Thomas Lee

Windows Server 2016
Automation with
PowerShell

COOKDhOOK

Automate manual administrative tasks with ease

LI Pack

Windows Server 2016 Automation with
PowerShell Cookbook

Second Edition

Automate manual administrative tasks with ease

Thomas Lee

BIRMINGHAM - MUMBAI

Windows Server 2016 Automation with
PowerShell Cookbook

Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015
Second edition: September 2017

Production reference: 1190917

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-204-8

www.packtpub.com

http://www.packtpub.com

Machine

Learning With Go Understanding
Software

Packh
Packt>

Go to www.packtpub.com
and use this code in the
checkout:

Pack®

Author
Thomas Lee

Reviewer
Mike F Robbins

Acquisition Editor
Meeta Rajani

Content Development Editor
Abhishek Jadhav

Technical Editor
Mohd Riyan Khan

Credits

Copy Editors
Safis Editing
Juliana Nair

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Aishwarya Gangawane

Graphics
Kirk D'Penha

Production Coordinator
Aparna Bhagat

About the Author

Thomas Lee is a consultant/trainer/writer from England and has been in the IT business
since the late 1960's. After graduating from Carnegie Mellon University, Thomas joined
ComShare where he was a systems programmer building the Commander II time-sharing
operating system, a forerunner of today's Cloud computing paradigm. He moved to
Comshare UK in 1975 and later went to work for ICL, again developing operating systems.
After a sabbatical in 1980/81, he joined Arthur Andersen Management Consultants (now
known as Accenture). He left in 1988 to run his own consulting and training business,
which is still active today.

Thomas holds numerous Microsoft certifications, including MCSE (one of the first in the
world) and later versions, MCT (22 years), and was awarded Microsoft's MVP award 17
times. He is also a Fellow of the British Computer Society. He has written extensively for
the UK trade press, including PC Pro.

Today, Thomas writes and talks mainly on PowerShell and Azure. He currently works for a
number of clients to deliver training and to build training courses. Having traveled the
world, he entered semi-retirement in 2016 and is spending more time at his cottage in the
English countryside, along with his wife, Susan, and their daughter, Rebecca. He continues
to give back to the community and spends a lot of time as group administrator for the
PowerShell forum on Spiceworks, where he is also a Moderator.

Acknowledgment

I'd first like to thank Jeffrey Snover of Microsoft for the invention of PowerShell. I was
lucky enough to be in the room the very first time he presented what was then called
Monad. His enthusiasm was infectious, and 15 years later I am still excited.

Also, a shout out to the author of the first edition, Ed Goad. His first edition was a great
base to work on although all the recipes in this edition are reworked totally.

A huge thank you has to go to the Packt team: Meeta Rajani, Abhishek Jadhav, Mohd Riyan
Khan, and Judie Jose. You guys did a great job getting this book out of the door and dealing
with the crises that arose during the writing. And thanks too to our most excellent tech
reviewer Mike Robbins. Your reviews were always excellent.

When I began this project, I had a co-author, David Cobb. Sadly, for personal reasons, he
had to drop out, but I thank him for the chapters he was able to write.
We had a large number of volunteer reviewers who read through the various chapters. I
appreciate all the work you folks did to try to make this a better book.

As each recipe evolved, I would sometimes hit problems. I got a lot of help from the
Spiceworks community. Their PowerShell forum is a great source of information and
encouragement. If you have problems with PowerShell, this is a great place to get a
solution.

And finally, I have to thank my wonderful wife, Susan. She has been patient as things
progressed, she put up with my bad moods when progress was not as smooth as desirable,
and kept me sane when all around me was craziness.

About the Reviewer

Mike F. Robbins is a Microsoft MVP on Windows PowerShell and a SAPIEN Technologies
MVP. He is a co-author of Windows PowerShell TFM 4th Edition and is a contributing author
of a chapter in the PowerShell Deep Dives book. Mike has written guest blog articles for the
Hey, Scripting Guy! blog, PowerShell Magazine, and PowerShell.org. He is the winner of
the advanced category in the 2013 PowerShell Scripting Games. Mike is also the leader and
co-founder of the Mississippi PowerShell User Group. He blogs at mikefrobbins.com and
can be found on Twitter at @mikefrobbins.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1787122042.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787122042

Table of Contents

Preface 1
Chapter 1: What's New in PowerShell and Windows Server 11
Introduction 11
Exploring Remote Server Administration Tools (RSAT) 12
How to do it... 12
How it works... 14
There's more... 18
Discovering new cmdlets in PowerShell 4 and Windows Server 2012 R2 18
New cmdlets 19
How to do it... 19
How it works... 20
There's more... 22
Discovering new cmdlets in PowerShell 5/5.1 and Windows Server 2016 22
Getting ready 23
PowerShellGet module 23
PackageManagement module 23
Microsoft.PowerShell.Archive module 23
Microsoft.PowerShell.Utility module 23

Other new modules 24

Other new cmdlets 25

How to do it... 25
How it works... 28
There's more... 32
Exploring PowerShellGet 32
How to do it... 32
How it works... 36
There's more... 43
Exploring PackageManagement 43
How to do it... 44
How it works... 47
There's more... 51
Creating an internal PowerShell repository 51
How to do it... 52
How it works... 56

There's more... 57

Chapter 2: Implementing Nano Server 58
Introduction 58
Deploying a Nano Server in a VM 58

Getting ready 59
How to do it... 59
How it works... 61
There's more... 64
Connecting to and managing a Nano Server 64
Getting ready 65
How to do it... 65
How it works... 68
There's more... 79
Installing features with Nano Server packages 80
Getting ready 80
How to do it... 81
How it works... 83
There's more... 88

Chapter 3: Managing Windows Updates 91
Introduction 91
Installing Windows Server Update Services 92

Getting ready 92
How to do it... 92
How it works... 94
There's more... 99
Configuring WSUS update synchronization 100
Getting ready 100
How to do it... 100
How it works... 103
There's more... 106
Configuring the Windows Update client 106
Getting ready 106
How to do it... 106
How it works... 108
There's more... 109
Creating computer target groups 109

Getting ready
How to do it...
How it works...

110
110
110

[]

There's more... 111
Configuring WSUS auto-approvals 112
Getting ready 112
How to do it... 112
How it works... 113
There's more... 114
Managing updates 115
Getting ready 115
How to do it... 115
How it works... 117
There's more... 120
Chapter 4: Managing Printers 121
Introduction 121
Installing and sharing printers 122
Getting ready 122
How to do it... 122
How it works... 123
Publishing a printer 125
Getting ready 125
How to do it... 125
How it works... 126
There's more... 126
Changing the spool directory 128
Getting ready 128
How to do it... 128
How it works... 130
Changing printer drivers 131
Getting ready 131
How to do it... 132
How it works... 132
Printing a test page on a printer 133
Getting ready 133
How to do it... 133
How it works... 134
Reporting on printer security 135
Getting ready 135
How to do it... 135
How it works... 137
Modifying printer security 137

[]

Getting ready 138
How to do it... 138
How it works... 139
Deploying shared printers 139
Getting ready 140
How to do it... 145
How it works... 147
There's more... 147
Enabling Branch Office Direct Printing 147
Getting ready 148
How to do it... 148
How it works... 149
There's more... 150
Creating a printer pool 150
Getting ready 150
How to do it... 150
How it works... 151
Reporting on printer usage 152
Getting ready 153
How to do it... 153
How it works... 154
There's more... 155
Chapter 5: Managing Server Backup 156
Introduction 156
Configure and set backup policy 158
Getting ready 158
How to do it... 159
How it works... 160
There's more... 164
Examine the results of a backup 164
Getting ready 165
How to do it... 165
How it works... 166
There's more... 169
Initiate a backup manually 169
Getting ready 169
How to do it... 170
How it works... 171
There's more... 173

[]

Restore files and folders 173
Getting ready 174
How to do it... 175
How it works... 176
There's more... 178

Backup and restore a Hyper-V Virtual Machine 178
Getting ready 178
How to do it... 178
How it works... 180
There's more... 185

Backup and perform bare metal recovery 186
Getting ready 186
How to do it... 186
How it works... 189
There's more... 202

Restore the registry from a backup 202
Getting ready 202
How to do it... 203
How it works... 207
There's more... 209

Create a daily backup report 210
Getting ready 210
How to do it... 210
How it works... 213
There's more... 214

Backup and restore using Microsoft Azure 215
Getting ready 215
How to do it... 215
How it works... 219
There's more... 226

Chapter 6: Managing Performance 227

Introduction 227

Explore performance counters with Get-Counter 229
Getting ready 229
How to do it... 230
How it works... 231
There's more... 235

Explore performance counters using CIM cmdlets 236
Getting ready 237

[]

How to do it... 237
How it works... 238
There's more... 241
Configuring and using Data Collector Sets 242
Getting ready 242
How to do it... 243
How it works... 244
There's more... 246
Reporting on performance data 247
Getting ready 247
How to do it... 247
How it works... 248
There's more... 249
Generating performance monitoring graph 250
Getting ready 250
How to do it... 250
How it works... 251
There's more... 253
Creating a system diagnostics report 253
Getting ready 253
How to do it... 253
How it works... 254
There's more... 255
Chapter 7: Troubleshooting Windows Server 2016 256
Introduction 256
Checking network connectivity 257
Getting ready 258
How to do it... 258
How it works... 259
There's more... 262
Using troubleshooting packs 263
Getting ready 263
How to do it... 263
How it works... 264
There's more... 267
Use best practice analyzer 267
Getting ready 268
How to do it... 268
How it works... 270

[]

There's more... 273
Managing event logs 274
Getting ready 274
How to do it... 275
How it works... 276
There's more... 280
Forward event logs to a central server 280
Getting ready 281
How to do it... 281
How it works... 284
There's more... 287
Chapter 8: Managing Windows Networking Services 288
Introduction 289
New ways to do old things 291
Getting ready 291
How to do it... 292
How it works... 293
There's more... 297
Configuring IP addressing 298
Getting ready 299
How to do it... 299
How it works... 300
There's more... 302
Converting IP address from static to DHCP 302
Getting ready 302
How to do it... 303
How it works... 303
There's more... 304
Installing domain controllers and DNS 304
Getting ready 305
How to do it... 305
How it works... 306
There's more... 309
Configuring zones and resource records in DNS 310
Getting ready 310
How to do it... 311
How it works... 312
There's more... 314
Installing and authorizing a DHCP server 315

[]

Getting ready
How to do it...
How it works...
There's more...
Configuring DHCP scopes
Getting ready
How to do it...
How it works...
There's more...
Configuring DHCP server failover and load balancing
Getting ready
How to do it...
How it works...
There's more...
Building a public key infrastructure
Getting ready
How to do it...
How it works...
There's more...
Creating and managing AD users, groups, and computers
Getting ready
How to do it...
How it works...
There's more...
Adding users to AD using a CSV file
Getting ready
How to do it...
How it works...
There's more...
Reporting on AD users
Getting ready
How to do it...
How it works...
There's more...
Finding expired computers in AD
Getting ready
How to do it...
How it works...
There's more...

315
316
316
317
318
318
318
319
320
320
321
321
322
323
323
323
324
329
337
338
339
339
341
344
345
345
345
346
346
347
347
347
349
350
350
350
350
351
351

[]

Creating a privileged user report 352
Getting ready 352
How to do it... 352
How it works... 354
There's more... 356

Chapter 9: Managing Network Shares 357

Introduction 357

Securing your SMB file server 359
Getting ready 359
How to do it... 359
How it works... 360
There's more... 361

Creating and securing SMB shares 362
Getting ready 362
How to do it... 362
How it works... 364
There's more... 365

Accessing SMB shares 365
Getting ready 366
How to do it... 366
How it works... 367
There's more... 370

Creating an iSCSI target 370
Getting ready 371
How to do it... 371
How it works... 372
There's more... 373

Using an iSCSI target 374
Getting ready 374
How to do it... 374
How it works... 375
There's more... 377

Creating a scale-out SMB file server 378
Getting ready 378
How to do it... 378
How it works... 380
There's more... 383

Configuring a DFS Namespace 383
Getting ready 385

[]

[]

How to do it... 385
How it works... 389
There's more... 393
Configuring DFS Replication 394
Getting Ready 395
How to do it... 395
How it works... 400
There's more... 405
Chapter 10: Managing Internet Information Server 406
Introduction 406
Installing IIS 407
Getting ready 407
How to do it... 407
How it works... 408
There's more... 412
Configuring IIS for SSL 413
Getting ready 414
How to do it... 414
How it works... 415
There's more... 416
Managing TLS cipher suites 417
Getting ready 417
How to do it... 417
How it works... 418
There's more... 419
Configuring a central certificate store 420
Getting ready 420
How to do it... 420
How it works... 423
Configuring IIS bindings 424
Getting ready 425
How to do it... 425
How it works... 426
There's more ... 427
Configuring IS logging and log files 427
Getting ready 428
How to do it... 428
How it works... 429
There's more... 431

Managing applications and application pools 431
Getting ready 433
How to do it... 433
How it works... 434
There's more... 436

Managing and monitoring network load balancing 436
Getting ready 437
How to do it... 437
How it works... 439
There's more... 442

Chapter 11: Managing Hyper-V 443

Introduction 443

Installing and configuring Hyper-V feature 444
Getting ready 444
How to do it... 445
How it works... 446
There's more... 448

Using Windows PowerShell Direct 450
Getting ready 450
How to do it... 450
How it works... 451
There's more... 452

Securing Hyper-V host 453
Getting ready 453
How to do it... 453
How it works... 455
There's more... 456

Create a virtual machine 457
Getting ready 457
How to do it... 457
How it works... 458
There's more... 461

Configuring VM hardware 461
Getting ready 462
How to do it... 462
How it works... 463
There's more... 465

Configuring Hyper-V networking 466
Getting ready 466

[]

How to do it...
How it works...
There's more...
Implementing nested Hyper-V
Getting ready
How to do it...
How it works...
There's more...
Managing VM state
Getting ready
How to do it...
How it works...
There's more...
Configuring VM and storage movement
Getting ready
How to do it...
How it works...
There's more...
Configuring VM replication
Getting ready
How to do it...
How it works...
There's more...
Managing VM checkpoints
Getting ready
How to do it...
How it works...
There's more...
Monitoring Hyper-V utilization and performance
Getting ready
How to do it...
How it works...
There's more...
Creating a Hyper-V health report
Getting ready
How to do it...
How it works...
There's more...

Chapter 12: Managing Azure

466
468
470
471
472
472
473
475
475
475
476
477
479
479
480
480
482
484
484
485
485
487
490
492
493
493
495
499
500
500
501
502
504
504
505
505
507
509

510

[]

Introduction 510
Using PowerShell with Azure 512
Getting ready 515
How to do it... 515
How it works... 517
There's more... 522
Creating Core Azure Resources 523
Getting Ready 523
How to do it... 524
How it works... 524
There's more... 526
Exploring your storage account 526
Getting ready 529
How to do it... 529
How it works... 531
There's more... 533
Creating Azure an SMB File Share 534
Getting ready 535
How to do it... 535
How it works... 537
There's more... 539
Creating and using websites 540
Getting ready 540
How to do it... 541
How it works... 543
There's more... 547
Creating and using Azure virtual machines 547
Getting ready 549
How to do it... 549
How it works... 553
There's more... 558
Chapter 13: Using Desired State Configuration 560
Introduction 560
Using DSC and built-in resources 563
Getting ready 563
How to do it... 564
How it works... 565
There's more... 570
Parameterizing DSC configuration 571

[]

Index

Getting ready
How to do it...
How it works...
There's more...
Finding and installing DSC resources
Getting ready
How to do it...
How it works...
There's more...
Using DSC with PSGallery resources
Getting ready
How to do it...
How it works...
There's more...
Configuring Local Configuration Manager
Getting ready
How to do it...
How it works...
There's more...
Implementing a SMB pull server
Getting ready
How to do it...
How it works...
There's more...
Implementing a DSC web-based pull server
Getting ready
How to do it...
How it works...
There's more...
Using DSC partial configurations
Getting ready
How to do it...
How it works...
There's more...

572
572
574
576
576
577
577
578
581
581
582
584
585
587
588
588
589
590
592
592
593
593
595
597
597
597
598
601
607
607
608
608
614
621

622

[]

Preface

PowerShell was first introduced to the world at the Professional Developer's conference in
Los Angles in 2003 by Jeffrey Snover. Code named Monad, it represented a complete
revolution in management. A white paper written around that time, The Monad Manifesto
(refer to http://www.jsnover.com/blog/2011/10/01 /monad—manifesto/) remains an
amazing analysis of the problem at the time of managing large number of Windows
systems. A key takeaway —the GUI does not scale, whereas PowerShell does.

PowerShell has transformed managing of complex, network-based Windows infrastructure
and increasingly non-Windows infrastructure. Knowledge of PowerShell and how to get
the most from PowerShell is now obligatory for any IT Pro job—the adage being Learn
PowerShell or learn Golf.

This book takes you through the use of PowerShell in a variety of scenarios using many of
the rich set of features included in Windows Server 2016. This preface provides you with an
introduction to what is in the book and some tips on how to get the most out of the content.

What this book covers

Chapter 1, What's New in PowerShell and Windows Server, looks at some of the key new
features in Windows Server 2016 and in the latest version of PowerShell.

Chapter 2, Implementing Nano Server, shows you how to set up and use Nano Server—a
new server installation option for Windows Server 2016. Nano Server provides a great
platform for running roles with a vastly reduced attack and patch surface.

Chapter 3, Managing Windows Updates, helps you get to grips with managing updates via
Windows Update. With the importance of keeping all your Windows servers fully patched,
managing WSUS is a key take in almost any size organization.

Chapter 4, Managing Printers, shows you how to manage printers, printer queues, and
printer drivers, including deploying printers via Group Policy. This chapter also looks at
branch office printing.

http://www.jsnover.com/blog/2011/10/01/monad-manifesto/

Preface

Chapter 5, Managing Server Backup, examines the use of Windows Server Backup and
covers both backup (and restore) via cmdlet and via the console application. Windows
Server Backup is a nice feature you can use either on its own in a small organization or to
augment an enterprise wide third-party service.

Chapter 6, Managing Performance, shows you how to measure and monitor the performance
of a server. There are several recipes that demonstrate how to get specific performance
measurements and how to create graphs of performance for further analysis.

Chapter 7, Troubleshooting Windows Server 2016, looks at a number of aspects of both
reactive and proactive troubleshooting. This includes getting events from the event log and
forwarding event logs to a central server. This chapter also looks at the Best Practice
Analyzer features baked into Windows Server.

Chapter 8, Managing Windows networking services, looks at various aspects of networking.
Networks are today central to almost every organization and this chapter looks at a variety
of network-related tasks, including looking at new ways (with PowerShell) to do old things,
setting up DNS, DHCP, and Active directory, as well as building a multi-tier certificate
authority infrastructure.

Chapter 9, Managing Network Shares, looks at sharing data between systems, including
building a scaled out clustered file server based on iSCSI and using the DFS Namespace and
DEFS Replication features of Windows Server.

Chapter 10, Managing Internet Information Server, shows you how to conduct a variety of
IIS-related tasks, including IIS installation and configuration, setting up SSL and managing
cipher suites, as well as configuring Network Load Balancing.

Chapter 11, Managing Hyper-V, demonstrates the use of Hyper-V. This chapter shows you
how to build and deploy VMs with Hyper-V. This includes nested Hyper-V running a
Hyper-V VM inside another Hyper-V VM (which is useful for a number of scenarios).

Chapter 12, Managing Azure, looks at managing IaaS resources in Azure using PowerShell.
To test the recipes in this chapter, you need access to Azure. This chapter describes how to
get a trial subscription.

Chapter 13, Using Desired State Configuration, shows how to use this important feature to
ensure a server is setup correctly and continues to remain so. This covers setting up a pull
server and configuring partial configurations.

[2]

Preface

What you need for this book

To get the most out of this book, you need to experiment with the code contained in the
recipes. To avoid errors impacting live production servers, you should instead use
virtualization to create a test lab, where mistakes do not cause any serious damage. This
book uses a variety of servers within a single Reskit .0Org domain containing multiple
servers, and using an IP address block of 10.10.10/24 described in Getting the most from
this book.

Ideally, you should have a Windows 10 or Windows Server 2016 host with virtualization
capabilities and use a virtualization solution. If you have access to a cloud computing
platform, then you could perform most of the recipies in cloud-hosted virtual machines
although that has not been tested. You can use any virtualization.

The book was developed using Hyper-V and nested Hyper-V on Windows 10 Creator's
Update and Windows Server 2016. More details of the servers are contained in the preface
and each recipe.

Who this book is for

This book is aimed at IT Pros, including system administrators, system engineers, as well as
architects and consultants who need to leverage PowerShell to simplify and automate their
daily tasks.

Getting the most from this book

This book was written based on some assumptions and with some constraints. You will
need to read this section to understand how I intended the book to be used and what I have
assumed about you. This should help you to get the most from this book.

1. The first assumption I made in writing this book is that you know the basics of
PowerShell. This is not a PowerShell tutorial. The recipes do make use of a wide
range of PowerShell features, including WMI, Remoting, AD and so on, but you
will need to know the basics of PowerShell. The book uses PowerShell language,
syntax, and cmdlets that come with Windows Server 2016 and Windows 10 (CU).

[3]

Preface

2. The recipes provide the basics—you adopt and adapt. The recipes are designed to

show you the basics of how to manage certain aspects of Windows Server 2016
using PowerShell (and in some cases Windows Console Applications). In many
cases, a recipe stresses that you can improve it for your environment. The recipe
is meant to show you how some features work, so you can leverage and extend it
for your environment.

. Start by running the recipes step by step. The recipes were built and tested step

by step. Once you have it working, re-factor them into your own reusable
functions. In some cases, we build simple functions as a guide to richer scripts
you could build.

. Writing PowerShell scripts for publication in a book is a layout nightmare. To get

around this, I have made extensive use of the various ways in which you can
create multiline commands within PowerShell. This involves using the back tick
(") line continuation as well as using the Pipe character at the end of the line. I
also sometimes specify an array of values across multiple lines with a comma at
the end of the continuing line. Hopefully, the screenshots more or less match up.
So, read the text carefully and pay attention particularly to the back tick. In all too
many places and to save lots of extra blank space, code spills over a page break,
or where a figure and related text are split across a page boundary. I hope there
are not too many issues with layout!

. Many of the cmdlet or object methods used in this book produce output that may

not be all that helpful or useful. In some cases, the output generates a lot of pages
of little value. For this reason, many recipes pipe to Out-Null. Feel free to remove
this where you want to see more details. In some cases, I have adjusted the
output to avoid wasted white space. Thus, if you test a recipe, you may see the
output that is laid out a bit differently, but it should contain the same
information. Of course, the specific output you see may be different based on
your environment and the specific values you use in each step.

. To write this book, I have used a large VM farm consisting of over 20 Windows

2016 servers and Windows 10 clients. All the hosts used in this book are a
combination of some physical hardware (running almost entirely on Windows 10
Creators Update and a large set of VMs, including the following:
¢ Domain Controllers (DC1, bc2)—also hosts DHCP Server, 1IS, and
other roles).
¢ File Servers (FsS1, FS1)
e Network Load Balanced IIS servers (NLB1, NLB2)

¢ Print Server (PSrv)

[4]

Preface

General purpose servers (SRV1, SRV2)

Client computers (CL1, SG-BR-CL1)

Certificate servers (root, CA)

Hyper-V Servers (HV1, HV1), including an embedded VM, vM1.

Each recipe notes the servers in use. Feel free to change things to suit your needs
and based on your own naming conventions.

7. In building the VM farm, I have used an IP address block of 10.10.10.0/24.
The recipes show specific addresses in use, but you can adapt these to fit your
environment. The IP addresses used are assigned as follows:

IP address Server name

10.10.10.10 pc1 (DC, DHCP, DNS, IIS, and so on)
10.10.10.11 pc2 (DC, DHCP, and DNYS)

10.10.10.20 Root (CA offline root)

10.10.10.21 CA.Reskit.Org—issuing CA
10.10.10.50 SRV1 (server with numerous roles)
10.10.10.51 SRV2 (server with numerous roles)
10.10.10.55 ReskitNLB (NLB Virtual Server)
10.10.10.60 PSRV (print server)

10.10.10.61 Sales.Reskit.Org—a network printer
10.10.10.62 Sales2.reskit.org—a printer at as remote office
10.10.10.100 FS.Reskit.Org (Cluster address)
10.10.10.101/102|Fs1 (file server cluster node—with 2 nics)
10.10.10.105/106|Fs2 (file server cluster node —with w nics)
10.10.10.131 Nanol

10.10.10.132 Nano2

10.10.10.141 SG-CL1 (client computer in the Sales Group)
10.10.10.146 SG-BR-CL1 (sales group branch office client)
10.10.10.201 Hv1 (Hyper-V server)

[5]

Preface

10.10.10.202 Hv2 (Hyper-V server)
10.10.10.251 wsus1 (WSUS Server)
10.10.10.254 Default gateway

The full set of VMs, at the end of this writing, took up around 725 GB of storage.
Fortunately, storage is cheap!

8. PowerShell provides great feature coverage —you can manage most of the

10.

11.

functions and features of Windows Server 2016 using PowerShell, but by no
means all. In some cases, you can dip down into WMI using the CIM cmdlets to
get to object properties and methods not exposed by any cmdlet. The advent of
CDXML-based cmdlets has increased the number of networking and other
cmdlets that are WMI-based. But even then, there are still a number of places
where you need to use a Windows console application or invoke an unmanaged
DLL. The bottom line is that to manage some aspects of Windows, such as event
forwarding or performance logging, you will need to use older tools. We try to
avoid these, but in many cases the recipe demonstrates how to use the console
applications within PowerShell.

I have avoided where possible using external, third-party modules and have
focused on what comes in the box. But, in some cases, such as Azure, you have to
add code and in other cases such as DSC you benefit greatly from third-party
code. The book shows that there is a wealth of tools, add-ins, and tips/tricks that
you can leverage (even if we do not use all that much of it). One thing to keep in
mind, integrating various add-ons (and keeping them up to date and working
well) can be a challenge.

All the code provided in this book has been tested; it worked and did what it
says (at least during the writing stage). The production process is complex and
it's possible that errors in code creep in during the production stages. Some of the
more complex steps may have errors introduced during production. If any step
fails for you, please contact PACKT and we'll help. Feel free to post issues to the
Spiceworks PowerShell forum for quick resolution.

In writing this book, we set out to create content around a number of features of
Windows Server 2016. As the book progressed, we quickly hit (and broke) several
content limits. In order to publish the book, it was necessary to remove some
content, which we did most reluctantly. Coverage of Storage and Containers had
to be dropped. To paraphrase Jeffrey Snover, To ship is to choose. I hope I chose well.

[6]

Preface

12. In writing the recipes, we use full cmdlet names with no aliases and with all
parameter names spelled out in full (so, this means no abbreviated parameter
names or positional parameters). This makes the text a bit longer, but hopefully
easier to read and understand.

13. Some recipes in this book rely on other recipes being completed. These related
recipes worked well when we wrote them and hopefully will work for you as
well. Each depending recipe is noted.

14. There is a fine line between PowerShell and a Windows feature. To use
PowerShell to manage a Windows feature, you need to understand the feature
itself. The chapters describe each feature although in the space limited, thus I
can't provide complete details of every feature. I have provided links to help you
get more information. And as ever, Bing and Google are your friends.

Sections

In this book, you find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Chapter and Recipe Headings

Every chapter and every recipe introduces some part of Windows which the recipes help
you to manage. I've attempted to summarize the key points about each feature - but as ever
there is more detail you can discover using your favorite search engine.

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe. It also indicates the hosts (VMs) you
need for the recipe and any files, folders, or other resources you need to complete the recipe
successfully.

How to do it...

This section contains the steps required to follow the recipe. We show the PowerShell code
you use to perform each step

[7]

Preface

How it works...

This section contains a detailed explanation of what happened in the previous section along
with screen shots to show you the results of the recipe.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

Conventions

In this book, you find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, URLs, and so on are shown as follows:

"A great PowerShell cmdlet is Get -Help"

A block of code is set as follows:

If (-Not (Get-WindowsFeature —-Name PowerShell))

{
'PowerShell Not installed’

}

Any command-line input or output is written as follows (Note the back tick at the end of
the second line):

Copy ISO image
Copy-Item -Path c:\Image\Server2016.iSO °
-TargetPath c:\VM\ISO\Server2016.ISO

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen.”

[8]

Preface

0 Warnings or important notes appear in a box like this.
9 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you can really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file

from https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016Au
tomationwithPowerShellCookbookSecondEdition_ColorImages.pdf.

[9]

http://www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/WindowsServer2016AutomationwithPowerShellCookbookSecondEdition_ColorImages.pdf

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in this book-maybe a mistake in the text or the code-we
would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission is accepted and the errata uploaded
to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information appears under the Errata section.

If you find issues, feel free to reach out to the author via the Spiceworks forum.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we do our best to address the problem.

Help and assistance

If you want help on any of the recipes, or want to discover more information about any of
the steps, come over to the PowerShell forum at Spiceworks. Navigate to:
https://community.spiceworks.com/programming/powershell and ask away. Note you do
need to register to be able to ask questions and participate.

[10]

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://community.spiceworks.com/programming/powershell

What's New in PowerShell and
Windows Server

This chapter covers the following recipes:

¢ Exploring Remote Server Administration Tools (RSAT)

¢ Discovering new cmdlets in PowerShell 4 and Windows Server 2012 R2
¢ Discovering new cmdlets in PowerShell 5/5.1 and Windows Server 2016
¢ Exploring PowerShellGet

Exploring PackageManagement

Creating an internal PowerShell repository

Introduction

Windows Server changes quickly, with a new release about every two years. Since the
publication of the last edition of this book, Microsoft has delivered both Windows Server
2012 R2 and Windows Server 2016 (as well as client OS versions: Windows 8.1 and
Windows 10).

PowerShell evolved alongside the server OS with a release of both PowerShell version 4,
version 5, and version 5.1. This chapter reviews the changes in both the OS and PowerShell
and highlights the biggest and most useful changes and new cmdlets.

This chapter also explores PowerShellGet and PackageManagement modules, perhaps the
most interesting and useful new features released in PowerShell 5 and PowerShell 5.1.

What's New in PowerShell and Windows Server

Exploring Remote Server Administration
Tools (RSAT)

Remote Server Administration Tools (RSAT) are tools available on both servers and client
systems to manage server services. RSAT tools are available in Windows desktop and
server versions. Most of the RSAT tools are not installed by default but are easily added.

RSAT includes GUI tools, like Microsoft Management Console (MMC) and MMC snap-ins
(for example the DNS or DHCP MMC snap-ins) as well as command-line tools and
additional PowerShell modules. You have the option of installing the Windows feature
including the tools (most useful on a server), or just the tools to manage the feature (most
useful on a workstation).

The recipe that follows is run from DC1, a Windows Server 2016 with Desktop Experience
installation. If you try to use Server Core for this recipe, note that Out -Gridview, for
example in step 3, is not available in the Server Core version, as it lacks the graphical user
interface. For Server Core installations, use Format-Table instead.)

How to do it...

1. You use the Get —Command, and Tee-Object cmdlets to retrieve both the
collection of PowerShell commands and the number of cmdlets into
PowerShellvariables before installing the RSAT:

$CountOfCommandsBeforeRSAT = Get-Command |
Tee-Object -Variable 'CommandsBeforeRSAT' |
Measure—-Object
'{0} commands' -f $CountOfCommandsBeforeRSAT.count

2. Examine the objects returned by Get-Command:

$CommandsBeforeRSAT | Get-Member |
Select-Object -ExpandProperty TypeName -Unique

3. View commands in Out-Gridview:

$CommandsBeforeRSAT |
Select-Object -Property Name, Source, CommandType |
Sort-Object -Property Source, Name |
Out-GridView

[12]

What's New in PowerShell and Windows Server

Out-GridvView is not available in the Server Core version, as it lacks the
graphical user interface. For Server Core installations, use Format-Table
instead.

4. Store the collection of PowerShell modules and a count into variables as well:

$CountOfModulesBeforeRSAT = Get-Module -ListAvailable |
Tee—-Object —-Variable 'ModulesBeforeRSAT' |
Measure—-Object
'{0} commands' -f $CountOfModulesBeforeRSAT.count

5. View modules in Out-Gridview:
$ModulesBeforeRSAT |
Select-Object -Property Name -Unique |
Sort-Object -Property Name |
Out-GridView
6. Review the RSAT Windows Features available and their installation status:

Get-WindowsFeature —Name RSAT*

Get-WindowsFeature only works on Windows Server operating systems.

7. Install RSAT with sub features and management tools:

Install-WindowsFeature —Name RSAT -IncludeAllSubFeature
—IncludeManagementTools

8. Now that RSAT features are installed, see what commands are available:

$CountOfCommandsAfterRSAT = Get-Command |
Tee-Object —-Variable 'CommandsAfterRSAT' |
Measure—-Object
'{0} commands' -f $CountOfCommandsAfterRSAT.count

9. View commands in Out -Gridview:

$CommandsAfterRSAT |
Select-Object —-Property Name, Source, CommandType |
Sort-Object -Property Source, Name |
Out-GridvView

[13]

What's New in PowerShell and Windows Server

10. Now check how many modules are available:

$CountOfModulesAfterRSAT = Get-Module -ListAvailable |
Tee—-Object —-Variable 'ModulesAfterRSAT' |
Measure—-Object
'{0} commands' -f $CountOfModulesAfterRSAT.count

11. View modules in Out-Gridview:

S$ModulesAfterRSAT | Select-Object —-Property Name -Unique |
Sort-Object -Property Name |
Out-GridView

12. Store the list of commands into an XML file for later research:

$CommandsAfterRSAT |
Export-Clixml
-Path S$env:HOMEPATH\Documents\WS201l6Commands .XML"

How it works...

In step 1, you use Get-Command to enumerate all the commands available in PowerShell.
This includes functions and aliases. It is useful to store the result of such commands into a
variable, $CommandsBeforeRSAT in this case, so you are able to investigate the commands
without making the request again. Using Tee-Object, you store the array of commands in
that variable while continuing to use the pipeline to Measure-Object to store the count of
commands, then display the result using the PowerShell string formatting function: ' {0}
commands' -f $CountOfCommandsBeforeRSAT

In step 2, you pipe the $CommandsBeforeRSAT variable to Get -Member to examine the
TypeName of the objects returned, as shown in the following screenshot:

P5 C:\Windows\system32> $CommandsBeforeRSAT | Get-Member | Select-Object -ExpandProperty TypeName -Unigque
System.Management . Automation. AliasInfo

System.Management. Automation. FunctionInfo
System.Management. Automation. FilterInfo
System.Management. Automation.CmdletInfo

[14]

What's New in PowerShell and Windows Server

As you see, these commands are objects of the AliasInfo, FunctionInfo, and
CmdletInfo typesin the System.Management .Automation namespace (plus a
FilterInfo type, which provides information about a filter that is stored in the session
state.) PowerShell commands returned by Get -Command include aliases, functions, and
cmdlets.

In step 3, you use Select-Object to show the useful properties, and pipe that toa Sort—
Object, then pipe to Out -Gridview to search and filter the PowerShell commands, as you
see in the following screenshot:

g Scommands | Select-Object Mame Source, CommandType | Sort-Object Source Mame | OQut-GridView
Filter
and Name starts with |Get- x
4+ Add criteria | [% Clear Al |
Name | Source
Get-Verb Use the filter to
Get-ADAccountAuthornizationGroup ActiveDirectory search and narrow
Get-ADAccountResultantPasswor... ActiveDirectory your results.
Get-ADAuthenticationPolicy ActiveDirectory
Get-ADAuthenticationPalicySila ActiveDirectory Cmdlet
Get-ADCentralAccessPolicy ActiveDirectory Crmdlet
Get-ADCentralAccessRule ActiveDirectory Crmdlet
Get-ADClaimTransformPolicy ActiveDirectory Cmadlet
Get-ADClaimType ActiveDirectory Crndlet
Get-ADComputer ActiveDirectory Cmdlet
Get-ADComputerServiceAccount ActiveDirectory Crmdlet
Get-ADDCCloningExcludedApplic... ActiveDirectory Cmadlet
Get-ADDefaultDomainPasswordP... ActiveDirectory Cmadlet
Get-ADDomain ActiveDirectory Crndlet
Get-ADDomainController ActiveDirectory Cmdlet
Get-ADDomainControllerPasswor.. ActiveDirectory Cmdlet
Get-ADDomainControllerPasswor. ActiveDirectory Crmdlet
Get-ADFineGrainedPasswordPolicy ActiveDirectory Cmadlet
Get-ADFineGrainedPasswordPolic... ActiveDirectory Cmadlet
Get-ADForest ActiveDirectory Crndlet
Get-ADGroup ActiveDirectory Cmdlet
Get-ADGroupMember ActiveDirectory Cmdlet
Get-ADObject ActiveDirectory Crmdlet
Get-ADOptionalFeature ActiveDirectory Cmadlet
Get-ADOrganizationalUnit ActiveDirectory Cmadlet
Get-ADPrincipalGroupMembership ActiveDirectory Crndlet
Get-ADReplicationAttributeMetad... ActiveDirectory Cmdlet

[15]

What's New in PowerShell and Windows Server

In step 4, you use Get -Module just like Get -Command, but use the ~-ListAvailable
parameter to see all the installed modules, not just those loaded into the current session.
Again you use Tee-Object to store the array of modules into a variable,
$ModulesBeforeRSAT, while passing the result down the pipeline to Measure-Object to
calculate the count which you then display.

In step 5, you pipe the variable to a Select-Object for the interesting columns, sort-
Object, then pipe that to Out-Gridview again to review the available modules as shown

here:

E smodules | Qut-GridView

Sorted by Name,
filtered for modules

Filter

and Name contains |serve that contain 'server'
* Add criteria ¥ | | 3 Clear Al |

ModuleType | Version | Name | ExportedCommands

Manifest 2000 DhcpServer Add-DhepServerinDC Add-DhepServervdClass Add
Manifest 2000 DnsServer Add-Dns5erverConditionalForwarderZone Add-Ding
Manifest 2000 IpamServer Get-lpamDhcpConfigurationEvent Remave-lpamDH
Script 1000 ServerCore Get-DisplayResclution Set-DisplayReselution
Script 2000 ServerManager Get-WindowsFeature Install-WindowsFeature Uning
Cim 1000 ServerManagerTasks Get-SMCounterSample Get-SMPerformanceCollect

In step 6, you view the RSAT features available in your server with Get -WindowsFeature
-Name RSAT*, as shown in the following screenshot:

[16]

What's New in PowerShell and Windows Server

32> Get-WindowsFeature

e Server Administratio
Feature Administration AT-Feature-Tor
s AT-SMTP
ve Encryption Administrati . AT-Feature-T
Drive Encrypt Too
d Viewer
erver
CenterBridg. . .
AT-Clustering
AT-Clustering-}
L]u-ter‘ M du]e for - AT-Clusterin
Cluster Automation S AT-Clusterin
Cluster Comm nu:l Interface i
Balancing

ule for Win Power. . .

le Administrati
1 AD Eh and AD L

rative ...
mand-Line
ap-Ins an-:l Command-Line To
[X] Hyper‘—\a I"Ianau:lemer'rt T

Remote Des /
Remote De: i ing Diag . ! icensing-D...
i irect C icate Services T AD
il r‘1t3, Management T... :) 5-Mgmt
ne-Responder
ights Management Serwvi...

Policy and
.r'||:| ocument

GUI and Ct
Remote Acc module for . .
ume Actiwvat s SAT-VA] Installed

Get-WindowsFeature presents an information dense tree view of the RSAT tools available.
Note the many sub-features under Remote Server Admin Tools and under Role
Administration Tools. Each feature may be installed individually by name, or all
features installed with one command as in this example.

[17]

What's New in PowerShell and Windows Server

In step 7, install all the RSAT features with the ~-IncludeAllSubFeature and
—-IncludeManagementTools parameters. You may limit what is installed by changing the
first parameter to a comma separated list of desired feature names.

In steps 8-11, once the RSAT features are installed, repeat the Get -Command and Get -
Modules code to see all the additional cndlets and modules.

In step 12 you use Export-C1iXML to store the array to an XML file. If you want to compare
what is available in different OS and PowerShell versions, you use the array of objects
saved to this file and compare it with an XML file generated under some other PowerShell
or Windows versions.

There's more...

Jose Barreto, a Principal Program Manager, Applications and Services Group at Microsoft,
reviewed the new Windows Server 2016 cmdlets (based on Windows Server 2016 CTP).
This post shows you how to use Export-C1iXML to see what has changed between
PowerShell versions:

https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-—

in-windows-server-2016-tp2-compared-to-windows-server—-2012-r2/.

Discovering new cmdlets in PowerShell 4
and Windows Server 2012 R2

PowerShell V4 and Server 2012 R2 added many new features to existing cmdlets but did not
add many new cmdlets. A notable exception is Desired State Configuration (DSC) feature
that debuted in PowerShell V4.

DSC is a set of language extensions that enable you to define computer configurations in a
declarative fashion then apply that configuration to managed computers. DSC is a tool to
provision or manage servers and to ensure those systems stay configured correctly. DSC
provides a solution to the problem of configuration drift—computer configurations that
change, often incorrectly, over time.

Get more information on DSC in chapter 13, Using Desired State Configuration.

[18]

https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/
https://blogs.technet.microsoft.com/josebda/2015/05/26/new-powershell-cmdlets-in-windows-server-2016-tp2-compared-to-windows-server-2012-r2/

What's New in PowerShell and Windows Server

New cmdliets

Two other useful cmdlets included in PowerShell V4 are:

® Get-FileHash: Creates a hash value from a given file or binary value. This is
useful for quickly determining whether files have changed or for finding
duplicate files (that have different file names)

® Test-NetConnection: Diagnoses a network connection and provides helpful
troubleshooting information. This cmdlet is described in more detail in Chapter
8, Managing Windows Network Services.

How to do it...

1. You use the Show-Command to investigate the Get -FileHash cmdlet:
Show-Command -Name Get-FileHash

Show0-Command is not available in the Server Core version, as it lacks the
graphical user interface.

2. In the dialog that pops up, the Path tab corresponds to one of three parameter
sets for this command. For the Path tab, enter $Env:windirnotepad.exe or any
other valid file path.

3. Choose an algorithm like SHA512 from the drop-down menu.

4. Click the Copy button then paste the command into your PowerShell ISE and
press Enter to run it. Note the hash value that is returned.

5. Use show-Command to investigate Test-NetConnection:

Show—-Command —Name Test-NetConnection

6. In the dialog box, the CommonTCPPort tab corresponds to the default parameter
set, the first of four. Choose HTTP from the CommonTCPPort drop-down, and
choose Detailed for InformationLevel. Then click Copy, and paste the script into
your editor below the Show-Command line, then close the Show-Command
window. Select this line and press F8§ to run this line.

[19]

What's New in PowerShell and Windows Server

7. Repeat your call to Show-Command -Name Test-NetConnection. Choose the
ICMP tab and enter a valid internet hostname like Windows .Com in the
ComputerName field, or leave it blank, and choose Detailed for
InformationLevel.

8. Click the Copy button then paste the command into your PowerShell ISE below
the previous command, then close the Show-Command window and select the line
and press F8§ to run it.

9. Repeat your call to Show-Command Name Test-NetConnection.Choose the
NetRouteDiagnostics tab, check the box for DiagnoseRouting, and click Run.

10. Repeat your call to Show-Command -Name Test-NetConnection.Choose the
RemotePort tab, enter 443 for the Port, and choose Detailed for
InformationLevel, and click Run.

How it works...

In step 1, you use Show-Command to provide a graphical interface to explore new commands
like Get-FileHash or new ways to use commands you know. It is the same interface that
displays in the Commands tab in PowerShell ISE, and the interface is programmatically
generated from the parameter definitions in the cmdlet or function, so it works with
commands you create or install from outside sources.

In steps 2 and 3, choosing the Path tab corresponds to a parameter set defined in the
command; each parameter set may have different required and optional parameters,
represented by check boxes, drop-down menus, or text fields. This parameter set requires
the Path and Algorithm parameters.

In step 4, the Copy button puts a syntax-correct command on our clipboard, either to be run
as is or added to a script and modified. This is a very useful feature for new PowerShell
scripters or those working with unfamiliar commands. The result of the command displays
in the console, but it could be stored into a variable for comparison with other hash values
to look for duplicate or changed files:

[20]

What's New in PowerShell and Windows Server

1 #New Cmdlets in PowerShell 4 B Get-FileHash _ O %
> >

3 Show-Command Get-FileHash . .
4 Get-FileHash -Path fenv:windir‘\notepad.exe -Algorithm SHA256 Parameters for “Get-Filetiash' @
2 Path | LiteralPath | Stream

7 Path: * Senvwindir\notepad.exe

8

9 Algorithm: | SHA512 -
0

@ Commen Parameters
PS C:\Windows\system32> Show-Command Get-FileHash Cancel

PS5 C:\Windows\system32> Get-FileHash -Path $env:windir\notepad.exe -Algorithm SHA512

Algorithm Hash Path

SHAS512 SF5A3BSE64B4A149865F65D0678028CEF3BCODE1I6EF265C130B985494AB6690193F8. .. C:\Windows\notepad.exe

PS5 C:\Windows\system32> Show-Command Get-FileHash

In steps 5 and 6, you use Show-Command to explore the Test -NetConnection cmdlet. This
is a flexible and useful troubleshooting command with four parameter sets to use. First, test
the connection to a web host over HTTP port 80. Note the ~-InformationLevel Detailed
parameter provides additional troubleshooting information on the connectivity.

In steps 7 and 8, you use the ICMP parameter set with the -InformationLevel Detailed
parameter to ping, using ICMP echo request, a web server. This is different to the earlier
steps—here you are just determining whether the target server is responding to echo
requests. Some web servers turn off returning of pings, so you may see a server that doesn't
respond to a ping but does allow a port 80 HTTP connection.

In step 9, you use the NetRouteDiagnostics parameter set with the ~-DiagnoseRouting
parameter, which was introduced in PowerShell 5.1, to get routing information. Here when
you click the Run button, the result displays in the console window.

[21]

What's New in PowerShell and Windows Server

In step 10, you specify a RemotePort parameter set with a specified Port and
ComputerName to test:

& Show-Command Test-NetConnection

9 Test-NetConnection -CommonTCPPort HTTP -InformationLevel Detailed
10 Test-NetConnection -ComputerName windows.con
11 Test-NetConnection -DiagnoseRouting

1L

13

14

15

16

18

19

20

71

PS C:\Windows

g Test-MNetConnection
ComputerName : google.com
RemoteAddress : 216.58.192.110 Parameters for "Test-NetConnection™
RemotePort : 443
NameResolutionResults : 216.58.192.110 CommonTCPPort | ICMP | NetRouteDiagnostics | RemotePort
MatchingIPsecRules 3 23
NetworkIsolationContext : Internet Port: =
InterfaceAlias : Ethernet
SourceAddress : 192.168.2.230 ComputerName:
NetRoute (NextHop) : 192.168.2.1

TcpTestSucceeded : True InformationLevel:

PS C:\Windows\system32> Show-Command Test-NetConnection @ Common Parameters

There's more...

Both Server 2012 R2 and PowerShell V4 introduced many new features and added
enhancements to existing features. This included the Hyper-V, SmbShare, and BranchCache
features, all of which were improved. These features came with PowerShell modules that
enable you to leverage these features using PowerShell. Get more information on the
modules that support the 2012 R2 features at https://technet.microsoft.com/en-us/
library/dn249523.aspx.

Discovering new cmdlets in PowerShell 5/5.1
and Windows Server 2016

PowerShell V5, PowerShell V5.1, and Windows Server 2016 also added new features.

[22]

https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx
https://technet.microsoft.com/en-us/library/dn249523.aspx

What's New in PowerShell and Windows Server

Getting ready

Run the commands in the following recipe on a Windows Server 2016 with Desktop
Experience version.

PowerShellGet module

PowerShellGet, formerly known as OneGet, is a module that provides you with a simple
way to discover, install, and update PowerShell modules and scripts. It has dependencies
on the PackageManagement module, which relies on NuGet. It is an open source project,
located at https://github.com/powershell/powershellget.

Refer to Explore PowerShellGet recipe.

PackageManagement module
The cmdlets in the PackageManagement module provide a single interface for software
publication, discovery, installation, and inventory.

Refer to the following recipe:

e Explore PackageManagement
o Create a PackageManagement repository

Microsoft.PowerShell.Archive module

The Microsoft .Powershell.Archive module contains two useful functions: Compress—
Archive and Expand-Archive. These enable you to create and extract ZIP files. With
previous versions of PowerShell versions, you managed archives by using the
System.IO.Compression namespace from the .Net framework, the Shell.Application
com object or software like 7-Zip.

Microsoft.PowerShell.Utility module

The Microsoft .PowerShell.Utility module contains several new cmdlets useful for
debugging interactively and within runspaces.

[23]

https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget

What's New in PowerShell and Windows Server

Debugging and runspace Cmdlets include: Get -Runspace, Debug-Runspace, Get—
RunspaceDebug, Enable-RunspaceDebug, and Disable-RunspaceDebug, Wait—

Debugger, Debug-Job.

These cmdlets enable debugging PowerShell scripts within runspaces and jobs and add
additional debugging features for debugging production PowerShell interactively.

Other new modules

Other new modules in this version of PowerShell (and where to find more information
about each module) include:

Module

Description

Documentation

ConfigCI

Manage the
configurable code
integrity policy for
Windows

https:

//technet

.microsoft

.com/en-us/library/mt634481.

aspx

Defender

Manage Windows
defender

https:

//technet

.microsoft.

com/en-us/library/dn433280.

aspx

EventTracingManagement

Manage event tracing
for Windows
providers and
sessions

https:

//technet

.microsoft.

com/en-us/library/dn919247.

aspx

HgsClient,
ShieldedvMDataFile,
and ShieldedVMTemplate

Manage the host
guardian service, for
shielded Hyper-V
guest machines.

https:
https:
https:

//technet
//technet

.microsoft.
.microsoft.
//technet.

microsoft

com/en-us/library/dn914505.
com/en-us/library/mt791280.

.com/en-us/library/mt282520.

aspx
aspx
aspx

IISAdministration

Manage IIS replaces
WebAdministration
cmdlets

https:

//technet

.microsoft.

com/en-us/library/mt270166.

aspx

NetworkController

Manage the new
network controller
role in Server 2016

https:

//technet

.microsoft.

com/en-us/library/dn859239.

aspx

NetworkSwitchManager

Manage supported
network switches in
Server 2016

https:

//technet

.microsoft.

com/en-us/library/mt171434.

aspx

Pester

Manage unit tests for
PowerShell modules
and cmdlets

https:

//github.com/pester/Pester/wiki

PnpDevice

Cmdlets for
managing plug and
play devices

https:

//technet .microsoft.com/en-us/library/mt130251.

aspx

StorageQoS and StorageReplica

Support new storage
functionality in
Server 2016.

https:
https:

//technet.microsoft.com/en-us/library/mt608557.
//technet.microsoft.com/en-us/library/mt744543.

aspx
aspx

[24]

https://technet.microsoft.com/en-us/library/mt634481.aspx
https://technet.microsoft.com/en-us/library/dn433280.aspx
https://technet.microsoft.com/en-us/library/dn919247.aspx
https://technet.microsoft.com/en-us/library/dn914505.aspx
https://technet.microsoft.com/en-us/library/mt791280.aspx
https://technet.microsoft.com/en-us/library/mt282520.aspx
https://technet.microsoft.com/en-us/library/mt270166.aspx
https://technet.microsoft.com/en-us/library/dn859239.aspx
https://technet.microsoft.com/en-us/library/mt171434.aspx
https://github.com/pester/Pester/wiki
https://technet.microsoft.com/en-us/library/mt130251.aspx
https://technet.microsoft.com/en-us/library/mt608557.aspx
https://technet.microsoft.com/en-us/library/mt744543.aspx

What's New in PowerShell and Windows Server

Other new cmdlets

Some other useful cmdlets included are:

e Write-Information : A replacement for the Write-Host cmdlet that is
consistent with the other write-* cmdlets in the

Microsoft.PowerShell.Utility namespace. See https://blogs.technet.
microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to—

the-powershell-information-stream/.

e ConvertFrom-String and Convert-String: The new string parsing functions
that create structured data from strings, or parse out string data into structured
data. See nttps://blogs.msdn.microsoft.com/powershell/2014/10/31/
convertfrom-string-example-based-text-parsing/.

e Format-Hex: This cmdlet formats information into hexadecimal.

® Get-Clipboardand Set-Clipboard: A cmdlet to simplify working with the
clipboard, replacing piping to clip.exe.

e Clear-RecycleBin: This cmdlet empties the Recycle Bin.

® New-TemporaryFile: Simplifies the creation of temporary files within
PowerShell scripts.

e New-Guid: A wrapper for [GUID] : :NewGuid () to simplify the creation of
Globally Unique Identifiers (GUIDs). A GUID is an identifier, unique in space
and time, that you use in a variety of scenarios. System Center Virtual Machine
Manager, for example, uses GUIDs in jobs created by the UI.

® Enter-PSHostProcess and Exit-PSHostProcess: These enable you to debug
PowerShell processes outside the current host process.

® Export-ODataEndpointProxy: This cmdlet generates a wrapper module for

working with an OData endpoint. See https://msdn.microsoft.com/en-us/
powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.

powershell.odatautils.

Explore some of these cmdlets here and in later chapters as well.

How to do it...

1. Investigate Write-Information by looking at the Write-* commands, and
help for the about_Redirection topic:

Get-Command -Verb Write -Module *Utility
Get-Help about_Redirection —-ShowWindow

[25]

https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.technet.microsoft.com/heyscriptingguy/2015/07/04/weekend-scripter-welcome-to-the-powershell-information-stream/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://blogs.msdn.microsoft.com/powershell/2014/10/31/convertfrom-string-example-based-text-parsing/
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils
https://msdn.microsoft.com/en-us/powershell/reference/5.1/microsoft.powershell.odatautils/microsoft.powershell.odatautils

What's New in PowerShell and Windows Server

2. Use Write-Information
Write-Information "Test"

3. This produces no output. To resolve, you should inspect and change the
$InformationPreference variable:

Get-Variable "InformationPreference"
Set-Variable —-Name "InformationPreference" -Value "Continue"

4. UseWrite-Information again:
Write—-Information "Test"

5. Next, set SInformationPreference back to default value:
$InformationPreference = "SilentlyContinue"

6. Review the information-related options in the CommonParameters of each
command:

Show—-Command Get-Item

7. Use ConvertFrom-String to get objects from strings; NoteProperties are
created with default names:

"Here is a sentence!" | ConvertFrom-String
"Here is a sentence!" | ConvertFrom-String | Get-Member

8. Use -PropertyNames to control the names:

"Here is a sentence!" |
ConvertFrom—-String —-PropertyNames First, Second,
Third, Fourth

9. Use -Delimiter to get items from a list:

"Here,is,a,list!" |
ConvertFrom-String —-PropertyNames First, Second,
Third, Fourth °
-Delimiter ',

[26]

What's New in PowerShell and Windows Server

10. You next test the template capabilities of ConvertFrom-String:

$TextToParse = Q@'

Animal, Bird

Shape like Square

Number is 42

Person named Bob

'@$Templatel = Q@'

{[string]Category*:Animal}, {[string]Example:Bird}

'@ConvertFrom-String —-TemplateContent $Templatel
—-InputObject $TextToParse

11. ConvertFrom-String recognizes only one line from the text—the template

needs more examples to train the function, so add a second example to the
template and test:

$Template2 = Q@'
{[string]Category*:Animal},
{[string]Category*:
'@

ConvertFrom—-String

{[string]Example:Bird}
Country} like {[string]Example:Italy}

-TemplateContent $Template2
—-InputObject $TextToParse

12. Note three lines are recognized, even the last line that is unusual. Adding another
example to our template trains the function enough to recognize all four lines:

$Template3 = Q@'
{[string]Category*:Animal},
{[string]Category*:
{[string]Category*:
'@

ConvertFrom—-String

{[string]Example:Bird}
Country} like {[string]Example:Italy}
Number} like {[int]Example:99}

-TemplateContent $Template3
—-InputObject $TextToParse

13. Experiment with Format-Hex to output values in hexadecimal:

$TestValue =

@Il

This is line 1

and line 2

ll@

$TestValue | Format-Hex

[27]

What's New in PowerShell and Windows Server

14. Experiment with Get-ClipBoard and Set-Clipboard by selecting some text,
then press Ctrl+C to copy to clipboard, then inspect the clipboard:

#Select this line and press Control-C to copy to clipboard
$Value = Get-Clipboard
$Value

15. Use set-Clipboard to replace the clipboard value, then Ctrl+V to paste that new
value:

$NewValue = "#Paste This!"
$NewValue | Set-Clipboard
#Press Control-V to paste!

How it works...

In step 1, you get the commands with the Wwrite verb in the
Microsoft.PowerShell.Utility module. Write-Information is an addition to this
module that writes out to a new information stream, which the about_Redirection help
topic describes in detail:

PS5 C:\Windows\system32> Get-Command -Verb Write -Module =Utility

CommandType MName f i Source
Cmdlet write-Debug
Cmdlet Write-Error
Cmdlet Write-Host

Cmdlet Write-Information
Cmdlet Write-Output
Cmdlet Write-Progress
Cmdlet wWrite-Verbose
Cmdlet Write-Warning

Microsoft. LUt Taty
Microsoft. e LUt Tty
Microsoft.] LUt Tty
Microsoft. LUt Tty
Microsoft. LUt Tty
Microsoft. e LUt Tty
Microsoft. LUt Tty
Microsoft. LUt Tty

[=N=N==]=l=]-N-])

In steps 2-5, note that messages from Write-Information are not displayed by default.
The sInformationPreference variable controls this behaviour within your PowerShell
session.

In step 6, you'll see the CommonParameters now include InformationAction and
InformationVariable

[28]

What's New in PowerShell and Windows Server

More information is available in Get-Help about_CommonParameters:

B Get-Item — O *

@

@ Common Parameters
Debug
ErrorAction:
ErrorVanable:

Informationfction: | Continueg

InfarmationVariable: Type: System.Management.Automation.ActionPreference

Optional

OutBuffer
OutVariable:

PipelineVariable:
Verbose

‘WarningAction:

WarningVariable:

In step 7 you create a PSCustomObject using ConvertFrom-String with
NoteProperties named P1, P2, P3, and P4 that correspond to words separated by
whitespace from the input text, with st ring or char data types:

PS C:%\Windows\system32> "Here 15 a sentence!"” | ConvertFrom-5tring | Get-Member

TypeName: System.Management.Automation.PSCustomObject

MName MemberType Definition

Equals bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()

GetType Method type GetType()

ToString Method string ToString()

Pl NoteProperty string Pl=Here

P2 string P2=1s

P3 NoteProperty char P3=a

P4 NoteProperty string Pd4=sentence!

[29]

What's New in PowerShell and Windows Server

In step 8, you control the names of the NoteProperties. In step 9 you change the delimiter
from the default of whitespace to a comma, thus parsing a comma separated list:

P5 C:\Windows\system32> "Here,is,a,list!"™ | ConvertFrom-5tring -PropertyNames First,Second,Third,Fourth -Delimiter '," | Get-Member

TypeName: System.Management.Automation.PSCustomObject

bool Equals(System.Object obj)

Method int GetHashCode()
Method type GetType()
ToString Method string ToStr (
First NoteProperty string Fir
Fourth perty string Fourt
Second roperty string Secon
Third

In step 10, you investigate the ~TemplateObject parameter to parse inconsistently
formatted data. Here you provide one or more patterns by example in the
TemplateObject and provide the template along with the text to parse. The template starts
with one line as an example, and initially recognizes only one line out of four in the text to
match:

PS5 C:\Windows\system32> $TextToParse = @°"
Animal, Bird

Shape T1ike Square

Number 15 42

Person named Bob

'@

$Templatel = @'

f[string]Category*:Animal}, {[string]Example:Bird}
'@
ConvertFrom-5tring -TemplateContent $Templatel -InputDbject $TextToParse

Category

In steps 11 and steps 12, you improve the template with each attempt, achieving complete
matching results from the Convert-FromString:

[30]

What's New in PowerShell and Windows Server

P5 C:\Windows\system32» §TextToParse = @"
Animal, Bird

Shape 1ike Square

Number is 42

Person named Bob

'a

PS Windows\system32= $Template3 = @°
{[string]lCategory*:Animal}, {[string]lExample:Bird}
{[stringlCategory® :Country} Tike {[string]Example:Italy}
{[string]Category* :Number} like {[int]Example:99}

2

PS5 C:\Windows'system32>= ConvertFrom-5tring -TemplateContent $Template3 -InputObject $TextToParse

Category Example

Square
42
Bob

In step 13, you use Format-Hex on a here string that contains two lines of text. Note the 0D
0A bytes corresponding to carriage return and line feed (CRLF) between lines:

PS C:\WindowsYsystem32= $TestValue
a-

This is line 1

Andowsh\system32> $TestValue
This 15 line 1
and line 2

P5 C:\Windows\system32= $TestValue | Format-Hex

00 01 02 03 04 05 06 O7 0A OB OC 0D OE OF

00000000 54 68 69 73 20 69 73 20 9 6E 65 20 31 OD OA This is line 1..

00000010 61 6E 64 20 6C 69 BE 65 and Tine 2

In step 14 and step 15, you work with Set-Clipboard and Get-Clipboard. By copying
any text with Ctrl+C, you then capture that value into a variable with Get -Clipboard. You
use Set-Clipboard to change that value, and use Ctrl+V to verify the change.

[31]

What's New in PowerShell and Windows Server

There's more...

Each PowerShell release comes with release notes that dive into the details of changes
introduced with that version. These pages are updated with community contributions, as
PowerShell is now partially open source:

¢ WMF 5.0 Release Notes:

https://msdn.microsoft.com/en-us/powershell/wmf/5.0/releasenotes

e WMEF 5.1 Release Notes:

https://msdn.microsoft.com/en-us/powershell/wmf/5.1/release-notes

The documentation is published on GitHub and accepts contributions from users via pull-
requests so users may help improve the documentation. You'll find PowerShell
documentation on GitHub at https://github.com/PowerShell/PowerShell-Docs.

Complete documentation is available on TechNet, see the Windows 10 and Server 2016
PowerShell module reference at nttps://technet .microsoft.com/en-us/library/
mt156917.aspx.

Exploring PowerShellGet

The PowershellGet module enables you to work with repositories, sites which contain
scripts and modules to download and use. If you have a Linux background, you are
familiar with repositories and tools like apt ~get (On Ubuntu Linux) and RPM (on Red Hat
Linux). PowerShellGet delivers similar functionality within PowerShell.

Ensure you're running with administrator privileges so you can update
PowerShellGet to the latest version.

How to do it...

1. You begin by reviewing the commands available in the Powershel1Get module:

Get—-Command —-Module PowerShellGet

[32]

https://msdn.microsoft.com/en-us/powershell/wmf/5.0/releasenotes
https://msdn.microsoft.com/en-us/powershell/wmf/5.1/release-notes
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://github.com/PowerShell/PowerShell-Docs
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx
https://technet.microsoft.com/en-us/library/mt156917.aspx

What's New in PowerShell and Windows Server

2. Before moving on, you should update to the latest NuGet to get the
PackageManagement module current, then update the PowerShellGet module
pertheCﬁﬂﬂubinsﬂucﬁonsathttps://github.com/powershell/powershellget
PowerShellGet has a dependency on PackageManagement, which in turn relies
on NuGet. PowerShellGet and PackageMangagement both come within
Windows 10 and Server 2016, but Windows updates are less frequent than
releases at the PowerShell gallery. Updating ensures you have the latest versions
of all the dependencies. To update NuGet:

Install-PackageProvider —-Name NuGet -Force -Verbose

3. Close your PowerShell session by running Exit and open a new PowerShell
session.
4. Check the version of the NuGet PackageProvider

Get-PackageProvider —-Name NuGet |
Select-Object Version

5. Update PowershellGet:
Install-Module —-Name PowerShellGet -Force

6. Close your PowerShell session by running Exit and reopen it again.
7. Check the version of PowershellGet:

Get-Module -Name PowerShellGet |
Select-Object -ExpandProperty Version

8. View the default PSGallery repository for PowerShellGet:
Get-PSRepository

9. Review the various providers in the repository:
Find-PackageProvider |

Select-Object -Property Name, Source, Summary |
Format-Table -Wrap —-AutoSize

[33]

https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget
https://github.com/powershell/powershellget

What's New in PowerShell and Windows Server

10. View available providers with packages in PSGallery:

Find-PackageProvider —-Source PSGallery |
Select-Object -Property Name, Summary |
Format-Table —-Wrap —-AutoSize

11. Use the Get-Command cmdlet to find cmdlets in PowerShellGet:
Get-Command -Module PowerShellGet -Verb Find

12. Request all the commands in the PowershellGet module, store them in a
variable, and store the count as well:

$CommandCount = Find-Command |
Tee—-Object —-Variable 'Commands' |
Measure-Object
"{0} commands available in PowerShellGet"
—f $CommandCount .Count

13. Review the commands in Out-Gridview and note the module names:
$Commands | Out-GridView

14. Request all the available PowershellGet modules, store them in a variable and
store the count as well:

$ModuleCount = Find-Module |
Tee-Object —-Variable 'Modules’' |
Measure-Object
"{0} Modules available in PowerShellGet" -f $ModuleCount.Count

15. Review the modules in Out-Gridview:
S$Modules | Out-GridView

16. Request all available DSC resources, store them in a variable, and view them in
Out-GridView:

$DSCResourceCount = Find-DSCResource |
Tee-Object —-Variable 'DSCResources’' |
Measure—-Object
"{0} DSCResources available in PowerShellGet" -f °
$DSCResourceCount .Count
$DSCResources | Out-GridView

[34]

What's New in PowerShell and Windows Server

17.

18.

19.

20.

21.

22.

23.

Find the available scripts and store them in a variable. Then view them using
Out-Gridview:

$ScriptCount = Find-Script |
Tee—-Object —-Variable 'Scripts' |
Measure-Object
"{0} Scripts available in PowerShellGet" -f $ScriptCount.Count
$Scripts | Out-GridView

When you discover a module you would like to simply install the module. This
functionality is similar for Scripts, DSCResources, and so on:

Get-Command -Module PowerShellGet -Verb Install

Install the Treesize module, as an example, or choose your own. As this is a

public repository, Windows does not trust it by default, so you must approve the
installation:

Install-Module -Name TreeSize -Verbose

If you choose to trust this repository, set the InstallationPolicy to Trusted,
and you'll no longer need to confirm each installation: Use at your own risk, you are
responsible for all software you install on servers you manage:

Set-PSRepository —-Name PSGallery -InstallationPolicy Trusted
Review and test the commands in the module:

Get-Command —-Module TreeSize
Get-Help Get-TreeSize -Examples
Get-TreeSize -Path $env:TEMP -Depth 1

Remove the module just as easily:
Uninstall-Module -Name TreeSize -Verbose

If you would like to inspect the code before installation, download and review
the module code:

New-Item -ItemType Directory °
-Path $env:HOMEDRIVE\downloadedModules
Save—-Module -Name TreeSize
-Path $env:HOMEDRIVE\downloadedModules” +
"$env:windirexplorer.exe"
$env:HOMEDRIVE\downloadedModules

[35]

What's New in PowerShell and Windows Server

24. Import the downloaded module:
SModuleFolder = "$env:HOMEDRIVE\downloadedModules\TreeSize"
Get-ChildItem -Path $ModuleFolder -Filter *.psml —-Recurse |
Select-Object -ExpandProperty FullName -First 1 |
Import—-Module -Verbose

25. When you are done with discovering the new module, you can remove it from
your system:

Remove—-Module —-Name TreeSize
S$ModuleFolder | Remove-Item —-Recurse -Force

How it works...

In step 1, you start by reviewing the cmdlets in the PowershellGet module:

PS5 C:'Windows'system32> Get-Command -Module PowerShellGet

CommandType

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

Name

Find-Command
Find-DscResource
Find-Module
Find-RoleCapability
Find-Script
Get-InstalledModule
Get-InstalledScript
Get-PSRepository
Install-Module
Install-5cript
New-5ScriptFilelnfo
Publish-Module
Publish-Script
Register-PSRepository
Save-Module

script

Test-ScriptFilelnfo
Uninstall-Module
Uninstall-Script
Unregister-PSRepository
Update-Module
Update-ModuleManifest
Update-Script
Update-ScriptFileInfo

[36]

1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.
1.1.

2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShell1Get
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShel1Get
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet
PowerShellGet

What's New in PowerShell and Windows Server

In steps 2-7, you ensure PowerShellGet and its dependency PackageManagement are up
to date by updating the NuGet provider, verifying the version, then restarting your
PowerShell session and updating PowerShellGet and verifying its version.

vider.d11

The -Verbose flag gives you more details on the installation, but it is not required. Note
that you must Exit your session after running this command and reopen to continue with
the latest version.

Check our NuGet provider version after reopening our PowerShell session:

PS5 C:\Windows"system3 Get-PackageProvider -Name MuGet | Select-Object Version

Version

et —Force
ent” is curren

PS5 C:\Windows\system32s

Note that you must exit your session after running this command and reopen to continue
with the latest version.

In step 8, check your PowerShellGet version after reopening your PowerShell session:

PS C:'\Windows\system32> Get-Module -Mame PowerShellGet | Select-Object Version

PS C:\Windows'\system32>

[371]

What's New in PowerShell and Windows Server

In step 9, you use Get-PSRepository. PowerShellGet starts with a single repository
PSGallery installed by default:

PS5 C:\Windowshsystem32> Get-PSRepository

Name

PSGallery

chocolatey
PowerShellGet
GistProvider
GitHubProvider
TSDProvider
ChocolateyGet
MyATbum

ContainerImage

DockerMsftProvider
NanoServerPackage
officeProvider
GitLabProvider

WSAProvider
Oinstall

aneget. org/nuget-2.8.5. 208. package. swidtag
aneget. org/ps1-1.0. 0. 210. package. swidtag
p aneget. org/ChocolateyPrototype-2. 8.5.130. package. swidtag
PsGallery
PSGallery
PsGallery
PSGallery
PSGallery
PsGallery

PsGallery

PsGallery
PsGallery

PsGallery

PSGallery
PsGallery
PsGallery

Summary

MuGet provider for the OneGet meta-package manager
ps1 provider for the OneGet meta-package manager
ChocolateyPrototype provider for the OneGet meta-package manager
PowersShell medule with commands for discovering, installing, updating and
publishing the PowerShell artifacts 1 Modules, DSC Resources, Role
Capabilities and Scri .
Gist-as-a-Package - PackageManagement PowerShell Provider to interop with
Github Gists
GitHub-as-a-Package - PackageManagement PowerShell Provider to interop
with Github
Powershell PackageManager provider to search & install TypeScript
definition files from the community DefinitelyTyped repo
Shell OneGet provider that discovers packages from

/ /wwm. chacolatey. org.
MyAlbum provider discovers the photos in your remote file repository and
installs them to your Tocal folder.
This is a PackageManagement provider module which helps in discovering,
downloading and installing Windows Container 0S images.

For more details and examples refer to our project site at
ithub. com/Powershell/ContainerProvider.
11 module with commands for discovering, installing, and updating

A PackageManagement provider to Discover, Save and Install Nano Server
Packages on-demand

OfficeProvider allows users to install Microsoft 0ffice365 ProPlus from
Powershell.

GitlLab PackageManagement provider

Provider to Discover, Install and inventory windows server apps

Zero Install is a decentralized cross-platform software-installation
system.

Note the source column; the first three providers listed correspond to NuGet, OneGet, and
Chocolatey providers. NuGet is a repository devoted to developer libraries. OneGet was
the name of this module (and repository) but has been deprecated and replaced by
PackageManagement. You explore Chocolatey in a later recipe. The remaining rows are
the available providers in the PSGallery repository.

[38]

What's New in PowerShell and Windows Server

In step 11, you limit your repository search with Find-PSRepository by specifying the -
Source PSGallery parameter:

P5 C:\Windows\system32> Find-PackageProvider -Source P5Gallery | Select-Object -Property Name, Summary | Format-Table -Wrap -AutoSize

Name

GitHubProvider GitHub-as-a-Package - PackageManagement PowerShell Prowvider to interop with Github

TSDProwvider Powershell PackageManager provider to search & install TypeScript definition files from
the community DefinitelyTyped repo

Power 5hellGet Power5hell module with commands for discowvering, installing, updating and publishing the
PowerShell artifacts 1ike Modules, DSC Resources, Role Capabilities and Scripts.

GistProvider Gist-as-a-Package - PackageManagement PowerShell Provider to interop with Github Gists

ChocolateyGet An Powershell OneGet provider that discovers packages from https 'www . chocolatey. org.

MyATbum MyAlbum provider discovers the photos in your remote file repository and installs them
to vour local folder.

ContainerImage This is a PackageManagement provider module which helps in discovering, downloading and
installing Windows Container D5 images.

For more details and examples refer to our project site at
https://github. com/PowerShell/ContainerProvider.
DockerMsfttProvider PowerShell module with commands for discovering, installing, and updating Docker images.
NanoServerPackage A PackageManagement provider to Discover, Save and Install Nano Server Packages
on-demand
oOfficeProvider OfficeProvider allows users to install Microsoft Office365 ProPlus from Powershell.
GitLabProvider GitLab PackageManagement prowvider
WSAProwvider Provider to Discover, Install and inventory windows server apps
Oinstall Zero Install is a decentralized cross-platform software-installation system.

In step 12, you discover the PowerShellGet commands containing the verb Find:

CommandType / 1 Source

Function Find-Command i PowerShellGet
Function Find-D=cResource Ly PowerShellGet
Function Find-Module il Power ShellGet
Function Find-RoleCapability el PowerShellGet
Function Find-Script PowerShellGet

In steps 13 - 18, you use the Find-* commands to store the available commands, modules,
DSC resources, and scripts into variables, then explore what is available using out -
Gridview (including using the built-in filter capability to search for a module), for example:

E sModules | Out-GridView - O %

tree A @

Version | MName Repository | Description

2.0 TreeSize P5Gallery Provides a Get-TreeSize command

13.2 PsISEProjectEx... P5Gallery Provides a tree view that enables to index and explore whole directory structure containing Pow..
1.0 ModuleScaffo.. P5Gallery Create Directory Tree and basic files for a new module

[39]

What's New in PowerShell and Windows Server

In step 19, you review the install commands in the PowerShel1lGet module. Their functions
are very similar:

P5 C:\Windows\system3Z= Get-Command -Module PowerShellGet -Verb Install

CommandType Name f] Source

Function Install-Module L1.2. Power ShellGet
Function Install-5cript L1.2. PowerShellGet

In step 20, the TreeSize module looks like an interesting tool to inspect folders and their
sizes. Install it by using the Install-Module cmdlet. You use the ~Verbose switch to get
more information about what the cmdlet is doing;:

B untrusted repository — m} X

You are installing the modules from an untrusted repository. If you trust this repository, change its InstallationPolicy value by running the Set-PSRepository cmdlet. Are you sure you want to
install the modules from 'P5Gallery'?

| Yes ‘|Vestoﬂ|l|| No |‘NmtoAU| |§uspend|

P5 C:\Windows\system32> Install-Module -Name TreeSize -Verbose

After confirming the Untrusted repository pop up dialog, PowerShell installs the module.

In step 21, you see that the code available on PSGallery, as well as other public
repositories, is just that, public. You must choose to trust the code you download from the
internet to take advantage of the functionality provided by that code. To trust this
repository and disable prompting, use the command (at your own risk and responsibility):

Set-PSRepository —-Name PSGallery -InstallationPolicy Trusted

[40]

What's New in PowerShell and Windows Server

In step 22, you evaluate and test the module:

P5 C:\Windowssystem32> Get-Help Get-Tree5ize -Examples

MNAME
Get-TreeSize

SYNOPSIS
Recursively lists provider items and sums their lengths

Get-Treesize -ShowFiles

Localization®, 12021

|-- Localization.psdl 6698

|—— En-Usy 2025
| -- UserSettings.psdl 1000
|-- Localization.psdl 958
| -- numbers. psdl &7

|-- UserSettings.psdl 1959

=== 1339
| -- UserSettings.psdl 1253
| -- numbers. psdl 26

EXAMPLE 3

»Get-Treesize | Format-Custom

In step 23, uninstalling a module is simple:

Uminstall-Module dbatools —Verbose

ng the operation "Uni 11 on target n " of module
ully uninstalled the le * from module b " am Fil

PS5 C:\Windows\system32:>

[41]

What's New in PowerShell and Windows Server

In step 24, if you prefer, download code and inspect it before installing, using Save-Module,
then browse the module's files in Windows Explorer:

Local Disk (C:) » downloadedModules » TreeSize » 2.0 v 0 Search 2.0 0
~
Mame Date medified Type
| | ReadMe.md 8/12/2015 6:44 PM MD File
\Z| TreeSize.Format.pslxml 8/12 B Windows PowerShell XML Document
Mj Treebize.psd] g Windows PowerShell Data File
j TreeSize.psm1 g Windows PowerShell Script Module

j ReadMe.md - Notepad

File Edit Format View Help

This is just a Get-TreeSize function to show (recursively) how much space
Anyway, there's just one function and a format file. Please enjoy.

To install:

“posh
Install-Module -MName TreeSize

Example usage:

P5» Get-Treesize

< Localizationl, 12821
d 1.00 KB l: En-USY 2025

raazu1 En\ 1339
ol

In step 25, after reviewing the code, import the module by locating the . psm1 file which
defines the module, using Get -ChildItem, then piping that filename to Import-Module:

Wndows'\ system32> $ModuleFolder = "$env:HOMEDRIVEYdownloadedModuleshTreeSize"
Get-ChildItem -Path $ModuleFolder -Filter *.psml -Recurse |
Select -ExpandProperty FullMame -First 1 |
Import-Module -Verbose

In step 26, you uninstall the module from your session and delete the module's folder. You
may, of course, wish to keep the module!

[42]

What's New in PowerShell and Windows Server

There's more...

There are a wealth of other resources in the PSGallery—you use the Find-* cmdlets to
explore the online resources you can download and use:

PS C:‘\Windows\system32> Get-Command -Module PowerShellGet -Verb Find

CommandType Name I i Source

Power ShellGet
PowerShellGet
Power ShellGet
Power ShellGet
Power ShellGet

Function F1nd-Command
Function Find-DscResource
Function Find-Module
Function Find-RoleCapability
Function Find-5cript

[LE SIS LS I S)

The PowerShellGet module enables search for commands, DSC resources, modules, role
capabilities, a feature of Just Enough Administration (JEA), and scripts. You can download
and use these various tools, or leverage them to build your own custom scripts.

Exploring PackageManagement

PowerShellGet is a powerful resource for PowerShell, built on top of the core
PackageManagement capabilities of PowerShell 5. It is one of many
PackageManagment providers available, as shown here:

PackageManagement PackageManagement

Al Core Providers

Package Sources

PowershellGet

PowerShell Gallery
MS

Msu
Programs ' ' NuGet Gallery 1

NuGet

Install/Uninstall

=

(==

=
-

PackageManagement

PowerShell cmdlets

NuGet Gallery 2
Inventory

Image Source: https://blogs.technet.microsoft.com/packagemanagement/2015/04/28/introducing-packagemanagement-in-windows-10/

[43]

What's New in PowerShell and Windows Server

PackageManagement is a unified interface for software package management systems, a
tool to manage package managers. You use the PackageManagement cmdlets to perform
software discovery, installation, and inventory (SDII) tasks. PackageManagement
involves working with package providers, package sources, and the software packages
themselves.

Within the PackageManagement architecture, PackageManagement providers represent
the various software installers that provide a means to distribute software via a standard
plug-in model using the PackageManagement APIs. Each PackageManagement provider
manages one or more package sources or software repositories. Providers may be publicly
available or can be created within an organization to enable developers and system
administrators to publish or install propriety or curated software packages.

PackageManagement Core is effectively an API. The core includes a set of PowerShell
cmdlets that enable you to discover available software packages, as well as to install,
uninstall, update, and inventory packages using PackageManagement.

Each PackageManagement provider is a different installer technology or package manager
that plugs-in via the PackageManagement APL PowerShellGet, NuGet, and Chocolatey
are examples of PackageManagement providers.

Each provider is made up of one or more sources, which may be public or private. For
example, NuGet has a public source, but your organization may add private sources for the
NuGet provider, enabling curation of approved software to make it available to corporate
developers.

How to do it...

You use the cmdlets within the PackageManagement module to explore the capabilities it
provides.

1. Review the cmdlets in the PackageManagement module:
Get-Command -Module PackageManagement
2. Review the installed providers with Get -PackageProvider:

Get-PackageProvider | Select-Object —-Property Name, Version

[44]

What's New in PowerShell and Windows Server

3. The provider list includes ms1i, msu, and Programs package providers. These
providers expose applications and updates installed on your computer which
you can explore:

Get-Package -ProviderName msi |
Select-Object -ExpandProperty Name

Get-Package -ProviderName msu |
Select-Object -ExpandProperty Name

Get-Package -ProviderName Programs |
Select-Object -ExpandProperty Name

4. The NuGet source contains developer library packages. This functionality is
outside the scope of this book, but worth exploring if you do Windows or web
development:

Get-PackageProvider —-Name NuGet
5. There are also other package providers you can explore:

Find-PackageProvider |
Select-Object -Property Name, Summary |
Format-Table -Wrap —-AutoSize

6. Notice Chocolatey, which is a very useful tool for Windows administrators and
power users. Those with some Linux background may think of Chocolatey as
apt-get for Windows. You cannot use this provider until you install it and
confirm the installation:

Install-PackageProvider —-Name Chocolatey -Verbose
7. Verify Chocolatey is now in the list of installed providers:
Get-PackageProvider | Select-Object Name,Version

8. Look for available software packages from the Chocolatey package provider.
Store these in a variable so you don't request the collection more than once, and
explore it:

$AvailableChocolateyPackages = °

Find-Package —-ProviderName Chocolatey
How many software packages are available at Chocolatey?
$AvailableChocolateyPackages | Measure-Object

[45]

What's New in PowerShell and Windows Server

9. Pipe to Out-Gridview to search for interesting software packages from
Chocolatey:

$AvailableChocolateyPackages |
Sort-Object Name,Version |
Select-Object Name, Version, Summary |
Out-GridView

10. Install one or more packages. sysinternals is a good example to use. Use —
Verbose to get details on the installation:

Install-Package -ProviderName Chocolatey °
—Name sysinternals
—Verbose

11. Review installed Chocolatey packages, stored to C: \chocolatey\ by default,
this path is stored in the senv:ChocolateyPath environment variable. Then
review the executable files included with the sysinternals package:

Get-ChildItem -Path $env:ChocolateyPath\lib |
Select-Object -Property Name
Get-ChildItem -Path °
$env:ChocolateyPath\lib\sysinternals.2016.11.18\tools
-Filter *.exe |
Select-Object -Property Name

12. Run any installed command included with sysinternals:
$PSInfoCommand = °
‘C:\Chocolatey\lib\sysinternals.2016.11.18\tools\PsInfo.exe’

Invoke-Expression —Command $PSInfoCommand

13. Installed packages are enumerated with Get-Package and updated using the
same command to install them, Install-Package:

Get-Package —-ProviderName Chocolatey |
Install-Package —-Verbose

[46]

What's New in PowerShell and Windows Server

How it works...

In step 1, you review the cmdlets available in the PackageManagement module:

P5 C:\foo» Get-Command -Module PackageManagement

CommandType

Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet

Name Version Source
Find-Package
Find-PackageProvider
Get-Package
Get-PackageProvider
Get-PackageSource
Import-PackageProvider
Install-Package
Install-PackageProvider
Register-PackageSource
Save-Package
Set-PackageSource
Uninstall-Package
Unregister-PackageSource

PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement
PackageManagement

Tl e e o o T O
i el e U e
R e e e e e e e P e
coocoocooooooOoO

In step 2, you use the Get-PackageProvider cmdlets to display the currently installed
package providers:

PS5 C:\foo» Get-PackageProvider | Select-Object -Property Name, Version

Name
Chocolatey
ms1i

msu

NuGet

Power ShellGet
Programs

In step 3, you use Get-Package with the ~-ProviderName parameter to review packages
installed via the msi, msu, and Programs package providers:

PS5 C:\foo> Get-Package -ProviderName msu | Select Name

Update for Windows Defender 2 (Definition
Update for Wi Defender . (Definitio
Update f Defender (Defﬁni #

Definition Windows -233.
Definition Update for Windows Defender 2 (Definition 1.233.1099.0)
Definition Update for Windows Defender (Definition 1.233.897.0)

[47]

What's New in PowerShell and Windows Server

In step 4, review the NuGet provider:

P5 C:%foo» Get-PackageProvider -Name NuGet | 5Select-Object -Propertwy Name, Version

Mame Version

MuGet 2.8.5.208

In step 5, search for other package providers:

- Find-PackageProvider | Select-Object -Property Name,Summary | Format-Table —Wrap -AutoSize

Sunmary
NuGet provider for the OneGet meta-package manager
psl provider for the OneGet meta-package manage:

chocolatey ChocolateyPrototype provider for the OneGet meta-package manager

ContainerImage This is a PackageManagement provider module which helps in discovering, downloading and installing Windows Container 05 images.

For more details and examples refer oject site at https: : ontainerProvider.

DockerMsftProvider Powershell module with commands for d ng, installing, and i er images

NanoServerPackage A PackageManagement provider to Discover, Save and Install Nano Server Packages on-demand

GitHubProvider GitHub-as-a-Package - PackageManagement Powershell Provider to interop with Github

ChocolateyGet An PowerShell OneGet provider that discovers packages from htt ‘www. chocolatey. org.

TSDProvider Powershell PackageManager provider to search & install TypeScript definition files from the community DefinitelyTyped repo

PowershellGet B Sl CEEhTEE CraT Gr s e e iy SEAT T, (e S A e Mol araieeis T e, (92 M, ks
Capabilities and Script:

GistProvider Gist-as-a-Pacl geManagement PowerShell Provider to interop with Github Gists

MyATbum MyATbum provi i the photos in your remote file repository and installs them to your local folder.

OfficeProvider OfficeProvider allows users to install Microsoft Office365 ProPlus from Powershell.

GitLabProvider Lab PackageManagement provider

WSAProvider Provider to Discover, Install and inventory windows server apps

oinstall Zero Install is a decentralized cross-platform software-installation system.

In step 6, you use Install-PackageProvider to install the Chocolatey provider. Since it
is untrusted as a public source, you must approve the installation (at your own risk and
responsibility):

EF The package(s) comefs) from a package source that is not marked as trusted -

Are you sure you want to install software from “htp: ho pe-2.85.130.pack

' from "http:

In this example, you run Install-PackageProvider from within the ISE. By default, this
pops up a confirmation dialog. If you run this cmdlet from the PowerShell console, you see
a prompt there. You can suppress these confirmation requests by including the parameter -

Confirm:S$False.

[48]

What's New in PowerShell and Windows Server

In step 7, you verify Chocolatey is now installed as a package provider:

PS5 C:\foo» Get-PackageProvider | Select-Object -Property Name,Version

Name
Chocolatey
ms1

msu

NuGet
Power5shellGet
Programs

L = Pd L L B

In step 8, retrieve a list of available software packages from the
ChocolateyPackageProvider, store as a variable, and count the available packages:

“foo» $AvailableChocolateyPackages = Find-Package -ProviderName Chocolatey
#How many software packages are available?
$availableChocolateyPackages | Measure-Object

Count : 4504

Average
Sum
Maximum
M1 nimum
Property :

In step 9, pipe the variable to Out -Gridview and use the filter feature to explore what is
available. This example is filtering for the Sysinternals package:

“foo> $availableChocolateyPackages | Sort-Object Name,Version | Select-Object Name, Version, Summary | Out-GridView

= SavailableChocolateyPackages | Sort-Object Name, Version | Select-Objestbhlamaismas

Filter Use the filter with
ins |sysinternals x ‘contains’ criteria to
I narrow your search

and Name cor

i A e =] X

Name Version Summary

sysinternals 2016.11.18 Sysinternals - utilities to help you manage, troubleshoot and diagnose your Windows systems and applications.

[49]

What's New in PowerShell and Windows Server

In step 10, you install this package (or any package you choose):

30 Install-Package -ProwviderName Chocolatey -Name sysinternals

Downloading "hitps.//livesysinternals.com/files/SysinternalsSuite.zip’,
Completed..

Unpacking Archive “sysinternalsinstall.zip’ .
Unpacked PORTMOMN.CNT.

In step 11, you review the installed Chocolatey packages, and the files contained within
the sysinternals package folder:

ools -Filter *.exe | Select-Object -Property Name

In step 12, run any Sysinternals command, for example, PsInfo.Exe :

PS5 C:%\foox> $PSInfoCommand = "C:‘Chocolatey'lib\sysinternals.2016.11.18\tools"PsInfo.exe”
Invoke-Expression -Command $PSInfoCommand

PsInfo v1.78 - Local and remote system information viewer
Copyright (C) 2001-2016 Mark Russimovich
Sysinternals - www.sysinternals.com

Querying information for SVR2016...

System information for \\SVR201lG:

Uptime: 0 days & hours 20 minutes 12 seconds

Kernel version: Windows Serv 2016 Datacenter, Multiprocessor Free
Product type: Standard Edition

Product version: [

Service pack: o

Kernel build number: 14393

Registered organization:

Registered owner: Windows User

IE version: 9.0000

System root: i

Processors: 1

Processor speed: 2.4 GHz

Processor type: Intel(R) Core(TM) i7-4710HQ CPU @
Phy=sical memory: 4 MB

Video driver: Microsoft Hyper-V Video

3

[50]

What's New in PowerShell and Windows Server

In step 13, you enumerate the installed packages with Get-Package. As time goes by,
packages can be updated with bug fixes, new features, and so on. You can update all the
installed packages if any updates exist, as follows:

P5 C:\foo> Get-Package -ProviderName Chocolatey | Install-Package -Verbose

There's more...

Details of NuGet package and its functionality are outside the scope of this book, but worth
exploring if you do Windows or web development. More information on NuGet packages is
available from https://www.nuget.org/Packages.

Chocolatey has both a command-line interface and a PowerShell module. The command
line interface offers functionality comparable to the PackageManagement module, targeted
toward end users and system administrators. Chocolatey is supported on any Windows
PC running Windows 7 or later. You can get more information on installing and using
Chocolatey via the command line from https://chocolatey.org/install.

Sysinternals is a must-have toolkit for Windows administrators. You can find additional
training on the Sysinternals tools on the Channel 9 website at

https://channel9.msdn.com/Series/sysinternals.

Creating an internal PowerShell repository

It is useful to create your own PowerShell repository for personal or corporate use. The
tools to enable you to build your own repository are not included in PowerShell. There are
three main approaches available that enable you to build a repository:

¢ Using Visual Studio's NuGet package manager to download and install the
Nuget . Server package into a new web project, and deploy to your own IIS
Server. This option is free. However, you need to use Visual Studio 2015 (Either
the full version or the free community edition) to create your own web project,
download the Nuget server software, and deploy it into your environment. More
information is available at https://www.nuget.org/packages/NuGet .Server.

[51]

https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://www.nuget.org/Packages
https://chocolatey.org/install
https://channel9.msdn.com/Series/sysinternals
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server
https://www.nuget.org/packages/NuGet.Server

What's New in PowerShell and Windows Server

e Using a third-party NuGet host's SAAS platform. This is the simplest solution,
but software licensing fees may apply, and some organizations might have
reservations about keeping the code on external servers. Choices for this
approach include Visual Studio Team Services, http://myget.org/, and ProGet.

e Installing a 3rd-party NuGet software repository on your server. This simplifies

the setup process for hosting your own software repository, but software
licensing fees may apply.

More information is available on hosting from the NuGet site at https://

docs.nuget.org/ndocs/hosting-packages/overview.

The simplest approach to setting up your own software repository is to install and
configure the free or trial version of ProGet. Do so via a GUI installation—the steps are
described at https://inedo.com/support/documentation/proget/installation/
installation-guide

You have the choice of using an existing SQL Server instance or installing SQL Express as
part of the installation. SQL is used to hold the repository's data. You may also choose to
install your repository to an existing IIS Server or install ProGet with its own internal web
server.

Inedo also provides a PowerShell script to perform the installation, which you may
customize. For the script based installation, you need to register for a free license key at
https://my.inedo.com.

You can find more information on using ProGet from the Inedo web site at
https://inedo.com/support/kb/1088/using-powershell-to-install-an

d-configure-proget.

How to do it...

1. Once you have installed ProGet using either the GUI or PowerShell script
approach, log in to the ProGet application home page using the default admin
account until you create a username and password:

[52]

http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
http://myget.org/
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://docs.nuget.org/ndocs/hosting-packages/overview
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://inedo.com/support/documentation/proget/installation/installation-guide
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://my.inedo.com
https://inedo.com/support/kb/1088/using-powershell-to-install-and-configure-proget
https://inedo.com/support/kb/1088/using-powershell-to-install-and-configure-proget

What's New in PowerShell and Windows Server

€ O localhost:a1/log-in

¥ProGet

we created a default account for you with the user name Rdmin and the
password Admin. You can automatically log in with Admin/admin, or just type
in those values and click Log In.

This message will go away if you change your password or add another user.

User name:

Password:

2. From Feeds page, click Create New Feed:

Click Feeds, then
Create New Feed

Packages Downloads API Endpoint Url

Default 0 o http://localhost:81/nuget/Default

[53]

What's New in PowerShell and Windows Server

3. Alist of supported feed types is displayed. Choose PowerShell:

Create Feed x

Universal
Package repository for pack ontaining arbitrary files.

NuGet

Package repository for NET, C++/CoApp, etc.

PowerShell
PowerShell commands or Desired State Configuration (DSC) resources.

Chocolate

Machine-level

Bower
A private registry for Bower/JavaScript packages.

Docker
A private registry for Docker repositories.

Ruby Gems

4. Enter a feed name of your choice: (for example, MyPowerShellPackages) and
click the Create New PowerShell Feed button:

Create PowerShell Feed ®

Please keep it URL friendly - the feed's name is used in the AP endpoint URL, and no one
likes having to escape whitespace and other characters.

Feed name: MyPowerShellPackages

Create New PowerShell Feed Close

[54]

What's New in PowerShell and Windows Server

5. Review the properties of your new feed:

Vulnerabilit

Manage MyPowerShellPackages Feed

Properties
MName MyPowerShellPackages rename
Description no description change
Type PowerShell change
Caching Enabled (connector packages will be cached when they are first requested) clear | configure
Replication Disabled configure | history
Disk Path C:\ProgramData\ProGet\Packages\.nugetva\F2 change
Package Store default change
Drop Path not set change
NuGet APl Key not set

Feed Connectors 2dd connector Vulnerability Sources aAd satiia
This feed has no connectors. This feed has no vulnerability sources configured.

License Filters adit

Allow any license

Rentention Rules create

This feed has no retention rules defined.

6. Open the PowerShell ISE or console, and register your new repository:

SRepositoryURL =
"http://localhost:81/nuget/MyPowerShellPackages/"
Register-PSRepository —Name MyPowerShellPackages
—-SourceLocation $RepositoryURL’
-PublishlLocation $RepositoryURL °
—-InstallationPolicy Trusted

[551]

What's New in PowerShell and Windows Server

7. Publish a module you already have installed (Pester, for example):

Publish-Module -Name Pester -Repository MyPowerShellPackages °
—NuGetApiKey "Admin:Admin"

8. Download a module from PSGallery, save it to the C:\Foo folder, and
publish to your new repository (for example, Carbon):

Find-Module -Name Carbon —-Repository PSGallery
New-Item —-ItemType Directory -Path 'C:\Foo'
Save-Module -Name Carbon -Path C:\foo
Publish-Module -Path C:\Foo\Carbon °
-Repository MyPowerShellPackages °
—NuGetApiKey "Admin:Admin"

9. Find all the modules available in your newly created and updated repository:

Find-Module -Repository MyPowerShellPackages

How it works...

There are various options for setting up a NuGet-based repository for Powershell. ProGet
is a universal package manager from Inedo (See https://inedo.com/proget for more
information on ProGet). ProGet is a very simple choice as it is easy to get started and offers
the ability to scale to enterprize level. ProGet has both a free and a paid subscription version
available. The ProGet installer creates a NuGet web server backed by a SQL Express
database.

In step 1, you visit the server web administration page and optionally review the
functionality available.

In steps 2-5, you use ProGet to create a new repository for your PowerShell modules. As you
see, you use the ProGet GUI to create this new repository.

In step 6, you register your new repository in your PowerShell session. You need to know
the repository URL and have a NuGet API key, using the default username/password of
Admin /Admin.

In step 7, you publish a module to the repository—you are using a module that is installed
in your PowerShell session, Pester.

[561]

https://inedo.com/proget

What's New in PowerShell and Windows Server

In step 8, you locate and download an additional module from the PSGallery, and publish
this module to your local repository.

In step 9, you see the modules available from your local repository:

PS5 C:\foox Find-Package -Source MyPowerShellPackages

Version S Summary

4. MyPower Shel1Packages Carbon 1s a PowerS5Shell module for automating the configur...
Pester .4, MyPower ShellPackages Pester provides a framework for running BDD style Tests t...

There's more...

ProGet is a rich product. It provides both automatic failover and scalability which are
needed features for PowerShell repositories in large organization's repository. ProGet is one
option you have for creating your own organization specific repository. To learn more
about ProGet, visit http://inedo.com/support /documentation/proget.

NuGet is a free, open source package management system provided by the Microsoft
ASP.NET development platform and is provided as a Visual Studio extension. To learn
more about NuGet, visit https://docs.nuget.org/ndocs/api/nuget—-api-v3.

[571

http://inedo.com/support/documentation/proget
https://docs.nuget.org/ndocs/api/nuget-api-v3

Implementing Nano Server

This chapter contains the following recipes:

¢ Deploying a Nano Server in a VM
¢ Connecting to and managing a Nano Server
¢ Installing features with Nano Server packages

Introduction

Nano Server is a new installation mode of Windows Server 2016. It is a minimal
implementation of Windows Server with no desktop, and no default features or services.
Nano Server has a minimal disk, memory, and CPU footprint to reduce attack surface and
patching requirements.

Deploying a Nano Server in a VM

Deploying a Nano Server is a simple and customizable process. This recipe focuses on the
most straightforward implementation which is deploying a Nano Server in a virtual
machine. With Nano Server you have several customization options:

¢ Network address: By default, Nano Server uses DHCP to acquire an IP address.
You can configure the IP address, subnet, gateway, and DNS both before or after
deployment.

e Domain membership: By default, Nano Server is not domain joined. You can
configure domain membership both before or after deployment.

Implementing Nano Server

As this book was going to press, Microsoft has announced that, going forward, Nano Server
is only available as a container base OS image. Refer to: https://docs.microsoft.com/en-
us/windows-server/get-started/nano-in-semi-annual-channel for more information.

Getting ready

You need Windows Server 2016 installation ISO file and a Windows Server 2016 system
running Hyper-V (1v1). This recipe assumes the path to the ISO file
isD:\iso\WinServer2016.1iso.

This recipe assumes you have Hyper-V setup and have at least one switch defined.

You also need a folder for storing the base image files (C: \NanoBase in this recipe) and a
folder for storing the virtual machine file and VHDX files (C: \VMs in this recipe).

How to do it...

1. On the VM host, mount Server 2016 installation ISO:

$Server2016ISOPath = 'D:\iso\WinServer2016.iso'

$MountResult = Mount-DiskImage -ImagePath $Server2016ISOPath °
—PassThru

$MountResult | Select-Object -Property *

2. Determine the drive letter(s) of mounted ISO(s), including the colon (:):

$Server20l16InstallationRoot = ($MountResult |
Get-Volume |
Select-object -ExpandProperty Driveletter) + ':'
$Server20l6InstallationRoot

3. Get the path of the NanoServerImageGenerator module within the server
installation disk:

$NanoServerFolder = °
Join-Path -Path $Server20l6InstallationRoot °
—ChildPath 'NanoServer'
$NsigFolder = Join-Path -Path $NanoServerFolder °
—ChildPath 'NanoServerImageGenerator'

[591]

https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel
https://docs.microsoft.com/en-us/windows-server/get-started/nano-in-semi-annual-channel

Implementing Nano Server

4.

10.

Review the contents of the NanoServerImageGenerator module folder:

$NsigFolder
Get-ChildItem —-Path $NsigFolder -Recurse

Import the NanoServerImageGenerator module and review the commands it
contains:

Import-Module —-Name $NanoServerImageGeneratorModuleFolder
Get-Command -Module NanoServerImageGenerator

Designate the folder for the base Nano Server images:
$NanoBaseFolder = 'C:\NanoBase'

Designate the folder for the VM images:

S$VMFolder = 'D:\VMs'

Define the Nano Server computer name and file paths for your Nano Server VM:

$NanoComputerName = 'NANO1l'

$NanoVMFolder = Join-Path -Path $VMFolder
—-ChildPath $NanoComputerName

$NanoVMPath = Join-Path -Path $NanoVMFolder °

—-ChildPath "$NanoComputerName.vhdx"

Create a Nano Server VM image, as a guest VM within Hyper-V and prompt for
the administrator password:

New-NanoServerImage -DeploymentType Guest —-Edition Datacenter
-MediaPath $Server20l6InstallationRoot
-BasePath $NanoBaseFolder °
-TargetPath $NanoVMPath °
—ComputerName $NanoComputerName

Define a VM switch for your Nano Server:

$SwitchName = Get-VMSwitch |
Select-Object -ExpandProperty Name -First 1

[60]

Implementing Nano Server

11. Create a new VM in Hyper-V using the Nano Server VM image:
New-VM -VHDPath $NanoVMPath -Name $NanoComputerName °
—-Path $NanoVMFolder °
—SwitchName $SwitchName °
—Generation 2 -Verbose

12. Start your new Nano Server VM:

Start-VM -Name $NanoComputerName -Verbose

How it works...

In step 1, you mount the Windows Server installation ISO file:

Ps c:\foo> $server2016ISoPath = 'D:\iso\Winserver2016.iso"
$MountResult = Mount-DiskImage -ImagePath $Server2016ISoPath -PassThru
$MountResult | Select-Object -Property *

Attached : False
BlockSize : 0
DevicePath :

Filesize : 5653628928

ImagePath : D:\iso\Winserver2016.iso

Logicalsectorsize : 2048

Number :

Size : 5653628928

StorageType Ha

PSComputerName :

cimClass : ROOT/Microsoft/Windows/Storage:MSFT_D1iskImage
CimInstanceProperties : {Attached, BlockSize, DevicePath, FileSize...}
CimSystemProperties : Microsoft.Management.Infrastructure.CimSystemProperties

In step 2, you store the drive letter for the mounted ISO file:

Ps c:\foo> $server20l6InstallationRoot = ($MountResult |
Get-volume |
Select-object -ExpandProperty Driveletter) +

$server2016InstallationRoot
(23

[61]

Implementing Nano Server

In step 3 and step 4, you get the path to the NanoServerImageGenerator module folder
within the installation media and review the contents:

PS C:\foo> $NanoServerFolder = Join-Path -Path $Server20l6InstallationRoot -ChildPath "NanoServer'
$NsigFolder = Join-Path -Path $NanoServerFolder -childPath *NanoServerImageGenerator’

$NsigFolder

E:\NanoServer\NanoServerImageGenerator

Ps C:\foo> Get-childItem -Path $NsigFolder -Recurse

Di rectory: E: \Na.noServer'\NanoServer‘ImageGene rator

LastWriteTime Name
2016-09-12 8:19 AM
2016-09-12 8:19 AM 163433 convert-windowsImage.psl

2016-09-12 8:19 AM 478 NanoServerImageGenerator.psdl
2016-09-12 8:19 AM 101216 NanoServerImageGenerator.psml

Directory: E:\NanoServer\NanoServerImageGenerator\en-uUs

Mode LastWriteTime Length Name

-—r--- 2016-09-12 8:19 AM 13302 nanoserverimagegenerator.strings.psdl

In step 5, you import the module and view the commands it contains:

ps c:\foo> Import-module -Name $NsigFolder
Get-Command -Module NanoServerImageGenherator

CcommandType Name i Source

Function Edit-NanoServerImage .0.0. NanoServerImageGenerator
Function Get-NanoServerPackage .0.0. NanoServerImageGenerator
Function New-NanoServerImage .0.0. NanoServerImageGenerator

$NanoBaseFolder = "C:\NanoBase'

$vMFolder = 'D:\vMs"'

$NanoComputerName = "NANOL'

$NanovMFolder = Join-Path -Path $vMFolder -childPath $NanoComputerName

$NanovMPath = Join-Path -Path $NanovMFolder -childPath $("{0}.vhdx" -f $NanoComputerName)

[62]

Implementing Nano Server

In step 9, you create the Nano Server image, and you provide the administrator password
when prompted.

PS C:\> New-NanoServerImage -DeploymentType Guest -Edition Datacenter

-MediaPath $Server2016InstallationRoot -BasePath $NanoBaseFolder
-TargetPath $NanovMPath -ComputerName $NanoComputerName

Monitor the progress bar as the cmdlet builds the image:

Converting image....
Processing.

Operation.
Running.

In step 10, you store the name of the Hyper-V switch to which you connect your new Nano
Server. If you have defined more than one switch, this recipe returns the first switch
found—you may need to adjust this step depending on your configuration. The output
looks like this::

00> $switchName = Get-vMswitch | Select-oObject -ExpandProperty Name -First 1

In step 11, you create the VM in Hyper-V, referring to the newly created VHDX file.

PS C:\foo> New-VvM -VHDPath $NanovMPath -Name $NanoComputerName -Path $NanovMFolder -
-SwitchName $SwitchName -Generation 2 -Verbose

VERBOSE: New-VM will create a new virtual machine "NANO1".

Name State CPUUsage(%) MemoryAssigned(M) Uptime Status version

NANO1 off 00:00:00 operating normally 8.0

In step 12, you start your new VM.

PS C:\foo> Start-VvM -Name $NanoComputerName -Verbose
VERBOSE: Start-vM will start the virtual machine "NANO1".

PS C:\foo>

[63]

Implementing Nano Server

There's more...

This recipe uses the default settings for networking based on DHCP and only applies the
guest package to your new VM. You can define networking and packages at deployment
time. Review online documentation for New-NanoServerImage: https://technet.

microsoft.com/en-us/library/mt791180.aspx.

In step 4, you import the NanoServerImageGenerator module explicitly. You could also
copy the module to your local module store. You can use any folder contained in
$PSModulePath. Adding the module to your module store removes the need to import the
module explicitly.

In step 7, you define the path to the VHD file. You should use the . vhdx extension for a VM
generation 2 image, or the . vhd extension for a VM generation 1 image.

In step 10, you create the Nano Server VM. You store the VM file configuration files in the
same folder as the VM disk. Additionally, the generation specified in this command needs
to correspond to the choice of file extension in step 7. For a generation 1 VM use . vhd, and
for a generation 2 VM use . vhdx. You may find yourself creating various Nano Servers in
your learning process. To clean up a Nano Server VM, run the following commands:

Stop-VM -Name $NanoComputerName
Remove-VM —-Name $NanoComputerName
Dismount-DiskImage —ImagePath $Server2016ISOPath

You use this VM in the later recipes of this chapter.

Connecting to and managing a Nano Server

Nano Server is designed to be managed remotely without the use of remote desktop
services or local console access. You can connect directly to your Nano Server or use other
tools to carry out management functions.

Nano Server lacks a desktop experience and remote desktop capability. You use the Nano
Server Recovery Console to do some basic network management and to view operating
system information. You perform most configuration and management remotely.

[64]

https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx
https://technet.microsoft.com/en-us/library/mt791180.aspx

Implementing Nano Server

Perhaps the simplest way to connect to and configure virtual machines (VMs) is for you to
use PowerShell Direct, a new feature introduced in Windows Server 2016. PowerShell
Direct enables PowerShell remoting to VMs via the hypervisor instead of using the
network, without the need to access the recovery console or configure networking for the
VM.

Getting ready

Your Nano Server should be running in Hyper-V, and you should have administrator
access on the Hyper-V host and know the VM Name and administrator password for the
Nano Server.

You should decide on how to set up networking for the Nano Server VM. You can use
DHCP (the default) or implement Static IP address details for your Nano Server. If you
choose a static address, know the desired address, subnet, gateway, and DNS Server. In this
recipe for Reskit .org, use the following:

o [PAddress: 10.10.10.131

e Subnet Mask: 255.255.255.0

e Gateway: 10.10.10.254

e DNS:10.10.10.10/10.10.10.11

How to do it...

Method 1, using the Nano Server Recovery Console:

1. Launch Hyper-V management console, and locate the VM running Nano Server.

2. Double-click the VM to bring up the recovery console.

3. Enter the username administrator and the password that you defined when you
created the VM.

4. Nano Server then display basic information about the server with a menu of
options. Choose Networking from this menu by pressing Enter, then press Enter
again to choose the default adapter.

5. Your Nano Server's IP configuration is displayed, with key navigation options
displayed at the bottom of the screen. Note your IP address to use to connect later
in this recipe.

[65]

Implementing Nano Server

6

. Press F11 at this screen to configure your IP address, if desired. Then press F4 to
change from DHCP to static IP, and use the Tab key to move between the IP
Address, Subnet Mask, and Default Gateway fields, and enter the desired
values.

Method 2, using PowerShell Direct:

1

N

. From the Hyper-V host, open PowerShell ISE. List the VMs:
Get-VM —-Name N*
. Store the Nano Server VM name and administrator credential in variables:
$NanoComputerName = 'NANO1l'
$Credential = Get-Credential
-Message "Enter administrator password for target VM:"
—-UserName administrator

. Get the running processes using Invoke-Command via PowerShell Direct:

Invoke-Command -VMName $NanoComputerName —-Credential $Credential
—ScriptBlock { Get-Process }

. Enter an interactive PowerShell remoting session via PowerShell Direct:
Enter-PSSession -VMName $NanoComputerName -Credential $Credential

. You are connected just like that in a PowerShell remoting session! Create and use
a test folder in your Nano server:

New-Item -ItemType Directory -Path C:\foo °
—ErrorAction SilentlyContinue
Set-Location C:\foo
. Gather information about your server using the new Get-ComputerInfo cmdlet:
Get—-ComputerInfo —-Property CsName, WindowsEditionId,
OSServerLevel,
OSType, OSVersion, WindowsBuildLabEx, BiosBIOSVersion

. Examine $PSVersionTable, noting the value of the PSEdition property:

$PSVersionTable

[66]

Implementing Nano Server

8. Get the IP Address of your Nano Server, noting it for later recipe steps:

Get-NetIPAddress —AddressFamily IPV4 -InterfaceAlias Ethernet |
Select-Object -ExpandProperty IPAddress

9. If required, change the IP Address of your Nano Server, and display the new IP:

New-NetIPAddress —-InterfaceAlias 'Ethernet'
—-IPAddress 10.10.10.131
-PrefixLength 24
—-DefaultGateway 10.10.10.254
Get-NetIPAddress -InterfaceAlias 'Ethernet' -AddressFamily IPv4

10. If required, set the DNS of your Nano Server, and display the DNS information:
Set-DnsClientServerAddress —-InterfaceAlias 'Ethernet'

—ServerAddresses 10.10.10.10,
10.10.10.11

Get-DnsClientServerAddress
11. Exit your remoting session:
Exit-PSSession

Method 3, Using PowerShell Remoting:

1. PowerShell remoting requires that the remoting target computer IP should be
among the TrustedHosts defined on your computer. Add the IP Address of the

Nano Server to our computer's TrustedHosts and verify the value:

$NanoServerIP = '10.10.10.131"
Set-Item -Path WSMan:\localhost\Client\TrustedHosts
—Value $NanoServerIP -Force
Get-Item —-Path WSMan:\localhost\Client\TrustedHosts
2. Verify wSMan connectivity to the Nano Server:
Test-WSMan -Path $NanoServerIP

3. Connect via PowerShell remoting to the Nano Server:

Enter-PSSession —-ComputerName $NanoServerIP
—Credential $Credential

[67]

Implementing Nano Server

4. Use Get-ComputerInfo to inspect the Nano Server:
Get—-ComputerInfo —-Property CsName, WindowsEditionId,
OSServerLevel, OSType, OSVersion,
WindowsBuildLabEx, BiosBIOSVersion
5. Exit your remoting session:
Exit-PSSession
Method 4, Using WMI with the CIM cmdlets:
1. Create a new CIM session on the Nano Server, and view the $CimSession object:

N

$CimSession = New-CimSession —-Credential $Credential
—ComputerName $NanoServerIP
$CimSession

2. Examine the properties of the Win32_ComputersSystem CIM class:
Get-CimInstance —-CimSession $CimSession °
—ClassName Win32_ComputerSystem |
Format-List —-Property *
3. Count the CIM classes available:

Get-CimClass —-CimSession $CimSession | Measure-Object

4. View the running processes using the CIM_Process WMI class and a WMI
query:

Get-CimInstance -CimSession $CimSession °
—Query "SELECT * from CIM Process"

5. Remove your CIM Session:

Get-CimSession | Remove-CimSession

How it works...

In Method 1, you use the Nano Server Recovery Console from the Hyper-V manager. This
technique is useful when the Nano Server has an invalid Ethernet configuration or an
unknown IP address.

[68]

Implementing Nano Server

In step 1 and step 2, from Hyper-V manager, double-click on the NANO1 virtual machine to
bring up the Nano Server Recovery Console.

In step 3, you log in with the username administrator and the password you provided
during the creation of the VM:

File Action View Help

= |75 HE
[Hyper-V Manager
Eg DGEM Virtual Machines
Name State CPU Usage Assigned Memory Uptime Status Configurati...
| E NANO1 Running 0% 512 MB 00:01:39 80
s
File Action Media Clipboard Vie Help

D@0 nf

User name: administrator
PE r—d: EE R LR R LR

Domain:

EN-US Keyboard Required

ENTER: Authenticate

Status: Running =0

[69]

Implementing Nano Server

In step 4, you view the summary information on your Nano Server and navigate through
the screens using the keyboard, with the menu options displayed at the bottom:

Nano Server Recovery Console

. 01
r Name: ANadministrator
Workgroup: WORKGROUP
0S: Microsoft Windows Server 2016 Datacenter
Local date: Monday, January 16, 2017
Local time: 12:34 PM

> Networking
Inbound Fires 1 Rules
Outbound Firewall Rules
WinRM

Dn: Scroll | ESC: Log out | F5: Refresh | Ct1+F6: Restart
Ct1+F12: Shutdown ENTER: Select

[70]

Implementing Nano Server

When you select Networking from the initial screen, you see the Network Settings
folder, like this:

Network Settings

Select an ter to configure.

> Ethernet (00-15-5D-02-6C-05)

Up/Dn: Highlight | ENTER: Select | ESC: Back

In step 5, you view the networking configuration of your server, noting the IP address so
you can access it later.

In step 6, you can modify your IP address. The default configuration uses DHCP. If your
scenario requires it, disable DHCP and define a valid static IP Address, Subnet Mask, and
Default Gateway:

[71]

Implementing Nano Server

IP Configuration

Ethernet
Microsoft Hyper-V Network Adapter
00-15-5D-02-6C-05

DHCP Disabled
IP Address

Subnet

Default Gate

Cancel | ENTER: Sav F4: Toggle

In Method 2, you use PowerShell Direct. PowerShell Direct is a new feature introduced in
Hyper-V in Windows Server 2016 (and Windows 10). PowerShell Direct enables PowerShell
scripting against Windows Server 2016 and Windows 10 virtual machines directly through
the hypervisor, without requiring network, firewall, or remoting configuration. PowerShell
Direct simplifies deployment and automation scripting for Hyper-V hosted virtual
machines.

In step 1, you get the list of VM names from the local Hyper-V server:

Ps C:\foo> Get-VM -Name N*
Name State CPUUsage(%) MemoryAssigned(M) Uptime Status Vversion

NANO1l Running 0 1.06:49:21.5540000 Operating normally 8.0

Ps C:\foo>

[72]

Implementing Nano Server

In step 2, you store the VM name and credential in a variable for later use in the recipe:

Ps cC:\foo> $credential = Get-Credential -Message "Enter password for administrator user on target VM:" -UserName administrator

Enter password for administrator user on target VM:

User name: € administrator ~ | e

e ——

Cancel

In step 3, you view the running processes from the VM using Invoke-Command with a
script block of Get -Process. Note that the ~VMName parameter indicates the use of
PowerShell Direct:

Ps c:\foo> Invoke-Command -VMName $NanoComputerName -Credential $Credential
-scriptBlock { Get-Process }

Handles NPM(K) d ProcessName PSComputerName

NANOL

NANOL

NANOL
powershell NANO1
services NANOL
smss NANOL
svchost NANOL
svchost NANO1
svchost NANO1
svchost NANO1
svchost NANOL
svchost NANO1
svchost NANOL
svchost NANO1
svchost NANO1
svchost NANO1
System NANOL
wininit NANOL
WMIADAP NANOL
WmiPrvsE NANOL

OO0 0CO0000O00CO000O0O0O0COO0OO0
FOOOCOO0OO0OOROOOOOCOONDO ©O
OO0 0CO0000O00CO0O00O0O0COOO0O0O

In step 4, you enter an interactive PowerShell remoting session through PowerShell Direct
using the ~VMName parameter:

Ps C:\foo> Enter-PSSession -VMName $NanoComputerName -Credential $cCredential

[NANO1]: PS cC:\Users\administrator\Documents>

[73]

Implementing Nano Server

In step 5, you connect to the VM, note the VM name in the prompt and that your current
directory is in the default Documents folder. Create and use a test folder in your Nano
Server:

[NANO1]: PS c:\Users\administrator\Documents> New-Item -ItemType Directory -Path c:\foo ~
-ErrorAction SilentlyContinue

Set-Location c:\foo

[NANOL1]: PS c:\foo>

In step 6, you gather computer information using a new cmdlet in PowerShell 5.1, Get -

ComputerInfo:

[NANO1]: PS C:\> Get-ComputerInfo -Property CsName, WindowsEditionId, 0SServerLevel,
0SType, 0SVersion, WindowsBuildLabEx, BiosBIOSVersion

CsName : NANOL

windowsEditionId : ServerDatacenterNano

osServerLevel : NanoServer

0sType : WINNT

OsVersion : 10.0.14393

wWindowsBuildLabEx : 14393.693.amd64fre.rsl_release.161220-1747
BiosBIOSVersion : {VRTUAL - 1, Hyper-V UEFI Release v1.0, EDK II - 10000}

In step 7, $PSVersionTable has a PSEdition of Core rather than Desktop. The Core
version supports a subset of the features of the full Desktop edition of PowerShell:

[NANO1]: PS C:\Users\administrator\Documents:> $PSVersionTable

Name

wSManStackVersion

PSRemotingProtocolversion

Serializationversion

PSEdition

PSVersion 5.1.14368.1000
Buildversion 10.0.14368.1000
PSCompatibleversions {1.0, 2.0, 3.0, 4.0...}
CLRVersion

In step 8, you get the IPAddress property from the Get -Net IPAddress cmdlet:

[NANO1]: PS C:\Users\administrator\Documents> Get-NetIPAddress -AddressFamily IPV4 -InterfaceAlias Ethernet |

Select-Object -ExpandProperty IPAddress
169.254.232.208

[74]

Implementing Nano Server

In step 9, you can set your IP address:

[NANO1]: PS C:\foo> New-NetIPAddress -InterfaceAlias 'Ethernet’ -IPAddress 10.10.10.151 ~
-PrefixLength 24 -DefaultGateway 10.10.10.254

IPAddress : 10.10.10.151
InterfaceIndex 3
InterfaceAlias : Ethernet
AddressFamily : IPV4

Type : Unicast

PrefixLength Ha

PrefixOrigin HEELTEY

suffixOrigin : Manual

AddressState : Tentative

validLifetime : Infinite ([TimeSpan]::Maxvalue)
PreferredLifetime : Infinite ([TimeSpan]::Maxvalue)
skipAsSource : False

PolicyStore : ActiveStore

In step 10, you set your DNS:

[NANO1]: PS C:\foo> Set-DnsClientServerAddress -InterfaceAlias "Ethernet’
-ServerAddresses 10.10.10.10, 10.10.10.11
Get-DnsClientServerAddress

InterfaceAlias Interface Address ServerAddresses

Ethernet
Ethernet
Loopback Pseudo-Interface 1
Loopback Pseudo-Interface 1

In step 11, exit your remoting session. Note the change in the prompt:

[NANO1]: PS C:\foo> Exit-PSSession

Ps C:\foo>

With Method 3, you use regular PowerShell remoting. In step 1, you connect to the Nano
Server VM. Before you can do so, you need to add the VMs IP address to your
TrustedHosts on your Windows 2016 server. Note that you can set this value to an
asterisk (*) which enables you to connect to any remoting capable computer:

[75]

Implementing Nano Server

[NANO1]: PS C:\foo> $NanoServerIP = '10.10.10.151°'
Set-Item WSMan:\localhost\Client\TrustedHosts $NanoServerIP -Force
Get-Item WsSMan:\localhost\Client\TrustedHosts

wWsMancConfig: Microsoft.wSMan.Management\WSMan::localhost\Client

Type Name Sourceofvalue Vvalue

System.String TrustedHosts 10.10.10.151

In step 2, you test your remoting connectivity to the VM using Test-wWSMan:
PS C:\foo> Test-wWSMan $NanoServerIP

wsmid : http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd
ProtocolVersion : http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd

Productvendor : Microsoft Corporation

Productversion : 05: 0.0.0 sP: 0.0 stack: 3.0

In step 3, you remote into the VM with PowerShell remoting:

PS c:\foo> Enter-PSSession -ComputerName $NanoServerIP -Credential $Credential

[10.10.10.151]: PS cC:\Users\administrator\Documents:>

In step 4, as you gather computer information. Note that the -Property is optional, leave it
out or pass in an asterisk (*) to display a great deal of useful information about the target
computer:

[10.10.10.151]: PS C:\> Get-ComputerInfo -Property CsName, WindowsEditionId, OSServerLevel,
0SType, OSVersion, WindowsBuildLabEx, BiosBIOSVersion

CsName NANOL
windowsEditionId ServerDatacenterNano

OsServerLevel NanoServer

WINNT

10.0.14393
windowsBuildLabEx 14393.693.amd64fre.rsl_release.161220-1747
BiosBIOSVersion {VRTUAL - 1, Hyper-V UEFI Release v1.0, EDK II - 10000}

[76]

Implementing Nano Server

In step 5, you end your remoting session:

[10.10.10.151]: Ps c:\foo> Exit-PSSession

Ps C:\foo>

In Method 4, you use Windows Management Instrumentation (WMI) and the cmdlets in
the CimCmdlets module to work with your Nano Server. WMI is an open standard that
describes managed IT elements as objects with properties and relationships. The
CIMCmdlets module contains the preferred cmdlets you use to manage Windows Servers
via WMI. PowerShell in Windows Server 2016 supports both the older WMI cmdlets
(contained in the Microsoft.PowerShell.Management module) and the newer
CIMCmdlets module. Nano Server ships with CIMCmdlets, not WML

In step 1, you create a CIM session to the Nano Server using the credential and IP address
you defined earlier, and you store it in the variable $CimSession:

Ps c:\foo> $CcimSession = New-CimSession -Credential $cCredential -ComputerName $NanoServerIP
$Cimsession

Id : 1

Name : CimSessionl

InstanceId : ¢8a93c75-c063-4d49-ba07-7b682b7bl1la4
ComputerName : 10.10.10.151

Protocol : WSMAN

PsS c:\foo>

In step 2, within this CIM session, you access an instance of the Win32_ComputerSystem
class to view information about the Nano Server:

Ps C:\foo> Get-CimInstance -CimSession $CimSession -ClassName Win32_ComputerSystem | Format-List *

PSShowComputerName HR
AdminPasswordStatus 1 3
BootupState 3
chassisBootupState 3 8

: 192.165%
CimClass : root/cimv2:Win3Z_ComputerSystem
CcimInstanceProperties : {Caption, Description, InstallDate, Name...}
CimSystemProperties : Microsoft.Management.Infrastructure.CimSystemProperties

[77]

Implementing Nano Server

In step 3, you gather a count of the classes:

PS C:\foo> Get-CimClass -CimSession $CimSession | Measure-Object

Count : 838
Average

Sum

Maximum
Minimum
Property :

In step 4, you query the CIM_Process class:

PS C:\foo> Get-CimInstance -CimSession $CimSession -Query "SELECT * from CIM_Process"
ProcessId Name HandleCount WorkingSetSize VirtualSize PSComputerName

system Idle Process

System 1974272 10.10.10.151
smss.exe 688128 2199029833728 .10.10.151
csrss.exe 1970176 2199035736064 10.10.10.151
wininit.exe 3928064 2199042248704 10.10.10.151
services.exe 5058560 2199041740800 10.10.10.151
Isass.exe 10661888 2199064793088 10.10.10.151
svchost.exe 6164480 2199056437248 10.10.10.151
svchost.exe 6688768 2199057764352 10.10.10.151
svchost.exe 5861376 2199052247040 10.10.10.151
svchost.exe 8515584 2199073071104 10.10.10.151
svchost.exe 3604480 2199054733312 10.10.10.151
svchost.exe 21643264 2199139741696 10.10.10.151
svchost.exe 6873088 2199066492928 10.10.10.151
svchost.exe 22839296 2199128432640 10.10.10.151
svchost.exe 8560640 2199066771456 10.10.10.151
svchost.exe 12668928 2199105224704 10.10.10.151
EMT .exe 3862528 2199043854336 10.10.10.151
WmiPrvsE.exe 8671232 2199059148800 10.10.10.151
WmiPrvsEe.exe 11505664 2199062700032 10.10.10.151
WmiApSrv.exe 6787072 2199051653120 10.10.10.151

In step 5, you remove your CIM session:

PS C:\foo> Get-CimSession | Remove-CimSession

[78]

Implementing Nano Server

There's more...

Get-ComputerInfo is a new cmdlet introduced in PowerShell 5.1. Get-ComputerInfo
returns an object of type Microsoft.PowerShell.Commands.ComputerInfo that
contains a wealth of information from the target computer including hardware, bios, OS,

driver, and networking data. The documentation is available and updateable on github:
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/

Microsoft.PowerShell.Management/Get-ComputerInfo.md.

PowerShell Direct is a useful new feature for Hyper-V in Windows Server 2016. It simplifies

PowerShell scripting for VMs. For more information on this feature, see: https://docs.
microsoft.com/en-us/virtualization/hyper-v-on-windows/user—guide/powershell-

direct.

PowerShell remoting is a powerful feature that has security implications, this is why the
TrustedHosts setting is empty by default, and the administrator must explicitly add
addresses of servers to manage, or may add an asterisk (*) to allow remoting to any server.
More information about remoting is available within the PowerShell documentation:

Get—-Help about_Remote*

PowerShell on Nano Server contains the Core edition of PowerShell. PowerShell Core
implements a subset of the full Desktop edition features. The cmdlets provided should be
enough for you to configure networking to allow you to manage Nano Server remotely.

Learn about what is and what is not supported with PowerShell in Nano Server: https://
technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-

server.

WML is a key aspect of PowerShell scripting, using either the WMI or CIM cmdlets. The
latter are preferred if only because they are a little quicker. Learn more about CIMCmdlets
in PowerShell: nttps://technet .microsoft.com/en-us/library/jj553783.aspx.

You use WMI via the CIM cmdlets to manage and apply Windows updates to your Nano
Servers: https://technet .microsoft.com/en-us/windows-server-docs/get-started/

manage—-nano-server#managing-updates—-in-nano-server.

[79]

https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://github.com/PowerShell/PowerShell-Docs/blob/staging/reference/5.1/Microsoft.PowerShell.Management/Get-ComputerInfo.md
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-guide/powershell-direct
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/powershell-on-nano-server
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/library/jj553783.aspx
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/manage-nano-server#managing-updates-in-nano-server

Implementing Nano Server

Installing features with Nano Server
packages

Nano Server is a minimal implementation of a Windows Server 2016. You can customize it
to include only the desired features and roles you require. You customize Nano Servers
using the PackageManagement module along with the NanoServerPackage provider.
The NanoServerPackage provider can search, download, or install packages that
implement features and roles for Nano Server from an online gallery. This provider enables
you to install useful server features and roles which you will explore in this recipe.

In Nano Server, packages replace the Add Roles & Features functionality in other editions
of Windows. For example, if you need a web server, in other editions of Windows you
would install the Web Server (IIS) role, but in Nano server, you would install the
Microsoft-NanoServer—-IIS-Package package. Instead of installing the File Services
role, you would install the Microsoft-NanoServer-Storage-Package package.

You can deploy a Nano Server in a workgroup, which is the default. You can also join the
Nano Server to your domain. Nano Servers must join to the domain to utilize certain
Windows features like Windows Clusters. In this recipe, you will deploy a domain joined
Nano Server. To achieve this, you need to obtain a domain blob file which you create using
the djoin console command. You transfer this blob file to the Nano Server to join it to the
domain. You also review the available Nano Server packages and install the selected
packages to support the file server role, web server role, and the Desired State
Configuration (DSC) support.

Getting ready

Before starting, you should ensure that the pre-requisites for using PowershellGet are
installed and are updated. See recipe in chapter 1, What’s New in PowerShell and Windows
Server, Exploring PowerShellGet recipe for how you can achieve this.

To enable the Nano Server to join the domain, you first create a domain join blob file. Run
the following command with an account in Domain Admins group, from a virtual machine
on the domain as follows:

djoin.exe /provision /domain RESKIT /machine NANO2
/savefile .\NANO2.djoin

[801]

Implementing Nano Server

The djoin command creates the domain join blob as . \NANO2 . djoin. Copy the newly
created NANO2 . djoin file to a folder on your Hyper-V host (C: \ foo in this recipe.)

You also need the Windows Server 2016 installation ISO mounted (You use E: in this recipe
as the location of this ISO image.)

A Nano Server can use DHCP or static IP addresses. In this recipe for provisioning NANO2
on the Reskit.org domain, you use the following settings:

e [PAddress: 10.10.10.132

e Subnet Mask: 255.255.255.0

e Gateway:10.10.10.254

¢ DNS:10.10.10.10/10.10.10.11

How to do it...

1. From your Hyper-V host, view the currently installed package providers:
Get-PackageProvider

2. View the available package providers online, noting the NanoServerPackage
provider:

Find-PackageProvider | Select-Object -Property Name, Summary |
Format-Table —-AutoSize -Wrap

3. Install the NanoServerPackage provider:
Install-PackageProvider —-Name NanoServerPackage -Verbose
4. View the commands included with the provider:
Get-Command —-Module NanoServerPackage
5. View the available Nano Server packages:
$NanoPackages = Find-NanoServerPackage |

Select-Object -Property Name, Description
$NanoPackages | Format-Table —-AutoSize -Wrap

[81]

Implementing Nano Server

6. Determine which of the available packages you wish to install, store them as an
array in the $Installpackages variable and then display that array:

$InstallPackages = (@ ('Microsoft-NanoServer-Storage-Package',
'Microsoft-NanoServer-IIS-Package',
'Microsoft-NanoServer-DSC-Package')
$InstallPackages

7. Define the path to the Windows Server 2016 installation media:
$Server20l6InstallationRoot = 'E:\'
8. Define the path of the NanoServerImageGenerator folder:

$NanoServerFolder = Join-Path -Path $Server20l6InstallationRoot
—ChildPath 'NanoServer'
$NsigFolder = Join-Path -Path $NanoServerFolder
—ChildPath 'NanoServerImageGenerator'
$NsigFolder

9. Import the NanoServerImageGenerator module and review the commands
contained in that module:

Import-Module -Name $NsigFolder
Get—-Command —Module NanoServerImageGenerator

10. Define the folders for the base Nano Server images and the VM images:

$NanoBaseFolder = 'C:\NanoBase'
S$VMFolder = 'D:\VMs'

11. Define paths for the Nano Server VM:

$NanoComputerName = 'NANO2'
$NanoVMFolder = Join-Path -Path $VMFolder
—ChildPath $NanoComputerName
$NanoVMPath = Join-Path -Path $NanoVMFolder
—ChildPath "$NanoComputerName.vhdx"

12. Define the networking parameters:

$IPV4Address = '10.10.10.132"

$IPV4ADNS = '10.10.10.10','10.10.10.11"
$IPV4Gateway = '10.10.10.254"
$IPV4SubnetMask = '255.255.255.0'

[82]

Implementing Nano Server

13. Build a hash table $NanoServerImageParameters to hold parameters for the
New-NanoServerImage cmdlet:

$NanoServerImageParameters = @{
DeploymentType = 'Guest'
Edition = 'DataCenter'’
TargetPath = $NanoVMPath
BasePath = $NanoBaseFolder
DomainBlobPath = $DomainJoinBlobPath
Ipv4Address = $IPV4Address
Ipv4Dns = $IPV4DNS
Ipv4Gateway = $IPV4Gateway
IPV4SubnetMask = $IPV4SubnetMask
Package = $InstallPackages

}

14. Create a new Nano Server image, passing in configuration parameters using
splatting:

New—-NanoServerImage @NanoServerImageParameters

15. Once complete, review the VM switches available, and define the Hyper-V switch
to use:

Get-VMSwitch | Select-Object —-ExpandProperty Name
$SwitchName = 'Internal'

16. Create the Nano virtual machine from the newly created VM disk, and start the
VM:

New-VM -VHDPath $NanoVMPath °
-Name $NanoComputerName °
-Path $NanoVMFolder °
-SwitchName $SwitchName °
—Generation 2 -Verbose |

Start-VM

How it works...

To get ready for this recipe, create the computer account for NANO2 in the RESKIT domain
using the djoin command to create the domain blob file. You store this blob in the blob file
NANOZ2.djoin.

[83]

Implementing Nano Server

In step 1, you review the installed package providers. Note that if NanoServerPackage
provider is missing, you need to install this package provider to continue:

PS C:\foo> Get-PackageProvider

Name i DynamicOptions

msi

msu . .

NuGet . . Destination, ExcludeVersion, Scope, SkipDependencies, Headers, Filter..
PowershellGet . . PackageManagementProvider, Type, Scope, AllowClobber, skippPublisherch...
Programs . . IncludewindowsInstaller, IncludeSystemComponent

In step 2 and step 3, you list the available PackageManagement package providers, noting
the NanoServerPackage package, then install this package provider:

ps c:\foo> Find-PackageProvider | select-Object Name, summary | Format-Table -AutoSize -wrap
Name summary

NuGet provider for the OneGet meta-package manager
ps1 provider for the oneGet meta-package manager
chocolatey ChocolateyPrototype provider for the OneGet meta-package manager
PowershellGet Powershell module with commands for discovering, installing, updating and publishing the
Powershell artifacts 1ike Modules, DSC Resources, Role Capabilities and Scripts.
ContainerImage This is a PackageManagement provider module which helps in discovering, downloading and
installing windows Container 0S images.

For more details and examples refer to our project site at
https://github.com/Powershell/containerProvider.
DockerMsftProvider Powershell module with commands for discovering, installing, and updating Docker images.
NanoserverPackage A PackageManagement provider to Discover, Save and Install Nano Server Packages on-demand
GitHubProvider GitHub-as-a-Package - PackageManagement PowerShell Provider to interop with Github
GistProvider Gist-as-a-Package - PackageManagement PowerShell Provider to +interop with Github Gists
chocolateyGet An powershell oneGet provider that discovers packages from https://www.chocolatey.org.
TSDProvider Powershell PackageManager provider to search & install TypeScript definition files from the
community DefinitelyTyped repo
MyAlbum TyAT?ug qgovider discovers the photos in your remote file repository and installs them to your
ocal folder.
officeProvider officeProvider allows users to install Microsoft office365 ProPlus from Powershell.
WSAProvider Provider to Discover, Install and inventory windows server apps
GitLabProvider GitLab PackageManagement provider
Oinstall Zzero Install is a decentralized cross-platform software-installation system.

Ps c:\foo> Install-PackageProvider -Name NanoserverPackage -verbose

VERBOSE: Using the provider 'Bootstrap' for searching packages

VERBOSE: Finding the package 'Bootstrap::FindPackage’ 'NanoServerPackage','',"'",'"’

VERBOSE: Using the provider 'Powershellcet’ for searching packages.

VERBOSE: The -Repository parameter was not specified. PowerShellGet will use all of the registered repositories.
VERBOSE: Getting the provider object for the PackageManagement Provider 'NuGet'.

VERBOSE: The specified Location is 'https://www.powershellgallery.com/api/v2/' and PackageManagementProvider is 'NuGet’
VERBOSE: Searching repository 'https://www.powershellgallery.com/api/v2/FindPackagesById()?id="NanoServerPackage'’' for "'
VERBOSE: Total package yield:'l" for the specified package ‘NanoServerpackage'

VERBOSE: Skipping installed package NanoServerPackage 1.0.1.0.

In step 4, you view the commands associated with the NanoServerPackage. While these
commands are specific to this package, they are wrapper cmdlets for similarly named
PackageManagement cmdlets that can be viewed with Get —-Command -Noun Package:

PS C:\foo> Get-Command -Module NanocServerPackage

CommandType Name i Source

Function Find-NanoServerPackage 1. NanoServerPackage
Function Install-NanoServerPackage 1. NanoServerPackage
Function save-NanoServerPackage 1. NanoServerPackage

[84]

Implementing Nano Server

In step 5, you view the available packages for Nano Server. Note that some of these
packages are installed using switch parameters in the New-NanoServerImage cmdlet, for
example, the -DeploymentType Guest switch installs the Microsoft-NanoServer-

Guest-Package:

pPs C:\foo> §NanoPackages - Find-NanoServerPackage | Select-Object -Property Name, Description

$NanoPackages | Format-Table -AutoSize -wrap

Name

Microsoft-Nanoserver-IPHelper-Service-Package

Microsoft-NanoServer-sCvMM—Compute-Package
Microsoft-Nanoserver-shieldedw-Package

osoft-NanoServer-Compute-Package

osoft-Nanoserver-Securestartup-Package
M1icrosoft-NanoServer-0EM-Drivers-Package
Microsoft-NanoServer-storage-Package

osoft-Nanoserver-Defender -Package

osoft-NanoServer-Dsc-Package

Microsoft-Nanoserver-DNS-Package

osoft-Nanoserver-IIs-Package

Microsoft-Nanoserver-DCB-Package

osoft-Nanoserver-FailovercCluster-pPackage

osoft-NanoServer-SoftwareInventorylLogging-Package

Microsoft-NanoServer-Host-Package

osoft-NanoServer-sNMP-Agent-Package

Microsoft-NanoServer-ScvMM-Package
Microsoft-NanoServer-Guest-Package

Microsoft-Nanoserver-Containers-Package

Description

Provides tunnel connectivity using IPv6 transition
technologies (6to4, ISATAP, Port Proxy, and Teredo), and
IP-HTTPS.

Includes services for monitoring a Hyper-v host using
System Center Vvirtual Machine Manager (SCvMM).

Includes Host Guardian Service and other features necessary
to provision shielded vMs on a Hyper-V server.

Includes Hyper-v and NetQos which provide a virtualization
host platform and network services for creating and
managing virtual machines and their resources.

Includes support for BitLocker, Trusted Platform Module,
Secure Boot, and other services for supporting
hardware-based security features.

Includes basic drivers for a variety of network adapters
and storage controllers. This is the same set of drivers
included in a server Core installation of windows Server.
Includes services and tools for creating and managing file
system and storage resources.

Includes Windows Defender which provides real-time
protection against viruses, spyware, and other malicious
software. Also includes a default signature file containing
virus and spyware definitions.

Includes Powershell Desired state cConfiguration which
provides a set of Powershell language extensions, cmdlets,
and resources for declaratively configuring software
services and applications.

Includes Domain Name System (DNS) Server which provides
name resolution for TCP/IP networks

Includes Internet Information services (IIs) which provides
a reliable, manageable, and scalable web application
infrastructure.

Includes Data Center Bridging (DCB) which is a suite of
IEEE standards that are used to enhance Ethernet local area
networks by providing hardware-based bandwidth guarantees
and transport reliability.

Includes Failover Clustering which allows multiple servers
to work together to provide hi availability of server
roles.

Includes services and tools for logging Microsoft asset
management data and forwarding this data periodically to a
collection server for aggregation.

Includes drivers and services for running on a physical
machine.

Simple Network Management Protocol (SMMP) is a popular
protocol for network management. It is used for collecting
information from, and configuring, network devices, such as
servers, primters, hubs, switches, and routers on an
Internet Protocol (IP) network.

Includes services for monitoring a physical or virtual
machine using System Center virtual Machine Manager (SCvMM).
Includes drivers and integration services for running as a
guest virtual machine in Hyper-v.

Includes services and tools to create and manage windows
Server Containers and their resources.

[85]

Implementing Nano Server

In step 6, you define sInstallPackages as an array of the desired packages:

PS C:\> $Installrackages = @('Microsoft-NanoServer-Storage-Package’,
'"Microsoft-NanoServer-IIS-Package',
'"Microsoft-NanoServer-DsC-Package')

$InstallPackages
Microsoft-NanoServer-Storage-Package
Microsoft-NanoServer-IIS-Package
Microsoft-NanoServer-DsC-Package

In step 7 and step 8, you define the path to the server installation media, and to the
NanoServerImageGenerator module folder:

Ps C:\foo> $server20l6InstallationRoot = "E:\’

Ps C:\foo> $NanoServerFolder = Join-Path -Path $Server20l6InstallationRoot -cChildPath 'NanoServer'’
$NsigFolder = Join-Path -Path $NanoServerFolder -childPath 'NanoServerImageGenerator'

$NsigFolder

E:\NanoServer\NanosServerImageGenerator

In step 9, you import the NanoServerImageGenerator module and view the modules
commands:

PS C:\foo> Import-Module -Name $NsigFolder
Get-Command -Module NanoServerImageGenerator

CommandType Name i source

Function Edit-NanoServerImage .0.0. NanoServerImageGenerator
Function Get-NanoServerPackage .0.0. NanoServerImageGenerator
Function New-NanoServerImage .0.0. NanoServerImageGenerator

In step 10 and step 11, you define paths required for the Nano Server base image, VM name,
folder, and file path. There is no output from these steps.

In step 12, you define the path to the domain join file that you created in the Getting ready
section:

PS C:\foo> $DomainJoinBlobPath = 'C:\foo\NANO2.djoin’

[86]

Implementing Nano Server

In step 13, define the networking configuration for the VM. Note the $IPV4DNS is an array
with two values storing the primary and secondary DNS server IP addresses:

Ps C:\foo> $1PV4Address = '10.10.10.152°"
$IPV4DNS = "10.10.10.10','10.10.10.11"

$IPV4Gateway = "10.10.10.254°
$1IPV4subnetMask = '255.255.255.0"

In step 14, you define and view a hash table variable holding all the parameters required in
the next step:

Ps c:\foo> $NanoServerImageParameters = @{
DeploymentType = 'Guest'
Edition = 'DataCenter’
TargetPath = $NanovMPath
BasePath = $NanoBaseFolder
DomainBlobPath = $DomainJoinBlcbPath
Ipv4Address = $IPV4Address
Ipv4Dns = $IPV4DNS
Ipv4Gateway = $IPV4Gateway
IPV4SubnetMask = $IPv4SubnetMask
InterfaceNameOrIndex = 'Ethernet’
Package = $InstallPackages

$NanoServerImagePar ameters

Name

TargetPath D:\VMs\NANO2\NANO2 . vhdx
Dep loymentType Guest

Ipv4Dns {10.10.10.10, 10.10.10.11}
IPv4subnetMask 255.255.255.0
InterfaceNameorIndex Ethernet

Edition DataCenter

BasePath C:\NanoBase

Ipv4Address 10.10.10.152

Ipv4Gateway 10.10.10.254
DomainBlobPath C:\foo\NANO2.djoin
Package {Microsoft-NanoServer-storage-Package, Microsoft-NancServer-IIS-Package, Microso...

In step 15, you run the New-NanoServerImage using splatting to pass the required
parameters. Answer the prompt for an administrator password, and review the progress of
the creation of the new Nano Server image. Once complete, results are available for review
in a time stamped folder under C: \NanoBaseLogs:

a

PS C:\foo> New-NanoServerImage @lanoServerImageParameters Administratorpassword
cmdlet New-NanoServerImage at command pipeline position 1 seveseee
supply values for the following parameters:

[871]

Implementing Nano Server

In step 16, view the available Hyper-V switch names, and choose the one to associate with
your new VM:

PS C:\foo> Get-vMSwitch | Select-Object -ExpandProperty Name
PubTlic-wifi

Internal

PS C:\foo> $switchName = 'Internal’

In step 17, you create the new VM, and pipe it to Start-vM to start it:

PS C:\foo> New-vM -VHDPath $NanovMPath -Name $NanoComputerName -Path $NanovMFolder °
-switchName $switchName -Generation 2 -Verbose |

Start-vM
VERBOSE: New-VM will create a new virtual machine "NANO2".

There's more...

Creating a domain joined Nano Server simplifies Nano Server management. From any
domain server with RSAT tools installed, you can manage this Nano Server VM using the
Server Manager.

From the Server Manager, right click on All Servers, and choose Add Servers:

&= Server Manager

@ ¥ Server Manager * All Servers

_ = SERVERS
188 Dashboard l. All servers | 1 total
i Local Server
= Filter e By mw
BE All Servers
= Add Servers
igl AD DS Server Mame |Pvd Address Manageability
[+]
DNS
:E DCl 10.10.10.170 Online - Performance counters not started

[881]

Implementing Nano Server

Enter the name of the server to manage in the Name (CN) field, click Find Now, then click
the triangle(Add) button, then click OK:

= Add Servers — O e
DNS Import Selected
Computer
Location: | I§l Reskit » @| P
. 4 RESKIT.ORG (1)

Operating System:| All NANO2

Name (CN} [NANO2 |

Mame Cperating System

NANGZ Windows Server 2016 Datacenter |E|

1 Computer(s) found 1 Computer(s) selected
Help | ok |[cancel

. SERVERS

[Senvers . All servers | 2 total

_I- Volumes Fter Pl &~ @~

[O Disks

(] Storage Pools Server‘l\a'ne IPvd Address Manageability Last Update

[+]

. Shates DCl 10.10.10.10 Online - Performance counters not started 12/02/2017 00:00:07
ﬂ ISCSI NANOZ 10.10.10.152 Online 12/02/2017 00:02:45

i® Woaork Folders

[891]

Implementing Nano Server

This recipe uses the djoin tool to create a domain blob file and passes the path in the -
DomainBlobPath parameter. If the host server is a member of the domain, use the -
DomainName and -ComputerName parameters instead.

To discover more about offline domain join, see the Offline Domain Join (Djoin.exe) Step-by-
Step Guide: nttps://technet.microsoft.com/en-us/library/offline-domain-join-
djoin-step-by-step (WS.10) .aspx.

Nano packages can be installed either at deployment time or after deployment. You can add
packages after deploying the Nano Server in either an offline or online mode. As a best
practice, in keeping with Jeffrey Snover's cattle not pets server philosophy, it is usually
better to start over and deploy a new Nano Server that's properly configured than to modify
the configuration of an existing Nano server.

For more information on various deployment scenarios for Nano Server:
https://technet.microsoft.com/en-us/windows-server—-docs/get—

started/deploy—-nano-server.

There are Nano server packages you can download from GitHub. See the
NanoServerPackage on GitHub site at: https://github.com/OneGet/

NanoServerPackage.

[90]

https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/library/offline-domain-join-djoin-step-by-step(WS.10).aspx
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://technet.microsoft.com/en-us/windows-server-docs/get-started/deploy-nano-server
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage
https://github.com/OneGet/NanoServerPackage

Managing Windows Updates

In this chapter, we will cover the following recipes:

¢ Installing Windows Server Update Services
¢ Configuring WSUS update synchronization
¢ Configuring the Windows Update client

¢ Creating computer target groups

¢ Configuring WSUS auto-approvals

¢ Managing updates

Introduction

Windows administrators must manage Windows updates to ensure that the operating
systems and software running on their computers are patched to resolve known bugs and
are protected from known security vulnerabilities. Windows Server Update Services
(WSUS) was a feature that was added in 2016 that enables the system administrators to
manage the download and distribution of updates to the organization's computers.

Windows Software Update Services could be better named as Microsoft Software Update
Services. WSUS manages not only Windows operating system updates but also updates for
most Microsoft software products. Updates may apply to the Windows OS or any Microsoft
software.

This chapter covers the installation and configuration of the WSUS server, the configuration
of WSUS client computers, the management, approval, and installation of updates, and how
to report on the status of the update installation.

Managing Windows Updates

Installing Windows Server Update Services

To use WSUS, you first install the Windows feature for update services, then perform the
initial configuration. WSUS has dependencies that include the IIS web server and ASP.NET
4.6, so these dependencies are installed automatically if they are not present.

Getting ready

To follow this recipe, open a PowerShell session on server WSUS1. WSUS1 is a domain-
joined server with internet access.

How to do it...

The steps for the recipe are as follows:

1. Install the Windows Update feature and tools, with ~vVerbose for additional
feedback:

Install-WindowsFeature —-Name 'UpdateServices'
—IncludeManagementTools -Verbose

2. Review the features that are installed on your server, noting that not only has
Windows Software Update Services been installed, but Web Server (IIS),
ASP.Net 4.6, and Windows Internal Database have as well:

Get-WindowsFeature |
Where-Object -FilterScript {($psitem.Installed)}

3. Create a folder for WSUS update content:

SWSUSContentDir = 'C:\WSUS'
New-Item -Path $WSUSContentDir -ItemType Directory

4. Perform post-installation configuration using WsusUtil.exe:
& "$env:ProgramFiles\Update Services\Tools\WsusUtil.exe" °

postinstall
CONTENT_DIR=$WSUSContentDir

[92]

Managing Windows Updates

5.

10.

11.

Once configuration completes, the output includes a line stating Log file is
located at, followed by a path to a . tmp file in the user's temp directory.
Review this log file to see what was done in the configuration (adjust the file
name as necessary):

Get-Content -Path "$env:TEMP\1ltmp234.tmp"

View some websites on this machine, noting the WSUS website:
Get-Website

View the cmdlets in the UpdateServices module:
Get—-Command —-Module UpdateServices

Inspect the TypeName and properties of the object created with Get -
WsusServer:

SWSUSServer = Get-WsusServer
$WSUSServer.GetType () .Fullname
$WSUSServer | Select-Object -Property *

The object is of type UpdateServer in the
Microsoft.UpdateServices.Internal.BaseApi namespace, and is the main
object you interact with to manage WSUS from PowerShell. Inspect the methods
of the object:

$WSUSServer | Get-Member -MemberType Method
Inspect some of the configuration values of the UpdateServer object:

$WSUSServer.GetConfiguration() |
Select-Object -Property SyncFromMicrosoftUpdate, LogFilePath

Product categories are the various operating systems and programs for which
updates are available. See what product categories are included by WSUS after
the initial install:

$WSUSProducts = Get-WsusProduct -UpdateServer $WSUSServer
$WSUSProducts.Count
$WSUSProducts

[93]

Managing Windows Updates

12. Your $WsSUSServer object contains a subscription object with properties and
methods useful for managing the synchronization of updates. Access the
Subscription object in the $WSUSServer object and inspect it, noting that it is
also in the Microsoft.UpdateServices.Internal.BaseApi namespace:

$WSUSSubscription = $WSUSServer.GetSubscription()
$WSUSSubscription.GetType () .Fullname
$WSUSSubscription | Select-Object —-Property *
$WSUSSubscription | Get-Member -MemberType Method

13. Before you choose which product updates you want, you need to know what
product categories are available. Get the latest categories of products available
from Microsoft Update servers, and use a while loop to wait for completion:

$WSUSSubscription.StartSynchronizationForCategoryOnly ()

Do {

Write—Output $WSUSSubscription.GetSynchronizationProgress ()
Start-Sleep -Seconds 5

}

While ($WSUSSubscription.GetSynchronizationStatus() -ne
'NotProcessing')

14. Once synchronization is complete, check the results of the synchronization:
$WSUSSubscription.GetLastSynchronizationInfo ()

15. Again, review the categories of the products available:
$WSUSProducts = Get-WsusProduct -UpdateServer $WSUSServer

$WSUSProducts.Count
$WSUSProducts

How it works...

In step 1, you install WSUS by installing the UpdateServices feature. Note the link for
additional configuration instructions:

Install-WindowsFeature -Name 'UpdateServices®™ -IncludeManagementTools -Verbose
Installation started...

VERBOSE: Continue with installatio

VERBOSE: Prerequisite processing started...

VERBOSE: Prerequisite processing succeeded.

Success Restart Needed Exit Code Feature Resul
[. HTTP Activation, Remote Serwv...
Additional confi ti i Review the article Managing WSUS Using PowerShell at TechMet Library (http://go.microsoft.
/ i inkId=235499) for more information on the recommended steps to perform W5US installation using PowerShell.
VERBOSE: Installation succeeded.

[94]

Managing Windows Updates

In step 2, you review what has been installed on your server by piping the results of Get -
WindowsFeature to Where-Object, which filters the object passed in the pipeline. This
object is referenced by the $PSItem variable (or the shorter $_) variable, returning only
those that are installed—that is, those whose Installed property is $true
UpdateServices Windows feature installed the prerequisites, such as Web

(IIs),automatically:

Get-WindowsFeature | Where-Object -FilterScript {§PSItem.Installed}

Display Name

[X] File and S5torage Services
[%] File and 15CSI Services
[*%] File Server
[X] Storage Services
[¥] wWeb Server (IIS)
[X] Web Server
[X] Common HTTP Features
[X] Default Document
[¥X] 5tatic Content
[%] Performance
[X] Dwvnamic Content Compression
[X] Security
[X] Reguest Filtering
[X] wWindows Authentication
[X] Application Development
[X] .NET Extensibility 4.6
[X] ASP.NET 4.6
[X] ISAPI Extensions
[x] ISAPI Filters
Management Tools
[%¥] IIS Management Console
[%] II5 & Management Compatibility
[X] II5 6 Metabase Compatibility
[X] IIS & Management Console

Name
F1ileAndS5torage-5ervices
File-Services
F5-F1ileServer
Storage-5ervices
Web-Server
Web-WebServer
Web-Common-Http
Web-Default-Doc
Web-5tatic-Content
Web-Performance
Web-Dyn-Compression
Web-Security
Web-Filtering
Web-Windows-Auth
Web-App-Dev
Web-Net-Ext45
Web-Asp-Net45
Web-ISAPI-Ext
Web-ISAPI-Filter
Web-Mgmt-Tools
Web-Magmt-Console
Web-Mgmt-Compat
Web-Metabasze
Web-Lgcy-Mgmt-Console

. Installing the

Server

Install State

Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed
Installed

In steps 3 and 4, you create a folder to hold the WSUS update content, and then perform the

post-installation configuration for WSUS:

& "$env:ProgramFiles‘\Update Serwvices\Tools'WsusUtil

Log file is located at C:
Post install is starting
Post install has successfully completed

exe"WsusUtil. exe” postinstall CONTENT_DIR=$WSUSContentDir
‘Administrator\AppData‘LocalTemp' 2\ tmplAFE. tmp

Managing Windows Updates

In step 5, you review the log file written by WsusUtil.exe in the previous command. This
log is useful for troubleshooting or for verifying a successful configuration:

‘Administrator\AppData‘lLocal\Temp' 2 tmplAFE. tmp
2017-02-28 17:33: Postinstall started
2017-02-28 17 Detected role services: Api, UI, WidDatabase, Services
2017-02-28 17 S5tart: LoadSettingsFromParameters
2017-02-28 17 Content local is: True
2017-02-28 17 Content directory 1is:
2017-02-28 17 SQL instname 1is:
2017-02-28 17 End: LoadSettingsFromParameters
2017-02-28 17 Start: Run
2017-02-28 17 Fetching WsusAdministrators5id from registry store
2017-02-28 17 Value 1s 1-5-21-564364657-173954772-155622663-1000
2017-02-28 17 Fetching WsusReportersSid from registry store
2017-02-28 17 Value 1s 5-1-5-21-564364657-173954772-155622663-1001
2017-02-28 17 3 Configuring content directory...
2017-02-28 17:33: Configuring groups...
2017-02-28 17 : Starting group configuration for WSUS Administrators...
2017-02-28 17 Found group in regsitry, attempting to use 1t...
2017-02-28 17 3 Writing group to registry...
2017-02-28 17:33: Finished group creation
2017-02-28 17 3 Starting group configuration for W5US5 Reporters...
2017-02-28 17 Found group in regsitry, attempting to use it...
2017-02-28 17 : Writing group to registry...
2017-02-28 17:33: Finished group creation
2017-02-28 17 : Configuring permissions..
2017-02-28 17 Fetching content directory...
2017-02-28 17 Fetching ContentDir from registry store
2017-02-28 17 3 Value 1s C:\WSUS
2017-02-28 17:33: Fetching group 5IDs..

In step 6, you view the websites on the WSUSI server, noting the wSus website, bound to
HTTP on port 8530:

PS5 C:\> Get-Website

Mame 1D Physical Path Bindings

Default Web Site 1 Started %5SystemDrive®)inetpub\wwwroot http =:80:
WsUS 6668 Started C:%Program Files‘Update http :=8530:
Administration 363 Services\Web5Services' Rooth, https :8531: ssl1Flags=0

In step 7, you review the commands in the UpdateServices module, which you investigate
in later recipes:

[96]

Managing Windows Updates

Get-Command -Module UpdateSerwices

CommandType MName
Add-WsusComputer
Add-WsusDynami cCategory
Approve-WsusUpdate
Deny-WsusUpdate
Get-WsusClassitication
Get-WsusComputer
Get-WsusDynamicCategory
Get-WsusProduct
Get-WsusServer
Get-WsusUpdate
Invoke-WsusServerCleanup
Remove-WsusDynamicCategory
Set-WsusClassification
Set-WsusDynami cCategory
Set-WsusProduct
Set-WsusServe nchronization

<
m
o
%]

Source

(=== = =l = = R = = = =~ |

[=N=1

=]

UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices
UpdateServices

[W Tl e e e e e e e O T
(=N =Nl NNl = = == |

(LSRN SI S SR S LS LS SR L L I L L S I

In steps 8 and 9, you use Get-WsusServer to create your $WSUSServer object and inspect
the properties and methods:

> SWSUSServer = Get-WsusServer
SWsUSServer | Select =

WebServiceurl : http SU51:8530/ApiRemoting30/WebService. asmx
BypassApiRemoting : False
IsServerlLocal : True

Name = WsU51
Version 10.0.14393.0
IsConnectionSecureForApiRemoting : True
PortNumber : 8530
PreferredCulture en
ServerName WSUS1
UseSecureConnection False
ServerProtocolVersion : 1.20

$wsusserver | Get-Member -MemberType Method

TypeName: Microsoft.UpdateServices. Internal.BaseApi.UpdateServer

Name MemberType Definition

AddDynamicCategories Method void AddDynamicCategories(System.Collections. Generic. IEnumera. . .
AddDynami cCategory Method vold AddDynamicCategory(Microsoft. UpdateServices. Administrati...
CancelAl1Downloads Method void CancelAl1Downloads(), void IUpdateServer.CancelAll1Downlo
CreateComputerTargetGroup Method Microsoft.UpdateServices. Administration. IComputerTargetGroup ...
CreateDynamicCategory Method Microsoft.UpdateServices. Administration. IDynamicCategory Crea...
CreateInstallApprovalRule Method Microsoft.UpdateServices. Administration. ITAutomaticUpdateAppro. .
CreateObjRef Method System. Runtime. Remoting.0bjRef CreateObjRef (type r'equertedepe}
Deletelynami cCategory Method void DeleteDynamicCategory(string name, Microsoft.UpdateSerwvi.
DeleteInstallApprovalRule Method void DeletelInstallApprovalRule(int ruleld), void IUpdateServe
DeleteUpdate Method void Deletelpdate(guid updateId), void IUpdateServer.Deletelp...
Equals Method bool Equals(System.0Object obj)

ExpirePackage Method void ExpirePackage(Microsoft.UpdateServices.Administration.Up...
ExportPackageMetadata Method void ExportPackageMetadata(Microsoft.UpdateServices. Administr...
ExportUpdates Method void ExportUpdates(string packagePath, string logPath})

[97]

Managing Windows Updates

In step 10, you use Get-WsusProduct to create and view the default collection of available
product categories. Sadly, this list is out of date:

P5 C fW5USProducts = Get-WsusProduct
SWSUSProducts

D
Exchange 2000 Server £3a83e29-7d55-44a0-afed-aealedbc3sed
Exchange Server 2003 3cf32f7c-dBee-43F8-a0da-8b88acf8afla
Exchange 35219494 -d516-4b40-a21a-cd2416098982
Local Publisher 7c40eBc2-01ae-47f5-9af2-6e75a0582518
Locally published packages 5cc25303-143F-40f3-a2ff-803a1db69955
Microsoft Corporation 56309036-4c77-4dd9-951a-9%ee9c246a94
Ooffice 2003 1403F223-a63T-T572-82ba-c92391218055
office XP 6248bBbl-ffeb-dbd9-887a-2acf5 3b09dfe
office 477b856e-65c4-4473-b621-a8b230bb70d9
5QL Server 7145181b-9556-4b11-b659-0162fa9df11f
SQL Dadchc73-B8887-4d7F-9cbe-d0sfa8faddle
Windows 2000 Family 3b4b8621-726e-43a6-b43b-37d07ec7019F
Windows Server 2003 family dbfs7a08-0ds a-46fF-b30c-7715eb9498e9
Windows Server 2003, Datacenter Edition 7f44c2a7-bc36-470b-be3b-c0lbédcsddde
Windows XP 64-Bit Edition Version 2003 a4bedbld-aB809-4163-9b49-3fe31%67bed0
Windows XP family 558F4bc3-4827-49el-accf-ear9fd72d4c9
Windows 6964aab4-c5b5-43bd-al7d-ffb4346a8eld

In step 11, you make your product categories current by synchronizing from the Microsoft
Update servers, using a while loop to wait for the synchronization to complete. This can
take several minutes when doing this for the first time:

C $W5USSubscription. StartSynchroni zationForCategoryOnly ()
Do {
Write-Output $WSUSSubscription.GetSynchronizationProgress()
Start-Sleep -5econds 5
1
¥
While ($WsUsSubscription.GetSynchronizationStatus() -ne "NotProcessing')
SwsUsSubscription. GetLastSynchronizationInfo() | Select-Object -Property

TotalItems ProcessedItems

0 Categories
5 Categories

3139 NotProcessing

[98]

Managing Windows Updates

In step 12, you check the result of the synchronization:
PS5 C:'%= $WSUSSubscription. GetL astSynchronizati onInfo QO

Id
StartTime
EndTime

StartedManually : True

Result : Succeeded
Error : MotApplicable
ErrorText

UpdateErrors

There's more...

This recipe describes a single-server WSUS deployment, but WSUS also runs on multiple
servers to support large networks, can synchronize from other WSUS servers on the
network, can use web proxies, and can work with SQL Server instead of the Windows
Internal Database.

WSUS server requirements and deployment scenarios are documented on

technet at
https://technet.microsoft.com/en-us/library/hh852344 (v=ws.11) .as

Px#BKMK_1.1.

While the UpdateServices module is very useful, most of the tasks you perform in
PowerShell to administer WSUS involve accessing the UpdateServer and Subscription
objects directly.

MSDN contains documentation on these objects under the
Microsoft.UpdateServices.Administration namespace.

Explore the documentation at
https://msdn.microsoft.com/en-us/library/windows/desktop/microso

ft.updateservices.administration (v=vs.85) .aspx to understand the
available methods and properties.

[991]

https://technet.microsoft.com/en-us/library/hh852344(v=ws.11).aspx#BKMK_1.1
https://technet.microsoft.com/en-us/library/hh852344(v=ws.11).aspx#BKMK_1.1
https://msdn.microsoft.com/en-us/library/windows/desktop/microsoft.updateservices.administration(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/microsoft.updateservices.administration(v=vs.85).aspx

Managing Windows Updates

Configuring WSUS update synchronization

Once you have completed the installation of WSUS, you configure the update services by
choosing the product updates your organization requires, and which classifications of
updates to download and make available to the computers on your network. Once these are
defined, you can synchronize updates manually or on a schedule, and your WSUS server
will download the updates for the product categories and update classifications you have
selected from the Microsoft Update servers to make available to the computers on your
network. The first synchronization can take hours, depending on your selections, and then
subsequent synchronizations will pull only the newest updates since the last
synchronization.

Getting ready

For this recipe, you will download updates for the following products to your WSUS server:

e Windows Server 2016
e SQL Server 2016
e Windows 10

You will also choose which types of windows updates to download. In this recipe, you will
select the following classifications:

e Critical updates

e Definition updates
¢ Security updates

e Service packs

Update roll-ups
Updates

How to do it...

The steps for the recipe are as follows:

1. Locate the products you want to download to your WSUS server using Get -
WsusProduct to search the product titles:

Get-WsusProduct -TitleIncludes 'Server 2016'
Get-WsusProduct -TitleIncludes 'Windows 10'

[100]

Managing Windows Updates

2. Build a list of software product titles you wish to include:

$ChosenProducts = Q('Windows Server 2016',
'Microsoft SQL Server 2016',
'Windows 10')

3. Assign the desired products to include in Windows Update:

Get-WsusProduct |
Where-Object {$PSItem.Product.Title —-in $ChosenProducts} |

Set-WsusProduct

4. Updates are classified into distinct categories; a view which classifications of
updates are available:

Get-WsusClassification

5. Build a list of desired update classifications to make available on your WSUS
server and view the list:

$ChosenClassifications = @('Critical Updates',
'Definition Updates',
'Security Updates’',
'Service Packs',
'Update Rollups',
'Updates')
$ChosenClassifications

6. Set our list of desired update classifications in WSUS:

Get-WsusClassification |
Where-Object {$PSItem.Classification.Title -in
$ChosenClassifications} |Set-WsusClassification

7. Create a variable for the Subscription object, start synchronizing Windows
Updates, and watch the progress in a loop:

SWSUSServer = Get-WsusServer
$WSUSSubscription = $WSUSServer.GetSubscription()
#Sstart synchronizing available
updates$WSUSSubscription.StartSynchronization ()

$IntervalSeconds = 1
#Wait for synchronizing to start
Do {

Write-Output $WSUSSubscription.GetSynchronizationProgress ()
Start-Sleep -Seconds $IntervalSeconds

}

[101]

Managing Windows Updates

While ($WSUSSubscription.GetSynchronizationStatus() -eq °

'NotProcessing')

#wait for all phases of process to end

Do {
Write—-Output $WSUSSubscription.GetSynchronizationProgress ()
Start-Sleep —-Seconds $IntervalSeconds
}

Until ($WSUSSubscription.GetSynchronizationStatus() -eq °

'NotProcessing')

8. Synchronization takes a few moments to start with, and then takes a long time to
complete, depending on the number of products chosen. Wait for the process to
start in a do-while loop, then wait for the process to complete in a do-until
loop:

SWSUSSubscription.StartSynchronization ()
$IntervalSeconds = 1
#Wait for synchronizing to start
Do {
Write—Output $WSUSSubscription.GetSynchronizationProgress ()
Start-Sleep —-Seconds $IntervalSeconds
}
While ($WSUSSubscription.GetSynchronizationStatus/()
-eq ° 'NotProcessing')
#Wait for all phases of process to end
Do {
Write—Output $WSUSSubscription.GetSynchronizationProgress ()
Start-Sleep —-Seconds $IntervalSeconds

}
Until ($WSUSSubscription.GetSynchronizationStatus/()
-eq ~ 'NotProcessing')

9. When the final loop is complete, check the results of the synchronization:
$WSUSSubscription.GetLastSynchronizationInfo ()
10. Configure automatic synchronization to run once per day:
SWSUSSubscription = $WSUSServer.GetSubscription ()
$WSUSSubscription.SynchronizeAutomatically = $true

$WSUSSubscription.NumberOfSynchronizationsPerDay = 1
$WSUSSubscription.Save ()

[102]

Managing Windows Updates

How it works...
In this recipe, you see how to configure WSUS updating.

In step 1, you use Get-WsusProduct to perform searches for products supported by
Windows Update by title:

PS C:\> Get-WsusProduct -TitleIncludes 'Server 2016'
Get-WsusProduct -TitleIncludes 'windows 10’

ID

Exchange Server 2016 49c3ddde-4df2-4534-980c-83f4e27b23b5
Microsoft SQL Server 2016 93f0b0bc-9c20-4ca5-b630-06eb4706a447
wWindows Server 2016 569e8e8f-c6cd-42c8-92a3-efbb20a0f6f5
windows 10 and later drivers 05eebf61-148b-43cf-80da-1c99ab0b8699
windows 10 and later upgrade & servicing drivers 341268b4-7e2d-40e1-8966-8bb6ea3dad27

windows 10 Anniversary Update and Later Servicing Drivers bab879a4-claf-4b52-9617-0f9ael286fh6
windows 10 Anniversary Update and Later Upgrade & Servicing Drivers Oba562e6-a6ba-490d-bdce-93a770ba8d21
wWindows 10 Anniversary Update Server and Later Servicing Drivers 3c54bb6c-66d1-4a79-884c-8a0c96Ta20dl
Windows 10 Dynamic Update e4b04398-adbd-4b69-93b9-477322331cd3
windows 10 Feature On Demand e104dd76-2895-41c4-9eb5-c483a61e9427
windows 10 GDR-DU LP 6111a83d-7abb-4a2c-a7c2-f222eebcabf4
windows 10 GDR-DU abc45868-0c9c-4bc0-a36d-03d54113baf4
windows 10 Language Interface Packs 7d247b99-caa2-45e4-9c8f-6d60d0aae35c
Windows Language Packs fc7c9913-7ale-4b30-b602-3c62FffdIbla
Windows LTSB d2085b71-5f1f-43a9-880d-ed159016d5c6
windows a3c2375d-0c8a-4219-bce0-28333e198407

In step 2, you store a list of the chosen product titles in a variable:

PS C:\>$ChosenProducts = @('windows Server 2016
, 'Microsoft sQL Server 2016'

, Windows 10")

In step 3, you use Get -WsusProduct to retrieve the WsusProduct objects with titles that
match your list and pipe these to Set-WsusProduct to enable the synchronization of
updates for these products in WSUS:

PS C:\> Get-WsusProduct |

where-Object {$PSItem.Product.Title -in $ChosenProducts} |
Set-WsusProduct

[103]

Managing Windows Updates

In step 4, you use Get -WsusClassification to review which classifications of updates are
available from Windows Update:

PS C:\> Get-WsusClassification

ID

Applications 5c9376ab-8ceb-464a-b136-22113dd69801
critical Updates e6cfl350-c01b-414d-a6lf-263d14d133b4
pefinition Updates e0789628-ce08-4437-be74-2495b842743b

Driver Sets 77835c8d-62a7-41f5-82ad-f28dlafle3bl
Drivers ebfclfc5-71a4-4f7b-9aca-3b9a503104a0
Feature Packs b54e7d24-7add-428f-8b75-90a396fa584f
Security Updates 0fal201d-4330-4fa8-8ae9-b877473b6441
service Packs 68c5b0a3-dla6-4553-ae49-01d3a7827828
Tools b4832bd8-e735-4761-8daf-371882276dab
uUpdate Rollups 28bc880e-0592-4cbf-8f95-c79b17911d5F
Updates cd5ffdle-e932-4e3a-bf74-18bf0blbbd83
Upgrades 3689bdc8-b205-4af4-8d4a-a63924c5e9d5

In step 5, you store the list of desired update classifications in a variable and view it:

PS C:\> $chosenClassifications = @('Critical Updates'

, 'Definition Updates'

, 'Security Updates'

, 'Service Packs'

, 'Update Rollups’

, 'Updates’)
$chosenclassifications
Critical Updates
Definition Updates
Security Updates
Service Packs
Update Rollups
Updates

In step 6, you use Get-WsusClassification to retrieve the WsusClassification objects
with titles that match your list and pipe these to Set-WsusClassification to enable the
synchronization of these categories of updates in WSUS:

PS C:\> Get-WsusClassification |
where-Object {$PSItem.Classification.Title -in $ChosenClassifications} |
Set-wsusClassification

In step 7, you use Get-WsusServer to create a SWSUSServer object. Use the
GetSubscription method on that object to create a Subscription object:

PS C:\>
fwsusserver = Get-wsusServer

$wsussubscription = $wsusserver.GetSubscription()
$wsussubscription.StartSynchronization()

[104]

Managing Windows Updates

In step 8, you use the StartSynchronization method on the UpdateServer object to
begin synchronization, and use a do-while loop to wait for the synchronization process to
start by waiting until the result of the Get SynchronizationProgress method changes
from NotProcessing. The $IntervalSeconds variable determines the time between
checks. You can increase this value to 60 to check every minute. Once started, you use a do-
until loop to watch the value of the same method as it returns the progressive stages of the
synchronization, and wait for the process to complete and return NotProcessing once
more:

PS C:\> $wWsusserver = Get-WsusServer

$wsussubscription = $wsusServer.GetSubscription()

$wsussubscription.StartSynchronization()

$IntervalSeconds = 1

#Wa:itt for synchronizing to start

Do
Write-output $wSUSSubscription.GetSynchronizationProgress()
start-Sleep -Seconds $IntervalSeconds

}
while ($wsusSubscription.GetSynchronizationStatus() -eq 'NotProcessing')
#wait for all phases of process to end
po {
Write-Output $wSuSSubscription.GetSynchronizationProgress()
start-Sleep -Seconds $IntervalSeconds

}

until (3wsussubscription.GetSynchronizationStatus() -eq 'NotProcessing')
#when complete, check result of synchronization

start-Sleep $IntervalSeconds
$wsussubscription.GetLastSynchronizationInfo()

TotalItems ProcessedItems
0 NotProcessing

Categories
Categories

In step 9, you use the Get LastSynchronizationInfo method on the Subscription
object to review the results of the synchronization:

In step 10, if you want your WSUS server to download updates from Microsoft
automatically, you use the Subscription object to configure automatic synchronization
once daily and save the configuration:

PS C:\> $wsussubscription.SynchronizeAutomatically = $true

$wsussubscription.NumberofsynchronizationsPerDay = 1
$wsussubscription.save()

[105]

Managing Windows Updates

There's more...

In step 3, you used the $PSItem mechanism to represent an object in the pipeline. You could
have used $_ instead. Either works.

To understand the various categories of updates, review the descriptions available and refer
to the online documentation:

$WSUSServer.GetUpdateClassifications() | Select-Object -Property
Title,Description

Documentation of the terminology that defines the software updates is

available at
https://support.microsoft.com/en-us/help/824684/description-of-t
he-standard-terminology-that-is-used-to-describe-microsoft-

software—updates.

Configuring the Windows Update client

Windows computers download updates from Microsoft servers by default. To override this
behavior, you can either configure the Windows Update client using GPO settings or
manually update the registry of each client.

Getting ready

Run this recipe from WSUS1 with RSAT installed for working with Group Policy Objects.

SFeatureName = 'RSAT'
Install-WindowsFeature $FeatureName -IncludeAllSubFeature

How to do it...

The steps for the recipe are as follows:

1. Define and view the WSUS server URL using the properties returned from Get -
WsusServer:

SWSUSServer = Get-WsusServer

$WSUSServerURL = "http{2}://{0}:{1}" -£f °
$WSUSServer .Name,
S$WSUSServer .PortNumber,

[106]

https://support.microsoft.com/en-us/help/824684/description-of-the-standard-terminology-that-is-used-to-describe-microsoft-software-updates
https://support.microsoft.com/en-us/help/824684/description-of-the-standard-terminology-that-is-used-to-describe-microsoft-software-updates
https://support.microsoft.com/en-us/help/824684/description-of-the-standard-terminology-that-is-used-to-describe-microsoft-software-updates

Managing Windows Updates

('','s') [SWSUSServer.UseSecureConnection]
$WSUSServerURL

2. Create a Group Policy Object (GPO) and link it to your domain:
$PolicyName = "WSUS Client"
New—-GPO -Name S$PolicyName

New—-GPLink -Name $PolicyName -Target "DC=RESKIT,DC=Org"

3. Add registry key settings to the group policy to assign the WSUS server:

$key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU'
Set-GPRegistryValue —-Name $PolicyName
-Key $key °

-ValueName 'UseWUServer'’

-Type DWORD -Value 1
$key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate\AU'
Set-GPRegistryValue -Name $PolicyName °

-Key $key °

—-ValueName 'AUOptions' °

-Type DWORD °

-Value 2
$key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate'
Set-GPRegistryValue -Name $PolicyName °

-Key $key °

—ValueName 'WUServer'

-Type String °

-Value $WSUSServerURL

$key = 'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate'
Set-GPRegistryValue -Name $PolicyName °
-Key $key °

—ValueName 'WUStatusServer'
-Type String -Value $WSUSServerURL

4. Each PC on the domain then begins using the WSUS server once the group policy
is updated. To make this happen immediately, on each PC, run the following
commands:

Gpupdate /force
Wuauclt /detectnow

[107]

Managing Windows Updates

How it works...

In step 1, you use Get-WsusServer to create the $WSUSServer object and use its properties
to define the Windows Update server URL in the $WSUSServerURL variable. This URL is
not stored in a single property, so the variable is built with a format string using the Name,
PortNumber, and UseSecureConnection properties.

The portion of code that inspects the UseSecureConnection property appends an s to the
HTTP of the URL only if the UseSecureConnection property is set to $true. This
statement is similar to an if and only if (IIF) function in other languages:

PS C:\> $wsusserver = Get-WsusServer

$wsusserverURL = "http{2}://{0}:{1}" -f
$wsusserver .Name,
$wsusserver .PortNumber,

("","s") [$wsusserver.UseSecureConnection]
$wsusserverURL
http://wWsus1:8530

In step 2, you create a new group policy object entitled WSUS Client with New-GPO and
link the group policy to the RESKIT.org domain with New-GPLink:

PS C:\> $PolicyName = "WSUS Client"
New-GPO -Name $PolicyName
New-GPLink -Name $PolicyName -Target "DC=RESKIT,DC=0rg"

In step 3, you define four registry key values and associate them with the group policy
object using Set-GPRegistryValue:

PS C:\>
$key = 'HKLM\Software\Policies\Microsoft\windows\windowsUpdate\AU'
Set-GPRegistryvalue -Name $PolicyName ~

-Key Skey °

-vValueName 'UsewUServer'

-Type DWORD -value 1
$key = 'HKLM\Software\Policies\Microsoft\windows\windowsupdate\AuU"'
Set-GPRegistryvalue -Name $PolicyName ~

-Key $key °

-ValueName 'AUOptions' ~

-Type DWORD ~

-value 2
$key = '"HKLM\Software\Policies\Microsoft\windows\windowsuUpdate"’
Set-GPRegistryvalue -Name $PolicyName ~

-Key S$key

-valueName ‘WuServer’

-Type String =

-value $wsuSServerURL

$key = '"HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate"’
Set-GPRegistryvalue -Name $PolicyName

-Key S$key X
-ValueName 'WuStatusServer'
-Type String -Value $WSUSServerURL

[108]

Managing Windows Updates

In step 4, you force a group policy update on any Windows computer in the domain and
start the Windows Update client immediately:

PS C:\Users\Administrator> Gpupdate /force

wWuauclt /detectnow
Updating policy...

There's more...

The AUOptions value's Value 2 is Notify for download and notify for install. For an
explanation of the available options see
https://technet.microsoft.com/en-us/library/cc512630.aspx.

For non-domain computers to use your WSUS server, you may update their registry
manually. The minimum settings are:

Define registry settings

$key = 'HKLM:Software\Policies\Microsoft\Windows\WindowsUpdate'
New-ItemProperty —-PropertyType String °
-Path $key °

-Name WUServer -Value 'http://WSUS1:8530'
New-ItemProperty —-PropertyType String °

-Path $key °

-Name WUStatusServer -Value 'http://WSUS1:8530'
New-ItemProperty -PropertyType DWord °

-Path "S$key\AU""®

—Name UseWUServer -Value 1
Start looking for updates immediately
Wuauclt /detectnow

You can get full documentation for WSUS registry keys at
https://technet.microsoft.com/en-us/library/dd939844 (v=ws.10) .as

pPx

Creating computer target groups

Different types of computers in your organization require different approaches to software
updating. Employee workstations run software that application servers do not. Some
servers are mission critical and must only be updated after you test the updates thoroughly.
Sometimes critical updates are released that must be applied immediately, while some may
be optional.

[109]

https://technet.microsoft.com/en-us/library/cc512630.aspx
https://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dd939844(v=ws.10).aspx

Managing Windows Updates

To manage the distribution software updates, define computer target groups on your WSUS
server and assign computers these target groups. Each computer target group can be
configured to apply updates differently. You create a target group for the Domain
Controllers in this recipe.

Getting ready

WSUS must be installed and configured on the update server, and clients must be
configured to use the WSUS server to apply this recipe.

How to do it...

The steps for the recipe are as follows:
1. Create a WSUS computer target group for the Domain Controllers:

$SWSUSServer = Get-WsusServer
$WSUSServer.CreateComputerTargetGroup ('Domain Controllers')

2. Add a computer to the new computer target group:

Get-WsusComputer —NameIncludes DC1l |
Add-WsusComputer —-TargetGroupName 'Domain Controllers'

3. List the clients in the computer target group:

$DCGroup = $WSUSServer.GetComputerTargetGroups () |

Where-Object -Property Name -eq 'Domain Controllers'
Get-WsusComputer |

Where-Object -Property ComputerTargetGroupIDs
—Contains $DCGroup.Id

How it works...

In step 1, you create the swWSUSServer object and use the CreateComputerTargetGroup
method to define a new computer target group on your WSUS server:

PS C:\> $wsUSServer = Get-WsusServer
$wsusserver.CreateComputerTargetGroup ("Domain Controllers™)

UpdateServer Id Name

Microsoft.UpdateServices.Internal.BaseApi.UpdateServer b76f8295-29c3-468c-9eac-311ctb0d2d67 Domain Controllers
PS D:\Google Drive\Book Authoring\Content First Drafts\ch3\result logs>

[110]

Managing Windows Updates

In step 2, you use Get-WsusComputer to retrieve the WsusComputer object for the DC1
server and pipe this object to the Add-WsusComputer method, which adds it to the new
WSUS computer target group:

PS C:\> Get-WsusComputer -NameIncludes DCl |

Add-WsusComputer -TargetGroupName "Domain Controllers™

In step 3, you use the Get ComputerTargetGroups method of the sWSUSServer object,
filtered with Where-Object, to retrieve the new 'Domain Controllers' computer target
group, and store it in the variable $DCGroup:

PS C:\> $DCGroup = $wsSuSServer.GetComputerTargetGroups() |

where-Object Name -eq "Domain Controllers”

In step 4, you use Get-WsusComputer and inspect the ComputerTargetGroupIDs
property, looking for a match to the $DCGroup . Id property from the previous step to show
that the DC1 computer is a member of this ComputerTargetGroup:

PS C:\> Get-WsusComputer |
Where-object ComputerTargetGroupIDs -Contains $DCGroup.Id

Computer IP Address Operating System Last Status Report

dcl.reskit.org 10.10.10.10 windows Server 2016 Datacenter 03/03/2017 22:38:47

There's more...

Rather than assigning computers to computer target groups on the WSUS server, you can
assign computers to computer target groups in WSUS using the Group Policy with a feature
called client-side targeting.

A group policy object is created and linked to the OU that contains the computers. This
group policy object is then associated with one or more WSUS computer target groups.
When the computer connects to the WSUS server, it declares these groups to the server and
receives the updates assigned to those groups.

To learn more, see the client-side documentation at
https://technet.microsoft.com/en-us/library/dd252762.aspx

[111]

https://technet.microsoft.com/en-us/library/dd252762.aspx

Managing Windows Updates

Configuring WSUS auto-approvals

WSUS organizes Windows updates under different classifications. You can view these
classifications by using the Get -WsusClassification cmdlet. Two particularly important
classifications you should check regularly are Critical Updates and Definition
Updates. The Critical Updates classification includes updates that address severe
security flaws and zero-day vulnerabilities. The Definition Updates classification
includes definition files for Windows Defender to identify and remove malware.

These two classifications are important enough to approve them automatically. Auto-
approval ensures WSUS installs these updates on client computers as soon as possible. In
this recipe, you will create an auto-approval rule for these updates.

Getting ready

Run this recipe on the WSUSI server.

How to do it...

Run this recipe to configure auto-approval of WSUS update:
1. Create the auto-approval rule:

$WSUSServer = Get-WsusServer
$ApprovalRule = $WSUSServer.CreateInstallApprovalRule ('Critical
Updates')

2. Define a deadline for the rule:

$type = 'Microsoft.UpdateServices.Administration.
AutomaticUpdateApprovalDeadline'
SRuleDeadlLine = New-Object -Typename S$type
SRuleDeadLine.DayOffset = 3
SRuleDeadLine.MinutesAfterMidnight = 180
$ApprovalRule.Deadline = $RuleDeadLine

3. Add update classifications to the rule:

$UpdateClassification = ° $ApprovalRule.
GetUpdateClassifications ()

$UpdateClassification.Add(($WSUSServer.
GetUpdateClassifications () |

[112]

Managing Windows Updates

Where-Object —-Property Title —eq 'Critical Updates'))
$UpdateClassification.Add(($WSUSServer.
GetUpdateClassifications() |
Where-Object —-Property Title —eq 'Definition Updates'))
$ApprovalRule. SetUpdateClassifications ($UpdateClassification)

4. Assign the rule to a computer target group:

$TargetGroups = New-Object °
Microsoft.UpdateServices.Administration.
ComputerTargetGroupCollection
$TargetGroups.Add (($WSUSServer.GetComputerTargetGroups () |
Where-Object -Property Name —-eq "Domain Controllers"))
$ApprovalRule. SetComputerTargetGroups ($TargetGroups)

5. Enable and save the rule:

$ApprovalRule.Enabled = $true
$ApprovalRule.Save ()

How it works...

In step 1, you create the sWwSUSServer object using Get -WsusServer, then use the
CreateInstallApprovalRule method to create a new AutomaticUpdateApprovalRule
object, and store them in the $ApprovalRule variable:

PS C:\> $WSUSServer = Get-WsusServer

$ApprovalRule = $wsusServer.CreateInstallApprovalRule("cCritical Updates™)

In step 2, you define SRuleDeadline, a new AutomaticUpdateApprovalDeadline object,
configured to install automatically with a three-day grace period after becoming available
and the scheduled installation time of 3 am. You associate this deadline object with your
approval rule:

PS C:\> # Define a deadline:
$RuleDeadLine = New-Object ~
Microsoft.UpdateServices.Administration.AutomaticUpdateApprovalDeadline

$RuleDeadLine.Dayoffset = 3
$RuleDeadLine.MinutesAfterMidnight = 180
$ApprovalRule.Deadline = $RuleDeadLine

[113]

Managing Windows Updates

In step 3, you use the GetUpdateClassifications method of the $ApprovalRule object
and store the resulting object in the $UpdateClassification variable. The object initially
contains no update classifications. You then use the Add method of this object to add in the
two desired update classifications filtered by Title and associate these with the
$ApprovalRule object using the SetUpdateClassifications method:

PS C:\> $updatecClassification = $ApprovalRule.GetUpdatecClassifications()

$updatecClassification.Add(($wSusserver.GetUpdateClassifications() |
where-Object -Property Title -eq 'Critical Updates'))

$updatecClassification.Add(($wsusServer.GetUpdateClassifications(Q |

where-Object -Property Title -eq 'Definition Updates'))
$ApprovalRule.SetUpdateClassifications($updateclassification)
0

1

In step 4, you define $TargetGroups and set it to contain the computer target group named
'Domain Controllers' using the GetComputerTargetGroups method of $WsSUSServer,
filtered by where-Object. You then associate $TargetGroups with the new
$ApprovalRule using the SetComputerTargetGroups method:

PS C:\> $TargetGroups = New-Object ~
Microsoft.UpdateServices.Administration.ComputerTargetGroupCollection
$TargetGroups.Add((SwSusServer.GetComputerTargetGroups() |

where-Object -Property Name -eq "Domain Controllers™))
$ApprovalRule.SetComputerTargetGroups($TargetGroups)
0

In step 5, you set the Enabled property of the sApprovalRule object, and use the Save
method to complete the configuration:

PS C:\> $ApprovalRule.Enabled = $true
$ApprovalRule.Save()

There's more...

You can view your approved updates using the Get Updates method of the swSUSServer
object and filter on the IsApproved property:

SWSUSServer.GetUpdates () |
Where-Object —-Property IsApproved -eq S$Strue |
Select-Object -Property Title, CreationDate,
UpdateClassificationTitle

[114]

Managing Windows Updates

Managing updates

The WSUS administrator performs several tasks to manage update distribution. These tasks
begin with the awareness of which updates are available, approved, installed or marked to
be installed for each computer target group. For the available updates, the administrator
must approve or reject the updates to control which updates are made available. This recipe
covers listing installed updates, listing available updates, approving updates, and declining
updates.

Getting ready

In this recipe, you manage updates using PowerShell. You should open a PowerShell
session on WSUSI to perform this recipe.

How to do it...
In this recipe you manage WSUS updates:

1. Open a PowerShell session, and view the overall status of all Windows updates
on WSUSI:

SWSUSServer = Get-WsusServer
S$WSUSServer.GetStatus ()

2. View the computer targets:
$WSUSServer.GetComputerTargets ()

3. View the installed updates on DC1 using Get-Hotfix and Get-
SilWindowsUpdate:

Get-HotFix —-ComputerName DC1

$CimSession = New-CimSession —ComputerName DC1
Get-SilWindowsUpdate -CimSession $CimSession
$CimSession | Remove-CimSession

[115]

Managing Windows Updates

4. Search the WSUS server for updates with titles containing Windows Server 2016
that are classified as security updates, newest to oldest, and store them in a
variable. Examine the variable using Get -Member, reviewing the properties and
methods of the Microsoft.UpdateServices.Internal.BaseApi.Update
object:

$SecurityUpdates = $WSUSServer.SearchUpdates (
"Windows Server 2016") |
Where-Object -Property UpdateClassificationTitle
—-eq 'Security Updates' |
Sort-Object -Property CreationDate -Descending
$SecurityUpdates | Get—Member
5. View the matching updates:

$SecurityUpdates |
Select-Object -Property CreationDate, Title

6. Select one of the updates to approve based on the KB article ID:

$SelectedUpdate = $SecurityUpdates |
Where-Object —-Property KnowledgebaseArticles —-eq 4019472

7. Define the computer target group where you will approve this update:

$DCTargetGroup = $WSUSServer.GetComputerTargetGroups () |
Where-Object -Property Name -eq 'Domain Controllers'

8. Approve the update for installation in the target group:
$SelectedUpdate.Approve ('Install', $DCTargetGroup)
9. Select one of the updates to decline based on the KB article ID:

$DeclinedUpdate = $SecurityUpdates |
Where-Object —-Property KnowledgebaseArticles —eq 4020821

10. Decline the update:

$DeclinedUpdate.Decline ($DCTargetGroup)

[116]

Managing Windows Updates

How it works...

In step 1, you create the sWSUSServer object using Get-WsusServer and use the
GetStatus method to view the status of Windows updates on the WSUS server:

PS C:\> $WSUSServer = Get-WsusServer

#see overall update status
$wsusserver.Getstatus()

UpdateCount DeclinedUpdateCount ApproveduUpdateCount NotApprovedUpdatecCount ComputerTargetCount

In step 2, you review the computer targets configured in WSUS with the
GetComputerTargets method:

PS C:\> $wsusserver.GetComputerTargets()
FullDomainName IPAddress ClientVversion LastSyncTime OSDescription

dcl.reskit.org 10.10.10.10 .0.14393.594 12/05/2017 5 windows Server Datacenter
dg 10.10.10.254 .0.14393.594 12/05/2017 04:34: windows Server Datacenter
sg-clil.reskit.org 10.10.10.141 .0.10240.1... 02/04/2017 19:49: windows 10 Pro

wsusl.reskit.org 551l .0.14393.594 12/05/2017 03:52: windows Server Datacenter
srvl.reskit.org 10.10.10.50 .0.14393.594 12/05/2017 01:29: windows Server Datacenter
srv2.reskit.org 10.10.10.51 14393.0 13/03/2017 01:51: windows Server Datacenter

In step 3, you use two different methods to view the installed updates. The first is Get -
Hot fix, and the second is Get-SilWindowsUpdate, which is one of the
SoftwarelInventoryLogging module cmdlets introduced in PowerShell version 5. These
cmdlets use CIM sessions to connect to computers and gather inventory information:

PS C:\> Get-HotFix -ComputerName DCl

$CimSession = New-CimSession DCL

Get-SilwindowsUpdate -CimSession ($CimSession) | Format-Table -AutoSize
$CimSession | Remove-CimSession

Source Description HotFixID InstalledBy Installedon

Update KB3192137 NT AUTHORITY\SYSTEM 12/09/2016
Update KB3211320 NT AUTHORITY\SYSTEM 07/03/2017

update KB4013418 NT AUTHORITY\SYSTEM 19/03/2017
Security Update KB3213986 NT AUTHORITY\SYSTEM 07,/03/2017

InstallDate PSComputerName

DCl
KB3211320 07/03/2017 DCl
KB4013418 19/03/2017 bDCl
KB3213986 07/03/2017 DCl

[117]

Managing Windows Updates

In step 4, you use the SearchUpdates method on the $WSUSServer to search the available
updates by title, then use Wwhere-Object to filter on the UpdateClassificationTitle
property for security updates and then sort them from newest to oldest. You then use Get~
Member to examine the Update object, noting the many methods and properties:

- $Securitylpdates = $WSUSServer.SearchUpdates("Windows Server 2016") |

ject -Property UpdateClassificationTitle -EQ "Security Updates® |
rt-Object -Property CreationDate -Descending

$Securitylpdates | Get-Member

TypeName: Microsoft.UpdateServices.Internal.BaseApi.Update

Name Member Type Definition
AcceptlicenseAgreement Method void AcceptLicenseAgreement(), void IUpdate.AcceptLicenseAgreement()
Approve Method Microsoft.UpdateSer ’ . oval Approve(Microsoft.UpdateServices. Administr
ApproveForOptionalInstall Method Microsoft.UpdateSer i ration. IUpdateApproval ApproveForOptionallnstall(Microsoft.Update. ..
CancelDownload Method void CancelDownload, void IUpdate.CancelDownload()
CreateObjRef Method System. Runtime. Remoting.ObjRef CreateObjRef(type reguestedType)

Method void Decline(), void Decline(bool failIfReplica), void IUpdate.Decline()

Method bool Equals(System.Object obj)

Method void ExpirePackage(), void IUpdate.ExpirePackage()

Method void E: pu)rtPa:kagEMetadata(string fileName), void TUpdate.ExportPackageMetadata(string ileName)

Microsoft. Updat: RevisionChanges Chan evision(), Microsof...
t+HashCode ()

MsrcSeverity o 1 1on.Msroe erity {get;set;}
ProductFami lyTitles System.Co i
ProductTitles System.Collection: e T e T e A e e TR T Y T
PublicationState Microsoft.UpdateServices. Administration. PublicationState PublicationState {get;set;}
string ReleaseNot {uet set;]
LicenseAgreementAcceptance Property bool RequiresLice: mentAcceptance {get;set;
SecurityBulletins Property System.Collection: Spe(]ﬂh . StringCollection .zecumtyﬁu'l'lehn‘ {get;}

In step 5, you view the security updates that matched your search. Note that each displays a
knowledge base (KB) ID that is useful for identifying and researching individual updates:

$SecurityUpdates | Select CreationDate, Title
CreationDate Title

Cumulative Update for Windows Server 2016 Technical Preview 5 for 4-based Systems (KB3207296)
Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KB3195038)
Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based Systems) (hE3209498)
Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for ?
7 Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based S\ tems) (hE31‘3-|344)
ecurity Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based Systems) (KB3201860)
2017-05 Security Update for Adobe Flash Player for Windows Server 2016 for -based Systems (KB4020821)
017-05 Cumulative Update for Windows Server 2016 for x64-based Systems (KB4019472)
Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based Systems (KB3199442)
ecurity Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (KB3188128)
Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 4 for x64-based Systems (KB3188128)
Security Update for Windows Server 2016 Technical Preview 5 (KB3172729)
Cumulative Update for Windows Server 2016 Technical Preview 3 (KB3097877)
Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based tems (KB3172989)
Cumulative Update for Windows Server 2016 Technical Preview 5 T 4-based tems (KB3188966)
Cumulative Update for Windows Server 2016 for x64-based Systems (KB3193494)
Security Update for Adobe Flash Player for Windows Server 2016 (for x64-based Systems) (KB4018483)
Cumulative Update for Windows Server 2016 for x64-based Systems (KB4015217
Cumulative Update for Windows Server 2016 for x64-based Systems (KB3176495)
Cumulative Update for Windows Server 2016 Technical Preview 5 Systems (KB3176494)
Cumulative Update for Windows Server 2016 Technical Preview 5 Systems (KBE3163016)
Security Update for Adobe Flash Player for Windows Server 2016 (for d Systems) (KB4014329)
Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 5 (for x64-based Systems) (KB3209498)
Cumulative Update for Windows Server 2016 Technical Preview 5 for x64-based tems (KB3207296)
Security Update for Windows Server 2016 Technical Preview 5 (KB3198389)
Security Update for Adobe Flash Player for Windows Server 2016 Technical Preview 4 for x64-based Systems (KB3188128)
Security Update for Windows Server 2016 Technical Preview 5 (KB3172729)
Cumulative Update for Windows Server 2016 Technical Preview 5 for > tems (KB3172989)
Cumulative Update for Windows Server 2016 Technical Preview 3 (KB3097877)

[118]

Managing Windows Updates

In step 6, you filter the selected updates for a single update that you wish to approve using
Where-Object to match on the KnowledgebaseArticles property:

$Selectedupdate = $SecurityUpdates |
where-0Object -Property KnowledgebaseArticles -EQ 4019472

In step 7, you define the computer target group for the Domain Controllers using the
GetComputerTargetGroups method of the sWSUSServer object, filtered by Where-
Object:

$DCTargetGroup = $WSUSServer.GetComputerTargetGroups() |

Where-Object -Property Name -eq 'Domain Controllers’

In step 8, you use the Approve method of the $SelectedUpdate object-which takes two
parameters:, an UpdateApprovalAction and a TargetGroup-and approve the selected
update for the Domain Controllers target group:

PS C:\> $selectedupdate.Approve("Install",$DCTargetGroup)

GoLiveTime Deadline AdministratorName TargetGroup

2017-05 Cumulativ... 12/05/2017 18:48:34 31/12/9999 23:59:59 RESKIT\Administrator Domain Controllers

In step 9, you select an update to decline, using Wwhere-Object to filter the selection to a
single update using the KnowledgebaseArticles property:

PS C:\> $DeclinedUpdate = §SecurityUpdates |

Where-Object -Property KnowledgebaseArticles -EQ 4020821

In step 10, you use the Decline method of the update object, and provide the TargetGroup
object as a parameter to decline this update for the Domain Controllers target group
computers:

PS C:\> $DeclinedUpdate.Decline($DCTargetGroup)

[119]

Managing Windows Updates

There's more...

Two community PowerShell modules available via the Install-Module or the PowerShell
Gallery website are useful for working with Windows Update.

PoshWsUS simplifies the management of the WSUS server, wrapping up the interaction
with the various objects and enumerations with easy-to-use cmdlets. For example, this
command would decline updates for all non-English LanguagePack updates (note the -
WhatIf parameter support):

Get-PSWSUSUpdate —-IncludeText 'LanguagePack' -ExcludeText 'English' Deny-
PSWSUSUpdate -WhatIf

PSWindowsUpdate enables the management and installation of Windows updates provided
from a WSUS server, Windows Update, or Microsoft Update. For example, this command
will install the newly approved update on DC1 and reboot if required:

Get-WUInstall —-AcceptAll —-AutoReboot

[120]

Managing Printers

In this chapter, we cover the following recipes:

e Installing and sharing printers
e Publishing a printer

¢ Changing the spool directory

¢ Changing printer drivers

¢ Printing a test page on a printer
¢ Reporting on printer security

¢ Modifying printer security

¢ Deploying shared printers

¢ Enabling Branch Office Direct Printing
¢ Creating a printer pool

¢ Reporting on printer usage

Introduction

Printing is a feature that has been incorporated into Windows operating systems, and has
evolved over the years. Printing in Windows Server 2016 has not changed much from
earlier versions, and provides you with the ability to create print servers that you can share
with users in your organization.

With Windows printing, the physical device that renders output onto paper is a print
device. A printer is, in effect, the queue for one or more print devices. A print server can
support multiple printers (as can individual client workstations). The print device has a
driver that converts your documents to the printed form on a given print device. Some
drivers come with Windows—others you need to obtain from the printer vendor.

Managing Printers

You use both the printers—that is, the printing device and printer port—when you create a
new printer on your print server. In many organizations, printers are often stand-alone
devices with just a TCP/IP connection. You can also connect a print device to your server
using the server's local USB, parallel, or serial port.

Microsoft did not change the basic print architecture in Windows Server 2016. Windows
Server 2012 introduced a new driver architecture, version 4, which Windows Server 2016
supports. This driver model enables two different driver types: printer class drivers and
model-specific drivers. The former provides a single driver for a variety of specific printing
device models, whereas latter is used for just a single model. Increasingly, print device
manufacturers are implementing more generic drivers that can simplify organizational roll-
out for printer drivers.

Another change in Windows Server 2012, carried over into Windows Server 2016, is that
you no longer use the print server to distribute printer drivers. Clients can use the point and
print feature to send print jobs to the server. Additionally, you can use tools such as the
System Center Configuration Manager or Group Policies to distribute print drivers to
clients.

This chapter covers installing, managing, and updating printers, print drivers, and printer
ports on a Windows Server 2016 print server. You may find that some of the administration
tools used in this chapter are not available on Windows Server Core. To enable full
management, you need to have the full GUI (including the Desktop Experience for any GUI
utilities).

Installing and sharing printers

The first step in creating a print server for your organization involves installing the print
server feature, then installing printer ports and printer drivers, and finally creating printers.

Getting ready

In this recipe, you are going to set up a print server, PSRV, and then set up a TCP/IP printer
for the sales Group. This process involves installing the print server feature in Windows
Server 2016. Then you create a port for a new printer and install the driver for the Sales
Group group's new printer, an NEC Color MultiWriter. Finally, you create and then
share the printer. Once complete, you can review what you have accomplished.

[122]

Managing Printers

How to do it...

1. Install the Print-Server feature on PSRV, along with the print management
tools:

Install-WindowsFeature —-Name Print-Server,
RSAT-Print-Services

2. Add aPrinterPort for a new printer:

Add-PrinterPort -Name Sales_Color °
-PrinterHostAddress 10.10.10.61

3. Add aPrinterDriver for this printer server:

Add-PrinterDriver —Name
'NEC Color MultiWriter Class Driver'
—PrinterEnvironment 'Windows x64'

4. Add the printer:

Add-Printer -Name SGCP1 °
—-DriverName 'NEC Color MultiWriter
Class Driver' °
—-Portname 'Sales_Color'

5. Share the printer:
Set-Printer -Name SGCP1l -Shared $True
6. Review what you have done:

Get-PrinterPort -Name SGCP1l |
Format-Table —-Property Name, Description,
PrinterHostAddress, PortNumber
—Autosize
Get-PrinterDriver —-Name NEC* |
Format-Table —-Property Name, Manufacturer,
DriverVersion, PrinterEnvironment
Get-Printer —-ComputerName PSRV —-Name SGCP1l |
Format-Table —-Property Name, ComputerName,
Type, PortName, Location, Shared

[123]

Managing Printers

How it works...

In step 1, you add the Print-Server feature and the management tools to PSRV. To do this,
open a PowerShell window on the PSRV host and install the Print-Server feature. You
can either do this directly or remotely, and you can use the PowerShell console or the ISE
directly from the Print-sServer. The output looks like this:

~ Install-wWindowsFeature -Name Print-Server,
RSAT-Print-5Services

Success Restart Needed Exit Code Feature Result

Success {Print Server, Print and Document Services...

In step 2, you add a new port for the color printer you wish to add. In step 3, you add the
PrinterDriver for the printer (in our case, an NEC Color MultiWriter Class
Driver). In step 4, you add a new printer, SGCP1, to the system. You use the
PrinterDriver and printer port you created for this new printer. In step 5, you share the
printer. A shared printer enables users to connect to the printer and print to the associated
print device. Windows bases permissions for the printer on the Discretionary Access
Control List (DACL), which you set up when you create the printer. Another recipe later in
this chapter shows you how you can view and update the DACL for a printer. There is no
output for step 2, step 3, step 4, and step 5.

Once you have created and shared the printer, you can view the results. In step 6, you view
the printer port, printer driver, and printer. Note that the printer is shared in the following
output:

PS5 C:\> Get-PrinterPort —-Name Sales_Color |
Format-Table -Property Name, Description, PrinterHostAddress, Portnumber

Name Description PrinterHostAddress Portnumber

Sales_Color Standard TCP/IP Port 10.10.10.61

at printer drivers added
PS5 C Get-PrinterDriver -Name NEC*
at-Table -Property Mame, Manufacturer, DriverVersion, PrinterEnvironment

Name Manufacturer DriverVersion PrinterEnvironment

MEC Color MultiWriter Class Driver NEC 2814750710366208 Windows x64

Get Printer Details
Get-Printer —ComputerName Psrv -Name SGCP1 |
Format-Table -Property Name, ComputerName, Type, PortName,
Location, Published, Shared

Name ComputerName Type PortName Location Published Shared

SGCPL1 Psrv Local Sales_Caolor False True

[124]

Managing Printers

Publishing a printer

Once you create and share a printer, as shown in the previous recipe, you can additionally
publish it to the Active Directory. When you publish a printer, you can also specify a
location for the printer that enables your users to search for published printers based on
location and capabilities. End users can search AD to find printers and to find the printers
near to them. In this recipe, you publish the printer you created in the previous recipe and
examine the results.

Getting ready

In this recipe, you publish the printer that you created in the preceding recipe, Installing and
sharing printers.

How to do it...

1. Get the printer to publish and store the returned object in $Printer:
S$Printer = Get-Printer —-Name SGCP1l

2. Observe the publication status:
$Printer | Format-Table -Property Name, Published

3. Publish the printer to AD:

$Printer | Set-Printer -Published $true °
—Location '10th floor 10E4'

4. View the updated publication status:

Get-Printer —-Name SGCP1l |
Format-Table —-Property Name, Published, Location

[125]

Managing Printers

How it works...

In step 1, you get the printer details for the Sales Group group's printer, SGCP1, and store
itin $Printer. There is no output from this step.

In step 2, you output the printer details to see that you have not yet published the printer:

PS5 C:\> $Printer | Format-Table -Property Name, Published

Name Published

5GCP1 True

In step 3, you publish the printer by piping the Printer object to Set-Printer, specifying
that you wish to publish the printer. In step 4, you can see the results of publishing the
printer:

PS C:%»= Get-Printer -Name 5GCP1 |
Format-Table -Property Mame, Published, Location

Mame Published Location

SGCPL True 10th floor 10E4

As you can see, you have now published the printer and set the location to the 10th
floor, area 10EA4.

There's more...

When you publish a printer to the Active Directory, users need to be able to find it. One
way is to use the Find Printers dialog to search for published printers.

To use this (in Windows Server 2016 and Windows 10), you click Start | Settings | Devices
| Printers & scanners to bring up the Add printers & scanners dialog. From this dialog
box, click Add a printer or scanner. Wait until the searching is complete, then click on The
printer that I want isn't listed, which brings up the Add Printer dialog:

[126]

Managing Printers

o= Add Printer

Find a printer by other options

() My printer is a little older. Help me find it.
(® Find a printer in the directory, based on location or feature
() Select a shared printer by name
Browse...

Example: \\computername\printername or
http://computername/printers/printername/.printer

() Add a printer using a TCP/IP address or hostname
(O Add a Bluetooth, wireless or network discoverable printer

(") Add a local printer or network printer with manual settings

Cancel

Select Find a printer in the directory, based on location or feature, then click Next. You
now see the Find Printers dialog:

[Find Printers - [m| X
File Edit View
In: : Entire Directory ~ Browse...
Prirters Features Advanced
MName: ‘ |
Stop
Location: |
Clear All
Model: ‘ |
(_\I_.
77
oK
[Search results:
MName Lecation Model
= SGCPT 10th floor 10E4 MEC Color MultiWriter Class Driver|
L4 >
1 item(s) found

[127]

Managing Printers

You, or your users, can use the Printers tab to search for printers by Name, Location, and
Model, and use the Features tab to search for printers with specific features (for example,
the ability to print in color).

Changing the spool directory

By default, Windows uses the folder $SystemRoot%\System32\spool \PRINTERS to store
spooled jobs. On our print server, PSRV, this folder is

C:\Windows\System32\spool \PRINTERS. In some cases, particularly when your users
generate large amounts of printed output, this folder and the volume could become full,
which is not a good thing. To help you avoid issues, you can move the default spool
directory to a different folder (for example, C:\Spool), or you could move the spool folder
to a folder on another volume (for example, E: \Spool).

Getting ready

There are two ways you can change the spool directory. The first way is to use the classes
inside the NET Framework's System.Printing namespace to update the folder name. The
second, and probably the simplest, way is to update the registry with the folder to use for
spooling. This recipe shows both methods.

How to do it...

First, let's look at how you change the spoo1l folder using the .NET Framework:
1. Load the System.Printing namespace and classes:
Add-Type —AssemblyName System.Printing
2. Define the required permissions—that is, the ability to administrate the server:
$Permissions =

[System.Printing.PrintSystemDesiredAccess]::
AdministrateServer

[128]

Managing Printers

3. Create a PrintServer object with the required permissions:

$Ps = New-Object
-TypeName System.Printing.PrintServer °
—-ArgumentList $Permissions

4. Update the default spool folder path:

$Newpath = 'C:\Spool’
$Ps.DefaultSpoolDirectory = $Newpath

5. Commit the change:

$Ps.Commit ()

6. Restart the Spooler to accept the new folder:

Restart-Service —-Name Spooler
7. Once the Spooler has restarted, view the results:

New-Object -TypeName System.Printing.PrintServer |
Format-Table —-Property Name,
DefaultSpoolDirectory

Another way to set the Spooler directory is by directly editing the registry as follows:

1. First stop the Spooler service:
Stop-Service —-Name Spooler
2. Set the spool directory registry setting:

PS C:\foo> $RPath = 'HKLM:\SYSTEM\CurrentControlSet\Control\ +

Print\Printers'
$Spooldir = 'C:\SpoolViaRegistry'
Set-ItemProperty —-Path $RPath °

—Name DefaultSpoolDirectory °
-Value 'C:\SpoolViaRegistry'

[129]

Managing Printers

3. Restart the Spooler:
Start-Service —-Name Spooler
4. View the results:

New-Object -TypeName System.Printing.PrintServer |
Format-Table -Property Name,
DefaultSpoolDirectory

How it works...

The .NET Framework's System.Printing namespace contains some useful printing-
related classes and enums, some of which you use in this recipe. PowerShell does not load
this namespace by default. You load it in step 1, using the Add-Type cmdlet, which
produces no output.

In step 2, you create a variable, $Permissions, that holds the print permissions you
need-namely the ability to administer the print server. In step 3, you instantiate a
PrintServer object with the permission to administer the print server. These permissions
are separate from normal administrative privileges. Even running the commands in an
elevated PowerShell console requires you to create permissions, as you can see here.

In step 4, you change the Spool folder to the in-memory PrintServer object, and then in
step 5, you commit the update. In step 6, you restart the Spooler, and then, in step 7, observe
the results from changing the Spooler folder. The output from step 6 and step 7 looks like
this:

PS C:%> Restart-Service -Name Spooler
WARNING: Waiting for serwvice 'Print Spooler (Spooler)’ to start...

PS5 C:%> New-Object System.Printing.PrintServer |
Format-Table Mame, DefaultSpoolDirectory

The second and simpler method involves just updating the registry value entry that holds
the spool folder name (and restarting the Spooler). To do this, in step 8, you stop the
Spooler, and in step 9, you update the registry value that the Spooler system uses for its
spool folder. Note that you do not have to do steps 1-7 to use the second method!

[130]

Managing Printers

In step 10, you restart the Spooler service, which now uses the new spool folder. Finally,
in step 11, you view the results of changing the Spoo1l folder, which looks like this:

P5 C:\> New-Object -TypeName System.Primting.PrintServer |
Format-Table -Property Name, DefaultSpoolDirectory

Mame DefaultSpoolDirectory

SRV C:\SpoolViaRegistry

Note that the two methods you use in this recipe use different folder names for illustration.
The folder name may not be appropriate for your installation. In production, you should
also consider moving the spool folder to a separate volume to avoid running out of space
on the system volume.

This recipe makes use of the underlying .NET System.Printing namespace instead of just
commands from the PrintManagement modules. This approach has value in many other
places inside Windows. In general, the advice is to use cmdlets where/when you can and
only then dip down into either the .NET Framework or the CIM/WMI namespaces and
classes.

Changing printer drivers

Once you set up a printer, as shown in the recipe Installing and sharing a printer, users can
use the printer and its associated driver to print their documents. You may need to change
the driver to change the printer model or to update the driver. In the Installing and sharing a
printer recipe, you installed an NEC Color MultiWriter Class Driver, which works
with many NEC color printers. But suppose you decide to replace this printer with a
different printer model from a different vendor, say an HP color laser printer.

In this recipe, you change the driver for the printer. The assumption behind this recipe is
that the printer name and printer port (the printer's IP address and port number) remains
constant. You might need to change the printer driver for a printer, should you replace an
old printer for a newer or different printer (for example, replacing an NEC printer with an
HP printer). In this case, the printing device and its driver changes, but everything else
remains the same.

Getting ready

In this recipe, you change the driver for the printer you created in the Installing and sharing a
printer recipe.

[131]

Managing Printers

How to do it...

1. Add the print driver for the new printing device:

Add-PrinterDriver —-Name
'HP LaserJet 9000 PS Class Driver'

2. Get the sales Group printer object and store it in $Printer:
$Printer = Get-Printer -Name SGCP1l
3. Update the driver using the Set-Printer cmdlet:

Set-Printer —-Name $Printer.Name
-DriverName 'HP LaserJet 9000
PS Class Driver'

4. Observe the results:

Get-Printer —-Name SGCP1 °
—ComputerName PSRV

How it works...

In the first step in this recipe, you install the driver for the new print device, an HP
LaserJet 9000 PS Class Driver. You do this by using the Add-PrinterDriver
command. If the printer driver is not one provided by Windows (and can be added using
Add-PrinterDriver), you may need to run manufacturer-supplied driver software to

install the driver.

Once you have the driver installed, in step 2, you retrieve the printer details for the Sales
Group object's color printer. In step 3, you update the drivers used for this printer by using
the set-Printer command. In step 4, you see the results, which look like this:

PS5 C:\»> Get-Printer -Name SGCP1 °
—ComputerName PSRV

Name ComputerName Type DriverName PortName Shared Published DeviceType

SGCP1 PSRV Local HP LaserJet 9000 PS Class Driver 5ales_Color True True

[132]

Managing Printers

Printing a test page on a printer

From time to time, you may wish to print a test page on a printer, for example, after
changing toner or printer ink, or after changing the print driver (as shown in the Changing
printer drivers recipe). In those cases, the test page helps you to ensure that the printer is
working properly.

Getting ready

For this recipe, you print a test page on the sales Group object's LaserJet printer, as
updated by the Changing printer drivers recipe.

How to do it...

1. Get the printer objects from WMI:

SPrinters = Get-CimInstance -ClassName
Win32_Printer

2. Display the number of printers defined:

'{0} Printers defined on this system'
—-f $Printers.Count

3. Get the sales Group printer:

$Printer = $Printers |
Where-Object Name -eq "SGCP1"

4. Display the printer's details:
$Printer | Format-Table -AutoSize
5. Print a test page:

Invoke-CimMethod -InputObject $Printer °
—MethodName PrintTestPage

[133]

Managing Printers

How it works...

In step 1, you use Get-CimInstance to return all the printers defined on this system. In step
2, you display the total printers defined:

PS C:%> "{0} Printers defined on this system’ -f $Printers.Count

7 Printers defined on this system

In step 3, you get the printer object corresponding to the Sales Group Laser]et printer. In
step 4, you display the details of this printer:

PS C:%= $Printer | Format-Table -AutoSize

Name ComputerMName Type DriverName PortName Shared Published DeviceType

SGCPL Local HP LaserJet 9000 PS5 Class Driver 5Sales_Color,Sales_Color2 True False

In step 5, you invoke the Print TestPage method on the Sales Group Laser]et printer,

which then generates a test page on the printer. If you are using the printer MMC snap-in,
the printer test page looks like this:

i
File Action View Help
e« HEIXEEE HE

&1 Print Management -~

Printer Name Queue Status JobsIn .. Server Name Driver Name Actions
v [l Custom Filters EESGCP Ready 1 PSRV (local) NEC Color MultiWriter Class Driver | Printers Wi...
7| All Printers (6)
7| All Drivers (7) < > More... P
#| Printers Mot Ready SGCP1

7| Printers With Jobs
v f] Print Servers
v 3 PSRV (local)

Jobs Printer Web Page

Document Name Job Status Owner Pages Size Submitted
|| Drivers Test Page Printing Administrator 1 226 KB 21:08:01 10/12/2016
oy Forms
4 Ports
= Printers W g 2

[134]

Managing Printers

Reporting on printer security

In the Windows operating system, all objects secured by the OS have four key properties:

e The owner

e The primary group

¢ Discretionary Access Control List (DACL)
¢ System Access Control List (SACL)

The DACL contains a set of individual permissions, known as Access Control Entries
(ACEs), that define a particular permission. Each ACE contains properties that describe the
permission, including a trustee (the security principal to whom you are giving this
permission), a permission mask (what permission is being allowed or disallowed), and an
ACE type (what type is allowed, disallowed). You can find details of the permission masks
on the MSDN.

Getting ready

This recipe displays the DACL for the Sales Group printer, SGCP1, created by the Installing
and sharing printers recipe and later updated by the Changing printer drivers recipe. You
could easily convert this recipe into an advanced function (for example, Get -
PrinterSecurity) with a parameter to tell the function which printer to examine.

How to do it...

1. Create a hash table containing printer permissions:

$Permissions = @
ReadPermissions = [uint32] 131072
Print = [uint32] 131080
PrintAndRead = [uint32] 196680
ManagePrinter = [uint32] 983052
ManageDocuments = [uint32] 983088
ManageChild = [uint32] 268435456
GenericExecute = [uint32] 536870912
ManageThisPrinter = [uint32] 983116

}

[135]

Managing Printers

2. Get a list of all printers and select the Sales Group color printer:

$Printer = Get-CimInstance -Class Win32_Printer °
-Filter "Name = 'SGCP1'"

3. Get the securityDescriptor and DACL for each printer:

$SD = Invoke-CimMethod -InputObject $Printer °
—MethodName
GetSecurityDescriptor
$DACL = $SD.Descriptor.DACL

4. For each Ace in the DACL, look to see what permissions you have set, and report

accordingly:

ForEach ($Ace in $DACL) {

5. Look at each permission that can be set and check to see if the Ace is set for that

permission:

Foreach ($Flag in ($Permissions.GetEnumerator())) {
Is this flag set in the access mask?

If ($Flag.value —-eq $Ace.AccessMask) {

6. If this permission is set, then get the AceType:

$AceType = switch ($Ace.AceType)

{
0 {'Allowed'; Break}
1 {'Denied'; Break}
2 {'Audit'}

}

7. Get the permission type, nicely formatted:

$PermType = $flag.name
-Csplit ' (?=[A-Z])' -ne '' -join ' '

8. Finally, display the results (and end the loops and If statement):

'Account: {0}{1} - {2}: {3}' -f Sace.Trustee.Domain,
$Ace.Trustee.Name,
$PermType, $AceType

} # End of If $flag,Value

} # End Foreach $Flag loop

} # End Each $Ace

[136]

Managing Printers

How it works...

This recipe begins, in step 1, by defining a hash table of the permissions that you can use in a
printer's DACL. In step 2, you use the Get -CimInstance cmdlet to retrieve the WMI object
relating to the Sales Group color printer.

In step 3, you use the GetSecurityDescriptor method of the printer object to get the
DACL for this printer. The DACL, which you store in the $DACL variable, is an array of
individual win32_ACE objects.

In steps 4 you examine each Ace in the DACL to get, decode, and display the details of the
permission expressed by this Ace entry. In step 5, you iterate through the permissions (as
defined in step 1). In step 6, you check to see if the flag matches the AccessMask property of
the Ace. If the entry matches, you determine the ace type in step 6. In step 7, you get the
permission type nicely formatted. Finally, in step 8, you display the particular permissions.
The output from the final step in this recipe looks like this:

ACE Trustee: Administrator
Account: RESKIT\Administrator - Manage Printer: Allowed
ACE Trustee: Administrator
Account: RESKIT\Administrator - Manage Documents: Allowed
ACE Trustee: CREATOR OWNER
Account: ZWCREATOR OWNER - Manage Child: Allowed
ACE Trustee: ALL APPLICATION PACKAGES
Account: APPLICATION PACKAGE AUTHORITYM\ALL APPLICATION PACKAGES - Manage Child: Allowed
ACE Trustee: Everyone
Account: “Everyone - Print: Allowed
ACE Trustee: Everyone
Account: ‘“Everyone - Generic Execute: Allowed
ACE Trustee: ALL APPLICATION PACKAGES
Account: APPLICATION PACKAGE AUTHORITYSALL APPLICATION PACKAGES - Print: Allowed
ACE Trustee: ALL APPLICATION PACKAGES
Account: APPLICATION PACKAGE AUTHORITYSALL APPLICATION PACKAGES - Generic Execute: Allowed
ACE Trustee: Administrators
Account: BUILTINVAdministrators - Manage This Printer: Allowed
ACE Trustee: Administrators
Account: BUILTIN\Administrators - Manage Child: Allowed

Modifying printer security

As you saw in the previous recipe, Reporting on printer security, the DACL for a printer
defines what access Windows allows to the printer. To change the set of permissions, you
need to change the DACL. You could, for example, update the DACL on the Sales Group
printer to just allow members of the Sales Group to print on the printer. This recipe
updates the DACL to enable the AD sales Group to print to the Sales Group printer.

[137]

Managing Printers

Getting ready

Before you can run this recipe, you need to create a group in the AD. In this recipe, you use
a group, Sales Group, contained in the Sales OU. To create the 0U, the domain local
group, do the following:

Creating the OU and Group
$SB = { New-ADOrganizationalUnit -Name 'Sales'
-Path 'DC=Reskit,DC=0rg’
New-ADGroup —-Name 'Sales Group'
-Path 'OU=Sales,DC=Reskit,DC=0rg'
—-GroupScope DomainLocal

}
Invoke—-Command —ComputerName DC1l -ScriptBlock $SB

How to do it...

1. Define the user who is to be given access to this printer and get the group's
security principal details:

$GroupName = 'Sales Group'

$Group = New-Object -Typename
Security.Principal.NTAccount
-Argumentlist $GroupName

2. Next, get the group's SID:

$GroupSid = $Group.Translate ([Security.Principal.
Securityidentifier]) .Value

3. Now define the SDDL that gives this user access to the printer:

$SDDL = 'O:BAG:DUD:PAI (A;OICI;FA;;;DA)' +
' (A;OICI; 0x3D8F8; ;; $GroupSid) '

4. Display the details:
'Group Name : {0}' —-f $GroupName

'Group SID : {0}' -f $GroupSid
'SDDL : {0}’ —-f $sSDDL

[138]

Managing Printers

5. Get the sales Group printer object:
$SGPrinter = Get-Printer -Name SGCP1
6. Set the Permissions:

$SGPrinter | Set-Printer -Permission $SDDL

How it works...

In step 1, you use New-Object to get the security principal details for the Sales Group
from the Active Directory. In step 2, you use this object's Translate method to retrieve the
SID for the group.

In step 3, you define the SDDL that is used to set permissions. In this step, as a sanity check,
you can see the information you use to set the DACL. The output looks like this:

Group Name : Accounting Group
Group SID : 5-1-5-21-715049209-2702507345-667613206-1118

SDDL : 0:BAG:DUD: PAT(A; OICT;FA; ; ; DA) (A; OICT; 0x3D8FS; ; ; 5-1-5-21-715049209-2702507345-667613206-1118)

In step 5, you get the printer object for the Sales Group printer, and in step 6, you update
the printer with the SDDL string you created in step 3. That sets the Sales Group printer's
DACL. You can verify the results by rerunning the Reporting on printer security recipe.

Deploying shared printers

Traditionally, you used scripting to deploy printers. With this method, you create a logon or
startup script and deploy this logon script via Group Policies. When machines start up or
users log on, the logon script automatically sets up printers.

Once you have set up a shared printer, such as the shared sales Group color printer, as
shown in this chapter, you can deploy it. There are several ways to automate local client
printer deployment, including using PowerShell, WMI, the Printui.d11 utility, and the
Wscript.Network COM object. All of these methods have been in use for a long time and
are quite efficient, although PowerShell is the preferred way, naturally.

[139]

Managing Printers

Getting ready

To deploy a printer to a client, you first need a client computer system. Our demo lab
includes a Windows 10 Enterprise client (SG-CL1), which we use in this recipe. To test this
recipe, you need the client computer, the print server (PSVR), and the domain controller
(DC1).

Once you create the client, you can run the following commands to add it to the domain in
the sales OU (created separately):

$Cred = Get-Credential 'Reskit\administrator’

you enter the password

$OUPath = 'OU=Sales, DC=Reskit,DC=0rg'

Add-Computer -DomainName 'Reskit'
-DomainCredential $cred

Next, you need a Group Policy object that deploys the logon script. The easiest way to
create this Group Policy Object (GPO) is to use the GUI-there are no PowerShell cmdlets
(or WMI/.NET objects) that can help.

To create the GPO, you use the Group Policy Management Console (GPMC) tool. This tool
is part of the management tools for Active Directory, and is also part of the Remote Server
Admin Tools (RSAT) that you can download for client systems. Once you install the
GPMC, you can run it and expand the domain to make our Sales OU visible:

= Group Policy Management - O X
5l File Action View Window Help - 8
|75 6l HmE

=L Group Pelicy Management Sales

w 5\3 Forest: Reskit.Org
v [Z5 Domains -

w 3 Reskit.Org Link Order GPO Erforced Link Enabled GPO Status WM Filtter

[Default Demain Pelicy

Linked Group Policy Cbjects ' Group Policy Inhertance Delegation

2| Domain Controllers
= | Sales
=t Group Policy Objects
+ WMI Filters
3 Starter GPOs
[Sites
sii’ Group Policy Modeling
 Group Policy Results

Next, you right-click the Sales OU, specify the Group Policy Name, and click OK:

[140]

Managing Printers

| =L File Action
e | nm B8|XE

View Window Help

6 H

g X

5L Group Policy Management
~ _ﬁ Forest: Reskit.Org
v [Dom
~ _:f_j Reskit.Org

s/ Default Domain Policy

Sales
Linked Group Policy Objects

Group Policy Inheritance

Delegation

=
Link Order

GPO

Enforced

Link Enabled

GPO Status WMI Fitter

= | Domain Control
o | Sales
=t Group Policy OH
¥ WMI Filters
[Starter GPOs
[Sites
i Group Policy Modeling
¢ Group Policy Results

Mew GPO

Name:

X

Sales Group Printing]

Source Starter GPO:
{none)

Cancel

With the GPO created, right-click the GPO and select Edit:

_%_Lij?vup Policy Management
5L File Action
«=| 75 G

View Window Help

&

x

2 Group Policy Management
v _ﬁ Forest: Reskit.Org
~ |54 Domains
~ _fj Reskit.Org

o Sales

% WMI Filters

[Starter GPOs
| Sites
i Group Policy Modeling
¢ Group Policy Results

=i/ Default Domain Policy
= | Domain Controllers

¢ Group Policy Objects

Sales
Linked Group Policy Objects

Group Policy Inheritance

Delegation

-
Link Order

GPO

Enforced

Link Enabled GPO Status

Edit

Enl};rced

Link Enabled
Save Report...

Delete
Rename
Refresh

Yes

Enabled

[141]

Managing Printers

This brings up the Group Policy Management Editor. Select the User Configuration |
Windows Settings | Scripts (Logon/Logoff):

=] Group Policy Ma