

Windows Server 2016 Automation with
PowerShell Cookbook

Second Edition

Automate manual administrative tasks with ease

Thomas Lee

BIRMINGHAM - MUMBAI

Windows Server 2016 Automation with
PowerShell Cookbook

Second Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Second edition: September 2017

Production reference: 1190917

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-204-8

www.packtpub.com

http://www.packtpub.com

Credits

Author
Thomas Lee

Copy Editors
Safis Editing
Juliana Nair

Reviewer
Mike F Robbins

Project Coordinator
Judie Jose

Acquisition Editor
Meeta Rajani

Proofreader
Safis Editing

Content Development Editor
Abhishek Jadhav

Indexer
Aishwarya Gangawane

Technical Editor
Mohd Riyan Khan

Graphics
Kirk D'Penha

Production Coordinator
Aparna Bhagat

About the Author
Thomas Lee is a consultant/trainer/writer from England and has been in the IT business
since the late 1960's. After graduating from Carnegie Mellon University, Thomas joined
ComShare where he was a systems programmer building the Commander II time-sharing
operating system, a forerunner of today's Cloud computing paradigm. He moved to
Comshare UK in 1975 and later went to work for ICL, again developing operating systems.
After a sabbatical in 1980/81, he joined Arthur Andersen Management Consultants (now
known as Accenture). He left in 1988 to run his own consulting and training business,
which is still active today.

Thomas holds numerous Microsoft certifications, including MCSE (one of the first in the
world) and later versions, MCT (22 years), and was awarded Microsoft's MVP award 17
times. He is also a Fellow of the British Computer Society. He has written extensively for
the UK trade press, including PC Pro.

Today, Thomas writes and talks mainly on PowerShell and Azure. He currently works for a
number of clients to deliver training and to build training courses. Having traveled the
world, he entered semi-retirement in 2016 and is spending more time at his cottage in the
English countryside, along with his wife, Susan, and their daughter, Rebecca. He continues
to give back to the community and spends a lot of time as group administrator for the
PowerShell forum on Spiceworks, where he is also a Moderator.

Acknowledgment
I’d first like to thank Jeffrey Snover of Microsoft for the invention of PowerShell. I was
lucky enough to be in the room the very first time he presented what was then called
Monad. His enthusiasm was infectious, and 15 years later I am still excited.

Also, a shout out to the author of the first edition, Ed Goad. His first edition was a great
base to work on although all the recipes in this edition are reworked totally.

A huge thank you has to go to the Packt team: Meeta Rajani, Abhishek Jadhav, Mohd Riyan
Khan, and Judie Jose. You guys did a great job getting this book out of the door and dealing
with the crises that arose during the writing. And thanks too to our most excellent tech
reviewer Mike Robbins. Your reviews were always excellent.

When I began this project, I had a co-author, David Cobb. Sadly, for personal reasons, he
had to drop out, but I thank him for the chapters he was able to write.
We had a large number of volunteer reviewers who read through the various chapters. I
appreciate all the work you folks did to try to make this a better book.

As each recipe evolved, I would sometimes hit problems. I got a lot of help from the
Spiceworks community. Their PowerShell forum is a great source of information and
encouragement. If you have problems with PowerShell, this is a great place to get a
solution.

And finally, I have to thank my wonderful wife, Susan. She has been patient as things
progressed, she put up with my bad moods when progress was not as smooth as desirable,
and kept me sane when all around me was craziness.

About the Reviewer
Mike F. Robbins is a Microsoft MVP on Windows PowerShell and a SAPIEN Technologies
MVP. He is a co-author of Windows PowerShell TFM 4th Edition and is a contributing author
of a chapter in the PowerShell Deep Dives book. Mike has written guest blog articles for the
Hey, Scripting Guy! blog, PowerShell Magazine, and PowerShell.org. He is the winner of
the advanced category in the 2013 PowerShell Scripting Games. Mike is also the leader and
co-founder of the Mississippi PowerShell User Group. He blogs at mikefrobbins.com and
can be found on Twitter at @mikefrobbins.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787122042.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787122042

Table of Contents
Preface 1

Chapter 1: What's New in PowerShell and Windows Server 11

Introduction 11
Exploring Remote Server Administration Tools (RSAT) 12

How to do it... 12
How it works... 14
There's more... 18

Discovering new cmdlets in PowerShell 4 and Windows Server 2012 R2 18
New cmdlets 19
How to do it... 19
How it works... 20
There's more... 22

Discovering new cmdlets in PowerShell 5/5.1 and Windows Server 2016 22
Getting ready 23

PowerShellGet module 23
PackageManagement module 23
Microsoft.PowerShell.Archive module 23
Microsoft.PowerShell.Utility module 23
Other new modules 24
Other new cmdlets 25

How to do it... 25
How it works... 28
There's more... 32

Exploring PowerShellGet 32
How to do it... 32
How it works... 36
There's more... 43

Exploring PackageManagement 43
How to do it... 44
How it works... 47
There's more... 51

Creating an internal PowerShell repository 51
How to do it... 52
How it works... 56
There's more... 57

[]

Chapter 2: Implementing Nano Server 58

Introduction 58
Deploying a Nano Server in a VM 58

Getting ready 59
How to do it... 59
How it works... 61
There's more... 64

Connecting to and managing a Nano Server 64
Getting ready 65
How to do it... 65
How it works... 68
There's more... 79

Installing features with Nano Server packages 80
Getting ready 80
How to do it... 81
How it works... 83
There's more... 88

Chapter 3: Managing Windows Updates 91

Introduction 91
Installing Windows Server Update Services 92

Getting ready 92
How to do it... 92
How it works... 94
There's more... 99

Configuring WSUS update synchronization 100
Getting ready 100
How to do it... 100
How it works... 103
There's more... 106

Configuring the Windows Update client 106
Getting ready 106
How to do it... 106
How it works... 108
There's more... 109

Creating computer target groups 109
Getting ready 110
How to do it... 110
How it works... 110

[]

There's more... 111
Configuring WSUS auto-approvals 112

Getting ready 112
How to do it... 112
How it works... 113
There's more... 114

Managing updates 115
Getting ready 115
How to do it... 115
How it works... 117
There's more... 120

Chapter 4: Managing Printers 121

Introduction 121
Installing and sharing printers 122

Getting ready 122
How to do it... 122
How it works... 123

Publishing a printer 125
Getting ready 125
How to do it... 125
How it works... 126
There's more... 126

Changing the spool directory 128
Getting ready 128
How to do it... 128
How it works... 130

Changing printer drivers 131
Getting ready 131
How to do it... 132
How it works... 132

Printing a test page on a printer 133
Getting ready 133
How to do it... 133
How it works... 134

Reporting on printer security 135
Getting ready 135
How to do it... 135
How it works... 137

Modifying printer security 137

[]

Getting ready 138
How to do it... 138
How it works... 139

Deploying shared printers 139
Getting ready 140
How to do it... 145
How it works... 147
There's more... 147

Enabling Branch Office Direct Printing 147
Getting ready 148
How to do it... 148
How it works... 149
There's more... 150

Creating a printer pool 150
Getting ready 150
How to do it... 150
How it works... 151

Reporting on printer usage 152
Getting ready 153
How to do it... 153
How it works... 154
There's more... 155

Chapter 5: Managing Server Backup 156

Introduction 156
Configure and set backup policy 158

Getting ready 158
How to do it... 159
How it works... 160
There's more... 164

Examine the results of a backup 164
Getting ready 165
How to do it... 165
How it works... 166
There's more... 169

Initiate a backup manually 169
Getting ready 169
How to do it... 170
How it works... 171
There's more... 173

[]

Restore files and folders 173
Getting ready 174
How to do it... 175
How it works... 176
There's more... 178

Backup and restore a Hyper-V Virtual Machine 178
Getting ready 178
How to do it... 178
How it works... 180
There's more... 185

Backup and perform bare metal recovery 186
Getting ready 186
How to do it... 186
How it works... 189
There's more... 202

Restore the registry from a backup 202
Getting ready 202
How to do it... 203
How it works... 207
There's more... 209

Create a daily backup report 210
Getting ready 210
How to do it... 210
How it works... 213
There's more... 214

Backup and restore using Microsoft Azure 215
Getting ready 215
How to do it... 215
How it works... 219
There's more... 226

Chapter 6: Managing Performance 227

Introduction 227
Explore performance counters with Get-Counter 229

Getting ready 229
How to do it... 230
How it works... 231
There's more... 235

Explore performance counters using CIM cmdlets 236
Getting ready 237

[]

How to do it... 237
How it works... 238
There's more... 241

Configuring and using Data Collector Sets 242
Getting ready 242
How to do it... 243
How it works... 244
There's more... 246

Reporting on performance data 247
Getting ready 247
How to do it... 247
How it works... 248
There's more... 249

Generating performance monitoring graph 250
Getting ready 250
How to do it... 250
How it works... 251
There's more... 253

Creating a system diagnostics report 253
Getting ready 253
How to do it... 253
How it works... 254
There's more... 255

Chapter 7: Troubleshooting Windows Server 2016 256

Introduction 256
Checking network connectivity 257

Getting ready 258
How to do it... 258
How it works... 259
There's more... 262

Using troubleshooting packs 263
Getting ready 263
How to do it... 263
How it works... 264
There's more... 267

Use best practice analyzer 267
Getting ready 268
How to do it... 268
How it works... 270

[]

There's more... 273
Managing event logs 274

Getting ready 274
How to do it... 275
How it works... 276
There's more... 280

Forward event logs to a central server 280
Getting ready 281
How to do it... 281
How it works... 284
There's more... 287

Chapter 8: Managing Windows Networking Services 288

Introduction 289
New ways to do old things 291

Getting ready 291
How to do it... 292
How it works... 293
There's more... 297

Configuring IP addressing 298
Getting ready 299
How to do it... 299
How it works... 300
There's more... 302

Converting IP address from static to DHCP 302
Getting ready 302
How to do it... 303
How it works... 303
There's more... 304

Installing domain controllers and DNS 304
Getting ready 305
How to do it... 305
How it works... 306
There's more... 309

Configuring zones and resource records in DNS 310
Getting ready 310
How to do it... 311
How it works... 312
There's more... 314

Installing and authorizing a DHCP server 315

[]

Getting ready 315
How to do it... 316
How it works... 316
There's more... 317

Configuring DHCP scopes 318
Getting ready 318
How to do it... 318
How it works... 319
There's more... 320

Configuring DHCP server failover and load balancing 320
Getting ready 321
How to do it... 321
How it works... 322
There's more... 323

Building a public key infrastructure 323
Getting ready 323
How to do it... 324
How it works... 329
There's more... 337

Creating and managing AD users, groups, and computers 338
Getting ready 339
How to do it... 339
How it works... 341
There's more... 344

Adding users to AD using a CSV file 345
Getting ready 345
How to do it... 345
How it works... 346
There's more... 346

Reporting on AD users 347
Getting ready 347
How to do it... 347
How it works... 349
There's more... 350

Finding expired computers in AD 350
Getting ready 350
How to do it... 350
How it works... 351
There's more... 351

[]

Creating a privileged user report 352
Getting ready 352
How to do it... 352
How it works... 354
There's more... 356

Chapter 9: Managing Network Shares 357

Introduction 357
Securing your SMB file server 359

Getting ready 359
How to do it... 359
How it works... 360
There's more... 361

Creating and securing SMB shares 362
Getting ready 362
How to do it... 362
How it works... 364
There's more... 365

Accessing SMB shares 365
Getting ready 366
How to do it... 366
How it works... 367
There's more... 370

Creating an iSCSI target 370
Getting ready 371
How to do it... 371
How it works... 372
There's more... 373

Using an iSCSI target 374
Getting ready 374
How to do it... 374
How it works... 375
There's more... 377

Creating a scale-out SMB file server 378
Getting ready 378
How to do it... 378
How it works... 380
There's more... 383

Configuring a DFS Namespace 383
Getting ready 385

[]

How to do it... 385
How it works... 389
There's more... 393

Configuring DFS Replication 394
Getting Ready 395
How to do it... 395
How it works... 400
There's more... 405

Chapter 10: Managing Internet Information Server 406

Introduction 406
Installing IIS 407

Getting ready 407
How to do it... 407
How it works... 408
There's more... 412

Configuring IIS for SSL 413
Getting ready 414
How to do it... 414
How it works... 415
There's more... 416

Managing TLS cipher suites 417
Getting ready 417
How to do it... 417
How it works... 418
There's more... 419

Configuring a central certificate store 420
Getting ready 420
How to do it... 420
How it works... 423

Configuring IIS bindings 424
Getting ready 425
How to do it... 425
How it works... 426
There's more ... 427

Configuring IIS logging and log files 427
Getting ready 428
How to do it... 428
How it works... 429
There's more... 431

[]

Managing applications and application pools 431
Getting ready 433
How to do it... 433
How it works... 434
There's more... 436

Managing and monitoring network load balancing 436
Getting ready 437
How to do it... 437
How it works... 439
There's more... 442

Chapter 11: Managing Hyper-V 443

Introduction 443
Installing and configuring Hyper-V feature 444

Getting ready 444
How to do it... 445
How it works... 446
There's more... 448

Using Windows PowerShell Direct 450
Getting ready 450
How to do it... 450
How it works... 451
There's more... 452

Securing Hyper-V host 453
Getting ready 453
How to do it... 453
How it works... 455
There's more... 456

Create a virtual machine 457
Getting ready 457
How to do it... 457
How it works... 458
There's more... 461

Configuring VM hardware 461
Getting ready 462
How to do it... 462
How it works... 463
There's more... 465

Configuring Hyper-V networking 466
Getting ready 466

[]

How to do it... 466
How it works... 468
There's more... 470

Implementing nested Hyper-V 471
Getting ready 472
How to do it... 472
How it works... 473
There's more... 475

Managing VM state 475
Getting ready 475
How to do it... 476
How it works... 477
There's more... 479

Configuring VM and storage movement 479
Getting ready 480
How to do it... 480
How it works... 482
There's more... 484

Configuring VM replication 484
Getting ready 485
How to do it... 485
How it works... 487
There's more... 490

Managing VM checkpoints 492
Getting ready 493
How to do it... 493
How it works... 495
There's more... 499

Monitoring Hyper-V utilization and performance 500
Getting ready 500
How to do it... 501
How it works... 502
There's more... 504

Creating a Hyper-V health report 504
Getting ready 505
How to do it... 505
How it works... 507
There's more... 509

Chapter 12: Managing Azure 510

[]

Introduction 510
Using PowerShell with Azure 512

Getting ready 515
How to do it... 515
How it works... 517
There's more... 522

Creating Core Azure Resources 523
Getting Ready 523
How to do it... 524
How it works... 524
There's more... 526

Exploring your storage account 526
Getting ready 529
How to do it... 529
How it works... 531
There's more... 533

Creating Azure an SMB File Share 534
Getting ready 535
How to do it... 535
How it works... 537
There's more... 539

Creating and using websites 540
Getting ready 540
How to do it... 541
How it works... 543
There's more... 547

Creating and using Azure virtual machines 547
Getting ready 549
How to do it... 549
How it works... 553
There's more... 558

Chapter 13: Using Desired State Configuration 560

Introduction 560
Using DSC and built-in resources 563

Getting ready 563
How to do it... 564
How it works... 565
There's more... 570

Parameterizing DSC configuration 571

[]

Getting ready 572
How to do it... 572
How it works... 574
There's more... 576

Finding and installing DSC resources 576
Getting ready 577
How to do it... 577
How it works... 578
There's more... 581

Using DSC with PSGallery resources 581
Getting ready 582
How to do it... 584
How it works... 585
There's more... 587

Configuring Local Configuration Manager 588
Getting ready 588
How to do it... 589
How it works... 590
There's more... 592

Implementing a SMB pull server 592
Getting ready 593
How to do it... 593
How it works... 595
There's more... 597

Implementing a DSC web-based pull server 597
Getting ready 597
How to do it... 598
How it works... 601
There's more... 607

Using DSC partial configurations 607
Getting ready 608
How to do it... 608
How it works... 614
There's more... 621

Index 622

Preface
PowerShell was first introduced to the world at the Professional Developer's conference in
Los Angles in 2003 by Jeffrey Snover. Code named Monad, it represented a complete
revolution in management. A white paper written around that time, The Monad Manifesto
(refer to http://www.jsnover.com/blog/2011/10/01/monad-manifesto/) remains an
amazing analysis of the problem at the time of managing large number of Windows
systems. A key takeaway—the GUI does not scale, whereas PowerShell does.

PowerShell has transformed managing of complex, network-based Windows infrastructure
and increasingly non-Windows infrastructure. Knowledge of PowerShell and how to get
the most from PowerShell is now obligatory for any IT Pro job—the adage being Learn
PowerShell or learn Golf.

This book takes you through the use of PowerShell in a variety of scenarios using many of
the rich set of features included in Windows Server 2016. This preface provides you with an
introduction to what is in the book and some tips on how to get the most out of the content.

What this book covers
Chapter 1, What's New in PowerShell and Windows Server, looks at some of the key new
features in Windows Server 2016 and in the latest version of PowerShell.

Chapter 2, Implementing Nano Server, shows you how to set up and use Nano Server—a
new server installation option for Windows Server 2016. Nano Server provides a great
platform for running roles with a vastly reduced attack and patch surface.

Chapter 3, Managing Windows Updates, helps you get to grips with managing updates via
Windows Update. With the importance of keeping all your Windows servers fully patched,
managing WSUS is a key take in almost any size organization.

Chapter 4, Managing Printers, shows you how to manage printers, printer queues, and
printer drivers, including deploying printers via Group Policy. This chapter also looks at
branch office printing.

http://www.jsnover.com/blog/2011/10/01/monad-manifesto/

Preface

[2]

Chapter 5, Managing Server Backup, examines the use of Windows Server Backup and
covers both backup (and restore) via cmdlet and via the console application. Windows
Server Backup is a nice feature you can use either on its own in a small organization or to
augment an enterprise wide third-party service.

Chapter 6, Managing Performance, shows you how to measure and monitor the performance
of a server. There are several recipes that demonstrate how to get specific performance
measurements and how to create graphs of performance for further analysis.

Chapter 7, Troubleshooting Windows Server 2016, looks at a number of aspects of both
reactive and proactive troubleshooting. This includes getting events from the event log and
forwarding event logs to a central server. This chapter also looks at the Best Practice
Analyzer features baked into Windows Server.

Chapter 8, Managing Windows networking services, looks at various aspects of networking.
Networks are today central to almost every organization and this chapter looks at a variety
of network-related tasks, including looking at new ways (with PowerShell) to do old things,
setting up DNS, DHCP, and Active directory, as well as building a multi-tier certificate
authority infrastructure.

Chapter 9, Managing Network Shares, looks at sharing data between systems, including
building a scaled out clustered file server based on iSCSI and using the DFS Namespace and
DFS Replication features of Windows Server.

Chapter 10, Managing Internet Information Server, shows you how to conduct a variety of
IIS-related tasks, including IIS installation and configuration, setting up SSL and managing
cipher suites, as well as configuring Network Load Balancing.

Chapter 11, Managing Hyper-V, demonstrates the use of Hyper-V. This chapter shows you
how to build and deploy VMs with Hyper-V. This includes nested Hyper-V running a
Hyper-V VM inside another Hyper-V VM (which is useful for a number of scenarios).

Chapter 12, Managing Azure, looks at managing IaaS resources in Azure using PowerShell.
To test the recipes in this chapter, you need access to Azure. This chapter describes how to
get a trial subscription.

Chapter 13, Using Desired State Configuration, shows how to use this important feature to
ensure a server is setup correctly and continues to remain so. This covers setting up a pull
server and configuring partial configurations.

Preface

[3]

What you need for this book
To get the most out of this book, you need to experiment with the code contained in the
recipes. To avoid errors impacting live production servers, you should instead use
virtualization to create a test lab, where mistakes do not cause any serious damage. This
book uses a variety of servers within a single Reskit.Org domain containing multiple
servers, and using an IP address block of 10.10.10/24 described in Getting the most from
this book.

Ideally, you should have a Windows 10 or Windows Server 2016 host with virtualization
capabilities and use a virtualization solution. If you have access to a cloud computing
platform, then you could perform most of the recipies in cloud-hosted virtual machines
although that has not been tested. You can use any virtualization.

The book was developed using Hyper-V and nested Hyper-V on Windows 10 Creator's
Update and Windows Server 2016. More details of the servers are contained in the preface
and each recipe.

Who this book is for
This book is aimed at IT Pros, including system administrators, system engineers, as well as
architects and consultants who need to leverage PowerShell to simplify and automate their
daily tasks.

Getting the most from this book
This book was written based on some assumptions and with some constraints. You will
need to read this section to understand how I intended the book to be used and what I have
assumed about you. This should help you to get the most from this book.

The first assumption I made in writing this book is that you know the basics of1.
PowerShell. This is not a PowerShell tutorial. The recipes do make use of a wide
range of PowerShell features, including WMI, Remoting, AD and so on, but you
will need to know the basics of PowerShell. The book uses PowerShell language,
syntax, and cmdlets that come with Windows Server 2016 and Windows 10 (CU).

Preface

[4]

The recipes provide the basics—you adopt and adapt. The recipes are designed to2.
show you the basics of how to manage certain aspects of Windows Server 2016
using PowerShell (and in some cases Windows Console Applications). In many
cases, a recipe stresses that you can improve it for your environment. The recipe
is meant to show you how some features work, so you can leverage and extend it
for your environment.
Start by running the recipes step by step. The recipes were built and tested step3.
by step. Once you have it working, re-factor them into your own reusable
functions. In some cases, we build simple functions as a guide to richer scripts
you could build.
Writing PowerShell scripts for publication in a book is a layout nightmare. To get4.
around this, I have made extensive use of the various ways in which you can
create multiline commands within PowerShell. This involves using the back tick
(`) line continuation as well as using the Pipe character at the end of the line. I
also sometimes specify an array of values across multiple lines with a comma at
the end of the continuing line. Hopefully, the screenshots more or less match up.
So, read the text carefully and pay attention particularly to the back tick. In all too
many places and to save lots of extra blank space, code spills over a page break,
or where a figure and related text are split across a page boundary. I hope there
are not too many issues with layout!

Many of the cmdlet or object methods used in this book produce output that may5.
not be all that helpful or useful. In some cases, the output generates a lot of pages
of little value. For this reason, many recipes pipe to Out-Null. Feel free to remove
this where you want to see more details. In some cases, I have adjusted the
output to avoid wasted white space. Thus, if you test a recipe, you may see the
output that is laid out a bit differently, but it should contain the same
information. Of course, the specific output you see may be different based on
your environment and the specific values you use in each step.
To write this book, I have used a large VM farm consisting of over 20 Windows6.
2016 servers and Windows 10 clients. All the hosts used in this book are a
combination of some physical hardware (running almost entirely on Windows 10
Creators Update and a large set of VMs, including the following:

Domain Controllers (DC1, DC2)—also hosts DHCP Server, IIS, and
other roles).
File Servers (FS1, FS1)
Network Load Balanced IIS servers (NLB1, NLB2)
Print Server (PSrv)

Preface

[5]

General purpose servers (SRV1, SRV2)
Client computers (CL1, SG-BR-CL1)
Certificate servers (root, CA)
Hyper-V Servers (HV1, HV1), including an embedded VM, VM1.

Each recipe notes the servers in use. Feel free to change things to suit your needs
and based on your own naming conventions.

In building the VM farm, I have used an IP address block of 10.10.10.0/24.7.
The recipes show specific addresses in use, but you can adapt these to fit your
environment. The IP addresses used are assigned as follows:

IP address Server name

10.10.10.10 DC1 (DC, DHCP, DNS, IIS, and so on)

10.10.10.11 DC2 (DC, DHCP, and DNS)

10.10.10.20 Root (CA offline root)

10.10.10.21 CA.Reskit.Org—issuing CA

10.10.10.50 SRV1 (server with numerous roles)

10.10.10.51
10.10.10.55

SRV2 (server with numerous roles)
ReskitNLB (NLB Virtual Server)

10.10.10.60 PSRV (print server)

10.10.10.61 Sales.Reskit.Org—a network printer

10.10.10.62 Sales2.reskit.org—a printer at as remote office

10.10.10.100 FS.Reskit.Org (Cluster address)

10.10.10.101/102 FS1 (file server cluster node—with 2 nics)

10.10.10.105/106 FS2 (file server cluster node—with w nics)

10.10.10.131 Nano1

10.10.10.132 Nano2

10.10.10.141 SG-CL1 (client computer in the Sales Group)

10.10.10.146 SG-BR-CL1 (sales group branch office client)

10.10.10.201 HV1 (Hyper-V server)

Preface

[6]

10.10.10.202 HV2 (Hyper-V server)

10.10.10.251 WSUS1 (WSUS Server)

10.10.10.254 Default gateway

The full set of VMs, at the end of this writing, took up around 725 GB of storage.
Fortunately, storage is cheap!

PowerShell provides great feature coverage—you can manage most of the8.
functions and features of Windows Server 2016 using PowerShell, but by no
means all. In some cases, you can dip down into WMI using the CIM cmdlets to
get to object properties and methods not exposed by any cmdlet. The advent of
CDXML-based cmdlets has increased the number of networking and other
cmdlets that are WMI-based. But even then, there are still a number of places
where you need to use a Windows console application or invoke an unmanaged
DLL. The bottom line is that to manage some aspects of Windows, such as event
forwarding or performance logging, you will need to use older tools. We try to
avoid these, but in many cases the recipe demonstrates how to use the console
applications within PowerShell.
I have avoided where possible using external, third-party modules and have9.
focused on what comes in the box. But, in some cases, such as Azure, you have to
add code and in other cases such as DSC you benefit greatly from third-party
code. The book shows that there is a wealth of tools, add-ins, and tips/tricks that
you can leverage (even if we do not use all that much of it). One thing to keep in
mind, integrating various add-ons (and keeping them up to date and working
well) can be a challenge.
All the code provided in this book has been tested; it worked and did what it10.
says (at least during the writing stage). The production process is complex and
it's possible that errors in code creep in during the production stages. Some of the
more complex steps may have errors introduced during production. If any step
fails for you, please contact PACKT and we'll help. Feel free to post issues to the
Spiceworks PowerShell forum for quick resolution.
In writing this book, we set out to create content around a number of features of11.
Windows Server 2016. As the book progressed, we quickly hit (and broke) several
content limits. In order to publish the book, it was necessary to remove some
content, which we did most reluctantly. Coverage of Storage and Containers had
to be dropped. To paraphrase Jeffrey Snover, To ship is to choose. I hope I chose well.

Preface

[7]

In writing the recipes, we use full cmdlet names with no aliases and with all12.
parameter names spelled out in full (so, this means no abbreviated parameter
names or positional parameters). This makes the text a bit longer, but hopefully
easier to read and understand.
Some recipes in this book rely on other recipes being completed. These related13.
recipes worked well when we wrote them and hopefully will work for you as
well. Each depending recipe is noted.
There is a fine line between PowerShell and a Windows feature. To use14.
PowerShell to manage a Windows feature, you need to understand the feature
itself. The chapters describe each feature although in the space limited, thus I
can't provide complete details of every feature. I have provided links to help you
get more information. And as ever, Bing and Google are your friends.

Sections
In this book, you find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Chapter and Recipe Headings
Every chapter and every recipe introduces some part of Windows which the recipes help
you to manage. I've attempted to summarize the key points about each feature - but as ever
there is more detail you can discover using your favorite search engine.

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe. It also indicates the hosts (VMs) you
need for the recipe and any files, folders, or other resources you need to complete the recipe
successfully.

How to do it...
This section contains the steps required to follow the recipe. We show the PowerShell code
you use to perform each step

Preface

[8]

How it works...
This section contains a detailed explanation of what happened in the previous section along
with screen shots to show you the results of the recipe.

There's more...
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

Conventions
In this book, you find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, URLs, and so on are shown as follows:

"A great PowerShell cmdlet is Get-Help"

A block of code is set as follows:

If (-Not (Get-WindowsFeature -Name PowerShell))
 {
 'PowerShell Not installed'
 }

Any command-line input or output is written as follows (Note the back tick at the end of
the second line):

Copy ISO image
 Copy-Item -Path c:\Image\Server2016.iSO `
 -TargetPath c:\VM\ISO\Server2016.ISO

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Preface

[9]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you can really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file
from https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016Au
tomationwithPowerShellCookbookSecondEdition_ColorImages.pdf.

http://www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf

Preface

[10]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in this book-maybe a mistake in the text or the code-we
would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission is accepted and the errata uploaded
to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information appears under the Errata section.

If you find issues, feel free to reach out to the author via the Spiceworks forum.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we do our best to address the problem.

Help and assistance
If you want help on any of the recipes, or want to discover more information about any of
the steps, come over to the PowerShell forum at Spiceworks. Navigate to:
https://community.spiceworks.com/programming/powershell and ask away. Note you do
need to register to be able to ask questions and participate.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://community.spiceworks.com/programming/powershell

1
What's New in PowerShell and

Windows Server
 This chapter covers the following recipes:

Exploring Remote Server Administration Tools (RSAT)
Discovering new cmdlets in PowerShell 4 and Windows Server 2012 R2
Discovering new cmdlets in PowerShell 5/5.1 and Windows Server 2016
Exploring PowerShellGet
Exploring PackageManagement
Creating an internal PowerShell repository

Introduction
Windows Server changes quickly, with a new release about every two years. Since the
publication of the last edition of this book, Microsoft has delivered both Windows Server
2012 R2 and Windows Server 2016 (as well as client OS versions: Windows 8.1 and
Windows 10).

PowerShell evolved alongside the server OS with a release of both PowerShell version 4,
version 5, and version 5.1. This chapter reviews the changes in both the OS and PowerShell
and highlights the biggest and most useful changes and new cmdlets.

This chapter also explores PowerShellGet and PackageManagement modules, perhaps the
most interesting and useful new features released in PowerShell 5 and PowerShell 5.1.

What's New in PowerShell and Windows Server

[12]

Exploring Remote Server Administration
Tools (RSAT)
Remote Server Administration Tools (RSAT) are tools available on both servers and client
systems to manage server services. RSAT tools are available in Windows desktop and
server versions. Most of the RSAT tools are not installed by default but are easily added.

RSAT includes GUI tools, like Microsoft Management Console (MMC) and MMC snap-ins
(for example the DNS or DHCP MMC snap-ins) as well as command-line tools and
additional PowerShell modules. You have the option of installing the Windows feature
including the tools (most useful on a server), or just the tools to manage the feature (most
useful on a workstation).

The recipe that follows is run from DC1, a Windows Server 2016 with Desktop Experience
installation. If you try to use Server Core for this recipe, note that Out-GridView, for
example in step 3, is not available in the Server Core version, as it lacks the graphical user
interface. For Server Core installations, use Format-Table instead.)

How to do it...
You use the Get-Command, and Tee-Object cmdlets to retrieve both the1.
collection of PowerShell commands and the number of cmdlets into
PowerShellvariables before installing the RSAT:

 $CountOfCommandsBeforeRSAT = Get-Command |
 Tee-Object -Variable 'CommandsBeforeRSAT' |
 Measure-Object
 '{0} commands' -f $CountOfCommandsBeforeRSAT.count

Examine the objects returned by Get-Command:2.

 $CommandsBeforeRSAT | Get-Member |
 Select-Object -ExpandProperty TypeName -Unique

View commands in Out-GridView:3.

 $CommandsBeforeRSAT |
 Select-Object -Property Name, Source, CommandType |
 Sort-Object -Property Source, Name |
 Out-GridView

What's New in PowerShell and Windows Server

[13]

Out-GridView is not available in the Server Core version, as it lacks the
graphical user interface. For Server Core installations, use Format-Table
instead.

Store the collection of PowerShell modules and a count into variables as well:4.

 $CountOfModulesBeforeRSAT = Get-Module -ListAvailable |
 Tee-Object -Variable 'ModulesBeforeRSAT' |
 Measure-Object
 '{0} commands' -f $CountOfModulesBeforeRSAT.count

View modules in Out-GridView:5.

 $ModulesBeforeRSAT |
 Select-Object -Property Name -Unique |
 Sort-Object -Property Name |
 Out-GridView

Review the RSAT Windows Features available and their installation status:6.

 Get-WindowsFeature -Name RSAT*

Get-WindowsFeature only works on Windows Server operating systems.

Install RSAT with sub features and management tools:7.

 Install-WindowsFeature -Name RSAT -IncludeAllSubFeature `
 -IncludeManagementTools

Now that RSAT features are installed, see what commands are available:8.

 $CountOfCommandsAfterRSAT = Get-Command |
 Tee-Object -Variable 'CommandsAfterRSAT' |
 Measure-Object
 '{0} commands' -f $CountOfCommandsAfterRSAT.count

View commands in Out-GridView:9.

 $CommandsAfterRSAT |
 Select-Object -Property Name, Source, CommandType |
 Sort-Object -Property Source, Name |
 Out-GridView

What's New in PowerShell and Windows Server

[14]

Now check how many modules are available:10.

 $CountOfModulesAfterRSAT = Get-Module -ListAvailable |
 Tee-Object -Variable 'ModulesAfterRSAT' |
 Measure-Object
 '{0} commands' -f $CountOfModulesAfterRSAT.count

View modules in Out-GridView:11.

 $ModulesAfterRSAT | Select-Object -Property Name -Unique |
 Sort-Object -Property Name |
 Out-GridView

Store the list of commands into an XML file for later research:12.

 $CommandsAfterRSAT |
 Export-Clixml `
 -Path $env:HOMEPATH\Documents\WS2016Commands.XML"

How it works...
In step 1, you use Get-Command to enumerate all the commands available in PowerShell.
This includes functions and aliases. It is useful to store the result of such commands into a
variable, $CommandsBeforeRSAT in this case, so you are able to investigate the commands
without making the request again. Using Tee-Object, you store the array of commands in
that variable while continuing to use the pipeline to Measure-Object to store the count of
commands, then display the result using the PowerShell string formatting function: '{0}
commands' -f $CountOfCommandsBeforeRSAT

In step 2, you pipe the $CommandsBeforeRSAT variable to Get-Member to examine the
TypeName of the objects returned, as shown in the following screenshot:

What's New in PowerShell and Windows Server

[15]

As you see, these commands are objects of the AliasInfo, FunctionInfo, and
CmdletInfo types in the System.Management.Automation namespace (plus a
FilterInfo type, which provides information about a filter that is stored in the session
state.) PowerShell commands returned by Get-Command include aliases, functions, and
cmdlets.

In step 3, you use Select-Object to show the useful properties, and pipe that to a Sort-
Object, then pipe to Out-GridView to search and filter the PowerShell commands, as you
see in the following screenshot:

What's New in PowerShell and Windows Server

[16]

In step 4, you use Get-Module just like Get-Command, but use the -ListAvailable
parameter to see all the installed modules, not just those loaded into the current session.
Again you use Tee-Object to store the array of modules into a variable,
$ModulesBeforeRSAT, while passing the result down the pipeline to Measure-Object to
calculate the count which you then display.

In step 5, you pipe the variable to a Select-Object for the interesting columns, Sort-
Object, then pipe that to Out-GridView again to review the available modules as shown
here:

In step 6, you view the RSAT features available in your server with Get-WindowsFeature
-Name RSAT*, as shown in the following screenshot:

What's New in PowerShell and Windows Server

[17]

Get-WindowsFeature presents an information dense tree view of the RSAT tools available.
Note the many sub-features under Remote Server Admin Tools and under Role
Administration Tools. Each feature may be installed individually by name, or all
features installed with one command as in this example.

What's New in PowerShell and Windows Server

[18]

In step 7, install all the RSAT features with the -IncludeAllSubFeature and
-IncludeManagementTools parameters. You may limit what is installed by changing the
first parameter to a comma separated list of desired feature names.

In steps 8-11, once the RSAT features are installed, repeat the Get-Command and Get-
Modules code to see all the additional cmdlets and modules.

In step 12 you use Export-CliXML to store the array to an XML file. If you want to compare
what is available in different OS and PowerShell versions, you use the array of objects
saved to this file and compare it with an XML file generated under some other PowerShell
or Windows versions.

There's more...
Jose Barreto, a Principal Program Manager, Applications and Services Group at Microsoft,
reviewed the new Windows Server 2016 cmdlets (based on Windows Server 2016 CTP).
This post shows you how to use Export-CliXML to see what has changed between
PowerShell versions:

https://blogs.technet. microsoft. com/ josebda/ 2015/ 05/ 26/new- powershell- cmdlets-
in-windows-server- 2016- tp2- compared- to-windows- server- 2012- r2/ .

Discovering new cmdlets in PowerShell 4
and Windows Server 2012 R2
PowerShell V4 and Server 2012 R2 added many new features to existing cmdlets but did not
add many new cmdlets. A notable exception is Desired State Configuration (DSC) feature
that debuted in PowerShell V4.

DSC is a set of language extensions that enable you to define computer configurations in a
declarative fashion then apply that configuration to managed computers. DSC is a tool to
provision or manage servers and to ensure those systems stay configured correctly. DSC
provides a solution to the problem of configuration drift—computer configurations that
change, often incorrectly, over time.

Get more information on DSC in Chapter 13, Using Desired State Configuration.

https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/

What's New in PowerShell and Windows Server

[19]

New cmdlets
Two other useful cmdlets included in PowerShell V4 are:

Get-FileHash: Creates a hash value from a given file or binary value. This is
useful for quickly determining whether files have changed or for finding
duplicate files (that have different file names)
Test-NetConnection: Diagnoses a network connection and provides helpful
troubleshooting information. This cmdlet is described in more detail in Chapter
8, Managing Windows Network Services.

How to do it...
You use the Show-Command to investigate the Get-FileHash cmdlet:1.

 Show-Command -Name Get-FileHash

Show0-Command is not available in the Server Core version, as it lacks the
graphical user interface.

In the dialog that pops up, the Path tab corresponds to one of three parameter2.
sets for this command. For the Path tab, enter $Env:windirnotepad.exe or any
other valid file path.
Choose an algorithm like SHA512 from the drop-down menu.3.
Click the Copy button then paste the command into your PowerShell ISE and4.
press Enter to run it. Note the hash value that is returned.
Use Show-Command to investigate Test-NetConnection:5.

 Show-Command -Name Test-NetConnection

In the dialog box, the CommonTCPPort tab corresponds to the default parameter6.
set, the first of four. Choose HTTP from the CommonTCPPort drop-down, and
choose Detailed for InformationLevel. Then click Copy, and paste the script into
your editor below the Show-Command line, then close the Show-Command
window. Select this line and press F8 to run this line.

What's New in PowerShell and Windows Server

[20]

Repeat your call to Show-Command -Name Test-NetConnection. Choose the7.
ICMP tab and enter a valid internet hostname like Windows.Com in the
ComputerName field, or leave it blank, and choose Detailed for
InformationLevel.
Click the Copy button then paste the command into your PowerShell ISE below8.
the previous command, then close the Show-Command window and select the line
and press F8 to run it.
Repeat your call to Show-Command Name Test-NetConnection. Choose the9.
NetRouteDiagnostics tab, check the box for DiagnoseRouting, and click Run.
Repeat your call to Show-Command -Name Test-NetConnection. Choose the10.
RemotePort tab, enter 443 for the Port, and choose Detailed for
InformationLevel, and click Run.

How it works...
In step 1, you use Show-Command to provide a graphical interface to explore new commands
like Get-FileHash or new ways to use commands you know. It is the same interface that
displays in the Commands tab in PowerShell ISE, and the interface is programmatically
generated from the parameter definitions in the cmdlet or function, so it works with
commands you create or install from outside sources.

In steps 2 and 3, choosing the Path tab corresponds to a parameter set defined in the
command; each parameter set may have different required and optional parameters,
represented by check boxes, drop-down menus, or text fields. This parameter set requires
the Path and Algorithm parameters.

In step 4, the Copy button puts a syntax-correct command on our clipboard, either to be run
as is or added to a script and modified. This is a very useful feature for new PowerShell
scripters or those working with unfamiliar commands. The result of the command displays
in the console, but it could be stored into a variable for comparison with other hash values
to look for duplicate or changed files:

What's New in PowerShell and Windows Server

[21]

In steps 5 and 6, you use Show-Command to explore the Test-NetConnection cmdlet. This
is a flexible and useful troubleshooting command with four parameter sets to use. First, test
the connection to a web host over HTTP port 80. Note the -InformationLevel Detailed
parameter provides additional troubleshooting information on the connectivity.

In steps 7 and 8, you use the ICMP parameter set with the -InformationLevel Detailed
parameter to ping, using ICMP echo request, a web server. This is different to the earlier
steps—here you are just determining whether the target server is responding to echo
requests. Some web servers turn off returning of pings, so you may see a server that doesn't
respond to a ping but does allow a port 80 HTTP connection.

In step 9, you use the NetRouteDiagnostics parameter set with the -DiagnoseRouting
parameter, which was introduced in PowerShell 5.1, to get routing information. Here when
you click the Run button, the result displays in the console window.

What's New in PowerShell and Windows Server

[22]

In step 10, you specify a RemotePort parameter set with a specified Port and
ComputerName to test:

There's more...
Both Server 2012 R2 and PowerShell V4 introduced many new features and added
enhancements to existing features. This included the Hyper-V, SmbShare, and BranchCache
features, all of which were improved. These features came with PowerShell modules that
enable you to leverage these features using PowerShell. Get more information on the
modules that support the 2012 R2 features at https:/ / technet. microsoft. com/ en- us/
library/dn249523. aspx.

Discovering new cmdlets in PowerShell 5/5.1
and Windows Server 2016
PowerShell V5, PowerShell V5.1, and Windows Server 2016 also added new features.

https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx

What's New in PowerShell and Windows Server

[23]

Getting ready
Run the commands in the following recipe on a Windows Server 2016 with Desktop
Experience version.

PowerShellGet module
PowerShellGet, formerly known as OneGet, is a module that provides you with a simple
way to discover, install, and update PowerShell modules and scripts. It has dependencies
on the PackageManagement module, which relies on NuGet. It is an open source project,
located at https:// github. com/ powershell/ powershellget.

Refer to Explore PowerShellGet recipe.

PackageManagement module
The cmdlets in the PackageManagement module provide a single interface for software
publication, discovery, installation, and inventory.

Refer to the following recipe:

Explore PackageManagement
Create a PackageManagement repository

Microsoft.PowerShell.Archive module
The Microsoft.Powershell.Archive module contains two useful functions: Compress-
Archive and Expand-Archive. These enable you to create and extract ZIP files. With
previous versions of PowerShell versions, you managed archives by using the
System.IO.Compression namespace from the .Net framework, the Shell.Application
com object or software like 7-Zip.

Microsoft.PowerShell.Utility module
The Microsoft.PowerShell.Utility module contains several new cmdlets useful for
debugging interactively and within runspaces.

https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget

What's New in PowerShell and Windows Server

[24]

Debugging and runspace Cmdlets include: Get-Runspace, Debug-Runspace, Get-
RunspaceDebug, Enable-RunspaceDebug, and Disable-RunspaceDebug, Wait-
Debugger, Debug-Job.

These cmdlets enable debugging PowerShell scripts within runspaces and jobs and add
additional debugging features for debugging production PowerShell interactively.

Other new modules
Other new modules in this version of PowerShell (and where to find more information
about each module) include:

Module Description Documentation

ConfigCI Manage the
configurable code
integrity policy for
Windows

https://technet.microsoft.com/en-us/library/mt634481.aspx

Defender Manage Windows
defender

https://technet.microsoft.com/en-us/library/dn433280.aspx

EventTracingManagement Manage event tracing
for Windows
providers and
sessions

https://technet.microsoft.com/en-us/library/dn919247.aspx

HgsClient,
ShieldedVMDataFile,
and ShieldedVMTemplate

Manage the host
guardian service, for
shielded Hyper-V
guest machines.

https://technet.microsoft.com/en-us/library/dn914505.aspx
https://technet.microsoft.com/en-us/library/mt791280.aspx
https://technet.microsoft.com/en-us/library/mt282520.aspx

IISAdministration Manage IIS replaces
WebAdministration

cmdlets

https://technet.microsoft.com/en-us/library/mt270166.aspx

NetworkController Manage the new
network controller
role in Server 2016

https://technet.microsoft.com/en-us/library/dn859239.aspx

NetworkSwitchManager Manage supported
network switches in
Server 2016

https://technet.microsoft.com/en-us/library/mt171434.aspx

Pester Manage unit tests for
PowerShell modules
and cmdlets

https://github.com/pester/Pester/wiki

PnpDevice Cmdlets for
managing plug and
play devices

https://technet.microsoft.com/en-us/library/mt130251.aspx

StorageQoS and StorageReplica Support new storage
functionality in
Server 2016.

https://technet.microsoft.com/en-us/library/mt608557.aspx
https://technet.microsoft.com/en-us/library/mt744543.aspx

https://technet.microsoft.com/en-us/library/mt634481.aspx
https://technet.microsoft.com/en-us/library/dn433280.aspx
https://technet.microsoft.com/en-us/library/dn919247.aspx
https://technet.microsoft.com/en-us/library/dn914505.aspx
https://technet.microsoft.com/en-us/library/mt791280.aspx
https://technet.microsoft.com/en-us/library/mt282520.aspx
https://technet.microsoft.com/en-us/library/mt270166.aspx
https://technet.microsoft.com/en-us/library/dn859239.aspx
https://technet.microsoft.com/en-us/library/mt171434.aspx
https://github.com/pester/Pester/wiki
https://technet.microsoft.com/en-us/library/mt130251.aspx
https://technet.microsoft.com/en-us/library/mt608557.aspx
https://technet.microsoft.com/en-us/library/mt744543.aspx

What's New in PowerShell and Windows Server

[25]

Other new cmdlets
Some other useful cmdlets included are:

Write-Information : A replacement for the Write-Host cmdlet that is
consistent with the other Write-* cmdlets in the
Microsoft.PowerShell.Utility namespace. See https:/ /blogs. technet.
microsoft. com/ heyscriptingguy/ 2015/ 07/ 04/weekend- scripter- welcome- to-
the-powershell- information- stream/ .
ConvertFrom-String and Convert-String: The new string parsing functions
that create structured data from strings, or parse out string data into structured
data. See https:/ /blogs. msdn. microsoft. com/ powershell/ 2014/ 10/ 31/
convertfrom- string- example- based- text- parsing/ .
Format-Hex: This cmdlet formats information into hexadecimal.
Get-Clipboard and Set-Clipboard: A cmdlet to simplify working with the
clipboard, replacing piping to clip.exe.
Clear-RecycleBin: This cmdlet empties the Recycle Bin.
New-TemporaryFile: Simplifies the creation of temporary files within
PowerShell scripts.
New-Guid: A wrapper for [GUID]::NewGuid() to simplify the creation of
Globally Unique Identifiers (GUIDs). A GUID is an identifier, unique in space
and time, that you use in a variety of scenarios. System Center Virtual Machine
Manager, for example, uses GUIDs in jobs created by the UI.
Enter-PSHostProcess and Exit-PSHostProcess: These enable you to debug
PowerShell processes outside the current host process.
Export-ODataEndpointProxy: This cmdlet generates a wrapper module for
working with an OData endpoint. See https:/ / msdn. microsoft. com/en- us/
powershell/ reference/ 5. 1/microsoft. powershell. odatautils/ microsoft.
powershell. odatautils.

Explore some of these cmdlets here and in later chapters as well.

How to do it...
Investigate Write-Information by looking at the Write-* commands, and1.
help for the about_Redirection topic:

 Get-Command -Verb Write -Module *Utility
 Get-Help about_Redirection -ShowWindow

https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils

What's New in PowerShell and Windows Server

[26]

Use Write-Information:2.

 Write-Information "Test"

This produces no output. To resolve, you should inspect and change the3.
$InformationPreference variable:

 Get-Variable "InformationPreference"
 Set-Variable -Name "InformationPreference" -Value "Continue"

Use Write-Information again:4.

 Write-Information "Test"

Next, set $InformationPreference back to default value:5.

 $InformationPreference = "SilentlyContinue"

Review the information-related options in the CommonParameters of each6.
command:

 Show-Command Get-Item

Use ConvertFrom-String to get objects from strings; NoteProperties are7.
created with default names:

 "Here is a sentence!" | ConvertFrom-String
 "Here is a sentence!" | ConvertFrom-String | Get-Member

Use -PropertyNames to control the names:8.

 "Here is a sentence!" |
 ConvertFrom-String -PropertyNames First,Second,
 Third,Fourth

Use -Delimiter to get items from a list:9.

 "Here,is,a,list!" |
 ConvertFrom-String -PropertyNames First,Second,
 Third,Fourth `
 -Delimiter ','

What's New in PowerShell and Windows Server

[27]

You next test the template capabilities of ConvertFrom-String:10.

 $TextToParse = @'
 Animal, Bird
 Shape like Square
 Number is 42
 Person named Bob
 '@$Template1 = @'
 {[string]Category*:Animal}, {[string]Example:Bird}
 '@ConvertFrom-String -TemplateContent $Template1 `
 -InputObject $TextToParse

ConvertFrom-String recognizes only one line from the text—the template11.
needs more examples to train the function, so add a second example to the
template and test:

 $Template2 = @'
 {[string]Category*:Animal}, {[string]Example:Bird}
 {[string]Category*:Country} like {[string]Example:Italy}
 '@
 ConvertFrom-String -TemplateContent $Template2 `
 -InputObject $TextToParse

Note three lines are recognized, even the last line that is unusual. Adding another12.
example to our template trains the function enough to recognize all four lines:

 $Template3 = @'
 {[string]Category*:Animal}, {[string]Example:Bird}
 {[string]Category*:Country} like {[string]Example:Italy}
 {[string]Category*:Number} like {[int]Example:99}
 '@
 ConvertFrom-String -TemplateContent $Template3 `
 -InputObject $TextToParse

Experiment with Format-Hex to output values in hexadecimal:13.

 $TestValue =
 @"
 This is line 1
 and line 2
 "@
 $TestValue | Format-Hex

What's New in PowerShell and Windows Server

[28]

Experiment with Get-ClipBoard and Set-Clipboard by selecting some text,14.
then press Ctrl+C to copy to clipboard, then inspect the clipboard:

 #Select this line and press Control-C to copy to clipboard
 $Value = Get-Clipboard
 $Value

Use Set-Clipboard to replace the clipboard value, then Ctrl+V to paste that new15.
value:

 $NewValue = "#Paste This!"
 $NewValue | Set-Clipboard
 #Press Control-V to paste!

How it works...
In step 1, you get the commands with the Write verb in the
Microsoft.PowerShell.Utility module. Write-Information is an addition to this
module that writes out to a new information stream, which the about_Redirection help
topic describes in detail:

In steps 2-5, note that messages from Write-Information are not displayed by default.
The $InformationPreference variable controls this behaviour within your PowerShell
session.

In step 6, you'll see the CommonParameters now include InformationAction and
InformationVariable

What's New in PowerShell and Windows Server

[29]

More information is available in Get-Help about_CommonParameters:

In step 7 you create a PSCustomObject using ConvertFrom-String with
NoteProperties named P1, P2, P3, and P4 that correspond to words separated by
whitespace from the input text, with string or char data types:

What's New in PowerShell and Windows Server

[30]

In step 8, you control the names of the NoteProperties. In step 9 you change the delimiter
from the default of whitespace to a comma, thus parsing a comma separated list:

In step 10, you investigate the -TemplateObject parameter to parse inconsistently
formatted data. Here you provide one or more patterns by example in the
TemplateObject and provide the template along with the text to parse. The template starts
with one line as an example, and initially recognizes only one line out of four in the text to
match:

In steps 11 and steps 12, you improve the template with each attempt, achieving complete
matching results from the Convert-FromString:

What's New in PowerShell and Windows Server

[31]

In step 13, you use Format-Hex on a here string that contains two lines of text. Note the 0D
0A bytes corresponding to carriage return and line feed (CRLF) between lines:

In step 14 and step 15, you work with Set-Clipboard and Get-Clipboard. By copying
any text with Ctrl+C, you then capture that value into a variable with Get-Clipboard. You
use Set-Clipboard to change that value, and use Ctrl+V to verify the change.

What's New in PowerShell and Windows Server

[32]

There's more...
Each PowerShell release comes with release notes that dive into the details of changes
introduced with that version. These pages are updated with community contributions, as
PowerShell is now partially open source:

WMF 5.0 Release Notes:
https://msdn.microsoft.com/en-us/powershell/wmf/5.0/releasenotes

WMF 5.1 Release Notes:
https://msdn.microsoft.com/en-us/powershell/wmf/5.1/release-notes

The documentation is published on GitHub and accepts contributions from users via pull-
requests so users may help improve the documentation. You'll find PowerShell
documentation on GitHub at https:/ /github. com/ PowerShell/ PowerShell- Docs.

Complete documentation is available on TechNet, see the Windows 10 and Server 2016
PowerShell module reference at https:/ / technet. microsoft. com/en- us/ library/
mt156917.aspx.

Exploring PowerShellGet
The PowerShellGet module enables you to work with repositories, sites which contain
scripts and modules to download and use. If you have a Linux background, you are
familiar with repositories and tools like apt-get (On Ubuntu Linux) and RPM (on Red Hat
Linux). PowerShellGet delivers similar functionality within PowerShell.

Ensure you're running with administrator privileges so you can update
PowerShellGet to the latest version.

How to do it...
You begin by reviewing the commands available in the PowerShellGet module:1.

 Get-Command -Module PowerShellGet

https://msdn.microsoft.com/en-us/powershell/wmf/5.0/releasenotes
https://msdn.microsoft.com/en-us/powershell/wmf/5.1/release-notes
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx

What's New in PowerShell and Windows Server

[33]

Before moving on, you should update to the latest NuGet to get the2.
PackageManagement module current, then update the PowerShellGet module
per the GitHub instructions at https:/ /github. com/ powershell/ powershellget.
PowerShellGet has a dependency on PackageManagement, which in turn relies
on NuGet. PowerShellGet and PackageMangagement both come within
Windows 10 and Server 2016, but Windows updates are less frequent than
releases at the PowerShell gallery. Updating ensures you have the latest versions
of all the dependencies. To update NuGet:

 Install-PackageProvider -Name NuGet -Force -Verbose

Close your PowerShell session by running Exit and open a new PowerShell3.
session.
Check the version of the NuGet PackageProvider:4.

 Get-PackageProvider -Name NuGet |
 Select-Object Version

Update PowerShellGet:5.

 Install-Module -Name PowerShellGet -Force

Close your PowerShell session by running Exit and reopen it again.6.
Check the version of PowerShellGet:7.

 Get-Module -Name PowerShellGet |
 Select-Object -ExpandProperty Version

View the default PSGallery repository for PowerShellGet:8.

 Get-PSRepository

Review the various providers in the repository:9.

 Find-PackageProvider |
 Select-Object -Property Name, Source, Summary |
 Format-Table -Wrap -AutoSize

https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget

What's New in PowerShell and Windows Server

[34]

View available providers with packages in PSGallery:10.

 Find-PackageProvider -Source PSGallery |
 Select-Object -Property Name, Summary |
 Format-Table -Wrap -AutoSize

Use the Get-Command cmdlet to find cmdlets in PowerShellGet:11.

 Get-Command -Module PowerShellGet -Verb Find

Request all the commands in the PowerShellGet module, store them in a12.
variable, and store the count as well:

 $CommandCount = Find-Command |
 Tee-Object -Variable 'Commands' |
 Measure-Object
 "{0} commands available in PowerShellGet" `
 -f $CommandCount.Count

Review the commands in Out-GridView and note the module names:13.

 $Commands | Out-GridView

Request all the available PowerShellGet modules, store them in a variable and14.
store the count as well:

 $ModuleCount = Find-Module |
 Tee-Object -Variable 'Modules' |
 Measure-Object
 "{0} Modules available in PowerShellGet" -f $ModuleCount.Count

Review the modules in Out-GridView:15.

 $Modules | Out-GridView

Request all available DSC resources, store them in a variable, and view them in16.
Out-GridView:

 $DSCResourceCount = Find-DSCResource |
 Tee-Object -Variable 'DSCResources' |
 Measure-Object
 "{0} DSCResources available in PowerShellGet" -f `
 $DSCResourceCount.Count
 $DSCResources | Out-GridView

What's New in PowerShell and Windows Server

[35]

Find the available scripts and store them in a variable. Then view them using17.
Out-GridView:

 $ScriptCount = Find-Script |
 Tee-Object -Variable 'Scripts' |
 Measure-Object
 "{0} Scripts available in PowerShellGet" -f $ScriptCount.Count
 $Scripts | Out-GridView

When you discover a module you would like to simply install the module. This18.
functionality is similar for Scripts, DSCResources, and so on:

 Get-Command -Module PowerShellGet -Verb Install

Install the TreeSize module, as an example, or choose your own. As this is a19.
public repository, Windows does not trust it by default, so you must approve the
installation:

 Install-Module -Name TreeSize -Verbose

If you choose to trust this repository, set the InstallationPolicy to Trusted,20.
and you'll no longer need to confirm each installation: Use at your own risk, you are
responsible for all software you install on servers you manage:

 Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

Review and test the commands in the module:21.

 Get-Command -Module TreeSize
 Get-Help Get-TreeSize -Examples
 Get-TreeSize -Path $env:TEMP -Depth 1

Remove the module just as easily:22.

 Uninstall-Module -Name TreeSize -Verbose

If you would like to inspect the code before installation, download and review23.
the module code:

 New-Item -ItemType Directory `
 -Path $env:HOMEDRIVE\downloadedModules
 Save-Module -Name TreeSize `
 -Path $env:HOMEDRIVE\downloadedModules” +
 "$env:windirexplorer.exe"
 $env:HOMEDRIVE\downloadedModules

What's New in PowerShell and Windows Server

[36]

Import the downloaded module:24.

 $ModuleFolder = "$env:HOMEDRIVE\downloadedModules\TreeSize"
 Get-ChildItem -Path $ModuleFolder -Filter *.psm1 -Recurse |
 Select-Object -ExpandProperty FullName -First 1 |
 Import-Module -Verbose

When you are done with discovering the new module, you can remove it from25.
your system:

 Remove-Module -Name TreeSize
 $ModuleFolder | Remove-Item -Recurse -Force

How it works...
In step 1, you start by reviewing the cmdlets in the PowerShellGet module:

What's New in PowerShell and Windows Server

[37]

In steps 2-7, you ensure PowerShellGet and its dependency PackageManagement are up
to date by updating the NuGet provider, verifying the version, then restarting your
PowerShell session and updating PowerShellGet and verifying its version.

The -Verbose flag gives you more details on the installation, but it is not required. Note
that you must Exit your session after running this command and reopen to continue with
the latest version.

Check our NuGet provider version after reopening our PowerShell session:

In step 6-7, you update the PowerShellGetmodule:

Note that you must exit your session after running this command and reopen to continue
with the latest version.

In step 8, check your PowerShellGet version after reopening your PowerShell session:

What's New in PowerShell and Windows Server

[38]

In step 9, you use Get-PSRepository. PowerShellGet starts with a single repository
PSGallery installed by default:

In step 10, review the package providers available:

Note the source column; the first three providers listed correspond to NuGet, OneGet, and
Chocolatey providers. NuGet is a repository devoted to developer libraries. OneGet was
the name of this module (and repository) but has been deprecated and replaced by
PackageManagement. You explore Chocolatey in a later recipe. The remaining rows are
the available providers in the PSGallery repository.

What's New in PowerShell and Windows Server

[39]

In step 11, you limit your repository search with Find-PSRepository by specifying the -
Source PSGallery parameter:

In step 12, you discover the PowerShellGet commands containing the verb Find:

In steps 13 - 18, you use the Find-* commands to store the available commands, modules,
DSC resources, and scripts into variables, then explore what is available using Out-
GridView (including using the built-in filter capability to search for a module), for example:

What's New in PowerShell and Windows Server

[40]

In step 19, you review the install commands in the PowerShellGet module. Their functions
are very similar:

In step 20, the TreeSize module looks like an interesting tool to inspect folders and their
sizes. Install it by using the Install-Module cmdlet. You use the -Verbose switch to get
more information about what the cmdlet is doing:

After confirming the Untrusted repository pop up dialog, PowerShell installs the module.

In step 21, you see that the code available on PSGallery, as well as other public
repositories, is just that, public. You must choose to trust the code you download from the
internet to take advantage of the functionality provided by that code. To trust this
repository and disable prompting, use the command (at your own risk and responsibility):

Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

What's New in PowerShell and Windows Server

[41]

In step 22, you evaluate and test the module:

In step 23, uninstalling a module is simple:

What's New in PowerShell and Windows Server

[42]

In step 24, if you prefer, download code and inspect it before installing, using Save-Module,
then browse the module's files in Windows Explorer:

In step 25, after reviewing the code, import the module by locating the .psm1 file which
defines the module, using Get-ChildItem, then piping that filename to Import-Module:

In step 26, you uninstall the module from your session and delete the module's folder. You
may, of course, wish to keep the module!

What's New in PowerShell and Windows Server

[43]

There's more...
There are a wealth of other resources in the PSGallery—you use the Find-* cmdlets to
explore the online resources you can download and use:

The PowerShellGet module enables search for commands, DSC resources, modules, role
capabilities, a feature of Just Enough Administration (JEA), and scripts. You can download
and use these various tools, or leverage them to build your own custom scripts.

Exploring PackageManagement
PowerShellGet is a powerful resource for PowerShell, built on top of the core
PackageManagement capabilities of PowerShell 5. It is one of many
PackageManagment providers available, as shown here:

Image Source: https://blogs.technet.microsoft.com/packagemanagement/2015/04/28/introducing-packagemanagement-in-windows-10/

What's New in PowerShell and Windows Server

[44]

PackageManagement is a unified interface for software package management systems, a
tool to manage package managers. You use the PackageManagement cmdlets to perform
software discovery, installation, and inventory (SDII) tasks. PackageManagement
involves working with package providers, package sources, and the software packages
themselves.

Within the PackageManagement architecture, PackageManagement providers represent
the various software installers that provide a means to distribute software via a standard
plug-in model using the PackageManagement APIs. Each PackageManagement provider
manages one or more package sources or software repositories. Providers may be publicly
available or can be created within an organization to enable developers and system
administrators to publish or install propriety or curated software packages.

PackageManagement Core is effectively an API. The core includes a set of PowerShell
cmdlets that enable you to discover available software packages, as well as to install,
uninstall, update, and inventory packages using PackageManagement.

Each PackageManagement provider is a different installer technology or package manager
that plugs-in via the PackageManagement API. PowerShellGet, NuGet, and Chocolatey
are examples of PackageManagement providers.

Each provider is made up of one or more sources, which may be public or private. For
example, NuGet has a public source, but your organization may add private sources for the
NuGet provider, enabling curation of approved software to make it available to corporate
developers.

How to do it...
You use the cmdlets within the PackageManagement module to explore the capabilities it
provides.

Review the cmdlets in the PackageManagement module:1.

 Get-Command -Module PackageManagement

Review the installed providers with Get-PackageProvider:2.

 Get-PackageProvider | Select-Object -Property Name, Version

What's New in PowerShell and Windows Server

[45]

The provider list includes msi, msu, and Programs package providers. These3.
providers expose applications and updates installed on your computer which
you can explore:

 Get-Package -ProviderName msi |
 Select-Object -ExpandProperty Name
 Get-Package -ProviderName msu |
 Select-Object -ExpandProperty Name
 Get-Package -ProviderName Programs |
 Select-Object -ExpandProperty Name

The NuGet source contains developer library packages. This functionality is4.
outside the scope of this book, but worth exploring if you do Windows or web
development:

 Get-PackageProvider -Name NuGet

There are also other package providers you can explore:5.

 Find-PackageProvider |
 Select-Object -Property Name,Summary |
 Format-Table -Wrap -AutoSize

Notice Chocolatey, which is a very useful tool for Windows administrators and6.
power users. Those with some Linux background may think of Chocolatey as
apt-get for Windows. You cannot use this provider until you install it and
confirm the installation:

 Install-PackageProvider -Name Chocolatey -Verbose

Verify Chocolatey is now in the list of installed providers:7.

 Get-PackageProvider | Select-Object Name,Version

Look for available software packages from the Chocolatey package provider.8.
Store these in a variable so you don't request the collection more than once, and
explore it:

 $AvailableChocolateyPackages = `
 Find-Package -ProviderName Chocolatey
 # How many software packages are available at Chocolatey?
 $AvailableChocolateyPackages | Measure-Object

What's New in PowerShell and Windows Server

[46]

Pipe to Out-GridView to search for interesting software packages from9.
Chocolatey:

 $AvailableChocolateyPackages |
 Sort-Object Name,Version |
 Select-Object Name, Version, Summary |
 Out-GridView

Install one or more packages. sysinternals is a good example to use. Use -10.
Verbose to get details on the installation:

 Install-Package -ProviderName Chocolatey `
 -Name sysinternals `
 -Verbose

Review installed Chocolatey packages, stored to C:\chocolatey\ by default,11.
this path is stored in the $env:ChocolateyPath environment variable. Then
review the executable files included with the sysinternals package:

 Get-ChildItem -Path $env:ChocolateyPath\lib |
 Select-Object -Property Name
 Get-ChildItem -Path `
 $env:ChocolateyPath\lib\sysinternals.2016.11.18\tools `
 -Filter *.exe |
 Select-Object -Property Name

Run any installed command included with sysinternals:12.

 $PSInfoCommand = `
 ‘C:\Chocolatey\lib\sysinternals.2016.11.18\tools\PsInfo.exe’
 Invoke-Expression -Command $PSInfoCommand

Installed packages are enumerated with Get-Package and updated using the13.
same command to install them, Install-Package:

 Get-Package -ProviderName Chocolatey |
 Install-Package -Verbose

What's New in PowerShell and Windows Server

[47]

How it works...
In step 1, you review the cmdlets available in the PackageManagement module:

In step 2, you use the Get-PackageProvider cmdlets to display the currently installed
package providers:

In step 3, you use Get-Package with the -ProviderName parameter to review packages
installed via the msi, msu, and Programs package providers:

What's New in PowerShell and Windows Server

[48]

In step 4, review the NuGet provider:

In step 5, search for other package providers:

In step 6, you use Install-PackageProvider to install the Chocolatey provider. Since it
is untrusted as a public source, you must approve the installation (at your own risk and
responsibility):

In this example, you run Install-PackageProvider from within the ISE. By default, this
pops up a confirmation dialog. If you run this cmdlet from the PowerShell console, you see
a prompt there. You can suppress these confirmation requests by including the parameter -
Confirm:$False.

What's New in PowerShell and Windows Server

[49]

In step 7, you verify Chocolatey is now installed as a package provider:

In step 8, retrieve a list of available software packages from the
ChocolateyPackageProvider, store as a variable, and count the available packages:

In step 9, pipe the variable to Out-GridView and use the filter feature to explore what is
available. This example is filtering for the Sysinternals package:

What's New in PowerShell and Windows Server

[50]

In step 10, you install this package (or any package you choose):

In step 11, you review the installed Chocolatey packages, and the files contained within
the sysinternals package folder:

In step 12, run any Sysinternals command, for example, PsInfo.Exe :

What's New in PowerShell and Windows Server

[51]

In step 13, you enumerate the installed packages with Get-Package. As time goes by,
packages can be updated with bug fixes, new features, and so on. You can update all the
installed packages if any updates exist, as follows:

There's more...
Details of NuGet package and its functionality are outside the scope of this book, but worth
exploring if you do Windows or web development. More information on NuGet packages is
available from https:/ /www. nuget. org/ Packages.

Chocolatey has both a command-line interface and a PowerShell module. The command
line interface offers functionality comparable to the PackageManagement module, targeted
toward end users and system administrators. Chocolatey is supported on any Windows
PC running Windows 7 or later. You can get more information on installing and using
Chocolatey via the command line from https://chocolatey.org/install.

Sysinternals is a must-have toolkit for Windows administrators. You can find additional
training on the Sysinternals tools on the Channel 9 website at
https://channel9.msdn.com/Series/sysinternals.

Creating an internal PowerShell repository
It is useful to create your own PowerShell repository for personal or corporate use. The
tools to enable you to build your own repository are not included in PowerShell. There are
three main approaches available that enable you to build a repository:

Using Visual Studio's NuGet package manager to download and install the
Nuget.Server package into a new web project, and deploy to your own IIS
Server. This option is free. However, you need to use Visual Studio 2015 (Either
the full version or the free community edition) to create your own web project,
download the Nuget server software, and deploy it into your environment. More
information is available at https:/ /www. nuget. org/ packages/ NuGet. Server.

https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://chocolatey.org/install
https://channel9.msdn.com/Series/sysinternals
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server

What's New in PowerShell and Windows Server

[52]

Using a third-party NuGet host's SAAS platform. This is the simplest solution,
but software licensing fees may apply, and some organizations might have
reservations about keeping the code on external servers. Choices for this
approach include Visual Studio Team Services, http:/ / myget. org/ , and ProGet.
Installing a 3rd-party NuGet software repository on your server. This simplifies
the setup process for hosting your own software repository, but software
licensing fees may apply.

More information is available on hosting from the NuGet site at https:/ /
docs. nuget. org/ ndocs/ hosting- packages/ overview.

The simplest approach to setting up your own software repository is to install and
configure the free or trial version of ProGet. Do so via a GUI installation—the steps are
described at https:/ /inedo. com/ support/ documentation/ proget/ installation/
installation-guide.

You have the choice of using an existing SQL Server instance or installing SQL Express as
part of the installation. SQL is used to hold the repository's data. You may also choose to
install your repository to an existing IIS Server or install ProGet with its own internal web
server.

Inedo also provides a PowerShell script to perform the installation, which you may
customize. For the script based installation, you need to register for a free license key at
https://my.inedo. com.

You can find more information on using ProGet from the Inedo web site at
https://inedo.com/support/kb/1088/using-powershell-to-install-an

d-configure-proget.

How to do it...
Once you have installed ProGet using either the GUI or PowerShell script1.
approach, log in to the ProGet application home page using the default admin
account until you create a username and password:

http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://inedo.com/support/kb/1088/using-powershell-to-install-and-configure-proget
https://inedo.com/support/kb/1088/using-powershell-to-install-and-configure-proget

What's New in PowerShell and Windows Server

[53]

From Feeds page, click Create New Feed:2.

What's New in PowerShell and Windows Server

[54]

A list of supported feed types is displayed. Choose PowerShell:3.

Enter a feed name of your choice: (for example, MyPowerShellPackages) and4.
click the Create New PowerShell Feed button:

What's New in PowerShell and Windows Server

[55]

Review the properties of your new feed:5.

Open the PowerShell ISE or console, and register your new repository:6.

 $RepositoryURL = `
 "http://localhost:81/nuget/MyPowerShellPackages/"
 Register-PSRepository -Name MyPowerShellPackages `
 -SourceLocation $RepositoryURL`
 -PublishLocation $RepositoryURL `
 -InstallationPolicy Trusted

What's New in PowerShell and Windows Server

[56]

Publish a module you already have installed (Pester, for example):7.

 Publish-Module -Name Pester -Repository MyPowerShellPackages `
 -NuGetApiKey "Admin:Admin"

Download a module from PSGallery, save it to the C:\Foo folder, and8.
publish to your new repository (for example, Carbon):

 Find-Module -Name Carbon -Repository PSGallery
 New-Item -ItemType Directory -Path 'C:\Foo'
 Save-Module -Name Carbon -Path C:\foo
 Publish-Module -Path C:\Foo\Carbon `
 -Repository MyPowerShellPackages `
 -NuGetApiKey "Admin:Admin"

Find all the modules available in your newly created and updated repository:9.

 Find-Module -Repository MyPowerShellPackages

How it works...
There are various options for setting up a NuGet-based repository for PowerShell. ProGet
is a universal package manager from Inedo (See https://inedo.com/proget for more
information on ProGet). ProGet is a very simple choice as it is easy to get started and offers
the ability to scale to enterprize level. ProGet has both a free and a paid subscription version
available. The ProGet installer creates a NuGet web server backed by a SQL Express
database.

In step 1, you visit the server web administration page and optionally review the
functionality available.

In steps 2-5, you use ProGet to create a new repository for your PowerShell modules. As you
see, you use the ProGet GUI to create this new repository.

In step 6, you register your new repository in your PowerShell session. You need to know
the repository URL and have a NuGet API key, using the default username/password of
Admin /Admin.

In step 7, you publish a module to the repository—you are using a module that is installed
in your PowerShell session, Pester.

https://inedo.com/proget

What's New in PowerShell and Windows Server

[57]

In step 8, you locate and download an additional module from the PSGallery, and publish
this module to your local repository.

In step 9, you see the modules available from your local repository:

There's more...
ProGet is a rich product. It provides both automatic failover and scalability which are
needed features for PowerShell repositories in large organization's repository. ProGet is one
option you have for creating your own organization specific repository. To learn more
about ProGet, visit http://inedo.com/support/documentation/proget.

NuGet is a free, open source package management system provided by the Microsoft
ASP.NET development platform and is provided as a Visual Studio extension. To learn
more about NuGet, visit https://docs.nuget.org/ndocs/api/nuget-api-v3.

http://inedo.com/support/documentation/proget
https://docs.nuget.org/ndocs/api/nuget-api-v3

2
Implementing Nano Server

This chapter contains the following recipes:

Deploying a Nano Server in a VM
Connecting to and managing a Nano Server
Installing features with Nano Server packages

Introduction
Nano Server is a new installation mode of Windows Server 2016. It is a minimal
implementation of Windows Server with no desktop, and no default features or services.
Nano Server has a minimal disk, memory, and CPU footprint to reduce attack surface and
patching requirements.

Deploying a Nano Server in a VM
Deploying a Nano Server is a simple and customizable process. This recipe focuses on the
most straightforward implementation which is deploying a Nano Server in a virtual
machine. With Nano Server you have several customization options:

Network address: By default, Nano Server uses DHCP to acquire an IP address.
You can configure the IP address, subnet, gateway, and DNS both before or after
deployment.
Domain membership: By default, Nano Server is not domain joined. You can
configure domain membership both before or after deployment.

Implementing Nano Server

[59]

As this book was going to press, Microsoft has announced that, going forward, Nano Server
is only available as a container base OS image. Refer to: https:/ /docs. microsoft. com/ en-
us/windows-server/ get- started/ nano- in- semi- annual- channel for more information.

Getting ready
You need Windows Server 2016 installation ISO file and a Windows Server 2016 system
running Hyper-V (HV1). This recipe assumes the path to the ISO file
is D:\iso\WinServer2016.iso.

This recipe assumes you have Hyper-V setup and have at least one switch defined.

You also need a folder for storing the base image files (C:\NanoBase in this recipe) and a
folder for storing the virtual machine file and VHDX files (C:\VMs in this recipe).

How to do it...
On the VM host, mount Server 2016 installation ISO:1.

 $Server2016ISOPath = 'D:\iso\WinServer2016.iso'
 $MountResult = Mount-DiskImage -ImagePath $Server2016ISOPath `
 -PassThru
 $MountResult | Select-Object -Property *

Determine the drive letter(s) of mounted ISO(s), including the colon (:):2.

 $Server2016InstallationRoot = ($MountResult |
 Get-Volume |
 Select-object -ExpandProperty Driveletter) + ':'
 $Server2016InstallationRoot

Get the path of the NanoServerImageGenerator module within the server3.
installation disk:

 $NanoServerFolder = `
 Join-Path -Path $Server2016InstallationRoot `
 -ChildPath 'NanoServer'
 $NsigFolder = Join-Path -Path $NanoServerFolder `
 -ChildPath 'NanoServerImageGenerator'

https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel

Implementing Nano Server

[60]

Review the contents of the NanoServerImageGenerator module folder:4.

 $NsigFolder
 Get-ChildItem -Path $NsigFolder -Recurse

Import the NanoServerImageGenerator module and review the commands it5.
contains:

 Import-Module -Name $NanoServerImageGeneratorModuleFolder
 Get-Command -Module NanoServerImageGenerator

Designate the folder for the base Nano Server images:6.

 $NanoBaseFolder = 'C:\NanoBase'

Designate the folder for the VM images:7.

 $VMFolder = 'D:\VMs'

Define the Nano Server computer name and file paths for your Nano Server VM:8.

 $NanoComputerName = 'NANO1'
 $NanoVMFolder = Join-Path -Path $VMFolder
 -ChildPath $NanoComputerName
 $NanoVMPath = Join-Path -Path $NanoVMFolder `
 -ChildPath "$NanoComputerName.vhdx"

Create a Nano Server VM image, as a guest VM within Hyper-V and prompt for9.
the administrator password:

 New-NanoServerImage -DeploymentType Guest -Edition Datacenter
 -MediaPath $Server2016InstallationRoot `
 -BasePath $NanoBaseFolder `
 -TargetPath $NanoVMPath `
 -ComputerName $NanoComputerName

Define a VM switch for your Nano Server:10.

 $SwitchName = Get-VMSwitch |
 Select-Object -ExpandProperty Name -First 1

Implementing Nano Server

[61]

Create a new VM in Hyper-V using the Nano Server VM image:11.

 New-VM -VHDPath $NanoVMPath -Name $NanoComputerName `
 -Path $NanoVMFolder `
 -SwitchName $SwitchName `
 -Generation 2 -Verbose

Start your new Nano Server VM:12.

 Start-VM -Name $NanoComputerName -Verbose

How it works...
In step 1, you mount the Windows Server installation ISO file:

In step 2, you store the drive letter for the mounted ISO file:

Implementing Nano Server

[62]

In step 3 and step 4, you get the path to the NanoServerImageGenerator module folder
within the installation media and review the contents:

In step 5, you import the module and view the commands it contains:

In step 6 to step 8 you define the variables and paths for the new Nano Server VM:

Implementing Nano Server

[63]

In step 9, you create the Nano Server image, and you provide the administrator password
when prompted.

Monitor the progress bar as the cmdlet builds the image:

In step 10, you store the name of the Hyper-V switch to which you connect your new Nano
Server. If you have defined more than one switch, this recipe returns the first switch
found—you may need to adjust this step depending on your configuration. The output
looks like this::

In step 11, you create the VM in Hyper-V, referring to the newly created VHDX file.

In step 12, you start your new VM.

Implementing Nano Server

[64]

There's more...
This recipe uses the default settings for networking based on DHCP and only applies the
guest package to your new VM. You can define networking and packages at deployment
time. Review online documentation for New-NanoServerImage: https:/ /technet.
microsoft.com/en- us/ library/ mt791180. aspx.

In step 4, you import the NanoServerImageGenerator module explicitly. You could also
copy the module to your local module store. You can use any folder contained in
$PSModulePath. Adding the module to your module store removes the need to import the
module explicitly.

In step 7, you define the path to the VHD file. You should use the .vhdx extension for a VM
generation 2 image, or the .vhd extension for a VM generation 1 image.

In step 10, you create the Nano Server VM. You store the VM file configuration files in the
same folder as the VM disk. Additionally, the generation specified in this command needs
to correspond to the choice of file extension in step 7. For a generation 1 VM use .vhd, and
for a generation 2 VM use .vhdx. You may find yourself creating various Nano Servers in
your learning process. To clean up a Nano Server VM, run the following commands:

 Stop-VM -Name $NanoComputerName
 Remove-VM -Name $NanoComputerName
 Dismount-DiskImage -ImagePath $Server2016ISOPath

You use this VM in the later recipes of this chapter.

Connecting to and managing a Nano Server
Nano Server is designed to be managed remotely without the use of remote desktop
services or local console access. You can connect directly to your Nano Server or use other
tools to carry out management functions.

Nano Server lacks a desktop experience and remote desktop capability. You use the Nano
Server Recovery Console to do some basic network management and to view operating
system information. You perform most configuration and management remotely.

https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx

Implementing Nano Server

[65]

Perhaps the simplest way to connect to and configure virtual machines (VMs) is for you to
use PowerShell Direct, a new feature introduced in Windows Server 2016. PowerShell
Direct enables PowerShell remoting to VMs via the hypervisor instead of using the
network, without the need to access the recovery console or configure networking for the
VM.

Getting ready
Your Nano Server should be running in Hyper-V, and you should have administrator
access on the Hyper-V host and know the VM Name and administrator password for the
Nano Server.

You should decide on how to set up networking for the Nano Server VM. You can use
DHCP (the default) or implement Static IP address details for your Nano Server. If you
choose a static address, know the desired address, subnet, gateway, and DNS Server. In this
recipe for Reskit.org, use the following:

IPAddress: 10.10.10.131
Subnet Mask: 255.255.255.0
Gateway: 10.10.10.254
DNS: 10.10.10.10/10.10.10.11

How to do it...
Method 1, using the Nano Server Recovery Console:

Launch Hyper-V management console, and locate the VM running Nano Server.1.
Double-click the VM to bring up the recovery console.2.
Enter the username administrator and the password that you defined when you3.
created the VM.
Nano Server then display basic information about the server with a menu of4.
options. Choose Networking from this menu by pressing Enter, then press Enter
again to choose the default adapter.
Your Nano Server's IP configuration is displayed, with key navigation options5.
displayed at the bottom of the screen. Note your IP address to use to connect later
in this recipe.

Implementing Nano Server

[66]

Press F11 at this screen to configure your IP address, if desired. Then press F4 to6.
change from DHCP to static IP, and use the Tab key to move between the IP
Address, Subnet Mask, and Default Gateway fields, and enter the desired
values.

Method 2, using PowerShell Direct:

From the Hyper-V host, open PowerShell ISE. List the VMs:1.

 Get-VM -Name N*

Store the Nano Server VM name and administrator credential in variables:2.

 $NanoComputerName = 'NANO1'
 $Credential = Get-Credential `
 -Message "Enter administrator password for target VM:" `
 -UserName administrator

Get the running processes using Invoke-Command via PowerShell Direct:3.

 Invoke-Command -VMName $NanoComputerName -Credential $Credential
 -ScriptBlock { Get-Process }

Enter an interactive PowerShell remoting session via PowerShell Direct:4.

 Enter-PSSession -VMName $NanoComputerName -Credential $Credential

You are connected just like that in a PowerShell remoting session! Create and use5.
a test folder in your Nano server:

 New-Item -ItemType Directory -Path C:\foo `
 -ErrorAction SilentlyContinue
 Set-Location C:\foo

Gather information about your server using the new Get-ComputerInfo cmdlet:6.

 Get-ComputerInfo -Property CsName, WindowsEditionId,
 OSServerLevel, `
 OSType, OSVersion, WindowsBuildLabEx, BiosBIOSVersion

Examine $PSVersionTable, noting the value of the PSEdition property:7.

 $PSVersionTable

Implementing Nano Server

[67]

Get the IP Address of your Nano Server, noting it for later recipe steps:8.

 Get-NetIPAddress -AddressFamily IPV4 -InterfaceAlias Ethernet |
 Select-Object -ExpandProperty IPAddress

If required, change the IP Address of your Nano Server, and display the new IP:9.

 New-NetIPAddress -InterfaceAlias 'Ethernet' `
 -IPAddress 10.10.10.131 `
 -PrefixLength 24 `
 -DefaultGateway 10.10.10.254
 Get-NetIPAddress -InterfaceAlias 'Ethernet' -AddressFamily IPv4

If required, set the DNS of your Nano Server, and display the DNS information:10.

 Set-DnsClientServerAddress -InterfaceAlias 'Ethernet' `
 -ServerAddresses 10.10.10.10,
 10.10.10.11
 Get-DnsClientServerAddress

Exit your remoting session:11.

 Exit-PSSession

Method 3, Using PowerShell Remoting:

PowerShell remoting requires that the remoting target computer IP should be1.
among the TrustedHosts defined on your computer. Add the IP Address of the
Nano Server to our computer's TrustedHosts and verify the value:

 $NanoServerIP = '10.10.10.131'
 Set-Item -Path WSMan:\localhost\Client\TrustedHosts `
 -Value $NanoServerIP -Force
 Get-Item -Path WSMan:\localhost\Client\TrustedHosts

Verify WSMan connectivity to the Nano Server:2.

 Test-WSMan -Path $NanoServerIP

Connect via PowerShell remoting to the Nano Server:3.

 Enter-PSSession -ComputerName $NanoServerIP `
 -Credential $Credential

Implementing Nano Server

[68]

Use Get-ComputerInfo to inspect the Nano Server:4.

 Get-ComputerInfo -Property CsName, WindowsEditionId,
 OSServerLevel, OSType, OSVersion,
 WindowsBuildLabEx, BiosBIOSVersion

Exit your remoting session:5.

 Exit-PSSession

Method 4, Using WMI with the CIM cmdlets:

Create a new CIM session on the Nano Server, and view the $CimSession object:1.

 $CimSession = New-CimSession -Credential $Credential `
 -ComputerName $NanoServerIP
 $CimSession

Examine the properties of the Win32_ComputerSystem CIM class:2.

 Get-CimInstance -CimSession $CimSession `
 -ClassName Win32_ComputerSystem |
 Format-List -Property *

Count the CIM classes available:3.

 Get-CimClass -CimSession $CimSession | Measure-Object

View the running processes using the CIM_Process WMI class and a WMI4.
query:

 Get-CimInstance -CimSession $CimSession `
 -Query "SELECT * from CIM_Process"

Remove your CIM Session:5.

 Get-CimSession | Remove-CimSession

How it works...
In Method 1, you use the Nano Server Recovery Console from the Hyper-V manager. This
technique is useful when the Nano Server has an invalid Ethernet configuration or an
unknown IP address.

Implementing Nano Server

[69]

In step 1 and step 2, from Hyper-V manager, double-click on the NANO1 virtual machine to
bring up the Nano Server Recovery Console.

In step 3, you log in with the username administrator and the password you provided
during the creation of the VM:

Implementing Nano Server

[70]

In step 4, you view the summary information on your Nano Server and navigate through
the screens using the keyboard, with the menu options displayed at the bottom:

Implementing Nano Server

[71]

When you select Networking from the initial screen, you see the Network Settings
folder, like this:

In step 5, you view the networking configuration of your server, noting the IP address so
you can access it later.

In step 6, you can modify your IP address. The default configuration uses DHCP. If your
scenario requires it, disable DHCP and define a valid static IP Address, Subnet Mask, and
Default Gateway:

Implementing Nano Server

[72]

In Method 2, you use PowerShell Direct. PowerShell Direct is a new feature introduced in
Hyper-V in Windows Server 2016 (and Windows 10). PowerShell Direct enables PowerShell
scripting against Windows Server 2016 and Windows 10 virtual machines directly through
the hypervisor, without requiring network, firewall, or remoting configuration. PowerShell
Direct simplifies deployment and automation scripting for Hyper-V hosted virtual
machines.

In step 1, you get the list of VM names from the local Hyper-V server:

Implementing Nano Server

[73]

In step 2, you store the VM name and credential in a variable for later use in the recipe:

In step 3, you view the running processes from the VM using Invoke-Command with a
script block of Get-Process. Note that the -VMName parameter indicates the use of
PowerShell Direct:

In step 4, you enter an interactive PowerShell remoting session through PowerShell Direct
using the -VMName parameter:

Implementing Nano Server

[74]

In step 5, you connect to the VM, note the VM name in the prompt and that your current
directory is in the default Documents folder. Create and use a test folder in your Nano
Server:

In step 6, you gather computer information using a new cmdlet in PowerShell 5.1, Get-
ComputerInfo:

In step 7, $PSVersionTable has a PSEdition of Core rather than Desktop. The Core
version supports a subset of the features of the full Desktop edition of PowerShell:

In step 8, you get the IPAddress property from the Get-NetIPAddress cmdlet:

Implementing Nano Server

[75]

In step 9, you can set your IP address:

In step 10, you set your DNS:

In step 11, exit your remoting session. Note the change in the prompt:

With Method 3, you use regular PowerShell remoting. In step 1, you connect to the Nano
Server VM. Before you can do so, you need to add the VMs IP address to your
TrustedHosts on your Windows 2016 server. Note that you can set this value to an
asterisk (*) which enables you to connect to any remoting capable computer:

Implementing Nano Server

[76]

In step 2, you test your remoting connectivity to the VM using Test-WSMan:

In step 3, you remote into the VM with PowerShell remoting:

In step 4, as you gather computer information. Note that the -Property is optional, leave it
out or pass in an asterisk (*) to display a great deal of useful information about the target
computer:

Implementing Nano Server

[77]

In step 5, you end your remoting session:

In Method 4, you use Windows Management Instrumentation (WMI) and the cmdlets in
the CimCmdlets module to work with your Nano Server. WMI is an open standard that
describes managed IT elements as objects with properties and relationships. The
CIMCmdlets module contains the preferred cmdlets you use to manage Windows Servers
via WMI. PowerShell in Windows Server 2016 supports both the older WMI cmdlets
(contained in the Microsoft.PowerShell.Management module) and the newer
CIMCmdlets module. Nano Server ships with CIMCmdlets, not WMI.

In step 1, you create a CIM session to the Nano Server using the credential and IP address
you defined earlier, and you store it in the variable $CimSession:

In step 2, within this CIM session, you access an instance of the Win32_ComputerSystem
class to view information about the Nano Server:

Implementing Nano Server

[78]

In step 3, you gather a count of the classes:

In step 4, you query the CIM_Process class:

In step 5, you remove your CIM session:

Implementing Nano Server

[79]

There's more...
Get-ComputerInfo is a new cmdlet introduced in PowerShell 5.1. Get-ComputerInfo
returns an object of type Microsoft.PowerShell.Commands.ComputerInfo that
contains a wealth of information from the target computer including hardware, bios, OS,
driver, and networking data. The documentation is available and updateable on github:
https://github.com/ PowerShell/ PowerShell- Docs/ blob/ staging/ reference/ 5.1/
Microsoft.PowerShell. Management/ Get- ComputerInfo. md.

PowerShell Direct is a useful new feature for Hyper-V in Windows Server 2016. It simplifies
PowerShell scripting for VMs. For more information on this feature, see: https:/ /docs.
microsoft.com/en- us/ virtualization/ hyper- v- on-windows/ user- guide/ powershell-
direct.

PowerShell remoting is a powerful feature that has security implications, this is why the
TrustedHosts setting is empty by default, and the administrator must explicitly add
addresses of servers to manage, or may add an asterisk (*) to allow remoting to any server.
More information about remoting is available within the PowerShell documentation:

Get-Help about_Remote*

PowerShell on Nano Server contains the Core edition of PowerShell. PowerShell Core
implements a subset of the full Desktop edition features. The cmdlets provided should be
enough for you to configure networking to allow you to manage Nano Server remotely.

Learn about what is and what is not supported with PowerShell in Nano Server: https:/ /
technet.microsoft. com/ en- us/ windows- server- docs/ get- started/ powershell- on- nano-
server.

WMI is a key aspect of PowerShell scripting, using either the WMI or CIM cmdlets. The
latter are preferred if only because they are a little quicker. Learn more about CIMCmdlets
in PowerShell: https:/ /technet. microsoft. com/en- us/ library/ jj553783. aspx.

You use WMI via the CIM cmdlets to manage and apply Windows updates to your Nano
Servers: https://technet. microsoft. com/ en- us/windows- server- docs/ get- started/
manage-nano-server#managing- updates- in-nano- server.

https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server

Implementing Nano Server

[80]

Installing features with Nano Server
packages
Nano Server is a minimal implementation of a Windows Server 2016. You can customize it
to include only the desired features and roles you require. You customize Nano Servers
using the PackageManagement module along with the NanoServerPackage provider.
The NanoServerPackage provider can search, download, or install packages that
implement features and roles for Nano Server from an online gallery. This provider enables
you to install useful server features and roles which you will explore in this recipe.

In Nano Server, packages replace the Add Roles & Features functionality in other editions
of Windows. For example, if you need a web server, in other editions of Windows you
would install the Web Server (IIS) role, but in Nano server, you would install the
Microsoft-NanoServer-IIS-Package package. Instead of installing the File Services
role, you would install the Microsoft-NanoServer-Storage-Package package.

You can deploy a Nano Server in a workgroup, which is the default. You can also join the
Nano Server to your domain. Nano Servers must join to the domain to utilize certain
Windows features like Windows Clusters. In this recipe, you will deploy a domain joined
Nano Server. To achieve this, you need to obtain a domain blob file which you create using
the djoin console command. You transfer this blob file to the Nano Server to join it to the
domain. You also review the available Nano Server packages and install the selected
packages to support the file server role, web server role, and the Desired State
Configuration (DSC) support.

Getting ready
Before starting, you should ensure that the pre-requisites for using PowerShellGet are
installed and are updated. See recipe in Chapter 1, What's New in PowerShell and Windows
Server, Exploring PowerShellGet recipe for how you can achieve this.

To enable the Nano Server to join the domain, you first create a domain join blob file. Run
the following command with an account in Domain Admins group, from a virtual machine
on the domain as follows:

 djoin.exe /provision /domain RESKIT /machine NANO2
 /savefile .\NANO2.djoin

Implementing Nano Server

[81]

The djoin command creates the domain join blob as .\NANO2.djoin. Copy the newly
created NANO2.djoin file to a folder on your Hyper-V host (C:\foo in this recipe.)

You also need the Windows Server 2016 installation ISO mounted (You use E: in this recipe
as the location of this ISO image.)

A Nano Server can use DHCP or static IP addresses. In this recipe for provisioning NANO2
on the Reskit.org domain, you use the following settings:

IPAddress: 10.10.10.132
Subnet Mask: 255.255.255.0
Gateway: 10.10.10.254
DNS: 10.10.10.10/10.10.10.11

How to do it...
From your Hyper-V host, view the currently installed package providers:1.

 Get-PackageProvider

View the available package providers online, noting the NanoServerPackage2.
provider:

 Find-PackageProvider | Select-Object -Property Name, Summary |
 Format-Table -AutoSize -Wrap

Install the NanoServerPackage provider:3.

 Install-PackageProvider -Name NanoServerPackage -Verbose

View the commands included with the provider:4.

 Get-Command -Module NanoServerPackage

View the available Nano Server packages:5.

 $NanoPackages = Find-NanoServerPackage |
 Select-Object -Property Name, Description
 $NanoPackages | Format-Table -AutoSize -Wrap

Implementing Nano Server

[82]

Determine which of the available packages you wish to install, store them as an6.
array in the $Installpackages variable and then display that array:

 $InstallPackages = @('Microsoft-NanoServer-Storage-Package',
 'Microsoft-NanoServer-IIS-Package',
 'Microsoft-NanoServer-DSC-Package')
 $InstallPackages

Define the path to the Windows Server 2016 installation media:7.

 $Server2016InstallationRoot = 'E:\'

Define the path of the NanoServerImageGenerator folder:8.

 $NanoServerFolder = Join-Path -Path $Server2016InstallationRoot
 -ChildPath 'NanoServer'
 $NsigFolder = Join-Path -Path $NanoServerFolder
 -ChildPath 'NanoServerImageGenerator'
 $NsigFolder

Import the NanoServerImageGenerator module and review the commands9.
contained in that module:

 Import-Module -Name $NsigFolder
 Get-Command -Module NanoServerImageGenerator

Define the folders for the base Nano Server images and the VM images:10.

 $NanoBaseFolder = 'C:\NanoBase'
 $VMFolder = 'D:\VMs'

Define paths for the Nano Server VM:11.

 $NanoComputerName = 'NANO2'
 $NanoVMFolder = Join-Path -Path $VMFolder
 -ChildPath $NanoComputerName
 $NanoVMPath = Join-Path -Path $NanoVMFolder
 -ChildPath "$NanoComputerName.vhdx"

Define the networking parameters:12.

 $IPV4Address = '10.10.10.132'
 $IPV4DNS = '10.10.10.10','10.10.10.11'
 $IPV4Gateway = '10.10.10.254'
 $IPV4SubnetMask = '255.255.255.0'

Implementing Nano Server

[83]

Build a hash table $NanoServerImageParameters to hold parameters for the13.
New-NanoServerImage cmdlet:

 $NanoServerImageParameters = @{
 DeploymentType = 'Guest'
 Edition = 'DataCenter'
 TargetPath = $NanoVMPath
 BasePath = $NanoBaseFolder
 DomainBlobPath = $DomainJoinBlobPath
 Ipv4Address = $IPV4Address
 Ipv4Dns = $IPV4DNS
 Ipv4Gateway = $IPV4Gateway
 IPV4SubnetMask = $IPV4SubnetMask
 Package = $InstallPackages
 }

Create a new Nano Server image, passing in configuration parameters using14.
splatting:

 New-NanoServerImage @NanoServerImageParameters

Once complete, review the VM switches available, and define the Hyper-V switch15.
to use:

 Get-VMSwitch | Select-Object -ExpandProperty Name
 $SwitchName = 'Internal'

Create the Nano virtual machine from the newly created VM disk, and start the16.
VM:

 New-VM -VHDPath $NanoVMPath `
 -Name $NanoComputerName `
 -Path $NanoVMFolder `
 -SwitchName $SwitchName `
 -Generation 2 -Verbose |
 Start-VM

How it works...
To get ready for this recipe, create the computer account for NANO2 in the RESKIT domain
using the djoin command to create the domain blob file. You store this blob in the blob file
NANO2.djoin.

Implementing Nano Server

[84]

In step 1, you review the installed package providers. Note that if NanoServerPackage
provider is missing, you need to install this package provider to continue:

In step 2 and step 3, you list the available PackageManagement package providers, noting
the NanoServerPackage package, then install this package provider:

In step 4, you view the commands associated with the NanoServerPackage. While these
commands are specific to this package, they are wrapper cmdlets for similarly named
PackageManagement cmdlets that can be viewed with Get-Command -Noun Package:

Implementing Nano Server

[85]

In step 5, you view the available packages for Nano Server. Note that some of these
packages are installed using switch parameters in the New-NanoServerImage cmdlet, for
example, the -DeploymentType Guest switch installs the Microsoft-NanoServer-
Guest-Package:

Implementing Nano Server

[86]

In step 6, you define $InstallPackages as an array of the desired packages:

In step 7 and step 8, you define the path to the server installation media, and to the
NanoServerImageGenerator module folder:

In step 9, you import the NanoServerImageGenerator module and view the modules
commands:

In step 10 and step 11, you define paths required for the Nano Server base image, VM name,
folder, and file path. There is no output from these steps.

In step 12, you define the path to the domain join file that you created in the Getting ready
section:

Implementing Nano Server

[87]

In step 13, define the networking configuration for the VM. Note the $IPV4DNS is an array
with two values storing the primary and secondary DNS server IP addresses:

In step 14, you define and view a hash table variable holding all the parameters required in
the next step:

In step 15, you run the New-NanoServerImage using splatting to pass the required
parameters. Answer the prompt for an administrator password, and review the progress of
the creation of the new Nano Server image. Once complete, results are available for review
in a time stamped folder under C:\NanoBaseLogs:

Implementing Nano Server

[88]

In step 16, view the available Hyper-V switch names, and choose the one to associate with
your new VM:

In step 17, you create the new VM, and pipe it to Start-VM to start it:

There's more...
Creating a domain joined Nano Server simplifies Nano Server management. From any
domain server with RSAT tools installed, you can manage this Nano Server VM using the
Server Manager.

From the Server Manager, right click on All Servers, and choose Add Servers:

Implementing Nano Server

[89]

Enter the name of the server to manage in the Name (CN) field, click Find Now, then click
the triangle(Add) button, then click OK:

You can now manage your new Nano Server like any other Windows Server.

Implementing Nano Server

[90]

This recipe uses the djoin tool to create a domain blob file and passes the path in the -
DomainBlobPath parameter. If the host server is a member of the domain, use the -
DomainName and -ComputerName parameters instead.

To discover more about offline domain join, see the Offline Domain Join (Djoin.exe) Step-by-
Step Guide: https:/ /technet. microsoft. com/en- us/library/ offline- domain- join-
djoin-step-by-step(WS. 10). aspx.

Nano packages can be installed either at deployment time or after deployment. You can add
packages after deploying the Nano Server in either an offline or online mode. As a best
practice, in keeping with Jeffrey Snover's cattle not pets server philosophy, it is usually
better to start over and deploy a new Nano Server that's properly configured than to modify
the configuration of an existing Nano server.

For more information on various deployment scenarios for Nano Server:
https:/ /technet. microsoft. com/en- us/ windows- server- docs/ get-
started/ deploy- nano- server.

There are Nano server packages you can download from GitHub. See the
NanoServerPackage on GitHub site at: https:/ /github. com/ OneGet/
NanoServerPackage.

https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage

3
Managing Windows Updates

 In this chapter, we will cover the following recipes:

Installing Windows Server Update Services
Configuring WSUS update synchronization
Configuring the Windows Update client
Creating computer target groups
Configuring WSUS auto-approvals
Managing updates

Introduction
Windows administrators must manage Windows updates to ensure that the operating
systems and software running on their computers are patched to resolve known bugs and
are protected from known security vulnerabilities. Windows Server Update Services
(WSUS) was a feature that was added in 2016 that enables the system administrators to
manage the download and distribution of updates to the organization's computers.

Windows Software Update Services could be better named as Microsoft Software Update
Services. WSUS manages not only Windows operating system updates but also updates for
most Microsoft software products. Updates may apply to the Windows OS or any Microsoft
software.

This chapter covers the installation and configuration of the WSUS server, the configuration
of WSUS client computers, the management, approval, and installation of updates, and how
to report on the status of the update installation.

Managing Windows Updates

[92]

Installing Windows Server Update Services
To use WSUS, you first install the Windows feature for update services, then perform the
initial configuration. WSUS has dependencies that include the IIS web server and ASP.NET
4.6, so these dependencies are installed automatically if they are not present.

Getting ready
To follow this recipe, open a PowerShell session on server WSUS1. WSUS1 is a domain-
joined server with internet access.

How to do it...
The steps for the recipe are as follows:

Install the Windows Update feature and tools, with -Verbose for additional1.
feedback:

 Install-WindowsFeature -Name 'UpdateServices' `
 -IncludeManagementTools -Verbose

Review the features that are installed on your server, noting that not only has2.
Windows Software Update Services been installed, but Web Server (IIS),
ASP.Net 4.6, and Windows Internal Database have as well:

 Get-WindowsFeature |
 Where-Object -FilterScript {($psitem.Installed)}

Create a folder for WSUS update content:3.

 $WSUSContentDir = 'C:\WSUS'
 New-Item -Path $WSUSContentDir -ItemType Directory

Perform post-installation configuration using WsusUtil.exe:4.

 & "$env:ProgramFiles\Update Services\Tools\WsusUtil.exe" `
 postinstall
 CONTENT_DIR=$WSUSContentDir

Managing Windows Updates

[93]

Once configuration completes, the output includes a line stating Log file is5.
located at, followed by a path to a .tmp file in the user's temp directory.
Review this log file to see what was done in the configuration (adjust the file
name as necessary):

 Get-Content -Path "$env:TEMP\1tmp234.tmp"

View some websites on this machine, noting the WSUS website:6.

 Get-Website

View the cmdlets in the UpdateServices module:7.

 Get-Command -Module UpdateServices

Inspect the TypeName and properties of the object created with Get-8.
WsusServer:

 $WSUSServer = Get-WsusServer
 $WSUSServer.GetType().Fullname
 $WSUSServer | Select-Object -Property *

The object is of type UpdateServer in the9.
Microsoft.UpdateServices.Internal.BaseApi namespace, and is the main
object you interact with to manage WSUS from PowerShell. Inspect the methods
of the object:

 $WSUSServer | Get-Member -MemberType Method

Inspect some of the configuration values of the UpdateServer object:10.

 $WSUSServer.GetConfiguration() |
 Select-Object -Property SyncFromMicrosoftUpdate,LogFilePath

Product categories are the various operating systems and programs for which11.
updates are available. See what product categories are included by WSUS after
the initial install:

 $WSUSProducts = Get-WsusProduct -UpdateServer $WSUSServer
 $WSUSProducts.Count
 $WSUSProducts

Managing Windows Updates

[94]

Your $WSUSServer object contains a subscription object with properties and12.
methods useful for managing the synchronization of updates. Access the
Subscription object in the $WSUSServer object and inspect it, noting that it is
also in the Microsoft.UpdateServices.Internal.BaseApi namespace:

 $WSUSSubscription = $WSUSServer.GetSubscription()
 $WSUSSubscription.GetType().Fullname
 $WSUSSubscription | Select-Object -Property *
 $WSUSSubscription | Get-Member -MemberType Method

Before you choose which product updates you want, you need to know what13.
product categories are available. Get the latest categories of products available
from Microsoft Update servers, and use a while loop to wait for completion:

 $WSUSSubscription.StartSynchronizationForCategoryOnly()

 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds 5
 }
 While ($WSUSSubscription.GetSynchronizationStatus() -ne `
 'NotProcessing')

Once synchronization is complete, check the results of the synchronization:14.

 $WSUSSubscription.GetLastSynchronizationInfo()

Again, review the categories of the products available:15.

 $WSUSProducts = Get-WsusProduct -UpdateServer $WSUSServer
 $WSUSProducts.Count
 $WSUSProducts

How it works...
In step 1, you install WSUS by installing the UpdateServices feature. Note the link for
additional configuration instructions:

Managing Windows Updates

[95]

In step 2, you review what has been installed on your server by piping the results of Get-
WindowsFeature to Where-Object, which filters the object passed in the pipeline. This
object is referenced by the $PSItem variable (or the shorter $_) variable, returning only
those that are installed—that is, those whose Installed property is $true. Installing the
UpdateServices Windows feature installed the prerequisites, such as Web Server
(IIS), automatically:

In steps 3 and 4, you create a folder to hold the WSUS update content, and then perform the
post-installation configuration for WSUS:

Managing Windows Updates

[96]

In step 5, you review the log file written by WsusUtil.exe in the previous command. This
log is useful for troubleshooting or for verifying a successful configuration:

In step 6, you view the websites on the WSUS1 server, noting the WSUS website, bound to
HTTP on port 8530:

In step 7, you review the commands in the UpdateServices module, which you investigate
in later recipes:

Managing Windows Updates

[97]

In steps 8 and 9, you use Get-WsusServer to create your $WSUSServer object and inspect
the properties and methods:

Managing Windows Updates

[98]

In step 10, you use Get-WsusProduct to create and view the default collection of available
product categories. Sadly, this list is out of date:

In step 11, you make your product categories current by synchronizing from the Microsoft
Update servers, using a while loop to wait for the synchronization to complete. This can
take several minutes when doing this for the first time:

Managing Windows Updates

[99]

In step 12, you check the result of the synchronization:

There's more...
This recipe describes a single-server WSUS deployment, but WSUS also runs on multiple
servers to support large networks, can synchronize from other WSUS servers on the
network, can use web proxies, and can work with SQL Server instead of the Windows
Internal Database.

WSUS server requirements and deployment scenarios are documented on
technet at
https://technet.microsoft.com/en-us/library/hh852344(v=ws.11).as

px#BKMK_1.1.

While the UpdateServices module is very useful, most of the tasks you perform in
PowerShell to administer WSUS involve accessing the UpdateServer and Subscription
objects directly.

MSDN contains documentation on these objects under the
Microsoft.UpdateServices.Administration namespace.

Explore the documentation at
https://msdn.microsoft.com/en-us/library/windows/desktop/microso

ft.updateservices.administration(v=vs.85).aspx to understand the
available methods and properties.

https://technet.microsoft.com/en-us/library/hh852344(v=ws.11).aspx#BKMK_1.1
https://technet.microsoft.com/en-us/library/hh852344(v=ws.11).aspx#BKMK_1.1
https://msdn.microsoft.com/en-us/library/windows/desktop/microsoft.updateservices.administration(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/microsoft.updateservices.administration(v=vs.85).aspx

Managing Windows Updates

[100]

Configuring WSUS update synchronization
Once you have completed the installation of WSUS, you configure the update services by
choosing the product updates your organization requires, and which classifications of
updates to download and make available to the computers on your network. Once these are
defined, you can synchronize updates manually or on a schedule, and your WSUS server
will download the updates for the product categories and update classifications you have
selected from the Microsoft Update servers to make available to the computers on your
network. The first synchronization can take hours, depending on your selections, and then
subsequent synchronizations will pull only the newest updates since the last
synchronization.

Getting ready
For this recipe, you will download updates for the following products to your WSUS server:

Windows Server 2016
SQL Server 2016
Windows 10

You will also choose which types of windows updates to download. In this recipe, you will
select the following classifications:

Critical updates
Definition updates
Security updates
Service packs
Update roll-ups
Updates

How to do it...
The steps for the recipe are as follows:

Locate the products you want to download to your WSUS server using Get-1.
WsusProduct to search the product titles:

 Get-WsusProduct -TitleIncludes 'Server 2016'
 Get-WsusProduct -TitleIncludes 'Windows 10'

Managing Windows Updates

[101]

Build a list of software product titles you wish to include:2.

 $ChosenProducts = @('Windows Server 2016',
 'Microsoft SQL Server 2016',
 'Windows 10')

Assign the desired products to include in Windows Update:3.

 Get-WsusProduct |
 Where-Object {$PSItem.Product.Title -in $ChosenProducts} |
 Set-WsusProduct

Updates are classified into distinct categories; a view which classifications of4.
updates are available:

 Get-WsusClassification

Build a list of desired update classifications to make available on your WSUS5.
server and view the list:

 $ChosenClassifications = @('Critical Updates',
 'Definition Updates',
 'Security Updates',
 'Service Packs',
 'Update Rollups',
 'Updates')
 $ChosenClassifications

Set our list of desired update classifications in WSUS:6.

 Get-WsusClassification |
 Where-Object {$PSItem.Classification.Title -in
 $ChosenClassifications} |Set-WsusClassification

Create a variable for the Subscription object, start synchronizing Windows7.
Updates, and watch the progress in a loop:

 $WSUSServer = Get-WsusServer
 $WSUSSubscription = $WSUSServer.GetSubscription()
 #Start synchronizing available
 updates$WSUSSubscription.StartSynchronization()
 $IntervalSeconds = 1
 #Wait for synchronizing to start
 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds $IntervalSeconds
 }

Managing Windows Updates

[102]

 While ($WSUSSubscription.GetSynchronizationStatus() -eq `
 'NotProcessing')
 #wait for all phases of process to end
 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds $IntervalSeconds
 }
 Until ($WSUSSubscription.GetSynchronizationStatus() -eq `
 'NotProcessing')

Synchronization takes a few moments to start with, and then takes a long time to8.
complete, depending on the number of products chosen. Wait for the process to
start in a do-while loop, then wait for the process to complete in a do-until
loop:

 $WSUSSubscription.StartSynchronization()
 $IntervalSeconds = 1
 #Wait for synchronizing to start
 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds $IntervalSeconds
 }
 While ($WSUSSubscription.GetSynchronizationStatus()
 -eq ` 'NotProcessing')
 #Wait for all phases of process to end
 Do {
 Write-Output $WSUSSubscription.GetSynchronizationProgress()
 Start-Sleep -Seconds $IntervalSeconds
 }
 Until ($WSUSSubscription.GetSynchronizationStatus()
 -eq ` 'NotProcessing')

When the final loop is complete, check the results of the synchronization:9.

 $WSUSSubscription.GetLastSynchronizationInfo()

Configure automatic synchronization to run once per day:10.

 $WSUSSubscription = $WSUSServer.GetSubscription()
 $WSUSSubscription.SynchronizeAutomatically = $true
 $WSUSSubscription.NumberOfSynchronizationsPerDay = 1
 $WSUSSubscription.Save()

Managing Windows Updates

[103]

How it works...
In this recipe, you see how to configure WSUS updating.

In step 1, you use Get-WsusProduct to perform searches for products supported by
Windows Update by title:

In step 2, you store a list of the chosen product titles in a variable:

In step 3, you use Get-WsusProduct to retrieve the WsusProduct objects with titles that
match your list and pipe these to Set-WsusProduct to enable the synchronization of
updates for these products in WSUS:

Managing Windows Updates

[104]

In step 4, you use Get-WsusClassification to review which classifications of updates are
available from Windows Update:

In step 5, you store the list of desired update classifications in a variable and view it:

In step 6, you use Get-WsusClassification to retrieve the WsusClassification objects
with titles that match your list and pipe these to Set-WsusClassification to enable the
synchronization of these categories of updates in WSUS:

In step 7, you use Get-WsusServer to create a $WSUSServer object. Use the
GetSubscription method on that object to create a Subscription object:

Managing Windows Updates

[105]

In step 8, you use the StartSynchronization method on the UpdateServer object to
begin synchronization, and use a do-while loop to wait for the synchronization process to
start by waiting until the result of the GetSynchronizationProgress method changes
from NotProcessing. The $IntervalSeconds variable determines the time between
checks. You can increase this value to 60 to check every minute. Once started, you use a do-
until loop to watch the value of the same method as it returns the progressive stages of the
synchronization, and wait for the process to complete and return NotProcessing once
more:

In step 9, you use the GetLastSynchronizationInfo method on the Subscription
object to review the results of the synchronization:

In step 10, if you want your WSUS server to download updates from Microsoft
automatically, you use the Subscription object to configure automatic synchronization
once daily and save the configuration:

Managing Windows Updates

[106]

There's more...
In step 3, you used the $PSItem mechanism to represent an object in the pipeline. You could
have used $_ instead. Either works.

To understand the various categories of updates, review the descriptions available and refer
to the online documentation:

 $WSUSServer.GetUpdateClassifications() | Select-Object -Property
 Title,Description

Documentation of the terminology that defines the software updates is
available at
https://support.microsoft.com/en-us/help/824684/description-of-t
he-standard-terminology-that-is-used-to-describe-microsoft-

software-updates.

Configuring the Windows Update client
Windows computers download updates from Microsoft servers by default. To override this
behavior, you can either configure the Windows Update client using GPO settings or
manually update the registry of each client.

Getting ready
Run this recipe from WSUS1 with RSAT installed for working with Group Policy Objects.

$FeatureName = 'RSAT'
Install-WindowsFeature $FeatureName -IncludeAllSubFeature

How to do it...
The steps for the recipe are as follows:

Define and view the WSUS server URL using the properties returned from Get-1.
WsusServer:

 $WSUSServer = Get-WsusServer
 $WSUSServerURL = "http{2}://{0}:{1}" -f `
 $WSUSServer.Name,
 $WSUSServer.PortNumber,

https://support.microsoft.com/en-us/help/824684/description-of-the-standard-terminology-that-is-used-to-describe-microsoft-software-updates
https://support.microsoft.com/en-us/help/824684/description-of-the-standard-terminology-that-is-used-to-describe-microsoft-software-updates
https://support.microsoft.com/en-us/help/824684/description-of-the-standard-terminology-that-is-used-to-describe-microsoft-software-updates

Managing Windows Updates

[107]

 ('','s')[$WSUSServer.UseSecureConnection]
 $WSUSServerURL

Create a Group Policy Object (GPO) and link it to your domain:2.

 $PolicyName = "WSUS Client"
 New-GPO -Name $PolicyName
 New-GPLink -Name $PolicyName -Target "DC=RESKIT,DC=Org"

Add registry key settings to the group policy to assign the WSUS server:3.

 $key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU'
 Set-GPRegistryValue -Name $PolicyName `
 -Key $key `
 -ValueName 'UseWUServer'`
 -Type DWORD -Value 1
 $key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU'
 Set-GPRegistryValue -Name $PolicyName `
 -Key $key `
 -ValueName 'AUOptions' `
 -Type DWORD `
 -Value 2
 $key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate'
 Set-GPRegistryValue -Name $PolicyName `
 -Key $key `
 -ValueName 'WUServer' `
 -Type String `
 -Value $WSUSServerURL
 $key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate'
 Set-GPRegistryValue -Name $PolicyName `
 -Key $key `
 -ValueName 'WUStatusServer' `
 -Type String -Value $WSUSServerURL

Each PC on the domain then begins using the WSUS server once the group policy4.
is updated. To make this happen immediately, on each PC, run the following
commands:

 Gpupdate /force
 Wuauclt /detectnow

Managing Windows Updates

[108]

How it works...
In step 1, you use Get-WsusServer to create the $WSUSServer object and use its properties
to define the Windows Update server URL in the $WSUSServerURL variable. This URL is
not stored in a single property, so the variable is built with a format string using the Name,
PortNumber, and UseSecureConnection properties.

The portion of code that inspects the UseSecureConnection property appends an s to the
HTTP of the URL only if the UseSecureConnection property is set to $true. This
statement is similar to an if and only if (IIF) function in other languages:

In step 2, you create a new group policy object entitled WSUS Client with New-GPO and
link the group policy to the RESKIT.org domain with New-GPLink:

In step 3, you define four registry key values and associate them with the group policy
object using Set-GPRegistryValue:

Managing Windows Updates

[109]

In step 4, you force a group policy update on any Windows computer in the domain and
start the Windows Update client immediately:

There's more...
The AUOptions value's Value 2 is Notify for download and notify for install. For an
explanation of the available options see
https://technet.microsoft.com/en-us/library/cc512630.aspx.

For non-domain computers to use your WSUS server, you may update their registry
manually. The minimum settings are:

 # Define registry settings
 $key = 'HKLM:Software\Policies\Microsoft\Windows\WindowsUpdate'
 New-ItemProperty -PropertyType String `
 -Path $key `
 -Name WUServer -Value 'http://WSUS1:8530'
 New-ItemProperty -PropertyType String `
 -Path $key `
 -Name WUStatusServer -Value 'http://WSUS1:8530'
 New-ItemProperty -PropertyType DWord `
 -Path "$key\AU"`
 -Name UseWUServer -Value 1
 # Start looking for updates immediately
 Wuauclt /detectnow

You can get full documentation for WSUS registry keys at
https://technet.microsoft.com/en-us/library/dd939844(v=ws.10).as
px

Creating computer target groups
Different types of computers in your organization require different approaches to software
updating. Employee workstations run software that application servers do not. Some
servers are mission critical and must only be updated after you test the updates thoroughly.
Sometimes critical updates are released that must be applied immediately, while some may
be optional.

https://technet.microsoft.com/en-us/library/cc512630.aspx
https://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx

Managing Windows Updates

[110]

To manage the distribution software updates, define computer target groups on your WSUS
server and assign computers these target groups. Each computer target group can be
configured to apply updates differently. You create a target group for the Domain
Controllers in this recipe.

Getting ready
WSUS must be installed and configured on the update server, and clients must be
configured to use the WSUS server to apply this recipe.

How to do it...
The steps for the recipe are as follows:

Create a WSUS computer target group for the Domain Controllers:1.

 $WSUSServer = Get-WsusServer
 $WSUSServer.CreateComputerTargetGroup('Domain Controllers')

Add a computer to the new computer target group:2.

 Get-WsusComputer -NameIncludes DC1 |
 Add-WsusComputer -TargetGroupName 'Domain Controllers'

List the clients in the computer target group:3.

 $DCGroup = $WSUSServer.GetComputerTargetGroups() |
 Where-Object -Property Name -eq 'Domain Controllers'
 Get-WsusComputer |
 Where-Object -Property ComputerTargetGroupIDs
 -Contains $DCGroup.Id

How it works...
In step 1, you create the $WSUSServer object and use the CreateComputerTargetGroup
method to define a new computer target group on your WSUS server:

Managing Windows Updates

[111]

In step 2, you use Get-WsusComputer to retrieve the WsusComputer object for the DC1
server and pipe this object to the Add-WsusComputer method, which adds it to the new
WSUS computer target group:

In step 3, you use the GetComputerTargetGroups method of the $WSUSServer object,
filtered with Where-Object, to retrieve the new 'Domain Controllers' computer target
group, and store it in the variable $DCGroup:

In step 4, you use Get-WsusComputer and inspect the ComputerTargetGroupIDs
property, looking for a match to the $DCGroup.Id property from the previous step to show
that the DC1 computer is a member of this ComputerTargetGroup:

There's more...
Rather than assigning computers to computer target groups on the WSUS server, you can
assign computers to computer target groups in WSUS using the Group Policy with a feature
called client-side targeting.

A group policy object is created and linked to the OU that contains the computers. This
group policy object is then associated with one or more WSUS computer target groups.
When the computer connects to the WSUS server, it declares these groups to the server and
receives the updates assigned to those groups.

To learn more, see the client-side documentation at
https://technet.microsoft.com/en-us/library/dd252762.aspx

https://technet.microsoft.com/en-us/library/dd252762.aspx

Managing Windows Updates

[112]

Configuring WSUS auto-approvals
WSUS organizes Windows updates under different classifications. You can view these
classifications by using the Get-WsusClassification cmdlet. Two particularly important
classifications you should check regularly are Critical Updates and Definition
Updates. The Critical Updates classification includes updates that address severe
security flaws and zero-day vulnerabilities. The Definition Updates classification
includes definition files for Windows Defender to identify and remove malware.

These two classifications are important enough to approve them automatically. Auto-
approval ensures WSUS installs these updates on client computers as soon as possible. In
this recipe, you will create an auto-approval rule for these updates.

Getting ready
Run this recipe on the WSUS1 server.

How to do it...
Run this recipe to configure auto-approval of WSUS update:

Create the auto-approval rule:1.

 $WSUSServer = Get-WsusServer
 $ApprovalRule = $WSUSServer.CreateInstallApprovalRule('Critical
 Updates')

Define a deadline for the rule:2.

 $type = 'Microsoft.UpdateServices.Administration.
 AutomaticUpdateApprovalDeadline'
 $RuleDeadLine = New-Object -Typename $type
 $RuleDeadLine.DayOffset = 3
 $RuleDeadLine.MinutesAfterMidnight = 180
 $ApprovalRule.Deadline = $RuleDeadLine

Add update classifications to the rule:3.

 $UpdateClassification = ` $ApprovalRule.
 GetUpdateClassifications()
 $UpdateClassification.Add(($WSUSServer.
 GetUpdateClassifications() |

Managing Windows Updates

[113]

 Where-Object -Property Title -eq 'Critical Updates'))
 $UpdateClassification.Add(($WSUSServer.
 GetUpdateClassifications() |
 Where-Object -Property Title -eq 'Definition Updates'))
 $ApprovalRule.SetUpdateClassifications($UpdateClassification)

Assign the rule to a computer target group:4.

 $TargetGroups = New-Object `
 Microsoft.UpdateServices.Administration.
 ComputerTargetGroupCollection
 $TargetGroups.Add(($WSUSServer.GetComputerTargetGroups() |
 Where-Object -Property Name -eq "Domain Controllers"))
 $ApprovalRule.SetComputerTargetGroups($TargetGroups)

Enable and save the rule:5.

 $ApprovalRule.Enabled = $true
 $ApprovalRule.Save()

How it works...
In step 1, you create the $WSUSServer object using Get-WsusServer, then use the
CreateInstallApprovalRule method to create a new AutomaticUpdateApprovalRule
object, and store them in the $ApprovalRule variable:

In step 2, you define $RuleDeadline, a new AutomaticUpdateApprovalDeadline object,
configured to install automatically with a three-day grace period after becoming available
and the scheduled installation time of 3 am. You associate this deadline object with your
approval rule:

Managing Windows Updates

[114]

In step 3, you use the GetUpdateClassifications method of the $ApprovalRule object
and store the resulting object in the $UpdateClassification variable. The object initially
contains no update classifications. You then use the Add method of this object to add in the
two desired update classifications filtered by Title and associate these with the
$ApprovalRule object using the SetUpdateClassifications method:

In step 4, you define $TargetGroups and set it to contain the computer target group named
'Domain Controllers' using the GetComputerTargetGroups method of $WSUSServer,
filtered by Where-Object. You then associate $TargetGroups with the new
$ApprovalRule using the SetComputerTargetGroups method:

In step 5, you set the Enabled property of the $ApprovalRule object, and use the Save
method to complete the configuration:

There's more...
You can view your approved updates using the GetUpdates method of the $WSUSServer
object and filter on the IsApproved property:

$WSUSServer.GetUpdates() |
 Where-Object -Property IsApproved -eq $true |
 Select-Object -Property Title, CreationDate, `
UpdateClassificationTitle

Managing Windows Updates

[115]

Managing updates
The WSUS administrator performs several tasks to manage update distribution. These tasks
begin with the awareness of which updates are available, approved, installed or marked to
be installed for each computer target group. For the available updates, the administrator
must approve or reject the updates to control which updates are made available. This recipe
covers listing installed updates, listing available updates, approving updates, and declining
updates.

Getting ready
In this recipe, you manage updates using PowerShell. You should open a PowerShell
session on WSUS1 to perform this recipe.

How to do it...
In this recipe you manage WSUS updates:

Open a PowerShell session, and view the overall status of all Windows updates1.
on WSUS1:

 $WSUSServer = Get-WsusServer
 $WSUSServer.GetStatus()

View the computer targets:2.

 $WSUSServer.GetComputerTargets()

View the installed updates on DC1 using Get-Hotfix and Get-3.
SilWindowsUpdate:

 Get-HotFix -ComputerName DC1
 $CimSession = New-CimSession -ComputerName DC1
 Get-SilWindowsUpdate -CimSession $CimSession
 $CimSession | Remove-CimSession

Managing Windows Updates

[116]

Search the WSUS server for updates with titles containing Windows Server 20164.
that are classified as security updates, newest to oldest, and store them in a
variable. Examine the variable using Get-Member, reviewing the properties and
methods of the Microsoft.UpdateServices.Internal.BaseApi.Update
object:

 $SecurityUpdates = $WSUSServer.SearchUpdates(`
 "Windows Server 2016") |
 Where-Object -Property UpdateClassificationTitle `
 -eq 'Security Updates' |
 Sort-Object -Property CreationDate -Descending
 $SecurityUpdates | Get-Member

View the matching updates:5.

 $SecurityUpdates |
 Select-Object -Property CreationDate, Title

Select one of the updates to approve based on the KB article ID:6.

 $SelectedUpdate = $SecurityUpdates |
 Where-Object -Property KnowledgebaseArticles -eq 4019472

Define the computer target group where you will approve this update:7.

 $DCTargetGroup = $WSUSServer.GetComputerTargetGroups() |
 Where-Object -Property Name -eq 'Domain Controllers'

Approve the update for installation in the target group:8.

 $SelectedUpdate.Approve('Install',$DCTargetGroup)

Select one of the updates to decline based on the KB article ID:9.

 $DeclinedUpdate = $SecurityUpdates |
 Where-Object -Property KnowledgebaseArticles -eq 4020821

Decline the update:10.

 $DeclinedUpdate.Decline($DCTargetGroup)

Managing Windows Updates

[117]

How it works...
In step 1, you create the $WSUSServer object using Get-WsusServer and use the
GetStatus method to view the status of Windows updates on the WSUS server:

In step 2, you review the computer targets configured in WSUS with the
GetComputerTargets method:

In step 3, you use two different methods to view the installed updates. The first is Get-
Hotfix, and the second is Get-SilWindowsUpdate, which is one of the
SoftwareInventoryLogging module cmdlets introduced in PowerShell version 5. These
cmdlets use CIM sessions to connect to computers and gather inventory information:

Managing Windows Updates

[118]

In step 4, you use the SearchUpdates method on the $WSUSServer to search the available
updates by title, then use Where-Object to filter on the UpdateClassificationTitle
property for security updates and then sort them from newest to oldest. You then use Get-
Member to examine the Update object, noting the many methods and properties:

In step 5, you view the security updates that matched your search. Note that each displays a
knowledge base (KB) ID that is useful for identifying and researching individual updates:

Managing Windows Updates

[119]

In step 6, you filter the selected updates for a single update that you wish to approve using
Where-Object to match on the KnowledgebaseArticles property:

In step 7, you define the computer target group for the Domain Controllers using the
GetComputerTargetGroups method of the $WSUSServer object, filtered by Where-
Object:

In step 8, you use the Approve method of the $SelectedUpdate object-which takes two
parameters:, an UpdateApprovalAction and a TargetGroup-and approve the selected
update for the Domain Controllers target group:

In step 9, you select an update to decline, using Where-Object to filter the selection to a
single update using the KnowledgebaseArticles property:

In step 10, you use the Decline method of the update object, and provide the TargetGroup
object as a parameter to decline this update for the Domain Controllers target group
computers:

Managing Windows Updates

[120]

There's more...
Two community PowerShell modules available via the Install-Module or the PowerShell
Gallery website are useful for working with Windows Update.

PoshWSUS simplifies the management of the WSUS server, wrapping up the interaction
with the various objects and enumerations with easy-to-use cmdlets. For example, this
command would decline updates for all non-English LanguagePack updates (note the -
WhatIf parameter support):

Get-PSWSUSUpdate -IncludeText 'LanguagePack' -ExcludeText 'English' Deny-
PSWSUSUpdate -WhatIf

PSWindowsUpdate enables the management and installation of Windows updates provided
from a WSUS server, Windows Update, or Microsoft Update. For example, this command
will install the newly approved update on DC1 and reboot if required:

Get-WUInstall -AcceptAll -AutoReboot

4
Managing Printers

In this chapter, we cover the following recipes:

Installing and sharing printers
Publishing a printer
Changing the spool directory
Changing printer drivers
Printing a test page on a printer
Reporting on printer security
Modifying printer security
Deploying shared printers
Enabling Branch Office Direct Printing
Creating a printer pool
Reporting on printer usage

Introduction
Printing is a feature that has been incorporated into Windows operating systems, and has
evolved over the years. Printing in Windows Server 2016 has not changed much from
earlier versions, and provides you with the ability to create print servers that you can share
with users in your organization.

With Windows printing, the physical device that renders output onto paper is a print
device. A printer is, in effect, the queue for one or more print devices. A print server can
support multiple printers (as can individual client workstations). The print device has a
driver that converts your documents to the printed form on a given print device. Some
drivers come with Windows—others you need to obtain from the printer vendor.

Managing Printers

[122]

You use both the printers—that is, the printing device and printer port—when you create a
new printer on your print server. In many organizations, printers are often stand-alone
devices with just a TCP/IP connection. You can also connect a print device to your server
using the server's local USB, parallel, or serial port.

Microsoft did not change the basic print architecture in Windows Server 2016. Windows
Server 2012 introduced a new driver architecture, version 4, which Windows Server 2016
supports. This driver model enables two different driver types: printer class drivers and
model-specific drivers. The former provides a single driver for a variety of specific printing
device models, whereas latter is used for just a single model. Increasingly, print device
manufacturers are implementing more generic drivers that can simplify organizational roll-
out for printer drivers.

Another change in Windows Server 2012, carried over into Windows Server 2016, is that
you no longer use the print server to distribute printer drivers. Clients can use the point and
print feature to send print jobs to the server. Additionally, you can use tools such as the
System Center Configuration Manager or Group Policies to distribute print drivers to
clients.

This chapter covers installing, managing, and updating printers, print drivers, and printer
ports on a Windows Server 2016 print server. You may find that some of the administration
tools used in this chapter are not available on Windows Server Core. To enable full
management, you need to have the full GUI (including the Desktop Experience for any GUI
utilities).

Installing and sharing printers
The first step in creating a print server for your organization involves installing the print
server feature, then installing printer ports and printer drivers, and finally creating printers.

Getting ready
In this recipe, you are going to set up a print server, PSRV, and then set up a TCP/IP printer
for the Sales Group. This process involves installing the print server feature in Windows
Server 2016. Then you create a port for a new printer and install the driver for the Sales
Group group's new printer, an NEC Color MultiWriter. Finally, you create and then
share the printer. Once complete, you can review what you have accomplished.

Managing Printers

[123]

How to do it...
Install the Print-Server feature on PSRV, along with the print management1.
tools:

 Install-WindowsFeature -Name Print-Server,
 RSAT-Print-Services

Add a PrinterPort for a new printer:2.

 Add-PrinterPort -Name Sales_Color `
 -PrinterHostAddress 10.10.10.61

Add a PrinterDriver for this printer server:3.

 Add-PrinterDriver -Name
 'NEC Color MultiWriter Class Driver'
 -PrinterEnvironment 'Windows x64'

Add the printer:4.

 Add-Printer -Name SGCP1 `
 -DriverName 'NEC Color MultiWriter
 Class Driver' `
 -Portname 'Sales_Color'

Share the printer:5.

 Set-Printer -Name SGCP1 -Shared $True

Review what you have done:6.

 Get-PrinterPort -Name SGCP1 |
 Format-Table -Property Name, Description,
 PrinterHostAddress, PortNumber
 -Autosize
 Get-PrinterDriver -Name NEC* |
 Format-Table -Property Name, Manufacturer,
 DriverVersion, PrinterEnvironment
 Get-Printer -ComputerName PSRV -Name SGCP1 |
 Format-Table -Property Name, ComputerName,
 Type, PortName, Location, Shared

Managing Printers

[124]

How it works...
In step 1, you add the Print-Server feature and the management tools to PSRV. To do this,
open a PowerShell window on the PSRV host and install the Print-Server feature. You
can either do this directly or remotely, and you can use the PowerShell console or the ISE
directly from the Print-Server. The output looks like this:

In step 2, you add a new port for the color printer you wish to add. In step 3, you add the
PrinterDriver for the printer (in our case, an NEC Color MultiWriter Class
Driver). In step 4, you add a new printer, SGCP1, to the system. You use the
PrinterDriver and printer port you created for this new printer. In step 5, you share the
printer. A shared printer enables users to connect to the printer and print to the associated
print device. Windows bases permissions for the printer on the Discretionary Access
Control List (DACL), which you set up when you create the printer. Another recipe later in
this chapter shows you how you can view and update the DACL for a printer. There is no
output for step 2, step 3, step 4, and step 5.

Once you have created and shared the printer, you can view the results. In step 6, you view
the printer port, printer driver, and printer. Note that the printer is shared in the following
output:

Managing Printers

[125]

Publishing a printer
Once you create and share a printer, as shown in the previous recipe, you can additionally
publish it to the Active Directory. When you publish a printer, you can also specify a
location for the printer that enables your users to search for published printers based on
location and capabilities. End users can search AD to find printers and to find the printers
near to them. In this recipe, you publish the printer you created in the previous recipe and
examine the results.

Getting ready
In this recipe, you publish the printer that you created in the preceding recipe, Installing and
sharing printers.

How to do it...
Get the printer to publish and store the returned object in $Printer:1.

 $Printer = Get-Printer -Name SGCP1

Observe the publication status:2.

 $Printer | Format-Table -Property Name, Published

Publish the printer to AD:3.

 $Printer | Set-Printer -Published $true `
 -Location '10th floor 10E4'

View the updated publication status:4.

 Get-Printer -Name SGCP1 |
 Format-Table -Property Name, Published, Location

Managing Printers

[126]

How it works...
In step 1, you get the printer details for the Sales Group group's printer, SGCP1, and store
it in $Printer. There is no output from this step.

In step 2, you output the printer details to see that you have not yet published the printer:

In step 3, you publish the printer by piping the Printer object to Set-Printer, specifying
that you wish to publish the printer. In step 4, you can see the results of publishing the
printer:

As you can see, you have now published the printer and set the location to the 10th
floor, area 10E4.

There's more...
When you publish a printer to the Active Directory, users need to be able to find it. One
way is to use the Find Printers dialog to search for published printers.

To use this (in Windows Server 2016 and Windows 10), you click Start | Settings | Devices
| Printers & scanners to bring up the Add printers & scanners dialog. From this dialog
box, click Add a printer or scanner. Wait until the searching is complete, then click on The
printer that I want isn't listed, which brings up the Add Printer dialog:

Managing Printers

[127]

Select Find a printer in the directory, based on location or feature, then click Next. You
now see the Find Printers dialog:

Managing Printers

[128]

You, or your users, can use the Printers tab to search for printers by Name, Location, and
Model, and use the Features tab to search for printers with specific features (for example,
the ability to print in color).

Changing the spool directory
By default, Windows uses the folder %SystemRoot%\System32\spool\PRINTERS to store
spooled jobs. On our print server, PSRV, this folder is
C:\Windows\System32\spool\PRINTERS. In some cases, particularly when your users
generate large amounts of printed output, this folder and the volume could become full,
which is not a good thing. To help you avoid issues, you can move the default spool
directory to a different folder (for example, C:\Spool), or you could move the spool folder
to a folder on another volume (for example, E:\Spool).

Getting ready
There are two ways you can change the spool directory. The first way is to use the classes
inside the .NET Framework's System.Printing namespace to update the folder name. The
second, and probably the simplest, way is to update the registry with the folder to use for
spooling. This recipe shows both methods.

How to do it...
First, let's look at how you change the spool folder using the .NET Framework:

Load the System.Printing namespace and classes:1.

 Add-Type -AssemblyName System.Printing

Define the required permissions—that is, the ability to administrate the server:2.

 $Permissions =
 [System.Printing.PrintSystemDesiredAccess]::
 AdministrateServer

Managing Printers

[129]

Create a PrintServer object with the required permissions:3.

 $Ps = New-Object
 -TypeName System.Printing.PrintServer `
 -ArgumentList $Permissions

Update the default spool folder path:4.

 $Newpath = 'C:\Spool'
 $Ps.DefaultSpoolDirectory = $Newpath

Commit the change:5.

 $Ps.Commit()

Restart the Spooler to accept the new folder:6.

 Restart-Service -Name Spooler

Once the Spooler has restarted, view the results:7.

 New-Object -TypeName System.Printing.PrintServer |
 Format-Table -Property Name,
 DefaultSpoolDirectory

Another way to set the Spooler directory is by directly editing the registry as follows:

First stop the Spooler service:1.

 Stop-Service -Name Spooler

Set the spool directory registry setting:2.

 PS C:\foo> $RPath = 'HKLM:\SYSTEM\CurrentControlSet\Control\ +
 Print\Printers'
 $Spooldir = 'C:\SpoolViaRegistry'
 Set-ItemProperty -Path $RPath `
 -Name DefaultSpoolDirectory `
 -Value 'C:\SpoolViaRegistry'

Managing Printers

[130]

Restart the Spooler:3.

 Start-Service -Name Spooler

View the results:4.

 New-Object -TypeName System.Printing.PrintServer |
 Format-Table -Property Name,
 DefaultSpoolDirectory

How it works...
The .NET Framework's System.Printing namespace contains some useful printing-
related classes and enums, some of which you use in this recipe. PowerShell does not load
this namespace by default. You load it in step 1, using the Add-Type cmdlet, which
produces no output.

In step 2, you create a variable, $Permissions, that holds the print permissions you
need-namely the ability to administer the print server. In step 3, you instantiate a
PrintServer object with the permission to administer the print server. These permissions
are separate from normal administrative privileges. Even running the commands in an
elevated PowerShell console requires you to create permissions, as you can see here.

In step 4, you change the Spool folder to the in-memory PrintServer object, and then in
step 5, you commit the update. In step 6, you restart the Spooler, and then, in step 7, observe
the results from changing the Spooler folder. The output from step 6 and step 7 looks like
this:

The second and simpler method involves just updating the registry value entry that holds
the spool folder name (and restarting the Spooler). To do this, in step 8, you stop the
Spooler, and in step 9, you update the registry value that the Spooler system uses for its
spool folder. Note that you do not have to do steps 1-7 to use the second method!

Managing Printers

[131]

In step 10, you restart the Spooler service, which now uses the new Spool folder. Finally,
in step 11, you view the results of changing the Spool folder, which looks like this:

Note that the two methods you use in this recipe use different folder names for illustration.
The folder name may not be appropriate for your installation. In production, you should
also consider moving the Spool folder to a separate volume to avoid running out of space
on the system volume.

This recipe makes use of the underlying .NET System.Printing namespace instead of just
commands from the PrintManagement modules. This approach has value in many other
places inside Windows. In general, the advice is to use cmdlets where/when you can and
only then dip down into either the .NET Framework or the CIM/WMI namespaces and
classes.

Changing printer drivers
Once you set up a printer, as shown in the recipe Installing and sharing a printer, users can
use the printer and its associated driver to print their documents. You may need to change
the driver to change the printer model or to update the driver. In the Installing and sharing a
printer recipe, you installed an NEC Color MultiWriter Class Driver, which works
with many NEC color printers. But suppose you decide to replace this printer with a
different printer model from a different vendor, say an HP color laser printer.

In this recipe, you change the driver for the printer. The assumption behind this recipe is
that the printer name and printer port (the printer's IP address and port number) remains
constant. You might need to change the printer driver for a printer, should you replace an
old printer for a newer or different printer (for example, replacing an NEC printer with an
HP printer). In this case, the printing device and its driver changes, but everything else
remains the same.

Getting ready
In this recipe, you change the driver for the printer you created in the Installing and sharing a
printer recipe.

Managing Printers

[132]

How to do it...
Add the print driver for the new printing device:1.

 Add-PrinterDriver -Name
 'HP LaserJet 9000 PS Class Driver'

Get the Sales Group printer object and store it in $Printer:2.

 $Printer = Get-Printer -Name SGCP1

Update the driver using the Set-Printer cmdlet:3.

 Set-Printer -Name $Printer.Name
 -DriverName 'HP LaserJet 9000
 PS Class Driver'

Observe the results:4.

 Get-Printer -Name SGCP1 `
 -ComputerName PSRV

How it works...
In the first step in this recipe, you install the driver for the new print device, an HP
LaserJet 9000 PS Class Driver. You do this by using the Add-PrinterDriver
command. If the printer driver is not one provided by Windows (and can be added using
Add-PrinterDriver), you may need to run manufacturer-supplied driver software to
install the driver.

Once you have the driver installed, in step 2, you retrieve the printer details for the Sales
Group object's color printer. In step 3, you update the drivers used for this printer by using
the Set-Printer command. In step 4, you see the results, which look like this:

Managing Printers

[133]

Printing a test page on a printer
From time to time, you may wish to print a test page on a printer, for example, after
changing toner or printer ink, or after changing the print driver (as shown in the Changing
printer drivers recipe). In those cases, the test page helps you to ensure that the printer is
working properly.

Getting ready
For this recipe, you print a test page on the Sales Group object's LaserJet printer, as
updated by the Changing printer drivers recipe.

How to do it...
Get the printer objects from WMI:1.

 $Printers = Get-CimInstance -ClassName
 Win32_Printer

Display the number of printers defined:2.

 '{0} Printers defined on this system' `
 -f $Printers.Count

Get the Sales Group printer:3.

 $Printer = $Printers |
 Where-Object Name -eq "SGCP1"

Display the printer's details:4.

 $Printer | Format-Table -AutoSize

Print a test page:5.

 Invoke-CimMethod -InputObject $Printer `
 -MethodName PrintTestPage

Managing Printers

[134]

How it works...
In step 1, you use Get-CimInstance to return all the printers defined on this system. In step
2, you display the total printers defined:

In step 3, you get the printer object corresponding to the Sales Group LaserJet printer. In
step 4, you display the details of this printer:

In step 5, you invoke the PrintTestPage method on the Sales Group LaserJet printer,
which then generates a test page on the printer. If you are using the printer MMC snap-in,
the printer test page looks like this:

Managing Printers

[135]

Reporting on printer security
In the Windows operating system, all objects secured by the OS have four key properties:

The owner
The primary group
Discretionary Access Control List (DACL)
System Access Control List (SACL)

The DACL contains a set of individual permissions, known as Access Control Entries
(ACEs), that define a particular permission. Each ACE contains properties that describe the
permission, including a trustee (the security principal to whom you are giving this
permission), a permission mask (what permission is being allowed or disallowed), and an
ACE type (what type is allowed, disallowed). You can find details of the permission masks
on the MSDN.

Getting ready
This recipe displays the DACL for the Sales Group printer, SGCP1, created by the Installing
and sharing printers recipe and later updated by the Changing printer drivers recipe. You
could easily convert this recipe into an advanced function (for example, Get-
PrinterSecurity) with a parameter to tell the function which printer to examine.

How to do it...
Create a hash table containing printer permissions:1.

 $Permissions = @{
 ReadPermissions = [uint32] 131072
 Print = [uint32] 131080
 PrintAndRead = [uint32] 196680
 ManagePrinter = [uint32] 983052
 ManageDocuments = [uint32] 983088
 ManageChild = [uint32] 268435456
 GenericExecute = [uint32] 536870912
 ManageThisPrinter = [uint32] 983116
 }

Managing Printers

[136]

Get a list of all printers and select the Sales Group color printer:2.

 $Printer = Get-CimInstance -Class Win32_Printer `
 -Filter "Name = 'SGCP1'"

Get the SecurityDescriptor and DACL for each printer:3.

 $SD = Invoke-CimMethod -InputObject $Printer `
 -MethodName
 GetSecurityDescriptor
 $DACL = $SD.Descriptor.DACL

For each Ace in the DACL, look to see what permissions you have set, and report4.
accordingly:

 ForEach ($Ace in $DACL) {

Look at each permission that can be set and check to see if the Ace is set for that5.
permission:

 Foreach ($Flag in ($Permissions.GetEnumerator())) {
 # Is this flag set in the access mask?
 If ($Flag.value -eq $Ace.AccessMask) {

If this permission is set, then get the AceType:6.

 $AceType = switch ($Ace.AceType)
 {
 0 {'Allowed'; Break}
 1 {'Denied'; Break}
 2 {'Audit'}
 }

Get the permission type, nicely formatted:7.

 $PermType = $flag.name
 -Csplit '(?=[A-Z])' -ne '' -join ' '

Finally, display the results (and end the loops and If statement):8.

 'Account: {0}{1} - {2}: {3}' -f $ace.Trustee.Domain,
 $Ace.Trustee.Name,
 $PermType, $AceType
 } # End of If $flag,Value
 } # End Foreach $Flag loop
 } # End Each $Ace

Managing Printers

[137]

How it works...
This recipe begins, in step 1, by defining a hash table of the permissions that you can use in a
printer's DACL. In step 2, you use the Get-CimInstance cmdlet to retrieve the WMI object
relating to the Sales Group color printer.

In step 3, you use the GetSecurityDescriptor method of the printer object to get the
DACL for this printer. The DACL, which you store in the $DACL variable, is an array of
individual Win32_ACE objects.

In steps 4 you examine each Ace in the DACL to get, decode, and display the details of the
permission expressed by this Ace entry. In step 5, you iterate through the permissions (as
defined in step 1). In step 6, you check to see if the flag matches the AccessMask property of
the Ace. If the entry matches, you determine the ace type in step 6. In step 7, you get the
permission type nicely formatted. Finally, in step 8, you display the particular permissions.
The output from the final step in this recipe looks like this:

Modifying printer security
As you saw in the previous recipe, Reporting on printer security, the DACL for a printer
defines what access Windows allows to the printer. To change the set of permissions, you
need to change the DACL. You could, for example, update the DACL on the Sales Group
printer to just allow members of the Sales Group to print on the printer. This recipe
updates the DACL to enable the AD Sales Group to print to the Sales Group printer.

Managing Printers

[138]

Getting ready
Before you can run this recipe, you need to create a group in the AD. In this recipe, you use
a group, Sales Group, contained in the Sales OU. To create the OU, the domain local
group, do the following:

 # Creating the OU and Group
 $SB = { New-ADOrganizationalUnit -Name 'Sales'
 -Path 'DC=Reskit,DC=Org'
 New-ADGroup -Name 'Sales Group'
 -Path 'OU=Sales,DC=Reskit,DC=Org'
 -GroupScope DomainLocal
 }
 Invoke-Command -ComputerName DC1 -ScriptBlock $SB

How to do it...
Define the user who is to be given access to this printer and get the group's1.
security principal details:

 $GroupName = 'Sales Group'
 $Group = New-Object -Typename
 Security.Principal.NTAccount `
 -Argumentlist $GroupName

Next, get the group's SID:2.

 $GroupSid = $Group.Translate([Security.Principal.
 Securityidentifier]).Value

Now define the SDDL that gives this user access to the printer:3.

 $SDDL = 'O:BAG:DUD:PAI(A;OICI;FA;;;DA)' +
 '(A;OICI;0x3D8F8;;;$GroupSid)'

Display the details:4.

 'Group Name : {0}' -f $GroupName
 'Group SID : {0}' -f $GroupSid
 'SDDL : {0}' -f $SDDL

Managing Printers

[139]

Get the Sales Group printer object:5.

 $SGPrinter = Get-Printer -Name SGCP1

Set the Permissions:6.

 $SGPrinter | Set-Printer -Permission $SDDL

How it works...
In step 1, you use New-Object to get the security principal details for the Sales Group
from the Active Directory. In step 2, you use this object's Translate method to retrieve the
SID for the group.

In step 3, you define the SDDL that is used to set permissions. In this step, as a sanity check,
you can see the information you use to set the DACL. The output looks like this:

In step 5, you get the printer object for the Sales Group printer, and in step 6, you update
the printer with the SDDL string you created in step 3. That sets the Sales Group printer's
DACL. You can verify the results by rerunning the Reporting on printer security recipe.

Deploying shared printers
Traditionally, you used scripting to deploy printers. With this method, you create a logon or
startup script and deploy this logon script via Group Policies. When machines start up or
users log on, the logon script automatically sets up printers.

Once you have set up a shared printer, such as the shared Sales Group color printer, as
shown in this chapter, you can deploy it. There are several ways to automate local client
printer deployment, including using PowerShell, WMI, the Printui.dll utility, and the
Wscript.Network COM object. All of these methods have been in use for a long time and
are quite efficient, although PowerShell is the preferred way, naturally.

Managing Printers

[140]

Getting ready
To deploy a printer to a client, you first need a client computer system. Our demo lab
includes a Windows 10 Enterprise client (SG-CL1), which we use in this recipe. To test this
recipe, you need the client computer, the print server (PSVR), and the domain controller
(DC1).

Once you create the client, you can run the following commands to add it to the domain in
the Sales OU (created separately):

 $Cred = Get-Credential 'Reskit\administrator'
 # you enter the password
 $OUPath = 'OU=Sales, DC=Reskit,DC=Org'
 Add-Computer -DomainName 'Reskit' `
 -DomainCredential $cred

Next, you need a Group Policy object that deploys the logon script. The easiest way to
create this Group Policy Object (GPO) is to use the GUI-there are no PowerShell cmdlets
(or WMI/.NET objects) that can help.

To create the GPO, you use the Group Policy Management Console (GPMC) tool. This tool
is part of the management tools for Active Directory, and is also part of the Remote Server
Admin Tools (RSAT) that you can download for client systems. Once you install the
GPMC, you can run it and expand the domain to make our Sales OU visible:

Next, you right-click the Sales OU, specify the Group Policy Name, and click OK:

Managing Printers

[141]

With the GPO created, right-click the GPO and select Edit:

Managing Printers

[142]

This brings up the Group Policy Management Editor. Select the User Configuration |
Windows Settings | Scripts (Logon/Logoff):

Then double-click Logon to bring up the Logon Properties dialog, and then click on the
PowerShell Scripts tab:

Managing Printers

[143]

From this dialog, click on Add to bring up the Add a Script dialog:

Managing Printers

[144]

From this dialog, enter the Script Name Sales Group Logon Script.ps1, then click on
OK, which brings up the Logon Properties box with the script shown here:

Note the file name in this dialog box. This file (Sales Group Logon Script.ps1) is a file
within the Logon Script folder inside the GPO object in your SYSVOL folder on your
domain controller. The path for the Logon Script folder was
Reskit.Org\SysVol\Reskit.Org\Policies\{CF4F8264-0FD7-4D21-8267-8F36D7CE

3DCF}\UserScripts\Logon. If you are testing this, you should see a different GUID in
this path.

From the Logon Properties dialog, click OK to close the dialog, then close the GPMC editor.
These steps have created an empty logon script. You can add the content for this logon
script by going through the following recipe.

Managing Printers

[145]

How to do it...
Once you have created the logon script GPO, as shown previously, it's time to create the
script:

Using the ISE, open the script file you created in the introduction to this recipe1.
and enter the logon script:

 # Sales Group Logon Script.ps1
 # Logon Script for Sales Group to add printer
 # 1. Start transcript
 Start-Transcript -Path C:\transcript\transcript.txt
 -Append
 # 2. Log information to the transcript
 '*** Logon script - Sales GVroup Logon Script.ps1'
 '*** Date/time: [{0}]' -f (Get-Date)
 # 3. Setup up printer connection then try to connect
 $Connection = 'PSRV\SGCP1'
 Try {
 $Printer = Get-Printer -Name $Connection
 If ($Printer)
 {
 '*** Sales group printer found'
 $Printer
 }
 Else
 {Throw "Printer not found"}
 }
 Catch {
 '*** SG Printer does not exist'
 '*** Date/time: [{0}]' -f (Get-Date)
 '*** Adding SG Printer '
 Add-Printer -ConnectionName $connection -Verbose
 Get-Printer -Name $Connection
 '******';''
 }
 # 5. And stop the transcript
 Stop-Transcript

Managing Printers

[146]

Once you create and save the script, you can test it by logging onto the SG-CL12.
computer and displaying the file C:\Transcript\Transcript.txt, which on
the first logon looks like this:

Once the logon script has installed the printer, subsequent logon scripts create a3.
transcript entry that looks like this:

Managing Printers

[147]

How it works...
The recipe creates a GPO to distribute a logon script to users whose user accounts are in the
Sales OU. You set up the logon script by following the steps in the introduction to this
recipe. Then, you create and save the actual logon script. Finally, you edit the empty script
file to add the logon script details.

Once you have this logon script created, the printer is automatically added to the Sales
Group users' systems. New users in the Sales Group just need to log off and log on again
to get the printer setup.

There's more...
This recipe showed you one way to deploy a printer through the use of a logon script. This
method is one that has been used by IT professionals for decades. It is also a very flexible
approach for many organizations-you can do quite a lot with the logon script.

Another way to deploy printers to client systems would be to use Group Policy preferences
(GPP). The use of GPP adds flexibility to the process, but it is essentially an all-GUI
administration experience. Windows Server 2016 does not provide cmdlets that would
enable you to automate printer management fully via GPP or GPO.

See
https://technet.microsoft.com/en-us/library/cc754699(v=ws.11).as

px for more details on how to deploy printers using Group Policies.

Enabling Branch Office Direct Printing
Branch Office Direct Printing (BODP) is a feature introduced in Windows Server 2012 that
is designed to reduce print traffic across your WAN. With BODP, a user in a branch office
sends the print job directly to a branch office printer. There is no need to send the print job
from the client to a centralized print server and then back to the branch office printer. Print
jobs can be quite large, so this can improve printing and reduce print job-related WAN
traffic.

https://technet.microsoft.com/en-us/library/cc754699(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc754699(v=ws.11).aspx

Managing Printers

[148]

Getting ready
This recipe needs a second shared printer, SGBRCP1, set up as follows:

 $PtrName = 'Sales_Branch_Color'
 $PtrIP = '172.16.1.61'
 $DrvName = 'NEC Color MultiWriter Class Driver'
 Add-PrinterPort -Name $ptrname `
 -PrinterHostAddress $PtrIP
 Add-PrinterDriver -Name $DrvName `
 -PrinterEnvironment 'Windows x64'
 Add-Printer -Name 'SGBRCP1' `
 -DriverName $DrvName `
 -Portname 'Sales_Branch_Color'
 Set-Printer -Name 'SGBRCP1' -Shared $true `
 -Published $true

This second printer is a branch office printer for which you enable BODP printing.

How to do it...
Set the SGBRCP1 printer for Branch Office Direct Printing:1.

 $Printer = SGBRCP1
 $PServer = 'PSRV'
 Set-Printer -Name $Printer -ComputerName $PServer `
 -RenderingMode BranchOffice

Get the printing mode:2.

 $Key = 'HKLM:\SYSTEM\CurrentControlSet\Control\ +
 Print\Printers\SGBRCP1\Printer\DriverData'
 $BROPrint = (Get-ItemProperty
 $Key).EnableBranchOfficePrinting

Now display the value of the RenderingMode:3.

 Get-Printer $Printer -Full |
 Format-Table Name, RenderingMode

Managing Printers

[149]

Now reset to default:4.

 Set-Printer -Name $printer 1 `
 -ComputerName $PServer `
 -RenderingMode SSR

Redisplay the RenderingMode property for the remote printer:5.

 Get-Printer $Printer -Full |
 Format-Table -Property Name, RenderingMode

How it works...
This recipe is relatively straightforward, with a bit of a twist. In step 1, you set BODP for
printer SGBRCP1 using the Set-Printer command.

In step 2, you look into the registry for details about the shared printer. At the time of
writing, using the cmdlet Get-Printer does not return the RenderingMode by default.
You can either specify the -FULL switch to Get-Printer, or you can get the details from
the registry. Using the -FULL switch takes additional time, so it's not done by default-
accessing this setting from WMI should be faster. Also, the RenderingMode property is not
returned, by default.

In step 3, you use the Get-Printer command, specifying the -Full parameter, to return
the following:

Finally, in steps 4 and 5, you reset the value of Branch Office Direct Printing to default, then
re-redisplay the value:

Managing Printers

[150]

There's more...
BODP is straightforward to set up—the printers need to be networked (TCP/IP based) and
support client-side rendering (CSR). Traditionally, rendering is server-side
(RenderingMode set to SSR). See
https://technet.microsoft.com/en-us/library/jj134152(v=ws.11).aspx for deeper
technical details of Branch Office Direct Printing, including some important limitations you
should be aware of before deploying branch office printing.

You use the Set-Printer cmdlet to set BODP. However, the Get-Printer cmdlet does
not return the Branch Office Printing mode by default. The -Full switch on the Get-
Printer command returns both the Branch Office Printing mode and the object's security
descriptor in SDDL format.

Creating a printer pool
On Windows, a printer pool is a single named printer with two or more print devices
(printer ports). Windows sends a given print job to any of the printers in the pool. This
feature is very useful in environments where users do a lot of printing and need the speed
that additional printers can provide, without having to ask the user to choose which specific
print device to use.

There are no PowerShell cmdlets to enable you to create a printer pool. Older printer
features—the use of PrintUI.DLL and RunDLL32, which have been features in Windows
for several versions. These tools are another example of making use of console applications
where you need them.

Getting ready
You run this recipe on the PSRV. Additionally, this recipe assumes you have created the
printer, as per the Install and share printers recipe.

How to do it...
Add a new port for this printer:1.

 Add-PrinterPort -Name Sales_Color2 `
 -PrinterHostAddress 10.10.10.62

https://technet.microsoft.com/en-us/library/jj134152(v=ws.11).aspx

Managing Printers

[151]

Create a printer pool for printer SGCP1:2.

 $printer = 'SGCP1'
 Rundll32 PrintUi.dll,PrintUIEntry /Xs /n
 "$Printer" Portname 'Sales_Color2,Sales_Color'

To see the results, get the printer details and display them as a nice table:3.

 Get-Printer SGCP1 |
 Format-Table -Property Name, Type,
 DriverName, PortName

How it works...
As noted earlier, you use PrintUI.dll to set up a printer pool. You invoke this DLL by
using the RunDLL32.exe console application. The DLL contains the functions that the
printer management GUI dialog use to perform their actions. RunDLL32.exe enables you to
use scripting to perform the necessary printer configuration operations.

In step 1 of the recipe, you add a second printer port. In this case, we are adding a second
network port. You could use a parallel, serial, or USB port if that is appropriate in your
environment. In most organisations, the print server is in a server room, with networked
printers nearer to the users.

In step 2, you use PrintUI.DLL to set the SGCP1 printer to have two printer ports, thus
creating a printer pool. In step 3, after you create the printer pool, you can view the results
by using Get-Printer, which shows the following:

Managing Printers

[152]

You can also look at the GUI entry for the printer on the print server, PSRV:

Reporting on printer usage
Printer usage information is useful for capacity planning, and possibly budgeting, for your
shared printers. By default, printer usage details are unmonitored, but you can turn logging
on (and off!). When you enable printer usage monitoring, the Windows Spooler service
writes a record to the event log for each print job containing critical usage information.

This recipe shows you how to turn on printer usage reporting and shows how to create a
function to return printer usage information. This recipe creates a function that returns
printer usage information as objects. Objects are easier as they enable you to process the
output specifically for your environment-for example, counting the total number of pages
printed, reporting on who is using the printer, and so on.

Managing Printers

[153]

Getting ready
Run this recipe on PSRV where you have already set up a printer. This recipe assumes you
have set up a printer. You also need to use the printer a bit to generate some event log
entries on which you report, otherwise the recipe may return errors when you try to get
event log entries.

How to do it...
Run webtutil to turn on printer monitoring:1.

 $log = 'Microsoft-Windows-PrintService'
 webtutil.exe sl $log /operational /Enabled:true

Define a Function:2.
Specify the Function header for an advanced function:1.

 Function Get-PrinterUsage {
 [CmdletBinding()]
 Param()

Get the events from the PrintService event log:2.

 $Dps = Get-WinEvent -LogName
 Microsoft-Windows-PrintService/Operational |
 Where-Object ID -eq 307

Create a hash table for each event log record:3.

 Foreach ($Dp in $Dps) {
 $Document = [Ordered] @{}

Populate the hash table with properties from the event log entry:4.

 $Document.Id = $dp.Properties[0].value
 $Document.Type = $dp.Properties[1].value
 $Document.User = $dp.Properties[2].value
 $Document.Computer = $dp.Properties[3].value
 $Document.Printer = $dp.Properties[4].value
 $Document.Port = $dp.Properties[5].value
 $Document.Bytes = $dp.Properties[6].value
 $Document.Pages = $dp.Properties[7].value

Managing Printers

[154]

Create an object for this printer usage entry:5.

 $UEntry = New-Object -Type PSObject
 -Property $Document

Give it a better type name:6.

 $UEntry.PsTypeNames.Clear()
 $UEntry.PsTypeNames.Add("Packt.PrintUsage")

Output the entry:7.

 $UEntry
 } # End of foreach
 } # End of function

Set and use an alias to get the printer usage:3.

 Set-Alias -Name GPRU
 -Value Get-PrinterUsage
 GPRU | Format-Table

How it works...
In the first step of the recipe, you use the utility wevtutil.exe to tell the Spooler to start
recording printer usage details to the event log. Printer usage event logging is not turned on
by default, and at present, there is no PowerShell cmdlet to turn on event logging.

In the first sub-step in step 2, you create an advanced function by decorating the Param()
block with the CmdletBinding() attribute. In the second sub-step, you get all the printer
event log entries that relate to usage reporting (ObjectID 307). In the third sub-step in step
2, the function iterates through each entry in the log. In the fourth sub-step, for each entry,
you create a hash table that holds the information returned from the event log. In sub-step 5
and sub-step 6, you create a PSObject for the event log entry and change the object type
name from PSObject to Packt.PrintUsage. Finally, in sub-step 7, you also close out the
foreach loop and the advanced function.

Managing Printers

[155]

Finally, in step 3, you define an alias for this new function. Then you use the function, via its
alias, and pipe the output objects to Format-Table to produce a nice output like this:

There's more...
By creating a function that returns an object for each event log entry, you get significant
flexibility in using the output of the function. The Get-PrinterUsage function changes the
type name of the returned object. With a custom type name, you could create a customized
display XML that creates an output that suits your requirements. You can also use the
objects returned and filter out the usage of specific printers by user. You can also use
Measure-Object to get the total number of pages printed, the average pages per job, and
the maximum print job length.

5
Managing Server Backup

This chapter covers the following recipes:

Configure and set backup policy
Examine the results of a backup
Initiate a backup manually
Restore files and folders from a backup
Backup and restore a Hyper-V virtual machine
Backup and perform bare metal recovery
Restore the registry from a backup
Create a daily backup report
Create an Azure backup

Introduction
The ability to backup and restore a Windows Server has been a feature of Windows since
the first version of Windows NT, released in 1993. In the early days, you used NTBackup
(via a GUI) to carry out backup and restore activities. With Server 2008, Windows Server
Backup replaced NTBackup and offered 15 cmdlets (provided in an old-school PS Snap-in)
to augment the GUI. The Snap-in was replaced with a module, WindowsServerBackup,
and was improved with Server 2012. The module remains unchanged in Server 2016 and
provided 49 cmdlets.

Managing Server Backup

[157]

Windows Server Backup (WSB) provides a set of features to enable you to backup and
restore files, folders, and Hyper-V VMs as well as an entire system. These features are more
than adequate for many organizations and come for free with Windows Server 2016.
Nevertheless, some organizations need more functionality. There is a rich third party
backup industry with a variety of competing products that deliver more than the in-box
Windows Server Backup offers. This chapter concentrates on Windows Server Backup and
Azure backup.

Windows Server Backup backs up both entire volumes as well as specific files and folders.
You can tell WSB both to include and to exclude specific files/folders from the backup
(include C: Data, C: HyperV, C: foo; exclude *.tmp,*.bak, and C: Foobin). And WSB
makes it simple to backup and restore a Hyper-V Virtual Machine (VM). What you
backup, you can restore: you can restore entire volumes, individual files or folders, restore a
VM, and restore the system state to a new machine (aka bare metal recovery).

The recipes in this chapter show how to setup your backup policy, to configure
what/where/when/how to backup and how to recover.

With the growth in cloud computing, an increasing number of organizations utilize cloud
backup as an alternative to or in addition to using on-premises (and private cloud)
resources. Azure Backup is an Azure service that backs up your on-premises systems to the
cloud and enables file/folder/volume/system restores. Our final recipe in this chapter shows
how you can do a backup to Azure and how to restore.

The recipes in this chapter make use of the PSRV server which you set up in Chapter 4,
Managing Printers and other servers in the Reskit.Org domain—each recipe indicates the
specific servers to use. But feel free to use other server names, different disk layouts, and so
on—adjusting the recipes accordingly.

Most of the recipes in this chapter rely on cmdlets in the WindowsServerBackup module.
We also make use of the console application Wbadmin and the Azure Resource
Management cmdlets. In some cases, such as backing up and restoring Hyper-V, you may
find it easier to use the Wbadmin console application—you have choices! And as icing on
the cake, the final recipe used both the AzureRM cmdlets and the Azure backup cmdlets
and the recovery agent.

You have choices! And as icing on the cake, the final recipe used both the AzureRM cmdlets
and the Azure backup cmdlets and the recovery agent.

Managing Server Backup

[158]

Configure and set backup policy
With WSB, you create a backup policy that describes what you want to backup from your
server (backup source), where you want to put the backup (backup target), and when you
want the backup to take place (the backup schedule). You first create an empty policy in
memory or get an editable copy of the active backup policy. You then configure the policy
object with a backup source and backup to your requirements. You then either save the
policy as the (new!) active policy or use it to run a one-off backup. Once you have set an
active policy, WSB runs the backup automatically based on the schedule you define when
you populate the backup policy.

In this recipe, you create and configure a policy that backs up the C: drive every morning at
06:00. This policy object is the starting point for examining backup with WSB. Later recipes
enable you to perform, explicitly, system state backup, one-off backup, selective file backup,
and VM backup (and restores)—all of which are variations on this recipe.

Getting ready
This recipe assumes you have loaded the Windows Server Backup feature and that you
have no active WSB backup policy on the printer server PSRV. To install the Windows
Server Backup feature, do this:

 Install-WindowsFeature -Name Windows-Server-Backup

You also need to ensure you have no active backup policy set on this server. To ensure this
is the case, do this:

 If (Get-WBPolicy) { Remove-WBPolicy -All -Force }

This code fragment first tests to see if there is an active policy, and if so, removes it. By
using the -Force parameter, Remove-WBPolicy does not prompt you to complete the
operation, which is what you want if you are automating setting up backup on one or more
computers.

This recipe also assumes you have two physical disks in the PSRV computer. You should
set the first to C:, and you should create a second disk with just a single volume. Give this
new volume a drive letter set to E:. For testing, you can always use a virtual hard drive for
the E: volume.

In a production environment, backup up to a second volume or a virtual hard disk stored
on a single physical disk is not a good idea. For production, always ensure the backup
target is on a separate physical disk.

Managing Server Backup

[159]

How to do it...
The steps for the recipe are as follows:

Once you load the Windows Server Backup feature and ensure there is no active1.
policy, create a new (in memory) backup policy:

 $Pol = New-WBPolicy

View the new policy:2.

 $Pol

Add a schedule to the backup policy:3.

 $Schedule = '06:00'
 Set-WBSchedule -Policy $POL -Schedule $Schedule

View disks to be backed up:4.

 Get-WBDisk |
 Format-Table -Property DiskName, DiskNumber,
 FreeSpace, Properties

Use Disk 1 as the backup target and set it in policy:5.

 $TargetDisk = Get-WBDisk |
 Where-Object Properties -Match 'ValidTarget' |
 Select-Object -First 1
 $Target = New-WBBackupTarget -Disk $TargetDisk
 -Label 'Recipe 6-1'
 -PreserveExistingBackups $true
 Add-WBBackupTarget -Policy $Pol -Target $Target

Add details of what to backup (the C: drive) to the backup policy:6.

 $DisktoBackup = Get-WBDisk | Select-Object -First 1
 $Volume = Get-WBVolume -Disk $DisktoBackup |
 Where-Object FileSystem -eq NTFS
 Add-WBVolume -Policy $Pol -Volume $Volume

View the policy:7.

 $Pol

Managing Server Backup

[160]

Make policy active (NOTE THIS FORMATS THE TARGET DISK!):8.

 Set-WBPolicy -Policy $Pol -Force

Add a drive letter to Disk 1 to enable you to view the results subsequently:9.

 $Drive = Get-CimInstance -Class Win32_Volume |
 Select -Last 1 |
 Where-Object {-not ($_.DriveLetter)}
 Set-CimInstance -InputObject $Drive
 -Property @{DriveLetter='Q:'}|
 Format-Table Name,DriveLetter

View the active policy:10.

 Get-WBPolicy

Review the summary of the backup:11.

 Get-WBSummary

How it works...
In step 1, you create a new editable policy and save it to $Pol. This empty policy is not yet
ready to be used for an actual backup, but it is in an editable state. You use other cmdlets to
populate the policy with backup details before either using it ad hoc or setting the policy as
your active backup policy. In Windows Server 2016, you can have only one currently active
backup policy.

In step 2, you view the newly created policy. As you can see, there are several items that you
need to add before you can set this policy to active. The empty policy looks like this:

Managing Server Backup

[161]

In step 3, you use Set-WBSchedule to set a time for the backup to occur. You define the
backup time in this recipe as 06:00 (that is, 6:00 in the morning). Specifying the time as 06:00
means the WSB starts a backup job at 6:00 every morning. The Set-SBSchedule returns a
DateTime object in which you can see the time of the next backup. The output shows the
date of the backup as of today's date—but WSB ignores the date. The output of this step
looks like this:

With step 4 you use the Get-WBDisk and then pipe the output to Format-Table which
displays a list of volumes that are potential backup targets. Disks that WSB can backup to
have the ValidTarget property set. The output from step 4 is shown in the following
screenshot :

In step 5, you specify that WSB should use a specific disk to hold the backup(s). In this case,
you are going to have WSB store the individual backup files onto the second disk (shown as
DiskNumber 1 in the preceding output. You need to get a WBDisk object for your
destination and use this when configuring the target set in the backup policy. The output
from Add-WBBackupTarget shows how the policy has evolved as follows:

Managing Server Backup

[162]

In step 6, you add the source volume(s) you want to backup. In this recipe, you are just
backing up the C: drive (DiskNumber 0) which is the first volume on the first disk as
shown in the following screenshot:

In step 7, you display the final policy:

With step 8, you make this policy active. There are two implications to this: First, the E:
drive is formatted and made available for backup. Second, WSB takes over the entire disk
and destroys any volumes you have on this disk. You also lose any existing drive letters on
the disk. BE VERY CAREFUL WHEN TESTING OR USING THIS RECIPE ESPECIALLY
ON A PRODUCTION SERVER!

Managing Server Backup

[163]

In step 9, you give the second disk a drive letter, Q:, which you can then to view the results
of backup operations carried out on your system. Note that you could get an error here if
Windows has already created a drive letter for you. You can use the Q: drive from both
PowerShell and Windows Explorer to view backup files, but at this point in the recipe no
backup has run yet, and the drive is empty. The output from step 9 looks like this:

In step 10 and step 11, you see the currently active policy and the backup summary,
something like this:

As you can see from the above screenshot, there are numerous backups on the Q: drive, and
the next backup is at 6:00 in the morning.

Managing Server Backup

[164]

There's more...
This recipe creates and activates a basic backup policy for the PSRV server. Once you set the
policy, WSB creates a backup of the C: volume daily at 6:00. Once WSB has run your backup
job, WSB sets the next backup time to be 24 hours later. You can see this in the next recipe.

In step 5, you used the -match operator to select a target backup disk. This ensures that the
string ValidTarget is somewhere inside the Properties property. You could have used -
eq as well, assuming that the valid target string always contains just ValidTarget. Using -
match is a somewhat more liberal approach.

At the end of this recipe, you have set a backup policy. At that point, WSB has not created a
backup. The backup occurs when WSB runs the job at 06:00 tomorrow. You can also trigger
off a manual backup using the policy file you created in this recipe.

To perform a manual backup, after step 12, type:

 $MBPol = Get-WBPOlicy -Editable
 Start-WBBackup -Policy $MBPol

The output looks like this:

The Start-WBBackup cmdlet creates a large number of output lines, most of which are not
contained in this screenshot (for brevity).

Examine the results of a backup
In the previous recipe, you created a basic backup policy that runs a full backup of the C:
volume every day at 6:00. This recipe examines the results of the backup and helps you
understand the details of the resulting backup.

Managing Server Backup

[165]

Getting ready
Before carrying out this recipe, you need to have had a backup job completed. In the recipe
Configure and set backup policy, you created a backup job that would run every morning.
Thus, you can wait until the day after you set up this daily backup, or you can run a once-
off job as shown at the end of that recipe.

How to do it...
The steps for the recipe are as follows:

Retrieve and view the current WSB backup policy:1.

 Get-WBPolicy

View an overview of what is on the target disk:2.

 Get-ChildItem -Path Q: -Recurse -Depth 3 -Directory

View the details of a backup:3.

 $Backup = (Get-ChildItem -Path Q:\WindowsImageBackup\Psrv `
 -Directory |
 Select-Object -First 1).FullName
 explorer.exe $Backup

Mount the VHD, change its drive letter to T:, then look inside the VHD:4.

 $BFile = Get-ChildItem -Path $Backup*.vhdx
 Mount-DiskImage -ImagePath $BFile.FullName
 $Drive = Get-CimInstance -Class Win32_Volume |
 Where-Object DriveType -eq 3 |
 Select-Object -Last 1
 Set-CimInstance -InputObject $Drive
 -Property @{DriveLetter='T:'}
 Explorer T:

Get details of the last backup job:5.

 Get-WBJob -Previous 1

Managing Server Backup

[166]

How it works...
In step 1, you use the Get-WBPolicy to retrieve the current backup policy. Depending on
when the backup ran, the policy looks something like this:

Notice that this policy looks like the one you saw at the end of the previous recipe. If the
scheduled backup job has run, then the Schedule property would show the next backup
has changed. Assuming no changes to the policy, you get a backup automatically every day.

In step 2, you see what WSB has written to the backup target, the Q: drive. If this is the first
time you have run through this recipe and created a backup, your Q: drive is most probably
empty at this point. When WSB runs it creates a folder structure, and with that done, the
step looks like this:

Managing Server Backup

[167]

WSB creates a folder WindowsImageBackup at the root of the disk, with a subfolder for the
server that WSB backs up. Below this subfolder folder, there are three further folders
containing backup information and logs, plus folder(s) for the backup. Each backup has a
separate folder beneath <drive>:\WindowsImageBackpup<ServerName> as you can see
in step 3:

The backup folder contains some XML files that describe the backup, plus a VHDX hard
drive image that contains the backup. In step 4, you mount that VHDX, then open Windows
Explorer to view the contents of this virtual hard drive, as shown in the following
screenshot:

Managing Server Backup

[168]

As you can see, this VHD contains all the files that were on the system's C: drive at the time
of the backup. When you mount the VHD, Windows can assign a different drive letter for
the newly mounted VHDX, other than T:. If so, then you need to change the recipe
accordingly. Likewise, when Windows mounts the drive, it happens without a resulting
drive letter. In addition to using WMI, you can also use the disk management snap-in inside
the compmgmt.msc MMC console and add a drive letter before proceeding.

In step 5, you use the Get-WBJob cmdlet to examine the last Windows backup job to run.
This cmdlet gets details of the backup job including the start and end times and the job
state. This cmdlet also returns two file paths: the first for details of files and folders backed
up and the second for errors encountered by WSB. These can help you to diagnose a failure
in the backup job.

Managing Server Backup

[169]

There's more...
In this recipe, you mounted a VHDX that was the target of the backup. This virtual disk file
contains all the files and folders on the backup source, PSRV's C: volume, at the time of the
backup. Once you have mounted the backup VHDX, you can retrieve individual files and
folders should you wish to.

In step 4, you obtained volumes where the Drivetype was equal to 3. In WMI, many
properties use coded values. For Win32_Volume objects, a drive type of 3 indicates a local
drive. For a full list of the drive type values, see https:/ / msdn. microsoft. com/en- us/
library/aa394515(v= vs. 85). aspx.

Initiate a backup manually
In most cases, your server's backup policy is fire and forget. You create and set the backup
policy, and from then on backup just happens at the time you specify in the backup
schedule. In other cases, perhaps before and after a major system change, you may want to
initiate a one-off backup and not wait for WSB to create a scheduled backup. Additionally,
you may just want to create a backup of key files. In those cases, you can run a backup
based on a one-off policy.

Getting ready
To perform this recipe, you may find it helpful to remove the existing backup policy. This
ensures the one-off policy you create in this recipe does not overlap with earlier/later
recipes. If you perform this recipe on a live production server, make sure reinstate the
backup policy after you have completed your testing.

Removing the policy is straightforward:

 If (Get-WBPolicy) { Remove-WBPolicy -All -Force }

This recipe also uses a folder C:\Foo. If this does not exist on your system, create the folder
and create two files in the folder, as follows:

 New-Item -Path C:\Foo -ItemType Directory
 Get-Date | Out-File -Path C:\Foo\d1.txt
 Get-Date | Out-File -Path C:\Foo\d2.txt

https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa394515(v=vs.85).aspx

Managing Server Backup

[170]

How to do it...
Create and populate a new one-off backup policy to backup just two folders:1.

 $OOPol = New-WBPolicy
 $FSpec1 = New-WBFileSpec -FileSpec 'C:\Foo'
 $FSpec2 = New-WBFileSpec `
 -FileSpec 'C:\Users\administrator\Documents'
 Add-WBFileSpec -Policy $OOPol -FileSpec $FSpec1, $FSpec2
 $Volume = Get-WBVolume -VolumePath Q:
 $Target = New-WBBackupTarget -Volume $Volume
 Add-WBBackupTarget -Policy $OOPol -Target $Target

Start the backup using the one-off backup policy:2.

 Start-WBBackup -Policy $OOpol

Find the .vhdx backup file and mount it:3.

 $ImagePath = 'Q:*.vhdx'
 $BUFile = Get-ChildItem $ImagePath -Recurse
 $ImageFilename = $BUFile.FullName
 $MountResult = Mount-DiskImage -StorageType VHDX `
 -ImagePath $ImageFilename `
 -PassThru

If there is a volume label, get it, otherwise set it to T: as follows:4.

 $Vol = Get-Ciminstance -Classname Win32_Volume |
 Where-Object {(-Not $_.DriveLetter) `
 -and ($_.Label -NotMatch 'Recipe')}
 If ($Vol.DriveLetter)
 {$DriveLetter = $Vol.DriveLetter}
 Else
 {$DriveLetter = 'T:'
 $Vol | Set-CimInstance -Property
 @{DriveLetter=$Driveletter}
 }

Now view it in Explorer:5.

 Explorer $Driveletter

Managing Server Backup

[171]

How it works...
In the Getting ready section, you cleared the existing policy—this ensures any existing
backup policy does not affect how this recipe works. To remove your policy, you check to
see if one exists and if so, you invoke the Remove-WBPolicy with the -ALL parameter to
remove the currently active backup policy (that is, the policy you set in the Configure and set
backup policy recipe).

In step 1, you start by creating a new one-off policy, $OOPOL. Then you create two backup
file specifications (that tell WSB what to backup and anything to exclude) and attach those
file specification objects to the backup policy. Next, you create a backup target and add this
to the one-off policy. Once you add the backup target to the one-off policy, you see the
backup target details:

In step 2, you run the one-off policy to create the one-off backup. The output, truncated for
brevity, looks similar to this:

Managing Server Backup

[172]

In step 3, you find the VHDX file that WSB wrote to, and mount it. In step 4, you check to see
if Windows has used a drive letter for this mounted virtual hard drive. If so you use that
drive letter, but if not, you assign the drive letter T: to the mounted VHDX. These two steps
do not produce output to the PowerShell Window, but you can bring up the Disk
Management tool and see the new T: drive, like this:

Managing Server Backup

[173]

In step 5, you bring the newly mounted drive into Explorer which (when you expand the
tree in the left pane!), looks like this:

As you can see above, this backup file (The VHDX is now the T: drive) contains just two
folders which are the ones you specified in step 1.

There's more...
Mounting the backup VHDX file and adding a drive letter if needed is a bit complex since
the individual classes and cmdlets do not work together as well as you might like. If you
have a large number of volumes on a server you are backing up, you may need to adjust
step 4 to accommodate your particular set of volumes.

Restore files and folders
Performing backups is great, but backups are only useful if you can use them to restore files
and folders. The reasons for restoring include recovering from a major system disaster,
recovering from a single disk failure, or just restoring a file a user has inadvertently deleted.

Managing Server Backup

[174]

In the previous recipe, you saw how you could mount the VHDX that WSB created for you
and give it a drive letter. So one way to recover the file is just to mount the backup VHDX
and then use Explorer or other tools to copy files from the backup to a new home. This
recipe uses the WSB cmdlets to recover to a separate folder. You would do this if you
wanted to recover some particular files and did not want to overwrite anything.

Getting ready
In this recipe, you first create a new backup policy and start it to create a backup. This
script, which is derived from the recipe Configure and set a backup policy, is as follows:

 If (Get-WBPolicy) {Remove-WBPolicy -All}
 If (-NOT (Test-Path C:food1.txt)) {
 'D1' | Out-File C:food1.txt}
 $FullBUPol = New-WBPolicy
 $Schedule = '06:00'
 Set-WBSchedule -Policy $FullBUPol -Schedule $Schedule | Out-Null
 $TargetDisk = Get-WBDisk |
 Where-Object Properties -match 'ValidTarget' |
 Select-Object -First 1
 $Target = New-WBBackupTarget -Disk $TargetDisk `
 -Label 'Recipe 6-4' `
 -PreserveExistingBackups $true
 Add-WBBackupTarget -Policy $FullBUPol -Target $Target -Force |
 Out-Null
 $DisktoBackup = Get-WBDisk | Select-Object -First 1
 $Volume = Get-WBVolume -Disk $DisktoBackup
 Add-WBVolume -Policy $FullBUPol -Volume $Volume | Out-Null
 Set-WBPolicy -Policy $FullBUPol -Force
 Start-WBBackup -Policy $FullBUPol -Force | Out-Null
 $Drive = Get-CimInstance -Class Win32_Volume |
 Where-Object Label -Match 'Recipe'
 Set-CimInstance -InputObject $Drive `
 -Property @{DriveLetter='Q:'}

Compared with earlier recipes, the above script fragment contains additional syntax to
remove the output generated by some of the WSB cmdlets. If you are adapting this recipe to
your own organization's needs, you may find the removed output of value from an auditing
point of view—just remove the pipe to Out-Null. You then see more output which can be
helpful as you tune the recipe in practice, or if you are using a transcript to create an audit
trail of operations.

Managing Server Backup

[175]

This code also ensures a file,C:\foo\d1.txt, exists. You may have created this file with
earlier recipes, but if not, this starting point ensures this file exists in the backup.

If this is the first backup you have created, your system may not have been setup to give
you the necessary access permissions on your drive. When testing any recipes in this book,
you may need to adjust the recipe to cater for your specific system and system settings.

How to do it...
Get the most recent backup job and view the job's items:1.

 $Job = Get-WBJob -Previous 1
 $Job
 $Job | Select-Object -ExpandProperty JobItems

Get and display the Backup set information for this job:2.

 $BUSet = Get-WBBackupSet | Where-Object Versionid -EQ
 $Job.VersionId
 $BUSet

Recover a single file:3.

 If (-Not (Test-Path C:\Recovered))
 {New-Item -Path C:\Recovered -ItemType Directory}
 $File = 'C:\Foo\d1.txt'
 $TargetPath = 'C:\Recovered'
 Start-WBFileRecovery -BackupSet $BUSet -SourcePath $File `
 -TargetPath $TargetPath -Option CreateCopyIfExists `
 -Force
 Get-ChildItem -Path $TargetPath

Recover an entire folder structure:4.

 If (-Not (Test-Path C:\Recovered2))
 {New-Item -Path C:\Recovered2 -ItemType Directory}
 $SourcePath = 'C:\Foo'
 $TargetPath = 'C:\Recovered2'
 Start-WBFileRecovery -BackupSet $BUSet `
 -SourcePath $SourcePath `
 -TargetPath $TargetPath `
 -Recursive -Force
 Get-ChildItem -Path $TargetPathfoo

Managing Server Backup

[176]

How it works...
In step 1, you use the Get-WBJob cmdlet to retrieve details about the most recent backup
job. You also use the output from Get-WBJob to view the job's items. The job details look
like the following:

As you can see in this case, the previous job has completed successfully. WSB backed up the
C: volume as the policy requested. Although the $Job variable shows log files with both a
Success and Failure log file, there is little useful information contained in those text files.

In step 2, you retrieve the backup set that you are going to use to retrieve a backed-up file
and a backed up folder. The Backup set information looks like this:

Managing Server Backup

[177]

In step 3, you recover a single file (C:\Foo\D1.txt). To avoid potential data loss, you
restore to a new folder (C:\Recovered). Once WSB has recovered the file, you can see the
recovered file in the folder C:\Recovered. It looks like this:

In step 4, you recover an entire backed up folder (C:\Foo) and any subfolders to a new
folder C:\Recovered2. When the recovery is complete and depending on what you stored
in C:\Foo, you see something like this:

Managing Server Backup

[178]

There's more...
The backup job results you looked at has a job type of backup. As you saw in steps 3 and 4,
you can use WSB to recover files and folders from a backup. You can look at the results of
earlier file recovery jobs you just ran by using Get-WBJob to get the previous two jobs. The
most recent previous job was the recovery of a single file you performed in step 4 and the
second most recent represented the recovery you carried out in step 3.

Backup and restore a Hyper-V Virtual
Machine
There are many ways to back up a Hyper-V VM. You could, of course, use the recipes in
this chapter inside the VM to back up your VM's hard drive contents to a network drive. As
an alternative, you could use WSB to backup an entire VM and restore it.

Regarding the WSB commands to use when backing up a Hyper-V VM, you have options.
You can use the WSB cmdlets, as you have done so far in this chapter. Or, you can use the
Wbadmin console application. Wbadmin is a Windows command line tool that pre-dates
the PowerShell module. It has the advantage of being higher ranked in search
engines—useful if you wish to learn more. You may also find Wbadmin simpler to use in
practice. This recipe shows how to use Wbadmin to create a backup of your VM and then
restore it.

Getting ready
For this recipe, you need a Windows Server 2016 system with Hyper-V installed plus a
working VM. In this recipe, you use the Windows Server 2016 host, HV1, that runs the
DC1.Reskit.Org domain controller which you backup and then restore.

How to do it...
This recipe is in two parts. In the first part, you create a backup of a running Hyper-V VM,
as follows:

On your Hyper-V host, look at the DC1 VM and check the VM is up and running:1.

 Get-VM -Name DC1

Managing Server Backup

[179]

Create the backup using Wbadmin:2.

 Wbadmin Start Backup -BackupTarget:C: -HyperV:'DC1'

Examine the log files created by Wbadmin:3.

 $Logfile = Get-ChildItem `
 -Path $env:windirLogsWindowsServerBackup*.log |
 Sort-Object -Property LastWriteTime -Descending |
 Select-Object -First 1
 Get-Content -Path $Logfile

Look at the files created in the backup target:4.

 Get-ChildItem -Path C:WindowsImageBackup
 Get-ChildItem -Path C:WindowsImageBackupHV1

The preceding steps create the backup. In the next part of this recipe, you restore the VM
from the backup. To demonstrate a worst case scenario recovery, you remove the original
VM completely from Hyper-V. Then you restore it from the backup, as follows:

Look at VM to see that the VM exists as do key components of the Hyper-V VM:1.

 $Vm = Get-VM -Name DC1
 $VmCfgLoc = $Vm.ConfigurationLocation
 $VmCfgOK = Test-Path -Path $VmCfgLoc
 $vmDskLoc = ($Vm.HardDrives).Path
 $VmDskOK = Test-Path -Path $VmDskLoc
 "Location of Config Information: {0}" -f $VmCfgLoc
 "Exists: {0}" -f $VmCfgOK
 "Location of DC1 Hard Drive : {0}" -f $VmDskLoc
 "Exists: {0}" -f $VmDskOK

Remove the VM from Hyper-V and observe the results:2.

 Stop-VM -Name DC1 -TurnOff -Force
 Remove-VM -Name DC1 -Force
 Get-VM -Name DC1

Managing Server Backup

[180]

Now restore the VM from backup:3.

 $Version = $Backupversions |
 Select-String 'Version identifier' |
 Select-Object -Last 1
 $VID = $Version.Line.Split(' ')[2]
 $Cmd = "& Wbadmin Start Recovery -Itemtype:Hyperv -Items:DC1 "
 $Cmd += "-Version:$vid -AlternateLocation
 -RecoveryTarget:C:Recovery"
 Invoke-Expression -Command $Cmd

And observe the results:4.

 Start-VM -Name DC1
 Get-VM -Name DC1
 $Vm = Get-VM -Name DC1
 $VmCfgLoc = $Vm.ConfigurationLocation
 $VmCfgOK = Test-Path -Path $VmCfgLoc
 $VmDskLoc = ($Vm.HardDrives).path
 $VmDskOK = Test-Path -Path $VmDskLoc
 "Location of Config Information: {0}" -f $VmCfgLoc
 "Exists: {0}" -f $VmCfgOK
 "Location of DC1 Hard Drive : {0}" -f $vmDskLoc
 "Exists: {0}" -f $VmDskOK

How it works...
In step 1, you examine the Hyper-V host to check to see the status of the VM DC1. This VM
is the VM that serves as the first Domain Controller in the Reskit.Org's Active Directory
forest. You create this domain controller in the recipe Installing domain controllers in Chapter
8, Managing Windows Network Services. As you can see from step 1, your DC1 virtual machine
is up and running:

Managing Server Backup

[181]

With step 2, you use Wbadmin to back up the DC1 virtual machine. The output looks like
this:

The arrow in the above screenshot points to the line that reads This will backup HyperV\DC1
to C:. Directly after, notice that Wbadmin seems to request permission to start the backup
operation, but then answers itself and continues. This is normal operation for Wbadmin. The
developers probably could have taken those lines out of Wbadmin, but they didn't.

Note that the -HyperV switch you use in step 2 is not available under Windows 10. You
need to run this recipe, therefore, on the Windows Server 2016 server system hosting
Hyper-V.

Managing Server Backup

[182]

In step 3, you look at the log file generated by Wbadmin:

As you can see, WSB backed up the DC1 VHDX and the Ref2016 base disk. The DC1 VM and
the other VMs in the Reskit.Org VM farm make use of differencing disks—so backing up
both disks is vital if you are to restore the VM to a working state.

In step 4, you look inside the C:\WindowsImageBackup\ folder on the backup target drive.
For this recipe, you created it in HV1's C: drive. The files in that folder are as shown in the
following screenshot:

Managing Server Backup

[183]

You have now backed up the DC1 virtual machine. With this backup, you can restore the
VM back to Hyper-V. To test this, you first remove the VM from Hyper-V. In step 5, you
display where Hyper-V has stored DC1 virtual machine's configuration information and the
VHDX file for the virtual machine, which looks like this:

In step 6, you stop then remove the DC1 VM. The result is that the VM is no longer available,
as you can see:

With the VM removed, you restore it from the backup taken earlier in step 2. To do this, you
need to get the backup version details. For this, you construct a string expression with those
details embedded. To restore the VM, you then invoke the constructed expression. The
result is that the restoration process commences. You can see these operations here:

Managing Server Backup

[184]

In step 8, you can see that the VM has been restored:

Managing Server Backup

[185]

After starting the DC1 VM, Get-VM shows that the VM is running. In the final part of step 8,
you look at where Hyper-V now stores the VM configuration information and the VM's
hard drive, like this:

Note that the VM's configuration information and the DC1. VHDX file is in C:\Recovery,
rather than from the D:\DC1 folder used before the backup (and before the removal of the
VM). In operation, once WSB restores the VM, you may wish to move the VM to a different
location rather than leave it in the recovery location. A very quick and easy way would be
to copy the VHDX files to the new Hyper-V server and create a new VM on that server.

There's more...
In steps 2 and step 3, you perform a VM backup and examine the resulting log file. In step 3,
you hardcoded the name of the log file. You could have run step 2, assigning the output to a
variable and then used string manipulation to get the last line to get the actual file name. As
a Windows console application, Wbadmin emits a set of strings rather than objects (which
are so much easier to manipulate).

In step 2, you use Wbadmin. This console mode application does not play well in a one-to-
many remoting session. You need to run these scripts directly on the server.

In step 6, you remove a VM from Hyper-V. This action does not delete any VHDs that the
VM use. To clean up the old VM, you should also remove the VHD storage. You could also
create a new VM and attach the older virtual hard drives.

In step 7, you use some string manipulation to create command string to run Wbadmin to
restore the DC1 VM. You get the backup version by doing some string parsing on the output
of Wbadmin. You get the version information of the last backup, insert it into a command
string, then execute the command string. In practice, you may need to change the logic in
this recipe to reflect the nature of the VM to restore. Another option is to present -ALL the
backup versions on the Hyper-V Server with Out-Gridview, and ask the user to select the
backup.

Managing Server Backup

[186]

Using Wbadmin or any older console application can be useful. In some cases, you need
these console applications since there is no PowerShell cmdlet for that particular operation.
When you use older console applications in your PowerShell scripts, you may need to do
some string manipulation to extract the necessary information from the application's
output.

Backup and perform bare metal recovery
The Bare metal recovery (BMR) is the process of restoring a backup onto a new machine.
Suppose your file server, FS1, has a catastrophic failure and has to be replaced by a new
server computer. To get this new host up and running, you could manually run through the
setup of the OS, add relevant print drivers, re-define the printers, and then restore the data.
Or you could just do a BMR from a backup. This recipe shows how to do bare metal
recovery using the PowerShell cmdlets in the WindowsServerBackup module and then the
bare metal recovery feature of Windows Setup.

Getting ready
To enable you to see BMR in action on a server, you must first install the Windows backup
feature loaded on the server you wish to back up. You run the first part of this recipe on
your server to create a backup capable of being restored using BMR. Then, after replacing
the hardware, you perform a recovery onto to a new server based on the backup previously
taken. This recipe uses a server, FS1 which backs up and restores, across the network,
to/from another server SRV1. You create a second server, FS1A and perform BMR onto it.

How to do it...
In the first part of this recipe, you run commands to create a backup of FS1, over the
network, to SRV1 as follows:

Ensure you have Windows-Server-Backup installed on FS1:1.

 Install-WindowsFeature -Name Windows-Server-Backup

Managing Server Backup

[187]

Setup backup policy, create a backup share, and take a backup with the backup2.
file stored on a newly created network share:

 # Remove any old policy
 If (Get-WBPolicy) {Remove-WBPolicy -All -Force}
 # Create new policy
 $FullBUPol = New-WBPolicy
 $Schedule = '06:00'
 # Set schedule
 Set-WBSchedule -Policy $FullBUPol -Schedule
 $Schedule | Out-Null
 # Create a credential
 $U = 'administrator@reskit.org'
 $P = ConvertTo-SecureString -String 'Pa$$w0rd'
 -AsPlainText -Force
 $Cred = New-Object -TypeName
 System.Management.Automation.PSCredential `
 -ArgumentList $U,$P
 # Create target and add to backup policy
 Invoke-Command -ComputerName SRV1 -Credential $cred `
 -ScriptBlock {
 New-Item -Path 'C:Backup' `
 -ItemType Directory
 New-SmbShare -Name Backup -Path 'C:Backup' `
 -FullAccess "$Env:USERDOMAINdomain admins"
 }
 $Target = New-WBBackupTarget -NetworkPath 'SRV1Backup' `
 -Credential $Cred
 Add-WBBackupTarget -Policy $FullBUPol -Target $Target `
 -Force | Out-Null
 # Get and set volume to backup
 $DisktoBackup = Get-WBDisk | Select-Object -First 1
 $Volume = Get-WBVolume -Disk $DisktoBackup
 Add-WBVolume -Policy $FullBUPol -Volume
 $Volume | Out-Null
 # Add BMR to policy
 Add-WBBareMetalRecovery -Policy $FullBUPol
 # Set policy
 Set-WBPolicy -Policy $FullBUPol -Force
 # Start the backup
 Start-WBBackup -Policy $FullBUPol -Force

Managing Server Backup

[188]

Once you have the backup created, you can restore it using the rest of this recipe:

Using the Hyper-V MMC console on your Hyper-V host, create a new Hyper-V1.
VM, and call it FS1A. Create a new disk and attach the Windows Server 2016
DVD ISO image into the DVD drive of the VM. Once completed, open a
PowerShell window on your Hyper-V host and type:

 Get-VM -Name FS1A
 Get-VM -Name FS1A | Select-Object -ExpandProperty HardDrives
 Get-VM -Name FS1A | Select-Object -ExpandProperty DVDDrives

Start the VM using Start-VM and observe the VM status:2.

 Start-VM -Name FS1A
 Get-VM -Name FS1A

Using the MMC Console on your Hyper-V Host, open up a connection to the new3.
FS1A VM. You see the start of the Windows Server setup process.
From the Windows Setup dialog, select your required language and input device,4.
then click Next.
From the next dialog, click Repair your computer.5.
Setup then prompts you for an option—click Troubleshoot.6.
From the Advanced Options page, click on System Image Recovery.7.
From the Re-image Your Computer pop-up, click Cancel.8.
From the Select a system image backup window, click Next.9.
From the Select the location of the backup for the computer you want to restore10.
Windows, click Advanced.
From the Re-Image Your Computer popup, click Search for a system image on11.
the network.
From the Are you sure you want to connect to the network? dialog box, click12.
Yes.
From the Specify the location of the system image window, enter the location13.
where you stored the backup (in step 2), SRV1Backup, then click Next.
From the Enter network credentials box, enter credentials that will enable you to14.
access SRV1Backup. Then click OK.
Once Windows connects to the remote machine and displays the location of15.
backups, select the right share, and then click Next.

Managing Server Backup

[189]

Click on the backup from which WSB should restore (in the case here, there is16.
only one), and click Next.
From the Re-image your computer window, ensure that the details shown are17.
correct, then click Finish.
Windows setup displays a warning to tell you that all disks to be restored are18.
going to be re-formatted. Click Yes to continue.
Once the FS1A computer has finished the recovery operation and has rebooted,19.
you can logon to the newly restored computer. Open a PowerShell console and
verify you have recovered the host by the recovery by typing:

 HostName
 Get-NetIPConfiguration

How it works...
In step 1, you install the backup feature. If you or someone else has previously loaded the
feature, then you will see this:

On the other hand, if you haven't loaded the Windows server and the backup feature is not
loaded, then this step loads the feature, like this:

With the backup feature loaded, in step 2 you create a bare metal recovery based full backup
of FS1's C: drive. The approach is similar to that shown in the Configure and set backup policy
recipe earlier in this chapter. Note that in step 2, you may get an error adding the volume to
the policy if using a Generation 2 VM—you need to adjust the recipe accordingly.

Managing Server Backup

[190]

The backup itself generates no messages showing progress as you piped many commands
to Out-Null. Feel free to test this recipe, remove the pipes to Out-Null, and see far more
messages when you test this recipe!

In this step, when you create the target on a remote system, SRV1 in this case, you should
get no output if the folder and SMB share do not exist. If on the other hand, these items do
exist, you should see the following:

Managing Server Backup

[191]

After the backup has completed, you simulate a disaster so you can use the backup to
recover from that disaster. Using Hyper-V makes easy for you to simulate the disaster. With
Hyper-V, just create a brand new VM with a VM name of FS1A. This VM has a new, empty
disk, and the Windows Server 2016 DVD loaded into the VMs DVD drive.

You can then start the VM, and once the server is up and running, connect to the VM using
Hyper-V's VM Connect. The initial screens show Windows setup's progress. Once setup
completes its initialization, it displays a dialog box allowing you to set the language, time
and currency format, and keyboard or input keyboard:

Managing Server Backup

[192]

After clicking Next, in step 7, you see the next dialog box:

In step 8, you see the option to troubleshoot your PC:

Managing Server Backup

[193]

After clicking on Troubleshoot, in step 9, you see the Advanced Options window, where
you select System Image Recovery:

The System Image Recovery option first attempts to find a backup system image on the
computer (FS1A), but of course, this does not exist. Clicking Cancel moves on to enabling
setup to find a backup on the network.

Managing Server Backup

[194]

In step 11, you see the Select a system image backup dialog, where you click on Next.

In step 12, you see a dialog box showing you no local images; here you click Advanced... :

Managing Server Backup

[195]

In step 13, you click on Search for a system image on the network.

In step 14, you tell Windows that you want to connect to the network. Sensibly, the dialog
box warns you that there are some risks involved with starting the network before security
updates, and so on, are all installed.

Managing Server Backup

[196]

In step 15, you enter the details of where the system can find a backup to restore. In step 2,
you saved the backup to SRV1Backup, so you enter that as the Network folder:

Managing Server Backup

[197]

In step 16, you enter the credentials that Windows is to use to access the remote server and
access a backup image stored on that system. Use the Domain Administrator account or
another account that is a member of either the Local Administrators or the Backup
Operators groups.

Once Windows setup connects to the remote system, it displays details of the backup
location:

Managing Server Backup

[198]

In step 17, Windows setup presents you with details of the backup it has found on SRV1:

Managing Server Backup

[199]

Step 18 provides you with additional restore operations. In most cases you can just click
Next:

In step 19, setup provides details of the backup that it proposes to restore. Clicking on
Finish starts off the restoration process.

Managing Server Backup

[200]

Step 20 provides another safety opportunity, setup warns you that all the disks to be
restored are going to be re-formatted and replaced. Reformatting the disk is the is you want
in this recipe, but it's sensible for the GUI to double check that you are restoring to the
correct disk:

Managing Server Backup

[201]

Once the restoration process starts, you see a progress dialog box showing progress:

Once Windows completes the process of restoring the system, it reboots. After the reboot,
you can logon and examine the restored server:

Managing Server Backup

[202]

As you can see, the new VM, FS1A, is now running the restored FS1 host. The FS1A VM has
the same IP address that FS1 had (when it was backed up). But as you can see, Windows
has now applied the IP address to a new network interface (Ethernet 2). Effectively the new
VM has a different NIC and thus gets a new Interface—but WSB applies the old IP address
onto this new host. It may be the same make and model as the NIC in the old system (the
old VM), but this NIC has a different serial number. It's important that you check the IP
address details after you recover the VM and adjust if needed.

There's more...
Once your restored server is up and running, it has the same configuration as the original
server. This configuration includes the machine name, IP Address, server certificates, and so
on. As part of the overall restoration process, you may need to move the VM to another
Hyper-V host so you may need to adjust this recipe to suit your requirements.

In step 14, Windows setup asks you if you want to connect to the network. In some
environments, when you are restoring a VM, your network may be considered hostile (until
you get the restored VM fully patched). Asking you whether you want to access the
network is a great precaution. But since you are going to perform a bare metal restore from
the network, connecting to the network is appropriate. If your network is that hostile, you
may need to implement a different recovery and backup approach.

Restore the registry from a backup
In Windows, applications such as the registry can register with WSB. These applications
contain a Volume Shadow Copy Service (VSS) writer. WSB uses that writer in the backup
process to ensure application data is consistent when WSB takes the backup. The feature
enables WSB to restore the application from the backup. In this recipe, you create a backup
of a system including the registry and restore the registry from a backup to view the
recovered hive.

Getting ready
This recipe uses the application server SRV1. Ensure the server has the WSB feature added,
as shown in the Configure and set backup policy recipe. Your VM needs to have a second VHD
added and setup as the E: drive. You use this second drive as the backup target. If you are
creating a new virtual hard drive to test this recipe, ensure you bring the drive online,
initialize it, and format it.

Managing Server Backup

[203]

How to do it...
The steps for the recipe are as follows:

You begin this recipe by creating keys/values in the registry:1.

 $TopKey = 'HKLM:SoftwarePackt'
 $SubKey = 'Recipe6-7'
 $RegPath = Join-Path -Path $TopKey -ChildPath $SubKey
 New-Item -Path $TopKey
 New-Item -Path $RegPath
 Set-ItemProperty -Type String -Name RecipeName
 -Path $RegPath `
 -Value 'Recipe 6-7'
 Get-Item -Path $RegPath

Create a full backup of this server by first removing any existing backup policy2.
then creating a new backup policy with a schedule:

 If (Get-WBPolicy) { Remove-WBPolicy -All -Force
 $FullBUPol = New-WBPolicy
 $Schedule = '06:00'

Create and set the backup schedule:3.

 Set-WBSchedule -Policy $FullBUPol -Schedule
 $Schedule | Out-Null

Set the backup target:4.

 $BuDisk = Get-WBDisk |
 Where-Object Properties -eq 'ValidTarget'
 $BuVol = $BuDisk | Get-WBVolume
 $Target = New-WBBackupTarget -Volume $BuVol | Out-Null
 Add-WBBackupTarget -Policy $FullBUPol -Target $Target -Force |
 Out-Null

Set the disk to backup and specify full metal recovery:5.

 $DisktoBackup = Get-WBDisk |
 Select-Object -First 1
 $Volume = Get-WBVolume -Disk $DisktoBackup
 Add-WBVolume -Policy $FullBUPol -Volume $Volume |
 Out-Null
 Add-WBBareMetalRecovery -Policy $FullBUPol
 Add-WBSystemState -Policy $FullBUPol

Managing Server Backup

[204]

Start the backup:6.

 Start-WBBackup -Policy $FullBUPol -Force

Examine applications that were backed up and can be restored:7.

 $Backup = Get-WBBackupSet |
 Where-Object BackupTarget `
 -Match 'E:' |
 Select -Last 1
 $Backup.Application

Restore the registry:8.

 $Version = $Backup.VersionId
 Wbadmin Start Recovery -Version:$Ver `
 -ItemType:App `
 -Items:Registry `
 -Recoverytarget:E:

See what WSB restored:9.

 Get-ChildItem -Path E:RegistryRegistry

Once the recovery is complete, you can mount the recovered registry. Start by10.
opening Regedit and click on the HKEY_LOCAL_MACHINE in the left pane:

Managing Server Backup

[205]

Then click on File, Load Hive. From the Load Hive dialog, enter a file name of11.
E:RegistryRegistrySOFTWARE, then click Open:

In The Load Hive dialog, enter a key name of OldSoftwareHive and then click12.
OK:

Managing Server Backup

[206]

You can then expand the OldSoftware key; open Packt and you see the key13.
added at the start of this recipe.

Once you have loaded the hive, open up a new PowerShell console and view the14.
restored hive:

 Get-ChildItem HKLM:\OldSoftwareHive\Packt

Managing Server Backup

[207]

How it works...
In step 1, you add a new key HKEY_LOCAL_MACHINESoftwarePackt, and under that,
another sub-key, Recipe 6-7. You then add a new value entry called RecipeName with a
value of Recipe 6-7. This step demonstrates adding a key and a value entry to the registry
and looks like this:

In step 2 through step 6, you use the PowerShell cmdlets to create a full backup of the system
and the C: volume to the E: volume:

Managing Server Backup

[208]

If you are using Generation 2 VMs to test this recipe, you may need to change this step to
ensure you pick up the right volume. In these steps, you create a new backup policy then
run the backup operation.

Once WSB has completed backing up the system, in step 7 you get the backup details to
show that WSB has backed up the Registry:

In step 8, you restore the registry, and as you can see, the restoration was successful:

Managing Server Backup

[209]

And in step 9, you use Get-ChildItem to discover the registry hives recovered:

In steps 10-13, you use Regedit to load the hive, and in step 13 you view the hive.

Once you load the hive using Regedit, you can then view the hive and the hive's contents
using PowerShell, as shown in step 14:

There's more...
This chapter (and this recipe) was written to be part of Chapter 6. However late in the
production process, this chapter was re-numbered, however some artifacts of the old
chapter number remain, such as the Recipe Name. Feel free to substitute different names.

When you restored the registry, WSB wrote the backed-up registry hives to a new location,
the E: volume. Regedit enables you to mount a restored hive and view the contents. A neat
feature is that after mounting the hive in Regedit, you can manipulate that hive directly
from PowerShell. Support staff can use this approach to compare a hive in the currently
active registry against a backup copy from some time past. An admin might have
accidentally removed an application and you need to determine the registry settings
requires to resurrect the application. As a forensic tool, you could use this technique to
report on all changes made to some of all of the registry.

Managing Server Backup

[210]

When using Generation 2 VMs, note that the available volumes are different from what you
see using Generation VMs. You may need to adjust the recipe to ensure you pick up the
correct volume to backup.

Create a daily backup report
Most backup jobs are fire and forget. You set them up, and they run. In such an
environment, it is easy to forget about backups until the time when you need them (that is
to recover a file, folder or entire server). One thing you can do is to generate a daily report
on the state of backup on a critical server. You can run this report early every morning, and
email it to one or more people in your organization to notify them of any issues that may
have arisen with processing backups on critical servers.

This recipe creates a scheduled task which sends an email containing a summary of backup
operations on your server, in this case: you use the file server FS1. This recipe is in two
parts: the first part is a simple script that creates a backup report (on FS1) and the used
email to send you the backup report. The second part of this recipe sets up the scheduled
task that runs the backup report script. This second script also summarizes the results of
setting up the scheduled task.

Getting ready
The idea of this recipe is that you have a scheduled job that sends you an email every day
on the status of backup activities on a server. So before we can run this recipe, you need to
ensure you have loaded the backup features onto that server, as shown in the Configure and
set backup policy recipe.

How to do it...
The first part of this recipe is the script that creates the backup report and emails it via
SendGrid, as follows:

Create a credential for SendGrid:1.

 Function Get-MailCred {
 $User = 'apikey'
 $Pw = <your api key>
 $Password = ConvertTo-SecureString -String $Pw
 -AsPlainText -Force

Managing Server Backup

[211]

 New-Object -Typename System.Management.
 Automation.PSCredential `
 -ArgumentList $User,$password
 }

Start building the backup report:2.

 $Now = Get-Date
 $StartTime = $Now.AddDays(-7)
 $Report = "Backup Report for $Env:COMPUTERNAME at [$now] `n"
 $Report += '---`n`n'

Query and report on the backup sets available:3.

 $Report += '*** Backup Sets *** `n'
 $Report += Get-WBBackupSet |
 Where-Object BackupTime -gt $startTime |
 Format-Table Versionid, BackupTime,
 Application, BackupTarget |
 Out-String
 $Report += '`n'

Create an array of key backup event IDs:4.

 $Report += '*** Event Log Messages'
 $EvtArray = (100, 224, 227, 517, 518, 521, 527, 528, 544, 545)
 $EvtArray += (546, 561, 564, 612)

Search the Windows event logs for events and add to the report:5.

 $Report += Get-WinEvent -LogName 'Microsoft-Windows-Backup' |
 Where-Object {($_.TimeCreated -ge $StartTime) -and
 ($EvtArray -contains $_.ID)} |
 Format-Table -Property TimeCreated,
 LevelDisplayName, ID, Message |
 Out-String
 $Report += '`n'

Managing Server Backup

[212]

Search the backup logs for errors and include filenames, then save the report6.
away:

 $Report += '*** Backup Error logs ***'
 $Logs = Get-ChildItem -Path
 'C:WindowsLogsWindowsServerBackup*.log' |
 Sort-Object -Property LastWriteTime |
 Where-Object LastWriteTime -GE $StartTime
 $Report += ($Logs | Where-Object Name -match 'Error'
 | Out-String)
 $Report += ' `n'
 If (-NOT Test-Path -Path C:Reports)
 {New-Item -Path C:Reports -Directory}
 $Report | Out-File -FilePath C:ReportsReport.txt

Send the report via e-mail:7.

 $MailCred = Get-MailCred
 $From = 'BackupReport@Reskit.Org'
 $To = 'PowerShellbook@Gmail.Com'
 $Body = 'Daily backup report - contained
 in the attachment'
 $SMTPServer = 'Smtp.SendGrid.Net'
 $Subject = "Backup Report for $Env:COMPUTERNAME
 at: [$Now]"
 Send-MailMessage -From $From -To $To `
 -Attachments C:ReportsReport.txt `
 -SmtpServer $SMTPServer `
 -Body $Report `
 -Subject $Subject `
 -Credential $Mailcred

Save the above part of this recipe (step 1 through step 7) as C:8.
ScriptsBackupReport.ps1.

In the next part of this recipe, you setup up the C:\Scripts\BackupReport.ps1 as a
regular task and finally observe the output. Before performing the second part, double
check to ensure that the report script is in the right place:

 $ReportScript = 'C:\Scripts\BackupReport.ps1'
 If (-NOT (Test-Path $ReportScript))
 {Throw 'Report script not found - exiting'}

Managing Server Backup

[213]

Schedule the script using the task scheduler:9.

 # Assume steps 1-6 are saved in c:scriptsbackupreport.ps1
 $Name = 'Daily Backup Report'
 $Action = New-ScheduledTaskAction -Execute `
 '%SystemRoot%\system32\WindowsPowerShell\v1.0\powershell.exe" `
 -Argument $ReportScript
 $Trigger = New-ScheduledTaskTrigger -Daily -At 6am
 $User = 'ReskitBUAdministrator'
 $Password = 'Pa$$w0rd'
 $Task = Register-ScheduledTask -TaskName $Name -Action
 $Action `
 -Trigger $Trigger `
 -User $User `
 -Password $Password

How it works...
In step 1, you create a simple function, Get-MailCred, that provides the credentials you
need to send mail via SendGrid.Net. Before you run this recipe and this function, you
need to add your API key which you get from SendGrid. Effectively, the user id for
SendGrid is apikey and the password is your API key.

Note: You should be very careful about exposing the API Key. If you plan
on using this recipe, you are going to need to determine whether you need
to pass credentials to your mail server, and how to achieve it for your
environment. In general, leaving plain text credentials in any production
script is a not good idea.

The first part of this script is where you create and mail the report; you save this locally on
FS1, then you use the second part of this script to create the scheduled task.

In step 2, you start by creating a report with a header. In step 3, you get all the backup sets
available and add these details to the report. In steps 4 and 5, you look at the Windows
Backup event log, and pull out any relevant event log entries, and add them to the report. In
step 6, you look for any backup error log and add information to the report.

Finally, in step 7, you use SendGrid to send mail on to a user. In this recipe, you used Gmail
as your mail target, although you could have used any other mail server in step 8. From
Gmail's web interface, the mail and report look like this:

Managing Server Backup

[214]

To turn this script into a scheduled task, you start with step 8 and create a scheduled task.
Providing you specified the parameters correctly, you get no output from this task. In step 9,
you find and display the details of the scheduled task:

Once you set up this scheduled task, the task runs every morning at 06:00 and generates a
report. Needless to say, if you are going to be creating a regular report, you could easily add
more details to the report. You could improve the report script to produce HTML as output.
You could then either set the body to this HTML document or just attach it to the mail.

There's more...
This recipe used Sendgrid.com as an SMTP Server. In the first part of this recipe, you
created the backup report which you sent as an email message. SendGrid has a free account
that enables you to send up to 100 emails per day, which is more than enough for the
testing of scripts that send mail. In this recipe, the Get-MailCred function is used to return
a credential object for SendGrid. To test this recipe, navigate to https:/ /SendGrid. Com and
sign up for a free account and get your API Key.

https://sendgrid.com/
https://SendGrid.Com
https://SendGrid.Com
https://SendGrid.Com
https://SendGrid.Com
https://SendGrid.Com
https://SendGrid.Com
https://SendGrid.Com

Managing Server Backup

[215]

Backup and restore using Microsoft Azure
The recipes in this chapter, thus far, have been focused on Windows Server Backup. An
alternative to performing backups is backing up to the cloud. This recipe demonstrates
using Azure Backup as an alternative to the Windows Server Backup product.

Getting ready
For this recipe to succeed, you need a computer to backup from, an Azure account, and you
need to have the Azure cmdlets loaded. You also need to load the online backup cmdlets
(which you do in this recipe).

In this recipe, you use SRV2 as the server to backup (and restore). You can run this recipe on
any server.

To load the Azure cmdlets, you use the Install-Module cmdlet, as demonstrated in the
Explore PowerShellGet recipe in Chapter 1, What's new in PowerShell and Windows Server.
You use this cmdlet on SRV2 to find and load the Azure Resource Manager cmdlets that you
use in this recipe. Then, you can view the newly installed module, as follows:

 Install-Module -Name AzureRm -Repository PSGallery
 Get-Module -Name AzureRM -ListAvailable

If this is the first module you have installed using Install-Module, you also see a pop-up
requesting permission to install NuGet. This is normal.

How to do it...
The steps for the recipe are as follows:

Login to Azure:1.

 Login-AzureRmAccount

Get Azure Subscription details:2.

 $Sub = Get-AzureRmSubscription
 Select-AzureRmSubscription -SubscriptionId
 $Sub[0].SubscriptionId

Managing Server Backup

[216]

Register with Azure recovery services provider:3.

 Register-AzureRmResourceProvider
 -ProviderNamespace 'Microsoft.RecoveryServices `

Create an ARM Resource Group:4.

 $RGName = 'Recipe'
 $Location = 'WestEurope'
 New-AzureRmResourceGroup -Name $RGName -Location $Location

Create Azure Recovery Vault:5.

 $VaultName = 'RecipeVault'
 New-AzureRmRecoveryServicesVault -Name $VaultName `
 -ResourceGroupName $RGName `-Location $Location

Set Recovery Vault properties:6.

 $Vault = Get-AzureRmRecoveryServicesVault -Name $VaultName
 Set-AzureRmRecoveryServicesBackupProperties -Vault $Vault `
 -BackupStorageRedundancyLocallyRedundant

Examine the backup vault:7.

 Get-AzureRmRecoveryServicesVault

Get MARS Agent installer and install it:8.

 New-Item C:\Foo -ItemType Directory -Force `
 -ErrorAction SilentlyContinue | Out-Null
 $MarsURL = 'Http://Aka.Ms/Azurebackup_Agent'
 $WC = New-Object -TypeName System.Net.WebClient
 $WC.DownloadFile($MarsURL,'C:\FOO\MarsInstaller.EXE')
 C:FooMarsInstaller.EXE /q

Import the Azure Backup Module:9.

 Import-Module `
 'C:\Program\FilesMicrosoft Azure Recovery Services
 Agent\bin\Modules\MSOnlineBackup'

Managing Server Backup

[217]

Get and display the credentials for the recovery vault:10.

 $CredPath = 'C:\Foo
 $CredsFile = Get-AzureRmRecoveryServicesVaultSettingsFile `
 -Backup -Vault $Vault `
 -Path $CredPath
 "Credential File Path: [{0}]" -f $CredsFile.FilePath

Register this computer with the recovery vault:11.

 Start-OBRegistration -VaultCredentials $Credsfile.FilePath `
 -Confirm:$false

Set network details:12.

 Set-OBMachineSetting -NoProxy
 Set-OBMachineSetting -NoThrottle

Set encryption:13.

 $PassPhrase = ConvertTo-SecureString `
 -String 'Cookham!JerryGarcia$123_Rebecca' -AsPlainText -Force
 $PassCode = 'BWROCKS!0'
 Set-OBMachineSetting -EncryptionPassphrase $PassPhrase
 -SetPasscode $Passcode

Create and view a backup policy:14.

 $APolicy = New-OBPolicy
 $APolicy

Configure and set backup schedule:15.

 $Sched = New-OBSchedule -DaysofWeek Tuesday, Saturday `
 -TimesofDay 04:00
 Set-OBSchedule -Policy $APolicy -Schedule $Sched

Set retention policy:16.

 $RetentionPolicy = New-OBRetentionPolicy -RetentionDays 7
 Set-OBRetentionPolicy -Policy $APolicy -RetentionPolicy
 $RetentionPolicy

Managing Server Backup

[218]

Specify files to backup and files to exclude:17.

 $Inclusions = New-OBFileSpec -FileSpec 'C:'
 $Exclusions = New-OBFileSpec -FileSpec 'C:Windows' -Exclude
 Add-OBFileSpec -Policy $APolicy -FileSpec $Inclusions
 Add-OBFileSpec -Policy $APolicy -FileSpec $Exclusions

Remove existing policy and set a new one:18.

 If (Get-OBPolicy) {Remove-OBPolicy -Force
 Set-OBPolicy -Policy $APolicy -Confirm:$false

Get and display the Azure backup schedule:19.

 Get-OBPolicy | Get-OBSchedule

Perform a one-off backup based on the currently active backup policy:20.

 Get-OBPolicy | Start-OBBackup

Having used the Azure Backup cmdlets to backup a server (SRV2 in this case),
you can also recover files and folders using the following:

Set source volume to recover from:21.

 $Source = Get-OBRecoverableSource

Get the recovery points from which you can restore (that is, the most recent):22.

 $RPs = Get-OBRecoverableItem -Source $Source |
 Select-Object -First 1

Choose what to restore:23.

 $FilesFolders = Get-OBRecoverableItem -RecoveryPoint $RP `
 -Location "C:Foo\"
 $Item = Get-OBRecoverableItem -RecoveryPoint $RP `
 -Location "C:Foo\" `
 -SearchString "MarsInstaller.EXE "

Examine a file that was explicitly NOT backed up:24.

 Get-OBRecoverableItem -RecoveryPoint $RP `
 -Location 'C:\Windows' `
 -SearchString 'mib.bin'

Managing Server Backup

[219]

Recover specified files and folders:25.

 $RecoveryOption =New-OBRecoveryOption `
 -DestinationPath 'C:\temp' `
 -OverwriteType Skip
 Start-OBRecovery -RecoverableItem $Item -RecoveryOption
 $RecoveryOption

See what OBRecovery recovered:26.

 Get-ChildItem C:\AzRecover\C_vol
 Get-ChildItem C:\AzRecover\C_vol\Foo

How it works...
After you install the Azure cmdlets, the first thing to do is logon to Azure. If you are using
an AAD account to logon, you can pass credentials directly the cmdlet. If you are using a
Microsoft Live account to logon, you see two dialog boxes:

Managing Server Backup

[220]

From this dialog, you enter your Live ID and click on Sign in. Azure takes you to a second
dialog box where you enter your password:

After a successful logon in step 1, the cmdlet outputs details about your account, like this:

In step 2, you obtain (and display) the subscription object that relates to your Azure
Subscription. Depending on how many subscriptions you have, you may need to adjust step
2 to ensure you select the correct Azure subscription to use for the rest of this recipe. Select-
AzureRmSubscription cmdlet directs Azure PowerShell to use the chosen subscription.
This step looks like this:

Managing Server Backup

[221]

In step 3, which you only need do once, you register your currently active subscription with
the Azure Recovery Services. The result of registering are details about what resource types
you can access, like this:

Once you have your subscription registered, you create the resource group in step 4.
Resource groups hold all ARM resources:

Next, in step 5, you create the Azure Recovery Vault:

In step 6, you set the recovery vault to use Azure's Locally Redundant store option. There is
no output from this step.

Next, in step 7, you examine the Recovery Vault:

Managing Server Backup

[222]

In step 8, you use the System.Net.Webclient .NET class to download the Microsoft
Azure Recovery Services (MARS) Agent installer, which you then run. The MARS installer
installs the backup cmdlets on your system. There is no output from step 8.

In step 9, you install the Online Backup module manually. There is no output from this step.

In step 10, you use the Get-AzureRMRecoveryServicesVaultSettingsFile to
download the Vault settings file and display the location where you stored it. This file is, in
effect, a certificate that enables the computer to access Azure Recovery Services and it looks
like this:

With step 11, you register this computer with Azure Recovery Services with your recovery
vault in Azure's Western Europe region, as follows:

In step 12, you set backup details for this system, including a proxy setting (no proxy), a
throttle setting (no throttling). This step produced no output.

In step 13, you set the encryption passphrase and security pin to use for this vault. Note
without these items, you cannot recover your data. You need to keep these credentials (and
the scripts that contain them) carefully protected. The output of this step is as follows:

Managing Server Backup

[223]

This step completes the installation and setup of Azure backup, and you are now ready to
create a backup. With Azure Recovery Services, any backups of a Windows server/client to
Azure Backup are governed by a backup policy (similar to on-premises WSB backup). The
online backup policy has three key components

A backup schedule that specifies when backups need to be taken and
synchronized with the service.
A retention schedule that specifies how long to retain the recovery points in
Azure.
A file inclusion/exclusion specification that states what should be (and should not
be) backed up.

In step 14, you create and display a new empty Azure Online Backup policy:

In step 15, you create a backup schedule and assign it to your backup. This sets up Azure
recovery to perform a backup at 4:00 every Tuesday and Saturday:

Managing Server Backup

[224]

With step 16, you set a retention period of seven days:

In step 17, you specify the files that WSB should include in the backup (all of C:) and the
files that should you wish to exclude from the backup (i.e. the contents of the C:\ Windows
folders). There is no output from this step.

Finally, in step 18, you set $Apolicy as the currently active policy. If there was an existing
policy, you should remove it first before setting a new policy. This new policy produces
details of what you want WSB to back up (and to omit) and looks like this:

Managing Server Backup

[225]

With step 19, you display the schedule for Azure Backup, based on the policy you set earlier:

As the screenshot shows, you have created an Azure backup policy that backs up twice a
week at 04:00 on Tuesday and Saturday. Needless to say, you are likely to need to adjust the
details of this policy before putting it into operation. Once you have a policy set, you
perform a one-off backup based on the policy, as you see in step 20:

After you back up (at least once), you can recover files and folders from the backup. You
restore to a folder on your local system. In steps 21, 22, 23, and 24 you set the items you wish
to recover and to where you want Azure Backup to recover them. In step 25, you look at a
file that was not backed up (and you see no actual output). These steps generate no output.

In step 26, you set the recovery options then commence the backup:

Managing Server Backup

[226]

Once the backup has completed, in step 27, you view the files that Azure Backup restored
from an earlier backup, as follows:

As you can see, by performing this recipe you backed up server SRV2, then restored a
backed up file from the Azure's recovery vault onto SRV2.

There's more...
In step 4, the recipe sets the Azure region to Western Europe. With the growth of Azure data
centers around the world, there may be an Azure region closer to you. Check on the
Microsoft Azure Regions page at https:/ /azure. microsoft. com/ en-gb/ regions/

In step 15, you set the time for the backup (04:00). Azure backup only starts backup jobs on
the hour or half hour, starting at midnight (00:00). If you set the time to, say, 16:20, this will
generate an error later, in step 18, when you set the policy using Set-OBPolicy.

https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/
https://azure.microsoft.com/en-gb/regions/

6
Managing Performance

In this chapter, we are going to cover the following recipes:

Exploring performance counters with Get-Counter
Exploring performance counters using CIM cmdlets
Configuring and use Data Collector Sets
Reporting on performance data
Generating performance monitoring graph
Creating a system diagnostics report

Introduction
Managing performance has been a challenge since the earliest days of computing. Windows
NT 3.1 came with a marvelous tool, Performance Monitor (Perfmon), that allowed you to
see what the OS and applications are doing and what resources they are consuming.

This chapter shows you how you can use PowerShell to obtain and display performance
information. The recipes in this chapter show you how you can use a cmdlet and WMI to
get and report the performance information. This chapter shows how you can generate
performance graphs and reports for management. And of course, you can leverage the
various recipes in this chapter to conduct your performance monitoring and reporting.

The Windows performance monitoring framework is known as Performance Logging and
Alerting (PLA). PLA is built into Windows and uses COM and DCOM to obtain
performance and diagnosis information from both local and remote computers.

Managing Performance

[228]

PLA enables you to obtain a variety of performance data from running systems. PLA
provides graphic tools such as Performance Monitor and Task Manager to help bring the data
to life. These tools utilize the performance monitoring framework built into Windows.

You can also use PowerShell to obtain performance information from the PLA. While you
can use a GUI tool for looking at one system, with PowerShell you can obtain the
performance information across your entire IT infrastructure.

In PLA, a counter set is a performance object that provides performance information about
some aspect of your systems such as memory, disk devices, or network components.
Counter sets are built by Microsoft as well as third parties and are implemented as DLLs in
your system.

A counter set contains one or more counters, each of which provides one measurement of
an aspect of the counter type. For example, the Memory counter set on Windows Server 2016
has 36 counters, such as PagesperSecond, PageFaultsperSecond, and
AvailableBytes.

Counter sets have a counter set type: single-instance or multi-instance. Counters like
\Memory\Page/Sec are single-instance where each sample contains just one measurement.
Other counters, such as \Processor(*)\% Processor Time are multi-instance. This
counter returns a counter sample for each processor in the server, plus one for the total
(nicely named _total). The multi-instance counters in the Processor counter set return
one measurement for each processor core, plus one for the total. This counter returns one
measurement for each core (or two measurements if hyper-threading is available and
enabled. For example, for each processor core on a dual-processor hex-core system with
hyper-threading, you would have 24 measurements.

A counter sample is a specific measurement of a counter at some point in time. To get a
counter sample, you use the Get-Counter cmdlet and specify the counter name (that is, the
path) to the counter set. The path is formatted as \\<servername\<counterset
name>\CounterName, for example \\DC1\Memory\Page Faults/sec. If you are getting
counters on the local machine, you can omit the computer name prefix and just specify
\Memory\Page Faults/sec. Note that the counter set and counter names can be long and
can have spaces in the names. You need to specify paths using PowerShell string quoting.

You use the Get-Counter cmdlet to obtain details of available counter sets, the counters
with each set, and get counter samples. The Get-Counter cmdlet utilizes PLA to get
counter set, counter and counter sample information from both local and remote computers.

Managing Performance

[229]

The PerformanceCounterSampleSet object, returned by Get-Counter, contains a
CounterSamples property. This property contains one measurement of the counter (for
single-instance counters) or an array of samples (for each instance with multi-instance
counters).

Another way to surface performance information is with WMI. WMI holds performance
objects, and you can use either the WMI cmdlets or the CIM cmdlets. The latter are slightly
faster, and more firewall friendly.. If you are conducting remote performance monitoring on
a constant basis, or opening up a CIM Session to the monitored server, then using the CIM
cmdlets gives improved performance.

In the first recipe of this chapter, you explore counter sets, and counter set samples using
Get-Counter. The next recipe looks at getting performance information using the CIM
cmdlets.

This recipe uses several servers to simulate a normal organization. Consider using fewer
servers.

Explore performance counters with Get-
Counter
Get-Counter is the cmdlet you use both to discover the counter sets available on a
machine, and to obtain performance samples from a local or remote server. In this recipe,
you use a Windows Server 2016 server, SRV1, to examine performance counter sets and
counters on local and remote computers.

Getting ready
This recipe uses several remote machines: DC1, CA, SRV1, FS1, FS2, and PSRV. Adjust the
recipe to reflect the computers in your testing or production environment.

This recipe uses several servers to simulate a normal organization. Consider using fewer
servers.

Managing Performance

[230]

How to do it...
You start by using Get-Counter to discover performance counter sets on the1.
local machine:

 $CounterSets = Get-Counter -ListSet *
 "There are {0} counter sets on [{1}]" `
 -f $CounterSets.count, (hostname)

Discover performance counter sets on remote systems:2.

 $Machines = 'DC1', 'CAa', 'SRV1', 'FS1', 'FS2', 'PSRV'
 foreach ($Machine in $Machines)
 {
 $RCounters = Get-Counter -ListSet * -ComputerName $machine
 "There are {0} counters on [{1}]" -f $RCounters.count,
 ($machine)
 }

Use Get-Counter to explore key performance counter sets:3.

 Get-Counter -ListSet Processor, Memory, Network*,*Disk* |
 Select-Object -Property countersetname, Description |
 Format-Table -Wrap

You now look at two counters: Memory and Processor. Get and display counters4.
in these two counter sets:

 $Counters = (Get-Counter -ListSet Memory).counter
 "Memory counter set has [{0}] counters" -f $counters.Count
 $counters = (Get-Counter -ListSet Processor).counter
 "Processor counter set has [{0}] counters" -f $counters.Count
 Get a sample from each counter in the memory counter set:
 $Counters = (Get-Counter -ListSet Memory).counter
 "{0,-19} {1,-50} {2,10}" -f 'At', 'Counter', 'Value'
 foreach ($Counter in $Counters)
 {
 $C = Get-Counter -Counter $Counter
 $T = $C.Timestamp # Time
 $N = $C.CounterSamples.Path.Trim() # Couner Name
 $V = $C.CounterSamples.CookedValue # Value
 "{0,-15} {1,-59} {2,20}" -f $t, $n, $v
 }

Managing Performance

[231]

Next you discover the sample set types for key performance counters:5.

 Get-Counter -ListSet Processor, Memory, Network*, *Disk* |
 Select-Object -Property CounterSetName, CounterSetType

Explore two performance counter sample sets using examples of both counter set6.
types:

 $Counter1 = '\Memory\Page Faults/sec'
 $PFS = Get-Counter -Counter $Counter1
 $PFS
 $Counter2 = '\Processor(*)\% Processor Time'
 $CPU = Get-Counter -Counter $Counter2
 $CPU

Look at the properties of the performance counter sample set object:7.

 $PFS | Get-Member -MemberType *Property |
 Format-Table -Wrap

Now look at what counters the samples contain and the way they look :8.

 $CPU.CounterSamples | Get-Member -MemberType *Property |
 Format-Table -Wrap
 $CPU.CounterSamples | Format-List -Property *

How it works...
The Get-Counter cmdlet is the tool you use both to discover the performance counter sets
and counters, as well as, to get specific the counter samples. In step 1, you get all the
performance counter sets on the local system and display the results. The results you obtain
vary depending on the specific features you install on your computers. On the SRV1 VM,
step 1 looked like this:

Managing Performance

[232]

In step 2, you expand the scope a bit to return the number of counter sets in multiple
machines in the network. The domain controllers and other servers have different features
loaded. Therefore you see different number of counter sets on each machine:

In step 3, you explore some of the most useful counters in Windows Server 2016, which are
as follows:

With step 4 you use Get-Counter to return and display a count of how many counters exist
in the Memory and Processor counter sets, as you see here:

Managing Performance

[233]

Now that you have found the counter sets and looked inside a few, you get counter samples
in step 5. In this case, you retrieve a counter sample for each counter in the Memory counter
set:

As noted earlier, counters can be either single or multi-instance. In step 6, you use Get-
Counter to explore the counter set types of a few key counters. The Processor counter set
is multi-instance whereas the Memory counter set is single-instance as you can see here:

Managing Performance

[234]

In step 7 you explore a single-instance and a multi-instance counter. As you can see here, the
Processor object returns a sample for each processor in your computer plus one for the
total CPU time across all cores. If you are using Get-Counter on a computer with hyper-
threaded processors, you would see two measurements for each processor core. Our VM,
which is not hyper-threaded and only has one processor assigned results in what you see
here:

With step 8, you examine the PerformanceCounterSampleSet object and view the
properties on this object:

The CounterSamples property contains the counter samples taken at the time in the
TimeStamp. In step 9, you look at the values and properties of two counter samples:

Managing Performance

[235]

There's more...
In step 4 of this recipe, you used a separate call for Get-Counter to retrieve each counter.
As you can see from the screenshot, it took 35 seconds to gather all these counters. Using
Get-Counter is convenient if you just want one counter (for example, CPU utilization). If
you need to get all the counters in a counter set, there are more efficient techniques for
getting multiple counters.

Managing Performance

[236]

In step 6 of this recipe, you should notice that the $PFS variable contains the readings script
property. The Get-Sample cmdlet returns the $PFS a variable. This variable is an object of
the type PerformanceCounterSampleSet. PowerShell added this property to the
underlying .NET object through the magic of the extensible type system. This script
property returns a simple array of the counter path and the cooked value for the sample.
You can use this as an alternative delving into the PerformanceCounterSampleSet object
itself. Note that the first member of the array has a trailing. You may need to remove if you
wish to use it as a counter path value in some other cmdlet. If you do use the readings script
property, the code that results is more complex than just using the properties on the sample
set object directly. If you are interested, the script is defined in the file
$PSHome\getevent.types.ps1xml. Of course, you can update this extended type
information if that is appropriate.

Explore performance counters using CIM
cmdlets
Another way to access performance information is via WMI. You can use either the WMI or
the CIM cmdlets to access a large number of performance counters, as an alternative to
using Get-Counter. The naming structure is different from using Get-Counter. With
WMI, each counter is a separate WMI class.

With WMI, each performance counter set is a WMI class. The WMI performance counters
are found in the ROOT\CimV2 namespace and have a name that begins with Win32_Perf.
For example, the Memory performance counter set contains 36 separate counters. The WMI
class Win32_PerfFormattedData_PerfOS_Memory contains 46 properties including all of
the individual performance counters. With WMI, you get all the measurements back in one
call to Get-CimInstance, whereas you would need to call Get-Counter for each sample.
There are other ways to collect counters as shown in later recipes.

In this recipe, you get performance counters from local and remote machines using the CIM
cmdlet set. The CIM cmdlet set is preferable to the older WMI commands as it is a little
faster. And it can make use of WinRM for remote sessions.

Managing Performance

[237]

Getting ready
You run this recipe on SRV1, but you could use any server. This recipe uses the CIM
cmdlets, so you need at least PowerShell 3.0. You could revise this recipe to make use of the
WMI cmdlets. Using the WMI cmdlets might be useful in the case where you are
communicating with an older system that does not have PowerShell remoting up and
running.

How to do it...
Find Performance related counters in Root\CimV2:1.

 Get-CimClass -ClassName Win32*perf* | Measure-Object
 Get-CimClass -ClassName Win32*perfFormatted* | Measure-Object
 Get-CimClass -ClassName Win32*perfraw* | Measure-Object

Find key performance classes:2.

 Get-CimClass "Win32_PerfFormatted*perfos*" |
 Select-Object -Property CimClassName
 Get-CimClass "Win32_PerfFormatted*disk*" |
 Select-Object -Property CimClassName

Get Memory counter samples:3.

 Get-CimInstance -ClassName Win32_PerfFormattedData_PerfOS_Memory

Get CPU counter samples:4.

 Get-CimInstance
 -ClassName Win32_PerfFormattedData_PerfOS_Processor|
 Where-Object Name -eq '_Total'
 Get-CimInstance
 -ClassName Win32_PerfFormattedData_PerfOS_Processor |
 Select-Object -Property Name, PercentProcessortime

Get Memory counter samples from a remote system:5.

 Get-CimInstance -ClassName Win32_PerfFormattedData_PerfOS_Memory
 -ComputerName DC1

Managing Performance

[238]

How it works...
In this recipe, you use Get-CimClass to discover WMI performance classes within the
Root/CimV2 namespace. You also use the Get-CimInstance cmdlet to retrieve
performance information.

In step 1, you use the Get-CimClass to find the performance counter classes implemented
on your system. You look at the general performance classes, then the formatted and raw
classes as you discover the total number of performance classes and the number that are
either raw or formatted (cooked). For the performance counters supported in WMI, there
are two classes for each counter: a raw class and a cooked class. The former returns raw
counter values and the latter returns cooked counter values as shown:

In step 2, you look at some of the most relevant WMI performance classes, those related to
the OS performance and those related to the disk. These are just a few of the many
performance classes in WMI, and looks like:

Managing Performance

[239]

In step 3, you retrieve memory related performance counters. There are a large number of
properties returned, some of which may be helpful while others less so. Regarding the
Memory counter set, the AvailableBytes, CommittedBytes and PagesperSecond are
ones on which need to focus. Here's the output:

Managing Performance

[240]

In the case of memory samples, many of the measurements are in bytes. You can always get
one of the properties, for example, CommittedBytes, and divide it by 1 GB (a neat feature
of PowerShell) to convert the value into megabytes. You can even format the value to
remove some of the digits. You could get the value of CommittedBytes into a variable (for
example, $CB) and the expression: ($CB/1Gb)ToString('n2') turns committed bytes into
1.54 gigabytes.

In step 4, you get the CPU related performance counters. The first statement gets the full set
of counter information for the _Total occurrence. The second returns the CPU utilization
both for the total and for each of the CPUs, it is shown as follows:

Managing Performance

[241]

In the last step in this recipe, you retrieve CPU counters from a remote machine, DC1. Using
Get-CimInstance leverages WSMan to communicate with the remote machine. If you
needed to, you could create a CIM session over DCOM and invoke the cmdlet over the CIM
session. As WinRM is much more firewall friendly, this should not be necessary. The output
of the Memory class looks identical to the output returned from a local CIM instance as
follows:

There's more...
In this recipe, you discovered how to find the WMI performance classes as well as looking
at a few of the classes. WMI is huge and contains a large number of classes. You could
usefully spend time looking at the various classes provided. There is a tremendous amount
of information available from both WMI and from Get-Counter, which are both build on
the PLA platform.

Managing Performance

[242]

With so many classes, it's easy to get overwhelmed and spend inordinate amounts of time
looking at counters which yield little useful information. With performance management,
you need to work out when you have adequate information to help resolve any
performance issues.

If you are going to be working a lot with WMI to manage performance information, you
could consider using type and display XML to customize the objects to suit your needs. You
could add alias properties to provide shorter name aliases (for example, adding a property
CB as an alias to CommittedBytes. You could also add format XML to improve the default
output of values from the various classes. The details of type and format XML are outside
the scope of this book, but there are plenty of references on the internet that you can
leverage.

Configuring and using Data Collector Sets
The first two recipes in this chapter used different techniques (Get-Counter and WMI) to
retrieve specific counters and counter sets. As you seen, getting a large number of counter
values for detailed analysis can be very slow with these mechanisms. These techniques are
ideal for retrieving one or two bits of information (CPU utilization for example, or
pages/second). If you want to get a larger number of statistics (for example, all of the
networking statistics including TCP, UDP, IP, and ICMP) the techniques do not scale well.

A better approach to gathering large number of counters is to use the Data Collector Sets
and have Windows do the work for you. To do this, you first create and configure a
collector set. When you start the set, Windows starts collecting the data you have
configured the collector set to return. Finally, when the collection has been completed, you
use Performance Monitor to view the results.

This approach is very much easier. You just define the collector sets, create a schedule
telling Windows when to collect the data and let Windows do the rest. You could easily
deploy counter sets to all your key servers. Once deployed, you use them to help resolve
performance issues. With the data collection process deployed, you improve your ability to
respond to most of the performance issues.

Getting ready
This recipe runs on SRV1. As with all recipes in this book, feel free to use different servers to
test this recipe.

Managing Performance

[243]

How to do it...
Create and populate a new performance data collector:1.

 $Name = 'SRV1 Collector Set'
 $SRV1CS = New-Object -COMObject PLA.DataCollectorSet
 $SRV1CS.DisplayName = $Name
 $SRV1CS.Duration = 12*3600 # 12 hours - 19:00
 $SRV1CS.SubdirectoryFormat = 1
 $SRV1CS.SubdirectoryFormatPattern = 'yyyy\-MM'
 $SRV1CS.RootPath = Join-Path -Path "$Env:SystemDrive" `
 -Childpath "\PerfLogs\Admin\$Name"
 $SRV1Collector = $SRV1CS.DataCollectors.CreateDataCollector(0)
 $SRV1Collector.FileName = "$Name_"
 $SRV1Collector.FileNameFormat = 3
 $SRV1Collector.FileNameFormatPattern = "yyyy\-MM\-dd"
 $SRV1Collector.SampleInterval = 15
 $SRV1Collector.LogFileFormat = 3 # BLG format
 $SRV1Collector.LogAppend = $true

Define counters of interest:2.

 $Counters = @(
 '\Memory\Pages/sec',
 '\Memory\Available MBytes',
 '\Processor(_Total)\% Processor Time',
 '\PhysicalDisk(_Total)\% Disk Time',
 '\PhysicalDisk(_Total)\Disk Transfers/sec' ,
 '\PhysicalDisk(_Total)\Avg. Disk Sec/Read',
 '\PhysicalDisk(_Total)\Avg. Disk Sec/Write',
 '\PhysicalDisk(_Total)\Avg. Disk Queue Length'
)

Add the counters to the collector:3.

 $SRV1Collector.PerformanceCounters = $Counters

Create a schedule—start tomorrow morning at 07:00:4.

 $StartDate = Get-Date -Day $((Get-Date).Day+1) `
 -Hour 7 -Minute 0 -Second 0
 $Schedule = $SRV1CS.Schedules.CreateSchedule()
 $Schedule.Days = 127
 $Schedule.StartDate = $StartDate
 $Schedule.StartTime = $StartDate

Managing Performance

[244]

Create, add, and start the collector set:5.

 Try
 {
 $SRV1CS.Schedules.Add($Schedule)
 $SRV1CS.DataCollectors.Add($SRV1Collector)
 $SRV1CS.Commit("$Name" , $null , 0x0003) | Out-Null
 $SRV1CS.Start($false)
 }
 Catch [Exception]
 {
 Write-Host "Exception Caught: " $_.Exception
 -ForegroundColor Red
 return
 }

Once you have created the collector set, you may want to totally remove it, you6.
can do so as follows:

 $DCStRemote = New-Object -COMObject PLA.DataCollectorSet
 $Name = 'SRV1 Collector Set'
 $DCstRemote.Query($Name,'LocalHost')
 $DCstRemote.Stop($true)
 $DCstRemote.Delete()

If you have not removed the collector set and it's stopped, you can easily restart7.
it:

 $DCStRemote = New-Object -COMObject PLA.DataCollectorSet
 $Name = 'SRV1 Collector Set'
 $DCstRemote.Query($Name,'LocalHost')
 $DCstRemote.Start($true)

How it works...
This recipe produces no output as you configure the collector set. In step 1, you begin by
creating the COM object PLA.DataCollectorSet. You then configure the display name,
the collection period, and details of where to store the performance data that the data
collection process collects. Then you create the data collector object and configure the
details of the output files generated by the data collection process.

Managing Performance

[245]

With step 1, you set the $SRV1Collector object's LogFileFormat property to 3. This file
format value specified an output file type of binary log (.blg). The advantage of this format
is that you can use it with Perfmon to graph the collected output. You have other options,
including:

Tab separated .tsv file
Comma separated .csv file

In step 2, you create an array of the names of the counters for which you want Windows to
collect counter samples. The collector set collects performance information, so the counter
paths you use do not need the machine name. The counter paths you specify here were the
ones you discover with Get-Cmdlet -List.

In step 3, you assign these counters to the data collector set. In the recipe, you used a simple
code-generated array of counter names. You could have stored the desired counters in a text
file (accessed by Get-Content).

In step 4, you create a schedule when Windows performs the requested data collection. In
this case, it starts at 07:00, and collects data for 127 days.

Finally, in step 5, you add the schedule to the job, add the new data collector to the OS, and
start the collection process. The performance data collection set is scheduled to run every
day. Starting it means Windows starts the collection process immediately and does not wait
until the next morning. After running this step, you can utilize the data collected.

Managing Performance

[246]

Using the .blg format, as this recipe does, once you stop the data collector, you can see the
results in Perfmon as follows:

Step 6 shows the actions that you need to take to remove this data collector. Note that you
need to stop the collector, if it's active, before removing it. If the collection is not currently
active, the STOP method will generate an error message, but the code does remove the
collector.

In step 7, you start a collector by creating the COM object, then querying for the
appropriate data collection set and once you find it, you can start it as shown.

There's more...
This recipe makes use of COM and a COM object (PLA.XXX). As a result, there is rather less
output to look at—as you run the recipe, you notice there is no output to the screen. You
can use your discovery skills to examine the COM objects.

Managing Performance

[247]

The performance collection process makes use, under the covers, of an XML to describe the
monitoring you wish to carry out. Fortunately, you do not have to edit the XML since the
statements in this recipe do what is necessary. You can take a look at the XML as you run
the steps in this recipe if you are interested.

There are different types of output files that you can configure, then you create a data
collector set. This recipe used the default format of binary log (the files have an extension
.blg). You can use the tab and comma separated value file formats, but if you do, those are
not directly usable by Perfmon as shown in this recipe. TSV files are, on the other hand,
useful as we demonstrate later in this chapter.

Reporting on performance data
In the first three recipes in this chapter, you have seen different ways to collect performance
information. In this recipe, you create a report on this gathered performance information
based on the CSV files output by the data collection process.

Getting ready
This recipe was written to use SRV1. As with any recipe, you can use any server in your
infrastructure, but you would need to adjust the details of all steps to reflect the changes
you are making. This recipe also used CSV files, as created by the PLA infrastructure. As
noted earlier, it is simple and straightforward to adjust the counter output file to be CSV.

Use the recipe Configuring and using Data Collector Sets, change the counter output file to
CSV and generate CSV output in the folder C:\PerfLogs\ADMIN.

How to do it...
Import the performance counters:1.

 $Folder = 'C:\PerfLogs\Admin'
 $File = Get-ChildItem -Path $Folder*.csv -Recurse

Import the performance counters:2.

 $Counters = Import-Csv -Path $File.FullName

Managing Performance

[248]

Fix the issue with the first row in the counters:3.

 $Counters[0] = $counters[1]

Next you calculate an overall average, minimum and maximum CPU times:4.

 $CN = '\\SRV1\Processor(_Total)\% Processor Time'
 $HT = @{
 Name = 'CPU'
 Expression = {[system.double] $_.$cn}
 }
 $Stats = $counters |
 Select-Object -Property *,$ht |
 Measure-Object -Property CPU `
 -Average -Minimum -Maximum

Add the 95th percent value of CPU:5.

 $CN = '\\srv1\Processor(_Total)\% Processor Time'
 $Row = [int]($Counters.Count * .95)
 $Cpu = ($counters.$CN | Sort-Object)
 $Cpu95 = $CPU[$Row]
 Add-Member -InputObject $stats -Name CPU95 `
 -MemberType NoteProperty -Value $cpu95

Combine the results into a single report:6.

 $Stats.Cpu95 = $Stats.Cpu95.tostring('n2')
 $Stats.Average = $Stats.Average.ToString('n2')
 $Stats.Maximum = $Stats.Maximum.ToString('n2')
 $Stats.Minimum = $Stats.Minimum.ToString('n2')
 $Stats | Format-Table -Property Property,Count, Maximum,
 Cpu95, Minimum

How it works...
In step 1, you get the details of the CSV file that contained the performance data with which
you create a simple report. You created this CSV file based on the configure and use Data
Collector Sets recipe, with the file type set to comma separated value, indicated by setting
the file type to 0 (zero).

In step 2, you import the CSV files into the $Counters variable (which becomes an array).
You may need to adjust step 1 and step 2 to use different folder names and to cater for
having multiple results files.

Managing Performance

[249]

A feature of using CSV files as we do here is that the first row in the returned counter
samples is not valid. The feature is that some values are not returned correctly, in particular,
the first row that was returned. This issue has been present in Windows for some
considerable time but is simple to work around. As you can see in step 3, you just copy the
second row of the results over the first. Without this, the later steps may not work due to
missing data.

With step 4, you calculate the average, minimum, and maximum CPU usage and then store
that information in the $Stats variable.

In step 5, you work out an approximation of the 95th percentile CPU time. This is a good
number to track, as it is a measure of how high, in general, the CPU load is on the
computers that you are monitoring. It eliminates the very occasional, but high CPU using
events. You calculate this by first counting the total number of rows returned. Then you get
an index value which you calculate as 0.95 times the number of rows. You then use this
index to get that row from a list of sorted CPU values. So with 100 rows of data returned,
this calculation would return row 95. Assuming you have an adequate number of samples,
this approach gets you a row that is a good approximation of the 95th percentile CPU time
measurement. At the end of this step, you add the value as a note property (CPU95).

In the last step, step 6, you re-format three counters to display only CPU usage to just two
decimal points, then you output this as a nice table, which looks like this:

There's more...
In this recipe, we reported on just one counter, the total CPU time on a system. You can
always change the data collection process to include more counters (for example,
networking counters, storage counters, and so on). Then, you can adjust this recipe to report
on these additional values. And of course, you can expand the basics of this recipe to report
on multiple systems in one report. By doing both of these, you can generate useful
performance reports that can provide input for capacity planning.

Managing Performance

[250]

Generating performance monitoring graph
In the previous recipe, you created a simple text based report which you could expand to
cover not just the CPU on the SRV1 server, but more counters across multiple machines. But
they would be pure text. You could use performance monitor and the binary log files to
create Perfmon graphs you could cut/paste into a report.

In this recipe, you use the data generated using the data collector mechanism to draw a
graph using classes from the Windows.Forms.DataVisualization namespace.

Getting ready
Like the Reporting on performance data recipe, this recipe uses CSV files from the data
collection process noted earlier.

How to do it...
Load the System.Windows.Forms and1.
System.Windows.Forms.DataVisulization assemblies:

 Add-Type -AssemblyName System.Windows.Forms
 Add-Type -AssemblyName System.Windows.Forms.DataVisualization

Import the CSV data from earlier, and fix row 0:2.

 $CSVFile = Get-childitem -Path C:\PerfLogs\Admin*.csv `
 -Recurse
 $Counters = Import-Csv $CSVFile
 $Counters[0] = $Counters[1]

Create a chart object:3.

 $CpuChart = New-Object -TypeName `
 System.Windows.Forms.DataVisualization.Charting.Chart

Define the chart dimensions:4.

 $CpuChart.Width = 600
 $CpuChart.Height = 400
 $CpuChart.Titles.Add('SRV1 CPU Utilization') | Out-Null

Managing Performance

[251]

Create and define the chart area:5.

 $ChartArea = New-Object -TypeName `
 System.Windows.Forms.DataVisualization.Charting.ChartArea
 $ChartArea.Name = 'SRV1 CPU Usage'
 $ChartArea.AxisY.Title = '% CPU Usage'
 $CpuChart.ChartAreas.Add($ChartArea)

Identify the date/time column to get its name:6.

 $Name = ($Counters[0] | Get-Member |
 Where-Object MemberType -EQ 'NoteProperty')[0].Name

Add the data points to the chart:7.

 $CpuChart.Series.Add('CPUPerc') | Out-Null
 $CpuChart.Series["CPUPerc"].ChartType = 'Line'
 $Counters | ForEach-Object{
 $CPUChart.Series["CpuPerc"].Points.AddXY($_.$Name,
 $_."\\SRV1\Processor(_Total)\% Processor Time") |
 Out-Null
 }

Save and display the chart image using MSPaint:8.

 $CPUChart.SaveImage('C:\Perflogs\SRV1_CpuUtil.Png','png')
 MSPaint.Exe C:\Perflogs\SRV1\CpuUtil.png

How it works...
This recipe utilizes features in the .NET Framework's
System.Forms.DataVisualization namespace. PowerShell does not load this
namespace by default. For this reason, in step 1, you explicitly add the namespace, and its
parent namespace, System.Windows.Forms.

In step 2, you use Import-CSV to import the data file. You may need to adjust this step
depending on what collector set output files you are using.

In step 3, you create a new chart object using New-Object. As there are no native cmdlets to
assist in creating a chart, you need to dip down and utilize the .NET objects directly. Our
starting point is the chart.

Managing Performance

[252]

In step 4, you set the chart's height and width, and use the Chart's Add method to add the
title. This method calls outputs the charts Titles object which is not of much use in
production so just pipe it to Out-Null. As you work with this recipe, test this step with full
output to gain a deeper understanding of the objects involved in data charting.

In step 5, you create the chart area. A chart area is a control that is added to a chart and
contains, in this case, for example, the CPU graph for SRV1.

When you turn a counter set captured by PLA into a CSV, PowerShell converts each
counter sample into a custom object, where the first field is the time/date of the sample. So
in step 6, you work out that the name of that first note property.

In step 7, you add a new data series to the chart and define it as a line graph. Then you loop
through each counter and add an XY point onto the graph (the current time and the CPU
use). Once all the counter values are read and graphed, in step 8, you save the chart to a
Portable Network Graphic (PNG) file and view it using Paint. The resulting graph looks
like this:

Managing Performance

[253]

There's more...
This recipe showed you how to create a simple report graphing one counter, CPU
utilization, across several hours of monitoring. You could add a second series, for example,
memory pages per second, and so on. The result could be one or more customized graphs
that are similar to what you see in Performance Monitor. You can use this recipe to
automate the creation of the counter samples and creation of customized graphs. You could
even create a scheduled task that created the graph or graphs, then email the resulting
graph or graphs.

Creating a system diagnostics report
The PLA subsystem that you have been working with in this chapter has an additional kind
of report that the PLA and PowerShell can generate, a System Diagnostic report. This report
is simple to create and makes use of some of the approaches used in this chapter.

Getting ready
You run this recipe on server SRV1.

How to do it...
Start the data collector on the local system:1.

 $PerfReportName="System\System Diagnostics"
 $DataSet = New-Object -ComObject Pla.DataCollectorSet
 $DataSet.Query($PerfReportName,$null)
 $DataSet.Start($true)

Wait for the data collector to finish:2.

 Start-Sleep -Seconds $Dataset.Duration

Get the report and view it:3.

 $Dataset.Query($PerfReportName,$null)
 $PerfReport = $Dataset.LatestOutputLocation + "\Report.html"
 & $PerfReport

Managing Performance

[254]

How it works...
In step 1, you create a PLA.DataCollectorSet object and use it to query then start the
Systems Diagnostics report. This report comes built into Windows, but you update it (or
create customized reports if you so desire). This step is a part of the patterns that you adopt
when using PLA.DataCollectorSet objects. You instantiate the object, then use the Query
method to return details of this report.

In step 2, you sleep for the length of time it should take Windows to create the report, which
by default is 600 seconds (10 minutes). Depending on how you are adapting this recipe, you
may wish to update the time value.

Finally, in step 3, you re-query the report, which should have finished. After the query, you
retrieve the filename that PLA used to store the report. You then execute this report
(Report.HTML) to view the performance report. The report looks like this:

Managing Performance

[255]

There's more...
In step 3, you just execute the report which brings the HTML file up into your browser. As
an alternative to viewing it, you could turn this recipe into a script and run the script using
a scheduled task. The scheduled task script could then create the report and mail it to you.
You could also improve on this, for example, storing the reports to a central location and
just email the location to other IT admins. Or possibly only email the report if there is an
issue. Alternatively, you could send an everything is just fine email and let the mail
recipients know where they can get the report should they need or want to examine it in
more detail.

7
Troubleshooting Windows

Server 2016
In this chapter, we cover the following recipes:

Checking network connectivity
Using troubleshooting packs
Using best practice analyzer
Managing Windows event logs
Forwarding event logs

Introduction
Troubleshooting is the art and science of discovering the cause of some problem in your
organization's computing estate and providing a solution that overcomes the problem.
Troubleshooting encompasses a variety of tasks.

One common issue to begin this chapter with is troubleshooting network connectivity. With
applications and services increasingly being networked and with the proliferation of
wireless devices, network connectivity can be a problem in many organizations. In the first
recipe, you look at some commands that can help you to troubleshoot this area.

Microsoft has built a troubleshooting framework into both Windows 10 and into Server
2016. These troubleshoots enable common problems to be resolved by an IT pro just
running the troubleshooter. And for the really adventurous ones, you could even build
your own troubleshooter, but such details are outside the scope of this book.

Troubleshooting Windows Server 2016

[257]

Troubleshooting is not just what you do when an issue arises. It also involves being
proactive to avoid small issues becoming major problems. Often it also means ensuring that
your systems and services are setup by way of accepted best practice.

The Exchange and Office Communications Server (now known as Skype For Business) teams
both produced best practice analyzer (BPA) tools. These were applications that examined
your Exchange or OCS (Skype for Business) environment and showed you places where
you have not configured your application base on best practice. With Windows Server,
many of the Windows features have their own BPA tools built around a common
framework and are powered by PowerShell. The BPA tools can help you to ensure that the
features installed on your Windows servers are operating according to best practice.

A great feature of Windows and Windows applications, roles, and services is the sheer
amount of information logged. Windows NT (which is the basis for both Windows 10 and
Windows Server 2016) initially came with a number of base event logs. In Windows Vista,
Microsoft extended the amount of logging with the addition of application and service logs.
These logs contain a wealth of additional information and along with the base logs can be
invaluable in terms of both troubleshooting after the fact, and being proactive.

It is certainly the case that getting information out of these logs is a bit like looking for a
needle in a hay stack. PowerShell has some great features for helping you to find the
information you need quickly and easily. Learning how to get event log information from
the logs takes time. To simplify the managing events across multiple hosts, you can also
forward event log entries to a central host.

Checking network connectivity
One of the first troubleshooting tasks is checking the network connectivity between a client
(or server) computer and another server computer. The client and server computers can be
on the same physical subnet, or thousands of miles away and separated by routers. In order
to provide a successful service to a client, your infrastructure needs to enable clients to
connect to.

Traditionally, you might have used tools including Ping, Tracert, and Pathping. You can
continue to use these Windows console applications within PowerShell—they work the way
they have always worked. You may find even more useful, two newer cmdlets available
with Windows Server 2016 which have additional useful features. The cmdlets also return
output as objects which makes it easier to utilize the cmdlets on a PowerShell script.

Troubleshooting Windows Server 2016

[258]

This recipe uses one console command (Ping.exe, or just Ping in PowerShell) and two
cmdlets, Test-Connection and Test-NetConnection. The Test-Connection is an
older cmdlet and part of the Microsoft.PowerShell.Management module, while Test-
NetConnection is a bit newer and is contained in the NetTCPIP module.

Getting ready
In this recipe, you check for connectivity from a server, SRV1, to its domain controllers (DC1
and DC2). The two DCs are domain controllers in the Reskit.Org domain, and SRV1 is a
domain joined server. All the systems are running Server 2016.

How to do it...
Here is how you check the basic network connectivity:

Use Ping to test connectivity from CL1 to DC1:1.

 Ping DC1

Use Test-NetConnnection to test connection to DC1:2.

 Test-Connection -ComputerName DC1

Test with a simple true/false return:3.

 Test-Connection -ComputerName DC1 -Quiet

Test multiple systems at once:4.

 Test-Connection -ComputerName 'DC1','DC2','SRV1' -Count 1

Test connectivity to DC1 for SMB traffic:5.

 Test-NetConnection -ComputerName DC1 -CommonTCPPort SMB

Get a detailed connectivity check, using DC1 with HTTP:6.

 Test-NetConnection -ComputerName DC1 -CommonTCPPort HTTP `
 -InformationLevel Detailed

Troubleshooting Windows Server 2016

[259]

Check connectivity to a port (LDAP on DC1):7.

 Test-NetConnection -ComputerName DC1 -Port 445

Check connectivity to a system that is up and running but for a port that does not8.
exist or is not open:

 Test-NetConnection -ComputerName DC1 -PORT 9999

Finally, test for a system that does not exist:9.

 Test-NetConnection -ComputerName DC99 -PORT 9999

How it works...
In step 1, you use the familiar Windows console command Ping (Ping.exe), Windows
console command to check connectivity from CL1 to DC1. The Ping command sends four
Internet Control Message Protocol (ICMP) echo request messages to the remote server,
DC1 which should respond. Assuming connectivity is possible and that firewalls are not
getting in the way, you should get four responses that show how long the Ping took and
how many hops were involved. The output looks like this:

Troubleshooting Windows Server 2016

[260]

In step 2, you use the Test-Connection cmdlet to ping DC1 just using a cmdlet. The cmdlet
itself issues the necessary ICMP messages but creates a nice object to return the results. The
output looks like this:

A useful feature of Test-Connection is the -Quiet parameter. This tells the cmdlet to test
the connection but only return a Boolean response—true if the cmdlet could connect to the
remote system or false if the connection was not successful. You see the results in step 3 like
this:

Another nice feature of Test-Connection is it allows you to test multiple connections in a
single call to the cmdlet. The -ComputerName property accepts either a single computer
name as you seen in the previous step, or as you see in step 4, multiple computers, with
output that looks like this:

In step 5, you use the Test-NetConnection to not only test simple connectivity, but to test
that a particular application is active and accepting network connections via some port. In
this case, the port is a well known one (SMB or port 445).

Troubleshooting Windows Server 2016

[261]

The output of this step looks like this:

In step 6, you use Test-NetConection along with its -Detailed switch to get a bit more
information about the tested connection. In this step which you run on SRV1, you test the
connection from SRV1 to the HTTP port (port 80) on DC1. Assuming you have DC1 up and
running and you have the Web-Server feature loaded, you see an output like this:

In step 7, you check a port using the port number. In this case, you check for SMB
connectivity to DC1, with an output like this:

Troubleshooting Windows Server 2016

[262]

In step 8, you see the results of a port that does not exist on DC1 (port 999), with output like
this:

In step 9, you see the results of testing for a connection to a host that is online, but using a
port that is not open on the host. Output looks like this:

There's more...
In step 1, you use an older tool, Ping. In the rest of the recipe, you use two cmdlets which
have some features that are not available with Ping. One key feature is that both cmdlet
return structured objects and not raw string blobs.

With step 4, you see the ability of Test-Connection to test multiple systems at once. This
may have advantages if you are testing a large number of systems as part of a regular
report.

In step 5, you tested for connectivity from SRV1 to DC1 over SMB, using port 445. In the
earlier versions of windows, SMB transport used NetBIOS over TCP and made use of Ports
137, 138, and 139. The cmdlet checks over port 445 for SMB.

Troubleshooting Windows Server 2016

[263]

In step 8 and step 9, you use the Test-NetConnection cmdlet to observe the results of a
port (on a working server) not available and on a non-working server. In step 8, you see the
impact of testing a working server with a particular port not open, and in step 9 a computer
that is not online. Because a nice object is returned from the two Test- cmdlets, you can
easily issue the cmdlets and then test the result whereas with Ping, you could check the
results but it would involve string parsing. All in all, Ping is better and faster than the
command line, but less easy to manipulate programmatically.

Using troubleshooting packs
Windows includes a number of troubleshooting packs. These are tools that you can use to
diagnose and resolve common errors.

Getting ready
You run this recipe on SRV1, a domain joined server in the Reskit.Org domain.

How to do it...
In this recipe, you see how to use the troubleshooting packs:

Get troubleshooting packs:1.

 $TSPackfolders = Get-ChildItem `
 -Path C:\Windows\diagnostics\system -Directory
 $TSPacks = Foreach ($TSPack in $TSPackfolders) {
 Get-TroubleshootingPack -Path $TSPack.FullName}

Display the packs:2.

 $TSPacks | Format-Table -Property Name, Version,
 MinimumVersion, Description `
 -Wrap -Autosize

Troubleshooting Windows Server 2016

[264]

Get a troubleshooting pack for Windows Update:3.

 $TsPack = $TSPacks | Where-Object `
 id -eq 'WindowsUpdateDiagnostic'

Look at the problems this troubleshooting pack addresses:4.

 $TSPack.RootCauses

Look at the solutions to these issues:5.

 $TSPack.RootCauses.Resolutions

Run this troubleshooting pack (answering questions from the command line):6.

 $TsPack | Invoke-TroubleshootingPack

Use the Get-TroubleshootingPack cmdlet to create an AnswerFile:7.

 Get-TroubleshootingPack -Path $TSPack.path `
 -AnswerFile c:\Answers.xml

Display the AnswerFile:8.

 Get-Content -Path C:\Answers.xml

Run WU pack using AnswerFile:9.

 $TsPack | Invoke-TroubleshootingPack `
 -AnswerFile C:\Answers.xml `
 -Unattend

How it works...
In step 1, you get a list of the troubleshooting packs available on SRV1. and store that in the
$TSPacks variable. There is no output from this step.

Troubleshooting Windows Server 2016

[265]

In step 2, you display the $TSPacks variable to display the troubleshooting packs available,
with output like this:

In step 3, you search the list of troubleshooting packs available on SRV1 and select the
Windows Update Diagnostic troubleshooting pack, which produces no output.

With step 4 and step 5, you examine the root cause conditions the troubleshooting pack
checks for and the details of what the troubleshooting pack does to resolve each of these
root cause conditions. The first issue involves the default Windows Update data locations
are corrupt or invalid. One solution is to repair the default locations by changing these
locations back to Windows default settings.

The list of root cause issues, which you produced in step 4 looks like this:

The solutions provided by the troubleshooting pack to resolve these issues, which you
created in step 5, looks like this:

Troubleshooting Windows Server 2016

[266]

In step 6, you run the Windows Update Diagnostic troubleshooting pack interactively. The
initial output looks like this:

To just check for a single issue, say the first one to repair a Windows Update Database
Corruption, just enter 1 and return. When you do this, you first find the results, like this:

Troubleshooting Windows Server 2016

[267]

Finally enter X to complete the troubleshooter which produces no additional output.

In step 7, you use the Get-Troubleshootingpack to create an AnswerFile. The cmdlet is
meant to ask for the same answers to the same questions you saw in step 6. Instead of
performing the resolution, the cmdlet then creates an AnswerFile.

In step 8, you view the output from step 7, which looks like this:

Finally, in step 9, you run this troubleshooter using the AnswerFile in an unattended
mode. There is no output from this step.

There's more...
With Get-TroubleshootingPack, the cmdlet relies on you entering a file system path.
The cmdlet does not know the default address. This cmdlet looks in the path supplied and
returns a DiagPack object. You then pass that object to Invoke-TroubleshootingPack to
run the pack.

In step 7 through step 9, the recipe creates an AnswerFile then uses it. However, at the time
of writing, some of the troubleshooting pack do not produce a correct AnswerFiles. When
you generate the AnswerFile, you may be offered different questions, and the resultant
AnswerFile may not be totally complete. This is a known issue and awaits a fix. For now,
at least, the best idea is to run the troubleshooting pack interactively.

Use best practice analyzer
In IT, the term best practices refers to guidelines setting out the best way to configure a
server or application as defined in subject matter experts (such as the application's
development and support teams). Some best practice recommendations may not apply or
be relevant. Following best practice can both solve existing issues and avoid future ones,
but a bit of common sense is needed to ensure you are following the advice that is relevant
for you and your organization.

Troubleshooting Windows Server 2016

[268]

A best practice model is a set of specific guidelines. A BPA is an automated tool that
analyzes your infrastructure and points out areas where it the environment is not compliant
with the best practice model.

Windows provides a built in BPA framework, complete with PowerShell support for
managing the BPA process. Windows and applications come with a number of BPA models.
The PowerShell cmdlets let you find the BPA models, invoke them, and then view the
results.

Since not all BPA model guidelines are relevant for all situations, the BPA feature also lets
you ignore specific recommendations that are not relevant for you.

Getting ready
This recipe runs on server SRV1, an application server you use in several of the recipes in
this book, plus the DC1 domain controller.

How to do it...
Get all BPA models on SRV1:1.

 Get-BpaModel | Format-Table -Property Name, Id

Invoke BPA model for file services:2.

 Invoke-BpaModel -ModelId Microsoft/Windows/FileServices

Get BPA results for this scan:3.

 $Results = Get-BpaResult `
 -ModelId Microsoft/Windows/FileServices

Display how many tests/results in the BPA model:4.

 $Results.count

Discover how many errors were found:5.

 ($Results | Where-Object Severity -eq 'Error').count

Troubleshooting Windows Server 2016

[269]

Discover how many warnings were found:6.

 $Warnings = $Results | Where-Object Severity -eq 'Warning'
 $Warnings.count

Examine the first three warnings:7.

 $Warnings | Select-Object -First 3 |
 Format-List -Property Category, Problem, Impact, Resolution

Use BPA remotely—check what models exist on DC1:8.

 Invoke-Command -ComputerName DC1 -ScriptBlock {Get-BpaModel} |
 Format-Table -Property Name, Id

Run BPA Analyzer for AD on DC1:9.

 $SB = {Invoke-BpaModel -ModelId `
 Microsoft/Windows/DirectoryServices}
 Invoke-Command -ComputerName DC1 -ScriptBlock $SB

Get the BPA results for this scan from DC1:10.

 $SB = {Get-BpaResult -ModelId `
 Microsoft/Windows/DirectoryServices}
 $RRESULTS = Invoke-Command -ComputerName DC1 -ScriptBlock $SB

How many checks were made and results found:11.

 $RResults.count
 $RResults | Group-Object -Property SEVERITY |
 Format-Table -Property Name, Count

Look at an error:12.

 $RResults | Where-Object Severity -EQ 'Error' |
 Format-List -Property Category,Problem,Impact,Resolution

Troubleshooting Windows Server 2016

[270]

How it works...
In step 1, you retrieve and display the BPA models on SRV1 with output that looks like this:

In step 2, you invoke a specific model, the BPA model for file services. The output from this
step looks like this:

In step 3, you get the BPA results for the scan that you ran in step 2, and you store this in the
$Results variable. There is no output from this step.

Troubleshooting Windows Server 2016

[271]

In step 4, you display the number or checks carried out and the number of results returned,
with output like this:

With step 6, you view how many errors were found—the output looks like this:

There were eleven warnings returned as you can see in the previous screen capture. In step
7, you display the first three warnings, with output like this:

In step 8 through step 12, you look at the BPA models then run the DirectoryServices
BPA model on your domain controller, DC1, remotely. In step 8, you discover the models
that exist on DC1 and the output from this step looks like this:

Troubleshooting Windows Server 2016

[272]

In step 9, you run DirectoryServices BPA model remotely which creates output that
looks like this:

In step 10, you retrieve the results and store them in the variable $RResults for later use.
There is no output from this step.

In step 11, you look at the number of results and you show how many of each type of result
was returned from the BPA model invocation. The output looks like this:

Troubleshooting Windows Server 2016

[273]

Finally, in step 12, you look at one specific error returned with output that looks like this:

There's more...
In step 1, you display the BPA models which exist on SRV1. And in step 8, you view,
remotely, the BPA models on DC1. In both cases, you may see different models available
depending on which features you have added to each machine. The domain controller DC1
has a BPA model for AD, while SRV1 does not.

In step 2 through step 7, you are carrying out a BPA scan against the file server feature on
SRV1. In this model, there are 116 individual checks carried out by the model. Running this
model on SRV1, you can see that there were no errors and eleven warnings. The first three
warnings (shown in step 7) show some of the issues the BPA model found. Warning 1 shows
that you can improve the performance of the file server feature by eliminating short name
support. The second warning suggests setting Srv.sys to start on demand while the final
warning suggests a configuration change that can lead to improved performance.

Running the AD BPA model on DC1 has 43 configuration checks which result in one error
and 7 warnings. The error, which you can see in step 12, is caused by the forest root DC,
which is DC1, it has no external time source. Since DC1 is the time master for the
Reskit.org domain, you need to ensure the time on DC1 is synchronized with an external
source otherwise domain joined hosts could experience time drift that could lead to other
issues. The BPA model results set out clearly the problem, it's impact and a good and
focused solution.

Troubleshooting Windows Server 2016

[274]

Managing event logs
Windows computers maintain a set of event logs that document events that occur on a
given machine. Any time an event occurs, the application or service can log events which
can then be used to help in the debugging process.

In Windows, there are two types of event logs: Windows logs and application and services
logs. Windows logs began with Windows NT 3.1 and continue in Windows Server 2016 and
are important components in troubleshooting and system monitoring.

Windows Vista added a new category of logs, application and services logs. These logs
contain events that are within a single application, service, or other Windows component.
Windows comes by default with a set of application and service logs—adding components
such as new Windows features or roles often results in additional application and service
logs.

These logs give you a great picture of what your system is actually doing. Additionally, you
can also add new event logs and enable scripts to log events which occur while the script is
running.

PowerShell provides you with several useful cmdlets to help you comb the event log
looking for key events. The Get-EventLog enables you to get details of the logs that exist
as well as retrieving log events from the Windows logs. With Get-WinEvent, you can
examine both the classic Windows logs and the new application and services logs. You use
both these cmdlets in this recipe.

Getting ready
This recipe uses two Windows Server 2016 systems. You run the recipe on a domain
attached server, SRV1 and the Reskit.Org domain's domain controller (DC1). SRV1 is used
in a number of recipes in this book as is the DC1 domain controller. You run this recipe on
SRV1.

Depending on which recipes you have attempted using SRV1 and DC1,
you may see different results to those shown in this recipe. You may see
more or less event logs and more or less events.

Troubleshooting Windows Server 2016

[275]

How to do it...
Get any Windows event logs which exist on SRV1:1.

 Get-EventLog -LogName *

Get Windows event logs remotely from DC1:2.

 Get-EventLog -LogName * -ComputerName DC1

Clear application log on DC1:3.

 Clear-EventLog -LogName Application -ComputerName DC1

Examine the types of events on SRV1:4.

 Get-EventLog -LogName application |
 Group-Object -property EntryType |
 Format-Table -Property Name, Count

Examine which area created the events in the Windows System log:5.

 Get-EventLog -LogName System |
 Group-Object -Property Source |
 Sort-Object -Property Count -Descending |
 Select-Object -First 10 |
 Format-Table -Property name, count

Examine all local event logs using Get-WinEvent:6.

 $LocEventLogs = Get-WinEvent -ListLog *
 $LocEventLogs.count
 $LocEventLogs |
 Sort-Object -Property RecordCount -Descending |
 Select-Object -First 10

Troubleshooting Windows Server 2016

[276]

Examine all of the event logs on DC1:7.

 $RemEventLogs = Get-WinEvent -ListLog * -ComputerName DC1
 $RemEventLogs.count
 $RemEventLogs |
 Sort-Object -Property RecordCount -Descending |
 Select-Object -First 10

Look at Windows Update application and services log and discover which8.
updates have been found and downloaded:

 $Updates = Get-WinEvent `
 -LogName 'Microsoft-Windows-WindowsUpdateClient/Operational' |
 Where-Object ID -EQ 41
 $out = Foreach ($Update in $Updates) {
 $ht = @{}
 $ht.Time = $Update.TimeCreated
 $ht.update = ($Update.Properties | Select -First 1).Value
 New-Object -TypeName PSObject -Property $HT }
 $out |
 Sort-Object -Property TimeCreated |
 Format-Table -Wrap

How it works...
In step 1 which you run on SRV1, you view the Windows logs existing on SRV1 by executing
the Get-EventLog cmdlet. Depending on which features and applications you have added
to SRV1, you should see something looking like this:

Troubleshooting Windows Server 2016

[277]

In step 2, you retrieve the Windows events logs which exist on DC1, which looks like this:

In step 3, you clear a remote event log—in this case the application log on DC1. There is no
output from this step.

In step 4, you examine the types of events in the application event log on SRV1. There are a
large number of information type events, most of which you can usually simply ignore.
With Windows Server 2016, some events have an entry type of 0, a value that is not
documented. The output looks like this:

In step 5, you investigate the source of the events in the Windows System event log. For
brevity, the recipe just examines the more common sources, with output that looks like this:

Troubleshooting Windows Server 2016

[278]

With step 6, you use Get-WinEvent to first get basic details of each of the existing logs
(including both the classic Windows logs and the applications and services logs). Then, you
display the total number of logs, as well as top 10 busiest event logs, with output like this:

Troubleshooting Windows Server 2016

[279]

In step 7, you repeat these commands to discover how many total event logs exist on DC1
and the busiest ten logs, with output like this:

Finally, in step, you investigate the event entries in the Windows Update Operational log.
In particular, you look at the events with an event ID of 41—these events are logged
whenever Windows Update discovers and downloads an update that is to be applied (once
the update is complete). Depending on how you have SRV1 setup, you may see output for
this step similar to the following:

Troubleshooting Windows Server 2016

[280]

There's more...
In step 1 and step 2, you examine the Windows event logs that exist on two systems (SRV1
and DC1). As you can see, the logs available differ—on DC1, you see the Active
Directory Web Services log which does not exist on SRV1.

In step 3, you clear the application log on DC1. As a best practice for event logs, you should
only clear a log once you have copied the log elsewhere for safe keeping. Naturally, mileage
varies on this point since the vast majority of event logs entries are not of very much use in
day to day operations.

In step 4, you seen the different classifications of events, including one with a name of 0. In
this case, the property containing the event log entry type is based on an enum, and this
enum was not updated so PowerShell is unable to display the entry name for this event log
entry type.

In step 6 and step 7, you examine the service and application logs that exist on SRV1. These
steps demonstrate how additional features or applications can result in additional event
logs.

Step 8 shows you how to dive into a specific event in a specific event log. In this case, you
examine the Software Update service's operational log to discover events with an event ID
of 41. In general, when retrieving information from your event logs, you need to know
which log and which event ID to look for.

Forward event logs to a central server
By default, every Windows computer in your organization keeps its own local event logs.
You examined these logs in the Searching event logs for specific events recipe. The logs on
SRV1, for example, are separate from the logs on DC1. In larger environments, analyzing
event logs across large number of servers is complex. With 100 servers, you would need to
run a script on each of those 100 servers, which could become quite complex. Having each
server forward events to a central computer can simplify this task greatly.

Also consider what happens if a server is compromised. Hackers often clear event logs after
doing naughty things on a hacked machine. This helps to cover the hacker's tracks. A best
security practice is to get the event details sent to a central and hopefully more secure server
as quickly as possible. With Windows, you can use using event forwarding to achieve this.

Troubleshooting Windows Server 2016

[281]

Forwarding event logs to a central server allows you to centralize your log file analysis and
reporting and also to reduce the risk of a malign actor damaging a server but covering his
tracks and hoping to avoid detection.

Getting ready
In this recipe which you run on DC1, you forward failed logon events from SRV1 to the
domain controller, DC1. This is a simple and convenient configuration for testing using
private virtual machines. In production, you should consider forwarding to a separate host.

This recipe uses two hosts, DC1 (a domain controller in the reskit.org domain) and SRV1 (a
domain joined server in the same domain). You run the recipe on DC1.

How to do it...
This recipe shows you how to forward events.

Configure event collection on each server—first on DC1 (locally) then remotely to1.
SRV1:

 wecutil qc /quiet | Out-Null
 Invoke-Command -ComputerName SRV1 `
 -ScriptBlock {wecutil qc /quiet} | Out-Null

Create the collector security group, add DC1:2.

 $ECGName='Event Collector Group'
 New-ADGroup -Name $ECGName -GroupScope Global `
 -Path 'OU=IT,DC=Reskit,DC=Org'
 Add-ADGroupMember -Identity $ECGName -Members'DC1$'

Display membership of this new group:3.

 Get-ADGroupMember -Identity $ECGName

Create a new GPO to configure event collection:4.

 $GPOName = 'Event Collection'
 $ECGName = 'Event Collector Group'
 $gpo = New-GPO -Name $GPOName
 $link = New-GPLink -Name $GPOName `
 -Target "DC=Reskit,DC=Org"
 $p1 = Set-GPPermission -Name $GPOName `

Troubleshooting Windows Server 2016

[282]

 -TargetName "$ECGName" `
 -TargetType Group `
 -PermissionLevel GpoApply
 $p2 = Set-GPPermission -Name $GPOName `
 -TargetName 'Authenticated Users' `
 -TargetType Group `
 -PermissionLevel None

Set GPO permissions:5.

 Set-GPPermission -Name $GPOName `
 -TargetName 'Authenticated Users' `
 -TargetType Group `
 -PermissionLevel None

Apply the settings to the new GPO object:6.

 $WinRMKey=
 'HKLM\Software\Policies\Microsoft\Windows\WinRM\Service'
 Set-GPRegistryValue -Name $GPOName -Key $WinRMKey `
 -ValueName 'AllowAutoConfig'
 -Type DWORD -Value 1 |
 Out-Null
 Set-GPRegistryValue -Name $GPOName -Key $WinRMKey
 -ValueName "IPv4Filter" -Type STRING `
 -Value "*" |
 Out-Null
 Set-GPRegistryValue -Name $GPOName -Key $WinRMKey `
 -ValueName "IPv6Filter" `
 -Type STRING -Value "*" |
 Out-Null

Create XML for the subscription, and save it to a file:7.

 $xmlfile = @'
 <Subscription xmlns="http://schemas.microsoft.com/2006/03/
 windows/events/subscription">
 <SubscriptionId>FailedLogins</SubscriptionId>
 <SubscriptionType>SourceInitiated</SubscriptionType>
 <Description>Source Initiated Subscription</Description>
 <Enabled>true</Enabled>
 <Uri>http://schemas.microsoft.com/wbem/
 wsman/1/windows/EventLog</Uri>
 <ConfigurationMode>Custom</ConfigurationMode>
 <Delivery Mode="Push">
 <Batching>
 <MaxItems>1</MaxItems>
 <MaxLatencyTime>1000</MaxLatencyTime>

Troubleshooting Windows Server 2016

[283]

 </Batching>
 <PushSettings>
 <Heartbeat Interval="60000"/>
 </PushSettings>
 </Delivery>
 <Expires>2018-01-01T00:00:00.000Z</Expires>
 <Query>
 <![CDATA[
 <QueryList>
 <Query Path="Security">
 <Select>Event[System/EventID='4625']</Select>
 </Query>
 </QueryList>]]>
 </Query>
 <ReadExistingEvents>true</ReadExistingEvents>
 <TransportName>http</TransportName>
 <ContentFormat>RenderedText</ContentFormat>
 <Locale Language="en-US"/>
 <LogFile>ForwardedEvents</LogFile>
 <AllowedSourceNonDomainComputers>
 </AllowedSourceNonDomainComputers>
 <AllowedSourceDomainComputers>O:NSG:NSD:(A;;GA;;;DC)(A;;GA;;;NS)
 </AllowedSourceDomainComputers>
 </Subscription>
 '@
 $xmlfile | Out-File -FilePath C:\Event.xml

Create a subscription on DC1 for this event:8.

 wecutil cs Event.xml

Create the source security group:9.

 New-ADGroup -Name 'Event Source' -GroupScope Global
 Add-ADGroupMember -Identity "Event Source" -Members 'SRV1$'

Create the GPO for the event source systems:10.

 New-GPO -Name 'Event Source'
 New-GPLink -Name 'Event Source' `
 -Target 'DC=Reskit,DC=Org'
 Set-GPPermission -Name 'Event Source' `
 -TargetName 'Event Source' `
 -TargetType Group `
 -PermissionLevel GpoApply
 Set-GPPermission -Name 'Event Source' `
 -TargetName 'Authenticated Users'
 -TargetType Group `

Troubleshooting Windows Server 2016

[284]

 -PermissionLevel None

Apply the settings for the source GPO to point to DC1:11.

 $EventKey='HKLM\Software\Policies\Microsoft\
 Windows\EventLog\EventForwarding\SubscriptionManager'
 $TargetAddress=
 'Server=http://DC1.reskit.org:5985/wsman/SubscriptionManager/WEC'
 Set-GPRegistryValue -Name 'Event Source; -Key $EventKey `
 -ValueName '1' `
 -Type STRING `
 -Value $TargetAddress

Restart SRV1:12.

 Restart-Computer -ComputerName SRV1 `
 -Wait -For PowerShell `
 -Force

Once SRV1 has rebooted, attempt to login using incorrect credentials.13.
View the result of invalid logins:14.

 $badlogins = Get-WinEvent -LogName ForwardedEvents
 Foreach ($badlogin in $badlogins)
 {
 $obj = [Ordered] @{}
 $obj.time = $badlogin.TimeCreated
 $obj.logon = ($badlogin |
 Select-Object -ExpandProperty properties).value |
 Select-Object -Skip 5 -First 1
 New-Object -TypeName PSobject -Property $obj
 }

How it works...
In step 1, you enable the Windows event collector on both DC1 and SRV1. In step 2, You
create a new global group, Event Collection, which defines the event collector
computer—in this case DC1. There is no output from these two steps.

Troubleshooting Windows Server 2016

[285]

In step 3, you use the Get-ADGroupMember cmdlet to confirm the membership if the Event
Collector global group. The output looks like this:

In step 4, you create a new GPO, Event Collection to configure event collection. There is
no output from this step. With step 5, you set permissions on the GPO with output like this:

In step 6, you apply detailed settings on the Event Collection GPO which produces no
output.

In step 7, you create the XML for the source initiated event collection and save it to file store.
There is no output from this step. In step 8, you register the event collection details with
Windows. There is also no output from this step.

In step 9, you create a new group to hold the computers which forward events (the systems
acting as an event source). In this case you just specify SRV1 as an event source. There is no
output from this step.

Troubleshooting Windows Server 2016

[286]

In step 10, you create a new GPO to configure the systems acting as an event source, in this
case just SRV1. There is no output from this step.

In step 11 you specify details of the event source GPO with output like this:

In step 12, you reboot the machine, then in step 13 you attempt to logon using invalid
credentials. Finally, in step 14, you use Get-WinEvent to retrieve the forwarded bad login
events, then output the details of the bad logon, with output like this:

Troubleshooting Windows Server 2016

[287]

There's more...
In many of the steps in this recipe, you pipe cmdlet to Out-Null to avoid extra output. This
is a useful approach for production scripts—you may choose to remove the calls to Out-
Null and view the output of some of the commands to gain more familiarity.

In this recipe, you created and configured two GPOs. You use the first GPO, Event
Collection, to target the computer to be used for collecting events. This is DC1 for
simplicity—but in production you would most likely setup a separate system to be the
event collector. The second GPO, Event Source, is used to define the collection.

In step 7, you create an XML file containing details of the event subscription. You have
considerable flexibility in terms of the configuration of event collection, but you do need to
define it in XML. Mistakes in the XML can be very difficult to troubleshoot.

In step 9, you added one host, SRV1, to the global Event Source group. This group defines
the systems that are to be the source of the events defined in step 8.

In step 14, you use Get-WinEvent to retrieve the forwarded bad login events. Depending
on what invalid credentials you provide, you get different results. Also, in step 14, you
create an object for each bad logon. You could extend that object in production—for
example you could add the host where the invalid login was attempted.

8
Managing Windows Networking

Services
This chapter contains the following recipes:

New ways to do old things
Configuring IP addressing
Converting IP address from static to DHCP
Installing domain controllers and DNS
Configuring zones and resource records in DNS
Installing and authorizing a DHCP server
Configuring DHCP scopes
Configuring DHCP server failover and load balancing
Building a public key infrastructure
Creating and managing AD users, groups, and computers
Adding users to AD using a CSV file
Reporting on AD users
Finding expired computers in AD
Creating a privileged user report

Managing Windows Networking Services

[289]

Introduction
PowerShell has provided useful improvements in our ability to manage networking.
Windows Server has some features built in such as DHCP failover, DNS, and AD, you
manage these with cmdlets. Windows Server 2016 includes comprehensive cmdlets that
replaces the host of arcane and incompatible configuration and troubleshooting console
applications.

The focus of this chapter is the core networking services contained in Windows Server 2016.
These services include DHCP, DNS, Active Directory, and Certificate Services. The recipes
in this chapter look at how to manage these features using PowerShell. We also note the few
remaining things you cannot do with a PowerShell cmdlet.

In the New ways to do old things recipe, you look at some of the Windows console
applications that you might have used for network troubleshooting and their updated
PowerShell equivalents. You should find that everything you could do with a console
application you can also do with a native cmdlet and more. This recipe only looks at few of
the key networking related cmdlets versus their console application equivalents. There are
over 300 console applications (and Visual Basic scripts) in Windows Server 2016. Some of
those many console applications (but not all) have cmdlet equivalents; this chapter cannot
cover them all.

With Windows Server 2016, networking means TCP/IP. In the Configuring IP addressing
recipe, you look at how to set up and manage IP addresses on a computer, while in the
Converting IP Address from static to DHCP recipe, you change a computer having a static IP
configuration to have a dynamic DHCP based IP configuration. IP configuration via DHCP
tends to be used for client computers and devices, while you use static IP configuration for
your servers.

A central piece of your IT infrastructure is your Active Directory (AD) and AD domain
controllers (DCs). You use the Installing domain controllers recipe to install an AD forest and
to add a second DC to the domain. You also install a DNS server as part of the installation
of the first AD server. When you create these two domain controllers using the recipe, you
also add DNS servers to both DCs. By default, Windows creates the necessary zone and
resource records and ensures that Active Directory replicates the DNS records to the second
DC/DNS server.

In the Configuring DNS zones and resource records, you configure DNS server zones and DNS
resource records. You can use this recipe to manage the zones and resource records and to
test whether your DNS servers are working.

Managing Windows Networking Services

[290]

The Dynamic Host Control Protocol (DHCP) network protocol enables a DHCP client to
request and obtain IP configuration details from a DHCP server. For the DHCP server to
provide IP configuration information to a DHCP client, you need to configure the DHCP
scopes (sets of IP addresses to offer to DHCP clients), and DHCP options (details of the IP
configuration such as default gateway and DNS server.

In the Installing and configuring DHCP recipe, you install and set up the DHCP service and
prepare it for use in your network. Once this is complete, you make use of the Configure
DHCP scope recipe to implement a DHCP service in your network. Finally, with the
Configure DHCP server failover and load balancing recipe, you install a second DHCP server in
the domain. Then you configure the two DHCP servers to do both load balancing and
failover.

Managing the objects in your AD environment is straightforward. In the Creating and
managing AD users, groups, and computers recipe, you use cmdlets to create, update, and
remove users and security groups (and manage the members of a group). The Reporting on
AD users recipe shows how you can find users in your AD and generate reports. The
Finding expired computers recipe helps you to find domain computers that have expired.

An important aspect of many of the networking cmdlets used here is that they utilize WMI
and the use of cmdlet definition XML (CDXML) to define each cmdlet. CDXML is a feature
of PowerShell that lets you write XML that converts a WMI class into a cmdlet. For
example, the cmdlet Get-NetAdapter returns details of each network adapter in your
system. You could get the same information by using the command Get-CimInstance -
Namespace ROOT/StandardCimv2 -class MSFT_NetAdapter. The CDXML based
cmdlets do more than just retrieve information. They also allow you to update and remove
the underlying WMI instances. All in all, this makes managing network-related objects
much simpler. With CDXML, Microsoft was able to provide PowerShell cmdlets to unlock
all that greatness that is hidden in the depths of WMI.

There are two consequences of this approach. The first is performance. Using WMI can be
slower than using older Windows console applications based on the native Win32 API.
Second, the error messages that CDXML cmdlets return can be less helpful than those
returned by other core cmdlets. It can be difficult to understand some of the messages that
can result. The big advantage of course, is the ease of scripting. You have cmdlets that
utilize objects that make scripting easier and more consistent.

Managing Windows Networking Services

[291]

A final thing to be aware of, which is, there are a lot of WMI classes each of which are
related. For example, in the namespace ROOT/StandardCimv2, you have two related
classes: MSFT_NetIPInterface and MSFT_NetAdapter. The classes overlap. And since
CDXML just converts a single class to cmdlets, the resultant cmdlets also overlap. To get a
complete picture of a network link, you may need to use both classes/cmdlet. If you are
doing a lot of networking troubleshooting, you could roll-your-own functions to produce a
single object for each interface that combines multiple WMI classes.

New ways to do old things
Networking IT pros have used a small set of console applications for decades to carry out
basic troubleshooting activities. These help you to manage all manner of networking
components. Tools such as Ipconfig, Tracert, and NSlookup are used by IT pros all over
the world. The network shell (netsh) is another veritable treasure chest of tools to configure
and manage your networking components.

The latest versions of PowerShell within the latest versions of the Windows operating
system provide a wealth of new network-focused cmdlets that overlap with those old
command-line tools. These tools represent new ways of doing old things.

Naturally, you shouldn't just use the new commands because you can. This recipe shows
you that the new commands are often better and can be sufficiently different as compared
to the older console (and a lot more useful). This recipe helps you to re-equip your
networking tool belt!

Getting ready
This recipe uses the DC1 domain controller in the Reskit.Org domain and SRV1, a domain
joined server in the Reskit domain. But you can execute this recipe on any system,
assuming you have the latest versions of Windows and PowerShell loaded.

Managing Windows Networking Services

[292]

How to do it...
In this recipe, you use both the old command and explore some of the options available
with the new ones. You can see the expected output in the How it works... section. Naturally,
you may need to adapt some of these steps to accord with your environment.

From the DC1 server, retrieve IP address configuration:1.

 # Two variations on the old way
 ipconfig.exe
 ipconfig.exe /all
 # The new Way with Get-NetIPConfiguration
 Get-NetIPConfiguration

Run the remainder of this recipe on server SRV1.

From SRV1, ping the DC1 computer (using both FQDN and hostname):2.

 # Ping a remote machine two ways
 Ping DC1.Reskit.Org -4
 Test-NetConnection DC1.Reskit.Org
 # And explore some new things Ping does not do
 Test-NetConnection DC1.Reskit.Org -Port 389 `
 -InformationLevel Detailed
 Test-NetConnection DC1 -CommonTCPPort SMB

Use and share folders:3.

 # Map a local drive letter to a network share
 net use X: \\DC1\c$
 New-SMBMapping -LocalPath 'Y:' -RemotePath \\SRV1\c$
 # Find out what has been used/mapped
 net use
 Get-SMBMapping
 # Share a folder for others to use
 net share foo=c:\
 New-SmbShare -Path C:\ -Name FooNew
 # Discover what folders are shared
 net share
 Get-SmbShare
 Share a folder: # share the old way
 net share Foo=c:\
 # and the new way
 New-SmbShare -Path C:\ -Name Foo2
 # And see what has been shared the old way
 net share
 # and the new way

Managing Windows Networking Services

[293]

 Get-SmbShare

Perform DNS lookups:4.

 # Lookup a DNS record for a host
 nslookup -querytype=all DC1.Reskit.Org
 # The new way
 Resolve-DnsName -Name DC1.Reskit.Org -Type ALL

Examine the DNS client cache:5.

 # The old way
 ipconfig /displaydns
 # The new way
 Get-DNSClientCache

Flush the DNS client cache:6.

 # The old way
 ipconfig /Flushdns
 # Vs the new way
 Clear-DnsClientCache

How it works...
In step 1, you compare the ipconfig.exe Windows console command with the (newer)
Get-NetIPConfiguration cmdlet. Both output the basic IP configuration. ipconfig does
not, by default, return the details of the configured DNS Server. You have to use the /all
switch to view that. Get-NetIPConfiguration returns more information as you can see
here:

Managing Windows Networking Services

[294]

Managing Windows Networking Services

[295]

Step 2 looks at ways you can check that a remote system is up and running. Traditionally,
you would have used ping.exe. The ping.exe uses ICMP echo request and echo request
to implement ping. However, some routers, gateway devices, and hosts turn off ICMP,
making ping less than useful. By comparison, the Test-NetConnection is more flexible.
You can check whether a port, besides ICMP, is open on a host, for example, port 389 for
LDAP. You could find that the ping might fail, whereas the Test-NetConfiguration
succeeds. In step 2, you test, from SRV1, the connections to DC1, as follows:

With step 3, you look at folder sharing. You look at using the net command and the cmdlets
in the SMBShare module. Comparing the two methods looks like this:

Managing Windows Networking Services

[296]

In step 4 you create two shared folders as follows:

Managing Windows Networking Services

[297]

With step 5, you perform DNS lookups the old and new way:

In step 6, you examine the DNS client cache. The client cache content always depends on the
prior lookups, so you may see more addresses in your client cache. On SRV1, the cache is as
follows:

There's more...
Using aliases for frequently used cmdlets is a great feature when using PowerShell directly
from the command line (but best practice says avoid aliases in production code). In step 1,
the cmdlet Get-NetIpConfiguration has the easy to remember alias GIP. Some IT pros
find it easy to memorize the alias even if they do not recall the name of the aliased cmdlet.

Managing Windows Networking Services

[298]

In the first step of this recipe, you looked at your IP configuration. When diagnosing
networking faults, there are some other cmdlets that you might find handy. One useful
cmdlet is Get-NetIPInterface, which gets the IP interface and associated address
information. The cmdlet returns the interface name (although on the returned object it's
called InterfaceAlias), MTU, whether the address is static or DHCP allocated, and the
connection state. A second cmdlet is Get-NetAdapter which returns basic information
about network adapters, including a name, ifIndex (used for many networking
commands to refer to an IP interface), the MAC address, and the link speed. Depending on
the issue, these two cmdlets may provide more useful information.

With so many routers and ingress gateways disabling ICMP, using the cmdlet Test-
NetConnection is a better troubleshooting command that you can use to check on
connections to a server. The command enables you to check not only basic network
connectivity but also to ensure that a particular port is open for business.

In this (and other) recipe, you used CDXML based cmdlet sets. Various teams at Microsoft
created the CDXML for these cmdlets. If you are using WMI classes that do not currently
have CDXML based cmdlets, you can use the approach and develop roll-your-own cmdlets.

Richard Siddaway wrote a short blog article on this subject. You can find
this article at https:/ / blogs. technet. microsoft. com/heyscriptingguy/
2015/ 02/ 03/ registry- cmdlets- first- steps- with- cdxml/ .

Additionally, Microsoft issued a longer document during the beta phase of
PowerShell V3 that describes this feature of PowerShell in more detail.
This document can be found at http:/ /csharpening. net/ wp- content/
uploads/ 2012/ 05/ Creating- Native- PowerShell- using- the- new- WMI-
Developer- Platform- Draft. docx.

Configuring IP addressing
Most IT pros are very familiar with setting and using the Windows Control Panel, and
more lately the Windows Settings to configure a system's IP configuration (IP address,
subnet mask, default gateway and DNS server) and to change a statically configured system
to one that gets its configuration from DHCP. Savvy admins also were able to use the
network shell, Netsh.exe to set the IP configuration details. In this recipe, we show how
you do it with PowerShell and native cmdlets.

https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/02/03/registry-cmdlets-first-steps-with-cdxml/
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx
http://csharpening.net/wp-content/uploads/2012/05/Creating-Native-PowerShell-using-the-new-WMI-Developer-Platform-Draft.docx

Managing Windows Networking Services

[299]

Getting ready
You run this recipe on server DC2. Server DC2 is a newly installed VM (or physical machine)
whose NICs are default to DHCP. When DC2 boots up, it attempts to contact the DHCP
server for IP address configuration. If there is no DHCP server on your subnet, running
Get-NetIPConfiguration reveals that the server has an Automatically Provided IP
Address (APIPA) in the 169.254/16 range. You use this recipe to provide a static IP
configuration to this server.

How to do it...
Get the existing IP address information:1.

 $IPType = 'IPv4'$Adapter = Get-NetAdapter |
 Where-Object {Status -eq 'up'}
 $Interface = $Adapter |
 Get-NetIPInterface -AddressFamily $IPType
 $IfIndex = $Interface.ifIndex
 $IfAlias = $Interface.Interfacealias
 Get-NetIPAddress -InterfaceIndex $Ifindex
 -AddressFamily $IPType

Remove the existing IP address and default gateway, then set the IP address for2.
DC2:

 Remove-NetRoute -InterfaceIndex $IfIndex `
 -DestinationPrefix 0.0.0.0/0 `
 -Confirm $false
 Remove-NetIPAddress -InterfaceIndex $ifindex `
 -AddressFamily IPv4 `
 -Confirm $false

Set the IP address for DC2:3.

 Set-NetIPAddress -InterfaceAlias $IfAlias `
 -PrefixLength 24 `
 -IPAddress '10.10.10.11' `
 -DefaultGateway '10.10.10.254' `
 -AddressFamily $IPType

Managing Windows Networking Services

[300]

Set the DNS server details:4.

 Set-DnsClientServerAddress -InterfaceIndex 3 `
 -ServerAddresses 10.10.10.10

Test the new configuration:5.

 Get-NetIPConfiguration
 Test-NetConnection -ComputerName DC1 -Port 389
 Resolve-DnsName -Name dc2.reskit.org -Server DC1

How it works...
In step 1, you obtain the IP address information using Get-NetIPAddress, as follows:

This address comes from a DHCP scope somewhere on your network. You can tell based on
the values of PrefixOrigin and SuffixOrigin plus a limited lifetime. Manually
configured IP addresses have an infinite lease time.

In step 2, you remove any old IP address and any old default gateway. As WMI stores
configuration information separate from details of the default gateway, you need to remove
both separately. In production scripts, to avoid WMI exceptions, you should wrap the
cmdlets in a Try/Catch block. There is no output from this step.

Managing Windows Networking Services

[301]

Next, in step 3, you set the new IP address, subnet mask, and default gateway address as
follows:

With the IP address, subnet mask, and default gateway set, in step 4, you set the DNS server
address. There is no output generated by the Set-DnsClientServerAddress cmdlet.

With step 2 through step 4 in the recipe, you set a static IP configuration. To test it, in step 5,
you check on the configuration by using Get-NetIPConfiguration, Test-
NetConnection, and Resolve-DnsName cmdlets. These return the address, test the
connection from this server to our primary domain controller (DC1), and then resolve
address records for DC2. Running these commands looks like this:

Managing Windows Networking Services

[302]

There's more...
If you are going to be doing a lot of networking troubleshooting, it might be a good idea to
create some scripts and functions that make it clearer and simpler. You can find one
example at http:/ /techibee. com/ powershell/ powershell- get- ip-address- subnet-
gateway-dns-serves- and- mac- address- details- of-remote- computer/ 1367. That blog
page describes a script that you could use. The script could easily be converted into a
function and added to your troubleshooting module(s).

In step 2 of this recipe, you remove the default gateway and any existing IP address. Both
the Remove-NetRoute and Remove-NetIPAddress cmdlets generate an exception if there
is no route, or IP address respectively. To get around this, you can wrap the calls to these
cmdlets with Try/Catch. However there appears to be a bug with the Remote-
NetIpAddress cmdlet. Even when you wrap the cmdlet in a PowerShell Try/Catch block,
it does not catch the exception in the way you would expect.

In step 5, you check the IP configuration using Get-NetIPConfiguration to show the IP
address, subnet mask, default gateway, and the DNS server configuration. Then you test the
network connection from DC2 to port 389 on DC1. Port 389 is the LDAP port. Setting up
DC2 as a domain controller requires the ability to connect to DC1 domain controller's LDAP
port. This cmdlet tests both, that network connectivity is available and that port 389 is
reachable, which is more useful than the information returned from the ping.exe
command.

Converting IP address from static to DHCP
In some cases, you may need to switch your server's IP address from static, as you did in
the Configuring IP addressing recipe, back to DHCP. You might need to do this to re-purpose
a server. You may have given it a static IP address to perform a role, but you plan to re-
purpose this server and want to configure the server to obtain IP configuration from DHCP.

Getting ready
Run this recipe on the DC2 server. Of course, after running and testing this recipe, you may
need to re-run the Configure IP address recipe to ensure DC2 remains correctly configured.

http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367
http://techibee.com/powershell/powershell-get-ip-address-subnet-gateway-dns-serves-and-mac-address-details-of-remote-computer/1367

Managing Windows Networking Services

[303]

How to do it...
Get the existing IP address information:1.

 $IPType = 'IPv4'
 $Adapter = Get-NetAdapter | ? {$_.Status -eq 'up' }
 $Interface = $Adapter |
 Get-NetIPInterface -AddressFamily $IPType
 $IfIndex = $Interface.ifIndex
 $IfAlias = $Interface.Interfacealias
 Get-NetIPAddress -InterfaceIndex $Ifindex `
 -AddressFamily $IPType

Set the interface to get its address from DHCP:2.

 Set-NetIPInterface -InterfaceIndex `
 $IfIndex -DHCP Enabled

Test the results:3.

 Get-NetIPAddress -InterfaceIndex $Ifindex `
 -AddressFamily $IPType

How it works...
In step 1, you get the network adapter details and display the configured IP address. Since
this system has just one NIC, and you previously configured a static address, the IP address
details reflect that as follows:

Managing Windows Networking Services

[304]

In step 2, you enable DHCP on the network interface, but there is no output.

Then, you use Get-NetIPaddress to return the IP address. It is the same DHCP address
you saw in step 1 of the Configuring IP Addressing recipe:

There's more...
Using WMI directly, or using CDXML-based cmdlets to obtain the source of IP address
configuration works well, but can be slower than using ipconfig.exe.

Installing domain controllers and DNS
At the heart of mostof the corporate and organizational networks is Active Directory (AD).
You use AD as an authentication and authorization platform. AD first debuted with
Windows 2000. Microsoft improved it with each successive release of Windows Server.

In the early days of AD, you promoted a server computer to act as a domain controller by
using the DCPromo.exe utility. In Server 2016, this command no longer exists. Instead of
DCPromo, you could either use Server Manager or PowerShell.

This recipe shows how you use PowerShell to upgrade systems to be domain controllers.
This recipe creates two servers (DC1 and a replica DC, DC2) in the Reskit.Org domain.
After you complete this recipe, your forest has only one domain, but you could easily
extend this recipe to create multi-domain forests.

Managing Windows Networking Services

[305]

Getting ready
In this recipe, you use two domain controllers, DC1 and DC2. Before running this recipe, you
should configure both DC1 and DC2 to have static IP address configurations. You can use the
Configuring IP addressing recipe to show you how to set up the static address.

You run this recipe directly on both DC1 and DC2. As an alternative, you could wrap this
recipe with a call to Invoke-Command and run this recipe from a client computer, as shown
in Installing and configuring Hyper-V feature recipe in Chapter 11, Managing Hyper-V.

How to do it...
Run the first part of this recipe on DC1:

Install the AD-Domain-Services components plus the ManagementTools:1.

 Install-WindowsFeature AD-Domain-Services
 -IncludeManagementTools

Now install the AD to DC1:2.

 $PasswordSS = ConvertTo-SecureString `
 -String 'Pa$$w0rd' `
 -AsPlainText -Force
 Install-ADDSForest -DomainName 'Reskit.Org' `
 -SafeModeAdministratorPassword
 $PasswordSS -Force -InstallDNS -NoReboot

Now you manually reboot DC1:3.

 Restart-Computer -Force

Managing Windows Networking Services

[306]

Run the next part of this recipe on the second domain controller, DC2. You could
alternatively run these steps remotely on another system by using the Invoke-Command
cmdlet.

Check that DC1 is reachable on ports 445 and 389:1.

 Resolve-DnsName -Name dc1.reskit.org `
 -Server DC1.Reskit.Org `
 -Type A
 Test-NetConnection -ComputerName DC1.Reskit.Org `
 -port 445
 Test-NetConnection -ComputerName DC1.Reskit.Org `
 -port 389

Add the AD DS features on DC2:2.

 Install-WindowsFeature AD-Domain-Services, DNS,
 RSAT-DHCP, Web-Mgmt-Tools

Promote DC2 to be a DC in the Reskit.Org domain:

 $PasswordSS = ConvertTo-SecureString -String 'Pa$$w0rd'
 -AsPlainText -Force
 Install-ADDSDomainController -DomainName 'Reskit.org' `
 -SafeModeAdministratorPassword $PasswordSS `
 -SiteName 'Default-First-Site-Name' `
 -NoRebootOnCompletion -Force

How it works...
Promoting any Windows Server 2016 computer to be a domain controller begins with you
installing the AD-Domain-Services feature, which you carry out in step 1, like this:

Managing Windows Networking Services

[307]

With step 2, you promote DC1 to be a domain controller and install the DNS service on DC1:

This step generates four warning messages. In most cases these are benign, and you can
ignore them. In step 3, you reboot DC1. There is no output as such, the system restarts as the
first domain controller in your forest.

In step 4, which you run over on DC2, you first check your network to ensure that the
domain controller operation can be successful. You check that the DNS name exists for the
current domain controller in the RESKIT domain, and ensure that DC2 can reach DC1 on
ports 389 (LDAP) and 445 (SMB-based file/printer sharing). The output from step 4 looks
like this:

Managing Windows Networking Services

[308]

With those three tests, you can see that DC1 and DC2 are in communication and that DC2 is
ready for promotion. In step 5, which is not dissimilar to step 1, you add roles to the
computer that enables you to promote this machine at some later date to be a DC. Installing
these features looks this:

Note that you explicitly add DNS and some additional tools. You have options as to how
and whether you add a second DNS server to the domain, and what (if any) management
tools you add.

Managing Windows Networking Services

[309]

Now you are ready to promote DC2 to be a domain controller in the Reskit.org network,
in step 6. Step 6 is very similar to step 2, except in step 6 you are adding a domain controller
to the existing Reskit domain/forest, which looks like this:

There's more...
In step 2, you upgrade DC1 to be a domain controller. Once the installation process has
completed, you must reboot DC1 before it can function as a DC which you do in step 3. If
you run the step remotely, you could restart DC1 using a command like this:

 Restart-Computer -Computer DC1 -Wait -For PowerShell

In step 4, you checked for connectivity on ports 445 and 389. Port 445 is used for SMB file
sharing, while port 389 is the port for LDAP. Domain joined systems need access to these
ports on the domain controller for Group Policy.

Managing Windows Networking Services

[310]

After you reboot DC2, after step 6, DC2 is a domain controller and a DNS server. Using DNS
tools, you can see that AD replicates the Reskit.org zone created on DC2 in an earlier
recipe. When you create a zone as AD integrated, the AD replicates DNS zone information
and resource records to other DCs in the domain. Also notice DC2 DC's network
configuration. Before the promotion, DC2 had one DNS Server address (10.10.10.10-
DC1). Since you added DNS to DC2, the promotion process adds a DNS server to DC2 DC's
network configuration (127.0.0.1).

Configuring zones and resource records in
DNS
DNS configuration using PowerShell is straightforward. You first add the DNS service.
Then you create the zones you need and finally you create the resource records for those
zones.

When you install an AD, as you did in the Installing domain controllers recipe, the AD
installation process also installs the DNS service on the DC and configures both the
necessary forward lookup zone and the AD-related resource records.

This recipe looks at the actions you may need to take once your DC is up and running. You
can create new zones (for example, a reverse look zone), add an additional A and Mx records
for mail, and set Extended DNS (EDNS). You also should test the DNS Server to ensure it is
all up and working.

Getting ready
This recipe assumes you have the domain controller up and running as a DC, and that you
have a DNS Administrator user created. You create the user as follows:

$PasswordSS = ConvertTo-SecureString `
 -String 'Pa$$w0rd' `
 -AsPlainText -Force
$NewUserHT = @{
 AccountPassword = $PasswordSS
 Enabled = $true
 PasswordNeverExpires = $true
 ChangePasswordAtLogon = $false}

New-ADUser @NewUserHT `
 -SamAccountName DNSADMIN `

Managing Windows Networking Services

[311]

 -UserPrincipalName 'DNSADMIN@reskit.org' `
 -Name 'DNSADMIN' `
 -DisplayName 'DNS Admin'
Add to Enterprise and Domain Admin groups
Add-ADPrincipalGroupMembership `
 -Identity `
 'CN=DNSADMIN,CN=Users,DC=reskit,DC=org' `
-MemberOf `
 'CN=Enterprise Admins,CN=Users,DC=reskit,DC=org',
 'CN=Domain Admins,CN=Users,DC=reskit,DC=org'
Ensure the user has been added
Get-ADUser -LDAPFilter '(Name=DNSADMIN)'

How to do it...
Create a new primary forward DNS zone:1.

 Add-DnsServerPrimaryZone -Name foo.bar `
 -ReplicationScope Forest `
 -DynamicUpdate Secure `
 -ResponsiblePerson 'DNSADMIN.reskit.org'

Create a new primary reverse lookup domain (for IPv4), and view both new DNS2.
zones:

 Add-DnsServerPrimaryZone
 -Name '10.10.10.in-addr.arpa' `
 -ReplicationScope Forest `
 -DynamicUpdate Secure `
 -ResponsiblePerson 'DNSADMIN.reskit.org.'
 Get-DNSServerZone
 -Name 'foo.bar', '10.10.10.in-addr.arpa'

Add an A resource record to foo.bar and get results:3.

 Add-DnsServerResourceRecord -ZoneName 'foo.bar' `
 -A `
 -Name home `
 -AllowUpdateAny `
 -IPv4Address '10.42.42.42' `
 -TimeToLive (30 * (24*60*60))
 Get-DnsServerResourceRecord -ZoneName foo.bar `
 -Name 'home'

Managing Windows Networking Services

[312]

Add A and Mx resource records to the reskit.org zone and display the results:4.

 Add-DnsServerResourceRecord -ZoneName 'reskit.org' `
 -A `
 -Name 'mail' `
 -CreatePtr `
 -AllowUpdateAny `
 -IPv4Address ' 10.10.10.42' `
 -TimeToLive 21:00:00
 Add-DnsServerResourceRecordMX -Preference 10 `
 -Name '.' `
 -TimeToLive (30 * (24*60*60)) `
 -MailExchange 'mail.reskit.org' `
 -ZoneName 'reskit.org'
 Get-DnsServerResourceRecord -ZoneName 'reskit.org' `
 -name '@' `
 -RRType Mx

Set up EDNS on the server with a timeout 30 minutes:5.

 Set-DNSServerEDns -CacheTimeout '0:30:00' `
 -Computername DC1 `
 -EnableProbes $true `
 -EnableReception $true

Test the DNS service on DC1:6.

 Test-DnsServer -IPAddress 10.10.10.10 `
 -Context DnsServer

How it works...
This recipe makes use of the cmdlets in the DnsServer module to create zones, create
resource records, retrieve resource records, and test the DNS server.

In step 1, you create a new DNS primary zone called foo.bar. You specify that this zone
should replicate to all AD domain controllers in the forest and that local updates are to be
secure only. You also specify the responsible person for queries is DNSADMIN@Reskit.Org.
For internal DNS servers, this is probably not all that useful. But if you need to talk to the
person responsible for some distant DNS server, for example, your ISPs server, then it can
be useful to know who to contact. Creating a zone generates no output.

Managing Windows Networking Services

[313]

In step 2, you add another primary zone, this time a reverse lookup zone for the IP address
block 10.10.10.0/24. Reverse lookup zones allow DNS to resolve an IP address, for
example, 10.10.10.10, to a fully qualified name (DC1.Reskit.Org). The other settings
are the same as for the foo.bar zone created in step 1. This step also retrieves the zone
details for both zones, as follows:

After adding zones, in step 3, you add a resource record—a host (A) record for the host
home.foo.bar. You set the IP address to 10.42.42.42, and the time to live is calculated to
be 30 days (specified in this case in seconds). After adding the record, you retrieve the A
record for home.foo.bar. Retrieving the record looks like this:

In step 4, you prepare for the addition of a new SMTP server, Mail.Reskit.Org. You first
create the host's A record, then you create the mail exchanger (MX) record. There is no
output from adding these two resource records. Then you retrieve the MX record, which
looks like this:

With step 5, you specify EDNS settings and retrieve them. These settings enable your DNS
server to probe other servers to determine if they support EDNS and to cache that
information for 30 minutes. You also set your DNS server to accept queries that contain an
EDNS record and to respond accordingly. These days, it's sensible to set up EDNS,
especially for internet-facing DNS servers. The last command in this step retrieves and
displays the EDNS settings, as follows:

Managing Windows Networking Services

[314]

Once you have set up your DNS Server, and anytime you make changes to the
configuration, it makes sense to test it. In step 5, you use the Test-DnsServer cmdlet to test
the DNS server. The output looks like this:

There's more...
The DnsServer module leverages CDXML to build the cmdlets. As a result, the objects
returned are WMI data wrapped in a .NET object. If you pipe the output of, for example,
Get-DNSServerZone, the objects returned are of the type
Microsoft.Management.Infrastructure.CimInstance#root/Microsoft/Windows/

DNS/DnsServerPrimaryZone. The default output, specified by display XML loaded with
the module, hides some of the details of each zone, such as whether a DNS server notifies
any secondary servers of any change (NotifyServers), or whether WINS integration is
enabled. If the default XML is insufficient, you can either pipe the output through Format-
Table or Select-Object to select the properties you wish to view. And you could always
update the default display XML to adapt the default output to suit your needs.

In step 3, you used the Add-DNSServerResourceRecord with the A switch to add an A
resource record. You could have also used another cmdlet, Add-
DnsServerResourceRecordA. Some of the more common resource records have specific
cmdlets to enable you to add them.

In step 5, you setup EDNS. EDNS is an extension mechanism that extends the DNS protocol
in a backwards compatible way. EDNS, among other things, enable bigger DNS replies.
RFC 6891 (https:/ / tools. ietf. org/ html/ rfc6891) specifies EDNS.

With step 7, you tested the basic working of the server. You can also test that the server has
root hints created and whether it can resolve a specific zone.

https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc6891

Managing Windows Networking Services

[315]

In step 1 and step 2, you create zones and resource records. The code in these steps creates
the zones as AD integrated. The AD replicates both the zones and the records they
contained to other DCs in the domain. After you complete the steps in this recipe on DC1,
you see the replication of zones is you look at the DNS service on DC2.

One feature this recipe did not examine is DNS Security Extensions (DNSSec). These
extensions provide cryptographic assurance that the resource records you retrieve from
DNS are correct, came from the server you think you did, and that a man-in-the-middle
attack has not interfered with the resource record information. The details of DNSSec and
how it works are outside the scope of this book.

For more details about DNSSec, see the internet society's DNSSec page at
http:/ / www. internetsociety. org/ deploy360/ dnssec/ basics/ ? gclid=
Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_

2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ.

With that said, adding DNSSec security to a zone on your DNS server is
simple. For example, to sign the reskit.org zone that you created on
DC1, use the Set-DnsServerDnsSecZoneSetting cmdlet. For more
details on using DNSSec, see the TechNet article at https:/ /technet.
microsoft. com/ en- us/ library/ hh831411(v= ws. 11). aspx (although the
demonstration on that page is based on Windows Server 2012 and uses the
GUI).

Installing and authorizing a DHCP server
Installing and authorizing a DHCP server is easy and straightforward. You can use the GUI,
Server Manager to achieve this. Server Manager, though, is a GUI layered on top of
PowerShell. The GUI gathers the details, and PowerShell does the rest. In this recipe, you
carry out the installation and basic configuration using just the native cmdlets.

Getting ready
This recipe installs a DHCP server on DC1. You need that system up and running.

http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
http://www.internetsociety.org/deploy360/dnssec/basics/?gclid=Cj0KEQiAzsvEBRDEluzk96e4rqABEiQAezEOoN2hUV3waJAgC8nU_2llDQjwosymcdEjKEr9OKPnsCoaAr4b8P8HAQ
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831411(v=ws.11).aspx

Managing Windows Networking Services

[316]

How to do it...
Login to DC1, and add the DHCP server feature to your system:1.

 Install-WindowsFeature -Name DHCP `
 -IncludeManagementTools

Add the DHCP server's security groups:2.

 Add-DHCPServerSecurityGroup -Verbose

Let DHCP know it's all configured:3.

 Set-ItemProperty `
 -Path HKLM:\SOFTWARE\Microsoft\ServerManager\Roles\12 `
 -Name ConfigurationState `
 -Value 2

Authorize the DHCP server in Active Directory:4.

 Add-DhcpServerInDC -DnsName DC1.Reskit.Org

Restart DHCP:5.

 Restart-Service -Name DHCPServer -Force

How it works...
In step 1, you use the Install-WindowsFeature cmdlet to add the DHCP server and the
DHCP ManagementTools, which looks like this:

Managing Windows Networking Services

[317]

In step 2, you add the necessary DHCP security groups. By default, this cmdlet does not
produce any output. If you want to see some additional output, you can use the -Verbose
switch. If you do, the cmdlet produces a bit of output, like this:

In step 3, you tell Windows that the configuration of DHCP is complete. This step produces
no output but is needed to let DHCP know that the necessary security groups are complete

Before a DHCP server is able to provide IP address information to client systems, you need
to authorize it in AD. You perform this in step 4, and the output looks like this:

With the last step, step 5, you restart the service. Once you restart the DHCP service, the
newly authorized server can hand out IP addresses. You configure the DHCP addresses
and DHCP options in the Configuring DHCP scopes recipe.

There's more...
In step 1, you install the DHCP server service on your system. If you use the Windows
Server Manager GUI tool, DHCP is a server role versus a server feature. You need to know
which is which to find and add the feature or role that provides the DHCP service. With
PowerShell there is no difference between a feature and a role—you add both with the
Install-WindowsFeature cmdlet.

In earlier versions of the ServerManager module, the cmdlet was named Add-
WindowsFeature. In later versions of Windows Server, Microsoft renamed the cmdlet to
Install-WindowsFeatue. That change did have the potential to break existing scripts. To
avoid that, Microsoft sensibly added an alias of Install-WindowsFeature, namely, Add-
WindowsFeature.

Managing Windows Networking Services

[318]

In step 2, you used the -Verbose switch. When you add the -Verbose switch to any cmdlet
you can get some additional output that shows you what the cmdlet (or function) is doing.
Some cmdlets are remarkably terse and provide little or no extra output. Other cmdlets
provide more detailed verbose output.

In step 5, you authorize the DHCP server explicitly in the Active Directory. Authorization
helps your organization avoid the potential for a rogue user setting up a DHCP server and
handing out bad IP addresses. If you have multiple domain controllers, you may wish to
force replication so that all DCs show this server as authorized. While the replication should
occur pretty quickly, it never hurts to check the replication status before enabling the DHCP
service.

Configuring DHCP scopes
In the previous recipe, Installing and authorizing a DHCP server, you installed and authorized
a DHCP server. But before that server can begin to provide IP address configuration
information to DHCP clients, you need to create a scope and options. The scope is the set of
DHCP addresses DHCP can give out, while the options are specific configuration options
your DHCP server provides along with an IP address.

Getting ready
Before you can configure DHCP scopes and options, you need to have completed the earlier
Installing and authorizing a DHCP server recipe on DC1.

How to do it...
Create a DHCP scope:1.

 Add-DhcpServerV4Scope -Name 'Reskit' `
 -StartRange 10.10.10.150 `
 -EndRange 10.10.10.199 `
 -SubnetMask 255.255.255.0 `
 -ComputerName DC1.Reskit.Org

Get scopes from the server:2.

 Get-DhcpServerv4Scope -ComputerName DC1.Reskit.Org

Managing Windows Networking Services

[319]

Set DHCP OptionValues:3.

 Set-DhcpServerV4OptionValue -DnsDomain Reskit.Org `
 -DnsServer 10.10.10.10

View the options you have set:4.

 Get-DhcpServerv4OptionValue `
 -ComputerName DC1.Reskit.Org

How it works...
This recipe used the DHCP server cmdlets to do basic DHCP scope configuration. In step 1,
you create a new scope. This scope allows the server to offer up addresses in the address
range 10.10.10.150 through to 10.10.10.199. There is no output from this step.

In step 2, you used the Get-DhcpServerv4Scope cmdlet to retrieve details of the scopes set
on the named DHCP server, like this:

To enable the DHCP server to provide key IP configuration details, you add options to the
scope. An option is a particular setting that the server can provide a client. For example,
you set the DNS server address and the domain name for a DHCP client by using the
options set in this step. As with step 1, adding options produces no output.

To view the options you set on the server, you can use the Get-
DHCPServerV4OptionValue cmdlet, like this:

Managing Windows Networking Services

[320]

There's more...
In step 3, you set an option and option value for the DNS server. An excellent feature of this
cmdlet is that when setting a DNS server IP address, the cmdlet checks to see if the IP
address provided is a DNS server. Although the cmdlet returns no output, if you run this
step in the PowerShell ISE, you can see a progress bar showing the check. In this case, the
test used an invalid IP address for the server that yields this result:

This recipe used a simple DHCP configuration. A single DHCP server, a single scope on a
single subnet, and with only minimal options. There is more complexity you may encounter
when scaling DHCP including scope versus server options and client classes which are
outside the scope of this chapter. Nevertheless, the cmdlets used in this recipe form the core
of what you might use in practice, just a few more options and the complexity is simplified
even if we do not have space in this chapter to cover all that complexity.

Configuring DHCP server failover and load
balancing
The basic installation and configuration of a single DHCP server, as shown in the two
previous recipes, is straightforward. However, a single DHCP server represents a single
point of failure. A standard solution to this shortcoming is to implement DHCP failover and
load balancing. Microsoft added this to DHCP with Windows 2012. The feature and indeed
DHCP is unchanged in Server 2016.

Managing Windows Networking Services

[321]

Getting ready
This recipe requires two servers, with one server (DC1) setup with a working and
configured DHCP scope. You achieved this by using the Configuring and authorizing a DHCP
server, Configure DHCP scopes recipes. The recipe needs a second, as of yet an unconfigured
server, which in this case is the second DC, DC2.Reskit.Org.

How to do it...
Log in and install the DHCP feature on DC2:1.

 Install-WindowsFeature -Name DHCP,RSAT-DHCP `
 -ComputerName DC2.Reskit.Org

Let DHCP know it's all configured:2.

 Invoke-Command -ComputerName DC2 `
 -ScriptBlock {Set-ItemProperty `
 -Path HKLM\:SOFTWARE\Microsoft\ServerManager\Roles\12 `
 -Name ConfigurationState `
 -Value 2}

Authorize the DHCP server in AD and view the results:3.

 Add-DhcpServerInDC -DnsName DC2.Reskit.Org
 Get-DhcpServerInDC

Configure failover and load balancing:4.

 Add-DhcpServerv4Failover `
 -ComputerName DC1.Reskit.Org `
 -PartnerServer DC2.Reskit.Org `
 -Name DC1-DC2 `
 -ScopeID 10.10.10.0 `
 -LoadBalancePercent 60 `
 -SharedSecret 'j3RryIsG0d!' `
 -Force

Managing Windows Networking Services

[322]

Observe the result:5.

 'dc1', 'dc2' |
 ForEach {Get-DhcpServerv4Scope -ComputerName $_}
 'dc1', 'dc2' |
 ForEach {Get-DhcpServerv4ScopeStatistics
 -ComputerName $_}

How it works...
In step 1, you install the DHCP feature on DC2.Reskit.Org remotely. Using the Install-
WindowsFeature cmdlet, you can install features on any remote server. The results are:

With step 2, you set a registry value remotely. This value indicates that the configuration of
DC2 is complete. There is no output from this operation.

In step 3, you authorize DC2 in the DC2.Reskit.Org server's AD. Once authorized, DC2 can
begin to hand out IP address leases from any configured scopes. The call to Get-
DHCPServerInDC shows what servers you have authorized:

With both DC1 and DC2 set up and running DHCP, in step 4, you implement a load
balancing failover relationship between DC1 and DC2. You name the relationship dc1-dc2.
You are setting the relationship to loadbalance the 10.10.10.0 scope you created earlier in
the Configuring DHCP scopes recipe. By specifying the -LoadBalancePercent parameter,
you tell DC1 to issue 60% of the leases.

Managing Windows Networking Services

[323]

There's more...
This recipe showed building a load balancing and failover relationship between two DHCP
servers. This relationship makes the scope highly available and provides for two servers to
share the load. You can also set up DHCP to have a hot standby, rather than a load
balancing relationship.

Building a public key infrastructure
In most organizations, you find a requirement for X.509 digital certificates. The organization
might need an SSL certificate for a website, a server certificate for Skype for Business, or a
code signing certificate as the basis for signing PowerShell scripts. Building a PKI for your
organization is often an exercise in defense in depth.

A very simple design would be to make your DC an AD Certificate Services (ADCS) CA
server. But that is not best practice. At a minimum, you need a single offline root CA, with a
subordinate issuing CA. If you are more paranoid or have a bigger attack surface, you could
consider an intermediate CA that, like the root, is offline with a third level CA that issues
certificates. The richness and complexity of modern CA architecture are beyond the scope of
this book.

This recipe creates a two-level CA architecture for the Reskit.org network. The root CA is
root: a workgroup machine that you should keep offline. The second CA is
CA.Reskit.Org, which you set up as an issuing CA. To complete this recipe, you need to
create the root CA on the root computer, then create a CA certificate that you can use to
create a CA on CA.Reskit.Org.

This recipe makes great use of the certutil.exe console application a Windows console
program. Additionally, you need to be logged on as administrator and need to run this
recipe in an elevated PowerShell console.

Getting ready
This recipe assumes you have two systems, root (a workgroup computer) and
CA.Reskit.Org (a domain-joined server) both online and with no additional non-default
services.

Once you have this recipe working, you can add the firewall, like this:

Get-NetFirewallRule -DisplayGroup 'File and Printer Sharing' |

Managing Windows Networking Services

[324]

Set-NetFirewallRule -Enabled True

The following was checked during the drafting of this book. Errors may
creep in during production especially with respect to line endings. E&OE!

How to do it...
Install ADCS features on the root computer:1.

 Install-WindowsFeature -Name ADCS-Cert-Authority `
 -IncludeManagementTools

Create CA policy file:2.

 $CaInf = @"
 [Version]
 Signature="$Windows NT$"
 [Certsrv_Server]
 RenewalKeyLength=4096
 RenewalValidityPeriod=Years
 RenewalValidityPeriodUnits=20
 CRLPeriod=Weeks
 CRLPeriodUnits=26
 CRLDeltaPeriod=Days
 CRLDeltaPeriodUnits=0
 LoadDefaultTemplates=0
 AlternateSignatureAlgorithm=1
 "@
 $PathInf = Join-Path -Path $Env:SystemRoot `
 -ChildPath 'capolicy.inf'
 $CaInf | Out-File -FilePath $PathInf

Install a CertificateAuthority based on the capolicy.inf file you created3.
in step 2:

 Install-AdcsCertificationAuthority -CAType StandaloneRootCA `
 -KeyLength 4096 -HashAlgorithmName SHA256 `
 -ValidityPeriod Years -ValidityPeriodUnits 20 `
 -CACommonName "Reskit Root CA" `
 -CryptoProviderName "RSA#Microsoft Software Key Storage Provider"
 -Force

Managing Windows Networking Services

[325]

Set Certificate Revocation List (CRL) validity and CRL publication point:4.

 certutil.exe -setreg CACRLPublicationURLs `
 '1:C:\Windows\System32\CertSrv\CertEnro\ll%3%8.crln2:http://ca
 .reskit.org/pki/%3%8.crl'
 certutil.exe -setreg CACACertPublicationURLs
 '2:http://ca.reskit.org/pki/%1_%3%4.crt'
 certutil.exe -setreg CACRLPeriod 'Weeks'
 certutil.exe -setreg CACRLPeriodUnits 26
 certutil.exe -setreg CACRLDeltaPeriod 'Days'
 certutil.exe -setreg CACRLDeltaPeriodUnits 0
 certutil.exe -setreg CACRLOverlapPeriod 'Hours'
 certutil.exe -setreg CACRLOverlapPeriodUnits 12
 certutil.exe -setreg CAValidityPeriod 'Years'
 certutil.exe -setreg CAValidityPeriodUnits 10
 certutil.exe -setreg CADSConfigDN
 'CN=Configuration,DC=reskit,DC=org'

Restart the CA with updated configuration:5.

 Restart-Service -Name certsvc

Publish and view the crl:6.

 certutil.exe -crl
 $CEPath = 'C\:Windows\System32\CertSrv\Enroll'
 Get-ChildItem -Path $CEPath

Copy CA certificate and (empty) CRL to subordinate CA:7.

 $PathSCrl = Join-Path -Path `
 'C:\Windows\System32\CertSrv\CertEnroll' `
 -ChildPath 'Reskit Root CA.crl'
 $PathDCrl = Join-Path -Path '\\ca\c$' `
 -ChildPath 'Reskit Root CA.crl'
 Copy-Item $PathSCrl $PathDCrl -Destination $PathDCrl
 $PathSCrt = Join-Path -Path `
 'C:\Windows\System32\CertSrv\CertEnroll' `
 -ChildPath 'ROOT_Reskit Root CA.crt'
 $PathDCrt = Join-Path -Path 'cac$' `
 -ChildPath 'ROOT_Reskit Root CA.crt'
 Copy-Item $PathSCrl $PathDCrl

Having set up the root CA, you next set up the intermediate subordinate issuing
CA on CA.Reskit.Org. Do the next steps in this recipe on the issuing CA.

Managing Windows Networking Services

[326]

Create a PKI folder and move the CRT and CRL files to the folder:8.

 New-Item C:\PKI -ItemType Directory
 -ErrorAction Ignore
 Move-Item -Path 'C:\Reskit Root CA.crl' `
 -Destination 'C:\pki\Reskit Root CA.crl'
 Move-Item -Path 'C:\ROOT_Reskit Root CA.crt' `
 -Destination 'C:\pki\ROOT_Reskit Root CA.crt'

Publish the CA details to the Active Directory and local certificate store:9.

 cd C:\PKI
 certutil.exe -dspublish -f 'ROOT_Reskit Root CA.crt' `
 RootCA
 certutil.exe -addstore -f root 'ROOT_Reskit Root `
 CA.crt'
 certutil.exe -addstore -f root 'Reskit Root CA.crl'

Create root CA certificate and CRL distribution endpoints:10.

 New-SmbShare -Name PKI
 -FullAccess SYSTEM,'Reskit\Domain Admins' `
 -ChangeAccess 'Reskit\Cert Publishers' `
 -Path C:\PKI

Install a subordinate enterprise issuing CA:11.

 Install-WindowsFeature ADCS-Cert-Authority,
 ADCS-Web-Enrollment,
 ADCS-Enroll-Web-Pol,
 ADCS-Enroll-Web-Svc,
 ADCS-Online-Cert,
 Web-Mgmt-Console
 -IncludeManagementTools

Configure CRL endpoints in IIS:12.

 New-WebVirtualDirectory -Site 'Default Web Site' `
 -Name 'PKI' `
 -PhysicalPath 'C:\PKI'

Install the subordinate issuing CA on CA.Reskit.Org:13.

 # Create capolicy.inf
 $CaInf = @'
 [Version]
 Signature="$Windows NT$"

Managing Windows Networking Services

[327]

 [Certsrv_Server]
 RenewalKeyLength=4096
 RenewalValidityPeriod=Years
 RenewalValidityPeriodUnits=5
 LoadDefaultTemplates=0
 AlternateSignatureAlgorithm=1
 '@
 # Save INF file
 $PathInf = Join-Path -Path $Env:SystemRoot `
 -ChildPath 'capolicy.inf'
 $CaInf | Out-File -FilePath $PathInf
 # Install CA
 Install-AdcsCertificationAuthority `
 -CAType EnterpriseSubordinateCA `
 -CACommonName 'ReskitIssuing CA' `
 -CryptoProviderName 'RSA#Microsoft
 Software Key Storage Provider' `
 -KeyLength 4096 `
 -HashAlgorithmName SHA256 `
 -Confirm:$false

Run the next two steps on the root CA offline server.

Request CA certificate for ca.reskit.org from the root CA:14.

 Set-Location -Path c:\
 Copy-Item -Path '\\ca\c$\CA.Reskit.Org\
 _ReskitIssuing CA.req' `
 -Destination .
 certreq.exe -submit 'C:\CA.Reskit.Org\
 _ReskitIssuing CA.req'

Use the Certificate Manager GUI tool to issue the requested certificate. After15.
issuing, retrieve the certificate and copy back to the ca.reskit.org computer:

 certreq.exe -retrieve 2 C:\CA.Reskit.Org.Crt
 Copy-Item -Path c:\CA.Reskit.Org* -Destination \\Ca\C$

Run the remaining steps on the CA.Reskit.Org computer:

After copying cert from the root computer, install it on CA.Reskit.Org, then16.
start and check the service:

 Certutil.exe -InstallCert C:\CA.Reskit.Org.Crt
 Start-Service -Name CertSvc
 Get-Service -Name CertSvc

Managing Windows Networking Services

[328]

Set up CRL settings in the registry:17.

 certutil.exe -setreg CACRLPeriod 'Weeks'
 certutil.exe -setreg CACRLPeriodUnits 2
 certutil.exe -setreg CACRLDeltaPeriod 'Days'
 certutil.exe -setreg CACRLDeltaPeriodUnits 1
 certutil.exe -setreg CACRLOverlapPeriod "Hours"
 certutil.exe -setreg CACRLOverlapPeriodUnits 12
 certutil.exe -setreg CAValidityPeriod "Years"
 certutil.exe -setreg CAValidityPeriodUnits 5

Set up CRL distribution points:18.

 $CrlList = Get-CACrlDistributionPoint
 foreach ($Crl in $CrlList)
 {Remove-CACrlDistributionPoint -Uri $Crl.uri -Force}
 $URI = 'C:\Windows\System32\CertSrv\CertEnroll\ReskitIssuing CA.crl'
 Add-CACRLDistributionPoint -Uri $URI `
 -PublishToServer -PublishDeltaToServer -Force
 Add-CACRLDistributionPoint
 -Uri http://ca.reskit.org/pki/reskit.crl `
 -AddToCertificateCDP -Force
 Add-CACRLDistributionPoint
 -Uri file://ca.reskit.orgpki%3%8%9.crl `
 -PublishToServer -PublishDeltaToServer -Force
 Restart-Service Certsvc
 Start-Sleep -Seconds 15
 certutil.exe -crl

Restart the service and publish the CRL:19.

 # Step 19 - restart service then publish the CRL
 Restart-Service -Name CertSvc
 Start-Sleep -Seconds 15
 Certutil.exe -crl

Test the CRL:20.

 $WC = New-Object System.Net.WebClient
 $Url = 'http://ca.reskit.org/pki/ReskitIssuing CA.crl'
 $To = 'C:\ReskitIssuing CA.crl'
 $WC.DownloadFile($URL,$to)
 certutil -dump $to

Managing Windows Networking Services

[329]

How it works...
In step 1, you use Install-WindowsFeature to add the Certificate Services feature. As you
can see, a reboot is not required:

With step 2, you create here a string which you write to capolicy.inf in the folder
(C:\Windows). Windows uses this policy file to define some aspects of the CA policy that
relate to the certificate revocation list, an essential aspect of an enterprise PKI
implementations.

You use the Install-AdcsCertificationAuthority cmdlet, specifying several other
configuration items. These items include the common name for the CA, Reskit Root CA,
the type of CA (a StandaloneRootCA), the key length of the CA root key, 4096 bits, the
hash algorithm this CA is to use, SHA256, and a CA certificate validity period of 20 years.
Setting the -Confirm parameter to $false eliminates a confirmation popup. There is a
small bit of output indicating a successful installation:

Managing Windows Networking Services

[330]

In step 4, you use the certutil.exe Windows console application to set details of where
you plan to publish the CRL and details about how often you plan to update the CRL.
Certutil sets these values in the system's registry. The certificate service retrieves the
registry values at startup. Each time you call Certutil using the -setreg switch,
Certutil displays both the old value and the new value for each registry item. The final
call, for example, generates this output:

In step 5, you restart the certsvc service. Restart-Service produces no output from this
step. In step 6, you publish the CRL details, and view the CRL files, as follows:

Managing Windows Networking Services

[331]

To view the CRL information from the GUI execute the CRL file which displays the CRL
GUI like this:

Managing Windows Networking Services

[332]

If you click on the Revocation List tab, you see the current revocation list which is empty.
The CRL looks like this:

As you can see from this CRL GUI, there are currently no revoked certificates.

In step 7, you copy the CRL and the CA's certificate to the computer that is intended to
become an intermediate subordinate issuing CA (CA.Reskit.Org). There is no output from
this step. Once you complete this step, you can shut down the root server, you run the
remainder of the steps in the recipe from CA.Reskit.Org.

In step 8, you move the certificate and CRL files into a new folder C:\PKI. When you are
creating the files or moving them manually, you can always copy the files directly into the
C:\PKI folder and avoid this step.

Managing Windows Networking Services

[333]

In step 9, you use certutil.exe to publish the offline root CA you created earlier into the
Active Directory and add both the root CA certificate and the CRL into the certificate stores
on the local machine.

In step 10, you create a share for the CA certificate and CRL distribution:

With step 11, you install the Certificate Service components to the server. You also add the
management tools to the server. If you plan to manage the server remotely, consider
omitting the management tools. Note that this step only adds the Certificate Services
components, you perform installation in a later step. Installing the components looks like
this:

Managing Windows Networking Services

[334]

Although it may not be obvious, in step 11, you also installed IIS on the server (adding the
Web-Mgmt-Console feature implies adding all the other web server features). So to setup
the server to publish the CRL, in step 12, you need to add a new virtual directory to the IIS
Server and configure IIS to allow double-escaping:

In step 13, you create a capolicy.inf file, similarly to how you created this file on the root
CA server. There is no output. You finish the step by using the Install-
ADDSCertificationAuthority to make ca.reskit.org a subordinate issuing CA:

As you can see, installing the intermediate CA generated an error. This error message is
normal when installing a subordinate CA. To complete the installation of the CA, you need
to get the parent CA (the offline root CA) to issue a signed certificate for the subordinate
CA. Installing the CA created a certificate request file,
(C:\CA.Reskit.Org_ReskitIssuing CA.req). You next need to copy this certificate
request file from the subordinate CA computer to the offline root CA. As before, there are
many ways to get the request copied over to the root CA.

Managing Windows Networking Services

[335]

Once you have copied the certificate request to the root CA computer, you submit the
request for the certificate using the certificate request you created in step 13.

So having requested a certificate for CA.Reskit.ORG from the root CA, you need to issue
the certificate and copy it back to the CA.Reskit.Org computer. You can request the
certificate using the certreq command, but you need to use the GUI to issue the certificate,
which you do in step 15:

Once you issue and retrieve the certificate, you copy it to the subordinate issuing CA. There
is no output from the copy command in step 15. In step 16, you complete the installation of
your issuing CA by installing the just-issued and copied certificate, then starting the
certsvc service then checking to ensure the service started:

Managing Windows Networking Services

[336]

In step 17, you use the certutil.exe command to set up the details of the CRL and the
validity period for the certificates issued by the CA. Each call to certutil shows the old
and new value for each registry settings. Here is what the first call to certutil looks like:

In step 18, you configure the certificate revocation lists details. In step 19, you restart the
certsvc using the updated settings. It takes a few seconds after the service has started
before you can publish the CA's certificate revocation list, which looks like this:

Managing Windows Networking Services

[337]

And finally, you can test that the CA has issued the CRL and see what it contains. In step 20,
you create a web client and download the CRL. Then you use certutil.exe to dump the
CRL. The truncated output, with arrows pointing to key information (including the hashing
algorithm, the issuing CA, and the number of CRL entries is zero). It looks like this:

There's more...
In step 2, you create a CA and configure some settings. At the time of writing, best practice
seems to suggest that SHA256 and a key length of 4096 bits are acceptable. But things
change. Before deploying this recipe, research the latest best practice very carefully with
regards to encryption algorithms and key lengths.

In step 6, you publish the root CA server certificate revocation list and view the file. The
certificate and CRL files in the CertEnroll folder are binary so are not human readable.
The output from this step looks like this:

Managing Windows Networking Services

[338]

In step 7, you copy the CA certificate and CRL from the root CA to the subordinate. That
assumes network connectivity. In a production environment, you should always keep the
root CA offline and off any network. In this situation, you need some means to move the
two files to the subordinate CA computer such as a portable USB stick or drive.

In step 12, you did a basic setup of the CRL for your PKI. In production, you should
consider hardening the setup. For example, you could change the permissions on the PKI
folder to only all Reskit.Org administrators, or perhaps the certificate publishers group, to
be the only accounts with permissions to write to this folder. You may also consider
converting the PKI virtual directory into a separate IIS web application and run that
application in a new and different web pool.

This recipe allowed you to implement a basic working two-level PKI. At present, you need
to use a combination of PowerShell cmdlets, Windows console commands and the GUI.
Perhaps later versions of Windows Server can provide better cmdlet coverage for setting up
and managing certificates and certificate authorities.

Creating and managing AD users, groups,
and computers
Your active directory, as created in the Installing domain controllers and DNS recipe
authenticates users and computers. AD also makes use of group membership to simplify
authorization. In this recipe, you add, remove, and update users and computers. You also
create and remove groups and manage group membership as well as manage
organizational units. This recipe uses the cmdlets in the ActiveDirectory module. You
can use a more automated approach to adding users by following the Adding users to the
Active Directory using a CSV file recipe.

Managing Windows Networking Services

[339]

Getting ready
This recipe uses two working domain controllers (DC1 and DC2) in the Reskit.Org
domain.

How to do it...
Create a hash table for general user attributes:1.

 $Password = 'Pa$$w0rd'
 $PasswordSS = ConvertTo-SecureString `
 -String $Password `
 -AsPlainText -Force
 $NewUserHT = @{}
 $NewUserHT.AccountPassword = $PasswordSS
 $NewUserHT.Enabled = $true
 $NewUserHT.PasswordNeverExpires = $true
 $NewUserHT.ChangePasswordAtLogon = $false

Create two new users:2.

 New-ADUser @NewUserHT `
 -SamAccountName 'ThomasL' `
 -UserPrincipalName 'thomasL@reskit.org' `
 -Name 'ThomasL' `
 -DisplayName 'Thomas Lee (IT)'
 New-ADUser @NewUserHT `
 -SamAccountName 'RLT' `
 -UserPrincipalName 'rlt@reskit.org' `
 -Name 'Rebecca Tanner' `
 -DisplayName 'Rebecca Tanner (IT)'

Create an OU and move users into it:3.

 New-ADOrganizationalUnit -Name 'IT' `
 -DisplayName 'Reskit IT Team' `
 -Path 'DC=Reskit,DC=Org'
 Move-ADObject `
 -Identity 'CN=ThomasL,CN=Users,DC=Reskit,DC=ORG' `
 -TargetPath 'OU=IT,DC=Reskit,DC=Org'
 Move-ADObject `
 -Identity 'CN=Rebecca Tanner,CN=Users,DC=Reskit,DC=ORG' `
 -TargetPath 'OU=IT,DC=Reskit,DC=Org'

Managing Windows Networking Services

[340]

Create a third user in the IT OU:4.

 New-ADUser @NewUserHT `
 -SamAccountName 'JerryG' `
 -UserPrincipalName 'jerryg@reskit.org' `
 -Description 'Virtualization Team' `
 -Name 'JerryGarcia' `
 -DisplayName 'Jerry Garcia (IT)' `
 -Path 'OU=IT,DC=Reskit,DC=Org'

Add and then remove users two ways:5.

 New-ADUser @NewUserHT `
 -SamAccountName 'TBR' `
 -UserPrincipalName 'tbr@reskit.org' `
 -Name 'TBR' `
 -DisplayName 'User to be removed' `
 -Path 'OU=IT,DC=Reskit,DC=Org'
 New-ADUser @NewUserHT `
 -SamAccountName 'TBR2' `
 -UserPrincipalName 'tbr2@reskit.org' `
 -Name 'TBR2' `
 -DisplayName 'User to be removed' `
 -Path 'OU=IT,DC=Reskit,DC=Org'
 # Remove get | remove
 Get-ADUser -Identity 'CN=TBR,OU=IT,DC=Reskit,DC=Org' |
 Remove-ADUser -Confirm:$false
 # Remove directly
 Remove-ADUser -Identity 'CN=TBR2,OU=IT,DC=Reskit,DC=Org' `
 -Confirm:$false

Update and display a user:6.

 Set-ADUser -Identity ThomasL `
 -OfficePhone '44168555420' `
 -Office 'Cookham HQ' `
 -EmailAddress 'ThomasL@Reskit.Org' `
 -GivenName 'Thomas' `
 -Surname 'Lee' `
 -HomePage 'Https://tfl09.blogspot.com'
 Get-ADUser -Identity ThomasL `
 -Properties Office,OfficePhone,EmailAddress

Managing Windows Networking Services

[341]

Create and populate a group:7.

 New-ADGroup -Name 'IT Team' `
 -Path 'OU=IT,DC=Reskit,DC=org' `
 -Description 'All members of the IT Team' `
 -GroupScope DomainLocal
 $ItUsers = Get-ADUser -Filter * `
 -SearchBase 'OU=IT,DC=Reskit,DC=Org'
 Add-ADGroupMember -Identity 'CN=IT Team,OU=IT,DC=Reskit,DC=org' `
 -Members $ItUsers

Add a computer to the AD:8.

 New-ADComputer -Name 'Wolf' `
 -DNSHostName 'wolf.reskit.org' `
 -Description 'One for Jerry'`
 -Path 'OU=IT,DC=Reskit,DC=Org' `
 -OperatingSystemVersion 'Window Server 2016
 Data Center'

How it works...
This recipe uses some AD cmdlets contained in the ActiveDirectory module. The recipe
shows how to do basic management of AD objects using PowerShell.

In step 1, you create a hash table of common user properties. You use this hash table to hold
some of the common user properties. There is no output from this step.

In step 2, you add two users to the AD. Note that the parameters to New-ADUser include the
properties set in the $NewUserHT hash table and the parameters you specify when you call
New-ADUser. Note that, by default, the Add-NewADUser adds the new user into the the
Users container in the root of the AD. There is no output from this step, although you can
observe the two newly added users using the Active Directory Users and Computers MMC
tool:

Managing Windows Networking Services

[342]

You do not need to create a user then move the user into the correct OU. Instead, you can
use the -Path parameter to specify the OU in which you wish to create the user. In step 4,
you create another user, this time directly in the IT organizational unit. As with previous
steps, there is no output from adding this user. If you wish more output, specify the
parameter -Passthru to New-ADuser.

Managing Windows Networking Services

[343]

Creating this third user with -Passthru looks like this:

In step 5, you create two users that you then delete. Step 5 shows two different ways you can
remove a user. If you use the first pattern, you first get the object (the user to be removed)
first, then delete it. Running this step from the console helps you to ensure you are deleting
the correct user. The second approach works well if you are certain of no typos in the value
you give to the -Identity parameter (the distinguished name of the user you wish to
delete).

In step 6, you update a user's details specifying office and office phone, and so on. Then you
retrieve the user's details from the AD:

Managing Windows Networking Services

[344]

In step 7, you create a new domain local security group and populate it with the three users
in the IT OU. There is no output from these commands. Once you have completed the first
seven steps, you can observe the results using the Active Directory Users and Computers
MMC console, like this:

In step 8, you add a new computer, Wolf, to your AD. There is no output from this step.

There's more...
In step 8, you just added a computer to AD. You could also create a security group, say IT
group computers and add the new computer to the group (and don't forget to add other IT
group systems to the new security group).

Removing the computer from AD is also quite simple: you use the Remove-ADComputer
cmdlet (Or use the Get-ADComputer | Remove-ADComputer pattern).

Managing Windows Networking Services

[345]

Adding users to AD using a CSV file
As mentioned several times in this book, https:/ / www.spiceworks. com/ has a busy
PowerShell support forum (accessible at https:/ /community. spiceworks. com/
programming/powershell). A frequently asked (and answered) question is: How do I add
multiple users using an input file? This recipe does just that. You start with a simple CSV
file containing the details of the users you wish to add. This script uses a CSV file and adds
the users contained in the CSV.

Getting ready
This recipe assumes you have a domain setup and that you have created the IT
organizational unit.

How to do it...
Import a CSV file containing the details of the users you want to add to AD:1.

 $Users = Import-CSV -Path C:\FooUsers.Csv

Add the users using the CSV:2.

 ForEach ($User in $Users) {
 $Prop = @{}
 $Prop.GivenName = $User.Firstname
 $Prop.Initials = $User.Initials
 $Prop.Surname = $User.Lastname
 $Prop.UserPrincipalName =
 $User.UserPrincipalName+"@reskit.org"
 $Prop.Displayname = $User.firstname.trim() + " " +
 $user.lastname.trim()
 $Prop.Description = $User.Description
 $Prop.Name = $User.Alias
 $Prop.AccountPassword = $(ConvertTo-SecureString `
 -AsPlainText $user.password -Force)
 $Prop.ChangePasswordAtLogon = $true
 # Now create the user
 New-ADUser @Prop -Path 'OU=IT,DC=Reskit,DC=ORG' `
 -Enabled:$true
 # Finally, display user created
 "Created $($Prop.Displayname)"
 }

https://www.spiceworks.com/
https://www.spiceworks.com/
https://www.spiceworks.com/
https://www.spiceworks.com/
https://www.spiceworks.com/
https://www.spiceworks.com/
https://www.spiceworks.com/
https://www.spiceworks.com/
https://www.spiceworks.com/
https://www.spiceworks.com/
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell
https://community.spiceworks.com/programming/powershell

Managing Windows Networking Services

[346]

How it works...
In step 1, you import the CSV file. The recipe imports the CSV file from the C:\ folder,
adjust this step to accord with where you place the CSV file. The CSV file, which you can
create using Excel or Notepad, looks like this:

Importing the CSV file generates no output. In step 2, you iterate through the users in the
CSV. For each user in the file, you generate a property hash table ($Prop) which you use as
input to the New-ADUser cmdlet. After you add the user, you display a message logging
that the script has added the requested user. If you run the entire recipe as a single script,
saved as Recipe10-11.ps1, and using the users.csv file shown here, then the output
looks like this:

There's more...
There are many variations on this theme. You can expand the data included in the CSV file
to add more properties to the AD user. For example, you could include phone numbers,
office details, and more. You could also extend the CSV to include lists of groups of which
any user should be a member. You could also extend the script and create more objects for
the new users to use: a personal folder on a server, some SharePoint server space, and an
Exchange mailbox. If you have Skype for Business, you could enable the user, possibly by
including some Skype for Business information for the user in the CSV.

Managing Windows Networking Services

[347]

Reporting on AD users
In this recipe, you generate a report on the users in your AD. Because the range of things
you might wish to report on, the first step in this recipe defines a function: Get-
ReskitUser. This function collects a range of information from the AD and returns it as a
custom object. This approach allows you to customize this recipe further, for example
reaching into Exchange, SharePoint, or Skype for Business and add additional properties to
the object generated that Get-Reskituser returns. The recipe uses the Get-ReskitUser
function and creates a report on aspects of the users in AD.

Getting ready
This recipe relies on having users defined and active. The users added using previous
recipes serves as a good base. You should use a client system, have the users in your AD
and log on to the computer. Also ensure that the LastLogonDate AD attribute for the
computer is populated fully. Populating other fields, such as Office would also be useful to
make the reporting a bit more realistic.

How to do it...
Define a function to return details on our AD Users:1.

 Function Get-ReskitUser {
 # Get PDC Emulator DC
 $PrimaryDC = Get-ADDomainController -Discover `
 -Service PrimaryDC
 # Get Users
 $ADUsers = Get-ADUser -Filter * -Properties * `
 -Server $PrimaryDC
 # Iterate through them and create $Userinfo hash table:
 Foreach ($ADUser in $ADUsers)
 {
 # Create a userinfo HT
 $UserInfo = [Ordered] @{}
 $UserInfo.SamAccountname =
 $ADUser.SamAccountName
 $Userinfo.DisplayName = $ADUser.DisplayName
 $UserInfo.Office = $ADUser.Office
 $Userinfo.Enabled = $ADUser.Enabled
 $userinfo.LastLogonDate = $ADUser.LastLogonDate
 $UserInfo.ProfilePath = $ADUser.ProfilePath

Managing Windows Networking Services

[348]

 $userinfo.ScriptPath = $ADUser.ScriptPath
 $UserInfo.BadPWDCount = $ADUser.badPwdCount
 New-Object -TypeName PSObject -Property $UserInfo
 }
 }

Get the users:2.

 $RKUsers = Get-ReskitUser

Build the report header:3.

 $RKReport = ''
 $RkReport += "*** Reskit.Org AD Report`n"
 $RKReport += "*** Generated [$(Get-Date)]`n"
 $RKReport += "*******************************`n`n"

Report on Disabled users:4.

 $RkReport += "*** Disabled Users`n"
 $RKReport += $RKUsers |
 Where-Object {$_.Enabled -NE $true} |
 Format-Table `
 -Property SamAccountName, Displayname |
 Out-String

Report users who have not recently logged on:5.

 $OneWeekAgo = (Get-Date).AddDays(-7)
 $RKReport += "*** "Enabled users Not logged in" +
 "in past 7 days`n"
 $RkReport += $RKUsers |
 Where {$_.Enabled -and $_.LastLogonDate
 -le $OneWeekAgo} |
 Sort-Object -Property LastlogonDate |
 Format-Table -Property Displayname,
 lastlogondate |
 Out-String

Users with high invalid password attempts:6.

 $RKReport += "*** High Number of Bad
 Password Attempts`n"
 $RKReport += $RKUsers | Where-Object BadPwdCount -ge 5 |
 Format-Table `
 -Property SamAccountName, BadPwdCount |
 Out-String

Managing Windows Networking Services

[349]

Display the report:7.

 $RKReport

How it works...
In step 1, you create the Get-ReskitUser function. This function gets all the users in the
domain from the server acting as the PDC emulator. The function creates a hash table based
on the what is returned from Get-AdUser. Finally, the function converts the hash table or
each user into a PSCustom object which it returns to the caller.

In step 2 through step 6, you construct the separate parts of the report: users who are
disabled, users who have not recently logged on, and users who have had more than five
failed attempts to enter a valid password. There is no output from these steps.

In step 7, you display the report, which looks like this:

Managing Windows Networking Services

[350]

There's more...
You have scope to expand this basic reporting script. You could, for example, compare the
user objects returned from each DC and report on any user object that AD has not
replicated. You could also generate an email message and mail the report to key people in
your organization.

Finding expired computers in AD
Expired computers, computers that have not logged on recently, can be something you
need to investigate. A client computer that has not logged on to the domain for, say, a
month, could have been stolen. Such a computer could also be an under-used asset that is a
candidate for redeployment. If it's a server that has not logged in for a month, it could
indicate a computer that is non-functioning and one you should investigate.

This recipe is a variation on the Report on AD Users recipe.

Getting ready
This recipe needs computer accounts in the AD.

How to do it...
Build the report header:1.

 $RKReport = ''
 $RkReport += "*** Reskit.Org AD Unused
 + "Computer Report`n"
 $RKReport += "*** Generated [$(Get-Date)]`n"
 $RKReport += "***********************************`n`n"

Report on computer accounts that have not logged in in past 14 days:2.

 $RkReport += "*** Machines not logged on in past 14 days`n"
 $FortnightAgo = (Get-Date).AddDays(-14)
 $RKReport += Get-ADComputer `
 -Properties lastLogonDate `
 -Filter 'lastLogonDate -lt $FortnightAgo' |
 Sort-Object -Property lastLogonDate |
 Format-Table -PropertyName, lastLogonDate |

Managing Windows Networking Services

[351]

 Out-string

Report on computer accounts that have not logged in the past month:3.

 $RkReport += "*** Machines not logged on in past month`n"
 $AMonthAgo = (Get-Date).AddMonths(-1)
 $RkReport += Get-ADComputer `
 -Properties lastLogonDate `
 -Filter 'lastLogonDate -lt $AMonthAgo' |
 Sort-Object -Property lastLogonDate |
 Format-Table -Property Name, LastLogonDate |
 Out-String

Display the report:4.

 $RKReport

How it works...
Generating this report involves several steps. In step 1, you create the report header. In step 2
and step 3 you report on computers that have not logged on for more than a fortnight (2
weeks) and those that have not logged on for more than a month. These steps generate no
output.

In step 3, you display the report showing the computers that have not logged on for more
than two weeks, and for more than a month. The first set might indicate people who are on
holiday, or who may be working in another office or from home for that period. Machines
that do not log on for more than a month are candidates for further investigation.

There's more...
There are many variations on this recipe. You could just report on computers that have not
logged on for more than 90 days either as an alternative to the logging you are doing in this
recipe or in addition to it. You might decide that computers not used a fortnight ago are not
interesting to you and so you could drop that piece of the report.

Managing Windows Networking Services

[352]

When a computer logs on (and for that matter when a user logs on), the DC that performs
the logon records the last logon time. By default, AD does not replicate this attribute to
other DCs. Thus, it is entirely possible that a computer might never have recorded a logon
against the DC you use to generate this report. If you have multiple DCs, consider
extending this recipe to obtain computer logon details from all the domain controllers in the
domain and report across all of them.

Creating a privileged user report
When you add a user to a group (and the user re-logs on), the user acquires additional
permissions and rights. That may be a good thing! Group membership enables the user to
perform job-related duties. However, adding the user to the Enterprise Admins group,
for example, provides that user with rights over most of your forest. A user who acquires
the membership to such high privilege groups may not have benign intentions and could
represent a serious risk. The report you generate using this recipe shows the privileged
users and any changes that someone has made to the group membership.

Getting ready
You need a DC on which to run this report.

How to do it...
Create an array for privileged users:1.

 $PUsers = @()

Query the Enterprise Admins/Domain Admins/Scheme Admins groups for2.
members and add to the $Pusers array:

 # Enterprise Admins
 $Members = Get-ADGroupMember `
 -Identity 'Enterprise Admins' -Recursive |
 Sort-Object -Property Name
 $PUsers += foreach ($Member in $Members) {
 Get-ADUser -Identity $Member.SID -Properties * |
 Select-Object
 -Property Name,
 @{Name='Group';expression={'Enterprise Admins'}},

Managing Windows Networking Services

[353]

 WhenCreated, LastlogonDate
 }
 # Domain Admins
 $Members = Get-ADGroupMember `
 -Identity 'Domain Admins' -Recursive|
 Sort-Object -Property Name
 $PUsers += Foreach ($Member in $Members)
 {Get-ADUser -Identity $member.SID -Properties * |
 Select-Object -Property Name,
 @{Name='Group';expression={'Domain Admins'}}, `
 WhenCreated, Lastlogondate,SamAccountName
 }
 # Schema Admins
 $Members = Get-ADGroupMember `
 -Identity 'Schema Admins' -Recursive |
 Sort-Object Name
 $PUsers += Foreach ($Member in $Members) {
 Get-ADUser -Identity $member.SID -Properties * |
 Select-Object -Property Name,
 @{Name='Group';expression={'Schema Admins'}}, `
 WhenCreated, Lastlogondate,SamAccountName
 }

Create the basic membership report:3.

 $Report = ""
 $Report += "*** Reskit.Org AD Privileged
 User Report`n"
 $Report += "*** Generated [$(Get-Date)]`n"
 $Report += "***********************************"
 $Report += $PUsers| Format-Table -Property Name,
 WhenCreated,
 Lastlogondate `
 -GroupBy Group |
 Out-String
 $Report += "`n"

Find out what has changed since last time this report ran4.

 $ExportFile = "c:\Foop\users.clixml"
 $OldFile = Try {Test-Path $ExportFile} Catch {}
 if ($OldFile) # if the file exists, report
 against changes
 {
 # Import the results from the last time the
 # script was executed
 $OldUsers = Import-Clixml-Path -Path $ExportFile
 # Identify and report on the changes

Managing Windows Networking Services

[354]

 $Changes = "*** Changes to Privileges
 User Membership`n"
 $Diff = Compare-Object
 -ReferenceObject $OldUsers `
 -DifferenceObject $PUsers
 If ($diff)
 {$Changes += $diff |
 Select-Object -Property @{Name='Name' ;expression=
 {$_.InputObject.Name}},
 @{Name='Group';expression=
 {$_.InputObject.Group}},
 @{Name='Side' ;expression=
 {If ($_.SideIndicator -eq '<=') `
 {'REMOVED'} Else
 {'ADDED'}}} | Out-String
 }
 Else
 {
 $LCT = (Get-Childitem
 -Path $ExportFile).LastWriteTime
 $Changes += "No Changes since previous
 Report [$LCT]"
 }
 }
 Else # Old file does not exist
 {
 $Changes += "EXPORT FILE NOT FOUND -
 FIRST TIME EXECUTION?"
 }
 $Report += $Changes

Display the report5.

 $Report

Save results from this execution (optional!)6.

 Export-Clixml -InputObject $PUsers -Path $ExportFile

How it works...
This recipe works by first obtaining a set of privileged users. The recipe creates a report of
the users who are members of certain groups that have high privilege levels. The recipe
then compares the privileged users against an earlier set of users that you previously saved.
After generating the report, this recipe saves the current list of privileged users.

Managing Windows Networking Services

[355]

In step 1, you create an array used later in this recipe.

With step 2, you query the AD to discover members of the some key groups (Enterprise
Admins, Domain Admins, and Schema Admins) and add them to the array created in the
prior step. This array contains members of those key groups.

In step 3, you use the list of now-privileged users to create a simple report of members of
each of the three key groups.

With step 4, you retrieve the set of privileged users from some prior time and compare the
set with users who are currently in those groups. You add the changes in privileged users to
the report. Note that with this step, you convert the returned side indicator property into
something more meaningful in this context (that is, a user has been ADDED or REMOVED
to/from a sensitive group since the last time you ran this report.

The first four steps in this recipe generate no output. With step 5, you display the report to
the console. The report looks like this:

Managing Windows Networking Services

[356]

There's more...
This recipe examined membership in three key groups: Enterprise Admins, Domain
Admins, and Schema Admins. There are other groups that you could include in this report.
These include Hyper-V Administrators, Storage Replica Administrators, Key
Admins, Enterprise Key Admins, DNSAdmins, and DHCP Administrators.
Applications such as Exchange, SharePoint, and Skype for Business also define application-
specific administrative groups as the basis of Role-Based Admin Control (RBAC) for those
applications. You may wish to add membership of these potentially sensitive groups to
your report.

In step 2, you build up an array of privileged users in each of three groups. In the recipe,
you do this group by group. Should you decide to expand this recipe to include more
groups, you may wish to refactor step 2 to be more general so as to cut down on the number
of lines of PowerShell needed.

9
Managing Network Shares

This chapter covers the following recipes:

Securing your SMB file server
Creating and securing SMB shares
Accessing SMB shares
Creating an iSCSI target
Using an iSCSI target
Creating a scale-out SMB file server
Configuring a DFS Namespace
Configuring DFS Replication

Introduction
Sharing data across a network has been a feature of computer operating systems from the
very earliest days of networking. This chapter looks at Windows Server 2016 features that
enables you to share files and folders and to use the data that you have shared.

Microsoft's LAN Manager was the company's first network offering. It enabled client
computers to create, manage, and share files in a secure manner. The protocol that LAN
Manager used to provide this client/server functionality was an early version of the Server
Message Block (SMB) protocol.

SMB is a file-level storage protocol that enables you to share files and folders securely and
reliably. To increase reliability, you can install a cluster and cluster the file server role. This
is an active-passive solution.

Managing Network Shares

[358]

A Scale-Out File Server (SOFS) is a clustered file service where all nodes are active. With
SMB 3, an SOFS provides continuous availability to files for any file-based application.
Applications can include productivity applications (holding user documents, spreadsheets,
and so on.) as well as both Hyper-V and SQL Server (to hold VHD/VHDX files, VM
configuration details, and SQL databases).

This chapter shows you how you can implement and leverage the features of sharing data
between systems, including SMB contained in Windows Server 2016. In the recipes in this
chapter, you begin with creating and using basic SMB file sharing. Then you build an iSCSI
infrastructure which you leverage in building an SOFS. You finish by looking at the
Distributed File System (DFS). With DFS, you can provide the means to connect to
multiple shared folders, held on a variety of servers through DFS Namespace. A DFS
Namespace is the virtual view of the files and folders with a DFS installation.

In the first recipe, Securing your SMB file server, you harden the security on your SMB file
server. Then, in the recipes Creating and securing SMB shares and Accessing SMB shares, you
set up simple file folder sharing and access the shared files.

With the Creating an iSCSI target recipe, you create an iSCSI target on server SRV1, while in
the Using an iSCSI target recipe, you make use of that shared iSCSI disk from FS1. iSCSI is a
popular Storage Area Networking (SAN) technology, and these recipes show you how to
use the Microsoft iSCSI initiator and target features.

A key feature of Hyper-V in Windows Server 2016 and beyond is the use of SMB 3.x and
SOFS. You can utilize an SOFS to hold Hyper-V virtual disks and VM configuration files as
well as SQL databases. When combined with shared storage, SOFS provides you with good
redundancy and improved performance. You can implement a SOFS as an inexpensive
alternative to the fully-fledged SAN. In Making SMB shares highly available recipe, you set up
a file sharing scale-out cluster (using servers FS1 and FS2) and show you can a file server
using shared storage provided via iSCSI.

There are two separate features under the banner of the DFS. DFS Namespaces allows you
to create a logical folder structure that you distribute across multiple computers. DFS
Replication replicates data held on DFS target folders to provide a transparent fault tolerant
and load balancing DFS implementation. In the Configuring a DFS Namespace recipe, you set
up a domain-based DFS Namespace. And then you configure and set up DFS Replication in
the Configuring DFS Replication recipe.

There are a number of servers involved in the recipes in this chapter—each recipe describes
the specific serves you use for that recipe. As with other chapters, all the servers are
members of the Reskit.Org domain.

Managing Network Shares

[359]

Securing your SMB file server
The first step in creating a file server is to harden it. A file server can contain sensitive
information, and you should take reasonable steps to avoid some of the common attack
mechanisms and adopt best security practice. Security is a good thing but be careful! By
locking down your SMB file server too hard, you can lock some users out of the server. SMB
1.0 has a number of weaknesses and in general should be removed. But, if you disable SMB
1.0, you may find that older computers (for example running Windows XP) lose the ability
to access shared data.

Getting ready
This recipe helps you to harden a single file server, FS1, which has locally attached storage.
The server is domain joined and has the full GUI. FS1 has only the default services, plus the
FileServer feature loaded. To add the FileServer feature to Windows, you could do
this:

 Install-WindowsFeature -Name FS-FileServer `
 -IncludeManagementTools

How to do it...
In this recipe, you harden the FS1 server.

Retrieve the SMB server settings:1.

 Get-SmbServerConfiguration

Turn off SMB1:2.

 Set-SmbServerConfiguration `
 -EnableSMB1Protocol $false `
 -Confirm:$false

Turn on SMB signing and encryption:3.

 Set-SmbServerConfiguration `
 -RequireSecuritySignature $true `
 -EnableSecuritySignature $true `
 -EncryptData $true `
 -Confirm:$false

Managing Network Shares

[360]

Turn off default server and workstations shares:4.

 Set-SmbServerConfiguration -AutoShareServer $false `
 -AutoShareWorkstation $false `
 -Confirm:$false

Turn off server announcements:5.

 Set-SmbServerConfiguration -ServerHidden $true `
 -AnnounceServer $false `
 -Confirm:$false

Restart the server service with the new configuration:6.

 Restart-Service -Name lanmanserver

How it works...
In step 1, you get the SMB server's configuration information. The Get-
SmbServerConfiguration cmdlet in Windows Server 2016 returns 43 separate
configuration properties. You can change some of these to harden your SMB server or to
accommodate unique aspects of your infrastructure. Some of these properties, however, are
relatively obscure—if you do not know what they do, consider leaving them at their default
values.

In step 2, you use the Get-SMBServerConfiguration cmdlet and disable the SMB1
protocol. As Microsoft says (see https:/ /blogs. technet. microsoft. com/ filecab/ 2016/
09/16/stop-using- smb1/), SMB1 isn't safe.

Improvements in SMB3 include pre-authentication integrity, encryption, and better
message signing. In step 3, you set your SMB server to enable and require SMB signing and
to require encryption of data transfer. SMB signing ensures that the SMB components sign
every SMB data packet. SMB signing is particularly useful to reduce the risk of a man-in-
the-middle attack. Requiring data encryption increases the security of your organization's
data as it travels between server and client computers. A benefit of using SMB encryption
versus something like IPSec is that deployment is just a matter of adjusting SMB server
configuration. Once you find that you can safely turn off SMB1, consider removing the SMB1
feature from Windows, using Remove-WindowsFeature -Feature FS-SMB1.

https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/
https://blogs.technet.microsoft.com/filecab/2016/09/16/stop-using-smb1/

Managing Network Shares

[361]

Windows has a set of administrative shares it creates by default. In most cases, you can
disable these. You turn off these default shares with step 4. With step 5, you also turn off
server announcements which reduce the visibility of your file server to hackers. It's
important to note that when setting up DFS Replication, the DFS Replication cmdlets
require access to these administrative shares.

To make these changes effective, in step 6, you restart the server service, lanmanserver.
Note that restarting the service closes any active connections. Ensure you restart during a
scheduled maintenance outage or when you are certain the server is inactive.

There's more...
In this recipe, you hardened a full installation of Windows Server 2016. To further harden
these various role servers, you should consider installing Server Core. Or if you did do a
full installation, then once you have completed the setup of the server, remove the GUI
elements and. In effect, revert back to a server core installation.

In step 2, you disabled SMB1. SMB1 is an older and less secure version of the SMB protocol
and could represent an attack vector. The downside to disabling is that older client
computers only support SMB1 and could cease to access shared data if you disable SMB1.
Older clients include Windows XP and Windows Server 2003. Windows Vista/Server 2008
and later versions of Windows have build in support for SMB2. So as long as long as you are
running fully supported clients and server systems, you should be able to turn off SMB1.

For large organizations, you should consider using the AuditSmb1Access configuration
setting. This setting logs access to your server via SMB1. To discover any older SMB clients
that would be affected by disabling SMB1 you can search the SMB event log.

In step 3, you configured encryption for the file server. By default, SMB3 uses the AES-CCM
algorithm. This algorithm provides both encryption and packet signing for encrypted file
shares. Note that you can set up encryption on an individual share or for all shares on the
server. You may choose to not force encryption on all shares, rather on just shares that hold
more sensitive data. Encrypting and signing packets requires additional CPU resource to
carry out the hash calculation and to encrypt the packets. Packet signing and encryption
decreases SMB performance but provides additional security.

Managing Network Shares

[362]

Creating and securing SMB shares
For generations, administrators have used the net.exe command to set up shared folders
and a lot more. These continue to work but you may find the new cmdlets easier to use,
particularly if you are automating large-scale SMB server deployments.

This recipe looks at creating and securing shares on a Server 2016 platform using the
PowerShell SMBServer module.

Getting ready
For this recipe, you use the file server (FS1) that you hardened in the recipe Securing your
SMB server. On this server, you share out folders on the file server. Later, in the recipe
Accessing SMB shares, you access the shared folders. Ensure you have created the C:\Foo
folder on FS1. This recipe uses a security group, IT Management which you create in the
Reskit.Org AD (or use a different group).

How to do it...
Discover the existing shares and access rights:1.

 Get-SmbShare -Name * |
 Get-SmbShareAccess |
 Sort-Object -Property Name |
 Format-Table -GroupBy Name

Share a folder:2.

 New-SmbShare -Name foo -Path C:\foo

Update the share's description:3.

 Set-SmbShare -Name foo `
 -Description 'Foo share for IT' `
 -Confirm:$False `

Managing Network Shares

[363]

Set the folder enumeration mode:4.

 Set-SMBShare -Name foo `
 -FolderEnumerationMode AccessBased `
 -Confirm:$false

Set the encryption on the foo share:5.

 Set-SmbShare -Name foo -EncryptData $true `
 -Confirm:$false

Set and view share security:6.

 Revoke-SmbShareAccess -Name foo `
 -AccountName 'Everyone' `
 -Confirm:$false | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Read `
 -AccountName
 'Reskit\ADMINISTRATOR' `
 -ConFirm:$false | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Full `
 -AccountName 'NT
 Authority\SYSTEM' `
 -Confirm:$False | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Full `
 -AccountName 'CREATOR OWNER' `
 -Confirm:$false | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Read `
 -AccountName 'IT Team' `
 -Confirm:$false | Out-Null
 Grant-SmbShareAccess -Name foo -AccessRight Full `
 -AccountName 'IT Management' `
 -Confirm:$false | Out-Null

Review share access:7.

 Get-SmbShareAccess -Name foo

Managing Network Shares

[364]

How it works...
In step 1, you get all the current shares on FS1 and it also displays the users/groups that
have access to each share. Having turned off administrative shares in an earlier recipe, you
see just two shares. A previous recipe created one of the shares (Backup). The other share is
the IPC$ share which Windows uses for RPC calls. The output looks like this:

In step 2, you share the C:\foo folder, like this:

In steps 3, step 4, and step 5, you set properties of the new share. You give the share a
description, set the folder enumeration mode and set the server to encrypt any data
transferred to/from this share. There is no output from these steps.

In step 6, you set the security permissions on the share. You begin by removing the default
read permission granted to Everyone. Then you grant specific permissions to the share.
These steps give read access to the share to all users in the IT Team group, and full access
to the IT Management group members. There was no output from these four steps.

Managing Network Shares

[365]

In step 7, you display the permissions on the foo share:

There's more...
The IPC$ share, shown in step 1, is also known as the null session connection. This session
connection enables anonymous users to enumerate the names of domain accounts and
enumerate network shares. The lanmanserver service creates this share by default
although you can turn it off. The IPC$ share is also used to support named pipe
connections to your server.

For details about IPC$ share, see https:/ /support. microsoft. com/en-
us/help/ 3034016/ ipc- share- and-null- session- behavior- in-windows.
Be careful should you chose to turn off the IPC$ share—test the resultant
configuration very carefully.

In step 6, you set the share permissions. In this recipe, you create share permissions that
mirror the permissions on the underlying folder. As ever when dealing with permissions,
remove anything you do not explicitly need. At the same time, test all security settings very
carefully. Small changes can have a significant impact.

Accessing SMB shares
In the recipe Creating and securing SMB shares, you set up the shared files on the FS1 server.
In this recipe, you access and use the shared folders.

https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows

Managing Network Shares

[366]

Getting ready
This recipe uses two servers—on one (FS1) you previously shared a few folders. In this
recipe, you also utilize those shared files from server DC1. As with all recipes in this book,
feel free to change the servers and folders being shared and used. Ensure you have a
C:\Foo folder on FS1 created and populated with a few test files.

This recipe also uses a file on the C:\Foo folder on FS1—Marsinstaller.exe. This
executable is created using the Creating an Azure backup recipe in Chapter 5, Managing
Server Backup chapter. Feel free to use a different file and update step 8 appropriately.

How to do it...
Examine the SMB client's configuration:1.

 Get-SmbClientConfiguration

You will require SMB signing from the client. You must run this command from2.
an elevated console on the client computer:

 Set-SmbClientConfiguration `
 -RequireSecuritySignature $True `
 -Confirm:$false

Examine SMB client's network interface:3.

 Get-SmbClientNetworkInterface | Format-Table

Examine the shares provided by FS1:4.

 net view \\FS1

Create a drive mapping, mapping the r: to the share on server FS1:5.

 New-SmbMapping -LocalPath r: `
 -RemotePath \\FS1.Reskit.Org\foo

View the shared folder mapping:6.

 Get-SmbMapping

Managing Network Shares

[367]

View the shared folder contents:7.

 Get-ChildItem -Path r:

Run a program from the shared file:8.

 R:\MarsInstaller.exe

View existing connections (Note: you need to run this in an elevated console):9.

 Get-SmbConnection

What files are open on FS1? If any files are open you view them by doing this on10.
FS1:

 Get-SmbOpenFile

How it works...
In step 1, you get and examine the SMB client's configuration. The SMB client's
configuration is similar to the SMB server's properties you explored in the first step of the
Securing your SMB server recipe. There are fewer client-side properties, as you can see here:

Managing Network Shares

[368]

With step 2, you modify the SMB client to require SMB signing. There is no output from this
step. In step 3, you examine the network interfaces your client system uses to carry SMB
traffic:

In step 4, you examine from the client the shares provided by the file server FS1. You use the
net view command. There does not appear to be any cmdlet that can do this in the same
way as the net command. The output from using the net command looks like this:

In step 5, you use New-SmbMapping to map a local drive (r:) to the
\\fs1\.reskit.org\foo share, which looks like this:

In step 6, you view the current drive mappings on the client computer, which looks like this:

Managing Network Shares

[369]

After creating the drive mapping, you can use all the normal cmdlets to access data on the
r: drive. In step 7, you view the contents of r:.

In step 8, you run a program on the shared drive. The details of this program (the Mars
installer) are not the point here. In running a program, you have used a file.

In step 9, you then see the results of running the program. On the file server (FS1) you use
the Get-SmbConnection cmdlet to see the files open on the server, which looks like this:

Knowing who connects to your file server can be useful, but even more useful is knowing
what files they are accessing. In step 10 you use the Get-SmbOpenFile cmdlet to show the
open files:

Managing Network Shares

[370]

There's more...
In step 4, you made use of net.exe to run the net view command. The cmdlet Get-
SMBShare does not have a -ComputerName parameter that might enable you to retrieve
shared folders from a remote computer. You could create a CIM session to fs1, and use
Get-SMBShare against the CIM session to return the remote shares. However, doing that
requires either the user to have administrative rights to the file server, or setting up a less-
privileged end point on fs1 that non-privileged users can access. Using net.exe is another
great example of where the old commands still have great value (and they perform a bit
quicker) especially at the command line.

In step 10, you used Get-SmbOpenFile to see the files open on a file server. As you can see
above, details of the open file and the computer making the connection, are not clearly
shown. Instead of a file name, you get a FileId which is not clearly related to the actual
file.

Creating an iSCSI target
iSCSI is an industry standard protocol which implements block storage over a TCP/IP
network. Windows sees an iSCSI Logical Unit Number (LUN) as a locally attached disk.
You can manage the disk just like locally attached storage.

Windows Server 2016 includes both iSCSI target (server) and iSCSI initiator (client) features.
You set up an iSCSI target on a server and then use an iSCSI initiator on a client system to
access the iSCSI target. You can use both Microsoft and 3rd party initiators and targets,
although if you mix and match you need to test very carefully that the combination works
in your environment.

With iSCSI, a target is a single storage unit (effectively a disk) that the client computer
accesses using the iSCSI protocol. An iSCSI target server hosts one or more targets where
each iSCSI target is equivalent to a LUN on a Fiber Channel SAN. The iSCSI initiator is a
built-in component of Windows Server 2016 (and Windows 10). The iSCSI target feature is
one you install optionally on Windows Server 2016.

You could use iSCSI in a cluster of Hyper-V servers for a Cluster Shared Volume (CSV).
The servers in the cluster can use the iSCSI initiator to access an iSCSI target providing
shared storage. For a SOFS, this share information can hold the virtual hard drives and
configuration information for Hyper-V virtual machines as well as SQL Server databases.
The shared iSCSI target is shared between nodes in a failover cluster enabling the VMs to be
highly available.

Managing Network Shares

[371]

Getting ready
In this recipe, you install the iSCSI target feature and set up a target on the server SRV1.
SRV1 also requires an additional disk that you use to hold the target, the I: on the SRV1
server. A recipe in Chapter 4, Managing Printers made use of a second drive on SRV1 for
backup purposes—the I: drive is a new and separate drive for this recipe.

How to do it...
Install the iSCSI target feature:1.

 Install-WindowsFeature FS-iSCSITarget-Server

Explore iSCSI target server settings:2.

 Get-IscsiTargetServerSetting

Create an iSCSI disk (that is a LUN):3.

 $LunPath = 'I:\SalesData.Vhdx'
 $LunName = 'SalesTarget'
 New-IscsiVirtualDisk -Path $LunPath `
 -Description 'LUN For Sales' `
 -SizeBytes 1.1GB

Create the iSCSI target:4.

 New-IscsiServerTarget -TargetName $LunName `
 -InitiatorIds `
 DNSNAME:FS1.Reskit.Org

Create iSCSI disk target mapping:5.

 Add-IscsiVirtualDiskTargetMapping `
 -TargetName $LunName `
 -Path $LunPath

Managing Network Shares

[372]

How it works...
With step 1, you install the iSCSI target feature using Install-WindowsFeature, like this:

In step 2, you use the Get-IscsiTargetServerSetting cmdlet to explore the properties
of the iSCSI target server:

In step 3, you create the VHDX that is to serve to hold a LUN as follows:

Managing Network Shares

[373]

In step 4, you create the iSCSI target. In this step, you define an iSCSI target on the computer
and specify which initiators can connect to this iSCSI target. In this case, you specified the
initiator using a DNS name for the initiator and the computer name of the allowed
initiator(s). In this case, you specify just one initiator (fs1.reskit.org). Creating the
target looks like this:

Now that you have everything set up, you need to add the iSCSI virtual disk to the iSCSI
target. You perform this in step 5, but the step generates no output. Once you have
completed these steps, you have created an iSCSI target, with a LUN in place for use in an
iSCSI initiator.

There's more...
If you are not familiar with iSCSI and iSCSI targets, see the TechNet article at https:/ /
technet.microsoft. com/ en- us/ library/ hh848272(v= ws.11). aspx which presents an
overview of iSCSI targets.

In step 3, you create the new LUN, using New-IscsiVirtualDisk. When using this
command, you must specify a VHDX file extension. Windows Server 2016 does not support
VHD files for new iSCSI targets. You can, however, add an old VHD file as an iSCSI virtual
disk (you just can't create a new one).

https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh848272(v=ws.11).aspx

Managing Network Shares

[374]

When you create the virtual disk, it is uninitialized with no volumes or formatting. You use
the initiator to mount and manage the drive as if it were local.

You can also increase security by using Challenge Handshake Authentication Protocol
(CHAP) authentication. You can specify the CHAP username and password on both the
initiator and the target to authenticate the connection to an iSCSI target. If the security of
iSCSI traffic is an issue, you could consider securing iSCSI traffic using IPSec.

Using an iSCSI target
In the previous recipe, you created an iSCSI target. In this recipe, you will implement an
iSCSI initiator that enables you to use the iSCSI target across the iSCSI network. You use the
iSCSI feature included in Windows Server 2016 (and Windows 10) to access the target. Note
that, by default, the iSCSI initiator does not start automatically. To use an initiator on an
iSCSI client computer, you have to start the service (msiscsi) and enable the service to
start on reboot automatically.

Getting ready
This recipe, which you run on server FS1, assumes you have created an iSCSI target as
shown on the Creating an iSCSI target recipe.

How to do it...
Adjust the startup type and start the service:1.

 Set-Service -Ma,e msiscsi -StartupType 'Automatic'
 Start-Service =Name msiscsi

Add the iSCSI portal:2.

 New-IscsiTargetPortal `
 -TargetPortalAddress Srv1.Reskit.Org `
 -TargetPortalPortNumber 3260

Managing Network Shares

[375]

Find the SalesTarget iSCSI target on the portal:3.

 $Target = Get-IscsiTarget |
 Where-Object NodeAddress -Match 'SalesTarget'
 $Target

Connect to the target:4.

 Connect-IscsiTarget -TargetPortalAddress Srv1 `
 -NodeAddress $Target.NodeAddress

Set up the disk on the target and create a new volume with a drive letter:5.

 $ISD = Get-Disk | Where-Object BusType -eq 'iscsi'
 Set-Disk -InputObject $isd -IsOffline $False
 Set-Disk -InputObject $isd -Isreadonly $False
 $ISD | New-Volume -FriendlyName SalesData `
 -FileSystem ReFS `
 -DriveLetter S

Use the newly created S: drive, as follows:6.

 Set-Location -Path S:
 New-Item -Path S:\ -Name SalesData `
 -ItemType Directory
 'Testing 1-2-3' |
 Out-File -FilePath S:\SalesData\Test.txt
 Get-ChildItem -Path S:\SalesData

How it works...
The Microsoft iSCSI initiator is a service in Windows that Windows installs by default, but
does not start automatically. In step 1, you set the iSCSI service, msiscsi, to automatically
start on reboot. Then you start the service. This step provides some minimal output:

Managing Network Shares

[376]

In step 2, you tell Windows where to find the iSCSI portal. The iSCSI portal is a server
address and a port number (the default port is 3260) on which the iSCSI initiator can find
iSCSI targets. The output from New-IscsiTargetPortal shows details of the portal, like
this:

In step 3, you get a specific target by piping the output of Get-IscsiTarget to the Where-
Object cmdlet to select the SalesTarget LUN that you created in the Creating iSCSI target
recipe. You store the target in the $SalesTarget variable and then display it. The output
from displaying the $SalesTarget variable looks like this:

To connect the iSCSI target, in step 4, you use the Connect-IscsiTarget cmdlet, like this:

Managing Network Shares

[377]

Now that you have connected to the iSCSI target, you have a new disk in your system. The
disk is the LUN you created earlier. When you created the LUN you did not initialize it or
format it. In step 5, you set up the disk for use. You set the disk to be online and make it
read/write. Then you create a new volume on this disk, format it using the ReFS file system
and give it the S: drive letter. Setting up the disk looks like this:

Now that you have connected to the disk, brought it online, and formatted it, the drive is
ready for use. You can now perform all of the normal actions you might on a disk. In step 6,
you set the location of the file system provider to your new S: drive, created a folder, and
then created a file in that folder, as follows:

There's more...
This recipe enabled you to use the Microsoft iSCSI initiator to connect to a Microsoft iSCSI-
provided target. These built-in features work and are fine for simple use.

The iSCSI initiator and the iSCSI target features with Windows Server 2016 have seen little
development or improvement since they were first released over a decade ago. You may
find independent third party iSCSI vendors that are more appropriate depending on your
requirements.

Managing Network Shares

[378]

Creating a scale-out SMB file server
Windows clustering enables you to create a failover file server. When you cluster the file
server role, one node in the cluster offers the SMB server features to the network based on
shared storage. If that node fails, the cluster can fail over the file sharing service to another
node and still access the shared storage. But the fail over can take some time and has some
limitations.

An SOFS enables all nodes in the cluster to be active simultaneously. This provides for extra
performance as well as improved fault tolerance. With an SOFS, you can hold Hyper-V
virtual machine hard drives/configuration information and SQL databases. This recipe
shows you how to set up an SOFS.

Getting ready
For this recipe, you need a two node cluster. The nodes are FS1 and FS2 each of which has
already been set up with iSCSI targets that point to shared disks.

How to do it...
Add the Failover-Clustering feature to both servers:1.

 Install-WindowsFeature -Name Failover-Clustering `
 -ComputerName FS1 `
 -IncludeManagementTools
 Install-WindowsFeature -Name Failover-Clustering `
 -ComputerName FS2 `
 -IncludeManagementTools

Test the cluster nodes (run this on FS1):2.

 $CheckOutput = 'c:\foo\clustercheck'
 Test-Cluster -Node FS1, FS2 -ReportName "$CheckOutput.htm"

Managing Network Shares

[379]

View cluster test results:3.

 Invoke-Item -Path "$Checkoutput.htm"

Create the failover cluster:4.

 New-Cluster -Name FS `
 -Node 'fs1.reskit.org',
 'fs2.reskit.org' `
 -StaticAddress 10.10.10.100

Add the ClusterScaleOutFileServerRole:5.

 Add-ClusterScaleOutFileServerRole -Name SalesFS

Add the target to the CSV:6.

 Get-ClusterResource |
 Where-Object OwnerGroup -Match 'Available' |
 Add-ClusterSharedVolume -Name VM

Create a share:7.

 $SdFolder = 'S:\SalesData'
 New-SMBShare -Name SalesData `
 -Path $SdFolder `
 -Description 'SalesData'

Create a folder and add a continuously available share:8.

 $HvFolder = 'C:\ClusterStorage\Volume1\HVData'
 New-Item -Path $HvFolder -ItemType Directory |
 Out-Null
 New-SMBShare -Name SalesHV -Path $HvFolder `
 -Description 'Sales HV (CA)' `
 -FullAccess 'Reskit\IT Team' `
 -ContinuouslyAvailable:$true

View the shared folders:9.

 Get-SmbShare

Managing Network Shares

[380]

How it works...
In step 1, you add the Failover-Clustering role to both FS1 and FS2, which looks like
this:

In step 2, you perform the cluster validation tests. These tests check to ensure that all the
resources needed for the cluster are present and working properly. You should run the
Test-Cluster cmdlet before creating a cluster and following any and all maintenance
activities. If for any reason the cluster test fails, you need to check out why and correct the
issue before proceeding. The output from the command looks like this:

As you can see, the Test-Cluster does not provide much information returned to the
console, aside from the pointer to the report file—in this case, C:\Foo\ClusterCheck.Htm.

Managing Network Shares

[381]

In step 3, you view the output file generated by step 2. This output file is large, contains the
results of the extensive tests performed by the Test-Cluster cmdlet, and looks like this:

In step 4, you create the cluster using the New-Cluster cmdlet. The output is minimal and
looks like this:

Managing Network Shares

[382]

Once step 5 has completed successfully, your cluster is up and running. In step 5, you add
the ClusterScaleOutFileServerRole to the cluster. The output, also relatively minimal,
looks like this:

With the SOFS role added, you need to add the storage you wish to use for fail-over shares
to a ClusterSharedVolume, which looks like this:

With the cluster installed and the storage added to the CSV, you can now add shares to the
file sharing cluster. First, in step 7, you add a normal active-passive share to the cluster, like
this:

Now that you have the SOFS created, you create, in step 8, an active-active continuously
available file share. Adding a continuously-available share looks like this:

Managing Network Shares

[383]

Now that you have finished these steps, with step 9, you view the shares created on the
cluster, which looks like this:

There's more...
In step 1, you added the clustering feature to both FS1 and FS2 independently. The
Install-WindowsFeature cmdlet does not let you add the same feature (that is the
clustering role) to multiple servers in a single command. To speed things up, you could run
the installation on each server as background jobs that run in parallel (or use a workflow).

The preceding output shown for step 3 is truncated but illustrates that the cluster validation
has succeeded. At this point, the validation tests confirm that the elements required for the
cluster are all present and correct. These tests are important in two ways. The test results
verify that you have everything you need in place to create the cluster. Also, if the test is
successful, then the cluster is supported by Microsoft. For large organizations running
mission critical workloads, support can be critical.

Configuring a DFS Namespace
The Distributed File System (DFS) is a set of services in Windows that enables you to
create a structured replicated file store on two or more servers within your organization.
Microsoft first released DFS as an add-on to Windows NT 4.0. DFS has been improved
significantly since then.

In Windows Server 2016, DFS has two separate components. The first is DFS
Namespace (DFSN). DFSN enables you to create a single contiguous namespace that refers
to shares held on multiple servers. The second component, DFS Replication (DFSR),
performs replication of data between DFS nodes in the DFS Namespace.

Managing Network Shares

[384]

With DFS Namespaces, you can make use of shared folders stored on computers
throughout the organization to create a single logically structured namespace. This
namespace appears to the user as a continuous and well-organized set of folders and
subfolders even though the actual shared data may be in a variety of independently named
shares on one or more computers in the organization.

Before you build your DFS Namespace, you need to create the shared folders that you wish
to add to your DFS Namespace. The namespace design then determines which folder goes
where within the namespace hierarchy. You also define the names of the folders in the
namespace, and these can be different to the underlying file shares. When you view the DFS
Namespace, the folders appear to reside on a single share that has multiple folders and
subfolders. You navigate through the DFS Namespace and avoid needing to know the
names of the actual servers and shares that physically hold your data.

DFSR replicates folders in the DFS Namespace between servers in your organization. DFSR
utilizes the Remote Differential Compression (RDC) compression protocol to perform the
replication. RDC just replicates blocks of data. Replication allows you to create multiple
copies of your shared data and ensures that the changes you make to that data are quickly
and efficiently replicated. This can be useful both for load balancing and for failover.
Additionally, DFS is site aware, thus when you access folders in the DFS Namespaces, DFS
attempts to find shared files within a site.

It is important to note that you can use DFSN without using DFSR. If you need to replicate
data, there are a variety of tools available that may be more appropriate for your needs. For
more information on file synchronization tools, look at https:/ /en.wikipedia. org/ wiki/
Comparison_of_file_ synchronization_ software.

DFSN and DFSR each has a supporting PowerShell module. The DFSN module helps you to
manage the DFS Namespaces in your DFS implementation. You manage DFSR replication
using the DFSR module. With Server 2016, there are 23 cmdlets in the DFSN module and 45
cmdlets in the DFSR module.

In this recipe, you set up and configure a domain-based DFS Namespace on the servers
SRV1 and SRV2. You create additional DFS Namespace targets on other computers, add
these to the DFS Namespace. In a later recipe, Configuring DFS Replication, you set up
replication using DFSR.

https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software
https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software

Managing Network Shares

[385]

Getting ready
This recipe assumes you have two servers: SRV1 and SRV2 with each server having a
volume (E:) that you use as the location for the DFS Root If this drive does not exist, then
create it on these two servers. Additionally, the recipe uses several folders shared on
multiple computers as targets in our DFS Namespace.

In this recipe, you create a DFS Namespace, as set out in this table:

Namespace folder Target SMB share

\\ShareData (DFS
Namespace Root)

\\Srv1\ShareData and \\Srv2\ShareData

\IT n/a

\IT\ITData \\fs1\ITData\, \\Fs2\ITData

\IT\ITManagement \\Dc1\ITData, Dc2\ITData

\Sales n/a

\SalesData \\fs1\Sales, \\Fs2\Sales

\SalesHistorical \\fs1\SalesHistorical and \\Fs2\SalesHistorical

This recipe assumes you have not yet created the target folders involved in the DFS
Namespace and therefore creates explicitly the folders and the SMB shares required.

How to do it...
Install DFS Namespace, DFS Replication, and the related management tools:1.

 Install-WindowsFeature -Name FS-DFS-Namespace `
 -IncludeManagementTools `
 -ComputerName Srv1
 Install-WindowsFeature -Name FS-DFS-Namespace `
 -IncludeManagementTools `
 -ComputerName Srv2

Managing Network Shares

[386]

View the DFSN module and the DFSN cmdlets:2.

 Get-Module -Name DFSN -ListAvailable
 Get-Command -Module DFSN | Measure-Object

Create folders and shares for DFS Root:3.

 $Sb = {
 New-Item -Path E:\ShareData -ItemType Directory `
 -Force | Out-Null
 New-SmbShare -Name ShareData -Path E:\ShareData `
 -FullAccess Everyone
 }
 Invoke-Command -ComputerName Srv1, Srv2 `
 -ScriptBlock $Sb

Create DFS Namespace Root pointing to ShareData:4.

 New-DfsnRoot -Path \\Reskit.Org\ShareData `
 -TargetPath \\Srv1\ShareData `
 -Type DomainV2 `
 -Description 'Reskit Shared Data
 DFS Root'

Add a second target and view results:5.

 New-DfsnRootTarget -Path \\Reskit.Org\ShareData `
 -TargetPath \\Srv2\ShareData |
 Out-Null
 Get-DfsnRootTarget -Path \\Reskit.Org\ShareData

Create additional shares and populate:6.

 # FS1 folders/shares
 $Sb = {
 New-Item -Path C:\IT2 -ItemType Directory | Out-Null
 New-SmbShare -Name 'ITData' -Path C:\IT2 `
 -FullAccess Everyone
 New-Item -Path C:\Sales -ItemType Directory |
 Out-Null
 New-SmbShare -Name 'Sales' -Path C:\Sales `
 -FullAccess Everyone
 New-Item -Path C:\OldSales -ItemType Directory |
 Out-Null
 New-SmbShare -Name 'SalesHistorical' `
 -Path 'C:\OldSales'
 # Add content to files in root

Managing Network Shares

[387]

 'Root' | Out-File -FilePath c:\it2\root.txt
 'Root' | Out-File -FilePath c:\Sales\root.txt
 'Root' | Out-File -FilePath c:\oldsales\root.txt
 }
 Invoke-Command -ScriptBlock $Sb -Computer FS1
 # FS2 folders/shares
 $Sb = {
 New-Item -Path C:\IT2 -ItemType Directory | Out-Null
 New-SmbShare -Name 'ITData' -Path C:\IT2 `
 -FullAccess Everyone
 New-Item -Path C:\Sales -ItemType Directory |
 Out-Null
 New-SmbShare -Name 'Sales' -Path C:\Sales `
 -FullAccess Everyone
 New-Item -Path C:\OldSales -ItemType Directory |
 Out-Null
 New-SmbShare -Name 'SalesHistorical' -Path C:\IT2
 'Root' | Out-File -FilePath c:\it2\root.txt
 'Root' | Out-File -FilePath c:\Sales\root.txt
 'Root' | Out-File -FilePath c:\oldsales\root.txt
 }
 Invoke-Command -ScriptBlock $sb -Computer FS2
 # DC1 folders/shares
 $SB = {
 New-Item -Path C:\ITM -ItemType Directory | Out-Null
 New-SmbShare -Name 'ITM' -Path C:\ITM `
 -FullAccess Everyone
 'Root' | Out-File -Filepath c:\itm\root.txt
 }
 Invoke-Command -ScriptBlock $sb -Computer DC1
 # DC2 folders/shares
 $Sb = {
 New-Item C:\ITM -ItemType Directory | Out-Null
 New-SmbShare -Name 'ITM' -Path C:\ITM `
 -FullAccess Everyone
 'Root' | Out-File -FilePath c:\itm\root.txt
 }
 Invoke-Command -ScriptBlock $Sb -Computer DC2

Managing Network Shares

[388]

Create DFS Namespace and set DFS targets:7.

 New-DfsnFolder -Path '\\Reskit\ShareData\IT\ITData' `
 -TargetPath '\\fs1\ITData' `
 -EnableTargetFailback $true `
 -Description 'IT Data'
 New-DfsnFolderTarget `
 -Path '\\Reskit\ShareData\IT\ITData' `
 -TargetPath '\\fs2\ITData'
 New-DfsnFolder `
 -Path '\\Reskit\ShareData\IT\ITManagement' `
 -TargetPath '\\DC1\itm' `
 -EnableTargetFailback $true `
 -Description 'IT Management Data'
 New-DfsnFolderTarget `
 -Path '\\Reskit\ShareData\IT\ITManagement' `
 -TargetPath '\\DC2\itm'
 New-DfsnFolder `
 -Path '\\Reskit\ShareData\Sales\SalesData' `
 -TargetPath '\\fs1\sales' `
 -EnableTargetFailback $true `
 -Description 'SalesData'
 New-DfsnFolderTarget `
 -Path '\\Reskit\ShareData\Sales\SalesData' `
 -TargetPath '\\fs2\sales'
 New-DfsnFolder `
 -Path '\\Reskit\ShareData\Sales\SalesHistoric' `
 -TargetPath '\\fs1\SalesHistorical' `
 -EnableTargetFailback $true `
 -Description 'Sales Group Historical Data'
 New-DfsnFolderTarget `
 -Path '\\Reskit\ShareData\Sales\SalesHistoric' `
 -TargetPath '\\fs2\SalesHistorical'

Managing Network Shares

[389]

How it works...
Before you can use DFS to hold a DFS Namespace, you need to install the DFS Namespace
feature. In step 1, you create a script block with the Install-WindowsFeature cmdlet,
which looks like this:

In step 2, you look at the DFSN module and determine how many cmdlets the DFSN module
contains, as follows:

Managing Network Shares

[390]

In step 3, you create the folders and SMB shares on Srv1 and Srv2 that serve as the DFS
Root as follows:

With the Root shares created, in step 4, you create a new DfsnRoot folder on server Srv1:

In step 5, you create a second DfsnRoot folder, this time on SRV2. Then (despite the error
message) you view the DfsnRoot targets:

Managing Network Shares

[391]

Before you can create folders in the DFS Namespace, you need to create the underlying
shares. In step 6, you create the shares (as noted in the earlier table), which looks like this:

Managing Network Shares

[392]

In step 7, you convert the shares held in different machines into your DFS Namespace, as
follows:

Managing Network Shares

[393]

Now that you have the DFS Namespace created, you can examine it using the DFS MMC
console:

In the preceding screenshot, you can see that the DFS Namespace folder
\\Reskit.Org\ShareData\Sales\SalesHistoric has two two targets,
\\fs1\SalesHistorical and \\fs2\SalesHistorical. Those two targets are, thus far
not synchronized using DFS. You set up synchronization in the next recipe.

There's more...
In creating your DFS Namespace, you created virtual folders without a target. The DNS
folder \\Reskit.Org\ShareData\Sales, for example, has no target. This is a feature that
enables you to create the logical hierarchy of folders that meets your needs, and only have
the bottom most folders with folder targets.

In step 1, you add the DFS Namespace component on SRV1 and SRV2. You do this in two
steps (first on SRV1, then on SRV2) since the Install-WindowsFeature cmdlet only
accepts a single computer name (not an array of computer names).

Managing Network Shares

[394]

The DFSN module, as shown in step 2, has 23 cmdlets. As with all PowerShell modules, you
can use Get-Command as well as Get-Help to discover the cmdlets in the module and to get
details on specific cmdlets. After installing the DFSN modules, ensure you use Update-Help
to update your local help files with full details of the DFSN cmdlets.

In step 5, you both create a second DfsnRoot target and view the targets you have created.
The New-DFNSRootTarget cmdlet produces an error message, but it is spurious. As you
can see with the output from Get-DfsnRootTarget, both target folders are created
correctly.

In step 7, you create the DFS Namespace. Once this is completed, you can use UNC Paths
like \\Reskit.Org\Sales\SalesHistoric. However, the two targets are not
synchronized. You can perform synchronization using DFS Replication or by a third-party
tool.

For more information on DFS Namespaces and DFS Replication, see https:/ /technet.
microsoft.com/library/ jj127250. aspx.

Configuring DFS Replication
DFSR is an efficient file replication engine built into Windows Server 2016. You can use DFS
Replication to replicate DFSN targets in an efficient manner, especially across low-
bandwidth connections.

In DFSR, a replication group is a collection of computers, knows as members. Each
replication group member hosts replicated folders. Replicated folders are folders which
DFSR ensures are synchronized. With DFS Replication groups, you can replicate the folders
contained in your DFS Namespace.

A replicated folder is a folder that stays synchronized on each member. In the figure, there
are two replicated folders: projects and proposals. As the data changes in each replicated
folder, DFS replicates the changes across connections between the members of the
replication group. The connections you set up between the members forms the replication
topology.

Creating multiple replicated folders in a single replication group simplifies the process of
deploying replicated folders because DFS applies the topology, schedule, and bandwidth
throttling for the replication group to each replicated folder.

Each replicated folder has many properties. These include file and subfolder filters that
enable you to filter out different files and subfolders for each replicated folder.

https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx
https://technet.microsoft.com/library/jj127250.aspx

Managing Network Shares

[395]

You can locate replicated folders on different volumes in the member. You do not need to
have the replicated folders in a shared folder or part of a namespace.

DFS replication can support a variety of replication topologies to support a variety of
requirements. For more information on the different replication topologies, see https:/ /
www.petri.com/planning- dfs- architecture- part- two.

Getting Ready
This recipe also sets up two DFS Replication groups as follows:

Replication group Computers in RG Content folders

FSShareRG FS1, FS2 C:\IT2, C:\OldSales, C:\Sales

DCShareRG DC1, DC2 C:\ITM

How to do it...
Install DFS-Replication feature on key servers:1.

 $Sb = {Add-WindowsFeature -Name FS-DFS-Replication `
 -IncludeManagementTools
 }
 Invoke-Command -ScriptBlock $Sb `
 -ComputerName DC1, DC2, FS1,
 FS2, SRV1, SRV2 |
 Format-Table -Property PSComputername,
 FeatureResult, Success

Turn on administrative shares:2.

 $Sb = {
 Set-SmbServerConfiguration `
 -AutoShareServer $true `
 -AutoShareWorkstation $true `
 -Confirm:$false
 }
 Invoke-Command -ScriptBlock $Sb `
 -ComputerName DC1, DC2, FS2, FS2,
 SRV1, SRV2

https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two
https://www.petri.com/planning-dfs-architecture-part-two

Managing Network Shares

[396]

View DFS cmdlets:3.

 Get-Module -Name DFSR -ListAvailable
 Get-Command -Module DFSR | Measure-Object

Create and display replication groups:4.

 New-DfsReplicationGroup `
 -GroupName FSShareRG `
 -DomainName Reskit.Org `
 -Description 'Replication Group for FS1,
 FS2 shares' | Out-Null
 New-DfsReplicationGroup `
 -GroupName DCShareRG `
 -DomainName Reskit.Org `
 -Description 'Replication Group for DC1,
 DC2 shares' | Out-Null
 Get-DfsReplicationGroup | Format-Table

Add replication group members for FSShareRG:5.

 Add-DfsrMember -GroupName FSShareRG `
 -Description 'File Server members' `
 -ComputerName FS1,FS2 `
 -DomainName Reskit.Org | Out-Null
 New-DfsReplicatedFolder -GroupName FSShareRG `
 -FolderName ITData
 -Domain Reskit.Org `
 -Description 'ITData' `
 -DfsnPath
 \\Reskit.Prg\ShareData\IT\ITData | Out-Null
 New-DfsReplicatedFolder -GroupName FSShareRG `
 -FolderName Sales
 -Domain Reskit.Org `
 -Description 'Sales' `
 -DfsnPath
 \\Reskit.Org\ShareData\Sales\SalesData | Out-Null
 New-DfsReplicatedFolder -GroupName FSShareRG `
 -FolderName SalesHistorical
 -Domain Reskit.Org `
 -Description 'Sales history' `
 -DfsnPath
 \\Reskit.Org\ShareData\Sales\SalesHistoric | Out-Null

Managing Network Shares

[397]

Add replication group members for DCShareRG:6.

 Add-DfsrMember -GroupName DCShareRG `
 -Description 'DC Server members' `
 -ComputerName DC1,DC2 `
 -DomainName Reskit.Org |
 Out-Null
 New-DfsReplicatedFolder `
 -GroupName DCShareRG `
 -FolderName ITManagement
 -Domain Reskit.Org `
 -Description 'IT Management Data' `
 -DfsnPath
 \\Reskit.Org\sharedata\IT\ITManagement | Out-Null

View replicated folders:7.

 Get-DfsReplicatedFolder |
 Format-Table -Property GroupName, FolderName, DomainName,
 DfsnPath

Set membership for FSShareRG replication group:8.

 Set-DfsrMembership -GroupName FSShareRG
 -FolderName ITData `
 -ComputerName FS1
 -ContentPath C:\It2 `
 -PrimaryMembe $true -Force |
 Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName ItData `
 -ComputerName FS2
 -ContentPath c:\It2 `
 -Force | Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName Sales `
 -ComputerName FS1
 -ContentPath C:\Sales `
 -PrimaryMember $true -Force |
 Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName Sales `
 -ComputerName FS2
 -ContentPath c:\Sales `
 -Force | Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName SalesHistorical `
 -ComputerName FS1

Managing Network Shares

[398]

 -ContentPath C:\OldSales `
 -PrimaryMember $true -Force |
 Out-Null
 Set-DfsrMembership -GroupName FSShareRG
 -FolderName SalesHistorical `
 -ComputerName FS2
 -ContentPath c:\OldSales `
 -Force | Out-Null

Set membership for DCShareRG replication group:9.

 Set-DfsrMembership -GroupName DCShareRG
 -FolderName ITManagement `
 -ComputerName DC1
 -ContentPath C:\ITM `
 -PrimaryMember $true -Force |
 Out-Null
 Set-DfsrMembership -GroupName DCShareRG
 -FolderName ITManagement `
 -ComputerName DC2
 -ContentPath C:\ITM `
 -Force | Out-Null

View DFSR membership of the two replication groups:10.

 Get-DfsrMembership -GroupName FSShareRG `
 -ComputerName FS1, FS2 |
 Format-Table -Property GroupName, ComputerName,
 ComputerDomainName, ContentPath, Enabled
 Get-DfsrMembership -GroupName DCShareRG `
 -ComputerName DC1, DC2 |
 Format-Table -Property GroupName, ComputerName,
 ComputerDomainName, ContentPath, Enabled

Add replication connections for both replication groups:11.

 Add-DfsrConnection -GroupName FSShareRG `
 -SourceComputerName FS1 `
 -DestinationComputerName FS2 `
 -Description 'FS1-FS2 connection' `
 -DomainName Reskit.Org | Out-Null
 Add-DfsrConnection -GroupName DCShareRG `
 -SourceComputerName DC1 `
 -DestinationComputerName DC2 `
 -Description 'DC1-DC2 connection' `
 -DomainName Reskit.Org | Out-Null
 Get-DfsrMember |
 Format-Table -Property Groupname, DomainName,

Managing Network Shares

[399]

 DNSName, Description

Update the DFSR configuration:12.

 Update-DfsrConfigurationFromAD -ComputerName DC1,
 DC2, FS1, FS2

Run a DfsrPropogationTest on FSShareRG:13.

 Start-DfsrPropagationTest -GroupName FSShareRG `
 -FolderName ITData `
 -ReferenceComputerName FS1 `
 -DomainName Reskit.Org

Create and review the output of DfsrPropagationReport:14.

 Write-DfsrPropagationReport -GroupName FSShareRG `
 -FolderName ITdata `
 -ReferenceComputerName FS1 `
 -DomainName Reskit.Org `
 -Path C:\Foo\
 $i = Get-Item -Path C:\Foo\Propagation*.Html |
 Sort-Object -Property LastWriteTime -Descending|
 Select-Object -First 1
 Invoke-Item $i

Create and review the output of DfsrHealthReport:15.

 Write-DfsrHealthReport -GroupName FSShareRG `
 -ReferenceComputerName FS1 `
 -DomainName Reskit.Org `
 -Path C:\Foo
 $i = Get-Item -Path C:\Foo\Health*.Html |
 Sort-object -property LastWriteTime |
 Select-Object -Last 1
 Invoke-Item $i

Managing Network Shares

[400]

How it works...
In step 1, you install the DFS-Replication feature. You need to install this on every server
you plan to use in the replication. Depending on what other features you have already
installed, the output can vary. Here is what the results should look like:

In step 2, you turn on the administrative shares on the servers involved. There is no output
from this step. In step 3, you examine the DFS Replication cmdlets contained in the DFSR
module. As you can see, after running step 1, you have the DFSR module, and that it
contains 45 cmdlets, as follows:

Managing Network Shares

[401]

With step 4, you create two replication groups: one for the shares on FS1 and FS2, the other
for a share on DC1 and DC2, like this:

In step 5, you add FS1 and FS2 to the replication group FSShareRG then define three
replicated folders that relate to DFSN paths created by Configuring a DNS namespace
recipe. In step 6, you add DC1 and DC2 to the DCShareRG replication group and define the
replicated folder on those servers. There is no output from these steps.

In step 7, you view the DFSR replicated folders setup in the previous two steps, which look
like this:

In step 8 you set the DFS membership for the shares on FS1 and FS2. For each shared folder,
you identify the content path which is a local folder on the respective servers and you
identify the primary member. In step 9, you do the same thing for the folder shared on DC1
and DC2. There is no output for these steps.

Managing Network Shares

[402]

In step 10, you view the membership of the two replication groups as follows:

In step 11, you create two DFS connections that DFS uses to perform the replication,
producing no output. Then you review the members in the DFSR replication groups that
you have defined, which looks like this:

Managing Network Shares

[403]

In step 13, you initiate a DFS Replication propagation test. This test evaluates the
propagation and health of the replicated folders you set up in this recipe. In step 14, you
create and then view a propagation report in the browser which looks like this:

Managing Network Shares

[404]

In step 15, you write then view a DFS health report. This report shows the health of your
DFS service—in this case on server FS1. A neat feature of this report is the bandwidth
savings achieved by DFS. The bandwidth used and the bandwidth saved figures are useful
for capacity planning. The healthy report looks like this:

Managing Network Shares

[405]

There's more...
In step 2, you turn on the administrative shares. This is a requirement for setting up DFS
Replication. Once you have set up replication, you may wish to turn off these
administrative shares.

In step 8, for each shared folder in the FSShareRG replication group, you identify a primary
member. Should a document be changed different members in the replication group then,
DFS considers the copy on the primary master as definitive.

In step 11, you set up simple DFS Replication connections. DFS enables you to manage rich
replication topologies and supports your configuring replication schedules and bandwidth
constraints.

The recipe sets up a simple set of replicated folders—four replicated folders on four servers
based on the DFS Namespace created earlier. To extend this recipe, you could add other
folders to the replication groups that were not part of the DFS Namespace.

DFS Replication is one way to replicate files in an organization. DFS was designed for use
over lower-bandwidth networks, thus in larger networks, DFS replicas might be out of
sync. Also, DFS only replicates a file after it has been closed.

With Server 2016, the Storage Replica (SR) feature is an alternative to DFSR. SR works at
the block level unlike DFSR that operates at the file level. As a result SR can replicate the
changes to open files.

For a comparison of DFS Replication and Storage Replica, see https:/ / www.petri. com/
windows-server-2016- dfs- r- vs- storage- replica.

https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica
https://www.petri.com/windows-server-2016-dfs-r-vs-storage-replica

10
Managing Internet Information

Server
This chapter covers the following recipes:

Installing IIS
Configuring IIS for SSL
Managing TLS cipher suites
Configuring a central certificate store
Configuring IIS bindings
Configuring IIS logging and log files
Managing applications and application pools
Managing and monitoring network load balancing

Introduction
Internet Information Services (IIS) is a Windows feature that implements an extensible
web server. IIS was first introduced as an add-on for Windows NT 4.0 and has been the
focus of substantial development ever since. IIS version 10 is built into both Windows
Server 2016 and Windows 10.

With IIS in Windows Server, you can host both internet facing public websites as well as
sites on your internal intranet. You can integrate IIS with enterprise applications that
include SharePoint, Exchange, and System Center. You can also use IIS on client operating
systems including Windows 10.

Managing Internet Information Server

[407]

IIS provides a platform for a variety of web-based applications. With IIS you can provide a
simple HTML based static website as well as rich multi-tiered applications. You can
combine the applications running on IIS with back end databases including Microsoft SQL
Server.

Like other Windows Server features, you have PowerShell cmdlet coverage for IIS. The
WebAdministration module, introduced in earlier versions of Windows Server, provides
79 cmdlets. Microsoft added a new module, IISAdministration, with Windows Server
2016 providing additional functionality.

This chapter covers how to install, configure, manage, and maintain IIS on Windows Server
2016. While you can load and use IIS in Windows 10, the focus in this chapter is on
Windows Server 2016.

Installing IIS
Before you can use IIS, you must install it onto your host. Like other roles/features of
Windows Server 2016 covered in this book, you install IIS by using the Install-
WindowsFeature cmdlet. Once you have installed the web server, you take a look at the
host after the installation is complete.

Getting ready
You run this recipe on SRV1, a member server running Windows Server 2016. This server is
a server in the Reskit.Org domain.

How to do it...
Open a PowerShell console and install the Web-Server and all sub-features:1.

 Install-WindowsFeature -Name Web-Server `
 -IncludeAllSubFeature `
 -IncludeManagementTools

See what web related features are installed on SRV1:2.

 Get-WindowsFeature -Name Web* | Where-Object Installed

Managing Internet Information Server

[408]

Check the WebAdministration module and discover how many commands are3.
in the module:

 Get-Module -Name WebAdministration -ListAvailable
 Get-Command -Module webadministration |
 Measure-Object |
 Select-Object count

Check the IISAdministration module and discover how many commands are4.
in the module:

 Get-Module -Name IISAdministration -ListAvailable
 Get-Command -Module IISAdministration |
 Measure-Object |
 Select-Object -Properties Count

Import the WebAdministration module:5.

 Import-Module -Name WebAdministration

Look at the newly added WebAdministration PowerShell provider:6.

 Get-PSProvider -PSProvider WebAdministration

View the top level of the IIS: drive:7.

 Get-ChildItem -Path IIS:\

View what is in IIS:\Sites:8.

 Get-ChildItem -Path IIS:\Sites

Look at the default website created by the web server installation:9.

 $IE = New-Object -ComObject InterNetExplorer.Application
 $URL = 'http://srv1'
 $IE.Navigate2($URL)
 $IE.Visible = $true

How it works...
In step 1 of this recipe, you install the Web-Server feature and all its sub-features as well as
the management tools. The management tools include the WebAdministration module.

Managing Internet Information Server

[409]

The output from this step looks like this:

In step 2, you view the Web-Server feature and its sub-features. As you can see, you have
over 50 installed sub-features, with the output resembling this:

Managing Internet Information Server

[410]

In step 3, you look at the WebAdministration module. As you can see, there are 79
commands (which comprise 78 cmdlets and one function) in the module. The output looks
like this:

In step 4, you look at the IISAdministration module. As you can see, there are 31 further
cmdlets for you to use. The output of this step looks like this:

Managing Internet Information Server

[411]

In step 5, you import the WebAdministration module manually. In addition to loading the
cmdlets/functions contained in the module, importing the module also loads the
WebAdministration PowerShell provider. This provider enables you to browse aspects of
the web server, including the sites, application pools, and SSL bindings on the host. There is
no output from loading the module. Once you have loaded the module, in step 6 you get
details of the provider, which looks like this:

In step 7, you look at the contents of the IIS drive. It contains just three folders as you can
see from the output:

In step 8, you take a look at the Sites folder in the IIS drive and you see details about any
loaded websites on your server. Since you have just installed IIS, there is only one site, and
the output of this step looks like this:

Finally, in step 9, you look at the default landing page for a newly installed IIS host, which
looks like this:

Managing Internet Information Server

[412]

There's more...
In step 1, you installed the Web-Server and all of the sub-features. In most cases, many of
these sub-features are ones you are not going to use.

In step 5, you import the module manually. If you are just going to use the cmdlets in this
module, then PowerShell's module auto-load feature loads the module for you. Importing it
implicitly ensures the correct module is loaded.

In step 6 through step 7, you examine the provider. This provider can be very useful for
some operations—for example creating an SSL binding as you see in the Configure IIS for
SSL recipe.

Managing Internet Information Server

[413]

In step 9, you open up Internet Explorer and navigate to the root of the default website on
SRV1. This is, as you can see from the output, a standard landing page. This page is very
useful for troubleshooting purposes, as it shows you IIS has been installed and is up and
running.

Configuring IIS for SSL
Traffic between a web browser and a web server on the internet or even within a corporate
intranet is open and can be intercepted. To avoid the data being compromised, you can
make use of protocols built into your web browser and IIS to provide encryption as well as
authentication.

In the 1990's, Netscape Communications developed a protocol that provided the necessary
security, the Secure Socket Layer (SSL) protocol. SSL V1 was never commercially released,
but SSL V2 and SSL V3 were developed, released, but are now deprecated as unsafe.

Transport Layer Security (TLS) was developed openly as the next version of SSL. TLS V1 is
essentially SSL V3.1. In 2014, Google identified a serious vulnerability in both SSL V3 and
TLS V1. That leaves TLS 2 as the best protocol to deploy and it is the only one installed by
default with IIS in Windows Server 2013.

These days, SSL as a protocol is being deprecated in favour of TLS. Most major web sites no
longer actually use the SSL protocol. Nevertheless we talk about such web sites as having
SSL and we continue to use the HTTPS scheme since end-users can not explicitly choose
between SSL and TLS.

When the user specifies a URL beginning with HTTPS: the browser contacts the server on
port 443. The browser and server then negotiate which security protocol to use (for
example TLS 1.2) and which cipher suite to use to protect the data being transferred. A
cipher suite is a distinct set of algorithms to provide for key exchange and which encryption
algorithms to use for both bulk encryption and hashing.

In this recipe, you setup your server to provide secure transfer of web pages. Strictly
speaking, this recipe sets up IIS to use TLS 2.0 rather than SSL. In most references, we refer
to this as setting up SSL, when in reality we are actually setting up TLS.

In order to set up IIS for secure transfer, you first need a certificate. The certificate identifies
the server by name and specifies what the certificate can be used for. Associated with the
certificate are public and private keys.

Managing Internet Information Server

[414]

If you are setting up IIS as an internal web server, then you should use your internal
Certificate Authority (CA) to create the web server certificate. If your web server is to be
internet facing, you should get a certificate from a public CA. Remember that the certificate
has to have been issued (and signed) by a CA that is explicitly trusted by any client
accessing the secure site. Many public CAs around the world are automatically trusted by
most modern browsers. Additionally, you can configure workstations and servers to enroll
the root CA certificate for your internal CA automatically.

In this recipe, you use self-signed certificates. This works wonderfully in a test environment
but should never be used in production. The technique you use in this recipe first generates
a self-signed certificate. The recipe then copies this certificate into the local machine's
trusted root store. This action makes the local machine trust the self-signed certificate.

Getting ready
In this recipe, you configure IIS on SRV1 for security. This recipe assumes you have setup
IIS as shown in the Install IIS recipe.

How to do it...
Import the WebAdministration module:1.

 Import-Module -Name WebAdministration

Create a self-signed certificate in the local server's personal CERT store:2.

 $SSLCert = New-SelfSignedCertificate `
 -CertStoreLocation 'CERT:\LocalMachine\MY' `
 -DnsName 'SRV1.Reskit.Org'

Copy the certificate to the Root store on SRV1:3.

 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C `
 -ArgumentList 'Root','LocalMachine'
 $Store.Open('ReadWrite')
 $Store.Add($SSLcert)
 $Store.Close()

Managing Internet Information Server

[415]

Create a new SSL binding on the Default Website:4.

 New-WebBinding -Name 'Default Website' `
 -Protocol https -Port 443

Assign the Cert created earlier to this new binding:5.

 $SSLCert | New-Item -Path IIS:\SslBindings\0.0.0.0!443

View the site using HTTPS:6.

 $IE = New-Object -ComObject InternetExplorer.Application
 $URL = 'https://Srv1.Reskit.Org'
 $IE.Navigate2($URL)
 $IE.Visible = $true

How it works...
In step 1, you import the WebAdministration module, which ensures the
WebAdministration provider you use later in this recipe is loaded. There is no output
from this step.

In step 2, you create a self-signed certificate and store it in the local machine's personal
certificate store (Cert:\\LocalMachine\My). There is no output from this step.

With step 3, you copy the self-signed certificate to the local machine's trusted Root
certificate store. There is no output from this step.

In step 4, you create a new binding for IIS that binds port 443 to HTTPS. This tells IIS to use
SSL/TLS for traffic coming into SRV1 on that port. There is no output from this step.

In step 5, you update the SSL bindings to include which certificate to use. This step tells IIS
to use the self-signed certificate for any HTTPS traffic coming into the default website. The
output from this step looks like this:

Managing Internet Information Server

[416]

In step 6, you use Internet Explorer to browse the default website using HTTPS. The output
of this step is the default page for IIS, which looks like this:

There's more...
In step 3, you use the .NET framework to copy the self-signed certificate into the local
server's trusted Root cert store. This makes the self-signed certificate trusted by SRV1. You
have to use .NET because the PowerShell certificate provider does not support a copy
operation. Fortunately, the .NET framework provides that functionality. Alternatively, you
could use the Export-Certificate and Import-Certificate to export the cert to a
file and then re-import it.

The output shown for step 6 is identical to the output step 8 in the Install IIS recipe. Except
you have retrieved it securely, over TLS.

Managing Internet Information Server

[417]

Managing TLS cipher suites
With TLS, you are able to specify which cipher suite or suites your web server should
support. A cipher suite is a specific set of methods or algorithms that provide functions
including key exchange, bulk encryption, hashing and message digests, and authentication.

Once the browser connects to the server, the two parties negotiate and choose the best
cipher suite that both sides can support. If the browser only asks for cipher suites that the
web server does not support, then the server terminates the communication.

By default, Windows Server 2016 supports 31 cipher suites providing different algorithms
and different key lengths. In this recipe, you retrieve the cipher suites on Windows Server
2016, and both enable and disable a specific cipher suite.

Getting ready
You run this recipe on the Windows Server 2016 server SRV1 on which you have loaded IIS
(as per the Install IIS recipe) and configured secure HTTP (as per the Configure IIS for SSL
recipe).

How to do it...
Get the cipher suites on SRV1 and display them:1.

 Get-TlsCipherSuite |
 Format-Table Name, Exchange, Cipher, Hash, Certificate

Find cipher suites that support RC4:2.

 Get-TlsCipherSuite -Name RC4 |
 Format-Table Name, Exchange, Cipher, Hash, Certificate

Disable RC4 based cipher suites:3.

 Foreach ($P in (Get-TlsCipherSuite -Name 'RC4'))
 {Disable-TlsCipherSuite -Name $P.name}

Find cipher suites that support RC4:4.

 Get-TlsCipherSuite RC4 |
 Format-Table -Property Name, Exchange, Cipher,

Managing Internet Information Server

[418]

 Hash, Certificate

Re-enable the two cipher suites:5.

 Enable-TlsCipherSuite -Name TLS_RSA_WITH_RC4_128_SHA
 Enable-TlsCipherSuite -Name TLS_RSA_WITH_RC4_128_MD5

Find cipher suites that support RC4:6.

 Get-TlsCipherSuite RC4 |
 Format-Table -Property Name, Exchange, Cipher,
 Hash, Certificate

How it works...
In step 1, you use the Get-TlsCipherSuite cmdlet to return all the cipher suites that are
supported on your server. The output looks like this:

Managing Internet Information Server

[419]

In step 2, you search for cipher suites that use RC4, a bulk encryption cipher. This makes use
of the -Name parameter which is a wild card match. The output looks like this:

In step 3, you disable the two cipher suites that use RC4 although there is no output from
this step. In step 4, which produces no output, you see that these two cipher suites are no
longer available.

In step 5, you re-enable these two cipher suites (which produces no output) while in step 6,
you verify that these two cipher suites are available. The output from this step looks like
this:

There's more...
In step 2, you look for cipher suites using RC4. Some security experts consider this cipher to
have potential weaknesses that make deprecation appropriate. With step 4, you disable
these two cipher suites. If you have, for example, Windows XP still in use, you may find
that disabling RC4 means these older OSs can no longer connect to your server. In step 5,
you see how to re-enable them (should this be necessary).

It is important to record the names of the cipher suites that you disable.
There is no cmdlet that can show you what cipher suites you have
disabled—you can only see which ones are specifically enabled. BE
CAREFUL!

Managing Internet Information Server

[420]

Configuring a central certificate store
If you are hosting numerous secure servers on a variety of hosts (physical or virtual), you
may find that certificate management can be challenging. Each time you add a new IIS host
into your infrastructure, you need to ensure all the correct certificates are in place and the
correct web binding (binding the certificates to IIS) is in place for each secure site.
Additionally, you need to deal with certificate expiry and renewing certificates that expire
across each IIS server that utilizes those certificates.

Windows Server 2012 added a new feature known as the Central Certificate Store (CCS).
This feature allows certificates to be stored in a central location such as on an SMB file share.
You then configure IIS to make use of the central store, rather than using the local certificate
stores as you did in the Configure IIS for SSL recipe.

In this recipe, you are going to setup SRV1 to use a new share on DC1 to hold the central
certificate share. You create the store, then create a new certificate for SRV1, and move the
cert to the central certificate share on DC1.

Getting ready
This recipe uses SRV1 as an IIS server and DC1 to hold the SSL certificate central store. You
should have both servers up and running. Also, this recipe assumes you have IIS at least
partly loaded and setup for SSL (in other words, you have run the Install IIS and Configure
IIS for SSL recipes. This recipe does check and ensure the needed features are added to
SRV1. You should also load the AD cmdlets onto SRV1 if you have not already done so.

How to do it...
Remove existing certificates for SRV1:1.

 Get-ChildItem -Path Cert:\localmachine\My |
 Where-Object Subject -Match 'SRV1.Reskit.Org' |
 Remove-Item -ErrorAction SilentlyContinue
 Get-ChildItem Cert:\localmachine\root |
 Where-Object Subject -match 'SRV1.Reskit.Org' |
 Remove-Item

Managing Internet Information Server

[421]

Remove SSL web bindings if any exist:2.

 Import-Module -Name WebAdministration
 Get-WebBinding | Where-Object protocol -EQ 'https' |
 Remove-WebBinding
 Get-ChildItem -Path IIS:\SslBindings | Where-Object Port -eq 443 |
 Remove-Item

Create a shared folder and share it on DC1:3.

 $sb = {
 If (-Not (Test-Path C:\SSLCerts)) {
 New-Item -Path C:\SSLCerts -ItemType Directory |
 Out-Null}
 New-SmbShare -Name 'SSLCertShare' -Path c:\SSLCerts `
 -FullAccess 'Everyone' `
 -Description 'SSL Certificate'
 }
 Invoke-Command -ScriptBlock $sb -ComputerName DC1

Add a new SSLCert and make it trusted locally:4.

 $SSLCert = New-SelfSignedCertificate `
 -CertStoreLocation 'CERT:\LocalMachine\MY' `
 -DnsName 'SRV1.Reskit.Org'
 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C `
 -ArgumentList 'Root','LocalMachine'
 $Store.Open('ReadWrite')
 $Store.Add($SSLcert)
 $Store.Close()

Export certificate to PFC file:5.

 $Certpw = 'SSLCerts101!'
 $Certpwss = ConvertTo-SecureString -String $certpw `
 -Force -AsPlainText
 Export-PfxCertificate -Cert $SSLCert `
 -FilePath 'C:\srv1.reskit.org.pfx' `
 -Password $Certpwss
 Move-Item -Path 'C:\srv1.reskit.net.pfx' `
 -Destination \\dc1\SSLCertShare\srv1.reskit.org.pfx `
 -Force

Managing Internet Information Server

[422]

Install the CCS feature on SRV1:6.

 Install-WindowsFeature Web-CertProvider | Out-Null

Create a new user for the certificate sharing:7.

 $User = 'Reskit\SSLCertShare'
 $Password = 'Pa$$w0rd'
 $PasswordSS = ConvertTo-SecureString -String $Password `
 -AsPlainText -Force
 $NewUserHT = @{AccountPassword = $PasswordSS
 Enabled = $true
 PasswordNeverExpires = $true
 ChangePasswordAtLogon = $false
 }
 New-ADUser @NewUserHT `
 -SamAccountName SSLCertShare `
 -UserPrincipalName 'SSLCertShare@Reskit.Org' `
 -Name "SSLCertShare" `
 -DisplayName 'SSL Cert Share User'

Configure the SSLCertShare in the registry:8.

 Set-ItemProperty -Path
 HKLM:\SOFTWARE\Microsoft\IIS\CentralCertProvider\`
 -Name Enabled -Value 1
 Set-ItemProperty -Path `
 HKLM:\SOFTWARE\Microsoft\IIS\CentralCertProvider\`
 -Name CertStoreLocation -Value \\DC1\SSLCertShare
 Enable-WebCentralCertProvider `
 -CertStoreLocation \\dc1\SSLCertShare `
 -UserName $user -Password $Password `
 -PrivateKeyPassword $Certpw
 Set-WebCentralCertProvider -UserName $User -Password $password `
 -PrivateKeyPassword $Certpw

Setup SSL for default site:9.

 New-WebBinding -Name 'Default Web Site' -Protocol https `
 -Port 443
 $SSLcert | New-Item -Path IIS:\SslBindings\0.0.0.0!443

Remove the cert from SRV1:10.

 Get-ChildItem -Path Cert:\LocalMachine\MY |
 WHERE SUBJECT -MATCH 'SRV1.RESKIT.ORG' |
 Remove-Item -Force

Managing Internet Information Server

[423]

Now view the website with SSL:11.

 $IE = New-Object -ComObject InterNetExplorer.Application
 $URL = 'https://srv1.reskit.org/'
 $IE.Navigate2($URL)
 $IE.Visible = $true

How it works...
In step 1, you remove any existing certificates on SRV1—you create new ones later in this
recipe. There is an output from this step.

In step 2, you remove any existing web bindings if they currently exist—you recreate these
later in the recipe. There should be no output from this step.

In step 3, you create a script block and execute the script block on DC1. This script block
creates the SSLCertificateShare). The output from this step shows the creation of the
share on DC1, as follows:

In step 4, you create a new certificate, and make it trusted. There is no output from this step.

In step 5, you export the self-signed certificate to a password protected .pfx file then move
the file to the SSLCertShare on DC1.

In step 6, you install the centralized SSL certificate feature. There is no output from this
step.

Managing Internet Information Server

[424]

In step 7, you create a new AD user (Reskit\SSLCertShare) for use with IIS's centralized
certificate share feature. There is no output from this step.

In step 8, you configure the centralized certificate share to point to the share on DC1 and to
use the new user created in step 7. There is no output from this step.

In step 9, you remove the self-signed certificate from SRV1, which also produces no output.

In step 10, you set web bindings for the default site on SRV1 to use the self-signed certificate,
producing no output.

In step 11, you navigate to the default website specifying HTTPS and see the default website
on SRV1. This should look the same as that shown in the recipe Configure IIS for SSL.

Configuring IIS bindings
In IIS, a binding specifies how incoming connections to a web server should be handled.

A binding is a combination of a protocol (HTTP, HTTPS, and so on), an IP address, TCP/IP
port, and host name. The binding thus tells Windows and IIS how to route requests
inbound to your system.

Bindings allow you to run more than one website on a single host. There are a few ways to
do this:

Configure multiple IP addresses and create a binding for each IP address to a
different website
Configure a single IP addresses and multiple ports and point each to a different
website
Configure a single address and use the host header option that routes requests for
a given write on the host.

If you use the multiple IP address option, you need to configure multiple IP addresses on
the system and ensure that the DNS entries for each website point to the correct IP address.
This approach requires extra overhead and uses more IP addresses.

Using a single IP address and multiple ports saves on IP addresses, but requires users
specify the port number when connecting. This is OK for sites you want to hide from curious
eyes.

Managing Internet Information Server

[425]

The best option for supporting multiple websites is to use the host header feature. With host
headers, the browser sends the name of the website as part of the request. IIS can read that
header and use the appropriate binding to specify which site relates to that header and
route accordingly. Thus, you could host www.reskit.org and www2.reskit.org on SRV1
and by using host headers you would need only a single IP address.

When you first install IIS, as you did in the Install IIS recipe, the setup creates a single
binding that binds traffic inbound on port 80 to the default website using HTTP. In the
recipe Configure IIS for SSL, you added a further binding for all traffic inbound to port 443
to the default website using HTTPS. So you have done some work with bindings already in
this chapter.

Getting ready
You run this recipe on SRV1, where you have installed and configured IIS (as per the Install
IIS and Configuring IIS for SSL recipes). This recipe also assumes you are using
DC1.Reskit.Org as your domain controller and DNS server.

How to do it...
Import the WebAdministration module:1.

 Import-Module -Name WebAdministration

Create and populate a new site:2.

 $sitepath = 'C:\inetpub\www2'
 New-Item -Path $sitepath -ItemType Directory
 $page = @'
 <!DOCTYPE html>
 <html>
 <head><title>Main Page for WWW2.Reskit.Org</title></head>
 <body><p><center>
 HOME PAGE FOR WWW2.RESKIT.ORG</p>
 This is the root page this site
 </body>
 </html>
 '@
 $PAGE | OUT-FILE -FilePath $sitepath\INDEX.HTML

Managing Internet Information Server

[426]

Create a new website that uses host headers:3.

 New-Website -PhysicalPath $sitepath -name www2 `
 -HostHeader 'www2.reskit.org'

Create a DNS record on DC1:4.

 Invoke-Command -Computer DC1.Reskit.Org -ScriptBlock {
 Add-DnsServerResourceRecordA -ZoneName 'Reskit.Org' `
 -Name 'www2' `
 -IpAddress 10.10.10.50
 }

And show the page:5.

 Start-Process ‘http://www2.reskit.org'

How it works...
In step 1, you import the WebAdministration module. There is no output from this step.

In step 2, you create a new folder on SRV1 that holds the default landing page for a new
website, www2.reskit.org. There is no output from this step.

In step 3, you create a new website, using the New-Website cmdlet. You specify the name of
the site (www2) and the HostHeader that IIS uses to bind the name to the new website. The
output from this step looks like this:

Managing Internet Information Server

[427]

Once you have set up the website and defined it in IIS, in step 4, you browse to the new site,
which looks like the following:

There's more ...
By default, while you can have as many HTTP-based sites as you want on a given machine,
you can only have one HTTPS site. This is because the details of which site the browser is
asking for is inside the encrypted content, thus can only be action once decrypted.

To overcome this, a new feature was added to TLS called Server Name Indication (SNI).
SNI allows the name of the host name being contacted to be specified during the SSL/TLS
handshake. This in turn enables IIS to support more than one secure site. To use SNI, the
browser or web client as well as the web server must support SNI. Modern web browsers
support SNI.

More information on using SNI can be found at
http://en.wikipedia.org/wiki/Server_Name_Indication.

Configuring IIS logging and log files
Each time IIS receives a request from a client, it logs that request to a log file. This is the
default behavior. With PowerShell, it's simple to modify this behavior, such as turning off
logging, changing the logging frequency, or changing the folder where IIS stores its log
files.

http://en.wikipedia.org/wiki/Server_Name_Indication

Managing Internet Information Server

[428]

Log files are therefore great places to look when troubleshooting or to analyze the website's
traffic. The logs can also be used for things such as capacity planning and can analyze the
behavior of the traffic. Finding out where traffic is coming from can be invaluable.

By default, IIS creates a separate log file every day. This has advantages, but on a busy web
server with many sites, managing log files can become a challenge. A web server that has
been up and running for a month could have 30 separate log files. Changing the location of
log files as well as how often to create a new log file can be appropriate.

You should also be aware that IIS has no built-in mechanism.

In this recipe, you configure logging in IIS using PowerShell and the provider contained in
the WebAdministration module.

Getting ready
This recipe assumes you have installed IIS, as per the Install IIS recipe.

How to do it...
Import the WebAdministration module to ensure the IIS provider is loaded:1.

 Import-Module WebAdministration

Look at where you are currently storing logfiles:2.

 $LogfileLocation = (Get-ItemProperty
 -Path'IIS:\Sites\Default Website' `
 -Name logfile).directory
 $LogFileFolder =
 [System.Environment]::
 ExpandEnvironmentVariables("$LogfileLocation")
 Get-ChildItem -Path $LogFileFolder -Recurse

Change the folder to C:\IISLogs:3.

 Set-ItemProperty -Path 'IIS:\Sites\Default Website' `
 -Name logFile.directory `
 -Value 'C:\IISLogs'

Managing Internet Information Server

[429]

Change the type of logging done:4.

 Set-ItemProperty -Path 'IIS:\Sites\Default Website' `
 -Name logFile.logFormat `
 -Value'W3C'

Change frequency of logFile changes:5.

 Set-ItemProperty -Path 'IIS:\Sites\Default Website' `
 -Name logFile.period `
 -Value Weekly

Set a maximum size for the logFile:6.

 Set-ItemProperty -Path 'IIS:\Sites\Default Website' `
 -Name logFile.period `
 -Value MaxSize
 $Size = 1GB
 Set-ItemProperty -Path 'IIS:\Sites\Default Website' 1
 -Name logFile.truncateSize
 -Value $Size

Disable logging for the default website:7.

 Set-ItemProperty -Path 'IIS:\Sites\Default Website'
 -Name logFile.enabled
 -Value False

How it works...
In step 1, you import the WebAdministration module which produces no output. This
recipe uses the provider as opposed to the cmdlets, contained in the module.

In step 2, you discover where, by default, IIS store its log files and view the log files
available. The log file folder, by default, %SystemDrive%\inetpub\logs\LogFiles, is
named using a system environment variable (%SystemDrive%). To convert the returned
value into a full file system path, you use the ExpandEnvironmentVariables method
of .NET System.Environment. The output of this step looks like this:

Managing Internet Information Server

[430]

As you can see, there are three log files for this system—you may see different outputs
depending on what requests you have sent to SRV1. If you are testing this recipe, consider
viewing the contents of any log files generated. Using the provider, as you do in this step,
generates no output.

In step 3, you use the provider to change the location of the IIS logs for the default website.
You change the log file location to C:\IISLOGS. Of course, you can use any folder you
choose! You may find it appropriate to put the log files on a separate disk. There is no
output from this step.

In step 4, you change the output format for the log files. There are a number of different log
file formats you can utilize (IIS, NCSA, W3C, and custom) in this step, which produces no
output, to use the W3C format. Depending on your needs, and whether you have analysis
software that prefers one format over the other, you can change the log file format. Log file
formats you can specify include IIS, NCSA, and W3C.

In step 5, you change the frequency of log file changes. By default, IIS produces one file per
day, but here you change it to a new file each week. Depending on the traffic, and how you
plan to analyze it you might wish to change the defaults. You can set your log file changers
to be: Hourly, Daily, Weekly, Monthly, or Maximum size.

In step 6, you update two IIS log file properties. The first sets the log file period to maximum
size. The second sets the truncate size to a value (1 GB). These changes have the effect of
having IIS log files both be a maximum size and to have IIS create a new log once the
current log gets larger.

Managing Internet Information Server

[431]

With step 7, you disable logging, in this case, for the default website. Best practice is to have
a log file that describes the web requests sent to your IIS server and where they came from.
But there may be cases where turning logging off may be useful. For example, if you use
DSC, you may want to turn IIS logging off once your DSC environment is working. You
could rely instead on DSC logging.

There's more...
In step 3, you adjusted the folder to hold the IIS logs. In production, you may choose to hold
IIS log files on separate disks. As a best practice, you should consider having your IIS log
files on a separate disk.

In step 5, you adjusted the log file format for IIS logging. You have several options for log
file formats. See
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/confi

gure-logging-in-iis for more information on IIS log file formats.

Here's more

You may want to keep your log files for longer time periods, say more
than seven days. To avoid them from clogging up your web servers, you
can write a simple script that copies each server's log files to a central
repository. To achieve this, modify the recipe to use Move-Item to move
the log files to a remote location instead of deleting them.

Managing applications and application pools
In earlier versions of IIS, all the web pages/sites on a given system ran in a single process.
This meant that one application, if not written well could cause issues with other
applications. An application could, for example, have a memory leak which would
ultimately require a restart of IIS or even a reboot of the server.

In later versions of IIS, Microsoft adds the concept of web applications and application
pools to IIS. With IIS, a web application is a set of one or more URLs (web pages) which you
configure IIS to run inside independent worker processes. An application pool is a set of
worker processes which IIS uses to run an application. You can run one or more
applications within a given application pool. Technically a website and a web application
are not the same, but in many cases, different websites end up being distinct applications.

https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/configure-logging-in-iis
https://docs.microsoft.com/en-us/iis/manage/provisioning-and-managing-iis/configure-logging-in-iis

Managing Internet Information Server

[432]

The application pool feature provides application isolation, enabling you to run possibly
badly-behaved applications independently of others. And since you can configure an
application pool to run more than one worker process, application pools provide scalability.
With application pools, IIS can spawn numerous threads in each worker which IIS runs in
parallel. IIS can create and destroy worker processes on demand.

You can also set up the worker processes to have IIS recycle the process on a regular basis.
Thus, if a badly-behaved application contains a memory leak (something quite possible
using older ISAPI technologies for example), recycling the process returns the leaked
resources back to the OS. Thus, even a very poorly-written application can run reasonably
well inside IIS.

Another nice feature of application pools is that you can configure each application pool
with separate credentials. Although is management of users to do, this approach provides
increased security of IIS applications. For example, an HR application could run using the
credentials Reskit\HRApp whilst you could configure an accounting web application to
run as Reskit\AccountApp.

Web applications and application pools enable you to both scale a given web server and at
the same time provide isolation between applications, which both improves security and
minimizes disruptions caused by badly implemented applications.

With a web pool, you can also specify when to recycle the applications within the pool. Rich
web applications can include executable code, written in a variety of languages. This code
can have faults, resulting in resource leaks. One way to reduce the impact of such faults is to
recycle the application—killing the worker process(s) running the pool and creating new
ones. Any leaked resources are returned, although any state saved in the application pool's
memory is lost.

There are a variety of conditions you can set to trigger recycling on an application pool. You
can set a schedule of when to recycle, you can recycle if private memory exceeds a pre-
determined value (For example 1 GB), or after a certain number of requests (recycle the
application pool after 1 million hits).

For fuller details, see
https://technet.microsoft.com/en-us/library/cc745955.aspx

This page relates to IIS 7, but the details are still the same for IIS 10
included with Windows Server 2016 and Windows 10.

In this recipe, you create a new IIS web application. This new application is to be the single
page WWW2 site you created in the Configure IIS bindings recipe. The recipe also creates and
configures an application pool that hosts the new application.

https://technet.microsoft.com/en-us/library/cc745955.aspx

Managing Internet Information Server

[433]

Getting ready
This recipe assumes you have installed IIS, as per the Install IIS recipe. This recipe also
makes use of the WWW2.Reskit.Org site you created in the Configure IIS Bindings recipe.

How to do it...
Import the WebAdministration module:1.

 Import-Module WebAdministration

Create the new application pool:2.

 New-WebAppPool -Name WWW2Pool

Create the new application in the pool:3.

 New-WebApplication -Name WWW2 -Site www2 `
 -ApplicationPool WWW2Pool `
 -PhysicalPath C:\inetpub\www2

View the application pools on SRV1:4.

 Get-IISAppPool

Set the application pool restart times:5.

 Clear-ItemProperty -Path 'IIS:\AppPools\WWW2Pool' `
 -Name Recycling.periodicRestart.schedule
 $RestartAt = @('07:55', '19:55')
 New-ItemProperty -Path 'IIS:\AppPools\WWW2Pool' `
 -Name Recycling.periodicRestart.schedule `
 -Value $RestartAt

Set the application pool maximum private memory:6.

 Clear-ItemProperty IIS:\AppPools\WWW2Pool `
 -Name Recycling.periodicRestart.privatememory
 [int32] $PrivMemMax = 1GB
 Set-ItemProperty -Path 'IIS:\AppPools\WWW2Pool' `
 -Name Recycling.periodicRestart.privateMemory`
 -Value $PrivMemMax
 Get-ItemProperty -Path 'IIS:\AppPools\WWW2Pool' `
 -Name Recycling.periodicRestart.privateMemory

Managing Internet Information Server

[434]

Set the maximum number of requests before a recycle:7.

 Clear-ItemProperty IIS:\AppPools\WWW2Pool `
 -Name Recycling.periodicRestart.requests
 [int32] $MaxRequests = 100000
 Set-ItemProperty -Path 'IIS:\AppPools\www2POOL' `
 -Name Recycling.periodicRestart.requests `
 -Value $MaxRequests
 Get-ItemProperty -Path 'IIS:\AppPools\www2POOL' `
 -Name Recycling.periodicRestart.requests

View the application pool properties in IIS. Open the IIS management console,8.
and view the application pool properties.

How it works...
In step 1, you import the WebAdministration module. This recipe uses the provider, so
you should load it in advance. There is no output from this step.

In step 2, you create a new application pool (WWW2Pool). This has output that looks like this:

Once you have created the application pool, you can create a new web application that is to
host the WWW2 site created earlier. In step 3, you create an application within the just-created
application pool. The output looks like this:

Managing Internet Information Server

[435]

In step 4, you review the application pools, with output like this:

In step 5, you set the times when IIS is to recycle the application pool. You specify 7:55 in
the morning and 19:55 in the evening. There is no output from this step.

In step 6, you specify a private memory maximum value of 1 GB. Setting the
privateMemory property directs IIS to restart the application pool any time a worker
process's private memory exceeds 1 GB. There is no output from this step.

In step 7, you open up the IIS console, click on the application pool node, then look at the
advanced properties for the WWW2 application pool. As you can see in this output, the restart
times, private memory maximum, and restart counts are all enabled:

Managing Internet Information Server

[436]

There's more...
In step 2, you create a new application pool, using the New-WebAppPool cmdlet. However,
there is no Get-WebAppPool cmdlet—to view the application pools, as you see in step 4,
you have to use the Get-IISAppPool cmdlet. That's because the Get-IISAppPool comes
from the IISAdministration module and is new in Server 2016.

In step 4, you can see a variety of existing web pools. These show the IIS application pools
created both by default and by other recipes in this book. The application pool is an
important feature to enable you to run multiple web applications on a single server and
avoid application interference. As part of deploying IIS, you might consider removing all
but the necessary application pools.

In step 5, step 6, and step 7, you configure the application pool properties. You achieve this
by setting item properties within the IIS provider. Where you want to configure pool
properties, you set the relevant item property on the application pool item for the pool.
These steps make use of the WebAdministration provider. The item properties you set are
translated by the provider into the XML that drives IIS. For more information on the
WebAdministration provider, see
https://technet.microsoft.com/en-us/library/ee909471(v=ws.10).aspx.

Managing and monitoring network load
balancing
Network Load Balancing (NLB) is a feature of Windows and IIS that allows multiple hosts
to host the same website. The NLB cluster distributes all traffic to the cluster to the
individual hosts.

NLB provides both scalability and fault tolerance. If you add additional nodes, the cluster is
able to handle more traffic. And if a node should fail, the other remaining nodes take the
traffic, albeit at a potentially lower performance level.

NLB is a versatile feature. You can use NLB to load balance web, FTP, firewall, proxy, and
VPN traffic. Performance is acceptable although many users prefer to use hardware load
balancers.

In this recipe, you create a new NLB cluster (ReskitNLB) which loads balances between two
hosts (NLB1, NLB2). The recipe creates a simple single page site on each system and load
balances the site.

https://technet.microsoft.com/en-us/library/ee909471(v=ws.10).aspx

Managing Internet Information Server

[437]

In this recipe, the single document site differs on each server, which is useful to show which
server accepted and processed any given request. In production, you would want all nodes
to have the same content, providing a seamless experience.

You run the core of this recipe on NLB1. Once you have the NLB cluster up and running, you
can view it from another host (in this case DC1).

Getting ready
This recipe uses two previous servers, NLB1 and NLB2, as well as DC1. DC1 is the domain
controller in the Reskit.Org domain and is also a DNS server for the domain. You must
set static IP addresses on both servers, otherwise you see an error attempting to create the
NLB cluster.

The two new servers should have the default setup, with IIS loaded. After you install the
two servers, you can add IIS as follows:

 Install-WindowsFeature -Name Web-Server `
 -IncludeManagementTools
 Install-WindowsFeature -Name Web-Server `
 -IncludeManagementTools `
 -ComputerName NLB2

How to do it...
Install NLB locally on NLB1, them remotely on NLB2:1.

 Install-WindowsFeature -Name NLB `
 -IncludeManagementTools
 Install-WindowsFeature -Name NLB `
 -IncludeAllSubFeature `
 -IncludeManagementTools `
 -ComputerName NLB2

Confirm NLB and Web-Server features are loaded on both systems:2.

 Invoke-Command -ScriptBlock {Get-WindowsFeature Web-Server, NLB} `
 -ComputerName NLB1, NLB2 |
 Format-table -Property DisplayName,PSComputername,Installstate

Managing Internet Information Server

[438]

Create the NLB cluster, initially on NLB1:3.

 New-NlbCluster -InterfaceName Ethernet `
 -ClusterName 'ReskitNLB' `
 -ClusterPrimaryIP 10.10.10.55 `
 -SubnetMask 255.255.255.0 `
 -OperationMode Multicast

Add NLB2 to the ReskitNLB cluster:4.

 Add-NlbClusterNode -NewNodeName NLB2 `
 -NewNodeInterface 'Ethernet' `
 -InterfaceName 'Ethernet'

Create a network firewall rule:5.

 Invoke-Command -ComputerName NLB2 {
 Set-NetFirewallRule -DisplayGroup 'File and
 Printer Sharing' `
 -Enabled True
 }

Create a default document—differently on each machine:6.

 'NLB Cluster: Hosted on NLB1' |
 Out-File -FilePath C:\inetpub\wwwroot\index.html
 'NLB Cluster: Greetings from NLB2' |
 Out-File -FilePath \\nlb2\c$\inetpub\wwwroot\index.html

Add a DNS A record for the cluster:7.

 $sb = {
 Add-DnsServerResourceRecordA -Name ReskitNLB `
 -IPv4Address 10.10.10.55 `
 -zonename Reskit.Org}
 Invoke-Command -ComputerName DC1 -ScriptBlock $sb

View the NLB site (do this on DC1):8.

 Start-Process 'http://ReskitNLB.reskit.org'

Stop one node (the one that responded in step 8!):9.

 Stop-NlbClusterNode -HostName NLB1

Managing Internet Information Server

[439]

Then view the site again:10.

 $IE = New-Object -ComObject InterNetExplorer.Application
 $URL = 'http://ReskitNLB.reskit.org'
 $IE.Navigate2($URL)
 $IE.Visible = $true

How it works...
In the Getting ready phase of this recipe, you create two servers in the Reskit.Org domain
that are to host the NLB cluster. In this recipe, you are adding and configuring NLB on these
two new servers.

In step 1, you add the NLB feature to your two hosts:

In step 2, you confirm that you have loaded both the NLB and Web-Server features to both
NLB1, and NLB2, which looks like this:

Managing Internet Information Server

[440]

With the necessary features loaded, in step 3, you create the NLB cluster named ReskitNLB.
The output of this step looks like this:

The previous step creates a one node NLB cluster. In step 4, you add the second node, NLB2,
to the ReskitNLB load balancing cluster. The output from this step looks like this:

In step 5, you add a simple firewall rule to allow file and printer sharing to be allowed.
There is no output from this step.

In step 6, you create default documents for each server in the NLB cluster. This step
generates different default documents for each of the two NLB hosts, which helps you see
which host is servicing the request. There is no output from this step.

To complete the setup of the cluster, in step 7, you add a DNS A record pointing to the NLB
Cluster IP address (10.10.10.55). This enables you to use a DNS host name
(ReskitNLB.Reskit.Org) to access the cluster. There is no output from this step.

Managing Internet Information Server

[441]

With the cluster setup, in step 8 you view the site, using the new DNS name. You run this
step on any host except the two NLB nodes, for example, DC1, using the full DNS name of
the NLB cluster (ReskitNLB.Reskit.Org). When you do so, the output looks like this:

In step 9, which you run on NLB1 or NLB2, you stop the node that processed the previous
reply to simulate a node failure. Assuming NLB1 previously responded, this step stops the
NLB node on NLB1. The output looks like this:

With the NLB1 host now stopped, in step 10, you re-view the site (from the same computer
you used in step 8, for example DC1). The output looks like this:

Managing Internet Information Server

[442]

There's more...
This recipe uses two new servers (NLB1, NLB2). You could also run this recipe on other
servers as appropriate—for example SRV1 and SRV2 used elsewhere in this book.

In step 3, you create the NLB cluster. Because NLB1 and NLB2 have just one network adapter,
you create the cluster with an operation mode of Multicast. Had you used Unicast,
Windows would have effectively killed off the normal connection to these systems.

In step 9, you stop a node in the ReskitNLB load balancing cluster. You could view the
status of the nodes in the cluster by using the Get-NlbClusterNode cmdlet. After stopping
the NLB1 node, the output when viewing ReskitNLB.Reskit.Org is that you see the
default document on NLB2. This shows that the cluster is operational even if a node is not.
You might make use of this during a maintenance window. You could take one node down
and the cluster continues whilst you maintain the node. Of course, this means the overall
cluster is less performant, but that is a fact to consider when setting any maintenance
windows.

In step 8, step 9, and step 10, you view the operation of the NLB cluster. If you are testing this,
you may find NLB2 responds to the initial request (step 8)—if so, then in step 9, shut down
NLB2 instead. If you run these tests on either of the cluster members, NLB resolves the
cluster to the local site. So running this from NLB1 would always pick NLB1, whereas from
another host, such as DC1, you see the desired behavior.

11
Managing Hyper-V

In this chapter, we cover the following recipes:

Installing and configuring Hyper-V feature
Using Windows PowerShell Direct
Securing Hyper-V host
Creating a virtual machine
Configuring VM hardware
Configuring Hyper-V networking
Implementing nested Hyper-V
Managing VM state
Configuring VM and storage movement
Configuring VM replication
Managing VM checkpoints
Monitoring Hyper-V utilization and performance
Creating a Hyper-V health report

Introduction
Hyper-V is Microsoft's virtual machine hypervisor. Both Windows Server 2016 and
Windows 10 include Hyper-V as an option you can install. The Hyper-V feature is included
in all versions of Windows Server 2016, as well as in the Enterprise, Professional, and
Education editions of Windows 10. Nested Hyper-V, the ability to run Hyper-V inside a
Hyper-V VM, is available in both Windows 10 Anniversary Update and Windows Server
2016. Additionally, Microsoft has made the Microsoft Hyper-V Server available as a free
version of the Hyper-V hypervisor. The Hyper-V Server runs virtual machines with no GUI.
You configure and manage remotely.

Managing Hyper-V

[444]

Hyper-V was first released with Server 2008. Successive versions of Windows brought
improvements in features, hardware support, and scalability. The first version did not
include PowerShell cmdlet support, but that was rectified in later releases. With Server 2016
there is good PowerShell coverage. This chapter focuses solely on Hyper-V inside Windows
Server 2016 although you can manage Hyper-V Server using the tools used in this chapter's
recipes.

Hyper-V's management tools enable you to configure and manage both the Hyper-V service
and configure and manage virtual machines and the resources they utilize. This chapter
starts with installing and configuring the Hyper-V Server role. Later in the chapter, you
create and manage virtual machines. The chapter ends with looking at high availability for
Hyper-V Servers and Hyper-V VMs, host resource protection, and PowerShell Direct.

Installing and configuring Hyper-V feature
To install Hyper-V on Windows Server 2016, you install the Hyper-V feature. In this recipe,
you do the set up remotely from a client machine using the Hyper-V cmdlets and
PowerShell's remoting capabilities.

Getting ready
For this recipe, you need to have the host computers on which you install Hyper-V. This
recipe uses two servers, HV1 and HV2. Each server is a member of the domain on which you
have added no additional services. As an alternative to having two systems running, you
could use embedded Hyper-V and create the two VMs inside a third.

To demonstrate remote configuration, you perform this recipe from a third computer, CL1
running Windows 10 (Anniversary Update). This recipe makes use of a second hard disk,
an H: drive on the HV1 and HV2 systems that you use to store Hyper-V VMs and virtual
disks.

You need the Hyper-V tools on CL1—add them using the Enable-
WindowsOptionalFeature and use the -Online switch, as follows:

Add windows optional feature for CL1
Enable-WindowsOptionalFeature `
 -FeatureName Microsoft-Hyper-V-All `
 -Online -NoRestart
Restart-Computer -Computername CL1 -Force

Managing Hyper-V

[445]

If you are using Windows 10 to test these recipes, you can install Hyper-V features
assuming you have the Professional, Enterprise, or Educational editions. If you install
Hyper-V on either Windows 10 or Server 2016, you need to reboot the host computer before
proceeding.

How to do it...
This recipe shows how to install Hyper-V:

From CL1, install the Hyper-V feature on HV1, HV2:1.

 $Sb = {
 Install-WindowsFeature -Name Hyper-V `
 -IncludeManagementTools }
 Invoke-Command -ComputerName HV1, HV2 `
 -ScriptBlock $Sb

Reboot the servers to complete the installation:2.

 Restart-Computer -ComputerName HV1, HV2 -Force `
 -Wait -For -PowerShell

Create and set the location for VMs and VHDs on HV1 and HV2, then view results:3.

 $Sb = {
 New-Item -Path H:\Vm -ItemType Directory -Force |
 Out-Null
 New-Item -Path H:\Vm\Vhds -ItemType Directory -Force |
 Out-Null
 New-Item -Path H:\Vm\VMs -ItemType Directory -force |
 Out-Null
 Get-ChildItem -Path H:\Vm }
 Invoke-Command -ComputerName HV1, HV2 -ScriptBlock $Sb

Set default paths for Hyper-V VM hard disks and VM configuration information:4.

 Set-VMHost -ComputerName HV1,HV2 `
 -VirtualHardDiskPath 'H:\Vm\Vhds'
 Set-VMHost -ComputerName HV1,HV2 `
 -VirtualMachinePath 'H:\Vm\VMs'

Managing Hyper-V

[446]

Setup NUMA spanning:5.

 Set-VMHost -ComputerName HV1,HV2 -NumaSpanningEnabled $true

Set up EnhancedSessionMode:6.

 Set-VMHost -ComputerName HV1,HV2 `
 -EnableEnhancedSessionMode $true

Setup host resource metering on HV1, HV2:7.

 $RMInterval = New-TimeSpan -Hours 0 -Minutes 15
 Set-VMHost -CimSession HV1, HV2 -ResourceMeteringSaveInterval
 $RMInterval

Review key VMHost settings:8.

 Get-VMHost -ComputerName HV1, HV2 |
 Format-List -Property Name, MemoryCapacity,
 Virtual*Path, NumaSpanningEnabled,
 EnableEnhancedSessionMode,
 ResourceMeteringSaveInterval

How it works...
In step 1, you used PowerShell remoting to invoke a script block on the two Hyper-V
Servers. The script block contains the command to install the Hyper-V feature on the server.
PowerShell runs the script in parallel on both computers. Once complete, as you can see in
the following screenshot, you need to reboot before proceeding:

Managing Hyper-V

[447]

In step 2, you reboot the two servers. By using the -Wait -For Powershell parameters,
you tell PowerShell to reboot HV1 and HV2 and wait until the servers are running and
contactable. Once this cmdlet has finished, HV1 and HV2 are both in a state where you can
continue to configure them using PowerShell remoting.

In step 3, you create a top-level folder (H:\Vm) and two sub-folders (H:\Vm\Vhds and
H:\Vm\VMs). You can see the folders on the two Hyper-V hosts, as follows:

Managing Hyper-V

[448]

In the next three steps, you set up some aspect of the two Hyper-V hosts. In step 4, you set
the default paths for Virtual hard disks and Virtual Machines on the two Hyper-V hosts. In
step 5, you enable NUMA spanning while in step 6 you enable enhanced session mode. In
step 7, you set the save interval for VM resource metering to 15 minutes. There is no output
from these steps.

In step 8, you look at the settings you updated in this recipe, which looks like this:

There's more...
In step 1, you installed the Hyper-V feature on two servers. You can only do this
successfully if the host you are using supports the necessary virtualization capabilities and
you have enabled them in your system's BIOS. To check if your system is capable, see this
link: http://mikefrobbins. com/ 2012/ 09/ 06/use- powershell- to- check- for- processor-
cpu-second-level- address- translation- slat- support/ . Also you should double check
the BIOS to ensure virtualization is enabled.

http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/
http://mikefrobbins.com/2012/09/06/use-powershell-to-check-for-processor-cpu-second-level-address-translation-slat-support/

Managing Hyper-V

[449]

If your host is either misconfigured or incapable of supporting virtualization, you may see
this message when you attempt to add the Hyper-V feature:

If you do encounter this message, then you need to find another host computer—yours is
not ever going to run Hyper-V.

In step 2, you installed the Hyper-V features on the two Hyper-V hosts, and then in step 3,
you rebooted the two servers. You could have allowed Install-WindowsFeature to have
rebooted automatically by using the -Restart switch. In automation terms, this could have
meant that the system started rebooting before the remote script has completed. This could
cause the Invoke-Command to error out. The recipe avoids this by not rebooting after
installation of the Hyper-V features, then rebooting in a controlled way. Once the Reboot-
Computer command returns, your scripts can carry on managing the servers.

In each of step 4 through step 7, you set up one aspect of the Hyper-V hosts. You could have
combined these steps and just called Set-VMHost once with all of the properties specified.

You can find more information on some of the Hyper-V features used in this recipe (details
of which are outside the scope of this book), as follows:

For more
information
on

See

Connecting to
a VM,
including
enhanced
session mode

https:/ / technet. microsoft. com/ en- us/ windows- server- docs/ compute/ hyper- v/ learn- more/ use-
local- resources- on- hyper- v- virtual- machine- with- vmconnect

Understanding
the hard disk
paths for VM
and VHD
information

https://blogs.msdn.microsoft.com/virtual_pc_guy/2010/03/10/understanding-where-your-virtual-
machine-files-are-hyper-v/

Hyper-V and
NUMA

https:/ / technet. microsoft. com/ en- us/ library/ dn282282%28v= ws. 11%29. aspx? f= 255 MSPPError= -
2147217396

Hyper-V
Resource
Metering

https:/ / technet. microsoft. com/ en- us/ library/ hh831661(v= ws. 11). aspx

https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://technet.microsoft.com/en-us/windows-server-docs/compute/hyper-v/learn-more/use-local-resources-on-hyper-v-virtual-machine-with-vmconnect
https://blogs.msdn.microsoft.com/virtual_pc_guy/2010/03/10/understanding-where-your-virtual-machine-files-are-hyper-v/
https://blogs.msdn.microsoft.com/virtual_pc_guy/2010/03/10/understanding-where-your-virtual-machine-files-are-hyper-v/
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/dn282282%28v=ws.11%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831661(v=ws.11).aspx

Managing Hyper-V

[450]

Using Windows PowerShell Direct
PowerShell Direct (PSD) is a new feature with Windows Server 2016 (and on Windows 10
Anniversary Update or later). PSD enables you to use PowerShell remoting to access a
Hyper-V VM without needing to setup networking and firewall settings. With PSD, you use
Invoke-Command, specifying either the VM's name or the VM's VMID (the VMID is a GUID
used internally by Hyper-V to identify a VM). You can also use the VM name or VMID to
enter a remote session using Enter-PSSession.

In previous versions of Hyper-V, you needed some sort of networking connection between
your Hyper-V host and the guest OS in order to remote into the guest. This was often
setting up firewall exceptions and establishing network connectivity. With PSD, you can
use the VM's name or ID and remote straight in.

Getting ready
For this recipe, you need a Hyper-V Host running on either Windows 10 Anniversary
Update (or later) or Windows Server 2016, with Hyper-V loaded and operational.
Additionally, you need a VM running Windows Server 2016 (or Windows 10). You should
name the VM psdirect and set the VM's guest OS hostname to tiger.

To ensure security, you need to specify credentials when you call Invoke-
Command or Enter- PSSession. You can either specify the -Credential parameter or let
either cmdlet prompt for credentials.

With Hyper-V, the VM name can be different to the hostname of the OS running inside the
VM. In this example, you use a VM with a VM name of psdirect and a hostname
of tiger.

How to do it...
Here is how you can use PowerShell Direct:

Create a credential object for ReskitAdministrator:1.

 $RKAdmin = 'ReskitAdministrator'
 $RKPass = ConvertTo-SecureString `
 -String 'Pa$$w0rd' `
 -AsPlainText
 -Force
 $RKCred = New-Object `

Managing Hyper-V

[451]

 -TypeName System.Management.Automation.PSCredential
 -ArgumentList $RKAdmin,$RKPass

Display the details of the psdirect VM:2.

 Get-VM -Name psdirect

Invoke a command on the VM, specifying VM name:3.

 Invoke-Command -VMName psdirect `
 -Credential $RKCred `
 -ScriptBlock {hostname}

Invoke a command based on VMID:4.

 $VMID = (Get-VM -VMName psdirect).VMId.Guid
 Invoke-Command -VMid $VMID `
 -Credential $RKCred `
 -ScriptBlock {hostname}

Enter a PS remoting session with the psdirect VM:5.

 Enter-PSSession -VMName psdirect -Credential $RKCred
 Get-CimInstance -Class Win32_ComputerSystem
 Exit-PSSession

How it works...
In step 1, you take a shortcut and directly create a credential object. Needless to say, it's not
best practice, but for testing and learning, it is highly convenient.

In step 2, you use Get-VM to return information about the psdirect virtual machine, which
looks like this:

Managing Hyper-V

[452]

In step 3, you invoke a script block on the psdirect VM, specifying the VM by name. The
script block just returns the name of the guest OS, as follows:

In step 4, you invoke the same script block as in step 3 but specifying the VM based on
VMID. This property is a GUID that Hyper-V uses internally to address each VM. You get
the VM's VMID from the object returned from Get-VM, and then use it as follows:

In step 5, you enter a remote PowerShell session on the psdirect virtual machine. After
entering the remote session, you use Get-CimInstance to return WMI information about
the VM's operating system. You can see that the psdirect VM runs an OS whose hostname
is tiger:

There's more...
In step 3 and step 4, you use the hostname console application to obtain the hostname. You
could have displayed the environment variable $env:COMPUTERNAME.

Managing Hyper-V

[453]

In step 5, you enter a remote session directly into the psdirect VM. Notice that the prefix
to the prompt changes to [psdirect]. And when you exit the remote session, the prompt
changes back to PS C:\>. By changing the prompt, PowerShell helpfully reminds you of to
the hostname that is to which is going to execute any command you type. Accidentally
typing a command intended for the local host into the remote system instead is an all too
common mistake.

Securing Hyper-V host
With server virtualization becoming more and more the norm, managing groups of Hyper-
V Servers can be simplified by using VM groups. VM Groups are a new feature in Windows
Server 2016 that allows you to create and use groups of servers. Server 2016 supports two
different types of VM Groups: VM collection groups and management collection groups. A
VM collection group is a collection of Hyper-V VMs. You can carry out tasks on the groups
rather than on each individual VM. A management collection group is a collection of VM
collection groups and other nested management collection groups. VM groups are
especially useful for backups and for VM replication. In backup situations, a number of
VMs making up a multi-tier application need to be backed up together.

In this recipe, you create a VM collection group containing two servers. Then you set the
MAC addresses used by the two servers and you enable host resource protection.

Getting ready
This recipe assumes you have two servers on which you have installed Hyper-V, as set out
in the Installing and configuring Hyper-V feature recipe. You run this recipe on server
HV1. Note that this recipe is based on HV1 and HV2 being VMs.

How to do it...
Here is how you can secure your Hyper-V host:

Setup Hyper-V VM groups:1.

 $VMGroup = New-VMGroup -Name HVServers `
 -GroupType VMCollectionType

Managing Hyper-V

[454]

Create an array of members to add to the VM collection group:2.

 $HVServers = 'HV1','HV2'

Add members to the VM group storage HVServers:3.

 Foreach ($HVS in $HVServers) {
 $VM = Get-VM -Name $HVS
 Add-VMGroupMember -ComputerName HVServers -VM $VM}

Get and display VM group details:4.

 Get-VMGroup |
 Format-Table -Property Name, GroupType, VMMembers

Get and display the VMs in the groups:5.

 $Members = (Get-VmGroup -Name HVServers).VMMembers
 $Members

Set up and view MAC addresses:6.

 Set-VMhost -ComputerName HV1 -MacAddressMinimum 00155D017000 `
 -MacAddressMaximum 00155D017099
 Set-VMhost -ComputerName HV2 -MacAddressMinimum 00155D017100 `
 -MacAddressMaximum 00155D017199
 Get-VMhost -Computer HV1, HV2 |
 Format-Table -Property Name, MacAddressMinimum,
 MacAddressMaximum

Stop any VMs that might be running in the HVServers VM group:7.

 Stop-VM -VM (Get-VMGroup HVServers).VMMembers

Enable Hyper-V HostResourceProtection for VMs in the HVServer VM8.
group:

 Set-VMProcessor -VM (Get-VMGroup HVServers).VMMembers `
 -EnableHostResourceProtection $true

Start VMs in the HVServer VM group:9.

 Start-VM -VM (Get-VMGroup HVServers).VMMembers

Managing Hyper-V

[455]

Observe the results of enabling HostResourceProtection:10.

 Get-VMProcessor -VM (Get-VMGroup HvServers).VMMembers |
 Format-Table -Property VMName, OperationalStatus

How it works...
In step 1, you create a VM collection VM group called HVServers. In step 2 and step 3 you
add the two Hyper-V VMs to the VM group. There is no output from these three steps.

In step 4, you use Get-VMGroup to return details of the VM groups on the server, like this:

In step 5, you retrieve details about the VMs in the HVServers VM group, as follows:

In step 6, you set and then review the MAC addresses that Hyper-V uses on the two Hyper-
V host servers, as follows:

Managing Hyper-V

[456]

In step 7, step 8, and step 9, you stop the VMs in the VM group, you enable
HostResourceProtection on the Hyper-V hosts, and then you restart the VMs. There is
no output from these steps. In step 10, once the VMs have restarted, you verify HV1 and HV2
are set to use HostResourceProtection, as follows:

There's more...
In step 1 through step 5, you set up a VM group. This is meant to make dealing with groups
of Hyper-V Servers easier. As you see in step 7 through step 10, you use these VM groups to
perform management functions on groups of servers.

The VMGroup feature is very useful, but unfortunately, none of the Hyper-V cmdlets
support a - VMGroup parameter enabling a cmdlet to operate directly on the members of
the VM group. Instead, you specify the VMs using the VM parameter like this, -VM (Get-
VMGroup HvServers).VMMembers.

In step 8, you enable HostResourceProtection. In Server 2016 this is limited to CPU.
setting HostResourceProtection ensures that the Hyper-V VMs do not use excessive
resources (CPUs). You set resource protection settings for VMs in the next recipe.

If you are creating many VMs, you need to consider using the various deployment tools at
your disposal. These tools include the commands in then DISM PowerShell modules as well
as Windows deployment tools included in the Windows Automated Installation Kit
(WAIK). The details of deploying Windows is outside the scope of this recipe.

There are some third party tools, such as the free Sysinternals tool Disk2Vhd, that can assist.
You can use Disk2VHD to create a VHDX file you can boot from, based on the WIM file on
your Windows 2016 installation DVD image. You can download this tool from
https://technet.microsoft.com/en- us/sysinternals/ee656415.aspx.

https://technet.microsoft.com/en-us/sysinternals/ee656415.aspx

Managing Hyper-V

[457]

Create a virtual machine
You create Hyper-V virtual machines in several distinct steps. First, you need to create the
VM itself—creating a virtual machine and the virtual hard drive and assign hardware such
as memory, CPU cores, and DVD drives (and drive contents).

Once the VM is created, you need to work out how to install an OS into the VM. This
process can be complex if you use native commands.

In this recipe, you create a simple VM that installs the OS into the VM based on GUI input.
This recipe is therefore often the precursor to other configuration (that is you create a new
VM and then add features and configure it per your requirements.
This is the same experience you would observe if you had a physical machine, with an
empty C: drive that you boot from a Windows Server 2016 installation ISO.

Getting ready
For this recipe, you need a Hyper-V VM host—use HV1 which needs an H: drive. The H:
drive is where you store the VM and virtual disks.

You also need the ISO image for Windows Server 2016. For testing purposes, you can
download an evaluation edition from Microsoft. Navigate to
https://www.microsoft.com/en- us/evalcenter/evaluate-windows-server-2016/ and
download the ISO image. In order to download the ISO, you need to login to the TechNet
website using a Microsoft ID.

How to do it...
Here is how to create a new VM:

Set up the VM name and paths for this recipe:1.

 $VMname = 'VM1'
 $VMLocation = 'H:\Vm\VMs'
 $VHDlocation = 'H:\Vm\Vhds'
 $VhdPath = "$VHDlocation\VM1.Vhdx"
 $ISOPath = 'C:\Builds\en_windows_server_2016_x64_dvd.iso'

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016/

Managing Hyper-V

[458]

Create a new VM:2.

 New-VM -Name VM1 -Path $VMLocation -MemoryStartupBytes 1GB

Create a virtual disk file for the VM:3.

 New-VHD -Path $VhdPath -SizeBytes 128GB -Dynamic

Add the virtual hard drive to the VM:4.

 Add-VMHardDiskDrive -VMName $VMname -Path $VhdPath

Set ISO image in the VM's DVD drive:5.

 Set-VMDvdDrive -VMName $VMName -ControllerNumber 1 `
 -Path $ISOPath

Start the VM:6.

 Start-VM -VMname $VMname

View the results:7.

 Get-VM -Name $VMname

How it works...
In step 1, you set variables that contain the VM name as well as the paths to the VM/VHDX
locations, the VHDX file for this VM and to the Windows Server 2016 installation DVD
image. There is no output from this step.

In step 2, you create a Hyper-V VM, which looks like this:

Managing Hyper-V

[459]

In step 3, you create a dynamic VHDX file for the VM1 virtual machine. The output from this
step looks like this:

In step 4, you add the VHD to the VM—there is no output from this step.

In step5, you add the ISO image to the VM, inserting the image into the VMs's DVD drive.
There is no output from this step.

In step 6, you add the VHDX file to the VM. There is no output from this step.

Once you add the VHDX and ISO image to the VM, in step 7, you start the VM1 VM. There is
no output from this step. However, you can observe, in step 8, that the VM has started, like
this:

Managing Hyper-V

[460]

Using the GUI tools (Hyper-V Manager and VMConnect), your new VM looks like this:

As you can see in this graphic, Windows 2016 has begun the installation process and is
waiting for your input. This example was created using a English (United States) ISO
image—if you use localized ISO images (for example, English (United Kingdom)),
what you see when you do this recipe may differ from this example depending on the OS
language you are using.

Managing Hyper-V

[461]

You use the VM in later recipes, so you should continue the installation, installing the
Windows Server 2016 Enterprise edition with the desktop tools. After the installation has
completed, log in to the new server (VM1) and use Administrator for your user id and
Pa$$w0rd for the password.

There's more...
In step 2, you create a VM. The VM you create is not bootable as you have not added a hard
disk or DVD drive. In step 3, you create a new VHDX and then in step 4, you add this VHDX
to the VM1 VM. After completing this step, the VM is still not bootable. This recipe relies on
you using the GUI to complete the installation. Of course, you could use any of the
Windows deployment tools to automate the deployment of the VM.

Once you complete step 6, your new VM is created and running, but with no OS loaded.
You then complete the installation of Windows 2016 in the VM before moving on to the next
recipe. The next recipe assumes you have completed the installation of the VM, installing
the OS using the Enterprise edition with the Desktop Experience and adding no additional
features.

Configuring VM hardware
Configuring hardware in your virtual machine is very much like configuring a physical
computer. With a physical computer, you can adjust the CPUs and BIOS settings. You can
also adjust physical RAM, network interfaces, disk interfaces and disk devices, and DVD
drives (with/without a loaded DVD), and so on. Each of these physical components is
provided within a Hyper-V VM and the PowerShell cmdlets make it simple to adjust the
virtual hardware in a VM.

In this recipe, you adjust the VM's BIOS, CPU count, memory, add a SCSI controller, and
finally create and add a virtual disk to the SCSI controller. Just like in most commercial
grade physical servers, not all of these components can be changed while the server is
running. You run this recipe from HV1 and turn the VM1 VM off before configuring the
virtual hardware.

This recipe does not cover the virtual NIC which you need in order to use the VM in your
network. Configuring the VM's networking is covered in the Configuring Hyper-V networking
recipe.

Managing Hyper-V

[462]

Getting ready
This recipe adjusts the virtual hardware inside the VM1 VM created in the Creating a Virtual
Machine recipe.

How to do it...
Here is how to configure VM hardware on HV1 VM:

Turn off the VM1 VM:1.

 Get-VM -VMName VM1 -Verbose
 Stop-VM -VMName VM1
 Get-VM -VMName VM1 -Verbose

Set the StartupOrder in the VM's BIOS:2.

 Set-VMBios -VmName VM1 -StartupOrder ('IDE', 'CD',
 'LegacyNetworkAdapter', 'Floppy')
 Get-VMBios VM1

Set CPU count for VM1:3.

 Set-VMProcessor -VMName VM1 -Count 2
 Get-VMProcessor -VmName VM1

Set VM1 memory:4.

 Set-VMMemory -VMName VM1 `
 -DynamicMemoryEnabled $true `
 -MinimumBytes 512MB `
 -StartupBytes 1GB `
 -MaximumBytes 2GB
 Get-VMMemory -VMName VM1

Add a ScsiController to VM1:5.

 Get-VMScsiController -VMName VM1
 Add-VMScsiController -VMName VM1
 Get-VMScsiController -VMName VM1

Restart the VM:6.

 Start-VM -VMName VM1
 Wait-VM -VMName VM1 -For IPAddress

Managing Hyper-V

[463]

Create a new VHDX file:7.

 $VHDPath = 'H:\Vm\Vhds\VM1-D.VHDX'
 New-VHD -Path $VHDPath -SizeBytes 8GB -Dynamic

Add the VHD to the ScsiController:8.

 Add-VMHardDiskDrive -VMName VM1 -ControllerType SCSI `
 -ControllerNumber 0 `
 -ControllerLocation 0 `
 -Path $VHDPath

How it works...
In step 1, you first examine the VM1 VM and you see it's running. You then shut down the
VM. After it is shut down you observe its status like this:

In step 2, you change the startup order, as follows:

In step 3, you change the VM to have two CPU (cores) and then display the CPUs available
in the VM, as follows:

Managing Hyper-V

[464]

In step 4, you update the memory settings for VM1. Then you display the memory settings
for the VM, as follows:

In step 5, you'll see you have two existing SCSI controllers, then you add a third, as you can
see here:

In step 6, you restart the VM1 VM. After the VM is restarted, in step 7, you create a new
VHDX file on the HV1 system, like this:

Managing Hyper-V

[465]

Finally, in step 8, you add the newly created VHDX file as a disk on SCSI bus 0, location 0,
which generates no output. In step 9, you view the disk in VM1, as follows:

There's more...
In addition to the hardware components covered in this recipe, you can also manage a VM's
COM ports and diskette drives. While you cannot directly connect a VM's COM port to the
host's COM port, you can configure a VM to communicate with the physical computer via a
named pipe on the host computer. A typical use for this is kernel debugging—probably
something most IT Pros rarely ever do. For more information on named pipes, see https:/ /
msdn.microsoft.com/ en- us/ library/ aa365590(v= vs. 85).aspx.

You can also use a virtual floppy drive in a VM. There is no cmdlet support to create a
virtual floppy drive file (a .vfd file) in the Hyper-V module. Nor is there support for
mounting a VFD file in Windows. You can create VFD files using Hyper-V Manager and
then use Set-VMFloppyDiskDrive to attach the VFD file as a floppy disk drive in the VM.

https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa365590(v=vs.85).aspx

Managing Hyper-V

[466]

Configuring Hyper-V networking
In the Creating a virtual machine recipe, you created a VM, VM1. This virtual machine has, by
default, a single network card that Hyper-V sets to acquire IP address details from DHCP.
In this recipe, you assign the NIC to a switch and configure IP address details.

Getting ready
This recipe assumes you have created VM1 as per the Creating a virtual machine recipe. The
recipe also makes use of a DHCP server running on DC1. You set this DHCP server up in
the Installing and authorizing a DHCP Server recipe, and configured the DHCP server in the
Configure DHCP scopes recipe, in Chapter 8, Managing Windows Network Services.

How to do it...
Here you see how to configure Hyper-V networking:

Get NIC details and any IP Address from the VM1 VM:1.

 Get-VMNetworkAdapter -VMName VM1

Get VM networking details:2.

 $user = 'Localhost\Administrator'
 $pass = ConvertTo-SecureString -String 'Pa$$w0rd' `
 -AsPlainText -Force
 $cred = New-Object -TypeName `
 System.Management.Automation.PSCredential `
 -ArgumentList $user,$Pass
 Invoke-Command -VMName VM1 `
 -ScriptBlock {Get-NetIPConfiguration |
 Format-List} `
 -Credential $cred

Create a virtual switch on HV1:3.

 New-VMSwitch -Name External -NetAdapterName 'Ethernet' `
 -Notes 'Created on HV1'

Managing Hyper-V

[467]

Connect VM1 to the switch:4.

 Connect-VMNetworkAdapter -VMName VM1 -SwitchName External

See VM networking information:5.

 Get-VMNetworkAdapter -VMName VM1

With VM1 now in the network, observe the IP address in the VM:6.

 Invoke-Command -VMName VM1 `
 -ScriptBlock {Get-NetIPConfiguration} `
 -Credential $cred

View the hostname on VM1:7.

 Invoke-Command -VMName VM1 `
 -ScriptBlock {Hostname} `
 -Credential $cred

Change the name of the host:8.

 $sb = {
 Rename-Computer -NewName VM1 -Force}
 Invoke-Command -VMName VM1 `
 -ScriptBlock $sb `
 -Credential $cred

Reboot and wait for the restarted VM:9.

 Restart-VM -VMName VM1 -Wait -For IPAddress -Force

Get updated network configuration:10.

 Invoke-Command -VMName VM1 `
 -ScriptBlock {Get-NetIPConfiguration} `
 -Credential $cred

Get hostname of the VM1 VM:11.

 Invoke-Command -VMName VM1 `
 -ScriptBlock {Hostname} `
 -Credential $cred

Managing Hyper-V

[468]

How it works...
In step 1, you retrieve the Hyper-V networking adapter information for the VM1 VM, which
looks like this:

In step 2, you first create a credential object for the VM. As noted here, the user is the new
VM's administrator username (administrator) and the password (Pa$$w0rd). Then you
invoke a script block on VM1 that retrieves the VM's IP configuration. As you can see, the
NIC is not connected to any network. The output looks like this:

In step 3, you create a new virtual Hyper-V switch on your HV1 system. The switch, which
you name External, is connected to an NIC on the HV1 computer. This allows VMs
connected to this switch to network with both the Hyper-V host and any external networks
to which you are connected. The output of this step looks like this:

Managing Hyper-V

[469]

In step 4, you connect the VM's NIC to the Hyper-V switch you just created. There is no
output from this step.

In step 5, you view the VM's networking information, which is updated as a result of
connecting the NIC to the switch. Assuming that you have a DHCP server running on your
network (the network the Hyper-V hosts connects to), you should see a DHCP assigned IP
address, with output that looks like this:

In step 6, you examine VM1 VM's IP address information, using the Get-
NetIPConfiguration cmdlet run remotely, inside the VM. As you can see from the output,
the VM has an IP address and has two configured DNS servers but with no default
gateway:

In step 7, you retrieve the hostname of the VM1 virtual machine. The output looks like this:

Managing Hyper-V

[470]

In step 8, you remotely update the VM's hostname to match the VM name (VM1). The only
output from this step is a warning that the new name can only take affect once you reboot
the machine. In step 9, you re-boot the machine and wait for the restarted VM. There is no
output from the re-boot.

In step 10, you check the networking on the VM1 VM with output that looks like this:

In step 11, you remotely retrieve VM1 VM's hostname (VM1) as set earlier. The output looks
like this:

In step 8 and step 11, you use the Hostname.exe console command to retrieve the hostname. There are
other ways to get the hostname, including using WMI or using the environment variable
env:ComputerName.

There's more...
In step 1, you use the Get-VMNetworkAdapter for the VM1 VM. The output from this step
shows that the virtual NIC is not connected to any switch. It also shows that the VM has
assigned an APIPA IP address to the NIC (169.254.152.96). Since the address chose by
Windows is random, you may see a different address in the 169.254.0.0/16 network.
And even though Windows has an IP address in mind for the NIC, since you have not
connected the VM's NIC to a Hyper-V switch, no networking is possible with the VM,
although subsequent steps fix that issue.

Managing Hyper-V

[471]

In step 3, you create a new switch. If you already have an External switch created on your
Hyper-V host, you can use it in this recipe as opposed to the External switch created in
this step.

In step 5 and step 6, you examine the IP configuration of VM1 VM's virtual NIC. Depending
on the configuration of any DHCP server, you may see a different IP address. And if you do
not have a working DHCP server on the network, you may see an APIPA address (that is,
one in the 169.254.0.0/16 network). In step 5, you may see somewhat mangled
output—you can always run step 5 through Format-Table to tidy this up.

In step 7, you obtain the VM's configured hostname. Assuming you created the VM simply
from the default installation via the product DVD, Windows automatically creates a
hostname, in this case WIN- O5LPHTHBB5U. To complete the configuration of networking
for the VM, you need to update the VM's hostname.

Implementing nested Hyper-V
Nested Hyper-V is a new feature in Windows 2016 and Windows 10 (Anniversary update
and later). Nested Hyper-V enables a Hyper-V VM to host VMs which also have
virtualization enabled. You could, for example, take a physical host (say, HV1) and on that
host run a VM (say VM1). With nested Hyper-V, you could enable your VM1 VM to host VMs
and create a nested VM inside it called Nested1.

Nested VMs have a number of uses. First, nested MVs hosted in one VM are provided
hardware isolation from nested VMs run in other VMs. This provides a further level of
security for virtual machines. It's also useful for testing and education/training. In a training
course, you could give a student one VM and enable him to create additional VMs as part of
the course. And most IT pros just find it cool! You could, for example, run all the recipes in
this chapter using Nested VMs.

Enabling nested Hyper-V is very simple. First, you must update the virtual CPU in the VM
you want to support nesting. Therefore, in this recipe, you adjust the virtual CPU in the VM1
VM to expose the virtualization extensions. This has to be done while the VM is turned off.
After you restart the VM, you install the Hyper-V feature and create the Nested1 nested
VM. This recipe does not show the details of configuring the Nested1 VM, which are left as
an exercise for the reader.

Managing Hyper-V

[472]

Getting ready
This recipe uses the HV1 Hyper-V host, with an existing Hyper-V VM, VM1 available. The
recipe assumes VM1 is set up as shown in the Creating a virtual machine recipe earlier in this
chapter.

How to do it...
Here is how to implement nested Hyper-V:

Stop VM1 VM:1.

 Stop-VM -VMName VM1
 Get-VM -VMname VM1

Change the VM's processor to support virtualization:2.

 Set-VMProcessor -VMName VM1 `
 -ExposeVirtualizationExtensions $true
 Get-VMProcessor -VMName VM1 |
 Format-Table -Property Name, Count,
 ExposeVirtualizationExtensions

Start the VM1 VM:3.

 Start-VM -VMName VM1
 Wait-VM -VMName VM1 -For Heartbeat
 Get-VM -VMName VM1

Add Hyper-V into VM1:4.

 $user = 'VM1\Administrator'
 $pass = ConvertTo-SecureString -String 'Pa$$w0rd' `
 -AsPlainText -Force
 $cred = New-Object -TypeName
 System.Management.Automation.PSCredential `
 -ArgumentList $user,$Pass
 Invoke-Command -VMName VM1 `
 -ScriptBlock {Install-WindowsFeature `
 -Name Hyper-V -IncludeManagementTools} `
 -Credential $cred

Managing Hyper-V

[473]

Restart the VM to finish adding Hyper-V:5.

 Stop-VM -VMName VM1
 Start-VM -VMName VM1
 Wait-VM -VMName VM1 -For IPAddress
 Get-VM -VMName VM1

Create a nested VM:6.

 $sb = {
 $VMname = 'Nested11'
 New-VM -Name $VMname -MemoryStartupBytes 1GB}
 Invoke-Command -VMName VM1 `
 -ScriptBlock $sb

How it works...
In step 1, you stop the VM1 VM, and then retrieve properties that show the VM has been
turned off. The output looks like this:

In step 2, you change the VM's virtual processor(s) to expose the virtualization extensions to
the VM's operating system. The output of this step looks like this:

Managing Hyper-V

[474]

In step 3, you restart the VM. Once the VM is started, you wait until you get a heartbeat then
examine the VM's properties, which looks like this:

Once the VM is started, in step 4, you install the Hyper-V feature into the VM1 VM. As you
can see in the following output, adding Hyper-V is both successful and requires you to
reboot the VM:

In step 5, you restart the VM, wait for it to get an IP address assigned, and then retrieve the
VM's details, as follows:

Managing Hyper-V

[475]

Once the VM1 VM is started, in step 6, you create a nested VM Nested11. The Nested11 VM
runs inside the VM1 VM, and the output looks like this:

There's more...
In step 2, you look at the properties of the virtual CPU(s) in the VM1 VM. If you executed the
Configuring VM hardware recipe previously, you may see a different CPU count.

In step 5, you stopped then started the VM. As an alternative, you could have used
Restart-VM.

In step 6, you create a new VM but you have not loaded an operating system or configured
the VM. Naturally, you can use the techniques in the chapter to configure your new VM as
you need it. Also, in this step, you may be prompted for credentials. You can enter them
using the prompt, or you could create a credential object and pass when you run this step.

Managing VM state
Managing the VM state involves stopping and starting or pausing and resuming a VM. You
can also save and restore a VM.

Getting ready
This recipe uses the VM1 VM created in the Creating a virtual machine recipe. This recipe
assumes the VM1 VM is stopped when you start this recipe. If this VM is running, then first
stop it using Stop-VM.

Managing Hyper-V

[476]

How to do it...
Here is how to manage VM state:

Get the VM's state to check if it is off:1.

 Get-VM -Name VM1

Start the VM, get its status, then wait until the VM has an IP address assigned2.
and the networking stack is working, then examine the VM's state:

 Start-VM -VMName VM1
 Get-Vm -VMName VM1
 Wait-VM -VMName VM1 -For IPAddress
 Get-VM -VMName VM1

Suspend and resume a VM:3.

 Suspend-VM -VMName VM1
 Get-VM -VMName VM1
 Resume-VM -VMName VM1
 Get-VM -VMName VM1

Save the VM and check status:4.

 Save-VM -VMName VM1
 Get-VM -VMName VM1

Resume the saved VM and view the status:5.

 Start-VM -VMName VM1
 Get-Vm -VMName VM1

Restart a VM:6.

 Get-VM -VMname VM1
 Restart-VM -VMName VM1 -Force
 Get-VM -VMName VM1
 Wait-Vm -VMName VM1 -For IPaddress
 Get-VM -VMName VM1

Hard power Off:7.

 Stop-VM -VMName VM1 -TurnOff
 Get-VM -VMname VM1

Managing Hyper-V

[477]

How it works...
In step 1, you retrieve VM1 VM's properties which show the VM as off. It should look like
this:

In step 2, you first start VM1 and retrieve its properties. You then wait for the VM to be
assigned an IP address then re-retrieve the VM's properties, like this:

In step 3, you suspend and resume VM1. Notice that after suspending the VM, Hyper-V does
not release the VM's memory. The output from this step looks like this:

Managing Hyper-V

[478]

In step 4, you save the VM and check the VM's status. When you save a VM, the VM's state
is written to disk, and the VM is stopped. The output looks like this:

In step 5, you resume the saved VM then look at the VM's properties once the VM has
restarted. The output looks like this:

In step 6, you forcibly restart VM1. In this step, you first view the running VM's properties
then you stop it and re-view the VM properties. Then you restart the VM and wait for it to
start up and get an IP address, then you re-view the properties to see that the VM is up and
running. The output of this step looks like this:

Managing Hyper-V

[479]

In step 7, you do a hard power off of VM1, and then you view the VM's properties, like this:

There's more...
This recipe shows you how to manage state. In step 1, you view the properties of the VM
that is not running. As you can see from the screenshot, VM1 is turned off and is not running
(and has an up time of 00:00:00).

With step 2, you start the VM and retrieve the VM's status. Next, in step 3, you suspend then
resume a VM. While the VM is suspended, the VM is not active and receives and sends no
network traffic. The VM's memory is maintained as is the current state and the VM can be
resumed at any moment, as you can see from this step.

With step 4 and step 5, you save a VM, then restart it. When you save a VM, Hyper-V saves
the VM's memory to disk and the VM's virtual disks are not used. Saving a VM is similar to
saving it, except that with a saved VM, all the VM's memory is written to disk then released.

With step 6, you forcibly shut down the VM. This is equivalent to pulling the power from a
running computer then restarting it or holding down the power button. When you do this,
all state is lost, and it is possible to introduce corruption due to data being still in memory
and not written to disk prior to the power off. While Windows and the most used Windows
file systems (NTFS and ReFS) are fairly resilient to errors, you should avoid hard shutdown
if possible.

Configuring VM and storage movement
Hyper-V enables you to both move a VM and to move the storage for a VM to a new
location. Moving a VM and moving a VM's storage are two important features you can use
to manage your Hyper-V hosts.

Managing Hyper-V

[480]

With live migration, you can move a Hyper-V VM to a different VM host with no
downtime. This works best when the VM is held on shared storage (via a fiber channel
SAN, iSCSI, or SMB). You can also move a VM's storage (that is any VHD/VHDX associated
with the VM) to a different location. You can also combine these and move a VM supported
by local storage to another Hyper-V host (moving both the VM and the underlying storage).

In this recipe, you first move the storage for the VM1 VM. You created this VM in the
Creating a virtual machine recipe and stored the VM configuration and the VM's VHD on the
H: drive. To move the storage, you create a new SMB share and then move the VM's storage
to the new SMB share.

In the second part of this recipe, you do a live migration of the VM1 VM from HV1 to HV2
while the VM is running. This is possible since the VM is using shared storage (that is the
SMB share you create).

Getting ready
In this recipe, you use the HV1 and HV2 systems (Windows 2016 Server with Hype-V
loaded) as setup in the Installing and configuring Hyper-V recipe and the VM1 VM created in
the Creating a virtual machine recipe.

In the first part of this recipe, you first move the storage for the VM1 VM. You created this
VM in the Creating a virtual machine recipe and stored the VM configuration and the VM's
VHD on the H: drive. You run all the steps in this recipe on HV1. You must have created the
external switch on HV2, otherwise the following step 8 fails.

How to do it...
Here is how you can configure a VM:

View the VM1 VM on HV1 and verify that it is turned off and not saved:1.

 Get-VM -Name VM1 -Computer HV1

Get the VM configuration location and VHD details:2.

 (Get-VM -Name vm1).ConfigurationLocation
 Get-VMHardDiskDrive -VMName VM1

Managing Hyper-V

[481]

Move the VM's storage to the C: drive:3.

 Move-VMStorage -Name VM1 -DestinationStoragePath C:\VM1

View the configuration details after moving the VM's storage:4.

 (Get-VM -Name VM1).ConfigurationLocation
 Get-VMHardDiskDrive -VMName VM1

Get the VM details for VMs from HV2:5.

 Get-VM -ComputerName HV2

Enable VM migration from both HV1 and HV2:6.

 Enable-VMMigration -ComputerName HV1, HV2

Configure VM Migration on both hosts:7.

 Set-VMHost -UseAnyNetworkForMigration $true `
 -ComputerName HV1, HV2
 Set-VMHost -VirtualMachineMigrationAuthenticationType Kerberos `
 -ComputerName HV1, HV2
 Set-VMHost `
 -VirtualMachineMigrationPerformanceOption Compression `
 -ComputerName HV1, HV2

Move the VM to HV2:8.

 $start = Get-Date
 Move-VM -Name VM1 `
 -ComputerName HV1.reskit.org `
 -DestinationHost HV2.reskit.org `
 -IncludeStorage `
 -DestinationStoragePath C:\VM1
 $finish = Get-Date

Display the time taken to migrate:9.

 "Migration took: [{0:n2}] minutes" `
 -f ($($finish-$start).totalminutes)

Check which VMs on are on HV1 and HV2:10.

 Get-VM -ComputerName HV1
 Get-VM -ComputerName HV2

Managing Hyper-V

[482]

Look at the details of the moved VM:11.

 (Get-VM -Name VM1 -Computer HV2).ConfigurationLocation
 Get-VMHardDiskDrive -VMName VM1 -Computer HV2

How it works...
In step 1, you view the basic details of the VM1 VM, running HV1. The output looks like this:

In step 2, you use the Get-VM cmdlet to display both the location of VM1 VM's configuration
details and of VM1 VM's single virtual disk drive, with output like this:

In step 3, you move the VM's storage. You move the VM storage from the H: drive to
C:\VM1. There is no output from this step. In step 4, you repeat the commands you used in
step 2 and observe that Hyper-V now stores the VM and the VHDX in C:\VM1. The output
looks like this:

Managing Hyper-V

[483]

Next, this recipe looks at VM live migration. In step 5, you look at the VMs running on the
two Hyper-V hosts. As you can see from the following output, HV1 is running only one VM
(VM1) whilst HV2 runs no VMs:

In step 6, you enable VM migration from both HV1 and HV2. In step 7, you configure each
VM host to support VM live migration. In this case, you configure both hosts to use their
single NIC for migration, to authenticate using Kerberos and to compress the migration
traffic. There is no output from these two steps.

In step 8, you live migrate VM1 from HV1 to HV2. There is no output from this step, but in step
9, you display how long the Move-VM cmdlet took to move the VM, like this:

Finally, in step 10, you look at the VMs running on HV1 and HV2 and observe that VM1 is
now running successfully on HV2, like this:

Managing Hyper-V

[484]

There's more...
In this recipe, you moved the storage for a VM from one volume to another and you moved
a running VM to a different machine. In step 3, you moved the storage for the VM. If you
had a connection open to VM1, you would have seen the VM functioning normally. You may
have seen a brief flicker as the storage movement completes and Hyper-V begins to use the
new storage location.

In this case, you set up HV1 and HV2 as two non-clustered systems. In step 8, you move VM1
from HV1 to HV2. In this case, there is no shared storage involved with the VMs which
means Hyper-V performs a storage migration and a VM migration from the old to the new
VM host. Had you stored the VM on shared storage, moving a VM between cluster nodes
would have been significantly faster.

At the completion of the VM movement in step 8, Hyper-V drops connectivity to the VM on
HV1 and establishes it on HV2. This means that for a moment, you will lose connectivity. If
you open a VM Connect window into VM1 before you move the VM, you can see that as the
movement finishes, the VM Connect window stops showing the VM. After a few seconds,
the VM Connect window should reappear with the VM running on HV2.

You could also open up a PowerShell window on another system, say DC1, and ping the
VM continuously during the movement of the VM. You may notice a moment of dropped
pings, before they pick up again once the live migration has completed.

Configuring VM replication
In Hyper-V, VM replication is a disaster recovery feature. It creates a replica of a VM on a
remote Hyper-V Server and then keeps the replica up to date. The VM on the remote host is
not active, but can be made active should the VM's host for some reason fail.

With Hyper-V replication, the source VM host bundles up any changes in a running VM's
VHD file(s) and sends them to the replica server on a regular basis. The replica server then
applies those changes to the dormant replica.

Once you have a replica established, you can test the replica to ensure it can start should
you need that. Also, you can failover to the replica—bringing the replicated VM up based
on the most recently replicated data. If the source VM host becomes inoperable before it can
replicate changes on the source VM, there is a risk of those changes being lost.

In this recipe, you create and use a replica of a VM, VM1, that you have running on your HV1
server. The recipe sets up the replica on the HV2 server.

Managing Hyper-V

[485]

Getting ready
You created the HV1 and HV2 servers in the Installing and configuring Hyper-V recipe, and
created VM1 in the Creating a virtual machine recipe. Should you have used the Configuring
VM and storage movement recipe, you either need to move VM1 back to HV1, or run the recipe
from HV2, not HV2, and adjust it as appropriate. This recipe also uses the AD cmdlets from
DC1 to configure the HV1 and HV2 systems for delegation and assumes you have firewalls
turned off. Also, if you moved the VM previously, you need to move the VM back to HV1.

How to do it...
Here is how to configure VM replication:

Configure HV1 and HV2 to be trusted for delegation in AD on DC1:1.

 $sb = {
 Set-ADComputer -Identity HV1 `
 -TrustedForDelegation $True}
 Invoke-Command -ComputerName DC1 -ScriptBlock $sb
 $sb = {
 Set-ADComputer -Identity HV2 `
 -TrustedForDelegation $True}
 Invoke-Command -ComputerName DC1 -ScriptBlock $sb

Reboot the HV1 and HV2:

 Restart-Computer -ComputerName HV2
 Restart-Computer -Force

Once both systems are restarted, from HV1, set up HV2 as a replication server:2.

 Set-VMReplicationServer `
 -ReplicationEnabled $true `
 -AllowedAuthenticationType Kerberos `
 -KerberosAuthenticationPort 42000 `
 -DefaultStorageLocation 'C:\Replicas' `
 -ReplicationAllowedFromAnyServer $true `
 -ComputerName HV2

Managing Hyper-V

[486]

Enable VM1 on HV1 to be a replica source:3.

 Enable-VMReplication -VMName 'VM1' `
 -Computer HV1 `
 -ReplicaServerName 'HV2' `
 -ReplicaServerPort 42000 `
 -AuthenticationType Kerberos `
 -CompressionEnabled $true `
 -RecoveryHistory 5

View the replication status of HV2:4.

 Get-VMReplicationServer -ComputerName HV2

Check VM1 on HV2:5.

 Get-VM -ComputerName HV2

Start the initial replication:6.

 Start-VMInitialReplication -VMName VM1 -ComputerName HV2

Examine the initial replication state on HV1 just after you start the initial7.
replication:

 Measure-VMReplication -ComputerName HV1

Wait for replication to finish, then examine the replication status on HV1:8.

 Measure-VMReplication -ComputerName HV1

Test VM1 failover to HV2:9.

 $sb = {
 $VM1Test = Start-VMFailover -AsTest -VMName VM1 `
 -Confirm:$false
 Start-VM $VM1test }
 Invoke-Command -ComputerName HV2 -ScriptBlock $sb

View the status of VMs on HV2:10.

 Get-VM -ComputerName HV2

Managing Hyper-V

[487]

Stop the failover test:11.

 $sb = {
 Stop-VMFailover -VMName VM1 }
 Invoke-Command -ComputerName HV2 -ScriptBlock $sb

View the status of VMs on HV1 and HV2 after failover stopped:12.

 Get-VM -ComputerName HV1
 Get-VM -ComputerName HV2

Stop VM1 on HV1 prior to performing a planned failover:13.

 Stop-VM VM1 -ComputerName HV1

Start VM failover from HV1:14.

 Start-VMFailover -VMName VM1 -ComputerName HV2 `
 -Confirm:$false

Complete the failover:15.

 Complete-VMFailover -VMName VM1 -ComputerName HV2 `
 -Confirm:$false

Start the replicated VM on HV2:16.

 Start-VM -VMname VM1 -ComputerName HV2

See VMs on HV1 and HV2 after the planned failover:17.

 Get-VM -ComputerName HV1
 Get-VM -ComputerName HV2

How it works...
In step 1, you change the AD objects for computers HV1 and HV2 to enable the hosts as
trusted for delegation. Then, in step 2, you reboot both HV1 and HV2. There is no output
from either step.

In step 2, you reboot HV1 and HV2 to enable the updated computer settings. You see no
output as such from this step, but both systems do reboot.

Managing Hyper-V

[488]

In step 3, you configure HV2 to accept inbound Hyper-V replication. You set this up to allow
replication from any server. Then in step 4, you configure VM on HV1 as replication source,
replicating VM1 to HV2. There is no output from these two steps.

In step 5, you look at the replication status on HV2, and the status of VM1 on HV2. You should
see output like this:

In step 6, you view the status of VM1 on the HV2 Hyper-V host, which looks like this:

With step 7, you start the initial replication of VM1 from HV1 to HV2. There is no output from
this step. Once you have started the initial replication, in step 8, you can see the results.
Once you start the initial replication, Measure-VMReplication returns output that looks
like this:

Managing Hyper-V

[489]

Once Hyper-V has completed the initial replication, the output, from step 9, should look like
this:

In step 10, you start a test failover of VM1 from HV1 to HV2 with output that looks like this:

In step 11, you view the status of the VMs running on HV2. As you can see from the output,
the replica of VM1 is still there, but now you have a new VM which Hyper-V created for you
based on a checkpoint (which Hyper-V automatically creates) from the replicated VM1. The
output for this step looks like this:

In step 12, you stop the failover test. This removes the test VM and provides no output.

In step 13, you see the VMs running on both HV1 and HV2 after stopping the failover test,
with output that looks like this:

Managing Hyper-V

[490]

With step 14, you begin to look at bringing up VM1 on HV2—a real failover. In this step, you
stop VM1. This step also ensures that the replica VM on HV2 is updated before Hyper-V
stops VM1 on HV1, ensuring the replica is fully up to date. There is no output from this step.

In step 15, you start a formal failover, which you complete in step 16. Neither step produces
output.

In step 17, you explicitly start VM1 on HV2 which produces no output.

In step 18, you view the VMs running on HV2 (and stopped on HV1), as follows:

There's more...
In step 2, you reboot both Hyper-V hosts (HV1 and HV2). Since you run this recipe from the
HV1 machine, the second command in this step reboots the system you are working on. If
you test this recipe, make sure you have any files saved before you reboot.

If you have loaded this recipe into the ISE, then after rebooting, the ISE can reload the
scripts you had open before the reboot. This is a great feature of PowerShell!

In step 3, you configure HV2 to accept inbound replication from any Hyper-V system. If you
have not configured the host firewalls (or turned them off) you may see errors trying to
invoke replication. You may also wish to configure HV2 to accept replication only from a
specific server, such as HV1. To do this, you would have to set up the replication server to
not accept replication from any server. Then, you use the Hyper-V cmdlet New-
VMReplicationAuthorizationEntry to specify that HV2 can only receive replicas from
the HV1 server. To set this up, you would do the following:

 Set-VMReplicationAuthorizationEntry `
 -AllowedPrimaryServer HV1 `
 -ReplicaStorageLocation C:\Replica `
 -ComputerName HV2

Managing Hyper-V

[491]

In step 7, you begin the initial replication of VM1 to HV2. The Measure- VMReplication
command does not show you progress information with respect to the initial replication.
However, if you use the Hyper-V MMC console, you can see how much of the replica has
been sent and received for a given VM. Looking at HV1 and HV2 whilst executing step 8, you
might see something like this:

In step 11, you view the details of the test version of VM1 running. If you were to open up a
VM Connect window on this test VM, you see that both the hostname and the IP address
are not the same as the VM running on HV1 (where the hostname is VM1 and the IP address
is 10.10.10.201). After step 17, if you looked inside VM1, running this time on HV2, you
would find the same issue. The impact is that after a real life failover, you need to reset the
computer/hostname for the computer and reset the IP configuration details. If you are using
Hyper-V replica in production, it would be a great idea to develop a script to fix these two
issues in an automated fashion.

In Step 18, you see that VM1 is running on HV2 and stopped on HV1. However, if you look
inside VM1 inside HV2, you see it has a hostname that is not VM1 and has no networking
setup. If you were to failover and wanted to run the failed over VM, you would need to
deal with these two issues, which would involve re-booting VM1.

Managing Hyper-V

[492]

Managing VM checkpoints
With Hyper-V in Server 2016, a checkpoint captures the state of a VM into a restore point.
Hyper-V then enables you to roll back a VM to a checkpoint. Windows Server 2008's
version of Hyper-V provided this feature. With Server 2008, these restore points were called
snapshots.

With Server 2012, Microsoft changed the name to checkpoint. This made the terminology
consistent with System Center, and avoided confusion with respect to the Volume Shadow
Copy Service (VSS) snapshots used by backup systems. Whilst the Hyper-V team did
change the terminology, some of the cmdlet names remain unchanged. To restore a VM to a
checkpoint, you use the Restore-VMSnapShot cmdlet.

When you create a checkpoint, Hyper-V temporarily pauses the VM. It then creates a new
differencing disk (AVHD). Hyper-V then resumes the VM which writes all data to the
differencing disk. You can create a variety of checkpoints for a VM.

Checkpoints are great for a variety of scenarios. It can be useful for troubleshooting. Get the
VM to the point where some bug is triggered, take a checkpoint. Then try a fix—if it doesn't
work, you can just roll back to the checkpoint and try some other fix. Checkpoints are also
useful for training. You could create a VM for a course, and create a checkpoint after each
successful lab. That way, the student can make a mistake in a lab, and skip forward to a
later checkpoint and carry on.

Using checkpoints in production is a different matter. In general, you should avoid using
checkpoints on your production systems for a number of reasons. If your servers use any
sort of replication or transaction based applications, the impact of resetting the clock to an
earlier time can be bad. Since checkpoints rely on differencing disks that feature constantly
growing physical disk files, the use of checkpoints can result in poor performance.
Checkpoints have their place—but should not be used as a backup strategy.

In this recipe, you create a snapshot of VM1, then you create a file. You take a further
checkpoint and create a second file. Then you revert back to the first snapshot, observing
that there are no files created. Then you roll forward to the second snapshot to see that the
first file is there but not the second (because you created the second file after the snapshot
was taken. Then you remove all the snapshots. After each key checkpoint operation, you
observe the VHDX and AVHD files which support VM1.

Managing Hyper-V

[493]

Getting ready
This recipe assumes you have HV1 running the VM1 VM.

How to do it...
Create credentials for VM1:1.

 $user = 'VM1\Administrator'
 $pass = ConvertTo-SecureString -String 'Pa$$w0rd' `
 -AsPlainText `
 -Force
 $cred = New-Object -TypeName
 System.Management.Automation.PSCredential `
 -ArgumentList $user,$Pass

Look at C: in VM1 before we start:2.

 $sb = { Get-ChildItem -Path C:\ }
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

Create a snapshot of VM1 on HV1:3.

 Checkpoint-VM -ComputerName HV1 `
 -VMName VM1 `
 -SnapshotName 'Snapshot1'

Look at the files created to support the checkpoints:4.

 $Parent = Split-Path -Parent (Get-VM -Name VM1 |
 Select-Object
 -ExpandProperty HARDDRIVES).PATH
 Get-ChildItem -Path $Parent

Create some content in a file on VM1 and display it:5.

 $sb = {
 $FileName1 = 'C:\File_After_Checkpoint_1'
 Get-Date | Out-File -FilePath $FileName1
 Get-Content -Path $FileName1}
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

Managing Hyper-V

[494]

Take a second checkpoint:6.

 Checkpoint-VM -ComputerName HV1 `
 -VMName VM1 `
 -SnapshotName 'Snapshot2'

Get the VM checkpoint details for VM1:7.

 Get-VMSnapshot -VMName VM1

Look at the files supporting the two checkpoints:8.

 Get-ChildItem -Path $Parent

Create and display another file in VM1 (after you have taken Snapshot2):9.

 $sb = {
 $FileName2 = 'C:\File_After_Checkpoint_2'
 Get-Date | Out-File -FilePath $FileName2
 Get-ChildItem -Path C:\ -File
 }
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

Restore VM1 back to the checkpoint named Snapshot1:10.

 $Snap1 = Get-VMSnapshot -VMName VM1 -Name Snapshot1
 Restore-VMSnapshot -VMSnapshot $Snap1 -Confirm:$false
 Start-VM -Name VM1
 Wait-VM -For IPAddress -Name VM1

See what files we have now on VM1:11.

 $sb = {Get-ChildItem -Path C:\}
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

Roll forward to Snapshot2:12.

 $Snap2 = Get-VMSnapshot -VMName VM1 -Name Snapshot2
 Restore-VMSnapshot -VMSnapshot $Snap2 -Confirm:$false
 Start-VM -Name VM1
 Wait-VM -For IPAddress -Name VM1

Managing Hyper-V

[495]

Observe the files you now have on VM2:13.

 $sb = {
 Get-ChildItem -Path C:\
 }
 Invoke-Command -VMName VM1 -ScriptBlock $sb `
 -Credential $cred

Restore to Snapshot1 again:14.

 $Snap1 = Get-VMSnapshot -VMName VM1 -Name Snapshot1
 Restore-VMSnapshot -VMSnapshot $Snap1 -Confirm:$false
 Start-VM -Name VM1
 Wait-VM -For IPAddress -Name VM1

Check snapshots and VM data files again:15.

 Get-VMSnapshot -VMName VM1
 Get-ChildItem -Path $Parent

Remove all the snapshots from HV1:16.

 Get-VMSnapshot -VMName VM1 |
 Remove-VMSnapshot

Check VM data files again:17.

 Get-ChildItem -Path $Parent

How it works...
In step 1, you create a credential object to be used when invoking commands within the VM1
VM. There is no output from this step.

Managing Hyper-V

[496]

In step 2, you look at the files in the C:\ drive within the VM1 VM, with output that looks
like this:

In step 3, you create an initial checkpoint, named Snapshot1, for the VM1 VM which
produces no output.

In step 4, you examine the files that comprise the C: for the VM1 VM. As you can see, with
output like this, there are two files—a base and a differencing drive:

In step 5, you create a file in VM1, and then display the contents, with output like this:

Managing Hyper-V

[497]

In step 6, you create a second checkpoint named Snapshot2. There is no output from this
step.

In step 7, you view the details of the checkpoints (snapshots) you have taken so far for VM1,
with output like this:

In step 8, you view the details of the files that Hyper-V creates to support the two
checkpoints for VM1, with output like this:

With step 9, you create a second file in VM1, and display details of the two files created in
VM1, like this:

Managing Hyper-V

[498]

In step 10, you restore VM1 back to the checkpoint Snapshot1. Then you start the restored
VM and wait until it is starts up fully. This step generates no output, but can take 2 minutes
to 3 minutes depending on the speed of your Hyper-V host.

In step 11, you look inside VM1 to see which of the two files created earlier now exists. As
you should expect, since both files were created after the Snapshot1 checkpoint was taken,
they do not exist in Snapshot1. The output of this step looks like this:

In step 12, which generates no output, you roll forward to the Shapshot2 checkpoint.
Remember that this checkpoint was after you created the first file (in step 5) but before you
created the second file (in step 9).

In step 13, you look at the files that exist in VM1 which you have just restored to the
Snapshot2 checkpoint. The output looks like this:

Managing Hyper-V

[499]

In step 14, you revert back to the initial checkpoint, Snapshot1. Then you restart the VM1
VM. There is no output for this step.

With step 15, you again examine the checkpoints for VM1 and the files which Hyper-V
maintains to support the checkpoints, with output like this:

With step 16, you remove all the snapshots for VM1, which generates no output.

In step 17, you view the Hyper-V is using to support VM1 showing all the snapshot files are
gone, like this:

There's more...
In this recipe, you also examined the differencing files Hyper-V maintains to support the
checkpoints. If you have a lot of checkpoints, the VM's performance can degrade, since
Hyper-V needs to look in multiple AVHD files to support VM read requests to the VM's C:
drive.

Managing Hyper-V

[500]

Monitoring Hyper-V utilization and
performance
In Chapter 6, Managing Performance, you looked at performance counters and the
Performance Logs and Alerts (PLA) feature of Windows Server 2016.

With PLA, applications, services, drivers, and OS components can expose operation data
via counter sets and counters. A counter is a measurement of one specific value, such as the
%ProcessorTime counter that measures how much CPU is being used at any given
moment. Counters are grouped for convenience into counter sets. The Processor counter
set contains the %ProcessorTime counter.

In this recipe, you examine some of the wide range of Hyper-V performance counters
available to you. PLA in general, and Hyper-V in particular, expose a very large number of
counter sets containing a wide range which Hyper-V exposes. It is very easy to get excited
about the wealth of counters available. But most of the information provided is probably of
little use to most IT professionals managing Hyper-V hosts and VMs.

A given Hyper-V host has a number of physical CPUs containing typically multiple cores.
You can enable any given VM to utilize one or more of the cores as processors inside the
VM. So, were you to have a dual processor 6-core system, you would have 12-cores which
you can then divide up among your VMs.

One useful performance metric for your VM host is how much of the CPU is being used
running VMs. The Hyper- V Hypervisor Root Virtual Processor counter set contains
a counter (% guest run time) that provides that information.

If the Hyper-V host's guest run time is very high on an ongoing basis, it means your VMs
are possibly being CPU bound. It may make sense on such a host to either increase the
capacity of the host (adding more cores or moving to a more powerful server) or decreasing
the workload by migrating a VM to another Hyper-V host.

Getting ready
In this recipe, you examine performance aspects of the VM host, VM1 (which you set up in
the Installing and Configuring Hyper-V recipe), and the performance of VM1, the VM (created
in the Creating a virtual machine recipe).

Managing Hyper-V

[501]

How to do it...
Here is how to example performance of your Hyper-V system:

Discover how many counter sets exist (on HV1):1.

 $TotalCounters = Get-Counter -ListSet * | Measure-Object
 "Total Counter sets : [{0}]" -f $TotalCounters.Count

Discover how many counter sets exist for Hyper-V:2.

 $Counters = Get-Counter -ListSet *
 "Hyper-V Related Counter Sets : [{0}]" -F $Counters.Count

View counter set details for Hyper-V:3.

 Get-Counter -ListSet * |
 Where-Object CounterSetName -match 'hyper'|
 Sort -Property CounterSetName |
 Format-Table -Property CounterSetName, Description

Determine how many individual counters exist in the Root Virtual4.
Processor counter set:

 $HVPCounters = Get-Counter -ListSet * |
 Where-Object CounterSetName -Match 'Root virtual Processor' |
 Select-Object -ExpandProperty Paths |
 Measure-Object
 "Hyper-V RVP Counters : [{0}]" -f $HVPCounters.count

Define some key counters in the Hypervisor Root Virtual Processor5.
counter set:

 $HVCounters = @("\\HV1\Hyper-V Hypervisor Root Virtual "+
 "Processor(*)\% Guest Run Time")
 $HVCounters += @("\\HV1\Hyper-V Hypervisor Root Virtual "+
 "Processor(*)\% Hypervisor Run Time")
 $HVCounters += @("\\HV1\Hyper-V Hypervisor Root Virtual "+
 "Processor(*)\% Remote Run Time")
 $HVCounters += @("\\HV1\Hyper-V Hypervisor Root Virtual "+
 "Processor(*)\% Total Run Time")

Managing Hyper-V

[502]

Get counter samples for the counters defined:6.

 $Samples = (Get-Counter -Counter $HVCounters).counterSamples |
 Where-Object Path -Like '*(_total)*'

Display the counter data returned:7.

 "{0,-22} : {1:N3}" -f 'Counter', 'Value'
 "{0,-22} : {1:N3}" -f '-------', '-----'
 Foreach ($sample in $samples) {
 $countername = Split-Path -path $sample.path -leaf
 $counterdata = $sample.CookedValue
 "{0,-22} : {1:N3}" -f $countername, $counterdata }

How it works...
In step 1, you discover how many total performance counter sets exist on your Hyper-V
host, HV1. The output looks like this:

In step 2, you discover how many of these counter sets on HV1 are Hyper-V related, with
output like this:

With step 3, you discover more details about the Hyper-V related counter sets, with output
like this:

Managing Hyper-V

[503]

In step 4, you determine how many counters exist in the counter set Root Virtual
Processor. You should see output like this:

In step 5, you define several key CPU related counters. In step 6, you get sample values for
each of these counters representing total values. There is no output from these two steps.

In step 7, you display key CPU counter values for a Hyper-V host. Depending on what load
you are currently running, this step produces output that should look like this:

Managing Hyper-V

[504]

There's more...
As you can see from step 1, a Hyper-V Server running Windows Server 2016 provides a
large number of counter sets you can use to view an aspect of the server. These counter sets,
as you can see in step 2, include a large number of Hyper-V related counters and you can
see more details of these counter sets in step 3. With step 4, you can see that Hyper-V
exposes a large number of individual counters in one counter set, the Hyper-V Root
Virtual Processor.

It is quite probable that the vast majority of counter sets and counters are not of much use to
most IT pros. But they are worth knowing about if you are chasing down a performance
issue with Hyper-V or with Windows Server in general. You can easily spend hours (or
longer) delving into the details of some of these counters. While the details of all the
counters are not included here, you can use the techniques in this recipe to find other
counters you may wish to investigate.

In step 5, you create an array of counter names that you obtain sample values for in step 6. In
step 7, you display the sample values. Of course, depending on what load you are currently
running, you may see different values.

Creating a Hyper-V health report
Any Hyper-V host that you deploy is a critical part of your IT infrastructure. If the Hyper-V
host goes down or starts suffering performance or capacity issues, it can affect all the VMs
running on that host. Your Hyper-V hosts are almost certainly mission critical.

If you deploy Hyper-V, it is important you report on and monitor the health of your Hyper-
V host, as well as the health of the VMs. By monitoring the reports, you can detect issues,
possibly before they become critical. If your VM host, for example, has a slowly increasing
CPU load, you can consider moving a VM to another VM host.

Reports that you use to monitor the health of a Hyper-V host fall into two broad categories:
the VM host itself, and the VMs running on that host. This recipe creates two reports to
mirror this.

This recipe uses a variety of methods to obtain key performance and usage metrics and
converts this information into an object. The recipe begins by defining a PowerShell hash
table. The recipe then adds each of the measurements as a row in the hash table. At the end,
the recipe emits an object with properties relating to the measurements

Managing Hyper-V

[505]

In this recipe, you first create a report object that contains details of the VM host. Then the
recipe gets key information about each VM, and creates an object for each VM on the host,
and adds it to an array. At the end of the recipe, you display the VM objects.

The technique used here is to create hash tables holding host and VM details then to turn
these hash tables into fully-fledged objects. This enables you to sort and filter the objects to
create whatever reporting you need.

Getting ready
This recipe runs on the Hyper-V host HV1. The host should be setup as per the Installing and
configuring Hyper-V feature recipe. This host should be up and running and have one VM
defined and running. The VM is VM1 which you created in the Creating a virtual machine
recipe.

How to do it...
Here is how you can create a Hyper-V health report:

Create a basic report object hash table:1.

 $ReportHT = [Ordered] @{}

Get the host details and add them to the Report object:2.

 $HostDetails = Get-CimInstance `
 -ClassName Win32_ComputerSystem
 $ReportHT.HostName = $HostDetails.Name
 $ReportHT.Maker = $HostDetails.Manufacturer
 $ReportHT.Model = $HostDetails.Model

Add the PowerShell version information:3.

 $ReportHT.PSVersion = $PSVersionTable.PSVersion.tostring()
 # Add OS information:
 $OS = Get-CimInstance -Class Win32_OperatingSystem
 $ReportHT.OSEdition = $OS.Caption
 $ReportHT.OSArch = $OS.OSArchitecture
 $ReportHT.OSLang = $OS.OSLanguage
 $ReportHT.LastBootTime = $os.LastBootUpTime
 $Now = Get-Date
 $ReportHT.UpTimeDays = [float] ("{0:n3}" -f (($Now -
 $OS.LastBootUpTime).Totaldays))

Managing Hyper-V

[506]

Add a count of processors in the host:4.

 $Proc = Get-CimInstance -ClassName MSvm_Processor `
 -Namespace root/virtualization/v2
 $ReportHT.CPUCount = ($Proc |
 Where-Object elementname -match `
 'Logical Processor').COUNT

Add the current host CPU usage:5.

 $Cname = '\\.\processor(_total)\% processor time'
 $CPU = Get-Counter -Counter $Cname
 $ReportHT.HostCPUUsage = $CPU.CounterSamples.CookedValue

Add the total host physical memory:6.

 $Memory = Get-Ciminstance -Class Win32_ComputerSystem
 $HostMemory = [float] ("{0:n2}" -f
 ($Memory.TotalPhysicalMemory/1GB))
 $ReportHT.HostMemoryGB = $HostMemory

Add the memory allocated to VMs:7.

 $Sum = 0
 Get-VM | foreach {$sum += $_.MemoryAssigned + $Total}
 $Sum = [float] ("{0:N2}" -f ($Sum/1gb))
 $ReportHT.AllocatedMemoryGB = $Sum

Create and view the host report object:8.

 $Reportobj = New-Object -TypeName PSObject `
 -Property $ReportHT
 $Reportobj

Create two new VMs to populate the VM report:9.

 New-VM -Name VM2
 New-VM -Name VM3

Get VM details on the local VM host and create a container array for individual10.
VM related objects:

 $VMs = Get-VM -Name *
 $VMHT = @()

Managing Hyper-V

[507]

Get VM details for each VM into an object added to the hash table container:11.

 Foreach ($VM in $VMs) {
 # Create VM Report hash table
 $VMReport = [ordered] @{}
 # Add VM's Name
 $VMReport.VMName = $VM.VMName
 # Add Status
 $VMReport.Status = $VM.Status
 # Add Uptime
 $VMReport.Uptime = $VM.Uptime
 # Add VM CPU
 $VMReport.VMCPU = $VM.CPUUsage
 # Replication Mode/Status
 $VMReport.ReplMode = $VM.ReplicationMode
 $VMReport.ReplState = $Vm.ReplicationState
 # Create object from Hash table, add to array
 $VMR = New-Object -TypeName PSObject -Property $VMReport
 $VMHT += $VMR
 }

Display the array of objects as a table:12.

 $VMHT |
 Sort-Object -Property Uptime -Descending |
 Format-Table

How it works...
In step1, you create a hash table, $ReportHT. This hash table holds properties of the VM
host which this recipe populates.

In step 2, you add details of the computer's hostname and the host's manufacturer and
model.

In step 3, you add the PowerShell version and then in step 4, you obtain details about the OS
running on the host and add it to the hash table.

With step 5, you add the count of CPUs in the host while in step 6, you add details of the
CPU usage of the VM host.

Managing Hyper-V

[508]

In step 7, you add the host's total memory and in step 8, how much of that memory has been
allocated to virtual machines.

These first 7 steps create no output.

In step 9, you create an object, $Reportobj based on the $ReportHT hash table. You then
display the object, which looks like this:

In step 10, you create two new VMs simply to provide more VMs on which to report in the
second part of this recipe. There is no output from this step.

In step 11, you get VM details by using the Get-VM cmdlet. Then you create an array to hold
individual objects for each VM on the host. There is no output from this step.

In step 12, you iterate through each VM on the host and create an object that holds details
about the VM. You then add the object to the array created in step 11. There is no output
from this step.

Finally, in step 13, you display the detail array as follows:

Managing Hyper-V

[509]

There's more...
This recipe presents two min-recipes to get the details of your Hyper-V host and the VMs
deployed on the host.

In the first nine steps, you create a report object that contains information about the VM
host. You could extend the report hash table/report to include information about network
and I/O traffic.

Generating this report object produces a view in time of the server. You could extend this
part of the recipe to create a measurement object say every hour, then once a day you can
analyze it by reporting maximum and minimum CPU, memory usage, and generating alerts
by email. You could use these daily reports and create richer capacity planning information
as well.

In the second part of this recipe, you generate details about each of the VMs defined on the
Hyper-V host. You could also extend these steps to capture more information about the
VMs, including network and disk I/O traffic.

You may also find that, over time, the issues you need to keep an eye on evolve. Don't be
afraid of re-visiting this recipe and improving it over time.

12
Managing Azure

In this chapter, we cover the following recipes:

Using PowerShell with Azure
Creating core Azure resources
Exploring your storage account
Creating and using an Azure SMB file share
Creating and using Azure websites
Creating and using Azure virtual machines

Introduction
Azure is Microsoft's cloud computing platform and is a competitor to Amazon's Amazon
Web Services and other public cloud providers, Azure provides you with access to a huge
range of features. Organizations can literally move their entire on-premises infrastructure
into the cloud.

Azure features come at three levels:

Infrastructure as a service (IaaS)
Platform as a service (PaaS)
Software as a Service (SaaS)

Managing Azure

[511]

IaaS is, in effect, an instant computing infrastructure that you can provision, manage, and
use over the internet or via a private network connection. IaaS includes the basic computing
infrastructure components (servers, storage, networking, firewalls, and security) plus the
physical plant required to run these components (power, air conditioning, and so on). In an
IaaS environment, the servers are all Azure virtual machines (effectively Hyper-V VMs) and
interact with the networking, security, and storage components.

PaaS is a complete deployment environment in the cloud, including the operating system,
storage, and other infrastructure. One key PaaS offering in Azure is the Azure SQL
Database. Things like the OS and SQL server patching, which you would have to deal with
if you deploy SQL in an IaaS environment, are all managed by Azure. This provides a
complete SQL service all managed by Azure. This of course means there are some things
you can't do—actions that are reserved for the platform owner (that is Microsoft). For
example, with SQL running inside and IaaS Azure VM, you can use database mirroring—
the SQL PaaS service does not provide that feature for you to use.

With SaaS, you just use an application that the vendor has placed in the cloud. The key
example of SaaS is Office 365 (O365), which bundles Exchange Online, SharePoint Online,
Skype For Business Online, OneDrive for Business, and Microsoft Teams.

Strictly speaking, Office 365 is not an Azure offering—you purchase directly from either the
Office 365 web site or via a Microsoft Partner. In terms of purchase, O365 is a single offering
with many different plans (combinations of services that also includes a downloadable
version of the Office applications such as Word and Excel). In terms of using PowerShell to
manage O365, each of the included applications has their own unique approach. With
Exchange Online, for example, you use PowerShell Implicit Remoting to manage the
exchange component of your O365 subscription.

To provide authentication for software running within Azure and for other SaaS
applications, you can make use of Azure Active Directory (AAD). With AAD you can
create a cloud-only directory or you can synchronize the AAD with your on-premises
Active Directory. AAD can also be used to provide authentication for a range of other third
party SaaS applications. Full details of managing both AAD and Office 365 components are
outside the scope of this chapter.

In this chapter, we begin with the first recipe: Using PowerShell with Azure. In this recipe, we
look at setting up a basic environment with which to manage Azure and the O365 SaaS
components. This recipe also shows how to download the AAD cmdlets.

Managing Azure

[512]

The Creating core Azure resources recipe guides you through creating a few of the core
resources you need to create and manage other Azure resources. These include a resource
group and a storage account. Every Azure resource you create with the ARM API must be
contained in a resource group. Also, any storage you may require, such as for VHD files for
an Azure VM, you need a storage group. While the recipes in this chapter use a single
resource group and a single storage account, large scale Azure deployments may require
multiple instances of these key resources.

With the Creating Azure storage recipe, we look at setting up Azure storage using the storage
account created earlier.

The Creating and using an Azure SMB file share recipe shows you how you can create an SMB
file share that you can access from client applications across the internet. Instead of having
an application point to an on-premises file share, you can now host the share in Azure. This
might be useful if you use Azure IaaS VM to host an application that utilizes a shared folder
for its data. You could also use it as a file share in the cloud.

The Creating and using Azure websites recipe shows how you can set up a simple website.
The recipe sets up a WordPress blog using PowerShell. This feature enables you to setup a
simple website, say for a short-term marketing campaign, as well as to build internet-scale
web sites that you can have Azure scale dynamically according to load.

The next recipe, Creating and using Azure virtual machines, examines how to create an Azure
VM and access it. This includes creating a virtual network and setting the VM up to enable
you to manage it with PowerShell or connect via RDP.

This chapter is only a taster for using Azure with PowerShell. There is so much more that
you can do that sadly would not fit into this book.

Using PowerShell with Azure
There are two key things you need to do before you can begin to manage Azure features
using PowerShell. The first is to obtain an Azure subscription. The second is to get access to
the cmdlets you need to be able to access Azure (and Office 365's features).

Managing Azure

[513]

Azure is a commercial service—each feature you use has a cost attached. Azure charges are
based on resource usage. With an Azure VM, for example, you would pay to have the VM
running, with additional charges for the storage the VM uses and for any network traffic.
The charges for Office 365, on the other hand, are user based—a given user can use lots of
email, for example, without incurring any additional charges. For details on costs for Azure,
see https://azure.microsoft.com/en-us/pricing/, and for details of Office 365 charges,
see
https://products.office.com/en-us/business/compare-office-365-for-business-plan

s.

To use Azure's IaaS and PaaS features, you need to have an Azure subscription. There are
many ways you can get an Azure subscription, including via an MSDN subscription, an
Action Pack subscription, or by outright purchase. Naturally, you need to ensure that any
systems are properly licensed.

Microsoft also provides a one-month free trial subscription. This subscription provides you
full access to Azure features up to a financial limit, which at the time of writing, is
US$200 or similar in other currencies. These limits may have changed by the time you read
this book. Having said that, the trial subscription should be sufficient to enable you to learn
how to use PowerShell with Azure.

If you do not have an existing subscription to Azure, navigate to
https://azure.microsoft.com/en-gb/free/ where you can create a trial subscription.
Note that a free trial requires you to submit a credit card number. There is no charge for the
subscription, the credit card number is used only to identify verification—plus it keeps the
lawyers happier.

If you take out an Azure trial and you want to keep your Azure resources running after the
trial expires, you have to move it to a pay as you go subscription. You receive an email
shortly before the trial expires to transition it which prevents downtime if you using the
trial for production.

To use PowerShell with Azure's various features requires you to obtain cmdlets that
Microsoft does not provide in Windows Server 2016 or PowerShell 5.0/5.1. You get the
relevant modules from the PowerShell Gallery using the cmdlets in the PowerShellGet
module to find and download them.

https://azure.microsoft.com/en-us/pricing/
https://products.office.com/en-us/business/compare-office-365-for-business-plans
https://products.office.com/en-us/business/compare-office-365-for-business-plans
https://azure.microsoft.com/en-gb/free/

Managing Azure

[514]

It is important to note that the PowerShell Azure cmdlets are a wrapper around Azure's
underlying API. Azure core API is REST based and involves a client sending various HTTP
messages into Azure, as well as parsing the replies and dealing with errors—this is
complex. Instead of using the underlying API you just use the cmdlets. In most cases, this is
all very straightforward. But when you are troubleshooting, being able to see the detailed
HTTP exchanges and the raw messages can help a great deal. You can obtain most of this
information simply by using the -Verbose switch on the Azure cmdlets.

Over the years, Azure has implemented two APIs for Azure. The first API, known as the
Azure Service Management (ASM) API, included a nice web based portal (known as the
Classic Portal, at https:/ /manage. windowsazure. com). To simplify things for the IT pro, this
version came with a set of cmdlets. The cmdlet set is a work in progress and has grown
significantly over time. As of the time of writing this chapter, ASM module contains 623
cmdlets.

Based on the feedback from the use of the ASM API, Microsoft did a fundamental re-design
and implemented a new API, the Azure Resource Management (ARM) API. The ARM API
is an improvement on the ASM API, and provides a wealth of new features that helps in the
management of complex IaaS and PaaS deployments. The new API also supports templates
to simplify deploying solutions within Azure. The Azure team also delivered a new and
richer portal based on the ARM API (https://portal.azure.com). And like the ASM
cmdlets, the ARM cmdlets in the new portal are also works in progress steadily growing
over time. At the time of writing the AzureRM modules contain 1215 cmdlets.

While the new API provides lots of new features, there is some bad news. Unfortunately,
the two APIs are essentially incompatible. Objects created with one API are not usable from
the other API. Thus, if you create a VM using the ASM API (either the via the Classic portal
or via the ASM cmdlets), you cannot manage it via the ARM API or the ARM portal.

Going forward, the ARM platform is where the Azure team is focusing and for that reason,
the recipes in this chapter use the ARM API and the supporting cmdlets and on-line portal.

An issue related to the new API is the way in which cmdlets are developed and delivered.
Historically, the Azure PowerShell team delivered just one module (Azure) which was
dual-headed. It could manage either of the two API sets although not at the same time. This
leads to a lot of confusion so (to make a long and complex story short) the team created
separate modules for each of the API sets. The ASM cmdlets remain unchanged while the
ARM cmdlets were renamed and repackaged. Today, there is one overarching Module
(AzureRM) and a number of subsidiary modules (for example AzureRm.Websites,
AzureRm.Tags, and so on).

https://manage.windowsazure.com
https://manage.windowsazure.com
https://manage.windowsazure.com
https://manage.windowsazure.com
https://manage.windowsazure.com
https://manage.windowsazure.com
https://manage.windowsazure.com
https://manage.windowsazure.com
https://manage.windowsazure.com
https://portal.azure.com
https://portal.azure.com

Managing Azure

[515]

One final point to bear in mind as you read and leverage the recipes in this chapter is that
all of Azure is a work in progress. There are a large number of feature teams inside the
Azure organization—each of which are working at what is often described as Internet pace.
The new portal is updated on a regular basis—thus any screenshots of the portal are often
out of date (almost instantly it sometimes appears). The cmdlets are more stable and
breaking changes are usually pretty rare but regular updates are to be expected. If and
when the Azure PowerShell team deem it necessary to do breaking changes, the affected
modules are versioned and you can continue to use the older module until such times as
you can update your scripts.

If this is the first time you’ve used PowerShellGet, you’ll receive the following message
which might be worth mentioning:

NuGet provider is required to continue
PowerShellGet requires NuGet provider version '2.8.5.201' or newer to
interact with NuGet-based repositories. The NuGet
 provider must be available in 'C:\Program
Files\PackageManagement\ProviderAssemblies' or
'C:\Users\JerryGarcia \AppData\Local\PackageManagement\ProviderAssemblies'.
You can also install the NuGet provider by
running 'Install-PackageProvider -Name NuGet -MinimumVersion 2.8.5.201 -
Force'. Do you want PowerShellGet to install
and import the NuGet provider now?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

You need to accept install and import the NuGet provider in order to use PowerShell get in
this recipe.

Getting ready
This recipe uses a Windows 10 Creator's Update computer, CL1, to manage the Azure
account. You also need an Azure account, as noted earlier.

How to do it...
The steps for the recipe are as follows:

Find core Azure PowerShell modules:1.

 Find-Module -Name Azure, AzureRM

Managing Azure

[516]

Install the Azure ARM cmdlets:2.

 Install-Module -Name AzureRM -Force

Discover what is in the Azure module:3.

 $HT = @{ Label ='Cmdlets'}
 $HT.Expression = {(Get-Command -Module $_.name).count}
 Get-Module -Name Azure* -ListAvailable |
 Sort-Object -Property `
 {(Get-Command -Module $_.name).count} -Descending |
 Format-Table Name,Version,Author,$HT -AutoSize

Find AzureAD cmdlets:4.

 Find-Module -Name AzureAD |
 Format-Table -AutoSize -Wrap

Download the AzureAD module:5.

 Install-Module -Name AzureAD -Force

Discover the AzureAD module:6.

 (Get-Command -Module AzureAD).count
 Get-Module -Name AzureAD -ListAvailable |
 Format-Table -AutoSize -Wrap

Log in to Azure:7.

 $Subscription = Login-AzureRmAccount

Get Azure subscription details:8.

 $SubID = $Subscription.CONTEXT.Subscription.SubscriptionId
 Get-AzureRmSubscription -SubscriptionId $SubId |
 Format-List -Property*

Get Azure regions or locations:9.

 Get-AzureRmLocation |
 Sort-Object -Property Location |
 Format-Table -Property Location, Displayname

Managing Azure

[517]

How it works...
This recipe is all about getting started with Azure. Since there are no Azure cmdlets
supplied with Windows Server 2016 or Windows 10 by default, you need to find them and
install them on your local machine (for example CL1).

In step 1, you use the PowerShellGet module's Find-Module cmdlet to find the key Azure
modules, as shown in the following screenshot:

As you can see, the first step displays the two core Azure modules. The Azure module is
the one you use for accessing the ASM based Azure objects, while the AzureRM module
provides access to the Azure ARM API and related objects. Since the recipes in this chapter
only target Azure ARM, in step 2, you install the AzureRM module. This step produces no
output.

In step 3, you use your discovery techniques to look at the Azure modules you just
downloaded. You create a hash table ($HT) that calculates the number of cmdlets in each
module, then you use that hash table to display the Azure modules, the module version
number and how many cmdlets are contained in each module. The list is shown in the
following screenshot:

Managing Azure

[518]

Managing Azure

[519]

With step 4, you find the AzureAD module and display details as shown in the following
screenshot:

In step 5, you download and install the AzureAD module, which produces no output.

In step 6, you look in more detail at the AzureAD module which contains a wealth of
commands to assist you with managing AAD. The output of this step is as shown in the
following screenshot:

In step 7, you log in to Azure. You need to log in before you can use the modules you
downloaded earlier. In this recipe's example, you use a Microsoft ID (previously a known as
a Passport ID or a Live ID). Using a Microsoft ID is not an uncommon approach in some
cases, such as when you are using an Azure trial subscription or using the Azure rights
associated with an MSDN subscription. Using a Microsoft ID, you have to log in by entering
your user id and password manually. Running step 7 results in two pop-up dialog boxes.
The first is requesting a user ID, as shown in the following screenshot:

Managing Azure

[520]

In the case of a Microsoft ID, you see the second dialog where you enter your password as
shown in the following screenshot:

Managing Azure

[521]

The Login-AzureRmAccount returns an object containing details of the Azure
subscription, which the recipe saves in $Subscription. You use this variable in step 8
where you get and display details of your subscription, which is shown in the following
screenshot:

In step 9, you get the Azure Data Center regions. Later in this chapter, you use various IaaS
resources, such as a Virtual Machine. When you create a resource like a VM, you create it in
one of the regional data centers. The list of standard Azure data centers looks like this:

Managing Azure

[522]

In step 10, you get the set of Azure environments. Each environment is a separate cloud. At
present, as the output shows, there are separate clouds in Germany, China, and for the US
government. There may be additional environments which for security reasons Microsoft
does not disclose. The list of environments is as shown in the following screenshot:

There's more...
In step 1, you find the two core modules for managing Azure: Azure and AzureRM. The
Azure module is a single large monolithic module, while the AzureRM module actually has
a number of sub-modules.

In step 2, you install the Azure RM modules (and the related subsidiary modules. By
default, the PSGallery is not a trusted repository and the Install-Module prompts for
permission to install from this untrusted repository. You avoid the prompt by using the -
Force switch.

In step 3, you use a hash table to create a new column for use when displaying module
information. This column just takes the module name and returns the number of cmdlets
that are in that module. As you can see, there are a large number of small modules that
make up the main AzureRM module. This approach makes it easier for the Azure
PowerShell team to service and improve the individual sub-modules.

In step 7, you log into Azure. It would be nice if you could just pass a credential object to the
Login-AzureRMAccount, but as Microsoft do not support this for Live IDs, you have to log
in manually. This has been raised as an issue with the cmdlets, but Microsoft does not plan
to fix this issue. For simple IaaS type applications, this means regular logins via a GUI.

Also in step 7, the first pop-up dialog box appears to allow you to enter both the userid and
the password. The pop-up does not actually allow you to enter your password, instead you
do that on the second pop-up.

Managing Azure

[523]

Step 9 and step 10 show you a bit of the breadth of Azure. The Azure cloud has, at the time
of writing, 25 regional data centres, each of which are massive and more are planned,
including in Africa. These regional data centers, such as those in Dublin, can span multiple
physical buildings providing both scale and a degree of extra overall resilience. In addition
to the main Azure public cloud, Microsoft has created separate cloud environments for
China, Germany and the US Government as you can see in the output.

Creating Core Azure Resources
In the previous recipe, you created and used the basic Azure management environment by
downloading the key cmdlets, logging in to Azure and having a brief look around. In this
recipe, you create certain key Azure assets, including a resource group, a storage account,
and tags. With Azure, all Azure resources are created within a resource group.

A storage account is a fundamental building block within Azure. ALL storage you use with
any Azure feature always exists within a storage account. You create a storage account
within one of the Azure regions you saw in the Using PowerShell with the Azure recipe. When
you create your storage account, you also specify the level of resiliency and durability
provided. There are several levels of replication provided within Azure which provide for
multiple copies of the data that are replicated automatically in both the local Azure data
center but also in other data centers. The extra resilience, which does come at a price,
provides greater levels of recovery should the unthinkable happen and an entire data center
somehow fails in a catastrophic way.

You can provision a storage account as either standard or premium. A standard storage
account allows you to store any kind of data (as you see more in the Exploring your storage
account recipe).

Getting Ready
This recipe requires you to have an Azure account and to have logged in, as done in the
Using PowerShell with Azure recipe.

Managing Azure

[524]

How to do it...
The steps for this recipe are as follows:

Set key variables:1.

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group we are using
 $SAName = 'packt100sa' # Storage account name

Log in to your Azure account:2.

 Login-AzureRmAccount

Create a new Azure resource group and tag it:3.

 $RGTag = [Ordered] @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName -Location
 $Locname -Tag $RGg

View resource group, with the tags:4.

 Get-AzureRmResourceGroup -Name $RGName |
 Format-List -Property *

Create a new Azure storage account:5.

 New-AzureRmStorageAccount -Name $SAName `
 -SkuName Standard_LRS `
 -ResourceGroupName $RgName -Tag $RGTag `
 -Location $Locname

How it works...
In step 1, you create a number of variables that define values for this recipe. This recipe
creates a resource group (packt_rg) and a storage account (packt100sa) in the UK South
Azure Region and the variables are setup accordingly.

In step 2, you log in to Azure. You saw details of how this works in the Using PowerShell with
Azure recipe.

Managing Azure

[525]

In step 3, you create a hash table, $RGTag, which contains tags (name/value pairs) then
create a new Azure resource group, packt_rg, which is appropriately tagged. The step also
has no output.

In step 4, you explore more new resource group's properties, with output as shown in the
following screenshot:

In step 5, you create a new Azure storage account, named pact100sa, and tag it with the
same tags as used for the resource group. The output is shown in the following screenshot:

Managing Azure

[526]

There's more...
In step 1, you set variables that hold key values for this recipe. In using this recipe, feel free
to change these values. Depending on where you live, change the $Locname variable to
hold the name of an Azure regional data center nearer to you.

With step 5, you create a storage account. In Azure, the storage account has to be globally
unique. So if you were to try to create this storage account today it would fail as that name
is already in use. To test whether a name (like a storage account) is available, you can use
the Get-AzureRmStorageAccountNameAvailability cmdlet. Additionally, the storage
account name must only contain lower case letters and numbers—so a storage account
name of pact_sa or PactSA would not be allowed. Resource groups have less strict
naming conventions.

Exploring your storage account
Many Azure resources use Azure storage. In the Creating an Azure backup recipe in Chapter
5, Managing Server Backup, you saw how to use Azure storage to hold server backups. When
you create an Azure VM, you store the VHD file in Azure storage. Azure storage accounts
can hold a variety of types of data, with different mechanisms for managing each data type.
Additionally, the storage account provides both scalability and data durability and
resiliency.

Azure storage manages five distinct types of data:

Binary Large Object (Blob)
Table
Queue
File
Disk

A blob is unstructured data you store in Azure. Blob storage can hold any type of data in
any form. This could include MP4 movies, ISO images, VHD drives, JPG files, etc.
Individual blobs reside with blob containers which are equivalent to file store folders, but
with no nesting capability.

Managing Azure

[527]

Blobs come in three types: block blobs, append blobs, and page blobs. Block blobs are
physically optimized for storing documents to the cloud and for streaming applications.
Append blobs are optimized for append operations and are useful for logging. Page blobs
are optimized for read/write operations—Azure VHDs, for example, are always of the page
blob type. For more information about blob types see https:/ /azure. microsoft. com/en-
gb/services/storage/ blobs).

An Azure table is a non-relational storage system utilizing key-value pairs. You use Azure
tables for storing unstructured or semi-structured data. This contrasts with an SQL table
that holds highly normalized data. A table consists of a grouping of entities. See
https://azure.microsoft.com/en-gb/services/storage/tables/ for more information
about Azure tables.

An Azure queue is a durable message queuing feature used to implement scalable
applications. With message queues, one part of an application can write a transaction to the
queue for another part to process. The queues enable you to decouple application
components for independent scaling and to provide greater resiliency. Queues allow the
application to scale where needed in a simple and reliable way. For more details on Azure
queues, see https://azure.microsoft.com/en-gb/services/storage/queues/.

The Azure file feature provides simple cross-platform file storage. This enables you to
create and use SMB file shares in the cloud and access just like you would access on-
premises SMB shares. Azure files support SMB 2.1 and 3.0 which makes it simple and easy
for you to migrate legacy applications that rely on file shares. See for more information on
Azure files, see https:/ /azure. microsoft. com/ en-gb/ services/ storage/ files/ .

Azure's disk storage provides persistent, highly secure disk options, particularly for Azure
VMs. Azure disks are designed for low latency and high throughput. You can provision
both traditional spinning disks as well as SSD disks that provide better I/O performance for
I/O intensive applications. For more details on Azure disk storage see
https://azure.microsoft.com/en-gb/services/storage/unmanaged-disks/.

Storage features continue to evolve with more options available as time goes by. For more
details on Azure storage as a whole, see https:/ /docs. microsoft. com/ en-us/ azure/
storage/storage- introduction.

As noted earlier, you name your storage account based on a global naming scheme which is
based on HTTPS URLs. The AZURE REST API relies on URLs to manage the Azure
resources in your resource groups. All storage accounts are named specifying the storage
account, data type, container name, and file name. The format for a blob is as shown in the
following command:

 https://<account>.<datatype>.core.windows.net/...

https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/blobs
https://azure.microsoft.com/en-gb/services/storage/tables/
https://azure.microsoft.com/en-gb/services/storage/queues/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/files/
https://azure.microsoft.com/en-gb/services/storage/unmanaged-disks/
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction
https://docs.microsoft.com/en-us/azure/storage/storage-introduction

Managing Azure

[528]

The account field is your storage account name, while the type field in the URL relates to
the data type (blob, table, queue, file, or disk).

The storage account name must contain numbers and lower case letters only—this is an
architectural restriction within Azure. Since the account name part of the URLs is processed
by Azure, your storage account name must be unique globally. This means that you may
need to experiment a bit in order to find a unique storage account name. The recipes in this
chapter use the variable $SAName that contains the name packt100sa. At the time of
writing, this storage account name is available but there is no guarantee that someone else
may not use it in the meantime. When you are testing this recipe, you may need to change
the name if for some reason the storage account has been taken by another customer.

When creating a storage account, you need to specify both the Azure region in which to
create the account and what kind of replication you want Azure to perform on data stored
in the storage account. You can create a storage account in any Azure region which
supports the storage types you wish to utilize.

Azure's storage fabric stores all data multiple times to provide data durability. Azure
replicates data based on the replication scheme you specify when you create the storage
account. At present, there are five replication schemes you can use when creating a storage
account:

Standard_LRS: Azure maintains three copies of the data and all the data is stored
in a single data centre in a region.
Standard_ZRS: This scheme maintains three copies, but the copies are made
asynchronously in different data centers within the region (or possibly another
region). This provides greater durability than LRS replicated data at a price point
lower than GRS. Azure restricts the use of ZRS data to block blobs.
Standard_GRS: This scheme involves Azure maintaining six copies: three in the
local data center (LRS) plus three in another region. Azure keeps all LRS/ZRS
data up to date lock step—Azure's storage fabric only reports an I/O as
completed once all three local copies have been written. Data replication to a
different region is asynchronous.
Standard_RAGRS: This is similar to Standard_GRS, but this replication scheme
allows you to access the data in the remote location read only. You could, for
example, store a SQL database in one region with Azure maintaining the data.
You could then do reporting or analysis on the read/only copy.
Premium_LRS: This is locally replicated data based on SSD technology that
provides improved performance.

Managing Azure

[529]

The Azure storage fabric maintains the local and remote copies automatically. Should one
physical copy become unusable, Azure automatically removes the failed device and re-
replicates the data.

It is important to note that while some of the replication options offer greater data
durability, data replicated to another data center is done in an asynchronous manner. This
involves a small delay, and it means that in the event of a local disaster, some data may not
have been replicated.

This recipe explores the storage account and looks at some of the aspects of managing
storage in Azure. In this recipe, you also create a blob container. Additionally, you create
and display a file within the container. Later in this chapter, the recipe Creating an Azure
SMB file share shows using the Azure file resources.

Getting ready
This recipe assumes you have an Azure account, and you have installed the Azure cmdlets,
as shown in the Using PowerShell with Azure recipe. This recipe also relies on the resource
group and storage account you created with the Creating core Azure resources recipe. To be
on the safe side, you create these two resources if needed.

How to do it...
The steps for the recipe are as follows:

Define key variables:1.

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group we are using
 $SAName = 'packt100sa' # Storage account name
 $CName = 'packtcontainer' # Container names
 $CName2 = 'packtcontainer2'

Log in to your Azure account and ensure the $RG and $SA is created:2.

 Login-AzureRmAccount
 $RG = Get-AzureRmResourceGroup -Name $RgName `
 -ErrorAction SilentlyContinue
 if (-not $RG) {
 $RGTag = [Ordered] @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName `

Managing Azure

[530]

 -Location $Locname `
 -Tag $RGTag
 "RG $RgName created"
 }
 $SA = Get-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -ErrorAction SilentlyContinue
 if (-not $SA) {
 $SATag = [Ordered] @{Publisher='Packt'}
 $SATag += @{Author='Thomas Lee'}
 $SA = New-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -Location $Locname -Tag $SATag `
 -SkuName 'Standard_LRS'
 "SA $SAName created"
 }

Get and display the storage account key:3.

 $Sak = Get-AzureRmStorageAccountKey -Name $SAName `
 -ResourceGroupName $RgName

Extract the first key's password:4.

 $SakExtract the first key's 'password':
 $Key = ($Sak | Select-Object -First 1).Value

Get the Storage account context:5.

 $SACon = New-AzureStorageContext -StorageAccountName $SAName `
 -StorageAccountKey $Key
 $SACon

Create two blob containers:6.

 New-AzureStorageContainer -Name $CName `
 -Context $SACon `
 -Permission Blob
 New-AzureStorageContainer -Name $CName2 `
 -Context $SACon `
 -Permission Blob

View blob containers:7.

 Get-AzureStorageContainer -Context $SACon |
 Select-Object -ExpandProperty CloudBlobContainer

Managing Azure

[531]

Create a blob:8.

 'This is a small blob!!' | Out-File .\azurefile.txt
 $Blob = Set-AzureStorageBlobContent -Context $SACon `
 -File .\azurefile.txt `
 -Container $CName
 $Blob

Construct and display the blob name:9.

 $BlobUrl = "$($Blob.Context.BlobEndPoint)$CName/$($Blob.name) "
 $BlobUrl

View the URL via IE:10.

 $IE = New-Object -ComObject InterNetExplorer.Application
 $IE.Navigate2($BlobUrl)
 $IE.Visible = $true

How it works...
With step 1, you create variables to hold the names of the Azure objects that you create with
this recipe. There is no output from this step.

Step 2 helps to ensure that you are logged into Azure and that the resource group and
storage account both exist. If these do not exist, this step creates them.

In step 3, you get your storage account keys and display them. The output looks as shown in
the following screenshot:

Managing Azure

[532]

In step 4, you get the key value for the first key. There is no output for this step. In step 5,
you get and display your storage account's storage context, which looks as shown in the
following screenshot:

In step 6, you use the storage context and create two blob containers in your storage account.
The output is as shown in the following screenshot:

In step 7, you display details of the two blob containers, which is as shown in the following
screenshot:

Managing Azure

[533]

In step 8, you create a file locally (.\azurfile.txt). This step then uploads this local file to
an Azure blob. The output is as shown in the following screenshot:

In step 9, you create and then display the URL for the Azure blob you just created, with
output as shown in the following screenshot:

In step 10, you use Internet Explorer to download and display the contents of this data blob.
It is as shown in the following screenshot:

There's more...
In step 1 you define variables to hold the name of several different Azure resources that you
create with this recipe. You may want to change these, for example if the storage account
name is already in use, or if you want to create different names for these objects.

Managing Azure

[534]

In step 2, you ensure that you are logged into Azure and that your resource group and
storage account exist. If either of these is not present, then this step creates them. Note that
if for some reason the storage account name is in use by some other Azure customer, you
need to change the value of the $SAName variable in step 1.

In step 3 you retrieve the storage account keys. Each key's value property is, in effect, a
password for your Azure storage account. Having two keys enables you to regularly
regenerate and rotate your key values. In step 4, you get this value for the first key.

In step 5, you get the storage account's storage context. This object encapsulates the details
of the storage account, including the storage account key you created in the prior step.

In step 6 and step 7, you create two blob containers and display their URLs. Containers are a
single level folder like object that contains your blobs. In step 8, you create a simple blob and
as you can see from the output, this is a block blob, with the contents just an octet stream.

In step 9, you display the URL to the Azure blob you create in step 8.

The storage account name, container name, and filename are embedded
into this URL.

Creating Azure an SMB File Share
Azure provides you with the ability to create SMB shares with an Azure storage account.
These SMB shares act the same as local on-premises SMB shares you used in Chapter 9,
Managing Network Shares. The key difference is how you create them and the credentials you
use to access the shares.

Before an SMB client can access data held in an SMB share, the SMB client needs to
authenticate with the SMB server. With Windows based shares, you either use a
userid/password credential, or in a domain environment, the SMB client utilizes Kerberos to
authenticate. With Azure, you use the storage account name as the userid and the storage
account key as the password.

Managing Azure

[535]

The storage account key provides you with two keys (imaginatively named key1 and key2).
The value of either key is a valid password for Azure SMB file shares. You have two keys to
enable you to do regular key rotation. If your application uses the value of key1, you can
change the application to use the key2 value as the share's password then regenerate the
key1 value. Sometime later you repeat—changing the application to use key1's value then
regenerate key2. This provides you with immediate key update where you need it. Armed
with the value of either key, you can easily create SMB shares that are directly addressed
across the internet.

An Azure SMB share differs from Azure blobs with respect to how you access them. You
access a blob via HTTP, whereas you access an Azure File share via the standard SMB
networking commands you used in, for example, Chapter 9, Managing Network Shares.
Blobs and files also differ in that with blobs you only have a single level of folder (the
container). With Azure files, you can have as many folders as you wish or need.

From the point of view of SMB file sharing, remember that the account key is the password
for the share, where the username is the storage account name. You should exercise caution
when including the account key in code.

In this recipe, you use the resource group and storage account created earlier (in the Create
Core Azure resources recipe). The recipe also checks to ensure these exist and creates them if
they are not available just in case.

Getting ready
This recipe assumes you have an Azure account, and you have installed the Azure cmdlets,
as shown in the Using PowerShell with Azure recipe. This recipe also relies on the resource
group and storage account you created with the Creating core Azure resources recipe. To be
on the safe side, you can create these two resources if needed.

How to do it...
The steps for the recipe are as follows:

Define variables:1.

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group we are using
 $SAName = 'packt100sa' # Storage account name
 $ShareName = 'packtshare' # must be lower case!

https://cdp.packtpub.com/b06186windowsserver2016automationwithpowershellcookbook/wp-admin/post.php?post=196&action=edit&save=save#post_566

Managing Azure

[536]

Log in and ensure the resource group and storage account exist:2.

 Login-AzureRmAccount
 $RG = Get-AzureRmResourceGroup -Name $rgname `
 -ErrorAction SilentlyContinue
 if (-not $RG) {
 $RGTag = [Ordered] @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName `
 -Location $Locname `
 -Tag $RGTag
 "RG $RgName created"
 }
 $SA = Get-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -ErrorAction SilentlyContinue
 if (-not $SA) {
 $SATag = [Ordered] @{Publisher='Packt'}
 $SATag += @{Author='Thomas Lee'}
 $SA = New-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -Location $Locname -Tag $SATag `
 -SkuName 'Standard_LRS'
 "SA $SAName created"
 }

Get the storage account key and storage account's context:3.

 $Sak = Get-AzureRmStorageAccountKey -Name $SAName `
 -ResourceGroupName $RgName
 $Key = ($Sak | Select-Object -First 1).Value
 $SACon = New-AzureStorageContext -StorageAccountName $SAName `
 -StorageAccountKey $Key

Add credentials to the local store:4.

 cmdkey /add:$SAName.file.core.windows.net/user:$SAName `
 /pass:$Key

Create an Azure SMB share:5.

 New-AzureStorageShare -Name $ShareName -Context $SACon

Managing Azure

[537]

Ensure Z: is not in use then mount the Azure share as Z:6.

 $Mount = 'Z:'
 Get-Smbmapping -LocalPath $Mount -ErrorAction SilentlyContinue |
 Remove-Smbmapping -Force -ErrorAction SilentlyContinue
 $Rshare = \\$SaName.file.core.windows.net\$ShareName
 New-SmbMapping -LocalPath $Mount -RemotePath $Rshare `
 -UserName $SAName -Password $Key

View the share:7.

 Get-AzureStorageShare -Context $SACon |
 Format-List -Property *

View local SMB mappings:8.

 Get-SmbMapping

Now use the new share and create a file in the share:9.

 New-Item -Path z:\foo -ItemType Directory | Out-Null
 'Recipe 15-4' | Out-File -FilePath z:\foo\recipe.txt

Retrieve details about the share contents:10.

 Get-ChildItem -Path z:\ -Recurse |
 Format-Table -Property FullName, Mode, Length

Get the content from the file:11.

 Get-Content -Path z:\foo\recipe.txt

How it works...
In step 1, you define PowerShell variables that hold key Azure object names. In step 2, you
log into Azure and ensure that the resource group and storage account exist (and create
them if not). There is no output from either of these steps.

In step 3, you get the storage account keys for your storage account. You retrieve the key
from the first password, then create a storage context object. There is no output from this
step.

Managing Azure

[538]

In step 4, you store the credentials for your storage account. Cmdkey is a console application
that you use to store the userid and password that your SMB client uses when it connects to
an SMB share. There is no output from this step.

In step 5, you create an Azure file share using the New-AzureStorageShare cmdlet, which
produces output as shown in the following screenshot:

In step 6, you initially ensure that the Z: drive is not mapped to a share (and remove it if the
Z: drive exists). Then you create a mapping to your Azure file share. The output from this
step looks like this:

You view the Azure file share in step 7, where you see the following output that resembles
the following:

Managing Azure

[539]

In step 8, you view the local SMB mappings, which should look similar to this:

In step 9, you create a folder, foo, in your mapped Z: drive, then you create a new file in that
folder (Z:\foo\recipe.txt). There is no output from this step. In step 10, you list the
items in the Z: drive which look like this:

In the final step, step 10, you view the contents of the file stored in your Azure file share.
The output is as follows:

There's more...
In step 1, you create variables to hold the names of the Azure objects you use in this recipe.
The $Locname variable holds the name of the Azure region in which you create your
storage account which you may wish to change to a more local Azure region.

In step 3, you create a storage context object. The context object encapsulates the credentials
for your storage account.

You use cmdkey.exe in step 4 to save credentials for Azure's storage account. You use
cmdkey to store the userid and password which Windows should use to authenticate
against a given computer or domain. For more details on cmdkey, see
https://technet.microsoft.com/en-us/library/cc754243(v=ws.11).aspx. You can use
the cmdkey utility to list all the stored credentials (cmdkey /list).

https://technet.microsoft.com/en-us/library/cc754243(v=ws.11).aspx

Managing Azure

[540]

Creating and using websites
Azure provides a number of ways in which you can create rich web and mobile
applications in the cloud. You could setup your own virtual machines, install IIS, and add
your own web application. If your application needs to store data, you can create SQL
Server VMs, or use Azure's SQL database feature—or any of the other database packages
supported in Azure.

A simpler way is to create an Azure Web App. At one time, Azure offered what were
termed websites. These were, as the name says, websites in which you could run your own
application, or a host of others such as WordPress. These were single tier (possibly with a
back-end database). However, Microsoft discontinued this feature and has replaced it with
the more generic Web App feature.

Azure Web Apps enabled you to build, deploy, and manage rich websites and web
applications. You can use frameworks such as .NET, Node.js, PHP, and Python in these
applications and use any database software appropriate to your needs. These applications
can be simple static HTML sites, or rich multi-tier applications that run on both web and
mobile platforms.

In this recipe, you create a simple single tier website. You also create a very simple single
page application and upload it and view the page.

Getting ready
This recipe assumes you have an Azure account, and you have installed the Azure cmdlets,
as shown in the Using PowerShell with Azure recipe. This recipe also uses the resource group
and storage account created with the Creating Core Azure Resources recipe. As with earlier
recipes, if these objects do not exist, a step in the recipe creates them.

This recipe uses C:\ to hold files—but feel free to move the location of
these files to any location on your system.

Managing Azure

[541]

This recipe also needs a file, C:\Index.htm, containing the following HTML code:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>New Azure Web Site</title>
</head><body></p>

<center>
This is the start page for the really cool NEW Azure Web App
</p>
A page created by PowerShell in Microsoft Azure
</body>
</html>

This recipe creates an Azure web app and uploads this file to Azure. Feel free to add code
(or additional pages) appropriate.

How to do it...
The steps for the recipe are as follows:

Define key object variables:1.

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group we are using
 $AppSrvName = 'packt100'
 $AppName = 'packt100'
 $Locname = 'uksouth'

Log in to your Azure Account and ensure the RG and SA is created:2.

 Login-AzureRmAccount
 $RG = Get-AzureRmResourceGroup -Name $rgname `
 -ErrorAction SilentlyContinue
 if (-not $RG) {
 $RGTag = [Ordered] @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName `
 -Location $Locname `
 -Tag $RGTag
 "RG $RgName created"
 }
 $SA = Get-AzureRmStorageAccount -Name $SAName
 -ResourceGroupName $RgName `

Managing Azure

[542]

 -ErrorAction SilentlyContinue
 if (-not $SA) {
 $SATag = [Ordered] @{Publisher='Packt'}
 $SATag += @{Author='Thomas Lee'}
 $SA = New-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName $RgName `
 -Location $Locname `
 -Tag $SATag `
 -SkuName 'Standard_LRS'
 "SA $SAName created"
 }

Create the app service plan:3.

 New-AzureRmAppServicePlan -ResourceGroupName $RgName `
 -Name $AppSrvName `
 -Location $Locname -Tier Free |
 Out-Null

View the service plan:4.

 Get-AzureRmAppServicePlan -ResourceGroupName $RGname
 -Name $AppSrvName

Create the new Azure web app:5.

 New-AzureRmWebApp -ResourceGroupName $RgName `
 -Name $AppSrvName `
 -AppServicePlan $AppSrvName
 -Location $Locname |
 Out-Null

View application details:6.

 $WebApp = Get-AzureRmWebApp -ResourceGroupName $RgName
 -Name $AppSrvName
 $WebApp

Now see the web site:7.

 $SiteUrl = "https://$($WebApp.DefaultHostName)"
 $IE = New-Object -ComObject InterNetExplorer.Application
 $IE.Navigate2($SiteUrl)
 $IE.Visible = $true

Managing Azure

[543]

Get the publishing profile XML and extract FTP upload details:8.

 $x = [xml](Get-AzureRmWebAppPublishingProfile `
 -ResourceGroupName $RgName `
 -Name $AppSrvName `
 -OutputFile c:\pdata.txt)
 $x.publishData.publishProfile[1]

Extract the credentials and site details from the publishing profile:9.

 $UserName = $x.publishData.publishProfile[1].userName
 $UserPwd = $x.publishData.publishProfile[1].userPWD
 $Site = $x.publishData.publishProfile[1].publishUrl

Create ftp client:10.

 $Ftp = [System.Net.FtpWebRequest]::Create("$Site/Index.Html")
 $Ftp.Method = [System.Net.WebRequestMethods+Ftp]::UploadFile
 $Ftp.Credentials = New-Object `
 -TypeNameSystem.Net.NetworkCredential `
 -ArgumentList $UserName,$UserPwd
 $Ftp.UseBinary = $true
 $Ftp.UsePassive = $true

Get the contents of the file to upload as a byte array:11.

 $Filename = 'C:\Index.htm'
 $Content = [System.IO.File]::ReadAllBytes($fileName)
 $Ftp.ContentLength = $Content.Length

Get the ftp request stream and write the file to the web site:12.

 $Stream = $Ftp.GetRequestStream()
 $Stream.Write($Content, 0, $Content.Length)

Close the connection and dispose of the stream object:13.

 $Stream.Close()
 $Stream.Dispose()

Now look at the site:14.

 $SiteUrl = https://$($WebApp.DefaultHostName)
 $IE = New-Object -ComObject InterNetExplorer.Application
 $IE.Navigate2($SiteUrl)
 $IE.Visible = $true

Managing Azure

[544]

How it works...
As in previous recipes, in step 1, you create variables to hold key object names. This
produces no output. You use step 2 to ensure that the resource group and storage account
exist—if not this step creates them but does not produce output.

In step 3, you create an Azure web application service plan, to define the location and type
of host that you wish to use to run your web application. There is no output from this step.
In step 4, you get and display the new application service plan and the output of this step
looks like this:

With step 5, you create the web application which you wish to run on top of the previously
created application service plan. This step produces no output.

Managing Azure

[545]

In step 6, you then can display the web app, which as shown in the following screenshot:

Managing Azure

[546]

With step 7, you see the basic website which Azure created. This is not the final site, but
does show you that the web application is up and running, which looks like this:

In step 8, you retrieve the web publishing profile. This is an XML document that describes
details about the app site. The publishing profile includes the details you need in order to
upload content to your site via FTP. In step 9, you extract the website name and the user
credentials for the site. With step 10, you use this information and create an FTP client. In
step 11, you get the web page (Index.htm) and encode it into a byte array which, in step 12,
you up load to the FTP site. With step 13, you close the FTP site. There is no output from step
8 through step 13.

Managing Azure

[547]

In step 14, you display your web site, as shown in the following screenshot:

There's more...
In step 3, you create the web application service plan. In effect this defines the location and
size of the host that Azure assigns to run your web application.

With step 4, you crate the new Azure application. Azure creates some default content, which
you view in step 7. It's useful to see this default content so you can ensure the web app is up
and running prior to loading any content.

When you create an Azure web app, Azure creates an FTP web site you can use to upload
your content. Azure provides the details you need (the FTP server name and the userid and
password for this FTP site) via the web app publishing profile which you download and
view in step 8. In step 9, you pull out the host and user information from the XML returned
in step 8, and then create an FTP client (step 10).

In step 11 through step 13, you use the FTP client to upload the contents of your web site (i.e.
the single page held at C:\Index.htm). In most production scenarios, you would probably
have a number of files to upload - you would adjust step 11 and step 12 to upload all the
relevant files for your web application.

Creating and using Azure virtual machines
An Azure VM is essentially a Hyper-V VM that you run within Azure. There are some
differences between Hyper-V VMs you create within Server 2016 (or Windows 10) and
Azure VMs but they are minor. The ARM based cmdlets you use are a little different in
style to Hyper-V cmdlets which may mean a bit of a learning curve.

Managing Azure

[548]

At the time of writing, you can only use the VHD format for your virtual hard disks in an
Azure VM although like many things in Azure this may change at some point in the future.
Should you wish to move a Hyper-V VM into Azure that uses a VHDX hard disk file, you
would need to convert the disk type to be a VHD.

In this recipe, you first create a virtual network. Your VM can have both a public IP address
and a private VLAN based IP address. At the end of this recipe, you access the VM via the
VM's public IP address. In a later recipe, you create a VPN and connect to the VM using the
VPN addresses. You also create a NIC and give it a public IP address.

Azure VMs are locked down by default. In order to enable any traffic into or out of the VM,
you create a Network Security Group (NSG) and create network security rules, allowing
traffic in or out of the VM. In this recipe, you set traffic rules to allow RDP and PowerShell
remoting inbound.

With your network and network created, you next create a new PSVirtualMachine object.
This object holds the configuration settings for your VM. Once you create the object, you
can then set properties around things like OS type, VHD names, network adapters, etc.
Finally, once you have fully populated the PSVirtualMachine object, you pass it to New-
AzureRmVM to create the VM.

The PSVirtualMachine object holds the details of your VM prior to creating the VM. An
important property of this object is the image to use when creating the VM. An image is
effectively a syspreped OS image (with or without additional applications).

You can choose between a large number of pre-existing images from a variety of vendors.
These images can contain different operating systems (Windows or Linux), different
applications, and can be very differently set up. In this recipe, you create a basic Windows
Server 2016 VM with nothing else added.

Once you have the PSVirtualMachine object created, you pass this to Azure when you
create the VM. Creating a new VM can take time as Azure needs to create a new disk
holding your image as well as the VM itself and then start the VM.

Once your VM is up and running the VM, you can access it via its public IP address. If you
also want to link the VM with your corporate network, you can create a VPN to link your
Azure cloud subnet with your on-premises network or allow a single client to access hosts
on the cloud subnet. In this recipe, you create the Azure Virtual network and a VM in that
network. In the next recipe, Creating and using an Azure VPN, you create the VPN gateway
and access the Virtual Machine via a P2S VPN.

Managing Azure

[549]

Getting ready
This recipe assumes you have an Azure account, and you have installed the Azure cmdlets,
as shown in the Using PowerShell with Azure recipe. This recipe also uses the resource group
and storage account created with the Creating core Azure resources recipe. As with earlier
recipes, if these objects do not exist, a step in the recipe creates them.

How to do it...
The steps for the recipe are as follows:

Define key variables1.

 $Locname = 'uksouth' # location name
 $RgName = 'packt_rg' # resource group name
 $SAName = 'packt100sa' # Storage account name
 $NSGName = 'packt_nsg' # NSG name
 $FullNet = '10.10.0.0/16' # Overall networkrange
 $CLNet = '10.10.2.0/24' # Our cloud subnet
 $GWNet = '192.168.200.0/26' # Gateway subnet
 $DNS = '8.8.8.8' # DNS Server to use
 $IPName = 'Packt_IP1' # Private IP Address name
 $VMName = "Packt100" # the name of the vm
 $CompName = "Packt100" # the name of the VM host

Just in case, log in to Azure and ensure the resource group and storage account2.
exist:

 Login-AzureRmAccount
 $RG = Get-AzureRmResourceGroup -Name $RgName `
 -ErrorAction SilentlyContinue
 if (-not $rg) {
 $RGTag = @{Publisher='Packt'}
 $RGTag += @{Author='Thomas Lee'}
 $RG = New-AzureRmResourceGroup -Name $RgName `
 -Location $Locname `
 -Tag $RGTag
 }
 $SA = Get-AzureRmStorageAccount -Name $SAName `
 -ResourceGroupName
 $RgName -ErrorAction SilentlyContinue
 if (-not $SA) {
 $SATag = [Ordered] @{Publisher='Packt'}
 $SATag += @{Author='Thomas Lee'}
 $SA = New-AzureRmStorageAccount -Name $SAName `

Managing Azure

[550]

 -ResourceGroupName $RgName `
 -Location $Locname `
 -Tag $SATag `
 -skuname 'Standard_LRS'
 }

Create subnet network config objects:3.

 $SubnetName = 'CloudSubnet1'
 $CloudSubnet = New-AzureRmVirtualNetworkSubnetConfig `
 -Name $SubnetName -AddressPrefix $CLNet
 $GWSubnetName = 'GatewaySubnet'
 $GWSubnet = New-AzureRmVirtualNetworkSubnetConfig `
 -Name $GWSubnetName -AddressPrefix $GWNet

Create the virtual network, and tag it—this can take a while4.

 $VnetName = "Packtvnet"
 $PackVnet = New-AzureRmVirtualNetwork -Name $VnetName `
 -ResourceGroupName $RgName `
 -Location $Locname `
 -AddressPrefix $fullnet,'192.168.0.0/16' `
 -Subnet $CloudSubnet,$GWSubnet `
 -DnsServer $DNS `
 -Tag @{Owner='PACKT';Type='VNET'}

Create a public IP address and NIC for our VM to use:5.

 $PublicIp = New-AzureRmPublicIpAddress -Name $IPName `
 -ResourceGroupName $RgName `
 -Location $Locname -AllocationMethod Dynamic `
 -Tag @{Owner='PACKT';Type='IP'}
 $PublicIp | Format-Table `
 -Property Name, IPAddress,ResourceGroup*,
 Location, *State

Create the Azure VM NIC:6.

 $NicName = "VMNic1"
 $Nic = New-AzureRmNetworkInterface -Name $NicName
 -ResourceGroupName $RgName `
 -Location $Locname `
 -SubnetId $Packvnet.Subnets[0].Id `
 -PublicIpAddressId $PublicIp.Id `
 -Tag @{Owner='PACKT';Type='NIC'}
 #Create network security rule to allow RDP inbound:
 $NSGRule1 = New-AzureRmNetworkSecurityRuleConfig `
 -Name RDP-In -Protocol Tcp `

Managing Azure

[551]

 -Direction Inbound -Priority 1000 `
 -SourceAddressPrefix * -SourcePortRange * `
 -DestinationAddressPrefix * -DestinationPortRange 3389 `
 -Access Allow

Create network security rule to allow RDP inbound:7.

 $NSGRule1 = New-AzureRmNetworkSecurityRuleConfig `
 -Name RDP-In -Protocol Tcp `
 -Direction Inbound -Priority 1000 `
 -SourceAddressPrefix * -SourcePortRange * `
 -DestinationAddressPrefix * `
 -DestinationPortRange 3389 `
 -Access Allow

Create an NSG with one NSG rule:8.

 $PacktNSG = New-AzureRmNetworkSecurityGroup `
 -ResourceGroupName $RgName `
 -Location $Locname `
 -Name $NSGName `
 -SecurityRules $NSGRule1

Configure subnet:9.

 Set-AzureRmVirtualNetworkSubnetConfig `
 -Name $SubnetName `
 -VirtualNetwork $PackVnet `
 -NetworkSecurityGroup $PacktNSG `
 -AddressPrefix $CLNet | Out-Null

Set the Azure virtual network based on prior configuration steps:10.

 Set-AzureRmVirtualNetwork -VirtualNetwork $PackVnet | Out-Null

Create and display an Azure VM Configuration object:11.

 $VM = New-AzureRmVMConfig -VMName $VMName -VMSize 'Standard_A1'
 $VM

Create the credential for VM Admin:12.

 $VMUser = 'tfl'
 $VMPass = ConvertTo-SecureString 'J3rryisG0d!!'-AsPlainText -Force
 $VMCred = New-Object System.Management.automation.PSCredential `
 -ArgumentList $VMUser, $VMPass

Managing Azure

[552]

Set OS information for the VM and display the VM configuration object:13.

 $VM = Set-AzureRmVMOperatingSystem -VM $VM `
 -Windows -ComputerName $CompName `
 -Credential $VMCred `
 -ProvisionVMAgent -EnableAutoUpdate
 $VM

Determine which image to use and get the offer:14.

 $Publisher = 'MicrosoftWindowsServer'
 $OfferName = 'WindowsServer'
 $Offer = Get-AzureRmVMImageoffer -Location $Locname
 -PublisherName $Publisher |
 Where-Object Offer -eq $Offername

Then get the SKU/Image:15.

 $SkuName = '2016-Datacenter'
 $SKU = Get-AzureRMVMImageSku -Location $Locname `
 -Publisher $Publisher `
 -Offer $Offer.Offer |
 Where-Object Skus -eq $SkuName
 $VM = Set-AzureRmVMSourceImage -VM $VM `
 -PublisherName $publisher `
 -Offer $Offer.offer `
 -Skus $sku.Skus `
 -Version "latest"
 $VM

Add the NIC to the VM config object:16.

 $VM = Add-AzureRmVMNetworkInterface -VM $VM -Id $Nic.Id

Managing Azure

[553]

Identify the page blob to hold the VM Disk:17.

 $StorageAcc = Get-AzureRmStorageAccount -ResourceGroupName
 $RgName -Name $SAName
 $BlobPath = "vhds/Packt100.vhd"
 $OsDiskUri = $storageAcc.PrimaryEndpoints.Blob.ToString() +
 $BlobPath
 $DiskName = 'PacktOsDisk'
 $VM = Set-AzureRmVMOSDisk -VM $VM -Name $DiskName `
 -VhdUri $OsDiskUri `
 -CreateOption FromImage
 $VM

Create the VM—this can take some time to provision:18.

 $VM = New-AzureRmVM -ResourceGroupName $RgName `
 -Location $Locname `
 -VM $VM -Tag @{Owner='Packt'}

Get the Public IP address of the VM's NIC:19.

 $VMPublicIP = Get-AzureRmPublicIpAddress -Name $IPName `
 -ResourceGroupName $RgName

Open an RDP session on our new VM:20.

 $IPAddress = $VMPublicIP.IpAddress
 mstsc /v:$ipaddress

Once the RDP client opens, logon using pact100\tfl as your user id and a21.
password of J3rryisG0d!! (omitting of course, the quotes!).

How it works...
In step 1, you define PowerShell variables that hold key Azure object names. In step 2, you
log in to Azure and ensure that the resource group and storage account exist (and create
them if not). There is no output from either of these steps.

In step 3, you create two new virtual subnets (one for the gateway you use in the Create and
use Azure VPN recipe) and the other a cloud based subnet. Then in step 4 you create the
virtual network. There is no output from either step 3 or step 4.

Managing Azure

[554]

In step 5, you create an Azure public IP address which you use later in this recipe. Then you
display the IP address details, as shown in the following screenshot:

With step 6, you create an Azure network interface. You configure the NIC to have the
public IP address you created in step 5. There is no output from this step.

In step 7, you create NSG rules to enable RDP traffic inbound which generates no output.

In step 8, you create and display the NSG using the two NSG rules ($NSGRule1,
$NSGRule2) previously defined, which also produces no useful cmdlet output. You should
see the warning message similar to the one in step 5.

In step 9, you continue the configuration of your Azure subnet and assign the NSG to this
subnet. There is no output from this step.

You complete the configuration of your Azure network in step 10 where you set your
network to use the virtual network you just created, which produces no output.

With the network created, you now turn to creating your Azure VM. In step 11, you start
this process by creating and displaying the VM Config object, as shown in the following
screenshot:

Managing Azure

[555]

In step 12, you create a credential object that defines the first user in our VM. There is no
output from this step. In step 13, you set the details of your VM, including the computer
name, then display the VM config object, as shown in the following screenshot:

In step 14, you find Azure images of WindowsServer published by Microsoft Window
server. This step, which has no output, finds the offers that exist in the Azure region you are
using for your VM.

In step 15, you find the specific Image SKU and update the VM configuration object with the
details of the specific image for your VM. Then you display the configuration object as
shown in the following screenshot:

In step 16, you add the network interface to the VM configuration object. There is no output
from this step.

In step 17, you define the file to hold your VM's disk image, in effect the VM's C: drive. This
file is a page blob you create in your storage account. The output is as shown in the
following screenshot:

Managing Azure

[556]

In step 18, you use the VM configuration object ($VM) to create the actual VM. This step takes
some time and generates no output.

Once your VM is up and running, you can move on to step 19, where you retrieve the
details of the Public IP address object. The object returned from Get-
AzureRmPublicIpAddress contains details about the public IP object you created earlier
and assigned to your VM's NIC including the actual IP address.

Using the IP address, in step 20, you make a Remote Desktop connection to your VM, via
the public IP address. Once you logon, you can see your VM. You need to specify the userid
and password, as shown in the following screenshot:

Managing Azure

[557]

Assuming you entered the userid and password correctly, the RDP connection then
presents a security dialog, like the one in the following screenshot:

If you plan to use the VM often, you can click in the Don't ask me again for connections to
this computer check box to avoid seeing this dialog box in future. Once the connection has
completed, you can see your VM, like this:

Managing Azure

[558]

There's more...
In step 4, you define a new Azure virtual network. As you can see from the output, the New-
AzureRmVirtualNetwork cmdlet returns a warning message stating that The output object
type of this cmdlet will be modified in a future release. Other Azure RM networking cmdlets
issue this waning, although at present there is no action to take.

Managing Azure

[559]

In this recipe, you just allowed two protocols (RDP and PowerShell Remoting) inbound. In
practice you may need to create additional network security rules. You should also create
outbound network security rules as well.

In several of the steps, you pipe the output of an Azure cmdlet to Out-Null which
eliminates the cmdlet's output. Several of the Azure cmdlets you use in this recipe display a
long JSON document describing various objects. In most automation scenarios, this extra
output is not necessary. But as you work through this recipe, consider removing the Out-
Null statements to see the extra output.

In step 18, you use the VM configuration object created earlier to create the VM. The creation
process takes quite a while since Azure has to create the VHD blob, copy the image to this
VHD, then spin up the VM and go through the post Sysprep process.

In step 19, you retrieved the public IP address resource, Packt_IP1, that you created in step
5. When Azure starts your new VM, the Azure networking fabric allocates an actual public
IP address. The public IP address object contains two useful properties. The first is
ProvisioningState. When the VM is running, the provisioning state should be
Succeeded. The second property is a string, IPAddress. This string is the public facing IP
address for the VM.

In step 20, you use that string to create an RDP connection to the public IP address of your
VM, and in step 21, you can log in to the VM using the credentials specified in step 5. Given
that this is a publicly addressable, internet facing VM, that password should be long and
complex. You should consider what additional security measures to take against inevitable
attack.

Once you complete step 21 and log in to your Azure VM, you see the VM's desktop!

13
Using Desired State

Configuration
In this chapter, we will cover the following recipes:

Using DSC and built-in resources
Parameterizing DSC configuration
Finding and installing additional DSC resources
Using DSC with PSGallery resources
Configuring Local Configuration Manager
Implementing a SMB pull server
Implementing a DSC web-based pull server
Using DSC partial configuration

Introduction
Desired State Configuration (DSC) is management platform within Windows Server and
is implemented with Windows PowerShell. DSC enables you to define a computer's desired
state declaratively and have PowerShell ensure the computer is configured accordingly and
remains so. This is simpler than writing complex scripts to configure a given computer.
Microsoft added DSC with PowerShell and delivered improvements V5 and V/5.1 and
Server 2016.

Using Desired State Configuration

[561]

With DSC, you define a configuration that describes the details of how a given node
(computer) is to be configured. The configuration defines a series of resources to be invoked
on the node and how these resources should be configured. A DSC resource is PowerShell
code and executable that knows to configure a given object residing on a node. Resources
primarily exist as PowerShell modules and you need them both on the computer on which
you author DSC configurations and on the target node.

For example, you could define a node and specify that the WindowsFeature resource
should be configured to ensure that Web-Server feature (a subset of the full installation of
Internet Information Server (IIS) is installed, or that the File resource ensures a set of
files, available from somewhere in your network or the internet, are present on the target
node. This could dramatically simplify the process of configuring a web farm and ensuring
it stays configured properly.

Resources come from a variety of sources. Microsoft has a few resources built in and these
ship inside Windows Server 2016. But you can also get additional DSC resources from the
internet. And of course, you can also develop your own DSC resources. For more
information on developing DSC resources, refer to https:/ /docs. microsoft. com/ en- us/
powershell/dsc/authoringresource.

The first step in DSC is defining a configuration statement. A configuration statement, which
is not dissimilar to a function, defines the desired state of a node. It states how you wish
certain resources on the target node to be configured. After you define the configuration,
you compile it by executing the configuration statement. This is a lot like functions in
PowerShell.

You can parameterize configuration statements to make it simple to create different
Managed Object Format (MOF) files based on the parameter values. For example, a
configuration statement could take a node name and the name of a Windows feature that
should be present on the node. When you run the configuration, you specify values for the
node name (for example DC1), and the name of the Windows feature you want loaded (for
example Web-Server). The generated MOF file instructs DSC to ensure the Web-Server
feature is present on DC1.

When you run the configuration statement, you in effect compile it. The compilation
process converts the configuration statement into an actual PowerShell function. When you
run this generated function, PowerShell creates a MOF file based on the specified
configuration. A MOF file tells PowerShell precisely how the resource is to be configured on
a specific node.

https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource
https://docs.microsoft.com/en-us/powershell/dsc/authoringresource

Using Desired State Configuration

[562]

Microsoft chose to use the MOF file in addition to the configuration statement to define the
configuration. MOF is standardized and well supported, albeit more complex in terms of
syntax and content. Separating the specification of the configuration from the details of
deploying it can feel like additional overhead (create the PowerShell configuration
statement then create and deploy the MOF file).

Microsoft envisaged that someone could create a DSC workbench type product that enabled
you to use a GUI and define the configuration graphically. Then at the click of a button this
as yet unbuilt tool would generate the necessary MOF file and deploy it automatically. Even
though this GUI has never been built, the approach does allow you to define security
boundaries between defining a configuration and deploying it.

Once you have generated the MOF files, you deploy the configuration. DSC uses the MOF
file to ensure that the specified DSC resources are correctly configured on the target node.
Subsequently. you can check that the node is correctly configured, with the service and files
in place, and remedy any unapproved changes to the target node, referred to as
configuration drift.

You can also use DSC to have a node pull configuration details from a centralized pull
server. The pull server is a server that makes DSC configuration files (that is the MOF files)
and the resources available to target nodes. A target node is set up to regularly contact the
pull server and pull configuration information (and any required resources) from the pull
server. You can have two types of pull server—a web pull server or an SMB pull server. The
latter is simpler to set up.

With a pull server, you configure the target node's Local Configuration Manager (LCM)
with a GUID and the location of the pull server. The LCM uses that GUID to locate the
configuration information you want to be applied to the node on the pull server. This
enables you to configure multiple servers, for example a multi-node web farm, identically
by just giving them the same GUID.

A DSC partial configuration is a configuration statement that defines part of a node's
overall configuration. This enables you to combine different configuration statements and
have DSC add them together as it configures the node. In larger organizations, different
teams can determine a part of a node's configuration independently. Partial configurations
allow you to deploy the partial configurations from the different teams to the relevant
nodes.

In this chapter, you first look at the built-in resources and the basics of DSC deployment.
You then look at how you get more resources, how you set up a pull server, and finally how
you implement partial configurations.

Using Desired State Configuration

[563]

Using DSC and built-in resources
Windows Server 2016 comes with a limited set of built-in DSC resources. In this recipe, you
explore the built-in DSC resources and then write and deploy a simple configuration to a
single node. The recipe also examines changes in configuration.

Getting ready
In this recipe, you examine the Windows Server 2016 built-in resources and use these to
create and compile a configuration statement on server SRV1. You use this configuration
statement to then deploy the Web-Server feature on a second server, SRV2.

This recipe relies on two files being created and shared from DC1. The two files are
Index.Htm, and Page2.Htm. These two files are created and shared as \\DC1\ReskitApp.
The first file, Index.HTM contains the following:

<!DOCTYPE html>
<html>
<head><title>Main Page - ReskitApp Application</title></head>
<body><p><center>
 HOME PAGE FOR RESKITAPP APPLICATION</p>
 This is the root page of the RESKITAPP application
 Pushed via DSC</p>
<hr>

Click to View Page 2
</center>

<hr></body></html>

The second file, Page2.Htm contains the following:

<!DOCTYPE html>
<html><head><title>Page 2 </title></head>
<body><p><center>My Second Page</p>
Enjoy

Second page - pushed out by DSC.
<hr>

Clck herer to go back
home!
</center></body></html>

This recipe does not set up a web application—all this recipe does it to
copy two files across from DC1 to SRV1.

Using Desired State Configuration

[564]

How to do it...
Discover the built-in DSC resources on SRV1:1.

 Get-DscResource

Examine the DSC resource File:2.

 Get-DscResource -Name File | Format-List -Property *

Get the syntax for the DSC resource File:3.

 Get-DscResource -Name File -Syntax

Create/compile a configuration block to copy files to SRV2 by executing:4.

 Configuration PrepareSRV2
 {
 Import-DscResource `
 -ModuleName 'PSDesiredStateConfiguration' `
 Node SRV2
 {
 File BaseFiles
 {
 DestinationPath = 'C:\ReskitApp\'
 SourcePath = '\\DC1\ReskitApp\'
 Ensure = 'Present'
 Recurse = $True
 }
 }
 }

View configuration function:5.

 Get-Item Function:\PrepareSRV2

Create the MOF output folder:6.

 New-Item -Path C:\DSC -ItemType Directory `
 -ErrorAction SilentlyContinue

Using Desired State Configuration

[565]

Run the configuration and produce a MOF file:7.

 PrepareSRV2 -OutputPath C:\DSC `
 -Wait -Verbose

View the generated MOF file:8.

 Get-Content -Path C:\DSC\SRV2.mof

Start the DSC configuration:9.

 Start-DscConfiguration -Path C:\DSC\ `
 -Wait -Verbose

Observe results of DSC configuration:10.

 Invoke-Command -Computer SRV2 `
 -ScriptBlock {Get-Childitem C:\ReskitApp}

Introduce a change to the configuration:11.

 Invoke-Command -Computer SRV2 `
 -ScriptBlock { Remove-Item -Path C:\ReskitApp\Index.htm
 Get-Childitem -Path C:\ReskitApp }

Reapply the configuration manually:12.

 Start-DscConfiguration -Path C:\DSC\ `
 -Wait -Verbose

Observe the results of reapplying the DSC configuration when no configuration13.
drift is present:

 Invoke-Command -Computer SRV2 `
 -ScriptBlock { Get-Childitem -Path C:\ReskitApp }

How it works...
In step 1, you examine the resources on SRV1. This server has only the default DSC
resources installed as part of a default installation of Windows Server 2016. This list looks
like this:

Using Desired State Configuration

[566]

In step 2, you view the details of the DSC resource File. The output looks like this:

In step 3, you use Get-DSCResource to obtain the syntax of the File resource, which looks
like this:

Using Desired State Configuration

[567]

In step 4, you create a DSC configuration. To this, you execute the configuration block.
When you run the configuration block, much like running a function block, you get no
output from the compilation process. The configuration block relies on the two files created
and shared from DC1.

In step 5, you examine the Function: drive and look at the function that DSC created when
you ran the Configuration block. Again, much like running a function block, when you
execute the Configuration block, PowerShell creates a function, complete with a function
definition. The output looks like this:

In step 6, you ensure the output folder for the MOF file exists, and in step 7, you ensure the
folder to hold the ReskitApp files exists on SRV2. Both these steps produce no output.

In step 7, you create a MOF file by executing the compiled configuration. When you specify
the -Wait and -Verbose parameters, DSC shows what it is doing and the script does not
continue until after the DSC operation is complete. The output from this step is like this:

In step 8, you view the resultant MOF file, which looks like this:

Using Desired State Configuration

[568]

In step 9, you run Start-DscConfiguration with the -Verbose switch. This switch when
combined with -Wait creates additional output that shows you what actions DSC is taking
as it executes.

The output shows that SRV2 has received a LCM which has received a method call from
SRV1. LCM cannot find the folder, so it creates the folder. Then, you see that the LCM
cannot find the two files, and copies those files to the specified location:

Using Desired State Configuration

[569]

In step 10, you see the two files in the C:\ReskitApp folder, like this:

In step 11, you introduce configuration drift by removing one of the two files copied
previously in step 10. The output looks like this:

As you can see, there is only one file remaining in the ReskitApp folder on SRV2. To
remedy that manually, in step 12, you re-apply the configuration by re-running Start-
DscConfiguration, like this:

Using Desired State Configuration

[570]

As you can see, the folder was found, but one file was not. The File resource restores the
file to SRV2.

In step 13, you run where the configuration has not changed. The File resource tests to see
that the files and the folder exist, and since they do, the File resource take no further
action, like this:

As you can see in step 10, step 12, and step 13, if you use the -Verbose switch, the cmdlet
produces a trace of what it is doing. In step 10, you can see DSC creating the folder and
copying the two files over. In step 12, DSC just copies the missing file, whilst in step 13, DSC
takes no action since it finds the configuration of SRV2 to conform to the desired state.

There's more...
The resources you see in step 1 come from the PSDesiredStateConfiguration module.
Since DSC resources are PowerShell code, you can read and view what each built-in
resource does. You can also view the inner workings of any DSC resource you download.

In step 6, you store the MOF file to C:\DSC. In a production environment, you would need
to create tight configuration control over the generated MOF files (and the configuration
statements that relate). You should put all DSC resoruces and MOF files under source
control, such as GIT.

In step 12 and step 13, you induce then correct a change in the configuration of the
system—in this case, a given file being removed. In this case, you are rectifying the
configuration manually.

Using Desired State Configuration

[571]

When DSC applies the configuration, by default, it just makes sure that the files that existed
on \\DC1\ReskitApp the first time you pushed the configuration still exist on SRV2.
Should the application grow to include additional files, DSC does not copy them if you re-
apply the configuration. To achieve that, you add the line MatchSource = $true to the
configuration of the File resource you developed in step 4 (and redeploy the
configuration).

Also, the recipe does not correct another type of configuration drift—a file on SRV2 exists,
but is different to the file of the same name on \\DC1\ReskitApp. To ensure that the files
on SRV2 are identical and remain identical to those on \\DC1\ReskitApp, you add another
line to the configuration of the File resource, in step 4: Checksum = 'SHA-256'. This
directive causes the File resource to create a checksum of each file in the source folder and
compare it with the checksum of the file on SRV2. If the checksums do not match, the File
resource overwrites the file with a copy from \\DC1\ReskitApp. In production, specifying
both of these two properties would be good, but if there are large numbers of files there is a
speed impact. You could also specify SHA-1 or SHA-512 as checksum algorithms, although
the use of SHA-1 is no longer best practice.

This recipe used just one of the built-in DSC resources in Windows Server 2016. The built-in
resources are just a subset of the resources you might need to use DSC in a rich production
environment, but enough to get you started. In later recipes, you use an internet repository,
the PowerShell Gallery, to provide additional DSC resources.

In this recipe, you utilized the push approach to DscConfiguration. You created a
configuration document and the MOF file on SRV1, then pushed it to the target node
(SRV2). As an alternative, you could setup a node to pull configuration information and the
DSC resources from a central pull server. Later recipes in this chapter examine how you can
set up and configure DSC to use a pull server.

Parameterizing DSC configuration
As with functions, you can create configuration blocks with parameters. These enable you
to produce different MOF files by varying the parameter values used when you execute the
configuration.

For example, suppose you wanted to add a feature to a node. You could create a specific
configuration where you hard code the feature name and the node name. This is not
dissimilar to how you copied specific files from DC1 to SRV1 in the use DSC and built-in
resources recipe.

Using Desired State Configuration

[572]

Alternatively, you could create a configuration that takes the node name and the service
name as parameters and when you run the configuration, PowerShell creates a MOF file
that adds the specified service to the specified node. This recipe demonstrates that
approach.

One challenge this approach throws up is that, by default, you can only send a single MOF
file to a given node. Thus, if you used the earlier recipe and copied files to SRV2, attempting
to send a second MOF file to the system results in an error. There are three solutions to this.

The first approach is to have a single MOF file generated for each target node. This means
larger MOF files and those for larger organizations sometimes require hard to achieve co-
ordination between the different groups that create the overall configuration for a node.

The second approach is to use DSC partial configurations, a feature added with PowerShell
V5 and improved in V5.1. This feature enables you to send multiple partial configurations
to a node. You configure the node to pull different configuration blocks from potentially
multiple DSC pulls servers then the LCM combines then applies them. The recipe Using
DSC partial configuration shows you how to use partial configurations.

Getting ready
In this recipe, you create a configuration block on server SRV1 that adds a Windows feature
to a node. The feature and node names are both specified as parameters. You also remove
any previous configuration details from the server before adding the feature. Also, this
recipe assumes no firewall is running on the systems.

How to do it...
Check the status of the DNS feature on SRV2:1.

 Get-WindowsFeature DNS -ComputerName SRV2

Create parameterized configuration:2.

 Configuration ProvisionServices
 {
 param (
 [Parameter(Mandatory=$true)] $NodeName,
 [Parameter(Mandatory=$true)] $FeatureName)
 Import-DscResource -ModuleName 'PSDesiredStateConfiguration'
 Node $NodeName

Using Desired State Configuration

[573]

 {
 WindowsFeature $FeatureName
 {
 Name = $FeatureName
 Ensure = 'Present'
 IncludeAllSubFeature = $true
 }
 }
 }

Ensure an empty DSC folder exists on SRV1:3.

 New-Item -Path C:\DSC -ItemType Directory `
 -ErrorAction SilentlyContinue | Out-Null
 Get-ChildItem -Path C:\DSC | Remove-Item -Force | Out-Null

Clear any existing configuration documents on SRV2:4.

 Invoke-Command -ComputerName SRV2 {
 Remove-Item -Path 'C:\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 }

Now create the MOF file on SRV1:5.

 ProvisionServices -OutputPath C:\DSC `
 -NodeName SRV2 `
 -FeatureName DNS

View the generated MOF file:6.

 Get-Content -Path C:\DSC\SRV2.mof

Configure SRV2 with DNS:7.

 Start-DscConfiguration -Path C:\DSC -Wait -Verbose

Check the results of installing the DNS feature on SRV2:8.

 Get-Service -Name DNS -ComputerName SRV2

Using Desired State Configuration

[574]

How it works...
In step 1, you check the status of the DNS feature on SRV2; as you can see, DNS is not installed
on this system:

In step 2, you create a new configuration document, ProvisionDNS. As in previous recipes,
running this code produces no output, but this does compile the configuration document.

In step 3, you ensure that C:\DSC exists on SRV1 and that it is empty. In step 4, you remove
any existing MOF files from SRV2. Neither of these steps produce any output. The first time
you run this step, the folder is empty. But if you run this multiple times, then you want to
ensure the C:\DSC folder is empty.

In step 5, you run the configuration function, specifying both a node name (SRV2) and a
feature to add (DNS). As you can see, running the configuration produces a new MOF file
for SRV2:

Using Desired State Configuration

[575]

In step 6, you view the MOF file created by step 5, which looks like this:

Finally, in step 7, you start the DscConfiguration. DSC finds that the DNS feature does not
exist on SRV2 and so installs this feature, as follows:

Using Desired State Configuration

[576]

ln step 8, you use the Get-Service cmdlet to check that the DNS service is up and running:

There's more...
In step 2, you create a simple parameterized configuration statement. This configuration
block takes two parameters: a node name and a feature name. The configuration adds the
feature to the node.

In step 4, you clear any previously created MOF files from SRV2. If you delete a previously
pushed MOF file, the configuration set by those configuration MOF files does not change.
This does allow you to use a server, such as SRV2, to test different configurations (or
multiple DSC recipes).

Finding and installing DSC resources
A DSC resource is a specially created PowerShell module that enables DSC to configure
various aspects of a node. The WindowsFeature DSC resource, for example, enables you to
ensure that a particular node of a particular Windows feature installed. You could also
specify that a particular Windows feature should not be present.

As you have seen in this chapter so far, Windows comes with a few DSC resources built in.
But these do not provide broad coverage. For example, you can use the built-in File
resource to copy the source files for a small web application onto a new server. But the
built-in resources do not allow you to specify the application's settings (what the
application name is, which application pool it runs in, and so on) which is where add-on
DSC resources come in.

The community, which includes various Microsoft teams, has been busy since the release of
DSC with PowerShell V4 and has created a large range of additional resources. These
resources are free to download—and many were developed by the Windows PowerShell
team. And of course, if you can't find a resource, you can always build your own.

Using Desired State Configuration

[577]

With PowerShell V5, Microsoft provided a much-simplified approach to building your own
resources, using the Class feature. And this accelerated the creation of additional
resources.

DSC resources are PowerShell modules which you can download and use. While there are a
number of sources for DSC resource modules, the key source is the PowerShell Gallery
(PSGallery). You find and download DSC resources from the PSGallery using
PowerShell's PowerShellGet module, as shown in this recipe.

Community provided resources (and the containing modules) are meant to obey a naming
convention. If the resource/module name begins with x, it is considered experimental
(despite having been authored by the PowerShell team). Community authored resources
may begin with a c. Recently, however, guidance from Microsoft now suggests the c prefex
should no longer be used (see http:/ /stevenmurawski. com/ powershell/ 2015/ 06/ dsc-
people-lets-stop- using- c-now). Of course, you are free to rename any resource to suit any
naming convention you may have.

In this recipe, you download the xWebAdministration module that contains a number of
IIS related DSC resources. This recipe focuses on obtaining additional DSC resources from
PSGallery. In a later recipe in this chapter, Use DSC with PSGallery resources, you use
these additional resources to configure a web application.

Getting ready
In this recipe, you find, download, and install DSC resources on SRV1 and SRV2. This recipe
looks at just the PSGallery repository, but there are many other places you can find DSC
resources. And of course, you can always create your own customized resources.

How to do it...
Discover the DSC repositories available:1.

 Get-PSRepository

Discover the DSC resources available from PSGallery:2.

 Find-DscResource -Repository 'PSGallery'

http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now
http://stevenmurawski.com/powershell/2015/06/dsc-people-lets-stop-using-c-now

Using Desired State Configuration

[578]

See what IIS resources might exist:3.

 Find-DscResource | Where-Object ModuleName -Match 'IIS'

Examine the xWebAdministration resource:4.

 Find-DscResource |
 Where-Object ModuleName -eq 'xWebAdministration'

Install the xWebAdministration module (on SRV1):5.

 Install-Module -Name 'xWebAdministration' -Force

See local module details:6.

 Get-Module -Name xWebAdministration -ListAvailable

See what is in the module:7.

 Get-DscResource -Module xWebAdministration

How it works...
In step 1, you view the registered DSC repositories. By default, only one repository,
PSGallery, is supported, although there are other repositories, such as Chocolatey that
you can also use.

The PSGallery repository is run by Microsoft and contains a wealth of PowerShell add-in
modules and scripts many of which were created by Microsoft product teams. These add-
ins include modules that provide DSC resources for you to download.

The repository list generated by step 1 looks like this:

Using Desired State Configuration

[579]

The PSGallery contains a large number of resources and in step 2, you discover DSC
resources available in this repository using Find-DscResource. The (truncated) output
looks like this:

With such a large number of DSC resources, finding a specific one can be challenging but
your favorite search engine should help. In this recipe, you download the
xWebAdministration module which you use to set up an IIS web application. One simple
way to discover DSC resources related to IIS is to look for a module with a module name
containing IIS in step 3. The output looks like this:

Using Desired State Configuration

[580]

As you can see from this output, there are several modules that could be useful, but the
xWebAdministration module looks potentially useful. In step 4, you look at the DSC
resources included in the xWebAdministration module, which looks like this:

In step 5, you use the Install-Module cmdlet to download and install the
xWebAdministration module. There is no output from the installation of this module. In
step 6, you examine the module on SRV1—the output looks like this:

In the final step, step 7, you get the DSC resources contained in the xWebAdministration
module, which looks like this:

Using Desired State Configuration

[581]

There's more...
The PSGallery repository contains over 200 modules that in turn contain over 800 DSC
resources. Some of these are just updates of the in-box resources although there is a huge
range of additional resources for you to leverage.

It is worth noting that the source code for the Microsoft resources can be found on GitHub:
https://github.com/ PowerShell/ DscResources. If you find areas that can be improved,
the team is happy to accept pull requests that resolve errors or that improve the resource.

In step 3, you used one method of discovery—searching for a module containing some
subject—in this case IIS. You could also search for DSC resources with a subject. Be
creative in searching. And you can use the -ModuleName parameter and call the cmdlet like
this: Find-DscResource -ModuleName *IIS*.

Using Find-DscResource with no parameters returns a large set of DSC resource objects.
This takes both time and bandwidth. If you are looking for resources using your discovery
skills, consider assigning the output of Find-DscResource to a variable and carry out
discovery type searching using the in-memory variable. It's a lot faster.

In step 5, you use the Install-Module cmdlet to download and install the
xWebadministration module on SRV1. The Install-Module cmdlet produces no output
by default. You can get more information about details of what the cmdlet does by using
the -Verbose parameter.

Using DSC with PSGallery resources
In the Finding and installing DSC resources recipe, you downloaded a module,
xWebAdministration, which contains a number of DSC resources. In this recipe, you use
the resources in this module to create an IIS web application. You create and run this recipe
from SRV1 to configure a web application on SRV2. You obtain the source files for the web
application from DC1.

https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources
https://github.com/PowerShell/DscResources

Using Desired State Configuration

[582]

Getting ready
With this recipe, you configure IIS on SRV2 to support a simple web application—a similar
application. To test this recipe, you need two source files, which you store on the
ReskitApp share on your DC1 computer. The first, Index.Htm contains the following:

<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<title>Main Page of The ReskitApp Application</title>
</head>
<body></p>

<center>
Home Page for ReskitApp Application</p>
The home page of the ReskitApp application pushed by DSC to SRV2
</p><hr>

A reference to a second page - click to view page 2</center>
</body>
</html>

The second file, Page2.html, looks like this:

<!DOCTYPE html>
<html>
<head><meta charset="utf-8" />
<title>Page 2 of ReskitApp application</title>
</head>
<body>
<p>
<center>
The Second Page
</p>
The second page of the ReskitApp application pushed out by DSC to SRV2.
</p><hr>

Click here to go back home!
</center>
</body>
</html>

Using Desired State Configuration

[583]

DSC requires that resources must be on both the computer you use to create the MOF file
and on the target node. In this recipe, the module containing the resources used in the
configuration statement, xWebAdministration, must be on SRV1 when you create the
MOF file, and on SRV2 when you deploy the DSC configuration. If you attempt to configure
the target node with resources that are not available on the target node, you see an error
message like this:

You downloaded the xWebAdministration module in the Finding and installing DSC
resources recipe. For this recipe, copy the module from SRV1 to SRV2 like this:

on SRV1
Copy-Item -Path 'C:\Program
Files\WindowsPowerShell\Modules\xWebAdministration\' `
 -Destination '\\SRV2\C$\Program Files\WindowsPowerShell\Modules\' `
 -Recurse

Also, consider modifying the firewall on SRV2, like this:

 Invoke-Command -ComputerName SRV2 {
 Set-NetFirewallRule -DisplayGroup 'File and Printer Sharing' `
 -Enabled True}

Using Desired State Configuration

[584]

How to do it...
Create and compile this configuration document:1.

 Remove-Item '\\SRV2\c$\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 Configuration RKAppSRV2
 {Remove-Item '\\SRV2\c$\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 Import-DscResource -ModuleName xWebAdministration
 PSDesiredStateConfiguration
 Node SRV2
 {
 Windowsfeature IISSrv2
 { Ensure = 'Present'
 Name = 'Web-Server' }
 Windowsfeature IISSrvTools
 { Ensure = 'Present'
 Name = 'Web-Mgmt-Tools'
 DependsOn = '[WindowsFeature]IISSrv2' }
 File RKAppFiles
 { Ensure = 'Present'
 Checksum = 'ModifiedDate'
 Sourcepath = '\\DC1\ReskitApp\'
 Type = 'Directory'
 Recurse = $true
 DestinationPath = 'C:\ReskitApp\'
 MatchSource = $true }
 xWebAppPool ReskitAppPool
 { Name = 'RKAppPool'
 Ensure = 'Present'
 State = 'Started'
 DependsOn = '[File]RKAppFiles' }
 xWebApplication ReskitAppPool
 { Website = 'Default Web Site'
 WebAppPool = 'RKAppPool'
 Name = 'ReskitApp'
 PhysicalPath = 'C:\ReskitApp\'
 Ensure = 'Present'
 DependsOn = '[xWebAppPool]ReskitAppPool' }
 }
 } # End of Config

Using Desired State Configuration

[585]

Remove any old MOF files on both computers, then run the configuration block:2.

 Remove-Item C:\DSC* -Rec -Force
 Remove-Item `
 '\\SRV2\c$\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 RKAppSRV2 -OutputPath C:\DSC | Out-Null

Deploy the configuration to SRV2:3.

 Start-DscConfiguration -Path C:\DSC -Verbose -Wait

Test result:4.

 Start-Process 'http://SRV2/ReskitApp/'

How it works...
In step 1, you create and execute a configuration document RKAppSRV2. This configuration
block configures SRV2 with two Windows features (Web-Server and Web-Mgmt-Tools),
copies the application's source files from DC1 to SRV2, creates an application pool,
RKAppPool, and finally creates an IIS web application, ReskitApp.

This step demonstrates the dependency mechanism in DSC. A dependency allows you to
state that a particular resource configuration can only be performed after some other
resource configuration has completed. For example, this configuration does not create a
ReskitApp application until the RKAppPool application pool exists, and does not do either
until the WindowsFeature resource has completed installing IIS.

In step 2, you run the configuration and create the relevant MOF file. Step 2 generates no
output.

Using Desired State Configuration

[586]

In step 3, you deploy this configuration to SRV2. Assuming this is the first time you've run
this configuration then the output looks like this:

Using Desired State Configuration

[587]

Once the DSC configuration has been pushed successfully to SRV2, you can use the new
web application. In step 4, you generate an Internet Explorer object, navigate the object
to the root of the web application, then show the root page, which looks like this:

If you click on the link at the bottom of this page, you bring up the application's second
page:

There's more...
This recipe uses the push model for DSC deployment. In this recipe, you manually copied
the xWebAdministration to SRV2 as part of the recipe setup. If you use a pull server
model to deploy DSC, target nodes can download the necessary resources from the pull
server, which greatly simplifies deployment of DSC resources. The two recipes later in this
chapter (Implement an SMB pull server and Implement a DSC web pull server) show how
to configure a pull server.

Using Desired State Configuration

[588]

The configuration you create in step 1 uses the dependency mechanism in DSC. A
dependency allows you to state that a particular resource configuration can only be
performed after some other resource configuration has completed. For example, this
configuration does not create a ReskitApp application until the RKAppPool application
pool exists, and does not do either until the WindowsFeature resource has completed
installing IIS.

Configuring Local Configuration Manager
The LCM is a key component of DSC that initially shipped within PowerShell V4. LCM is a
Windows service that runs on each DSC target node and is responsible for receiving
configuration information and ensuring the node is configured in the desired state (and
remains that way).

The LCM has two mechanisms for desired state delivery: push and pull. The earlier recipes
in this chapter demonstrate the push model: you create a configuration and its related MOF
file on one node, and push that configuration to another node. In the pull model, you
configure the node with details of where and how to find a pull server. Once configured, a
node can pull configurations from the configured pull server.

With this recipe, which you run on SRV2, you configure the LCM based on PowerShell
V5/5.1. PowerShell V4 used a different approach to configuring the LCM. In this recipe, you
configure the LCM on SRV2 and set up SRV2 to use SRV1 as an SMB pull server. You setup
SRV1 itself in the next recipe, Implement and SMB pull server.

Getting ready
In this recipe, you use a special type of configuration known as a meta-configuration. You
use the meta-configuration statement to configure DSC on a node. You run this recipe on
the target node, SRV2.

If you have already used any DSC configuration against SRV2, for example, based on other
recipes in this chapter, you should clear the DSC configuration. To do this, do the following
on SRV2:

 Remove-Item -Path 'C:\Windows\System32\configuration*.mof'

Using Desired State Configuration

[589]

You should also create and two local folders on SRV1, C:\DSC (\\SRV1\DSC), and
C:\DSCResouruce (\\SRV1\DSCResource) which are references in the following step 1.

How to do it...
Create and run the meta-configuration for LCM on SRV2:1.

 [DSCLocalConfigurationManager()]
 Configuration LCMConfig
 {
 Node localhost
 {
 Settings
 {
 ConfigurationModeFrequencyMins = '30'
 ConfigurationMode = 'ApplyAndAutoCorrect'
 RebootNodeIfNeeded = $true
 ActionAfterReboot = 'ContinueConfiguration'
 RefreshMOde = 'Pull'
 RefreshFrequencyMins = '45'
 AllowModuleOverwrite = $true
 ConfigurationID = '5d79ee6e-0420-4c98-9cc3-
 9f696901a816'
 }
 ConfigurationRepositoryShare PullServer
 {
 SourcePath = '\\SRV1\DSCConfiguration'
 }

 ResourceRepositoryShare ResourceServer
 {
 SourcePath = '\\SRV1\DSCResource'
 }
 }
 }

Create the meta-configuration MOF on SRV2:2.

 New-Item -Path c:\DSC -ErrorAction SilentlyContinue
 Remove-Item C:\DSC -Recurse | Remove-Item -Force
 LCMConfig -OutputPath C:\DSC

Using Desired State Configuration

[590]

Configure SRV2:3.

 Set-DscLocalConfigurationManager -Path C:\DSC

Examine LCM configuration:4.

 Get-DscLocalConfigurationManager

Examine pull server information:5.

 Get-DscLocalConfigurationManager |
 Select-Object -ExpandProperty
 ConfigurationDownloadManagers
 Get-DscLocalConfigurationManager |
 Select-Object -ExpandProperty ResourceModulemanagers

How it works...
In step 1, you create a meta-configuration block that defines the LCM configuration for
SRV2. The meta-configuration defines SRV2 to be configured using an SMB share for both
the download of configuration statements and for the download of resources not on the
target node. This configuration checks every 45 minutes to see if the checksum file has
changed and if so it re-applies the updated MOF file. The configuration block downloads
resources from \\SRV1\DSCResource and specifies that the LCM updates DSC resource
modules updated on SRV1. There is no output from this step.

In step 2, you ensure that SRV2 has local C:\DSC folder, then compile the meta-
configuration. As you can see here, the output file is C:\DSC\SRV2.meta.mof:

In step 3, you use the Set-DscLocalConfigurationManager cmdlet to set the LCM
configuration on SRV2. This step generates no output.

Using Desired State Configuration

[591]

In step 4, you use the Get-DscLocalConfigurationManager to review the LCM settings.
The output of this cmdlet looks like this:

You can also run this cmdlet before step 3 so as to see the difference before and after
applying the local configuration.

In step 5, you expand the object returned from Get-DSCLocalConfigurationManager to
discover the source path settings for DSC resources and DSC configurations, as follows:

Using Desired State Configuration

[592]

There's more...
This recipe just configures the LCM on a single node, in this case SRV2. Unless you setup
the pull server on SRV1, this recipe has no real effect on SRV2.

For information on the settings you can configure when you setup the
LCM on a node, see this MSDN article:
https://msdn.microsoft.com/en-us/powershell/dsc/metaconfig.

Implementing a SMB pull server
There are two different types of DSC pull server you implement: SMB-based and web-
based. The SMB-based pull server approach is most useful on a private routable network,
one where all nodes can reach the centralized configuration and resource pull server shares.
For high availability, you could set up an SMB pull server on a scale out file server.

In DSC, MOF files are used to communicate the desired state to a node. The LCM on that
node, in effect, does anything the MOF file says. MOF files are ,at rest, just plain text
documents and are not encrypted or signed. If your private network is secure, then the SMB
pull server is easier to set up and configure. If security is an issue, consider using the web
server pull server approach and configure it with HTTPS.

In the previous recipe, Configuring Local Configuration Manager, you configured a node, SRV2
to pull configurations from a DSC pull server. In this recipe, you configure another node,
SRV1, to be the pull server. This recipe also creates a new configuration for use in the pull
server scenario and tests using the pull server to apply the new configuration.

When you configure a node to pull from an SMB-based pull server, you configure that node
with both a GUID (ConfigurationID) and a SMB share path where the LCM can find
configuration MOF files. The MOF file that you deploy to a node is named using the GUID
(that is <guid>.mof).

In the earlier recipe, Configuring Local Configuration Manager, you configured SRV2 with a
ConfigurationID 5d79ee6e-0420-4c98-9cc3-9f696901a816 and you specified that
LCM pull configurations from the SMB pull server located at \\SRV1\DSCConfiguration.
Based on this, the LCM on SRV2 would therefore look for the file
\\SRV1\DSCConfiguration\5d79ee6e-0420-4c98-9cc3-9f696901a816.mof plus the
related checksum file.

https://msdn.microsoft.com/en-us/powershell/dsc/metaconfig

Using Desired State Configuration

[593]

Getting ready
This recipe is run on SRV1 and provides a DSC configuration for SRV2. SRV2 was
previously setup to use SRV1 as its pull server in the Configuring Local Configuration Manager
recipe. You also need the xSmbShare resource installed on SRV1.

How to do it...
Create and execute the configuration for SRV1:1.

 {
 Import-DscResource -ModuleName PSDesiredStateConfiguration,
 xSmbShare
 File ConfigFolder
 { DestinationPath = 'C:\DSCConfiguration'
 Type = 'Directory'
 Ensure = 'Present' }
 File ResourceFolder
 { DestinationPath = 'C:\DSCResource'
 Type = 'Directory'
 Ensure = 'Present' }
 xSmbShare DscConfiguration
 { Name = 'DSCConfiguration'
 Path = 'C:\DSCConfiguration\'
 DependsOn = '[File]ConfigFolder'
 Description = 'DSC Configuration Share'
 Ensure = 'Present' }
 xSmbShare DscResource
 { Name = 'DSCResource'
 Path = 'C:\DSCResource'
 DependsOn = '[File]ResourceFolder'
 Description = 'DSC Resource Share'
 Ensure = 'Present' }
 }

Remove existing MOF files then create the MOF file:2.

 New-Item -Path C:\DSC -ItemType Directory `
 -ErrorAction SilentlyContinue | Out-Null
 Get-ChildItem -Path C:\DSC | Remove-Item -Force | Out-Null
 Remove-Item '-Path C:\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 PullSrv1 -OutputPath C:\DSC

Using Desired State Configuration

[594]

Configure the local host:3.

 Start-DscConfiguration -Path C:\DSC -Wait -Verbose

Get the SMBShares on SRV1:4.

 Get-SMBShare -Name DSC*

Create the new configuration for SRV2:5.

 Configuration TelnetSRV2
 {
 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'
 Node SRV2
 { WindowsFeature TelnetSRV2
 { Name = 'Telnet-Client'
 Ensure = 'Present' }}}

Compile the configuration:6.

 TelnetSRV2 -OutputPath C:\DSCConfiguration

Rename the MOF file with the GUID name:7.

 $Guid = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 Rename-Item -Path 'C:\DSCConfiguration\SRV2.mof' `
 -NewName "C:\DSCConfiguration\$Guid.mof"

Create the MOF checksum file:8.

 New-DscChecksum -Path C:\DSCConfiguration

View the MOF and checksum files:9.

 Get-ChildItem C:\DSCConfiguration

Check the presence of the Telnet-Client on SRV2:10.

 Get-WindowsFeature -Name Telnet-Client `
 -ComputerName SRV2

Using Desired State Configuration

[595]

How it works...
In step 1, you create and execute a configuration block on SRV1. The configuration block
ensures two folders exist (C:\DSCConfiguration and C:\DSCResource) and they are
both shared folders. This configuration uses the File and xSMBShare resources (which you
downloaded and installed on SRV1 prior to running this step, which generates no output.

In step 2, you ensure you have the C:\DSC folder created and that it's empty, then run the
configuration which creates a MOF file to configure SRV1 as per the configuration statement
in step 1. This step produces output like this:

In step 3, you apply the configuration to SRV1, setting up the two DSC folder shares. The
output is like this:

Using Desired State Configuration

[596]

In step 4, you examine the SMBShares created by step 3 with output like this:

In step 5, you create a new configuration block, TelnetSRV, which installs the telnet client
on SRV2. Executing this configuration block produces no output. In step 6, you execute the
configuration, which generates a MOF file like this:

In step 7, you rename the MOF file, using the configuration ID (the GUID) that you specified
when configuring SRV2 to pull from SRV1. The MOF file generated in step 6, is renamed to
5d79ee6e-0420-4c98-9cc3-9f696901a816.mof. Then, in step 8, you create the MOF
checksum file, which generates no output. In step 9, as follows:

Once you have placed the two files (the MOF file and the checksum file), you need to wait
for the target server to pull the configuration. In the earlier recipe, you set the refresh time
to 45 minutes, thus you may need to wait that long before SRV2 pulls the configuration
from SRV1 and installs the telnet client. Once this time period has elapsed, you can check on
SRV2 to see that DSC has installed the telnet client.

Using Desired State Configuration

[597]

There's more...
If, in step 1, you had not downloaded the xSMBShare module (containing the xSMBShare
resource), running the PullSrv1 configuration block would generate an error indicating
that the resource cannot be found.

Implementing a DSC web-based pull server
Deploying a DSC web-based pull server is more complex than deploying an SMB pull
server. The SMB-based pull server is simple: just create a couple of shares and place the
relevant files on that share. The web server approach requires you to also load IIS, install
the DSC service, and configure the service, as well as placing the MOF files, resources, and
any relevant checksums on the web server. Of course, in both cases, you need to configure
each node's LCM.

You deploy a web based pull server to provide a pull client with both resources and
configuration MOF files. Unlike an SMB-based pull server, a web-based pull server also
provides reporting capabilities enabling a pull client to report status back to the reporting
server. Reporting is not available using an SMB-based pull server.

To simplify the creation of a web-based DSC pull server, you can use the
xPSDesiredStateConfiguration module DSC resource. You download this resource
from PSGallery. This resource greatly simplifies configuring a node to be a DSC pull
server and to be a reporting server.

As with SMB-based pull servers, once you have set up a DSC web pull server, you need to
configure the clients to pull configurations/resources from the pull server and send
reporting information to the report servers.

Setting up a DSC web based pull server changed between PowerShell V4 and V5. This
recipe is based on PowerShell V5.

Getting ready
This recipe uses two servers: SRV1 and SRV2. SRV1 is the pull server—this recipe configures
the DSC web service on SRV1 and configures SRV2 to pull configurations and resources
from the pull server.

Using Desired State Configuration

[598]

Before using this recipe, you need to download the xPSDesiredStateConfigurtion
module from the PSGallery, as follows:

 Install-Module -Name xPSDesiredStateConfiguration

How to do it...
Create a self-signed certificate for SRV1:1.

 $DscCert = New-SelfSignedCertificate `
 -CertStoreLocation 'CERT:\LocalMachine\MY' `
 -DnsName 'SRV1'

Copy the certificate to the root store on SRV2:2.

 $Sb = {
 Param ($Rootcert)
 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C `
 -ArgumentList 'Root','LocalMachine'
 $Store.Open(‘ReadWrite’)
 $Store.Add($Rootcert)
 $Store.Close()
 }
 Invoke-Command -ScriptBlock $Sb -ComputerName SRV2 `
 -ArgumentList $DscCert -Verbose

Check the certificate on SRV2:3.

 Invoke-Command -ScriptBlock {Get-ChildItem `
 -Path Cert:\LocalMachine\root |
 Where-Object Subject -Match 'SRV1'} `
 -ComputerName SRV2

Create and compile DSCService configuration:4.

 Configuration WebPullSrv1 {
 Param ([String] $CertThumbPrint)
 Import-DscResource -Module PSDesiredStateConfiguration,
 xPSDesiredStateConfiguration
 Node SRV1 {
 File DSCConfig-Folder{
 DestinationPath = 'C:\DSCConfiguration'
 Ensure = 'Present'
 Type = 'Directory' }

Using Desired State Configuration

[599]

 File DSCResource-Folder{
 DestinationPath = 'C:\DSCResource'
 Ensure = 'Present'
 Type = 'Directory' }
 WindowsFeature DSCService {
 Ensure = 'Present'
 Name = 'DSC-Service' }
 xDscWebService WebPullSRV1 {
 Ensure = 'Present'
 EndpointName = 'PSDSCPullServer'
 Port = 8080
 PhysicalPath = 'C:\inetpub\wwwroot\PSDSCPullServer'
 CertificateThumbPrint = $CertThumbPrint
 ConfigurationPath = 'C:\DSCConfiguration'
 ModulePath = 'C:\DSCResource'
 State = 'Started'
 DependsOn = '[WindowsFeature]DSCService'
 UseSecurityBestPractices = $true }
 File RegistrationKeyFile {
 Ensure = 'Present'
 Type = 'File'
 DestinationPath =
'C:\ProgramFiles\WindowsPowerShell\DscService\RegistrationKeys.txt'
 Contents = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 }}}

Remove existing MOF files then create the MOF file:5.

 New-Item -Path C:\DSC -ItemType Directory `
 -ErrorAction SilentlyContinue | Out-Null
 Get-ChildItem -Path C:\DSC -File | Remove-Item -Force | Out-Null
 Remove-Item -Path 'C:\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 WebPullSrv1 -OutputPath C:\DSC `
 -CertThumbPrint $DscCert.Thumbprint

Using Desired State Configuration

[600]

Add the web service to SRV1:6.

 Start-DscConfiguration -Path C:\DSC -Wait -Verbose

Check on the results:7.

 $IE = New-Object -ComObject InterNetExplorer.Application
 $Uri = 'https://SRV1:8080/PSDSCPullServer.svc/'
 $IE.Navigate2($Uri)
 $IE.Visible = $TRUE

Create a configuration to make SRV2 pull from SRV1:8.

 [DSCLocalConfigurationManager()]
 Configuration SRV2WebPull {
 param ([string] $Guid)
 Node SRV2 {
 Settings
 { RefreshMode = 'Pull'
 ConfigurationID = $guid
 RefreshFrequencyMins = 30
 RebootNodeIfNeeded = $true }
 ConfigurationRepositoryWeb DSCPullSrv
 { ServerURL = 'https://SRV1:8080/PSDSCPullServer.svc' }
 ResourceRepositoryWeb DSCResourceSrv
 { ServerURL = 'https://SRV1:8080/PSDSCPullServer.svc' }
 ReportServerWeb DSCReportSrv
 { ServerURL = 'https://SRV1:8080/PSDSCPullServer.svc' }
 }
 }

Create MOF to configure DSC LCM on SRV2:9.

 Remove-Item C:\DSC* -Recurse -Force
 $Guid = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 SRV2WebPull -Guid $Guid -OutputPath C:\DSC

Configure LCM on SRV2:10.

 Set-DscLocalConfigurationManager -ComputerName SRV2 `
 -Path C:\DSC `
 -Verbose

Using Desired State Configuration

[601]

Create and compile a configuration that ensures the telnet client is installed on11.
SRV2:

 Configuration TelnetSRV2
 {
 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'
 Node SRV2
 {
 WindowsFeature TelnetClient
 { Name = 'Telnet-Client'
 Ensure = 'Present' }
 }
 }

Create the MOF file for this configuration:12.

 Remove-Item -Path C:\DSCConfiguration -Recurse -Force
 TelnetSRV2 -OutputPath C:\DSCConfiguration

Rename the file and create the checksum files:13.

 Rename-Item -Path C:\DSCConfiguration\SRV2.mof `
 -NewName C:\DSCConfiguration\$Guid.MOF
 New-DscChecksum -Path C:\DSCConfiguration
 Get-ChildItem C:\DSCConfiguration

Update the configuration on SRV2 (based on pulling from SRV1):14.

 Update-DscConfiguration -ComputerName SRV2 -Wait -Verbose

Review details of the DSC configuration on SRV2:15.

 $Session = New-CimSession -ComputerName SRV2
 Get-DscConfiguration -CimSession $Session

How it works...
In step 1, you create a self-signed certificate with a subject name of SRV1. The New-
SelfSignedCertificate creates this certificate in the local machine's MY folder. There is
no output from this step, but the certificate is stored in the $DscCert variable for use in the
next step. This recipe uses this certificate to provide SSL access to the DSC web service.

Using Desired State Configuration

[602]

In step 2, you copy the certificate to the root store on SRV2. Unfortunately, the certificate
provider in PowerShell does not support copying a certificate from one store to another, so
you need to dip down into the .NET framework to add the self-signed certificate held in
$DscCert to the SRV2 server's local machine trusted root store. This has the effect of
enabling SRV2 to trust the SSL certificate from SRV1 during DSC operations (for example,
downloading configurations).

In step 3, you check to see that the certificate is now contained in the trusted root store for
the local machine's store on SRV2. The output looks like this:

In step 4, you create and compile a DSC configuration block, WebPullSrv1, to configure
SRV1 to be a DSC web-based pull server. There is no output from this step.

After removing any old MOF files, in step 5 you create a MOF file for the WebPullSrv1
configuration block. The output looks like this:

Using Desired State Configuration

[603]

Once the MOF file has been created, in step 6, you add the DSC pull web service to SRV1.
The output looks like this:

In step 7, you use Internet Explorer to view the details of the DSC web service you just set
up. If the computer on which you run this step trusts the certificate you generated in step 1,
then the output from step 7 looks like this:

Using Desired State Configuration

[604]

In step 8, you create and compile a configuration to make SRV2 pull DSC configurations and
resources from the website on SRV1. As with compiling any DSC configuration, this step
generates no output.

With step 9, you create the MOF file DSC needs to configure the LCM on SRV2 to pull
configuration and resources from SRV1. The output looks like this:

Using Desired State Configuration

[605]

In step 10, you send the meta-configuration to SRV2 that configures SRV2 to be a pull server
and to pull from SRV1. The output looks like this:

In step 11, you create and compile a meta-configuration that configures SRV2 server's LCM.
This configuration is a pull configuration that you store on SRV1, and which SRV2 then
pulls from SRV1 using the web service on SRV1. There is no output from this step.

With step 12, you create the MOF file for the configuration you compiled in Step 11, and
looks like this:

Because you are using the GUID naming convention for configuration statements, in step 13,
you rename the file and create the checksum in the appropriate folder. The output looks like
this:

Using Desired State Configuration

[606]

In step 14, you use the Update-DscConfiguration cmdlet to update SRV2. Based on the
setup you have done in this recipe, SRV2 pulls the configuration block from SRV1, verifies
that the checksum is valid, then applies the new configuration (which ensures the telnet
client is present on SRV2. The output looks like this:

In the final step, step 15, you create a CIM session on SRV2 (from SRV1) and over that
session, you run the Get-DscConfiguration cmdlet that shows the impact of step 14 on
SRV2, like this:

Using Desired State Configuration

[607]

There's more...
In step 7, you viewed output from the SRV1 server's DSC web service. If the system, that is,
SRV2, on which you run this step trusts the certificate, you see the page as shown earlier.
However, if you run the step on another computer, say SRV1, then you are going to see a
certificate error since the computer does not trust the self-signed certificate. If you save the
self-signed certificate you created in step 1 to the trusted root store of a computer, then that
computer trusts the certificate (and you see no errors in your browser).

In step 14, you used the Update-DscConfiguration cmdlet to force SRV2 to pull any
required configuration from SRV1. As an alternative, you could have waited until the
refresh time (which you set in step to be 30 minutes) to allow SRV2 to pull the updated
configuration.

Using DSC partial configurations
PowerShell V5 introduced a new feature with DSC: partial configurations. A partial
configuration, as the name suggests, is part of the configuration you wish to see applied to a
given node.

Partial configurations allow you to share the configuration of a node between multiple
teams. For example, you might want the central IT team to define the basic configuration of
a node. Another team could be responsible for deploying a web application to that same
node. With PowerShell 4, you would have needed to put all the configuration components
into a single configuration document/MOF file and deploy that to the node.

To support partial configurations, you must configure each node's LCM to define the partial
configurations, and how they are to be deployed. Each partial configuration can be either
pushed or pulled. Thus, you can deploy partial configurations that direct the node to pull
the basic host configuration for an IT central configuration server and to pull the application
details from a separate and independent server. You can also have some partial
configurations pulled by the node, with other configurations pushed to the node. This gives
you considerable flexibility in deploying DSC partial configurations.

Defining partial configurations is broadly the same as defining full configurations. On each
node, you define which partial configurations the node pulls and from what server, as well
as any partial configurations you plan to push to the node. The node's LCM takes these
different partial configurations (each partial configuration is a MOF file) and creates a single
composite configuration and applies the composite to the node.

Using Desired State Configuration

[608]

Getting ready
In this recipe, you use two servers, SRV1 and SRV2. SRV1 serves as the DSC pull server with
SRV2 the node you configure using two partial DSC configurations. You create the pull
server using a downloadable module xPSDesiredStateConfiguration. This module
contains a number of DSC resources you use in the recipe. You downloaded and distributed
it using an earlier recipe. Normally you can use the Install-Module cmdlet to install this
module on both SRV1 and SRV2. Or you can install it on one server, then copy it to any
target servers that need the module, as you do in this recipe.

How to do it...
Create a self-signed certificate on SRV1, copy it to the local machine's root store,1.
and then display it:

 Get-ChildItem -Path Cert:LocalMachine\My |
 Where-Object Subject -eq 'CN=SRV1' |
 Remove-Item -Force
 $DscCert = New-SelfSignedCertificate `
 -CertStoreLocation 'CERT:\LocalMachine\MY' `
 -DnsName 'SRV1'
 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C -ArgumentList
 'Root','LocalMachine'
 $Store.Open('ReadWrite')
 $Store.Add($Dsccert)
 $Store.Close()
 $DscCert

Copy the certificate to the root store on SRV2 and ensure it's the only one:2.

 $Sb = {
 Param ($Rootcert)
 Get-ChildItem Cert:LocalMachine\Root |
 Where Subject -eq 'CN=SRV1' | Remove-Item -Force
 $C = 'System.Security.Cryptography.X509Certificates.X509Store'
 $Store = New-Object -TypeName $C `
 -ArgumentList 'Root','LocalMachine'
 $Store.Open('ReadWrite')
 $Store.Add($Rootcert)
 $Store.Close()}
 Invoke-Command -ScriptBlock $Sb -ComputerName SRV2 -Verbose `
 -ArgumentList $DscCert

Using Desired State Configuration

[609]

Display the certificate on SRV2:3.

 $sb = {Get-ChildItem Cert:\LocalMachine\root |
 Where Subject -Match 'SRV1' }
 Invoke-Command -ScriptBlock $sb `
 -ComputerName SRV2

Check that the xPsDesiredStateConfiguration module is installed on both4.
SRV1 and SRV2:

 $ModPath = Join-Path `
 -Path 'C:\Program Files\WindowsPowerShell\Modules’ `
 -ChildPath ‘xPSDesiredStateConfiguration'
 Copy-Item -Path $ModPath `
 -Destination '\\SRV2\C$\Program
 Files\WindowsPowerShell\Modules' `
 -Recurse -ErrorAction SilentlyContinue
 Get-Module xPSDesiredStateConfiguration -ListAvailable
 Invoke-Command -ComputerName SRV2 `
 -ScriptBlock {
 Get-Module xPSDesiredStateConfiguration `
 -ListAvailable}

Create and compile the DscService configuration block for SRV1:5.

 Configuration WebPullSrv1 {
 Param ([String] $CertThumbPrint)
 Import-DscResource -Module PSDesiredStateConfiguration,
 xPSDesiredStateConfiguration
 $Regfile=Join-Path `
 -Path ‘C:\Program Files\WindowsPowerShell\DscService’ `
 -Childpath ‘RegistrationKeys.txt'
 Node SRV1 {
 File DSCConfig-Folder{
 DestinationPath = 'C:\DSCConfiguration'
 Ensure = 'Present'
 Type = 'Directory' }
 File DSCResource-Folder{
 DestinationPath = 'C:\DSCResource'
 Ensure = 'Present'
 Type = 'Directory' }
 WindowsFeature DSCService {
 Ensure = 'Present'
 Name = 'DSC-Service' }
 xDscWebService WebPullSRV1 {
 Ensure = 'Present'
 EndpointName = 'PSDSCPullServer'

Using Desired State Configuration

[610]

 Port = 8080
 PhysicalPath = 'C:\inetpub\PSDSCPullServer'
 CertificateThumbPrint = $CertThumbPrint
 ConfigurationPath = 'C:\DSCConfiguration'
 ModulePath = 'C:\DSCResource'
 State = 'Started'
 DependsOn = '[WindowsFeature]DSCService'
 UseSecurityBestPractices = $true }
 File RegistrationKeyFile {
 Ensure = 'Present'
 Type = 'File'
 DestinationPath = $Regfile
 Contents = '5d79ee6e-0420-4c98-9cc3-9f696901a816'}}}

Remove existing MOF files then create an MOF file for SRV1:6.

 Get-ChildItem -Path C:\DSC -ErrorAction SilentlyContinue |
 Remove-Item -Force | Out-Null
 Remove-Item -Path 'C:\Windows\System32\configuration*.mof' `
 -ErrorAction SilentlyContinue
 WebPullSrv1 -OutputPath C:\DSC -CertThumbPrint
 $DscCert.Thumbprint

Add the DSC web service to SRV1:7.

 Start-DscConfiguration -Path C:\DSC -Wait -Verbose

Check on the results of adding the web server:8.

 $IE = New-Object -ComObject
 InterNetExplorer.Application
 $Uri = 'https://SRV1:8080/PSDSCPullServer.svc/'
 $IE.Navigate2($Uri)
 $IE.Visible = $true

Using Desired State Configuration

[611]

Create a meta-configuration to make SRV2 pull from SRV1:9.

 [DSCLocalConfigurationManager()]
 Configuration SRV2WebPullPartial {
 Node Srv2 {
 Settings
 { RefreshMode = 'Pull'
 ConfigurationModeFrequencyMins = 30
 ConfigurationMode = 'ApplyandAutoCorrect'
 RefreshFrequencyMins = 30
 RebootNodeIfNeeded = $true
 AllowModuleOverwrite = $true }
 ConfigurationRepositoryWeb DSCPullSrv
 { ServerURL = 'https://SRV1:8080/PSDSCPullServer.svc'
 RegistrationKey = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 ConfigurationNames = @('TelnetConfig','TFTPConfig') }
 PartialConfiguration TelnetConfig
 { Description = 'Telnet Client Configuration'
 Configurationsource =
 @('[ConfigurationRepositoryWeb]DSCPullSrv')}
 PartialConfiguration TFTPConfig {
 Description = 'TFTP Client Configuration'
 Configurationsource =
 @('[ConfigurationRepositoryWeb]DSCPullSrv')
 DependsOn = '[PartialConfiguration]TelnetConfig'}
 }
 }

Create a MOF to configure DSC LCM on SRV2:10.

 Remove-Item -Path C:\DSCConfiguration* -Recurse -Force
 Remove-Item -Path `
 '\\SRV2\C$\Windows\System32\Configuration*.mof'
 SRV2WebPullPartial -OutputPath C:\DSC | Out-Null

Configure the LCM on SRV2:11.

 $CSSrv2 = New-CimSession -ComputerName SRV2
 Set-DscLocalConfigurationManager -CimSession $CSSrv2 `
 -Path C:\DSC `
 -Verbose

Using Desired State Configuration

[612]

Create/compile the TelnetConfig partial configuration and build the MOF file:12.

 $Guid = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 $ConfigData = @{
 AllNodes = @(
 @{ NodeName = '*' ; PsDscAllowPlainTextPassword = $true},
 @{ NodeName = $Guid }
)
 }
 Configuration TelnetConfig {
 Import-DscResource –ModuleName PSDesiredStateConfiguration
 Node $Allnodes.NodeName {
 WindowsFeature TelnetClient
 { Name = 'Telnet-Client'
 Ensure = 'Present' }
 }
 }
 TelnetConfig -ConfigurationData $ConfigData `
 -OutputPath C:\DSCConfiguration | Out-Null
 Rename-Item -Path "C:\DSCConfiguration\$Guid.mof" `
 -NewName 'C:\DSCConfiguration\TelnetConfig.Mof'

Create and compile the TFTPConfig partial configuration:13.

 $Guid = '5d79ee6e-0420-4c98-9cc3-9f696901a816'
 $ConfigData = @{
 AllNodes = @(
 @{ NodeName = '*' ; PsDscAllowPlainTextPassword = $true},
 @{ NodeName = $Guid }
)
 }
 Configuration TFTPConfig {
 Import-DscResource –ModuleName 'PSDesiredStateConfiguration'
 Node $AllNodes.NodeName {
 WindowsFeature TFTPClient
 { Name = 'TFTP-Client'
 Ensure = 'Present' }
 }
 }
 TFTPConfig -ConfigurationData $ConfigData -OutputPath
 TFTPConfig -ConfigurationData $ConfigData `
 -OutputPath 'C:\DSCConfiguration\' | Out-Null
 Rename-Item -Path "c:\DSCConfiguration\$Guid.mof" `
 -NewName 'TFTPConfig.Mof'

Using Desired State Configuration

[613]

Create checksum files for these two partial configurations:14.

 New-DscChecksum -Path C:\DSCConfiguration

Observe configuration documents and checksum:15.

 Get-ChildItem -Path C:\DSCConfiguration

Update the LCM on SRV2 and test to see if it configured per the desired state:16.

 Update-DscConfiguration -ComputerName SRV2 -Wait -Verbose
 Test-DSCConfiguration -ComputerName SRV2

Induce the configuration drift:17.

 Remove-WindowsFeature -Name tftp-client, telnet-client `
 -ComputerName SRV2 |
 Out-Null

Test the DSC configuration:18.

 Test-DscConfiguration -ComputerName SRV2

Fix the configuration drift:19.

 Start-DscConfiguration -UseExisting -Verbose -Wait `
 -ComputerName SRV2

Test to check SRV2 is in compliance with the desired state:20.

 Get-WindowsFeature -Name Telnet-Client, TFTP-Client `
 -ComputerName SRV2

Using Desired State Configuration

[614]

How it works...
In step 1, you create a self-signed certificate. You drop this certificate both in the
LocalMachine\My folder and in the LocalMachine\Root folder. In effect, this creates a
trusted certificate on SRV1 that you can use with IIS. Creating the certificate produces no
output, but the final command in this step looks like this:

Once you have this certificate on SRV1, you can copy it to the trusted root store on SRV2
This step works by running a script block on the remote machine to make the certificate
trusted on SRV2. There is no output from step 2.

In step 3, you display the root certificate added to SRV2 server's trusted root store, which
looks like this:

This recipe uses the xPSDesiredStateConfiguration module which contains DSC
resources you use to setup DSC. This module is one you need to download using the
Install-Module cmdlet. In step 4, you copy the module to SRV2 (and ignore any errors
that might occur if the module exists on SRV2.

Using Desired State Configuration

[615]

The output, checking you have the same versions of xPSDesiredStateConfiguration on
SRV1 and SRV2 looks like this:

With step 5, you create a configuration block to configure SRV1 to be a DSC pull server. This
includes creating two folders for pull clients to find configuration details and DSC
resources—you ensure the DSC service is running, then use the xDscWebService resource
to configure the DSC service. Finally, this step creates a registration file needed to enable
pull clients to authenticate to the pull server. As with other DSC configuration blocks,
running this block of code generates no output.

Once you compile the configuration block, you have to create the related MOF file, which
you do in step 6. The output looks like this:

Using Desired State Configuration

[616]

In step 7, you apply the WebPullSrv1 configuration to SRV1. Using the -Wait and -
Verbose parameters, you view the actions taken by DSC on SRV1, which looks like this:

Using Desired State Configuration

[617]

In step 8, you check the DSC web service by using the Internet Explorer COM object.
The step navigates to the DSC service endpoint on SRV1, which looks like this:

Once you have configured the DSC pull server on SRV1, you need to configure the pull
client, SRV2, to be a pull client. In step 9, you create and compile a meta-configuration that
configures the LCM on SRV2. This meta-configuration specifies details of the pull server
and specifies that SRV2 should pull two partial configurations from the pull server on SRV1.
Running this step produces no output.

In step 10, you run this configuration to create the necessary MOF file. There is no output
from this step.

With step 11, you deploy the LCM configuration to SRV2. Using the -Verbose parameter
enables you to see what DSC is doing as it applies the configuration to SRV2, which looks
like this:

Using Desired State Configuration

[618]

In step 12 and step 13, you create two partial configurations (TelnetConfig and
TFTPConfig). Each partial configuration defines a Windows feature that DSC should
ensure exists on SRV2. You run the configurations and store the MOF file on where the DSC
Pull server can deliver it to SRV2 when requested. Note that each configuration is renamed.
There is no output from these steps.

DSC requires that each configuration MOF file has an accompanying checksum to avoid
issues with data corruption. In step 14 You use the New-DscCheksum cmdlet to create the
checksum file. This cmdlet scans the target path and creates checksums for all MOF files
contained in the folder. There is no output from this step.

In step 15, you observe the two partial configuration MOF files and their related checksum
files, which looks like this:

Using Desired State Configuration

[619]

In step 16, you use the Update-DscConfiguration cmdlet to update the DSC
configuration on SRV2. As you can see from the following output, this ensures that the two
partial configurations are applied and that the DSC installs the two Windows features
described in the configuration MOF files. In this step, you also test to see if the DSC
configuration on SRV2 is correct, as follows:

To test DSC ability to ensure DSC configurations remain in place and to correct any
configuration drift, in step 17, you remove the two network clients from SRV2. There is no
output from this step.

In step 18, now that you have induced configuration drift on SRV2 (by removing the two
Windows features), you use Test-DscConfiguration to test the DSC configuration of
SRV2, which produces the following output:

Using Desired State Configuration

[620]

To resolve the configuration drift induced earlier, you can either wait for DSC regular
consistency check to correct the issue or as you use the Start-DscConfiguration cmdlet,
using the -UseExisting parameter as you do in step 19. This parameter instructs the LCM
(on SRV2) to use the current LCM configuration and to correct any drift. The output from
this step looks like this:

You complete this recipe, in step 20, by using the Get-Windows feature cmdlet to check if
the two network clients are installed on SRV2 (which they are). This step produces output
like this:

Using Desired State Configuration

[621]

There's more...
In step 1, you create a self-signed certificate that you make trusted on SRV1 and in step 2 you
make this certificate trusted on SRV2. In an ideal world, you should create an enterprise
Certificate Authority (CA), then issue certs signed by that CA. With an enterprise CA, your
root certificates can be auto-published, making SRV1 server's certificate trusted by
everyone.

In step 2, you use a bit of .NET magic to copy the certificate to SRV2. Sadly, the certificate
provider in PowerShell does not support a copy operation, allowing you to use Copy-Item
to copy the certificate between certificate stores on SRV1 and to SRV2.

With step 3, you view the certificate contained in SRV2 server's trusted root store. Note the
thumbprint is the same as the thumbprint shown in step 2. In effect, what you have done is
to make the certificate in the local machine's personal certificate store trusted on SRV2 (and
via step 1, on SRV1).

Note you could set DSC up to not use SSL (and thus require certificates). This is, in general,
not a good idea as it does not protect from a man in the middle attack. It also means the
MOF documents transmitted from a pull server are in plain text. For configurations that
contain credentials or other internal secrets, best practice always suggests you use SSL.
Creating a self-signed and trusted cert for a lab experiment is much easier, and simple to
automate.

In step 4, you ensure the resource you needed (xPSDesiredStateConfiguration module)
was copied to SRV2. You could also have placed it on the pull server (SRV1) to enable the
pull client to download it. This is probably a better approach for production use—just put
all the resources in one place, and let nodes pull that module when necessary.

In step 5, you run/compile a DSC configuration, which produces no console output. You can
use the Get-Command cmdlet, or look in the Function: drive on SRV1 to see the results of
compiling the configuration.

In step 11, you configure the LCM on SRV2 to pull configuration details from SRV1. There
are several ways to do this—the recipe creates a CIM session to SRV2 and then updates the
LCM on SRV2 over the CIM session. The key point is that with some of the cmdlets you use
in the recipe, you can use the -ComputerName parameter and name the target computer,
whilst with others you need to use a CIM session.

In step 12, you create and compile a partial configuration which allows an empty password.
In practice, this is not a great idea and you should be using a real password.

Index

A
Access Control Entries (ACEs) 135
Active Directory (AD)
 about 304
 computers, creating 338
 expired computers, searching 289
 groups, creating 338
 groups, managing 338
 users, adding with CSV file 345
 users, managing 338
AD Certificate Services (ADCS) 323
AD users
 reporting on 347, 350
application pools
 managing 431
 reference 432
applications
 managing 431
ARM API
 URL 514
Automatically Provided IP Address (APIPA) 299
Azure Active Directory (AAD) 511
Azure disk storage
 URL 527
Azure file
 URL 527
Azure queue
 URL 527
Azure Resource Management (ARM) 514
Azure Service Management (ASM) 514
Azure table
 URL 527
Azure virtual machines
 creating 547, 559
 using 547, 559
Azure

 PowerShell, using 512, 523
 references 512
 SMB File Share, creating 534, 539

B
backup policy
 configuring 158, 164
 setting 158, 164
backup
 initiating manually 169, 173
 registry, restoring 202
 results, examining 164, 169
Bare metal recovery (BMR)
 backing up 186, 202
 performing 186, 202
best practice analyzer (BPA)
 about 257
 using 267, 273
Binary Large Object (Blob)
 about 526
 reference link 527
Branch Office Direct Printing (BODP)
 enabling 147
 URL 150

C
c prefex
 URL 577
Central Certificate Store (CCS)
 about 420
 configuring 420, 424
central server
 event logs, forwarding 280
Certificate Authority (CA) 414, 621
Challenge Handshake Authentication Protocol

(CHAP) 374
CIM cmdlets

[623]

 used, for exploring performance counters 236,
242

client-side rendering (CSR) 150
Client-Side Targeting
 URL 111
Cluster Shared Volume (CSV) 370
cmdkey
 URL 539
cmdlet definition XML (CDXML) 290
cmdlets, Windows Server 2016
 Clear-RecycleBin 25
 Convert-String 25
 ConvertFrom-String 25
 Enter-PSHostProcess 25
 Exit-PSHostProcess 25
 Export-ODataEndpointProxy 25
 Format-Hex 25
 Get-Clipboard 25
 New-Guid 25
 New-TemporaryFile 25
 Set-Clipboard 25
 Write-Information 25
cmdlets
 discovering, in PowerShell 18, 22
 discovering, in PowerShell 5/5.1 23
 discovering, in Windows Server 2012 R2 18, 22
 discovering, in Windows Server 2016 23
computer target groups
 creating 109
Core Azure Resources
 creating 523, 526
CSV file
 used, for adding users to AD 345

D
daily backup report
 about 214
 creating 210
Data Collector Sets
 configuring 242, 247
 using 242, 247
Desired State Configuration (DSC)
 about 18, 560
 partial configuration, using 621
 ppartial configuration, using 607

 using 563, 571
 using, with PSGallery resources 581, 587
DFS Namespace (DFSN)
 configuring 383, 394
DFS Namespaces and DFS Replication
 URL 394
DFS Replication (DFSR)
 about 383
 configuring 394, 405
 URL 395
DHCP server
 authorizing 315, 317
 failover, configuring 320, 323
 installing 315, 317
Discretionary Access Control List (DACL) 124,

135

Distributed File System (DFS) 358, 383
DNS Security Extensions (DNSSec)
 references 315
DNS
 installing 304
 zones, configuring 310
domain controllers (DCs)
 about 289
 installing 304
DSC configuration
 parameterizing 571, 576
DSC resources
 installing 576, 581
 searching 576, 581
 URL 561
 using 563, 571
DSC web-based pull server
 implementing 597, 607
Dynamic Host Control Protocol (DHCP)
 about 289
 IP address, converting 302
 scopes, configuring 318, 320

E
event logs
 forwarding, to central server 280, 287
 managing 274, 280
expired computers
 searching, in AD 350

[624]

Extended DNS (EDNS) 310

F
files
 restoring 173, 178
folders
 restoring 173, 178

G
Get-Counter
 performance, exploring 229, 236
Globally Unique Identifiers (GUIDs) 25
Group Policy Management Console (GPMC) 140
Group Policy Object (GPO) 107, 140
Group Policy preferences (GPP) 147

H
Hyper-V host
 securing 453, 456
Hyper-V networking
 configuring 466, 470
Hyper-V Virtual Machine
 backing up 178, 186
 restoring 178, 185
Hyper-V
 about 443
 feature, configuring 444, 449
 feature, installing 444
 health report, creating 504, 509
 performance, monitoring 500, 504
 references 449
 utilization, monitoring 500, 504

I
if and only if (IIF) 108
IIS logging
 configuring 427, 431
 URL 431
Inedo
 URL 52
Infrastructure as a service (IaaS) 511
internal PowerShell repository
 creating 51, 57
Internet Control Message Protocol (ICMP) 259

Internet Information Services (IIS)
 about 406, 561
 configuring 424
 configuring, for SSL 413
 installing 407
IP address
 configuring 298
 converting, from static to DHCP 302
IPC$ share
 URL 365
iSCSI target
 creating 370, 374
 URL 373
 using 374, 377

J
Just Enough Administration (JEA) 43

L
load balancing 320, 323
Local Configuration Manager (LCM)
 about 562
 configuring 588, 592
 URL 592
log files
 configuring 427, 431
 URL 431
Logical Unit Number (LUN) 370

M
mail exchanger (MX) 313
Managed Object Format (MOF)
 about 561
Microsoft Azure Recovery Services (MARS) 222
Microsoft Azure
 used, for backing up 215, 226
 used, for restoring 215
Microsoft Management Console (MMC) 12
modules, Windows Server 2016
 ConfigCI 24
 Defender 24
 EventTracingManagement 24
 HgsClient 24
 NetworkController 24
 NetworkSwitchManager 24

[625]

 Pester 24
 PnpDevice 24
 ShieldedVMDataFile 24
 ShieldedVMTemplate 24
 StorageQoS 24
 StorageReplica 24
MSDN
 URL 99

N
named pipes
 URL 465
Nano Server packages
 features, installing 80
 references 90
Nano Server
 connecting 64
 deploying, in VM 58, 64
 domain membership 58
 managing 64
 network address 58
 references 79
NanoServerImage
 URL 64
nested Hyper-V
 implementing 471, 475
network connectivity
 checking 257, 263
Network Load Balancing (NLB)
 managing 436, 442
 monitoring 436, 442
Network Security Group (NSG) 548
network shell (netsh) 291
networking components
 managing 291, 298
NuGet
 references 51
 URL 51, 52

O
Office 365 (O365)
 about 511
 URL 513
OneGet 23

P
PackageManagement
 exploring 43, 51
partial configuration
 using 607, 621
performance data
 reporting 247, 249
Performance Logging and Alerting (PLA) 227, 500
Performance Monitor (Perfmon) 227
performance monitoring graph
 generating 250, 253
Platform as a service (PaaS) 511
Portable Network Graphic (PNG) 252
PowerShell 4
 cmdlets, discovering 18, 22
PowerShell 5/5.1
 cmdlets, discovering 23
PowerShell Direct (PSD)
 about 450
 using 452
PowerShell
 reference link 18, 298
 references 302
 using, with Azure 512
PowerShellGet module
 about 23
 URL 23
PowerShellGet
 exploring 32, 42
 URL 33
printer drivers
 modifying 131
 reporting 135, 137
printer pool
 creating 150, 152
printer security
 modifying 137, 139
printer usage
 reporting on 152, 155
printers
 installing 122
 publishing 125
 sharing 122
 test page, printing 133, 134

[626]

 URL, for deploying 147
printing 121
privileged user report
 creating 352, 356
ProGet
 references 56
 URL 52
PSGallery resources
 DSC, using 581, 587
public key infrastructure
 building 323

R
registry
 restoring, from backup 202, 209
Remote Differential Compression (RDC) 384
Remote Server Administration Tools (RSAT)
 about 12, 140
 exploring 12, 18
resource records
 configuring, in DNS 310
RFC 689
 reference link 314
Role-Based Admin Control (RBAC) 356

S
Scale-Out File Server (SOFS) 358
scale-out SMB file server
 creating 378, 383
Secure Socket Layer (SSL)
 about 413
 IIS, configuring 413
Server Message Block (SMB)
 about 357
 shares, accessing 365, 370
 shares, creating 362
 shares, securing 362
Server Name Indication (SNI)
 about 427
 URL 427
shared printers
 deploying 139, 147
SMB file server
 securing 359, 361
SMB File Share

 creating 534, 539
SMB pull server
 implementing 592, 597
SMB1 protocol
 URL 360
Software as a Service (SaaS) 511
software discovery, installation, and inventory

(SDII) 44
spool directory
 modifying 128, 131
SQL PASS 511
standard terminology, for Microsoft software

updates
 URL 106
storage account
 exploring 526, 534
 Premium_LRS 528
 Standard_GRS 528
 Standard_LRS 528
 Standard_RAGRS 528
 Standard_ZRS 528
Storage Area Networking (SAN) 358
storage movement
 configuring 479, 484
Storage Replica (SR)
 URL 405
Sysinternals
 URL 51
System Access Control List (SACL) 135
system diagnostics report
 creating 253, 255

T
test page
 printing, on printer 133, 134
TLS cipher suites
 managing 417
Transport Layer Security (TLS) 413
troubleshooting packs
 using 263, 267

U
updates
 managing 115

V
Virtual Machine (VM)
 about 65, 157
 checkpoints, managing 492, 499
 configuring 479, 484
 creating 457, 461
 hardware, configuring 461, 465
 Nano Server, deploying 58, 64
 replication, configuring 484, 491
 state, managing 479
 URL 79
VM state
 managing 475
Volume Shadow Copy Service (VSS) 202, 492

W
Web Administration (IIS)
 URL 436
websites
 creating 540, 547
 using 540, 547
Windows Automated Installation Kit (WAIK) 456
Windows Management Instrumentation (WMI) 77
Windows Server 2012 R2
 cmdlets, discovering 18, 22
Windows Server 2016
 cmdlets 25

 cmdlets, discovering 22, 32
 Microsoft.PowerShell.Archive module 23
 Microsoft.PowerShell.Utility module 23
 modules 24
 PackageManagement module 23
 PowerShellGet module 23
 URL 457
Windows Server Backup (WSB) 157
Windows Server Update Services (WSUS)
 about 91
 installing 92
 update synchronization, configuring 100
Windows Update client
 configuring 106
WMF 5.0 Release Notes
 URL 32
WMF 5.1 Release Notes
 URL 32
WSUS auto-approvals
 configuring 112, 128
WSUS registry keys
 URL 109
WSUS server
 URL 99

Z
zones
 configuring 310

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: What's New in PowerShell and Windows Server
	Introduction
	Exploring Remote Server Administration Tools (RSAT)
	How to do it...
	How it works...
	There's more...

	Discovering new cmdlets in PowerShell 4 and Windows Server 2012 R2
	New cmdlets
	How to do it...
	How it works...
	There's more...

	Discovering new cmdlets in PowerShell 5/5.1 and Windows Server 2016
	Getting ready
	PowerShellGet module
	PackageManagement module
	Microsoft.PowerShell.Archive module
	Microsoft.PowerShell.Utility module
	Other new modules
	Other new cmdlets

	How to do it...
	How it works...
	There's more...

	Exploring PowerShellGet
	How to do it...
	How it works...
	There's more...

	Exploring PackageManagement
	How to do it...
	How it works...
	There's more...

	Creating an internal PowerShell repository
	How to do it...
	How it works...
	There's more...

	Chapter 2: Implementing Nano Server
	Introduction
	Deploying a Nano Server in a VM
	Getting ready
	How to do it...
	How it works...
	There's more...

	Connecting to and managing a Nano Server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Installing features with Nano Server packages
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 3: Managing Windows Updates
	Introduction
	Installing Windows Server Update Services
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring WSUS update synchronization
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring the Windows Update client
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating computer target groups
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring WSUS auto-approvals
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing updates
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 4: Managing Printers
	Introduction
	Installing and sharing printers
	Getting ready
	How to do it...
	How it works...

	Publishing a printer
	Getting ready
	How to do it...
	How it works...
	There's more...

	Changing the spool directory
	Getting ready
	How to do it...
	How it works...

	Changing printer drivers
	Getting ready
	How to do it...
	How it works...

	Printing a test page on a printer
	Getting ready
	How to do it...
	How it works...

	Reporting on printer security
	Getting ready
	How to do it...
	How it works...

	Modifying printer security
	Getting ready
	How to do it...
	How it works...

	Deploying shared printers
	Getting ready
	How to do it...
	How it works...
	There's more...

	Enabling Branch Office Direct Printing
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a printer pool
	Getting ready
	How to do it...
	How it works...

	Reporting on printer usage
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 5: Managing Server Backup
	Introduction
	Configure and set backup policy
	Getting ready
	How to do it...
	How it works...
	There's more...

	Examine the results of a backup
	Getting ready
	How to do it...
	How it works...
	There's more...

	Initiate a backup manually
	Getting ready
	How to do it...
	How it works...
	There's more...

	Restore files and folders
	Getting ready
	How to do it...
	How it works...
	There's more...

	Backup and restore a Hyper-V Virtual Machine
	Getting ready
	How to do it...
	How it works...
	There's more...

	Backup and perform bare metal recovery
	Getting ready
	How to do it...
	How it works...
	There's more...

	Restore the registry from a backup
	Getting ready
	How to do it...
	How it works...
	There's more...

	Create a daily backup report
	Getting ready
	How to do it...
	How it works...
	There's more...

	Backup and restore using Microsoft Azure
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 6: Managing Performance
	Introduction
	Explore performance counters with Get-Counter
	Getting ready
	How to do it...
	How it works...
	There's more...

	Explore performance counters using CIM cmdlets
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring and using Data Collector Sets
	Getting ready
	How to do it...
	How it works...
	There's more...

	Reporting on performance data
	Getting ready
	How to do it...
	How it works...
	There's more...

	Generating performance monitoring graph
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a system diagnostics report
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 7: Troubleshooting Windows Server 2016
	Introduction
	Checking network connectivity
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using troubleshooting packs
	Getting ready
	How to do it...
	How it works...
	There's more...

	Use best practice analyzer
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing event logs
	Getting ready
	How to do it...
	How it works...
	There's more...

	Forward event logs to a central server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 8: Managing Windows Networking Services
	Introduction
	New ways to do old things
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring IP addressing
	Getting ready
	How to do it...
	How it works...
	There's more...

	Converting IP address from static to DHCP
	Getting ready
	How to do it...
	How it works...
	There's more...

	Installing domain controllers and DNS
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring zones and resource records in DNS
	Getting ready
	How to do it...
	How it works...
	There's more...

	Installing and authorizing a DHCP server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring DHCP scopes
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring DHCP server failover and load balancing
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building a public key infrastructure
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating and managing AD users, groups, and computers
	Getting ready
	How to do it...
	How it works...
	There's more...

	Adding users to AD using a CSV file
	Getting ready
	How to do it...
	How it works...
	There's more...

	Reporting on AD users
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding expired computers in AD
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a privileged user report
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 9: Managing Network Shares
	Introduction
	Securing your SMB file server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating and securing SMB shares
	Getting ready
	How to do it...
	How it works...
	There's more...

	Accessing SMB shares
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating an iSCSI target
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using an iSCSI target
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a scale-out SMB file server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring a DFS Namespace
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring DFS Replication
	Getting Ready
	How to do it...
	How it works...
	There's more...

	Chapter 10: Managing Internet Information Server
	Introduction
	Installing IIS
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring IIS for SSL
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing TLS cipher suites
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring a central certificate store
	Getting ready
	How to do it...
	How it works...

	Configuring IIS bindings
	Getting ready
	How to do it...
	How it works...
	There's more ...

	Configuring IIS logging and log files
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing applications and application pools
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing and monitoring network load balancing
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 11: Managing Hyper-V
	Introduction
	Installing and configuring Hyper-V feature
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using Windows PowerShell Direct
	Getting ready
	How to do it...
	How it works...
	There's more...

	Securing Hyper-V host
	Getting ready
	How to do it...
	How it works...
	There's more...

	Create a virtual machine
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring VM hardware
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring Hyper-V networking
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing nested Hyper-V
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing VM state
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring VM and storage movement
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring VM replication
	Getting ready
	How to do it...
	How it works...
	There's more...

	Managing VM checkpoints
	Getting ready
	How to do it...
	How it works...
	There's more...

	Monitoring Hyper-V utilization and performance
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a Hyper-V health report
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 12: Managing Azure
	Introduction
	Using PowerShell with Azure
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating Core Azure Resources
	Getting Ready
	How to do it...
	How it works...
	There's more...

	Exploring your storage account
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating Azure an SMB File Share
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating and using websites
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating and using Azure virtual machines
	Getting ready
	How to do it...
	How it works...
	There's more...

	Chapter 13: Using Desired State Configuration
	Introduction
	Using DSC and built-in resources
	Getting ready
	How to do it...
	How it works...
	There's more...

	Parameterizing DSC configuration
	Getting ready
	How to do it...
	How it works...
	There's more...

	Finding and installing DSC resources
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using DSC with PSGallery resources
	Getting ready
	How to do it...
	How it works...
	There's more...

	Configuring Local Configuration Manager
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing a SMB pull server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Implementing a DSC web-based pull server
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using DSC partial configurations
	Getting ready
	How to do it...
	How it works...
	There's more...

	Index
	Humble bundle_CDP.pdf
	Table of Contents
	Test
	Index

