[image: cover]
JSON at Work

Practical Data Integration for the Web

Tom Marrs

JSON at Work

by Tom Marrs

Copyright © 2017 Vertical Slice, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Editor: Meg Foley

		Production Editor: Nicholas Adams

		Copyeditor: Sharon Wilkey

		Proofreader: Charles Roumeliotis

		Indexer: Ellen Troutman-Zaig

		Interior Designer: David Futato

		Cover Designer: Randy Comer

		Illustrator: Rebecca Demarest

		July 2017: First Edition

Revision History for the First Edition

		2017-06-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449358327 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JSON at Work, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-449-35832-7

[LSI]

Dedication

To everyone who produces or consumes JSON data with web/mobile applications,
REST APIs, and messaging systems—I hope this makes your job easier.

To the unsung JSON community that produces JSON-based tools and libraries for
the rest of us—thank you for all your hard work to make JSON useful and meaningful.

Preface

JavaScript Object Notation (JSON) has become the de facto standard for RESTful interfaces, but an ecosystem of little-known standards, tools, and technologies is available that architects and developers
can start using today to build well-designed applications. JSON is more than just a simple replacement for
XML when you make an AJAX call. It is becoming the backbone of any serious data interchange over the internet.
Solid standards and best practices can be used to harness the energy and enthusiasm around
JSON to build truly elegant, useful, and efficient applications.

The only thing missing is a book to pull everything together. This book aims to help developers leverage JSON
so that they can build enterprise-class applications and services. My goals are to promote the use of JSON
tooling and the concept of message/document design as a first-class citizen in the fast-growing API community.

My journey into JSON began in 2007 when I was leading a large web portal project, and we had to populate
a drop-down list with several thousand entries. At that time, I was reading Head First AJAX by Rebecca Riordan (O’Reilly), so I had a
decent architectural approach. AJAX would solve overall latency and page load issues, but what about the
data? I had been using XML successfully for several years, but it seemed like overkill for the task at
hand—moving data from the backend of a web application to the View. Head First AJAX mentioned a
new data format called JSON, and it looked like the way to go. My team began looking into APIs that would
convert our Java objects into JSON, and chose the one that had the simplest and shortest JUnit tests—the goal was to do the
simplest thing that could possibly work. We put the application under rigorous load testing, and the
Java-to-JSON conversion was never a performance issue. The application scaled up in production, and
the users saw their drop-down list in a timely manner.

Along my journey, I considered the use of JSON with web applications, RESTful APIs, and messaging.
As of 2009, I was still working with XML because XML Schema provided the semantic validation needed
for meaningful data interchange. So, my position at that time was to use JSON for web user interfaces, or UIs (for speed), and
XML for Web Services and Messaging (for integration). But then I heard about JSON Schema in 2010, and
found that I had no further need for XML. The JSON Schema specification is still under development,
but it’s sufficiently mature enough now to use for enterprise-class integration.

At this point, I was hooked on or, more accurately, obsessed with JSON. I began looking around the
internet to see what else JSON could do, and I found copious APIs, online tools, search capabilities,
and more. In short, anything that has been done with XML can (and should) now be done with JSON.

I then began to look for JSON in books, and was disappointed when I could find only a chapter or two on the
topic in a JavaScript or RESTful Web Services book. I saw a growing JSON community along with lots of
tool support and articles and blogs, but there was no single place—other than Douglas Crockford’s
JSON site—that pulled everything together.

Audience, Assumptions, and Approach

This book is for architects and developers who design/implement web and mobile applications, RESTful APIs,
and messaging applications. Code examples are in JavaScript, Node.js, Ruby on Rails, and Java. If you’re
a Groovy, Go, Scala, Perl, Python, Clojure, or C# developer, you’ll need to follow along with the code
examples provided. But rest assured that most major/modern languages provide excellent JSON support. For the
architect, I’ve provided guidelines, best practices, and architecture and design diagrams where appropriate.
But in addition to providing visionary leadership, real architects prove their ideas with working code. While
I love working with JSON and writing code, it’s entirely meaningless without use cases, and a business
and technical context. For developers, this book is packed with code examples, tooling, and Unit Tests, along
with a GitHub repository (see “Code Examples”).

Chapters 5–10 only have code examples only in Node.js to keep things simple and focused.
But it’s not hard to translate these examples into your platform of choice.

What Does “At Work” Mean?

When I wrote JBoss at Work with Scott Davis back in the mid-2000s, our vision was to write a book that
developers could use at work on their daily jobs. In the same manner, the purpose of JSON at Work is to
provide practical examples to developers based on my real-world integration experience with JSON. To that
end, I’ve baked Unit Testing (wherever feasible) into every chapter. It’s simple: if there’s no test for
a piece of code, then that code doesn’t exist. Period.

Expect to roll up your sleeves and look at code. Whether you’re an architect or developer, you’ll find
something here to help you on your job.

What You’ll Learn

By reading and following this book’s examples, you’ll learn how to do the following:

	
JSON basics and how to model JSON data

	
Use JSON with Node.js, Ruby on Rails, and Java

	
Structure JSON documents with JSON Schema to design and test APIs

	
Search the contents of JSON documents with JSON Search tools

	
Convert JSON documents to other data formats with JSON Transform tools

	
Use JSON as part of an enterprise architecture

	
Compare JSON-based Hypermedia formats, including HAL and json:api

	
Leverage MongoDB to store and access JSON documents

	
Use Apache Kafka to exchange JSON-based messages between services

	
Use freely available JSON tools and utilities to simplify testing

	
Invoke APIs in your favorite programming language with simple utilities and libraries

What You’ll Work With

Here’s a sample of the JSON tooling you’ll use in this book:

	
JSON editors/modelers

	
Unit-Testing tools (e.g., Mocha/Chai, Minitest, JUnit)

	
JSON Validators

	
A JSON Schema Generator

	
JSON Search tools

	
JSON Transform (templating) tools

Who This Book Is Not For

This book is not for you if your only interest in JSON is to make AJAX calls from JavaScript.
Although I cover this topic, it’s just the tip of the iceberg. Plenty of JavaScript books have the chapter you’re looking for.

Developers looking for a deep reference on REST, Ruby on Rails, Java, JavaScript, etc. won’t find it here.
This book relies on these technologies, but focuses on how to use JSON with these languages and technologies.

Organization

This book consists of the following parts:

	
Part I, JSON Overview and Platforms

	
Part II, The JSON Ecosystem

	
Part III, JSON in the Enterprise

	
Appendices

Part I, JSON Overview and Platforms

	
Chapter 1, JSON Overview, starts with an overview of the JSON data format, describes best practices in JSON
usage, and introduces the tools used throughout the book.

	
Chapter 2, JSON in JavaScript, shows how to use JSON with JavaScript, Node.js, and Mocha/Chai Unit Tests.

	
Chapter 3, JSON in Ruby on Rails, describes how to convert between Ruby objects and JSON, and integrate
with Rails.

	
Chapter 4, JSON in Java, tells you how to use JSON with Java and Sprint Boot.

Part II, The JSON Ecosystem

	
Chapter 5, JSON Schema, helps you structure JSON documents with JSON Schema. Along the way, you’ll
generate a JSON Schema and design an API with it.

	
Chapter 6, JSON Search, shows how to search JSON documents with jq and JSONPath.

	
Chapter 7, JSON Transform, provides the tools you’ll need transform a poorly designed JSON document to a
better designed/more useful JSON document.
Plus, it shows how to convert between JSON and other formats such as XML and HTML.

Part III, JSON in the Enterprise

	
Chapter 8, JSON and Hypermedia, looks at how to use JSON with several well-known Hypermedia formats (e.g.,
HAL and jsonapi).

	
Chapter 9, JSON and MongoDB, shows how to leverage MongoDB to store and access JSON documents.

	
Chapter 10, JSON Messaging with Kafka, describes how to use Apache Kafka to exchange JSON-based messages
between services.

Appendices

	
Appendix A, Installation Guides, shows how to install the applications you’ll need to run the code examples
in this book.

	
Appendix B, JSON Community, provides further information and links to connect you to the JSON community (e.g., standards and
tutorials) and to help you go further with JSON.

Code Examples

All code examples for this book are freely available from the JSON at Work examples GitHub repository.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “JSON at Work by Tom Marrs (O’Reilly). Copyright 2017 Vertical Slice, Inc., 978-1-449-35832-7.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari

Note

Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated playlists from over 250 publishers, including O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

 	O’Reilly Media, Inc.

 	1005 Gravenstein Highway North

 	Sebastopol, CA 95472

 	800-998-9938 (in the United States or Canada)

 	707-829-0515 (international or local)

 	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/json-at-work.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

First of all, I’d like to acknowledge Douglas Crockford for creating and standardizing the JSON data format.
JSON is the data language of REST and Microservices, and the overall community is indebted to his vision
and efforts.

I appreciate my O’Reilly editor, Megan Foley, and my former editor, Simon St. Laurent, for believing in this
book and for their patience and guidance on the project. Thanks for sticking with me and helping me
throughout the project. I would also like to thank my O’Reilly copy edit team, Nick Adams and Sharon
Wilkey, whose diligent work improved the quality of this manuscript.

Thanks to Matthew McCullough and Rachel Roumeliotis from the O’Reilly Open Source Convention (OSCON), Jay Zimmerman from No Fluff Just Stuff
(NFJS), and Dilip Thomas from the Great Indian Developer Summit (GIDS) for giving me the chance to speak
about JSON and REST at your conferences. It’s always fun to speak at conferences, and I hope to continue
doing this well into the future.

I’m grateful to my technical reviewers who provided valuable feedback on this book: Joe McIntyre, David Bock,
Greg Ostravich, and Zettie Chinfong. I would also like to thank the following people who helped shape and
mold my ideas on how to talk about JSON: Matthew McCullough, Scott Davis, Cristian Vyhmeister, Senthil Kumar,
Sean Pettersen, John Gray, Doug Clark, Will Daniels, Dan Carda, and Peter Piper.

The Colorado Front Range technical community is world class, and I’ve had fun presenting at the
following user groups to help refine my material:

	
HTML5 Denver

	
Denver Open Source User Group (DOSUG)

	
Colorado Springs Open Source User Group (CS OSUG)

	
Denver Java User Group (DJUG)

	
Boulder Java User Group (BJUG)

	
BoulderJS Meetup

Thanks to my friends in the Toastmasters
community who encouraged me, believed in me, and pushed me to finish the book: Darryle Brown, Deborah
Frauenfelder, Elinora Reynolds, Betty Funderburke, Tom Hobbs, Marcy Brock, and many, many others. You
have inspired me to communicate clearly, to “Lift as You Climb,” and to “Travel Beyond.”

There is an amazing JSON community on the internet. Much of this book is based on the great work that
you’ve done and continue to do. You’ve inspired me to tell your story and to connect the dots.

To my late parents, Al and Dorene Marrs, who loved me and always believed in me and supported me—I know you’re in a better place. You inspired me to be adaptable, to innovate, and to work hard.
You always encouraged me to do my very best. Thank you for everything you did for me.

Finally, to my beautiful wife, Linda, and my daughter, Abby—I love you. Thanks for your patience with me
while I spent my evenings and weekends on the manuscript and code.

Part I. JSON Overview and Platforms

Chapter 1. JSON Overview

The JavaScript Object Notation (JSON) data format enables applications to communicate
over a network, typically through RESTful APIs. JSON is technology-agnostic, nonproprietary,
and portable. All modern languages (e.g., Java, JavaScript, Ruby, C#, PHP, Python, and Groovy)
and platforms provide excellent support for producing (serializing) and consuming (deserializing)
JSON data. JSON is simple: it consists of developer-friendly constructs such as Objects, Arrays,
and name/value pairs. JSON is not limited to Representational State Transfer (REST); it also works with the following:

	
Node.js (which stores project metadata in package.json)

	
NoSQL databases such as MongoDB (see Chapter 9)

	
Messaging platforms such as Kafka (see Chapter 10)

JSON Is a Standard

In the early days, REST’s detractors derided RESTful Web Services as being non-standard, but
(just like HTTP) JSON is in fact a standard. Both the Internet Engineering Task Force (IETF) and Ecma International (formerly the European Computer Manufacturers Association, or ECMA) have recognized JSON as a standard. Douglas Crockford
originally created JSON in 2001, and initially standardized it in 2006 under RFC 4627 through the
IETF; see the JSON specification. In the fall of 2013,
Ecma International also standardized JSON under ECMA 404; see their JSON specification.
With Ecma recognition (per Douglas Crockford; see his Google+ page),
JSON is now considered a formal international data processing standard.

In March 2014, Tim Bray published an updated version of Douglas Crockford’s original standard as
IETF RFC 7158 and RFC 7159
to correct errata with the original IETF 4627 standard (thus rendering it obsolete).

A Brief Sample

Before we go further, let’s look at a small JSON sample. Example 1-1 shows a simple JSON document.

Example 1-1. firstValidObject.json

{ "thisIs": "My first JSON document" }

A valid JSON document can be either of the following:

	
An Object surrounded by curly braces, { and }

	
An Array enclosed by brackets, [and]

The preceding example shows an Object that contains a single key/value pair, where the key,
"thisIs", has a value of "My first JSON document".

Just to keep us honest, let’s validate this document by using JSONLint. Just paste the text into the text area, click the Validate button, and you should see the page in Figure 1-1.

[image: json 01in01]
Figure 1-1. Simple/valid JSON document in JSONLint

Example 1-2 presents a simple JSON Array.

Example 1-2. firstValidArray.json

[
 "also",
 "a",
 "valid",
 "JSON",
 "doc"
]

In JSONLint, paste the JSON Array into the text area, and click the Validate button, and you should get
the result shown in Figure 1-2.

[image: json 01in02]
Figure 1-2. Valid Array in JSONLint

But we’re getting ahead of ourselves. We’ll cover JSON syntax more thoroughly in “Core JSON”.

Why JSON?

Although standardization through Ecma International and the IETF has helped JSON gain industry
acceptance, other factors have popularized JSON:

	
The explosive growth of RESTful APIs based on JSON

	
The simplicity of JSON’s basic data structures

	
The increasing popularity of JavaScript

JavaScript’s resurgence is boosting JSON’s popularity. Over the past several years, we have seen
the rise of JavaScript as a first-class development language and environment. This ecosystem includes
platforms such as Node.js, and Mode/View/Controller (MVC) frameworks such as AngularJS, React, Backbone, and Ember. There has
also been a tremendous increase in the number of books and websites showing best practices in JavaScript Objects and Patterns. According to Douglas Crockford, JSON is a subset of JavaScript’s Object Literal
notation, and fits seamlessly into JavaScript development.

Thousands of RESTful APIs leverage JSON. A sample list of popular JSON-based RESTful
APIs includes the following:

	
LinkedIn

	
Twitter

	
Facebook

	
Salesforce

	
GitHub

	
DropBox

	
Tumblr

	
Amazon Web Services (AWS)

To see the thousands of available JSON-based REST APIs available, visit
 ProgrammableWeb, and do a search on REST and JSON. Then,
take several weeks to review the results.

JSON is simple and is gradually replacing XML as the primary data interchange format on the internet.
JSON is easy to read, and its structures easily translate to concepts well understood by software developers—Arrays, Objects, and name/value pairs. We don’t have to scratch our heads or argue anymore about what
should be an Element or an Attribute. Objects and their data members are a much better fit for Object-Oriented (OO) design and development. A document formatted in JSON is usually smaller than its XML equivalent,
because JSON has less overhead and is more compact. This is due to the lack of begin and end tags surrounding
each data element. So, at an enterprise level, JSON is more efficient to process than XML, because JSON
documents can be transmitted over a network and processed faster than their XML counterparts.

Although Douglas Crockford initially intended JSON to be a data interchange format (typically with REST),
JSON is now finding a home in configuration files for widely used products such as Node.js and Sublime Text.
Node.js has a package.json file that it uses to define its standard npm package structure; we’ll cover
this in Chapter 2. Sublime Text, a popular IDE in the web development community, uses JSON to configure its
appearance along with its package managers.

Core JSON

The Core JSON data format includes JSON Data and Value Types. We’ll also cover versions, comments, and
File/MIME Types.

JSON Data Types

JSON has the following core Data Types:

	Name (or Key)/value pair

	
Consists of a key (a data attribute) and a value.

	Object

	
An unordered collection of name/value pairs.

	Array

	
A collection of ordered values.

Now that we’ve covered basic definitions, let’s dig deeper into each Data Type.

Name/value pairs

Example 1-3 shows some sample name/value pairs.

Example 1-3. nameValue.json

{
 "conference": "OSCON",
 "speechTitle": "JSON at Work",
 "track": "Web APIs"
}

Name/value pairs have the following characteristics:

	
Each name (e.g., "conference")

	
Is on the left side of the colon (:)

	
Is a String, and must be surrounded by double quotes

	
The value (e.g., "OSCON") is to the right of the colon. In the preceding example, the value type is a String, but there are several other Value Types.

We’ll cover Strings and other valid Value Types further in “JSON Value Types”.

Objects

Objects consist of name/value pairs. Example 1-4 shows a sample Object that represents an address.

Example 1-4. simpleJsonObject.json

{
 "address" : {
 "line1" : "555 Any Street",
 "city" : "Denver",
 "stateOrProvince" : "CO",
 "zipOrPostalCode" : "80202",
 "country" : "USA"
 }
}

Example 1-5 shows an Object with a nested Array.

Example 1-5. jsonObjectNestedArray.json

{
 "speaker" : {
 "firstName": "Larson",
 "lastName": "Richard",
 "topics": ["JSON", "REST", "SOA"]
 }
}

Example 1-6 shows an Object that contains another Object.

Example 1-6. jsonObjectNestedObject.json

{
 "speaker" : {
 "firstName": "Larson",
 "lastName": "Richard",
 "topics": ["JSON", "REST", "SOA"],
 "address" : {
 "line1" : "555 Any Street",
 "city" : "Denver",
 "stateOrProvince" : "CO",
 "zipOrPostalCode" : "80202",
 "country" : "USA"
 }
 }
}

Objects have the following characteristics:

	
Are enclosed within a beginning left curly brace ({) and an ending right curly brace (})

	
Consist of comma-separated, unordered, name/value pairs

	
Can be empty, { }

	
Can be nested within other Objects or Arrays

Arrays

Example 1-7 shows an Array (containing nested Objects and Arrays) that describes conference presentations,
including title, length, and abstract.

Example 1-7. jsonArray.json

{
 "presentations": [
 {
 "title": "JSON at Work: Overview and Ecosystem",
 "length": "90 minutes",
 "abstract": ["JSON is more than just a simple replacement for XML when",
 "you make an AJAX call."
],
 "track": "Web APIs"
 },
 {
 "title": "RESTful Security at Work",
 "length": "90 minutes",
 "abstract": ["You’ve been working with RESTful Web Services for a few years",
 "now, and you’d like to know if your services are secure."
],
 "track": "Web APIs"
 }
]
}

Arrays have the following characteristics:

	
Are enclosed within a beginning left brace ([) and an ending right brace (])

	
Consist of comma-separated, ordered values (see the next section)

	
Can be empty, []

	
Can be nested within other Arrays or Objects

	
Have indexing that begins at 0 or 1

JSON Value Types

JSON Value Types represent the Data Types that occur on the righthand side of the colon (:) of
a Name/Value Pair. JSON Value Types include the following:

	
object

	
array

	
string

	
number

	
boolean

	
null

We’ve already covered Objects and Arrays; now let’s focus on the remaining Value Types:
string, number, boolean, and null.

String

Example 1-8 shows valid JSON Strings.

Example 1-8. jsonStrings.json

[
 "fred",
 "fred\t",
 "\b",
 "",
 "\t",
 "\u004A"
]

Strings have the following properties:

	
Strings consist of zero or more Unicode characters enclosed in quotation marks (""). Please see the
following list for additional valid characters.

	
Strings wrapped in single quotes (') are not valid.

Additionally, JSON Strings can contain the following backslash-escaped characters:

	\"

	
Double quote

	\\

	
Backslash

	\/

	
Forward slash

	\b

	
Backspace

	\f

	
Form feed

	\n

	
Newline

	\r

	
Carriage return

	\t

	
Tab

	\u

	
Trailed by four hex digits

Number

Example 1-9 shows valid numbers in JSON.

Example 1-9. jsonNumbers.json

{
 "age": 29,
 "cost": 299.99,
 "temperature": -10.5,
 "unitCost": 0.2,
 "speedOfLight": 1.23e11,
 "speedOfLight2": 1.23e+11,
 "avogadro": 6.023E23,
 "avogadro2": 6.023E+23,
 "oneHundredth": 10e-3,
 "oneTenth": 10E-2
}

Numbers follow JavaScript’s double-precision floating-point format and have the following properties:

	
Numbers are always in base 10 (only digits 0–9 are allowed) with no leading zeros.

	
Numbers can have a fractional part that starts with a decimal pont (.).

	
Numbers can have an exponent of 10, which is represented with the e or E notation with a plus or
minus sign to indicate positive or negative exponentiation.

	
Octal and hexadecimal formats are not supported.

	
Unlike JavaScript, numbers can’t have a value of NaN (not a number for invalid numbers) or Infinity.

Boolean

Example 1-10 shows a Boolean value in JSON.

Example 1-10. jsonBoolean.json

{
 "isRegistered": true,
 "emailValidated": false
}

Booleans have the following properties:

	
Booleans can have a value of only true or false.

	
The true or false value on the righthand side of the colon(:) is not surrounded by quotes.

null

Although technically not a Value Type, null is a special value in JSON. Example 1-11 shows a
null value for the line2 key/property.

Example 1-11. jsonNull.json

{
 "address": {
 "line1": "555 Any Street",
 "line2": null,
 "city": "Denver",
 "stateOrProvince": "CO",
 "zipOrPostalCode": "80202",
 "country": "USA"
 }
}

null values have the following characteristics:

	
Are not not surrounded by quotes

	
Indicate that a key/property has no value

	
Act as a placeholder

JSON Versions

According to Douglas Crockford, there will never be another version of the core JSON standard. This isn’t
because JSON is perfect; nothing is perfect. The purpose of a sole JSON version is to avoid the
pitfalls of having to support backward compatibility with previous versions. Crockford believes
that a new data format should replace JSON when the need arises within the development community.

But as you’ll see in subsequent chapters, this “no versions” philosophy applies only to the core
JSON data format. For example, in Chapter 5, that specification is currently at
version 0.5 as of this writing. Please note that these JSON-related specifications were created by
others in the JSON community.

JSON Comments

There are no comments in a JSON document. Period.

According to his postings on the Yahoo! JSON group and Google+, Crockford initially allowed comments, but removed them early on for the following reasons:

	
He believed that comments weren’t useful.

	
JSON parsers had difficulties supporting comments.

	
People were abusing comments. For example, he noticed that comments were being used for parsing directives, which would have destroyed interoperability.

	
Removing comments simplified and enabled cross-platform JSON support.

JSON File and MIME Type

According to the core JSON specification, .json is the standard JSON file type when storing JSON
data on filesystems. JSON’s Internet Assigned Numbers Authority (IANA) media (or MIME) type is
application/json, which can be found at the IANA Media Types site. RESTful Web Service Producers and Consumers use a technique known as content negotiation (which leverages the JSON MIME type in HTTP Headers) to indicate that they are exchanging JSON data.

JSON Style Guidelines

JSON is all about interoperability, and it’s important to provide JSON data feeds in a way that Consumers expect.
Google has published a JSON Style Guide to support maintainability and best practices.

The Google JSON Style Guide is extensive, and here are the most important things for an API designer
and developer:

	
Property Names

	
Date Property Values

	
Enum Values

Property Names

Property Names (in Google parlance) are on the left side of the colon in a name/value pair
(and Property Values are on the righthand side of the hyphen). Two main styles can be used
to format a JSON Property Name:

	
lowerCamelCase

	
snake_case

With lowerCamelCase, a name is created by joining one or more words to look like a single word, and the
first letter in each word is capitalized (except for the first word). Both the Java and JavaScript
communities use lowerCamelCase in their coding guides. With snake_case, all letters are lowercase,
and words are separated with an underscore (_). But the Ruby on Rails community prefers snake_case.

Google, along with the majority of RESTful APIs, uses lowerCamelCase for its Property Names, as shown in Example 1-12.

Example 1-12. jsonPropertyName.json

{
 "firstName": "John Smith"
}

Date Property Values

You may think that Date formats aren’t that important, but they are. Imagine exchanging date information
between a Producer and Consumer who come from different countries or continents. Even within a single
enterprise, two development groups will likely use different date formatting conventions. It
is important to consider the semantics of how to interpret timestamps so that we have consistent date/time
processing and interoperability across all time zones. The Google JSON Style Guide prefers that dates
follow the RFC 3339 format, as shown in Example 1-13.

Example 1-13. jsonDateFormat.json

{
 "dateRegistered": "2014-03-01T23:46:11-05:00"
}

The preceding date provides a Coordinated Universal Time (UTC) offset (from UTC/GMT—Greenwich Mean Time) of
-5 hours, which is US Eastern Standard Time. Note that RFC 3339 is a profile of ISO 8601. The main
difference is notably that the International Standards Organization’s ISO 8601 allows
the replacement of the T (which separates the date and time) with a space, and RFC 3339 does not allow
this.

Latitude/Longitude Values

Geographical APIs (e.g., Google Maps) and APIs related to a geographical information system (GIS)
use latitude/longitude data. To support consistency, the Google JSON Style Guide recommends that
latitude/longitude data follows the ISO 6709
standard. According to Google Maps, the coordinates for the Empire State Building in New York City are
40.748747° N, 73.985547° W, and would be represented in JSON as shown in Example 1-14.

Example 1-14. jsonLatLon.json

{
 "empireStateBuilding": "40.748747-73.985547"
}

This example follows the ±DD.DDDD±DDD.DDDD format, with the following conventions:

	
Latitude comes first.

	
North (of the equator) latitude is positive.

	
East (of the prime meridian) longitude is positive.

	
The latitude/longitude is represented as a String. It can’t be a Number because of the minus sign.

Indentation

Although the Google JSON Style Guide is silent on this topic, here are a few rules of thumb:

	
JSON is a serialization format, not a presentation format. So, indentation is meaningless to an API
Producer or Consumer.

	
Many JSON Formatters let the user choose between two, three, or four spaces when beautifying a JSON document.

	
JSON originated from JavaScript (as part of the ECMA 262 standard), but unfortunately there is no single
consensus throughout the JavaScript community. Many people and coding style guides prefer two spaces, so this is the convention used in this book for consistency. It’s OK if you prefer another style here, but be consistent.

Our Example—MyConference

Our examples throughout this book cover conference-related data, including the following:

	
Speakers

	
Sessions

Our Technical Stack

We’ll start by creating a simple JSON data store for speakers and publishing it to a Stub RESTful API by
taking the following steps:

	
Model JSON data with JSON Editor Online

	
Generate sample JSON data with JSON Generator

	
Create and deploy a Stub API (for future testing)

Our Architectural Style—noBackEnd

Our architectural style is based on the concept of noBackend. With noBackend, the developer doesn’t have to worry about
the nuts and bolts of application servers or databases at the early stages of application development.

The first seven chapters of this book use noBackEnd architecture to maintain focus on our application
from a business perspective (services and data first) so that we can support not only UI-based
(e.g., mobile, tablet, and web) clients, but APIs and non-web-based client applications as well. We’ll deploy
JSON data with simple tools such as json-server to emulate a RESTful API.

By using this approach, we take an interface-first approach to designing and building an API, which
provides the following:

	
More Agile, rapid, iterative frontend development due to the decoupling from the backend.

	
Faster feedback on the API itself. Get the data and URI out there quickly for rapid review.

	
A cleaner interface between the API and its Consumers.

	
A separation of concerns between the Resource (e.g., speakers as JSON data) exposed by the API and its
(eventual) internal implementation (e.g., application server, business logic, and data store). This makes
it easier to change implementation in the future. If you create and deploy a real API with Node.js/Rails/Java
(or other framework) too early, you’ve already made design decisions at a very early stage that will make it
difficult to change after you start working with API Consumers.

A Stub API does the following:

	
Eliminates the initial need to work with servers and databases

	
Allows API Producers (those developers who write the API) to focus on API Design, how
best to present the data to the Consumers, and initial testing

	
Enables API Consumers (e.g., UI developers) to work with the API at an early stage and provide
feedback to the API development team

By using the lightweight tools in this book, you’ll see that you can go a long way before
writing code and deploying it on a server. Of course, you’ll eventually need to implement an API,
and we’ll show how to do that when we cover JavaScript, Ruby on Rails, and Java in Chapters 2–4.

Model JSON Data with JSON Editor Online

Creating a valid JSON document of any real size or complexity is tedious and error-prone. JSON Editor Online is a great web-based tool that does the following:

	
Enables you to model your JSON document as Objects, Arrays, and name/value pairs

	
Makes it easier to rapidly generate the text for a JSON document in an iterative manner

JSONmate is another solid editor on the web, but we don’t cover it further in this book.

JSON Editor Online features

In addition to JSON modeling and text generation, JSON Editor Online provides the following features:

	JSON validation

	
Validation occurs as you type JSON data in the JSON text area on the left side of the page. If you forget a closing double quote for a value (e.g., "firstName": "Ester,), an X will show next to the following line of JSON text along with hover text that explains the validation error.

	JSON pretty-printing

	
Click the Indent button at the upper-left corner of the JSON text area.

	Full roundtrip engineering between the model and JSON text

	
After creating some Objects and key/value pairs (with the Append (+) button) in the JSON model on the right side of the page, generate JSON text by clicking the left-arrow button (in the upper-middle portion of the page). You should see the changes reflected in the JSON text area on the left side of the page.

Modify some data in the JSON text area and click the right-arrow button, and you should see the
changes in the JSON model on the righthand side of the page.

	Save JSON document to disk

	
You can save a JSON document to your local machine by selecting the
Save to Disk option under the Save menu.

	Import JSON document

	
You can import a JSON document from your computer by choosing the Open from Disk option from the Open menu.

Please remember that JSON Editor Online is publicly available, which means that any data you paste into
this app is visible to others. So don’t use this tool with sensitive information (personal,
proprietary, and so forth).

Speaker data in JSON Editor Online

After you’re finished modeling Speaker data, click the right-arrow button to generate a pretty-printed (indented) JSON document that represents the model. Figure 1-3 shows JSON Editor Online with our
initial Speakers model.

[image: json 01in03]
Figure 1-3. Speaker data model in JSON Editor Online

This is just a rough model, but this initial sketch is a decent starting point. Use the initial model to
visualize JSON data, get early feedback, and iterate quickly on the design. This approach enables you to
refine the JSON data structure throughout the development life cycle without investing heavily in
implementation and infrastructure.

Generate Sample JSON Data with JSON Generator

JSON Editor Online provides a decent start, but we want to generate lots of test data quickly. Test data
can be problematic because of the sensitivity of the data, and the data volume needed to do any meaningful
testing. Even with JSON Editor Online, it will take a great deal of effort to create the volume of test data
we’re looking for. We need another tool to help create the data we need to create our first version of the
API, and that’s where JSON Generator comes in. This excellent tool was used to create our speakers.json test data file.
The template used to generate the speakers.json file is available on
GitHub.
Chapter 5 covers JSON Generator in more detail.

Create and Deploy a Stub API

To create the Stub API, we’ll use the Speaker data we just created and deploy it as a RESTful API. We’ll
leverage the json-server Node.js module to serve up the speakers.json file as a Web API; this enables us
to prototype quickly. You can find more information on the json-server GitHub page.

Before going further, please set up your development environment. Refer to Appendix A to do the following:

	
Install Node.js. json-server is a Node.js module, so you need to install Node.js first. Refer to “Install Node.js”.

	
Install json-server. See “Install npm Modules”.

	
Install JSONView and Postman. See “Install JSON Tools in the Browser”. JSONView pretty-prints
JSON in Chrome and Firefox. Postman can also run as a standalone GUI application on most major operating
systems.

Open a terminal session and run json-server on port 5000 from your command line:

cd chapter-1

json-server -p 5000 ./speakers.json

You should see the following:

[image: json 01in04]

Visit http://localhost:5000/speakers in your browser, and (with JSON
pretty-printing provided by JSONView) you should see all the speakers from our Stub API as shown in Figure 1-4.

[image: json 01in05]
Figure 1-4. Speakers on json-server viewed from the browser with JSONView

You can also get a single speaker by adding the id to the URI as follows:
http://localhost:5000/speakers/0.

This is a good start, but a web browser has limited testing functionality; it can only send HTTP GET
requests. Postman provides the ability to fully test a RESTful API. It can send HTTP GET, POST, PUT,
and DELETE requests and set HTTP Headers.

Let’s use Postman to delete the first speaker in the API as follows:

	
Enter the http://localhost:5000/speakers/0 URL.

	
Choose DELETE as the HTTP verb.

	
Click the Send button.

You should see that the DELETE ran properly in Postman with a 200 (OK) HTTP Status, as shown in Figure 1-5.

[image: json 01in06]
Figure 1-5. Postman: results from the deleting the first speaker

Now, ensure that the first speaker has truly been deleted by revisiting
http://localhost:5000/speakers/0 in your browser. You should now
see the empty response shown in Figure 1-6.

[image: json 01in07]
Figure 1-6. Verify the results of deleting the first speaker

You can stop json-server by pressing Ctrl-C at the command line.

With the Stub API in place, we can now invoke it from any HTTP client (e.g., JavaScript, Ruby, or Java) to consume the data from an external application. Although most of our examples in subsequent chapters use an HTTP GET, rest assured that json-server can handle all the core HTTP verbs (GET,
POST, PUT, DELETE). Although not covered in this book, Mountebank
is an alternative server that provides more robust functionality for stubbing and mocking APIs and protocols.

The main point here is that an API Producer can use JSON-based tools to prototype a testable RESTful API
without having to write any code. This technique is powerful because it enables the API Consumer to test
without having to wait for the API to be 100 percent complete. At the same time, the API development team can
iteratively upgrade the design and prototype.

What We Covered?

We started by covering the basics of JSON. We modeled JSON data with JSON Editor Online, and deployed
it with a Stub API.

What’s Next?

The next three chapters show how to use JSON with the following core platforms:

	
JavaScript

	
Ruby on Rails

	
Java

In Chapter 2, you’ll learn how to use JSON in JavaScript with the Stub API we just created with json-server.

Chapter 2. JSON in JavaScript

We’ve covered the basics of the JSON data interchange format, and in this chapter we’ll begin to develop
applications with JSON. JSON began as a subset of the JavaScript definition for Objects and Arrays, but rest
assured that JSON is now decoupled from JavaScript. JSON is language-agnostic and works across multiple
platforms. Because JSON has its roots in JavaScript, this is where we begin our journey.

Here’s what we’ll cover:

	
Using JavaScript serialization/deserialization with JSON.stringify() and JSON.parse()

	
Working with JavaScript Objects and JSON

	
Making RESTful API calls and testing the results with Mocha/Chai Unit Tests

	
Building a small JSON-based web application

In our examples, we’ll leverage Node.js, scaffold a web application with Yeoman, and make RESTful API calls
to pull in the data we created on json-server in the previous chapter. That’s a lot of moving pieces and
parts, so we’ll iteratively build on each concept. But before we develop our web app, we need to start
with the basics of JavaScript serialization/deserialization and Objects.

Node.js Setup

Before we go any further, let’s start building our development environment by installing Node.js. Please go to
Appendix A, and follow the instructions in “Install Node.js”.

JSON Serialization/Deserialization with JSON.stringify() and JSON.parse()

Applications need to serialize (or flatten) their information into JSON in order to produce data for other
applications in a platform-neutral manner. An application must also be able to deserialize (or unflatten)
JSON data consumed from external sources into data structures for use by that application.

The JSON Stringifier/Parser Object

The JSON stringifier/parser Object was originally developed by Douglas Crockford, has been part of the
JavaScript library as of ECMAScript 5 in 2009,
and provides the following methods:

	
JSON.stringify() serializes to JSON

	
JSON.parse() deserializes from JSON

Additionally, the JSON Object

	
Was originally developed by Crockford

	
Can’t be instantiated

	
Has no other functionality

JSON Serialization with Simple JavaScript Data Types

We’ll start by serializing some basic JavaScript Data Types:

	
Number

	
String

	
Array

	
Boolean

	
Object (Literal)

Example 2-1 shows how to use JSON.stringify() to serialize simple Data Types.

Example 2-1. js/basic-data-types-stringify.js

var age = 39; // Integer
console.log('age = ' + JSON.stringify(age) + '\n');

var fullName = 'Larson Richard'; // String
console.log('fullName = ' + JSON.stringify(fullName) + '\n');

var tags = ['json', 'rest', 'api', 'oauth']; // Array
console.log('tags = ' + JSON.stringify(tags) + '\n');

var reqistered = true; // Boolean
console.log('registered = ' + JSON.stringify(reqistered) + '\n');

var speaker = {
 firstName: 'Larson',
 lastName: 'Richard',
 email: 'larsonrichard@ecratic.com',
 about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 company: 'Ecratic',
 tags: ['json', 'rest', 'api', 'oauth'],
 registered: true
};

console.log('speaker = ' + JSON.stringify(speaker));

When you run the preceding file with node from the command line, you should get the following:

[image: json 02in01]

JSON.stringify() doesn’t do anything too interesting with the scalar types (Number, String, Boolean).
Things begin to get interesting with the speaker Object Literal because here JSON.stringify() initially
generates a valid, yet unattractive, JSON String. JSON.stringify() has other parameters that enhance
serialization. According to the Mozilla Developer Network (MDN) JavaScript Guide,
here is the method signature:

JSON.stringify(value[, replacer [, space]])

The parameter list is as follows:

	value (required)

	
The JavaScript value to serialize.

	replacer (optional)

	
Either a function or an array. If a function is provided, the stringify() method
invokes the replacer function for each key/value pair in an Object.

	space (optional)

	
Indentation—either a Number or String. If a Number is used, this value
specifies the number of spaces used for each indentation level.

Let’s leverage the replacer and space parameters to pretty-print the speaker Object and filter out
some data elements, as shown in Example 2-2.

Example 2-2. js/obj-literal-stringify-params.js

var speaker = {
 firstName: 'Larson',
 lastName: 'Richard',
 email: 'larsonrichard@ecratic.com',
 about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 company: 'Ecratic',
 tags: ['json', 'rest', 'api', 'oauth'],
 registered: true
};

function serializeSpeaker(key, value) {
 return (typeof value === 'string' || Array.isArray(value)) ? undefined : value;
}

// Pretty Print.
console.log('Speaker (pretty print):\n' + JSON.stringify(speaker, null, 2) + '\n');

// Pretty print and filter out Strings and Arrays.
console.log('Speaker without Strings and Arrays:\n' +
 JSON.stringify(speaker, serializeSpeaker, 2));

Running the preceding file yields the following:

[image: json 02in02]

The first JSON.stringify() call pretty-prints the JSON output with an indentation level of 2. The second
call uses the serializeSpeaker() function as a replacer (JavaScript functions are treated as expressions
and can be passed as parameters). serializeSpeaker() checks the type of each value and returns undefined
for Strings and Arrays. Otherwise, this function returns the value “as is.”

JSON.stringify() does one of the following with an undefined value:

	
Omits the value if it’s part of an Object

	
Converts the value to null if that value belongs to an Array

JSON Serialization with an Object and toJSON()

As you’ve seen, JSON serialization makes the most sense with Objects. Let’s customize
JSON.stringify()’s output by adding a toJSON() method to our speaker Object, as shown in Example 2-3.

Example 2-3. js/obj-literal-stringify-tojson.js

var speaker = {
 firstName: 'Larson',
 lastName: 'Richard',
 email: 'larsonrichard@ecratic.com',
 about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 company: 'Ecratic',
 tags: ['json', 'rest', 'api', 'oauth'],
 registered: true
};

speaker.toJSON = function() {
 return "Hi there!";
}

console.log('speaker.toJSON(): ' + JSON.stringify(speaker, null, 2));

Serialization works as follows:

[image: json 02in03]

If an Object has a toJSON() method, JSON.stringify() outputs the value returned by the Object’s
toJSON() method rather than stringifying the Object. Although the use of toJSON() is legal, it’s probably
a bad idea. toJSON() defeats the whole purpose of JSON.stringify(), because the developer is now
responsible for serializing the entire Object structure. This could work with simple Objects such as speaker
(as currently defined), but you’ll end up writing lots of code to serialize more complex Objects that
contain other Objects.

JSON Deserialization Using eval()

Originally, JavaScript developers used the eval() function to parse JSON.
eval() takes a String parameter that could be a JavaScript expression, a statement, or a sequence of
statements. Consider Example 2-4.

Example 2-4. js/eval-parse.js

var x = '{ "sessionDate": "2014-10-06T13:30:00.000Z" }';

console.log('Parse with eval(): ' + eval('(' + x + ')').sessionDate + '\n');

console.log('Parse with JSON.parse(): ' + JSON.parse(x).sessionDate);

Running the preceding file yields the following:

[image: json 02in04]

In this case, both eval() and JSON.parse() work the same and parse the date properly. So what’s the
problem? Let’s look at another example with a JavaScript statement embedded in the String; see Example 2-5.

Example 2-5. js/eval-parse-2.js

var x = '{ "sessionDate": new Date() }';

console.log('Parse with eval(): ' + eval('(' + x + ')').sessionDate + '\n');

console.log('Parse with JSON.parse(): ' + JSON.parse(x).sessionDate);

When we run this, we now see the following:

[image: json 02in05]

We passed in text that contains a JavaScript statement, new Date(), and eval() executes that statement.
Meanwhile, JSON.parse() correctly rejects the text as invalid JSON. Although we passed in only a fairly
innocuous statement to create a Date, someone else could pass in malicious code and eval() would still
execute it. Even though eval() can be used to parse JSON, it is considered a bad/unsafe practice because
it opens the door to any valid JavaScript expression, leaving your application vulnerable to attacks. Because of this security issue, the eval() function has been deprecated (for parsing JSON) in favor of JSON.parse().

JSON Deserialization with an Object and JSON.parse()

Let’s return to our Speaker example, and use JSON.parse() to deserialize a JSON String into a speaker
Object, as shown in Example 2-6.

Example 2-6. js/obj-literal-parse.js

var json = '{' + // Multi-line JSON string.
 '"firstName": "Larson",' +
 '"lastName": "Richard",' +
 '"email": "larsonrichard@ecratic.com",' +
 '"about": "Incididunt mollit cupidatat magna excepteur do tempor ex non ...",' +
 '"company": "Ecratic",' +
 '"tags": [' +
 '"json",' +
 '"rest",' +
 '"api",' +
 '"oauth"' +
 '],' +
 '"registered": true' +
'}';

// Deserialize JSON string into speaker object.
var speaker = JSON.parse(json);

// Print 2nd speaker object.
console.log('speaker.firstName = ' + speaker.firstName);

When we run this file, we get the following:

[image: json 02in06]

JSON.parse() takes a JSON String as input and parses it into a fully functional JavaScript Object. We’re
now able to access the speaker Object’s data members.

JavaScript Objects and JSON

So far, we’ve shown how core JavaScript Data Types and simple Object Literal–style JavaScript Objects
interact with JSON. But we’ve glossed over some details, and now it’s time to go a bit deeper. There are
several ways to create (or instantiate) JavaScript Objects, and we’ll focus on Object Literal
form because this type of Object is the one that is the closest match to a JSON Object.

We’ve already shown the speaker Object in Object Literal form, but we’ll show it again
in Example 2-7 for reference.

Example 2-7. js/obj-literal.js

var speaker = {
 firstName: 'Larson',
 lastName: 'Richard',
 email: 'larsonrichard@ecratic.com',
 about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 company: 'Ecratic',
 tags: ['json', 'rest', 'api', 'oauth'],
 registered: true,
 name: function() {
 return (this.firstName + ' ' + this.lastName);
 }
};

With Object Literal syntax, you define an Object’s properties (both data and functions) inside the curly
braces. In the preceding example, the speaker Object is instantiated and populated with data. If you never
need to create another instance of the speaker Object in your application, Object Literal is a good
approach because it provides a simple yet modular way to group an Object’s data and functionality. The real
drawback to the Object Literal approach is that you can create only one instance of speaker, and you can’t
reuse the name() method.

Node REPL

So far we’ve been using Node.js from the command line to execute JavaScript files. Let’s change things up a
bit and start using Node.js’s interpreter, the Request-Eval-Print-Loop (REPL), instead. The REPL is really
great because it provides instant feedback on your code, and enables you to iteratively debug and improve
your application. You can find in-depth coverage of the REPL in the Node.js documentation.
But nothing is perfect, and neither is the REPL. One of my pet annoyances is the following:

[image: json 02in07]

For each statement that doesn’t produce output, the interpreter outputs undefined. Many people find this distracting, and there’s a way to turn it off. See Appendix A (“Taming the REPL—mynode”) to configure a command alias I affectionately call mynode that I
find easier to work with than the standard Node.js REPL.

Without further ado, let’s work with our speaker Object by using the mynode REPL:

[image: json 02in08]

In this run, you’ll notice that we can interact with the speaker Object by calling its methods and
viewing the results in the interpreter.

Here are some of the commands you’ll need to use the REPL:

	.clear

	
Clear the context of the REPL session.

	.break

	
Go back to the REPL prompt. Use this to break out of a multiline statement.

	.exit

	
Exit the REPL session.

	.save

	
Save the REPL session to a file.

Where to Learn More About JavaScript Objects

We’ve glossed over many details of Object-Oriented JavaScript, and there are several other ways to interact
with objects. We’ve shown just enough OO here so that we can work with JavaScript Objects and JSON in a
meaningful way within an application. Complete, in-depth coverage of JavaScript Objects is far beyond the
scope of this book. To gain a deeper understanding, here are a few excellent resources:

	
Learn JavaScript Next by JD Isaacks (Manning).

	
The Principles of Object-Oriented JavaScript by Nicholas K. Zakas (O’Reilly).

	
Learning JavaScript Design Patterns by Addy Osmani (O’Reilly).

Unit Testing with a Stub API

Now that you know how to serialize/deserialize JSON to/from a speaker Object, we’re ready to run a simple
server-side Unit Test against a Stub API provided by json-server. We’ll also use this Stub API when we later
create a small web application.

Unit Test Style—TDD and BDD

Test-Driven Development (TDD) is an approach that uses Unit Testing to drive development. Here’s a
typical flow:

	
Write some tests.

	
Run the tests, which fail because there isn’t any code.

	
Write just enough code to make the tests pass.

	
Refactor the code to improve design and flexibility.

	
Rerun tests and fix code until all tests pass.

TDD-style Unit Tests tend to be procedural.

Behavior-Driven Development (BDD) is an approach that tests a User Story based on acceptance criteria
and expected outcomes. BDD-style tests read like English sentences; for example:
“Speakers should receive their payment from the Conference within 30 days.” For more information on BDD,
please see Dan North’s excellent article, “Introducing BDD”.
Some people see BDD as a refinement to TDD, and I tend to agree because a developer would follow the
same workflow as TDD.

Both BDD and TDD are solid approaches, and can be combined to form a robust test suite for an application.
The Unit Tests in this chapter use a BDD-style approach for assertions.

Just Enough Unit Testing with Mocha and Chai

Here are the tools for our server-side Unit Test:

	Mocha

	
Mocha is a JavaScript Unit Test framework that runs in both Node.js and a browser. We’ll leverage
Mocha from the command line within a Node.js project, and add a few features to support JSON-based API testing.
You can find more details at the Mocha website.

	Chai

	
Chai is an assertion library that complements JavaScript testing frameworks and adds a richer set
of assertions, in this case to Mocha. Chai enables developers to write TDD or BDD style tests. The tests in this chapter use the expect (BDD) assertion
style, but you’re free to experiment with the should (BDD) or assert (TDD) assertion styles. Use the
approach that makes you comfortable. For more details on Chai, visit the Chai Asssertion Library website.

Setting Up the Unit Test

Before going further, please be sure to set up your test environment. If you haven’t installed Node.js yet, see Appendix A, and install Node.js (see “Install Node.js” and
“Install npm Modules”). If you want to follow along with the Node.js project provided in the code
examples, cd to chapter-2/speakers-test and do the following to install all dependencies for the
project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s GitHub
repository.

Unirest

Our Unit Test will invoke an API with HTTP, so we’ll include Unirest in our testing repertoire. Unirest is
an open source cross-platform REST client provided by the Mashape team. There are implementations in JS,
Node.js, Ruby on Rails (RoR) and Java. Unirest is simple and works well in any client code that makes HTTP
calls to REST APIs, but it’s also great for Unit Testing. Unirest enables cleaner Unit Tests because you can
do a one-time setup (e.g., URI, Headers) and then make multiple HTTP calls throughout the test suite.
For detailed documentation, visit the Unirest website.

Unirest is great because it’s cross-platform, and the concepts and method signatures are similar regardless
of the language implementation. There are other excellent Java-based HTTP libraries (e.g., Apache Commons
HTTPComponents HttpClient, but as a polyglot (multilanguage) developer, I prefer Unirest. Please note that Unirest is not just
for Unit Tests. It’s widely used as an HTTP client wrapper by APIs (which invoke other APIs), and by web and
mobile client applications.

Test Data

We’ll use the Speaker data from Chapter 1 as our test data and deploy it as a RESTful API. Again, we’ll
leverage the json-server Node.js module to serve up the data/speakers.json file as a Web API. If you need
to install json-server, please refer to “Install npm Modules” section of Appendix A.

Here’s how to run json-server on port 5000 from your local machine:

cd chapter-2/data

json-server -p 5000 ./speakers.json

Speakers Unit Test

The Unit Test in Example 2-8 shows how to use Unirest to make an API call to the Speaker Stub API provided by
json-server.

Example 2-8. speakers-test/speakers-spec.js

'use strict';

var expect = require('chai').expect;
var unirest = require('unirest');

var SPEAKERS_ALL_URI = 'http://localhost:5000/speakers';

describe('speakers', function() {
 var req;

 beforeEach(function() {
 req = unirest.get(SPEAKERS_ALL_URI)
 .header('Accept', 'application/json');
 });

 it('should return a 200 response', function(done) {
 req.end(function(res) {
 expect(res.statusCode).to.eql(200);
 expect(res.headers['content-type']).to.eql(
 'application/json; charset=utf-8');

 done();
 });
 });

 it('should return all speakers', function(done) {
 req.end(function(res) {
 var speakers = res.body;
 var speaker3 = speakers[2];

 expect(speakers.length).to.eql(3);
 expect(speaker3.company).to.eql('Talkola');
 expect(speaker3.firstName).to.eql('Christensen');
 expect(speaker3.lastName).to.eql('Fisher');
 expect(speaker3.tags).to.eql([
 'Java', 'Spring',
 'Maven', 'REST'
]);

 done();
 });
 });

});

In this Unit Test, the following occurs:

	
The test sets up the URI and Accept Header for unirest by using Mocha’s beforeEach() method,
so that setup occurs in only one place in the code. Mocha executes beforeEach() before running
each test (i.e., it) within the context of the describe.

	
The should return all speakers test is the most interesting, and it works as follows:

	
req.end() executes the Unirest GET request asynchronously, and the anonymous (unnamed)
function processes the HTTP response (res) from the API call.

	
We populate the speakers object with the HTTP Response Body (res.body). At this point, the JSON
from the API has already been parsed by Unirest and converted to a corresponding JavaScript Object (in
Object Literal form).

	
We use Chai’s BDD-style expect assertions to check for expected results:

	
We have three speakers.

	
The third speaker’s company, firstName, lastName, and tags match the values in the speakers.json
file.

To run this test from the command line (in a second terminal session), do the following:

cd chapter-2/speakers-test

npm test

You should see the following results:

json-at-work => npm test

...

> mocha test

...

 speakers
 ✓ should return a 200 response
 ✓ should return all speakers

 2 passing

Building a Small Web Application

Now that you know how to serialize/deserialize JSON to/from a speaker Object and how to do a Unit Test
with the Speaker Stub API (on json-server), we’re ready to build a simple web application that
leverages the API data and presents it to a user.

We’ll develop the web application in three iterations:

	
Iteration 1—generate a basic web application with Yeoman.

	
Iteration 2—make an HTTP call with jQuery.

	
Iteration 3—consume Speaker data from a Stub API (with json-server) and use a template.

Yeoman

Yeoman provides an easy way to create (i.e., scaffold) a
web application and simplify developer workflow, and is similar to Gradle and Maven (from the Java
community), and Ruby on Rails. We’ll use Yeoman to set up, develop, and run the example application. To
install Yeoman (which depends on Node.js), refer to Appendix A, and follow the
instructions in “Install Yeoman”.

Yeoman provides the following functionality:

	
Creates the development environment

	
Runs the application

	
Automatically reloads the browser when changes are saved

	
Manages package dependencies

	
Minifies the application’s code and packages it for deployment

Yeoman follows the philosophy of convention over configuration:

	
Automates setup

	
Just works

	
Uses standardized directory structures

	
Provides Dependency Management

	
Assumes reasonable defaults

	
Encourages best practices

	
Enables tool-based developer workflow (e.g., test, lint, run, and package)

Please review the following Yeoman tutorials for more information:

	
Let’s Scaffold a Web App with Yeoman

	
Building Apps with the Yeoman Workflow

The Yeoman toolset

Yeoman consists of the following tools:

	Scaffolding

	
Yo generates the directory
structure and Grunt/Gulp/Bower configuration files for an application.

	Build

	
You can use either Gulp or Grunt
to build, run, test, and package an application.

	Package Management

	
Either Bower or npm
can be used to manage and download package dependencies.

Although Grunt is a solid build tool, and npm is an excellent package manager, we’ll use Gulp and Bower
for our examples because the Yeoman generator for the web application uses these tools.

Yeoman generators

Yeoman leverages generators to build and scaffold a project. Each generator creates a default
preconfigured boilerplate application. There are over 1,000 generators, and Yeoman provides a complete official list.

Iteration 1—Generate a Web Application with Yeoman

Let’s start with a simple application that has no real functionality, and hardcode the Speaker data into
a table. We’ll add the speaker functionality in Iterations 2 and 3. With Yeoman installed, we’ll use the
generator-webapp generator to create our application that comes out-of-the-box with web pages, CSS
stylesheets, Bootstrap 4, jQuery, Mocha, and Chai.

If you’d like to set up the Yeoman project yourself, follow the instructions in the book’s GitHub
repository.
If you want to follow along with the Yeoman project provided in the code examples, cd to
chapter-2/speakers-web-1. In either case, do the following to start the application from the command line:

gulp serve

This command starts a local web server and shows the main page (index.html) in your default
browser. You should see the page in Figure 2-1 at http://localhost:9000.

[image: json 02in09]
Figure 2-1. Basic web app with Yeoman generator

Note that if you keep the application running, you can see changes take effect as you save them
because this application automatically refreshes with LiveReload.

The generator-webapp Yeoman generator creates a nice starter application, and it’s time to customize
it. First, let’s change the title, Header, and jumbotron (i.e., remove the Splendid! button) in
index.html as shown in Example 2-9.

Example 2-9. speakers-web-1/app/index.html

<!doctype html>
<html lang="">
 <head>

 ...

 <title>JSON at Work - MyConference</title>

 ...

 </head>
 <body>
 ...

 <div class="header">
 ...

 <h3 class="text-muted">JSON at Work - Speakers</h3>
 </div>

 ...

 <div class="jumbotron">
 <h1 class="display-3">Speakers</h1>
 <p class="lead">Your conference lineup.</p>
 </div>

 ...

 </body>
</html>

Let’s add a table with some hardcoded Speaker data in the index.html file, as shown in Example 2-10.

Example 2-10. speakers-web-1/app/index.html

<!doctype html>
<html lang="">

 ...

 <body>

 ...

 <table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th>
 <th>About</th>
 <th>Topics</th>
 </tr>
 </thead>
 <tbody id="speakers-tbody">
 <tr>
 <td>Larson Richard</td>
 <td>Incididunt mollit cupidatat magna excepteur do tempor ...
 </td>
 <td>JavaScript, AngularJS, Yeoman</td>
 </tr>
 <tr>
 <td>Ester Clements</td>
 <td>Labore tempor irure adipisicing consectetur velit. ...
 </td>
 <td>REST, Ruby on Rails, APIs</td>
 </tr>
 <tr>
 <td>Christensen Fisher</td>
 <td>Proident ex Lorem et Lorem ad. Do voluptate officia ...
 </td>
 <td>Java, Spring, Maven, REST</td>
 </tr>
 </tbody>
 </table>

 ...

 </body>
</html>

We now have a web application that displays the sample Speaker data, as shown in Figure 2-2.

[image: json 02in10]
Figure 2-2. Sample Speaker data in index.html

Here are the key application files and directories generated by generator-webapp:

	
app/ contains the application’s code (for example, HTML, JavaScript, and CSS).

	
index.html is the application’s main page.

	
images/ holds the application’s images.

	
scripts/ is a directory that has the application’s JavaScript (and other scripting language) files.

	
main.js is the application’s main JavaScript file. We’ll work with this more in Iteration 2.

	
styles/ is the folder that holds CSS and related styling files.

	
bower_components/ contains the project dependencies installed by Bower: Bootstrap, jQuery, Mocha, and Chai.

	
node_modules/ contains the project dependencies required by Node.js, including Gulp.

	
test/ holds test specs used by the chosen testing framework(s). In this case, we’re using Mocha and
Chai.

	
gulpfile.js is the Gulp build script used to build and run the application.

	
package.json is used by Node.js to manage dependencies that Gulp needs to execute the project scripts.

	
dist/ contains build-related artifacts created by gulp build.

To wrap up our discussion on generator-webapp, here are the other important commands you’ll need to know:

	Ctrl-C

	
Stop the application (the web server).

	gulp lint

	
Use lint to validate the JavaScript files in the application.

	gulp +serve:test

	
Test the web application. In this case, it runs PhantomJS with Mocha and Chai.

	gulp build

	
Build and package the application for deployment.

	gulp clean

	
Clean the artifacts generated when testing and building the application.

You can get the full list of commands by typing gulp --tasks at the command line.

Please shut down the web application before moving to Iteration 2.

Iteration 2—Make an HTTP Call with jQuery

In Iteration 1, we developed a web application with Speaker data hardcoded in the main page, and now it’s
time to add “live” content and functionality.

We’ll take the following steps:

	
Factor the hardcoded Speaker data out of the main page.

	
Add a separate JSON file to hold the Speaker data.

	
Use jQuery to populate the main page with Speaker data from the JSON file.

If you’d like to set up the Yeoman project for Iteration 2 by yourself, do the following:

	
Follow the instructions in the book’s
GitHub repository.

	
Don’t forget to copy the app/index.html file from Iteration 1.

Or if you want to follow along with the Yeoman project provided in the code examples, cd to
chapter-2/speakers-web-2. In either case, do the following to start the application from the command line:

gulp serve

This command starts the local web server as shown in Iteration 1. You should see the page in Figure 2-3 at
http://localhost:9000.

[image: json 02in10]
Figure 2-3. Sample Speaker data

This has the hardcoded Speaker data table in the main page (in index.html) that you saw earlier.
Please keep the web application running so you can see changes take effect as you save them.

Now, let’s remove the rows from the table body. The HTML for the speakers table now looks like Example 2-11.

Example 2-11. speakers-web-2/app/index.html

<!doctype html>
<html lang="">

 ...

 <body>

 ...

 <table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th>
 <th>About</th>
 <th>Topics</th>
 </tr>
 </thead>
 <tbody id="speakers-tbody">
 </tbody>
 </table>

 ...

 </body>
</html>

In this example, we now have an empty table that has only a header row. We use Bootstrap’s
table-striped CSS class so that we’ll have zebra-striped rows. Notice the speakers-tbody ID on the
<tbody> element that holds the table’s content. Later, jQuery will use this ID to populate the table
rows.

We now need a separate JSON file to hold the Speaker data. Please see the new /speakers-web-2/app/data/speakers.json
file that has the Speaker data for the application (this was copied from /chapter-2/data/speakers.json).

To complete Iteration 2, the upgraded app/scripts/main.js file now uses jQuery to populate the speakers
table with the data from the app/data/speakers.json file, as shown in Example 2-12.

Example 2-12. speakers-web-2/app/scripts/main.js

'use strict';

console.log('Hello JSON at Work!');

$(document).ready(function() {

 function addSpeakersjQuery(speakers) {
 $.each(speakers, function(index, speaker) {
 var tbody = $('#speakers-tbody');
 var tr = $('<tr></tr>');
 var nameCol = $('<td></td>');
 var aboutCol = $('<td></td>');
 var topicsCol = $('<td></td>');

 nameCol.text(speaker.firstName + ' ' + speaker.lastName);
 aboutCol.text(speaker.about);
 topicsCol.text(speaker.tags.join(', '));

 tr.append(nameCol);
 tr.append(aboutCol);
 tr.append(topicsCol);
 tbody.append(tr);
 });
 }

 $.getJSON('data/speakers.json',
 function(data) {
 addSpeakersjQuery(data.speakers);
 }
);

});

In this example, we put the code inside jQuery’s $(document).ready() so that the entire page
(including the DOM) is “ready” (fully loaded). $.getJSON() is a jQuery method that makes an
HTTP GET request on a URL and converts the JSON response to a JavaScript object. In this case, the
app/data/speakers.json file is addressable as a URL through HTTP because it is deployed as a part of the
web application. The $.getJSON() callback method then delegates the job of populating the speakers table
to the addSpeakersjQuery() function.

The addSpeakersjQuery() method loops through the speakers array by using the jQuery .each() method. The
.each() function does the following:

	
Finds the <tbody> element in the speakers table by using the speakers-tbody ID we showed in the
index.html file

	
Creates a row and its columns by filling in the <tr> and <td> elements with the data from the
speaker object

	
Appends the new row to the <tbody> element

For more information on jQuery’s getJSON() function, see the jQuery Foundation website.

If you kept the web application running, you should now see the screen in Figure 2-4.

[image: json 02in12]
Figure 2-4. Sample Speaker data with JSON file and jQuery

The main page looks the same, but we were expecting that. We’ve improved the application by factoring out
the hardcoded Speaker data from the main page, and we’re now making an HTTP call. At this point, we have
some of the elements of a real web application that populates its pages dynamically, but here are the
drawbacks:

	
The JSON data comes from a file within the web application, and we want it to come from a RESTful API.

	
The JavaScript code knows about HTML elements on the main page. We would like to reduce the amount of HTML
and DOM manipulation.

Please shut down the web application before moving to Iteration 3.

Iteration 3—Consume Speaker Data from a Stub API and Use a Template

In Iteration 2, we made an HTTP call to populate the main page with Speaker data from a JSON file, and we’re
now going to get the data from the Stub API provided by json-server that was used in Chapter 1. We’re also going to factor the HTML and DOM manipulation out of the JavaScript into an external Mustache
template.

We’ll take the following steps:

	
Modify the HTTP call to point to the json-server URI.

	
Use a Mustache template to remove the HTML and DOM manipulation from JavaScript.

If you’d like to set up the Yeoman project for Iteration 2 by yourself, do the following:

	
Follow the instructions in the book’s
GitHub Repository.

	
Don’t forget to copy the following files from Iteration 2:

	
app/index.html

	
app/scripts/main.js

Or if you want to follow along with the Yeoman project provided in the code examples, cd to
chapter-2/speakers-web-3.

Next, let’s modify the HTTP call in main.js to point to the Speaker Stub API (provided by
json-server), as shown in Example 2-13.

Example 2-13. speakers-web-3/app/scripts/main.js

...

 $.getJSON('http://localhost:5000/speakers',
 function(data) {
 addSpeakersjQuery(data);
 }
);

...

The code now invokes the Speaker Stub API provided by json-server. Note that data is passed
to addSpeakersjQuery() because json-server doesn’t emit the named speakers Array.

First, open a new terminal session and run json-server on port 5000 from your command line:

cd chapter-2/data

json-server -p 5000 ./speakers.json

Start the web application (in another terminal session) from the command line:

gulp serve

This command starts the local web server as shown in Iterations 1 and 2. You should see the same
Speaker data when you visit http://localhost:9000 in your browser. But the
web application is in better shape because it’s using data from an API rather than a file. Please
keep the web application running so you can see changes take effect as you save them.

To complete Iteration 3, let’s factor out the HTML/DOM manipulation from our JavaScript code into a
Mustache template. Mustache bills itself as providing logic-less templates, which means that there are no
control statements (e.g., for or if) needed to generate HTML from JavaScript and other languages.
Mustache works with multiple languages.

Example 2-14 is our Mustache template that generates HTML content based on Speaker data.

Example 2-14. /app/templates/speakers-mustache-template.html

<!--
[speakers-mustache-template.html]
This is the template for items in the speakers array when the app first loads
-->
<script id="speakerTemplate" type="text/html">
 {{#.}}
 <tr>
 <td>{{firstName}} {{lastName}}</td>
 <td>{{about}}</td>
 <td>{{tags}}</td>
 </tr>
 {{/.}}
</script>

Note the following about this example:

	
The template is an external file to keep the HTML out of our JavaScript code.

	
The template code resides within a <script> element.

	
The HTML is structured just as it would be in a regular web page.

	
Mustache fills in the data by using variables enclosed in double parentheses.

	
The context enables Mustache to loop through the Array of Speaker data. We have an anonymous (nameless) collection that we received from the HTTP call, so we enclose all our elements within a
beginning {{#.}} and closing {{/.}} to set the context. Note that if we had a named Array
(e.g., speakers), the context would begin with {{#speakers}} and end with {{/speakers}}.

	
Each variable represents a field name within the specified context. For example, the {{firstName}}
variable gets data from the firstName field for the current element in the Speaker data Array.

Please review Wern Ancheta’s excellent article, “Easy Templating with Mustache.js” for a deeper discussion on Mustache.

Besides Mustache, a couple of other solid templating libraries are frequently used by the JavaScript
community:

	Handlebars.js

	
Handlebars is very similar to Mustache.

	Underscore.js

	
This is a general utility library, but it includes some templating functionality.

In addition, most MVC frameworks (AngularJS, Ember, and Backbone) have some form of templating.
We’ll cover Mustache and Handlebars more thoroughly in Chapter 7.

Example 2-15 shows our refactored app/scripts/main.js file that now uses Mustache.

Example 2-15. speakers-web-3/app/scripts/main.js

'use strict';

console.log('Hello JSON at Work!');

$(document).ready(function() {

 function addSpeakersMustache(speakers) {
 var tbody = $('#speakers-tbody');

 $.get('templates/speakers-mustache-template.html', function(templatePartial) {
 var template = $(templatePartial).filter('#speakerTemplate').html();
 tbody.append(Mustache.render(template, speakers));
 }).fail(function() {
 alert("Error loading Speakers mustache template");
 });

 }

 $.getJSON('http://localhost:5000/speakers',
 function(data) {
 addSpeakersMustache(data);
 }
);

});

In this example, the addSpeakerMustache() function converts the Speaker data (that we received from
json-server) into HTML by using our Mustache template. We use the jQuery’s $.get() method to pull in the external
Mustache template. When the $.get() call completes, we then find the main page’s <tbody> element (just
as before) and then use the append() method to append the HTML content that was created by
Mustache.render() (based on the template and Speaker data).

But we’re not quite done, because we need to add Mustache to the web application:

	
Use Bower to install Mustache into the web application. From the command line in the
speakers-web-3 directory, type bower install mustache.

	
Add Mustache to app/index.html (right after main.js) as shown in Example 2-16.

Example 2-16. speakers-web-3/app/index.html

<!doctype html>
<html lang="">

 ...

 <body>

 ...

 <script src="bower_components/mustache.js/mustache.js"></script>

 ...

 </body>
</html>

If you kept the web application running, you should now see the screen in Figure 2-5.

Notice that Mustache formats the Speaker data a little differently, but we improved the web application
by making an API call to the Stub API (provided by json-server) and by templating the HTML with Mustache.

Of course, you can go further by using AngularJS or React, but this is left as an exercise for you.

Please don’t forget to shut down both the web application and json-server with a Ctrl-C in each
terminal session.

[image: json 02in13]
Figure 2-5. Speaker data using Mustache

How to Go Deeper with JavaScript

A deeper, more thorough knowledge of JavaScript is needed to truly understand Node.js and other JavaScript
frameworks (e.g., Angular, React, Ember, Backbone, etc.), and package/build management tools such as Yeoman. If
JavaScript Objects are new to you, and all the curly braces, parentheses, and semicolons are a boiling sea
of syntax, then take heart because you are not alone. Every JavaScript developer encounters these issues
along their path.

Here are a few websites where you can go to deepen and broaden your skills:

	
JavaScriptIsSexy provides excellent,
freely available tutorials to help you reach an intermediate or advanced level. The main tutorials include these three:

	
How to Learn JavaScript Properly

	
Learn Intermediate and Advanced JavaScript

	
JavaScript’s Apply, Call, and Bind Methods Are Essential for JavaScript Professionals

As you work through these (and similar) resources, Objects and Functional Expressions will become
commonplace as you reach the intermediate-to-advanced level of JavaScript. At that point, you will have a
much more enjoyable and productive experience when developing with current JavaScript tools and frameworks.

What We Covered

We started with simple conversion between JavaScript and JSON and went all the way to develop a working web
application and a Unit Test that makes a RESTful API call to json-server. For the sake of brevity and
clarity, we’ve covered “just enough” of several technologies for you to understand core concepts and build simple
applications. But we’ve just scratched the surface of JavaScript, Node.js, and Yeoman.

What’s Next?

Now that we’ve developed a web application with JavaScript and JSON, we’ll move on to use JSON with Ruby on
Rails in Chapter 3.

Chapter 3. JSON in Ruby on Rails

We’ve shown how to use JSON in JavaScript, and in this chapter we’ll show how to use JSON with our second
platform—Ruby on Rails (RoR).

We’ll cover the following:

	
Performing Ruby/JSON serialization/deserialization with MultiJson

	
Working with Ruby Objects and JSON

	
Understanding the importance of JSON camel casing

	
Using JSON with Minitest

	
Making RESTful API calls and testing the results with Minitest and jq

	
Building a simple JSON-based API with Rails 5

In our examples, we’ll make RESTful API calls to work with the data we deployed on json-server in
Chapter 1. We’ll then create a more realistic JSON-based Web API. But before we develop a
RESTful API, let’s start with the fundamentals of converting between Ruby and JSON.

Ruby on Rails Setup

Before we go any further, let’s start building our development environment by installing RoR. Please go to Appendix A, and follow the instructions in “Install Ruby on Rails”.

Ruby JSON Gems

Several good JSON gems provide Ruby/JSON serialization/deserialization functionality,
including these:

	JSON

	
The default JSON gem provided in Ruby.

	oj

	
Optimized JSON, considered by many to be the fastest Ruby-based
JSON processor available.

	yajl

	
Yet Another JSON Library.

There are many other JSON gems in addition to this list, and it’s hard to choose.
Rather than forcing a developer to know how to use each JSON gem,
MultiJson encapsulates this choice by providing a wrapper
that invokes the most common JSON gems on behalf of the caller by choosing the fastest JSON gem that has
been loaded in an application’s environment. Encapsulating JSON gems like this decouples an application
from a particular JSON implementation. For further information on how MultiJson chooses a JSON
implementation, see its GitHub repository. For detailed documentation, visit the MultiJson documentation on RubyDoc.

Since MultiJson defaults to the standard JSON gem, let’s install the oj gem to optimize performance.

gem install multi_json
gem install oj

Now that we’ve installed the oj gem, MultiJson will default to oj rather than the standard JSON
gem.

JSON Serialization/Deserialization with MultiJson

Applications need to convert a Ruby Data Type to JSON (serialize) and vice versa (deserialize) to
exchange JSON data with other applications.

The MultiJson Object

The MultiJson Object provides the following methods:

	
MultiJson.dump() serializes Ruby to JSON.

	
MultiJson.load() deserializes from JSON to Ruby.

Note that MultiJson.dump() does the following:

	
Uses traditional Ruby snake case (first_name) rather than the recommended cross-platform camel
case (firstName) when serializing the speaker Object with oj.

	
Doesn’t generate a JSON String when serializing the speaker Object with the JSON engine. This is because the JSON gem doesn’t serialize a class unless it implements a to_json() method.

	
Uses snake case (first_name) rather than camel case (firstName) for key names.

According to the RubyDoc MultiJson documentation, here is the method signature for MultiJson.dump():

#dump(object, options = {})

The options provided depend on the underlying JSON implementation (in this case oj) because
MultiJson is a wrapper.

JSON Serialization/Deserialization with Simple Ruby Data Types

We’ll start by serializing some basic Ruby Data Types:

	
Integer

	
String

	
Boolean

	
Array

	
Hash

	
Object

Example 3-1 shows how to serialize/deserialize simple Ruby data types with MultiJson and oj.

Example 3-1. ruby/basic_data_types_serialize.rb

require 'multi_json'

puts "Current JSON Engine = #{MultiJson.current_adapter()}"
puts

age = 39 # Integer
puts "age = #{MultiJson.dump(age)}"
puts

full_name = 'Larson Richard' # String
puts "full_name = #{MultiJson.dump(full_name)}"
puts

reqistered = true # Boolean
puts "reqistered = #{MultiJson.dump(reqistered)}"
puts

tags = %w(JavaScript, AngularJS, Yeoman) # Array of Strings
puts "tags = #{MultiJson.dump(tags)}"
puts

email = { email: 'larsonrichard@ecratic.com' } # Hash
puts "email = #{MultiJson.dump(email)}"
puts

class Speaker
 def initialize(first_name, last_name, email, about,
 company, tags, registered)
 @first_name = first_name
 @last_name = last_name
 @email = email
 @about = about
 @company = company
 @tags = tags
 @registered = registered
 end
end

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',
 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

puts "speaker (using oj gem) = #{MultiJson.dump(speaker)}"
puts

When you run ruby basic_data_types_serialize.rb from the command line, you should get the following:

[image: json 03in01]

MultiJson.dump() doesn’t do much with the scalar types (Integer, String, and Boolean). Things begin to
get interesting with the speaker Object because here MultiJson.dump() initially generates a valid, yet
unattractive, JSON String. As you’ll soon see, MultiJson.dump() has other parameters that enhance
serialization.

To make things more readable, we’ll leverage the :pretty ⇒ true option to pretty-print the JSON output
from the speaker Object, as shown in Example 3-2. Although pretty-printing is more attractive to look at, it is inefficient, and
should be used only for debugging purposes.

Example 3-2. ruby/obj_serialize_pretty.rb

require 'multi_json'

...

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',
 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

puts "speaker (using oj gem) = #{MultiJson.dump(speaker, pretty: true)}"
puts

Running the preceding code yields the following pretty-printed speaker Object:

[image: json 03in02]

JSON Deserialization with Objects and MultiJson

MultiJson can also deserialize JSON. Let’s use the MultiJson.load() method to deserialize JSON into a
Ruby Hash. But this causes an impedance mismatch because the speaker Object’s initialize() method
takes Strings (which match the speaker Object’s attributes) as parameters. We’ll need to convert Hash to
a set of attributes to instantiate a speaker Object. Fortunately, it’s unnecessary to write any code to
convert the Hash because the well-known OpenStruct makes the Hash (from decoding JSON) look like an
object.

Example 3-3 shows the use of OpenStruct.

Example 3-3. ruby/ostruct_example.rb

require 'ostruct'

h = { first_name: 'Fred' }
m = OpenStruct.new(h)
puts m # prints: #<OpenStruct first_name="Fred">
puts m.first_name # prints: Fred

OpenStruct is a data structure that is similar to a Hash, and it allows you define key/value pairs of
attributes and their values. OpenStruct is part of Ruby Core and provides the ability to access keys as
attributes. For more information about OpenStruct, see the Ruby Core documentation.

When we instantiate a new speaker Object, it would be great to print out the new object in a readable
manner for debugging purposes. With puts, you’d normally see something like this:

puts speaker # #<Speaker:0x007f84412e0e38>

With the awesome_print gem, the output is much more attractive. For more information, see the
awesome_print GitHub repository.

Before running the code in Example 3-4, install the awesome_print gem from the command line:

gem install awesome_print

Example 3-4. ruby/obj_deserialize.rb

require 'multi_json'
require 'ostruct'
require 'awesome_print'

puts "Current JSON Engine = #{MultiJson.current_adapter()}"
puts

class Speaker
 def initialize(first_name, last_name, email, about,
 company, tags, registered)
 @first_name = first_name
 @last_name = last_name
 @email = email
 @about = about
 @company = company
 @tags = tags
 @registered = registered
 end
end

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',
 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

json_speaker = MultiJson.dump(speaker, pretty: true)
puts "speaker (using oj gem) = #{MultiJson.dump(speaker)}"
puts

ostruct_spkr = OpenStruct.new(MultiJson.load(json_speaker))

speaker2 = Speaker.new(ostruct_spkr.first_name, ostruct_spkr.last_name,
 ostruct_spkr.email, ostruct_spkr.about, ostruct_spkr.company,
 ostruct_spkr.tags, ostruct_spkr.registered)

puts "speaker 2 after MultiJson.load()"
ap speaker2
puts

Run this example, and we’ll see that the preceding code successfully deserialized the JSON String stored
in json_speaker into an OpenStruct Object and finally into another speaker instance—speaker2. Note
the use of awesome_print’s ap method rather than the built-in puts to pretty-print the Object.

[image: json 03in03]

Although multi_json and oj efficiently process JSON, sometimes developers need more control over the
data to be serialized.

A Word on Camel Casing and JSON

If you haven’t noticed, JSON Keys/Property Names are usually in camel case form. For example, a Key that
represents someone’s first name would normally be expressed as firstName. But up to this point, we’ve
seen that Ruby’s JSON libraries natively express Keys in snake case (first_name). While this
may be OK for small code examples and Unit Tests that no one else will use, snake case is incompatible
with the rest of the world. Here’s why:

	
JSON must be interoperable. Although my stance on this will probably offend many ardent Rubyists, and
others may call this bike shedding, the whole point of JSON and REST is interoperability across
heterogeneous applications. There are other programming languages than Ruby, and the rest of the world is
expecting camel case (firstName). If your API works in a way that is unexpected, people won’t
want to use it.

	
The major players use camel-cased JSON:

	
Google has standardized on camel case in their Google JSON Style Guide.

	
The majority of JSON-based public APIs (e.g., Amazon AWS, Facebook, and LinkedIn) use camel-cased JSON.

	
Avoid platform bleed-through. JSON should look the same regardless of the platform/programming language that
generates or consumes it. The Ruby on Rails community prefers snake case, which is just fine within that
platform, but this local programming language idiom shouldn’t be reflected in an API.

JSON Serialization with Objects and ActiveSupport

The ActiveSupport gem provides functionality that has been extracted from Rails, including time zones,
internationalization, and JSON encoding/decoding. ActiveSupport’s JSON module provides the ability to do the following:

	
Convert between camel case and snake case

	
Choose which portions of an Object to serialize

You can install ActiveSupport from the command line as follows:

gem install activesupport

We’ll use ActiveSupport::JSON.encode() to serialize a speaker Object into JSON, as shown in Example 3-5.

Example 3-5. ruby/obj_serialize_active_support.rb

require 'active_support/json'
require 'active_support/core_ext/string'

...

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',
 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

json = ActiveSupport::JSON.encode(speaker).camelize(first_letter = :lower)
puts "Speaker as camel-cased JSON \n#{json}"
puts

json = ActiveSupport::JSON.encode(speaker,
 only: ['first_name', 'last_name'])
 .camelize(first_letter = :lower)

puts "Speaker as camel-cased JSON with only firstName and lastName \n#{json}"
puts

In the code example, you’ll notice that ActiveSupport::JSON.encode() provides the following
options:

	
Camel case (firstName) Key names by chaining with the camelize() method. Note that
the first letter of each Key is capitalized by default, so you’ll need to use the first_letter = :lower
parameter to get lower camel case format.

	
Limit the portions of the speaker Object to serialize by using the only: parameter.

When you run the code, you should see the following:

[image: json 03in04]

But if you only want to convert from snake case to camel case, the awrence gem is a simple alternative. awrence
converts snake-cased Hash keys to camel case, which you can then convert to camel-cased JSON. I haven’t
tried this gem yet, so this is left as an exercise for you.

JSON Deserialization with Objects and ActiveSupport

ActiveSupport also has the ability to deserialize JSON. We’ll now use the decode() method to
deserialize JSON into a Ruby Hash. Just as before, we’ll leverage OpenStruct and awesome_print to
help with instantiation and printing, as shown in Example 3-6.

Example 3-6. ruby/obj_deserialize_active_support.rb

require 'multi_json'
require 'active_support/json'
require 'active_support/core_ext/string'
require 'ostruct'
require 'awesome_print'

...

speaker = Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',
 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
 'Ecratic', %w(JavaScript, AngularJS, Yeoman), true)

json_speaker = ActiveSupport::JSON.encode(speaker)
puts "speaker (using oj gem) = #{ActiveSupport::JSON.encode(speaker)}"
puts ostruct_spkr = OpenStruct.new(ActiveSupport::JSON.decode(json_speaker))

speaker2 = Speaker.new(ostruct_spkr.first_name, ostruct_spkr.last_name,
 ostruct_spkr.email, ostruct_spkr.about, ostruct_spkr.company,
 ostruct_spkr.tags, ostruct_spkr.registered)

puts "speaker 2 after ActiveSupport::JSON.decode()"
ap speaker2
puts

You’ll see the following result when you run the preceding code from the command line:

[image: json 03in05]

The plissken gem is an alternative that converts from camel-cased Hash keys (that originated from JSON) to snake case. We’ll use plissken in our upcoming Unit Tests.

Unit Testing with a Stub API

Now that you know how to serialize/deserialize JSON to/from a speaker Object, we’re ready to run a simple
server-side Unit Test against a Stub API provided by json-server (which we used in previous chapters).

Just Enough Unit Testing with Minitest

The two most common Ruby testing frameworks are Minitest, which is part of Ruby Core and RSpec. Both Minitest and RSpec are excellent,
but we can use only one of them in this chapter to keep the focus on JSON.

On one hand, Minitest

	
Is part of the Ruby Standard Library, so there’s nothing else to install.

	
Is lightweight and simple.

	
Has most of the functionality that RSpec provides.

On the other hand, RSpec

	
Requires you to install a separate rspec gem, but enjoys wide acceptance in the Ruby and Rails communities.

	
Is large and complex. The RSpec code base is about eight times larger than Minitest.

	
Has a richer set of matchers than Minitest.

For me, it’s really a matter of taste, and you’ll be fine with either framework. I chose Minitest because
it comes standard with Ruby.

Minitest lets you choose between BDD (Minitest::Spec) and TDD (Minitest::Test) style testing. Let’s go
with Minitest::Spec for the following reasons:

	
I prefer BDD’s simple English-style sentences that describe each test.

	
It looks similar to RSpec, so the tests will look familiar to those developers who use RSpec.

	
It’s consistent with the JavaScript-base Mocha/Chai testing in the rest of this book.

This chapter covers only the basics of Minitest. To learn more, see Chris Kottom’s excellent
book, The Minitest Cookbook.

Setting Up the Unit Test

Before going further, be sure to set up your test environment. If you haven’t installed Ruby on Rails
yet, refer to Appendix A, and install Ruby on Rails (see “Install Ruby on Rails” and “Install Ruby Gems”). If you want to follow along with the Ruby project provided in
the code examples, cd to chapter-3/speakers-test and do the following to install all dependencies
for the project:

bundle install

Bundler provides dependency management for Ruby
projects.

If you’d like to set up the speakers-test Ruby project yourself, follow the instructions in the book’s GitHub
repository.

Test Data

We’ll use the Speaker data from earlier chapters as our test data and deploy it as a RESTful API. Again,
we’ll leverage the json-server Node.js module to serve up the data/speakers.json file as a Web API. If
you need to install json-server, refer to “Install npm Modules” in Appendix A.

Here’s how to run json-server on port 5000 from your local machine:

cd chapter-3/data

json-server -p 5000 ./speakers.json

You can also get a single speaker by adding the id to the URI as follows: http://localhost:5000/speakers/1.
With the Stub API in place, it’s time to write some Unit Tests.

JSON and Minitest Testing with APIs

Our Unit Test will do the following:

	
Make HTTP calls to the Stub Speakers API

	
Check the values from the HTTP Response Body against expected values

As in previous chapters, we’ll continue to leverage the open source Unirest API wrapper,
but this time we’ll use the Ruby implementation.
Please note that the Unirest gem takes the JSON in the HTTP Response Body, parses it into a Ruby
Hash, and returns it to the caller (inside the HTTP Response Body). This means that the Unit Test
won’t be testing directly against JSON data, but rather it will test against the Hash that was populated
by the JSON response from the API.

Speakers Unit Test

The Unit Test in Example 3-7 shows how to use Unirest to invoke the Speaker Stub API provided by json-server
and test the response.

Example 3-7. speakers-test/test/speakers_spec.rb

require 'minitest_helper'

require 'unirest'
require 'awesome_print'
require 'ostruct'
require 'plissken'
require 'jq/extend'

require_relative '../models/speaker'

describe 'Speakers API' do
 SPEAKERS_ALL_URI = 'http://localhost:5000/speakers'

 before do
 @res = Unirest.get SPEAKERS_ALL_URI,
 headers:{ 'Accept' => "application/json" }

 end

 it 'should return a 200 response' do
 expect(@res.code).must_equal 200
 expect(@res.headers[:content_type]).must_equal 'application/json; charset=utf-8'
 end

 it 'should return all speakers' do
 speakers = @res.body
 expect(speakers).wont_be_nil
 expect(speakers).wont_be_empty
 expect(speakers.length).must_equal 3
 end

 it 'should validate the 3rd speaker as an Object' do
 speakers = @res.body
 ostruct_spkr3 = OpenStruct.new(speakers[2].to_snake_keys())

 expect(ostruct_spkr3.company).must_equal 'Talkola'
 expect(ostruct_spkr3.first_name).must_equal 'Christensen'
 expect(ostruct_spkr3.last_name).must_equal 'Fisher'
 expect(ostruct_spkr3.tags).must_equal ['Java', 'Spring', 'Maven', 'REST']

 speaker3 = Speaker.new(ostruct_spkr3.first_name, ostruct_spkr3.last_name,
 ostruct_spkr3.email, ostruct_spkr3.about,
 ostruct_spkr3.company, ostruct_spkr3.tags,
 ostruct_spkr3.registered)

 expect(speaker3.company).must_equal 'Talkola'
 expect(speaker3.first_name).must_equal 'Christensen'
 expect(speaker3.last_name).must_equal 'Fisher'
 expect(speaker3.tags).must_equal ['Java', 'Spring', 'Maven', 'REST']
 end

 it 'should validate the 3rd speaker with jq' do
 speakers = @res.body
 speaker3 = speakers[2]

 speaker3.jq('.company') {|value| expect(value).must_equal 'Talkola'}
 speaker3.jq('.tags') {|value|
 expect(value).must_equal ['Java', 'Spring', 'Maven', 'REST']}
 speaker3.jq('.email') {|value|
 expect(value).must_equal 'christensenfisher@talkola.com'}
 speaker3.jq('. | "\(.firstName) \(.lastName)"') {|value|
 expect(value).must_equal 'Christensen Fisher'}
 end

end

Note the following in this Unit Test:

	
The minitest_helper consolidates configuration and setup and factors it out of this test. We’ll cover
Minitest Helpers later in this chapter.

	
The test executes the Unirest GET request synchronously (and gets a response) with Minitest’s before
method, so that setup occurs in only one place in the code. Minitest executes before before running
each test (i.e., it) within the context of the describe.

	
The should return all speakers test does the following:

	
Ensures that the HTTP Response Body is not empty

	
Checks whether the Speakers API returns three speakers

	
The should validate the 3rd speaker as an Object test works as follows:

	
Populate the speakers Hash from the HTTP Response Body (@res.body). At this point, the JSON
from the API has already been parsed by Unirest and converted to a Ruby Hash.

	
Use OpenStruct.new() to convert the Hash for the third speaker into an OpenStruct, an Object-like
structure. The to_snake_keys() method (from the plissken gem) converts the camel-cased (firstName) Hash keys to snake case (first_name) for compatibility with Ruby.

	
Use Minitest BDD-style expect assertions to check for expected results:

	
The third speaker’s company, first_name, last_name, and tags match the values in the
speakers.json file.

	
The should validate the 3rd speaker with jq test works as follows:

	
Use jq queries (e.g.,
.company) to check the same fields as in the previous test. jq simplifies Unit Testing by
enabling a developer to query the JSON-based Hashes without the need to convert to an object. jq is a
powerful JSON search tool, and Chapter 6 covers it in greater detail.

	
The . | "\(.firstName) \(.lastName)" query does a String interpolation to combine the firsName and
lastName fields into the speaker’s full name for testing purposes.

	
The ruby-jq gem provides a solid Ruby-based jq implementation.

To run this test, use bundle exec rake from the command line, and you should see the following:

[image: json 03in06]

rake is a commonly used build utility
for Ruby projects. In the bundle exec rake command, the following occurs:

	
rake uses the gems that Bundler listed in this project’s Gemfile.

	
rake has been configured to use test as the default task.

The Rakefile defines the build tasks, and looks like Example 3-8.

Example 3-8. speakers-test/Rakefile

require 'rake/testtask'

Rake::TestTask.new(:test) do |t|
 t.libs = %w(lib test)
 t.pattern = 'test/**/*_spec.rb'
 t.warning = false
end

task :default => :test

By default, Minitest is silent and doesn’t indicate that tests are passing. In the preceding Unit Test run,
notice that passing tests show in the output. The speakers-test project leverages the minitest-reporters
gem to make
the output more readable.

The Minitest Helper in Example 3-9 configures the minitest and minitest-reporters gems for use by the
speakers_spec.

Example 3-9. speakers-test/test/minitest_helper.rb

require 'minitest/spec'
require 'minitest/autorun'

require "minitest/reporters"
Minitest::Reporters.use! Minitest::Reporters::SpecReporter.new

For the sake of completeness, Example 3-10 shows the Speaker Plain Old Ruby Object (PORO)
that holds the Speaker data.

Example 3-10. speakers-test/models/speaker.rb

class Speaker
 attr_accessor :first_name, :last_name, :email,
 :about, :company, :tags, :registered

 def initialize(first_name, last_name, email, about,
 company, tags, registered)
 @first_name = first_name
 @last_name = last_name
 @email = email
 @about = about
 @company = company
 @tags = tags
 @registered = registered
 end
end

The preceding code is plain and simple:

	
speaker.rb resides in the models directory to follow commonly accepted Ruby project conventions.

	
attr_accessor defines the Speaker’s data members (e.g., first_name) and accessor methods
(getters/readers and setters/writers) for the data members.

	
initialize() initializes the data members when Speaker.new() is called.

Before moving on, you can stop json-server by pressing Ctrl-C at the command line.

Further Reading on Ruby and Minitest

We’ve covered only the basics of Ruby and Minitest in this chapter. To learn more, please see the following
resources:

	
Ruby in Practice, by Jeremy McAnally and Assaf Arkin (Manning)

	
The Well-Grounded Rubyist, 2nd Ed.,
by David A. Black (Manning)

	
Minitest Cookbook, by Chris Kottam

What Is Missing in the Unit Tests?

So far, the Unit Tests have done a decent job of testing JSON data, but something is missing.
The code had to check for the existence of all the expected fields, which is clumsy and cumbersome.
Imagine how arduous this would be for larger, deeper, more complex JSON documents. There’s a solution for
this problem: JSON Schema (this is covered in Chapter 5).

We’ve shown how to deploy and interact with a Stub API, and now it’s time to build a small RESTful API with
Ruby on Rails.

Build a Small Web API with Ruby on Rails

Now that you know how to serialize/deserialize JSON to/from a speaker Object and how to do a Unit Test
with the Speaker Stub API (from json-server), we’re ready to build a simple web application that
leverages the API data and presents it to a user.

We’ll continue to use the Speaker data to create an API with Rails 5. This version of Rails includes
rails-api, which provides the ability to create an API-only Rails application. rails-api began as a
separate gem,
but it has been merged into Rails.

We’ll build two Rails-based API applications to demonstrate some of the features of AMS:

	speakers-api-1

	
Create an API with camel-cased JSON.

	speakers-api-2

	
Create an API that customizes the JSON representation.

Before we create anything, let’s determine how the APIs will render JSON.

Choose a JSON Serializer

There are several options for rendering JSON in Ruby on Rails. Here’s a list of the most
widely used techniques:

	ActiveModel::Serializers (AMS)

	
AMS provides functionality to objects that need some
ActiveRecord features, such as serialization and validation. AMS is part of the Rails API,
and you can find documentation on GitHub.

	Jbuilder

	
A Domain-Specific Language (DSL) builder that uses a separate template (i.e., outside the
controller) that controls the output. For further details, please see Jbuilder on GitHub.

	RABL

	
Ruby API Builder Language (RABL) generates JSON, XML, PList, MessagePack, and BSON. This gem also
uses a template file. The RABL GitHub repository has details.

Evaluation criteria

Here are a few considerations to help choose a JSON serialization approach:

	
JSON generation should be done outside application objects because an object should have no knowledge
of external representations. This means that you shouldn’t have code in your object that renders JSON. According to
Uncle Bob Martin, a class should have only one reason to change; this is known as the Single Responsibility
Principle (the first of the five SOLID principles of OO Design). For further details, see his The Principles of OOD site.
When you introduce JSON formatting to an Object, that Object now has a second reason to change, because it has
two responsibilities (making it more difficult to change the code in the future):

	
The original functionality of the object

	
JSON encoding

	
Don’t clutter Controllers or Models with JSON generation. This also violates Single Responsibility and
makes the Controller/Model code less flexible. Use external templates to clean up Controllers and Models
and factor out messy, complex formatting logic.

	
Control which attributes of an object to serialize and which ones to omit.

Although these guidelines may sound a bit strict, the whole point here is interoperability and
consistency. But there are no silver bullets, and it’s perfectly acceptable to have different opinions.
In which case, do the following:

	
Know why you believe what you believe. Back up your position with sound software engineering and
architectural principles.

	
Work and play well with others. Determine whether your approach fits with the overall community rather than
just a single language, platform, or segment within a particular technical community.

Now that we’ve established some evaluation criteria, let’s review the options.

AMS, RABL, or Jbuilder?

Based on the preceding considerations and a review of all the options, it’s a tough decision because AMS, RABL,
and Jbuilder each provide most (if not all) of what we’re looking for. AMS factors out serialization into
a Serializer Object, and RABL and Jbuilder both use external templates. Because RABL can’t emit lower camel
case,
it’s out of the running, which reduces our options to AMS and Jbuilder.

Choosing between AMS and Jbuilder is difficult:

	
Each provides the same quality of JSON representation.

	
Their performance is similar when you configure Rails to use oj.

It comes down to which approach you prefer:

	
Programmatic JSON serialization with Serializer Objects (AMS) or with templates (Jbuilder)

	
JSON serialization in the Controller (AMS) or in the View (Jbuilder)

There are great arguments on both sides:

	Pro AMS

	
Using AMS is a good approach because everything is Ruby-based. Jbuilder templates introduce the
need for developers to learn a new DSL.

	Pro Jbuilder

	
Jbuilder forces you to think about the JSON representation first, and pushes you to
decouple from the underlying database.

As many people in the Rails community would say, “it’s a wash.” In other words, it’s a toss-up between AMS
and Jbuilder; either approach produces great JSON responses for an API. I chose AMS because it’s part of
Rails and there’s no need to learn a new DSL for templating.

speakers-api-1—Create an API with Camel-Cased JSON

We’ll take the following steps to create and deploy the speakers-api-1 API with Rails 5:

	
Set up the project.

	
Write source code:

	
Model

	
Serializer

	
Controller

	
Deploy the API.

	
Test with Postman.

Set up the speakers-api-1 project

The speakers-api-1 project already exists in the Chapter 3 code examples under the
chapter-3/speakers-api-1 directory, so you don’t need to create this project. But for the sake of
completeness, the following sidebar explains how the project was created.

Create speakers-api-1 App with Rails

Use the following command to create the speakers-api-1 Rails API project:

rails new speakers-api-1 -T --api
--skip-active-record --skip-action-mailer --skip-action-cable

We don’t need the frontend normally provided by Rails (ERB, JS, CSS, Asset Pipeline, and so forth) for our example,
nor do we need a database. The preceding command creates a Rails API application without the following:

	
A web-based frontend. The --api option leaves out these:

	
The asset pipeline

	
Views

	
Tests (with the -T option).

	
ActiveRecord (with the --skip-active-record option). This means that you don’t need a database to run
the application. While this may seem a bit strange, it’s fits our purpose because it reduces application
dependencies and setup.

	
ActionMailer (with the --skip-action-mailer option). The Web API doesn’t need to send emails.

	
ActionCable (with the --skip-action-cable option). The API doesn’t use WebSocket.

The Rails generators will still create controllers, and we’ll cover that in a minute.

The preceding rails new command created the speakers-api-1 directory.

To install and use AMS in the project, the example code adds the following line to the Gemfile:

gem 'active_model_serializers'
gem 'oj'

As in previous examples in this chapter, we want to continue to use oj for performance reasons, but
AMS doesn’t require it.

Even though the project is already set up, you will need to install the gems to run the project. Do the
following:

cd speakers-api-1

bundle exec spring binstub --all

In this command, Bundler installs the gems specified in the project’s Gemfile.

Create the Model

The Speaker class in Example 3-11 is a PORO that represents the Speaker data that
the API will render as JSON.

Example 3-11. speakers-api-1/app/models/speaker.rb

class Speaker < ActiveModelSerializers::Model
 attr_accessor :first_name, :last_name, :email,
 :about, :company, :tags, :registered

 def initialize(first_name, last_name, email, about,
 company, tags, registered)
 @first_name = first_name
 @last_name = last_name
 @email = email
 @about = about
 @company = company
 @tags = tags
 @registered = registered
 end
end

This code doesn’t do much; it just provides the data members, constructors, and
accessor methods (getters and setters) for a speaker. This code doesn’t know anything about
JSON formatting. The Speaker class inherits from ActiveModel::Serializer so that AMS will convert
it to JSON.

Create the Serializer

AMS provides Serializers (separate from Controllers and Models) that serialize Objects into JSON.
The SpeakerSerializer already exists, but the following sidebar explains how it was created.

Generate SpeakerSerializer

Use the following command to generate a SpeakerSerializer for the existing speaker Model from
the speakers-web-1 directory:

bin/rails generate serializer speaker

This creates an empty shell Serializer with an id field:

class SpeakerSerializer < ActiveModel::Serializer
 attributes :id
end

From here, you have to add in the fields to serialize into JSON.

Example 3-12 shows the SpeakerSerializer that AMS uses to render speaker Objects as JSON.

Example 3-12. speakers-api-1/app/models/speaker_serializer.rb

class SpeakerSerializer < ActiveModel::Serializer
 attributes :first_name, :last_name, :email,
 :about, :company, :tags, :registered
end

In this code, attributes lists all fields to be serialized into JSON.

Create the Controller

In a Rails application, a Controller handles HTTP Requests and returns HTTP Responses. In our case, the
Speaker JSON data is returned in the Response Body. The SpeakersController already exists, but the following sidebar explains how it was created.

Generate SpeakersController

Use the following command to generate a SpeakersController from the speakers-web-1 directory:

bin/rails generate controller speakers index show

This creates a shell with empty index and show methods and creates the appropriate
HTTP routes in app/config/routes.rb (more on this later).

Example 3-13 provides the full SpeakersController that implements the index and show methods.

Example 3-13. speakers-api-1/app/controllers/speakers_controller.rb

require 'speaker'

class SpeakersController < ApplicationController
 before_action :set_speakers, only: [:index, :show]

 # GET	/speakers
 def index
 render json: @speakers
 end

 # GET	/speakers/:id
 def show
 id = params[:id].to_i - 1

 if id >= 0 && id < @speakers.length
 render json: @speakers[id]
 else
 render plain: '404 Not found', status: 404
 end
 end

 private

 def set_speakers
 @speakers = []

 @speakers << Speaker.new('Larson', 'Richard', 'larsonrichard@ecratic.com',
 'Incididunt mollit cupidatat magna ...', 'Ecratic',
 ['JavaScript', 'AngularJS', 'Yeoman'], true)

 @speakers << Speaker.new('Ester', 'Clements', 'esterclements@acusage.com',
 'Labore tempor irure adipisicing consectetur ...', 'Acusage',
 ['REST', 'Ruby on Rails', 'APIs'], true)

 @speakers << Speaker.new('Christensen', 'Fisher',
 'christensenfisher@talkola.com', 'Proident ex Lorem et Lorem ad ...',
 'Talkola',
 ['Java', 'Spring', 'Maven', 'REST'], true)
 end

end

Note the following in this code:

	
The speakers Array is hardcoded, but it’s for test purposes only. In a real application, a separate Data Layer would populate the speakers from a database or an external API call.

	
The index method does the following:

	
Responds to HTTP GET requests on the /speakers URI.

	
Retrieves the entire speakers Array and renders it as a JSON Array in an HTTP Response Body.

	
The show method does the following:

	
Responds to HTTP GET requests on the /speakers/{id} URI (where id represents a speaker ID).

	
Retrieves a speaker (based on the speaker ID) and renders it as a JSON object in an HTTP Response Body.

	
If id in the HTTP Request is out-of-bounds, the Controller renders a 404 (Not Found) HTTP
Status Code with a plain-text message in the HTTP Response with render plain.

	
When the Controller invokes the render method, Rails looks for a matching Serializer to serialize the
speaker Object, and invokes the SpeakerSerializer by default.

The Controller and Serializer are decoupled and know nothing about each other. The serialization code exists
only in the Serializer and does not reside in the Controller or the Model. The Controller, Model, and
Serializer each do one thing.

In a Rails application, the Routes file maps URLs to Controller methods that execute when the URL is
invoked. The rails generate controller command that was shown earlier created the routes shown in Example 3-14.

Example 3-14. speakers-api-1/app/config/routes.rb

Rails.application.routes.draw do
 get 'speakers/index'

 get 'speakers/show'

 # For details on the DSL available within this file,
 # see http://guides.rubyonrails.org/routing.html
end

You can shorten the Routes file with Resource-based routing as shown in Example 3-15.

Example 3-15. speakers-api-1/app/config/routes.rb

Rails.application.routes.draw do

 resources :speakers, :only => [:show, :index]

 # For details on the DSL available within this file,
 # see http://guides.rubyonrails.org/routing.html
end

Instead of separate routes for the index and show methods, this resourceful route defines them
with a single line of code.

Camel-casing AMS JSON output

By default, AMS renders JSON keys with snake case (first_name and last_name). Out of the box, the
serialized JSON (when the user invokes http://localhost:3000/speakers/1 with an HTTP GET) looks like this:

{
 "first_name": "Larson",
 "last_name": "Richard",
 "email": "larsonrichard@ecratic.com",
 "about": "Incididunt mollit cupidatat magna ...",
 "company": "Ecratic",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "registered": true
}

To make our JSON output compatible with non-Ruby clients, let’s add camel casing by adding the global initializer file shown in Example 3-16.

Example 3-16. speakers-api-1/config/initializers/active_model_serializers.rb

ActiveModelSerializers.config.key_transform = :camel_lower

Deploy the API

In the speakers-api-1 directory, run rails s to deploy the API at http://localhost:3000/speakers,
and you’ll see the following:

[image: json 03in07]

Test the API with Postman

Now that the Speakers API is up and running, let’s test with Postman (as we did in Chapter 1) to get the
first speaker. In the Postman GUI, do the following:

	
Enter the http://localhost:3000/speakers/1 URL.

	
Choose GET as the HTTP verb.

	
Click the Send button.

You should see that the GET ran properly in Postman with the speaker JSON data in the HTTP Response Body
text area and a 200 (OK) HTTP Status, as shown in Figure 3-1.

[image: json 03in08]
Figure 3-1. Speaker JSON data with Postman

You can stop speakers-api-1 by pressing Ctrl-C at the command line.

speakers-api-2—Create an API that Customizes the JSON Representation

AMS’s JSON customization functionality goes beyond camel-casing. The second API application will show how
AMS can customize (alter) the JSON representation of each speaker. Except for the new
SpeakerSerializer, speakers-api-2 has all the same code as the original speakers-api-1 project,
so we’ll just focus on serialization.

Before going further, please install the gems to run the speakers-api-2 project. Do the following:

cd speakers-api-2

bundle exec spring binstub --all

Change the JSON representation with AMS

This new version of the SpeakerSerializer provides a new name field (which combines the first_name
and last_name) without changing the original speaker Object, as shown in Example 3-17.

Example 3-17. speakers-api-2/app/serializers/speaker_serializer.rb

class SpeakerSerializer < ActiveModel::Serializer
 attributes :name, :email, :about,
 :company, :tags, :registered

 def name
 "#{object.first_name} #{object.last_name}"
 end
end

Note the following in this example:

	
attributes references name instead of first_name and last_name.

	
In the name method:

	
The object refers to the speaker Object being rendered.

	
Combine the first_name and last_name fields by using String interpolation to render a single name
field. The original Speaker model knows nothing about the name attribute created by the Serializer.

The ability to customize the JSON representation with attributes is powerful because it decouples
the Model from the JSON output.

Deploy the API

In the speakers-api-2 directory, run rails s to deploy the API at
http://localhost:3000/speakers.

Test the API with Postman

In the Postman GUI, invoke HTTP GET on http://localhost:3000/speakers/1
and you should see the screen in Figure 3-2.

[image: json 03in09]
Figure 3-2. Customized Speaker JSON data with Postman

Don’t forget to stop the speakers-api-2 application by pressing Ctrl-C at the command line.

Further Reading on Rails and Rails-based APIs

We’ve shown just enough Rails-based APIs and AMS to get a simple API to work. To go deeper, please see the
following resources:

	
Ruby on Rails Tutorial: Learn Web Development with Rails, by Michael Hartl

	
Learn Ruby on Rails 5, by Daniel Kehoe

	
APIs on Rails: Building REST APIs with Rails, by Abraham Kuri

	
Get Up and Running with Rails API, by Chris Kottam

	
Active Model Serializers, Rails, and JSON! OH MY!, by Kendra Uzia

What We Covered

We started with simple conversions between Ruby and JSON, discussed the importance of JSON camel casing, and
then demonstrated how to call a (Stub) JSON-based Web API (and tested its contents with Minitest). We then
finished by creating a RESTful API with Rails 5 and tested it with Postman.

What’s Next?

Now that we’ve developed a JSON-based application with Ruby on Rails, we’ll move on to use JSON with
Java (and Spring Boot) in Chapter 4.

Chapter 4. JSON in Java

We’ve shown how to use JSON with JavaScript and Ruby on Rails, and we’ll now move to Java, our third and
final platform for this book. Here’s what we’ll cover:

	
Performing Java/JSON serialization/deserialization with Jackson

	
Working with Java Objects and JSON

	
Using JSON with JUnit

	
Making RESTful API calls and testing the results with JUnit and JsonUnit

	
Building a small JSON-based API with Spring Boot

In our examples, we’ll make RESTful API calls to work with the data we deployed on json-server in the
previous chapter. We’ll then move to create a more realistic JSON-based Web API. Before we develop a
RESTful API, we need to start with the basics of Java serialization/deserialization with JSON, and
then add more complexity.

Java and Gradle Setup

This chapter uses Gradle for building source and test code.
If you haven’t installed Java and Gradle, go to Appendix A and see “Install the Java Environment” and “Install Gradle”. After that, you will have a basic environment that
enables you to run the examples.

Gradle Overview

Gradle leverages the concepts from earlier Java-based build systems—Apache Ant
and Maven. Gradle is widely used and provides the following
functionality for Java projects:

	
Project structure (a common/standard project directory structure)

	
Dependency Management (for JAR files)

	
A common build process

The gradle init utility initializes a project by creating a core directory structure and some
initial implementations for the build script, along with simple Java source and test code. Here are the
key directories and files in a Gradle project:

	
src/main/ contains source code and resources.

	
java/ is the Java source code.

	
resources/ contains the resources (e.g., properties, data files—JSON in our case) used by the source code.

	
test/main/ contains source code and resources.

	
java/ is the Java source code.

	
resources/ contains the resources (e.g., properties, data files—JSON in our case) used by the source code.

	
build/ contains the .class files generated by compiling the source and test code.

	
libs/ contains the JAR or WAR files that result from building the project.

	
gradlew is the Gradle wrapper that enables you to run a project as an executable JAR. We’ll cover this
in more detail in the Spring Boot section later.

	
build.gradle is initiated for you by gradle init, but you need to fill it in with project-specific
dependencies. Gradle uses a Groovy-based DSL for its build scripts (rather than
XML).

	
build/ contains build-related artifacts created by gradle build or gradle test.

Here are the most important Gradle tasks you’ll need to know in order to work with Gradle.
You can see these tasks when you type gradle tasks on the command line:

	gradle build

	
Build the project.

	gradle classes

	
Compile Java source code.

	gradle clean

	
Delete the build directory.

	gradle jar

	
Compile Java source code and package it (along with Resources) into a JAR.

	gradle javadoc

	
Generate JavaDoc documentation from the Java source code.

	gradle test

	
Run Unit Tests (includes Java source and test code compile).

	gradle testClasses

	
Compile Java test code.

Here’s how the example projects were created:

	
gradle init --type java-application was used to create the initial speakers-test and speakers-web
applications.

	
The generated build.gradle file and the Java application and test files are stubs. They have been
replaced with actual code for the examples in this chapter.

Gradle is well-documented, and here are some tutorials and references to help you go deeper:

	
Gradle User Guide

	
Getting Started with Gradle, by Petri Kainulainen

	
Gradle Beyond the Basics, by Tim Berglund (O’Reilly)

Now that we’ve covered the basics of Gradle, it’s time to look at Java-based JSON libraries, and then move
on to coding examples.

Just Enough Unit Testing with JUnit

JUnit is a widely used Unit-Testing framework. The tests in
this chapter use JUnit because of its common acceptance in the Java community. JUnit tests are procedural, so
the Unit Tests are TDD-style. If you’d like to combine JUnit with BDD, Cucumber is a solid choice. To learn
more about BDD and Cucumber in Java, see Micha Kops’ excellent article on
“BDD Testing with Cucumber, Java and JUnit”.

Java-Based JSON Libraries

There are several solid JSON libraries for Java/JSON serialization/deserialization, including these:

	Jackson

	
You can find details about Jackson in the GitHub repository.

	Gson

	
Gson is provided by Google.

	JSON-java

	
This library is provided by Doug Crockford.

	Java SE (Standard Edition)

	
JSON support was introduced into the Java platform in JavaEE 7 as part of the
Java Specification Request (JSR) 353 initiative.
JSR-353 is a standalone implementation, and you can integrate it with your Java SE applications as of Java
SE 8. Java SE 9 will provide native JSON support as part of the Java Enhancement Proposal (JEP) 198 initiative.

All examples in this chapter use Jackson because it

	
Is widely used (especially by the Spring community)

	
Provides excellent functionality

	
Has worked well for a long time

	
Is well maintained with an active development community

	
Has good documentation

Additionally, we’ll maintain focus by sticking with one Java/JSON library. As mentioned, the other
libraries work well, so feel free to try them on your own.

Let’s start with the basics of Java serialization/deserialization.

JSON Serialization/Deserialization with Jackson

Java applications need to convert from Java data structures to JSON (serialize) and convert from JSON
to Java (deserialize).

Serialization/Deserialization with Simple Java Data Types

As in previous chapters, we’ll start by serializing some basic Java data types:

	
integer

	
string

	
array

	
boolean

Example 4-1 shows a simple Unit Test that uses Jackson and JUnit 4 to serialize/deserialize simple Java
data types.

Example 4-1. speakers-test/src/test/java/org/jsonatwork/ch4/BasicJsonTypesTest.java

package org.jsonatwork.ch4;

import static org.junit.Assert.*;

import java.io.*;
import java.util.*;

import org.junit.Test;

import com.fasterxml.jackson.core.*;
import com.fasterxml.jackson.core.type.*;
import com.fasterxml.jackson.databind.*;

public class BasicJsonTypesTest {
 private static final String TEST_SPEAKER = "age = 39\n" +
 "fullName = \"Larson Richard\"\n" +
 "tags = [\"JavaScript\",\"AngularJS\",\"Yeoman\"]\n" +
 "registered = true";

 @Test
 public void serializeBasicTypes() {
 try {
 ObjectMapper mapper = new ObjectMapper();
 Writer writer = new StringWriter();
 int age = 39;
 String fullName = new String("Larson Richard");
 List<String> tags = new ArrayList<String>(
 Arrays.asList("JavaScript", "AngularJS", "Yeoman"));

 boolean registered = true;
 String speaker = null;

 writer.write("age = ");
 mapper.writeValue(writer, age);
 writer.write("\nfullName = ");
 mapper.writeValue(writer, fullName);
 writer.write("\ntags = ");
 mapper.writeValue(writer, tags);
 writer.write("\nregistered = ");
 mapper.configure(SerializationFeature.INDENT_OUTPUT, true);
 mapper.writeValue(writer, registered);
 speaker = writer.toString();
 System.out.println(speaker);
 assertTrue(TEST_SPEAKER.equals(speaker));
 assertTrue(true);
 } catch (JsonGenerationException jge) {
 jge.printStackTrace();
 fail(jge.getMessage());
 } catch (JsonMappingException jme) {
 jme.printStackTrace();
 fail(jme.getMessage());
 } catch (IOException ioe) {
 ioe.printStackTrace();
 fail(ioe.getMessage());
 }
 }

 @Test
 public void deSerializeBasicTypes() {
 try {
 String ageJson = "{ \"age\": 39 }";
 ObjectMapper mapper = new ObjectMapper();
 Map<String, Integer> ageMap = mapper.readValue(ageJson,
 new TypeReference<HashMap<String,Integer>>() {});

 Integer age = ageMap.get("age");

 System.out.println("age = " + age + "\n\n\n");
 assertEquals(39, age.intValue());
 assertTrue(true);
 } catch (JsonMappingException jme) {
 jme.printStackTrace();
 fail(jme.getMessage());
 } catch (IOException ioe) {
 ioe.printStackTrace();
 fail(ioe.getMessage());
 }
 }

}

In this example, the @Test annotation tells JUnit to run the serializeBasicTypes() and
deSerializeBasicTypes() methods as part of the test. These Unit Tests don’t do many assertions on the JSON
data itself. We’ll cover assertions in more detail later when we test against a Web API.

Here are the most important Jackson classes and methods that serialize/deserialize to/from JSON:

	
ObjectMapper converts between Java and JSON constructs.

	
ObjectMapper.writeValue() converts a Java data type to JSON (and in this case, outputs to a Writer).

	
ObjectMapper.readValue() converts JSON to a Java data type.

Run a single Unit Test from the command line as follows:

cd chapter-4/speakers-test

+gradle test --tests org.jsonatwork.ch4.BasicJsonTypesTest+

You should see these results:

[image: json 04in01]

This example isn’t too exciting right now because it serializes/deserializes only simple data types
to/from JSON. Serialization/deserialization gets more interesting when Objects are involved.

Serialization/Deserialization with Java Objects

Now that we have a decent grasp of Jackson and how to work with simple Java data types, let’s wade in
deeper with Objects. Example 4-2 shows how to use Jackson to serialize/deserialize a
single speaker Object, and then how to deserialize a JSON file into multiple speaker Objects.

Example 4-2. speakers-test/src/test/java/org/jsonatwork/ch4/SpeakerJsonFlatFileTest.java

package org.jsonatwork.ch4;

import static org.junit.Assert.*;

import java.io.*;
import java.net.*;
import java.util.*;

import org.junit.Test;

import com.fasterxml.jackson.core.*;
import com.fasterxml.jackson.databind.*;
import com.fasterxml.jackson.databind.type.*;

public class SpeakerJsonFlatFileTest {

private static final String SPEAKER_JSON_FILE_NAME = "speaker.json";
private static final String SPEAKERS_JSON_FILE_NAME = "speakers.json";
private static final String TEST_SPEAKER_JSON = "{\n" +
 " \"id\" : 1,\n" +
 " \"age\" : 39,\n" +
 " \"fullName\" : \"Larson Richard\",\n" +
 " \"tags\" : [\"JavaScript\", \"AngularJS\", \"Yeoman\"],\n" +
 " \"registered\" : true\n" +
 "}";

@Test
public void serializeObject() {
 try {
 ObjectMapper mapper = new ObjectMapper();
 Writer writer = new StringWriter();
 String[] tags = {"JavaScript", "AngularJS", "Yeoman"};
 Speaker speaker = new Speaker(1, 39, "Larson Richard", tags, true);
 String speakerStr = null;

 mapper.configure(SerializationFeature.INDENT_OUTPUT, true);
 speakerStr = mapper.writeValueAsString(speaker);
 System.out.println(speakerStr);
 assertTrue(TEST_SPEAKER_JSON.equals(speakerStr));
 assertTrue(true);
 } catch (JsonGenerationException jge) {
 jge.printStackTrace();
 fail(jge.getMessage());
 } catch (JsonMappingException jme) {
 jme.printStackTrace();
 fail(jme.getMessage());
 } catch (IOException ioe) {
 ioe.printStackTrace();
 fail(ioe.getMessage());
 }
 }

 private File getSpeakerFile(String speakerFileName) throws URISyntaxException {
 ClassLoader classLoader = Thread.currentThread().getContextClassLoader();
 URL fileUrl = classLoader.getResource(speakerFileName);
 URI fileUri = new URI(fileUrl.toString());
 File speakerFile = new File(fileUri);

 return speakerFile;
 }

 @Test
 public void deSerializeObject() {
 try {
 ObjectMapper mapper = new ObjectMapper();
 File speakerFile = getSpeakerFile(
 SpeakerJsonFlatFileTest.SPEAKER_JSON_FILE_NAME);

 Speaker speaker = mapper.readValue(speakerFile, Speaker.class);

 System.out.println("\n" + speaker + "\n");
 assertEquals("Larson Richard", speaker.getFullName());
 assertEquals(39, speaker.getAge());
 assertTrue(true);
 } catch (URISyntaxException use) {
 use.printStackTrace();
 fail(use.getMessage());
 } catch (JsonParseException jpe) {
 jpe.printStackTrace();
 fail(jpe.getMessage());
 } catch (JsonMappingException jme) {
 jme.printStackTrace();
 fail(jme.getMessage());
 } catch (IOException ioe) {
 ioe.printStackTrace();
 fail(ioe.getMessage());
 }
 }

 @Test
 public void deSerializeMultipleObjects() {
 try {
 ObjectMapper mapper = new ObjectMapper();
 File speakersFile = getSpeakerFile(
 SpeakerJsonFlatFileTest.SPEAKERS_JSON_FILE_NAME);

 JsonNode arrNode = mapper.readTree(speakersFile).get("speakers");
 List<Speaker> speakers = new ArrayList<Speaker>();
 if (arrNode.isArray()) {
 for (JsonNode objNode : arrNode) {
 System.out.println(objNode);
 speakers.add(mapper.convertValue(objNode, Speaker.class));
 }
 }

 assertEquals(3, speakers.size());
 System.out.println("\n\n\nAll Speakers\n");
 for (Speaker speaker: speakers) {
 System.out.println(speaker);
 }

 System.out.println("\n");
 Speaker speaker3 = speakers.get(2);
 assertEquals("Christensen Fisher", speaker3.getFullName());
 assertEquals(45, speaker3.getAge());
 assertTrue(true);
 } catch (URISyntaxException use) {
 use.printStackTrace();
 fail(use.getMessage());
 } catch (JsonParseException jpe) {
 jpe.printStackTrace();
 fail(jpe.getMessage());
 } catch (JsonMappingException jme) {
 jme.printStackTrace();
 fail(jme.getMessage());
 } catch (IOException ioe) {
 ioe.printStackTrace();
 fail(ioe.getMessage());
 }
 }

}

Note the following in this JUnit test:

	
serializeObject() creates a Speaker Object and serializes it to Standard Output by using the
ObjectMapper.writeValueAsString() method and System.out.println(). The test sets the
SerializationFeature.INDENT_OUTPUT to true to indent/pretty-print the JSON output.

	
deSerializeObject() calls getSpeakerFile() to read a JSON input file (which contains a single
speaker JSON Object), and uses the ObjectMapper.readValue() method to deserialize it into a
Speaker Java Object.

	
deSerializeMultipleObjects() does the following:

	
Calls getSpeakerFile() to read a JSON input file, which contains an array of JSON speaker Objects.

	
Invokes the ObjectMapper.readTree() method to get a JsonNode Object, which is a pointer to the
root node of the JSON document that was in the file.

	
Visits each node in the JSON tree and uses the ObjectMapper.convertValue() method to deserialize each
speaker JSON object into a Speaker Java Object.

	
Prints out each Speaker Object in the list.

	
getSpeakerFile() finds a file on the classpath and does the following:

	
Gets the ContextClassLoader from the current Thread of execution.

	
Uses the ClassLoader.getResource() method to find the filename as a resource within the
current classpath.

	
Constructs a File Object based on the URI of the filename.

Each of the preceding tests uses JUnit’s assertion methods
to test the results of JSON serialization/deserialization.

You’ll see the following when you run the test from the command line using
gradle test --tests org.jsonatwork.ch4.SpeakerJsonFlatFileTest:

[image: json 04in02]

Jackson offers much more functionality than can be shown in this chapter. Refer to the following
resources for some great tutorials:

	
Java Jackson Tutorial, by Eugen Paraschiv

	
Jackson Tutorial, Tutorials Point

	
Jackson JSON Java Parser API Example Tutorial, by Pankaj (JournalDev)

	
Java JSON Jackson Introduction, by Mithil Shah

Unit Testing with a Stub API

Until now, we’ve been using JUnit to test against the data from JSON flat files. We’ll now do a more
realistic test against an API. But we need an API to test against without writing a lot of code or
creating lots of infrastructure. We’ll show how to create a simple Stub API (which produces a JSON response)
without writing a single line of code.

Test Data

To create the Stub, we’ll use the Speaker data from earlier chapters as our test data, which is available at GitHub
and deploy it as a RESTful API. We’ll leverage the json-server Node.js module to serve up the speakers.json
file as a Web API. If you need to install json-server, refer to “Install npm Modules”
in Appendix A. Here’s how to run json-server on port 5000 from your local machine (using
a second terminal session):

cd chapter-4/speakers-test/src/test/resources

json-server -p 5000 ./speakers.json

You can also get a single speaker by adding the id to the URI as follows: http://localhost:5000/speakers/1.
With the Stub API in place, it’s time to write some Unit Tests.

JSON and JUnit Testing with APIs

Our Unit Test will do the following:

	
Make HTTP calls to the Stub Speakers API

	
Check the JSON (from the HTTP Response) against expected values

As in earlier chapters, we’ll continue to leverage the open source Unirest API wrapper,
but this time we’ll use the Java version.

In the previous JUnit tests in the chapter, we ensured that only bare minimum functionality was working (no
exceptions were thrown), and it’s now time to make our tests a bit more sophisticated. The remaining Unit
Tests will look at the JSON content returned from an HTTP Response, and verify that it matches the expected
output. We could search through the data and do a comparison with custom code, or we could use a library to reduce the amount of work. JsonUnit has many helpful matchers to simplify JSON comparison in JUnit tests. We’ll cover the basics of JsonUnit in these Unit Tests, but it provides much deeper functionality than we can cover here, including the following:

	
Regular Expressions

	
More matchers

	
The ability to ignore specific fields and values

The Unit Test in Example 4-3 pulls everything together by invoking the Stub API and comparing the JSON
response with expected values.

Example 4-3. speakers-test/src/test/java/org/jsonatwork/ch4/SpeakersJsonApiTest.java

package org.jsonatwork.ch4;

import static org.junit.Assert.*;

import java.io.*;
import java.net.*;
import java.util.*;

import org.apache.http.*;
import org.junit.Test;

import com.fasterxml.jackson.core.*;
import com.fasterxml.jackson.databind.*;
import com.mashape.unirest.http.HttpResponse;
import com.mashape.unirest.http.Unirest;
import com.mashape.unirest.http.exceptions.*;
import com.mashape.unirest.request.*;

import static net.javacrumbs.jsonunit.fluent.JsonFluentAssert.assertThatJson;

public class SpeakersApiJsonTest {
 private static final String SPEAKERS_ALL_URI = "http://localhost:5000/speakers";
 private static final String SPEAKER_3_URI = SPEAKERS_ALL_URI + "/3";

 @Test
 public void testApiAllSpeakersJson() {
 try {
 String json = null;
 HttpResponse <String> resp = Unirest.get(
 SpeakersApiJsonTest.SPEAKERS_ALL_URI).asString();

 assertEquals(HttpStatus.SC_OK, resp.getStatus());
 json = resp.getBody();
 System.out.println(json);
 assertThatJson(json).node("").isArray();
 assertThatJson(json).node("").isArray().ofLength(3);
 assertThatJson(json).node("[0]").isObject();
 assertThatJson(json).node("[0].fullName")
 .isStringEqualTo("Larson Richard");
 assertThatJson(json).node("[0].tags").isArray();
 assertThatJson(json).node("[0].tags").isArray().ofLength(3);
 assertThatJson(json).node("[0].tags[1]").isStringEqualTo("AngularJS");
 assertThatJson(json).node("[0].registered").isEqualTo(true);
 assertTrue(true);
 } catch (UnirestException ue) {
 ue.printStackTrace();
 }
 }

 @Test
 public void testApiSpeaker3Json() {
 try {
 String json = null;
 HttpResponse <String> resp = Unirest.get(
 SpeakersApiJsonTest.SPEAKER_3_URI).asString();

 assertEquals(HttpStatus.SC_OK, resp.getStatus());
 json = resp.getBody();
 System.out.println(json);
 assertThatJson(json).node("").isObject();
 assertThatJson(json).node("fullName")
 .isStringEqualTo("Christensen Fisher");
 assertThatJson(json).node("tags").isArray();
 assertThatJson(json).node("tags").isArray().ofLength(4);
 assertThatJson(json).node("tags[2]").isStringEqualTo("Maven");
 assertTrue(true);
 } catch (UnirestException ue) {
 ue.printStackTrace();
 }
 }

}

Note the following in this JUnit test:

	
testApiAllSpeakersJson():

	
Gets a list of all speakers from the Speakers API by calling Unirest.get() with http://localhost:5000/speakers

	
Verifies that the HTTP Status Code is OK (200).

	
Gets the JSON document (which contains an array of speaker Objects) from the HTTP Response Body.

	
Makes a series of assertions on the JSON document with JSONUnit’s assertThatJson() to verify that

	
We have an array of three speaker objects.

	
Each field (for example, fullName, tags, and registered) in each speaker object matches the
expected values.

	
When you run gradle test, you should see the following as part of the output:

[image: json 04in03]

	
testApiSpeaker3Json():

	
Gets speaker 3 from the Speakers API by calling Unirest.get() with http://localhost:5000/speakers/3

	
Verifies that the HTTP Response Code is OK (200)

	
Gets the JSON document (which contains a single speaker Object) from the HTTP Response Body.

	
Makes a series of assertions on the JSON document with JSONUnit’s assertThatJson() to verify that

	
We have a single speaker Object.

	
Each field in the speaker Object has the expected values.

	
When you run gradle test, you should see the following as part of the output:

[image: json 04in04]

This Unit Test only touches upon the basics of the Unirest Java library, which also provides the following:

	
Full HTTP verb coverage (GET, POST, PUT, DELETE, PATCH)

	
The ability to do custom mappings from an HTTP Response Body to a Java Object

	
Asynchronous (i.e., nonblocking) requests

	
Timeouts

	
File uploads

	
And much more

Visit the Unirest website for further information on the
Unirest Java library.

Before moving on, you can stop json-server by pressing Ctrl-C at the command line.

We’ve shown how to deploy and interact with a Stub API, and now it’s time to build a small RESTful API.

Build a Small Web API with Spring Boot

We’ll continue to use the Speaker data to create an API (chapter-4/speakers-api in the examples)
with Spring Boot. The Spring Framework makes it easier to develop
and deploy Java-based Web applications and RESTful APIs. Spring Boot makes it easier to create Spring-based applications by providing defaults. With Spring Boot:

	
There are no tedious, error-prone XML-based configuration files.

	
Tomcat and/or Jetty can be embedded, so there is no need to deploy a WAR (Web application ARchive) separately.
You still could use Spring Boot and Gradle to build and deploy a WAR file to Tomcat. But as you’ll see,
an executable JAR simplifies a developer’s environment because it reduces the amount of setup and
installations, which enables iterative application development.

We’ll take the following steps to create and deploy the Speakers API with Spring Boot:

	
Write source code:

	
Model

	
Controller

	
Application

	
Create a build script (build.gradle).

	
Deploy an embedded JAR with gradlew.

	
Test with Postman.

Create the Model

The Speaker class in Example 4-4 is a Plain Old Java Object (POJO) that represents the Speaker
data that the API will render as JSON.

Example 4-4. speakers-api/src/main/java/org/jsonatwork/ch4/Speaker.java

package org.jsonatwork.ch4;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class Speaker {
 private int id;
 private int age;
 private String fullName;
 private List<String> tags = new ArrayList<String>();
 private boolean registered;

 public Speaker() {
 super();
 }

 public Speaker(int id, int age, String fullName, List<String> tags,
 boolean registered) {
 super();
 this.id = id;
 this.age = age;
 this.fullName = fullName;
 this.tags = tags;
 this.registered = registered;
 }

 public Speaker(int id, int age, String fullName, String[] tags,
 boolean registered) {
 this(id, age, fullName, Arrays.asList(tags), registered);
 }

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public String getFullName() {
 return fullName;
 }

 public void setFullName(String fullName) {
 this.fullName = fullName;
 }

 public List<String> getTags() {
 return tags;
 }

 public void setTags(List<String> tags) {
 this.tags = tags;
 }

 public boolean isRegistered() {
 return registered;
 }

 public void setRegistered(boolean registered) {
 this.registered = registered;
 }

 @Override
 public String toString() {
 return String.format(
 "Speaker [id=%s, age=%s, fullName=%s, tags=%s, registered=%s]",
 id, age, fullName, tags, registered);
 }

}

There’s nothing exciting in this code. It just provides the data members, constructors, and
accessor methods (getters and setters) for a speaker. This code doesn’t know anything about
JSON because (as you’ll soon see) Spring automatically converts this object to JSON.

Create the Controller

In a Spring application, the Controller handles the HTTP Requests and returns HTTP Responses. In our
case, the speaker JSON data is returned in the response body. Example 4-5 shows the SpeakerController.

Example 4-5. speakers-api/src/main/java/org/jsonatwork/ch4/SpeakerController.java

package org.jsonatwork.ch4;

import java.util.*;
import org.springframework.web.bind.annotation.*;
import org.springframework.http.*;

@RestController
public class SpeakerController {

 private static Speaker speakers[] = {
 new Speaker(1, 39, "Larson Richard",
 new String[] {"JavaScript", "AngularJS", "Yeoman"}, true),
 new Speaker(2, 29, "Ester Clements",
 new String[] {"REST", "Ruby on Rails", "APIs"}, true),
 new Speaker(3, 45, "Christensen Fisher",
 new String[] {"Java", "Spring", "Maven", "REST"}, false)
 };

 @RequestMapping(value = "/speakers", method = RequestMethod.GET)
 public List<Speaker> getAllSpeakers() {
 return Arrays.asList(speakers);
 }

 @RequestMapping(value = "/speakers/{id}", method = RequestMethod.GET)
 public ResponseEntity<?> getSpeakerById(@PathVariable long id) {
 int tempId = ((new Long(id)).intValue() - 1);

 if (tempId >= 0 && tempId < speakers.length) {
 return new ResponseEntity<Speaker>(speakers[tempId], HttpStatus.OK);
 } else {
 return new ResponseEntity(HttpStatus.NOT_FOUND);
 }
 }
}

Note the following in this code:

	
The @RestController annotation identifies the SpeakerController class as a Spring MVC Controller that
processes HTTP Requests.

	
The speakers array is hardcoded, but it’s for test purposes only. In a real application, a separate Data Layer would populate the speakers from a database or an external API call.

	
The getAllSpeakers() method does the following:

	
Responds to HTTP GET requests on the /speakers URI.

	
Retrieves the entire speakers Array as an ArrayList and returns it as a JSON Array in an HTTP Response
Body.

	
The @RequestMapping annotation binds the /speakers URI to the getAllSpeakers() method for an HTTP
GET Request.

	
The getSpeakerById() method does the following:

	
Responds to HTTP GET requests on the /speakers/{id} URI (where id represents a speaker ID).

	
Retrieves a speaker (based on the speaker ID) and returns it as a JSON Object in an HTTP Response Body.

	
The @PathVariable annotation binds the speaker ID from the HTTP Request path to the id parameter
for lookup.

	
The ResponseEntity return value type enables you to set the HTTP Status Code and/or the speakers
in the HTTP Response.

In both of the preceding methods, the Speaker Object is automatically converted to JSON without any extra
work. By default, Spring is configured to use Jackson behind the scenes to do the Java-to-JSON conversion.

Register the Application

As mentioned earlier, we could package the Speakers API as a WAR file and deploy it on an application server such
as Tomcat. But it’s easier to run our API as a standalone application from the command line. To do this we need to do the following:

	
Add a Java main() method

	
Package the application as an executable JAR

The Application class in Example 4-6 provides the main() method that we need.

Example 4-6. speakers-api/src/main/java/org/jsonatwork/ch4/Application.java

package org.jsonatwork.ch4;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

In this example, the @SpringBootApplication annotation registers our application with Spring and wires up
the SpeakerController and Speaker.

That’s all the code that we need. Now, let’s look at the build.gradle script to build the application.

Write the Build Script

Gradle uses a script called build.gradle to build an application. Example 4-7 shows the build script for the speakers-api project.

Example 4-7. speakers-api/build.gradle

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-plugin:1.5.2.RELEASE")
 }
}

apply plugin: 'java'
apply plugin: 'org.springframework.boot'

ext {
 jdkVersion = "1.8"
}

sourceCompatibility = jdkVersion
targetCompatibility = jdkVersion

tasks.withType(JavaCompile) {
 options.encoding = 'UTF-8'
}

jar {
 baseName = 'speakers-api'
 version = '0.0.1'
}

repositories {
 mavenCentral()
}

test {
 testLogging {
 showStandardStreams = true // Show standard output & standard error.
 }
 ignoreFailures = false
}

dependencies {
 compile (
 [group: 'org.springframework.boot', name: 'spring-boot-starter-web']
)
}

Note the following in this build.gradle script:

	
The Spring Boot Gradle plug-in does the following:

	
Packages all build artifacts into a single, executable JAR

	
Searches for a class in src/main/java that has a main() method (in this case, Application.java) to deploy our API
within the executable JAR

	
The jar block defines the name of the application’s JAR file

	
repositories tells Gradle to pull application dependencies from the Maven Central Repository.

	
testLogging tells Gradle to show Standard Output and Standard Error when running tests.

	
dependencies defines the JARs that the speakers-api depends on.

This is a simple build, but Gradle has far more powerful build functionality. Visit the “Wiring Gradle Build Scripts” section of the Gradle User Guide to learn more.

We’ve covered the build script, and now it’s time to deploy the Speakers API.

Deploy the API

The gradlew script was generated by the gradle init command that was used to create the speakers-api project.
To learn more about how to create a Gradle project, see “Creating New Gradle Builds”
from the Gradle User Guide.

gradlew pulls everything together and simplifies deployment by taking the following steps:

	
Invokes the build.gradle script to build the application and uses the Spring Boot plug-in to build the executable JAR

	
Deploys the Speakers API (as an executable JAR) to http://localhost:8080/speakers on an embedded (bundled) Tomcat server

In the speakers-api directory, run ./gradlew bootRun to deploy the application, and you’ll see the following (at the
end of all the log messages):

[image: json 04in05]

Test the API with Postman

Now that the Speakers API is up and running, let’s test with Postman (as we did in Chapter 1) to get the
first speaker. In the Postman GUI, do the following:

	
Enter the http://localhost:8080/speakers/1 URL.

	
Choose GET as the HTTP verb.

	
Click the Send button.

You should see that the GET ran properly in Postman with the speaker JSON data in the HTTP Response Body
text area and a 200 (OK) HTTP Status, as shown in Figure 4-1.

[image: json 04in06]
Figure 4-1. Speakers API on Postman

You can stop gradlew by pressing Ctrl-C at the command line.

As promised, development and deployment is simpler because we didn’t do any of the following:

	
Create or modify XML-based configuration metadata for Spring or Java EE (i.e., web.xml)

	
Deploy a WAR file

	
Install Tomcat

Note that we took these deployment steps to show how to set up a simple development environment
for a Web API. You still need to deploy a WAR file to an application server when you move into shared
(e.g., Staging, User Acceptance Testing, Production) environments so that you have the ability to tune and load-test
the application.

What We Covered

We started with simple conversion between Java and JSON constructs, and then
demonstrated how to call a (Stub) JSON-based Web API and test its contents with JUnit.
We then finished by creating a RESTful API with Spring Boot and tested it with Postman.

What’s Next?

With the basics of JSON usage on several core platforms (JavaScript, Ruby on Rails, and Java) behind us,
we’ll move deeper into the JSON ecosystem in the next three chapters:

	
JSON Schema

	
JSON Search

	
JSON Transform

In Chapter 5, we’ll show how to structure and validate JSON documents with JSON Schema.

Part II. The JSON Ecosystem

Chapter 5. JSON Schema

We’ve covered the basics of JSON using our core platforms (JavaScript, Ruby on Rails, and Java), and now
it’s time to wade in deeper. In this chapter, we’ll show how to leverage JSON Schema to define the
structure and format of JSON documents exchanged between applications:

	
JSON Schema overview

	
Core JSON Schema—basics and tooling

	
How to design and test an API with JSON Schema

In our examples, we’ll design an API with JSON Schema after we progressively walk through the concepts of
JSON Schema. As noted in the preface, from now on we will write all our examples in Node.js to keep the size of the chapters to a minimum. But know that the other platforms work well with JSON Schema. If you haven’t installed Node.js already, now would be a great time. Follow the instructions in Appendix A.

JSON Schema Overview

Many architects and developers are unfamiliar with JSON Schemas.
Before going into details, it’s important to know what a JSON Schema is,
how it helps, and why/when to use it. Along the way, we’ll look at the
JSON Schema Specification and show a simple example.

What Is JSON Schema?

A JSON Schema specifies a JSON document (or message)’s content, structure, and format. A JSON Schema
validates a JSON document, so you may be wondering why plain JSON validation isn’t enough. Unfortunately,
validation is an overloaded term.

Syntactic Versus Semantic Validation

The difference is in the type of validation. When you validate a JSON document without a Schema, you’re validating only the syntax of the document. This type of validation guarantees only that the document is
well-formed (i.e., matching braces, double quotes for keys, and so forth). This type of validation is known as
syntactic validation, and we’ve done this before with tools such as JSONLint, and the JSON parsers for
each platform.

How does a JSON Schema help?

Syntactic validation is a good start, but at times you need to validate at a deeper level by
using semantic validation. What if you have the following situations:

	
You (as an API Consumer) need to ensure that a JSON response from an API contains a valid Speaker, or
a list of Orders?

	
You (as an API Producer) need to check incoming JSON to make sure that the Consumer can send you only
the fields you’re expecting?

	
You need to check the format of a phone number, a date/time, a postal code, an email address, or a credit
card number?

This is where JSON Schema shines, and this type of validation is known as semantic validation. In this
case, you’re validating the meaning of the data, not just the syntax. JSON Schema is also great for
API Design because it helps define the interface, and we’ll cover that later in this chapter.

A Simple Example

Before talking too much more about JSON Schema, let’s look at Example 5-1 to get a feel for the
syntax.

Example 5-1. ex-1-basic-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 }
 }
}

This Schema specifies that a document can have three fields (email, firstName, and lastName), where
each one is a string. We’ll gloss over Schema syntax for now, but don’t worry—we’ll cover it soon.
Example 5-2 shows a sample JSON instance document that corresponds to the preceding Schema.

Example 5-2. ex-1-basic.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard"
}

JSON Schema on the Web

The json-schema.org site, shown in Figure 5-1, is the starting place to go for all things related to JSON Schema,
including copious documentation and examples.

[image: json 05in01]
Figure 5-1. json-schema.org site

From here, you can find example Schemas, great validation libraries for most major platforms, along with
the JSON Schema Standard GitHub repository (where the standard is maintained). The GitHub repository is shown in Figure 5-2.

[image: json 05in02]
Figure 5-2. json-schema GitHub repository

Here you can track updates, issues, and progress with the JSON Schema standard (more on that later in “The Current State of the JSON Schema Standard”).

Why JSON Schema?

JSON Schema provides the ability to validate the content and semantics of a document, and here are some
real-world use cases:

	Security

	
The Open Web Application Project (OWASP) Web Service Security Cheat Sheet recommends that Web Services should validate their payloads by using a Schema. Granted, they still talk about XML Schema,
but their concern is still applicable to JSON. OWASP calls for validation of field lengths (min/max) and fixed format
fields (e.g., phone number or postal code) to help secure a service.

	Message Design

	
JSON isn’t just for APIs anymore. Many enterprises use JSON as the preferred format to
send payloads over messaging systems such as Apache Kafka (we’ll cover this in more detail in Chapter 10).
The message Producer and Consumer are completely decoupled in this style of architecture, and JSON Schema
can help ensure that the reader receives messages in a format that it’s expecting.

	API Design

	
JSON is a first-class citizen in API Design. JSON Schema helps define an API’s contract by
specifying the format, content, and structure of a document.

	Prototyping

	
With the structure and rigor of JSON Schema, this may seem counterintuitive. We’ll show a
streamlined prototyping workflow with JSON Schema and related tooling when we design an API later in this
chapter.

My Journey with JSON Schema

As mentioned in the Preface, as of 2009 I wasn’t sure that JSON was ready for the enterprise. I loved its
speed and simplicity, but I didn’t see a way to guarantee the structure and content of JSON documents
between applications. But when I learned about JSON Schema in 2010, I changed my position and came to accept
JSON as a viable enterprise-class data format.

The Current State of the JSON Schema Standard

The JSON Schema Specification is at implementation draft 4 (v0.4), and the next implementation draft
6 (v0.6) is on the way. Draft 5 (v0.5) was published late last year as a working draft to capture work in progress and was
not an implementation draft. But don’t let the 0.x version number concern you. As you’ll see in our
examples, JSON Schema is robust, provides solid validation capabilities today, and there is a wide
variety of working JSON Schema libraries for every major programming platform. You can find more details in the JSON Schema draft 4 spec.

JSON Schema and XML Schema

JSON Schema fills the same role with JSON as XML Schema did with XML documents, but with the following
differences:

	
A JSON document does not reference a JSON Schema. It’s up to an application to validate a JSON document
against a Schema.

	
JSON Schemas have no namespace.

	
JSON Schema files have a .json extension.

Core JSON Schema—Basics and Tooling

Now that you have an overview of JSON Schema, it’s time to go deeper.
JSON Schema is powerful, but it can be tedious, and we’ll show some tools to make it easier.
We’ll then cover basic data types and core keywords that provide a foundation for working
with JSON Schema on real-world projects.

JSON Schema Workflow and Tooling

JSON Schema syntax can be a bit daunting, but developers don’t have to code everything by hand. Several excellent tools can make life much easier.

JSON Editor Online

We’ve already covered JSON Editor Online in Chapter 1, but it’s worth another brief mention. Start modeling
a JSON document with this tool to get a feel for the data. Use this tool to generate the JSON document and
avoid all the typing. When you’re finished, save the JSON document to the clipboard.

JSONSchema.net

Once you have your core concept, the JSONSchema.net application generates a
JSON Schema based on the JSON document that was created earlier with JSON Editor Online (see Figure 5-3). The JSONSchema.net
application alone will save you 80 percent of the typing required to create a Schema. I always start my Schema
work with this application and then make incremental upgrades.

Here are the steps to generate the initial Schema with JSONSchema.net:

	
Paste in a JSON document on the left side.

	
Start with the default settings, and make the following changes:

	
Turn off “Use absolute IDs.”

	
Turn off “Allow additional properties.”

	
Turn off “Allow additional items.”

	
Click the Generate Schema button.

	
Copy the generated Schema to your clipboard.

[image: json 05in03]
Figure 5-3. Speakers Schema on JSONSchema.net

JSON Validate

After you’ve created a JSON Schema, the JSON Validate application
validates a JSON document against that Schema, as shown in Figure 5-4.

[image: json 05in04]
Figure 5-4. Valid Speakers Schema on jsonvalidate.com

To validate the JSON document against the Schema, do the following:

	
Paste the JSON document and Schema into the JSON Validate application.

	
Remove all id fields from the Schema because they’re not needed.

	
Click the Validate button to validate the document.

NPM modules on the CLI: validate and jsonlint

But sometimes you don’t have good internet connectivity, so it’s great to have tools that run
locally. Plus, if you have sensitive data, it’s safer to run examples on your machine from the command-line interface (CLI). The validate module is the Node.js equivalent of the jsonvalidate.com site. To install and
run it, follow the instructions in Appendix A (see “Install npm Modules”).

Both jsonvalidate.com and validate are part of the Using JSON Schema site (a great Schema resource),
which can be found on GitHub.
You’ve already seen the JSONLint site in Chapter 1, but you can also use JSONLint from the command line by
using the jsonlint Node.js module. To install and run it, follow the instructions in Appendix A (see “Install npm Modules”).

I’ve used jsonlint only for syntactic validation, but if you run jsonlint --help from the command line,
you’ll notice that it can also do semantic validation with a Schema. For more information, see
the jsonlint documentation on GitHub.

We’ll leverage validate from the command line to work through the examples.

Core Keywords

Here are the core keywords in any JSON Schema:

	$schema

	
Specifies the JSON Schema (spec) version. For example,
“$schema": "http://json-schema.org/draft-04/schema#" specifies that the schema conforms to version 0.4,
while http://json-schema.org/schema# tells a JSON Validator to use the current/latest version of the
specification (which is 0.4 as of this writing). Using the latter of these two options is risky because
some JSON Validators default to a previous version, so an earlier version (and not the current/latest)
version will be used. To play it safe, always specify the version so that you (and the JSON Validator)
 are sure about the version you’re using.

	type

	
Specifies the data type for a field. For example: "type": "string".

	properties

	
Specifies the fields for an object. It contains type information.

Basic Types

The document in Example 5-3 contains the basic JSON types (for example, string, number, boolean) that you’ve
seen before.

Example 5-3. ex-2-basic-types.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "age": 39,
 "postedSlides": true,
 "rating": 4.1
}

JSON Schema uses the same basic data types as the Core JSON data types from Chapter 1 (string,
number, array, object, boolean, null), but adds an integer type that specifies whole numbers.
The number type still allows both whole and floating-point numbers.

The JSON Schema in Example 5-4 describes the structure of the preceding document.

Example 5-4. ex-2-basic-types-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "age": {
 "type": "integer"
 },
 "postedSlides": {
 "type": "boolean"
 },
 "rating": {
 "type": "number"
 }
 }
}

In this example, note the following:

	
The $schema field indicates that JSON Schema v0.4 rules will be used for validating the document.

	
The first type field mentioned indicates that there is an Object at the root level of the JSON
document that contains all the fields in the document.

	
email, firstName, lastName are of type string

	
age is an integer. Although JSON itself has only a number type, JSON Schema provides the
finer-grained integer type.
postedSlides is a boolean.
rating is a number, which allows for floating-point values.

Run the preceding example using validate, and you’ll see that the document is valid for this Schema.

[image: json 05in05]

Although the preceding Schema is a decent start, it doesn’t go far enough. Let’s try the following changes to
the JSON document that we want to validate:

	
Add an extra field (e.g., company).

	
Remove one of the expected fields (e.g., postedSlides).

Example 5-5 shows our modified JSON document.

Example 5-5. ex-2-basic-types-invalid.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "age": 39,
 "rating": 4.1,
 "company": "None"
}

Right now there’s nothing to prevent you from invalidating the document, as you’ll see in the following run:

[image: json 05in06]

Basic types validation

At this point, you might be thinking that JSON Schema isn’t useful because it’s not validating as
expected. But we can make the validation process function as expected by adding simple constraints.
First, to prevent extra fields, use the code in Example 5-6.

Example 5-6. ex-3-basic-types-no-addl-props-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "postedSlides": {
 "type": "boolean"
 },
 "rating": {
 "type": "number"
 }
 },
 "additionalProperties": false
}

In this example, setting additionalProperties to false disallows any extra fields in the document root Object. Copy the previous JSON document (ex-2-basic-types-invalid.json) to a new version
(ex-3-basic-types-no-addl-props-invalid.json) and try validating against the preceding Schema. You should now
see the following:

[image: json 05in07]

This is getting better, but it still isn’t what we want because there’s no guarantee that all the expected
fields will be in the document. To reach a core level of semantic validation, we need to ensure that all
required fields are present, as shown in Example 5-7.

Example 5-7. ex-4-basic-types-validation-req-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "postedSlides": {
 "type": "boolean"
 },
 "rating": {
 "type": "number"
 }
 },
 "additionalProperties": false,
 "required": ["email", "firstName", "lastName", "postedSlides", "rating"]
}

In this example, the required Array specifies the fields that are required, so these fields must
be present for a document to be considered valid. Note that a field is considered optional if not
mentioned in the required Array.

Example 5-8 shows the modified JSON document (without the required rating field, plus an unexpected age field) to validate.

Example 5-8. ex-4-basic-types-validation-req-invalid.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "postedSlides": true,
 "age": 39
}

When running this example from the command line, the document is now considered invalid:

[image: json 05in08]

We finally have what we want:

	
No extra fields are allowed.

	
All fields are required.

Now that we have basic semantic validation in place, let’s move on to validating number fields in
 JSON documents.

Numbers

As you’ll recall, a JSON Schema number type can be a floating-point or whole number. The Schema in Example 5-9
validates the average rating for a speaker’s conference presentation, where the range varies from 1.0
(poor) to 5.0 (excellent).

Example 5-9. ex-5-number-min-max-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "rating": {
 "type": "number",
 "minimum": 1.0,
 "maximum": 5.0
 }
 },
 "additionalProperties": false,
 "required": ["rating"]
}

Example 5-10 is a valid JSON document because the rating is within the 1.0–5.0 range.

Example 5-10. ex-5-number-min-max.json

{
 "rating": 4.99
}

Example 5-11 is an invalid document, where the rating is greater than 5.0.

Example 5-11. ex-5-number-min-max-invalid.json

{
 "rating": 6.2
}

Run this from the command line, and you’ll see that the preceding document is invalid:

[image: json 05in09]

Arrays

JSON Schema provides the ability to validate Arrays. Arrays can hold any of the JSON Schema basic types
(string, number, array, object, boolean, null). The Schema in Example 5-12 validates the
tags field, which is an Array of type string.

Example 5-12. ex-6-array-simple-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "tags": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 },
 "additionalProperties": false,
 "required": ["tags"]
}

Example 5-13 is a valid JSON document for the preceding Schema.

Example 5-13. ex-6-array-simple.json

{
 "tags": ["fred"]
}

The document in Example 5-14 is not valid because we’ve added an integer to the tags Array.

Example 5-14. ex-6-array-simple-invalid.json

{
 "tags": ["fred", 1]
}

Run the preceding example to verify that the document is invalid:

[image: json 05in10]

JSON Schema provides the ability to specify the minimum (minItems) and maximum (maxItems) number of items
in an Array. The Schema in Example 5-15 allows for two to four items in the tags Array.

Example 5-15. ex-7-array-min-max-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "tags": {
 "type": "array",
 "minItems": 2,
 "maxItems": 4,
 "items": {
 "type": "string"
 }
 }
 },
 "additionalProperties": false,
 "required": ["tags"]
}

The JSON document conforms in Example 5-16 to the preceding Schema.

Example 5-16. ex-7-array-min-max.json

{
 "tags": ["fred", "a"]
}

The document in Example 5-17 is invalid because the tags Array has five items.

Example 5-17. ex-7-array-min-max-invalid.json

{
 "tags": ["fred", "a", "x", "betty", "alpha"]
}

Run the preceding example to verify:

[image: json 05in11]

Enumerated Values

The enum keyword constrains a field’s value to a fixed set of unique values, specified in an Array.
The Schema in Example 5-18 limits the set of allowable values in the tags Array to one of "Open Source",
"Java", "JavaScript", "JSON", or "REST".

Example 5-18. ex-8-array-enum-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "tags": {
 "type": "array",
 "minItems": 2,
 "maxItems": 4,
 "items": {
 "enum": [
 "Open Source", "Java", "JavaScript", "JSON", "REST"
]
 }
 }
 },
 "additionalProperties": false,
 "required": ["tags"]
}

The document in Example 5-19 is valid based on the preceding Schema.

Example 5-19. ex-8-array-enum.json

{
 "tags": ["Java", "REST"]
}

This document in Example 5-20 is not valid because the value "JS" is not one of the values in the Schema’s enum.

Example 5-20. ex-8-array-enum-invalid.json

{
 "tags": ["Java", "REST", "JS"]
}

Run this example to show that the document is invalid:

[image: json 05in12]

Objects

JSON Schema enables you to specify an object. This is the heart of semantic validation because it
enables you to validate Objects exchanged between applications. With this capability, both an API’s
Consumer and Producer can agree on the structure and content of important business concepts such as a
person or order. The Schema in Example 5-21 specifies the content of a speaker Object.

Example 5-21. ex-9-named-object-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "speaker": {
 "type": "object",
 "properties": {
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "email": {
 "type": "string"
 },
 "postedSlides": {
 "type": "boolean"
 },
 "rating": {
 "type": "number"
 },
 "tags": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 },
 "additionalProperties": false,
 "required": ["firstName", "lastName", "email",
 "postedSlides", "rating", "tags"
]
 }
 },
 "additionalProperties": false,
 "required": ["speaker"]
}

This Schema is similar to previous examples, with the addition of a top-level speaker object nested
inside the root object.

The JSON document in Example 5-22 is valid against the preceding Schema.

Example 5-22. ex-9-named-object.json

{
 "speaker": {
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larsonrichard@ecratic.com",
 "postedSlides": true,
 "rating": 4.1,
 "tags": [
 "JavaScript", "AngularJS", "Yeoman"
]
 }
}

The document in Example 5-23 is invalid because the speaker Object is missing the required rating field.

Example 5-23. ex-9-named-object-invalid.json

{
 "speaker": {
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larsonrichard@ecratic.com",
 "postedSlides": true,
 "tags": [
 "JavaScript", "AngularJS", "Yeoman"
]
 }
}

Run the example on the command line to ensure that the preceding document is invalid:

[image: json 05in13]

We’ve now covered the most important basic types, and we’ll move on to more-complex schemas.

Pattern Properties

JSON Schema provides the ability to specify repeating fields (with similar names) through pattern
properties (with the patternProperties keyword) based on Regular Expressions. Example 5-24
defines the fields in an address.

Example 5-24. ex-10-pattern-properties-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "city": {
 "type": "string"
 },
 "state": {
 "type": "string"
 },
 "zip": {
 "type": "string"
 },
 "country": {
 "type": "string"
 }
 },
 "patternProperties": {
 "^line[1-3]$": {
 "type": "string"
 }
 },
 "additionalProperties": false,
 "required": ["city", "state", "zip", "country", "line1"]
}

In this example, the ^line[1-3]$ Regular Expression allows for the following address fields in a
corresponding JSON document: line1, line2, and line3. Here’s how to interpret this Regular
Expression:

	
^ represents the beginning of the string.

	
line translates to the literal string "line".

	
[1-3] allows for a single integer between 1 and 3.

	
$ indicates the end of the string.

Note that only line1 is required, and the others are optional.

The document in Example 5-25 will validate against the preceding Schema.

Example 5-25. ex-10-pattern-properties.json

{
 "line1": "555 Main Street",
 "line2": "#2",
 "city": "Denver",
 "state": "CO",
 "zip": "80231",
 "country": "USA"
}

Example 5-26 is invalid because it has a line4 field, which is out of range.

Example 5-26. ex-10-pattern-properties-invalid.json

{
 "line1": "555 Main Street",
 "line4": "#2",
 "city": "Denver",
 "state": "CO",
 "zip": "80231",
 "country": "USA"
}

Run this example to see that the preceding document is invalid:

[image: json 05in14]

Regular Expressions

JSON Schema also uses Regular Expressions to constrain field values.
The Schema in Example 5-27 limits the value of the email field to a standard email address format as specified in IETF RFC 2822.

Example 5-27. ex-11-regex-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string",
 "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 }
 },
 "additionalProperties": false,
 "required": ["email", "firstName", "lastName"]
}

In this example, the Regular Expression specifies a valid email address. Here’s how to interpret this
Regular Expression:

	
^ represents the beginning of the string.

	
[\\w|-|.]+ matches one-to-many instances of the following pattern:

	
[\\w|-|.] matches a word character (a-zA-Z0-9_), a dash (-), or a dot(.).

	
@ indicates the literal “@”.

	
[\\w]+ matches one-to-many instances of the following pattern:

	
[\\w] matches a word character (a-zA-Z0-9_).

	
\\. indicates the literal “.”

	
[A-Za-z]{2,4} matches two to four occurrences of the following pattern:

	
[A-Za-z] matches an alphabetic character.

	
$ indicates the end of the string.

The double backslash (\\) is used by JSON Schema to denote special characters within regular expressions
because the single backslash (\) normally used in standard Regular Expressions won’t work in this
context. This is due to that fact the a single backslash is already used in core JSON document syntax to
escape special characters (e.g., \b for a backspace).

The following document in Example 5-28 is valid because the email address follows the pattern specified in the Schema.

Example 5-28. ex-11-regex.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard"
}

The document in Example 5-29 is invalid because the email address field is missing the trailing .com.

Example 5-29. ex-11-regex-invalid.json

{
 "email": "larsonrichard@ecratic",
 "firstName": "Larson",
 "lastName": "Richard"
}

Run the preceding example to prove that it’s invalid:

[image: json 05in15]

Going deeper with Regular Expressions

Regular Expressions can be daunting and complex at times. Although a full tutorial on Regular Expressions
is far beyond the scope of this book, here are some resources to help you master Regular Expressions:

	Introducing Regular Expressions by Michael Fitzgerald (O’Reilly).

	Regular Expressions Cookbook, Second Edition by Jan Goyvaerts and Steven Levithan (O’Reilly).

	Mastering Regular Expressions, Third Edition by Jeffrey E. F. Friedl (O’Reilly).

	Regular Expressions 101—this is my favorite Regex site.

	RegExr

	Regular-Expressions.info

Dependent Properties

Dependent Properties introduce dependencies between fields in a Schema: one field depends on the
presence of the other. The dependencies keyword is an object that specifies the dependent relationship(s),
where field x maps to an array of fields that must be present if y is populated. In Example 5-30
tags must be present if favoriteTopics is provided in the corresponding JSON document (that is,
favoriteTopic depends on tags).

Example 5-30. ex-12-dependent-properties-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string",
 "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
	},
 "tags": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "favoriteTopic": {
 "type": "string"
 }
 },
 "additionalProperties": false,
 "required": ["email", "firstName", "lastName"],
 "dependencies": {
 "favoriteTopic": ["tags"]
 }
}

The JSON document in Example 5-31 is valid because the favoriteTopic is present, and the tags Array is
populated.

Example 5-31. ex-12-dependent-properties.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "tags": [
 "JavaScript", "AngularJS", "Yeoman"
],
 "favoriteTopic": "JavaScript"
}

The JSON document in Example 5-32 is invalid because the favoriteTopic is present, but the tags Array is
missing.

Example 5-32. ex-12-dependent-properties-invalid.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "favoriteTopic": "JavaScript"
}

Run the preceding example, and you’ll see that the document is invalid:

[image: json 05in16]

Internal References

References provide the ability to reuse definitions/validation rules. Think of references as DRY
(Do Not Repeat Yourself) for Schema. References can be either Internal (inside the same Schema) or
External (in a separate/external Schema). We’ll start with Internal References.

In Example 5-33, you’ll notice that the Regular Expression for the email field has been replaced by a
$ref, a Uniform Resource Identifier (URI) to the actual definition/validation rule for the email field:

	
indicates that the definition exists locally within the Schema.

	
/definitions/ is the path to the definitions object in this Schema. Note that the definitions
keyword indicates the use of a reference.

	
emailPattern is the path to the emailPattern specification within the definitions object.

	
JSON Schema leverages JSON Pointer (covered in Chapter 7) to specify URIs (e.g., #/definitions/emailPattern).

Example 5-33. ex-13-internal-ref-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "$ref": "#/definitions/emailPattern"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 }
 },
 "additionalProperties": false,
 "required": ["email", "firstName", "lastName"],
 "definitions": {
 "emailPattern": {
 "type": "string",
 "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"
 }
 }
}

Other than the new definitions object, there’s nothing really that new here. We’ve just moved the
definition for email addresses to a common location that can be used throughout the Schema by multiple
fields.

Example 5-34 shows a JSON document that conforms to the preceding Schema.

Example 5-34. ex-13-internal-ref.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard"
}

Example 5-35 is invalid because email is missing the trailing .com.

Example 5-35. ex-13-internal-ref-invalid.json

{
 "email": "larsonrichard@ecratic",
 "firstName": "Larson",
 "lastName": "Richard"
}

Validate this document from the command line, and you’ll see that it’s invalid:

[image: json 05in17]

External References

External References provide a way to specify validation rules in an external Schema file. In this case,
Schema A references Schema B for a particular set of validation rules. External References enable a
development team (or several teams) to reuse common Schemas and definitions across the enterprise.

Example 5-36 shows our speaker Schema that now references an external (second) Schema.

Example 5-36. ex-14-exernal-ref-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "$ref":
 "http://localhost:8081/ex-14-my-common-schema.json#/definitions/emailPattern"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 }
 },
 "additionalProperties": false,
 "required": ["email", "firstName", "lastName"]
}

Notice the two key differences:

	
The definitions Object has been factored out of this schema. Don’t worry; it comes back really soon.

	
The email field’s $ref now points to an external Schema (ex-14-my-common-schema.json) to
find the definition/validation rule for this field. We’ll cover the HTTP address to the external Schema
later in this chapter.

Example 5-37 shows the External Schema.

Example 5-37. ex-14-my-common-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "http://localhost:8081/ex-14-my-common-schema.json",

 "definitions": {
 "emailPattern": {
 "type": "string",
 "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"
 }
 }
}

The definitions object that contains the emailPattern validation rule now resides in the external Schema. But at this point, you may be asking the follow questions:

	
How does the reference actually work?

	
How does a JSON Schema Validator locate the external Schema?

Here’s how it all connects:

	
In ex-14-exernal-ref-schema.json, the URI prefix (http://localhost:8081/ex-14-my-common-schema.json)
before the # in the $ref tells the JSON Schema processor to look for the emailPattern definition in
an external Schema.

	
In ex-14-my-common-schema.json (the external Schema), the id field (a JSON Schema keyword) at the
root of the Schema makes the content of the Schema available to external access.

	
The URI in $ref and id should be an exact match to make the reference work properly.

	
The definitions object works the same as it did for internal references.

Example 5-38 shows a JSON document that conforms to the Schema. Notice that this document has neither changed nor is it
aware of the external Schema.

Example 5-38. ex-14-external-ref.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard"
}

Example 5-39 shows a document that won’t validate against the Schema because the email is missing the trailing .com.

Example 5-39. ex-14-external-ref-invalid.json

{
 "email": "larsonrichard@ecratic",
 "firstName": "Larson",
 "lastName": "Richard"
}

There are two ways to validate the preceding document against the Schema:

	
The filesystem

	
The web

Let’s start by validating on the filesystem by using the validate tool that we’ve been using all along:

[image: json 05in18]

The JSON document (ex-14-external-ref-invalid.json) is invalid as in previous runs, but notice the
inclusion of both the main (ex-14-external-ref-schema.json) and external (ex-14-my-common-schema.json)
Schemas on the command line.

Now let’s use the web to validate against the external Schema. In this case, we’ll deploy this file as
static content on a web server so that the URI in the $ref and id (http://localhost:8081/ex-14-my-common-schema.json#/definitions/emailPattern)
will work properly. If you haven’t done so before, now would be a great time to install the http-server Node.js module.
To install and run it, follow the instructions in Appendix A (see “Install npm Modules”).

Run http-server (on port 8081) in the same directory where the external Schema resides, and your command
line should look like this:

[image: json 05in19]

When you visit http://localhost:8081/ex-14-my-common-schema.json
in your browser, you should see the screen in Figure 5-5.

[image: json 05in20]
Figure 5-5. Web-addressable external Schema

Now that the external Schema is web addressable, we can do the validation, and you’ll see that the document
is invalid:

[image: json 05in18]

Choosing Validation Rules

In addition to the requires and dependencies keywords, JSON Schema provides finer-grained mechanisms to
tell the Schema processor which validation rules to use. These additional keywords are as follows:

	oneOf

	
One, and only one, rule must match successfully.

	anyOf

	
One or more rules must match successfully.

	allOf

	
All rules must match successfully.

oneOf

The oneOf keyword enforces an exclusive choice between validation rules. In the Schema in Example 5-40, the
value of the rating field can either be less than 2.0 or less than 5.0, but not both.

Example 5-40. ex-15-one-of-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string",
 "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"
 },
 "firstName": {
 "type": "string"
 },
 "type": "string"
 },
 "postedSlides": {
 "type": "boolean"
 },
 "rating": {
 "type": "number",
 "oneOf": [
 {
 "maximum": 2.0
 },
 {
 "maximum": 5.0
 }
]
 }
 },
 "additionalProperties": false,
 "required": ["email", "firstName", "lastName", "postedSlides", "rating"]
}

Example 5-41 is valid because the value of the rating field is 4.1, which matches only one of
the validation rules (< 5.0), but not both.

Example 5-41. ex-15-one-of.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "postedSlides": true,
 "rating": 4.1
}

The JSON document in Example 5-42 is invalid because the value of the rating field is 1.9, which matches both validation rules (< 2.0 and < 5.0).

Example 5-42. ex-15-one-of-invalid.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "postedSlides": true,
 "rating": 1.9
}

Validate the preceding document from the command line, and you’ll see that it’s invalid:

[image: json 05in22]

anyOf

The anyOf keyword allows for a match against any (one or more) of the validation rules. In Example 5-43, we’ve expanded the potential values of postedSlides to allow for [Y|y]es and
[N|n]o in addition to a boolean.

Example 5-43. ex-16-any-of-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string",
 "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "postedSlides": {
 "anyOf": [
 {
 "type": "boolean"
 },
 {
 "type": "string",
 "enum": ["yes", "Yes", "no", "No"]
 }
]
 },
 "rating": {
 "type": "number"
 }
 },
 "additionalProperties": false,
 "required": ["email", "firstName", "lastName", "postedSlides", "rating"]
}

Example 5-44 is valid because the value of postedSlides is "yes".

Example 5-44. ex-16-any-of.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "postedSlides": "yes",
 "rating": 4.1
}

Example 5-45 is invalid because the value of the postedSlides field is "maybe", which is not
in the set of allowed values.

Example 5-45. ex-16-any-of-invalid.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "postedSlides": "maybe",
 "rating": 4.1
}

Validate this document from the command line, and you’ll see that it’s invalid:

[image: json 05in23]

allOf

With the allOf keyword, the data must match all of the validation rules. In the Schema in Example 5-46, the
lastName must be a string with a length < 20.

Example 5-46. ex-17-all-of-schema.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "email": {
 "type": "string",
 "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "allOf": [
 { "type": "string" },
 { "maxLength": 20 }
]
 },
 "postedSlides": {
 "type": "boolean"
 },
 "rating": {
 "type": "number",
 "maximum": 5.0
 }
 },
 "additionalProperties": false,
 "required": [
 "email",
 "firstName",
 "lastName",
 "postedSlides",
 "rating"
]
}

Example 5-47 is valid because the length of the lastName is ≤ 20.

Example 5-47. ex-17-all-of.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "Richard",
 "postedSlides": true,
 "rating": 4.1
}

Example 5-48 is invalid because the length of the lastName exceeds 20 characters.

Example 5-48. ex-17-all-of-invalid.json

{
 "email": "larsonrichard@ecratic.com",
 "firstName": "Larson",
 "lastName": "ThisLastNameIsWayTooLong",
 "postedSlides": true,
 "rating": 4.1
}

Validate the preceding document, and you’ll see that it’s invalid:

[image: json 05in24]

We’ve covered the basics of JSON Schema and syntax, and now it’s time to design an API with JSON Schema.

How to Design and Test an API with JSON Schema

JSON Schema is all about the semantics (the meaning) and structure of the data exchanged by applications
and APIs. In the context of API Design, think of a JSON Schema as part of the contract (interface).
In this last portion of the chapter, we’ll go from concept to a running Stub API that other applications
and APIs can start testing and using.

Our Scenario

We’ll use the same speaker model that we’ve been using all along, and iteratively add constraints and
capabilities. Here are the steps we need in order to go from a concept to a running Stub API:

	
Model a JSON document.

	
Generate a JSON Schema.

	
Generate sample data.

	
Deploy a Stub API with json-server.

Model a JSON Document

Before creating a Schema, we need to know the data that we’re exchanging. Besides the fields and their
formats, it’s important to get a good look-and-feel for the data itself. To do this, we need to overcome
one of the major issues with JSON itself: creating documents by hand is tedious and error-prone. Use a
modeling tool rather than doing a lot of typing. There are several good tools to support this, and my
favorite is JSON Editor Online. Refer to “Model JSON Data with JSON Editor Online” in
Chapter 1 for further details on the features of JSON Editor Online.

Figure 5-6 shows our speaker model.

[image: json 05in25]
Figure 5-6. Speaker model on jsoneditoronline.com

Rather than typing the JSON document, use JSON Editor Online to model the data, and generate a JSON
document. In the JSON model on the righthand portion of the screen, click the icon next to an element (i.e., Object, key/value pair, Array) and you’ll see a menu. Select Append or Insert to add elements:

	
Objects

	
Name/value pairs

	
Arrays

After entering a few fields, press the left-arrow button (in the middle of the page) to create the JSON
document. You can then iteratively add, test, and review the content of your document until it looks good.
Then, save the JSON document, shown in Example 5-49, into a file (with the Save to Disk option under the Save menu).

Example 5-49. ex-18-speaker.json

{
 "about": "Fred Smith is the CTO of Full Ventures, where he ...",
 "email": "fred.smith@fullventures.com",
 "firstName": "Fred",
 "lastName": "Smith",
 "picture": "http://placehold.it/fsmith-full-ventures-small.png",
 "tags": [
 "JavaScript",
 "REST",
 "JSON"
],
 "company": "Full Ventures, Inc."
}

Before going any further, it would be a good idea to validate the JSON document by using JSONLint (either
with the CLI or web app). This should validate because JSON Editor Online produces valid JSON, but it’s
always good to double-check.

Generate a JSON Schema

With a valid JSON document in hand, we can now use JSONSchema.net to generate a corresponding JSON Schema
based on the document structure and content. Again, save yourself a lot of typing by letting a tool do most
of the work for you.

Visit http://jsonschema.net and paste in the JSON document on the left side, as shown in Figure 5-7.

[image: json 05in26]
Figure 5-7. Generate Speakers Schema on JSONSchema.net

To generate a Schema, start with the default settings, and make the following changes:

	
Turn off “Use absolute IDs.”

	
Turn off “Allow additional properties.”

	
Click the Generate Schema button.

	
Copy the generated Schema (on the righthand side) to your clipboard.

After saving your clipboard to a file, we now have the Schema in Example 5-50.

Example 5-50. ex-18-speaker-schema-generated.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "/",
 "type": "object",
 "properties": {
 "about": {
 "id": "about",
 "type": "string"
 },
 "email": {
 "id": "email",
 "type": "string"
 },
 "firstName": {
 "id": "firstName",
 "type": "string"
 },
 "lastName": {
 "id": "lastName",
 "type": "string"
 },
 "picture": {
 "id": "picture",
 "type": "string"
 },
 "tags": {
 "id": "tags",
 "type": "array",
 "items": [{
 "id": "0",
 "type": "string"
 }, {
 "id": "1",
 "type": "string"
 }, {
 "id": "2",
 "type": "string"
 }]
 },
 "company": {
 "id": "company",
 "type": "string"
 }
 },
 "additionalProperties": false,
 "required": [
 "about",
 "email",
 "firstName",
 "lastName",
 "picture",
 "tags",
 "company"
]
}

JSONSchema.net is great at generating a base Schema, but it adds fields that we don’t use, plus it doesn’t
do enum, pattern, and so forth. The main takeaway is that JSONSchema.net does about 80 percent of the work for you,
and then you need to fill in a few pieces yourself. We don’t need the id fields at this time, but we do
need to add a Regular Expression to validate the email field (just use the Regex from previous examples).
After making these changes, the Schema should look like Example 5-51.

Example 5-51. ex-18-speaker-schema-generated-modified.json

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "about": {
 "type": "string"
 },
 "email": {
 "type": "string",
 "pattern": "^[\\w|-|.]+@[\\w]+\\.[A-Za-z]{2,4}$"
 },
 "firstName": {
 "type": "string"
 },
 "lastName": {
 "type": "string"
 },
 "picture": {
 "type": "string"
 },
 "tags": {
 "type": "array",
 "items": [
 {
 "type": "string"
 }
]
 },
 "company": {
 "type": "string"
 }
 },
 "additionalProperties": false,
 "required": ["about", "email", "firstName",
 "lastName", "picture", "tags", "company"
]
}

Validate the JSON Document

Now that we have a JSON Schema, let’s validate the document against the Schema by using the JSON Validate
web app. Visit http://jsonvalidate.com/ and paste in the JSON document
and Schema, as shown in Figure 5-8.

[image: json 05in27]
Figure 5-8. Validate Speakers JSON document against Speakers JSON Schema on jsonvalidate.com

Click the Validate button, and the document should validate against the Schema. You could have used
the validate CLI tool we’ve been using throughout this chapter, but the web app is a great visual.

Generate Sample Data

At this point, we have a JSON document with its corresponding Schema, but we need more data to create an
API for testing. We could use JSON Editor Online to generate test data, but there are a couple of issues
with this approach because a human would have to randomize and generate massive amounts of data. Even with
a GUI, it’s a big manual effort.

JSON Editor Online is great for creating a small JSON document to get the design process going, but we need
another approach to generate randomized bulk JSON data for API testing. We’ll use JSON Generator to create
our data; visit http://www.json-generator.com/ and you should see
the screen in Figure 5-9.

[image: json 05in28]
Figure 5-9. json-generator site

The code on the left side is a template (in the form of a JavaScript Object Literal) that JSON
Generator uses to generate sample JSON data. Notice that this tool has the ability to generate sample/random
data for paragraphs, numbers, names, globally unique identifiers (GUIDs), names, gender, email addresses, etc.
Plus, it has the ability to do this in bulk with the {{repeat}} tag at the top of the template. Click
the Help button for detailed documentation on the tags.

But these default settings are way more than we need. Let’s pare this template down to the fields we need to
generate three speaker objects with random data (see Example 5-52).

Example 5-52. ex-18-speaker-template.js

// Template for http://www.json-generator.com/

[
 '{{repeat(3)}}', {
 id: '{{integer()}}',
 picture: 'http://placehold.it/32x32',
 name: '{{firstName()}}',
 lastName: '{{surname()}}',
 company: '{{company()}}',
 email: '{{email()}}',
 about: '{{lorem(1, "paragraphs")}}'
 }
]

After clicking the Generate button, you should see the following JSON document in the web app shown in Figure 5-10 (if you want
more than the three speaker objects, just change the 3 in the repeat tag to a higher number).

[image: json 05in29]
Figure 5-10. Create a Speaker JSON document with json-generator

Now, click the Copy to Clipboard button on the righthand side, and paste into a file, as shown in Example 5-53.

Example 5-53. ex-18-speakers-generated.json

[
 {
 "id": 5,
 "picture": "http://placehold.it/32x32",
 "name": "Allen",
 "lastName": "Strickland",
 "company": "Coriander",
 "email": "allenstrickland@coriander.com",
 "about": "Quis enim labore ..."
 },
 {
 "id": 9,
 "picture": "http://placehold.it/32x32",
 "name": "Merle",
 "lastName": "Prince",
 "company": "Xylar",
 "email": "merleprince@xylar.com",
 "about": "Id voluptate duis ..."
 },
 {
 "id": 8,
 "picture": "http://placehold.it/32x32",
 "name": "Salazar",
 "lastName": "Ewing",
 "company": "Zentime",
 "email": "salazarewing@zentime.com",
 "about": "Officia qui id ..."
 }
]

We’re almost there, but we need to tweak the data just a bit so that we can deploy the file as an API:

	
We already have an Array. Let’s name it speakers, and then wrap it with the { and }. We now have a
JSON document with the speakers Array as the root element.

	
Let’s redo the id fields so that they start at 0.

Our file now looks like Example 5-54.

Example 5-54. ex-18-speakers-generated-modified.json

{
 "speakers": [
 {
 "id": 0,
 "picture": "http://placehold.it/32x32",
 "name": "Allen",
 "lastName": "Strickland",
 "company": "Coriander",
 "email": "allenstrickland@coriander.com",
 "about": "Quis enim labore ..."
 },
 {
 "id": 1,
 "picture": "http://placehold.it/32x32",
 "name": "Merle",
 "lastName": "Prince",
 "company": "Xylar",
 "email": "merleprince@xylar.com",
 "about": "Id voluptate duis ..."
 },
 {
 "id": 2,
 "picture": "http://placehold.it/32x32",
 "name": "Salazar",
 "lastName": "Ewing",
 "company": "Zentime",
 "email": "salazarewing@zentime.com",
 "about": "Officia qui id ..."
 }
]
}

At this point, you’re probably wondering why we needed to make those modifications. The changes were needed
so that json-server has the proper URIs (routes) for the Speaker data:

	
We get the http://localhost:5000/speakers route by encapsulating with the speakers array, with all
the data addressable from there.

	
We can access the first element with this route: http://localhost:5000/speakers/0.

But we’re getting ahead of ourselves. Let’s get json-server up and running, and then start browsing the
API.

Deploy a Stub API with json-server

Now that we have a Schema and some test data, it’s time to deploy the sample data as an API so
consumers can start testing it and provide feedback. If you haven’t done so before, now would be a great
time to install the json-server Node.js module. To install and run it, follow the instructions in
Appendix A (see “Install npm Modules”).

Run json-server (on port 5000) in the same directory where the ex-18-speakers-generated-modified.json
file resides, and your command line should look like this:

[image: json 05in30]

When you visit http://localhost:5000/speakers in your browser, you should
see the screen in Figure 5-11.

[image: json 05in31]
Figure 5-11. Speakers Stub API on json-server

You now have a testable API without writing a single line of code; we just deployed a static JSON file.
The beauty of this approach is that this looks, acts, and feels like an API. From here, you can interact
with it just as you would with other APIs. You could use your browser, cURL, or make HTTP calls from
your favorite language to begin interacting with it.

Now there are limits. With json-server, you can do an HTTP GET only on the data—it’s read only.

Final Thoughts on API Design and Testing with JSON Schema

After going through this exercise, you should have an appreciation for the powerful JSON-based open source
tools that can shorten your API development life cycle. Here’s the bottom line:

	
Use JSON modeling tools before committing to the final data structure. Iterate with stakeholders early
and often.

	
Writing a JSON document or Schema by hand is tedious and error-prone. Let the tools do most of the work
for you and avoid as much typing as possible.

	
Validate early and often.

	
Generate bulk randomized JSON data rather than creating it yourself.

	
Spinning up a Stub API is simple. Don’t write your own testing infrastructure, because someone else has
already done it for you. Just use what’s out there. You have better things to do with your time.

Validation Using a JSON Schema Library

We’ve shown how to use the validate command-line tool and the JSON Validate web app to validate a JSON
document against a Schema, but the ultimate goal is to validate from an application.

But JSON Schema isn’t only just for JavaScript and Node.js. Most major platforms have excellent support for
JSON Schema v4:

	Ruby on Rails

	
json-schema gem.

	Java

	
json-schema-validator.

	PHP

	
jsv4-php.

	Python

	
jsonschema.

	Clojure

	
Just use the Java-based json-schema-validator.

	Node.js

	
Node.js has several good JSON Schema processors. I’ve had success with the following:

	
ajv is my favorite library to use from a Node.js-based application because it’s clean and simple.
ajv is compatible with popular Node.js-based testing suites (e.g., Mocha/Chai, Jasmine, and Karma).
You can find more information on ajv on the npm site
and on GitHub. We’ll show
how to use ajv in Chapter 10.

	
ujs-jsonvalidate is a processor we’ve been using all through this chapter to validate against a Schema from
the command line. You can find further usage information on GitHub.
You can find the ujs-jsonvalidate npm module at http://bit.ly/2tj4ODI.

Where to Go Deeper with JSON Schema

We’ve covered the basics of JSON Schema, but a definitive guide is far beyond the scope of this chapter.
In addition to the json-schema.org site mentioned previously, here are a few more
resources:

	
Using JSON Schema by Joe McIntyre provides a wealth of JSON Schema-related reference information and tools, including these:

	
The Using JSON Schema ebook

	
The jsonvalidate application

	
The ujs-validate npm module

	
Understanding JSON Schema by Michael Droettboom et al.

	
A Short Guide to JSON Schema

What We Covered

We introduced JSON Schema and how it helps in application architecture. We then designed and tested an API with
JSON Schema, and leveraged JSON Schema-related tooling along the way.

What’s Next?

Now that we’ve shown how to structure and validate JSON instance documents with JSON Schema, we’ll show to
how search JSON documents in Chapter 6.

Chapter 6. JSON Search

JSON Search libraries and tools make it easier to search JSON documents and quickly access the fields that
you’re looking for. JSON Search shines when you need to search through a large JSON document returned from
a Web API.

In this chapter, we’ll cover the following:

	
Making your job easier with JSON Search

	
Using the major JSON Search libraries and tools

	
Writing Unit Tests that search the content of JSON documents returned by a Web API

In our examples, we’ll use several JSON Search technologies to search JSON data from a Web API deployed on
your local machine. We’ll create Unit Tests to execute the searches and check results.

Why JSON Search?

Imagine that the result set from an API call has several hundred (or more) JSON Objects, and you want to
use only a subset of the data (key/value pairs) or apply a search filter (based on your criteria). Without
JSON Search, you would have to parse the JSON document and sift through a large data structure by writing
custom code. This low-level approach is a tedious, code-intensive chore. You have better things to do with
your time. The JSON Search libraries and tools shown in this chapter will reduce your work and make your job
easier.

JSON Search Libraries and Tools

Many libraries (callable from an application) and command-line tools can search JSON
documents. Here are the most common, widely used libraries, which we’ll explore later in this chapter:

	
JSONPath

	
JSON Pointer

	
jq

Honorable Mention

Many high-quality JSON Search libraries and command-line tools are available to search and filter JSON content, but we can’t cover all of them. Here are some others that are worth a look, but we can not discuss
them further in this chapter for the sake of brevity:

	SpahQL

	
SpahQL is like jQuery for JSON Objects. The SpahQL library is available in a GitHub repository.

	json

	
A command-line tool available on GitHub, and on
the npm repository. Even though
we won’t use json’s search capabilities in this chapter, we’ll still use it to pretty-print JSON documents.

	jsawk

	
jsawk is a command-line tool that transforms a JSON document in addition to searching.

Even though we’re not covering these tools, one or more could also be right for your project. Compare
them with JSONPath, JSON Pointer, and jq to see which one works best for you.

What to Look For

Many libraries and tools are available, and it’s hard to choose which one(s) to use. Here are my
criteria:

	Mindshare

	
Does it appear to be widely used? How many hits do you see when you do an internet search?

	Developer community

	
Is the code on GitHub? Is it well maintained?

	Platforms

	
Does it run on multiple platforms? Do multiple providers support the
specification or library interfaces?

	Intuitive

	
Is it well-documented? How easy is it to install? How intuitive is the interface? How easy is
it to use?

	Standards

	
Is the library associated with a standard (e.g., IETF, WC3, or Ecma)?

We’ll use these guidelines to evaluate each JSON Search product.

Test Data

We need more realistic test data and a larger, richer JSON document to search against, and the web has an
abundant supply. For this chapter and the next, we’ll use an open data set available from
a public API rather than the Speaker data from previous chapters. We’ll leverage the cities/weather data
from the OpenWeatherMap API.
See the full API documentation.

The chapter-6/data/cities-weather-orig.json file contains weather data from the OpenWeatherMap API for
cities within a rectangle by latitude/longitude (in this case, Southern California, United States). Note that
the weather data from OpenWeatherMap changes frequently, so the data I’ve captured for the book example
will not match the current data from the API. Let’s modify the weather data before we use it with
json-server. First, look at the data/cities-weather-orig.json file, and notice that the weather data is
stored in an Array called list. I’ve renamed it to cities for the sake of clarity and testability and
saved the changes in the data/cities-weather.json file. Additionally, I moved the cod, calctime, and
cnt fields (at the beginning of the document) into an Object. This second change was needed for compatibility
with json-server, which accepts only Objects or an Array of Objects. We’ll continue to leverage the
json-server Node.js module from earlier chapters to deploy the city weather data as a Web API. Example 6-1 shows the
modified weather data.

Example 6-1. data/cities-weather.json

{
 "other": {
 "cod": 200,
 "calctime": 0.006,
 "cnt": 110
 },
 "cities": [
 ...
]
}

Now, run json-server as follows:

json-server -p 5000 ./cities-weather.json

Visit http://localhost:5000/cities in your browser, and you should see the
screen in Figure 6-1.

[image: json 06in01]
Figure 6-1. OpenWeather API data on json-server viewed from the browser

We now have test JSON data deployed as a Stub API, and we’ll use it for Unit Testing throughout this chapter.

Setting Up Unit Tests

All tests in this chapter will continue to leverage Mocha/Chai within a Node.js environment, just as you saw
in previous chapters. Before going further, be sure to set up your test environment. If you haven’t
installed Node.js yet, refer to Appendix A, and install Node.js (see “Install Node.js” and “Install npm Modules”). If you want to follow along with the Node.js project provided
in the code examples, cd to chapter-6/cities-weather-test and do the following to install all
dependencies for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s GitHub
repository.

Now that we’ve set up a testing environment, it’s time to start working with JSONPath and the other JSON
Search libraries.

Comparing JSON Search Libraries and Tools

Now that we’ve covered the basics of JSON Search, we will compare the following libraries and tools:

	
JSONPath

	
JSON Pointer

	
jq

JSONPath

JSONPath was developed by Stefan Goessner in 2007 to search for and extract data from JSON documents.
The original library was developed in JavaScript, but because of its popularity, most modern languages and
platforms now support JSONPath.

JSONPath query syntax

JSONPath query syntax is based on XPath (which is used to search XML documents). Table 6-1 lists some JSONPath
queries based on our cities example.

Table 6-1. JSONPath queries

	JSONPath query
	Description

	$.cities

	Get all elements in the cities Array.

	$.cities.length

	Get the number of elements in the cities Array.

	$.cities[0::2]

	Get every other element in the cities array. See the description of slice() in the following list.

	$.cities[(@.length-1)] or $.cities[-1:]

	Get the last element in the cities Array.

	$..weather

	Get all weather subelements.

	$.cities[:3]

	Get the first three elements in cities Array.

	$.cities[:3].name

	Get the city name for first three elements in the cities Array.

	$.cities[?(@.main.temp > 84)]

	Get the cities where the temp > 84.

	$.cities[?(@.main.temp >= 84 && @.main.temp <= 85.5)]

	Get the cities where the temp is between 84 and 85.5.

	$.cities[?(@.weather[0].main == 'Clouds')]

	Get the cities with cloudy weather.

	$.cities[?(@.weather[0].main.match(/Clo/))]

	Get the cities with cloudy weather by using regex.

These example queries use JSONPath keywords and symbols:

	
$ represents the document root-level object.

	
.. returns all elements and subelements that have a particular name.

	
[] with an index is an Array query, and the index is based on the JavaScript slice()
function. The Mozilla Developer Network (MDN) provides a full description.
Here’s a brief overview of JSONPath slice():

	
It provides the ability to select a portion of an Array.

	
The begin parameter (as with JS slice()) is the beginning index, is zero-based, and defaults to zero
if omitted.

	
The end parameter (as with JS slice()) is the end index (noninclusive), and defaults to the end of
the Array if omitted.

	
The step parameter (added by JSONPath slice()) represents the step, and defaults to 1. A step
value of 1 returns all Array elements specified by the begin and end parameters; a value of 2 returns
every other (or second) element, and so on.

	
@ represents the current element.

	
[?(…)] enables a conditional search. The code inside the parentheses can be any valid JS
expression, including conditionals (e.g., == or >) and Regular Expressions.

JSONPath online tester

A couple of online JSONPath testers enable you to practice JSONPath queries before writing
a single line of code. I like the tester provided by Kazuki Hamasaki.
Just paste in the data/cities-weather.json document (from the Chapter 6 code examples) in the
left text box, and enter a JSONPath query. The results appear in the text box on the righthand side of
the page as shown in Figure 6-2.

[image: json 06in02]
Figure 6-2. JSONPath Online Evaluator with OpenWeather API data

You’ll notice that only the data values are returned in the JSONPath results text box, and that the keys
are not returned.

JSONPath Unit Test

The Unit Test in Example 6-2 exercises several of the example JSONPath queries that were shown earlier.
This code leverages the jsonpath Node.js module to search against the JSON data returned by the Cities
API that runs on your local machine. See https://github.com/dchester/jsonpath
for a detailed description of the jsonpath module.

Example 6-2. cities-weather-test/test/jsonpath-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API
 ([http://openweathermap.org]) under Creative Commons Share A Like
 License (https://creativecommons.org/licenses/by-sa/4.0).
 Changes were made to the data to work with json-server.
 This does not imply an endorsement by the licensor.

 This code is distributed under Creative Commons Share A Like License.
*/

var expect = require('chai').expect;
var jp = require('jsonpath');
var unirest = require('unirest');

describe('cities-jsonpath', function() {
 var req;

 beforeEach(function() {
 req = unirest.get('http://localhost:5000/cities')
 .header('Accept', 'application/json');
 });

 it('should return a 200 response', function(done) {
 req.end(function(res) {
 expect(res.statusCode).to.eql(200);
 expect(res.headers['content-type']).to.eql(
 'application/json; charset=utf-8');
 done();
 });
 });

 it('should return all cities', function(done) {
 req.end(function(res) {
 var cities = res.body;

 expect(cities.length).to.eql(110);
 done();
 });
 });

 it('should return every other city', function(done) {
 req.end(function(res) {
 var cities = res.body;
 var citiesEveryOther = jp.query(cities, '$[0::2]');

 expect(citiesEveryOther[1].name).to.eql('Rosarito');
 expect(citiesEveryOther.length).to.eql(55);
 done();
 });
 });

 it('should return the last city', function(done) {
 req.end(function(res) {
 var cities = res.body;
 var lastCity = jp.query(cities, '$[(@.length-1)]');

 expect(lastCity[0].name).to.eql('Moreno Valley');
 done();
 });
 });

 it('should return the 1st 3 cities', function(done) {
 req.end(function(res) {
 var cities = res.body;
 var citiesFirstThree = jp.query(cities, '$[:3]');
 var citiesFirstThreeNames = jp.query(cities, '$[:3].name');

 expect(citiesFirstThree.length).to.eql(3);
 expect(citiesFirstThreeNames.length).to.eql(3);
 expect(citiesFirstThreeNames).to.eql(['Rancho Palos Verdes',
 'San Pedro', 'Rosarito'
]);

 done();
 });
 });

 it('should return cities within a temperature range', function(done) {
 req.end(function(res) {
 var cities = res.body;
 var citiesTempRange = jp.query(cities,
 '$[?(@.main.temp >= 84 && @.main.temp <= 85.5)]'
);

 for (var i = 0; i < citiesTempRange.length; i++) {
 expect(citiesTempRange[i].main.temp).to.be.at.least(84);
 expect(citiesTempRange[i].main.temp).to.be.at.most(85.5);
 }

 done();
 });
 });

 it('should return cities with cloudy weather', function(done) {
 req.end(function(res) {
 var cities = res.body;
 var citiesWeatherCloudy = jp.query(cities,
 '$[?(@.weather[0].main == "Clouds")]'
);

 checkCitiesWeather(citiesWeatherCloudy);
 done();
 });
 });

 it('should return cities with cloudy weather using regex', function(done) {
 req.end(function(res) {
 var cities = res.body;
 var citiesWeatherCloudyRegex = jp.query(cities,
 '$[?(@.weather[0].main.match(/Clo/))]'
);

 checkCitiesWeather(citiesWeatherCloudyRegex);
 done();
 });
 });

 function checkCitiesWeather(cities) {
 for (var i = 0; i < cities.length; i++) {
 expect(cities[i].weather[0].main).to.eql('Clouds');
 }
 }
});

Note the following in this example:

	
The test sets up the URI and Accept for unirest using Mocha’s beforeEach() method,
so that setup occurs in only one place in the code. Mocha executes beforeEach() before running
each test (i.e., it) within the context of the describe.

	
Each test exercises one or more example JSONPath queries and uses expect-style assertions.

	
The calls to the jsonpath module work as follows:

	
jp.query() takes a JavaScript Object and a String-based JSONPath query as parameters, and synchronously
returns the result set as a JavaScript Object.

	
Each JSONPath query omits the leading .cities because json-server takes the name of the cities Array
(from the cities-weather.json file) and adds cities to the URI:

	
The URI address is http://localhost:5000/cities.

	
Use $[:3] to get the first three cities, rather than $.cities[:3].

To run this test from the command line (in a second terminal session), do the following:

cd cities-weather-test

npm test

You should see the following results:

json-at-work => npm test

...

> mocha test

...

cities-jsonpath
 ✓ should return a 200 response
 ✓ should return all cities
 ✓ should return every other city
 ✓ should return the last city
 ✓ should return 1st 3 cities
 ✓ should return cities within a temperature range
 ✓ should return cities with cloudy weather
 ✓ should return cities with cloudy weather using regex

...

If you call console.log() with the cities variable in any of the preceding tests, you’ll see that the
jsonpath module returns a valid JSON document with key/value pairs.

JSONPath on other platforms

JSONPath is not limited to JavaScript and Node.js. Most major platforms have excellent support for JSONPath,
including these:

	
Ruby on Rails

	
Python

	
Java

There are other good JSONPath libraries are available, but please verify that they follow the syntax mentioned
in Stefan Goessner’s article.
Otherwise, it’s not really JSONPath. To borrow a phrase from The Princess Bride, “You keep using that
word, but I do not think it means what you think it means.”

JSONPath scorecard

Table 6-2 provides a scorecard for JSONPath based on the evaluation criteria from the beginning of this chapter.

Table 6-2. JSONPath scorecard

	Mindshare
	Y

	Dev community

	Y

	Platforms

	JavaScript, Node.js, Java, Ruby on Rails

	Intuitive

	Y

	Standard

	N

JSONPath provides a rich set of set of search features and works across most major platforms. The only
downsides are that JSONPath is not a standard and lacks a CLI implementation, but don’t let
that stop you from using it. JSONPath enjoys wide community usage and acceptance, and has an excellent
online tester. JSONPath reduces the amount of code needed to search and access a JSON document, and gets
the subset of data that you need.

JSON Pointer

JSON Pointer is a standard for accessing a single value within a JSON document. The JSON Pointer
specification provides further details.
JSON Pointer’s main purpose is to support the JSON Schema specification’s $ref functionality in locating
validation rules within a Schema (see Chapter 5).

JSON Pointer query syntax

For example, consider the following document:

{
 "cities": [
 {
 "id": 5386035,
 "name": "Rancho Palos Verdes"
 },
 {
 "id": 5392528,
 "name": "San Pedro"
 },
 {
 "id": 5358705,
 "name": "Huntington Beach"
 }
]
}

Table 6-3 describes the preceding document’s common JSON Pointer query syntax:

Table 6-3. JSON Pointer queries

	JSON Pointer query
	Description

	/cities

	Get all cities in the Array.

	/cities/0

	Get the first city.

	/cities/1/name

	Get the name of the second city.

JSON Pointer query syntax is quite simple, and works as follows:

	
/ is a path separator.

	
Array indexing is zero-based.

You’ll notice that in the JSON Pointer specification, only the data values are returned when making a query,
and that the keys are not returned.

JSON Pointer Unit Test

The Unit Test in Example 6-3 exercises some of the example JSON Pointer queries that were shown earlier.
This code leverages the json-pointer Node.js module to search against the cities API.
See https://github.com/manuelstofer/json-pointer
for a detailed description of the json-pointer module.

Example 6-3. cities-weather-test/test/json-pointer-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API
 ([http://openweathermap.org]) under Creative Commons Share A Like
 License (https://creativecommons.org/licenses/by-sa/4.0).
 Changes were made to the data to work with json-server.
 This does not imply an endorsement by the licensor.

 This code is distributed under Creative Commons Share A Like License.
*/

var expect = require('chai').expect;
var pointer = require('json-pointer');
var unirest = require('unirest');

describe('cities-json-pointer', function() {
 var req;

 beforeEach(function() {
 req = unirest.get('http://localhost:5000/cities')
 .header('Accept', 'application/json');
 });

 it('should return a 200 response', function(done) {
 req.end(function(res) {
 expect(res.statusCode).to.eql(200);
 expect(res.headers['content-type']).to.eql(
 'application/json; charset=utf-8');
 done();
 });
 });

 it('should return the 1st city', function(done) {
 req.end(function(res) {
 var cities = res.body;
 var firstCity = null;

 firstCity = pointer.get(cities, '/0');
 expect(firstCity.name).to.eql('Rancho Palos Verdes');
 expect(firstCity.weather[0].main).to.eql('Clear');
 done();
 });
 });

 it('should return the name of the 2nd city', function(done) {
 req.end(function(res) {
 var cities = res.body;
 var secondCityName = null;

 secondCityName = pointer.get(cities, '/1/name');
 expect(secondCityName).to.eql("San Pedro");
 done();
 });
 });
});

Note the following in this example:

	
Each test runs an example JSON Pointer query and leverages expect-style assertions.

	
The calls to the json-pointer module work as follows:

	
pointer.get() takes a JavaScript Object and a String-based JSON Pointer query as parameters, and
synchronously returns the result set as a JavaScript Object.

	
Each JSON Pointer query omits the leading .cities because json-server takes the name of
the cities Array (from the cities-weather.json file) and adds cities to the URI:

	
The URI address is http://localhost:5000/cities.

	
Use /0 to get the first city, rather than /cities/0.

To run this test from the command line, do the following:

cd cities-weather-test

npm test

You should see the following results:

json-at-work => npm test

...

> mocha test

...

cities-json-pointer
 ✓ should return a 200 response
 ✓ should return the 1st city
 ✓ should return the name of the 2nd city

...

If you invoke console.log() on the firstCity variable in the should return the 1st city test above,
you’ll see that the json-pointer module returns a valid JSON document with key/value pairs.

JSON Pointer on other platforms

In addition to Node.js, most major platforms have a JSON Pointer library:

	
Ruby on Rails

	
Python

	
Java—Jackson currently supports JSON Pointer,
but JavaEE 8 will provide JSON Pointer support as part of JSR 374, Java API for JSON Processing 1.1.

Several tools claim to implement JSON Pointer, but they really don’t follow the JSON Pointer specification. When
evaluating a JSON Pointer library or tool, be sure it follows RFC 6901.
Again, if it doesn’t expressly mention RFC 6901, it’s not JSON Pointer.

JSON Pointer scorecard

Table 6-4 shows a scorecard for JSON Pointer based on our criteria.

Table 6-4. JSON Pointer scorecard

	Mindshare
	Y

	Dev community

	Y

	Platforms

	JavaScript, Node.js, Java, Ruby on Rails

	Intuitive

	Y

	Standard

	Y—RFC 6901

JSON Pointer provides a limited set of search capabilities. Each query returns only a single field from a
JSON document. JSON Pointer’s main purpose is to support JSON Schema’s $ref syntax.

jq

jq is a JSON Search tool that provides JSON command-line processing, including filtering and array
slicing. Per the jq GitHub repository,
jq is like sed for JSON. But jq is not limited to the command line; several good libraries enable you to use jq from your favorite Unit-Testing framework (“jq Unit Test” covers
this).

Integration with cURL

Many people in the UNIX community use cURL to make
HTTP calls to Web APIs from the command line. cURL provides the ability to communicate over multiple
protocols in addition to HTTP. To install cURL, please see “Install cURL” in Appendix A.

We’ll start by using cURL to make a GET request from the command against the Cities API as follows:

curl -X GET 'http://localhost:5000/cities'

Now that we’re able to get a JSON response from the Cities API, let’s pipe the content to jq
to filter the Cities API data from the command line. Here’s a simple example:

curl -X GET 'http://localhost:5000/cities' | jq .[0]

Run this command, and you should see the following:

[image: json 06in03]

Note the following in this example:

	
cURL makes an HTTP GET call to the OpenWeatherMap API and pipes the JSON response to Standard Output.

	
jq reads the JSON from Standard Input, selects the first city from the API, and outputs the JSON to
Standard Output.

cURL is a valuable and powerful part of an API developer’s toolkit. cURL also provides the ability to
test an API with all the main HTTP verbs (GET, POST, PUT, and DELETE). We’ve just scratched
the surface with cURL; visit the main site to learn
more.

jq query syntax

Table 6-5 shows some basic jq queries.

Table 6-5. jq queries

	jq query
	Description

	.cities[0]

	Get the first city. jq Array filtering starts at 0.

	.cities[-1]

	Get the last city. An index of -1 indicates the last element of an Array.

	.cities[0:3]

	Get the first three cities, where 0 is the start index (inclusive), and 3 is the end
index (exclusive).

	.cities[:3]

	Get the first three cities. This is shorthand, and it omits the start index.

	.cities[] | select (.main.temp >= 80 and (.main.temp_min >= 79 and .main.temp_max <= 92))

	Get all cities
whose current temperature is >= 80 degrees Fahrenheit and whose min and max temperature ranges between
79 and 92 degrees Fahrenheit (inclusive).

Here’s how to execute a jq query to get the last city at the command line:

cd chapter-6/data

jq '.cities[-1]' cities-weather.json

You should see the following:

[image: json 06in04]

Let’s go deeper with a more concrete example.

jq online tester—jqPlay

jqPlay is a web-based tester for jq, and provides
the ability to iteratively test jq queries against JSON data. To test jqPlay, do the following to get
a new Array of Objects that contain the id and name of the first three cities:

	
Visit https://jqplay.org and paste the contents of the
chapter-6/data/cities-weather.json file into the JSON text area on the left.

	
Paste the following jq query into the Filter text box: [[].cities[0:3] | .[] | { id, name }]

You should see the screen in Figure 6-3.

[image: json 06in05]
Figure 6-3. Search OpenWeather API data with jqPlay

Here’s a breakdown of the [.cities[0:3] | .[] | { id, name }] query:

	
The | enables you to chain your filters.

	
.cities[0:3] selects the first three elements from the cities Array as a subarray.

	
.[] returns all elements from the subarray.

	
{ id, name } selects only the id and name fields:

	
The curly braces ({ and }) tell jq to create a new Object.

	
The id and name tell jq to include only these fields in the new Object.

	
The surrounding Array braces ([and]) convert the result set to an Array.

Scroll to the bottom of the jqplay page, and you’ll see that it has a cheat sheet with links to more
examples and documentation, as shown in Figure 6-4.

[image: json 06in06]
Figure 6-4. jq cheat sheet on jqPlay

jq-tutorial

In addition to an online tester, the Node.js community has contributed a nice jq tutorial, which is
available on the npm repository.
Install this tutorial as follows:

npm install -g jq-tutorial

Run jq-tutorial from the command line, and you should see this:

[image: json 06in07]

This shows all the available jq tutorials. Then, choose one of the tutorials like this:

jq-tutorial objects

This tutorial will show how to use objects with jq. Follow each learning path, and increase
your overall jq skill level.

jq Unit Test

The Unit Test in Example 6-4 exercises several of the example jq queries that were shown earlier. This code leverages the node-jq Node.js module
to search against the JSON data returned by the Cities API that runs on your local machine. See
the node-jq documentation on GitHub for a
detailed description.

Example 6-4. cities-weather-test/test/jq-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API
 ([http://openweathermap.org]) under Creative Commons Share A Like
 License (https://creativecommons.org/licenses/by-sa/4.0).
 Changes were made to the data to work with json-server.
 This does not imply an endorsement by the licensor.

 This code is distributed under Creative Commons Share A Like License.
*/

var expect = require('chai').expect;
var jq = require('node-jq');
var unirest = require('unirest');
var _ = require('underscore');

describe('cities-jq', function() {
 var req;

 beforeEach(function() {
 req = unirest.get('http://localhost:5000/cities')
 .header('Accept', 'application/json');
 });

 it('should return a 200 response', function(done) {
 req.end(function(res) {
 expect(res.statusCode).to.eql(200);
 expect(res.headers['content-type']).to.eql(
 'application/json; charset=utf-8');
 done();
 });
 });

 it('should return all cities', function(done) {
 req.end(function(res) {
 var cities = res.body;

 expect(cities.length).to.eql(110);
 done();
 });
 });

 it('should return the last city', function(done) {
 req.end(function(res) {
 var cities = res.body;

 jq.run('.[-1]', cities, {
 input: 'json'
 })
 .then(function(lastCityJson) { // Returns JSON String.
 var lastCity = JSON.parse(lastCityJson);
 expect(lastCity.name).to.eql('Moreno Valley');
 done();
 })
 .catch(function(error) {
 console.error(error);
 done(error);
 });
 });
 });

 it('should return the 1st 3 cities', function(done) {
 req.end(function(res) {
 var cities = res.body;

 jq.run('.[:3]', cities, {
 input: 'json'
 })
 .then(function(citiesFirstThreeJson) { // Returns JSON String.
 var citiesFirstThree = JSON.parse(citiesFirstThreeJson);
 var citiesFirstThreeNames = getCityNamesOnly(
 citiesFirstThree);

 expect(citiesFirstThree.length).to.eql(3);
 expect(citiesFirstThreeNames.length).to.eql(3);
 expect(citiesFirstThreeNames).to.eql([
 'Rancho Palos Verdes',
 'San Pedro', 'Rosarito'
]);

 done();
 })
 .catch(function(error) {
 console.error(error);
 done(error);
 });
 });
 });

 function getCityNamesOnly(cities) {
 return _.map(cities,
 function(city) {
 return city.name;
 });
 }

 it('should return cities within a temperature range', function(done) {
 req.end(function(res) {
 var cities = res.body;

 jq.run(
 '[.[] | select (.main.temp >= 84 and .main.temp <= 85.5)]',
 cities, {
 input: 'json'
 })
 .then(function(citiesTempRangeJson) { // Returns JSON String.
 var citiesTempRange = JSON.parse(citiesTempRangeJson);

 for (var i = 0; i < citiesTempRange.length; i++) {
 expect(citiesTempRange[i].main.temp).to.be.at.least(
 84);
 expect(citiesTempRange[i].main.temp).to.be.at.most(
 85.5);
 }

 done();
 })
 .catch(function(error) {
 console.error(error);
 done(error);
 });
 });
 });

 it('should return cities with cloudy weather', function(done) {
 req.end(function(res) {
 var cities = res.body;

 jq.run(
 '[.[] | select(.weather[0].main == "Clouds")]',
 cities, {
 input: 'json'
 })
 .then(function(citiesWeatherCloudyJson) { // Returns JSON String.
 var citiesWeatherCloudy = JSON.parse(
 citiesWeatherCloudyJson);

 checkCitiesWeather(citiesWeatherCloudy);

 done();
 })
 .catch(function(error) {
 console.error(error);
 done(error);
 });
 });
 });

 it('should return cities with cloudy weather using regex', function(done) {
 req.end(function(res) {
 var cities = res.body;

 jq.run(
 '[.[] | select(.weather[0].main | test("^Clo"; "i"))]',
 cities, {
 input: 'json'
 })
 .then(function(citiesWeatherCloudyJson) { // Returns JSON String.
 var citiesWeatherCloudy = JSON.parse(
 citiesWeatherCloudyJson);

 checkCitiesWeather(citiesWeatherCloudy);

 done();
 })
 .catch(function(error) {
 console.error(error);
 done(error);
 });
 });
 });

 function checkCitiesWeather(cities) {
 for (var i = 0; i < cities.length; i++) {
 expect(cities[i].weather[0].main).to.eql('Clouds');
 }
 }

});

Note the following in this example:

	
The test sets up the URI and Accept for unirest using Mocha’s beforeEach() method,
so that setup occurs in only one place in the code. Mocha executes beforeEach() before running
each test (i.e., it) within the context of the describe.

	
Each test exercises one or more example jq queries and uses expect-style assertions.

	
The calls to the node-jq module work as follows. jq.run() does the following:

	
Takes a String-based jq query as the first parameter.

	
Uses an optional second parameter (an Object) that specifies the type of input:

	
{ input: 'json' } is a JavaScript Object. The Unit Tests use this option because unirest returns
Objects from the HTTP call to the Stub API provided by json-server.

	
{ input: 'file' } is a JSON file. This is the default if the caller doesn’t specify an input option.

	
{ input: 'string' } is a JSON String.

	
Uses an ES6 JavaScript Promise to asynchronously return the result set as a JSON String. In this case, the
Unit Tests all need to do the following:

	
Wrap their code within the then and catch constructs of the Promise.

	
Use JSON.parse() to parse the result into a corresponding JavaScript object structure.

	
Visit the MDN site to learn more about the new Promise syntax.

	
Each jq query omits the leading .cities because json-server takes the name of the cities Array
(from the cities-weather.json file) and adds cities to the URI:

	
The URI address is http://localhost:5000/cities.

	
Use $[:3] to get the first three cities, rather than $.cities[:3].

To run this test from the command line (in a second terminal session), do the following:

cd cities-weather-test

npm test

You should see the following results:

json-at-work => npm test

...

> mocha test

...

 cities-jq
 ✓ should return a 200 response
 ✓ should return all cities
 ✓ should return the last city
 ✓ should return the 1st 3 cities
 ✓ should return cities within a temperature range
 ✓ should return cities with cloudy weather
 ✓ should return cities with cloudy weather using regex

...

If you call console.log() with the cities variable in any of these tests, you’ll see that the
node-jq module returns a valid JSON document with key/value pairs.

jq on other platforms

In addition to Node.js, other major platforms have a jq library:

	Ruby

	
The ruby-jq gem is available at RubyGems.org, and you can also find it on GitHub.

	Java

	
jackson-jq plugs into the Java Jackson library (from Chapter 4).

jq scorecard

Table 6-6 shows how jq stacks up against our evaluation criteria.

Table 6-6. jq scorecard

	Mindshare
	Y

	Dev community

	Y

	Platforms

	CLI—Linux/macOS/Windows, Node.js, Java, Ruby on Rails

	Intuitive

	Y

	Standard

	N

jq is excellent because it

	
Enjoys solid support in most languages.

	
Has excellent documentation.

	
Provides a rich set of search and filtering capabilities.

	
Can pipe query results to standard UNIX CLI tools (for example, sort, grep, and uniq).

	
Works great on the command line with the widely used cURL HTTP client.

	
Has a fantastic online tester. jqPlay enables you to test jq queries from a simple web interface. This
rapid feedback enables you to iterate to a solution before writing any code.

	
Has a useful interactive tutorial (see the “jq-tutorial” section).

The only downside to jq is the initial learning curve. The sheer number of options along
with the query syntax can seem overwhelming at first, but the time you spend to learn jq is well worth it.

We’ve covered the basics of jq in this chapter. jq has excellent documentation, and you can find
more detailed information at the following websites:

	
jq Manual

	
jq Tutorial

	
jq Cookbook

	
HyperPolyGlot JSON Tools: Jq

	
Ubuntu jq man pages

JSON Search Library and Tool Evaluations—The Bottom Line

Based on the evaluation criteria and overall usability, I rank the JSON Search libraries in the following
order:

	
jq

	
JSONPath

	
JSON Pointer

Although JSON Pointer is a standard and it can search a JSON document, I rank JSONPath in second place over
JSON Pointer for the following reasons:

	
JSONPath has a richer query syntax.

	
A JSONPath query returns multiple elements in a document.

But jq is my overwhelming favorite JSON Search tool because it

	
Works from the command line (JSONPath and JSON Pointer don’t provide this capability). If you work with JSON in automated DevOps environments, you need a tool that works from the command line.

	
Has an online tester, which makes development faster.

	
Has an interactive tutorial.

	
Provides a rich query language.

	
Has solid library support in most programming languages.

	
Enjoys a large mindshare in the JSON community.

I’ve successfully used jq to search through JSON responses from other Web APIs
(not from OpenWeatherMap) that contained over 2 million lines of data, and jq performed flawlessly
in a production environment. jq enjoys great mindshare in the JSON community—just do a web search on
“jq tutorial” and you’ll see several excellent tutorials that will help you go deeper.

What We Covered

We’ve shown some of the more widely used JSON Search libraries and tools, and how to test search results.
Hopefully, you’re now convinced to use one or more of these JSON Search technologies to reduce your
work rather than writing your own custom utilities.

What’s Next?

Now that we’ve shown how to efficiently search JSON documents, we’ll move on to transforming JSON
in Chapter 7.

Chapter 7. JSON Transform

Your application(s) may take in data from multiple APIs, and you’ll often need to convert their JSON response
data to a format that integrates with your application architecture.

Many JSON Transform technologies enable you to convert between a JSON document and other data
formats (e.g., HTML or XML) or a different JSON structure. Many developers will be familiar with some
of these libraries (e.g., Mustache and Handlebars), but we’ll show how to use them in nontraditional
ways (more on that later). We’ll also cover libraries (e.g., JSON-T) that are not well-known to the
community at large, but are commonly used by members of the JSON community.

Types of JSON Transformation

Typical types of transformations include the following:

	JSON-to-HTML

	
Many web and mobile applications have to handle JSON data from APIs, and this is the most
common type of JSON transformation.

	JSON-to-JSON

	
Sometimes the JSON response from a Web API isn’t quite what you’re looking for, and you’d like
to change the format of the data to make it easier to work with. In this case, you can alter the structure
by modifying values and/or removing, adding, and deleting fields. Some of the libraries are analogous to eXtensible Stylesheet Language Transformations (XSLT)
for XML (which is used to transform XML documents) in that they use a separate template to describe the
transformation.

	JSON-XML

	
SOAP/XML-based Web Services still exist, and sometimes you need to consume XML and convert it
to JSON for compatibility with newer applications in the enterprise that are based on REST and JSON.
Conversely, your applications may need to send XML payloads to SOAP/XML-based Web Services. In this case,
you’ll need to convert from JSON to XML.

In this chapter, we’ll show how to do the following:

	
Convert JSON to HTML

	
Convert a JSON document to a new (JSON) structure

	
Convert between XML and JSON

	
Use JSON Transform libraries

	
Write Unit Tests that transform the content of JSON documents returned by a Web API

What to Look For in a JSON Transform Library

Just as you saw with JSON Search, several libraries are available for each type of transformation,
and it’s hard to choose which one(s) to use. We’ll use the same criteria we did in Chapter 6:

	Mindshare

	
Does it appear to be widely used? How many hits do you see when you do an internet search?

	Developer community

	
Is the code on GitHub? Is it well maintained?

	Platforms

	
Does it run on multiple platforms? Do multiple providers support the
specification or library interfaces?

	Intuitive

	
Is it well-documented? How easy is it to install? How intuitive is the interface? How easy is
it to use? How much code do I need to write?

	Standards

	
Is the library associated with an official standard (e.g., IETF, WC3, or Ecma)?

Test Input Data

We’ll use the same OpenWeatherMap API data that we used in previous chapters for our examples. The
original OpenWeatherMap API data was captured in chapter-7/data/cities-weather.json. For the sake of
brevity, Example 7-1 provides a shortened version of the data.

Example 7-1. data/cities-weather-short.json

{
 "cities": [
 {
 "id": 5386035,
 "name": "Rancho Palos Verdes",
 "coord": {
 "lon": -118.387016,
 "lat": 33.744461
 },
 "main": {
 "temp": 84.34,
 "pressure": 1012,
 "humidity": 58,
 "temp_min": 78.8,
 "temp_max": 93
 },
 "dt": 1442171078,
 "wind": {
 "speed": 4.1,
 "deg": 300
 },
 "clouds": {
 "all": 5
 },
 "weather": [
 {
 "id": 800,
 "main": "Clear",
 "description": "Sky is Clear",
 "icon": "02d"
 }
]
 },
 {
 "id": 5392528,
 "name": "San Pedro",
 "coord": {
 "lon": -118.29229,
 "lat": 33.735851
 },
 "main": {
 "temp": 84.02,
 "pressure": 1012,
 "humidity": 58,
 "temp_min": 78.8,
 "temp_max": 91
 },
 "dt": 1442171080,
 "wind": {
 "speed": 4.1,
 "deg": 300
 },
 "clouds": {
 "all": 5
 },
 "weather": [
 {
 "id": 800,
 "main": "Clear",
 "description": "Sky is Clear",
 "icon": "02d"
 }
]
 },
 {
 "id": 3988392,
 "name": "Rosarito",
 "coord": {
 "lon": -117.033333,
 "lat": 32.333328
 },
 "main": {
 "temp": 82.47,
 "pressure": 1012,
 "humidity": 61,
 "temp_min": 78.8,
 "temp_max": 86
 },
 "dt": 1442170905,
 "wind": {
 "speed": 4.6,
 "deg": 240
 },
 "clouds": {
 "all": 32
 },
 "weather": [
 {
 "id": 802,
 "main": "Clouds",
 "description": "scattered clouds",
 "icon": "03d"
 }
]
 }
]
}

Let’s start with a JSON-to-HTML transformation.

JSON-to-HTML Transformation

Most developers should be familiar with converting JSON from an API response to HTML.
For this type of conversion, we’ll look at the following libraries:

	
Mustache

	
Handlebars

Target HTML Document

Refer to “Test Input Data”. We want to simplify the Cities
data and display it in an HTML table as shown in Example 7-2.

Example 7-2. data/weather.html

<!DOCTYPE html>
<html>

 <head>
 <meta charset="UTF-8" />
 <title>OpenWeather - California Cities</title>
 <link rel="stylesheet" href="weather.css">
 </head>

 <body>
 <h1>OpenWeather - California Cities</h1>
 <table class="weatherTable">
 <thead>
 <tr>
 <th>City</th>
 <th>ID</th>
 <th>Current Temp</th>
 </tr>
 </thead>
 <tr>
 <td>Santa Rosa</td>
 <td>5201</td>
 <td>75</td>
 </tr>
 </table>
 </body>

</html>

We’ll compare how each library converts the sample JSON input data to the target HTML document.

Mustache

Mustache uses templates that provide a declarative (codeless) way to convert data into
other formats. In this case, we’ll use it to convert JSON data to an HTML document. The Mustache team uses
the term logicless to describe their library because templates contain only simple tags without
if/then/else clauses or looping constructs. Based on the specification, Mustache expands the tags in a
template file with values from a hash or an object that is populated by an application. The beauty of
templates (regardless of whether you use Mustache or Handlebars, which reintroduces some conditional
logic) is that this approach provides a separation of concerns by factoring out the transformation
from application code to external files. External templates enable you to easily add/remove data formats
or change how you do the data formatting without modifying application code.

For more information, see the following sites:

	
Mustache main site

	
Mustache GitHub repository

	
Mustache 5 Specification

Mustache template syntax

The Mustache template in Example 7-3 converts the OpenWeatherMap JSON data to HTML.

Example 7-3. templates/transform-html.mustache

<!DOCTYPE html>
<html>

 <head>
 <meta charset="UTF-8" />
 <title>OpenWeather - California Cities</title>
 <link rel="stylesheet" href="weather.css">
 </head>
 <body>
 <h1>OpenWeather - California Cities</h1>
 <table class="weatherTable">
 <thead>
 <tr>
 <th>City</th>
 <th>ID</th>
 <th>Current Temp</th>
 <th>Low Temp</th>
 <th>High Temp</th>
 <th>Humidity</th>
 <th>Wind Speed</th>
 <th>Summary</th>
 <th>Description</th>
 </tr>
 </thead>
 {{#cities}}
 <tr>
 <td>{{name}}</td>
 <td>{{id}}</td>
 {{#main}}
 <td>{{temp}}</td>
 <td>{{temp_min}}</td>
 <td>{{temp_max}}</td>
 <td>{{humidity}}</td>
 {{/main}}
 <td>{{wind.speed}}</td>
 {{#weather.0}}
 <td>{{main}}</td>
 <td>{{description}}</td>
 {{/weather.0}}
 </tr>
 {{/cities}}
 </table>
 </body>

</html>

This template works as follows:

	
The template is based on an HTML document, and Mustache expands each tag with data from the cities Array.

	
A tag can represent a single field, such as: {{temp}}.

	
Sections are enclosed within begin (for example, {{#cities}}) and end (for example, {{/cities}}) tags.

	
A section can correspond to an Array (e.g., cities) or an object (e.g., main).

	
A section sets the context for the other tags within that section. For example, the {{temp}}
tag inside the {{main}} section could be expressed as {{main.temp}}, and corresponds to main.temp
in the original JSON input document.

	
The field syntax in a tag can refer to an Array index. For example, {{#weather.0}} refers to
weather[0] from the input JSON document.

Next, we’ll now show a Unit Test that renders the template with Cities data.

Mustache Unit Test

All tests in this chapter will continue to leverage Mocha/Chai, just as we saw in previous chapters. Before
going further, be sure to set up your test environment. If you haven’t installed Node yet,
visit Appendix A, and install Node.js (see “Install Node.js” and “Install npm Modules”). If you want to follow along with the Node.js project provided in the code examples, cd to chapter-7/cities-weather-transform-test and do the following to install all dependencies
for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s GitHub repository.

Example 7-4 uses the following Node.js modules:

	Mustache

	
This is available at https://www.npmjs.com/package/mustache.
The corresponding GitHub repository can be found at https://github.com/janl/mustache.js.

	jsonfile

	
We’ll use this module to read the OpenWeatherMap JSON data from a file and parse it. jsonfile
is available at https://www.npmjs.com/package/jsonfile. Here’s the
jsonfile GitHub repository: https://github.com/jprichardson/node-jsonfile.

The Unit Test in Example 7-4 shows the example Mustache transformations in action.

Example 7-4. cities-weather-transform-test/test/mustache-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API
 ([http://openweathermap.org]) under Creative Commons Share A Like
 License (https://creativecommons.org/licenses/by-sa/4.0).
 Changes were made to the data to work with json-server.
 This does not imply an endorsement by the licensor.

 This code is distributed under Creative Commons Share A Like License.
*/

var expect = require('chai').expect;
var jsonfile = require('jsonfile');
var fs = require('fs');
var mustache = require('mustache');

describe('cities-mustache', function() {
 var jsonCitiesFileName = null;
 var htmlTemplateFileName = null;

 beforeEach(function() {
 var baseDir = __dirname + '/../..';

 jsonCitiesFileName = baseDir + '/data/cities-weather-short.json';
 htmlTemplateFileName = baseDir +
 '/templates/transform-html.mustache';
 });

 it('should transform cities JSON data to HTML', function(done) {
 jsonfile.readFile(jsonCitiesFileName, function(readJsonFileError,
 jsonObj) {
 if (!readJsonFileError) {
 fs.readFile(htmlTemplateFileName, 'utf8', function(
 readTemplateFileError, templateFileData) {
 if (!readTemplateFileError) {
 var template = templateFileData.toString();
 var html = mustache.render(template, jsonObj);

 console.log('\n\n\nHTML Output:\n' + html);
 done();
 } else {
 done(readTemplateFileError);
 }
 });
 } else {
 done(readJsonFileError);
 }
 });
 });
});

This code works as follows:

	
beforeEach() runs before any Unit Test and does setup. In this case, it builds the filenames for the
input JSON file and the Mustache template.

	
In the 'should transform cities JSON data to HTML' Unit Test:

	
jsonfile.readFile() reads and parses the input JSON file into a JavaScript Object (jsonObj).

	
fs.readFile() reads the Mustache template into a JavaScript Object.

	
We then convert the Mustache template to a String.

	
mustache.render() renders the Mustache template into an HTML document using the values provided by
jsonObj (which was read in earlier).

Before you run the Unit Test, open a terminal session and run json-server on port 5000 from your command
line:

cd chapter-7/data

json-server -p 5000 ./cities-weather-short.json

Next, run the preceding test from a second terminal session as follows:

cd chapter-7/cities-weather-transform-test

npm test

You’ll see an HTML document that looks like our HTML target document.

Mustache online tester

The Architect template editor is an excellent online tester that makes it easy to iteratively test and
develop a Mustache template. This tool is great, because it shows how the result changes as you modify the
template. This WYSIWIG (What-You-See-Is-What-You-Get) output enables rapid development and debugging.

In the Architect online tool, select Mustache.js in the Engine drop-down, paste the Mustache template, and input JSON into the Template
and View text boxes (respectively). You should see the screen in Figure 7-1.

[image: json 07in01]
Figure 7-1. Architect: JSON-to-HTML transformation with Mustache

The Architect template editor also works with several other templating engines, including Handlebars (which
is covered in the next section), so this is my favorite online template editor.

Remember that this web application is publicly available:

	
Any data you paste into this app is visible to others. So don’t use this tool with sensitive information
(personal, proprietary, and so forth).

	
A large amount of data will flood your browser. I’ve been successful with up to about 10,000 lines of JSON,
but after that this application begins to freeze up.

Mustache on the command line

Mustache also works directly from the command line. If you have installed Node.js, do a global installation of
the Mustache Node.js module and run it from the command line (within the book example code directory) as
follows:

npm install -g mustache

cd chapter-7

mustache ./data/cities-weather-short.json \
 ./templates/transform-html.mustache > output.html

Mustache on other platforms

A quick glance at the Mustache site will
show that Mustache enjoys wide cross-platform support, including the following:

	
Node.js

	
Ruby on Rails

	
Java

Mustache scorecard

Table 7-1 shows a scorecard for Mustache based on the evaluation criteria from the beginning of this chapter.

Table 7-1. Mustache scorecard

	Mindshare
	Y

	Dev community

	Y

	Platforms

	JavaScript, Node.js, Java, Ruby on Rails

	Intuitive

	Y

	Standard

	N

Overall, Mustache is a powerful and flexible template engine used by many web developers. Although
it’s not a standard, Mustache has a solid specification.

Let’s move on and take a look at Handlebars.

Handlebars

Handlebars is an extension of Mustache, and it also expands the tags in a template file with values from a
hash or an object. Handlebars and Mustache are highly compatible, and Mustache templates will usually work
with the Handlebars engine. HTML conversion is pretty simple, and we won’t see any major differences
between Mustache and Handlebars for now. Handlebars adds a few more features to enhance transformation, and
we’ll cover them in “JSON-to-JSON Transform”. For more information on Handlebars, see the following:

	
Handlebars main site (click the Learn More buttons for further details)

	
Handlebars GitHub repository

Differences between Handlebars and Mustache

Handlebars extends Mustache by providing additional capabilities, which include the following:

	Conditional logic

	
Handlebars has built-in helpers such as if and unless. We’ll show how to leverage
unless in “JSON-to-JSON Transform”.

	Helpers

	
Handlebars allows a developer to register custom helpers to extend Handlebars. Each
custom helper provides an additional directive that can be used in a template. For example, you could
add a {{fullName}} helper that would combine the firstName and lastName elements for a speaker.
Helpers are powerful, but we don’t cover them further in this book. See the Handlebars website and Jasko Koyn’s Custom Helpers Handlebars.js Tutorial for more information on Handlebars helpers.

The Handlebars GitHub site has a full description of the differences between Handlebars and Mustache.

Handlebars template syntax

Let’s use the Handlebars template in Example 7-5 to transform the input JSON to an HTML document.

Example 7-5. templates/transform-html.hbs

<!DOCTYPE html>
<html>

 <head>
 <meta charset="UTF-8" />
 <title>OpenWeather - California Cities</title>
 <link rel="stylesheet" href="weather.css">
 </head>
 <body>
 <h1>OpenWeather - California Cities</h1>
 <table class="weatherTable">
 <thead>
 <tr>
 <th>ID</th>
 <th>City</th>
 <th>Current Temp</th>
 <th>Low Temp</th>
 <th>High Temp</th>
 <th>Humidity</th>
 <th>Wind Speed</th>
 <th>Summary</th>
 <th>Description</th>
 </tr>
 </thead>
 {{#each cities}}
 <tr>
 <td>{{id}}</td>
 <td>{{name}}</td>
 {{#main}}
 <td>{{temp}}</td>
 <td>{{temp_min}}</td>
 <td>{{temp_max}}</td>
 <td>{{humidity}}</td>
 {{/main}}
 <td>{{wind.speed}}</td>
 {{#each weather}}
 <td>{{main}}</td>
 <td>{{description}}</td>
 {{/each}}
 </tr>
 {{/each}}
 </table>
 </body>

</html>

This template works as follows:

	
Handlebars expands each tag with data from the cities Array.

	
A tag can represent a single field, such as {{temp}}.

	
Sections are enclosed within begin (e.g., {{#each cities}}) and end (e.g., {{/cities}}) tags.

	
A section can correspond to an Array (e.g., cities) or an object (e.g., main).

	
The each tag (e.g., {{#each cities}}) is used for arrays (in this case, cities).

	
A section sets the context for the other tags within that section. For example, the {{temp}}
tag inside the {{main}} section could be expressed as {{main.temp}}, and corresponds to
main.temp in the original JSON input document.

Handlebars Unit Test

The Unit Test in Example 7-6 uses a Handlebars template to render HTML with the Cities data.

Example 7-6. cities-weather-transform-test/test/handlebars-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API
 ([http://openweathermap.org]) under Creative Commons Share A Like
 License (https://creativecommons.org/licenses/by-sa/4.0).
 Changes were made to the data to work with json-server.
 This does not imply an endorsement by the licensor.

 This code is distributed under Creative Commons Share A Like License.
*/

var expect = require('chai').expect;
var jsonfile = require('jsonfile');
var fs = require('fs');
var handlebars = require('handlebars');

describe('cities-handlebars', function() {
 var jsonCitiesFileName = null;
 var htmlTemplateFileName = null;

 beforeEach(function() {
 var baseDir = __dirname + '/../..';

 jsonCitiesFileName = baseDir + '/data/cities-weather-short.json';
 htmlTemplateFileName = baseDir +
 '/templates/transform-html.hbs';
 });

 it('should transform cities JSON data to HTML', function(done) {
 jsonfile.readFile(jsonCitiesFileName, function(readJsonFileError,
 jsonObj) {
 if (!readJsonFileError) {
 fs.readFile(htmlTemplateFileName, 'utf8', function(
 readTemplateFileError, templateFileData) {
 if (!readTemplateFileError) {
 var template = handlebars.compile(templateFileData);
 var html = template(jsonObj);

 console.log('\n\n\nHTML Output:\n' + html);
 done();
 } else {
 done(readTemplateFileError);
 }
 });
 } else {
 done(readJsonFileError);
 }
 });
 });
});

This Handlebars Unit Test is practically identical to its Mustache counterpart, with the following
differences:

	
We don’t need to convert the Handlebars template (that is, read from fs.readFile()) to a String.

	
It takes two steps to render the template:

	
handlebars.compile() compiles the template into the template variable.

	
template() (from the compile) then renders the jsonObj (input JSON) into HTML.

When you run the preceding test with npm test, you’ll see a second HTML document that looks like our HTML
target document.

Handlebars online testers

Two excellent online testers make it easy to iteratively test and develop
a Handlebars template: TryHandlebars and Architect.

To use TryHandlebars, copy the Handlebars
template and JSON into the Handlebars Template and Context text boxes. The result is shown in Figure 7-2.

[image: json 07in02]
Figure 7-2. Try Handlebars.js: JSON-to-HTML transformation with Handlebars

You can also use the Architect template editor.
Select Handlebars.js in the Engine drop-down, paste the Handlebars template, and input JSON into the
Template and View text boxes (respectively). Click the Compile Handlebars Template button, and you should
see the result shown in Figure 7-3.

[image: json 07in03]
Figure 7-3. Architect: JSON-to-HTML transformation with Handlebars

Handlebars on the command line

Handlebars also works directly from the command line. If you have installed Node.js, do a global installation of
the hb-interpolate module, which is also available on GitHub:

npm install -g hb-interpolate

cd chapter-7

hb-interpolate -j ./data/cities-weather-short.json \
 -t ./templates/transform-html.hbs > output.html

Handlebars on other platforms

Handlebars enjoys wide cross-platform support, including the following:

	
Node.js

	
Ruby on Rails

	
Java

Handlebars scorecard

Table 7-2 provides a scorecard for Handlebars based on the evaluation criteria from the beginning of this chapter.

Table 7-2. Handlebars scorecard

	Mindshare
	Y

	Dev community

	Y

	Platforms

	JavaScript, Node.js, Java, Ruby on Rails

	Intuitive

	Y

	Standard

	N

Handlebars is another excellent engine that is used by many web developers. Just like Mustache, Handlebars
isn’t a standard, and it too has a solid specification and works across multiple platforms.

JSON-to-HTML Transformation Evaluations—The Bottom Line

Mustache and Handlebars are both excellent choices for converting JSON to HTML, and you’ll be fine with
either library.

We’ve covered JSON-to-HTML conversion, and now it’s time to cover JSON-to-JSON transformation.

JSON-to-JSON Transform

If you’ve worked with APIs for any length of time in a professional setting, you’ve come to realize that
APIs don’t always work the way you want them to. The JSON response from an API is often the most overlooked
part of an API’s design, and the data provided by an API is often difficult to use. Even if the data is
well-designed, you may not want to use all of it or you may want to convert it to another JSON structure
that is better suited to the consuming application (or other applications in your system).

Similar to the discussion in Chapter 6, you could do the following:

	
Parse the JSON data from an API and manipulate the resulting hash structure programmatically

	
Write custom code to convert between an input JSON document and another JSON structure

But these approaches are tedious and difficult. There’s no need to write this type of utility code, because libraries are available to do most of the work for you.

The Issues

The biggest issue I’ve seen in the area of JSON-to-JSON transformation is the lack of standards (official or
de facto). In the previous chapter, for example, even though JSONPath is not an official standard, it is a
de facto standard. JSONPath is a concept and query language with wide acceptance and implementations on
multiple platforms. But with the JSON Transform libraries, it was difficult to find something that was more
than just a single-language/platform implementation. I was looking for products that could transcend
individual platforms and serve a larger, more universal purpose in the community. It was a journey to
find the best solutions, but a few JSON Transform libraries are better than a one-off
solution, and I hope you find them useful for your projects.

JSON-to-JSON Transform Libraries

Several libraries (callable from an application) can transform JSON documents. We’ll look
into the following libraries:

	
JSON Patch

	
JSON-T

	
Mustache

	
Handlebars

If you’re in a hurry, Handlebars is the best choice for JSON-to-JSON transformation (see “Handlebars” and “JSON-to-JSON Transformation Evaluations—The Bottom Line”). Otherwise, let’s walk through
the various JSON-to-JSON transformation techniques so you can see why.

Honorable Mention

Several JSON Transform libraries are available, but we can’t cover all of them. Here are three additional
libraries that are worth a look:

	Jolt

	
Jolt works only in Java environments.

	Json2Json

	
Json2Json is only available for Node.js.

	jsonapter

	
jsonapter transforms JSON data in a declarative manner that leverages an external template
with transformation rules. The template is analogous to XSL, but that’s where the similarities stop.
jsonapter and its template rules are in pure JavaScript, but XSL had its own separate templating language.
Unfortunately, jsonapter works only with JavaScript and Node.js.

Target JSON Output

Refer to “Test Input Data” earlier in this chapter. Even though there
are only three elements in the cities array, the data is overly complex for our use.
We don’t want to use all of these fields, so let’s simplify the structure as follows:

	
Keep the cities array along with id and name.

	
Make a completely new, flattened weather object.

	
Add other weather-related fields from other structures to weather:

	
main.temp, main.humidity, main.temp_min, main.temp_max

	
wind.speed

	
weather.0.main and weather.0.description

	
Rename fields for the sake of clarity.

Given these transformation rules, the output should look like Example 7-7.

Example 7-7. data/cities-weather-short-transformed.json

{
 "cities": [
 {
 "id": "5386035",
 "name": "Rancho Palos Verdes",
 "weather": {
 "currentTemp": 84.34,
 "lowTemp": 78.8,
 "hiTemp": 93,
 "humidity": 58,
 "windSpeed": 4.1,
 "summary": "Clear"
 "description": "Sky is Clear"
 }
 },
 {
 "id": "5392528",
 "name": "San Pedro",
 "weather": {
 "currentTemp": 84.02,
 "lowTemp": 78.8,
 "hiTemp": 91,
 "humidity": 58,
 "windSpeed": 4.1,
 "summary": "Clear"
 "description": "Sky is Clear"
 }
 },
 {
 "id": "3988392",
 "name": "Rosarito",
 "weather": {
 "currentTemp": 82.47,
 "lowTemp": 78.8,
 "hiTemp": 86,
 "humidity": 61,
 "windSpeed": 4.6,
 "summary": "Clouds"
 "description": "scattered clouds"
 }
 }
]
}

We’ll evaluate each of the JSON Transform libraries based on how easy it is to convert the sample JSON input
data to the target JSON output.

JSON Patch

JSON Patch is an IETF standard
that specifies a data format for operations that transform a single resource. JSON Patch works in conjunction
with the HTTP PATCH standard.
The purpose of HTTP PATCH is to modify a resource produced by an API. In short, HTTP PATCH changes a
portion of a resource, whereas HTTP PUT replaces the resource entirely.

JSON Patch is supposed to be used as part of an HTTP Request, and not the Response. JSON Patch is really
meant for an API Producer, and not the Consumer. But the context of this chapter is from the API Consumer’s
point of view, and we’ll see how far we can go with JSON Patch to transform the data in an HTTP Response.

JSON Patch syntax

Table 7-3 shows the main JSON Patch operations that could be used with the OpenWeatherMap data.

Table 7-3. JSON Patch operations

	JSON Patch operation
	Description

	Add - { "op": "add", "path": "/wind", "value": { "direction": "W" } }

	Adds a value to either an existing Object or an Array. It can’t create a completely new Object in a document.

	Remove - { "op": "remove", "path": "/main" }

	Removes the main Object.

	Replace - { "op": "replace", "path": "/weather/0/main", "value": "Rain" }

	Replaces a value in the document. This is the same as doing a remove followed by an add.

	Copy - { "op": "copy", "from": "/main/temp", "path": "/weather/0/temp" }

	Copies a value from one field to another.

	Move - { "op": "move", "from": "/main/temp", "path": "/weather/0/temp" }

	Moves the temp key/value pair from the main Object
to the weather Array.

For a full description of JSON Patch, visit the main Patch site.
Each value for path and from is a JSON Pointer, which was covered in Chapter 6.

JSON Patch Unit Test

The Unit Test in Example 7-8 shows the example transformations in action. This code uses the JSON Patch
Node.js module.
Patch has a corresponding GitHub repository.

The Unit Test in Example 7-8 shows how to use JSON Patch to transform the Cities weather data to the target
JSON data structure.

Example 7-8. cities-weather-transform-test/test/json-patch-spec.json

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API
 ([http://openweathermap.org]) under Creative Commons Share A Like
 License (https://creativecommons.org/licenses/by-sa/4.0).
 Changes were made to the data to work with json-server.
 This does not imply an endorsement by the licensor.

 This code is distributed under Creative Commons Share A Like License.
*/

var expect = require('chai').expect;
var jsonfile = require('jsonfile');
var jsonpatch = require('json-patch');

var citiesTemplate = [
 {
 op: 'remove',
 path: '/coord'
 },
 {
 op: 'remove',
 path: '/dt'
 },
 {
 op: 'remove',
 path: '/clouds'
 },
 {
 op: 'remove',
 path: '/weather/0/id'
 },
 {
 op: 'remove',
 path: '/weather/0/icon'
 },
 {
 op: 'move',
 from: '/main/temp',
 path: '/weather/0/currentTemp'
 },
 {
 op: 'move',
 from: '/main/temp_min',
 path: '/weather/0/lowTemp'
 },
 {
 op: 'move',
 from: '/main/temp_max',
 path: '/weather/0/hiTemp'
 },
 {
 op: 'move',
 from: '/main/humidity',
 path: '/weather/0/humidity'
 },
 {
 op: 'move',
 from: '/weather/0/main',
 path: '/weather/0/summary'
 },
 {
 op: 'move',
 from: '/wind/speed',
 path: '/weather/0/windSpeed'
 },
 {
 op: 'remove',
 path: '/main'
 },
 {
 op: 'remove',
 path: '/wind'
 }
];

describe('cities-json-patch', function() {
 var jsonFileName = null;
 var jsonCitiesFileName = null;

 beforeEach(function() {
 var baseDir = __dirname + '/../../data';

 jsonCitiesFileName = baseDir + '/cities-weather-short.json';
 });

 it('should patch all cities - fail', function(done) {
 jsonfile.readFile(jsonCitiesFileName, function(fileReadError,
 jsonObj) {
 if (!fileReadError) {
 try {
 var output = jsonpatch.apply(jsonObj, citiesTemplate);

 console.log('\n\n\n\Original JSON');
 console.log(jsonObj);
 console.log('\n\n\n\Patched JSON');
 console.log(JSON.stringify(output, null, 2));
 done();
 } catch (transformError) {
 console.error(transformError);
 done(transformError);
 }
 } else {
 console.error(fileReadError);
 done(fileReadError);
 }
 });
 });

 ...

});

In the example code, the test runs an example JSON Patch transformation. To run this test from the command line,
do the following:

cd cities-weather-transform-test

npm test

As you’ll notice, the should patch all cities - fail test fails as follows:

cities-json-patch
{ [PatchConflictError: Value at coord does not exist]
message: 'Value at coord does not exist',
name: 'PatchConflictError' }
 1) should patch all cities - fail

In this example, JSON Patch can’t find the following path to /coord because the underlying JSON
Pointer works only with individual objects, and not collections.

Example 7-9 is a second test that almost works.

Example 7-9. cities-weather-transform-test/test/json-patch-spec.json

...

describe('cities-json-patch', function() {
 var jsonFileName = null;
 var jsonCitiesFileName = null;

 beforeEach(function() {
 var baseDir = __dirname + '/../../data';

 jsonCitiesFileName = baseDir + '/cities-weather-short.json';
 });

 ...

 it('should patch all cities - success (kind of)', function(done) {
 jsonfile.readFile(jsonCitiesFileName, function(fileReadError,
 jsonObj) {
 if (!fileReadError) {
 try {
 console.log('\n\n\n\Original JSON');
 console.log(jsonObj);
 var output = [];

 for (var i in jsonObj['cities']) {
 output.push(jsonpatch.apply(jsonObj['cities'][i],
 citiesTemplate));
 }

 console.log('\n\n\n\Patched JSON');
 console.log(JSON.stringify(output, null, 2));
 done();
 } catch (transformError) {
 console.error(transformError);
 done(transformError);
 }
 } else {
 console.error(fileReadError);
 done(fileReadError);
 }
 });
 });

});

Although the should patch all cities - success (kind of) test runs, it doesn’t quite work for the following reasons:

	
We want to create a new weather Object rather than use the existing Array, but JSON Patch
doesn’t allow for that.

	
The test code iterates over the input JSON and transforms each element in the cities array,
and then collects the results in the output Array. This is needed because JSON Patch can work only on a
single resource (an Object) rather than a collection (an Array).

JSON Patch on other platforms

Because JSON Patch is a standard, it enjoys cross-platform support (besides just Node.js), including the following:

	
Java

	
Ruby

See http://jsonpatch.com/#libraries for more platform and library
support.

JSON Patch scorecard

Table 7-4 shows a scorecard for JSON Patch based on the evaluation criteria from the beginning of this chapter.

Table 7-4. JSON Patch scorecard

	Mindshare
	Y

	Dev community

	Y

	Platforms

	JavaScript, Node.js, Java, Ruby on Rails

	Intuitive

	N

	Standard

	Y - RFC 6902

JSON Patch limitations

JSON Patch has the following limitations:

	
JSON Patch doesn’t allow you to add completely new data structures. It can only modify existing structures
and their data.

	
JSON Patch is designed only to change a single Object, and isn’t designed to work with Arrays. This is because JSON Patch uses JSON Pointer to search for data, where each query returns only a single
field from a JSON document.

JSON Patch is not meant to transform the JSON data from an API’s HTTP Response, but it was worth a try.
JSON Patch is really designed to work with HTTP PATCH, which specifies how to use JSON to patch portions
of a resource’s data through an HTTP Request. JSON Patch is a great fit when you need to implement HTTP
PATCH for an API.

But better libraries are available to transform JSON to other JSON data structures, so let’s
move on and try JSON-T.

JSON-T

JSON-T was one of the early JSON transform libraries, and it was developed in 2006 by Stefan Goessner (who
also created JSONPath). JSON-T is similar to XSLT for XML, and uses a template that contains transformation
rules.

JSON-T syntax

JSON-T uses transformation rules defined in a JavaScript Object Literal, where each rule is a key/value pair. Rules are in the following form:

var transformRules = {
 'ruleName': 'transformationRule',
 'ruleName': function
 ...
};

Note the following in the preceding form:

	
Each ruleName or transformationRule must be enclosed by single ('') or double ("") quotes.

	
Each transformationRule has one or more conversion expressions surrounded by curly braces, like this:
{cities}.

	
A conversion expression can evaluate to another ruleName or to a field in the document—an Array,
Object, or key/value pair.

The following example shows the JSON-T transformation rules that could be used to transform the
OpenWeatherMap data:

var transformRules = {
 'self': '{ "cities": [{cities}] }',
 'cities[*]': '{ "id": "{$.id}", "name": "{$.name}", ' +
 '"weather": { "currentTemp": {$.main.temp}, "lowTemp": {$.main.temp_min}, ' +
 '"hiTemp": {$.main.temp_max}, "humidity": {$.main.humidity}, ' +
 '"windSpeed": {$.wind.speed}, "summary": "{$.weather[0].main}", ' +
 '"description": "{$.weather[0].description}" } },'
};

This example works as follows:

	
self is the top-level rule that specifies how to format the new JSON document, and {cities} refers
to the cities[*] rule.

	
cities[*] specifies how to format the cities Array:

	
The star syntax in the cities[*] rule indicates that the rule applies to the cities Array elements.

	
The * resolves to each Array index.

	
{$.} is shorthand notation. The {$.name} rule tells JSON-T to pull data from the name field of
each cities Array element. Here’s the longer notation: cities[*].name.

For complete documentation on transformation rules, see “Basic Rules” on the main JSON-T site.

JSON-T Unit Test

The Unit Test in Example 7-10 shows how to use JSON-T, and leverages the jsont Node.js module.

Example 7-10. cities-weather-transform-test/test/jsont-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API
 ([http://openweathermap.org]) under Creative Commons Share A Like
 License (https://creativecommons.org/licenses/by-sa/4.0).
 Changes were made to the data to work with json-server.
 This does not imply an endorsement by the licensor.

 This code is distributed under Creative Commons Share A Like License.
*/

var expect = require('chai').expect;
var jsonfile = require('jsonfile');
var jsonT = require('../lib/jsont').jsonT;

describe('cities-jsont', function() {
 var jsonCitiesFileName = null;

 var transformRules = {
 'self': '{ "cities": [{cities}] }',
 'cities[*]': '{ "id": "{$.id}", "name": "{$.name}", ' +
 '"weather": { "currentTemp": {$.main.temp}, "lowTemp": {$.main.temp_min}, ' +
 '"hiTemp": {$.main.temp_max}, "humidity": {$.main.humidity}, ' +
 '"windSpeed": {$.wind.speed}, "summary": "{$.weather[0].main}", ' +
 '"description": "{$.weather[0].description}" } },'
 };

 ...

 beforeEach(function() {
 var baseDir = __dirname + '/../../data';

 jsonCitiesFileName = baseDir + '/cities-weather-short.json';
 });

 it('should transform cities JSON data', function(done) {
 jsonfile.readFile(jsonCitiesFileName, function(readFileError,
 jsonObj) {
 if (!readFileError) {
 var jsonStr = jsonT(jsonObj, transformRules);

 jsonStr = repairJson(jsonStr);
 console.log(JSON.stringify(JSON.parse(jsonStr), null, 2));
 done();
 } else {
 done(readFileError);
 }
 });
 });
});

Notice that the preceding test invokes the repairJson() function in order to produce valid JSON:

function repairJson(jsonStr) {
 var repairedJsonStr = jsonStr;

 var repairs = [
 [/,\s*}/gi, ' }'],
 [/,\s*\]/gi, ']']
];

 for (var i = 0, len = repairs.length; i < len; ++i) {
 repairedJsonStr = repairedJsonStr.replace(repairs[i][0], repairs[i][1]);
 }

 return repairedJsonStr;
}

// Modify the spec as follows:

...
jsonStr = repairJson(jsonStr);
console.log(JSON.stringify(JSON.parse(jsonStr), null, 2));
...

Without any modification, JSON-T produces a trailing comma after the last element of the cities
Array, so the transformed JSON would be invalid “as is.” To fix this, the repairJson() function in the
preceding example uses a Regular Expression (Regex) to eliminate the final comma before the closing curly
object bracket (}) or Array brace (]). Although most languages have Regex functionality, this is bad
because you have to add custom code to correct the output. You shouldn’t have to write your own
infrastructure.

JSON-T on other platforms

In addition to Node.js, JSON-T runs on the following platforms:

	In the browser

	
JSON-T runs as a JavaScript file, jsont.js.

	Ruby

	
JSON-T can run as a pure Ruby implementation.

I haven’t been able to find a pure Java implementation of JSON-T.

JSON-T scorecard

Table 7-5 shows a scorecard for JSON-T based on the evaluation criteria from the beginning of this chapter.

Table 7-5. JSON-T scorecard

	Mindshare
	Y

	Dev community

	Y

	Platforms

	JavaScript, Node.js, Ruby on Rails

	Intuitive

	N

	Standard

	N

JSON-T limitations

JSON-T has the following limitations:

	
Overly complex syntax.

	
No Java implementation.

	
Can’t handle an escaped String within a String. For example, JSON-T takes the String,
"escapedString": "I have a \"string within\" a string" and converts it to the
following invalid String: "escapedString": "I have a "string within " a string". Again, this requires a
Regular Expression to fix the problem.

	
Can’t handle the last element in an Array or Object.

JSON-T is a small improvement over JSON Patch because JSON-T can process an entire document. But JSON-T
still requires a developer to write additional code to make it work. JSON-T is a step in the right direction,
but it still won’t work in a real development environment. JSON-T is good at converting JSON to HTML,
but it’s not designed to convert from one JSON document to another JSON structure.

Let’s move on and check out Mustache.

Mustache

In the previous section, we saw how Mustache can easily convert from JSON to HTML. We’ll now see
how well it can convert the Cities data to the target JSON output document.

Example 7-11 is a Mustache template to do the conversion (template details were described in the
JSON-to-HTML section on Mustache).

Example 7-11. templates/transform-json.mustache

{
 "cities": [
 {{#cities}}
 {
 "id": "{{id}}",
 "name": "{{name}}",
 "weather": {
 {{#main}}
 "currentTemp": {{temp}},
 "lowTemp": {{temp_min}},
 "hiTemp": {{temp_max}},
 "humidity": {{humidity}},
 {{/main}}
 "windSpeed": {{wind.speed}},
 {{#weather.0}}
 "summary": "{{main}}"
 "description": "{{description}}"
 {{/weather.0}}
 }
 },
 {{/cities}}
]
}

Let’s run this template in the Architect template editor.
Select Mustache.js in the Engine drop-down, paste the Mustache template, and input JSON into the Template
and View text boxes (respectively). You should see the result in Figure 7-4.

[image: json 07in04]
Figure 7-4. Architect: JSON-to-JSON transformation with Mustache

Take a look at line 41 of the resulting JSON (in the Result text box) and you’ll see the trailing comma,
which is invalid JSON. You can confirm that the resulting JSON is invalid by pasting it into JSONLint:

[image: json 07in05]

Mustache limitations

Mustache doesn’t work for JSON-to-JSON transformation because (just like JSON-T) it can’t determine when
it has reached the last element in an Array or Object in the input JSON.

Let’s move on to Handlebars.

Handlebars

As we saw previously, Handlebars does a good job of converting JSON to HTML, and the template in Example 7-12
shows how to convert the Cities JSON data into the target JSON output.

Example 7-12. templates/transform-json.hbs

{
 "cities": [
 {{#each cities}}
 {
 "id": "{{id}}",
 "name": "{{name}}",
 "weather": {
 {{#main}}
 "currentTemp": {{temp}},
 "lowTemp": {{temp_min}},
 "hiTemp": {{temp_max}},
 "humidity": {{humidity}},
 {{/main}}
 "windSpeed": {{wind.speed}},
 {{#each weather}}
 "summary": "{{main}}",
 "description": "{{description}}"
 {{/each}}
 }
 }{{#unless @last}},{{/unless}}
 {{/each}}
]
}

This template is similar to the one shown in the JSON-to-HTML section on Handlebars, but with one
notable difference. The following line does exactly what we need: it emits a comma after each element
unless it’s the last element:

{{#unless @last}},{{/unless}}

Here’s how it works:

	
{{#unless}} is a built-in Handlebars helper that renders the enclosing block only if the condition
returns false.

	
@last@ is a built-in Handlebars variable that returns false if an element is the last in an Array,
and true if the current element is at the end of the Array.

For more information on {{#unless}} and @last@, visit the Handlebars website.

Let’s run the template in the Architect template editor.
Select Handlebars.js in the Engine drop-down, paste the Handlebars template, and input JSON into the Template
and View text boxes (respectively). You should see the result shown in Figure 7-5.

[image: json 07in06]
Figure 7-5. Architect: JSON-to-JSON transformation with Handlebars

Take a look at line 56 of the resulting JSON (in the Result text box) and you’ll see that there is no
trailing comma so this should be valid. You can confirm that the resulting JSON is valid by pasting it into
JSONLint, as shown in Figure 7-6.

[image: json 07in07]
Figure 7-6. JSONLint validation of JSON transformed with Handlebars

This is exactly what we’re looking for. As noted earlier, Handlebars differs from Mustache in that Handlebars
has just enough conditional logic to make the JSON-to-JSON transformation work properly.

JSON-to-JSON Transformation Evaluations—The Bottom Line

Based on the evaluation criteria and overall usability, Handlebars is my overwhelming choice for
JSON-to-JSON transformation for the following reasons:

	
It’s the only library that works “as is.” The conditional logic makes it possible.

	
It has solid cross-platform support.

	
The template language is rich enough to meet most transformation needs.

	
It’s declarative, yet allows for custom logic with custom helpers.

	
Excellent online tools facilitate development.

We’ve covered JSON-to-JSON conversion, and now it’s time to cover JSON-XML transformation.

JSON-XML Transformation

Often, developers and architects need to integrate with legacy systems that still use XML.
To have a clean separation of concerns, it’s important to add a thin adapter at the boundaries of your
system that encapsulates the translation between XML and JSON.

JSON-XML Transformation Conventions

It’s easy to convert XML elements (e.g., <weather>) to/from JSON, but it’s difficult to convert XML
attributes to/from JSON. This is a lossy conversion, which means that you can’t convert the JSON back
to the original XML, and vice versa because JSON doesn’t have a standard way to represent attributes.
Remember that JSON’s core constructs are Objects, Arrays, and key/value pairs.

For example, an XML attribute provides metadata that describes an element, and looks like this:

<weather temp="84.34" pressure="1012" humidity="58"
 temp_min="78.8" temp_max="93"/>

In this XML snippet, the temp, pressure, humidity, temp_min, and temp_max attributes describe
the weather element. Back in the days when XML was in vogue (roughly 1998–2008), many XML Schema
designers leveraged XML attributes to:

	
Reduce the overall payload of messages going over the wire

	
Simplify the conversion between XML and their native platform (e.g., Java, JS, Ruby, or C#)

We’d like to see how to directly convert between XML and JSON, and several well-known conventions
(specifications) describe how to do this:

	
Badgerfish

	
Parker

	
JsonML

	
Spark

	
GData

	
Abdera

This chapter focuses on Badgerfish and Parker because they’re
well-known. A full discussion and in-depth comparison of these XML-JSON conversion convention is beyond the scope of
this book, but you can find further details at the Open311 wiki.

To compare the Badgerfish and Parker conventions, we’ll start by showing a sample input XML document
based on the OpenWeatherMap data. Then, we’ll compare how both conventions would convert from XML
to JSON. Example 7-13 provides the input XML.

Example 7-13. data/cities-weather-short.xml

<?xml version="1.0" encoding="UTF-8" ?>
<cities>
 <city>
 <id>5386035</id>
 <name>Rancho Palos Verdes</name>
 <coord>
 <lon>-118.387016</lon>
 <lat>33.744461</lat>
 </coord>
 <main temp="84.34" pressure="1012" humidity="58" temp_min="78.8" temp_max="93"/>
 <dt>1442171078</dt>
 <wind>
 <speed>4.1</speed>
 <deg>300</deg>
 </wind>
 <clouds>
 <all>5</all>
 </clouds>
 <weather>
 <id>800</id>
 <main>Clear</main>
 <description>Sky is Clear</description>
 <icon>02d</icon>
 </weather>
 </city>
 <city>
 <id>5392528</id>
 <name>San Pedro</name>
 <coord>
 <lon>-118.29229</lon>
 <lat>33.735851</lat>
 </coord>
 <main temp="84.02" pressure="1012" humidity="58" temp_min="78.8" temp_max="91"/>
 <dt>1442171080</dt>
 <wind>
 <speed>4.1</speed>
 <deg>300</deg>
 </wind>
 <clouds>
 <all>5</all>
 </clouds>
 <weather>
 <id>800</id>
 <main>Clear</main>
 <description>Sky is Clear</description>
 <icon>02d</icon>
 </weather>
 </city>
 <city>
 <id>3988392</id>
 <name>Rosarito</name>
 <coord>
 <lon>-117.033333</lon>
 <lat>32.333328</lat>
 </coord>
 <main temp="82.47" pressure="1012" humidity="61" temp_min="78.8" temp_max="86"/>
 <dt>1442170905</dt>
 <wind>
 <speed>4.6</speed>
 <deg>240</deg>
 </wind>
 <clouds>
 <all>32</all>
 </clouds>
 <weather>
 <id>802</id>
 <main>Clouds</main>
 <description>scattered clouds</description>
 <icon>03d</icon>
 </weather>
 </city>
</cities>

Badgerfish

Badgerfish has an excellent online tester that makes it easy to convert from the input XML to JSON (per
the Badgerfish convention). The Badgerfish Online Tester is shown in Figure 7-7.

[image: json 07in08]
Figure 7-7. Badgerfish online tester—convert XML to JSON

Paste the input XML into the text box just below the Convert XML to JSON label, click the
“Translate XML above to JSON below button” and you’ll see very compact JSON in the resulting text box.
You can use JSONLint or your favorite text editor (which includes
a JSON beautifier plug-in), and you’ll see the (more readable) JSON output shown in Example 7-14.

Example 7-14. data/cities-weather-short-badgerfish.json

{
 "cities": {
 "city": [{
 "id": {
 "$1": 5386035
 },
 "name": {
 "$1": "Rancho Palos Verdes"
 },
 "coord": {
 "lon": {
 "$1": "-118.387016"
 },
 "lat": {
 "$1": "33.744461"
 }
 },
 "main": {
 "@temp": "84.34",
 "@pressure": 1012,
 "@humidity": 58,
 "@temp_min": "78.8",
 "@temp_max": 93
 },
 "dt": {
 "$1": 1442171078
 },
 "wind": {
 "speed": {
 "$1": "4.1"
 },
 "deg": {
 "$1": 300
 }
 },
 "clouds": {
 "all": {
 "$1": 5
 }
 },
 "weather": {
 "id": {
 "$1": 800
 },
 "main": {
 "$1": "Clear"
 },
 "description": {
 "$1": "Sky is Clear"
 },
 "icon": {
 "$1": "02d"
 }
 }
 }, {
 "id": {
 "$1": 5392528
 },
 "name": {
 "$1": "San Pedro"
 },
 "coord": {
 "lon": {
 "$1": "-118.29229"
 },
 "lat": {
 "$1": "33.735851"
 }
 },
 "main": {
 "@temp": "84.02",
 "@pressure": 1012,
 "@humidity": 58,
 "@temp_min": "78.8",
 "@temp_max": 91
 },
 "dt": {
 "$1": 1442171080
 },
 "wind": {
 "speed": {
 "$1": "4.1"
 },
 "deg": {
 "$1": 300
 }
 },
 "clouds": {
 "all": {
 "$1": 5
 }
 },
 "weather": {
 "id": {
 "$1": 800
 },
 "main": {
 "$1": "Clear"
 },
 "description": {
 "$1": "Sky is Clear"
 },
 "icon": {
 "$1": "02d"
 }
 }
 }, {
 "id": {
 "$1": 3988392
 },
 "name": {
 "$1": "Rosarito"
 },
 "coord": {
 "lon": {
 "$1": "-117.033333"
 },
 "lat": {
 "$1": "32.333328"
 }
 },
 "main": {
 "@temp": "82.47",
 "@pressure": 1012,
 "@humidity": 61,
 "@temp_min": "78.8",
 "@temp_max": 86
 },
 "dt": {
 "$1": 1442170905
 },
 "wind": {
 "speed": {
 "$1": "4.6"
 },
 "deg": {
 "$1": 240
 }
 },
 "clouds": {
 "all": {
 "$1": 32
 }
 },
 "weather": {
 "id": {
 "$1": 802
 },
 "main": {
 "$1": "Clouds"
 },
 "description": {
 "$1": "scattered clouds"
 },
 "icon": {
 "$1": "03d"
 }
 }
 }]
 }
}

The core rules of the Badgerfish convention include the following:

	
Element names become Object properties.

	
The textual content of an element goes into the $ property of an Object with the same name.
For example, <name>Rancho Palos Verdes</name> becomes "name": { "$1": "Rancho Palos Verdes" }.

	
Nested elements become nested properties. For example, the following XML

<wind>
 <speed>4.1</speed>
 <deg>300</deg>
</wind>

becomes

"wind": {
 "speed": {
 "$1": "4.1"
 },
 "deg": {
 "$1": 300
 }
}

	
Multiple elements with the same name at the same level become Array elements. The following XML

<city>
</city>
<city>
</city>

becomes

"city": [{ ... }]

	
Attributes go in properties whose names begin with @. For example, the following XML

<main temp="84.02" pressure="1012" humidity="58"
 temp_min="78.8" temp_max="91"/>

becomes

"main": {
 "@temp": "84.34",
 "@pressure": 1012,
 "@humidity": 58,
 "@temp_min": "78.8",
 "@temp_max": 93
}

We’ve glossed over a lot of details, but Badgerfish has excellent documentation and resources. For further
information, see the following:

	
Badgerfish site

	
Badgerfish documentation

	
Badgerfish online tester

Parker

Parker provides a simple conversion, but it ignores XML attributes, so you will lose the attribute data when
converting to JSON. Following the Parker convention yields the JSON document in Example 7-15 (based on the input
XML).

Example 7-15. data/cities-weather-short-parker.json

{
 "cities": [{
 "id": 5386035,
 "name": "Rancho Palos Verdes",
 "coord": {
 "lon": -118.387016,
 "lat": 33.744461
 },
 "main": null,
 "dt": 1442171078,
 "wind": {
 "speed": 4.1,
 "deg": 300
 },
 "clouds": {
 "all": 5
 },
 "weather": [{
 "id": 800,
 "main": "Clear",
 "description": "Sky is Clear",
 "icon": "02d"
 }]
 }, {
 "id": 5392528,
 "name": "San Pedro",
 "coord": {
 "lon": -118.29229,
 "lat": 33.735851
 },
 "main": null,
 "dt": 1442171080,
 "wind": {
 "speed": 4.1,
 "deg": 300
 },
 "clouds": {
 "all": 5
 },
 "weather": [{
 "id": 800,
 "main": "Clear",
 "description": "Sky is Clear",
 "icon": "02d"
 }]
 }, {
 "id": 3988392,
 "name": "Rosarito",
 "coord": {
 "lon": -117.033333,
 "lat": 32.333328
 },
 "main": null,
 "dt": 1442170905,
 "wind": {
 "speed": 4.6,
 "deg": 240
 },
 "clouds": {
 "all": 32
 },
 "weather": [{
 "id": 802,
 "main": "Clouds",
 "description": "scattered clouds",
 "icon": "03d"
 }]
 }]
}

The core rules of the Parker convention include the following:

	
Element names become Object properties.

	
Attributes are ignored.

	
Nested elements become nested properties.

The Parker convention is simple, but has the following issues:

	
It is lossy because it ignores XML attributes when you convert to JSON.

	
There is a lack of documentation and supporting tools.

The Issues with JSON-XML Transformation Conventions

The preceding XML-JSON transformation conventions have the following limitations:

	
None are considered to be a widely accepted standard.

	
They lack cross-platform support and full implementations.

	
Documentation is not always complete.

	
Data conversion can be lossy (Parker).

	
Data conversion can introduce changes in the data structure (Badgerfish).

XML-JSON Transform—The Bottom Line

With these shortcomings in mind, I suggest No Convention (none of the above) to convert the following:

	XML-to-JSON

	
Parse (unmarshal) the XML into Objects/Hashes on your current platform by using a
well-known library (we’ll use xml2js for our Node.js-based examples). Then, convert the Objects/Hashes from
your platform into JSON with JSON.stringify() if you’re using JavaScript. Chapters 3 and 4 show how to
convert Ruby and Java, respectively, to JSON.

	JSON-to-XML

	
Parse the JSON into data structures on your platform using a common library. JSON.parse()
works great for JavaScript. Chapters 3 and 4 show to parse JSON into Ruby and Java. Then, generate an XML
document from your data structure (this is also known as marshaling). Again, we’ll leverage xml2js
from a Node.js-based Mocha/Chai test.

Rather than being concerned with a particular convention/style of conversion, focus on the following:

	
Do what works best for you.

	
Use the libraries you already know and have on hand.

	
Test the conversion results to make sure that you’re not losing any data.

	
Keep it simple.

	
Encapsulate everything and make sure that it fits well with the rest of your enterprise application
architecture.

In short, choose the best library that you can find on your platform and work with or around the limitations.

Parsing/generating XML libraries

XML has been around for a long time, and each major platform has a solid implementation, including the following:

	Node.js

	
We’ll use xml2js.

	Ruby

	
There are several good libraries, and two of the best are LibXml and
Nokogiri.

	Java

	
Java Architecture for XML Binding (JAXB) has been a mainstay for years in the Java community.

JSON-XML Transformation Unit Test

The Unit Test suite in Example 7-16 has methods to test JSON-to-XML and XML-to-JSON conversion, and uses the
following technologies:

	xml2js

	
To convert XML to/from JavaScript data structures, you can use xml2js, which is also available on GitHub.

	JSON.parse() / JSON.stringify()

	
To convert JSON to/from JavaScript structures. You can find more
information about JSON.parse() / JSON.stringify() at MDN
and in Chapter 3.

Example 7-16. cities-weather-transform-test/test/json-xml-spec.js

'use strict';

/* Attribution: Cities Weather data provided by OpenWeatherMap API
 ([http://openweathermap.org]) under Creative Commons Share A Like
 License (https://creativecommons.org/licenses/by-sa/4.0).
 Changes were made to the data to work with json-server.
 This does not imply an endorsement by the licensor.

 This code is distributed under Creative Commons Share A Like License.
*/

var expect = require('chai').expect;
var jsonfile = require('jsonfile');
var fs = require('fs');
var xml2js = require('xml2js');

describe('json-xml', function() {
 var jsonCitiesFileName = null;
 var xmlCitiesFileName = null;

 beforeEach(function() {
 var baseDir = __dirname + '/../..';

 jsonCitiesFileName = baseDir + '/data/cities-weather-short.json';
 xmlCitiesFileName = baseDir +
 '/data/cities-weather-short.xml';
 });

 it('should transform cities JSON data to XML', function(done) {
 jsonfile.readFile(jsonCitiesFileName, function(readJsonFileError,
 jsonObj) {
 if (!readJsonFileError) {
 var builder = new xml2js.Builder();
 var xml = builder.buildObject(jsonObj);

 console.log('\n\n\nXML Output:\n' + xml);
 done();
 } else {
 done(readJsonFileError);
 }
 });
 });

 it('should transform cities XML data to JSON', function(done) {
 fs.readFile(xmlCitiesFileName, 'utf8', function(
 readXmlFileError, xmlData) {
 if (!readXmlFileError) {
 var parser = new xml2js.Parser();

 parser.parseString(xmlData, function(error, xmlObj) {
 if (!error) {
 console.log('\n\n\nJSON Output:\n' +
 JSON.stringify(xmlObj, null, 2));

 done();
 } else {
 done(error);
 }
 });
 } else {
 done(readXmlFileError);
 }
 });
 });
});

The preceding code works as follows:

	
beforeEach() runs before any Unit Test and does setup. In this case, it builds the filenames for the
input JSON file and the output XML file.

	
In the 'should transform cities JSON data to XML' Unit Test:

	
jsonfile.readFile() reads and parses the input JSON file into a JavaScript Object (jsonObj).

	
xml2js.Builder() creates an Object that can convert from JSON to XML.

	
builder.buildObject(jsonObj) converts the JavaScript Object (from the input JSON file) into an XML
String.

	
In the 'should transform cities XML data to JSON' Unit Test:

	
fs.readFile() reads the XML file into a String.

	
xml2js.Parser() creates an XML parser.

	
parser.parseString() parses the XML String (from the input XML file) into a JavaScript Object
(xmlObj).

	
JSON.stringify() converts the xmlObj JavaScript Object into a JSON String.

What We Covered

We’ve shown several JSON Transform libraries to do the following:

	
Convert JSON to HTML

	
Either Mustache or JSON will work just fine.

	
Transform JSON to other, cleaner JSON structures

	
Choose Handlebars.

	
Convert between XML and JSON

	
Don’t worry about the XML/JSON conventions.

	
Use an XML library that works well on your platform.

	
Write Unit Tests that transform the content of JSON documents returned by a Web API

Use these JSON Transform techniques to convert JSON data from external APIs into data formats
that are compatible with your applications.

What’s Next?

Now that we’ve covered the JSON Ecosystem (Schema, Search, and Transform), we’ll move to the final section
on JSON in the enterprise; this part of the book covers the following topics:

	
Hypermedia

	
MongoDB (NoSQL)

	
Messaging with Kafka

In Chapter 8, we’ll discuss Hypermedia with JSON in order to show how to interact with an API.

Part III. JSON in the Enterprise

Chapter 8. JSON and Hypermedia

Imagine building an application in HTML for use in a web browser. You can add forms, links, and buttons by
using standard HTML, and the browser renders your new controls without requiring a new release of
the browser. In the “olden days,” it didn’t work this way. If we released a new version of our server-side
application with new functionality, we often had to release a new version of the client code to pair with
it. Browsers changed this expectation.

We now live in a world where “rich clients” are coming back in the form of apps on people’s devices.
We could just have phones access web pages, but for various reasons, people (and companies) want native
apps as icons that they can touch on their devices. So how can we get rich native apps back, while still
benefitting from the configurability of the browser? Hypermedia. We send not only the data, but also the actions the user can take on the data, along with a representation of how to trigger that
action.

So far, the RESTful API calls and JSON responses in this book have been isolated (without reference
to other calls). Each JSON response from the Speakers API has just contained data about the speaker, but
without providing any information about other related resources and actions.

Hypermedia enables a REST API to guide its Consumers on the following:

	
Links to other related resources (e.g., other APIs). For example, a Conference API could
provide links to the Reservation, Speaker, or Venue APIs so that Consumers could learn more about the
conference and the speakers, and purchase a ticket.

	
Semantics on the data returned by an API. This metadata documents the data in the JSON response,
and defines the meaning of the data elements.

	
Additional actions that they can take on the current resource exposed by the API. For example,
a Speakers API could provide more than just CRUD operations. How about a set of links that lead and
guide a speaker through the speaker proposal process (in order to speak at a conference)?

Hypermedia groups resources together and guides a Consumer through a series of calls to achieve a
business result. Think of Hypermedia as the API equivalent of a web-based shopping cart that leads the
Consumer through the buying process and (hopefully) to an eventual purchase. A Hypermedia format provides
a standard way for Consumers to interpret and process the link-related data elements from an API response.

In this chapter, we’ll show how to compare these well-known JSON-based Hypermedia formats:

	
Siren

	
JSON-LD

	
Collection+JSON

	
json:api

	
HAL

Comparing Hypermedia Formats

We’ll use the Speaker data from previous chapters to drive the discussion of Hypermedia formats.
The following invocation to the fictitious myconference Speakers API might return:

GET http://myconference.api.com/speakers/123456

{
 "id": "123456",
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
}

To see a list of a speaker’s presentations, make another API call:

GET http://myconference.api.com/speakers/123456/presentations

[
 {
 "id": "1123",
 "speakerId": "123456",
 "title": "Enterprise Node",
 "abstract": "Many developers just see Node as a way to build web APIs ...",
 "audience": [
 "Architects",
 "Developers"
]
 },
 {
 "id": "2123",
 "speakerId": "123456",
 "title": "How to Design and Build Great APIs",
 "abstract": "Companies now leverage APIs as part of their online ...",
 "audience": [
 "Managers",
 "Architects",
 "Developers"
]
 }
]

Let’s see how to represent the Speaker and Presentation APIs
using several Hypermedia formats.

Defining Key Terms

Before we go further, let’s define a couple of key terms related to REST:

	Resource

	
Anything that holds data—an Object, a Document, or a Service (e.g., Stock Quote). A
resource can be related to other resources. A resource is an endpoint that has a URI.

	Representation

	
The current state of a resource, expressed in JSON or XML.

My Opinion on Hypermedia

All architects and developers have opinions that shape the way they evaluate a particular technology.
Before we review and compare each Hypermedia format, I’ll let you know my opinion on Hypermedia.
Hypermedia is powerful and provides rich meta-data to the data returned by an API, but it is
controversial. Many people love it, and other people hate it, and I’m somewhere between these two
groups.

Many people in the REST and Hypermedia communities believe that adding meta-data on operations and semantic
data definitions to a JSON payload is helpful. I respect everyone’s opinion, but I believe in the use
of links to other resources only for these reasons:

	
Additional information on operations and data definitions is unnecessary if you document your API
properly in the first place. Why should the JSON data returned from each API call return information
on actions and data types? This seems like clutter when you have the following situations:

	
OpenApi (formerly Swagger),
RAML, and API Blueprint
can all provide this information in an API’s documentation.

	
JSON Schema describes the data types for the JSON data representation.

	
Hypermedia adds complexity to the JSON payload returned by an API. With richer/more functional Hypermedia
formats, the following are true:

	
The original data representation is altered and difficult to interpret. Most of the formats shown
in this chapter alter or embed the original data representation of the resource, which
makes it harder for Consumers to understand and process.

	
You have to spend more time and effort to explain how to use your API, and Consumers will move on to
something simpler.

	
The payload is larger and takes up more network bandwidth.

	
Simple links to other related resources are great because they guide an API Consumer through
the use of your API(s) without altering the original JSON data representation.

Siren

Structured Interface for Representing Entities (Siren) was developed in 2012.
It was designed to represent data from Web APIs, and works with both JSON and XML.
You can find Siren on GitHub.
Siren’s Internet Assigned Numbers Authority (IANA)
media type is application/vnd.siren+json.

The key concepts in Siren are as follows:

	Entities

	
An Entity is a resource that is accessible with a URI. It has properties and Actions.

	Actions

	
Actions that can be taken on an Entity.

	Links

	
Navigational links to other Entities.

Example 8-1 shows the Speaker data in Siren format based on the following HTTP Request:

GET http://myconference.api.com/speakers/123456
Accept: application/vnd.siren+json

Example 8-1. data/speaker-siren.json

{
 "class": ["speaker"],
 "properties": {
 "id": "123456",
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
 },
 "actions": [
 {
 "name": "add-presentation",
 "title": "Add Presentation",
 "method": "POST",
 "href": "http://myconference.api.com/speakers/123456/presentations",
 "type": "application/x-www-form-urlencoded",
 "fields": [
 {
 "name": "title",
 "type": "text"
 },
 {
 "name": "abstract",
 "type": "text"
 },
 {
 "name": "audience",
 "type": "text"
 }
]
 }
],
 "links": [
 { "rel": ["self"],
 "href": "http://myconference.api.com/speakers/123456"
 },
 {
 "rel": ["presentations"],
 "href": "http://myconference.api.com/speakers/123456/presentations"
 }
]
}

In this example, the speaker Entity is defined as follows:

	
class indicates the class of the resource (in this case, speaker).

	
properties is an Object that holds the representation of the resource. It’s the real data payload from an API response.

	
actions describes the Actions that can be taken on a speaker. In this case, the actions indicate that you can add a presentation to a speaker.

	
links provides links to self (the current resource) and presentations, a URI that returns the list of the speaker’s presentations.

Siren provides excellent metadata for describing the available actions on an Entity (resource).
Siren has classes (types) to describe the data, but does not provide data definitions (semantics) like JSON-LD.

JSON-LD

JavaScript Object Notation for Linking Data (JSON-LD) became a W3C standard in 2014.
It was designed as a data-linking format to be used with REST APIs, and it works with NoSQL databases such
as MongoDB and CouchDB. You can find more information at the main JSON-LD site, and you can find
it on GitHub. The JSON-LD
media type is application/ld+json, and .jsonld is the file extension. JSON-LD has an active community
and large working group because of its status with the W3C.

Example 8-2 shows the Speaker data in JSON-LD format based on the following HTTP Request:

GET http://myconference.api.com/speakers/123456
Accept: application/vnd.ld+json

Example 8-2. data/speaker.jsonld

{
 "@context": {
 "@vocab": "http://schema.org/Person",
 "firstName": "givenName",
 "lastName": "familyName",
 "email": "email",
 "tags": "http://myconference.schema.com/Speaker/tags",
 "age": "age",
 "registered": "http://myconference.schema.com/Speaker/registered"
 },
 "@id": "http://myconference.api.com/speakers/123456",
 "id": "123456",
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true,
 "presentations": "http://myconference.api.com/speakers/123456/presentations"
}

In this example, the @context Object provides the overall context for the Speaker
data representation. In this case, @context does more than merely list the fields.
Rather, @context (in conjunction with @vocab) seeks to provide unambiguous semantic
meaning for each data element that comprises the speaker Object. Here are the specifics:

	
The Schema.org site provides unambiguous definitions for commonly used data
elements such as age and Person.

	
@vocab sets the base type to Person and allows you to
extend it with other fields (e.g., tags or registered) for the speaker.

	
@id is essentially the URI, the unique ID for accessing a particular speaker.

Notice that the core JSON representation of the speaker remains unchanged, which is a major
selling point if you have an existing API. This additive approach makes it easier to adopt
JSON-LD gradually, without breaking your API Consumers. The existing JSON representation is undisturbed,
which enables you to iteratively add the semantics of data linking to your API’s data representation.

Note that http://myconference.schema.com does not exist. Rather, it’s shown for the sake of the
example. If you need a definition that doesn’t exist on Schema.org, you’re free to create
one on your own domain. Just be sure that you provide good documentation.

Example 8-3 shows a speaker’s list of presentations in JSON-LD format based on the following HTTP Request:

GET http://myconference.api.com/speakers/123456/presentations
Accept: application/vnd.ld+json

Example 8-3. data/presentations.jsonld

{
 "@context": {
 "@vocab": "http://myconference.schema.com/",
 "presentations": {
 "@type": "@id",
 "id": "id",
 "speakerId": "speakerId",
 "title": "title",
 "abstract": "abstract",
 "audience": "audience"
 }
 },
 "presentations": [
 {
 "@id": "http://myconference.api.com/speakers/123456/presentations/1123",
 "id": "1123",
 "speakerId": "123456",
 "title": "Enterprise Node",
 "abstract": "Many developers just see Node as a way to build web APIs or ...",
 "audience": [
 "Architects",
 "Developers"
]
 }, {
 "@id": "http://myconference.api.com/speakers/123456/presentations/2123",
 "id": "2123",
 "speakerId": "123456",
 "title": "How to Design and Build Great APIs",
 "abstract": "Companies now leverage APIs as part of their online strategy ...",
 "audience": [
 "Managers",
 "Architects",
 "Developers"
]
 }
]
}

In this example, @context indicates that all the data is related to the concept of
presentations. In this case, we need to define presentations inline because the
http://myconference.schema.com/presentations Object doesn’t exist. If the Object did exist, the
@context would look like this:

 "@context": "http://myconference.schema.com/presentations"

You can try out the preceding example on the JSON-LD Playground.
This is an excellent online tester that validates JSON-LD documents. Use this tool to validate your data
format before writing the code for your API.

JSON-LD by itself does not provide information on operations, nor does it provide semantics on the data
representations. HYDRA is an add-on to JSON-LD that provides a vocabulary to specify client-server
communication.

Here’s where to find more information on HYDRA:

	
Main site

	
W3C community

Example 8-4 shows the list of presentations in JSON-LD format enhanced with HYDRA operations:

GET http://myconference.api.com/speakers/123456/presentations
Accept: application/vnd.ld+json

Example 8-4. data/presentations-operations.jsonld

{
 "@context": [
 "http://www.w3.org/ns/hydra/core", {
 "@vocab": "http://myconference.schema.com/",
 "presentations": {
 "@type": "@id",
 "id": "id",
 "speakerId": "speakerId",
 "title": "title",
 "abstract": "abstract",
 "audience": "audience"
 }
 }
],
 "presentations": [
 {
 "@id": "http://myconference.api.com/speakers/123456/presentations/1123",
 "id": "1123",
 "speakerId": "123456",
 "title": "Enterprise Node",
 "abstract": "Many developers just see Node as a way to build web APIs or ...",
 "audience": [
 "Architects",
 "Developers"
]
 }, {
 "@id": "http://myconference.api.com/speakers/123456/presentations/2123",
 "id": "2123",
 "speakerId": "123456",
 "title": "How to Design and Build Great APIs",
 "abstract": "Companies now leverage APIs as part of their online strategy ...",
 "audience": [
 "Managers",
 "Architects",
 "Developers"
]
 }
],
 "operation": {
 "@type": "AddPresentation",
 "method": "POST",
 "expects": {
 "@id": "http://schema.org/id",
 "supportedProperty": [
 {
 "property": "title",
 "range": "Text"
 }, {
 "property": "abstract",
 "range": "Text"
 }
]
 }
 }
}

Note the following in this example:

	
operation indicates that you can add a presentation with a POST.

	
@context points to the HYDRA domain to add the operation keyword.

	
@vocab adds in the http://myconference.schema.com/ domain and the presentations definition.

JSON-LD by itself is great, because it provides links to other related resources without altering
the original data representation. In other words, JSON-LD does not introduce breaking changes to your API
Consumers. For the sake of simplicity, use JSON-LD without the overhead of HYDRA.

Collection+JSON

Collection+JSON was created in 2011, focuses on handling data items in a collection, and is similar to the
Atom Publication/Syndication formats. You can find more information at the main Collection+JSON site,
and on GitHub.
The Collection+JSON media type is application/vnd.collection+json.

To be valid, a Collection+JSON response must have a top-level collection Object that holds the following:

	
A version

	
An href with a URI that points to self (the original resource that was requested)

Example 8-5 shows the Speaker data in Collection+JSON format based on the following HTTP request:

GET http://myconference.api.com/speakers/123456
Accept: application/vnd.collection+json

Example 8-5. data/speaker-collection-json-links.json

{
 "collection": {
 "version": "1.0",
 "href": "http://myconference.api.com/speakers",
 "items": [
 {
 "href": "http://myconference.api.com/speakers/123456",
 "data": [
 { "name": "id", "value": "123456" },
 { "name": "firstName", "value": "Larson" },
 { "name": "lastName", "value": "Richard" },
 { "name": "email", "value": "larson.richard@myconference.com" },
 { "name": "age", "value": "39" },
 { "name": "registered", "value": "true" }
],
 "links": [
 {
 "rel": "presentations",
 "href": "http://myconference.api.com/speakers/123456/presentations",
 "prompt": "presentations"
 }
]
 }
]
 }
}

Note the following in this example:

	
The collection Object encapsulates the Speaker data.

	
The items Array contains all objects in the Speaker collection. Because we queried by ID, there’s
only one Object in the collection.

	
The data Array contains name/value pairs for each data element that comprises a Speaker.

	
The links Array provides link relationships to resources related to the speaker. Each link is composed
of:

	
A rel key that describes the relation.

	
An href that provides a hyperlink to the presentations for this speaker.

	
A prompt that could be used by HTML forms to reference the speaker collection.

Collection+JSON also provides the ability to read, write, and query items in a collection, but a full
discussion of Collection+JSON is outside the scope of this book. Visit http://amundsen.com/media-types/collection/examples/
for examples, and
http://amundsen.com/media-types/tutorials/collection/tutorial-01.html
for a tutorial.

Collection+JSON does a nice job of providing link relations, but it completely changes the structure
of the Speaker data by converting it to key/value pairs inside the data Array.

json:api

json:api was developed in 2013 and provides conventions for standardizing the format of JSON
requests/responses to/from an API. Although json:api’s main focus is on API request/response data, it also
includes Hypermedia. You can find more information at the main json:api site and on GitHub. The
json:api media type is application/vnd.api+json.

A valid json:api document must have one of the following elements at the top level:

	data

	
The data representation for the resource. This contains resource Objects, each of which must have
a type (specifies the data type) and id (unique resource ID) field.

	errors

	
An Array of error Objects that shows an error code and message for each error encountered by
the API.

	meta

	
Contains nonstandard metadata (e.g., copyright and authors, etc.).

Optional top-level elements include the following:

	links

	
An Object that holds link relations (hyperlinks) to resources related to the primary
resource.

	included

	
An Array of embedded resource Objects that are related to the primary resource.

Example 8-6 shows a list of Speakers in json:api format based on the following HTTP Request:

GET http://myconference.api.com/speakers
Accept: application/vnd.api+json

Example 8-6. data/speakers-jsonapi-links.json

{
 "links": {
 "self": "http://myconference.api.com/speakers",
 "next": "http://myconference.api.com/speakers?limit=25&offset=25"
 },
 "data": [
 {
 "type": "speakers",
 "id": "123456",
 "attributes": {
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
 }
 },
 {
 "type": "speakers",
 "id": "223456",
 "attributes": {
 "firstName": "Ester",
 "lastName": "Clements",
 "email": "ester.clements@myconference.com",
 "tags": [
 "REST",
 "Ruby on Rails",
 "APIs"
],
 "age": 29,
 "registered": true
 }
 },
 ...
]
}

This example works as follows:

	
The links Array provides link relationships to resources related to the speaker. In this case, each
element contains the URI to the related resource. Note that there are no restrictions/qualifications
on the link names, but self is commonly understood as the current resource, and next paginate.

	
The data Array contains a list of the resource objects, each of which has a type (e.g., speakers)
and id to meet the requirements of the json:api format definition. The attributes object holds
the key/value pairs that make up each speaker Object.

Example 8-7 shows how to embed all presentation Objects for a speaker with json:api:

GET http://myconference.api.com/speakers/123456
Accept: application/vnd.api+json

Example 8-7. data/speaker-jsonapi-embed-presentations.json

{
 "links": {
 "self": "http://myconference.api.com/speakers/123456"
 },
 "data": [
 {
 "type": "speaker",
 "id": "123456",
 "attributes": {
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
 }
 }
],
 "included": [
 {
 "type": "presentations",
 "id": "1123",
 "speakerId": "123456",
 "title": "Enterprise Node",
 "abstract": "Many developers just see Node as a way to build web APIs or ...",
 "audience": [
 "Architects",
 "Developers"
]
 }, {
 "type": "presentations",
 "id": "2123",
 "speakerId": "123456",
 "title": "How to Design and Build Great APIs",
 "abstract": "Companies now leverage APIs as part of their online ...",
 "audience": [
 "Managers",
 "Architects",
 "Developers"
]
 }
]
}

In this example, the included Array (part of the json:api specification) specifies
the embedded presentations for the speaker. Although embedding resources reduces the number of API
calls, it introduces tight data coupling between resources because the speaker needs to know the format
and content of the presentation data.

Example 8-8 provides a better way to show relationships between resources with links:

GET http://myconference.api.com/speakers/123456
Accept: application/vnd.api+json

Example 8-8. data/speaker-jsonapi-link-presentations.json

{
 "links": {
 "self": "http://myconference.api.com/speakers/123456",
 "presentations": "http://myconference.api.com/speakers/123456/presentations"
 },
 "data": [
 {
 "type": "speaker",
 "id": "123456",
 "attributes": {
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
 }
 }
]
}

In this example, the links Array shows that the speaker has presentations and provides a URI,
but the speaker resource (and API) doesn’t know about the data in the presentation resource. Plus,
there’s less data for the Consumer to process. This loose coupling enables the presentation data to change
without impacting the Speakers API.

json:api has a rich feature set including standardized error messages, pagination, content
negotiation, and policies for Creating/Updating/Deleting resources. In the past, I’ve borrowed portions of
the json:api specification to create API style guides. Plus, there are excellent libraries for most platforms
that simplify working with json:api. The data Array and its resource Objects (which require a type
and id) alter the JSON data representation, but the rest of the Object remains the same. A full discussion
of json:api is outside the scope of this book; visit the JSON API page for examples, and the full specification.

HAL

Hypertext Application Language (HAL) became an IETF standard in 2012.
It was designed as a way to link resources using hyperlinks, and works with either JSON or XML.
You can find more information at the main HAL site and on
GitHub.
The HAL media types are application/hal+json and application/hal+xml.

HAL’s format is simple, readable, and doesn’t alter the original data representation. HAL is a popular media
type, and is based on the following:

	Resource Objects

	
Resources contain links (contained in a _links Object), other resources, and embedded
resources (e.g., an Order contains items) contained in an _embedded Object.

	Links

	
Links provide target URIs that lead to other external resources.

Both the _embedded and _links objects are optional, but one must be present
as the top-level object so that you have a valid HAL document.

Example 8-9 shows the Speaker data in HAL format based on the following HTTP Request:

GET http://myconference.api.com/speakers/123456
Accept: application/vnd.hal+json

Example 8-9. data/speaker-hal.json

{
 "_links": {
 "self": {
 "href": "http://myconference.api.com/speakers/123456"
 },
 "presentations": {
 "href": "http://myconference.api.com/speakers/123456/presentations"
 }
 },
 "id": "123456",
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
}

This example works as follows:

	
The _links object contains link relations, each of which shows the semantic meaning of a link.

	
href is required within a link relation. The value of an href
must be a valid URI (see RFC 3986)
or URI Template (see RFC 6570).

	
The link relations are as follows:

	
self is a link to the current speaker resource (self).

	
presentations are the presentations that this speaker will deliver. In this case,
the presentations Object describes the relationship between the current resource and the
http://myconference.api.com/speakers/123456/presentations hyperlink (through the href key).

	
Note that next and find are not HAL keywords. HAL allows you to have
custom names for link objects.

Let’s make the example more interesting by getting a list of speakers, as shown in Example 8-10.

GET http://myconference.api.com/speakers
Accept: application/vnd.hal+json

Example 8-10. data/speakers-hal-links.json

{
 "_links": {
 "self": {
 "href": "http://myconference.api.com/speakers"
 },
 "next": {
 "href": "http://myconference.api.com/speakers?limit=25&offset=25"
 },
 "find": {
 "href": "http://myconference.api.com/speakers{?id}", "templated": true
 }
 },
 "speakers": [
 {
 "id": "123456",
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
 },
 {
 "id": "223456",
 "firstName": "Ester",
 "lastName": "Clements",
 "email": "ester.clements@myconference.com",
 "tags": [
 "REST",
 "Ruby on Rails",
 "APIs"
],
 "age": 29,
 "registered": true
 },
 ...
]
}

This example works as follows:

	
In addition to self, here are the following link relations:

	
next indicates the next set of speaker resources. In other words, this is a way to provide pagination
for an API. In this case, the limit parameter indicates that 25 speaker Objects will be returned in
each API call. The offset parameter indicates that we’re at the 26th Object in the list. This convention
is similar to Facebook’s pagination style.

	
find provides a hyperlink to find an individual speaker with a templated link, where
{?id} indicates to the caller that they can find the speaker by id in the URI. The templated key
indicates that this is a templated link.

	
The JSON data representation remains unchanged.

Returning to our first example, let’s embed all presentation Objects for a speaker, as shown in Example 8-11:

GET http://myconference.api.com/speakers/123456
Accept: application/vnd.hal+json

Example 8-11. /data/speaker-hal-embed-presentations.json

{
 "_links": {
 "self": {
 "href": "http://myconference.api.com/speakers/123456"
 },
 "presentations": {
 "href": "http://myconference.api.com/speakers/123456/presentations"
 }
 },
 "_embedded": {
 "presentations": [
 {
 "_links": {
 "self": {
 "href": "http://myconference.api.com/speakers/123456/presentations/1123"
 }
 },
 "id": "1123",
 "title": "Enterprise Node",
 "abstract": "Many developers just see Node as a way to build web APIs ...",
 "audience": [
 "Architects",
 "Developers"
]
 },
 {
 "_links": {
 "self": {
 "href": "http://myconference.api.com/speakers/123456/presentations/2123"
 }
 },
 "id": "2123",
 "title": "How to Design and Build Great APIs",
 "abstract": "Companies now leverage APIs as part of their online ...",
 "audience": [
 "Managers",
 "Architects",
 "Developers"
]
 }
]
 },
 "id": "123456",
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
}

In this example, instead of the presentations link relation, we’re using the
_embedded Object to embed the presentation Objects for a speaker. Each presentation Object in turn has a _links Object for related resources.

At first glance, embedding related resources looks reasonable, but I prefer link relations instead for the following reasons:

	
Embedded resources increase the size of the payload.

	
The _embedded Object alters the data representation.

	
It couples the Speakers and Presentation APIs. The Speakers API now has to know about the data structure
of the presentations. With a simple presentations link relation, the Speakers API knows only that there
is a related API.

HAL (minus the embedded resources) is lightweight and provides links to other resources without altering
the data representation.

Conclusions on Hypermedia

Here’s the bottom line on Hypermedia: keep it simple. Maintain the original structure of the resource
representation. Provide solid documentation for your API as part of the design process, and much of the
need for Hypermedia (actions, documentation, data typing) is already taken care of. For me, the most useful
parts of Hypermedia are the links to other resources. Proponents of full Hypermedia may vehemently disagree
(and that’s OK), but here’s my rebuttal:

	
If your API is difficult to understand, people won’t want to use it.

	
The original JSON representation is the most important thing. Don’t alter the structure of the resource
just for the sake of adhering to a Hypermedia format.

With these considerations in mind, I choose a minimal HAL structure (links only, without embedded
resources) as my Hypermedia format. With these caveats, HAL is excellent because it

	
Is the simplest possible thing that can work

	
Is a standard

	
Enjoys wide community support

	
Has solid cross-platform libraries

	
Doesn’t alter my JSON data representation

	
Doesn’t impose requirements for data semantics and operations

	
Does just what I want, and not a bit more

json:api (with links rather than embedded resources) is my second choice for Hypermedia because it
standardizes JSON requests/responses in addition to providing Hypermedia capabilities, and still respects
the integrity and intent of the original JSON data representation. Of the Hypermedia formats that alter the
JSON data representation, json:api appears to have the least impact. Because of its wide
cross-platform support, you can reduce the formatting work by leveraging a json:api library for your
programming language (this shortens and simplifies development). json:api deserves strong consideration
if you need more than just Hypermedia, and you want to standardize JSON requests/responses across all the
APIs in your enterprise (but API design is outside the scope of this book).

JSON-LD (without HYDRA) is my third favorite Hypermedia format because it’s simple and doesn’t change the
JSON data representation. Although the data semantics are not hard to add to an existing API, I don’t see a
need for this, because good API documentation combined with JSON Schema does a better job of defining the
meaning and structure of the data.

Recommendations for Working with Hypermedia

You may disagree with my opinion on Hypermedia, but imagine you’re
the architect or team lead and you’re asking your team to use all aspects of Hypermedia to
develop an API. Would your developers see Hypermedia as being useful or burdensome? Harkening back to
the original days of eXtreme Programming (XP), do the simplest thing that could possibly work.
Use the right tools and techniques for the job, and take the following approach:

	
Document your API properly with OpenApi/Swagger or RAML.

	
Define your data constructs by using JSON Schema.

	
Choose HAL, json:api, or JSON-LD as your Hypermedia format, and start out with simple links to related
resources.

	
Evaluate how well the development process is going:

	
What’s the team velocity?

	
How testable is the API?

	
Ask your API Consumers for feedback. Can they

	
Easily understand the data representation?

	
Read and consume the data?

	
Iterate and evaluate early and often.

Then, see whether you need to add in the operations and data definitions; you probably won’t.

Practical Issues with Hypermedia

Here are some things to think about when you consider adding Hypermedia to an API:

	
Hypermedia is not well understood in the community. When I speak on this topic, many developers
haven’t heard of it, know little about it, or don’t know what it’s used for. Some education is
required even with the simplest Hypermedia format.

	
Lack of standardization. We’ve covered five of the leading formats, but there are more. Only two (HAL and
JSON-LD) in this chapter are backed by a standards body. So there’s no consensus in the community.

	
Hypermedia (regardless of the format) requires additional serialization/deserialization by both the API
Producer and Consumer. So, be sure to choose a widely used Hypermedia format that provides cross-platform
library support. This makes life easier for developers. We’ll cover this in the next section when we test
with HAL.

Testing with HAL in the Speakers API

As in previous chapters, we’ll test against a Stub API (that provides a JSON response) that doesn’t
require us to write any code.

Test Data

To create the stub, we’ll use the Speaker data from earlier chapters as our test data, which is available
on GitHub,
and deploy it as a RESTful API. Again, we’ll leverage the json-server Node.js module to serve up the
speakers.json file as a Web API. If you need to install json-server, refer to “Install npm Modules” in Appendix A.

Here’s how to run json-server on port 5000 from your local machine:

cd chapter-8/data

json-server -p 5000 ./speakers-hal-server-next-rel.json

Visit http://localhost:5000/speakers in Postman (which we used in earlier
chapters), select GET as the HTTP verb, and click the Send button. You should see all the speakers from
our Stub API, as shown in Figure 8-1.

[image: json 08in01]
Figure 8-1. Speakers data in HAL format served by json-server and viewed with Postman

This URI is also viewable from your browser.

Note that we had to massage the Speaker data to work with json-server for this example. Example 8-12 shows the
updated structure that works with HAL.

Example 8-12. data/speakers-hal-server-next-rel.json

{
 "speakers": {
 "_links": {
 "self": {
 "href": "http://myconference.api.com/speakers"
 },
 "next": {
 "href": "http://myconference.api.com?limit=25&offset=25"
 },
 "find": {
 "href": "http://myconference.api.com/speakers{?id}",
 "templated": true
 }
 },
 "speakers": [{
 "id": "123456",
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@myconference.com",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
 }, {
 "id": "223456",
 "firstName": "Ester",
 "lastName": "Clements",
 "email": "ester.clements@myconference.com",
 "tags": [
 "REST",
 "Ruby on Rails",
 "APIs"
],
 "age": 29,
 "registered": true
 }]
 }
}

In this example, the outer speakers Object is needed so that json-server will serve up the file
with the proper URI: http://localhost:5000/speakers. The rest of the data (links Object and
speakers Array) remain the same.

HAL Unit Test

Now that we have the API in place, let’s create a Unit Test. We will continue to leverage Mocha/Chai (within
Node.js), just as we saw in previous chapters. Before going further, be sure to set up your test
environment. If you haven’t installed Node.js yet, then refer to Appendix A, and
install Node.js (see “Install Node.js” and “Install npm Modules”). If you want to follow along
with the Node.js project provided in the code examples, cd to chapter-8/myconference and do the
following to install all dependencies for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s GitHub
repository.

Here are the npm modules in our Unit Test:

	Unirest

	
We’ve used this in previous chapters to invoke RESTful APIs.

	halfred

	
A HAL parser available at https://www.npmjs.com/package/halfred.
The corresponding GitHub repository can be found at https://github.com/basti1302/halfred.

The following Unit Test shows how to validate the HAL response from the (Stub) Speakers API.

Example 8-13. speakers-hal-test/test/hal-spec.js

'use strict';

var expect = require('chai').expect;
var unirest = require('unirest');
var halfred = require('halfred');

describe('speakers-hal', function() {
 var req;

 beforeEach(function() {
 halfred.enableValidation();
 req = unirest.get('http://localhost:5000/speakers')
 .header('Accept', 'application/json');
 });

 it('should return a 200 response', function(done) {
 req.end(function(res) {
 expect(res.statusCode).to.eql(200);
 expect(res.headers['content-type']).to.eql(
 'application/json; charset=utf-8');
 done();
 });
 });

 it('should return a valid HAL response validated by halfred', function(
 done) {
 req.end(function(res) {
 var speakersHALResponse = res.body;

 var resource = halfred.parse(speakersHALResponse);
 var speakers = resource.speakers;
 var speaker1 = null;

 console.log('\nValidation Issues: ');
 console.log(resource.validationIssues());
 expect(resource.validationIssues()).to.be.empty;
 console.log(resource);
 expect(speakers).to.not.be.null;
 expect(speakers).to.not.be.empty;
 speaker1 = speakers[0];
 expect(speaker1.firstName).to.not.be.null;
 expect(speaker1.firstName).to.eql('Larson');
 done();
 });
 });
});

This Unit Test runs as follows:

	
beforeEach(function() runs before each test, and does the following:

	
Sets up the halfred library to validate HAL by invoking halfred.enableValidation()

	
Invokes the Stub API at the following URI: http://localhost:5000/speakers

	
The 'should return a 200 response' test ensures that the Stub API has a successful HTTP response.

	
The 'should return a valid HAL response validated by halfred' test is the main test, and does the
following:

	
Invokes halfred.parse() to parse the HAL response from the Stub API. This call returns a halfred
Response object that contains the HAL links and the remaining JSON payload. Please see the halfred
documentation for more information

	
Uses chai to check for validation errors in the HAL response by testing resource.validationIssues().
We’ll see this call in action when we test with invalid data in our second run of the Unit Test that follows

	
Uses chai to ensure that the Response object still contains the original speakers Array in the
payload

When you run the Unit Test with npm test, it will pass because the Stub API produces valid HAL data. You
should see the following:

[image: json 08in02]

Now that we’ve shown how to validate HAL data, we’ll change the data served up by the Stub API so that it
responds with invalid HAL data. Let’s remove the link to self in the _links object as shown in Example 8-14.

Example 8-14. data/speakers-hal-server-next-rel-invalid.json

{
 "speakers": {
 "_links": {
 "next": {
 "href": "http://myconference.api.com?limit=25&offset=25"
 },
 "find": {
 "href": "http://myconference.api.com/speakers{?id}",
 "templated": true
 }
 },
 ...
 }
}

Remember that the HAL specification requires the _links object to contain a reference to self.
Restart json-server with the invalid HAL data as follows:

cd chapter-8/data

json-server -p 5000 ./speakers-hal-server-next-rel-invalid.json

Rerun the test, and you should see that halfred catches the HAL validation issue and that the test now
fails:

[image: json 08in03]

Server-Side HAL

We’ve shown how to use HAL from the client side with Unit Tests, but the server-side was deployed as a Stub
(using json-server and a JSON file that follows the HAL specification). We have limited server-side coverage
throughout this book to keep the focus on JSON. But here are some server-side libraries that will enable
your RESTful APIs to render HAL-based responses:

	Java

	
Spring HATEOS provides HAL support for Spring-based RESTful APIs in Java. You can find a good
tutorial in the Spring documentation.

	Ruby on Rails

	
The roar gem provides HAL support for Ruby on Rails.

	JavaScript/NodeJS

	
express-hal
adds HAL to Express-based NodeJS RESTful APIs.

Regardless of your development platform and which Hypermedia format you choose, be sure to do a spike
implementation to test a library before committing to it as a solution. It’s important to ensure that the
library is easy to use and that it doesn’t get in the way.

Going Deeper with Hypermedia

We’ve just scratched the surface with Hypermedia in this chapter. Here are a couple resources that will
take you further:

	
RESTful Web APIs, by Leonard Richardson et al. (O’Reilly)

	
REST in Practice: Hypermedia and Systems Architecture, by Jim Webber et al. (O’Reilly)

What We Covered

We’ve shown how JSON and Hypermedia work together by doing the following:

	
Comparing some of the well-known JSON-based Hypermedia formats

	
Discussing considerations for adding Hypermedia to an API

	
Leveraging HAL to support testing with the Speakers API

What’s Next?

Now that we’ve shown how JSON works with Hypermedia, we’ll move on to Chapter 9 to show how JSON works with
MongoDB.

Chapter 9. JSON and MongoDB

MongoDB is a NoSQL database that enables developers to persist data in document form. This document-based
approach works well with JSON, which is also document-oriented. The MongoDB data model is
hierarchical, and supports rich data types similar to those we’ve seen in typical JSON documents.
Just like JSON documents, MongoDB documents integrate well with Object-Oriented platforms because
documents are compatible with Objects, so developers can move data in/out of the database with little
or no extra mapping logic. This approach is intuitive to developers and reduces development effort needed
to access the database.

In this chapter, we’ll show how to do the following:

	
Import a JSON document into MongoDB

	
Perform core CRUD operations with MongoDB

	
Export MongoDB data to a JSON document

	
Access MongoDB as a Mock/Stub RESTful API (without writing code)

This chapter focuses on using JSON with MongoDB and provides just enough information to work
with the database. This chapter doesn’t cover how to develop applications with MongoDB because that
would fill an entire book. For a full description of the rich functionality provided by MongoDB, I
recommend reading MongoDB in Action, 2nd Ed by Kyle Banker et al. (Manning).

What About BSON?

You may have seen references to Binary JSON (BSON) in the MongoDB documentation. BSON is a binary data
format that MongoDB uses internally to serialize JSON documents. See the following for further
details:

	
BSON specification

	
MongoDB

You can also use BSON to add richer data types to a JSON document.

But for our purposes in this chapter:

	
JSON is all you need to know to access the database.

	
JSON is the external interface to MongoDB, and BSON is used only internally by MongoDB.

MongoDB Setup

Before we go any further, let’s install MongoDB. Refer to “Install MongoDB” in Appendix A. With MongoDB in place, you’ll be able to run and build on the examples in this chapter.

MongoDB Server and Tools

MongoDB comprises the following:

	
The MongoDB server, mongod.

	
The command shell, which is written in JavaScript.

	
Database drivers, which enable developers to access MongoDB from their platform. 10gen, the creator of
MongoDB, provides support for many languages, including Java, Ruby, JavaScript, Node.js, C++, C#/.Net, and
many others. Check the MongoDB site for the official supported drivers.

	
Command-line tools:

	
mongodump and mongorestore are backup and restore utilities.

	
mongoexport and mongoimport are utilities to export/import CSV, TSV, and JSON data to/from MongoDB.

	
mongostat monitors database performance (e.g., number of connections and memory usage).

MongoDB Server

The mongod process is similar to other database servers; it accepts connections and processes
commands for Create/Read/Update/Delete (CRUD) operations on the data. Let’s start mongod from the
(macOS and Linux) command line:

mongod &

If MongoDB was installed properly, the log from the initial startup should look similar to this:

2016-06-29T11:05:37.960-0600 I CONTROL [initandlisten] MongoDB starting : pid...
2016-06-29T11:05:37.961-0600 I CONTROL [initandlisten] db version v3.2.4
2016-06-29T11:05:37.961-0600 I CONTROL [initandlisten] git version: e2ee9ffcf...
2016-06-29T11:05:37.961-0600 I CONTROL [initandlisten] allocator: system
2016-06-29T11:05:37.961-0600 I CONTROL [initandlisten] modules: none
2016-06-29T11:05:37.961-0600 I CONTROL [initandlisten] build environment:
2016-06-29T11:05:37.961-0600 I CONTROL [initandlisten] distarch: x86_64
2016-06-29T11:05:37.961-0600 I CONTROL [initandlisten] target_arch: x86_64
2016-06-29T11:05:37.961-0600 I CONTROL [initandlisten] options: { config: "/u...
2016-06-29T11:05:37.962-0600 I - [initandlisten] Detected data files in...
2016-06-29T11:05:37.963-0600 W - [initandlisten] Detected unclean shutd...
2016-06-29T11:05:37.973-0600 I JOURNAL [initandlisten] journal dir=/usr/local...
2016-06-29T11:05:37.973-0600 I JOURNAL [initandlisten] recover begin
2016-06-29T11:05:37.973-0600 I JOURNAL [initandlisten] info no lsn file in jo...
2016-06-29T11:05:37.973-0600 I JOURNAL [initandlisten] recover lsn: 0
2016-06-29T11:05:37.973-0600 I JOURNAL [initandlisten] recover /usr/local/var...
2016-06-29T11:05:37.974-0600 I JOURNAL [initandlisten] recover applying initi...
2016-06-29T11:05:37.976-0600 I JOURNAL [initandlisten] recover cleaning up
2016-06-29T11:05:37.976-0600 I JOURNAL [initandlisten] removeJournalFiles
2016-06-29T11:05:37.977-0600 I JOURNAL [initandlisten] recover done
2016-06-29T11:05:37.996-0600 I JOURNAL [durability] Durability thread started
2016-06-29T11:05:37.996-0600 I JOURNAL [journal writer] Journal writer thread...
2016-06-29T11:05:38.329-0600 I NETWORK [HostnameCanonicalizationWorker] Start...
2016-06-29T11:05:38.330-0600 I FTDC [initandlisten] Initializing full-time...
2016-06-29T11:05:38.330-0600 I NETWORK [initandlisten] waiting for connection...
2016-06-29T11:05:39.023-0600 I FTDC [ftdc] Unclean full-time diagnostic da...

Out of the box, mongod listens on port 27017, but you can change the port as follows:

mongod --port <your-port-number>

To stop the server, type the following from the command line:

kill <pid>

Here, <pid> is the Process ID (PID) of the mongod process.
Never use kill -9 because this could corrupt the database.

Importing JSON into MongoDB

Now that we have the server up and running, let’s import our Speaker data into the database.
We’ll leverage the mongoimport tool to upload the speakers.json file into MongoDB. Even though we’ve
been using the same Speaker data throughout the book, we need to remove the following outer root document
and the Array name:

{
 "speakers": [
]
}

The speakers.json file now looks like Example 9-1.

Example 9-1. speakers.json

[
 {
 "fullName": "Larson Richard",
 "tags": [
 "JavaScript",
 "AngularJS",
 "Yeoman"
],
 "age": 39,
 "registered": true
 }, {
 "fullName": "Ester Clements",
 "tags": [
 "REST",
 "Ruby on Rails",
 "APIs"
],
 "age": 29,
 "registered": true
 }, {
 "fullName": "Christensen Fisher",
 "tags": [
 "Java",
 "Spring",
 "Maven",
 "REST"
],
 "age": 45,
 "registered": false
 }
]

This change was needed because we don’t want to insert the contents of the JSON file as an entire
document. If we did that, the result would be a single speakers Array document in the database.
Instead, we want a simple collection of individual speaker documents, each of which corresponds to a
speaker Object from the input file.

When you execute mongoimport from the command line, you should see this:

[image: json 09in01]

In this example, we used the following:

	
mongoimport to import the speakers JSON file into the speakers collection in the jsaw database.

	
mongo to access MongoDB, and select all documents from the speakers collection. See the
next section for further details.

Table 9-1 shows how basic MongoDB concepts relate to relational databases.

Table 9-1. MongoDB and relational databases

	MongoDB
	Relational

	Database

	Database instance

	Collection

	Table

	Document

	Row

MongoDB Command Shell

Now that the MongoDB server is up and running with some data, it’s time to access the database and start
working with the Speaker data. The mongo shell (which was shown in the previous example) provides MongoDB access from the
command line. Start mongo as follows:

[image: json 09in02]

mongo defaults to the test database. We’ll use another database called jsaw (JSON at Work)
to keep the Speaker data separate:

[image: json 09in03]

The use command switches context to the jsaw database so that all future commands will affect only
that database. But you may be wondering how the jsaw database was created. This happens in two ways:

	
Through the mongoimport tool. The --db=jsaw and --collection-speakers command-line options from the
initial import created the speakers collection in the jsaw database.

	
By inserting a document into a collection from the mongo shell. We’ll show how to do this in the next
section.

To exit the shell, type exit at the prompt. This ends the shell session and returns control back
to the command line.

Basic CRUD with mongo

We’ve worked with some basic operations with the mongo shell, and now we’ll use it for CRUD
operations to modify the Speaker data. The MongoDB query language used in
the shell is based on JavaScript, which makes it easy to access JSON-based documents.

Query documents

Here’s how to get all documents in the speakers collection (which was just imported into MongoDB):

[image: json 09in04]

Here’s a breakdown of the shell command (db.speakers.find()):

	
Shell commands start with db.

	
speakers is the collection name.

	
The find() without a query parameter returns all documents from the speakers collection.

Going back to the shell output, notice that the data returned looks like JSON, and it’s so close.
Copy the output from the shell and paste it into JSONLint.
Click the Validate JSON button, and you’ll see that it complains about the _id field.
MongoDB inserted the _id field (an Object ID that serves as a Primary Key) when mongoimport
imported the Speakers data from the JSON input file and created the speakers collection. The output from the MongoDB
shell is not valid JSON because of the following:

	
It lacks the surrounding Array brackets ([]).

	
The ObjectId(…) is not a valid JSON value. Valid values include Numbers, Booleans, and double-quoted
Strings.

	
There are no commas to separate the speaker documents.

We’ve shown how to import valid JSON into MongoDB, and later we’ll show how to export MongoDB
collections as valid JSON after going through the remaining CRUD operations.

To return only those speakers who are present on REST, add a query to the find() method:

[image: json 09in05]

In this example, we added a query, {tags:'REST’}, which returns only speaker documents
that contain the value 'REST' in their tags Array. The MongoDB query language is based on
JavaScript Object Literal syntax. JavaScript: The Definitive Guide 6th Ed. by David Flanagan (O’Reilly) can
help you improve your knowledge of JavaScript Objects.

Use the following command to get the number of documents in the speakers collection:

> db.speakers.count()
3

Create a document

The following example shows how to add a new document to the speakers collection:

[image: json 09in06]

This example uses the insert() function with a JavaScript Object Literal containing
the key/value pairs for the new speaker document.

Update a document

Our new speaker, Carl ClojureDev, has decided to add Scala to his technical repertoire.
To add this language to the tags Array, do the following:

[image: json 09in07]

This example uses the update() function as follows:

	
The {fullName: 'Carl ClojureDev'} query finds the speaker document to update.

	
The $push operator adds 'Scala' to the tags Array. This is similar to the push() function
in JavaScript.

Note that many other operators support the update() function, such as $set, but
be careful because it sets a field to a completely new value.

Delete a document

Finally, let’s delete the Carl Clojuredev speaker from the collection:

[image: json 09in08]

Here we use the remove() function with the {fullName: 'Carl ClojureDev'} query to
delete only that document. Subsequent calls to find() show that this document was deleted
without affecting the rest of the documents in the speakers collection.

Exporting from MongoDB to a JSON Document

Now that we’re comfortable with the MongoDB server and shell, let’s export the data to a valid JSON
document. Use the mongoexport tool as follows, and you should see this:

json-at-work => mongoexport --db=jsaw --collection=speakers --pretty --jsonArray
2016-06-30T12:58:32.270-0600	connected to: localhost
[{
	"_id": {
		"$oid": "577549ee061561f7f9be9725"
	},
	"fullName": "Larson Richard",
	"tags": [
		"JavaScript",
		"AngularJS",
		"Yeoman"
],
	"age": 39,
	"registered": true
},
{
	"_id": {
		"$oid": "577549ee061561f7f9be9726"
	},
	"fullName": "Ester Clements",
	"tags": [
		"REST",
		"Ruby on Rails",
		"APIs"
],
	"age": 29,
	"registered": true
},
{
	"_id": {
		"$oid": "577549ee061561f7f9be9727"
	},
	"fullName": "Christensen Fisher",
	"tags": [
		"Java",
		"Spring",
		"Maven",
		"REST"
],
	"age": 45,
	"registered": false
}]

2016-06-30T12:58:32.271-0600	exported 3 records

The mongoexport command in the above example pulls the data from the speakers collection in the jsaw
database and pretty-prints a JSON array to Standard Output. This is a good start, but we need to remove the
MongoDB Object ID (_id) so we have valid JSON and can use the data outside MongoDB. Other
tools are needed to filter out the _id field because the mongoexport utility will always output the _id.

We can get the JSON format we want by combining tools, and jq is just the right tool for the job.
As you’ll recall from Chapter 6, jq is an amazing command-line utility that not only
searches JSON but also has excellent filtering capabilities. jq doesn’t provide the full-blown JSON Transform
capabilities of Handlebars (see Chapter 7), but it’s more than adequate for our needs.
By piping the output from mongoexport to jq, you should see the following:

[image: json 09in09]

The output is everything we’re looking for: a valid JSON Array of speaker Objects without the MongoDB
Object ID. Here’s a breakdown of the command line:

	
The mongoexport command is as follows:

	
--db=jsaw --collection=speakers specifies the speakers collection in the jsaw database.

	
--pretty --jsonArray ensures that the output is a pretty-printed JSON array.

	
The mongoexport output goes to Standard Output and gets piped to jq.

	
The jq expression [.[] | del(._id)] works as follows:

	
The outer array brackets ([]) ensure that the JSON Array, Objects, and Fields/Keys are preserved in the
final output.

	
The .[] tells jq to look at the whole Array.

	
The pipe to the del(._id) command tells jq to delete the _id field from the output.

	
The jq output goes to Standard Output, which could serve as input to a file.

This is a practical example of the power of jq. Although the jq syntax is a bit terse, it’s
a great addition to your JSON toolbelt. For more details on jq, refer to Chapter 6. You can
also visit the jq manual.

What About Schema?

MongoDB is schemaless, which means that the database neither validates data nor does it requires a Schema
in order to store data. But the data stored in each document still has a structure that applications
expect so that they can reliably work with collections and documents. Object Document Mappers (ODMs)
provide additional features on top of MongoDB:

	
A Schema that validates the data and enforces a common data structure

	
Object modeling

	
Object-based data access

There is no single, cross-platform ODM for MongoDB. Rather, each platform has its own library.
Node.js developers typically use Mongoose.
Here’s a brief example of how to specify a speaker Schema, create a model, and insert a speaker into the
database:

var mongoose = require('mongoose');
var Schema = mongoose.Schema;
mongoose.connect('mongodb://localhost/jsaw');

// Specify the Speaker schema.

var speakerSchema = new Schema({
 fullName: String,
 tags: [String],
 age: Number,
 registered: Boolean
});

// Create the Speaker model.

var Speaker = mongoose.model('Speaker', speakerSchema);

var speaker = new Speaker({
 fullName: 'Carl ClojureDev',
 tags: ['Clojure', 'Functional Programming'],
 age: 45,
 registered: false
});

speaker.save(function (err) {
 if (err) {
 console.log(err);
 } else {
 console.log('Created Speaker: ' + speaker.fullName);
 }
});

A Mongoose model is a constructor based on a Schema, and it encapsulates the details of accessing a MongoDB
collection. A Mongoose document is an instance of a model, and provides access to a MongoDB document. A
Mongoose Schema is not the same thing as a JSON Schema. The json-schema-to-mongoose Node.js module can convert a JSON Schema to an equivalent Mongoose Schema, but this is left as an exercise for
you. In addition to creating a document, Mongoose also provides the ability to read (find()),
update (save() or update()), and delete (remove()) a document.

Other platforms have their own ODMs for accessing MongoDB:

	Java

	
Spring users can leverage Spring Data, which
provides POJO mapping to MongoDB. Hibernate OGM
provides Java Persistence API (JPA) support for NoSQL databases, including MongoDB.

	Ruby

	
Mongoid, which is officially supported by MongoDB.

RESTful API Testing with MongoDB

The MEAN Stack is outside the scope of this book, so we can’t do justice to the topic in this chapter
and stay focused on JSON. Let’s do something different with MongoDB, and leverage it as a Mock/Stub RESTful
API instead. Mock/Stub RESTful APIs are great:

	
There’s no coding involved, which frees developers from the drudgery of developing and maintaining
infrastructure code. Instead, developers can focus on useful code that delivers business value—the
business logic of the API.

	
It pushes the API development team to create an initial design for their API before they start coding.
This is also known as “API First” design. By doing it this way, developers are less likely to expose the
implementation details of domain Objects and databases because they are designing to an interface (because
the Stub API has no implementation).

	
API consumers have a viable Stub version of an API without having to wait for the completion
of the real API.

	
API developers now have enough time to develop the API properly without having to rush to “get something
out the door” to support their consumers.

	
API developers can gain early feedback on the usability of the API from their consumers and use this
information to iteratively update their design and implementation.

Test Input Data

We’ll continue to use the Speaker data that we imported earlier in this chapter.

Providing a RESTful Wrapper for MongoDB

According to the MongoDB documentation,
there are several solid REST interfaces (that run as separate servers in front of MongoDB), including these:

	Crest

	
Based on Node.js, Crest provides full CRUD (HTTP GET, PUT, POST, and DELETE) capabilities.
You can find details at the GitHub repository.

	RESTHeart

	
This is Java-based, provides full CRUD functionality, and is available at http://www.restheart.org.

	DrowsyDromedary

	
Based on Ruby, this server provides full CRUD capabilities. You can find it on GitHub.

	Simple REST API

	
This is provided by default as part of MongoDB, but it works only with HTTP GET, and
doesn’t provide full REST capabilities (PUT, POST, and DELETE). For further information, see the
Simple REST API documentation at the RESTHeart site.

Either Crest, RESTHeart, or DrowsyDromedary will meet our needs here because they can all handle CRUD
requests from Consumers by supporting all major HTTP verbs. Let’s go with Crest because it’s simple to
install and set up. Refer to Appendix A, and install Crest (see “Install npm Modules”). Then, navigate to the crest directory on your local machine and start the
Crest server by typing node server on the command line. You should see the following:

node server

DEBUG: util.js is loaded
DEBUG: rest.js is loaded
crest listening at http://:::3500

Then, open your browser and enter the following URL: http://localhost:3500/jsaw/speakers.
This tells Crest to do a GET (read/find) on the speakers collection in the jsaw
database on MongoDB. You should see the screen in Figure 9-1.

[image: json 09in10]
Figure 9-1. Speakers data served by MongoDB/Crest and viewed from the browser

This is a good start, but you can’t do full API testing with your browser because it can only send an HTTP
GET request. Let’s use Postman (from earlier chapters) to fully exercise the Crest/MongoDB-based
Speakers API. Enter the http://localhost:3500/jsaw/speakers URL,
select GET as the HTTP verb, and click the Send button. You should see the screen in Figure 9-2.

[image: json 09in11]
Figure 9-2. Speakers data served by MongoDB/Crest and viewed from Postman

This is what we saw before in the browser, but now we have the ability to modify the data represented by
the API. Let’s delete one of the speaker Objects. First, copy the id for one of the speaker Objects,
and add it to the URL http://localhost:3500/jsaw/speakers/id (where id is the Object ID that you copied).
Then (in Postman) choose DELETE as the HTTP verb, and click the Send button. You should see the
following in the HTTP Response:

{
 "ok": 1
}

Now, go back and do another GET on http://localhost:3500/jsaw/speakers and you should see that
Crest invoked MongoDB to delete the selected speaker.

We now have a fully functional Stub REST API that accesses MongoDB and produces valid JSON output, without
the need to write code or set up big infrastructure. Use this style of workflow to streamline your API
Design and testing, and watch your team’s productivity soar.

What We Covered

In this chapter, we’ve shown the basics of how JSON and MongoDB work together by covering these topics:

	
Importing a JSON document into MongoDB

	
Performing core CRUD operations with MongoDB

	
Exporting MongoDB data to a JSON document

	
Accessing MongoDB as a Mock/Stub RESTful API (without writing code)

What’s Next?

Now that we’ve shown the synergy between JSON and MongoDB, we’ll move on to the final
stage of our Enterprise JSON journey and put everything together as we describe how JSON
works with Apache Kafka in Chapter 10.

Chapter 10. JSON Messaging with Kafka

Apache Kafka is a popular distributed scalable messaging system that enables heterogenous
applications (those that run on multiple platforms) to communicate asynchronously by passing messages. Kafka was originally developed by the LinkedIn engineering team as part of a major rearchitecture effort.
After the company moved from monolithic applications to Microservices, they created Kafka to fill the need
for a universal data pipeline capable of processing large message volumes in order to integrate the services
and applications across their enterprise. In 2011, LinkedIn open sourced Kafka to the Apache Foundation.
Today, many companies successfully leverage Kafka as the central messaging platform in their enterprise
architecture strategy. You can find more information about Kafka on the Apache Kafka main page.

Kafka differs from other messaging systems (e.g., Java Message Service, or JMS) in that it is not tied to a particular platform.
Although Kafka was written in Java, Producers and Consumers can be written in different languages. To
demonstrate this, we’ll have a Node.js-based Consumer and a Consumer written in Bourne Shell in our end-to-end
example.

Kafka supports both binary and text messages. The most popular text formats are plain/flat text, JSON, and
Apache Avro. The Kafka APIs (used by Producers and Consumers) communicate over TCP. In this chapter, we’ll
use Kafka as a traditional messaging system with JSON-based messages, and show
how to do the following:

	
Produce/consume JSON messages with Kafka from the command line

	
Design and implement a small end-to-end example that leverages Kafka with JSON

Kafka Use Cases

Typical Kafka use cases include the following:

	Traditional messaging

	
Applications publish messages that are consumed by other applications. Kafka uses
an asynchronous (i.e., the sender doesn’t wait for a response) publish/subscribe (or pub/sub) messaging
model that decouples Producers from Consumers.

	Analytics and stream processing

	
Applications publish real-time usage information (e.g., clicks, visitors,
sessions, page views, and purchases) to Kafka Topics. Then a streaming application such as
Apache Spark/Spark Streaming reads messages from the various topics, transforms the data (e.g., map/reduce),
and sends it to a data store such as Hadoop (via Flume). You can add analytics tools (e.g., data visualization) on top of the target data store.

	Operational and application performance netrics

	
Applications can publish statistics (e.g., message counts, number of transactions, response time, HTTP status codes, and counts) for review by operations personnel to monitor and track performance, usage, and potential issues.

	Log aggregation

	
Applications across an enterprise can publish their log messages to a Kafka Topic, which makes them available to log management applications—e.g., the ELK (ElasticSearch, Logstash, Kibana) stack. Kafka could be used in front of Logstash to receive large data volumes and allow Logstash to perform more-expensive operations at its own pace without losing messages.

Kafka Concepts and Terminology

Here are some of the key concepts in Kafka’s architecture:

	Producer

	
Publishes messages to a Topic.

	Consumer

	
Registers for or Subscribes to a Topic and reads messages as they become available.

	Topic

	
A named channel, a message feed/stream for a category of messages. In our example,
new-proposals-recvd contains messages that represent new speaker session proposals at MyConference.
You can also think of a Topic as a stream of business events, including orders and product returns.
A Topic is divided into one or more Partitions.

	Broker

	
A Kafka server that manages one or more Topics.

	Cluster

	
Contains one or more Brokers.

	Partition

	
In a distributed environment, a Topic is replicated across multiple Partitions (each of which
is managed by a separate Broker).

	Offset

	
A unique ID for a message within a Partition. This is how Kafka maintains the ordering and sequencing
of messages.

This is all you need to know in order to produce/consume JSON messages for this chapter.
Many other important areas are not covered in this book in order to maintain brevity and focus, including
Durability, Consumer Groups, Delivery Guarantees, and Replication. Kafka is a big topic that warrants
its own book, and you can find more information in Kafka: The Definitive Guide, by Neha Narkhede et al. (O’Reilly).

For our example, we will have a single Broker (Kafka server), and each Topic will have a single
Partition.

The Kafka Ecosystem—Related Projects

Kafka is a general-purpose messaging system that integrates with other message-processing systems to build
larger, more powerful messaging applications. Kafka’s ecosystem includes, but is not limited to the following:

	Apache Spark/Spark Streaming

	
Used for stream processing (see “Kafka Use Cases”).

	HiveKa

	
Provides integration with
Hive to create a SQL-like interface to Kafka Topics.

	ElasticSearch

	
The standalone Consumer pulls data from Kafka Topics and loads it into ElasticSearch.

	Kafka Manager

	
A management console for Kafka that enables administrators to work with Kafka Clusters, Topics, Consumers,
and so forth.

	Flume

	
Moves large amounts of data from a channel
(e.g., a Kafka topic) to the Hadoop Distributed File System (HDFS).

	Avro

	
A data serialization alternative to pure JSON
that provides richer data structures. Avro is not a standard,
but has its own Schemas (which have no relationship to JSON Schema) that are written in JSON. Avro
is an alternative to JSON that provides richer data structures and a more compact data format. Avro
started as part of Hadoop, and eventually became its own project.

This list is just a small sample of other systems that work with Kafka. See the
Kafka Ecosystem page
for a full description of the Kafka Ecosystem.

Kafka Environment Setup

Before we look at the command-line interface, let’s install Kafka and Apache ZooKeeper to run and build all the
examples in this chapter. Refer to “Install Apache Kafka” in Appendix A,
and install Kafka and ZooKeeper.

Now it’s time to configure Kafka so that it allows us to delete Topics (this setting is turned off by
default). Edit the KAFKA-INSTALL-DIR/KAFKA_VERSION/libexec/config/server.properties file (where KAFKA-INSTALL-DIR
is the directory where your installation procedure installed Kafka, and KAFKA_VERSION is the installed
Kafka version) as follows:

Switch to enable topic deletion or not, default value is false
delete.topic.enable=true

Why Do I Need ZooKeeper?

At this point, you may be wondering why you need ZooKeeper in addition to Kafka. The short answer is that
ZooKeeper is required in order to run Kafka. In other words, Kafka (as a distributed application) is designed
to run within the ZooKeeper environment. ZooKeeper is a server that coordinates distributed processes by
managing the following: naming, status information, configuration, location information, synchronization,
failover, etc. The naming registry uses a hierarchical namespace that is similar to a filesystem.

ZooKeeper is used by several well-known projects, including Kafka, Storm, Hadoop MapReduce,
HBase, and Solr (Cloud Edition), and so forth. To learn more, visit the ZooKeeper main page.

Kafka Command-Line Interface (CLI)

Kafka comes with a built-in CLI that enables developers to experiment with Kafka without leaving the
command line. We’ll demonstrate how to start Kafka, publish JSON messages, and then
shutdown the Kafka infrastructure.

To use the convenience scripts and avoid lots of typing, please be sure to visit the chapter-10/scripts
directory (from the code examples) and change the file permissions so that all scripts will be executable:

chmod +x *.sh

How to Publish a JSON Message with the CLI

Here are the steps (in the required order) to start Kafka and then publish/consume messages:

	
Start ZooKeeper.

	
Start the Kafka server.

	
Create a Topic.

	
Start a Consumer.

	
Publish a message to a Topic.

	
Consume a message.

	
Clean up and shut down Kafka:

	
Stop the Consumer.

	
Delete a Topic.

	
Shutdown Kafka.

	
Stop ZooKeeper.

Start ZooKeeper

As mentioned earlier, Kafka requires ZooKeeper.
To start ZooKeeper, run the following command in a new terminal:

./start-zookeeper.sh

Example 10-1 shows the script.

Example 10-1. scripts/start-zookeeper.sh

zkServer start

You should see the following:

[image: json 10in01]

Start Kafka

Now it’s time to start a Kafka server (from a new terminal):

./start-kafka.sh

The script looks like Example 10-2

Example 10-2. scripts/start-kafka.sh

kafka-server-start /usr/local/etc/kafka/server.properties

In this script, the server.properties file has configuration settings for Kafka. We edited this
file earlier to enable the ability to delete topics.

The Kafka server should now be running. This command prints a lot of logging messages, and you should
see the following when the server reaches the steady state:

[image: json 10in02]

Create a Topic

Next, let’s create the test-proposals-recvd Topic to receive new speaker session proposals.
To create the Topic, run the script as follows (from a new terminal):

./create-topic.sh test-proposals-recvd

The script runs the kafka-topics command as shown in Example 10-3.

Example 10-3. scripts/create-topic.sh

...

kafka-topics --zookeeper localhost:2181 --create \
 --topic $1 --partitions 1 \
 --replication-factor 1

This script works as follows:

	
$1 is the command-line variable that has the Topic name (in this case, test-proposals-recvd).

	
We kept things simple by using only a single partition (an ordered sequence of records)
and one replica for the Topic. A Partition can be replicated across multiple servers for fault tolerance
and load balancing. In a production configuration, you would have multiple replicas to support large
message volumes.

When you run the preceding script, you should see this:

[image: json 10in03]

List Topics

Let’s make sure that the new Topic was created properly by running the following script:

./list-topics.sh

The script uses the kafka-topics command as shown in Example 10-4.

Example 10-4. scripts/list-topics.sh

kafka-topics --zookeeper localhost:2181 --list

You should see that the test-proposals-recvd Topic was created:

[image: json 10in04]

The __consumer_offsets is a low-level, internal Kafka implementation detail—pay no attention to it.
We’re concerned only with the Topic that we created.

Start a Consumer

Now that we have a Topic, it’s time to produce and consume messages. First, we’ll create a Consumer
that subscribes to the test-proposals-recvd topic with the following script:

./start-consumer.sh test-proposals-recvd

This script uses the kafka-console-consumer command as shown in Example 10-5.

Example 10-5. scripts/start-consumer.sh

...

kafka-console-consumer --bootstrap-server localhost:9092 \
 --topic $1

In this script, $1 is the command-line variable that has the Topic name
(in this case, test-proposals-recvd) that the Consumer is listening on.

You should see that the Consumer is now polling/waiting for a new message, so there’s no output yet:

[image: json 10in05]

Publish a JSON Message

It’s now time to publish a JSON message to our topic with the following script (in a new terminal):

./publish-message.sh '{ "message": "This is a test proposal." }' test-proposals-recvd

Example 10-6 provides the script.

Example 10-6. scripts/publish-message.sh

...

echo $MESSAGE_FROM_CLI | kafka-console-producer \
 --broker-list localhost:9092 \
 --topic $TOPIC_NAME_FROM_CLI

...

Note the following in this script:

	
We use echo to print the JSON message to Standard Output and pipe it to the kafka-console-producer
command.

	
$MESSAGE_FROM_CLI is the command-line variable that has the JSON message to publish.

	
$TOPIC_NAME_FROM_CLI is the command-line variable that has the Topic name (in this case,
test-proposals-recvd).

When you publish the message, you should see the following:

[image: json 10in06]

The message doesn’t show in this terminal window.

Consume a JSON Message

When you revisit the terminal window where you started the Consumer, you should see that the Consumer
has read and printed the message from the test-proposals-recvd Topic:

[image: json 10in07]

We now have a simple CLI-based example with Kafka that produces and consumes JSON messages. Now let’s
clean up.

Clean Up and Shut Down Kafka

Here are the steps to clean up and shut down Kafka:

	
Stop the Consumer.

	
Delete a Topic (optional).

	
Stop Kafka.

	
Stop ZooKeeper.

Stop the Consumer

Just hit Ctrl-C in the terminal window where you started the Consumer and you should see the following:

[image: json 10in08]

Delete a Topic

We’ll now delete the test-proposals-recvd Topic with the following script (this is optional):

./delete-topic.sh test-proposals-recvd

Example 10-7 shows the script.

Example 10-7. scripts/delete-topic.sh

...

kafka-topics --zookeeper localhost:2181 --delete --topic $1

In this script, $1 is the command-line variable that has the Topic name
(in this case, test-proposals-recvd).

You should see the following on your screen:

[image: json 10in09]

Stop Kafka

To stop Kafka, just press Ctrl-C in the terminal window where you started Kafka or you
can do a graceful shutdown as follows:

./stop-kafka.sh

Example 10-8 shows the script.

Example 10-8. scripts/stop-kafka.sh

kafka-server-stop

This script uses the kafka-server-stop command to stop the Kafka server. The controlled/graceful
shutdown takes a while and produces a lot of log messages. If you return to the terminal window where you
started the Kafka server, you should see the following message at the end:

[image: json 10in10]

If you deleted the test-proposals-recvd Topic in the previous section, it won’t exist when you restart
Kafka. If you did not delete this Topic, it will be there upon a Kafka restart.

Stop ZooKeeper

Let’s finish up by stopping ZooKeeper. Type the following from the command line:

./stop-zookeeper.sh

Example 10-9 shows the script.

Example 10-9. scripts/stop-zookeeper.sh

zkServer stop

At this point, all the Kafka-related infrastructure should be stopped, and you should see the following:

[image: json 10in11]

Kafka Libraries

Kafka enjoys wide support across the major application development platforms, including the following
libraries:

	Java

	
Spring is widely used for integration within the Java community, and provides support through the
Spring Kafka library.

	Ruby

	
Karafka is a gem you can find on GitHub.

	JS

	
kafka-node is a module we’ll use for the end-to-end example in the next section. You can find more
information on kafka-node on npm and GitHub.

End-to-End Example—Speaker Proposals at MyConference

We’ve shown how to use Kafka at the command line, and we’ll now combine that with Node.js-based applications
that consume and produce messages. For our final example, we’re going to create an application that enables
speakers to submit proposals to speak at MyConference (a fictitious company). Each speaker
will submit a proposal, which is reviewed by a member of the MyConference proposal team. The speaker is
then notified by email on the MyConference reviewer’s decision.

Test Data

We’ll continue to use the Speaker data that we’ve used in previous chapters, but we need to add a few
more elements to make this a fully dressed proposal. Example 10-10 shows the upgraded speaker session proposal.

Example 10-10. data/speakerProposal.json

{
 "speaker": {
 "firstName": "Larson",
 "lastName": "Richard",
 "email": "larson.richard@ecratic.com",
 "bio": "Larson Richard is the CTO of ... and he founded a JavaScript meetup ..."
 },
 "session": {
 "title": "Enterprise Node",
 "abstract": "Many developers just see Node as a way to build web APIs or ...",
 "type": "How-To",
 "length": "3 hours"
 },
 "conference": {
 "name": "Ultimate JavaScript Conference by MyConference",
 "beginDate": "2017-11-06",
 "endDate": "2017-11-10"
 },
 "topic": {
 "primary": "Node.js",
 "secondary": [
 "REST",
 "Architecture",
 "JavaScript"
]
 },
 "audience": {
 "takeaway": "Audience members will learn how to ...",
 "jobTitles": [
 "Architects",
 "Developers"
],
 "level": "Intermediate"
 },
 "installation": [
 "Git",
 "Laptop",
 "Node.js"
]
}

In this example, we have the following Objects:

	speaker

	
The speaker’s contact information.

	session

	
A description of the session, including title and length.

	conference

	
Tells which conference the speaker is applying for. MyConference runs multiple events,
so this is important.

	topic

	
Primary and secondary topics covered in the talk.

	audience

	
The audience level (beginner, intermediate, or advanced).

	installation

	
Installation instructions (if any) that the audience should follow before attending
the session.

Architecture Components

Here are the components needed for the MyConference application:

	Speaker Proposal Producer

	
Uses the publish-message.sh script to send the JSON-based speaker session
proposal on the speaker’s behalf to the new-proposals-recvd Topic. In the real world, this would be
a nice AngularJS application with a solid UX design that invokes a RESTful API, but we’ll stick with an
extremely simple shell script interface to keep the focus on JSON.

	Proposal Reviewer (i.e., Consumer)

	
Listens on the new-proposals-recvd Topic, accepts/rejects a
proposal, and sends a corresponding message to the proposals-reviewed Topic for further processing. In
an enterprise-level architecture, we would put a RESTful API in front to receive the speaker proposal and
then publish the message to the new-proposals-recvd Topic. But again, we’re not showing an API here to
simplify the example.

	Speaker Notifier (i.e., Consumer)

	
Listens on the proposals-reviewed Topic, generates an acceptance/rejection email (based on the reviewer’s decision), and sends a notification email to the speaker.

	Email Server (emulated)

	
Acts as MyConference’s Email Server to send notification emails.

	Email Client (emulated)

	
Serves as the speaker’s Email Client to receive notification emails.

For the Email Client and Server, we’ll use MailCatcher, a simple email emulator to simplify
infrastructure setup.

Figure 10-1 shows the overall flow and the way the components interact.

[image: json 10in12]
Figure 10-1. MyConference Speaker Proposal architecture—components

The flow of this diagram is as follows:

	
The Speaker uses the Speaker Proposal Producer to send a proposal to the new-proposals-recvd Topic
within the MyConference application.

	
The Proposal Reviewer receives a proposal message on new-proposals-recvd Topic, makes a
decision, and sends the acceptance/rejection message to the proposals-reviewed Topic.

	
The Speaker Notifier receives an acceptance/rejection message on the proposals-reviewed Topic, creates
a notification email message, and sends it.

	
The Speaker reviews the notification email message(s).

It’s now time to walk through some code and run the example.

Set Up the Kafka Environment

If you ran through the CLI example, the steps should look familiar (refer to that section if you
need to refresh your memory). We’ll need four terminal sessions to run the example. Do the following to get
started:

	
Create terminal session 1.

	
Start ZooKeeper.

	
Start Kafka.

	
Create terminal session 2.

	
Create the proposals-reviewed Topic.

	
Create the new-proposals-recvd Topic.

With the core Kafka components in place, let’s set up an Email Server to receive acceptance/rejection
notification email messages.

Set Up Fake Email Server and Client—MailCatcher

We’ll use MailCatcher. A Simple Mail (SMTP) server is a great tool for testing emails
without forcing you to send a real email. MailCatcher has the characteristics we need for this example:

	
Follows standards—MailCatcher is based on the Simple Mail Transfer Protocol (SMTP).

	
Easy installation.

	
Simple startup/shutdown.

	
Security is optional. I know this sounds scary, but we don’t want to go through the hassle of setting
up the user ID/password for an email server. For simple examples and prototyping as we’re doing here,
this is OK. Of course, for bigger prototypes and real-world situations, you definitely want to secure
access to your email server. MailCatcher will work well for bigger examples because it can also accept
user credentials.

	
Nice web UI that shows email messages sent to the server.

For more information on MailCatcher, visit its website.

If you haven’t installed Ruby on Rails yet, refer to “Install Ruby on Rails” in
Appendix A, and install it. Install the mailcatcher gem on the command line
(staying in terminal session 2) as follows (also see “Install Ruby Gems” in Appendix A):

gem install mailcatcher

Start the MailCatcher server as follows, and you should see the following on your screen:

json-at-work => mailcatcher
Starting MailCatcher
==> smtp://127.0.0.1:1025
==> http://127.0.0.1:1080
*** MailCatcher runs as a daemon by default. Go to the web interface to quit.

MailCatcher runs as a daemon in the background, which enables you to do other things in the current
terminal session. We’ll visit the MailCatcher web UI after we have some emails to review (see “Review Notification Email Messages with MailCatcher” later in this chapter).

Set Up Node.js Project Environment

The Proposal Reviewer and Speaker Notifier are both written in Node.js. If you haven’t installed Node.js
yet, refer to Appendix A, and install Node.js (see “Install Node.js”
and “Install npm Modules”). If you want to follow along with the Node.js project provided in
the code examples, cd to chapter-10/myconference and do the following to install all dependencies
for the project:

npm install

If you’d like to set up the Node.js project yourself, follow the instructions in the book’s GitHub repository.

Speaker Proposal Producer (Send Speaker Proposals)

We’ll use the publish-message.sh script (that you saw earlier) to send the contents of
the speakerProposal.json file to the new-proposals-recvd Topic.
In the same terminal session (2), run the following command from the scripts directory:

./publish-message.sh -f ../data/speakerProposal.json new-proposals-recvd

The Proposal Reviewer accepts/rejects proposals randomly (see the next section for details),
so you’ll need to run this script three to five times (or more) to get acceptance and rejection and
notification messages for the Speaker.

Proposal Reviewer (Consumer/Producer)

The Proposal Reviewer does the following:

	
Listens on the new-proposals-recvd Topic to receive Speaker session proposals

	
Validates the proposal and decides to accept or reject it

	
Sends the decision on the proposal to the proposals-reviewed Topic for further processing

myconference/proposalReviewer.js includes the full Proposal Reviewer application. Example 10-11 shows the portion of the code (along with setup) that receives the Speaker session proposals on
the new-proposals-recvd Topic.

Example 10-11. myconference/proposalReviewer.js

var kafka = require('kafka-node');

...

const NEW_PROPOSALS_RECEIVED_TOPIC = 'new-proposals-recvd';

...

var consumer = new kafka.ConsumerGroup({
 fromOffset: 'latest',
 autoCommit: true
}, NEW_PROPOSALS_RECEIVED_TOPIC);

// Use incoming JSON message.
// Use JSON.parse() and JSON.stringify() to process JSON.
consumer.on('message', function(message) {
 // console.log('received kafka message', message);
 processProposal(message);
});

consumer.on('error', function(err) {
 console.log(err);
});

process.on('SIGINT', function() {
 console.log(
 'SIGINT received - Proposal Reviewer closing. ' +
 'Committing current offset on Topic: ' +
 NEW_PROPOSALS_RECEIVED_TOPIC + ' ...'
);

 consumer.close(true, function() {
 console.log(
 'Finished committing current offset. Exiting with graceful shutdown ...'
);

 process.exit();
 });
});

Note the following in this example:

	
Use the kafka-node npm module to consume/produce Kafka messages. You can find more information on
kafka-node on the npm site and on GitHub.

	
Listen on and consume messages from the new-proposals-recvd Topic as follows:

	
Instantiate and use the ConsumerGroup Object to consume Kafka messages on the new-proposals-recvd
Topic. The fromOffset: 'latest' parameter indicates that we want to receive the latest message on the
Topic, and autoCommit: true tells the consumer to commit each message automatically after it is consumed
(this marks the message as processed).

	
consumer.on('message' …) listens for a message and invokes processProposal() (more on this later)
to process the incoming Speaker proposal that was just received.

	
consumer.on('error' …) prints an error message for any errors encountered when processing the
message.

	
process.on('SIGINT' …) listens for a SIGINT (process shutdown), commits the current offset, and does a graceful exit:

	
consumer.close(…) commits the current offset. This ensures that the current message is marked as read,
and that the Consumer on this Topic will receive the next message on the topic upon restart.

Example 10-12 shows how to validate the Speaker proposal and make a decision.

Example 10-12. myconference/proposalReviewer.js

...

var fs = require('fs');
var Ajv = require('ajv');

...

const SPEAKER_PROPOSAL_SCHEMA_FILE_NAME =
 './schemas/speakerProposalSchema.json';

...

function processProposal(proposal) {
 var proposalAccepted = decideOnProposal();
 var proposalMessage = proposal.value;
 var proposalMessageObj = JSON.parse(proposalMessage);

 console.log('\n\n');
 console.log('proposalMessage = ' + proposalMessage);
 console.log('proposalMessageObj = ' + proposalMessageObj);
 console.log('Decision - proposal has been [' +
 (proposalAccepted ? 'Accepted' : 'Rejected') + ']');

 if (isSpeakerProposalValid(proposalMessageObj) && proposalAccepted) {
 acceptProposal(proposalMessageObj);
 } else {
 rejectProposal(proposalMessageObj);
 }
}

function isSpeakerProposalValid(proposalMessage) {
 var ajv = Ajv({
 allErrors: true
 });

 var speakerProposalSchemaContent = fs.readFileSync(
 SPEAKER_PROPOSAL_SCHEMA_FILE_NAME);

 var valid = ajv.validate(speakerProposalSchemaContent, proposalMessage);

 if (valid) {
 console.log('\n\nJSON Validation: Speaker proposal is valid');
 } else {
 console.log('\n\nJSON Validation: Error - Speaker proposal is invalid');
 console.log(ajv.errors + '\n');
 }

 return valid;
}

function decideOnProposal() {
 return Math.random() >= 0.5;
}

function acceptProposal(proposalMessage) {
 var acceptedProposal = {
 decision: {
 accepted: true,
 timeSlot: {
 date: "2017-11-06",
 time: "10:00"
 }
 },
 proposal: proposalMessage
 };

 var acceptedProposalMessage = JSON.stringify(acceptedProposal);
 console.log('Accepted Proposal = ' + acceptedProposalMessage);
 publishMessage(acceptedProposalMessage);
}

function rejectProposal(proposalMessage) {
 var rejectedProposal = {
 decision: {
 accepted: false
 },
 proposal: proposalMessage
 };

 var rejectedProposalMessage = JSON.stringify(rejectedProposal);
 console.log('Rejected Proposal = ' + rejectedProposalMessage);
 publishMessage(rejectedProposalMessage);
}

...

After the Proposal Reviewer receives a Speaker proposal message, processProposal() does the following:

	
decideOnProposal() randomly chooses to accept or reject the proposal to keep things simple. In a real
system, an application would put the proposal into someone’s work inbox, and a human would review and make
a decision.

	
JSON.parse() parses the proposal message to ensure that it is syntactically correct (it
follows basic JSON formatting rules).

	
isSpeakerProposalValid() uses the ajv npm module to validate against a JSON Schema (schemas/speakerProposalSchema.json):

	
Chapter 5 covers JSON Schema if you need to refresh your memory.

	
Validating against a JSON Schema ensures that the incoming message is semantically correct (it has all the required fields needed to process a Speaker proposal).

	
You can find more information on ajv on the npm site
and on GitHub.

	
If the Speaker proposal was accepted, acceptProposal() does the following:

	
Creates an acceptance object with fields to indicate that the proposal was accepted, and the time slot
when the speaker will deliver the presentation at the conference

	
Uses JSON.stringify() to convert the acceptance object to JSON

	
Invokes publishMessage() to send the acceptance message to the proposals-reviewed Topic

	
If the Speaker proposal was rejected (or its format was invalid), rejectProposal() does the following:

	
Creates a rejection Object with fields to indicate that the proposal was rejected

	
Uses JSON.stringify() to convert the rejection Object to JSON

	
Invokes publishMessage() to send the rejection message to the proposals-reviewed Topic

Example 10-13 shows how to send an acceptance/rejection message on to the proposals-reviewed Topic.

Example 10-13. myconference/proposalReviewer.js

...

const PROPOSALS_REVIEWED_TOPIC = 'proposals-reviewed';

...

var producerClient = new kafka.Client(),
 producer = new kafka.HighLevelProducer(producerClient);

...

function publishMessage(message) {
 var payloads = [{
 topic: PROPOSALS_REVIEWED_TOPIC,
 messages: message
 }];

 producer.send(payloads, function(err, data) {
 console.log(data);
 });
}

producer.on('error', function(err) {
 console.log(err);
});

This code publishes messages to the proposals-reviewed Topic as follows:

	
Instantiates and uses the HighLevelProducer Object to publish messages to the proposals-reviewed
Topic. The instantiation for HighLevelProducer actually happens toward the beginning of the file, but we
show it here for convenience.

	
publishMessage() invokes producer.send() to send the message.
producer.on('message' …) listens for a message and invokes processProposal() (more on this later)
to process the incoming Speaker proposal that was just received.

We’ve only touched on the kafka-node Objects used by Producers and Consumers. For further details, visit the kafka-node module documentation to learn more about the following:

	
HighLevelProducer

	
ConsumerGroup

	
Client

Now that we’ve looked at Proposal Reviewer code, create a new terminal session (3) and run the following command (from the myconference directory) to start the Proposal Reviewer:

node proposalReviewer.js

When Speaker proposal messages arrive on the new-proposals-recvd Topic, you should see that
the Proposal Reviewer logs the proposals it receives and the decisions it makes (on the
proposals-reviewed Topic):

[image: json 10in13]

Speaker Notifier (Consumer)

After the decision has been made to accept/reject a proposal, the Speaker Notifier:

	
Listens on the proposals-reviewed Topic for accepted/rejected proposals

	
Formats an acceptance/rejection email

	
Sends the acceptance/rejection email

myconference/speakerNotifier.js includes the full Speaker Notifier application. Example 10-14 shows the portion of the code (along with setup) that receives the accepted/rejected proposals on
the proposals-reviewed Topic.

Example 10-14. myconference/speakerNotifier.js

var kafka = require('kafka-node');

...

const PROPOSALS_REVIEWED_TOPIC = 'proposals-reviewed';

...

var consumer = new kafka.ConsumerGroup({
 fromOffset: 'latest',
 autoCommit: true
}, PROPOSALS_REVIEWED_TOPIC);

...

consumer.on('message', function(message) {
 // console.log('received message', message);
 notifySpeaker(message.value);
});

consumer.on('error', function(err) {
 console.log(err);
});

process.on('SIGINT', function() {
 console.log(
 'SIGINT received - Proposal Reviewer closing. ' +
 'Committing current offset on Topic: ' +
 PROPOSALS_REVIEWED_TOPIC + ' ...'
);

 consumer.close(true, function() {
 console.log(
 'Finished committing current offset. Exiting with graceful shutdown ...'
);

 process.exit();
 });
});

...

The Speaker Notifier listens on and consumes messages from the proposals-reviewed Topic as follows:

	
Instantiates and uses the ConsumerGroup Object to consume Kafka messages on the proposals-reviewed
Topic. The setup for this consumer is similar to the code in the Proposal Reviewer.

	
consumer.on('message' …) listens for a message and invokes notifySpeaker() (more on this later)
to process the incoming acceptance/rejection message that was just received.

	
consumer.on('error' …) and process.on('SIGINT' …) function in the same manner as the Proposal
Reviewer example.

Example 10-15 shows how to process the accepted/rejected proposals and formats a
corresponding acceptance/rejection email using Handlebars (which was covered in Chapter 7).

Example 10-15. myconference/speakerNotifier.js

...

var handlebars = require('handlebars');
var fs = require('fs');

...

const EMAIL_FROM = 'proposals@myconference.com';
const ACCEPTED_PROPOSAL_HB_TEMPLATE_FILE_NAME =
 './templates/acceptedProposal.hbs';

const REJECTED_PROPOSAL_HB_TEMPLATE_FILE_NAME =
 './templates/rejectedProposal.hbs';

const UTF_8 = 'utf8';

...

function notifySpeaker(notification) {
 var notificationMessage = createNotificationMessage(notification);

 sendEmail(notificationMessage);
}

function createNotificationMessage(notification) {
 var notificationAsObj = JSON.parse(notification);
 var proposal = notificationAsObj.proposal;

 console.log('Notification Message = ' + notification);

 var mailOptions = {
 from: EMAIL_FROM, // sender address
 to: proposal.speaker.email, // list of receivers
 subject: proposal.conference.name + ' - ' + proposal.session.title, // Subject
 html: createEmailBody(notificationAsObj)
 };

 return mailOptions;
}

function createEmailBody(notification) {
 // Read Handlebars Template file.
 var hbTemplateContent = fs.readFileSync(((notification.decision.accepted) ?
 ACCEPTED_PROPOSAL_HB_TEMPLATE_FILE_NAME :
 REJECTED_PROPOSAL_HB_TEMPLATE_FILE_NAME), UTF_8);

 // Compile the template into a function.
 var template = handlebars.compile(hbTemplateContent);
 var body = template(notification); // Render the template.

 console.log('Email body = ' + body);
 return body;
}

...

After the Speaker Notifier receives an acceptance/rejection message, notifySpeaker() does the following:

	
Invokes createNotificationMessage() to create the notification email to send to the Speaker:

	
Uses JSON.parse() to parse the acceptance/rejection message into an Object

	
Invokes createEmailBody():

	
Uses the handlebars npm module to generate an acceptance/rejection email message in HTML format
from the acceptance/rejection Object.

	
Chapter 7 covers Handlebars if you need to refresh your memory.

	
You can find more information on handlebars on the npm site
and on GitHub.

	
Invokes sendEmail() to send the notification email to the Speaker (see the next example)

Example 10-16 shows how to send an acceptance/rejection email.

Example 10-16. myconference/speakerNotifier.js

...

var nodeMailer = require('nodemailer');

...

const MAILCATCHER_SMTP_HOST = 'localhost';
const MAILCATCHER_SMTP_PORT = 1025;

var transporter = nodeMailer.createTransport(mailCatcherSmtpConfig);

...

function sendEmail(mailOptions) {
 // send mail with defined transport object
 transporter.sendMail(mailOptions, function(error, info) {
 if (error) {
 console.log(error);
 } else {
 console.log('Email Message sent: ' + info.response);
 }
 });
}

The Speaker Notifier sends email messages to the MailCatcher server as follows:

	
Instantiates and uses the nodemailer transporter Object to send email. The MAILCATCHER_SMTP_…
constants indicate the host and port used by the MailCatcher on your local machine. The instantiation
for the nodemailer transporter Object actually happens toward the beginning the file, but we show it
here for convenience.

	
sendEmail() invokes transporter.sendMail() to send the email message.

	
nodemailer is a generic npm module that sends email messages by using SMTP. You can find
more information on ajv on the npm site
and on the nodemailer Community Page.

Now, create a new terminal session (4) and run the following command (from the myconference directory)
to start the Speaker Notifier:

node speakerNotifier.js

When accepted/rejected proposal messages arrive on the proposals-reviewed Topic, you should see
that the Speaker Notifier logs the accepted/rejected proposals it receives and the email
notifications it sends:

[image: json 10in14]

Review Notification Email Messages with MailCatcher

To wrap up our example, let’s look at the notification messages (generated by the Speaker Notifier)
sent to the prospective MyConference speakers.

Visit http://localhost:1080 on your machine and you’ll see the
MailCatcher user interface. Figure 10-2 shows the summary page that lists the email messages generated
by the MyConference application (using Handlebars).

[image: json 10in15]
Figure 10-2. Speaker Notification messages on MailCatcher

Click some of the messages until you see an Acceptance message indicating that the session
proposal was accepted, as shown in Figure 10-3.

[image: json 10in16]
Figure 10-3. Speaker Proposal Acceptance message on MailCatcher

Figure 10-4 shows a sample rejection message.

[image: json 10in17]
Figure 10-4. Speaker Proposal Rejection message on MailCatcher

The MailCatcher web UI controls work as follows:

	
Download the current email message by clicking the Download button. This saves the message
as a file (with the extension .eml) in EML format, which

	
Follows the MIME 822 standard

	
Is compatible with MS Outlook and Outlook Express, Apple Mail, Mozilla Thunderbird, and other
email clients

	
Preserves the original HTML format and headers

	
Shut down the MailCatcher background process by clicking on the Quit button on the upper-right side of the page

What We Covered

In this chapter, we’ve shown how to do the following:

	
Produce/Consume JSON messages with Kafka from the command line.

	
Design and implement a small end-to-end example MyConference application that leverages Kafka Topics,
Node.js, and a fake email server to process JSON-based Speaker applications.

Appendix A. Installation Guides

This appendix provides an installation guide and setup instructions to support the code examples in this book.

Install JSON Tools in the Browser

This section shows how to install JSON-based tools in the browser.

Install JSONView in Chrome and Firefox

JSONView pretty-prints JSON in Chrome or Firefox. Follow the
installation instructions on the JSONView site for
your browser.

JSONLint

Use JSONLint to validate JSON documents online.
JSONLint doesn’t require an installation.

JSON Editor Online

Use JSON Editor Online to model JSON
documents. Since this is a web app, there’s nothing to install.

Install Postman

Postman provides the ability to fully test a RESTful API. It can send
HTTP GET, POST, PUT, and DELETE requests and set HTTP headers.
You can install Postman as a Chrome extension or as a standalone GUI
application on macOS, Linux, or Windows. Visit the
Postman site for installation instructions.

Install Node.js

This book uses Node.js version
v6.10.2, which is the current latest
stable version as of this writing.

Install Node.js on macOS and Linux with NVM

Although you could use the installation package from the
Node.js site, it’s difficult to change versions.
Instead, let’s use Node Version
Manager (NVM). NVM makes it easy to install/uninstall Node.js, and upgrade
to newer versions.

Install and configure NVM

First, install NVM by using one of the following methods:

	
Install script

	
Manual install

Next, let’s make sure that NVM runs properly. Source it from a shell as
follows:

source ~/.nvm/nvm.sh

Now NVM will work properly for the
remainder of the installation process.

If you’re running bash, do the following so that NVM is
automatically sourced (configured):

	
In $HOME/.bashrc, add these lines:

source ~/.nvm/nvm.sh export NVM_HOME=~/.nvm/v6.10.2

	
In $HOME/.bashrc_profile, add this line:

[[-s $HOME/.nvm/nvm.sh]] && . $HOME/.nvm/nvm.sh # This loads NVM

Note that similar steps apply to the Bourne Shell or Korn Shell.

Install Node.js with NVM

Now that NVM is installed, use it to install Node.js:

	
Type nvm ls-remote to see what remote (not on your local
machine) versions of Node.js are available to install.

	
Install version v6.10.2 with the following command:

nvm install v6.10.2

	
All Node.js versions are installed in $HOME/.nvm.

	
Set the default Node.js version to be used in any new shell:

nvm alias default v6.10.2

	
Without this, neither the node or npm commands will work properly
when you exit the current shell.

	
Now, exit your current shell.

From a new shell, upgrade to the latest version of npm:

npm update -g npm

Then, do the following health checks:

	
nvm ls, and you should see
... -> v6.10.2 system default -> v6.10.2

	
node -v, which yields v6.10.2

	
npm -v, and it looks like 4.6.1

To see a full list of NVM’s capabilities, type nvm --help.

When you check out the Node.js Request-Eval-Print-Loop (REPL), you should see this:

json-at-work => node
-> .exit

Avoiding sudo with npm

npm may require you to run as sudo, and this can get cumbersome and
annoying. This also can be a security risk because packages can contain
scripts, and npm is running with root privilege. To avoid this, do the
following:

sudo chown -R $USER ~/.nvm

This works if you installed Node.js with NVM (all Node.js installations go
under that directory). This tip was inspired by Isaac Z. Schlueter from
How to Node.

Taming the REPL—mynode

Out of the box, the default behavior of the REPL leaves a bit to be
desired because you see undefined after most lines of JavaScript, hitting
the Enter key, breathing, and so forth. This is because JavaScript
functions always return something. If nothing is returned, undefined is returned by default. This behavior can be annoying
and unproductive. Here’s a sample session:

json-at-work => node
-> Hit Enter
-> undefined

-> var y = 5
-> undefined
-> .exit

To turn off undefined in the REPL, add the following to .bashrc (or
your setup for Bourne or Korn Shell):

source ~/.nvm/nvm.sh

...

alias mynode="node -e \"require('repl').start({ignoreUndefined: true})\""

Now, exit the current shell and start a new shell. Rather than
redefining node, it’s safer to define a new alias (in this case,
mynode). This way, node will still work properly from the command
line and be able to run JavaScript files. Meanwhile, mynode serves as
your new REPL command:

json-at-work => mynode
-> var x = 5
-> .exit

You now have a Node.js REPL that does what you want—no more annoying
undefined. You’re welcome.

Install Node.js on Windows

NVM also works well on Windows thanks to Corey Butler’s
nvm-windows application.
This is a port of nvm to a Windows environment. I successfully used
nvm-windows on Windows 7.

Install Node.js on Windows with nvm-windows

Here are the steps:

	
Visit the
nvm-windows
Downloads page.

	
Download the latest nvm-setup.zip to your Downloads folder.

	
Unzip nvm-setup.zip with your favorite zip tool.

	
Run nvm-setup.exe, which is a wizard. Accept all defaults and the
MIT License agreement:

	
Download to C:\Users{username}\AppData\Roaming\nvm.

	
Click Finish when the install completes.

	
This sets up the necessary environment variables to run Node.js on your
Windows machine.

	
Ensure that NVM is on your PATH:

	
Navigate to Control Panel → System → Advanced System Settings.

	
Click Environment Variables on the Advanced System Settings pop up.

	
NVM_HOME should have been added to Env Vars during install: C:\Users{username}\AppData\Roaming\nvm

	
NVM_SYMLINK should point to C:\Program Files\nodejs

	
Both NVM_HOME and NVM_SYMLINK should be on the PATH.

	
Install Node.js with
nvm-windows:

	
Type nvm list available to get a list of available versions.

	
Type nvm install v6.10.2

	
Set the version of Node.js: nvm use v6.10.2

	
Test the install: node -v

Uninstall Node.js

If you have a previous installation of Node.js that isn’t quite working
properly anymore, you may need to completely uninstall it from your
machine. This includes both the node and npm executables.

Uninstall Node.js on macOS

Uninstalls can be complicated, and credit for the Mac uninstall
instructions goes to
Clay at
Hungred Dot Com. If Homebrew was used to install Node.js, simply
type brew uninstall node at the prompt.

If you didn’t use Homebrew, do the following:

	
cd to /usr/local/lib and delete any node executable and
node_modules.

	
cd to /usr/local/include and delete any node and the node_modules
directory.

	
cd to /usr/local/bin and delete any node executable.

You may also need to do the following:

rm -rf /usr/local/bin/npm
rm -rf /usr/local/share/man/man1/node.1
rm -rf /usr/local/lib/dtrace/node.d
rm -rf $USER/.npm

Uninstall Node.js on Linux

Credit for the Linux uninstall instructions goes to
Stack
Overflow and GitHub. Do the
following:

	
Find the node installation by typing which node. Let’s assume it’s
at /usr/local/bin/node.

	
cd to /usr/local.

	
Execute the following:

sudo rm -rf bin/node
sudo rm -rf bin/npm
sudo rm -rf lib/node_modules/npm
sudo rm -rf lib/node
sudo rm -rf share/man/*/node.*

Uninstall Node.js on Windows

Credit for the Windows uninstall instructions goes to
Team
Treehouse. Here are the steps:

	
Open the Windows Control Panel.

	
Choose Programs and Features.

	
Click “Uninstall a program.”

	
Select Node.js, and click the Uninstall link.

Install Yeoman

Yeoman consists of the following:

	
yo (for Scaffolding)

	
Either npm or bower (for
Package Management)

	
Either gulp or grunt (for
the Build System)

For the code examples in this book, you’ll need both
gulp and
grunt-cli for the Build System.
Although gulp is used as the primary build tool,
you still need grunt-cli to run
some of the gulp tasks.

I chose bower for Package Management.

Here are the installation steps:

	
Install yo:

	
npm install -g yo

	
Test the yo installation: yo --version

	
Install bower:

	
npm install -g bower

	
Test the bower installation: bower --version

	
Install gulp:

	
npm install -g gulp-cli

	
Test the gulp installation: gulp --version

	
Install grunt-cli:

	
npm install -g grunt-cli

	
Test the grunt-cli installation: grunt --version

Refer to the Yeoman setup
page for more information.

Install the generator-webapp Yeoman generator

See the generator-webapp GitHub
page. Install the generator as follows:

npm install -g generator-webapp

Install npm Modules

We use the following npm modules at the command line, so we install them
globally:

	
jsonlint

	
json

	
ujs-jsonvalidate

	
http-server

	
json-server

	
jq-tutorial

Install jsonlint

This is the npm equivalent of the JSONLint site
used to validate a JSON document. You can find
jsonlint in the GitHub repository.

To install:

npm install -g jsonlint

To validate a JSON document:

jsonlint basic.json

Install json

json provides the ability to work with
JSON (e.g., pretty-printing) from the command line. It’s similar
to jq, but not as powerful.

To install:

npm install -g json

Visit the json GitHub
repository for usage instructions.
json is available as an npm
module.

Install ujs-jsonvalidate

This is the npm equivalent of the JSON Validate
site used to validate a JSON document against a JSON Schema.
ujs-jsonvalidate can be found in the
GitHub repository.

To install:

npm install -g ujs-jsonvalidate

To validate a JSON document:

validate basic.json basic-schema.json

Install http-server

http-server is a simple Web Server that serves up files in the current
directory structure on the local host system as static content. I like
http-server because it has solid documentation, and the command-line
options and shutdown are intuitive. Here’s the
http-server in the GitHub
Repository and http-server in the
npm repository.

To install:

npm install -g http-server

To run:

http-server -p 8081

To access:

http://localhost:8081

To shut down: press Ctrl-C

Install json-server

json-server is a Stub REST server that takes a JSON file and exposes
it as a RESTful service. You can find json-server in the GitHub
repository.

To install:

npm install -g json-server

To run:

json-server -p 5000 ./speakers.json

To access:

http://localhost:5000/speakers

Install Crest

Crest is a small REST server that provides a RESTful wrapper for
MongoDB. You can find Crest in the GitHub
Repository. The global npm installation would be the simplest way to
install Crest, but this is broken. Instead, do a git clone as
follows:

	
cd to the directory where your other development projects reside.
We’ll call this directory projects:

cd projects

	
Clone the repository:

git clone git://github.com/Cordazar/crest.git

	
Navigate to the crest directory:

cd crest

	
Update the config.json file to remove the username and password.
Of course, this isn’t secure, but you can re-add these fields and set
them to proper values later; just make sure that the settings match
your MongoDB password. We just want to get started quickly. The
config.json file should now look like this:

{
 "db": { "port": 27017, "host": "localhost" },
 "server": { "port": 3500, "address": "0.0.0.0" },
 "flavor": "normal",
 "debug": true
}

	
Be sure to install and start MongoDB first.

	
In a separate tab or command shell, start Crest by typing
node server on the command line. You should see the following:

node server

DEBUG: util.js is loaded
DEBUG: rest.js is loaded
crest listening at http://:::3500

Install jq-tutorial

jq-tutorial is an npm
module that provides a nice jq tutorial from the command line. Install
it as follows:

npm install -g jq-tutorial

Then run it from the command line:

jq-tutorial

Install Ruby on Rails

There are several ways to install Ruby on Rails:

	
Rails Installer

	
ruby-install

	
Ruby Version Manager (RVM) + the rails gem

	
rbenv + the rails gem

Install Rails on macOS and Linux

I prefer RVM for macOS and Linux because it’s easy to upgrade
to switch between Ruby versions. Install RVM by visiting the
RVM site and following the
installation instructions.

Use RVM to install Ruby as follows:

	
See the available versions of Ruby:

rvm list known

	
Install Ruby v2.4.0 as follows:

rvm install 2.4.0

	
Check the Ruby version, and you should see something like this:

ruby -v
ruby 2.4.0

	
After installing Ruby, you can install Rails as follows:

gem install rails

	
Check the Rails version, and it should look like this:

rails -v
Rails Rails 5.0.2

And you’re done.

You can easily upgrade to new versions of Ruby and Rails by following these steps:

	
Install a new version of Ruby (2.x for example):

rvm install 2.x

	
Use the new version:

rvm use 2.x

	
Install the rails gem as shown previously.

Install Rails on Windows

Use Rails Installer for a Windows
environment, and do the following:

	
Download the installer for Windows.

	
Run the installer and follow the defaults.

I’ve used Rails Installer on Windows 7, and
it worked properly. The Rails Installer page
has excellent information on RoR tutorials and how to get help with
installation issues.

Install Ruby Gems

We use the following Ruby gems outside Rails, so we install them
globally:

	
multijson

	
oj

	
awesome_print

	
activesupport

	
mailcatcher

Install multi_json

multi_json provides a wrapper
that invokes the most common JSON gems on behalf of the caller by
choosing the fastest JSON gem that has been loaded in an application’s
environment. Install it as follows:

gem install multi_json

Install oj

Optimized JSON (oj), is considered by
many to be the fastest Ruby-based JSON processor available. Install it
as follows:

gem install oj

Install awesome_print

awesome_print
pretty-prints a Ruby object and is used for debugging purposes. Install
it as follows:

gem install awesome_print

Install activesupport

activesupport
provides functionality that has been extracted from Rails.
ActiveSupport’s JSON module provides the ability to convert keys between
camel case and snake case. Install it as follows:

gem install activesupport

Install mailcatcher

mailcatcher is a simple mail (SMTP)
server. It’s a great tool for testing emails without forcing you to send
a real email. Install it as follows:

gem install mailcatcher

Install MongoDB

See the MongoDB
installation documentation and follow the instructions to install and
start MongoDB on your platform.

Install the Java Environment

Our Java environment depends on the following:

	
Java SE

	
Gradle

Install Java SE

We’re using Java Standard Edition (SE) 8 for this book, so visit
the
Oracle
Java SE 8 download site.

You’ll see the term JDK (for Java Developer Kit) on that page. JDK is the
old name for Java SE. Just look for Java SE Development Kit, accept
the license agreement, and do the proper download for your operating
system. After you’ve downloaded and run the installer, you’ll want to
set up your Java command-line environment for your operating system.

Follow the instructions that follow for you system. Then run this:

java -version

You should see something similar to this

java version "1.8.0_72"
Java(TM) SE Runtime Environment (build 1.8.0_72-b15)
Java HotSpot(TM) 64-Bit Server VM (build 25.72-b15, mixed mode)

Java setup on macOS

In .bashrc, do the following to set up JAVA_HOME and add it to your
PATH:

...

export
JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.x.y.jdk/Contents/Home #
x and y are the minor and patch versions

...

export PATH=...:$\{JAVA_HOME}/bin:...

Java setup on Linux

In .bashrc, do the following to set up JAVA_HOME and add it to your
PATH:

...

export JAVA_HOME=/usr/java/jdk1.x.y/bin/java # x and y are the minor and
patch versions

...

export PATH=...:$\{JAVA_HOME}/bin:...

Then, refresh your environment:

source ~/.bashrc

Credit for Java setup on Linux goes to
nixCraft.

Java setup on Windows

The Java Windows Installer usually puts the JDK in one of the following
directories: C:\Program Files\Java or C:\Program Files (x86)\Java.

Then, do the following:

	
Right-click the My Computer icon on your desktop and select
Properties.

	
Click the Advanced tab.

	
Click the Environment Variables button.

	
Under System Variables, click New.

	
Enter the variable name as JAVA_HOME.

	
Enter the variable value as the installation path for the Java
Development Kit (see where the installer put the JDK directory).

	
Click OK.

	
Click Apply Changes.

Credit for the Java setup on Windows goes to
Robert
Sindall.

Install Gradle

Gradle is used for building source and test code.
Visit the Gradle Installation Guide
and follow the instructions for your operating system. After you’ve
completed the installation, run gradle -v from the command line and
you should see something like this:

gradle -v

--
Gradle 3.4.1
--

On macOS, I succesfully used
Homebrew to install Gradle.

Install jq

jq provides JSON-based command-line
processing. To install it, just follow the
download instructions on the jq
GitHub repository.

jq works with and depends on cURL.

Install cURL

cURL provides the ability to communicate over
multiple protocols, including HTTP. Use this to make HTTP calls to
RESTful APIs from the command line.

Install cURL on macOS

Just as with Linux, cURL may already be installed on your Mac. Check
it as follows:

curl --version

If it’s already there, there’s nothing else to do. Otherwise,
you’ll need to install it. I use Homebrew as my package
installer on macOS, so use the following command to install cURL on
a Mac:

brew install curl

Install cURL on Linux

Check whether cURL is already installed by entering the following command:

curl --version

If it isn’t there, do the following from the command line:

sudo apt-get install curl

This should work on Ubuntu or Debian.

Install cURL on Windows

To install cURL on Windows, do the following:

	
Visit the cURL Download Wizard.

	
Select the type of package: curl executable.

	
Select the Operating System: either Windows/Win32 or Win64.

	
Select the Flavor: either Cygwin (if you use
Cygwin) or Generic (if you don’t use
Cygwin).

	
Select the Win32 version (only if you selected Windows/Win32 previously):
Unspecified.

Credit for the cURL Windows installation instructions goes to Stack Overflow.

Install Apache Kafka

We use Apache Kafka in Chapter 10 for
JSON-based messaging. Kafka depends on
Apache ZooKeeper so you’ll need to
install ZooKeeper, too. Before going any further, be sure to
install the Java Environment on your
machine (because Kafka is based on Java).

Install Kafka on macOS

Homebrew is the easiest way to install Kafka on macOS. Do the following from the command line:

brew install kafka

This installs both Kafka and ZooKeeper. You’re done.

Install Kafka on UNIX

Install ZooKeeper as follows:

	
Download ZooKeeper from the
ZooKeeper Releases
page.

	
Extract the TAR file from the GZipped file you downloaded (current/latest ZooKeeper download):

tar -zxf ZooKeeper-3.4.9.tar.gz

	
Add system environment variables in ~/.bashrc:

export ZooKeeper_HOME = <Zookeeper-Install-Path>/zookeeper-3.4.9
export PATH=$PATH:$ZOOKEEPER_HOME/bin

Install Kafka as follows:

	
Download Kafka from the Kafka
Downloads page.

	
Extract the TAR file from the GZipped file you downloaded (current/latest Kafka download):

tar -zxf kafka_2.11-0.10.1.1.tgz

	
Add system environment variables in ~/.bashrc:

export KAFKA_HOME = <Kafka-Install-Path>/zookeeper-3.4.9
export PATH=$PATH:$KAFKA_HOME/bin

Credit for the Apache Kafka installation on UNIX instructions goes to
TutorialsPoint.

Install Kafka on Windows

Install ZooKeeper as follows:

	
Download ZooKeeper from the
ZooKeeper Downloads
page.

	
Use your favorite zip tool to unzip the ZooKeeper file to the C:
drive.

	
Add System Variables as follows:

	
In Windows, navigate to Control Panel → System → Advanced System Settings → Environment Variables.

	
Create the following new System Variable (current/latest ZooKeeper
download):

ZOOKEEPER_HOME = C:\zookeeper-3.4.9

	
Add ZooKeeper to your PATH by editing that variable and adding this at the end:

;%ZOOKEEPER_HOME%\bin;

Install Kafka as follows:

	
Download Kafka from the Kafka
Downloads page.

	
Use your favorite zip tool to unzip the Kafka file to the C: drive.

	
Add System Variables as follows:

	
In Windows, navigate to
Control Panel → System → Advanced System Settings → Environment Variables.

	
Create the following new System Variable (current/latest Kafka download):

KAFKA_HOME = C:\kafka_2.11-0.10.1.1

	
Add Kafka to your PATH by editing that variable and adding this at the end:

;%KAFKA_HOME%\bin;

Credit for the Apache Kafka installation on Windows instructions goes to Gopal Tiwari’s article on DZone.

References

	
The AsciiDoc version of Appendix A in the book
was generated by Pandoc from the original Markdown in
the
JSON
at Work GitHub examples repository.

Appendix B. JSON Community

JSON has an active and vibrant community. Visit the following groups and lists to get involved and learn more:

	JSON.org

	
Douglas Crockford’s JSON site where it all started.

	JSON Yahoo! Group

	
This Yahoo Group is affiliated with the JSON.org site.

	json-ietf Mailing List

	
This list is for the JSON IETF (Internet Engineering Task Force) Working Group
that maintains the JSON IETF specification.

	JSONauts

	
Another great source of JSON tutorials, tools, and articles.

	JSON Schema Specification Working Group

	
The JSON Schema specification is maintained in this GitHub Repository.

	JSON Schema Google Group

	
This Google group is associated with the JSON Schema Specification Working Group.

	api-craft Google Group

	
This group focuses on API Design and development.

Index
Symbols
	"" (double quotes), in JSON-T transformation rules, JSON-T syntax
	# (hash sign), indicating internal references in JSON Schema, Internal References
	$ (dollar sign) in JSONPath, JSONPath query syntax
	$ property of an Object, in Badgerfish, Badgerfish
	$push operator, Update a document
	$ref functionality, JSON Schema	support by JSON Pointer, JSON Pointer

	$schema keyword, Core Keywords, Basic Types
	'' (single quotes), in JSON-T transformation rules, JSON-T syntax
	. (dot), .. in JSONPath, JSONPath query syntax
	.[], returning subarray elements in jq, jq online tester—jqPlay
	@ (at sign)	in JSONPath slice function, JSONPath query syntax
	property names beginning with, in Badgerfish, Badgerfish

	@context object, in JSON-LD, JSON-LD, JSON-LD
	@id object, in JSON-LD, JSON-LD
	@last@ Handlebars variable, Handlebars
	@vocab object, in JSON-LD, JSON-LD
	[?(…)], conditional search in JSONPath slice function, JSONPath query syntax
	[] (square brackets)	array creation in jq queries, jq online tester—jqPlay
	in JSONPath, JSONPath query syntax

	\ (backslash), characters escaped with in JSON strings, String
	\\ (double backslash), denoting special characters in Regular Expressions, Regular Expressions
	{{#unless}} Handlebars helper, Handlebars
	{} (curly braces)	enclosing JSON-T conversion expressions, JSON-T syntax
	enclosing objects in JSON-T, JSON-T Unit Test
	object creation in jq, jq online tester—jqPlay

	| (pipe symbol), chaining filters in jq queries, jq online tester—jqPlay

A
	acceptance/rejection messages, JSON messaging on Kafka, Proposal Reviewer (Consumer/Producer), Speaker Notifier (Consumer)
	actions	in Siren, Siren
	in Siren Speaker entity, Siren
	information on, in JSON data returned from API calls, My Opinion on Hypermedia

	ActiveSupport gem	installing, Install activesupport
	JSON deserialization with objects and ActiveSupport, JSON Deserialization with Objects and ActiveSupport
	JSON serialization with objects and ActiveSupport, JSON Serialization with Objects and ActiveSupport

	ajv library (Node.js), Validation Using a JSON Schema Library, Proposal Reviewer (Consumer/Producer)
	allOf keyword, allOf
	AMS (ActiveModel::Serializers), Choose a JSON Serializer	choosing between RABL, Jbuilder, and AMS, AMS, RABL, or Jbuilder?
	customized JSON representation for web API, speakers-api-2—Create an API that Customizes the JSON Representation

	analytics and stream processing, using Kafka messaging, Kafka Use Cases
	anyOf keyword, anyOf
	Apache Kafka (see Kafka, JSON messaging with)
	Apache Kafka main page, JSON Messaging with Kafka
	Apache Spark/Spark Streaming, Kafka Use Cases-The Kafka Ecosystem—Related Projects
	API Blueprint, My Opinion on Hypermedia
	API First design, RESTful API Testing with MongoDB
	APIs, Test Data	(see also RESTful APIs; Stub API; web applications)
	API design, JSON Schema in, Why JSON Schema?
	designing and testing with JSON Schema, How to Design and Test an API with JSON Schema-Final Thoughts on API Design and Testing with JSON Schema	deploying a Stub API with json-server, Deploy a Stub API with json-server
	generating a JSON Schema, Generate a JSON Schema
	generating sample data, Generate Sample Data

	recommendations for working with hypermedia, Recommendations for Working with Hypermedia

	Architect template editor	JSON-to-HTML transformation with Mustache, Mustache online tester
	JSON-to-JSON transformation with Handlebars, Handlebars
	JSON-to-JSON transformation with Mustache, Mustache
	usng on Handlebars, Handlebars online testers

	architectural style, noBackend, Our Architectural Style—noBackEnd
	arrays	array type in JSON, A Brief Sample
	array type in JSON Schema, Basic Types
	JSON object with nested array, Objects
	overview of JSON arrays, Arrays
	validating in JSON Schema, Arrays-Enumerated Values

	assertions	assert (TDD) assertion style, Just Enough Unit Testing with Mocha and Chai
	Chai assertion library, Just Enough Unit Testing with Mocha and Chai
	expect-style, in JSON Pointer tests, JSON Pointer Unit Test
	JUnit, Serialization/Deserialization with Java Objects
	should (BDD) assertion style, Just Enough Unit Testing with Mocha and Chai

	attributes (XML)	in Badgerfish convention, Badgerfish
	Parker convention and, Parker
	problems with, in JSON-XML conversions, JSON-XML Transformation Conventions

	Avro, The Kafka Ecosystem—Related Projects
	awesome_print gem, installing, Install awesome_print
	awrence gem, JSON Serialization with Objects and ActiveSupport

B
	backslash-escaped characters in JSON strings, String
	Badgerfish, JSON-XML Transformation Conventions-Parker	core rules, Badgerfish
	documentation and resources for, Badgerfish
	limitations of, The Issues with JSON-XML Transformation Conventions
	online tester, Badgerfish

	BDD (behavior-driven development), Unit Test Style—TDD and BDD
	BDD-style assertions, Unit Test Style—TDD and BDD
	Binary JSON (BSON), What About BSON?
	binary messages, Kafka support for, JSON Messaging with Kafka
	booleans	boolean type in JSON Schema, Basic Types-Basic Types
	overview of JSON booleans, Boolean

	Bootstrap, Iteration 1—Generate a Web Application with Yeoman	table-striped CSS class, Iteration 2—Make an HTTP Call with jQuery

	Bower package manager, The Yeoman toolset
	Bray, Tim, JSON Is a Standard
	brokers (Kafka servers), Kafka Concepts and Terminology
	browsers	HTML applications for, JSON and Hypermedia
	hypermedia and, JSON and Hypermedia
	installing JSON tools in, Install JSON Tools in the Browser
	JSON-T running as JavaScript file, JSON-T on other platforms
	viewing Speakers data served by Crest, Providing a RESTful Wrapper for MongoDB

	BSON (Binary JSON), What About BSON?
	build tools (in Yeoman), The Yeoman toolset
	Bundler, Setting Up the Unit Test

C
	C#, JSON Overview
	camel case	conversion between snake case and, using ActiveSupport, JSON Serialization with Objects and ActiveSupport
	converting AMS JSON output to, Camel-casing AMS JSON output
	with JSON in Ruby on Rails, A Word on Camel Casing and JSON

	Chai assertion library, Just Enough Unit Testing with Mocha and Chai, Setting Up Unit Tests	BDD-style expect assertions, Speakers Unit Test
	in HAL unit test, HAL Unit Test

	classes (Siren), Siren
	Clojure, support for JSON Schema, Validation Using a JSON Schema Library
	clusters, Kafka Concepts and Terminology
	Collection+JSON, Collection+JSON-Collection+JSON
	command line interface (CLI)	Handlebars on, Handlebars on the command line
	jq, piping query results to UNIX tools, jq scorecard
	Kafka, Kafka Command-Line Interface (CLI)-Kafka Libraries	cleaning up and shutting down Kafka, Clean Up and Shut Down Kafka
	convenience scripts with this book, Kafka Command-Line Interface (CLI)
	publishing a JSON message with, How to Publish a JSON Message with the CLI

	MongoDB command-line tools, MongoDB Server and Tools
	Mustache on, Mustache on the command line
	npm modules on, jsonlint and validate, NPM modules on the CLI: validate and jsonlint
	tools that search and filter JSON content, Honorable Mention
	validate tool, Validate the JSON Document

	comments, removal from JSON, JSON Comments
	community, JSON, JSON Community
	conditionals in JSPath slice function, JSONPath query syntax
	conference example, Our Example—MyConference-Create and Deploy a Stub API
	ConsumerGroup object, Speaker Notifier (Consumer)
	consumers, Kafka Concepts and Terminology	consuming a JSON message in Kafka, Consume a JSON Message
	kafka-node objects used by, Proposal Reviewer (Consumer/Producer)
	Proposal Reviewer (example), Architecture Components, Proposal Reviewer (Consumer/Producer)
	Speaker Notifier (example), Architecture Components, Speaker Notifier (Consumer)
	starting in Kafka, Start a Consumer
	stopping in Kafka, Stop the Consumer

	content negotiation, JSON File and MIME Type
	@context object, in JSON-LD, JSON-LD, JSON-LD
	conversion expressions in JSON-T transformation rules, JSON-T syntax
	Core JSON, Core JSON
	Crest, Providing a RESTful Wrapper for MongoDB	installing, Install Crest
	installing and setting up, Providing a RESTful Wrapper for MongoDB
	Speakers data served by, Providing a RESTful Wrapper for MongoDB

	Crockford, Douglas, JSON Is a Standard
	cURL	installing, Install cURL
	jq integration with, Integration with cURL

D
	data representation	for resources, alteration by hypermedia, My Opinion on Hypermedia
	for resources, in json:api, json:api

	data types, JSON Data Types	arrays, Arrays
	basic types in JSON Schema, Basic Types-Basic types validation	validating, Basic types validation

	booleans, Boolean
	information on, in JSON data returned from API calls, My Opinion on Hypermedia
	JSON value types, JSON Value Types
	name/value pairs, Name/value pairs
	numbers, Number
	objects, Objects
	strings, String

	database drivers, MongoDB Server and Tools
	date property values, Date Property Values
	db.speakers.count() shell command, Query documents
	db.speakers.find() shell command, Query documents
	definitions keyword, Internal References
	dependencies keyword, Dependent Properties
	dependent properties, Dependent Properties
	deserialization, JSON Serialization/Deserialization with JSON.stringify() and JSON.parse()	(see also serialization/deserialization)

	development environment, setting up, Create and Deploy a Stub API
	document-oriented databases, JSON and MongoDB
	documents (JSON), A Brief Sample
	DrowsyDromedary, Providing a RESTful Wrapper for MongoDB
	DRY (Do Not Repeat Yourself) in JSON Schema, Internal References

E
	ECMA JSON standard, JSON Is a Standard
	ElasticSearch, The Kafka Ecosystem—Related Projects
	elements (XML)	rules in Parker convention, Parker
	rules of Badgerfish convention, Badgerfish

	ELK (ElasticSearch, Logstash, Kibana) stack, Kafka Use Cases
	email addresses	regular expression for validation of, Generate a JSON Schema
	standard format, validating in JSON Schema, Regular Expressions

	email client (emulated), Architecture Components, Speaker Notifier (Consumer)	setting up, Set Up Fake Email Server and Client—MailCatcher

	email server (emulated), Architecture Components, Speaker Notifier (Consumer)	setting up, Set Up Fake Email Server and Client—MailCatcher

	embedded object in HAL, HAL	embedded presentation Objects for speakers, HAL

	EML file format, Review Notification Email Messages with MailCatcher
	entities (in Siren), Siren
	enum keyword, Enumerated Values
	enumerated values, validating in JSON Schema, Enumerated Values
	errors array (json:api), json:api
	eval function, JSON Deserialization Using eval()
	expect-style assertions, Just Enough Unit Testing with Mocha and Chai, JSON Pointer Unit Test
	Express-based NodeJS RESTful APIs, HAL support, Server-Side HAL
	eXtensible Stylesheet Language Transformations (XSLT), Types of JSON Transformation
	external references (JSON Schema), External References, Choosing Validation Rules

F
	file type (JSON), JSON File and MIME Type
	floating-point numbers in JSON, Number
	Flume, The Kafka Ecosystem—Related Projects

G
	generator-webapp Yeoman generator, Iteration 1—Generate a Web Application with Yeoman	installing, Install the generator-webapp Yeoman generator
	key application files and directories generated, Iteration 1—Generate a Web Application with Yeoman
	other important commands, Iteration 1—Generate a Web Application with Yeoman

	GET method (HTTP), Create and Deploy a Stub API	(see also HTTP; HTTP methods)

	GitHub repositories, What to Look For in a JSON Transform Library
	Goessner, Stefan, JSON-T	article on JSONPath, JSONPath on other platforms

	Google, JSON Style Guide, JSON Style Guidelines
	Gradle, Java and Gradle Setup	build.gradle script for Speakers API (example), Write the Build Script
	deploying the API with gradLew script, Deploy the API
	important tasks, commands for, Gradle Overview
	installing, Install Gradle
	key directories and files in projects, Gradle Overview
	overview, Gradle Overview
	running JUnit tests from command line, Serialization/Deserialization with Java Objects
	tutorials and references on, Gradle Overview

	Grunt, The Yeoman toolset
	Gulp, The Yeoman toolset	gulp --tasks command, Iteration 1—Generate a Web Application with Yeoman
	gulp build command, Iteration 1—Generate a Web Application with Yeoman
	gulp clean command, Iteration 1—Generate a Web Application with Yeoman
	gulp lint command, Iteration 1—Generate a Web Application with Yeoman
	gulp serve command, Iteration 1—Generate a Web Application with Yeoman
	gulp serve:test command, Iteration 1—Generate a Web Application with Yeoman

H
	Hadoop, Kafka Use Cases	Avro and, The Kafka Ecosystem—Related Projects

	Hadoop Distributed File System (HDFS), The Kafka Ecosystem—Related Projects
	HAL (Hypertext Application Language), HAL-HAL	benefits of choosing as hypermedia format, Conclusions on Hypermedia
	embedded presentation objects for speakers, HAL
	media types, HAL
	server-side, Server-Side HAL
	Speaker data in HAL format, HAL
	speakers list in HAL format, HAL
	testing with, in Speakers API, Testing with HAL in the Speakers API-HAL Unit Test

	halfred (HAL parser), HAL Unit Test	validating HAL data, HAL Unit Test

	Handlebars library, Iteration 3—Consume Speaker Data from a Stub API and Use a Template	acceptance/rejection proposals processing (example), Speaker Notifier (Consumer)
	comparison with Mustache for JSON-to-HTML transformations, JSON-to-HTML Transformation Evaluations—The Bottom Line
	differences between Mustache and, Differences between Handlebars and Mustache
	JSON-to-HTML transformations, Handlebars-JSON-to-HTML Transformation Evaluations—The Bottom Line	Handlebars on other platforms, Handlebars on other platforms
	Handlebars on the command line, Handlebars on the command line
	online testers, Handlebars online testers
	scorecard for evaluation criteria, Handlebars scorecard
	template syntax, Handlebars template syntax

	JSON-to-JSON transformations, Handlebars-Handlebars
	ranking for JSON-to-JSON transformations, JSON-to-JSON Transformation Evaluations—The Bottom Line
	unit test, Handlebars Unit Test

	HDFS (Hadoop Distributed File System), The Kafka Ecosystem—Related Projects
	Hibernate OGM, What About Schema?
	HighLevelProducer object, Proposal Reviewer (Consumer/Producer)
	HiveKa, The Kafka Ecosystem—Related Projects
	Homebrew, uninstalling Node.js, Uninstall Node.js on macOS
	href	in collection object (Collection+JSON), Collection+JSON
	required in HAL link relations, HAL

	href+, in collection object (Collection+JSON), Collection+JSON
	HTML	applications for browsers, JSON and Hypermedia
	factoring from JavaScript using a Mustache template, Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	JSON-to-HTML transformations, Types of JSON Transformation, JSON-to-HTML Transformation-JSON-to-HTML Transformation Evaluations—The Bottom Line	JSON-T, JSON-T limitations
	target HTML document, Target HTML Document
	using Handlebars, Handlebars-Handlebars scorecard
	using Mustache, Mustache-Mustache scorecard

	HTTP	HTTP Patch, JSON Patch
	Java-based HTTP libraries, Unirest
	JSON Patch as part of HTTP request, JSON Patch
	request for Speaker data in JSON-LD format, JSON-LD
	request for Speaker data in json:api format, json:api
	request for speaker's list of presentations in JSON-LD format, JSON-LD
	Speaker data in Siren format based on HTTP request, Siren
	Unirest client wrapper, Unirest
	web application using JSON in JavaScript, making an HTTP call with jQuery, Iteration 2—Make an HTTP Call with jQuery

	HTTP methods, Create and Deploy a Stub API	cURL support for, Integration with cURL
	GET method in Ruby on Rails application, Camel-casing AMS JSON output
	GET request in cURL, Integration with cURL
	support by RESTful MongoDB wrappers, Providing a RESTful Wrapper for MongoDB

	http-server, installing and running, External References, Install http-server
	HYDRA add-on (JSON-LD), JSON-LD	presentations in JSON-LD format enhanced with HYDRA operations, JSON-LD
	using JSON-LD without, JSON-LD

	hypermedia, JSON and, JSON and Hypermedia-What We Covered	author's opinion on hypermedia, My Opinion on Hypermedia
	comparing hypermedia formats, My Opinion on Hypermedia-HAL	Collection+JSON, Collection+JSON-Collection+JSON
	HAL, HAL-HAL
	JSON-LD, JSON-LD-JSON-LD
	json:api, json:api-json:api
	Siren, Siren-Siren

	conclusions on hypermedia, Conclusions on Hypermedia
	defining key terms for REST, Defining Key Terms
	JSON-based hypermedia formats, JSON and Hypermedia
	learning more about hypermedia, Going Deeper with Hypermedia
	myconference Speakers API (example), Comparing Hypermedia Formats
	practical issues with hypermedia, Practical Issues with Hypermedia
	recommendations for working with hypermedia, Recommendations for Working with Hypermedia
	server-side HAL, Server-Side HAL
	testing with HAL in Speakers API, Testing with HAL in the Speakers API-HAL Unit Test

	Hypertext Application Language (see HAL)

I
	@id object, in JSON-LD, JSON-LD
	IETF JSON standard, JSON Is a Standard
	included array (json:api), json:api, json:api
	indentation in JSON code, Indentation
	insert function, Create a document
	installation guides, Installation Guides-References	installing Crest, Install Crest
	installing cURL, Install cURL
	installing Gradle, Install Gradle
	installing http-server, Install http-server
	installing jq, Install jq
	installing jq-tutorial, Install jq-tutorial
	installing JSON tools in browsers, Install JSON Tools in the Browser
	installing json-server, Install json-server
	installing Kafka, Install Apache Kafka
	installing MongoDB, Install MongoDB
	installing Node.js, Install Node.js	on Windows, Install Node.js on Windows

	installing npm modules, Install npm Modules
	installing Ruby gems, Install Ruby Gems
	installing Ruby on Rails, Install Ruby on Rails	on macOS and Linux, Install Rails on macOS and Linux
	on Windows, Install Rails on Windows

	installing the Java environment, Install the Java Environment
	installing Yeoman, Install Yeoman
	uninstalling Node.js on Linux, Uninstall Node.js on Linux
	uninstalling Node.js on macOS, Uninstall Node.js
	uninstalling Node.js on Windows, Uninstall Node.js on Windows

	integer type (JSON Schema), Basic Types
	interface-first approach to designing an API, Our Architectural Style—noBackEnd
	internal references (JSON Schema), Internal References-External References

J
	Jackson (JSON library), Java-Based JSON Libraries	important classes and methods that serialize/deserialize to/from JSON, Serialization/Deserialization with Simple Java Data Types
	JSON serialization/deserialization with, JSON Serialization/Deserialization with Jackson
	support for jq, jq on other platforms
	support for JSON Pointer, JSON Pointer on other platforms
	tutorials on, Serialization/Deserialization with Java Objects

	JAR (Java ARchive) files	building and deploying executable JAR for Speakers API (example), Deploy the API
	packaging web application as executable JAR, Register the Application

	Java, JSON Overview	build systems based on, Gradle Overview
	HTTP libraries, Unirest
	installing the Java environment, Install the Java Environment	Java SE, Install Java SE
	Java setup on Linux, Java setup on Linux
	Java setup on macOS, Java setup on macOS
	Java setup on Windows, Java setup on Windows

	Java Architecture for XML Binding (JAXB), Parsing/generating XML libraries
	JSON in, JSON in Java-What We Covered	building small web API with Spring Boot, Build a Small Web API with Spring Boot-Test the API with Postman
	Java and Gradle setup, Java and Gradle Setup
	Java-based JSON libraries, Java-Based JSON Libraries
	JSON serialization/deserialization with Jackson, JSON Serialization/Deserialization with Jackson
	unit testing with a Stub API, Unit Testing with a Stub API-JSON and JUnit Testing with APIs
	unit testing with JUnit, Just Enough Unit Testing with JUnit

	ODMs for accessing MongoDB, What About Schema?
	Spring Kafka library, Kafka Libraries
	support for HAL, Server-Side HAL
	support for jq, jq on other platforms
	support for JSON Patch, JSON Patch on other platforms
	support for JSON Pointer, JSON Pointer on other platforms
	support for JSON Schema, Validation Using a JSON Schema Library
	support for JSONPath, JSONPath on other platforms
	support for Mustache, Mustache on other platforms

	Java Message Service (JMS), JSON Messaging with Kafka
	JavaScript, JSON Overview	converting JSON to/from, JSON-XML Transformation Unit Test
	converting XML to/from, JSON-XML Transformation Unit Test
	ES6 JavaScript Promise, jq Unit Test
	JSON in, JSON in JavaScript-What We Covered	building a web application, Building a Small Web Application-Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	JavaScript objects and JSON, JavaScript Objects and JSON-Where to Learn More About JavaScript Objects
	JSON serialization/deserialization, JSON Serialization/Deserialization with JSON.stringify() and JSON.parse()-JSON Deserialization with an Object and JSON.parse()
	unit testing with a Stub API, Unit Testing with a Stub API-Building a Small Web Application

	JSON-T running as JavaScript file in browsers, JSON-T on other platforms
	jsonapter library, Honorable Mention
	kafka-node module, Kafka Libraries
	learning more about, How to Go Deeper with JavaScript
	MongoDB query language based on, Query documents
	resurgence of, Why JSON?
	slice function, JSONPath query syntax
	support for HAL, Server-Side HAL

	JavaScript Object Notation for Linking Data (see JSON-LD)
	Jbuilder, Choose a JSON Serializer	choosing between AMS, RABL, and Jbuilder, AMS, RABL, or Jbuilder?

	JDK (Java Developer Kit), Install Java SE
	JEP (Java Enhancement Proposal) 198, Java-Based JSON Libraries
	Jolt, Honorable Mention
	jq, jq-JSON Search Library and Tool Evaluations—The Bottom Line	documentation and resources for, jq scorecard
	installing, Install jq
	integration with cURL, Integration with cURL
	jq-tutorial, jq-tutorial, Install jq-tutorial
	on other platforms, jq on other platforms
	online tester, jqPlay, jq online tester—jqPlay
	piping mongoexport data through, Exporting from MongoDB to a JSON Document
	query syntax, jq query syntax
	ranking in comparison with other JSON Search tools, JSON Search Library and Tool Evaluations—The Bottom Line
	scorecard for evaluation criteria, jq scorecard
	unit test, jq Unit Test

	jQuery	$(document).ready() function, Iteration 2—Make an HTTP Call with jQuery
	$.get() method, Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	$.getJSON() callback method, Iteration 2—Make an HTTP Call with jQuery
	.each() function, Iteration 2—Make an HTTP Call with jQuery
	making an HTTP call with, web application in JavaScript using JSON, Iteration 2—Make an HTTP Call with jQuery

	jsawk tool, Honorable Mention
	JSON	benefits of, Why JSON?
	community groups and lists, JSON Community
	Core, Core JSON
	installing JSON tools in browsers, Install JSON Tools in the Browser
	JSON-XML transformations	unit test, JSON-XML Transformation Unit Test

	overview, JSON Overview
	RESTful APIs based on, Why JSON?
	standard, JSON Is a Standard
	style guidelines for, JSON Style Guidelines
	versions, JSON Versions

	JSON Editor Online, JSON Editor Online, JSON Editor Online	features, JSON Editor Online features
	modeling JSON data with, Model JSON Data with JSON Editor Online
	speaker data model in (example), Speaker data in JSON Editor Online
	using to model a JSON document, Model a JSON Document

	JSON gem, Ruby JSON Gems
	JSON Generator, generating sample data with, Generate Sample JSON Data with JSON Generator, Generate Sample Data
	JSON messaging (see Kafka, JSON messaging with)
	JSON Patch, JSON Patch-JSON Patch limitations	limitations of, JSON Patch limitations
	on other platforms, JSON Patch on other platforms
	scorecard for evaluation criteria, JSON Patch scorecard
	syntax, JSON Patch syntax
	unit test, JSON Patch Unit Test

	JSON Pointer, Internal References, JSON Pointer-JSON Pointer scorecard, JSON Patch syntax	on other platforms, JSON Pointer on other platforms
	query syntax, JSON Pointer query syntax
	ranking in comparison with other JSON Search tools, JSON Search Library and Tool Evaluations—The Bottom Line
	RFC 6901, JSON Pointer on other platforms
	scorecard for evaluation criteria, JSON Pointer scorecard
	unit test, JSON Pointer Unit Test

	JSON Schema, JSON Schema-What We Covered	arrays, validating, Arrays-Enumerated Values
	basic schema example, A Simple Example
	basic types in, Basic Types-Basic types validation	validation of basic types, Basic types validation

	choosing validation rules, Choosing Validation Rules-allOf	allOf, allOf
	anyOf, anyOf
	oneOf, oneOf

	comparison with XML Schema, JSON Schema and XML Schema
	core keywords, Core Keywords
	current state of the standard, The Current State of the JSON Schema Standard
	dependent properties, Dependent Properties
	designing and testing an API, How to Design and Test an API with JSON Schema-Final Thoughts on API Design and Testing with JSON Schema	generating a JSON Schema, Generate a JSON Schema
	generating sample data, Generate Sample Data
	modeling a JSON document, Model a JSON Document
	shortening the development cycle, Final Thoughts on API Design and Testing with JSON Schema
	steps in the process, Our Scenario
	validating the JSON document, Validate the JSON Document

	external references, External References-Choosing Validation Rules
	internal references, Internal References-External References
	learning more about, Where to Go Deeper with JSON Schema
	Mongoose Schema, converting to, What About Schema?
	numbers, validating, Numbers-Arrays
	objects, validating, Objects-Objects
	online resources for, JSON Schema on the Web
	overview, JSON Schema Overview
	pattern properties, validating, Pattern Properties-Regular Expressions
	regular expressions in, Regular Expressions-Going deeper with Regular Expressions
	semantic validation with, How does a JSON Schema help?
	use cases, Why JSON Schema?
	validating enumerated values, Enumerated Values
	validating Speaker Proposal against, Proposal Reviewer (Consumer/Producer)
	validation using a JSON Schema library, Validation Using a JSON Schema Library
	workflow and tooling, Core JSON Schema—Basics and Tooling-NPM modules on the CLI: validate and jsonlint	JSON Editor Online, JSON Editor Online
	JSON Validate application, JSON Validate
	JSONSchema.net, JSONSchema.net
	npm modules on CLI, validate and jsonlint, NPM modules on the CLI: validate and jsonlint

	JSON Search, JSON Search-What We Covered	advantages of using, Why JSON Search?
	comparing libraries and tools, Comparing JSON Search Libraries and Tools	final ranking, JSON Search Library and Tool Evaluations—The Bottom Line
	jq, jq-JSON Search Library and Tool Evaluations—The Bottom Line
	JSON Pointer, JSON Pointer-JSON Pointer scorecard
	JSONPath, JSONPath-JSONPath scorecard

	libraries and tools, JSON Search Libraries and Tools	criteria for choosing, What to Look For
	honorable mention, Honorable Mention

	test data for, Test Data

	json tool, Honorable Mention
	JSON Transform, JSON Transform-What We Covered	criteria for evaluating libraries, What to Look For in a JSON Transform Library
	JSON-to-HTML transformations, JSON-to-HTML Transformation-JSON-to-HTML Transformation Evaluations—The Bottom Line	comparing Mustache and Handlebars, JSON-to-HTML Transformation Evaluations—The Bottom Line
	target HTML document, Target HTML Document
	using Handlebars, Handlebars-Handlebars scorecard
	using Mustache, Mustache-Mustache scorecard

	JSON-to-JSON transformations, JSON-to-JSON Transform-JSON-to-JSON Transformation Evaluations—The Bottom Line	issues in, The Issues
	libraries, JSON-to-JSON Transform Libraries
	ranking of transformation libraries, JSON-to-JSON Transformation Evaluations—The Bottom Line
	target JSON output, Target JSON Output
	using Handlebars, Handlebars-Handlebars
	using JSON Patch, JSON Patch-JSON Patch limitations
	using JSON-T, JSON-T-JSON-T limitations
	using Mustache, Mustache

	JSON-XML transformations, JSON-XML Transformation-JSON-XML Transformation Unit Test	Badgerfish convention, Badgerfish-Parker
	conventions, JSON-XML Transformation Conventions
	issues with transformation conventions, The Issues with JSON-XML Transformation Conventions
	Parker convention, Parker-Parker
	parsing/generating XML libraries, Parsing/generating XML libraries
	recommendations for JSON-to-XML, XML-JSON Transform—The Bottom Line
	recommendations for XML-to-JSON, XML-JSON Transform—The Bottom Line

	test data for, Test Input Data
	types of transformations, Types of JSON Transformation

	JSON Validate application, JSON Validate	validate module and, NPM modules on the CLI: validate and jsonlint

	JSON-java library, Java-Based JSON Libraries
	JSON-LD, JSON-LD-JSON-LD	benefits of choosing as hypermedia format, Conclusions on Hypermedia
	HYDRA add-on, JSON-LD	presentations enhanced with HYDRA operations, JSON-LD

	Speaker data in JSON-LD format, JSON-LD
	speaker's list of presentations in JSON-LD format, JSON-LD

	JSON-LD Playground, JSON-LD
	json-patch module (Node.js), JSON Patch Unit Test
	json-pointer module (Node.js), JSON Pointer Unit Test
	json-server	deploying a Stub API with, Deploy a Stub API with json-server
	deploying city weather data as web API, Test Data
	installing, Install json-server
	installing and running, Create and Deploy a Stub API
	limitation to HTTP GET on data, Deploy a Stub API with json-server
	serving Speakers data in HAL format, Test Data
	URIS for sample data, Generate Sample Data
	using Node.js to serve a file as a Web API, Test Data

	JSON-T, JSON-T-JSON-T limitations	limitations of, JSON-T limitations
	on other platforms, JSON-T on other platforms
	scorecard for evaluation criteria, JSON-T scorecard
	syntax, JSON-T syntax
	unit test, JSON-T Unit Test

	JSON-to-JSON transformations, Types of JSON Transformation, JSON-to-JSON Transform	(see also JSON Transform)

	JSON.parse() function, The JSON Stringifier/Parser Object, JSON Deserialization Using eval()-JSON Deserialization with an Object and JSON.parse(), JSON-XML Transformation Unit Test
	JSON.stringify() function, The JSON Stringifier/Parser Object-JSON Serialization with an Object and toJSON(), JSON-XML Transformation Unit Test
	Json2Json, Honorable Mention
	json:api, json:api-json:api	advantages of using, json:api
	benefits of choosing as hypermedia format, Conclusions on Hypermedia
	embedding all presentation objects for a speaker, json:api
	myconference API Speakers data in json:api format, json:api
	required and optional elements in a document, json:api
	showing relationships between resources, using links in json:api, json:api

	jsonapter, Honorable Mention
	jsonfile module (Node.js), Mustache Unit Test
	JSONLint, A Brief Sample	using for better JSON output, Badgerfish
	using from command line, jsonlint module, NPM modules on the CLI: validate and jsonlint

	JSONPath, JSONPath-JSONPath scorecard, The Issues	on other platforms, JSONPath on other platforms
	online tester, JSONPath online tester
	query syntax, JSONPath query syntax
	ranking in comparison with other JSON Search tools, JSON Search Library and Tool Evaluations—The Bottom Line
	scorecard for evaluation criteria, JSONPath scorecard
	unit test, JSONPath Unit Test

	JSONSchema.net, Generate a JSON Schema	advantages and disadvantages of, Generate a JSON Schema

	JsonUnit, JSON and JUnit Testing with APIs
	JSONView, Create and Deploy a Stub API
	JSR (Java Specification Request) 353, Java-Based JSON Libraries
	JUnit, Just Enough Unit Testing with JUnit	serializeBasicTypes and deserializeBasicTypes methods, Serialization/Deserialization with Simple Java Data Types
	testing JSON serialization/deserialization with Java objects, Serialization/Deserialization with Java Objects	JUNit assertions, Serialization/Deserialization with Java Objects

	testing with APIs, JSON and JUnit Testing with APIs

K
	Kafka Manager, The Kafka Ecosystem—Related Projects
	Kafka, JSON messaging with, JSON Messaging with Kafka-What We Covered	cleaning up and shutting down Kafka	deleting a topic, Delete a Topic
	stopping Kafka, Stop Kafka
	stopping ZooKeeper, Stop ZooKeeper

	differences between Kafka and other messages systems, JSON Messaging with Kafka
	end-to-end example, Speaker Proposals at MyConference, End-to-End Example—Speaker Proposals at MyConference-Review Notification Email Messages with MailCatcher	architecture components, Architecture Components
	Proposal Reviewer, Proposal Reviewer (Consumer/Producer)
	reviewing notification email messages with MailCatcher, Review Notification Email Messages with MailCatcher
	setting up emulated email server and client, Set Up Fake Email Server and Client—MailCatcher
	setting up Node.js project environment, Set Up Node.js Project Environment
	setting up the Kafka environment, Set Up the Kafka Environment
	Speaker Notifier, Speaker Notifier (Consumer)
	Speaker Proposal Producer, Speaker Proposal Producer (Send Speaker Proposals)
	test data, Test Data

	installing Kafka, Install Apache Kafka
	Kafka command-line interface, Kafka Command-Line Interface (CLI)-Kafka Libraries	cleaning up and shutting down Kafka, Clean Up and Shut Down Kafka
	consuming a JSON message, Consume a JSON Message
	convenience scripts with this book, Kafka Command-Line Interface (CLI)
	creating a topic, Create a Topic
	listing topics, List Topics
	publishing a JSON message, Publish a JSON Message
	publishing a JSON message, steps in Process, How to Publish a JSON Message with the CLI
	starting a consumer, Start a Consumer
	starting Kafka, Start Kafka
	starting ZooKeeper, Start ZooKeeper

	Kafka concepts and terminology, Kafka Concepts and Terminology
	Kafka ecosystem and related projects, The Kafka Ecosystem—Related Projects
	Kafka environment setup, Kafka Environment Setup	ZooKeeper, Why Do I Need ZooKeeper?

	Kafka libraries, Kafka Libraries
	learning more about Kafka, Kafka Concepts and Terminology
	use cases for Kafka, Kafka Use Cases

	kafka-node npm module, Proposal Reviewer (Consumer/Producer)	objects used by producers and consumers, Proposal Reviewer (Consumer/Producer)

	key/value pairs (see name/value pairs)
	Kibana, Kafka Use Cases

L
	@last@ Handlebars variable, Handlebars
	latitude/longitude values, Latitude/Longitude Values
	links	author's opinion on, My Opinion on Hypermedia
	in Siren, Siren
	in Siren Speaker entity, Siren
	link relations in HAL, HAL
	link relations versus embedding related resources, HAL
	links object in HAL, HAL	reference to self, HAL Unit Test

	links object in json:api, json:api
	using in json:api to show relationships between resources, json:api

	LiveReload, Iteration 1—Generate a Web Application with Yeoman
	log aggregation, using Kafka messaging, Kafka Use Cases
	logic-less templates (Mustache), Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	Logstash, Kafka Use Cases
	lowerCamelCase for JSON property names, Property Names

M
	MailCatcher, Architecture Components	installing, Install mailcatcher
	reviewing notification email messages, Review Notification Email Messages with MailCatcher
	setting up emulated email server and client, Set Up Fake Email Server and Client—MailCatcher
	Speaker Notifier sending message to server, Speaker Notifier (Consumer)
	starting the server, Set Up Fake Email Server and Client—MailCatcher

	marshaling, XML-JSON Transform—The Bottom Line
	matchers (JsonUnit), for JSON comparison in JUnit tests, JSON and JUnit Testing with APIs
	Maven Central Repository, Write the Build Script
	message design, using JSON Schema, Why JSON Schema?
	messaging platforms, JSON Overview
	messaging with Kafka, JSON Messaging with Kafka-What We Covered	end-to-end example, Speaker Proposals at MyConference, End-to-End Example—Speaker Proposals at MyConference-Review Notification Email Messages with MailCatcher
	Kafka command-line interface (CLI), Kafka Command-Line Interface (CLI)-Kafka Libraries
	Kafka concepts and terminology, Kafka Concepts and Terminology
	Kafka ecosystem and related projects, The Kafka Ecosystem—Related Projects
	Kafka environment setup, Kafka Environment Setup
	Kafka libraries, Kafka Libraries
	use cases for Kafka, Kafka Use Cases

	metadata, JSON and Hypermedia	describing available actions for Siren entities, Siren
	provided by hypermedia, author’s opinion on, My Opinion on Hypermedia

	MIME type (JSON), JSON File and MIME Type
	Minitest	learning more about, Further Reading on Ruby and Minitest
	RSpec versus, Just Enough Unit Testing with Minitest

	Mocha unit test framework, Just Enough Unit Testing with Mocha and Chai, Setting Up Unit Tests	beforeEach method, JSONPath Unit Test
	beforeEach() method, Speakers Unit Test

	model/view/controller (MVC) frameworks, Why JSON?	creating a controller for Rails application, Create the Controller
	creating controller in Java application, Create the Controller
	creating model in Java application, Create the Model
	JSON generation and, Evaluation criteria
	templating, Iteration 3—Consume Speaker Data from a Stub API and Use a Template

	mongo command shell, Importing JSON into MongoDB	basic CRUD operations with, Basic CRUD with mongo-Delete a document	creating a document, Create a document
	deleting a document, Delete a document
	querying documents, Query documents
	updating a document, Update a document

	exiting, MongoDB Command Shell

	mongod server, MongoDB Server and Tools	starting and running, MongoDB Server

	MongoDB	installing, Install MongoDB
	REST wrapper for, Crest, Install Crest

	MongoDB, JSON and, JSON and MongoDB-What’s Next?	BSON (Binary JSON), What About BSON?
	exporting from MongoDB to JSON document, Exporting from MongoDB to a JSON Document-Exporting from MongoDB to a JSON Document
	importing JSON into MongoDB, Importing JSON into MongoDB
	mongo command shell, MongoDB Command Shell-Delete a document
	mongod server, MongoDB Server
	MongoDB and relational databases, Importing JSON into MongoDB
	MongoDB server and tools, MongoDB Server and Tools
	MongoDB setup, MongoDB Setup
	RESTful API, testing with MongoDB, RESTful API Testing with MongoDB-Providing a RESTful Wrapper for MongoDB

	mongodump utility, MongoDB Server and Tools
	mongoexport utility, MongoDB Server and Tools	exporting from MongoDB to JSON document, Exporting from MongoDB to a JSON Document
	piping output through jq utility, Exporting from MongoDB to a JSON Document

	mongoimport utility, MongoDB Server and Tools	importing speakers JSON file, Importing JSON into MongoDB

	Mongoose, What About Schema?
	mongorestore utility, MongoDB Server and Tools
	mongostat utility, MongoDB Server and Tools
	Mountebank server, Create and Deploy a Stub API
	MultiJson, Ruby JSON Gems	JSON deserialization with objects and MultiJson, JSON Deserialization with Objects and MultiJson
	JSON serialization/deserialization with simple Ruby data types, JSON Serialization/Deserialization with Simple Ruby Data Types
	methods, The MultiJson Object

	Mustache library, Iteration 3—Consume Speaker Data from a Stub API and Use a Template	adding to a web application, Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	differences between Handlebars and, Differences between Handlebars and Mustache
	factoring HTML/DOM manipulation from JavaScript with a template, Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	JSON-to-HTML transformations, Mustache-Mustache scorecard	Mustache on other platforms, Mustache on other platforms
	Mustache on the command line, Mustache on the command line
	Mustache template syntax, Mustache template syntax
	online tester, Mustache online tester
	scorecard for evaluation criteria, Mustache scorecard
	unit test, Mustache Unit Test

	JSON-to-JSON transformations, Mustache-Mustache limitations	limitations of Mustache, Mustache limitations

	Mustache module (Node.js), Mustache Unit Test

N
	name/value pairs, JSON Data Types	value types, JSON Value Types

	noBackend, Our Architectural Style—noBackEnd
	node-jq module (Node.js), jq Unit Test
	Node.js, JSON Overview	cities weather test example project, Setting Up Unit Tests
	installing, Create and Deploy a Stub API, Install Node.js	on Windows, Install Node.js on Windows

	jq-tutorial, jq-tutorial
	json-patch module, JSON Patch Unit Test
	json-pointer module, JSON Pointer Unit Test
	Json2Json, Honorable Mention
	jsonapter, Honorable Mention
	Mongoose, What About Schema?
	Mustache module, Mustache on the command line
	Mustache unit test, Mustache Unit Test
	node-jq module, jq Unit Test
	Request-Eval-Print-Loop (REPL), Node REPL
	setting up Speaker Proposals at MyConference project, Set Up Node.js Project Environment
	setup, Node.js Setup
	support for HAL, Server-Side HAL
	support for JSON Schema, Validation Using a JSON Schema Library
	uninstaling on Linux, Uninstall Node.js on Linux
	uninstalling on macOS, Uninstall Node.js
	uninstalling on Windows, Uninstall Node.js on Windows
	using to test with HAL in Speakers API, HAL Unit Test
	xml2js library, Parsing/generating XML libraries

	nodemailer transporter object, Speaker Notifier (Consumer)
	NoSQL databases, JSON Overview
	npm, The Yeoman toolset	avoding sudo with, Avoiding sudo with npm
	installing modules, Install npm Modules

	null values	in JSON, null
	null type in JSON Schema, Basic Types

	numbers	in JSON, Number
	number type in JSON Schema, Basic Types-Basic Types
	validating in JSON Schema, Numbers-Arrays

	NVM (Node Version Manager), Install Node.js on macOS and Linux with NVM	nvm-windows, Install Node.js on Windows

O
	Object Document Mappers (ODMs), What About Schema?	Mongoose, What About Schema?
	platforms other than Node.js, What About Schema?

	Object ID (_id) in MongoDB, removing from JSON data, Exporting from MongoDB to a JSON Document
	object-oriented programming	SOLID principles of OO design, Evaluation criteria

	ObjectMapper class, Serialization/Deserialization with Simple Java Data Types
	objects, Why JSON?	containing another object, Objects
	data/cities-weather.json, Test Data
	JavaScript objects and JSON, JavaScript Objects and JSON-Where to Learn More About JavaScript Objects	learning more about JavaScript objects, Where to Learn More About JavaScript Objects
	Node REPL, Node REPL

	object type in JSON Schema, Basic Types
	overview of JSON objects, Objects
	Plain Old Java Object (POJO), Create the Model
	Ruby object holding speaker data (example), Speakers Unit Test
	validating in JSON Schema, Objects-Objects

	offset (Kafka messages), Kafka Concepts and Terminology, Proposal Reviewer (Consumer/Producer)
	oj gem, Ruby JSON Gems	installing, Install oj
	serializing/deserializing Ruby data types with, JSON Serialization/Deserialization with Simple Ruby Data Types

	oneOf keyword, oneOf
	Open Web Application Project (OWASP), Web Service Security Cheat Sheet, Why JSON Schema?
	OpenApis, My Opinion on Hypermedia
	OpenStruct, JSON Deserialization with Objects and MultiJson, JSON Deserialization with Objects and ActiveSupport
	OpenWeatherMap API, Test Data	data on json-server viewed from the browser, Test Data
	JSON Patch operations on data, JSON Patch syntax
	sample data in XML document form, JSON-XML Transformation Conventions
	test data for JSON Transform, Test Input Data

	operational and application performance metrics, using Kafka messaging, Kafka Use Cases
	operations	adding metadata on, My Opinion on Hypermedia
	information on, provided by HYDRA, JSON-LD

P
	package management tools (in Yeoman), The Yeoman toolset
	Parker, JSON-XML Transformation Conventions, Parker-The Issues with JSON-XML Transformation Conventions	cities weather JSON document output, Parker
	core rules, Parker
	limitations of, Parker

	partitions (Kafka topics), Kafka Concepts and Terminology
	pattern properties	patternProperties keyword, Pattern Properties
	validating in JSON Schema, Pattern Properties-Regular Expressions

	PHP, JSON Overview	support for JSON Schema, Validation Using a JSON Schema Library

	Plain Old Java Object (POJO), Create the Model
	Plain Old Ruby Object (PORO), Speakers Unit Test
	plissken gem, JSON Deserialization with Objects and ActiveSupport
	Postman, Create and Deploy a Stub API	installing, Install Postman
	Speakers data in HAL format viewed in, Test Data
	testing Java Speakers API, Test the API with Postman
	testing web API in Ruby on Rails, Test the API with Postman
	viewing Speakers data served by Crest, Providing a RESTful Wrapper for MongoDB	deleting a speaker, Providing a RESTful Wrapper for MongoDB

	pretty-printing JSON, JSON Editor Online features
	producers, Kafka Concepts and Terminology	HighLevelProducer object, Proposal Reviewer (Consumer/Producer)
	kafka-node objects used by, Proposal Reviewer (Consumer/Producer)
	Speaker Proposal Producer (example), Architecture Components, Speaker Proposal Producer (Send Speaker Proposals)

	Promise (JavaScript), jq Unit Test
	properties	beginning with @, in Badgerfish, Badgerfish
	date property values, Date Property Values
	dependent properties in JSON Schema, Dependent Properties
	in Siren, Siren
	property names in JSON, Property Names
	rules of Badgerfish convention, Badgerfish

	properties keyword (JSON Schema), Core Keywords
	Proposal Reviewer application (example), Proposal Reviewer (Consumer/Producer)
	prototyping, using JSON Schema, Why JSON Schema?
	publish/subscribe messaging, Kafka Use Cases	consuming a JSON message in Kafka, Consume a JSON Message
	publishing a JSON message with Kafka CLI, How to Publish a JSON Message with the CLI
	starting a consumer in Kafka, Start a Consumer

	$push operator, Update a document
	PUT method (HTTP), JSON Patch
	Python	support for JSON Pointer, JSON Pointer on other platforms
	support for JSON Schema, Validation Using a JSON Schema Library
	support for JSONPath, JSONPath on other platforms

R
	RABL (Ruby API Builder Language), Choose a JSON Serializer	choosing between Jbuilder, AMS, and RABL, AMS, RABL, or Jbuilder?

	RAML, My Opinion on Hypermedia
	regular expressions	in JSON-T unit test, eliminating trailing comma after last array element, JSON-T Unit Test
	in JSONPath slice function, JSONPath query syntax
	learning more about, Going deeper with Regular Expressions
	pattern properties based on, Pattern Properties
	using in JSON Schema, Regular Expressions-Going deeper with Regular Expressions, Generate a JSON Schema

	relational databases, MongoDB and, Importing JSON into MongoDB
	remove function, Delete a document
	REPL, turning off undefined in, Taming the REPL—mynode
	representation, Defining Key Terms	information on data representations from HYDRA, JSON-LD

	Representational State Transfer (see REST)
	Request-Eval-Print-Loop (REPL) in Node, Node REPL
	requires keyword, Choosing Validation Rules
	resources, Defining Key Terms	data representation in json:api, json:api
	data representation of, alteration by hypermedia, My Opinion on Hypermedia
	data representation of, in JSON-LD, JSON-LD
	embedded resources in HAL, HAL
	embedding with json:api, json:api
	included array in json:api, json:api
	Resource objects and embedded resources in HAL, HAL
	showing relationships between, using links in json:api, json:api

	REST	JSON and, JSON Overview
	key terms, defining, Defining Key Terms

	RESTful APIs	hypermedia and, JSON and Hypermedia
	JSON-based, Why JSON?
	server-side libraries for HAL-based responses, Server-Side HAL
	Stub API, testing with MongoDB, RESTful API Testing with MongoDB-Providing a RESTful Wrapper for MongoDB	RESTful wrapper for MongoDB, Providing a RESTful Wrapper for MongoDB

	testing with Postman, Create and Deploy a Stub API
	Unirest client, Unirest

	RESTHeart, Providing a RESTful Wrapper for MongoDB
	Routes file (in Rails applications), Create the Controller	shortening with resource-based routing, Create the Controller

	RSpec, Minitest versus, Just Enough Unit Testing with Minitest
	Ruby, JSON Overview	installing Ruby gems, Install Ruby Gems
	Karafka gem, Kafka Libraries
	learning more about, Further Reading on Ruby and Minitest
	Mongoid ODM for accessing MongoDB, What About Schema?
	parsing/generating XML libraries, Parsing/generating XML libraries
	ruby-jq gem, jq on other platforms
	support for JSON Patch, JSON Patch on other platforms
	support for JSON-T, JSON-T on other platforms

	Ruby API Builder Language (RABL), Choose a JSON Serializer
	Ruby on Rails	installing, Install Ruby on Rails	on macOS and Linux, Install Rails on macOS and Linux
	on Windows, Install Rails on Windows

	JSON in, JSON in Ruby on Rails-What We Covered	building small web API, Build a Small Web API with Ruby on Rails-Test the API with Postman
	camel case for JSON, A Word on Camel Casing and JSON
	JSON serialization/deserialization with MultiJson, JSON Serialization/Deserialization with MultiJson
	Ruby JSON gems, Ruby JSON Gems
	Ruby on Rails setup, Ruby on Rails Setup
	unit testing with a Stub API, Unit Testing with a Stub API-What Is Missing in the Unit Tests?

	learning more about Rails and Rails-based APIs, Further Reading on Rails and Rails-based APIs
	mailcatcher gem, installing, Set Up Fake Email Server and Client—MailCatcher
	support for HAL, Server-Side HAL
	support for JSON Pointer, JSON Pointer on other platforms
	support for JSON Schema, Validation Using a JSON Schema Library
	support for JSONPath, JSONPath on other platforms
	support for Mustache, Mustache on other platforms

S
	scaffolding tool (Yeoman), The Yeoman toolset
	Schema.org website, JSON-LD
	schemas, JSON Schema	(see also JSON Schema)
	MongoDB data and, What About Schema?

	search (see JSON Search)
	security, JSON Schema and, Why JSON Schema?
	semantic validation, How does a JSON Schema help?	objects, Objects

	serialization/deserialization	additional, required by use of hypermedia, Practical Issues with Hypermedia
	Avro data serialization, The Kafka Ecosystem—Related Projects
	JSON in Java, using Jackson, JSON Serialization/Deserialization with Jackson	with Java objects, Serialization/Deserialization with Java Objects
	with simple Java data types, Serialization/Deserialization with Simple Java Data Types

	serializers for JSON in Ruby on Rails, Choose a JSON Serializer
	using JSON in JavaScript, JSON Serialization/Deserialization with JSON.stringify() and JSON.parse()-JSON Deserialization with an Object and JSON.parse()	JSON deserialization with an object and JSON.parse(), JSON Deserialization with an Object and JSON.parse()
	JSON deserialization with eval(), JSON Deserialization Using eval()
	JSON serialization with an object and toJSON(), JSON Serialization with an Object and toJSON()
	serializing basic JavaScript data types, JSON Serialization with Simple JavaScript Data Types

	using JSON in Ruby on Rails, Ruby JSON Gems	JSON deserialization with objects and ActiveSupport, JSON Deserialization with Objects and ActiveSupport
	JSON deserilization with objects and MultiJson, JSON Deserialization with Objects and MultiJson
	JSON serialization with objects and ActiveSupport, JSON Serialization with Objects and ActiveSupport
	MultiJson, JSON Serialization/Deserialization with MultiJson
	simple Ruby data types, JSON Serialization/Deserialization with Simple Ruby Data Types

	should (BDD) assertion style, Just Enough Unit Testing with Mocha and Chai
	Simple Mail Transfer Protocol (SMTP), Set Up Fake Email Server and Client—MailCatcher
	Simple REST API, Providing a RESTful Wrapper for MongoDB
	Single Responsibility Principle, Evaluation criteria
	Siren, Siren-Siren	key concepts, Siren
	Speaker data in Siren format, Siren
	speaker entity, definition of, Siren

	slice function, JSONPath query syntax
	SMTP server, Set Up Fake Email Server and Client—MailCatcher
	snake case, Property Names	converting between camel case and, using ActiveSupport, JSON Serialization with Objects and ActiveSupport
	converting camel case Hash keys to, using awrence gem, JSON Serialization with Objects and ActiveSupport
	converting camel case Hash keys to, using plissken gem, JSON Deserialization with Objects and ActiveSupport
	JSON in Ruby on Rails, A Word on Camel Casing and JSON

	SOAP/XML-based Web Services, Types of JSON Transformation
	SOLID principles of OO design, Evaluation criteria
	SpahQL, Honorable Mention
	Spark/Spark Streaming, Kafka Use Cases-The Kafka Ecosystem—Related Projects
	Spring Boot, Build a Small Web API with Spring Boot-Test the API with Postman	advantages of using, Build a Small Web API with Spring Boot
	creating and deploying Speakers API (example)	deploying the API, Deploy the API
	registering the application, Register the Application

	Gradle plug-in, functions of, Write the Build Script
	steps in creating and deploying Speakers API (example), Build a Small Web API with Spring Boot	creating the controller, Create the Controller
	creating the model, Create the Model

	Spring Data, What About Schema?
	Spring HATEOS, Server-Side HAL
	Spring Kafka library, Kafka Libraries
	standards	lack of, in hypermedia, Practical Issues with Hypermedia
	lack of, in JSON-to-JSON transformations, The Issues

	stream processing	Apache Spark/Spark Streaming, The Kafka Ecosystem—Related Projects
	Kafka messaging in, Kafka Use Cases

	stringifier/parser object (JSON), The JSON Stringifier/Parser Object
	strings	JSON String, deserializing into OpenStruct object, JSON Deserialization with Objects and MultiJson
	JSON-T handling of, JSON-T limitations
	overview of JSON strings, String
	string type in JSON Schema, Basic Types-Basic Types

	Stub API	creating and deploying, Create and Deploy a Stub API
	deploying with json-server, Deploy a Stub API with json-server
	leveraging MongoDB as RESTful stub API, RESTful API Testing with MongoDB-Providing a RESTful Wrapper for MongoDB
	testing with HAL in Speakers API, Testing with HAL in the Speakers API-HAL Unit Test
	unit testing JSON in Java, Unit Testing with a Stub API-JSON and JUnit Testing with APIs	JUnit testing with APIs, JSON and JUnit Testing with APIs
	test data, Test Data

	unit testing with, Unit Testing with a Stub API-Building a Small Web Application
	web application consuming data from, Iteration 3—Consume Speaker Data from a Stub API and Use a Template

	style guidelines for JSON, JSON Style Guidelines	date property values, Date Property Values
	indentation, Indentation
	latitude/longitude values, Latitude/Longitude Values
	property names, Property Names

	sudo command, avoiding with npm, Avoiding sudo with npm
	syntactic validation, Syntactic Versus Semantic Validation

T
	table-striped CSS class, Iteration 2—Make an HTTP Call with jQuery
	TDD (test-driven development), Unit Test Style—TDD and BDD
	TDD-style unit tests, Unit Test Style—TDD and BDD
	templates	Handlebars library, Handlebars	for JSON-to-JSON conversion, Handlebars
	template syntax, Handlebars template syntax

	jsonapter library, Honorable Mention
	Mustache library, Mustache	Architect template editor, Mustache online tester
	for JSON-to-JSON conversion, Mustache
	syntax, Mustache template syntax

	used by JSON Generator, Generate Sample Data

	templating libraries for JavaScript, Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	terminal sessions (Kafka messaging example), Set Up the Kafka Environment
	testing	Handlebars online testers, Handlebars online testers
	Handlebars unit test, Handlebars Unit Test
	Java Speakers API with Postman, Test the API with Postman
	jq unit test, jq Unit Test
	JSON Patch unit test, JSON Patch Unit Test
	JSON Pointer unit test, JSON Pointer Unit Test
	JSON-T unit test, JSON-T Unit Test
	JSON-XML transformation unit test, JSON-XML Transformation Unit Test
	JSONPath online tester, JSONPath online tester
	JSONPath unit test, JSONPath Unit Test
	Kafka, JSON messaging with	test data, Test Data

	Mustache online tester, Mustache online tester
	Mustache unit test, Mustache Unit Test
	online tester, jqPlay, jq online tester—jqPlay
	RESTful API, testing with MongoDB, RESTful API Testing with MongoDB-Providing a RESTful Wrapper for MongoDB
	Ruby on Rails web API, using Postman, Test the API with Postman
	setting up unit tests for JSON Search, Setting Up Unit Tests
	test data for JSON Search, Test Data
	test data for JSON Transform, Test Input Data
	unit testing JSON in Java with a Stub API, Unit Testing with a Stub API-JSON and JUnit Testing with APIs
	unit testing with a Stub API, Unit Testing with a Stub API-Building a Small Web Application	setting up the test, Setting Up the Unit Test
	speakers test (example), Speakers Unit Test
	test data, Test Data
	Unirest client, Unirest

	unit testing with JUnit, Just Enough Unit Testing with JUnit-Serialization/Deserialization with Simple Java Data Types	JSON serialization with Java objects, Serialization/Deserialization with Java Objects

	with HAL in Speakers API, Testing with HAL in the Speakers API-HAL Unit Test	HAL unit test, HAL Unit Test
	test data, Test Data

	text messages, Kafka support for, JSON Messaging with Kafka
	toJSON() method, JSON Serialization with an Object and toJSON()
	topics (Kafka), Kafka Concepts and Terminology	configuring Kafka to delete, Kafka Environment Setup
	creating, Create a Topic
	deleting, Delete a Topic
	listing, List Topics

	traditional messaging, using Kafka, Kafka Use Cases
	transformation rules (JSON-T), JSON-T syntax
	transformations, JSON Transform	(see also JSON Transform)
	JSON, types of, Types of JSON Transformation

	TryHandlebars, Handlebars online testers
	type keyword (JSON Schema), Core Keywords, Basic Types

U
	ujs-jsonvalidate (Node.js), Validation Using a JSON Schema Library
	Underscore.js, Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	Unirest API wrapper, Unirest, JSONPath Unit Test	in HAL unit test, HAL Unit Test
	Java implementation, JSON and JUnit Testing with APIs	additional features in, JSON and JUnit Testing with APIs

	Ruby implementation, JSON and Minitest Testing with APIs
	using to make API call to Speaker Stub API, Speakers Unit Test

	unit testing (see testing)
	{{#unless}} Handlebars helper, Handlebars
	unmarshaling, XML-JSON Transform—The Bottom Line
	update function, Update a document
	URIs	for external references in JSON Schema, External References
	for internal references in JSON Schema, Internal References
	for json-server, Generate Sample Data

V
	validate CLI tool, Validate the JSON Document
	validate module, NPM modules on the CLI: validate and jsonlint
	validation, JSON documents, A Brief Sample, What Is JSON Schema?	(see also JSON Schema)
	basic types validation with JSON Schema, Basic types validation-Basic types validation
	in JSON Editor Online, JSON Editor Online features
	JSON Validate application, JSON Validate
	output from mongo shell command, Query documents
	Speaker Proposal example, Proposal Reviewer (Consumer/Producer)
	syntactic versus semantic validation, Syntactic Versus Semantic Validation
	using a JSON Schema library, Validation Using a JSON Schema Library
	using JSON Validate web app, Validate the JSON Document
	using JSONLint, Model a JSON Document

	values	JSON value types, JSON Value Types	strings, String

	valid values in JSON, Query documents

	@vocab object, in JSON-LD, JSON-LD

W
	WAR (Web application ARchive) files, Build a Small Web API with Spring Boot
	weather data (see OpenWeatherMap API)
	web applications	building a small web API with Ruby on Rails, Build a Small Web API with Ruby on Rails-What We Covered	camel-casing AMS JSON output, Camel-casing AMS JSON output
	choosing JSON serializer, Choose a JSON Serializer
	creating speakers API (example), speakers-api-1—Create an API with Camel-Cased JSON
	customized JSON representation, speakers-api-2—Create an API that Customizes the JSON Representation
	deploying the API, Deploy the API
	learning more about Rails and Rails-based APIs, Further Reading on Rails and Rails-based APIs
	testing with Postman, Test the API with Postman

	building a small web API with Spring Boot, Build a Small Web API with Spring Boot-Test the API with Postman	creating the controller, Create the Controller
	creating the model, Create the Model
	deploying the API, Deploy the API
	registering the application, Register the Application
	writing the build script, Write the Build Script

	building using JSON in JavaScript, Building a Small Web Application-Iteration 3—Consume Speaker Data from a Stub API and Use a Template	consuming data from a Stub API and using a template, Iteration 3—Consume Speaker Data from a Stub API and Use a Template
	generating a web application with Yeoman, Iteration 1—Generate a Web Application with Yeoman
	making an HTTP call with jQuery, Iteration 2—Make an HTTP Call with jQuery
	Yeoman framework, Yeoman
	Yeoman generators, Yeoman generators
	Yeoman toolset, The Yeoman toolset

	deploying city weather data as web API, Test Data

	Web Service Security Cheat Sheet (OWASP), Why JSON Schema?

X
	XML	JSON-XML transformations, Types of JSON Transformation, JSON-XML Transformation-JSON-XML Transformation Unit Test	Badgerfish convention, Badgerfish-Parker
	cities weather data sample XML document, JSON-XML Transformation Conventions
	conventions, JSON-XML Transformation Conventions
	issues with transformation conventions, The Issues with JSON-XML Transformation Conventions
	Parker convention, Parker-Parker
	parsing/generating XML libraries, Parsing/generating XML libraries
	recommendations for JSON-to-XML, XML-JSON Transform—The Bottom Line
	recommendations for XML-to-JSON, XML-JSON Transform—The Bottom Line
	unit test, JSON-XML Transformation Unit Test

	XSLT transformations, Types of JSON Transformation

	XML Schema, comparison with JSON Schema, JSON Schema and XML Schema
	xml2js library, XML-JSON Transform—The Bottom Line-JSON-XML Transformation Unit Test
	XPath, JSONPath query syntax

Y
	yajl gem, Ruby JSON Gems
	Yeoman, Yeoman	generating a web application, Iteration 1—Generate a Web Application with Yeoman
	generators, Yeoman generators
	installing, Install Yeoman
	installing generator-web app Yeoman generator, Install the generator-webapp Yeoman generator
	toolset, The Yeoman toolset
	tutorials on, Yeoman

Z
	ZooKeeper, Why Do I Need ZooKeeper?	installing, Install Kafka on Windows
	starting from the Kafka CLI, Start ZooKeeper
	stopping, Stop ZooKeeper

 About the Author

 Tom Marrs is passionate about demonstrating the
 business value of technology. As an Enterprise Architect at
 TEKsystems Global Services, he leverages the enabling architectures
 and technologies that fuel the growing API Economy—REST,
 Microservices, and JSON. Tom has led enterprise-class API, Web,
 Mobile, Cloud, and SOA projects. An avid Agilist, Tom is a
 Certified Scrum Master and enjoys mentoring and coaching project
 teams.

 In other JSON-related work, Tom wrote the Core JSON Refcard for DZone
 (the #1 downloaded Refcard in 2013). In a past life, Tom co-authored
 JBoss at Work for O’Reilly. Tom has also been a speaker at the
 O’Reilly Open Source Convention (OSCON), No Fluff Just Stuff (NFJS), and Great Indian Developer Summit (GIDS) conferences. He hopes to speak at these conferences again in the near future.

 Colophon

 The animal on the cover of JSON at Work is the Siberian jay (Perisoreus infaustus), a small bird native to northern Eurasia. Its habitat range is extremely large, stretching from Sweden in the west to China in the east. They make their nests in coniferous trees found in dense boreal forests (also known as taiga).

 Siberian jays can grow to be 29 centimeters long and can weigh up to 79 grams. They have long tails and brown and gray coloring. Siberian jays are omnivorous, feeding on berries and seeds as well as insects, carrion, and small rodents. Females lay their eggs once a year in March or April, and raise their young before the winter arrives.

 There is some evidence that the European population of Siberian jays is declining as a result of human-caused deforestation. However, because of their massive range across sparsely inhabitated regions of Asia, the Siberian jay not currently listed as endangered or threatened.

 Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com.

 The cover image is from Riverside Natural History. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/json_02in03.png
Jjson-at-work => node obj-literal-stringify-tojson.js
speaker.£oJSONO): "Hi there!”
json-at-work = ||

OEBPS/assets/json_01in04.png
Jjson-at-work => json-server -p 5000 ./speakers.json
\{AAY/ hit

Loading ./speakers. json
Done

Resources
http://1ocalhost:5000/speakers

Home
http://localhost:5000

Type s + enter at any time to create a snapshot of the database

OEBPS/assets/json_04in03.png
org. jsonatwork. ch4. SpeakersApiJsonTest > testApiAllSpeakersJson STANDARD_OUT
L

"id": 1,
“fullName": “Larson Richard",
“tags": [

"JavaScript”,

“AngularJs”,

"Yeoman"

id": 2,
“fullName": "Ester Clements",
“tags": [

"REST",

“Ruby on Rails",

Pl

"id": 3,

OEBPS/assets/json_05in20.png
©® O ® /[ocamost8ost/ex-1a-my - x

« C' A [1 localhost:8081/ex-14-my-common-schema.json

{
$schema: "http://json-schema.org/draft-04/schema#",
id: "http://localhost:8081/ex-14-my-common-schema. json" ,
- definitions: {
- emailPattern: {
type: "string”,
pattern: "~[\w|-1+€[\w|-]+\.[A-Za-2]{2,4}$"

OEBPS/assets/json_10in17.png
Recelved Saturday, 21 Jan 2017 4:17:49 PM
From <proposals@myconference com>
o larson richard @ecratc.com>
Subject Ultimate JavaScript Conference by MyConference - Enterprise Node
HTML | Source Download
Larson,
We appreciate your interest, but regret to inform you that your talk on Enterprise Node was not accepted for the Ultimate JavaScript Conference by MyConference.

We look forward to seeing you at future events, and hope that you submit more conference talks.

Sincerely,
The Ultimate JavaScript Conference by MyConference Event Team.

OEBPS/assets/json_03in06.png
Jjson-at-work => bundle exec rake
Started with run options --seed 42108

Speakers APL
test_0001_should return a 200 response
test_0004_should validate the 3rd speaker with jq
‘test_0003_should validate the 3rd speaker as an Object
test_0002_should return all speakers

Finished in 0.03299s
4 tests, 18 assertions, 0 failures, 0 errors, 0 skips

PASS (0.01s)
PASS (0.025)
PASS (0.00s)
PASS (0.00s)

OEBPS/assets/json_04in06.png
Authorization Headers PreequestScript Tests
Tipe No Auth v
Body Cookles Headers(3) Tests Status: 200 0K

Pretty Raw Preview JSON v =

Larson Richard",

"registered’: true

OEBPS/assets/json_05in30.png
Jjson-at-work => json-server -p 5000 ./ex-18-speakers-generated-modified.json
A} Hil

Loading database from ./ex-18-speakers-generated-modified. json
http://local host:5000/speakers

You can now go to hitp://localhost:5000/
Enter 's" at any time to create a snapshot of the db

GET /speakers 200 11.750 ms - 1667
GET /speakers 304 4.027 ms - -

GET /speakers/@ 200 3.170 ms - 574
GET /speakers/@ 304 2.556 ms
GET /speakers/@ 304 1.350 ms
GET /speakers 304 1,437 ms

OEBPS/assets/json_10in03.png
Jjson-at-work => ./create-topic.sh test-proposals-recvd
Created topic "test-proposals-recvd".

OEBPS/assets/json_05in25.png
“Firsthane”

“lastNane

“picture”:

“tags™: [
“Javascript”,
“REST",
“350N"

1

"company”: "Full Ventures, Inc.

New Openv Savev Seftingsv Help

powersd by ace:
v object {7}
about : Fred Smith is the CTO of Full Ventures, where he ...

email : fred. smith@fullventures. com

A

firstName : Fred

lastName : Smith

picture : http://placehold.it/fsmith-full-ventures-small.png
» tags [3]

company Full Ventures, Inc.

JSON Editor Online 3.7.7 » History « Sourcecode Report a bug * Data policy * Copyright 2011-2017 Jos de Jong

OEBPS/assets/json_05in27.png
© 00 /@ sonvaiate < \@R
PR AT com %~ =
Import About Help
JSON Schema JSON Content
T
o = — 3
10 pattern®s "A[\\wl-|.1+@[\\WIH\\. [A-Za-z] (2, 4}8" Y
11 B 5 "Smitht,
12| “EirstNamen: (6 http://placehold. it/£smith-£ull-ventures-snall.png",
| Rl C :
14 . "JavaScript",
15| Maseamer: ¢ =i
1o e o =
:Z b ull g,
o e s Fompers s e,
n
i
i
f
n
3
P

Validate Reset all

Learn more about
Using JSON Schema

OEBPS/assets/json_07in04.png
<« C {Y @& Secure https://rowno.github.io/architect/ Y

Architect cait Javascript templates in various engines [i onabied

Engine: | Mustache.js 4|/ CReset » [0.8.1 » (223 2.0KB » github » download
Template View

1

2 “cities": [

3 {{#cities}}

4 {

5 "id": "{{id}}",

6 "name”: "{{name}}

7 “weather": {

8 {{#main}}

9 urrentTemp”: {{temp}},

10 owTemp": {{temp_min}}, 10 “temp”: 84.34,

1 \iTemp": {{temp_max}}, 11 “"pressure”: 1012,

12 “humidity": {{humidity}}, 12 “humidity": S8,

13 {{/main}} 13 “temp_min": 78.8,

14 “windSpeed": {{wind.speed}}, 14 “temp_max": 93

15 {{#weather.0}} 15 1

e Ceimmarst i ayy T e raiziors
Result

A a

29 1

3 3988392,

31 “nane: "Rosarito",

32 “weather": {

3 s2.47,

3

35

36

3

38 unnary”: "Clouds™

39 i cattered clouds”

40 }

41 o

42 1

OEBPS/assets/json_05in06.png
Jjson-at-work => validate ex-2-basic-types-invalid.json ex-2-basic-types-schema.json
JSON content: in file ex-2-basic-types-invalid.json is valid
json-at-work = ||

OEBPS/assets/json_10in11.png
Jjson-at-work => ./stop-zookeeper.sh

Zooeeper JMX enabled by default

Using config: /usr/local /etc/zookeeper/z00.cfg
Stopping zookeeper ... STOPPED

OEBPS/assets/json_05in31.png
/ Thlocamost:s0o0/spoakers %

C' i [localhost:5000/speakers

[O).picture

id: 0,
picture: "http://placehold.it/32x32",

name: "Allen’,

abe enim labore exercitation elit duis irure sit incididunt dolore esse est. Culpa laboris ex labore labore nulla ad cillum fugiat
reprehenderit nostrud irure. Officia et cupidatat et pariatur nulla nisi aliguip. In magna et ad eiusmod exercitation veniam. Culpa esse
enim amet do aliqua reprehenderit sunt ipsum velit nulla reprehenderit. Ad minim consectetur magna adipisicing ut.

id: 1,

picture: "http://placehold.it/32x32",

name: "Merle",

"Prince”,

"xylar",

"merleprince@xylar.com",

out: "Id voluptate duis est laborum laborum esse. Ipsum fugiat ut pariatur adipisicing et cillum. Duis aute cillum adipisicing labore qui
velit velit nostrud ad. Velit est mollit officia excepteur minim minim occaecat enim qui magna ad ut adipisicing deserunt. Qui officia ex
aute laboris. Pariatur et anim cillum veniam. Labore eiusmod non velit do eiusmod tempor nostrud do cupidatat.

id: 2,

picture: "http://placehold.it/32x32",

name: "salazar”,

lastName: "Ewing”,

"Zentime",

"salazarewing@zentime.com"

about: "Officia qui id nostrud non laboris in eiusmod ex et. Aute sunt consequat do labore dolor in et ea excepteur cillum incididunt enim
sunt. Et voluptate qui occaecat eu. Nulla aute esse reprehenderit aliquip officia incididunt excepteur nisi. Culpa ad occaccat ipsum
deserunt ex dolor ullamco quis.

OEBPS/assets/json_05in12.png
Jjson-at-work => validate ex-8-array-enum-invalid.json ex-8-array-enum-schema.json
Invalid: No enum match for: "JS"

JSON Schema element: /properties/tags/items/type

JSON Content path: /tags/2

OEBPS/assets/json_05in13.png
Jjson-at-work => validate ex-9-named-object-invalid.json ex-9-named-object-schema.json
Invalid: Missing required property: rating

JSON Schema element: /properties/speaker/required/4

JSON Content path: /speaker

OEBPS/assets/json_07in05.png
Results

Error: Parse error on line 11
-.ummary”: "Clear” “description”: "Sky

Expecting 'EOF i, '17. got 'STRING'

OEBPS/assets/json_02in04.png
Jjson-at-work => node eval-parse.js
Parse with eval(): 2014-10-06T13:30:00.000

Parse with JSON.parse(): 2014-10-06T13:
json-at-work = ||

OEBPS/assets/json_06in07.png
Jjson-at-work => jq-tutorial
Run jo-tutorial with one of the following:

OEBPS/assets/json_05in03.png
© 0 @ /B 50N sonoma conorator

€ = C i [} jsonschema.net/#/

JSONSchema.net Home About Contact Resources Previous Version

JSON Schema
AL | nitpi//gsonschena.net IR e view | song view
N { 1
. . "$schena”: "http:// json-schena.org/draft-04/schena”,
‘address: { *id": http://jsonschena.net”,
“streetAddress": "Z1 2nd Street", “iypers mopjectn,
“city™: "New York" “properties™: {
"address™: {
“phoneNunber”: ["4d"; "http://jsonschena. net/address"
"type": "object”,
"properties: {
"streetddress’: {
"http://3sonschena.net/address/streethddress”,
"string”
1
3 {
4 "http://3sonschena.net/address/city”,
"string”
‘Well donel You provided valld JSON.
"required”: [
"streethddress”,
[y | Reset ety
1
Metadata) Include metadata keywords
General [Inciude default values

Values are taken from JSON.

) Restrict values to enum
Uses the default value and null.

Use absolute IDs string

Force required

OEBPS/assets/json_09in01.png
Jjson-at-work => mongoimport --db=jsaw --collecti --upsert --j: 1y --Fil - json
2016-06-30T10:33:50.202-0600 connected to: localhost

2016-06-30T10:33:50.207-0600 imported 3 documents

json-at-work => mongo

MongoDB shell version: 3.2.4

connecting to: test

> use jsaw

switched to db jsaw

> db.speakers. find()

£ 74d" ; Objectld("S77549ee061561¢79be9725"), "ful Name” : "Larson Richard", "tags" : ["JavaScript”, "angular3s", "Ye
oman" 1, "age" : 39, "registered” : true }

£ "_id" : ObjectId(*577549ee061561F7F9be9726"), "FullName® : "Ester Clements", "tags" : ["REST", "Ruby on Rails", "APIs
"1, "age" : 29, "registered" : true }

£ m;mmcmnw), “ful IName
: 45, "registered” : false }

"Christensen Fisher", "tags" : ["Java", "Spring", "Maven",

OEBPS/assets/json_01in03.png
peakers”

“about”: " mollit cup: magna excepteur do
tempor ex non eiusmod magna exercitation proident nisi non.
Sunt ad consequat e non esse excepteur. Veniam quis Lorem
ea labore ullamco veniam nisi do sunt. Nisi irure sit qui
irure mollit ad aliquip non culpa sint reprehenderit ullamco

A

New Openv Savev Seftingsv Help

v object {1}
v speakers [3]
ve (8
about : Incididunt mollit cupidatat magna excepteur do

tempor ex non eiusmod magna exercitation
proident nisi non. Sunt ad consequat eu non

Arn®, esse excepteur. Veniam quis Lorem ea labore
5 : "Ecratic”, ullamco veniam nisi do sunt. Nisi irure sit
6 “larsonrichard@ecratic.com”, qui irure mollit ad aliquip non culpa sint
7 reprehenderit ullamco.\r\n
s company : Ecratic
9 " Richard",
10 “http://placehold.1t/32x32", email : larsonrichard@ecratic.com
1. . i
12 "JavaScript”, "Angulards” . Firsthane : Larson
3 1 W o
1w
15 { Richard
16 “about": “Labore tempor irure adipisicing consectetur velit.
Ipsun Loren non mollit aliquip. Fugiat est irure quis picture : http://placehold. it/32x32
Tabords minim anin esse fugiat et culpa exercitation. Dolor
cillum excepteur officia Loren ullanco magna et cupidatat > tegs [3]
dolor incididunt occaecat adipisicing consectetur in. e
Ullanco ullanco commodo nulla eiusmod. Lorem Lorem non sunt
Iaboris ut et elit mollit deserunt nostrud est et id > 2 (8}
adipisicing.\r\n"
17 “company”: "Acusage”,
18 “email": “esterclementsgacusage.con”,
1 “firsthane”: "Ester”,
2
2 “Clenents”,
2 + "http://placehold. it/32x32",
2. t
2 . "Ruby on Rails", "APIs"
i 1
%)
27+ {
b} “about": “Proident ex Loren et Loren ad. Do officia

JSON Editor Online 3.7.7 « History + Sourcecode « Report a bug + Data policy * Copyright 2011-2017 Jos de Jong

OEBPS/assets/json_07in03.png
IO]
€ = C fi |8 hupsyjrowno.github.iojarchitect/
Architect tait vavascript templates in various engines gz

Architect - Javascript Term, %

4| ChReset » [1.3.0 » (2 13.9KB » github » download

Engine: | Handiebars,s s
Template View
1 <!DOCTYPE html> 1-{
2~ <html> 2> cities": [{
3 3 5386035,
4o <heads n “Rancho Palos Verdes",
5 <meta charset="UTF-8" /> 5+ o f
6 <title-Openieather - California Cities</title> 6 -118.387016,
7 <head> 7 33744461
8- <body> 8
9 <hl>OpenWeather - California Cities</hl> 9- {
10+ <table class-"weatherTable"> 10 “remp': 84.34,
11~ <thead> 11 “pressure": 1012,
12+ <tr> 12 “hunidity"s 58,
13 <th>Ioe/th> 3 “temp_nin": 78.8,
14 <thsCity</th> 14 “tenp_nax": 93
15 <thaCurrent Tenpe/th> 15 .
e ot Tomne b R ke 1aziors
Result
3
4o <heads
5 <neta charset="UTF-8" />
6 <title-Openieather - California Cities</title>
7 <head>
8- <body>
9 <h1>OpenWeather - California Cities</hl>
10~ <table class-"weatherTable">
pred <thead>
12+ <tr>
13 <th>Ioe/th>
14 thaCitye/ths
15 <thaCurrent Tenpe/th>
16 <thoLow Temp</th>
7 thotigh Tempe/ths

OEBPS/assets/json_03in02.png
Jjson-at-work => ruby obj_serialize_pretty.rb
Current JSON Engine = Multilson: :Adapter: i

speaker (using oj gem) = {
"first_name":"Larson",
“last_name": "Richard",
“email": "larsonrichardecratic. con",
“about":"Incididunt mollit cupidatat magna excepteur do tempor ex non ...",
“company": "Ecratic”,
“tagenil
"JavaScript,”,
“AngularJs,”,
"Yeoman"
1,
"registered”:true
}

OEBPS/assets/cover.png
O'REILLY"

I
N

i
“\h !
\

PRACTICAL DATA INTEGRATION FOR THE WEB

I

i

{

j
!((

sl

\ i
i

’(144.\.\\\\
i (($ /
\‘(\V{ ﬁ{

Tom Marrs

OEBPS/assets/json_03in03.png
Json-at-work => ruby obj_deserialize.rb

Current JSON Engine = MultiJson: :Adapters: :0j

speaker (using oj gem) = {"first_name":"Larson","Last_name" :"Richard" ,"email" : "Larsonrichard@ecratic. con" ,"about" : "Incididunt
mollit cupidatat magna excepteur do tempor ex non ...","company" :"Ecratic”,"tags" : ["JavaScript,”,"Angular3S," , "Yeoman"], "reg
istered":true}

speaker 2 after MultiJson.loadO)

#<Speaker:0x007c77482a260 @first_name="Larson", @last_name="Richard", @email="larsonrichard@ecratic.con", @about="Incididunt
mollit cupidatat magna excepteur do tempor ex non ...", @company="Ecratic", @tags=["JavaScript,”, "Angular3S,”, "Yeoman'], @
registered=true>

OEBPS/assets/json_03in01.png
Jjson-at-work => ruby basic_data_types_serialize.rb
Current JSON Engine = MultiJson: :Adapters: :0j

age = 33
full_name = “Larson Richard"

registered = true

tags = ["JavaScript,”, "AngularJs, ", "Yeoman"]

email = {"email":"larsonrichard@ecratic.con"}

speaker (using oj gem) = {"first_name":"Larson","last_name": "Richard", "email": "larsonrichard@ecratic. con", "about" : "Incididunt

mollit cupidatat magna excepteur do tempor ex non ...","company" :"Ecratic”,"tags" : ["JavaScript,”,"Angular3S,", "Yeoman"], "reg
istered":true}

OEBPS/assets/json_01in05.png
/ Thlocahost:5000/speaters % |

C' i [localhost:5000/speakers Qg ¢

[0}-about

about: "Incididunt mollit cupidatat magna excepteur do tempor ex non eiusmod magna exercitation proident nisi non. Sunt ad consequat eu non esse
excepteur. Veniam quis Lorem ea labore ullamco veniam nisi do sunt. Nisi irure sit qui irure mollit ad aliquip non culpa sint reprehenderit
ulla

company: "Horatic”,
email: "larsonrichard@ecratic.com”,
firstName: "Larson”,
id: o,
lastName: " Richard",
picture: "http://placehold.it/32x32",
tags:
"JavaScript”,
"Angulards’,
"Yeoman"

about: "Labore tempor irure adipisicing consectetur velit. Ipsum Lorem non mollit aliquip. Fugiat est irure quis laboris minim anim esse fuglat et
culpa exercitation. Dolor cillum excepteur officia Lorem ullamco magna et cupidatat dolor incididunt occaecat adipisicing consectetur in. Ullamc:
ullamco commodo nulla eiusmod. Lorem Lorem non sunt laboris ut et elit mollit deserunt nostrud est et id adipisicing. ',
company: "Acusage’,

email: "esterclements@acusage.com",

firstName: "Ester’,

id: 1,

lastName: "Clements”

picture: "http://placehold.it/32x32",

"Ruby on Rails",
"APTs

about: "Proident ex Lorem et Lorem ad. Do voluptate officia minim in nisi ut sit nisi ex eu nostrud do ut. Aute ad dolor tempor dolor aute nisi
deserunt deserunt ut deserunt cillum quis. Ipsun nulla sit reprehenderit consequat incididunt incididunt dolore et magna aliquip ut ex. Cupidatat
exercitation ipsum dolore nisi incididunt anim est. Culpa veniam ut excepteur aliqua exercitation.

company: "Talkola',

email: "christensenfishergtalkola.com”,

firstName: "Christensen”,

OEBPS/assets/json_05in24.png
Jjson-at-work => validate ex-17-all-of-invalid.json ex-17-all-of-schema.json
Invalid: String is too long (24 chars), maximum 20

JSON Schema element: /properties/lastName/al10f/1/maxLength

JSON Content path: /lastName

OEBPS/assets/json_05in01.png
) SON Schema and Hyper %

json-schema.org

The home of JSON Schema

about docs examples software

What does it do?

JSON Schema describes your JSON data format
JSON Hyper-Schema tums your JSON data into hyper-text

Advantages
JSON Schema
« describes your existing data format
« clear, human- and machine-readable documentation
« complete structural validation, useful for
o automated testing
o validating client-submitted data

JSON Hyper-Schema
« describes your existing API - no new structures required
« links (including URI Templates for target URIs)
« forms - specify a JSON Schema for the desired data.

More

Interested? Check out:

« the specification
« some examples

« this excellent guide for schema authors, from the Space Telescope Science Institute

OEBPS/assets/json_05in08.png
Jjson-at-work => validate ex-4-basic-types-validation-reg-invalid.json ex-4-basic-types-validation-req-schema.json
Invalid: Missing required property: rating

JSON Schema element: /required/4

JSON Content path:

OEBPS/assets/json_07in07.png
& C (0@ sonlintcom

¢

2 eities": [

3

. €

5 ian: "53860357,

6 “name”: "Rancho Palos Verdes",
7 “weather": {

i

5 “currentTenp': 84.34,
10 “louTemp": 78..

1 “hiTemp": 93,

12 “humidity"s 58,

13

1 “windspeed”: 4.1,

15

16 “summary": “Clear",
17 “description’: "Sky is Clear"
18

19)

20 i

21

2 €

Validate JSON | Clear |

Results

OEBPS/assets/json_05in11.png
json ex-7-array-min-max-schema. json

Jjson-at-work => validate ex-7-array-min-max-invalid.
Invalid: Array is too long (5), maximm 4

JSON Schema element: /properties/tags/maxItems

JSON Content path: /tags

OEBPS/assets/json_02in05.png
tmarrs => node eval-parse-2.js

at Object.parse (native)
at Object.<anonymous> (/Users/tmarrs/projects/json-at-work/chapter-2/js/eval-parse-2. j:
156

at: Module._compile (module. j
at Object.Module._extensions.
at: Module.load (module. js:356:32)
at Function.Module._load (module.
at Function.Module. runMain (module.
at startup (node. j5:119:16)

at: node. j5:906:3

tmarrs = ||

OEBPS/assets/json_06in03.png
Jjson-at-work => curl -X GET 'http://localhost:5000/cities' | jq .[0]
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Speed
100 57510 100 57510 @ 0 806k 802k

"lat"; 33.744461
1
"main”; {

“temp”: 84.34,

1
"dt": 1442171078,
"wind": {

Sky is Clear”,

OEBPS/assets/json_02in08.png
Jjson-at-work => mynode
> var speaker = {
.. firstName: 'Larson',
lastName: 'Richard",
email: 'larsonrichard@ecratic.com',
about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
company: "Ecratic',
tags: ['json', 'rest', 'api', 'oauth'],
registered: true,
name: function) {
return (this.firsthame + ' ' + this.lastName);

>
>

speaker
{ firstName: 'Larson’,
lastName: 'Richard',
email: 'larsonrichard@ecratic.con',
about: 'Incididunt mollit cupidatat magna excepteur do tempor ex non ...',
company: 'Ecratic',
tags:
["son’,
"rest’,
i,
‘oauth’ 1,
registered: true,
name: [Function] }

>
> speaker.naneQ);
"Larson Richard"
> .exit
json-at-work = ||

OEBPS/assets/json_05in16.png
Jjson-at-work => validate ex-12-dependent-properties-invalid.json ex-12-dependent-properties-schema.json
Invalid: Dependency failed - key must exist: tags (due to key: favoriteTopic)

JSON Schema element: /dependencies/favoriteTopic/@

JSON Content path:

OEBPS/assets/json_07in02.png
B @ erieimninin Tom

€>3Cn tryhandlebarsjs.com

Try Handlebars.js right now in your browser

Handlebars Js is a sweet javascript library for building clean logicless templates based on the Mustache Templating Language.

Examples handlebar expression

Engine Handlebars v4.0.3 .
Handlebars Template Context (JavaScript literal or JSON) Register Helper functions (if any)

<CA>110.Ma1N}}</ ta>
<td>{{0.description}}<
{{/with~}}
“Rancho Palos Verdes",
"coord”: {
"lon": -118.387016,
</body> "lat": 33.744461

HTML Source Output HTML Preview
YPE htnl> OpenWeather - California Cities
<html>
Current Low High
D city 9 Humidity

<head> Temp. Temp Temp

<meta charset="UTF-8" /

<title>OpenWeather - fe 4 Rancho
<ol 5386035 Palos 84.34 788 93 58

Verdes

OEBPS/assets/json_07in08.png
© 0@ /1 xmtoson x\
& (a3

@ dropbox.ashlock.us/open311/json-xmi/

Convert XML to JSON

<2xml version="1.0" encoding="UTF-
<citi

B
<city>
<id>5386035</c>
e>Rancho Palos Verdes</name>
<coor>

<lon>-118.367016</lon>
<lat>33.744461<lat>

|50 B

Transiate XML above to JSON below.

5, Ra
ez), g o
e saszeas .

(S o0, wm -
: (ST 3088392), "nr

51 1442170805 .~
3

s)
- (“al

ExD

ST,

1012, Gnumidy': 56, Gtemg.m
‘Clear },*Gescription*: ("S1°: “Sky

- @prossure 101, @mumi
e

“52.4; 8,
TR0z e (T "Gl Sesarpion(-S1 sested

OEBPS/assets/json_05in26.png
© 0 ® /2 50N sonema Generator *

= C i [jsonschema.net/st/

w/ta B

JSONSchema.net Home About Contact

URL http://jsonschena. net

JSON

p\cture : "http //placeha\d t/fsmith-full-
ventures-snall.p
“tags": [

“Javascript”

“REST",

“JSON"

‘company”: "Full Ventures, Inc."

‘Well done! You provided valid JSON.

[y | Reset

Metadata) Include metadata keywords

General (] Include default values
Values are taken from JSON.

) Restrct values to enum

Resources Previous Version

* Previous Vers

‘Schema
Ediview Sngviw

1
"Sschena: "http://json-schena.org/draft-04/schenat”
Lo

"string”

{
“FirstNane”,
"string”

OEBPS/assets/json_05in28.png
JSON GENERATOR

"'$0,0.00")}}

*{{repeat(5, 7)}}',
{

_id: '{{objectId()}}',

index: '{{index()}}',

guid: *{{guid()}}*,

isActive: '{{bool()}}',

balance: '{{floating(1000, 4000, 2,

pictu 'http://placehold.it/32x32',
age: '{{integer(20, 40)}}',
eyeColor: '{{random("blue", "brown",

“green")}}',

name: ‘{{firstName()}} {{surname()}}',
gender: ‘'{{gender()}}*,

company: '{{company().toUpperCase()}}',
email: '{{email()}}',

phone: '+1 {{phone()}}',

address: '{{integer(100, 999)}} {{street()}},

{{city()}}, {{state()}}, {{integer(100, 10000)}}',
Created by Vazha Omanashvili

- Reset Try out beta!

9 Help

Feedback

OEBPS/assets/json_05in05.png
Jjson-at-work => validate ex-2-basic-types.json ex-2-basic-types-schema.json
JSON content: in file ex-2-basic-types.json is valid
json-at-work = ||

OEBPS/assets/json_04in02.png
json-at-work => gradle test --tests org.jsonatwork.ch4.SpeakerJsonFlatFileTest
:compileJava UP-TO-DATE

rocessResources NO-SOURCE

lasses UP-TO-DATE

compileTestlava UP-TO-DATE

rocessTestResources UP-TO-DATE

testClasses UP-TO-DATE

ttest

org. jsonatwork.ch4. SpeakerJsonFlatFileTest > serializeObject STANDARD_OUT
{

"fullName" : "Larson Richard",
"tags" : ["JavaScript", “Angular]S", "Yeoman"],
"registered” : true

}

org. jsonatwork.ch4. SpeakerJsonFlatFileTest > deSerializeObject STANDARD_OUT
Speaker [id=1, age=39, fullName=Larson Richard, tags=[JavaScript, Angular]S, Yeoman], registered=true]
org. jsonatwork.ch4. SpeakerJsonFlatFileTest > deSerializeMultipleObjects STANDARD_OUT
{"id":1,"fullName":"Larson Richard","tags":["JavaScript","Angular]S","Yeoman"],"age":39, "registered":true}

{"id":2,"fullName":"Ester Clements","tags":["REST","Ruby on Rails","APIs"],"age":29, "registered":true}
{"id":3,"fullName":"Christensen Fisher","tags":["Java","Spring","Maven","REST"], "age":45, "registered": false}

ALl Speakers
Speaker [id=1, age=39, fullName=Larson Richard, tags=[JavaScript, Angular]S, Yeoman], registered=true]

Speaker [id=2, age=29, fullName=Ester Clements, tags=[REST, Ruby on Rails, APIs], registered=true]
Speaker [id=3, age=45, fullName=Christensen Fisher, tags=[Java, Spring, Maven, REST], registered=false]

BUILD SUCCESSFUL

OEBPS/assets/json_03in04.png
Json-at-work => ruby obj_serialize_active_support.rb
Speaker as camel-cased JSON

{"FirstName": "Larson", "LastName" : "Richard" , "email": "larsonrichardéecratic. con", "about" : "Incididunt mollit cupidatat magna exc
epteur do tempor ex non ...","company” : "Ecratic”, "tags" : ["JavaScript,”, "AngularJS, ", "Yeoman"], "registered" : true}

Speaker as camel-cased JSON with only firstName and lastName
{"firstName":"Larson", "lastName": "Richard"}

OEBPS/assets/json_06in06.png
Click on the icons ([E) in the table below to see examples.

.foo, .foo.bar, .foo?
L0, .02, .02], .[10:15
o, &
Tength

keys

unchanged input
value at key

array operation
array/object construction
length of a value

keys in an array

Cheatsheet

|
select(foo)
nap(foo)

if-then-else-end

@ @ @ @ @ @

\(foo)

View source on GitHub

feed input into multiple filters
pipe output of one filter to the next flter
input unchanged if foo returns true
invoke fifter foo for each input
conditionals

string interpolation

Mm@ @ @ @

OEBPS/assets/json_02in07.png
Jjson-at-work => node
> var x = 0;

>vary=x+5;

> .exit
json-at-work = ||

OEBPS/assets/json_03in09.png
GET v
Authorization Headers PrerequestScript Tests Cod
Type No Auth v

Status: 2000k

Body Cookies Headers(®) Tests

Prety Raw Prevew | SON v S5

1-i

2

3 .
4 Incididunt mollit cupidatat magna ...",
5 “Ecratic”,

6

7 avascript

8 ngularJs”,

9 eoran’

0 1,

11 registered": true

OEBPS/assets/json_05in02.png
Qpeon-schemason-schem= x

i |8 GitHub, Inc. [US]| https:/github.com/json-schema/json-schema

This repository Search Explore Features Enterprise Blog
itHu

? json-schema / json-schema
forkea rom szypfson schema

JSON Schema specifications http:/json-schema.org/

© 117 commits 17 4 branches @ 2 releases.

P branch: master~ json-schema / +

‘This branch Is 50 commits ahead of kriszyp:master
Merge pull request #163 from APls-gurufformat-fix

|14 geraintlutt authored on May 8

™ draft-00 Schema URIs are now namespace versioned.
™ draft-01 Schema URIs are now namespace versioned.
™ draft-02 Schema URIs are now namespace versioned.
™ draft-03 Fix hyper-schema syntax error.

™ draft-04 Draftd: added "format" validation.

ol Move old specs to old! directory

E README.md README updates

README.md

@watch 71

£ 14 contributors

1#162 2] Compare

latest comnit 472¢32b8c3 B
5 years ago

5 years ago

5 years ago

4 years ago

2 months ago

2 years ago

2 years ago

Astar =5 Yrork ¢

© Code
@ Issues “
1) Pullrequests 4

4~ Pulse

s Graphs.

HTTPS clone URL.
https://github.con/; B3

You can clone with HTTPS or
Subversion

@ Clone in Desktop

&> Download ZIP

OEBPS/assets/json_05in19.png
Jjson-at-work => http-server -p 8081

Starting up http-server, serving ./ on: http://0.0.0.0:8081
Hit CTRL-C to stop the server

[Wed, @2 Sep 2015 03:44:00 GMT] "GET /ex-14-my-common-schema. j:
[Wed, @2 Sep 2015 03: GMT] "GET /ex-14-my-common-schema. json” "undefined"

OEBPS/assets/json_02in06.png
Jjson-at-work => node obj-literal-parse.js
speaker. firstNane = Larson
json-at-work = ||

OEBPS/assets/json_02in10.png
©® 0 ® /B 5N at Work- MyConference x

C {} | ® localhost:9000

Name

Larson
Richard

Ester
Clements

Christensen
Fisher

Speakers

Your conference lineup.

About

Incididunt mollit cupidatat magna excepteur do tempor ex
non eiusmod magna exercitation proident nisi non. Sunt ad
consequat eu non esse excepteur. Veniam quis Lorem ea
labore ullamco veniam nisi do sunt. Nisi irure sit qui irure
mollit ad aliquip non culpa sint reprehenderit ullamco.

Labore tempor irure adipisicing consectetur velit. Ipsum
Lorem non mollit aliquip. Fugiat est irure quis laboris minim
anim esse fugiat et culpa exercitation. Dolor cillum excepteur
officia Lorem ullamco magna et cupidatat dolor incididunt
occaecat adipisicing consectetur in. Ullamco ullamco
commodo nulla eiusmod. Lorem Lorem non sunt laboris ut et
elit mollit deserunt nostrud est et id adipisicing.

Proident ex Lorem et Lorem ad. Do voluptate officia minim in
nisi ut sit nisi ex eu nostrud do ut. Aute ad dolor tempor
dolor aute nisi deserunt deserunt ut deserunt cillum quis.
Ipsum nulla sit reprehenderit consequat incididunt incididunt
dolore et magna aliquip ut ex. Cupidatat exercitation ipsum
dalare

e A s A veniam (1 exeentellr

Topics

JavaScript,
AngularJs,
Yeoman

REST,
Ruby on
Rails, APIs

Java,
Spring,
Maven,
REST

OEBPS/assets/json_02in01.png
Jjson-at-work => node basic-data-types-stringify.js
age = 39

fullName = "Larson Richard"
tags = ["json","rest","api","oauth"]

registered = true

= {"fil ":"Larson”, "1 " : "Richard” , "email”: "larsonrichard@ecratic. con", "about" : "Incididunt mollit cupi
datat magna excepteur do tempor ex non ...","company":"Ecratic”,"tags":["json","rest","api", "oauth"], "registered" :true}
json-at-work = ||

OEBPS/assets/json_10in07.png
Jjson-at-work => ./start-consumer.sh test-proposals-recvd
{ "message": "This is a test proposal.” }

OEBPS/assets/json_10in09.png
Jjson-at-work => ./delete-topic.sh test-proposals-recvd
Topic test-proposals-recvd is marked for deletion.
Note: This will have no impact if delete.topic.enable is not set to true.

OEBPS/assets/json_06in05.png
CShare snippet

Filter Result Compact Output) Null Input) Raw Input) Raw Output () Slurp
[.cities[0:3] | .0 | { id, name }] : i
"id": 5386035,
JSON “name”: "Rancho Palos Verdes"
1
-

"id": 5392528,
“name": "San Pedro”

"id": 3988392,
“name": "Rosarito”

5386035,
": “Rancho Palos Verdes",

1
"lon": -118.387016,
"lat": 33.744461

“temp": 84.34,
“pressure": 1012,
“humidity": 58,

Command Line

jq '[.cities(0:3] | .[1 | { id, name }]'

OEBPS/assets/json_07in01.png
Architect - Javascript Term, %

bg
n

€« - C f [rowno.github.io/architect/
Engine:| Mustache js || CReset |~ [T 0.8.1 » [2.0K8 » github » download
Template
- <
14 <th>Ioe/th> e
2 i s386035,
16 <th>Current Temp</th> ancho Palos Verdes”,
7 <thoLow Temp</th> 1
18 <th>High Temp</th> -118.387016,
19 <th>Humidity</th> 33.744461
20 thoWing Speede/th>
21 <th>Summary</th>
2 <thoDescription</th>
2 </tr>
2
=a {icieiesi 1 “temp_nax": 93
15 R
z e tiar L A——
Result
12+ <thead>
13- <tr>
14 <th>Io</th>
15 enacity
16 <thaCurrent Tenpe/th>
7 <thoLow Temp</th>
18 thotigh Tempe/ths
19 thotunidity<th>
20 thoWing Speede/th>
21 <th>Summary</th>
2 <thoDescription</th>
2 </tr>
2 </theads
25+ <tr>
2 <t0>5386035/t>
> CeeRanche Palos Vardsc/tds

EXR: P Nc] Copyright © 2012 Roland Warmerdam

Released under the MIT license

OEBPS/assets/json_03in08.png
Authorization Headers PrerequestScript Tests Code
Tipe No Auth v

Body Cookies Headers(®) Tests Status: 2000k Time: 26ms
Pretty Raw Preview | JSON v T3 mQ

“larsonrichardeecratic. con”,
“Incididunt mollit cupidazat magna ..

OEBPS/assets/json_10in14.png
Jjson-at-work => node speakerNotifier.js
Notification Message = {"decision" :{"accepted" :true,"timeSlot" : {"date" : "2017-11-06" , "time" : "10:00"}}, "proposal " : {"speaker
":{"firstName": "Larson", "LastName": "Richard", "enil": "larson. richard@ecratic.con", "bio": "Larson Richard is the CTO of ...
and he founded a JavaScript meetup in ..."},"session":{"title": "Enterprise Node","abstract” :"Many developers just see No
de as a way to build web APIs or applications ...","type":"How-To","length":"3 hours"},"conference” :{"name" : "Ultimate Jav
aScript Conference by MyConference" , "beginDate" : "2017-11-06" , "endDate" : "2017-11-10"}, "topic” : {"primary" : "Node. js" , "second
ary": ["REST", "Architecture" ,"JavaScript "}, "audience" : {"takeaway" : "Audience members will learn how to ...","jobTitles":["
Architects", "Developers"], "level" : "Intermediate"}, "installation" : ["Git", "Laptop" , "Node. js"T}}
Enail body = <!DOCTYPE html>
<html>
<body>

s

Larson,

</p>

P
We are pleased to inform you that your talk on <uwEnterprise Node</u>

has been accepted for the Ultimate JavaScript Conference by MyConference.
</p>

P

Your session scheduled for 2017-11-06 at 10:00.

</p>

s
Sincerely,

The Ultimate JavaScript Conference by MyConference Event Team.
</p>
</body>
</htmil>
Email Message sent: 250 Message accepted

OEBPS/assets/json_09in09.png
Jjson-at-work => mongoexport --db=jsaw --collection=speakers --pretty --jsonArray | jq '[.00 | del(._id)]"
30713,

"tags": [
“JavaScript",
"Angular3s",
"Yeoman™

1,
"age": 39,
“registered”: true

1

{

“fullNane": "Ester Clements”,
“togs"s [

“REsT,

"Ruby on Rails",

el

json-at-work = |

OEBPS/assets/json_09in02.png
Jjson-at-work => mongo
MongoDB shell version: 3.2.4
connecting to: test

>1

OEBPS/assets/json_09in11.png
@) ronner 1mport

Builder

hitp://localnost:35007sawis

History
GET

Today Body

e http//localhost:3500/jsaw/speakers

hitp:/flocalhost:3500/jsaw/speakers

(12)

JSON

‘tag:
“Javascript”,
“Angularls”,

“fullName”: "Ester Clements”,
“tags": [

"REST",

“Ruby on Rails",

“Aprs”
1
age": 29,
registered’: true,
10" "577549ee061561¢7£90e9726"

1

“fullName”: "Christensen Fisher",

OEBPS/assets/json_05in09.png
json-at-work => validate ex-5-number-min-max-invalid.json ex-5-number-min-max-schema.json
Invalid: Value 6.2 is greater than maximum 5

JSON Schema element: /properties/rating/maximum

JSON Content path: /rating

OEBPS/assets/json_05in15.png
Jjson-at-work => validate ex-11-regex-invalid.json ex-11-regex-schema.json
Invalid: String does not match pattern: A[D\wl-J+@[\wl-]+\.[A-Za-2]{2,4}$
JSON Schema element: /properties/email/pattern

JSON Content path: /email

OEBPS/assets/json_05in18.png
Jjson-at-work => validate ex-14-external-ref-invalid.json ex-14-external-ref-schema.json
Invalid: String does not match pattern: A[D\wl-J+@[\wl-]+\.[A-Za-2]{2,4}$

JSON Schema element: /properties/email/pattern

JSON Content path: /email

OEBPS/assets/json_01in06.png
DELETE v hupi/localhost:s000/speakers/o Params m save v

Auhorization Headers Body PrerequestScript Tests code
Tipe No Auth v
Body Cookles Headers(13) Tests Status: 2000k Time: 40ms

Q

Pretty Raw Preview JSON v =

1

OEBPS/assets/json_02in12.png
© © ® /B 50N at Work- MyConference x ||

C {} | ® localhost:9000

Name

Larson
Richard

Ester
Clements

Christensen
Fisher

Speakers

Your conference lineup.

About Topics
idunt mollit cupidatat magna excepteur do tempor ex JavaScript,

non eiusmod magna exercitation proident nisi non. Suntad AngularJs,

consequat eu non esse excepteur. Veniam quis Lorem ea Yeoman

labore ullamco veniam nisi do sunt. Nisi irure sit qui irure

mollit ad aliquip non culpa sint reprehenderit ullamco.

Labore tempor irure adipisicing consectetur velit. lpsum REST,

Lorem non mollit aliquip. Fugiat est irure quis laboris minim Ruby on

anim esse fugiat et culpa exercitation. Dolor cillum excepteur Rails, APls
officia Lorem ullamco magna et cupidatat dolor incididunt

occaecat adipisicing consectetur in. Ullamco ullamco

commodo nulla eiusmod. Lorem Lorem non sunt laboris ut et

elit mollit deserunt nostrud est et id adipisicing.

Proident ex Lorem et Lorem ad. Do voluptate officia minimin ~ Java,

ni

ut sit nisi ex eu nostrud do ut. Aute ad dolor tempor Spring,

dolor aute nisi deserunt deserunt ut deserunt cillum quis. Maven,
Ipsum nulla sit reprehenderit consequat incididunt incididunt ~ REST
dolore et magna aliquip ut ex. Cupidatat exercitation ipsum

dolore nisi incididunt anim est. Culpa veniam ut excepteur

OEBPS/assets/json_03in05.png
Jjson-at-work => ruby obj_deserialize_active_support.rb

speaker (using oj gem) = {"first_name":"Larson","last_name":"Richard", "enail": "larsonrichard@ecratic. con", "about": "Incididunt
mollit cupidatat magna excepteur do tempor ex non ...","company”:"Ecratic”,"tags" : ["JavaScript,”, "AngularJS, ", "Yeoman"], "reg
istered":true}

speaker 2 after ActiveSupport::JSON.decode()

#<Speaker:0x007fe73c0ad4eb8 @first_name="Larson", @last_name="Richard", @email="larsonrichard@ecratic.com", @about="Incididunt
mollit cupidatat magna excepteur do tempor ex non ...", @company="Ecratic", @tags=["JavaScript,", "Angularl)S,", "Yeoman"], @
registered-true>

OEBPS/assets/json_10in15.png
© MailCatcher

From T
P
P
P
P

Recelved

From

To

Subject

HTML | PlainText Source

Subject
Ulimate JavaScript Conference by MyConference - Enterprise Node
Utimate JavaScript Conference by MyConference - Enterprise Node
Utimate JavaScript Conference by MyConference - Enterprise Node
Utimate JavaScript Conference by MyConference - Enterprise Node

Clear |~ Quit

Received
‘Saturday, 21 Jan 2017 4:18:02 PM
‘Saturday, 21 Jan 2017 4:17:49 PM
‘Saturday, 21 Jan 2017 3:28:31 PM
‘Saturday, 21 Jan 2017 12:50:06 PM

OEBPS/assets/json_09in10.png
©® O ® /[ocainost:3s00fsamispeal x

€ > C i [localhost:3500saw/speakers

fullName: "Larson Richard”,
- tags: [
"Javaseript”,
"Angulards”,
"Yeoman"

true,
id: "57754900061561£7£9b29725"

fullName: "Ester Clements”,
- tags: [

"REST",

"Ruby on Rails’,

“aPTS"

registered: true,
id: "57754900061561£7£9b29726"

fullName: "Christensen Fisher”,

- tags: [
“Java'
“Spring”,
“Maven",
"REST"

1.
age: 45,

registered: false,

id: "57754900061561£7£9b29727"

OEBPS/assets/json_10in05.png
Jjson-at-work => ./start-consumer.sh test-proposals-recvd

OEBPS/assets/json_05in23.png
Jjson-at-work => validate ex-16-any-of-invalid.json ex-16-any-of-schema.json
Invalid: Data does not match any schemas from "anyOf"

JSON Schema element: /properties/postedslides/any0f

JSON Content path: /postedSlides

OEBPS/assets/json_09in07.png
Jjson-at-work => mongo jsaw
MongoDB shell version: 3.2.4

connecting to: jsaw

> db. speakers. find({fullNane: 'Carl ClojureDev'})

{ "_id" : ObjectId("57758432700be85396f1daed"), "fullName"
* : false }

> db. speakers. update({fullNane: 'Carl ClojureDev'},

WriteResult({ "nMatched” : 1, "nUpserted” : 0, "nModified"
> db.speakers. find({fullNane: 'Carl ClojureDev'})

{ "_id" : ObjectId("57758432700be85396f1daed"), "fullName"
egistered” : false }

>1

“Carl ClojureDev", "tags"

1D
“Carl ClojureDev", "tags"

["Clojure"], "age" : 45, "registered

["Clojure", "Scala"], "age" : 45, "r

OEBPS/assets/json_01in01.png
—_—— a
000 " sowim-mesonvaic x 7

€ > ¢ f [isonlinteom N e Y

JSONLint atqo

The JSON Validator A Toolfrom the Arc90 Lab. Source is on GitHub.
Props to Douglas Grookdord of JSON and JS Lintand
Want more from JSONLInt? Try JSONLInt Pro Zach Garter, who provided the pure JS implementaton o sonlnt.

[
“this-is". "My first JSON document™
)

8
9

ISON Lintis an ides from Arcd0's Kindiing FAQ

Kindling

Results

Valid JSON

OEBPS/assets/json_08in03.png
> mocha test

'speakers-hal
 should return a 200 response

Validation Issues:

[{ path: 'S._links’,

message: 'Resource does not have a self link' } 1

1) should return a valid HAL response validated by halfred

1 passing (64ms)
1 failing

1) speakers-hal should return a valid HAL response validated by halfred:
Uncaught AssertionError: expected [Array(1)] to be empty
at test/hal-spec. js:36:48
at Request. handleRequestResponse [as _callback] (node_modules/unirest/index. js:463:26)
at Request.self.callback (node_modules/request/request. js:187:22)
at Request. <anonymous> (node_modules/request/request. js:1044:10)
at IncomingMessage. <anonymous> (node_modules/request/request. js:965:12)
at endReadableNT (_strean_readable. js:905:12)

npm "7 Test failed. See above for more details.

OEBPS/assets/json_10in04.png
Jjson-at-work => ./list-topics.sh
__consumer_offsets
‘test-proposals-recvd

OEBPS/assets/json_05in10.png
 json-at-work => validate ex-6-array-simple-invalid.json ex-6-array-simple-schema.json
Invalid: invalid type: number (expected string)

JSON Schema element: /properties/tags/items/type

JSON Content path: /tags/1

OEBPS/assets/json_08in02.png
> mocha test

speakers-hal
v
Validation Issues:
[u}

Resource {
links: { self: [[Object]], next: [[Object] J, find: [[Object]]},
—curiesMap: {},

: 29,
registered: true } 1,
_original:
{ _links: { self: [Object], next: [Object], find: [Object] },
speakers: [[Object], [Object] 1} }
4

2 passing

OEBPS/assets/json_06in04.png
json-at-work => jq '.cities[-1]' cities-weather.json
{

OEBPS/assets/json_02in02.png
Jjson-at-work => node obj-literal-stringify-params.js
Speaker (pretty print):
{

"registered": true

Speaker without Strings and Arrays:
"registered": true

1
json-at-work = ||

OEBPS/assets/json_03in07.png
Jjson-at-work => rails s
=> Booting Puma

= Rails 5.0.2 application starting in development on http://localhost:3000
= Run “rails server -h* for more startup options

Puma starting in single mode. ..

* Version 3.8.2 (ruby 2.4.0-p0), codename: Sassy Salamander

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://localhost:3000

Use Ctrl-C to stop

OEBPS/assets/json_02in13.png
© 0 ® /2 soNat Work- MyConference x |

C {} | ® localhost:9000

Name

Larson
Richard

Ester
Clements

Christensen
Fisher

About

Incididunt mollit cupidatat magna
excepteur do tempor ex non eiusmod
magna exercitation proident nisi non. Sunt
ad consequat eu non esse excepteur.
Veniam quis Lorem ea labore ullamco
irure sit qui irure
mollit ad aliquip non culpa sint
reprehenderit ullamco.

Labore tempor irure adipisicing
consectetur velit. Ipsum Lorem non mollit
aliquip. Fugiat est irure quis laboris minim
anim esse fugiat et culpa exercitation.
Dolor cillum excepteur officia Lorem
ullameco magna et cupidatat dolor
incididunt occaecat adipisicing
consectetur in. Ullamco ullamco
commodo nulla eiusmod. Lorem Lorem
non sunt laboris ut et elit mollit deserunt
nostrud est et id adipisicing.

Proident ex Lorem et Lorem ad. Do
voluptate officia minim in nisi ut sit nisi ex
eu nostrud do ut. Aute ad dolor tempor
dolor aute nisi deserunt deserunt ut
deserunt cillum quis. Ipsum nulla sit
reprehenderit consequat incididunt
incididunt dolore et magna aliquip ut ex.
Cupidatat exercitation ipsum dolore nisi

Topics

JavaScript,AngularJS,Yeoman

REST,Ruby on Rails,APIs

Java,Spring,Maven,REST

OEBPS/assets/json_01in02.png
©00 /' jsontint - Thelsonvaric: x

€ = C ft [}jsonlint.com Nw@e=/”/RheyIe

JSONLint atqo

The JSON Validator

ATool from the Arc90 Lab. Source is on GitHub,
Props to Douglas Crockiord of JSON and JS Lintand
Want more from JSONLInt? Try JSONLint Pro Zach Carter, who provided the pure JS implementaton ofjsonint.

FaQ

Results

Valid JSON

OEBPS/assets/json_10in08.png
Jjson-at-work => ./start-consumer.sh test-proposals-recvd
{ "message": "This is a test proposal.” }
ACProcessed a total of 1 messages

OEBPS/assets/json_09in05.png
Jjson-at-work => mongo jsaw
MongoDB shell version: 3.2.4

connecting to: jsaw

> db. speakers. find({tags: 'REST'})

{ "_id" : ObjectId("577549eed61561F7¢9bed726"), "fullName'
ge" : 29, "registered” : true }

{ "_id" : ObjectId("577549eed61561F7¢9ped727"), "fullName'
]i "age" : 45, "registered” : false }

>

“Ester Clements”, "tags" : ["REST", "Ruby on Rails", "APIs"], "a

: "Christensen Fisher”, "tags

["Java", "Spring", "Maven", "REST"

OEBPS/assets/json_06in01.png
©® O ® | T iocamostisonorcties x

€« C i [} localhost:5000/cities

-
id: 5386035,
name: "Rancho Palos Verdes",
- coord: {
lon: -118.387016,
lat: 33.744461
Y
- main: {
temp: 25.56,
pressure: 1013,
humidity: 61,
temp_min: 20,
temp_max: 28.89

b
dt: 1441486715,
- wind: {

- clouds: {
al.
5
- weather: [
-t

id: 801,

main: "Clouds”,
description: "few clouds”,
icon: "02a"

OEBPS/assets/json_02in09.png
© 00 /2 seakerwen x

C {} | ® localhost:9000

speaker web 1 By o coe

'‘Allo, 'Allo!

Always a pleasure scaffolding your apps.

Splen

HTMLS5 Boilerplate

HTMLS Boilerplate is a professional front-
end template for building fast, robust, and
adaptable web apps or sites.

Bootstrap

Sleek, intuitive, and powerful mobile first
front-end framework for faster and easier
web development.

OEBPS/assets/json_05in17.png
Json-at-work => validate ex-13-internal-ref-invalid.json ex-13-internal-ref-schema.json
Invalid: String does not match pattern: A[D\wl-J+@[\wl-]+\.[A-Za-2]{2,4}$

JSON Schema element: /properties/email/pattern

JSON Content path: /email

OEBPS/assets/json_09in04.png
Jjson-at-work => mongo jsaw
MongoDB shell version: 3.2.4
connecting to: jsaw

> db.speakers.
d“ : ObjectId("577549ee061561f7f9bed725"),

L D
z i
ge" :

Triar
1, "age’

>1

39,

ObjectId("577549ee061561f79be9726"),

"regi.

ObjectId("577549ee@61561f7f9bed727"), "fullName"

1 45,

ndQ)
"registered” : true }
stered” : true }

"registered” : false }

"fullName" : "Larson Richard",

"fullName"

"Ester Clements", "tags" : ["REST", "Ruby on Rails",

“Christensen Fisher",

"tags" : ["JavaScript",

“tags" : ["Java",

"Spring",

"AngularJ$", "Yeoman"]

"WPIs" 1, "a

“Maven", "REST"

OEBPS/assets/json_04in05.png
2017-03-31 16: .975 INFO 23433 -—- [main] org.apache.catalina.core.StandardEngine : Starting Servlet Engis Apache Tomca
/8.5.11

2017-03-31 16:06:09.084 INFO 23433 --- [ost-startStop-1] o.a.c.c.C.[Tomcat]. [localhost].[/] : Initializing Spring embedded WebAppli
ationContext

2017-03-31 16:06:09.084 INFO 23433 --- [ost-startStop-1] o.s.web.context.ContextLoader : Root WebApplicationContext: initializ

tion completed in 1288 ms
2017-03-31 16:06:09.215 INFO 23433 --- [ost-startStop-1] o.s.b.w.servlet.ServletRegistrationBean : Mapping servlet:
o

2017-03-31 16:06:09.220 INFO 23433 ——- [ost-startStop-1] o.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'characterEncodingFil

spatcherServiet'

;;17?6;-53116:56:39‘221 INFO 23433 --- [ost-startStop-1] o.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'hiddenHttpMethodFilt
;Wl?’—&z:lm:ﬂﬁ:ﬁ‘zzl INFO 23433 --- [ost-startStop-1] o.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'httpPutFormContentFi
;;;7—:;5/:]5:06:09‘221 INFO 23433 --- [ost-startStop-1] o.s.b.w.servlet.FilterRegistrationBean : Mapping filter: 'requestContextFilter
Z:i;—ﬂrggl 16:06:09.517 INFO 23433 --- [main] s.w.s.m.m.a.RequestMappingHandlerAdapter : Looking for @ControllerAdvice: org.sp

ingframework. boot . context . embedded. AnnotationConfigEmbeddedWebAppl i cationContext@3ddf8ed3: startup date [Fri Mar 31 16:06:07 MDT 2017]; ro
+ of context hierarchy

2017-03-31 16:06:09.599 INFO 23433 --- [main] s.w.s.m.m.a.RequestMappingHandlerMapping : Mapped "{[/speakers],methods=[GETT}"
nto public java.util.List<org.j .cha. Speaker> org. .cha. SpeakerControl ler. getAl1SpeakersQ)

2017-03-31 16:06:09.600 INFO 23433 ——- [main] s.w.s.m.m.a.RequestMappingHandlerMapping : Mapped "{[/speakers/{id}],methods=[GE
1} onto public org.springt http. ntity<?> org.j k.ch4. SpeakerControl Ler.getSpeakerById(long)

2017-03-31 16:06:09.604 INFO 23433 --- [main] s.w.s.m.n.a.RequestMappingHandlerMapping : Mapped "{[/error]}" onto public org.s
ringframework. http. ResponseEntity<java.util.Map<java.lang.String, java.lang.Object>> org.springframework.boot.autoconfigure.web. BasicError
ontroller. error(javax. servlet. http. HttpServetRequest)

2017-03-31 16:06:09.605 INFO 23433 --—- [main] s.w.s.n.n.a.RequestappingHandlerMapping : Mapped "{[/error],produces=[text/html
3" onto public org.springframework.web. servlet.ModelAndView org. springframework.boot . autoconfigure.web. BasicErrorController. errorttml(java
.servlet. http.HttpServietRequest, javax. serviet. http. HttpServl etResponse)

2017-03-31 16:06:09.643 INFO 23433 --- [main] o.s.w.s.handler. SimpleUrlHandlerMapping : Mapped URL path [/webjars/**] onto ha
dler of type [class org.springframework.web. servlet. resource. ResourceHittpRequestHandler]

2017-03-31 16:06:09.644 INFO 23433 --- [main] o.s.w.s. handler. SimpleUrlHandlerMapping : Mapped URL path [/*#] onto handler of
type [class org.springframework.web. servlet. resource. ResourcetittpRequestHandler]

2017-03-31 16:06:09.690 INFO 23433 --—- [main] o.s.w.s. handler. SimpleUrlHandlerMapping : Mapped URL path [/**/favicon.ico] ont
handler of type [class org.springframework.web. servlet. resource. ResourcetittpRequestHandler]

2017-03-31 16:06:09.863 INFO 23433 --- [main] o.s.j.e.a.AnnotationMBeanExporter : Registering beans for JMX exposure on

:00.934 INFO 23433 —— [main] s.b.c.e.t. ToncatEmbeddedServletContainer
.940 INFO 23433 -—- [main] org.jsonatwork.ch4.Application

JW running for 2.922)

> Building 80% > :bootRunj

Tomcat started on port(s): 8080 (http]
Started Application in 2.536 seconds

OEBPS/assets/json_09in08.png
json-at-work => mongo jsaw

MongoDB shell version: 3.2.4

jsaw

ind({fullName: 'Carl ClojureDev'})
{"id m;«mcmm:‘),
ramming" J, " : 45, "registered" : false }

> d:‘spuk;rs‘m((ﬁlllﬂnu: "Carl ClojureDev'})
WriteResult({ "nRemoved" : 1 })

ind({fullName: 'Carl ClojureDev'})

{ "id" : ObjectId("577549ee061561f7f9bed725"),
» "age" : 39, "registered” : true }

{ "id" : ObjectId("577549ee061561f7f9bed726"),
ge" : 29, "registered” : true }

{ "_id" : ObjectId("577549ee@61561f7fbed727"), "fullName'
]i "age" : 45, "registered” : false }

>

"fullName"

"fullName"

"fullName"

"Carl ClojureDev", "tags" : ["Clojure", "Scala", "Functional Prog

“Larson Richard", “tags" : ["JavaScript", “AngularJS",

"Ester Clements", "tags" : ["REST", "Ruby on Rails",

“Yeoman"]
"wpTs 1, "a

"Christensen Fisher", "tags" : ["Java", "Spring", "Maven", "REST"

OEBPS/assets/json_10in12.png
[Technology: Shell Script]

Speaker Proposal Producer'

ot Se“d

‘0‘)050
TCP

MyConference Speaker Proposal App

Message Broker

Email Client
[Technology: MailCatcher,
HTML, Ruby on Rails]

A 4

(_’

[Technology: Apache Kafka]

R

[Technology: MailCatcher,
Ruby on Rails]

cp TCP
A 4 A 4
proposals-reviewed new-proposals-rcvd
Topic Topic
TCp TCp TCP
A 4 A 4
_| Speaker Notification Proposal Reviewer
[Technology: Node. JS] i [Technology: Nodejs] | .
3. fm
eo\<e ! ’ A((ept/
SMTP p Reje(tpropos
Y T
Email Server

OEBPS/assets/json_10in02.png
[2016-12-31 01,371] INFO Creating /brokers/ids/@ (is it secure? false) (kafka.utils.ZKCheckedEphemeral)
[2016-12-31 01,375] INFO Result of znode creation is: OK (kafka.utils.ZKCheckedEphemeral)
[2016-12-31 01,377] INFO Registered broker @ at path /brokers/ids/@ with addresses: PLAINTEXT -> EndPoint(10.229.1

04.161,9092, PLAINTEXT) (kafka.utils.ZkUtils)

[2016-12-31 01,385] INFO Kafka version : 0.10.1.0 (org.apache.kafka.common.utils.AppInfoParser)
[2016-12-31 01,385] INFO Kafka commitId : 34@2a74efb23d1d4 (org.apache.kafka.common.utils.AppInfoParser)
[2016-12-31 01,386] INFO [Kafka Server @], started (kafka.server.KafkaServer)

OEBPS/assets/json_09in06.png
Jjson-at-work => mongo jsaw
MongoDB shell version: 3.2.4

*Carl ClojureDev’,
tags: ['Clojure’, 'Functional Programming'l,
age: 45,
registered: false

»

WriteResult({ "nInserted" : 1 })

> db. speakers. findQ)

{ "id" : ObjectId("577549ee061561f7f9bed725"), "fullName"

» "age" : 39, "registered” : true }

{ "id" : ObjectId("577549ee061561f7f9bed726"), "fullName"

ge" : 29, "registered” : true }

{ "_id" : ObjectId("577549ee@61561f7f9bed727"), "fullName"

1, "age" : 45, "registered" : false }

{ "_id" : ObjectId("577584327a0be85396f1daed"), "fullName"

1, "age" : 45, "registered” : false }
>

“Larson Richard", "tags" : ["JavaScript", "AngularJS", "Yeoman"]
“Ester Clements”, "tags" : ["REST", "Ruby on Rails", "APIs" 1, "a
“Christensen Fisher", "tags" : ["Java", "Spring", "Maven", "REST"

"Carl ClojureDev", "tags" : ["Clojure", "Functional Programming"

OEBPS/assets/json_04in01.png
json-at-work => gradle test --tests org.jsonatwork.ch4.BasiclsonTypesTest

org. jsonatwork. ch4.BasicIsonTypesTest > deSerializeBasicTypes STANDARD_OUT
age = 39

org. jsonatwork. ch4.BasicIsonTypesTest > serializeBasicTypes STANDARD_OUT
age = 39
fullName = "Larson Richard"
tags = ["JavaScript”, "Angular3S","Yeoman"]
registered = true

BUILD SUCCESSFUL

OEBPS/assets/json_10in01.png
Jjson-at-work => ./start-zookeeper.sh
ZooKeeper JMX enabled by default

Using config: /usr/local/etc/zookeeper/zo0.cfg
Starting zookeeper ... STARTED

OEBPS/assets/json_08in01.png
No Environment

hitpi//localnosts000/ % |+

GET v

Body

Pretty

o
N
3-

H

11
12-
13
14
15
16
17+
18
19
20
21
22
23
24
25+
2
27
28
29
30-
31
32
33

hitp://iocalhost:5000/speakers/

Cookies Headers (1) Tests

Raw Preview | JSON vV T

+//myconference . api . con?1imi t=2580F fset=25"

://myconference.api . con/speakers{7id}",
true

“Larson”,
ichard”,
Tarson. richardenyconference. con”

ge": 39,
“registered”: true

223456",
irstNane”: "Ester”,
: "Clenents",
email": “ester.clementsemyconference.con’,

“Ruby on Rails",
“APIS"

Status: 2000k

R

©

Ferems m okl

£

OEBPS/assets/json_10in10.png
[2016-12-31
[2016-12-31
[2016-12-31
[2016-12-31
[2016-12-31

06,981] INFO [GroupCoordinator @]: Shutdown complete. (kafka.coordinator.GroupCoordinator)

06,988] INFO Terminate Zk(lient event thread. (org.IOItec.zkclient.ZkEventThread)

06,990] INFO Session: 0x159573c11390007 closed (org.apache.zookeeper.ZooKeeper)

06,990] INFO EventThread shut down for session: @x159573c11390007 (org.apache.zookeeper.ClientCnxn)
06,992] INFO [Kafka Server @], shut down completed (kafka.server.KafkaServer)

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/assets/json_07in06.png
<« C {Y @& Secure https://rowno.github.io/architect/ Y

Architect cait Javascript templates in various engines [i onabied

Engine: Handlebars.js 2| CReset | » [1.3.0 » (223 13.9KB » github » download
Template View
o umainzy
9 “currentTemp”: {{temp}}, %4
10 owTemp": {{temp_min}}, 5386035,
11 iTemp": {{temp_max}}, 4 Rancho Palos Verdes”,
12 “humidity”: {{humidity}}, 5. "coord": {
13 {{/main}} N 6 -118.387016,
14 “windSpeed": {{wind.speed}}, 7 33.744461
15 {ieach weather}} 8 :
16 ummary”: "{{main}}", 9+
17 "description”: "{{description}}" 10 temp: 84.34,
:;) {{seach}} 1 “pressure’
12 “hunidit
20 H{#unless @last}},{{/unless}} 13 "t:g,l‘mi
21 {{/each}} 14 “temp_max": 93
22 1 15
23 Y 1% e 1442171078
Result
s “currentTenp": 82.47,
46 onTemp": 75.8,
7 iTemp": 86,
48 “humidity": 61,
4
so “windSpeed”: 4.6,
51
52 unnary”: "Clouds”
53 “description”: "scattered clouds"
st
55 }
56 ¥
57
58 1

OEBPS/assets/json_10in13.png
Json-at-work => node proposalReviewer.js

proposall =" " { il " "Larson”, "1 ": "Richard", "email”: "larson.richard@ecratic.com", "bi
o": "Larson Richard is the CT0 of ... and he founded a JavaScript meetup in ..." 3, "Session': { "title": "Enterprise Nod
e", "abstract”: "Many developers just see Node as a way to build web APIs or applications ...", "type": "How-To", "length
": "3 hours" }, "conference": { "name": "Ultimate JMS:r'ipt Conference by MyConference”, "beginDate": "2017-11-06", "end
Date": "2017-11-10" }, "topic": { "primary": "Node.js", "secondary": ["REST", "Architecture”, "JavaScript"] }, "audienc
e": { "takeaway": Amhm members will learn how to
cdiote” }, "installation": ["Git", "Laptop", "Node.j
proposalMessageObj = [object Object]

Decision - proposal has been [Accepted]

"jobTitles": ["Architects", "Developers”], "level": "Interm

JSON Validation: Speaker proposal is valid

Accepted Proposal = {"decision":{"accepted":true, "timeSlot":{"date": "2017-11-06", "time":"10:00"}}, "proposal":{"speaker": {
"FirstName": "Larson", "lastNane" : "Richard", "email": "larson. richard@ecratic. com", "bio": "Larson Richard is the CTO of ... an
d he founded a JavaScript meetup in ..."},"session":{"title":"Enterprise Node","abstract":"Many developers just see Node
as a way to build web APIs or applications ...","type":"How-To","length":"3 hours"},"conference":{"name": "Ultimate Javasc
ript Conference by MyConference”, "begindate": 2017-11-06", "enddate”: "2017-11-10"}, "topic":{"prinary": "Node. 35" "secondary
*:["REST", "Architecture”,"JavaScript"]}, "audience" : {"takeanay" :"Audience menbers will learn how to ...","jobTitles": ["Arc
hitects”, "Developers"], "level": "Intermediate"}, "installation": ["Git", "Laptop", "Node. js"1}}

{ "proposals-reviewed': { '0': 12 } }

OEBPS/assets/json_05in29.png
JSON GENERATOR

{{repeat(3)}}, {
id: '{{integer()}}',

picture: ‘http://placehold.it/32x32',

name: ‘{{firstName()}}',

lastName: ‘{{surname()}}',
company: ‘{{company()}}',

email: '{{email()}}',

about: '{{lorem(1, "paragraphs")}}'

Created by Vazha Omanashvili

- Reset Tryoutbetal @ Help B4 Feedback

{
nign: 5,
"picture": “http //placehald i+/22v20m
11

Upload
"allenstrickland@coriander.com"

"Quis enim

irure sit incididunt do GOPY tO clipboard

labore labore nulla ad

nostrud irure. Officia

nisi aliquip. In magna

veniam. Culpa esse enim Four space tab

sunt ipsum velit nulla

consectetur magna ad1p151c1ng ut.\r\n"

{

"id": 9,
“picture"

"http://placehold. it/32x32",

Buie [share {50

OEBPS/DejaVuSans-Bold.otf

OEBPS/assets/json_05in14.png
Jjson-at-work => validate ex-10-property-patterns-invalid.json ex-10-property-patterns-schema.json
Invalid: Additional properties not allowed

JSON Schema element: /additionalProperties

JSON Content path: /lined4

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/assets/json_04in04.png
org. jsonatwork. ch4. SpeakersApiJsonTest > testApiSpeaker3Json STANDARD_OUT
{

"id": 3,
"fullName": "Christensen Fisher",

"registered”: false

OEBPS/assets/json_09in03.png
Jjson-at-work => mongo
MongoDB shell version: 3.2.4
connecting to: test

> use jsaw

switched to db jsaw

>1

OEBPS/assets/json_06in02.png
ece JSONPath Orline Evaluator % | 4

€ | @ ashphycomUUSONPairOnineEvaluator/

Inputs
JSONPath Syntax

[sitest3]

Example 'S.phoneNumbers[*L.type’ See also ISONPath expressions
JSON

"lat"; 33.744461
3

‘main’: {
"temp": 8434,
"pressure: 1012,
"humidity": 58,
"temp_min": 78.8,
"temp_max": 93

@ Qsearch O 4 -]

Evaluation Results

'id' => "5386035"
‘nane’ => "Rancho Palos Verdes"
*coord"
*lon' => "-118.387016"
“lat' => "33.744461'
‘main’ .
‘temp' => "84.34"
*pressure’
*humidity®
*temp_min®
temp_max
'dt' => 1442171078’
twind® ..
‘speed’ => "4.
‘deg’ = "300'
*clouds' .
‘allt =
*weather"
ot

id' = 800"

‘main’ = "Clear"

‘description’ => "Sky is Clear"
*icon' => "02d"

'id' => "5392528"
‘name’ => "San Pedro"
*coord’

OEBPS/assets/json_05in22.png
Jjson-at-work => validate ex-15-one-of-invalid.json ex-15-one-of-schema.json
Invalid: Data is valid against more than one schema from "onef": indices @ and 1
JSON Schema element: /properties/rating/one0f

JSON Content path: /rating

OEBPS/assets/json_10in16.png
© MailCatcher Clear | Quit

From T Subject Rocelved
< Utimate JavaScript Conference by MyConference - Enterprise Node Saturdey, 21 Jan 2017 4:18:02 PM
i Utimate JavaScript Conference by MyConference - Enterprise Node Saturdey, 21 Jan 2017 4:17:49 PM
) Utimate JavaScript Conference by MyConference - Enterprise Node Saturdey, 21 Jan 2017 328:31 PM
! Utimate JavaScript Conference by MyConference - Enterprise Node ‘Saturday, 21 Jan 2017 12:50.06 PMOgpen Snagit Eaor
Roceived Saturday, 21 Jan 2017 4:18:02 PM
From <proposals@myconference.com>
o <arson richard@ecratic.com>
Sublect_ Uttimate JavaScript Conference by MyConference - Enterprise Node
HTML | Source, Download
Larson,

‘We are pleased to inform you that your talk on Enterprise Node has been accepted for the Ultimate JavaScript Conference by MyConference.

Your session scheduled for 2017-11-06 at 10:00.

erely,
‘The Ultimate JavaScript Conference by MyConference Event Team.

OEBPS/assets/json_05in04.png
€ = € i [[) jsonvaiidate.com

JSON Validate

Import About Help

JSON Schema JSON Content
1| [1
2 2 e e,
5 3 H
H i
5 B
F H
I 7
[A ——— ’
5 TEyper: matbing? |
Pr 1
Fei] [e—— b
b Typer: atringt 2
B 3
i b1
i) i
i i
b b
i i
b i
20 2
2 2
References 1)(2)(3)(4)(5) Results
7 vaig
2
5
H
5
F
5
K
g
10
bt
e
e
i
Learn more about

Using JSON Schema

OEBPS/assets/json_01in07.png
oy

OEBPS/toc01.html
		Preface

		Audience, Assumptions, and Approach

		What Does “At Work” Mean?

		What You’ll Learn

		What You’ll Work With

		Who This Book Is Not For

		Organization

		Part I, JSON Overview and Platforms

		Part II, The JSON Ecosystem

		Part III, JSON in the Enterprise

		Appendices

		Code Examples

		O’Reilly Safari

		How to Contact Us

		Acknowledgments

		I. JSON Overview and Platforms

		1. JSON Overview

		JSON Is a Standard

		A Brief Sample

		Why JSON?

		Core JSON

		JSON Data Types

		JSON Value Types

		JSON Versions

		JSON Comments

		JSON File and MIME Type

		JSON Style Guidelines

		Our Example—MyConference

		Our Technical Stack

		Our Architectural Style—noBackEnd

		Model JSON Data with JSON Editor Online

		Generate Sample JSON Data with JSON Generator

		Create and Deploy a Stub API

		What We Covered?

		What’s Next?

		2. JSON in JavaScript

		Node.js Setup

		JSON Serialization/Deserialization with JSON.stringify() and JSON.parse()

		The JSON Stringifier/Parser Object

		JSON Serialization with Simple JavaScript Data Types

		JSON Serialization with an Object and toJSON()

		JSON Deserialization Using eval()

		JSON Deserialization with an Object and JSON.parse()

		JavaScript Objects and JSON

		Node REPL

		Where to Learn More About JavaScript Objects

		Unit Testing with a Stub API

		Unit Test Style—TDD and BDD

		Just Enough Unit Testing with Mocha and Chai

		Setting Up the Unit Test

		Unirest

		Test Data

		Speakers Unit Test

		Building a Small Web Application

		Yeoman

		Iteration 1—Generate a Web Application with Yeoman

		Iteration 2—Make an HTTP Call with jQuery

		Iteration 3—Consume Speaker Data from a Stub API and Use a Template

		How to Go Deeper with JavaScript

		What We Covered

		What’s Next?

		3. JSON in Ruby on Rails

		Ruby on Rails Setup

		Ruby JSON Gems

		JSON Serialization/Deserialization with MultiJson

		The MultiJson Object

		JSON Serialization/Deserialization with Simple Ruby Data Types

		JSON Deserialization with Objects and MultiJson

		A Word on Camel Casing and JSON

		JSON Serialization with Objects and ActiveSupport

		JSON Deserialization with Objects and ActiveSupport

		Unit Testing with a Stub API

		Just Enough Unit Testing with Minitest

		Setting Up the Unit Test

		Test Data

		JSON and Minitest Testing with APIs

		Speakers Unit Test

		Further Reading on Ruby and Minitest

		What Is Missing in the Unit Tests?

		Build a Small Web API with Ruby on Rails

		Choose a JSON Serializer

		speakers-api-1—Create an API with Camel-Cased JSON

		speakers-api-2—Create an API that Customizes the JSON Representation

		Further Reading on Rails and Rails-based APIs

		What We Covered

		What’s Next?

		4. JSON in Java

		Java and Gradle Setup

		Gradle Overview

		Just Enough Unit Testing with JUnit

		Java-Based JSON Libraries

		JSON Serialization/Deserialization with Jackson

		Serialization/Deserialization with Simple Java Data Types

		Serialization/Deserialization with Java Objects

		Unit Testing with a Stub API

		Test Data

		JSON and JUnit Testing with APIs

		Build a Small Web API with Spring Boot

		Create the Model

		Create the Controller

		Register the Application

		Write the Build Script

		Deploy the API

		Test the API with Postman

		What We Covered

		What’s Next?

		II. The JSON Ecosystem

		5. JSON Schema

		JSON Schema Overview

		What Is JSON Schema?

		Syntactic Versus Semantic Validation

		A Simple Example

		JSON Schema on the Web

		Why JSON Schema?

		My Journey with JSON Schema

		The Current State of the JSON Schema Standard

		JSON Schema and XML Schema

		Core JSON Schema—Basics and Tooling

		JSON Schema Workflow and Tooling

		Core Keywords

		Basic Types

		Numbers

		Arrays

		Enumerated Values

		Objects

		Pattern Properties

		Regular Expressions

		Dependent Properties

		Internal References

		External References

		Choosing Validation Rules

		How to Design and Test an API with JSON Schema

		Our Scenario

		Model a JSON Document

		Generate a JSON Schema

		Validate the JSON Document

		Generate Sample Data

		Deploy a Stub API with json-server

		Final Thoughts on API Design and Testing with JSON Schema

		Validation Using a JSON Schema Library

		Where to Go Deeper with JSON Schema

		What We Covered

		What’s Next?

		6. JSON Search

		Why JSON Search?

		JSON Search Libraries and Tools

		Honorable Mention

		What to Look For

		Test Data

		Setting Up Unit Tests

		Comparing JSON Search Libraries and Tools

		JSONPath

		JSON Pointer

		jq

		JSON Search Library and Tool Evaluations—The Bottom Line

		What We Covered

		What’s Next?

		7. JSON Transform

		Types of JSON Transformation

		What to Look For in a JSON Transform Library

		Test Input Data

		JSON-to-HTML Transformation

		Target HTML Document

		Mustache

		Handlebars

		JSON-to-HTML Transformation Evaluations—The Bottom Line

		JSON-to-JSON Transform

		The Issues

		JSON-to-JSON Transform Libraries

		Honorable Mention

		Target JSON Output

		JSON Patch

		JSON-T

		Mustache

		Handlebars

		JSON-to-JSON Transformation Evaluations—The Bottom Line

		JSON-XML Transformation

		JSON-XML Transformation Conventions

		The Issues with JSON-XML Transformation Conventions

		XML-JSON Transform—The Bottom Line

		JSON-XML Transformation Unit Test

		What We Covered

		What’s Next?

		III. JSON in the Enterprise

		8. JSON and Hypermedia

		Comparing Hypermedia Formats

		Defining Key Terms

		My Opinion on Hypermedia

		Siren

		JSON-LD

		Collection+JSON

		json:api

		HAL

		Conclusions on Hypermedia

		Recommendations for Working with Hypermedia

		Practical Issues with Hypermedia

		Testing with HAL in the Speakers API

		Test Data

		HAL Unit Test

		Server-Side HAL

		Going Deeper with Hypermedia

		What We Covered

		What’s Next?

		9. JSON and MongoDB

		What About BSON?

		MongoDB Setup

		MongoDB Server and Tools

		MongoDB Server

		Importing JSON into MongoDB

		MongoDB Command Shell

		Basic CRUD with mongo

		Exporting from MongoDB to a JSON Document

		What About Schema?

		RESTful API Testing with MongoDB

		Test Input Data

		Providing a RESTful Wrapper for MongoDB

		What We Covered

		What’s Next?

		10. JSON Messaging with Kafka

		Kafka Use Cases

		Kafka Concepts and Terminology

		The Kafka Ecosystem—Related Projects

		Kafka Environment Setup

		Why Do I Need ZooKeeper?

		Kafka Command-Line Interface (CLI)

		How to Publish a JSON Message with the CLI

		Start ZooKeeper

		Start Kafka

		Create a Topic

		List Topics

		Start a Consumer

		Publish a JSON Message

		Consume a JSON Message

		Clean Up and Shut Down Kafka

		Kafka Libraries

		End-to-End Example—Speaker Proposals at MyConference

		Test Data

		Architecture Components

		Set Up the Kafka Environment

		Set Up Fake Email Server and Client—MailCatcher

		Set Up Node.js Project Environment

		Speaker Proposal Producer (Send Speaker Proposals)

		Proposal Reviewer (Consumer/Producer)

		Speaker Notifier (Consumer)

		Review Notification Email Messages with MailCatcher

		What We Covered

		A. Installation Guides

		Install JSON Tools in the Browser

		Install JSONView in Chrome and Firefox

		JSONLint

		JSON Editor Online

		Install Postman

		Install Node.js

		Install Node.js on macOS and Linux with NVM

		Install Node.js on Windows

		Uninstall Node.js

		Install Yeoman

		Install npm Modules

		Install Ruby on Rails

		Install Rails on macOS and Linux

		Install Rails on Windows

		Install Ruby Gems

		Install MongoDB

		Install the Java Environment

		Install Java SE

		Install Gradle

		Install jq

		Install cURL

		Install cURL on macOS

		Install cURL on Linux

		Install cURL on Windows

		Install Apache Kafka

		Install Kafka on macOS

		Install Kafka on UNIX

		Install Kafka on Windows

		References

		B. JSON Community

		Index

OEBPS/assets/json_10in06.png
Jjson-at-work => ./publish-message.sh '{ "message”: "This is a test proposal."” }' test-proposals-recvd

OEBPS/assets/json_05in07.png
Jjson-at-work => validate ex-3-basic-types-no-addl-props-invalid.json ex-3-basic-types-no-addl-props-schema.json
Invalid: Additional properties not allowed

JSON Schema element: /additionalProperties

JSON Content path: /age

