useful ls Aliases, oldlinks: Find Unconnected Symbolic Links, Running Commands on What You Find, Searching for Files by Type, More About Links, Differences Between Hard and Symbolic Links, Differences Between Hard and Symbolic Links, Creating and Removing Links, Stale Symbolic Links, Linking Directories, Showing the Actual Filenames for Symbolic Links, Copying Directory Trees with cp -r, Save Space with “Bit Bucket” Log Files and Mailboxes, Save Space with a Link, Save Space with a Link, Automatic Setup When You Enter/Exit a Directory, Using Symbolic Links for Spooling
		copying, Copying Directory Trees with cp -r
	directories, linking, Linking Directories
	disk space and, Save Space with a Link
	filenames for, showing, Showing the Actual Filenames for Symbolic Links
	files
 as, Useful ls Aliases
	finding
 for every directory owned by a group, Running Commands on What You Find
	finding unconnected, oldlinks: Find Unconnected Symbolic Links
	finding with find -type
 command, Searching for Files by Type
	hard links vs., Differences Between Hard and Symbolic Links
	saving disk space
 wiwth, Save Space with a Link
	spooling, using
 for, Using Symbolic Links for Spooling
	stale, Creating and Removing Links, Stale Symbolic Links
	syntax of, Differences Between Hard and Symbolic Links
	to .enter and .exit
 files, Automatic Setup When You Enter/Exit a Directory
	to
 /dev/null, Save Space with “Bit Bucket” Log Files and Mailboxes
		replacing log files
 with, Save Space with “Bit Bucket” Log Files and Mailboxes

	symbolic mode
 (chmod), Using chmod to Change File Permission
	symbols, Defining Keys and Button Presses with xmodmap, With the “$@” Parameter, With the “$@” Parameter
		(see also special characters; Symbols
 section)
	in
 filenames and pathnames, With the “$@” Parameter
	for
 keys on the keyboard (keysyms), Defining Keys and Button Presses with xmodmap

	symlinks, More About Links (see symbolic
 links)
	sync
 program, The Kernel and Daemons
	synchronizing, Change Many Files by Editing Just One, How Unix Keeps Time
		filesystems (rsync
 program), Change Many Files by Editing Just One
	time on
 networks, How Unix Keeps Time

	syntax-checking program, Looking for Closure
	sys.stderr file
 object (Python), I/O and Formatting
	sys.stdin file
 object (Python), I/O and Formatting
	sys.stdout file
 object (Python), I/O and Formatting
	system, Which Shell Am I Running?, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Some Gotchas with Job Control, System Overloaded? Try Stopping Some Jobs, Kernel and System Statistics, Periodic Program Execution: The cron Facility, Timing Is Everything–Changing a Running Job’s Niceness, Timing Programs, Checking System Load: uptime, Understanding Points of Vulnerability
		cron jobs, running
 on, Periodic Program Execution: The cron Facility
	environment variables
 for shells, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why
		C
 shells, Shell Setup Files — Which, Where, and Why

	load, checking with
 uptime, Checking System Load: uptime
	overloaded with background
 processes, Some Gotchas with Job Control, System Overloaded? Try Stopping Some Jobs
	password file
 contents, Which Shell Am I Running?
	performance and
 profiling, Timing Is Everything–Changing a Running Job’s Niceness
	security
 vulnerabilities, Understanding Points of Vulnerability
	statistics on (/proc/stat
 file), Kernel and System Statistics
	time, Timing Programs

	system calls, Communication with Unix, Using unlink to Remove a File with a Strange Name, limit and ulimit, fork and exec, How the Shell Executes Other Commands
		exec and fork, fork and exec
	fork and exec, How the Shell Executes Other Commands
	limit
 and ulimit (limiting file sizes), limit and ulimit
	unlink(), in Perl, Using unlink to Remove a File with a Strange Name

	system command (nawk), Alphabetical Summary of Commands
	system function, Perl Boot Camp, Part 5: Perl Knows Unix
	System
 V, The man Command, Starting a Remote Client with rsh and ssh, Showing Nonprintable Characters in Filenames, Find a a Doubled Word, Just the Words, Please, Hacking on Characters with tr, The ps Command, System V, BSD, What Are Signals?, Destroying Processes with kill, Know When to Be “nice” to Other Users...and When Not To, System V C Shell nice, How Many Backslashes?, lp-Style Printing Commands, Groups and Group Ownership, Which Group is Which?
		<defunct>
 status, Destroying Processes with kill
	command version,
 getting, The man Command
	echo command,
 shell quoting and, How Many Backslashes?
	groups, Groups and Group Ownership
	groups (Release
 4), Which Group is Which?
	ls command, nonprinting characters
 and, Showing Nonprintable Characters in Filenames
	nice command, System V C Shell nice
	printing commands, lp-Style Printing Commands
	priority system
 (Release 4), Know When to Be “nice” to Other Users...and When Not To
	ps command, The ps Command, System V, BSD
		-a
 option, System V
	-e
 option, BSD
	-ef
 options, The ps Command

	signals, What Are Signals?
	systems derived from,
 rsh on, Starting a Remote Client with rsh and ssh
	tr
 command, Find a a Doubled Word, Just the Words, Please, Hacking on Characters with tr
		-cs
 options, Just the Words, Please
	character ranges
 in, Hacking on Characters with tr
	piping ww function output
 to, Find a a Doubled Word

	system variables
 (awk), awk System Variables
	system
 word file, How Do I Spell That Word?
	system-level key mappings, Defining Keys and Button Presses with xmodmap

 T
	t (test) command, sed
 editor, The sed Test Command
	T-shell, There Are Many Shells (see tcsh shell)
	table of contents,
 tar files, Using tar to Create and Unpack Archives, Using tar to Create and Unpack Archives
	tables, Alternatives to fmt, Make Columns Automatically with column
		column -t
 command, Make Columns Automatically with column
	creating with nroff and
 sed, Alternatives to fmt

	tabs, Can’t Access a File? Look for Spaces in the Name, Problems with diff and Tabstops, Show Nonprinting Characters with cat -v or od -c, Keymaps for Pasting into a Window Running vi, Special Characters, Here Documents, Don’t Match Useless Files in Filename Completion
		as argument
 separators, Special Characters
	filenames ending
 in, Can’t Access a File? Look for Spaces in the Name
	TAB
 characters, Problems with diff and Tabstops, Show Nonprinting Characters with cat -v or od -c, Keymaps for Pasting into a Window Running vi, Here Documents
		added by diff
 command, Problems with diff and Tabstops
	displaying with cat -t and -e
 options, Show Nonprinting Characters with cat -v or od -c
	stripping in Bourne
 shell, Here Documents
	window systems running
 vi, Keymaps for Pasting into a Window Running vi

	TAB key, file completion
 and, Don’t Match Useless Files in Filename Completion

	tail command, How to Look at the End of a File: tail, Finer Control on tail, Finer Control on tail, Finer Control on tail, Finer Control on tail, How to Look at Files as They Grow, GNU tail File Following, GNU tail File Following, Rotating Text, Statistics of Processes by PID, Use -xv, Redirection in C Shell: Capture Errors, Too?
		-f option, How to Look at Files as They Grow, Statistics of Processes by PID, Use -xv, Redirection in C Shell: Capture Errors, Too?
		log file,
 monitoring with, Use -xv
	monitoring
 file growth, How to Look at Files as They Grow

	-l (lines) option, Finer Control on tail
	-n option, Finer Control on tail
	-r (reverse) option, Finer Control on tail, Rotating Text
		comparison with rot
 command, Rotating Text

	c option (count characters) or b option
 (count blocks), Finer Control on tail
	GNU version, GNU tail File Following, GNU tail File Following
		follow
 option, GNU tail File Following
	follow=name
 and retry options, GNU tail File Following

	tail of a path name, dirs in Your Prompt: Better Than $cwd, String Editing (Colon) Operators
		dirs output for C
 shell prompt, dirs in Your Prompt: Better Than $cwd
	\:t
 operator, String Editing (Colon) Operators

	talk
 utility, Unix Networking and Communications, What tty Am I On?
	tape, backups
 to, Backing Up to Tape, Restoring Files from Tape with tar, Remote Restoring, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive, The cpio Tape Archiver
		cpio program, The cpio Tape Archiver
	remote tape drives, Using tar to a Remote Tape Drive, Using GNU tar with a Remote Tape Drive
		using GNU
 tar, Using GNU tar with a Remote Tape Drive
	using
 tar, Using tar to a Remote Tape Drive

	restoring files with tar, Restoring Files from Tape with tar, Remote Restoring
		remote
 restoring, Remote Restoring

	tar
 utility, Filename Extensions, Copying Directory Trees with tar and Pipes, Copying Directory Trees with tar and Pipes, Copying Directory Trees with tar and Pipes, Deleting Stale Files, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, uuencoding, My Favorite Is !$, Who Handles Wildcards?, tar in a Nutshell, More Ways to Back Up, More Ways to Back Up, More Ways to Back Up, Backing Up to Tape, To gzip, or Not to gzip?, Restoring Files from Tape with tar, Restoring a Few Files, Restoring a Few Files, Remote Restoring, Using tar to a Remote Tape Drive, Using Wildcards with tar, With GNU tar–Wildcard Gotchas in GNU tar, Avoid Absolute Paths with tar, Getting tar’s Arguments in the Right Order, Packing Up and Moving, Using tar to Create and Unpack Archives–Using tar to Create and Unpack Archives, Using tar to Create and Unpack Archives, GNU tar Sampler, Using Standard Input and Output
		absolute pathnames,
 avoiding, Avoid Absolute Paths with tar
	backing
 up to tape, Backing Up to Tape
	compression, arguments for and
 against, To gzip, or Not to gzip?
	copying directory
 trees, Copying Directory Trees with tar and Pipes
	disk space optimization
 and, Save Space: tar and compress a Directory Tree
	encoding
 tarfiles into 7-bit, uuencoding
	filename extensions, Filename Extensions
	filename wildcards
 and, Who Handles Wildcards?
	functions, Using tar to Create and Unpack Archives
	GNU tar
 command, Deleting Stale Files, GNU tar Sampler
		-c and -T
 options, Deleting Stale Files
	features of, GNU tar Sampler

	making backups, tar in a Nutshell
	online archives,
 creating, Packing Up and Moving
	remote tape drive, using for
 backups, Using tar to a Remote Tape Drive
	restoring files from
 tape, Restoring Files from Tape with tar, Restoring a Few Files, Remote Restoring
		remote restoring, Remote Restoring
	restoring a few
 files, Restoring a Few Files

	tar command, Copying Directory Trees with tar and Pipes, Copying Directory Trees with tar and Pipes, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, Save Space: tar and compress a Directory Tree, More Ways to Back Up, More Ways to Back Up, More Ways to Back Up, Restoring a Few Files, Getting tar’s Arguments in the Right Order, Using tar to Create and Unpack Archives–Using tar to Create and Unpack Archives
		-c (create)
 option, More Ways to Back Up
	-f (file)
 option, More Ways to Back Up
	-I option
 to run bzip2, Save Space: tar and compress a Directory Tree
	-l option
 (for links), Save Space: tar and compress a Directory Tree
	-t
 option, Restoring a Few Files
	-t or -tv
 options, listing files in archive, Save Space: tar and compress a Directory Tree
	-v
 (verbose) option, Copying Directory Trees with tar and Pipes, More Ways to Back Up
	-z option
 to run gzip, Save Space: tar and compress a Directory Tree
	C
 option, Copying Directory Trees with tar and Pipes
	command-line arguments, order
 of, Getting tar’s Arguments in the Right Order
	extracting
 all files from archive, Save Space: tar and compress a Directory Tree
	extracting
 some files from archive, Save Space: tar and compress a Directory Tree
	options, Using tar to Create and Unpack Archives–Using tar to Create and Unpack Archives

	unpacking
 archives, My Favorite Is !$, Using Standard Input and Output
	wildcards,
 using, Using Wildcards with tar, With GNU tar–Wildcard Gotchas in GNU tar
		with GNU tar, With GNU tar–Wildcard Gotchas in GNU tar

	Tcl, Expect
	tclsh
 shell, There Are Many Shells
	TCP, TCP/IP — IP Addresses and Ports, TCP Wrappers
		wrapper
 programs, TCP Wrappers

	TCP/IP, Internet Protocol (IP), Layer 4 Protocols: TCP, UDP, and ICMP, Installing and Configuring Samba
		IP addresses and
 ports, Internet Protocol (IP)
		addresses, Internet Protocol (IP)

	SMB traffic, mapping
 onto, Installing and Configuring Samba
	TCP, UDP, and
 ICMP, Layer 4 Protocols: TCP, UDP, and ICMP

	tcpd
 daemon, TCP Wrappers
	tcpdump program, Where, Oh Where Did That Packet Go?
	tcp_wrappers
 package, The Director of Operations: inetd
	tcsh
 shell, There Are Many Shells, Which Shell Am I Running?, Shell Setup Files — Which, Where, and Why, Login Shells, Terminal Setup: Setting and Testing Window Name, Static Prompts, Session Info in Window Title or Status Line, Session Info in Window Title or Status Line, Highlighting and Color in Shell Prompts, Right-Side Prompts, Preprompt, Pre-execution, and Periodic Commands, Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs When I Log In, Color ls, Configuring It, Useful ls Aliases, Renaming, Copying, or Comparing a Set of Files, Tricks for Making rm Safer, limit and ulimit, System Overloaded? Try Stopping Some Jobs, Managing Processes: Overall Concepts, What the Shell Does, Types of Shells, “Special” Characters and Operators, Build Strings with { }, Automatic Completion, Command-Specific Completion, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments, The Lessons of History, C Shells, Pass History to Another Shell, Pass History to Another Shell, Pass History to Another Shell, tcsh Editing–zsh Editing, What if a Wildcard Doesn’t Match?, What Environment Variables Are Good For, Exit Status of Unix Processes, Exit Status of Unix Processes
		(see also C shell)
	> in the prompt, Which Shell Am I Running?
	aliases, Introduction to Shell Aliases, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments
		with command-line
 arguments, C-Shell Aliases with Command-Line Arguments–C-Shell Aliases with Command-Line Arguments

	command history, The Lessons of History
	command-line
 editing, tcsh Editing–zsh Editing
	completion features, Automatic Completion, Command-Specific Completion
		command-specific, Command-Specific Completion

	configuration
 files, Shell Setup Files — Which, Where, and Why
	current directory, updating in status
 line, Session Info in Window Title or Status Line
	cwdcmd alias for status line
 updates, Session Info in Window Title or Status Line
	exit status of previous
 command, Exit Status of Unix Processes
	highlighting
 in, Highlighting and Color in Shell Prompts
	history, Pass History to Another Shell (see history of
 commands)
	history file, C Shells, Pass History to Another Shell
		timestamp-comments in, Pass History to Another Shell

	limiting file
 size, limit and ulimit
	loginsh variable, Login Shells
	ls -F built-in command, Color ls, Configuring It, Useful ls Aliases
		LS_COLORS environment
 variable, Configuring It

	pre-prompt commands, Preprompt, Pre-execution, and Periodic Commands
	printexitvalue shell
 variable, Exit Status of Unix Processes
	prompt, setting, Static Prompts
	quotation marks around
 filenames, Renaming, Copying, or Comparing a Set of Files
	right-side prompts, Right-Side Prompts
	rmstar variable, confirming file
 deletions, Tricks for Making rm Safer
	set echo verbose
 command, Checklist: Terminal Hangs When I Log In
	special
 characters/operators, “Special” Characters and Operators
	stop command, System Overloaded? Try Stopping Some Jobs
	su f stucklogin
 command, Checklist: Terminal Hangs When I Log In, Checklist: Terminal Hangs When I Log In
	wildcards, What if a Wildcard Doesn’t Match?, What Environment Variables Are Good For
	window name, setting and
 testing, Terminal Setup: Setting and Testing Window Name
	{ } (pattern-expansion characters), building
 strings with, Build Strings with { }

	tee
 program, Send Output Two or More Places, How to tee Several Commands into One Place, Redirecting Output to More Than One Place
		collecting
 output of several commands into one file, How to tee Several Commands into One Place
	process substitution, using
 with, Redirecting Output to More Than One Place

	Tek Options menu
 (xterm), The xterm Menus
	teletype, Communication with Unix
	telnet
 utility, Unix Networking and Communications, Tip for Changing Account Setup: Keep a Shell Ready, Stalled Data Connection?, Stopping Remote Login Sessions, Enabling Remote Access on Mac OS X
		enabling on Mac OS X, Enabling Remote Access on Mac OS X
	logging in to host again from same
 terminal, Tip for Changing Account Setup: Keep a Shell Ready
	stalled connection
 with, Stalled Data Connection?
	suspending jobs, Stopping Remote Login Sessions

	temporary
 files, Picking a Unique Filename
 Automatically, Out of Temporary Space? Use Another Directory, Handling Lots of Text with Temporary Files, History by Number, Finding (Anyone’s) Home Directory, Quickly, Trapping Exits Caused by Interrupts, Use -xv, Checking Swap Space
		filenames ending with
 ~, Finding (Anyone’s) Home Directory, Quickly
	handling text with, Handling Lots of Text with Temporary Files
	history numbers, using to locate and
 remove, History by Number
	redirecting output
 to, Use -xv
	swap space on hard
 disk, Checking Swap Space
	traps, using to clean
 up, Trapping Exits Caused by Interrupts
	unique filename generation
 for, Picking a Unique Filename
 Automatically
	vi editor, running out of space
 for, Out of Temporary Space? Use Another Directory

	TERM (terminate) signal, Using jobs Effectively, nohup, What Are Signals?, Destroying Processes with kill, Printer Queue Watcher: A Restartable Daemon Shell Script, killall -i
		ignoring with nohup
 command, nohup
	kill command, using
 with, Destroying Processes with kill
	killall command, sending
 with, killall -i

	TERM
 environment variable, Automatic Setups for Different Terminals, The Idea of a Terminal Database, Setting the Terminal Type When You Log In, Predefined Environment Variables, Test String Values with Bourne-Shell case
		setting with tset
 command, Setting the Terminal Type When You Log In
	testing with case
 statement, Test String Values with Bourne-Shell case

	termcap
 database, Highlighting and Color in Shell Prompts, The Idea of a Terminal Database
	termcap entries, Command Mode Maps
	TERMCAP environment
 variable, Setting the Terminal Type When You Log In, Querying Your xterm Size: resize, Predefined Environment Variables
		resetting with resize
 command, Querying Your xterm Size: resize

	terminal
 driver, eating backslashes before special
 characters, How Many Backslashes?
	terminal emulators, The X Window System, The X Window System, The Idea of a Terminal Database, Setting Your Erase, Kill, and Interrupt Characters
		(see also xterm)
	terminal settings
 and, Setting Your Erase, Kill, and Interrupt Characters

	Terminal program (Mac
 OS X), Highlighting and Color in Shell Prompts, Running Commands When You Log Out
		color capabilities, Highlighting and Color in Shell Prompts
	command-k to delete
 scrollback buffer, Running Commands When You Log Out

	terminal
 type, What Goes in Shell Setup Files?
		setting in shell setup
 files, What Goes in Shell Setup Files?

	terminals, The Kernel and Daemons, What tty Am I On?, Who’s
 On?, The Mac OS X Terminal Application, Shell Setup Files — Which, Where, and Why, Automatic Setups for Different Terminals, Terminal Setup: Testing Remote Hostname and X Display, Terminal Setup: Testing Port, Terminal Setup: Testing Environment Variables, Terminal Setup: Searching Terminal Table, Terminal Setup: Testing Window Size, Terminal Setup: Setting and Testing Window Name, A .cshrc.$HOST File for Per Host Setup, Session Info in Window Title or Status Line, Session Info in Window Title or Status Line, Highlighting and Color in Shell Prompts, Show Subshell Level with $SHLVL, There’s a Lot to Know About Terminals–Don’t Quote Arguments to
 xterm -e, The Idea of a Terminal Database, The Idea of a Terminal Database, The Idea of a Terminal Database, The Idea of a Terminal Database, Setting the Terminal Type When You Log In, Querying Your Terminal Type: qterm, Querying Your xterm Size: resize, Checklist: Terminal Hangs When I Log In–Aborting Programs, Find Out Terminal Settings with stty, Setting Your Erase, Kill, and Interrupt Characters, Working with xterm and Friends, Linux Virtual Consoles, Managing Processes: Overall Concepts, The Controlling Terminal, Cleaning Up an Unkillable Process, Terminal Windows Without Shells, What Environment Variables Are Good For, Predefined Environment Variables, Overview: Open Files and File Descriptors, Outputting Text to an X Window, Using Standard Input and Output, Citrix: Making Windows Multiuser–Hob
		/dev/tty
 file, Overview: Open Files and File Descriptors
	automatic
 setup, Terminal Setup: Testing Remote Hostname and X Display, Terminal Setup: Testing Port, Terminal Setup: Testing Environment Variables, Terminal Setup: Searching Terminal Table, Terminal Setup: Testing Window Size, Terminal Setup: Setting and Testing Window Name
		environment variables,
 testing, Terminal Setup: Testing Environment Variables
	terminal table,
 searching, Terminal Setup: Searching Terminal Table
	testing port (tty)
 numbers, Terminal Setup: Testing Port
	testing remote hostname and X
 display, Terminal Setup: Testing Remote Hostname and X Display
	testing window size, Terminal Setup: Testing Window Size
	window name, setting and
 testing, Terminal Setup: Setting and Testing Window Name

	automatic
 setups, Automatic Setups for Different Terminals
	capabilities
 of, The Idea of a Terminal Database (see termcap database)
	configuring, There’s a Lot to Know About Terminals–Don’t Quote Arguments to
 xterm -e, Setting the Terminal Type When You Log In, Querying Your Terminal Type: qterm, Querying Your xterm Size: resize, Checklist: Terminal Hangs When I Log In–Aborting Programs, Find Out Terminal Settings with stty, Setting Your Erase, Kill, and Interrupt Characters, Working with xterm and Friends
		erase,
 kill, and interrupt characters, Setting Your Erase, Kill, and Interrupt Characters
	finding
 terminal settings with stty command, Find Out Terminal Settings with stty
	querying
 terminal type with qterm, Querying Your Terminal Type: qterm
	size
 of xterm windows, Querying Your xterm Size: resize
	terminal
 hangs at login, fixing, Checklist: Terminal Hangs When I Log In–Aborting Programs
	terminal
 type, setting, Setting the Terminal Type When You Log In
	xterm, Working with xterm and Friends

	controlling
 terminal, The Controlling Terminal
	escape sequences for nonprinting
 characters, Highlighting and Color in Shell Prompts
	Gnome, The Kernel and Daemons
	Linux virtual
 consoles, Show Subshell Level with $SHLVL, Linux Virtual Consoles
	login and nonlogin
 shells, Shell Setup Files — Which, Where, and Why
	Mac OS
 X, The Mac OS X Terminal Application
	outputting text
 from command line into, Outputting Text to an X Window
	reading
 from, process groups and, Managing Processes: Overall Concepts
	reading/writing
 from, Using Standard Input and Output
	screen editors
 vs., The Idea of a Terminal Database
	settings in
 .cshrc.$HOST file, A .cshrc.$HOST File for Per Host Setup
	status
 line, Session Info in Window Title or Status Line
	status line, current directory
 information, Session Info in Window Title or Status Line
	TERM
 environment varialbe, What Environment Variables Are Good For
	termcap
 database, The Idea of a Terminal Database
	TERMCAP environment
 variable, Predefined Environment Variables
	terminfo
 database, The Idea of a Terminal Database
	tty number for current
 users, Who’s
 On?
	tty
 types, What tty Am I On?
	unkillable
 processes, Cleaning Up an Unkillable Process
	windows without
 shells, Terminal Windows Without Shells
	WTS, connecting to with
 Citrix, Citrix: Making Windows Multiuser–Hob

	terminating, Using jobs Effectively, What Are Signals?, Loop Control: break and continue
		loops, Loop Control: break and continue
	processes, What Are Signals?
		signals
 for, What Are Signals?

	processes, stopping
 vs., Using jobs Effectively

	terminating
 lines, Anyone Can Program the Shell (see newlines)
	terminfo
 database, Highlighting and Color in Shell Prompts, The Idea of a Terminal Database, Querying Your xterm Size: resize
		resizing
 windows, Querying Your xterm Size: resize

	terminfo
 entries, Command Mode Maps
	test (t) command, sed
 editor, The sed Test Command
	test
 command, Handling Arguments with while and shift, test: Testing Files and Strings, test: Testing Files and Strings, Testing Two Strings with One case Statement, Stop Syntax Errors in Numeric Tests, Stop Syntax Errors in String Tests, Cleaning script Files
		-a and -o (and and or)
 operators, Testing Two Strings with One case Statement
	numeric
 tests, errors in, Stop Syntax Errors in Numeric Tests
	sed editor, Cleaning script Files
		script.tidy
 using in, Cleaning script Files

	string tests, syntax
 errors, Stop Syntax Errors in String Tests
	versions of, test: Testing Files and Strings
	in while
 loops, Handling Arguments with while and shift

	testing, Setting the Terminal Type When You Log In, Using
 -exec to Create Custom Tests, Testing: A Story, Test Exit Status with the if Statement–Test Exit Status with the if Statement, Testing Characters in a String with expr, Testing Two Strings with One case Statement
		character strings using
 expr, Testing Characters in a String with expr
	exit status with if
 statement, Test Exit Status with the if Statement–Test Exit Status with the if Statement
	find command
 results, Using
 -exec to Create Custom Tests
	interactive programs with
 Expect, Testing: A Story
	strings with case
 statement, Testing Two Strings with One case Statement
	terminal type with tset
 command, Setting the Terminal Type When You Log In

	TEX, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
		CTAN, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	typesetting
 with, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On

	text, Setting the Titlebar and Icon Text, Working with xclipboard–Working with xclipboard, Problems with Large Selections, Tips for Copy and Paste Between Windows–Tips for Copy and Paste Between Windows, A Highlighting grep, Looking for Closure, The vi Editor: Why So Much Material?, Keymaps for Pasting into a Window Running vi, Emacs Features: A Laundry List, Handling Lots of Text with Temporary Files, Transformations on Text, Outputting Text to an X Window–Outputting Text to an X Window, What Can You Do with an Empty File?, Introduction to Printing, Formatting Plain Text: pr, Formatting Plain Text: enscript, Converting Text Files into a Printing Language
		analyzing, Looking for Closure
		paired
 items, checking, Looking for Closure

	converting files into printing
 language, Converting Text Files into a Printing Language
	copying and pasting between windows
 running vi, Keymaps for Pasting into a Window Running vi
	copying and pasting in
 xterms, Working with xclipboard–Working with xclipboard, Problems with Large Selections, Tips for Copy and Paste Between Windows–Tips for Copy and Paste Between Windows
		between windows, Tips for Copy and Paste Between Windows–Tips for Copy and Paste Between Windows
	large selections with xclipboard, problems
 with, Problems with Large Selections
	xclipboard, using, Working with xclipboard–Working with xclipboard

	editing features in
 Emacs, Emacs Features: A Laundry List
	editors
 for, The vi Editor: Why So Much Material? (see editors)
	empty files
 and, What Can You Do with an Empty File?
	formatting for
 phototypesetters, Introduction to Printing
	formatting with enscript
 command, Formatting Plain Text: enscript
	formatting with pr
 command, Formatting Plain Text: pr
	handling with temporary
 files, Handling Lots of Text with Temporary Files
	highlighting with
 hgrep, A Highlighting grep
	outputting to an X
 window, Outputting Text to an X Window–Outputting Text to an X Window
	titlebars and icons, setting xterms
 for, Setting the Titlebar and Icon Text
	transformations on, using sed
 editor, Transformations on Text

	text
 files, Filename Extensions, When Is a File Not a File?
		filename
 extension, Filename Extensions
	newline character in, When Is a File Not a File?

	text
 processing, Looking for Closure, Neatening Text with fmt, Clean Up Program Comment Blocks, Remove Mail/News Headers with behead, offset: Indent Text, Splitting Files by Context: csplit–Splitting Files by Context: csplit, Text Conversion with dd, Cutting Columns or Fields, Making Text in Columns with pr–Order Lines Across Columns: -l, Make Columns Automatically with column, Straightening Jagged Columns, Rotating Text
		columns, Making Text in Columns with pr–Order Lines Across Columns: -l, Make Columns Automatically with column
		making
 automatically with column, Make Columns Automatically with column
	making with
 pr, Making Text in Columns with pr–Order Lines Across Columns: -l

	converting with dd
 utility, Text Conversion with dd
	indenting text, offset: Indent Text
	neatening text with
 fmt, Neatening Text with fmt
	paired item
 checking, Looking for Closure
	re-formatting comment
 lines, Clean Up Program Comment Blocks
	removing
 mail/news headers, Remove Mail/News Headers with behead
	rotating text, Rotating Text
	selecting and cutting
 columns, Cutting Columns or Fields
	splitting files by
 context, Splitting Files by Context: csplit–Splitting Files by Context: csplit
	straightening jagged
 columns, Straightening Jagged Columns

	Text widget commands, editing text sent to
 xclilpboard, Working with xclipboard
	textual
 analysis, Just the Words, Please
		words, extracting, Just the Words, Please

	Text\:\:Autoformat Perl
 module, Alternatives to fmt
	TFTP (Trivial
 File Transfer Protocol), What We Mean by DoS
	then
 statement, Test Exit Status with the if Statement, The Unappreciated Bourne Shell “:” Operator
		empty, creating with \:
 operator, The Unappreciated Bourne Shell “:” Operator

	tilde (~)
 operator, Use Absolute Pathnames in Shell Setup Files
	time, What Happens When You Log In, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, Execution Scheduling, Avoiding Other at and cron Jobs, History by Number, History by Number, How Unix Keeps Time
		(see also date and time;
 timestamps)
	fields in
 crontab entries, Execution Scheduling
	file changes and
 modifications, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u
		finding oldest or newest files
 by, Finding Oldest or Newest Files with ls -t and ls -u

	of login, recording, What Happens When You Log In
	picking to run at
 jobs, Avoiding Other at and cron Jobs
	showing with history
 command, History by Number
	on Unix
 systems, How Unix Keeps Time

	time command, Timing Is Everything, Timing Programs, Don’t Need a Shell for Your Script? Don’t Use One
	time
 daemon, How Unix Keeps Time
	time operators, find
 command (-mtime, -atime, and -ctime), The Times That find Finds, Exact File-Time Comparisons
	Time to go
 now.... message, Waiting a Little While: sleep
	timeout
 keyword, Expect
	timestamps, The Three Unix File Times, Finding Oldest or Newest Files with ls -t and ls -u, A csh Alias to List Recently Changed Files, Listing Files by Age and Size, Exact File-Time Comparisons, Context diffs, make Isn’t Just for Programmers!, How Unix Keeps Track of Files: Inodes, History by Number, runsed
		arbitrary, creating files
 with, Exact File-Time Comparisons
	comparing with make
 program, make Isn’t Just for Programmers!
	inode
 information, How Unix Keeps Track of Files: Inodes
	kept by tcsh
 and zsh with their history, History by Number
	listing with diff
 commands, Context diffs
	listing/finding files
 by, Finding Oldest or Newest Files with ls -t and ls -u, A csh Alias to List Recently Changed Files, Listing Files by Age and Size
	sed editor
 and, runsed

	timex
 command, Timing Programs
	timezones, TZ
 variable for, Predefined Environment Variables
	timing
 programs, Timing Programs
	tip
 program, Dialback
	titlebars in
 xterm, Setting the Titlebar and Icon Text
	tolower command
 (awk), Alphabetical Summary of Commands
	toolkits (X Window), X Resource Syntax
	top
 command, The ps Command, Timing Is Everything
	top-level domains
 (TLDs), Domain Name Service (DNS)
	touch
 command, Exact File-Time Comparisons, Safer File Deletion in Some Directories
		-i file, creating for file
 deletion, Safer File Deletion in Some Directories
	creating file with arbitrary
 timestamp, Exact File-Time Comparisons

	toupper command
 (awk), Alphabetical Summary of Commands
	tpipe
 command, Redirecting Output to More Than One Place
	tr
 command, Anyone Can Program the Shell, Find a a Doubled Word, Just the Words, Please, Filtering Text Through a Unix Command, Hacking on Characters with tr, Hacking on Characters with tr, Hacking on Characters with tr, Hacking on Characters with tr, Statistics of Processes by PID, Cleaning script Files
		-cs options, listing words in a
 file, Just the Words, Please
	-d option, deleting characters in
 strings, Hacking on Characters with tr
	Berkeley vs. System
 V, Hacking on Characters with tr
	converting
 characters, Anyone Can Program the Shell
	filtering vi text through to convert
 case, Filtering Text Through a Unix Command
	NUL-separated entries from
 environ file, translating to newline-separated
 lines, Statistics of Processes by PID
	squeeze
 option, Hacking on Characters with tr
	storing control characters in shell
 variables, Cleaning script Files

	traceroute
 program, Where, Oh Where Did That Packet Go?
	tracked
 aliases, Controlling Shell Command Searches, Korn-Shell Aliases
	transform command (y),
 sed editor, Transformations on Text, Transforming Part of a Line–Transforming Part of a Line
	translation
 tables, X Event Translations, X Event Translations, X Event Translations
		example, X Event Translations
	syntax
 for specifying as a resource, X Event Translations

	Transport Control
 Protocol, TCP/IP — IP Addresses and Ports (see TCP TCP/IP)
	trap
 command, External Commands Send Signals to Set Variables, Killing Foreground Jobs, Printer Queue Watcher: A Restartable Daemon Shell Script, Trapping Exits Caused by Interrupts, Trapping Exits Caused by Interrupts
		exits caused by interrupted
 scripts, Trapping Exits Caused by Interrupts
	signals
 for, Trapping Exits Caused by Interrupts

	trapping
 signals, What Are Signals?
	trash
 directory, Safe Delete: Pros and Cons
	trees, directory, Save Space: tar and compress a Directory Tree (see under
 directories)
	troff, A Bit of Unix Typesetting History, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	troubleshooting, C-Shell Prompt Causes Problems in vi, rsh, etc., Stalled Data Connection?
		stalled data
 connections, Stalled Data Connection?
	stray prompt
 problems, C-Shell Prompt Causes Problems in vi, rsh, etc.

	true (exit status)
 utility, Exit Status of Unix Processes
	true
 command, The Unappreciated Bourne Shell “:” Operator
	true or false values in
 Perl, Scalars
	trusted-host
 authentication, problems with, General and Authentication Problems
	tset
 command, Automatic Setups for Different Terminals, Setting the Terminal Type When You Log In, Setting the Terminal Type When You Log In, Setting the Terminal Type When You Log In, Setting the Terminal Type When You Log In, Setting Your Erase, Kill, and Interrupt Characters
		key settings, changes
 in, Setting Your Erase, Kill, and Interrupt Characters
	m (map)
 option, Setting the Terminal Type When You Log In, Setting the Terminal Type When You Log In
	Q (quiet) option, Setting the Terminal Type When You Log In

	TSTP (stop)
 signal, What Are Signals?
	tty, Communication with Unix
	tty
 command, What tty Am I On?, The Controlling Terminal
	tty
 number, Who’s
 On?, The Controlling Terminal
		displaying with
 usernames, Who’s
 On?
	in ps
 listing, The Controlling Terminal

	tty serial port,
 for activity monitoring, fork and exec
	tty-type virtual
 consoles, What Are They?
	ttys and ttytab
 files, Terminal Setup: Searching Terminal Table
	twm window
 manager, Setting up VNC on Unix
	type
 command, Which Version Am I Using?, Which One Will bash Use?
	typescript
 file, Copy What You Do with script
	typeset -f
 command, listing functions you’ve defined, Conclusion
	typesetting, Introduction to Printing, Introduction to Typesetting, A Bit of Unix Typesetting History, Typesetting Manpages: nroff, Converting Typeset Files into a Printing Language
		converting typeset files into
 printing language, Converting Typeset Files into a Printing Language
	manpages with
 nroff, Typesetting Manpages: nroff
	overview, Introduction to Typesetting
	Unix history
 of, A Bit of Unix Typesetting History

	typos, fixing with vi
 abbreviations, Fixing Typos with vi Abbreviations
	TZ
 (timezone) environment variable, Predefined Environment Variables

 U
	UAs (User
 Agents), Mail — SMTP, POP, and IMAP
	uc operator, Scalars
	UDP (User Datagram Protocol), TCP/IP — IP Addresses and Ports, Layer 4 Protocols: TCP, UDP, and ICMP
	UIDs, Managing Processes: Overall Concepts (see user IDs)
	ulimit -f command, limit and ulimit
	umask
 command, Subshells, Automatic Setup When You Enter/Exit a Directory, Shell Lockfile, Setting an Exact umask, User, Group, and World
		default mode for newly created
 files, Setting an Exact umask
	permission values,
 setting, User, Group, and World
	setting in shell
 scripts, Subshells
	subshell, running in, Shell Lockfile

	umount
 command, Mounting and Unmounting Removable Filesystems
	unalias
 command, Setting and Unsetting Bourne-Type Aliases
	uname -n
 command, How Unix Systems Remember Their Names
	uncompressing files, Compressing Files to Save Space, Compressing Files to Save Space
		bunzip2 program, Compressing Files to Save Space

	underscore
 (_) in filenames, Filenames
	undoing, Get Back What You Deleted with Numbered Buffers, Confirming Substitutions in vi, Finding Your Place with Undo, Emacs: The Other Editor
		actions in Emacs
 editor, Emacs: The Other Editor
	deletions with vi
 editor, Get Back What You Deleted with Numbered Buffers
	edits in vi
 editor, Finding Your Place with Undo
	search and
 replace commands with vi editor, Confirming Substitutions in vi

	unformatted manpage
 files, Searching Online Manual
 Pages
	uniq
 command, Find a a Doubled Word, What Is (or Isn’t) Unique?, Dealing with Repeated Lines
		sort -u vs., Dealing with Repeated Lines
	testing for duplicate
 terms, Find a a Doubled Word

	Universal Serial Bus
 (USB), USB Configuration
	Unix, About Unix Versions, What’s Special About Unix?, Power Grows on You, Communication with Unix, Unix Networking and Communications, Know When to Be “nice” to Other Users...and When Not To
		advantages
 of, What’s Special About Unix?, Power Grows on You
	communicating
 with, Communication with Unix
	networking and communications
 utilities, Unix Networking and Communications
	priority, definition
 of, Know When to Be “nice” to Other Users...and When Not To
	versions of, About Unix Versions

	unkillable processes,
 cleaning up, Cleaning Up an Unkillable Process
	unless
 statements, Perl Boot Camp, Part 3: Branching and Looping
	unlimit coredumpsize
 command, limit and ulimit
	unlink function, Perl Boot Camp, Part 5: Perl Knows Unix
	unlink() system
 call, Using unlink to Remove a File with a Strange Name
	unlocking files
 (RCS), RCS Basics
	unmatched pieces
 of code, errors caused by, Missing or Extra esac, ;;, fi, etc.
	unset -f command,
 deleting definition of function, Conclusion
	unset variables,
 errors caused by, Stop Syntax Errors in Numeric Tests
	unsetenv
 command, What Environment Variables Are Good For
	unshift operator
 (Perl), Arrays
	until
 loops, Loop Control: break and continue, Looping Until a Command Succeeds, Looping Until a
 Command Fails, test: Testing Files and Strings, Shell Lockfile
		nonzero exit
 status, Shell Lockfile
	test command used
 with, test: Testing Files and Strings
	testing exit status in Bourne
 shells, Looping Until a Command Succeeds
	while loops
 vs., Looping Until a
 Command Fails

	updatedb shell
 script, Finding Files (Much) Faster with a find Database
	updating, Even More Uses for make, CVS Basics, More CVS, Updating information on available packages
		CVS
 files, CVS Basics, More CVS
	distributed
 database, Even More Uses for make
	information on available
 packages with apt-get, Updating information on available packages

	upgrading installed packages with
 apt-get, Upgrading installed packages
	uppercase, Typing in Uppercase Without CAPS LOCK (see case)
	uptime
 command, Preprompt, Pre-execution, and Periodic Commands, Timing Is Everything, Checking System Load: uptime
	URI for software package
 source, Configuring the sources.list File
	urllib module, Python and the Web
	urllib2 module, Python and the Web, urllib2
	URLs for Java applet VNC
 desktops, Connecting to a Windows VNC server
	USB (Universal Serial
 Bus), USB Configuration
	Usenet, Unix Networking and Communications, Emacs Features: A Laundry List, Encoding “Binary” Files into ASCII
		eight-bit text, encoding into
 seven-bit, Encoding “Binary” Files into ASCII
	GNUS client in
 Emacs, Emacs Features: A Laundry List

	User Agents
 (UAs), Mail — SMTP, POP, and IMAP
	User Datagram
 Protocol, TCP/IP — IP Addresses and Ports (see UDP)
	user defined subroutines (Perl), Perl Boot Camp, Part 1: Typical Script Anatomy
	USER
 environment variable, Predefined Environment Variables
	user IDs
 (UIDs), Managing Processes: Overall Concepts, When Does a User Become a User
		in passwd file, When Does a User Become a User

	user
 interfaces, Communication with Unix (see GUIs)
	user
 time, Timing Programs
	user-based access
 control, Starting a Remote Client with rsh and ssh
	user-space tools to configure devices, Quick Introduction to Hardware
	useradd
 utility, When Does a User Become a User
	username field in
 crontab entries, Execution Scheduling
	users, Static Prompts, Destroying Processes with kill, What to Back Up, RCS Basics, Unix User/Group Infrastructure, When Does a User Become a User–When Does a User Become a User, When Does a User Become a User, When Does a User Become a User, Group Permissions in a Directory with the setgid Bit, Groups and Group Ownership–Groups and Group Ownership, Add Users to a Group to Deny Permissions, Care and Feeding of SUID and SGID Scripts, Substitute Identity with su, Providing Superpowers with sudo, Disable logins, User, Group, and World
		backing up
 directories, What to Back Up
	login shell,
 killing, Destroying Processes with kill
	RCS files, listing
 for, RCS Basics
	UID, When Does a User Become a User
	Unix user/group
 infrastructure, Unix User/Group Infrastructure, When Does a User Become a User–When Does a User Become a User, Group Permissions in a Directory with the setgid Bit, Groups and Group Ownership–Groups and Group Ownership, Add Users to a Group to Deny Permissions, Care and Feeding of SUID and SGID Scripts, Substitute Identity with su, Providing Superpowers with sudo, Disable logins, User, Group, and World
		adding to Unix
 systems, When Does a User Become a User–When Does a User Become a User
	disabling
 logins, Disable logins
	file ownerhsip
 and, User, Group, and World
	group permissions in directory with
 setgid bit, Group Permissions in a Directory with the setgid Bit
	groups and group
 ownership, Groups and Group Ownership–Groups and Group Ownership
	groups that deny
 permissions, Add Users to a Group to Deny Permissions
	substitute identity with
 su, Substitute Identity with su
	SUID and SGID
 scripts, Care and Feeding of SUID and SGID Scripts
	superpowers with sudo
 application, Providing Superpowers with sudo

	usernames, Static Prompts, When Does a User Become a User
		in
 shell prompt, Static Prompts

	users
 command, Setting (and Parsing) Parameters
	utilities, Communication with Unix, Everyone Should Learn Some Shell Programming, Everyone Should Learn Some Shell Programming
		(see also individual utility or command
 names)
	combining, Everyone Should Learn Some Shell Programming
	relationship with kernel, shell,
 and applications, Communication with Unix

	UUCP
 (Unix-to-Unix copy), Unix Networking and Communications
	uudecode
 command, uuencoding
	uuencode
 utility, uuencoding
	uuencoding, Encoding “Binary” Files into ASCII
	uuname -l
 command, How Unix Systems Remember Their Names

 V
	values function
 (Perl), Hashes
	values, Python
 objects, Everything’s an Object
	variable
 substitutions, Anyone Can Program the Shell, How Quoting Works, String Editing (Colon) Operators–String Editing (Colon) Operators, String Editing (Colon) Operators
		Bourne shell quoting
 and, How Quoting Works
	editing by
 shells, String Editing (Colon) Operators
	editing with \:
 (colon) string editing operators, String Editing (Colon) Operators–String Editing (Colon) Operators

	variable-length records, converting to/from fixed
 length, Text Conversion with dd
	variable-width
 columns, creating with column utility, Make Columns Automatically with column
	variables, Anyone Can Program the Shell, X Resource Syntax, awk System Variables, What Environment Variables Are Good For, Shell Variables, Shell Variables, Making a for Loop with
 Multiple Variables, Making a for Loop with
 Multiple Variables, Quoting and Command-Line
 Parameters, Perl Boot Camp, Part 1: Typical Script Anatomy, Everything’s an Object, Everything’s an Object
		awk
 utility, awk System Variables
	class variables
 (Python), Everything’s an Object
	environment, What Environment Variables Are Good For (see environment
 variables)
	inheritance
 of, Shell Variables
	instance variables
 (Python), Everything’s an Object
	multiple, creating for loops
 with, Making a for Loop with
 Multiple Variables
	Perl, Perl Boot Camp, Part 1: Typical Script Anatomy (see Perl)
	resource (X
 Window System), X Resource Syntax
	scanning contents with
 eval, Making a for Loop with
 Multiple Variables
	set to word
 lists, Quoting and Command-Line
 Parameters
	shell, Shell Variables (see shell
 variables)
	substitution
 of, Anyone Can Program the Shell (see variable substitutions)

	varying
 commands while repeating them, Repeating Commands
	Vaults of Parnassus
 (Python repository), Installation and Distutils
	verbose option
 (Bourne shell), Shell Scripts On-the-Fly from Standard Input
	verbose shell
 variable, Verbose and Echo Settings Show Quoting
	version control
 systems, Emacs Features: A Laundry List, More Ways to Back Up, Managing and Sharing Files with RCS and CVS, RCS Basics–List RCS Revision Numbers with rcsrevs, CVS Basics
		CVS, CVS Basics
	Emacs support
 of, Emacs Features: A Laundry List
	RCS, RCS Basics–List RCS Revision Numbers with rcsrevs
	saving every file
 version, More Ways to Back Up

	versions, About Unix Versions, Which Version Am I Using?, Checking your Perl Installation, Compiling Perl from Scratch
		of
 commands, Which Version Am I Using?
	Perl, Checking your Perl Installation, Compiling Perl from Scratch
		verifying
 on your system, Compiling Perl from Scratch

	UNIX, About Unix Versions

	vgrep script, The vgrep Script
	vi
 editor, The Idea of a Terminal Database, Tips for Copy and Paste Between Windows, The vi Editor: Why So Much Material?, Editing Multiple Files with vi, Edits Between Files, Local Settings for vi, Local Settings for vi, Using Buffers to Move or Copy Text, Get Back What You Deleted with Numbered Buffers, Using Search Patterns and Global Commands, Global Searches, Confirming Substitutions in vi, Keep Your Original File, Write to a New File, Saving Part of a File, Appending to an Existing File, Moving Blocks of Text by Patterns, Moving Blocks of Text by Patterns, Useful Global Commands (with Pattern Matches), Counting Occurrences; Stopping Search Wraps, Capitalizing Every Word on a Line, Per-File Setups in Separate Files, Filtering Text Through a Unix Command, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered Buffers, Shell Escapes: Running One UnixCommand While Using Another, vi Compound Searches, vi Word Abbreviation–Fixing Typos with vi Abbreviations, Using vi Abbreviations as Commands (Cut and Paste Between vi’s), Fixing Typos with vi Abbreviations, vi Line Commands Versus Character Commands, Out of Temporary Space? Use Another Directory, Neatening Lines, Finding Your Place with Undo, Setting Up vi with the .exrc File, Save Time and Typing with the
 vi map Commands–File-Backup Macros, Save Time and Typing with the
 vi map Commands–What You Lose When You Use map!, Command Mode Maps, vi @-Functions–Newlines in an @-Function, Keymaps for Pasting into a Window Running vi, Protecting Keys from Interpretation by ex, Maps for Repeated Edits, More Examples of Mapping Keys in vi, Repeating a vi Keymap, Typing in Uppercase Without CAPS LOCK, Text-Input Mode Cursor Motion with No Arrow Keys, Don’t Lose Important Functions with vi Maps: Use noremap, vi Macro for Splitting Long Lines, File-Backup Macros, Running Editing Scripts Within vi, Centering Lines in a File, Hacking on Characters with tr, Job Control and autowrite: Real Timesavers!, Killing Foreground Jobs, Command Substitution, vi Editing Mode, Regular Expressions: The Anchor Characters ^ and $, Delimiting a Regular Expression, Who Will Own a New File?
		abbreviations, vi Word Abbreviation–Fixing Typos with vi Abbreviations, Using vi Abbreviations as Commands (Cut and Paste Between vi’s), Fixing Typos with vi Abbreviations
		commands,
 using as, Using vi Abbreviations as Commands (Cut and Paste Between vi’s)
	fixing
 typos with, Fixing Typos with vi Abbreviations

	appending to existing
 file, Appending to an Existing File
	autowrite option, Job Control and autowrite: Real Timesavers!
	capitalizing words, Capitalizing Every Word on a Line
	centering lines of
 text, Centering Lines in a File
	command-line
 editing, vi Editing Mode
	compound searches, vi Compound Searches
	confirming substitutions
 in, Confirming Substitutions in vi
	counting occurrences and stopping search
 wraps, Counting Occurrences; Stopping Search Wraps
	custom commands,
 creating, Save Time and Typing with the
 vi map Commands–File-Backup Macros, Save Time and Typing with the
 vi map Commands–What You Lose When You Use map!, vi @-Functions–Newlines in an @-Function, Keymaps for Pasting into a Window Running vi, Protecting Keys from Interpretation by ex, Maps for Repeated Edits, More Examples of Mapping Keys in vi, Repeating a vi Keymap, Typing in Uppercase Without CAPS LOCK, Text-Input Mode Cursor Motion with No Arrow Keys, Don’t Lose Important Functions with vi Maps: Use noremap, vi Macro for Splitting Long Lines, File-Backup Macros
		@-functions, vi @-Functions–Newlines in an @-Function
	cursor motion in text-input mode without
 arrow keys, Text-Input Mode Cursor Motion with No Arrow Keys
	file-backup macros, File-Backup Macros
	keymaps for pasting into window running
 vi, Keymaps for Pasting into a Window Running vi
	macro for splitting long
 lines, vi Macro for Splitting Long Lines
	map commands, Save Time and Typing with the
 vi map Commands–What You Lose When You Use map!
	mapping keys in vi, further
 examples, More Examples of Mapping Keys in vi
	maps for repeated
 edits, Maps for Repeated Edits
	noremap command, Don’t Lose Important Functions with vi Maps: Use noremap
	protecting keys from interpretation by
 ex, Protecting Keys from Interpretation by ex
	repeating a keymap, Repeating a vi Keymap
	typing in uppercase without CAPS
 LOCK, Typing in Uppercase Without CAPS LOCK

	defining alternate vi
 environments, Local Settings for vi
	deleting text blocks by
 patterns, Moving Blocks of Text by Patterns
	development of, The Idea of a Terminal Database
	file
 ownership, Who Will Own a New File?
	file recovery with vi
 -r, vi File Recovery Versus Networked Filesystems, Be Careful with vi -r Recovered Buffers
		recovered buffers, cautions
 about, Be Careful with vi -r Recovered Buffers

	filtering text through Unix
 command, Filtering Text Through a Unix Command, Neatening Lines
		fmt command, neatening lines
 with, Neatening Lines

	grep command, command substitution
 with, Command Substitution
	keys available for user-defined
 commands, Command Mode Maps
	line vs. character
 commands, vi Line Commands Versus Character Commands
	local settings for, Local Settings for vi
	marking place with m
 command, Finding Your Place with Undo
	moving blocks of text by
 patterns, Moving Blocks of Text by Patterns
	multiple setup files, Per-File Setups in Separate Files
	pattern matches, global commands
 with, Useful Global Commands (with Pattern Matches)
	recovering past deletions in numbered
 buffers, Get Back What You Deleted with Numbered Buffers
	regular expressions in search and replacement
 patterns, delimiting, Delimiting a Regular Expression
	requote script, using, Tips for Copy and Paste Between Windows
	running ex scripts, Running Editing Scripts Within vi
	saving old and new version of
 file, Keep Your Original File, Write to a New File
	saving part of a file, Saving Part of a File
	search patterns and global commands,
 using, Using Search Patterns and Global Commands, Global Searches
		global searches, Global Searches

	setting up with .exrc
 file, Setting Up vi with the .exrc File
	shell escapes, Shell Escapes: Running One UnixCommand While Using Another
	signals, ignoring, Killing Foreground Jobs
	switching between
 files, Editing Multiple Files with vi, Edits Between Files, Using Buffers to Move or Copy Text
		buffers, using to copy or move
 text, Using Buffers to Move or Copy Text
	transferring text with yank
 buffers, Edits Between Files

	temporary space, running out
 of, Out of Temporary Space? Use Another Directory
	translating strings with tr -d
 command, Hacking on Characters with tr
	^ and $ characters, use
 of, Regular Expressions: The Anchor Characters ^ and $

	vim
 editor, The vi Editor: Why So Much Material?
	virtual consoles
 (Linux), Show Subshell Level with $SHLVL, There’s a Lot to Know About Terminals, Linux Virtual Consoles, What Are They?, Scrolling, Using a Mouse
		switching
 between, There’s a Lot to Know About Terminals, What Are They?
	tty-type, scrolling and copy and
 paste, Scrolling, Using a Mouse

	virtual
 machine running Windows, VMWare
	virtual memory
 statistics, Other Checks
	Virtual Network
 Computing, Sharing Desktops with VNC (see VNC)
	vis
 command, Repeating Commands, Repeating a Time-Varying Command, Repeating a Time-Varying Command, Repeating a Time-Varying Command, Repeating a Time-Varying Command
		-d option, Repeating a Time-Varying Command
	-s option, Repeating a Time-Varying Command
	C shell history compared
 to, Repeating a Time-Varying Command
	variations of (display, rep,
 watch), Repeating a Time-Varying Command

	VISUAL
 environment variable, Predefined Environment Variables
	Vixie
 cron, Periodic Program Execution: The cron Facility, Execution Scheduling, Execution Scheduling, A Little Help, etc.
		crontab file,
 creating, Execution Scheduling
	Linux shortcuts to cron
 tasks, A Little Help, etc.
	month and
 day names in crontab entry time fields, Execution Scheduling

	vmstat
 command, Other Checks
	vmware
 program, VMWare
	VNC (Virtual Network Computing), Sharing Desktops with VNC, Connecting to a Windows VNC server, Setting up VNC on Unix
		connecting to Windows VNC
 server, Connecting to a Windows VNC server
	setting up on
 Unix, Setting up VNC on Unix

	vold
 daemon, Mounting and Unmounting Removable Filesystems
	VT
 Fonts menu (xterm), The xterm Menus, The xterm Menus, VT Fonts Menu, Enabling Escape Sequence and Selection
		Escape Sequences and Selection,
 enabling, Enabling Escape Sequence and Selection

	VT Options menu
 (xterm), Working with Scrollbars, The xterm Menus, The xterm Menus
		enabling scrollbars, Working with Scrollbars
	mode toggles, The xterm Menus

	vulnerabilities, Understanding Points of Vulnerability, Keeping Up with Security Alerts, Keeping Up with Security Alerts, What We Mean by Buffer Overflow, A Loophole: Modifying Files Without Write Access
		buffer
 overflow, What We Mean by Buffer Overflow
	CERT web site information
 on, Keeping Up with Security Alerts
	file modification without
 write access, A Loophole: Modifying Files Without Write Access
	Microsoft security
 bulletins about, Keeping Up with Security Alerts

 W
	W3 mode
 (Emacs), Emacs Features: A Laundry List
	wait
 command, Why You Can’t Kill a Zombie, Exit Status of Unix Processes
		in background
 jobs, Exit Status of Unix Processes

	warning or error
 messages, What Are Signals?, Perl Boot Camp, Part 1: Typical Script Anatomy
		Perl (-w option), Perl Boot Camp, Part 1: Typical Script Anatomy
	signals as, What Are Signals?

	watch
 command, Repeating a Time-Varying Command
	watchq
 script, Printer Queue Watcher: A Restartable Daemon Shell Script
	wc (word count)
 command, Counting Lines, Words, and Characters: wc, Counting Lines, Words, and Characters: wc, Counting Lines, Words, and Characters: wc
		c, -l, and w options, Counting Lines, Words, and Characters: wc
	whitespace in
 output, Counting Lines, Words, and Characters: wc

	web
 browsers, Example #2: A Web Browser (see browsers)
	Web,
 described, Unix Networking and Communications
	web-browser mode
 (Emacs), Emacs Features: A Laundry List
	webjump feature,
 Emacs, Emacs Features: A Laundry List
	well-known ports, database
 of, /etc/services Is Your Friend
	werase
 key, Setting Your Erase, Kill, and Interrupt Characters
	wfcmgr
 program, Citrix Metaframe
	wget utility, Interruptable gets with wget, Interruptable gets with wget
		options, Interruptable gets with wget

	What You See Is What You
 Mean (WYSIWYM) editing, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	whatis
 command, whatis: One-Line Command Summaries
	wheel (superuser
 group), When Does a User Become a User, Groups and Group Ownership
	whence
 command, Which Version Am I Using?
	whereis
 command, whereis: Finding Where a Command Is Located, whereis: Finding Where a Command Is Located, Starting a Remote Client with rsh and ssh, Picking a Name for a New
 Command
		options, whereis: Finding Where a Command Is Located
	rsh, checking version
 of, Starting a Remote Client with rsh and ssh
	testing command
 names, Picking a Name for a New
 Command

	which
 command, Which Version Am I Using?, Gotchas in set prompt Test, Starting a Remote Client with rsh and ssh, Picking a Name for a New
 Command
		alternatives to, Which Version Am I Using?
	checking for existing command
 names, Picking a Name for a New
 Command
	rsh, checking version
 of, Starting a Remote Client with rsh and ssh
	setting the prompt
 variable, Gotchas in set prompt Test

	while command
 (awk), Alphabetical Summary of Commands
	while
 loops, Loop Control: break and continue, Looping Until a
 Command Fails, With a Loop, Handling Arguments with while and shift, Handling Arguments with while and shift, test: Testing Files and Strings, The Unappreciated Bourne Shell “:” Operator, Standard Input to a for Loop, A while Loop with Several Loop Control Commands, Outputting Text to an X Window, Bourne Shell Debugger Shows a Shell Variable, Perl Boot Camp, Part 1: Typical Script Anatomy, Perl Boot Camp, Part 4: Pattern Matching
		/g pattern modifier
 and, Perl Boot Camp, Part 4: Pattern Matching
	asking for variable names and displaying
 values, Bourne Shell Debugger Shows a Shell Variable
	case, shift, and test commands, using
 with, Handling Arguments with while and shift
	endless, The Unappreciated Bourne Shell “:” Operator, Outputting Text to an X Window
	handling command-line
 arguments, Handling Arguments with while and shift
	in Perl
 script, Perl Boot Camp, Part 1: Typical Script Anatomy
	read command used in, Standard Input to a for Loop
	with several loop control
 commands, A while Loop with Several Loop Control Commands
	stepping through command-line
 arguments, With a Loop
	test command used with, test: Testing Files and Strings
	testing exit
 status, Looping Until a
 Command Fails

	whitespace, Communication with Unix, When Is a File Not a File?, Defining What Makes Up a Word for Selection Purposes, Defining What Makes Up a Word for Selection Purposes, Tips for Copy and Paste Between Windows, Can’t Access a File? Look for Spaces in the Name, Running Commands on What You Find, Show Nonprinting Characters with cat -v or od -c, Squash Extra Blank Lines, Problems Deleting Directories, Counting Lines, Words, and Characters: wc, Emacs Features: A Laundry List, Ignoring Blanks, Quoting Special Characters in Filenames, Here Documents, Simple Functions: ls with Options, Perl Boot Camp, Part 4: Pattern Matching
		blank lines, squashing extra
 with cat -s, Squash Extra Blank Lines
	displaying in a line with cat
 command, Show Nonprinting Characters with cat -v or od -c
	in
 filenames, Can’t Access a File? Look for Spaces in the Name, Running Commands on What You Find, Problems Deleting Directories, Quoting Special Characters in Filenames
		finding files
 with, Running Commands on What You Find, Problems Deleting Directories

	ignoring in sort
 command, Ignoring Blanks
	leading, removing
 in Emacs from series of
 lines, Emacs Features: A Laundry List
	matching in
 Perl regular expressions with
 \s, Perl Boot Camp, Part 4: Pattern Matching
	newline
 character, When Is a File Not a File?
	removing from text with dedent
 script, Tips for Copy and Paste Between Windows
	separating command
 arguments, Communication with Unix
	shell functions, spaces
 in, Simple Functions: ls with Options
	SPACE
 characters, ASCII, Defining What Makes Up a Word for Selection Purposes
	TAB
 characters, Defining What Makes Up a Word for Selection Purposes, Here Documents
		ASCII, Defining What Makes Up a Word for Selection Purposes
	stripping in Bourne shell
 scripts, Here Documents

	wc command
 output, Counting Lines, Words, and Characters: wc

	who am i
 command, Terminal Setup: Testing Remote Hostname and X Display
	who command, Who’s
 On?, Who’s
 On?, Command Substitution, Writing a Simple Shell Program, Setting (and Parsing) Parameters
		examples, Writing a Simple Shell Program
	GNU version, Who’s
 On?

	whois
 command, Domain Name Service (DNS)
	wildcards, Wildcards–Wildcards, Some GNU ls Features, Using “Fast find” Databases, Wildcards with “Fast find” Database, rm and Its Dangers, Problems Deleting Directories, Wildcards Inside Aliases, Use Wildcards to Create Files?, Using !$ for Safety with Wildcards, Don’t Confuse Regular Expressions with Wildcards, Don’t Confuse Regular Expressions with Wildcards, File-Naming Wildcards, File-Naming Wildcards, Filename Wildcards in a Nutshell–Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Who Handles Wildcards?–Who Handles Wildcards?, What if a Wildcard Doesn’t Match?, Maybe You Shouldn’t Use Wildcards in Pathnames, Getting a List of Matching Files with grep -l, Getting a List of Nonmatching Files, The vgrep Script, nom: List Files That Don’t Match a Wildcard, Test String Values with Bourne-Shell case, Pattern Matching in case Statements, Handling Command-Line Arguments with a for Loop, Watch Your Quoting, Using Wildcards with tar, With GNU tar–Wildcard Gotchas in GNU tar
		!$ sequence for safety
 with, Using !$ for Safety with Wildcards
	in
 aliases, Wildcards Inside Aliases
	in case
 statements, Test String Values with Bourne-Shell case, Pattern Matching in case Statements
	deleting files, use
 in, rm and Its Dangers
	for dot
 files, Problems Deleting Directories
	file creation
 and, Use Wildcards to Create Files?
	file-naming, File-Naming Wildcards, File-Naming Wildcards, Filename Wildcards in a Nutshell–Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Filename Wildcards in a Nutshell, Who Handles Wildcards?–Who Handles Wildcards?, What if a Wildcard Doesn’t Match?, Maybe You Shouldn’t Use Wildcards in Pathnames, Getting a List of Matching Files with grep -l, Getting a List of Nonmatching Files, The vgrep Script, nom: List Files That Don’t Match a Wildcard
		expansion
 by shells, Filename Wildcards in a Nutshell
	failing
 to match, What if a Wildcard Doesn’t Match?
	file
 name and extension as separate entities, Filename Wildcards in a Nutshell
	grep
 -c, listing nonmatching files, Getting a List of Nonmatching Files
	grep
 -l command, listing matching files, Getting a List of Matching Files with grep -l
	in
 pathnames, File-Naming Wildcards
	listing
 of, Filename Wildcards in a Nutshell–Filename Wildcards in a Nutshell
	nom
 script, listing nonmatching files, nom: List Files That Don’t Match a Wildcard
	pathnames,
 not using in, Maybe You Shouldn’t Use Wildcards in Pathnames
	shell
 handling of, Who Handles Wildcards?–Who Handles Wildcards?
	vgrep
 script, listing nonmatching files, The vgrep Script

	in for
 loops, Handling Command-Line Arguments with a for Loop
	limiting searches
 with, Using “Fast find” Databases
	ls command, using shell wildcard
 pattern, Some GNU ls Features
	regular expressions
 vs., Don’t Confuse Regular Expressions with Wildcards
	set command
 using, Watch Your Quoting
	shell expansion
 of, Don’t Confuse Regular Expressions with Wildcards
	shell, matching with fast find
 commands, Wildcards with “Fast find” Database
	tar, using
 with, Using Wildcards with tar, With GNU tar–Wildcard Gotchas in GNU tar
		GNU tar, With GNU tar–Wildcard Gotchas in GNU tar

	windows, The Kernel and Daemons, The Kernel and Daemons, Terminal Setup: Testing Window Size, Session Info in Window Title or Status Line, Preprompt, Pre-execution, and Periodic Commands, Emacs Features: A Laundry List, Managing Processes: Overall Concepts, The Process Chain to Your Window–The Process Chain to Your Window, Terminal Windows Without Shells, Close a Window by Killing Its Process(es)–Closing a Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser, Closing a Window from a Shell Script, Outputting Text to an X Window, Setting up VNC on Unix
		(see also terminals; X Window System;
 xterm)
	chain of processes leading
 to, The Process Chain to Your Window–The Process Chain to Your Window
	closing by killing window
 processes, Close a Window by Killing Its Process(es)–Closing a Window from a Shell Script, Example #1: An xterm Window, Example #2: A Web Browser, Closing a Window from a Shell Script
		shell script,
 using, Closing a Window from a Shell Script
	web browser
 (example), Example #2: A Web Browser
	xterm window
 (example), Example #1: An xterm Window

	Emacs, Emacs Features: A Laundry List
	Gnome, on
 Linux, The Kernel and Daemons
	Linux, listing
 on, The Kernel and Daemons
	session info in
 title, Session Info in Window Title or Status Line
	starting new from
 shell, Managing Processes: Overall Concepts
	terminal without
 shells, Terminal Windows Without Shells
	testing size
 for, Terminal Setup: Testing Window Size
	twm window manager on
 VNC, Setting up VNC on Unix
	xmessage, setting to fit
 text, Outputting Text to an X Window

	Windows, Tips for Copy and Paste Between Windows, wxPython, Disk Partitioning, Mounting Network Filesystems — NFS, SMBFS, Printing Over Samba, Printing to Unix Printers from Windows, Printing to Windows Printers from Unix, Introduction to Typesetting, Building Bridges–Hob, Installing and Configuring Samba, Securing Samba, SWAT and GUI SMB Browsers, Printing with Samba, Connecting to SMB Shares from Unix, Sharing Desktops with VNC–Setting up VNC on Unix, Of Emulators and APIs, Citrix: Making Windows Multiuser, Keeping Up with Security Alerts
		connecting Unix machines
 to, Building Bridges–Hob, Installing and Configuring Samba, Securing Samba, SWAT and GUI SMB Browsers, Printing with Samba, Connecting to SMB Shares from Unix, Sharing Desktops with VNC–Setting up VNC on Unix, Of Emulators and APIs, Citrix: Making Windows Multiuser
		Citrix, connecting to WTS
 server, Citrix: Making Windows Multiuser
	connecting to SMB shares from
 Unix, Connecting to SMB Shares from Unix
	emulators and
 APIs, Of Emulators and APIs
	printing with Samba, Printing with Samba
	Samba, installing and
 configuring, Installing and Configuring Samba
	securing Samba, Securing Samba
	sharing desktops with VNC, Sharing Desktops with VNC–Setting up VNC on Unix
	swat and GUI SMB browsers, SWAT and GUI SMB Browsers

	dual-booting with
 Unix, Disk Partitioning
	printing over
 Samba, Printing Over Samba, Printing to Unix Printers from Windows, Printing to Windows Printers from Unix
		from Unix to Windows
 printer, Printing to Windows Printers from Unix
	to Unix printers, Printing to Unix Printers from Windows

	Python interface to wxWindows
 toolkit, wxPython
	quote characters,
 formatting for Unix, Tips for Copy and Paste Between Windows
	security bulletins from
 Microsoft, Keeping Up with Security Alerts
	SMB-shared filesystems, mounting
 on Unix, Mounting Network Filesystems — NFS, SMBFS
	WYSIWYG editors, typesetting
 with, Introduction to Typesetting

	wine program,
 emulating Windows API, Wine
	Winmodems,, Win Is a Modem Not a Modem?
	WINNAME environment
 variable, Terminal Setup: Setting and Testing Window Name
	wish
 shell, There Are Many Shells
	word
 lists, Inside spell, Adding Words to ispell’s Dictionary, Adding Words to ispell’s Dictionary, Quoting and Command-Line
 Parameters
		ispell program, Adding Words to ispell’s Dictionary, Adding Words to ispell’s Dictionary
		munchlist
 script, Adding Words to ispell’s Dictionary

	spell command, in spellhist
 file, Inside spell
	variables set to, Quoting and Command-Line
 Parameters

	word
 vectors, Which One Will the C Shell Use?
	WORDLIST
 environment variable, Check Spelling Interactively with ispell, Adding Words to ispell’s Dictionary
		overriding default personal word
 list, Adding Words to ispell’s Dictionary

	words, Defining What Makes Up a Word for Selection Purposes, Counting Lines, Words, and Characters: wc, Find a a Doubled Word, Just the Words, Please, vi Word Abbreviation–Fixing Typos with vi Abbreviations, Using vi Abbreviations as Commands (Cut and Paste Between vi’s), Fixing Typos with vi Abbreviations, String Editing (Colon) Operators, Regular Expressions: Matching Words with \ < and \ >
		abbreviation in vi
 editor, vi Word Abbreviation–Fixing Typos with vi Abbreviations, Using vi Abbreviations as Commands (Cut and Paste Between vi’s), Fixing Typos with vi Abbreviations
		commands, using as, Using vi Abbreviations as Commands (Cut and Paste Between vi’s)
	fixing typos with, Fixing Typos with vi Abbreviations

	breaking string into with
 \:x operator, String Editing (Colon) Operators
	counting with wc
 command, Counting Lines, Words, and Characters: wc
	doubled, Find a a Doubled Word
	extracting, Just the Words, Please
	matching with \< \\\> in
 regular expressions, Regular Expressions: Matching Words with \ < and \ >
	selection, Defining What Makes Up a Word for Selection Purposes
		in
 xterm, Defining What Makes Up a Word for Selection Purposes

	work
 function, Setting Current Shell Environment: The work Function, Shell Function Specifics
	workgroups, Installing and Configuring Samba
	working area
 (CVS), CVS Basics, CVS Basics, More CVS
		repository for, CVS Basics
	updating
 workspace, More CVS

	workstations, The Kernel and Daemons, Dynamic Host Configuration Protocol (DHCP), Gateways and NAT
		configuring
 with DHCP, Dynamic Host Configuration Protocol (DHCP)
	display, The Kernel and Daemons
	private NAT
 for, Gateways and NAT

	world (file
 ownership), User, Group, and World
	World Wide
 Web, described, Unix Networking and Communications
	world-write
 file permissions, User, Group, and World, Protecting Files with the Sticky Bit
		sticky bit, setting for
 directory, Protecting Files with the Sticky Bit

	wrappers, Shell Script “Wrappers” for awk, sed, etc., TCP Wrappers
		shell script, for other
 scripts, Shell Script “Wrappers” for awk, sed, etc.
	TCP, checking logs in intruder
 detection, TCP Wrappers

	wrapping lines in vi,
 macro for, vi Macro for Splitting Long Lines
	write
 command, Unix Networking and Communications, What tty Am I On?, Useful ex
 Commands, Printer Queue Watcher: A Restartable Daemon Shell Script
		ex
 editor, Useful ex
 Commands
	running from a
 daemon, Printer Queue Watcher: A Restartable Daemon Shell Script

	write permission, Access to Directories, Searching for Files by Permission, Tutorial on File and Directory Permissions, Which Group is Which?, Protecting Files with the Sticky Bit, Protecting Files with the Sticky Bit, Using chmod to Change File Permission, Protect Important Files: Make
 Them Unwritable, Protect Important Files: Make
 Them Unwritable, cx, cw, c-w: Quick File Permission Changes, A Loophole: Modifying Files Without Write Access
		changing with
 chmod, Using chmod to Change File Permission
	denying, Protect Important Files: Make
 Them Unwritable
	for
 directories, Access to Directories, Tutorial on File and Directory Permissions, Protecting Files with the Sticky Bit
		implications
 of, Tutorial on File and Directory Permissions
	renaming or
 removing files, Protecting Files with the Sticky Bit

	directories, renaming or removing
 files, Protecting Files with the Sticky Bit
	files,
 modifying without, A Loophole: Modifying Files Without Write Access
	finding files by, Searching for Files by Permission
	group, Which Group is Which?
	script for adding, editing file, then
 removing, Protect Important Files: Make
 Them Unwritable
	scripts for
 changing, cx, cw, c-w: Quick File Permission Changes

	writewav.pl
 script, Perl Boot Camp, Part 1: Typical Script Anatomy
	writing output to terminal,
 enabling/disabling for background jobs, Stop Background Output with stty tostop
	writing-tar
 process, Copying Directory Trees with tar and Pipes
	wtmp file, login
 information, What Happens When You Log In
	WTS (Windows Terminal Services), connecting to with
 Citrix, Citrix: Making Windows Multiuser–Hob
	ww
 function, Find a a Doubled Word
	ww.sh
 script, Find a a Doubled Word
	wxPython
 GUI, wxPython
	WYSIWYG (What You See Is What You Get) editing
 programs, Why Line Editors Aren’t Dinosaurs
	WYSIWYM
 editors, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On

 X
	x (exchange) command,
 sed, Hold Space: The Set-Aside Buffer, The Deliberate Scrivener
	X
 toolkit, X Resource Syntax
	X Window
 System, The X Window System, Automatic Setups for Different Terminals, Terminal Setup: Testing Remote Hostname and X Display, Terminal Setup: Testing Window Size, Setting Your Erase, Kill, and Interrupt Characters, Defining Keys and Button Presses with xmodmap, Using xev to Learn Keysym Mappings, X Resource Syntax–X Resource Syntax, X Event Translations–X Event Translations, Setting X Resources: Overview–Listing the Current Resources for a Client: appres, Starting Remote X Clients, Starting Remote X Clients–Starting a Remote Client with rsh and ssh, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh, The Process Chain to Your Window–The Process Chain to Your Window, Close a Window by Killing Its Process(es), The DISPLAY Environment Variable, The DISPLAY Environment Variable, Outputting Text to an X Window–Outputting Text to an X Window, Server and Client Problems
		closing
 window by killing its processes, Close a Window by Killing Its Process(es)
	defining keys and button
 presses with xmodmap, Defining Keys and Button Presses with xmodmap
	DISPLAY environment
 variable, The DISPLAY Environment Variable
	keysym mappings, using xev to
 learn, Using xev to Learn Keysym Mappings
	outputting text into
 terminal with xmessage, Outputting Text to an X Window–Outputting Text to an X Window
	remote logins, Starting Remote X Clients
	resize command, Terminal Setup: Testing Window Size
	resources, X Resource Syntax–X Resource Syntax, X Event Translations–X Event Translations, Setting X Resources: Overview–Listing the Current Resources for a Client: appres
		event
 translations, overview, X Event Translations–X Event Translations
	setting, Setting X Resources: Overview–Listing the Current Resources for a Client: appres
	syntax
 of, X Resource Syntax–X Resource Syntax

	server and screen
 numbers, The DISPLAY Environment Variable
	shell, using from an
 xterm, The Process Chain to Your Window–The Process Chain to Your Window
	starting remote
 clients, Starting Remote X Clients–Starting a Remote Client with rsh and ssh, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh
		from interactive
 logins, Starting Remote X Clients from Interactive Logins
	with rsh and ssh, Starting a Remote Client with rsh and ssh

	testing window
 size, Automatic Setups for Different Terminals
	who am i command, Terminal Setup: Testing Remote Hostname and X Display
	X forwarding, problems
 with, Server and Client Problems
	xmodmap
 command, Setting Your Erase, Kill, and Interrupt Characters

	xargs
 command, Delving Through a Deep Directory Tree, Running Commands on What You Find, Running Commands on What You Find, Duplicating a Directory Tree, Using “Fast find” Databases, grepping a Directory Tree, lookfor: Which File Has That Word?, Compound Searches
		-0 option, Running Commands on What You Find
	-exec operator (find command)
 vs., Running Commands on What You Find
	completed filenames, passing to with
 sed, Duplicating a Directory Tree
	egrep arguments,
 handling, grepping a Directory Tree
	egrep, using
 with, lookfor: Which File Has That Word?
	find command, using
 with, Delving Through a Deep Directory Tree
	grep
 output, pipelining, Compound Searches
	piping locate output
 to, Using “Fast find” Databases

	xargs utility, Dealing with Too Many Arguments, Dealing with Too Many Arguments, Dealing with Too Many Arguments
		-n option, Dealing with Too Many Arguments
	-p
 option, Dealing with Too Many Arguments

	xauth
 command, Starting a Remote Client with rsh and ssh
		copying access code to remote
 machine, Starting a Remote Client with rsh and ssh

	xclipboard, Listing the Current Resources for a Client: appres
		setting up xterm to
 use, Listing the Current Resources for a Client: appres

	xclipboard window, Working with xclipboard, Problems with Large Selections
		large text selections, problems
 with, Problems with Large Selections

	XEmacs (Lucent
 Emacs), Emacs Features: A Laundry List
	xev
 utility, Using xev to Learn Keysym Mappings
	xgrep
 script, Just What Does a Regular Expression Match?
	xhost
 command, Starting Remote X Clients from Interactive Logins, Starting a Remote Client with rsh and ssh
		executing before
 rsh, Starting a Remote Client with rsh and ssh

	xmessage utility, Outputting Text to an X Window–Outputting Text to an X Window
	XML, Formatting Markup Languages — troff,
 LATEX, HTML, and So
 On
	xmodmap
 program, Setting Your Erase, Kill, and Interrupt Characters, Defining Keys and Button Presses with xmodmap, Using xev to Learn Keysym Mappings
		defining keys and button
 presses, Defining Keys and Button Presses with xmodmap

	xrdb
 utility, X Resource Syntax, Setting X Resources: Overview, Setting Resources with xrdb–Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources with xrdb, Setting Resources with xrdb
		backup
 option, Setting Resources with xrdb
	edit
 option, Setting Resources with xrdb
	load
 option, Setting Resources with xrdb
	merge
 option, Setting Resources with xrdb
	query
 option, Setting Resources with xrdb
	removing
 definitions, Setting Resources with xrdb

	xterm, The X Window System, Shell Setup Files — Which, Where, and Why, Terminal Setup: Testing Window Size, Session Info in Window Title or Status Line, Highlighting and Color in Shell Prompts, Preprompt, Pre-execution, and Periodic Commands, Querying Your xterm Size: resize, Working with xterm and Friends–Don’t Quote Arguments to
 xterm -e, Login xterms and rxvts, Working with Scrollbars, How Many Lines to Save?, Simple Copy and Paste in xterm, Defining What Makes Up a Word for Selection Purposes, Setting the Titlebar and Icon Text, The Simple Way to Pick a Font, The xterm Menus, Changing Fonts Dynamically, Working with xclipboard, Tips for Copy and Paste Between Windows, Running a Single Command with
 xterm -e, Don’t Quote Arguments to
 xterm -e, Managing Processes: Overall Concepts, The Process Chain to Your Window–The Process Chain to Your Window, Terminal Windows Without Shells, Example #1: An xterm Window, Repeating a Command with Copy-and-Paste, Copy What You Do with script
		-e
 option, Running a Single Command with
 xterm -e, Don’t Quote Arguments to
 xterm -e
	built-in
 logger, Copy What You Do with script
	chain of processes leading to
 window, The Process Chain to Your Window–The Process Chain to Your Window
	closing window by killing its
 processes, Example #1: An xterm Window
	color, Highlighting and Color in Shell Prompts
	configuring, Working with xterm and Friends–Don’t Quote Arguments to
 xterm -e, Login xterms and rxvts, Working with Scrollbars, How Many Lines to Save?, Simple Copy and Paste in xterm, Defining What Makes Up a Word for Selection Purposes, Setting the Titlebar and Icon Text, The Simple Way to Pick a Font, The xterm Menus, Changing Fonts Dynamically, Working with xclipboard, Tips for Copy and Paste Between Windows
		copy
 and paste, Simple Copy and Paste in xterm
	copy
 and paste between windows, Tips for Copy and Paste Between Windows
	fonts,
 changing dynamically, Changing Fonts Dynamically
	fonts,
 selecting, The Simple Way to Pick a Font
	login
 shell, Login xterms and rxvts
	menus, The xterm Menus
	saved
 lines, How Many Lines to Save?
	scrollbars, Working with Scrollbars
	titlebar
 and icon text, Setting the Titlebar and Icon Text
	words,
 defining for text selection, Defining What Makes Up a Word for Selection Purposes
	xclipboard, Working with xclipboard

	copy and
 paste, Repeating a Command with Copy-and-Paste
	login
 shells, Shell Setup Files — Which, Where, and Why
	size of
 windows, Terminal Setup: Testing Window Size, Querying Your xterm Size: resize
	starting
 windows, Managing Processes: Overall Concepts
	terminal window without
 shells, Terminal Windows Without Shells
	window
 title, Session Info in Window Title or Status Line, Preprompt, Pre-execution, and Periodic Commands
		showing command line
 in, Preprompt, Pre-execution, and Periodic Commands

	xwrist
 script, Outputting Text to an X Window

 Y
	y (transform) command,
 sed editor, Transformations on Text, Transforming Part of a Line–Transforming Part of a Line
	yank
 buffers, Get Back What You Deleted with Numbered Buffers
	yes
 command, Making an Arbitrary-Size File for Testing

 Z
	Z
 shell, There Are Many Shells (see zsh)
	zap script
 (interactively killing processes), zap
	zcat
 command, Compressing Files to Save Space
	ZDOTDIR
 environment variable, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why
	zero string length,
 testing for, Using Shell Functions in Shell Scripts
	zeros in /dev/zero
 file, What Can You Do with an Empty File?
	Zip
 disks, Backing Up to Floppies or Zip Disks, Mounting and Unmounting Removable Filesystems
		backing up to, Backing Up to Floppies or Zip Disks
	mounting, Mounting and Unmounting Removable Filesystems

	zless command (less
 for compressed files), Compressing Files to Save Space
	zmore
 script, Trapping Exits Caused by Interrupts, With the “$@” Parameter, Handling Command-Line Arguments with a for Loop
		arguments for, With the “$@” Parameter
	for loops in, Handling Command-Line Arguments with a for Loop

	zombies, BSD, Destroying Processes with kill, Why You Can’t Kill a Zombie
	zsh (Z
 shell), There Are Many Shells, Shell Setup Files — Which, Where, and Why, Shell Setup Files — Which, Where, and Why, Making a “Login” Shell, Static Prompts, Dynamic Prompts, Simulating Dynamic Prompts, Right-Side Prompts, Show Subshell Level with $SHLVL, Preprompt, Pre-execution, and Periodic Commands, Using the Stored Lists, Expanding Ranges, limit and ulimit, Disowning Processes, Disowning Processes, The Process Chain to Your Window, What the Shell Does, “Special” Characters and Operators, Build Strings with { }, String Editing (Colon) Operators, Automatic Completion, Command-Specific Completion, Repeating Commands, A foreach Loop, Multiline Commands, Secondary Prompts, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, zsh Aliases, Functions Calling
 Functions: Factorials, Shell Function Specifics, Shell Function Specifics, zsh, History by Number, Picking Up Where You Left Off, bash, ksh, zsh, Pass History to Another Shell, zsh Editing, Changing History Characters with histchars, The Shells’ pushd and popd Commands, Filename Wildcards in a Nutshell, What if a Wildcard Doesn’t Match?, Shell Variables, Exit Status of Unix Processes, Exit Status of Unix Processes, Using Standard Input and Output, Send Output Two or More Places
		&! and
 &| operators for background processes, Disowning Processes
	aliases, Introduction to Shell Aliases, Setting and Unsetting Bourne-Type Aliases, zsh Aliases
	arrays, Using the Stored Lists, Expanding Ranges
		expanding
 ranges, Expanding Ranges

	bg_nice
 option, The Process Chain to Your Window
	built-in
 arithmetic, Functions Calling
 Functions: Factorials
	cd +n and cd -n commands, moving directory in
 stack, The Shells’ pushd and popd Commands
	command-line
 editing, zsh Editing
	completion features, Automatic Completion, Command-Specific Completion
		command-specific, Command-Specific Completion

	configuration
 files, Shell Setup Files — Which, Where, and Why
	disown command, Disowning Processes
	editing history
 substitutions, String Editing (Colon) Operators
	environment variable for shell
 function, changing, Shell Function Specifics
	exit status of command line,
 reversing, Exit Status of Unix Processes
	fc -l command, listing previous commands
 with, History by Number
	foreach loop, A foreach Loop
	FPATH search path for shell
 functions, zsh
	globbing (wildcard
 expansion), Filename Wildcards in a Nutshell
	histchars variable, Changing History Characters with histchars
	history
 file, bash, ksh, zsh
	limiting file
 size, limit and ulimit
	login shells,
 creating, Making a “Login” Shell
	MULTIOS option, Send Output Two or More Places
	options, resetting for shell
 functions, Shell Function Specifics
	passing command history
 to, Pass History to Another Shell
	pre-prompt commands, Preprompt, Pre-execution, and Periodic Commands
	PRINT_EXIT_VALUE
 option, Exit Status of Unix Processes
	prompts, Static Prompts, Dynamic Prompts, Simulating Dynamic Prompts, Right-Side Prompts, Multiline Commands, Secondary Prompts
		%!, getting
 history number with, Dynamic Prompts
	dynamic, Simulating Dynamic Prompts
	right-side, Right-Side Prompts
	secondary,
 showing names of continuing constructs, Multiline Commands, Secondary Prompts
	setting, Static Prompts

	redirecting standard
 I/O, Using Standard Input and Output
	repeating commands with repeat
 loop, Repeating Commands
	SAVEHIST variable, Picking Up Where You Left Off
	shell variables,
 read-only, Shell Variables
	SHLVL environment
 variable, Show Subshell Level with $SHLVL
	special
 characters/operators, “Special” Characters and Operators
	wildcards, failing to
 match, What if a Wildcard Doesn’t Match?
	{ } (pattern-expansion characters), building
 strings with, Build Strings with { }

 About the Authors
is a long time user of the Unix operating system. He has acted as a Unix consultant, courseware developer, and instructor. He is one of the originating authors of Unix Power Tools and the author of Learning the Unix Operating System by O'Reilly.
Shelley Powers is an independent contractor, currently living in St. Louis, who specializes in technology architecture and software development. She's authored several computer books, including Developing ASP Components, Unix Power Tools 3rd edition, Essential Blogging, and Practical RDF. In addition, Shelley has also written several articles related primarily to web technology, many for O'Reilly. Shelley's web site network is at http://burningbird.net, and her weblog is Burningbird, at http://weblog.burningbird.net.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback from
 distribution channels. Distinctive covers complement our distinctive approach to
 technical topics, breathing personality and life into potentially dry subjects.
The image on the cover of Unix Power Tools, Third Edition, is
 an AC Dyno-Mite DC drill made by the Millers Falls Company, circa 1950.
Jeffrey Holcomb was the production editor for Unix Power Tools, Third
 Edition. Leanne Soylemez and Jeffrey Holcomb were the copyeditors. Mary
 Brady, Linley Dolby, and Claire Cloutier provided quality control. Genevieve
 d’Entremont, Julie Flanagan, Andrew Savikas, Brian Sawyer, and Sue Willing were the
 compositors. Ellen Troutman-Zaig wrote the index.
Edie Freedman designed the cover of this book. Emma Colby produced the cover layout
 with QuarkXPress 4.1 using Adobe’s ITC Garamond font.
David Futato designed the interior layout. This book was converted to FrameMaker 5.5.6
 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike
 Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading
 font is Adobe Helvetica Neue Condensed; and the code font is LucasFont’s TheSans Mono
 Condensed. The illustrations that appear in the book were produced by Robert Romano and
 Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was
 written by Jeffrey Holcomb.
The online edition of this book was created by the Safari production group (John
 Chodacki, Becki Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and
 cleanup tools written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff
 Liggett.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

UNIX Power Tools, 3rd Edition

Jerry Peek

Shelley Powers

Tim O’Reilly

Mike Loukides

Editor
Laurie Petrycki

Copyright © 2009 O’Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-31T17:27:53-07:00

OEBPS/httpatomoreillycomsourceoreillyimages142658.png
- directory

~current dectory /
~symink ——
~fie home work
| I & | —
im jane setups | [Coup
—
caendar ata

25 G060 e

5B 600 oo

©
")

OEBPS/httpatomoreillycomsourceoreillyimages142683.png
'grep "Joe” afone bfoen 3>82 2>M°
$ echo "$van
afone: Joe Jones 423-1567

grep: bfoen: o such file or directory

backquotes
1702 ety
wrep
3
o
SRS
Xl SN

FD.- File Descriptor

OEBPS/httpatomoreillycomsourceoreillyimages142671.png
curent

OEBPS/httpatomoreillycomsourceoreillyimages142663.png
s alice &
0] 2380

: B¢ nacter o
t2) 2395
H
§ duchess ©
1) 2367
s

OEBPS/httpatomoreillycomsourceoreillyimages142705.png
toxt from standard error-
shown 1 bol face

% grep "set” */.cshrc | sore

M)

% grep "set” #/.cshrc |4 nore

rep: comot open edie/.cahc.
3drian cshreiset historyeso

Sarian cahresset pron
Sdrion cshresset history - 24

o eshuctseteny 12 ESTSEDT

bob/ cshicrct. history-100

bo/ cshic:seteny USER o

frany st history-50

fran csteeiact hose hostrame

frans et filec

~-Hore--grep: camot. open gail/.cshre

S cahre
Sarian cohre
adrion cahre
adrianeshrciset history < 2

Srept camot open barney/.cshre
o cshuciseteny 12 ESTSEDT

bob/ cshicrct. history-100
bo/ cshic:seteny USER o

ore.

OEBPS/httpatomoreillycomsourceoreillyimages142707.png
HOME GLOBALS SHARES PRINTERS
STATUS VIEW PASSWORD

Global Variables
Commt Chinges | _ Reset Values

‘Advanced View

e G e
e e

i

e

R S —
e et et
N L E—

OEBPS/httpatomoreillycomsourceoreillyimages142679.png
grep: bfoen: No such file or directory
$ echo "suar
afone: Joo Jones 423-4567

backquotes
o rowitty
orep
w2
o
SO,
.0 S

FD.- File Descriptor

OEBPS/httpatomoreillycomsourceoreillyimages142693.png
i

OEBPS/orm_front_cover.jpg
Shelley Powers, Jerry Peek, Tim 0°Reilly & Mike Loukides
O'REILLY"

OEBPS/httpatomoreillycomsourceoreillyimages142701.png
1i0in Confanction SAER Coraih sehe

s et containing o

thaes the Jackine Boacriptions and the inte

12,2 L1t packase: b ben, caculated: and the odssg) arkings in

i

OEBPS/httpatomoreillycomsourceoreillyimages142687.png
l=mx

ofstadter”s Loz
T dluays takes longor than
ou”expect, "even uhen you take
Hofstadter’s Lau into accoumt.

Tonjecture: AL odd mmbers ar prine.
Wathenat cian's Proof:

| R
| gy

Tnduct ton, a1l odd

prine. 3 is prine.
9 i oxperinental
errore 11 15 prine.
1585 prino ..

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages142695.png
Cirey N
i I LR e o e
B gEE:E;} [::)_.x;‘n::::: &
Flifee L R st

it

e e e i et

S Rl S R g g et g o

OEBPS/httpatomoreillycomsourceoreillyimages142685.png
" afone bfoen 382 281 13"
afone: Joe Jones 423-1567

§ ocho "svar"

grep: bfoen: o such file or directory

backquotes
sdeurts

2 v
wrep

3707

o
S N
0

FD.- File Descriptor

OEBPS/httpatomoreillycomsourceoreillyimages142639.png
sl orldsating eeeation il to resle s tht
o soercin orethers, e e wtelge o 2o,

e wienes mter soge. iom 2o mticlts od o Tight
ot ey 1h goess it Brvish ok ur ysten of
i est 10 th. dack 30 nclesn rac- g1,

There is one subrty to fin to be aware of: fn expects sentences to end with
cther 3 period, 3 queston mark or an exchimation point followed by two.
spaces. I your document st marked up according o this convention, fn cant
dffcrentiated hetween sentences and abbreviations. Thi s common “gotcha’
thatappears requentl on Usenct.

° g e e ok

ot v sl pa nd e the ot e ek

There are 3 few difere versions of fnt, some fancer than oxhers. In genera,
che program assumes tht:

+ Parageaphs hase blanklnes becween ther.

+ 1o in sindented, keep the indentaron,

+ The outpr lines should be about 70 charsctrs wide. Some have a corn
mand line option o et you st ths, For example, fet -132 (or, on some ver
sions, fat -1 132) would reformat your il o have ines with no more than
132 charscerson cach.

+ e eads il orstndard inpus. Lines will b writen t0 standard ot

The GNU s onhe CDROM. Thre e o cnplc ey v
© @ o Many versons of it have opons for othr suctred dos. The
e s e i s e i) T

Altermatiely, you can mske yosr s @13 simpl and a file sower) version
with sed e nrff. I you want get fancy (and use some nroff andloe th cod-
o), this will L you do automarically formatted tet tables, bulleted s, and
mch more.

© .10 and))

21.3 Alternatives to fmt

it 212 is hard 10 o withour once you've lemed ot is. Unfortunaely, s
o availabl i some ersions of Unix. You ca get the GNU version from the

Chaper 21 YouCat Gt Gl T Eiing -

22

OEBPS/httpatomoreillycomsourceoreillyimages142656.png
B xtom
ach bine ueu e tho poirter to nake toxt the \e-ICLIPSRDNED selocticn,
7o T hna o\7S otkarcas -6 & rau ocresn in ahich Lt dicplase amd

regeel

“reu G F11s) 4 Lires. 164 craroctens

= achgbosrd 5
(@) (otte) (o) Bave) (o) (o) 2]

2ch tize you use the peinte
[the \fTxelizhosra\fk sdvance.

toras the Saxt.

OEBPS/httpatomoreillycomsourceoreillyimages142711.png
Enry

Option Tooks

Server
AT
TIAMAT

o

OEBPS/httpatomoreillycomsourceoreillyimages142699.png
Suie s eemian At Amniar Ast IS

OEBPS/httpatomoreillycomsourceoreillyimages142667.png
subject: R zeport.
dsafeslsasieisatd ds; fanv jdsvnasd;t
fradslkeniadas, lackndra; as? faosiariaverds

fradslktniadst; lackadty;as) fa;oeisrianer
% dste

Tou Nov 4 17:2
i

1 BT 1997

OEBPS/httpatomoreillycomsourceoreillyimages142638.png
2m

g o o mor i il xampe s Sy i
QT N Lo of i o e CD ROV

b

-

21.20 What is (or isn’t) Unique?

i reads e and compares ascent lnes (which means you'lwsualy want
© R o the e st to b s dentcal s sppest st o cach other. Here's
e whatunig can do 35t watches the nput lns stream by

+ With the-u option, the ourput gets only the fnes ehat oceur just ance (.
weren' repeated).

“The ~ option does the uppsite: the ourput s sigle opy of exch lne

hat s repesced (o macter how many fmes i was epeared),

(The GNU srsion lso s -D opiion.Is ke ~t except that al duplicate

Tines arc ourput)

+ The defaulcoutpor (ith o options) s the union of < and : nly the it
occurtence of a e is witen to the aurput il any adjacetcopiesof 3
(second, third tc) ae gnored.

+ The output it — s ik the defaul,but sch ine s preceded by count of
how many imes it ccurred

[
] * wniq fles ilex
il o i the wniue s fom b fle andflc 0 s

B utpot, il etace the coments o e with he e
nes o et

Thrse mre opions contrl how comparsons re dorc:

+ - gnores the firse ek of a e and all whitespace bfore cach. A fied is
deined 55 st of non-whitespace characters (separsed from s nigh.
ors by whitespace).

+ nignores he firse ncharacters. Fekds ae skipped bfore characers.

+ i the GNU version compares o more than ncharactrs ineach e
+ GNU g alo has — to make comparisons case-nsensive. (Upper and
lovserease lettrs compore cqual)

i often used 153 file, See also o 15, sort @2, and especialy sot -

Sowhat can you do with all o his?

I Pt Tt

OEBPS/httpatomoreillycomsourceoreillyimages142697.png
PR

OEBPS/httpatomoreillycomsourceoreillyimages142637.png
i

o 1412

Wel s i bins o
« Dielsing wnnsed o rarly used) fles il 14.12).
+ Deecngafl the s ina directony, exee foronc ot Gl 1415

Mosetps for deesng s sl work o epaming the fles 8y want 0
e them):ust replace e rm command wih v

i

Deleting Stale Files

Sooner or late, s lot o jusk collects in your directories: e that you dorit
ly care about and never us. I possbl 0 it n 1 commands that will
suromatcaly lean these up. I you want to clsn up regalary, you can add
Some fnd commands to your cront e 3. @
Basically,al you need 0 dovis w3 find command that ocaes fles based on
thee st acces ime st), and s & o —exce 9 0 dlece them. Such a
command might ook ke this:
= fid st s ok m 1)
This locaresFles tha haven't been aceessed n th lse 60 days,asks i you wane
0 deet the e, and then delets th . (I you run ¢ from cron, make sure
you use -exe insicad o ok, and make absolutely sure hat he ind won's delte
e thar you think are imporant)

Of course, you can ey this ind command to exclude {or selct) files with
portcular names: for cxample, the command below delees old core dumps and
GNU Emacs ackup files (whose names end n-), but eavesal others lone

X i (e core 0 e

) -atioe 0 -k m 4 0 s

1 youtake an automated approsch o delcing sl e, here sre some things to

watch ot for

+ Thee ar plny o e for example. Ui wtilies and log k) that should
ever be remored. Never run any “automatic deletion” scipt on s or / or
any other “system”dirctory

+ On some sy, excuing a Binay exsable docr' opd

e the las

o et prey stale, even fthy're wsed ofen. You don't want 0 delee chem.
16 you cook up a complcated enough find command, you should be abe 10
handlc this automaticall. Someching lke this showld (a lsst partially) o

e 10 1 -pern 124 enee 0

Pt e Wi wih e Fiesysten.

OEBPS/httpatomoreillycomsourceoreillyimages142691.png
% tar cbfj)&)n archive.shar keepout *.txt,
|

OEBPS/httpatomoreillycomsourceoreillyimages142654.png
000

[schaneectrugsziz623 5 I

VT Fonte
v Oefault

Unresdable

Ting

Snall

Hedium

Lorge

Huze

" Cine-Orauing Characters
+ Doublesized Characters

OEBPS/httpatomoreillycomsourceoreillyimages142642.png
user

iteracte
commands handle
o ingut a5 well
as oulput

user
commands
anddita

prompt.

Shell

ouput output

requests for
services

tanster
bullin commands ofcontrol

UNIX Kerneland Device Drivers

OEBPS/httpatomoreillycomsourceoreillyimages142703.png

OEBPS/httpatomoreillycomsourceoreillyimages142650.png
foaltruba 12471

OEBPS/httpatomoreillycomsourceoreillyimages142713.png
o colors indow Sizo

o6 Fxea Size
“o * Porcentage of Screen Size
* 3 Thousana * Fu Scrven
16 btbon

- uso poraut 1 Use Derautt

256 Coor Mapping Purcentage of Screen Size

* Shars - Approsivate Coors

. Private - Exact Golors

9| %

1 Use Derautt

@ oy | Cancel

OEBPS/httpatomoreillycomsourceoreillyimages142660.png
(o) (o) (o)

nroff -mm €1 | nroff -mm nroff -mm

G G G @) Gw)

OEBPS/httpatomoreillycomsourceoreillyimages142681.png
grep "Joe” afone bfoen 382"
grep: bfoen: No such file or directory
$ echo "suar

afone: Joo Jones 423-4567

backquotes
o rowitty
orep
FD.2FD3
o
SO,
.0 S

FD.- File Descriptor

OEBPS/httpatomoreillycomsourceoreillyimages142673.png
String of characters (input fine). The string abe (pattern).
The canister must be labeled. abe
The pattern is compared charactr by charactr 0 the input Ie.

Mhe clajnister canister
abe be abe

ntns el e 50 T st mato teteen s To seeond oo
o St g Ghrscoon oo s dos ot
Clactiofte haine nsand edisraragder hox characr nns ot
S st chaodoral of e patam iU it e S0, i o e st
gty Sncsiiakes oGt Sncs e, chracr he st 1
ot e it I8t sccos Comparson s e
Chvser i ptine Chusr W patens row chader nne
Sttt comsiredno o T e 0 i S0
oot et Chunr I ine ot e, rocss Surs ov

1fboled lafcled lablled
be able

The next match ofthe fist Since hereisa match, the Now the thirdcharacter I the
charactr of the ptiern * Second caracter i i patien patten s compared o e next
00curs nthe word labeed. 5 compared o the next Charactor m the nput e, TS

craractor ntheinput ing. In s also @ matc 50, the input
this case there /s 4 match, ling matches the pattem.

OEBPS/httpatomoreillycomsourceoreillyimages142709.png
Virual Network Compu

OEBPS/httpatomoreillycomsourceoreillyimages142661.png

OEBPS/httpatomoreillycomsourceoreillyimages142644.png
Document

Folder

pendaltex

Section

Cabinet
Drawer
Cabinet

leastspecifc o
nost spacitic

OEBPS/httpatomoreillycomsourceoreillyimages142689.png
20 archive.shar *.txt

OEBPS/httpatomoreillycomsourceoreillyimages142665.png
awk ©
/foo/ { print 0$10 }
©

OEBPS/httpatomoreillycomsourceoreillyimages142675.png
* grep

0.2 (Standard Eror)

Idev/tty

4

ED.- File Descriptor

F0.0 (Standard Input)

4 B

OEBPS/httpatomoreillycomsourceoreillyimages142669.png
nome work

soups | [_olup

Coenerc)

calendar

so] [seo] [oot] (oupur)

- diectory

~current directory

symink

e

OEBPS/httpatomoreillycomsourceoreillyimages142648.png
7] wootdirectory)

o] - dectory
il
usr nome
ws | [on ona ke

OEBPS/httpatomoreillycomsourceoreillyimages142640.png
€%

OEBPS/httpatomoreillycomsourceoreillyimages142646.png
1| troot divctory)

ocal | [_bin . mh non_] [Cotmer

mystutt] [prate] [nissut] [puie

] - diectory

i stuft stuff

OEBPS/httpatomoreillycomsourceoreillyimages142677.png
grepout

% grep sonething sonefile > grepout

FD. 1 (Standard Qupuy)

arep
FD.2 (Standard Exor)

FD.0(Standard Iu)
FD.- File Descriptor

OEBPS/httpatomoreillycomsourceoreillyimages142652.png
VT Foris.

/ otaut
Unraadable
Tioy
Smat
Hedum
Largo
Huge
Escape Scquence
Slacton

