[image: First Edition]
grep Pocket Reference

John Bambenek

Agnieszka Klus

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Chapter 1. grep Pocket Reference

Introduction

Chances are that if you’ve worked for any length of time on a Linux
 system, either as a system administrator or as a developer, you’ve used
 the grep command. The tool is installed by default on
 almost every installation of Linux, BSD, and Unix, regardless of
 distribution, and is even available for Windows (with wingrep or via Cygwin).
GNU and the Free Software Foundation distribute
 grep as part of their suite of open source tools.
 Other versions of grep are distributed for other
 operating systems, but this book focuses primarily on the GNU version, as
 it is the most prevalent at this point.
The grep command lets the user find text in a
 given file or output quickly and easily. By giving
 grep a string to search for, it will print out only
 lines that contain that string and can print the corresponding line
 numbers for that text. The “simple” use of the command is well-known, but
 there are a variety of more advanced uses that make
 grep a powerful search tool.
The purpose of this book is to pack all the information an
 administrator or developer could ever want into a small guide that can be
 carried around. Although the “simple” uses of grep do
 not require much education, the advanced applications and the use of
 regular expressions can become quite complicated. The name of the tool is
 actually an acronym for “Global Regular-Expression Print,” which gives an indication of its purpose.
GNU grep is actually a combination of four
 different tools, each with its unique style of finding text: basic regular
 expressions, extended regular expressions, fixed strings, and Perl-style
 regular expression. There are other implementations of
 grep-like programs such as agrep, zipgrep, and “grep-like” functions in .NET, PHP,
 and SQL. This guide will describe the particular options and strengths of
 each style.
The official website for grep is http://www.gnu.org/software/grep/. It contains information
 about the project and some brief documentation. The source code for
 grep is only 712 KB, and the current version at the
 time of this writing is 2.5.3. This pocket reference is current to that
 version, but the information will be generally valid for earlier and later
 versions.
As an important note, the current version of
 grep that ships with Mac OS X 10.5.5 is 2.5.1;
 however, most of the options in this book will still work for that
 version. There are other “grep” programs as well, in addition to the one
 from GNU, and these are typically the ones installed by default under HP-UX, AIX, and older versions of Solaris. For the
 most part, the regular expression syntax is very similar between these
 versions, but the options differ. This book deals exclusively with the GNU
 version because it is more robust and powerful than other versions.
Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates commands, new terms, URLs, email addresses,
 filenames, file extensions, pathnames, directories, and Unix
 utilities.

	Constant width
	Indicates options, switches, variables, attributes, keys,
 functions, types, classes, namespaces, methods, modules,
 properties, parameters, values, objects, events, event handlers,
 XML tags, HTML tags, macros, the contents of files, or the output
 from commands.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact us for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books does
 require permission. Answering a question by citing this book and quoting
 example code does not require permission. Incorporating a significant
 amount of example code from this book into your product’s documentation
 does require permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author, publisher, and ISBN. For example:
 “grep Pocket Reference by John Bambenek and Agnieszka Klus. Copyright 2009 John
 Bambenek and Agnieszka Klus,
 978-0-596-15360-1.”
If you feel your use of code examples falls outside fair use or
 the permission given here, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
When you see a Safari® Books Online icon on the cover of your
 favorite technology book, that means the book is available online
 through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9780596153601

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network, see our website at:
	http://www.oreilly.com

Acknowledgments

From John Bambenek

I would like to thank Isabel Kunkle and the rest of the O’Reilly
 team behind the editing and production of this book. My wife and son
 deserve thanks for their support and love as I completed this project.
 My coauthor, Agnieszka, has been invaluable in making an onerous task
 of writing a book more manageable; she contributed greatly to this
 project. Brian Krebs of The Washington Post
 deserves credit for the idea of writing this book. My time at the
 Internet Storm Center has let me work with some of the best in the
 information security industry, and their feedback has been extremely
 helpful during the technical review process. A particular note of
 thanks goes out to Charles Hamby, Mark Hofman, and Donald Smith. And
 last, Merry Anne’s Diner in downtown Champaign, Illinois deserves
 thanks for letting me show up for hours in the middle of the night to
 take up one of their tables as I wrote this.

From Agnieszka Klus

First, I want to thank my coauthor, John Bambenek, for the
 opportunity to work on this book. It certainly has been a literary
 adventure for me. It has opened windows of opportunity and given me a
 chance to peek into a world I would otherwise have not been able to. I
 also would like to thank my family and friends for their support and
 patience.

Conceptual Overview

The grep command provides a variety of ways to
 find strings of text in a file or stream of output. For example, it is
 possible to find every instance of a specified word or string in a file.
 This could be useful for grabbing particular log entries out of voluminous
 system logs, as one example. It is possible to search for certain patterns
 in files, such as the typical pattern of a credit card number. This
 flexibility makes grep a powerful tool for finding
 the presence (or absence) of information in files. There are two ways to
 provide input to grep, each with its own particular
 uses.
First, grep can be used to search a given file
 or files on a system. For instance, files on a disk can be searched for
 the presence (or absence) of specific content. grep
 also can be used to send output from another command that
 grep will then search for the desired content. For
 instance, grep could be used to pick out important
 information from a command that otherwise produces an excessive amount of
 output.
While searching text files, grep could be employed to
 search for a particular string throughout all files in an entire
 filesystem. For instance, Social Security numbers follow a known pattern,
 so it is possible to search every text file on a system to find
 occurrences of these numbers in its files (e.g., for academic environments
 in order to comply with federal privacy laws). The default behavior is to
 return the filename and the line of text that contains the string, but it
 is possible to include line numbers as well.
Additionally, grep can examine command
 output to look for occurrences of a string. For instance, a system
 administrator may run a script to update software on a system that has a
 large amount of “debugging” information and may only care to see error
 messages. In this case, the grep command could search
 for a string (i.e., “ERROR”) that indicates errors, filtering out
 information that the administrator does not want to see.
Generally, the grep command is designed to
 search only text output or text files. The command will let you search
 binary (or other nontext) files, but the utility is limited in that regard. Tricks for
 searching binary files for information with grep
 (i.e., using the strings command) are covered in the last section (Advanced Tips and Tricks with grep).
Although it is usually possible to integrate
 grep into manipulating text or doing “search and
 replace” operations, it is not the most efficient way to get the job done.
 Instead, the sed and awk
 programs are more useful for these kinds of functions.
There are two basic ways to search with grep:
 searching for fixed strings and searching for patterns of text. Searching
 for fixed strings is pretty straightforward. Pattern searching, however,
 can get complicated very quickly, depending on how variable that desired
 pattern is. To search for text with variable content, use regular
 expressions.

Introduction to Regular Expressions

Regular expressions, the source of the letters “re” in “grep,” are
 the foundation for creating a powerful and flexible text-processing tool.
 Expressions can add, delete, segregate, and generally manipulate all kinds
 of text and data. They are simple statements that enhance a user’s ability
 to process files, especially when combined with other commands. If applied
 properly, regular expressions can significantly simplify a tall
 task.
Many different commands in the Unix/Linux world use some form of
 regular expressions in addition to some programming languages. For
 instance, the sed and awk
 commands use regular expressions not only to find information, but
 also to manipulate it.
There are actually many different varieties of regular expressions.
 For instance, Java and Perl both have their own syntax for regular expressions.
 Some applications have their own versions of regular expressions, such
 as Sendmail and Oracle. GNU grep uses
 the GNU version of regular expressions, which is very similar (but not
 identical) to POSIX regular expressions.
In fact, most of the varieties of regular expressions are very
 similar, but they do have key differences. For instance, some of the
 escapes, metacharacters, or special operators will behave differently
 depending on which type of regular expressions you are using. The subtle
 differences between the varieties can lead to drastically different
 results when using the same expression under different regular expression
 types. This book will only touch on the regular expressions that are used
 by grep and Perl-style grep
 (grep -P).
Usually, regular expressions are included in the
 grep command in the following format:
grep [options] [regexp] [filename]
Regular expressions are comprised of two types of characters: normal
 text characters, called literals, and special
 characters, such as the asterisk (*), called
 metacharacters. An escape sequence allows you to use
 metacharacters as literals or to identify special characters or conditions
 (such as word boundaries or “tab characters”). The desired string that
 someone hopes to find is a target string. A regular
 expression is the particular search pattern that is entered to
 find a particular target string. It may be the same as the target string,
 or it may include some of the regular expression functionality discussed
 next.
Quotation Marks and Regular Expressions

It is customary to place the regular expression (or regxp) inside single
 quotation marks (the symbol on the keyboard underneath the double quote,
 not underneath the tilde [~] key). There are a few reasons for this. The
 first is that normally Unix shells interpret the space as an end of
 argument and the start of a new one. In the format just shown, you see
 the syntax of the grep command where a space
 separates the regexp from the filename. What if the string you wish to
 search for has a “space” character? The quotes tell
 grep (or another Unix command) where the argument
 starts and stops when spaces or other special characters are
 involved.
The other reason is that various types of quotes can signify
 different things with shell commands such as grep.
 For instance, using the single quote underneath the tilde key
 (also called the backtick) tells the shell to execute
 everything inside those quotes as a command and then use that as the
 string. For instance:
grep `whoami` filename
would run the whoami command (which returns the username that is running the shell on
 Unix systems) and then use that string to search. For instance, if I
 were logged in with username “bambenek”, grep would
 search filename for the use of “bambenek”.
Double quotes, however, work the same as the single quotes, but with one important
 difference. With double quotes, it becomes possible to use environment
 variables as part of a search pattern:
grep "$HOME" filename
The environment variable HOME
 is normally the absolute path of the logged-in user’s home directory.
 The grep command just shown would determine the
 meaning of the variable HOME and then
 search on that string. If you place $HOME in single quotes, it would not recognize
 it as an environment variable.
It is important to craft the regular expression with the right
 type of quotation marks because different types can yield wildly
 different results. Beginning and ending quotes must be the same or an
 error will be generated, letting you know that your syntax is incorrect.
 Note that it is possible to combine the use of different quotation marks
 to combine functionality. This will be discussed later in the section
 Advanced Tips and Tricks with grep.

Metacharacters

In addition to quotation marks, the position and combination
 of other special characters produce different effects on the regular
 expression. For example, the following command searches the file
 name.list for the letter ‘e’ followed by
 ‘a’:
grep -e 'e[a]' name.list
But by simply adding the caret symbol, ^, you change the entire
 meaning of the expression. Now you are searching for the ‘e’ followed by
 anything that is not the letter ‘a’:
grep -e 'e[^a]' name.list
Since metacharacters help define the manipulation, it is important
 to be familiar with them. Table 1-1 has a list of
 regularly used special characters and their meanings.
Table 1-1. Regular expression metacharacters[a]
	Metacharacter
	Name
	Matches

	Items to match a
 single character

	.
	Dot
	Any one
 character

	[...]
	Character class
	Any character listed in
 brackets

	[^...]
	Negated
 character class
	Any character not listed
 in brackets

	\char
	Escape character
	The character after the
 slash literally; used when you want to search for a “special”
 character, such as “$” (i.e., use “\$”)

	Items that match a
 position

	^
	Caret
	Start of a
 line

	$
	Dollar sign
	End of a
 line

	\<
	Backslash less-than
	Start of a
 word

	\>
	Backslash greater-than
	End of a
 word

	The
 quantifiers

	?
	Question mark
	Optional; considered a
 quantifier

	*
	Asterisk
	Any number (including
 zero); sometimes used as general wildcard

	+
	Plus
	One or more of the
 preceding expression

	{N}
	Match exactly
	Match exactly
 N times

	{N,}
	Match at least
	Match at least
 N times

	{min,max}
	Specified range
	Match between
 min and
 max times

	Other

	|
	Alternation
	Matches either expression
 given

	-
	Dash
	Indicates a
 range

	(...)
	Parentheses
	Used to limit scope of
 alternation

	\1, \2, ...
	Backreference
	Matches text previously
 matched within parentheses (e.g., first set, second set,
 etc.)

	\b
	Word boundary
	Batches characters that
 typically mark the end of a word (e.g., space, period,
 etc.)

	\B
	Backslash
	This is an alternative to
 using “\\” to match a backslash, used for
 readability

	\w
	Word character
	This is used to match any
 “word” character (i.e., any letter, number, and the underscore
 character)

	\W
	Non-word character
	This matches any
 character that isn’t used in words (i.e., not a letter, number,
 or underscore)

	\`
	Start of buffer
	Matches the start of a
 buffer sent to grep

	\'
	End of buffer
	Matches the end of a
 buffer sent to grep

	[a] From Jeffrey E.F. Friedl’s Mastering Regular
 Expressions (O’Reilly), with some additions

The table references something known as the escape character. There are times when you will be
 required to search for a literal character that is usually used as a
 metacharacter. For example, suppose you are looking for amounts that
 contain the dollar sign within price.list:
grep '[1-9]$' price.list
As a result, the search will try to match the numbers at the end
 of the line. This is certainly something you do not want. By using the
 escape character, annotated by the backslash (\), you avoid such confusion:
grep '[1-9]\$' price.list
The metacharacter $ becomes a
 literal, and therefore is searched in price.list as
 a string.
For instance, take a text file (price.list)
 that has the following content:
123
123$
Using the two commands just shown yields the following results:
$ grep '[1-9]\$' price.list
123$
$ grep '[1-9]$' price.list
123
In the first example, the command looked for the actual
 dollar-sign character. In the second example, the dollar sign had its
 special metacharacter’s meaning and matched the end of line, and so
 would match only those lines that ended in a number. The meaning of
 these special characters needs to be kept in mind because they can make
 a significant difference in how a search is processed.
Here is a brief rundown of the regular expression metacharacters,
 along with some examples to make it clear how they are used:
	. (any single
 character)
	The “dot” character is one of the few types of wildcards available in
 regular expressions. This particular wildcard will match any
 single character. This is useful if a user wishes to craft a
 search pattern with some characters in the middle of it that are
 not known to the user. For instance, the following
 grep pattern would match “red”, “rod”, “red”,
 “rzd”, and so on:
'r.d'
This “dot” character can be used repeatedly at whatever
 interval is necessary to find the desired content.

	[...] (character
 class)
	The “character class” tool is one of the more flexible tools, and it comes up
 again and again when using regular expressions. There are two
 basic ways to use character classes: to specify a range and to
 specify a list of characters. An important point is that a
 character class will match only one character:
'[a-f]'
'[aeiou]'
The first pattern will look for any letter between “a” and
 “f”. Ranges can be uppercase letters, lowercase letters, or
 numbers. A combination of ranges can also be used, for instance,
 [a-fA-F0-5]. The second example
 will search for any of the given characters, in this case vowels.
 A character class can also include a list of special characters,
 but they can’t be used as a range.

	[^...] (negation)
	The “negation” character class allows a user to search for anything but a
 specific character or set of characters. For instance, a user who
 doesn’t like even numbers could use the following search
 pattern:
'..[^24680]'
This will look for any three-character pattern that does not
 end in an even number. Any list or range of characters can be
 placed inside a negated character class.

	\ (escape)
	The “escape” is one of the metacharacters that can have multiple
 meanings depending on how it is used. When placed before another
 metacharacter, it signifies to treat that character as the literal
 symbol instead of its special meaning. (It also can be used in
 combination with other characters, such as b or ', to convey a special meaning. Those
 specific combinations are covered later.) Take the following two
 examples:
'.'
'\.'
The first example would match any single character and would
 return every piece of text in a file. The second example would
 only match the actual “period” character. The escape tells the
 regular expression to ignore the metacharacter’s special meaning and
 process it normally.

	^ (start of line)
	When a carat is used outside of a character class, it no
 longer means negation; instead, it means the beginning of a line.
 If used by itself, it will match every single line on the screen
 because each line has a beginning. More useful is when a user
 wishes to match lines of text that begin with a certain
 pattern:
'^red'
This pattern would match all lines that begin with “red”,
 not just the ones that contain the word “red”. This is useful for
 structured communication or programming languages, for example,
 where lines may begin with specific strings that contain important
 information (such as #DEFINE in
 C). However, the meaning is lost if it is not at the beginning of
 a line.

	$ (end of line)
	As discussed earlier, the dollar sign character
 matches the end of a line. Used alone, it will match every line in
 a stream except the final line, which is terminated by an “end of
 file” character instead of an “end of line” character. This is
 useful for finding strings that have a desired meaning at the end
 of a line. For instance:
'-$'
would find all lines whose last character is a dash, as is
 typical for words that are hyphenated when they are too long to
 fit on one line. This expression would find only those lines with
 hyphenated words split between lines.

	\< (start of
 word)
	If a user wished to craft a search pattern that matches
 based on the start of a word and the pattern was likely to recur
 inside a word (but not at the beginning), this particular escape
 could be used. For instance, take the following example:
'\<un'
This pattern would match words starting with the prefix
 “un”, such as “unimaginable,” “undetected,” or “undervalued.” It
 would not match words such as “funding,” “blunder,” or “sun.” It
 detects the beginning of a word by looking for a space or another
 “separation” that indicates the beginning of a new word (a period,
 comma, etc.).

	\> (end of word)
	Similar to the previous escape, this one will match at the
 end of a word. After the characters, it looks for a “separation”
 character that indicates the end of a word (a space, tab, period,
 comma, etc.). For example:
'ing\>'
would match words that end in “ing” (e.g., “spring”), not
 words that simply contain “ing” (e.g., “kingdom”).

	* (general wildcard)
	The asterisk is probably by far the most-used
 metacharacter. It is a general wildcard classed as a quantifier
 that is specifically used for repetitious patterns. For some
 metacharacters, you can
 assign minimum and maximum boundaries that manipulate the quantity
 outputted from the pattern, but the asterisk does not place any
 limits or boundaries. There are no limits to how many spaces there
 can be before or after the character. Suppose a user wants to know
 whether a particular installer’s different formats are described
 in a file. The results of this simple command:
'install.*file'
the results should output all the lines that contain
 “install” (with any amount of text in between) and then “file”. It
 is necessary to use the period character; otherwise, it will match
 only “installfile” instead of iterations of “install” and “file”
 with characters in between.

	- (range)
	When used inside a bracketed character class, the dash
 character specifies a range of values instead of a raw list of
 values. When the dash is used outside of a bracketed character
 class, it is interpreted as the literal dash character, without
 its special value.
'[0-5]'

	\#
 (backreferences)
	Backreferences allow you to reuse a previously matched pattern to
 determine future matches. The format for a backreference is
 \ followed by the pattern
 number in the sequence (from left to right) that is being
 referenced. Backreferences are covered in more detail in the
 section Advanced Tips and Tricks with grep.

	\b (word boundary)
	The \b escape refers to any character that indicates a word has
 started or ended (similar to \> and \<, discussed earlier). In this case,
 it doesn’t matter whether it is the beginning or end of the word;
 it simply looks for punctuation or spacing. This is particularly
 useful when you are searching for a string that can be a
 standalone word or a set of characters within another, unrelated
 word:
'\bheart\b'
This would match the exact word “heart” and nothing more
 (not “disheartening”, not “hearts”, etc.). If you are searching
 for a particular word, numerical value, or string and do not want
 to match when those words or values are part of another value, it
 is necessary to use either \b,
 \>, or \<.

	\B (backslash)
	The \B escape is a
 peculiar case because it isn’t an escape itself, but rather
 an alias for another one. In this case, \B is identical to \\, namely, to interpret the slash
 character literally in a search pattern instead of with its
 special meaning. The purpose of this alias is to make a search
 pattern a little more readable and to avoid double-slashes, which
 could have ambiguous meaning in complicated expressions.
'c:\Bwindows'
This example would search for the string
 “c:\windows”.

	\w and \W (word or non-word characters)
	The \w and \W escapes go hand in hand because their meanings are
 opposite. \w will match any
 “word” character and is equivalent to ''[a-zA-Z0-9_]''. The \W escape will match every other
 character (including non-printable ones) that does not fall into
 the “word character” category. This can be useful in parsing
 structured files where text is interposed with special characters
 (e.g., :, $, %, etc.).

	\` (start of buffer)
	This escape, like the “start of line” escape, will match the start of
 a buffer as it is fed to whatever is processing the regular
 expression. Because grep works with lines, a
 buffer and a line tend to be synonymous (but not always). This
 escape is used in the same way as the “start of line” escape
 discussed earlier.

	\' (end of buffer)
	This escape is similar to the “end of line” escape, except that
 it looks for the end of a buffer that is fed to whatever is
 processing the regular expression. In both cases of start and end
 of buffer escapes, their usage is extremely rare, and it is easier
 to simply use start and end of line instead.

The following is a list of metacharacters used in extended regular
 expressions:
	? (optional match)
	The use of the question mark has a different meaning than it does
 in typical filename wildcard usage (GLOB). In GLOB, ? means any single character. In regular expressions, it
 means that the preceding character (or string if placed after a
 subpattern) is an “optional” matching pattern. This allows for multiple match conditions with a
 single regular expression pattern. For instance:
'colors?'
would match both “color” and “colors”. The “s” character is
 an optional match, so if it is not present, it does not cause a
 failing condition on the pattern.

	+ (repetitive match)
	The plus sign indicates that the regular expression is looking for a match
 of one or more of the previous character (or subpattern). For
 instance:
'150+'
would match 150 with any number of additional zeroes (e.g.,
 1500, 15000, 1500000, etc.).

	{N} (match exactly N
 times)
	Brackets, when placed after a character, indicate a specific
 number of repetitions to search for. For instance:
'150{3}\b'
would match 15 followed by 3 zeroes. So 1500 would not
 match, but 15000 would. Note the use of the \b “word boundary” escape. In this case,
 if the desired match is precisely “15000” and there is not a check
 for a word boundary “150000”, “150002345” or “15000asdf” would
 match also because they all contain the desired search string of
 “15000”.

	{N,} (match at least N
 times)
	Like the previous example, putting a number and a comma
 after it indicates the regular expression will search for at least
 N number of repetitions. For instance:
'150{3,}\b'
would match “15” followed by at least three zeroes, and so
 “15”, “150”, and “1500” would not match. Use the word boundary
 escape to avoid cases where a precise match of a specific number
 is desired. (e.g., “1500003456”, “15000asdf”, etc.). The use of
 \b clarifies the
 meaning.

	{N,M} (match between N
 and M times)
	If you wish to match some numbers between two values of
 repetitions, it is possible to specify both between the braces
 separated by a comma. For instance:
'150{2,3}\b'
would match “1500” and “15000” and nothing else.

	| (alternation)
	The “pipe” character specifies alternation inside a regular expression.
 Think of it as a way of giving the regular expression a choice of match
 conditions with a single expression. For example:
'apple|orange|banana|peach'
would match any of the strings given, regardless of whether
 the others are also within the scope of the search. In this case,
 if the text includes “apple” or “orange” or “banana” or “peach”,
 it will match that content.

	() (subpattern)
	The last important feature of extended regular expressions is the
 ability to create subpatterns. This allows for regular expressions
 that repeat entire strings, use alternation on entire strings, to
 have backreferences work, and to make regular expressions more
 readable:
'(red|blue) plate'
'(150){3}'
The first example will match either “red plate” or “blue
 plate”. Without the parentheses, the regular expression ''red|blue plate'' would match “red”
 (note the lack of the word “plate”) or “blue plate”. Parenthetical
 subpatterns help limit the
 scope of alternation.
In the second example, the regular expression will match on
 “150150150”. Without parentheses, it would match “15000”.
 Parentheses make it possible to match on repetition of entire
 strings instead of single characters.

Metacharacters generally are universal between the different
 grep commands, such as egrep,
 fgrep, and grep -P. However,
 there are instances in which a character carries a different
 connotation. Any differences will be discussed within the section
 pertaining to that command.

POSIX Character Classes

Additionally, regular expressions come with a set of POSIX character
 definitions that create shortcuts to find certain classes of characters.
 Table 1-2 shows a list of these
 shortcuts and what they signify. POSIX is basically a set of standards
 created by the Institute of Electrical and Electronics Engineers
 (IEEE) to describe how Unix-style operating systems should
 behave. It is very old, but much of its content is still used. Among
 other things, POSIX has definitions on how regular expressions should
 work with shell utilities such as grep.
Table 1-2. POSIX character definitions
	POSIX
 definition
	Contents of character
 definition

	[:alpha:]
	Any alphabetical character, regardless of
 case

	[:digit:]
	Any numerical character

	[:alnum:]
	Any alphabetical or numerical
 character

	[:blank:]
	Space or tab characters

	[:xdigit:]
	Hexadecimal characters; any number or A–F or
 a–f

	[:punct:]
	Any punctuation symbol

	[:print:]
	Any printable character (not control
 characters)

	[:space:]
	Any whitespace character

	[:graph:]
	Exclude whitespace characters

	[:upper:]
	Any uppercase letter

	[:lower:]
	Any lowercase letter

	[:cntrl:]
	Control characters

Many of these POSIX definitions are more readable equivalents of
 character classes. For instance, [:upper:] can be also written as [A-Z] and uses less characters to do so. There
 aren’t good character class equivalents for some other classes, such as
 [:cntrl:]. To use these in a regular
 expression, simply place them the same way you would place a character
 class. It is important to note that one placement of these POSIX
 character definitions will match only one single character. To match
 repetitions of character classes, you would have to repeat the
 definition. For instance:
'[:digit:]'
'[:digit:][:digit:][:digit:]'
'[:digit:]{3}'
In the first example, any single numerical character will be
 matched. In the second example, only three-digit numbers (or longer)
 will be matched. The third example is a cleaner, shorter way of writing
 the second example. Many regular expressions enthusiasts try to
 accomplish as much as possible with as few keystrokes as possible. Show
 them the second example, and they may cringe. The third example is a
 more efficient way of accomplishing the same thing.

Crafting a Regular Expression

Like algebra, grep has rules of
 precedence for processing. Repetition is processed before concatenation. Concatenation is processed before
 alternation. Strings are concatenated by simply being next to each other
 inside the regular expression—there is no special character to signify
 concatenation.
For instance, take the following regular expression:
'pat{2}ern|red'
In this example, the repetition is processed first, yielding two
 “t”s. Then, the strings are concatenated, producing “pattern” on one
 side of the pipe and “red” on the other. Next, the alternation is
 processed, creating a regular expression that will search for “pattern”
 or “red”. However, what if you wanted to search for “patpatern” and
 “red” or “pattern” or “pattred”?
In this case, just like in algebra, parentheses will “override”
 the rules of precedence. For example:
2 + 3 / 5
(2 + 3) / 5
These two mathematical equations yield different results because
 of the parentheses. The concept is the same here:
'(pat){2}ern|red'
'pat{2}(ern|red)'
The first example will concatenate “pat” first and then repeat it
 twice, yielding “patpatern” and “red” as the search strings. The second
 example will process the alternation subpattern first, so the regular
 expression will search for “pattern” and “pattred”. Using parentheses
 can help you fine-tune your regular expression to match specific content
 based on how you construct it. Even if the rules of precedence don’t
 need to be overruled for a particular regular expression, sometimes it
 makes sense to use parentheses for enhanced readability.
A regular expression can continue as long as the single quote is
 not closed. For instance:
$ grep 'patt
> ern' filename
Here the single quote was not ended before the user pressed Return
 right after the second “t” (no space was pressed). The next line shows a
 > prompt, which indicates it is
 still waiting for the string to be completed before it processes the
 command. As long as you keep pressing Return, it will keep giving you
 the prompt until you either press Ctrl-C to break or close the quote, at which point it will
 process the command. This allows for long regular expressions to be
 typed in on the command line (or a shell script) without cramming them
 all on one line, potentially making them less than readable.
In this case, the regular expression searches for the word
 “pattern”. The command ignores returns and does not input those into the
 regular expression itself, so it is possible to hit Enter in the middle
 of a word and pick up right where you left off. Concern for readability
 is important because “space” keys aren’t easily visible, which makes
 this example a great contender for subpatterns, to help make the regular
 expression more understandable.
It is also possible to use several different groupings of strings
 with their own quotation marks. For instance:
'patt''ern'
would search for the word “pattern”, just as if it were typed with
 the expected regular expression of ''pattern''. This example isn’t a very
 practical one, and there is no compelling reason ever to do that with
 just text. However, when combining different quotation types, this
 technique makes it possible to take advantage of each quotation type to
 produce a regular expression using environment variables and/or output
 from commands. For example:
$ echo $HOME
/home/bambenek
$ whoami
bambenek
shows that the environment variable $HOME is set to
 /home/bambenek and that the output of the command
 whoami is “bambenek”. So, the following regular
 expression:
'username:'`whoami`' and home directory
is '"$HOME"
would match on the string “username:bambenek and home directory is
 /home/bambenek” by inserting in the output from the
 whoami command and the setting for the environment variable $HOME. This is a quick overview of regular
 expressions and how they can be used. There are entire books devoted to
 the complexities of regular expressions, but this primer is enough to
 get you started on what you need to know in order to use the
 grep command.

grep Basics

There are two ways to employ
 grep. The first examines files as follows:
grep regexp filename
grep searches for the designated
 regexp in the given file (filename). The second method of
 employing grep is when it examines “standard input.” For example:
cat filename | grep regexp
In this case, the cat command will display the contents of a file. The output of this
 command is “piped” into the grep command, which will then
 display only those lines that contain the given regexp. The two commands
 just shown have identical results because the cat
 command simply passes the file unchanged, but the second form is valuable
 for “grepping” other commands that alter their input.
When grep is called without a filename argument
 and without being passed any input, it will let you type in text and will
 repeat it once it gets a line that contains the regexp. To exit,
 press Ctrl-D.
At times, the output is remarkably large and hard to scroll through
 in a terminal. This is usually the case with large files that tend to have
 repetitious phrases, such as an error log. In these cases, piping the
 output to the more or less
 commands will “paginate” it so that only one screen of text is shown at a
 time:
grep regexp filename | more
Another option to make the output easier to look at is to
 redirect the results into a new file and then open the output file
 in a text editor at a later time:
grep regexp filename > newfilename
Also, it may be advantageous to look for lines that contain several
 patterns instead of just one. In the following example, the text file
 editinginfo contains a date, a username, and the file
 that was edited by that user on the given date. If an administrator was
 interested in just the files edited by “Smith”, he would type the
 following:
cat editinginfo | grep Smith
The output would look like:
May 20, 2008 Smith hi.txt
June 21, 2008 Smith world.txt
 .
 .
An administrator may wish to match multiple patterns, which can be
 accomplished by “chaining” grep commands together.
 We are now familiar with the cat
 filename |
 grep regexp command and what it does.
 By piping the second grep, along with any number of
 piped grep commands, you create a very refined
 search:
cat filename | grep regexp | grep regexp2
In this case, the command looks for lines in
 filename that have both
 regexp and regexp2.
 More specifically, grep will search for
 regexp2 in the results of the
 grep search for regexp.
 Using the previous example, if an administrator wanted to see every date
 that Smith edited any file except hi.txt, he could issue the following
 command:
cat editinginfo | grep Smith | grep -v hi.txt
The following output would result:
June 21, 2008 Smith world.txt
It is important to note that “chaining” grep
 commands is inefficient most of the time. Often, a regular expression can
 be crafted to combine several conditions into a single search.
For instance, instead of the previous example, which combines three
 different commands, the same could be accomplished with:
grep Smith | grep -v hi.txt
Using the pipe character will run one command and give the results of that
 command to the next command in the sequence. In this case,
 grep searches for lines with “Smith” in them and
 sends those results to the next grep command, which
 excludes lines that have “hi.txt”. When a search can be accomplished using
 fewer commands or with fewer decisions having to be made, the more
 efficiently it will behave. For small files, performance isn’t an issue,
 but when searching through gigabyte-sized logfiles, performance can be an
 important consideration.
There is a case to be made for piping commands when you wish to
 search through content that is continually streaming. For instance, if you
 want to monitor a logfile in real-time for specified content, she could
 use the following command:
tail -f /var/log/messages | grep WARNING
This command would open up the last 10 lines of the /var/log/messages files (usually the main
 system logfile on a Linux system), but keep the file open and print all
 content placed into the file as long as it is running (the -f option to tail is often
 called “follow”). So the command just shown would look for any entry that
 has the string “WARNING” in it, display it to the console, and disregard
 all other messages.
As an important note, grep will search through
 a line and once it sees a newline, it will restart the entire search on
 the next line. This means that if you are searching for a sentence with
 grep, there is a very real possibility that a newline
 character in the middle of the sentence in the file will prevent you from
 finding that sentence directly. Even specifying the newline character in
 the search pattern will not alleviate this problem. Some text editors and
 productivity applications simply wrap words on lines without placing a
 newline character, so searching is not pointless in these cases, but it is
 an important limitation to keep in mind.
To get details about the regular expression implementation on your
 specific machine, check the regex and
 re_format manpages. It is important to
 note, however, that not all the functions and abilities of regular
 expressions are built-in to grep. For instance,
 search and replace is not available. More importantly, there are some useful escape
 characters that seem to be missing by default.
For instance, \d is an escape sequence to match any numeric character (0 through
 9) in some regular expressions. However, this does not seem to be
 available with grep under standard distribution and
 compile options (with the exception of Perl-style
 grep, to be covered later). This guide attempts to
 cover what is available by default in a standard installation and attempts
 to be the authoritative resource on the abilities and limits of
 grep.
The grep program is actually a package of four
 different pattern-matching programs
 that use different regular-expression models. Each pattern-matching
 system has its strengths and weaknesses, and each will be discussed in
 detail in the following sections. We’ll start with the original model,
 which we’ll call basic grep.

Basic Regular Expressions (grep or grep -G)

This section focuses on basic grep. Most of
 the flags for basic grep apply equally to the other
 versions, which we’ll discuss later.
Basic grep, or grep -G, is
 the default pattern matching type that is used when calling
 grep. grep interprets the given
 set of patterns as a basic regular expression when it executes the
 command. This is the default grep program that is
 called, so the -G
 option is almost always redundant.
Like any command, grep comes with a handful of
 options that control both the matches found and the way
 grep displays the results. The GNU version of
 grep offers most of the options listed in the
 following subsections.
Match Control

	-e
 pattern, --regexp=pattern
	grep -e -style doc.txt
Ensures that grep recognizes the
 pattern as the regular expression argument. Useful if the regular
 expression begins with a hyphen, which makes it look like an
 option. In this case, grep will look for
 lines that match “-style”.

	-f
 file, --file=file
	grep -f pattern.txt searchhere.txt
Takes patterns from file. This
 option allows you to input all the patterns you want to match into
 a file, called pattern.txt here. Then,
 grep searches for all the patterns from
 pattern.txt in the designated
 file searchhere.txt. The
 patterns are additive; that is, grep returns
 every line that matches any pattern. The pattern file must list
 one pattern per line. If pattern.txt is empty, nothing will
 match.

	-i, --ignore-case
	grep -i 'help' me.txt
Ignores capitalization in the given regular expressions,
 either via the command line
 or in a file of regular expressions specified by the -f option. The example here would search
 the file me.txt for a string
 “help” with any iteration of lower- and uppercase letters in the
 word (“HELP”, “HelP”, etc.). A similar but obsolete synonym to
 this option is -y.

	-v, --invert-match
	grep -v oranges filename
Returns lines that do not match,
 instead of lines that do. In this case, the output would be every
 line in filename that does not contain
 the pattern “oranges”.

	-w, --word-regexp
	grep -w 'xyz' filename
Matches only when the input text consists of full words. In
 this example, it is not enough for a line to contain the three
 letters “xyz” in a row; there must actually be spaces or
 punctuation around them. Letters, digits, and the underscore character are all
 considered part of a word; any other character is considered a
 word boundary, as are the start and end of the line. This is the
 equivalent of putting \b at the
 beginning and end of the regular expression.

	-x, --line-regexp
	grep -x 'Hello, world!' filename
Like -w, but must match an entire line. This example matches
 only lines that consist entirely of “Hello, world!”. Lines that
 have additional content will not be matched. This can be useful
 for parsing logfiles for specific content that might include cases
 you are not interested in seeing.

General Output Control

	-c, --count
	grep -c contact.html access.log
Instead of the normal output, you receive just a count of
 how many lines matched in each input file. In the example here,
 grep will simply return the number of times
 the contact.html file
 was accessed through a web server’s access log.
grep -c -v contact.html access.log
This example returns a count of all the lines that do
 not match the given string. In this case, it
 would be every time someone accessed a file that wasn’t
 contact.html on the web server.

	--color[=WHEN], --colour[=WHEN]
	grep -color[=auto] regexp filename
Assuming the terminal can support color,
 grep will colorize the pattern in the output.
 This is done by surrounding the matched (nonempty) string,
 matching lines, context lines, filenames, line numbers, byte
 offsets, and separators with escape sequences that the terminal
 recognizes as color markers. Color is defined by the environment
 variable GREP_COLORS (discussed
 later). WHEN has three options:
 never, always, and auto.

	-l, --files-with-matches
	grep -l "ERROR:" *.log
Instead of normal output, prints just the names of input
 files containing the pattern. As with -L, the search stops on the first match.
 If an administrator is simply interested in the filenames that
 contain a pattern without seeing all the matching lines, this
 option performs that function. This can make
 grep more efficient by stopping the search as
 soon as it finds a matching pattern instead of continuing to
 search an entire file. This is often referred to as “lazy
 matching.”

	-L, --files-without-match
	grep -L 'ERROR:' *.log
Instead of normal output, prints just the names of input files that
 contain no matches. For instance, the example prints all the
 logfiles that contain no reports of errors. This is an efficient
 use of grep because it stops searching each
 file once it finds any match, instead of continuing to search the
 entire file for multiple matches.

	-m
 NUM, --max-count=NUM
	grep -m 10 'ERROR:' *.log
This option tells grep to stop
 reading a file after NUM lines are matched
 (in this example, only 10 lines that contain “ERROR:”). This is
 useful for reading large files where repetition is likely, such as
 logfiles. If you simply want to see whether strings are present
 without flooding the terminal, use this option. This helps to
 distinguish between pervasive and intermittent errors, as in the
 example here.

	-o, --only-matching
	grep -o pattern filename
Prints only the text that matches, instead of the whole
 line of input. This is particularly useful when implementing
 grep to examine a disk partition or a binary
 file for the presence of multiple patterns. This would output the
 pattern that was matched without the content that would cause
 problems for the terminal.

	-q, --quiet, --silent
	grep -q pattern filename
Suppresses output. The command still conveys useful
 information because the grep command’s exit
 status (0 for success if a match is found, 1 for no match found, 2
 if the program cannot run because of an error) can be checked. The
 option is used in scripts to determine the presence of a pattern
 in a file without displaying unnecessary output.

	-s, --no-messages
	grep -s pattern filename
Silently discards any error messages resulting from
 nonexistent files or permission errors. This is helpful for
 scripts that search an entire filesystem without root permissions,
 and thus will likely encounter permissions errors that may be
 undesirable. On the other side, it also will suppress useful
 diagnostic information, which could mean that problems may not be
 discovered.

Output Line Prefix Control

	-b, --byte-offset
	grep -b pattern filename
Displays the
 byte offset of each matching text instead of the line number. The
 first byte in the file is byte 0, and invisible line-terminating
 characters (the newline in Unix) are counted. Because entire lines
 are printed by default, the number displayed is the byte offset of
 the start of the line. This is particularly useful for binary file
 analysis, constructing (or reverse-engineering) patches, or other
 tasks where line numbers are meaningless.
grep -b -o pattern filename
A -o option prints the
 offset along with the matched pattern itself and not the whole
 matched line containing the pattern. This causes
 grep to print the byte offset of the start of
 the matched string instead of the matched line.

	-H, --with-filename
	grep -H pattern filename
Includes the name of the file before each line printed, and
 is the default when more than one file is input to the search.
 This is useful when searching only one file and you want the
 filename to be contained in the output. Note that this uses the
 relative (not absolute) paths and filenames.

	-h, --no-filename
	grep -h pattern *
The opposite of -H.
 When more than one file is involved, it suppresses printing the
 filename before each output. It is the default when only one file
 or standard input is involved. This is useful for suppressing
 filenames when searching entire directories.

	--label=LABEL
	gzip -cd file.gz | grep --label=LABEL pattern
When the input is taken from standard input (for
 instance, when the output of another file is redirected into
 grep), the --label option will prefix the line with
 LABEL. In this example, the
 gzip command displays the contents of the
 uncompressed file inside file.gz and then
 passes that to grep.

	-n, --line-number
	grep -n pattern filename
Includes the line number of each line displayed, where the
 first line of the file is 1. This can be useful in code debugging,
 allowing you to go into the file and specify a particular line
 number to start editing.

	-T, --initial-tab
	grep -T pattern filename
Inserts a tab before each matching line, putting the tab
 between the information generated by grep and
 the matching lines. This option is useful for clarifying the
 layout. For instance, it can separate line numbers, byte offsets,
 labels, etc., from the matching text.

	-u, --unix-byte-offsets
	grep -u -b pattern filename
This option only works under the MS-DOS and Microsoft Windows
 platforms and needs to be invoked with -b. This option will compute the
 byte-offset as if it were running under a Unix system and strip
 out carriage return characters.

	-Z, --null
	grep -Z pattern filename
Prints an ASCII NUL (a zero byte) after each filename.
 This is useful when processing filenames that may contain special
 characters (such as carriage returns).

Context Line Control

	-A
 NUM, --after-context=NUM
	grep -A 3 Copyright filename
Offers a context for matching lines by printing the
 NUM lines that follow each match. A group
 separator (--) is placed
 between each set of matches. In this case, it will print the next
 three lines after the matching line. This is useful when searching
 through source code, for instance. The example here will print
 three lines after any line that contains “Copyright”, which is
 typically at the top of source code files.

	-B
 NUM, --before-context=NUM
	grep -B 3 Copyright filename
Same concept as the -A NUM
 option, except that it prints the lines
 before the match instead of after it. In this
 case, it will print the three lines before the matching line. This
 is useful when searching through source code, for instance. The
 example here will print three lines before any line that contains
 “Copyright”, which is typically at the top of source code
 files.

	-C
 NUM, -NUM, --context=NUM
	grep -C 3 Copyright filename
The -C
 NUM option operates as if the user entered both the -A
 NUM and -B NUM
 options. It will display NUM lines
 before and after the match. A group separator (--) is placed between each set of
 matches. In this case, three lines above and below the matching
 line will be printed. Again, this is useful when searching through
 source code, for instance. The example here will print three lines
 before and after any line that contains “Copyright”, which is
 typically at the top of source code files.

File and Directory Selection

	-a, --text
	grep -a pattern filename
Equivalent to the --binary-files=text option, allowing a
 binary file to be processed as if it were a text file.

	--binary-files=TYPE
	grep --binary-files=TYPE pattern filename
TYPE can be either binary, without-match, or text. When grep
 first examines a file, it determines whether the file is a
 “binary” file (a file primarily composed of non-human-readable
 text) and changes its output accordingly. By default, a match in a binary file
 causes grep to display simply the message
 “Binary file somefile.bin matches.” The
 default behavior can also be
 specified with the --binary-files=binary
 option.
When TYPE is without-match, grep
 does not search the binary file and proceeds as if it had no
 matches (equivalent to the -l
 option). When TYPE is text, the binary file is processed like
 text (equivalent to the -a
 option). When TYPE is without-match, grep
 will simply skip those files and not search through them.
 Sometimes --binary-files=text
 outputs binary garbage and the terminal may interpret some of that
 garbage as commands, which in turn can render the terminal
 unreadable until reset. To recover from this, use the commands tput init and
 tput reset.

	-D
 ACTION, --devices=ACTION
	grep -D read 123-45-6789 /dev/hda1
If the input file is a special file, such as a FIFO or a
 socket, this flag tells grep how to proceed.
 By default, grep will process these files as
 if they were normal files on a system. If
 ACTION is set to skip, grep will
 silently ignore them. The example will search an entire disk
 partition for the fake Social Security number shown. When
 ACTION is set to read, grep will
 read through the device as if it were a normal file.

	-d
 ACTION, --directories=ACTION
	grep -d ACTION pattern path
This flag tells grep how to process
 directories submitted as input files. When
 ACTION is read, this reads the directory as if it
 were a file. recurse searches
 the files within that directory (same as the -R option), and skip skips the directory without
 searching it.

	--exclude=GLOB
	grep --exclude=PATTERN path
Refines the list of input files by telling
 grep to ignore files whose names match the
 specified pattern. PATTERN can be an
 entire filename or can contain the typical “file-globbing” wildcards the shell uses
 when matching files (*,
 ? and []). For instance, --exclude=*.exe will skip all files
 ending in .exe.

	--exclude-from=FILE
	grep --exclude-from=FILE path
Similar to the --exclude
 option, except that it takes a list of patterns from a specified
 filename, which lists each pattern on a separate line.
 grep will ignore all files that match any
 lines in the list of patterns given.

	--exclude-dir=DIR
	grep --exclude-dir=DIR pattern path
Any directories in the path matching the pattern
 DIR will be excluded from recursive
 searches. In this case, the actual directory name (relative name
 or absolute path name) has to be included to be ignored. This
 option also must be used with the -r option or the -d recurse option in order to be
 relevant.

	-l
	grep -l pattern filename
Same as the --binary-files=without-match option.
 When grep finds a binary file, it will assume
 there is no match in the file.

	--include=GLOB
	grep --include=*.log pattern filename
Limits searches to input files whose names match the given
 pattern (in this case, files ending in .log). This option is particularly
 useful when searching directories using the -R option. Files not matching the given
 pattern will be ignored. An entire filename can be specified, or
 can contain the typical “file-globbing” wildcards the shell uses
 when matching files (*, ? and []).

	-R, -r, --recursive
	grep -R pattern path
grep -r pattern path
Searches all files underneath each directory submitted as an
 input file to grep.

Other Options

	--line-buffered
	grep --line-buffered pattern filename
Uses line buffering for the output. Line buffering
 output usually leads to a decrease in performance. The default
 behavior of grep is to use unbuffered output.
 This is generally a matter of preference.

	--mmap
	grep --mmap pattern filename
Uses the mmap()
 function instead of the read()
 function to process data. This can lead to a performance
 improvement but may cause errors if there is an I/O problem or the
 file shrinks while being searched.

	-U, --binary
	grep -U pattern filename
 An MS-DOS/Windows-specific option that causes
 grep to treat all files as binary. Normally,
 grep would strip out carriage returns before
 doing pattern matching; this option overrides that behavior. This
 does, however, require you to be more thoughtful when writing
 patterns. For instance, if content in a file contains the pattern
 but has a newline character in the middle, a search for that
 pattern will not find the content.

	-V, --version
	 Simply outputs the version information about
 grep and then exits.

	-z, --null-data
	grep -z pattern
Input lines are treated as though each one ends with a
 zero byte, or the ASCII NUL character, instead of a newline.
 Similar to the -Z or --null options, except this option works
 with input, not output.

One final limitation of basic grep: the
 “extended” regular expressions metacharacters—?, +,
 {, }, |,
 (, and)—do not work with basic
 grep. The functions provided by those characters
 exist if you preface them with an escape. More on that in the next
 section.

Extended Regular Expressions (egrep or
 grep -E)

grep -E and egrep are the same exact command. The commands search files for
 patterns that have been interpreted as extended regular expressions. An
 extended regular expression goes beyond just using the previously
 mentioned options; it uses additional metacharacters to create more
 complex and powerful search strings. As far as command-line options,
 grep -E and grep take the same
 ones—the only differences are in how they process the search
 pattern:
	?
	? in an expression carries the meaning of
 optional. Any character preceding the question
 mark may or may not appear in the target string. For example, say
 you are looking for the word “behavior”, which can also be written
 as “behaviour”. Instead of using the or
 (|) option, you can use the
 command:
egrep 'behaviou?r' filename
As a result, the search is successful for both “behavior” and
 “behaviour” because it will treat the presence or absence of the
 letter “u” the same way.

	+
	The plus sign will look at the previous character and
 allow an unlimited amount of repetitions when it looks for matching
 strings. For instance, the following command would match both
 “pattern1” and “pattern11111”, but would not match “pattern”:
egrep 'pattern1+' filename

	{n,m}
	The braces are used to determine how many times a pattern
 needs to be repeated before a match occurs. For instance, instead of
 searching for “patternnnn”, you could enter the following
 command:
egrep 'pattern{4}' filename
This will match any string that contains “patternnnn” without
 going through the trouble of typing out repeated strings. In order
 to match at least four repetitions, you would use the following
 command:
egrep 'pattern{4,}' filename
On the other hand, look at the following example:
egrep 'pattern{,4}' filename
Despite the fact that it would fit in with the conventions
 already used, this is not valid. The command
 just shown would result in no matches because the ability to have
 “no more than X” matches is not
 available.
To match between four and six repetitions, use the following:
egrep 'pattern{4,6}' filename

	|
	Used in a regular expression, this character signifies
 “or.” As a result, pipe (|)
 allows you to combine several patterns into one expression. For
 example, suppose you need to find either of two names in file. You
 could issue the following command:
egrep 'name1|name2' filename
It would match on lines containing either “name1” or
 “name2”.

	()
	Parentheses can be used to “group” particular strings of text for the
 purposes of backreferences, alternation, or simply readability.
 Additionally, the use of parentheses can help resolve any ambiguity
 in precisely what the user wants the search pattern to do. Patterns
 placed inside parentheses are often called subpatterns.
Also parentheses put limits on pipe (|). This allows the user to more tightly
 define which strings are part of or in scope of the “or” operation.
 For instance, to search for lines that contain either “pattern” or
 “pattarn”, you would use the following command:
egrep 'patt(a|e)rn' filename
Without the parentheses, the search pattern would be patta|ern, which would match if the string
 “patta” or “ern” is found, a very different outcome than the
 intention.

In basic regular expressions, the backslash (\) negates the metacharacter’s behavior and forces the
 search to match the character in a literal sense. The same happens in
 egrep, but there is an exception. The metacharacter
 { is not supported by the traditional egrep. Although some
 versions interpret \{
 literally, it should be avoided in egrep
 patterns. Instead, [{] should be used
 to match the character without invoking the special meaning.
It is not precisely true that basic grep does
 not have these metacharacters as
 well. It does, but they cannot be used directly. Each of the special metacharacters
 in extended regular expressions needs to be prefaced by an escape to draw
 out its special meaning. Note that this is the reverse of normal escaping
 behavior, which usually strips special meaning.
Table 1-3
 illustrates how to use the extended regular expressions metacharacters
 with basic grep.
Table 1-3. Basic versus extended regular expressions comparison
	Basic regular
 expressions
	Extended regular
 expressions

	'\(red\)'
	'(red)'

	'a\{1,3\}'
	'a{1,3}'

	'behaviou\?r'
	'behaviou?r'

	'pattern\+'
	'pattern+'

From Table 1-3, you
 get the idea why people would prefer to just use extended
 grep when they want to use extended regular
 expressions. Convenience aside, it is also easy to forget to place a
 necessary escape in basic regular expressions, which would cause the
 pattern to silently not return any matches. An ideal regular expression
 should be clear and use as few characters as possible.

Fixed Strings (fgrep or grep -F)

In the following section, we discuss grep
 -F, or fgrep. fgrep
 is known as fixed string or fast grep. It is known as
 “fast grep” because of the great performance it has compared to
 grep and egrep. It accomplishes
 this by dropping regular expressions altogether and looking for a defined
 string pattern. It is useful for searching for specific static content in
 a precise manner, similar to the way Google operates.
The command to evoke fgrep is:
fgrep string_pattern filename
By design, fgrep was intended to operate fast
 and free of intensive functions; as a result, it can take a more limited
 set of command-line options. The most common ones are:
	-b
	fgrep -b string_pattern filename
Shows the block number where the
 string_pattern was found. Because entire
 lines are printed by default, the byte number displayed is the byte
 offset of the start of the line.

	-c
	fgrep -c string_pattern filename
This counts the number of lines that contain one or more
 instances of the string_pattern.

	-e, -string
	fgrep -e string_pattern filename
Used for the search of more than one pattern or when the
 string_pattern begins with hyphen. Though
 you can use a newline character to specify more than one string,
 instead you could use multiple -e
 options, which is useful in scripting:
fgrep -e string_pattern1
-e string_pattern2 filename

	-f file
	fgrep -f newfile string_pattern filename
Outputs the results of the search into a new file instead of
 printing directly to the terminal. This is unlike the behavior of
 the -f option in grep; there it
 specifies a search pattern input file.

	-h
	fgrep -h string_pattern filename
When the search is done in more than one file, using
 -h stops
 fgrep from displaying
 filenames before the matched output.

	-i
	fgrep -i string_pattern filename
The -i option tells fgrep to ignore
 capitalization contained in the
 string_pattern when matching the
 pattern.

	-l
	fgrep -l string_pattern filename
Displays the files containing the
 string_pattern but not the matching lines
 themselves.

	-n
	fgrep -n string_pattern filename
Prints out the line number before the line that matches the
 given string_pattern.

	-v
	fgrep -v string_pattern filename
Matches any lines that do not contain the given
 string_pattern.

	-x
	fgrep -x string_pattern filename
Prints out the lines that match the
 string_pattern in their entirety. This is
 the default behavior of fgrep, so usually it
 does not need to be specified.

Perl-Style Regular Expressions (grep -P)

Perl-style regular expressions use the Perl-Compatible Regular Expressions (PCRE) library to
 interpret the pattern and perform
 searches. As the name implies, this style uses Perl’s implementation of
 regular expressions. Perl has an advantage because the language was
 optimized for text searching and manipulation. As a result, PCRE can be more
 efficient and far more function-rich for finding content. The consequence
 is that it can be horribly messy and complex. To put it another way, using
 PCRE to find information is like using a weed whacker on yourself to do
 brain surgery: it gets the job done with minimum of effort, but it is an
 awful mess.
The specific search features and options with PCRE are not dependent
 upon grep itself, but use the libpcre library and the
 underlying version of Perl. This means that it can be highly variable
 between machines and operating systems. Usually the pcrepattern or
 pcre manpages will provide
 machine-specific information on the options that are available on your
 machine. What follows is a general set of PCRE search functions that
 should be available on most machines.
Also note that Perl-style regular expressions may or may not be
 present by default on your operating system. Fedora and Red Hat–based systems tend to include them (assuming you install the PCRE library), but Debian, for
 instance, does not enable Perl-style regular expressions by default in
 their grep package. Instead, they ship a
 pcregrep program, which provides very similar
 functionality to grep -P. Individuals can, of course,
 compile their own grep binary that does include PCRE
 support should they be so inclined.
To test whether Perl-style regular expression support is built-in to
 your version of grep, run the following command (or
 something like it):
$ grep -P test /bin/ls
grep: The -P option is not supported
This usually means that when grep was built it
 could not find the libpcre library or that it was intentionally disabled
 with the --disable-perl-regexp
 configuration option when it was compiled. The solution is to
 either install libpcre and recompile
 grep or find an applicable package for your operating
 system.
The general form of using Perl-style grep
 is:
grep -P options pattern file
It is important to note that, unlike grep -F
 and grep -E, there is no “pgrep”
 command. The pgrep command is used to search for
 running processes on a machine. All the same command-line options that are
 present for grep will work with grep
 -P; the only difference is how the pattern is processed. PCRE
 provides additional metacharacters and character classes that can be used
 enhance search functionality. Other than the additional metacharacters and
 classes, the pattern is constructed in the same way as a typical regular
 expression.
This section covers only four aspects of PCRE options: character
 types, octal searching, character properties, and PCRE options.
Character Types

Although there is some overlap here with standard
 grep, PCRE comes with its own set of escapes that
 provide a more robust set of matching. Table 1-4 contains the list of escapes
 available under PCRE.
Table 1-4. PCRE-specific escapes
	\a
	Matches the “alarm” character (HEX 07)

	\cX
	Matches Ctrl-X, where
 X is any letter

	\e
	Matches escape character (HEX 1B)

	\f
	Matches form feed character (HEX 0C)

	\n
	Matches newline character (HEX 0A)

	\r
	Matches carriage return (HEX 0D)

	\t
	Matches tab character (HEX 09)

	\d
	Any decimal digit

	\D
	Any non-decimal character

	\s
	Any whitespace character

	\S
	Any
 non-whitespace character

	\w
	Any “word” character

	\W
	Any “non-word” character

	\b
	Matches when at word boundary

	\B
	Matches when not at word boundary

	\A
	Matches when at start of subject

	\Z
	Matches when at end of subject or before
 newline

	\z
	Matches when at end of subject

	\G
	Matches at first matching position

Octal Searching

To search for octal charters, use the / metacharacter followed by the octal number
 of the metacharacter. For instance, to search for “space”, use /40 or /040. However, this is one of the areas where
 PCRE can be ambiguous if you aren’t careful. The / metacharacter can also be used for
 backreference (a reference to a previous pattern given to PCRE).
For instance, /1 is a
 backreference to the first pattern in a list, not octal character 1. To
 be free of ambiguity, the easiest way is to specify the octal character
 as a three-digit number. Up to 777 is permitted in UTF-8 mode. All
 single-digit numbers given after the slash are interpreted as a
 backreference, and if there have been more than XX
 patterns, then \XX is interpreted
 as a backreference as well.
Additionally, PCRE can search from a character in hex format or a
 string of characters represented in hex format. \x0b will search for the hex character 0b, for
 example. To search for a hex string, simply use \x{0b0b....}, where the string is contained
 within the braces.

Character Properties

Additionally, PCRE comes with a set of functions that will search for characters
 based on their property. This comes in two particular flavors, language
 and character type. To use this, the \p or \P
 sequence is used. \p searches if a
 given property is present, whereas \P
 matches any character where it is not present.
To search for the presence (or absence) of characters that belong
 to a certain language, for example, you would use \p{Greek} to find Greek characters. \P{Greek}, on the other hand, would match any
 character that is not part of the Greek character set. For a complete
 list of languages available, consult the manpage for the particular
 pcrepattern implementation on your system.
The other set of properties refers to the attributes of a given
 character (uppercase, punctuation, etc.). The capital letter represents
 the major grouping of characters, and the small letter refers to the
 subgroup. If only the capital letter is specified (e.g., /p{L}), all subgroups are matched. Table 1-5 shows the complete
 list of property codes.
Table 1-5. PCRE character properties
	C	Other	No	Other number
	Cc	Control	P	Punctuation
	Cf	Format	Pc	Connector punctuation
	Cn	Unassigned	Pd	Dash punctuation
	Co	Private use	Pe	Close punctuation
	Cs	Surrogate	Pf	Final punctuation
	L	Letter	Pi	Initial punctuation
	Ll	Lowercase	Po	Other punctuation
	Lm	Modifier	Ps	Open punctuation
	Lo	Other letter	S	Symbol
	Lt	Title case	Sc	Currency symbol
	Lu	Uppercase	Sk	Modifier symbol
	M	Mark	Sm	Mathematical symbol
	Mc	Spacing mark	So	Other symbol
	Me	Enclosing mark	Z	Separator
	Mn	Non-spacing mark	Zl	Line separator
	N	Number	Zp	Paragraph separator
	Nd	Decimal	Zs	Space separator
	Nl	Letter number	 	

These properties allows for creating more robust patterns with
 fewer characters based on a large number of properties. One important
 note, however: if pcre is compiled by hand, the
 --enable-unicode-properties
 configuration option must be used to compile in support for these
 options. Some libpcre packages (i.e., Fedora or
 Debian packages) have this built-in (especially internationally minded
 ones), but others do not. To check whether support is built-in to
 pcre, run the following (or something like
 it):
$ grep -P '\p{Cc}' /bin/ls
grep: support for \P, \p, and \X has not been compiled
That error message about support being compiled in has to do with
 pcre and not grep, which is
 not exactly intuitive. The solution is to either find a better
 package or compile your own with the correct options.

PCRE Options

Finally, there are four different options that can alter the way
 PCRE looks for text: PCRE_CASELESS
 (i), PCRE_MULTILINE
 (m), PCRE_DOTALL (s), and PCRE_EXTENDED
 (x). PCRE_CASELESS will match patterns regardless
 of differences in capitalization. By default, PCRE treats a line of text
 as one line, even if several \n
 characters are present. PCRE_MULTILINE will allow for treating those
 \n characters as lines, so if
 $ or ^ is used, it will search lines based on the
 presence of \n and actual hard lines
 in the search string.
PCRE_DOTALL causes PCRE to interpret the
 . (dot) metacharacter to include
 newlines when it does “wildcard” matching.
 PCRE_EXTENDED is useful for including comments
 (placed within unescaped #
 characters) in complicated search strings.
To enable these options, place the given option letter inside
 parentheses with a beginning question mark. For instance, to craft a
 pattern that will search for the word “copyright” in a caseless format,
 you would use the following pattern:
'(?i)copyright'
Any combination of letters can be used inside the parentheses.
 These options can be placed so that they operate on only part of the
 search string: simply place them at the beginning of the part of the
 string where the option should take effect. To negate an option, preface
 the letter with a - (hyphen). For
 example:
'Copy(?i)righ(?-i)t'
This would match “CopyRIGHt”, “CopyrIgHt”, and “Copyright”, but it
 would not match “COPYright” or “CopyrighT”.
'(?imsx)copy(?-sx)right'
This would set all the PCRE options we’ve discussed, but once it
 reaches the “r” character, PCRE_DOTALL and
 PCRE_EXTENDED would be turned off.
If using Perl-based regular expressions seems complicated, that’s
 because it is. There is far more to it than can be discussed here, but
 the chief advantage with PCRE is its flexibility and power, which goes
 well beyond what regular expressions can do. The downside is the great
 deal of complexity and ambiguity that can be involved.

Introduction to grep-Relevant Environment Variables

In previous examples, we came across the concept of
 environment variables and their effect on grep.
 Environment variables allow you to customize the default options and
 behavior of grep by defining the environment settings
 of the shell, thereby making your life easier. Issue an
 env command in a terminal to output all the current parameters. The
 following is an example of what you might see:
$ env
USER=user
LOGNAME=user
HOME=/home/user
PATH=/usr/local/sbin:/usr/local/bin:/usr
/sbin:/usr/bin:/sbin:/bin:/usr/X11R6/bin:.
SHELL=/usr/local/bin/tcsh
OSTYPE=linux
LS_COLORS=no=0:fi=0:di=36:ln=33:ex=32
:bd=0:cd=0:pi=0:so=0:do=0:or=31
VISUAL=vi
EDITOR=vi
MANPATH=/usr/local/man:/usr/man:/usr
/share/man:/usr/X11R6/man
...
By manipulating the .profile file in your home directory, you can make permanent changes to the
 variables. For example, using the output just shown, suppose you decide to
 change your EDITOR from vi to vim. In
 .profile, type:
setenv EDITOR vim
After writing out the changes, this permanently ensures
 vim will be the default editor for each session that
 uses this .profile. The previous
 examples use some of the built-in variables, but if you are code-savvy,
 there is no limit (save for your imagination) on the variables you create
 and set.
To reiterate, grep is a powerful search tool
 because of the many options available to the user. Variables are no
 different. There are several specific options, which we describe in detail
 later. However, it should be noted that grep falls
 back onto C locale when the variables LC_foo, LC_ALL, or LANG are not set, when the local catalog is not
 installed, or when the national language support (NLS) is not complied.
To start off, “locale” is the convention used for communicating in a
 particular language. For example, when you set the variable LANG or language to English, you are using the
 conventions tied in with the English language for interacting with the
 system. When the computer starts up, it defaults to the conventions set up
 in the kernel, but these settings can be changed.
LC_ALL is not actually a
 variable, but rather a macro that allows you to “set locale” for all
 purposes. Although LC_foo is a
 locale-specific setting for a variety of character sets,
 foo can be replaced by ALL, COLLATE,
 CTYPE, MONETARY, or TIME, to name a few. These are then set to
 create the overall language conventions for the environment, but it
 becomes possible to use one language’s conventions for money and another
 for time conventions.
How is this related to grep? For instance, many
 of the POSIX character classes depend on which specific locale is being
 used. PCRE also borrows heavily from locale settings, especially for the
 character classes it uses. Because grep is designed
 for searching for text in text files, the way language is processed on a
 machine matters, and that is determined by the locale.
For most users, leaving the locale settings as the default is fine.
 Users who wish to search in other languages or want to work in a different
 language than the system environment might want to change these.
Now that we have familiarized ourselves with the concept of the
 locale, the environment variables specific to grep
 are:
	GREP_OPTIONS
	This variable overrides the “compiled” default options for
 grep. This is as if they were placed in the
 command line as options themselves. For example, suppose you want to
 create a variable for the option --binary-files and set it to text. Therefore, --binary-files automatically implies
 --binary-files=text, without the
 need to write it out. However, --binary-files can be overridden by
 specific and different variables (--binary-files=without-match, for
 example).
This option is especially useful for scripting, where a set of
 “default options” can be specified once in the environment variables
 and it never has to be referenced again. There is one gotcha,
 though: any options set with GREP_OPTIONS will be interpreted as though
 they were put on the command line. This means that command-line
 options don’t override the
 environment variable, and if they conflict,
 grep will produce an error. For
 instance:
$ export GREP_OPTIONS=-E
$ grep -G '(red)' test
grep: conflicting matchers specified
Some care and consideration needs to be taken when putting
 options into this environment variable, and it is almost always best
 to set only those options that are of a general nature (for
 instance, how to handle binary files or devices, whether to use
 color, etc.).

	GREP_COLORS (or GREP_COLOR for older versions)
	This variable specifies the color to be used for highlighting the matching
 pattern. This is invoked with the --color[=WHEN] option, where
 WHEN is never, auto, or always. The setting should be a two-digit
 number from the list in Table 1-6
 that corresponds to the specific color.
Table 1-6. List of color options
	Color
	Color
 code

	Black
	0;30

	Dark
 gray
	1;30

	Blue
	0;34

	Light
 blue
	1;34

	Green
	0;32

	Light
 green
	1;32

	Cyan
	0;36

	Light
 cyan
	1;36

	Red
	0;31

	Light
 red
	1;31

	Purple
	0;35

	Light
 purple
	1;35

	Brown
	0;33

	Yellow
	1;33

	Light
 gray
	0;37

	White
	1;37

The colors need to be specified in a particular syntax because
 the highlighting covers additional fields as well, not just matching
 words. The default setting is as follows:
GREP_COLORS='ms=01;31:mc=01;31:sl=:
cx=:fn=35:ln=32:bn=32:se=36'
If the desired color starts with 0 (as with 0;30, which is black), the 0 can be
 discarded to shorten the setting. Where settings are left blank, the
 default terminal color normal text is used. ms stands for matching string (i.e., the
 pattern you enter), mc is
 matching context (i.e., lines shown with the -C option), sl is for the color of selected lines,
 cx is the color for selected
 context, fn is the color for the
 filename (when shown), ln is the
 color for line numbers (when shown), bn is for byte numbers (when shown), and
 se is for separator color.

	LC_ALL, LC_COLLATE, LANG
	These variables have to be specified in that order, but ultimately
 they determine the collating or an arrangement in the proper
 sequence of the expressed ranges. For instance, this could be the
 sequence of letters for alphabetizing.

	LC_ALL, LC_CTYPE, LANG
	These variables determine LC_CTYPE, or the type of characters to be
 used by grep. For example, which characters are
 whitespace, which will be a form feed, and so on.

	LC_ALL, LC_MESSAGES, LANG
	These variables determine the MESSAGES
 locale and which language grep will use for the
 messages that it outputs. This is a prime example of where
 grep falls back on the C locale’s default,
 which is American English.

	POSIXLY_CORRECT
	When set, grep follows the POSIX.2
 requirements that state any options following filenames are treated
 as filenames themselves. Otherwise, those options are treated as if
 they are moved before filenames and treated as options. For
 instance, grep -E
 string filename -C 3 would interpret “-C 3” as filenames
 instead of as an option. Additionally, POSIX.2 states that any
 unrecognized options be labeled as “illegal”—by default, under GNU
 grep, these are treated as “invalid.”

Choosing Between grep Types and Performance Considerations

Now that we have gone over
 all four grep programs, the question is how should
 you determine which to employ for a given task. For most routine uses,
 people tend to use the standard grep command (grep
 -G) because performance isn’t an issue when searching small
 files and when complex search patterns aren’t necessary. Generally, the
 basic grep is the default choice for most people, and
 so the question becomes when it makes sense to use something else.
When to Use grep -E

Although almost everything can be done in grep -G that can be
 done in grep -E, the latter has the advantage of
 accomplishing the task in fewer characters, without the counterintuitive
 escaping discussed earlier. All of
 the extra functionality in extended regular expressions has to do with
 quantifiers or subpatterns. Additionally, if any significant use of
 backreferences is needed, extended regular expressions are ideal.

When to Use grep -F

There is one prerequisite to using grep -F, and if a user
 cannot meet that requirement, grep -F is simply not
 an option. Namely, any search pattern for grep -F
 cannot contain any metacharacters, escapes, wildcards, or alternations.
 Its performance is faster, but at the expense of functionality.
That said, grep -F is extremely useful for
 quickly searching large amounts of data for tightly defined strings,
 making it the ideal tool to search through immense logfiles quickly. In
 fact, it is fairly easy to develop a robust “log watching” script with
 grep -F and a good text file listing of important
 words or phrases that should be pulled out of logfiles for
 analysis.
Another good use for grep -F is searching
 through mail logs and mail folders to ensure delivery of emails to
 users, especially on systems with many mail accounts. This is made
 possible by assigning every email message a unique Message ID. For
 instance:
grep -FHr MESSAGE-ID /var/mail
This command will search for the fixed string
 MESSAGE-ID for all files inside
 /var/mail (and recurse any subdirectories), and
 then display the match and also the filename. This is a quick,
 down-and-dirty way to see which users have a particular message sitting
 in their mailbox. The real bonus is that this information can be
 verified without ever having to look inside a user’s mailbox and deal
 with the privacy issues of reading other people’s mail. In reality, you
 may wish to search mailbox directories and spam folders, which
 typically aren’t stored under /var/mail, but you
 get the point of how this works.

When to Use grep -P

Perl-style regular expressions are hands-down the most powerful of all the styles presented in
 this book. They are also the most complicated, prone to user-error, and
 potentially capable of bogging down a system’s performance if not done
 correctly. However, it is clearly the superior style out of all the
 regular expression formats used in this book.
For this reason, many applications prefer to use PCRE instead of GNU regular expressions. For instance, the popular intrusion
 detection system snort uses PCRE to match bad packets on the wire. The
 patterns are written intelligently so that there can be very little
 packet loss, even though a single machine can search all the packets
 going through a fully loaded 100 MB or GB interface. As has been said
 before, writing a regular expression well tends to be more important
 than the particular regular expression format you use.
Some people simply prefer to use grep -P as
 their default (for instance, by specifying -P inside their GREP_OPTIONS environment variable). If searching is going to be done in an
 “international” way, the PCRE language character classes make this far
 easier. PCRE comes with a many more character classes for finely tuning
 a regular expression, beyond what is possible with the POSIX
 definitions, for instance. Most importantly, the ability to use the
 various PCRE options (e.g., PCRE_MULTILINE) allows searching in more
 powerful ways than GNU regular expressions.
For simple to moderately complex regular expressions,
 grep -E
 suffices. However, there are limitations, and those may push a user
 toward PCRE. It is a trade-off between complexity and functionality.
 PCRE also helps users craft regular expressions that can be almost
 immediately transferred directly into Perl scripts (or transferred from
 Perl scripts) without having to go through a great deal of
 translation.

Performance Implications

For most routine uses, grep performance is
 not an issue. Even megabyte-long files can be searched quickly using any
 of the specific grep programs without any
 noticeable performance difference. Obviously, the larger the file, the
 longer the search takes. For searching through gigabytes or terabytes of
 data when performance is a consideration, grep -F
 is likely the desired
 solution, but only if it is possible to craft the search pattern without
 using any metacharacters, alternations, or backreferences. This is not
 always the case.
The more “choices” given to grep, the longer
 a particular search takes. For instance, using many alternations causes
 grep to search lines multiple times instead of just
 once. This may be necessary for a given search pattern, but occasionally
 alternation can be rewritten as a character class. For instance:
grep -E '(0|2|4|6|8)' filename
grep -E '[02468]' filename
Comparing the two examples, the second one performs better because
 no alternation is used and so lines do not have to be searched multiple
 times. Avoid alternation when other alternatives exist that accomplish
 the same thing.
By far, the biggest cause of performance slowdowns when using
 grep is the use of backreferences. The time it
 takes grep to run a command increases almost
 exponentially with the use of additional backreferences. Backreferences
 can, in effect, become handy
 aliases to previous subpatterns; however, performance will suffer. Backreferences
 should not be used if performance is a concern and when subpatterns are
 not using alternation for this reason. See the next section for a more
 detailed discussion of backreferences.
In closing, among grep -G, grep
 -E, and grep -P, there is not much of a
 performance impact; it depends mostly on how the regular expression
 itself is constructed. That said, grep -P provides the most opportunities for slower
 performance but also the most flexibility to match a wide variety of
 content.

Advanced Tips and Tricks with grep

As mentioned earlier, grep can be used in very
 powerful ways to search for content in files or across a filesystem. It is
 possible to use previous matches to search later strings (called
 backreferences). There are also a
 variety of tricks to search nonpublic personal information and even find
 binary strings in binary files. The following sections discuss some
 advanced tips and tricks.
Backreferences

The grep program has the ability to match based on multiple previous
 conditions. For instance, if you want to find all lines that repeatedly
 use a particular set of words, a single grep
 pattern will not work; however, it is possible to do this with the use
 of backreferences.
Suppose you wish to find any line that has multiple instances of
 the words “red”, “blue”, or “green”. Imagine the following text
 file:
The red dog fetches the green ball.
The green dog fetches the blue ball.
The blue dog fetches the blue ball.
Only the third line repeats the use of the same color. A regular
 expression pattern of ''(red|green|blue)*(red|green|blue)'' would
 return all three lines. To overcome this problem, you could use
 backreferences:
grep -E '(red|green|blue).*\1' filename
This command matches only the third line, as intended. For
 extended regular expressions, only a single digit can be used to specify
 a backreference (i.e., you can only refer back to the ninth
 backreference). Using Perl-style regular expressions, theoretically you can have many more (at least two
 digits).
This could be used to validate XML syntax (i.e., the “opening” and
 “closing” tags are the same), HTML syntax (match all lines with the
 various opening and closing “heading” tags, such as <h1>, <h2>, etc.), or even to analyze writing
 for pointless repetition of buzzwords.
It is important to note that backreferences require the use of
 parentheses to determine reference numbers. grep
 will read the search pattern from left to right, and starting with the
 first parenthetical subpattern it finds, it will start numbering from
 1.
Typically, backreferences are used when a subpattern contains
 alternation, as in the previous example. It is not required, however,
 for a subpattern to actually contain alternation. For instance, assuming
 there is a large subpattern that you wish to refer back to later in the
 regular expression, you could use a backreference as an artificial
 “alias” for that subpattern without having to type out the entire
 pattern multiple times. For instance:
grep -E '(I am the very model of a
modern major general.).*\1' filename
would search for repetitions of the sentence “I am the very model
 of a modern major general.” separated by any amount of optional content.
 This certainly reduces the number of keystrokes and makes the regular
 expression more manageable, but it also causes some performance
 considerations as discussed
 previously. The user needs to weigh the benefits of convenience with
 performance, depending on what she is trying to accomplish.

Binary File Searching

Up to this point, it seems that grep
 could only be used to search for text strings in text files. This is
 what it is most used for, but grep can also search
 for strings in binary files.
It is important to note that “text” files exist on computers
 mostly for human readability. Computers talk purely in binary and
 machine code. The entire ASCII character set consists of 255 characters, of which only about 60
 are “human-readable.” However, many computer programs contain text
 strings as well. For instance, “help” screens, filenames, error
 messages, and expected user input may appear as text inside binary
 files.
The grep command does not distinguish to any
 great extent between searching text or binary files. As long as you feed
 it patterns (even binary patterns), it will happily search any file for
 the patterns you tell it to search. It does do an initial check to see
 if a file is binary and alters the way it displays results accordingly
 (unless you manually specify other behavior):
bash$ grep help /bin/ls
Binary file /bin/ls matches
This command searches for the string “help” in the binary file
 ls. Instead of showing the line where the text
 appears, it simply indicates that a match was found. The reason again
 relates to the fact that computer programs are in binary and therefore
 not human-readable. There are no “lines” in programs, for instance.
 Binary files don’t add line breaks because they would alter the
 code—they are simply a feature to make text files more readable, which
 is why grep tells you only whether there is a
 match. To get an idea of the kind of text that is in a binary file, you
 can use the strings command. For instance, strings /bin/ls would list all the text
 strings in the ls command.
There is another way to search binary files that is specific for
 binary data as well. In this case, you need to rely on some tricks,
 because you cannot type in binary data directly with a normal keyboard.
 Instead, you need to use a special form of a regular expression to type
 in the hexadecimal equivalent of the data you want to search. For
 instance, if you wanted to search a binary file that had a hexadecimal
 string of ABAA, you would type the following command:
bash$ grep '[\xabaa]' test.hex
Binary file test.hex matches
The general format is to type /x and then the hexadecimal string you wish to match. There is no real
 limit to the size of the string you can enter. This type of searching
 could be useful in malware analysis. For instance, the metasploit
 framework (http://www.metasploit.org) can generate
 binary payloads to exploit remote machines. This payload could be used
 to establish a remote shell, add
 accounts, or accomplish other malicious activity.
Using hexadecimal searching, it would be possible to determine
 from binary strings which of the metasploit payloads were being used in
 an actual attack. Additionally, if you could determine a unique
 hexadecimal string that was used in a virus, you could create a basic
 virus scanner using grep. In fact, many older virus
 scanners did more or less this very thing by searching for unique binary
 strings in files against a list of known bad hexadecimal
 signatures.
Many buffer overflows or exploit payloads are written in C, and it
 is typical to write out each hexadecimal digit in C with the \x escape. For instance, take the following buffer overflow exploit
 payload:
"\xeb\x17\x5e\x89\x76\x08\x31\xc0\x88\x46
\x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e
\x08\x31\xd2\xcd\x80\xe8\xe4\xff\xff\xff
\x2f\x62\x69\x6e\x2f\x73\x68\x58";
It may be more advantageous to write the regular expression in the
 same way instead of typing out the entire hexadecimal string, if for no
 other reason than to allow for copying and pasting from exploit code.
 Either way could work—it is your preference. The exploit just shown
 works against Red Hat 5 and 6 machines (not Enterprise Red Hat), so this
 particular code is useless, but it is not hard to find exploit code in
 the wild.
As an interesting aside, this method does not seem to work for
 searching files that are recognized as text files. For instance, if you
 tried to search for text in a text file using the hexadecimal equivalent
 of the ASCII codes, grep would not find the
 content. Searching for hexadecimal strings works only for files that
 grep recognizes as “binary.”

Useful Recipes

The following is a quick list of useful grep
 recipes to find certain classes of content. Because the availability of
 Perl-based regular expressions varies, the list will use extended
 grep-style recipes, even though Perl would be
 quicker in many cases.
Typing these commands in on the command line and returning the
 default output to the screen may not make much sense if the desire is to
 search for sensitive information on a partition. It would make more
 sense to use the -l and -r options to recurse through
 an entire filesystem and display matching filenames instead of entire
 lines.
For many recipes, it makes sense to place \b before and after the string. This ensures
 that the content has some sort of whitespace before and after it,
 preventing the case in which you are looking for a 9-digit number that
 appears to be a Social Security number but get false-positive matches on
 29-digit numbers.
Finally, these patterns (and potentially others that may make
 sense) can be put into a file and used as a list of input patterns given
 to grep, so all of them are searched for at the
 same time.
IP addresses

$ grep -E '\b[0-9]{1,3}(\.[0-9]{1,3}){3}
\b' patterns

123.24.45.67
312.543.121.1
This pattern will help point out IP addresses in a file. It is
 important to note that [0–9] could
 have just as easily been replaced with [:digit:] for better readability. However,
 most users tend to prefer less keystrokes compared to readability when
 given the choice. A second note is that this will also find strings
 that aren’t valid IP addresses, such as the second one listed in the
 example. Regular expressions work on individual characters, and there
 is not a good way to tell grep to search for a
 range of values from 1–255. In this case, there may be false
 positives. A more complicated formula to ensure that false positives
 are not registered looks like:
$ grep -E '\b((25[0-5]|2[0-4][0-9]|[01]?
[0-9][0-9]?)\.){3}(25[0-5]|2[0-4][0-9]|
[01]?[0-9][0-9]?)\b' patterns
In this case, it makes sure to find IP addresses with an octet
 between 0–255 by establishing a combination of patterns that would
 work. This does guarantee only matching IP addresses, but it is more
 complicated and has lower performance.

MAC addresses

$ grep -Ei '\b[0-9a-f]{2}
(:[0-9a-f]{2}){5}\b' patterns

ab:14:ed:41:aa:00
In this case, the additional -i
 option is added so no regard is given to capitalization. As with the
 IP recipe, [:xdigit:] could be used
 in place of [0–9a–f] if better
 readability is desired.

Email addresses

$ grep -Ei '\b[a-z0-9]{1,}@*\.
(com|net|org|uk|mil|gov|edu)\b' patterns

test@some.com
test@some.edu
test@some.co.uk
The list shown here is only a partial subset of top-level
 domains that are currently approved for use. For instance, one may
 wish to search for only U.S.-based addresses, so the
 .uk result may not make much sense. Perhaps
 identifying obvious spammers in the mail logs is the goal, in which
 case searching for the .info top-level domain may
 be advised (we have never met anyone who has gotten legitimate email
 from that top-level domain). The pattern shown is basically a starting
 point for customization.

U.S.-based phone numbers

$ grep -E '\b(\(|)[0-9]{3}
(\)|-|\)-|)[0-9]{3}(-|)[0-9]{4}\b'
 patterns

(312)-555-1212
(312) 555-1212
312-555-1212
3125551212
In this case, the pattern is a little more complex because of
 the wide variety of U.S.-based phone numbers. There may be spaces,
 dashes, parentheses, or nothing at all. Note the way the parentheses
 indicate the presence of varying characters, including no character at
 all.

Social Security numbers

$ grep -E '\b[0-9]{3}(|-|)
[0-9]{2}(|-|)[0-9]{4}\b' patterns

333333333
333 33 3333
333-33-3333
Social Security numbers are the key to an individual’s identity in the
 United States, so the use of this identifier is becoming increasingly
 restricted. Many organizations now actively search all files on a
 system for Social Security numbers using tools such as Spider. This
 tool is not much more sophisticated than a list of these
 grep recipes. In this case, however, the pattern
 is far simpler than the one for phone numbers.

Credit card numbers

For most credit card numbers, this expression works:
$ grep -E '\b[0-9]{4}((|-|)
[0-9]{4}){3}\b' patterns

1234 5678 9012 3456
1234567890123456
1234-5678-9012-3456
American Express card numbers would be caught by this expression:
$ grep -E '\b[0-9]{4}(|-|)
[0-9]{6}(|-|)[0-9]{5}\b' patterns

1234-567890-12345
123456789012345
1234 567890 12345
There are two versions because American Express uses a different
 pattern than other credit cards. However, the basic idea remains the
 same: looking for groupings of numbers that fit the general pattern of
 a credit card number.

Copyright-protected or confidential material

Finally, many organizations have internal data classifications
 that make it easy to identify privileged information within an
 organization. Hopefully, these data classifications come with required
 text that must be displayed in the document. Those strings can simply
 be put in as search patterns in grep (or
 fgrep) to quickly identify where protected information may reside
 on a disk, especially on those machines where that information does
 not belong.
Most file formats with text are not true ASCII files, but
 usually the text content can be located and identified within the
 file. For instance, you can use grep to search
 for the presence of certain strings in Word files, even though these
 files aren’t viewable in a terminal.
For instance, if your corporation uses the tag “ACME
 Corp.—Proprietary and Confidential,” you could use the following
 command to locate files that have this content:
fgrep -l 'ACME Corp. -
Proprietary and Confidential' patterns

Searching through large numbers of files

Like many shell commands, the grep command
 will process a large number of files in a given command. For instance,
 grep sometext * will examine every filename in
 the current directory for “sometext”. However, there is a limit to the
 number of files that can be handled in a single command. If you ask
 grep to process too many files, it will produce
 an error saying “Too Many Files” or the equivalent (depending on your
 shell).
A tool called xargs can get around this
 limitation. To invoke it, however, requires some circumspection. For
 instance, to search every file on a system for “ABCDEFGH”, you would
 use the following command:
find / -print | xargs grep 'ABCDEFGH'
This will search every file on a machine for the string “ABCDEFGH”, but will not run into the
 typical errors that result when too many files are open. Usually this
 limit is a function of the kernel that allows only so many pages of
 memory to be devoted to command-line arguments. Short of recompiling
 the kernel for a larger value, using xargs is
 your best bet.

Matching strings across multiple lines

At the start of this book, we said that
 grep cannot match strings if they span multiple
 lines, but that isn’t precisely true. Although most versions of
 grep cannot handle multiple lines easily,
 grep -P can overcome this in multiline mode. For
 instance, take the following file:
red
dog
Normal grep tricks, even specifying the
 newline character, will not match if you want to search for a line
 with “red” and the following line “dog”.
$ grep -E 'red\ndog' test
$ grep -G 'red\ndog' test
$ grep -F 'red\ndog' test
However, this is possible if you use
 PCRE_MULTILINE with grep
 -P:
$ grep -P '(?m)red\ndog' test
red
dog
This allows a user to overcome the limitation in
 grep where it will examine only individual lines.
 This is also one of the many reasons why grep -P
 tends to be used for more powerful searching applications.
Finally, there are many websites and forums out there where you
 can find useful regular expression patterns for particular
 applications. Odds are that others have used regular expressions and
 grep to pull content out of that same
 application. The possibilities are endless.

References

	re_format(7) manpage

	regex(3) manpage

	grep(1) manpage

	pcre(3) manpage

	pcrepattern(3) manpage

	Friedl, Jeffery E.F. (2006). Mastering Regular
 Expressions. O’Reilly Media, Inc.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	" (double quotes), using regular expressions and, Quotation Marks and Regular Expressions
	
	$ (dollar sign), end of line character, Metacharacters, Metacharacters
	
	' (single quotes), using regular expressions, Quotation Marks and Regular Expressions
	
	() (parentheses)
		extended regular expressions, Extended Regular Expressions (egrep or
 grep -E)
	
	precedence in regular expressions, Crafting a Regular Expression
	
	subpatterns, Metacharacters
	

	() parentheses, Metacharacters
	
	* (asterisk) quantifier, Introduction to Regular Expressions, Metacharacters, Metacharacters
	
	+ (plus) quantifier, Metacharacters, Metacharacters
		extended regular expressions and, Extended Regular Expressions (egrep or
 grep -E)
	

	- (dashes), indicating ranges, Metacharacters, Metacharacters
	
	. (dot), Metacharacters, Metacharacters
	
	> (redirects), grep Basics
	
	? (question mark) quantifier, Metacharacters, Metacharacters
		optional expressions, Extended Regular Expressions (egrep or
 grep -E)
	

	[...] (character classes), Metacharacters, Metacharacters
	
	[^...] (negated character class), Metacharacters, Metacharacters
	
	\ (backslashes), Metacharacters, Metacharacters, Extended Regular Expressions (egrep or
 grep -E)
	
	\ escape characters, Metacharacters, Metacharacters, Metacharacters
	
	\' (end of buffer), Metacharacters, Metacharacters
	
	\< (backslash less-than), Metacharacters
	
	\< (start of word), Metacharacters
	
	\> (backslash greater-than), Metacharacters
	
	\> (end of word), Metacharacters
	
	\` (start of buffer), Metacharacters, Metacharacters
	
	^ (caret), as a start of line, Metacharacters, Metacharacters, Metacharacters
	
	` (backticks), Quotation Marks and Regular Expressions
	
	{min,max} quantifier, Metacharacters
	
	| (pipe), Metacharacters, Metacharacters
		chaining commands and, grep Basics
	
	extended regular expressions, Extended Regular Expressions (egrep or
 grep -E)
	
	standard output, grepping, grep Basics
	

A
	\a (alarm) PCRE
 escape, Character Types
	
	\A character, Character Types
	
	-A flag, Context Line Control
	
	-a flag, File and Directory Selection
	
	--after-context
 option, Context Line Control
	
	agrep, Introduction
	
	AIX (Solaris), Introduction
	
	alarm (\a) PCRE escape, Character Types
	
	[:alnum:] POSIX
 definition, POSIX Character Classes
	
	[:alpha:] POSIX
 definition, POSIX Character Classes
	
	ASCII character set, Binary File Searching
	
	asterisk (*) quantifier, Introduction to Regular Expressions, Metacharacters, Metacharacters
	
	awk command, Introduction to Regular Expressions
	

B
	\b (word
 boundary), Metacharacters, Metacharacters, Character Types
	
	\B character, Character Types
	
	-b flag, Output Line Prefix Control
		fgrep, Fixed Strings (fgrep or grep -F)
	

	-B flag, Context Line Control
	
	backreferences, Metacharacters, Metacharacters, Backreferences
	
	backslash greater-than (\>), Metacharacters
	
	backslash less-than (\<), Metacharacters
	
	backslashes (\), Metacharacters, Metacharacters, Extended Regular Expressions (egrep or
 grep -E)
	
	backticks (`), Quotation Marks and Regular Expressions
	
	--before-context
 option, Context Line Control
	
	binary files, Conceptual Overview, Binary File Searching
	
	--binary option, Other Options
	
	--binary-files
 option, File and Directory Selection
	
	[:blank:] POSIX
 definition, POSIX Character Classes
	
	--byte-offset
 option, Output Line Prefix Control
	

C
	-c flag (fgrep), Fixed Strings (fgrep or grep -F)
	
	-C flag, Context Line Control
	
	caret (^), as a start of line, Metacharacters, Metacharacters, Metacharacters
	
	cat command, grepping standard output, grep Basics
	
	“chaining” commands, grep Basics
	
	character classes ([...]), Metacharacters, Metacharacters
	
	[:cntrl:] POSIX
 definition, POSIX Character Classes
	
	--color option, General Output Control
		options, Introduction to grep-Relevant Environment Variables
	

	--colour option, General Output Control
	
	command output, Conceptual Overview
	
	concatenation, writing regular expressions and, Crafting a Regular Expression
	
	confidential material, Copyright-protected or confidential material, Copyright-protected or confidential material
	
	context line control, Context Line Control
	
	--context option, Context Line Control
	
	copyright-protected material, Copyright-protected or confidential material
	
	credit card numbers, Credit card numbers
	
	Ctrl-C, breaking quotes, Crafting a Regular Expression
	
	Ctrl-D, exiting grep, grep Basics
	
	\cX PCRE escape, Character Types
	
	Cygwin, Introduction
	

D
	\d (decimal
 digit) character, Character Types
	
	\D (non-decimal)
 character, Character Types
	
	\d escape sequence, grep Basics
	
	-D flag, File and Directory Selection
	
	-d flag, File and Directory Selection
	
	dashes (-), indicating ranges, Metacharacters, Metacharacters
	
	decimal digit (\d) character, Character Types
	
	--devices option, File and Directory Selection
	
	[:digit:] POSIX
 definition, POSIX Character Classes
	
	--directories
 option, File and Directory Selection
	
	--disable-perl-regexp
 configuration, Perl-Style Regular Expressions (grep -P)
	
	dollar sign ($), end of line character, Metacharacters, Metacharacters
	
	dot (.), Metacharacters, Metacharacters
	
	double quotes (“), using regular expressions and, Quotation Marks and Regular Expressions
	

E
	-e flag, Match Control
		fgrep, Fixed Strings (fgrep or grep -F)
	

	-E option, Extended Regular Expressions (egrep or
 grep -E)–Fixed Strings (fgrep or grep -F), When to Use grep -E
	
	\e PCRE escape, Character Types
	
	egrep, Extended Regular Expressions (egrep or
 grep -E)–Fixed Strings (fgrep or grep -F), Extended Regular Expressions (egrep or
 grep -E)
	
	email addresses, Email addresses
	
	--enable-unicode-properties
 configuration option, Character Properties
	
	end of buffer (\'), Metacharacters, Metacharacters
	
	end of line ($) character, Metacharacters, Metacharacters
	
	end of word (\>), Metacharacters
	
	env command, Introduction to grep-Relevant Environment Variables
	
	environment variables, Introduction to grep-Relevant Environment Variables–Choosing Between grep Types and Performance Considerations
	
	escape characters, Metacharacters, Metacharacters, Metacharacters
	
	escape sequences (regular expressions), Introduction to Regular Expressions
	
	--exclude option, File and Directory Selection
	
	--exclude-dir
 option, File and Directory Selection
	
	--exclude-from
 option, File and Directory Selection
	
	extended regular expressions, Extended Regular Expressions (egrep or
 grep -E)–Fixed Strings (fgrep or grep -F)
	

F
	\f (form feed)
 PCRE escape, Character Types
	
	-f flag, Match Control
		fgrep, Fixed Strings (fgrep or grep -F)
	

	-F option, Fixed Strings (fgrep or grep -F)–Perl-Style Regular Expressions (grep -P), When to Use grep -F
		performance implications and, Performance Implications
	

	Fedora operating system, Perl-Style Regular Expressions (grep -P)
	
	--file option, Match Control
	
	files, searching, Conceptual Overview
	
	--files-with-matches
 option, General Output Control
	
	--files-without-match
 option, General Output Control
	
	flags, Basic Regular Expressions (grep or grep -G)–Extended Regular Expressions (egrep or
 grep -E)
		general output control, General Output Control–Output Line Prefix Control
	

	form feed (\f) PCRE escape, Character Types
	
	Free Software Foundation, Introduction
	

G
	\G character, Character Types
	
	-G option, Basic Regular Expressions (grep or grep -G)–Extended Regular Expressions (egrep or
 grep -E), Choosing Between grep Types and Performance Considerations
	
	general output control, General Output Control–Output Line Prefix Control
	
	GLOB wildcards, Metacharacters
	
	“Global
 Regular-Expression Print”, Introduction
	
	GNU, Introduction
		regular expressions, Introduction to Regular Expressions, When to Use grep -P
	

	[:graph:] POSIX
 definition, POSIX Character Classes
	
	GREP_COLORS variable, Introduction to grep-Relevant Environment Variables
	
	GREP_OPTIONS variable, Introduction to grep-Relevant Environment Variables, When to Use grep -P
	

H
	-H flag, Output Line Prefix Control
	
	-h flag, Output Line Prefix Control
		fgrep, Fixed Strings (fgrep or grep -F)
	

	hexadecimal strings, Binary File Searching
	
	$HOME environment
 variable, Quotation Marks and Regular Expressions
	
	HP-UX (Solaris), Introduction
	

I
	i (PCRE_CASELESS), PCRE Options
	
	-i flag, Match Control
		fgrep, Fixed Strings (fgrep or grep -F)
	

	IEEE (Institute of Electrical and Electronics
 Engineers), POSIX Character Classes
	
	--ignore-case
 option, Match Control
	
	--include option, File and Directory Selection
	
	--initial-tab
 option, Output Line Prefix Control
	
	Institute of Electrical and Electronics Engineers
 (IEEE), POSIX Character Classes
	
	--invert-match
 option, Match Control
	
	IP addresses, IP addresses
	

J
	Java, using regular expressions, Introduction to Regular Expressions
	

L
	-l flag, General Output Control, File and Directory Selection, Useful Recipes
		fgrep, Fixed Strings (fgrep or grep -F)
	

	-L flag, General Output Control
	
	--label option, Output Line Prefix Control
	
	LANG environment variable, Introduction to grep-Relevant Environment Variables
	
	LC_ALL environment variable, Introduction to grep-Relevant Environment Variables
	
	LC_COLLATE environment variable, Introduction to grep-Relevant Environment Variables
	
	LC_CTYPE environment variable, Introduction to grep-Relevant Environment Variables
	
	LC_MESSAGES environment variable, Introduction to grep-Relevant Environment Variables
	
	less command, grep Basics
	
	libpcre program, Perl-Style Regular Expressions (grep -P)
	
	--line-buffered
 option, Other Options
	
	--line-number
 option, Output Line Prefix Control
	
	--line-regexp
 option, Match Control
	
	literals (regular expressions), Introduction to Regular Expressions
	
	[:lower:] POSIX
 definition, POSIX Character Classes
	

M
	m (PCRE_MULTILINE), PCRE Options
	
	-m flag, General Output Control
	
	MAC addresses, MAC addresses
	
	Mac OS X, Introduction
	
	--max-count
 option, General Output Control
	
	metacharacters, Introduction to Regular Expressions, Metacharacters–POSIX Character Classes
	
	--mmap option, Other Options
	
	mmap() function, Other Options
	
	more command, grep Basics
	

N
	\n (newline) PCRE
 escape, Character Types
	
	-n flag, Output Line Prefix Control
		fgrep, Fixed Strings (fgrep or grep -F)
	

	{N,} quantifier, Metacharacters, Metacharacters
	
	national language support (NLS), Introduction to grep-Relevant Environment Variables
	
	negated character class ([^...]), Metacharacters, Metacharacters
	
	newline (\n) PCRE escape, Character Types
	
	NLS (national language support), Introduction to grep-Relevant Environment Variables
	
	--no-filename
 option, Output Line Prefix Control
	
	--no-messages
 option, General Output Control
	
	non-decimal (\D) character, Character Types
	
	non-whitespace (\S) character, Character Types
	
	non-word character (\W), Metacharacters, Metacharacters, Character Types
	
	--null option, Output Line Prefix Control
	
	--null-data
 option, Other Options
	
	{N} quantifier, Metacharacters, Metacharacters
	

O
	-o flag, General Output Control
	
	octal searching, Octal Searching
	
	--only-matching
 option, General Output Control
	
	optional expression (?), Extended Regular Expressions (egrep or
 grep -E)
	
	“optional” pattern
 matching, Metacharacters
	
	Oracle, Introduction to Regular Expressions
	
	output control, General Output Control–Output Line Prefix Control
	

P
	-P option, Perl-Style Regular Expressions (grep -P)–Introduction to grep-Relevant Environment Variables, When to Use grep -P
	
	parentheses (()), Metacharacters
		extended regular expressions, Extended Regular Expressions (egrep or
 grep -E)
	
	precedence in regular expressions, Crafting a Regular Expression
	
	subpatterns, Metacharacters
	

	PCRE (Perl-Compatible Regular Expressions), Perl-Style Regular Expressions (grep -P), Character Properties
		character properties, Character Properties
	
	octal searching, Octal Searching
	
	options, PCRE Options
	
	when to use, When to Use grep -P
	

	pcre manpage, Perl-Style Regular Expressions (grep -P)
	
	pcrepattern, Character Properties
	
	pcrepattern manpage, Perl-Style Regular Expressions (grep -P)
	
	PCRE_CASELESS (i), PCRE Options
	
	PCRE_DOTALL (s), PCRE Options
	
	PCRE_EXTENDED (x), PCRE Options
	
	PCRE_MULTILINE (m), PCRE Options
	
	Perl-Compatible Regular Expressions (PCRE), Perl-Style Regular Expressions (grep -P), Octal Searching
		character properties, Character Properties
	
	options, PCRE Options
	
	when to use, When to Use grep -P
	

	Perl-style regular expressions, Introduction to Regular Expressions, Perl-Style Regular Expressions (grep -P)–Introduction to grep-Relevant Environment Variables
		backreferences and, Backreferences
	
	octal searching, Octal Searching
	
	when to use, When to Use grep -P
	

	phone numbers, U.S.-based phone numbers
	
	pipe (|), Metacharacters, Metacharacters
		chaining commands and, grep Basics
	
	extended regular expressions, Extended Regular Expressions (egrep or
 grep -E)
	
	standard output, grepping, grep Basics
	

	plus (+) quantifier, Metacharacters, Metacharacters
		extended regular expressions and, Extended Regular Expressions (egrep or
 grep -E)
	

	POSIX character classes, POSIX Character Classes
	
	POSIXLY_CORRECT environment variable, Introduction to grep-Relevant Environment Variables
	
	[:print:] POSIX
 definition, POSIX Character Classes
	
	.profile file, Introduction to grep-Relevant Environment Variables
	
	[:punct:] POSIX
 definition, POSIX Character Classes
	

Q
	-q flag, General Output Control
	
	question mark (?) quantifier, Metacharacters, Metacharacters
		optional expressions, Extended Regular Expressions (egrep or
 grep -E)
	

	--quiet option, General Output Control
	

R
	\r (return
 carriage) PCRE escape, Character Types
	
	-R flag, File and Directory Selection
	
	-r flag, File and Directory Selection, Useful Recipes
	
	ranges, matching characters with, Metacharacters, Metacharacters
	
	read() function, Other Options
	
	--recursive
 option, File and Directory Selection
	
	Red Hat operating system, Perl-Style Regular Expressions (grep -P)
	
	redirects (>), grep Basics
	
	regexp (see regular expressions)
	
	--regexp flag, Match Control
	
	regular expressions, Introduction to Regular Expressions–grep Basics
		crafting, Crafting a Regular Expression–grep Basics
	
	extended, Extended Regular Expressions (egrep or
 grep -E)–Fixed Strings (fgrep or grep -F)
	
	flags, Basic Regular Expressions (grep or grep -G)–Extended Regular Expressions (egrep or
 grep -E)
	
	metacharacters, Metacharacters–POSIX Character Classes
	
	Perl-style, Perl-Style Regular Expressions (grep -P)–Introduction to grep-Relevant Environment Variables
	
	POSIX character classes, POSIX Character Classes
	
	quotation marks, Quotation Marks and Regular Expressions
	

	repetitive match (+) character, Metacharacters, Metacharacters
	
	return carriage (\r) PCRE escape, Character Types
	

S
	\S
 (non-whitespace) character, Character Types
	
	s (PCRE_DOTALL), PCRE Options
	
	\s (whitespace)
 character, Character Types
	
	-s flag, General Output Control
	
	sed command, Introduction to Regular Expressions
	
	Sendmail, Introduction to Regular Expressions
	
	--silent option, General Output Control
	
	single quotes ('), using regular expressions and, Quotation Marks and Regular Expressions
	
	Social Security numbers, Social Security numbers
	
	Solaris, Introduction
	
	[:space:] POSIX
 definition, POSIX Character Classes
	
	“standard input”,
 grepping, grep Basics
	
	start of buffer (\`), Metacharacters, Metacharacters
	
	start of line (^), Metacharacters, Metacharacters
	
	start of word (\<), Metacharacters
	
	--string option, Fixed Strings (fgrep or grep -F)
	
	strings command, Conceptual Overview
	
	subpatterns, Metacharacters
	

T
	\t (tab)
 character, Character Types
	
	-T flag, Output Line Prefix Control
	
	tab (\t) character, Character Types
	
	tail command, grep Basics
	
	target strings, Introduction to Regular Expressions
	
	text files, searching, Conceptual Overview
	
	--text option, File and Directory Selection
	
	tput init command, File and Directory Selection
	
	tput reset command, File and Directory Selection
	

U
	-u flag, Output Line Prefix Control
	
	-U option, Other Options
	
	U.S.-based phone numbers, U.S.-based phone numbers
	
	--unix-byte-offsets
 option, Output Line Prefix Control
	
	[:upper:] POSIX
 definition, POSIX Character Classes
	

V
	-v flag, Match Control
		fgrep, Fixed Strings (fgrep or grep -F)
	

	-V flag, Other Options
	
	--version option, Other Options
	

W
	\W (non-word
 character), Metacharacters, Metacharacters, Character Types
	
	\w (word
 character), Metacharacters, Metacharacters, Character Types
	
	-w flag, Match Control
	
	whitespace (\s) character, Character Types
	
	whoami command, Quotation Marks and Regular Expressions, Crafting a Regular Expression
	
	wildcards, Introduction to Regular Expressions, Metacharacters, Metacharacters
		--exclude
 option, File and Directory Selection
	

	Windows, Introduction
	
	wingrep, Introduction
	
	--with-filename
 option, Output Line Prefix Control
	
	word boundary (\b), Metacharacters, Metacharacters, Character Types
	
	word character (\w), Metacharacters, Metacharacters, Character Types
	
	--word-regexp
 option, Match Control
	

X
	x (PCRE_EXTENDED), PCRE Options
	
	\x excape, Binary File Searching
	
	-x flag, Match Control
		fgrep, Fixed Strings (fgrep or grep -F)
	

	[:xdigit:] POSIX
 definition, POSIX Character Classes
	

Z
	\Z character, Character Types
	
	\z character, Character Types
	
	-Z flag, Output Line Prefix Control
	
	-z flag, Other Options
	
	zipgrep, Introduction
	

About the Authors
John Bambenek is a programmer and teacher with over ten years of experience. His work at the Internet Storm Center and the University of Illinois, as well as his contributions to SANS information management courses, will help him promote this book and give him a sound base from which to write.
Agnieszka Klus was born in Rzeszow, Poland and came here as a child. She lives in the northwest suburb of Chicago, but considers herself a Chicagoan. She is currently trying to get her Masters in Accountancy at the University of Illinois at Urbana-Champaign, and also works as a system administrator at the Coordinated Science Laboratory.

grep Pocket Reference

John Bambenek

Agnieszka Klus

Editor
Andy Oram

Copyright © 2009 John Bambenek and Agnieszka Klus

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://safari.oreilly.com). For more information,
 contact our corporate/institutional sales department: (800) 998-9938 or
 corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. grep Pocket
 Reference, the image of an elegant hyla tree frog, and related
 trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc. was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-31T12:46:43-07:00

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/oreilly_large.png.jpg

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/bk01-toc.html
grep Pocket Reference

Table of Contents
		1. grep Pocket Reference		Introduction		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		Comments and Questions

		Acknowledgments		From John Bambenek

		From Agnieszka Klus

		Conceptual Overview

		Introduction to Regular Expressions		Quotation Marks and Regular Expressions

		Metacharacters

		POSIX Character Classes

		Crafting a Regular Expression

		grep Basics

		Basic Regular Expressions (grep or grep -G)		Match Control

		General Output Control

		Output Line Prefix Control

		Context Line Control

		File and Directory Selection

		Other Options

		Extended Regular Expressions (egrep or
 grep -E)

		Fixed Strings (fgrep or grep -F)

		Perl-Style Regular Expressions (grep -P)		Character Types

		Octal Searching

		Character Properties

		PCRE Options

		Introduction to grep-Relevant Environment Variables

		Choosing Between grep Types and Performance Considerations		When to Use grep -E

		When to Use grep -F

		When to Use grep -P

		Performance Implications

		Advanced Tips and Tricks with grep		Backreferences

		Binary File Searching

		Useful Recipes		IP addresses

		MAC addresses

		Email addresses

		U.S.-based phone numbers

		Social Security numbers

		Credit card numbers

		Copyright-protected or confidential material

		Searching through large numbers of files

		Matching strings across multiple lines

		References

		Index

		About the Authors

		Copyright

OEBPS/orm_front_cover.jpg
A Quick Pocket Reference for a Utility
Every Unix User Needs

Jobn Bambenek &

O’REILLY® Agnieszka Klus

