

Praise for Head First Design Patterns

“I received the book yesterday and started to read it on the way home... and I couldn’t stop. I took it to the
gym and I expect people saw me smiling a lot while I was exercising and reading. This is tres ‘cool’. It is
fun but they cover a lot of ground and they are right to the point. I’m really impressed.”

 — Erich Gamma, IBM Distinguished Engineer,
 and co-author of Design Patterns

“‘Head First Design Patterns’ manages to mix fun, belly-laughs, insight, technical depth and great practical
advice in one entertaining and thought provoking read. Whether you are new to design patterns, or have
been using them for years, you are sure to get something from visiting Objectville.”

 — Richard Helm, coauthor of “Design Patterns” with rest of the
 Gang of Four - Erich Gamma, Ralph Johnson and John Vlissides

“I feel like a thousand pounds of books have just been lifted off of my head.”

 — Ward Cunningham, inventor of the Wiki
 and founder of the Hillside Group

“This book is close to perfect, because of the way it combines expertise and readability. It speaks with
authority and it reads beautifully. It’s one of the very few software books I’ve ever read that strikes me as
indispensable. (I’d put maybe 10 books in this category, at the outside.)”

 — David Gelernter, Professor of Computer Science,
 Yale University and author of “Mirror Worlds” and “Machine Beauty”

“A Nose Dive into the realm of patterns, a land where complex things become simple, but where simple
things can also become complex. I can think of no better tour guides than the Freemans.”

 — Miko Matsumura, Industry Analyst, The Middleware Company
 Former Chief Java Evangelist, Sun Microsystems

“I laughed, I cried, it moved me.”

 — Daniel Steinberg, Editor-in-Chief, java.net

“My first reaction was to roll on the floor laughing. After I picked myself up, I realized that not only is the
book technically accurate, it is the easiest to understand introduction to design patterns that I have seen.”

 — Dr. Timothy A. Budd, Associate Professor of Computer Science at
 Oregon State University and author of more than a dozen books,
 including “C++ for Java Programmers”

“Jerry Rice runs patterns better than any receiver in the NFL, but the Freemans have out run him.
Seriously...this is one of the funniest and smartest books on software design I’ve ever read.”

 — Aaron LaBerge, VP Technology, ESPN.com

More Praise for Head First Design Patterns

“Great code design is, first and foremost, great information design. A code designer is teaching a com-
puter how to do something, and it is no surprise that a great teacher of computers should turn out to be
a great teacher of programmers. This book’s admirable clarity, humor and substantial doses of clever
make it the sort of book that helps even non-programmers think well about problem-solving.”

 — Cory Doctorow, co-editor of Boing Boing
 and author of “Down and Out in the Magic Kingdom”
 and “Someone Comes to Town, Someone Leaves Town”

“There’s an old saying in the computer and videogame business – well, it can’t be that old because the
discipline is not all that old – and it goes something like this: Design is Life. What’s particularly curious
about this phrase is that even today almost no one who works at the craft of creating electronic games
can agree on what it means to “design” a game. Is the designer a software engineer? An art director?
A storyteller? An architect or a builder? A pitch person or a visionary? Can an individual indeed be in
part all of these? And most importantly, who the %$!#&* cares?

 It has been said that the “designed by” credit in interactive entertainment is akin to the “directed by”
credit in filmmaking, which in fact allows it to share DNA with perhaps the single most controversial,
overstated, and too often entirely lacking in humility credit grab ever propagated on commercial art.
Good company, eh? Yet if Design is Life, then perhaps it is time we spent some quality cycles thinking
about what it is.

 Eric and Elisabeth Freeman have intrepidly volunteered to look behind the code curtain for us in
“Head First Design Patterns.” I’m not sure either of them cares all that much about the PlayStation
or X-Box, nor should they. Yet they do address the notion of design at a significantly honest level such
that anyone looking for ego reinforcement of his or her own brilliant auteurship is best advised not to
go digging here where truth is stunningly revealed. Sophists and circus barkers need not apply. Next
generation literati please come equipped with a pencil.”

 — Ken Goldstein, Executive Vice President & Managing Director,
 Disney Online

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of tired,
stale professor-speak.”

 — Travis Kalanick, Founder of Scour and Red Swoosh
 Member of the MIT TR100

“This book combines good humors, great examples, and in-depth knowledge of Design Patterns in
such a way that makes learning fun. Being in the entertainment technology industry, I am intrigued
by the Hollywood Principle and the home theater Facade Pattern, to name a few. The understanding
of Design Patterns not only helps us create reusable and maintainable quality software, but also helps
sharpen our problem-solving skills across all problem domains. This book is a must read for all com-
puter professionals and students.”

 — Newton Lee, Founder and Editor-in-Chief, Association for Computing
 Machinery’s (ACM) Computers in Entertainment (acmcie.org)

More Praise for Head First Design Patterns

“If there’s one subject that needs to be taught better, needs to be more fun to learn, it’s design patterns.
Thank goodness for Head First Design Patterns.

From the awesome Head First Java folks, this book uses every conceivable trick to help you understand
and remember. Not just loads of pictures: pictures of humans, which tend to interest other humans.
Surprises everywhere. Stories, because humans love narrative. (Stories about things like pizza and
chocolate. Need we say more?) Plus, it’s darned funny.

It also covers an enormous swath of concepts and techniques, including nearly all the patterns you’ll
use most (observer, decorator, factory, singleton, command, adapter, façade, template method, iterator,
composite, state, proxy). Read it, and those won’t be ‘just words’: they’ll be memories that tickle you,
and tools you own.”

 — Bill Camarda, READ ONLY

“After using Head First Java to teach our freshman how to start programming, I was eagerly waiting to
see the next book in the series. Head First Design Patterns is that book and I am delighted. I am sure
it will quickly become the standard first design patterns book to read, and is already the book I am
recommending to students.”

 — Ben Bederson, Associate Professor of Computer Science & Director of the
 Human-Computer Interaction Lab, University of Maryland

“Usually when reading through a book or article on design patterns I’d have to occasionally stick myself in
the eye with something just to make sure I was paying attention. Not with this book. Odd as it may sound,
this book makes learning about design patterns fun.

While other books on design patterns are saying, ‘Buehler... Buehler... Buehler...’ this book is on the float
belting out ‘Shake it up, baby!’”

 — Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

 — Satish Kumar

Praise for the Head First approach

“Java technology is everywhere—in mobile phones, cars, cameras, printers, games, PDAs, ATMs, smart
cards, gas pumps, sports stadiums, medical devices, Web cams, servers, you name it. If you develop
software and haven’t learned Java, it’s definitely time to dive in—Head First.”

 — Scott McNealy, Sun Microsystems Chairman, President and CEO

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

 — Ken Arnold, former Senior Engineer at Sun Microsystems
 Co-author (with James Gosling, creator of Java),
 “The Java Programming Language”

Make it Stick

Learning Java

Java in a Nutshell

Java Enterprise in a Nutshell

Java Examples in a Nutshell

Java Cookbook

J2EE Design Patterns

Be watching for more books in the Head First series!

Other related books from O’Reilly

Head First Java

Head First Servlets & JSP

Head First EJB

Head First Object-Oriented Analysis & Design

Head First HTML with CSS & XHTML

Head Rush Ajax

Head First PMP
Head First SQL (2007)
Head First C# (2007)
Head First Software Development (2007)
Head First JavaScript (2007)

Other books in O'Reilly's Head First series

Head First Design Patterns

Beijing • Cambridge • Köln • Paris • Sebastopol • Taipei • Tokyo

Wouldn’t it be dreamy if
there was a Design Patterns

book that was more fun than going
to the dentist, and more revealing
than an IRS form? It’s probably

just a fantasy...

Eric Freeman
Elisabeth Freeman

with
Kathy Sierra

Bert Bates

ISBN-10: 0-596-00712-4 ISBN-13: 978-0-596-00712-6

[M] [7/07]

To the Gang of Four, whose insight and expertise in capturing
and communicating Design Patterns has changed the face of
software design forever, and bettered the lives of developers
throughout the world.

But seriously, when are we going to see a second edition? After all,
it’s been only ten years!

Creators of the Head First series
(and co-conspirators on this book)

Kathy Sierra

Kathy has been interested in learning theory since
her days as a game designer (she wrote games for Virgin,
MGM, and Amblin’). She developed much of the Head
First format while teaching New Media Authoring for
UCLA Extension’s Entertainment Studies program.
More recently, she’s been a master trainer for Sun
Microsystems, teaching Sun’s Java instructors how to
teach the latest Java technologies, and developing several
of Sun’s certifi cation exams. Together with Bert Bates,
she has been actively using the Head First concepts to
teach throusands of developers. Kathy is the founder of
javaranch.com, which won a 2003 and 2004 Software
Development magazine Jolt Cola Productivity Award.
You might catch her teaching Java on the Java Jam Geek
Cruise (geekcruises.com).

She recently moved from California to Colorado, where
she’s had to learn new words like, “ice scraper” and

“fl eece”, but the lightning there is fantastic.

Likes: runing, skiing, skateboarding, playing with her
Icelandic horse, and weird science. Dislikes: entropy.

You can fi nd her on javaranch, or occasionally blogging
on java.net. Write to her at kathy@wickedlysmart.com.

Bert is a long-time software developer and architect,
but a decade-long stint in artifi cial intelligence drove
his interest in learning theory and technology-based
training. He’s been helping clients becoming better
programmers ever since. Recently, he’s been heading
up the development team for several of Sun’s Java
Certifi cation exams.

He spent the fi rst decade of his software career
travelling the world to help broadcast clients like
Radio New Zealand, the Weather Channel, and the
Arts & Entertainment Network (A & E). One of his
all-time favorite projects was building a full rail system
simulation for Union Pacifi c Railroad.

Bert is a long-time, hopelessly addicted go player, and
has been working on a go program for way too long.
He’s a fair guitar player and is now trying his hand at
banjo.

Look for him on javaranch, on the IGS go server, or
you can write to him at terrapin@wickedlysmart.com.

Bert Bates

x

Intro
Your brain on Design Patterns. Here you are trying to learn something, while

here your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid and

whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking

that your life depends on knowing Design Patterns?

Who is this book for? xxvi

We know what your brain is thinking xxvii

Metacognition xxix

Bend your brain into submission xxxi

Technical reviewers xxxiv

Acknowledgements xxxv

Table of Contents (summary)
 Intro xxv

1 Welcome to Design Patterns: an introduction 1

2 Keeping your Objects in the know: the Observer Pattern 37

3 Decorating Objects: the Decorator Pattern 79

4 Baking with OO goodness: the Factory Pattern 109

5 One of a Kind Objects: the Singleton Pattern 169

6 Encapsulating Invocation: the Command Pattern 191

7 Being Adaptive: the Adapter and Facade Patterns 235

8 Encapsulating Algorithms: theTemplate Method Pattern 275

9 Well-managed Collections: the Iterator and Composite Patterns 315

10 The State of Things: the State Pattern 385

11 Controlling Object Access: the Proxy Pattern 429

12 Patterns of Patterns: Compound Patterns 499

13 Patterns in the Real World: Better Living with Patterns 577

14 Appendix: Leftover Patterns 611

Table of Contents (the real thing)

table of contents

xi

1 Welcome to Design Patterns

Someone has already solved your problems. In this chapter,

you’ll learn why (and how) you can exploit the wisdom and lessons learned by

other developers who’ve been down the same design problem road and survived

the trip. Before we’re done, we’ll look at the use and benefi ts of design patterns,

look at some key OO design principles, and walk through an example of how one

pattern works. The best way to use patterns is to load your brain with them and

then recognize places in your designs and existing applications where you can

apply them. Instead of code reuse, with patterns you get experience reuse.

intro to Design Patterns

Your BRAIN

Your Code, now new
and improved with
design patterns!

A
Bu

nc
h o

f
Pa

tt
er

ns swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior;

QuackBehavior quackBehavior;

<<interface>>

FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings

fly() {

 // implements duck flying

}

FlyWithWings

 // implements duck flying

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>

QuackBehavior

quack()

quack) {

 // implements duck quacking

}

Quack

 // implements duck quacking

Quack

 // implements duck quacking

quack() {

 // rubber duckie squeak

}

Squeak

quack() {

 // rubber duckie squeak

}

Squeak

 // rubber duckie squeak

quack() {

 // do nothing - can’t quack!

}

MuteQuack

quack() {

 // do nothing - can’t quack!

}

MuteQuack

quack) {

 // implements duck quacking

}

quack) {

 // implements duck quacking

}

Quack

display() {

// looks like a decoy duck }

Decoy Duck

// looks like a decoy duck }

display() {

// looks like a mallard }

Mallard Duck

// looks like a mallard }

display() {

// looks like a redhead }

Redhead Duck

Decoy Duck

display() {

// looks like a decoy duck }

Decoy Duck

// looks like a redhead }

display() {

// looks like a rubberduck }

Rubber Duck
display() {

// looks like a decoy duck }display() {

// looks like a decoy duck }

display() {

// looks like a rubberduck }

Rubber Duck

Encapsulated fl y behavior

Encapsulated quack behavior
Client

View

Controller

Model

Request

MVC

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

Automatic update/notification

Object that
holds state

De
pe

nd
en

t
Ob

jec
ts

OBSERVER

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented

designer. A design guru thinks
about how to create fl exible
designs that are maintainable

and that can cope with
change.

The SimUDuck app 2

Joe thinks about inheritance... 5

How about an interface? 6

The one constant in software development 8

Separating what changes from what stays the same 10

Designing the Duck Behaviors 11

Testing the Duck code 18

Setting behavior dynamically 20

The Big Picture on encapsulated behaviors 22

HAS-A can be better than IS-A 23

The Strategy Pattern 24

The power of a shared pattern vocabulary 28

How do I use Design Patterns? 29

Tools for your Design Toolbox 32

Exercise Solutions 34

xii

The Weather Monitoring application 39

Meet the Observer Pattern 44

Publishers + Subscribers = Observer Pattern 45

Five minute drama: a subject for observation 48

The Observer Pattern defined 51

The power of Loose Coupling 53

Designing the Weather Station 56

Implementing the Weather Station 57

Using Java’s built-in Observer Pattern 64

The dark side of java.util.Observable 71

Tools for your Design Toolbox 74

Exercise Solutions 78

2 Keeping your Objects in the Know

Don’t miss out when something interesting happens!
We’ve got a pattern that keeps your objects in the know when something they

might care about happens. Objects can even decide at runtime whether they

want to be kept informed. The Observer Pattern is one of the most heavily used

patterns in the JDK, and it’s incredibly useful. Before we’re done, we’ll also look

at one to many relationships and loose coupling (yeah, that’s right, we said

coupling). With Observer, you’ll be the life of the Patterns Party.

the Observer Pattern

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

ONE TO MANY RELATIONSHIP

Automatic update/notification

Object that
holds state

De
pe

nd
en

t
Ob

jec
ts

Abstraction

Encapsulation

Polymorphism

Inheritence

OO Basics
Abstraction

Encapsulation

Polymorphism

Inheritence

Encapsulate what varies

Favor Composition over i
nheri-

tance

Program to Interface
s, not

implementations

Strive for loo
sely coupled

designs between objects th
at

interact

OO Principles

table of contents

xiii

3 Decorating Objects

Just call this chapter “Design Eye for the Inheritance
Guy.” We’ll re-examine the typical overuse of inheritance and you’ll learn how

to decorate your classes at runtime using a form of object composition. Why?

Once you know the techniques of decorating, you’ll be able to give your (or

someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

the Decorator Pattern

I used to think real men
subclassed everything. That was until
I learned the power of extension
at runtime, rather than at compile

time. Now look at me!

Welcome to Starbuzz Coffee 80

The Open-Closed Principle 86

Meet the Decorator Pattern 88

Constructing a Drink Order with Decorators 89

The Decorator Pattern Defined 91

Decorating our Beverages 92

Writing the Starbuzz code 95

Real World Decorators: Java I/O 100

Writing your own Java I/O Decorator 102

Tools for your Design Toolbox 105

Exercise Solutions 106

xiv

4 Baking with OO Goodness

Get ready to cook some loosely coupled OO designs.
There is more to making objects than just using the new operator. You’ll learn

that instantiation is an activity that shouldn’t always be done in public and can

often lead to coupling problems. And you don’t want that, do you? Find out how

Factory Patterns can help save you from embarrasing dependencies.

the Factory Pattern

<<interface>>
Clams

<<interface>>
Cheese

<<interface>>
Sauce

<<interface>>
Dough

createPizza()

NYPizzaStore

ThinCrustDough

MarinaraSauce

ReggianoCheese

FrozenClams

<<interface>>
Sauce

<<interface>>
Sauce

ThinCrustDoughThickCrustDough

<<interface>>
Cheese

<<interface>>
Cheese

MarinaraSaucePlumTomatoSauce

<<interface>>
Clams

<<interface>>
Clams

ReggianoCheeseMozzarella Cheese

FreshClams

Each factory produces a different
implementation for the family of products.

The abstract PizzaIngredientFactory
is the interface that defines how to
make a family of related products

- everything we need to make a pizza.

The clients of the Abstract
Factory are the two
instances of our PizzaStore,
NYPizzaStore and
ChicagoStylePizzaSore.

The job of the concrete
pizza factories is to
make pizza ingredients.
Each factory knows
how to create the right
objects for their region.

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

<<interface>>
PizzaIngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

NYPizzaIngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

ChicagoPizzaIngredientFactory

table of contents

When you see “new”, think “concrete” 110

Objectville Pizza 112

Encapsulating object creation 114

Building a simple pizza factory 115

The Simple Factory defined 117

A Framework for the pizza store 120

Allowing the subclasses to decide 121

Let’s make a PizzaStore 123

Declaring a factory method 125

Meet the Factory Method Pattern 131

Parallel class hierarchies 132

Factory Method Pattern defined 134

A very dependent PizzaStore 137

Looking at object dependencies 138

The Dependency Inversion Principle 139

Meanwhile, back at the PizzaStore... 144

Families of ingredients... 145

Building our ingredient factories 146

Looking at the Abstract Factory 153

Behind the scenes 154

Abstract Factory Pattern defi ned 156

Factory Method and Abstract Factory compared 160

Tools for your Design Toolbox 162

Exercise Solutions 164

xv

5 One of a Kind Objects

The Singleton Pattern: your ticket to creating one-of-a-
kind objects, for which there is only one instance. You

might be happy to know that of all patterns, the Singleton is the simplest in terms

of its class diagram; in fact the diagram holds just a single class! But don’t get

too comfortable; despite its simplicity from a class design perspective, we’ll

encounter quite a few bumps and potholes in its implementation. So buckle

up—this one’s not as simple as it seems...

the Singleton Pattern

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them inter-

changeable. S
trategy lets t

he algorithm vary

independently
from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them inter-

changeable. S
trategy lets t

he algorithm vary

independently
from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically
changeable. S

trategy lets t
he algorithm vary

independently
from clients that

use it.

OO Patterns
Observer
dependency be

tween objects so
 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automatically

Decorator - Attach additio
nal

responsibilities
 to an object

dynami-

cally. Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Observer defines a one-

to-many

dependents ar
e notified and

 updated

automatically

Decorator
responsibilities

 to an object
dynami-

cally. Decorators pro
vide a flexible

responsibilities

 to an object
dynami-

cally. Decorators pro
vide a flexible

cally. Decorators pro
vide a flexible

responsibilities

 to an object
dynami-

alternative to
 subclassing fo

r extending cally. Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

alternative to
 subclassing fo

r extending cally. Decorators pro
vide a flexible

functionality.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many

Decorator

functionality.

Abstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract Factory

related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to i

n-

stantiate. Factory Method lets a c
lass

defer instant
iation to the

subclasses.
related or de

pedent object
s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without

Observer defines a one-
to-many

DecoratorAbstract Factory
Factory Method - Define an

interface for
 creating an o

bject, but Factory Method

interface for
 creating an o

bject, but

interface for
 creating an o

bject, but Factory Method

let subclasses
decide which class to i

n-

stantiate. Factory Method lets a c
lass

defer instant
iation to the

subclasses.stantiate. Factory Method lets a c
lass

defer instant
iation to the

subclasses.

defer instant
iation to the

subclasses.stantiate. Factory Method lets a c
lass Singleton - Ensure a class o

nly has

one instance a
nd provide a g

lobal point

of access to i
t.

One and only one object 170

The Little Singleton 171

Dissecting the classic Singleton Pattern 173

Confessions of a Singleton 174

The Chocolate Factory 175

Singleton Pattern defined 177

Houston, we have a problem... 178

BE the JVM 179

Dealing with multithreading 180

Singleton Q&A 184

Tools for your Design Toolbox 186

Exercise Solutions 188

Hershey, PA

xvi

6 Encapsulating Invocation

In this chapter we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That’s right, by encapsulating invocation we can crystallize pieces of computation

so that the object invoking the computation doesn’t need to worry about how to do

things; it just uses our crystallized method to get it done. We can also do some

wickedly smart things with these encapsulated method invocations, like save

them away for logging or reuse them to implement undo in our code.

the Command Pattern

I’ll have a Burger
with Cheese and a Malt
Shake

Burger w
ith Cheese

 Malt Shak
e

createOrder()

takeOrder()

Burger w
ith Cheese

 Malt Shak
e

ord
erU

p()

makeBurger(), makeShake()

outp
ut

The Order consists of an
 order

slip and the custom
er’s menu

items that are written on it.

The customer knows
what he wants and
creates an order.

The Waitress takes the Order, and when she gets around to it, she calls its orderUp() method to begin the Order’s preparation.

The Order has
 all

the inst
ructions

needed t
o prepar

e

the meal. The

Order dir
ects the

Short O
rder Cook

with methods l
ike

makeBurger().

The Short Order Cook follows the instructions of the Order and produces the meal.

Start H
ere

table of contents

Home Automation or Bust 192

The Remote Control 193

Taking a look at the vendor classes 194

Meanwhile, back at the Diner... 197

Let’s study the Diner interaction 198

The Objectville Diner Roles and Responsibilities 199

From the Diner to the Command Pattern 201

Our first command object 203

The Command Pattern defined 206

The Command Pattern and the Remote Control 208

Implementing the Remote Control 210

Putting the Remote Control through its paces 212

Time to write that documentation 215

Using state to implement Undo 220

Every remote needs a Party Mode! 224

Using a Macro Command 225

More uses of the Command Pattern: Queuing requests 228

More uses of the Command Pattern: Logging requests 229

Tools for your Design Toolbox 230

Exercise Solutions 232

xvii

Home Automation or Bust 192

The Remote Control 193

Taking a look at the vendor classes 194

Meanwhile, back at the Diner... 197

Let’s study the Diner interaction 198

The Objectville Diner Roles and Responsibilities 199

From the Diner to the Command Pattern 201

Our first command object 203

The Command Pattern defined 206

The Command Pattern and the Remote Control 208

Implementing the Remote Control 210

Putting the Remote Control through its paces 212

Time to write that documentation 215

Using state to implement Undo 220

Every remote needs a Party Mode! 224

Using a Macro Command 225

More uses of the Command Pattern: Queuing requests 228

More uses of the Command Pattern: Logging requests 229

Tools for your Design Toolbox 230

Exercise Solutions 232

7 Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. Sound impossible?

Not when we have Design Patterns. Remember the Decorator Pattern? We

wrapped objects to give them new responsibilities. Now we’re going to wrap some

objects with a different purpose: to make their interfaces look like something they’re

not. Why would we do that? So we can adapt a design expecting one interface to a

class that implements a different interface. That’s not all, while we’re at it we’re going

to look at another pattern that wraps objects to simplify their interface.

the Adapter and Facade Patterns

Adaptee

Client

Adapter

request() tra
nslatedRequest()

The Client is implemented

against the target interface

The Adapter implements the

target interface and holds an

instance of the Adaptee

target interface

adaptee
interface

Turkey was the
adaptee interface

European Wall Outlet

AC Power Adapter

Standard AC Plug

Adapters all around us 236

Object Oriented Adapters 237

The Adapter Pattern explained 241

Adapter Pattern defined 243

Object and Class Adapters 244

Tonight’s talk: The Object Adapter and Class Adapter 247

Real World Adapters 248

Adapting an Enumeration to an Iterator 249

Tonight’s talk: The Decorator Pattern and the Adapter Pattern 252

Home Sweet Home Theater 255

Lights, Camera, Facade! 258

Constructing your Home Theater Facade 261

Facade Pattern defined 264

The Principle of Least Knowledge 265

Tools for your Design Toolbox 270

Exercise Solutions 272

xviii

8 Encapsulating Algorithms

We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas... what could be next?
We’re going to get down to encapsulating pieces of algorithms so that subclasses can

hook themselves right into a computation anytime they want. We’re even going to

learn about a design principle inspired by Hollywood.

the Template Method Pattern

table of contents

1 Boil some water

2

3

4

Steep the teabag in the water

Pour tea in a cup

Add lemon

1 Boil some water
2

3

4

Brew the coffee grinds
Pour coffee in a cup

Add sugar and milk

2

4

Steep the teabag in the water

Add lemon

Tea subclass Coffee subclass

2

4

Brew the coffee grinds

Add sugar and milk

1 Boil some water

2

3

4

Brew

Pour beverage in a cup

Add condiments

Caffeine Beverage

Tea Coffee

Caffeine Beverage knows

and controls the step
s of

the recipe, and perfo
rms

steps 1 and 3 itself,
but

relies on Tea or Coffee

to do steps 2 and 4.

We’ve recognized
that the two recipes
are essentially the

same, although
some of the steps
require different

implementations. So
we’ve generalized the
recipe and placed it in

the base class.

generalize

relies on

subclass for

some steps

generalize

relies on

subclass for

some steps

Whipping up some coffee and tea classes 277

Abstracting Coffee and Tea 280

Taking the design further 281

Abstracting prepareRecipe() 282

What have we done? 285

Meet the Template Method 286

Let’s make some tea 287

What did the Template Method get us? 288

Template Method Pattern defined 289

Code up close 290

Hooked on Template Method... 292

Using the hook 293

Coffee? Tea? Nah, let’s run the TestDrive 294

The Hollywood Principle 296

The Hollywood Principle and the Template Method 297

Template Methods in the Wild 299

Sorting with Template Method 300

We’ve got some ducks to sort 301

Comparing ducks and ducks 302

The making of the sorting duck machine 304

Swingin’ with Frames 306

Applets 307

Tonight’s talk: Template Method and Strategy 308

Tools for your Design Toolbox 311

Exercise Solutions 312

xix

Whipping up some coffee and tea classes 277

Abstracting Coffee and Tea 280

Taking the design further 281

Abstracting prepareRecipe() 282

What have we done? 285

Meet the Template Method 286

Let’s make some tea 287

What did the Template Method get us? 288

Template Method Pattern defined 289

Code up close 290

Hooked on Template Method... 292

Using the hook 293

Coffee? Tea? Nah, let’s run the TestDrive 294

The Hollywood Principle 296

The Hollywood Principle and the Template Method 297

Template Methods in the Wild 299

Sorting with Template Method 300

We’ve got some ducks to sort 301

Comparing ducks and ducks 302

The making of the sorting duck machine 304

Swingin’ with Frames 306

Applets 307

Tonight’s talk: Template Method and Strategy 308

Tools for your Design Toolbox 311

Exercise Solutions 312

9 Well-Managed Collections

There are lots of ways to stuff objects into a collection.
Put them in an Array, a Stack, a List, a Map, take your pick. Each has its own

advantages and tradeoffs. But when your client wants to iterate over your objects,

are you going to show him your implementation? We certainly hope not! That just

wouldn’t be professional. Don’t worry—in this chapter you’ll see how you can let

your clients iterate through your objects without ever seeing how you store your

objects. You’re also going to learn how to create some super collections of objects

that can leap over some impressive data structures in a single bound. You’re also

going to learn a thing or two about object responsibility.

the Iterator and Composite Patterns

PancakeHouseM
en

u

 DinerMenu
 CafeMenu

1 2 3

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

Pancake Menu

 MenuItem

 MenuItem

 MenuItem

 MenuItem

Café Menu

 key

 key

 key

 key

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Diner Menu

All Menus

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Dessert Menu

Array

ArrayList

Objectville Diner and Pancake House merge 316

Comparing Menu implementations 318

Can we encapsulate the iteration? 323

Meet the Iterator Pattern 325

Adding an Iterator to DinerMenu 326

Looking at the design 331

Cleaning things up with java.util.Iterator 333

What does this get us? 335

Iterator Pattern defined 336

Single Responsibility 339

Iterators and Collections 348

Iterators and Collections in Java 5 349

Just when we thought it was safe... 353

The Composite Pattern defined 356

Designing Menus with Composite 359

Implementing the Composite Menu 362

Flashback to Iterator 368

The Null Iterator 372

The magic of Iterator & Composite together... 374

Tools for your Design Toolbox 380

Exercise Solutions 381

xx

10 The State of Things

A little known fact: the Strategy and State Patterns were
twins separated at birth. As you know, the Strategy Pattern went on

to create a wildly successful business around interchangeable algorithms. State,

however, took the perhaps more noble path of helping objects learn to control their

behavior by changing their internal state. He’s often overheard telling his object

clients, “just repeat after me, I’m good enough, I’m smart enough, and doggonit...”

the State Pattern

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Here’s the way we think the gumball machine controller needs to

work. We’re hoping you can implement this in Java for us! We

may be adding more behavior in the future, so you nee
d to keep

the design as flexible and maintainable as possible!

 - Mighty Gumball Engineers

Out of
Gumballs

 Has
Quarter

 No

Quarter

Gumball

 Sold

ins
er

ts
qu

ar
te

r

eje
ct

s q
ua

rt
er

turns crank

dispense
gumball

gumballs = 0

gumballs > 0

table of contents

How do we implement state? 387

State Machines 101 388

A fi rst attempt at a state machine 390

You knew it was coming... a change request! 394

The messy STATE of things... 396

Defining the State interfaces and classes 399

Implementing our State Classes 401

Reworking the Gumball Machine 402

The State Pattern defined 410

State versus Strategy 411

State sanity check 417

We almost forgot! 420

Tools for your Design Toolbox 423

Exercise Solutions 424

xxi

11 Controlling Object Access

Ever play good cop, bad cop? You’re the good cop and you provide

all your services in a nice and friendly manner, but you don’t want everyone

asking you for services, so you have the bad cop control access to you. That’s

what proxies do: control and manage access. As you’re going to see there are

lots of ways in which proxies stand in for the objects they proxy. Proxies have

been known to haul entire method calls over the Internet for their proxied objects;

they’ve also been known to patiently stand in the place for some pretty lazy

objects.

the Proxy Pattern

Not

Hot

<<interface>>
Subject

request()

RealSubject
request()

RealSubject
request()

Proxy
request()

Proxy

request()

<<interface>>
InvocationHandlerInvocationHandler

invoke()

InvocationHandler

invoke()

InvocationHandler

Subject
request()

The proxy now consists

of two classes.

invoke()

Monitoring the gumball machines 430

The role of the ‘remote proxy’ 434

RMI detour 437

GumballMachine remote proxy 450

Remote proxy behind the scenes 458

The Proxy Pattern defined 460

Get Ready for virtual proxy 462

Designing the CD cover virtual proxy 464

Virtual proxy behind the scenes 470

Using the Java API’s proxy 474

Five minute drama: protecting subjects 478

Creating a dynamic proxy 479

The Proxy Zoo 488

Tools for your Design Toolbox 491

Exercise Solutions 492

xxii

12 Patterns of Patterns

Who would have ever guessed that Patterns could work
together? You’ve already witnessed the acrimonious Fireside Chats (and be

thankful you didn’t have to see the Pattern Death Match pages that the publisher

forced us to remove from the book so we could avoid having to use a Parent’s

Advisory warning label), so who would have thought patterns can actually get along

well together? Believe it or not, some of the most powerful OO designs use several

patterns together. Get ready to take your pattern skills to the next level; it’s time for

Compound Patterns. Just be careful—your co-workers might kill you if you’re struck

with Pattern Fever.

Compound Patterns

Beat
Model

Controller

setBPM()

getBPM()

on()

off()

You click on
the increase
beat button.

The controller asks
the model to update
its BPM by one.

View is notified that the BPM
changed. It calls getBPM() on
the model state.

Because the BPM is 120, the view gets a beat notification every 1/2 second.

The beat is set at 119 BPM and you
would like to increase it to 120.

Which results in the
controller being invoked.

The view is updated
to 120 BPM.

You see the beatbar
pulse every 1/2 second.

View

View

table of contents

Compound Patterns 500

Duck reunion 501

Adding an adapter 504

Adding a decorator 506

Adding a factory 508

Adding a composite, and iterator 513

Adding an observer 516

Patterns summary 523

A duck’s eye view: the class diagram 524

Model-View-Controller, the song 526

Design Patterns are your key to the MVC 528

Looking at MVC through patterns-colored glasses 532

Using MVC to control the beat... 534

The Model 537

The View 539

The Controller 542

Exploring strategy 545

Adapting the model 546

Now we’re ready for a HeartController 547

MVC and the Web 549

Design Patterns and Model 2 557

Tools for your Design Toolbox 560

Exercise Solutions 561

xxiii

13 Patterns in the Real World

Ahhhh, now you’re ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity

we need to cover a few details that you’ll encounter out in the real world—things get a

little more complex out there than they are here in Objectville. Come along, we’ve got

a nice guide to help you through the transition...

Better Living with Patterns

Erich Gamma

John Vlissides

Richard
 Helm

Ralph
Johnson

Your Objectville guide 578

Design Pattern defined 579

Looking more closely at the Design Pattern definition 581

May the force be with you 582

Pattern catalogs 583

How to create patterns 586

So you wanna be a Design Patterns writer? 587

Organizing Design Patterns 589

Thinking in patterns 594

Your mind on patterns 597

Don’t forget the power of the shared vocabulary 599

Top fi ve ways to share your vocabulary 600

Cruisin’ Objectville with the Gang of Four 601

Your journey has just begun... 602

Other Design Pattern resources 603

The Patterns Zoo 604

Annihilating evil with Anti-Patterns 606

Tools for your Design Toolbox 608

Leaving Objectville... 609

Gang of Four

The Objectville Guide to

 Better Living with Design Patterns

Please accept our handy guide of tips & tricks for living with patterns in the real

world. In this guide you will:

b Learn the all too common misconceptions about the defi nition of a

“Design Pattern.”

b Discover those nifty Design Pattern Catalogs and why you just have to

get one.

b Avoid the embarrassment of using a Design Pattern at the wrong time.

b Learn how to keep patterns in classifi cations where they belong.

b See that discovering patterns isn’t just for the gurus; read our quick

HowTo and become a patterns writer too.

b Be there when the true identify of the mysterious Gang of Four is revealed.

b Keep up with the neighbors – the coffee table books any patterns user

must own.

b Learn to train your Design Patterns mind like a Zen master.

b Win friends and infl uence developers by improving your patterns

vocabulary.

xxiv

14Appendix: Leftover Patterns

Not everyone can be the most popular. A lot has changed in

the last 10 years. Since Design Patterns: Elements of Reusable Object-Oriented

Software fi rst came out, developers have applied these patterns thousands of times.

The patterns we summarize in this appendix are full-fl edged, card-carrying, offi cial

GoF patterns, but aren’t always used as often as the patterns we’ve explored so

far. But these patterns are awesome in their own right, and if your situation calls for

them, you should apply them with your head held high. Our goal in this appendix is

to give you a high level idea of what these patterns are all about.

i Index 631

MenuItem

Menu

Ingredient

MenuItem

Ingredient

Visitor

 Client /
Traverser

getState()
getState()

getState()
getState()

getState()

getHealth
Ratin

g()

getCalorie
s()

getProtein()

getCarbs()

All these composite
classes have to do is add
a getState() method
(and not worry about
exposing themselves :).

The Client asks the
Visitor to get in-
formation from the
Composite structure...
New methods can be
added to the Visitor
without affecting the
Composite.

The Visitor needs to be able to call
getState() across classes, and this

is
where you can add new methods for
the client to use.

The Traverser knows how to
guide the Visitor through
the Composite structure.

Bridge 612

Builder 614

Chain of Responsibility 616

Flyweight 618

Interpreter 620

Mediator 622

Memento 624

Prototype 626

Visitor 628

table of contents

xxv

Make it Stick

Intro

how to use this book

I can’t believe they
put that in a design

patterns book!

In this section, we answer the burning ques
tion:

“So, why DID they put that in a
 design patterns bo

ok?”

how to use this book

xxvi intro

Who is this book for ?

1 Do you know Java? (You don’t need to be a guru.)

2 Do you want to learn, understand, remember, and
apply design patterns, including the OO design
principles upon which design patterns are based?

this book is for you.

Who should probably back away from this book?

1 Are you completely new to Java?

(You don’t need to be advanced, and even if you
don’t know Java, but you know C#, you’ll probably
understand at least 80% of the code examples. You
also might be okay with just a C++ background.)

4

this book is not for you.

Are you afraid to try something different?
Would you rather have a root canal than mix
stripes with plaid? Do you believe that a technical
book can’t be serious if Java components are
anthropomorphized?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt OO designer/developer looking
for a reference book?

[note from marketing: this book is for anyone with a credit card.]

3 Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

3 Are you an architect looking for enterprise design
patterns?

You’ll probably be okay if
you know C# instead.

the intro

you are here4 xxvii

“How can this be a serious programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what you’re thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking. You
just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

And we know what your brain is thinking.

your brain thinks THIS is important.

Great. Only
637 more dull, dry,

boring pages.

your brain
thinks

THIS isn’t worth

saving.

how to use this book

xxviii intro

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely

to solve problems related to the content.

Use a conversational and personalized style. In recent studies, students

performed up to 40% better on post-learning tests if the content spoke directly to

the reader, using a first-person, conversational style rather than taking a formal

tone. Tell stories instead of lecturing. Use casual language. Don’t take yourself

too seriously. Which would you pay more attention to: a stimulating dinner party

companion, or a lecture?

Get the learner to think more deeply. In other words, unless

you actively flex your neurons, nothing much happens in your head.

A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge.

And for that, you need challenges, exercises, and thought-provoking

questions, and activities that involve both sides of the brain,

and multiple senses.

Get—and keep—the reader’s attention. We’ve

all had the “I really want to learn this but I can’t stay awake past

page one” experience. Your brain pays attention to things that

are out of the ordinary, interesting, strange, eye-catching, unexpected.

Learning a new, tough, technical topic doesn’t have to be boring. Your brain will

learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog.

We’re talking emotions like surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!”

that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize

you know something that “I’m more technical than thou” Bob from engineering doesn’t.

We think of a “Head First” reader as a learner.

doCalc()

return value

needs to call a method on the server
RMI remote
service

It really sucks to be an

abstract method. You

don’t have a body.

 abstract void roam();

No method b
ody !

End it w
ith a se

micolon.

Does it make sense to

say Tub IS-A Bathroom?

Bathroom IS-A Tub? Or is

it a HAS-A relationship?

the intro

you are here4 xxix

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn design
patterns. And you probably don’t want to spend a lot of time. And you want
to remember what you read, and be able to apply it. And for that, you’ve got to
understand it. To get the most from this book, or any book or learning experience, take
responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So how DO you get your brain to think Design
Patterns are as important as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The slow
way is about sheer repetition. You obviously know that you are able
to learn and remember even the dullest of topics, if you keep pounding on the
same thing. With enough repetition, your brain says, “This doesn’t feel important to him,
but he keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

how to use this book

xxx intro

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth 1024 words. And when text and pictures work together, we
embedded the text in the pictures because your brain works more effectively when the text is
within the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area of
your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain is
tuned to pay attention to the biochemistry of emotions. That which causes you to feel something
is more likely to be remembered, even if that feeling is nothing more than a little humor,
surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening to a
presentation. Your brain does this even when you’re reading.

We included more than 40 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, while someone else just wants to see a
code example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you can
be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the gym.
But we did our best to make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person. And
your brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going for a PhD in software design, this
won’t be your only book. So we don’t talk about everything. Just the stuff you’ll actually need.

Here’s what WE did:

The Patterns Guru

 BULLET POINTS

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

ONE TO MANY RELATIONSHIP

Automatic update/notification

Object that
holds state

De
pe

nd
en

t
Ob

jec
ts

Puzzles

the intro

you are here4 xxxi

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Here’s what YOU can do to bend
your brain into submission

1 Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

3 Read the “There are No Dumb Questions”

That means all of them. They’re not optional
side-bars—they’re part of the core content!
Don’t skip them.

Make this the last thing you read before
bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing-time, some of what you
just learned will be lost.

6 Drink water. Lots of it.

Your brain works best in a nice bath of fluid. De-
hydration (which can happen before you ever feel
thirsty) decreases cognitive function.

7 Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

8 Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

10 Design something!

Apply this to something new you’re designing, or
refactor an older project. Just do something to get
some experience beyond the exercises and activities
in this book. All you need is a pencil and a problem
to solve... a problem that might benefit from one or
more design patterns.

cut this out and stick it on your refrigerator.

9 Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own cap-
tions for the photos. Groaning over a bad joke is still
better than feeling nothing at all.

5

xxxii intro

Read Me

Director

getMovies
getOscars()
getKevinBaconDegrees()

We use a simpler,

modified faux
-UML

how to use this book

This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at that
point in the book. And the fi rst time through, you need to begin at the beginning, because
the book makes assumptions about what you’ve already seen and learned.

We use simple UML-like diagrams.

Although there’s a good chance you’ve run across UML, it’s not covered in the book, and
it’s not a prerequisite for the book. If you’ve never seen UML before, don’t worry, we’ll
give you a few pointers along the way. So in other words, you won’t have to worry about
Design Patterns and UML at the same time. Our diagrams are “UML-like” -- while we
try to be true to UML there are times we bend the rules a bit, usually for our own selfi sh
artistic reasons.

We don’t cover every single Design Pattern ever created.

There are a lot of Design Patterns: The original foundational patterns (known as the GoF
patterns), Sun’s J2EE patterns, JSP patterns, architectural patterns, game design patterns
and a lot more. But our goal was to make sure the book weighed less than the person
reading it, so we don’t cover them all here. Our focus is on the core patterns that matter
from the original GoF patterns, and making sure that you really, truly, deeply understand
how and when to use them. You will fi nd a brief look at some of the other patterns (the
ones you’re far less likely to use) in the appendix. In any case, once you’re done with Head
First Design Patterns, you’ll be able to pick up any pattern catalog and get up to speed
quickly.

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some for understanding, and some to help you
apply what you’ve learned. Don’t skip the exercises. The crossword puzzles are the
only things you don’t have to do, but they’re good for giving your brain a chance to think
about the words from a different context.

We use the word “composition” in the general OO sense, which is
more fl exible than the strict UML use of “composition”.

When we say “one object is composed with another object” we mean that they are related
by a HAS-A relationship. Our use refl ects the traditional use of the term and is the one
used in the GoF text (you’ll learn what that is later). More recently, UML has refi ned
this term into several types of composition. If you are an UML expert, you’ll still be able
to read the book and you should be able to easily map the use of composition to more
refi ned terms as you read.

the intro

you are here4 xxxiii

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want
you to finish the book remembering what you’ve learned. Most reference books don’t have
retention and recall as a goal, but this book is about learning, so you’ll see some of the same
concepts come up more than once.

The code examples are as lean as possible.

Our readers tell us that it’s frustrating to wade through 200 lines of code looking for the two
lines they need to understand. Most examples in this book are shown within the smallest
possible context, so that the part you’re trying to learn is clear and simple. Don’t expect
all of the code to be robust, or even complete—the examples are written specifically for
learning, and aren’t always fully-functional.

In some cases, we haven’t included all of the import statements needed, but we assume that
if you’re a Java programmer, you know that ArrayList is in java.util, for example. If the
imports were not part of the normal core J2SE API, we mention it. We’ve also placed all
the source code on the web so you can download it. You’ll find it at
http://www.headfirstlabs.com/books/hfdp/

Also, for the sake of focusing on the learning side of the code, we did not put our classes
into packages (in other words, they’re all in the Java default package). We don’t recommend
this in the real world, and when you download the code examples from this book, you’ll find
that all classes are in packages.

The ‘Brain Power’ exercises don’t have answers.

For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises you will find hints to point you in the right direction.

xxxiv intro

Tech Reviewers

the early review team

Jef Cumps

Jason Menard

Dirk SchreckmannDirk Schreckmann

Barney MarispiniBarney Marispini

Valentin Crettaz

Ike Van Atta

Mark Spritzler

Johannes deJong

Fearless leader of
the HFDP Extreme
Review Team.

Jason Menard

Fearless leader of
the HFDP Extreme
Review Team.

the intro

you are here4 xxxv

At O’Reilly:

Our biggest thanks to Mike Loukides at O’Reilly, for starting it all, and helping to shape the Head
First concept into a series. And a big thanks to the driving force behind Head First, Tim O’Reilly.
Thanks to the clever Head First “series mom” Kyle Hart, to rock and roll star Ellie Volkhausen for
her inspired cover design and also to Colleen Gorman for her hardcore copyedit. Finally, thanks to
Mike Hendrickson for championing this Design Patterns book, and building the team.

Our intrepid reviewers:

We are extremely grateful for our technical review director Johannes deJong. You are our hero,
Johannes. And we deeply appreciate the contributions of the co-manager of the Javaranch review
team, the late Philippe Maquet. You have single-handedly brightened the lives of thousands of
developers, and the impact you’ve had on their (and our) lives is forever.
 Jef Cumps is scarily good at fi nding problems in our draft chapters, and once again made a huge
difference for the book. Thanks Jef ! Valentin Cretaz (AOP guy), who has been with us from the
very fi rst Head First book, proved (as always) just how much we really need his technical expertise
and insight. You rock Valentin (but lose the tie).

Two newcomers to the HF review team, Barney Marispini and Ike Van Atta did a kick butt job on
the book—you guys gave us some really crucial feedback. Thanks for joining the team.

We also got some excellent technical help from Javaranch moderators/gurus Mark Spritzler,
Jason Menard, Dirk Schreckmann, Thomas Paul, and Margarita Isaeva. And as always,
thanks especially to the javaranch.com Trail Boss, Paul Wheaton.

Thanks to the fi nalists of the Javaranch “Pick the Head First Design Patterns Cover” contest. The
winner, Si Brewster, submitted the winning essay that persuaded us to pick the woman you see on
our cover. Other fi nalists include Andrew Esse, Gian Franco Casula, Helen Crosbie, Pho Tek, Helen
Thomas, Sateesh Kommineni, and Jeff Fisher.

Philippe Maquet

In memory of Phili e Maqu

Acknowledgments

Your amazing technical expertise, relentless enthusiasm, and
deep concern for the learner will inspire us always.

We will never forget you.

1960-2004

xxxvi intro

still more acknowledgments

*The large number of acknowledgments is because we’re testing the theory
that everyone mentioned in a book acknowledgment will buy at least one copy,
probably more, what with relatives and everything. If you’d like to be in the
acknowledgment of our next book, and you have a large family, write to us.

Even more people*
From Eric and Elisabeth

Writing a Head First book is a wild ride with two amazing tour guides: Kathy Sierra and
Bert Bates. With Kathy and Bert you throw out all book writing convention and enter a world
full of storytelling, learning theory, cognitive science, and pop culture, where the reader always
rules. Thanks to both of you for letting us enter your amazing world; we hope we’ve done Head
First justice. Seriously, this has been amazing. Thanks for all your careful guidance, for pushing
us to go forward and most of all, for trusting us (with your baby). You’re both certainly “wickedly
smart” and you’re also the hippest 29 year olds we know. So... what’s next?

A big thank you to Mike Loukides and Mike Hendrickson. Mike L. was with us every
step of the way. Mike, your insightful feedback helped shape the book and your encouragement
kept us moving ahead. Mike H., thanks for your persistence over five years in trying to get us to
write a patterns book; we finally did it and we’re glad we waited for Head First.

A very special thanks to Erich Gamma, who went far beyond the call of duty in reviewing
this book (he even took a draft with him on vacation). Erich, your interest in this book inspired
us and your thorough technical review improved it immeasurably. Thanks as well to the entire
Gang of Four for their support & interest, and for making a special appearance in Objectville.
We are also indebted to Ward Cunningham and the patterns community who created the
Portland Pattern Repository – an indespensible resource for us in writing this book.

It takes a village to write a technical book: Bill Pugh and Ken Arnold gave us expert advice
on Singleton. Joshua Marinacci provided rockin’ Swing tips and advice. John Brewer’s

“Why a Duck?” paper inspired SimUDuck (and we’re glad he likes ducks too). Dan Friedman
inspired the Little Singleton example. Daniel Steinberg acted as our “technical liason” and
our emotional support network. And thanks to Apple’s James Dempsey for allowing us to use
his MVC song.

Last, a personal thank you to the Javaranch review team for their top-notch reviews and
warm support. There’s more of you in this book than you know.

From Kathy and Bert
We’d like to thank Mike Hendrickson for finding Eric and Elisabeth... but we can’t. Because of
these two, we discovered (to our horror) that we aren’t the only ones who can do a Head First
book. ;) However, if readers want to believe that it’s really Kathy and Bert who did the cool things
in the book, well, who are we to set them straight?

this is a new chapter 1

Make it Stick

Someone has already solved your problems. In this chapter, you’ll learn

why (and how) you can exploit the wisdom and lessons learned by other developers who’ve

been down the same design problem road and survived the trip. Before we’re done, we’ll

look at the use and benefi ts of design patterns, look at some key OO design principles, and

walk through an example of how one pattern works. The best way to use patterns is to load

your brain with them and then recognize places in your designs and existing applications

where you can apply them. Instead of code reuse, with patterns you get experience reuse.

Welcome to
 Design Patterns

1 Intro to Design Patterns

Now that we’re living
in Objectville, we’ve just got
to get into Design Patterns...
everyone is doing them. Soon
we’ll be the hit of Jim and
Betty’s Wednesday night

patterns group!

g

h
g

2 Chapter 1

It started with a simple SimUDuck app

Joe works for a company that makes a highly successful duck pond
simulation game, SimUDuck. The game can show a large variety of
duck species swimming and making quacking sounds. The initial
designers of the system used standard OO techniques and created
one Duck superclass from which all other duck types inherit.

Duck

quack()

swim()

display()

// OTHER duck-like methods...

display() {

// looks like a mallard }

MallardDuck

display() {

// looks like a redhead }

RedheadDuck
Lots of other

types of duck
s

inherit from the Duck class. Each du
ck sub

type

is resp
onsible

 for

implementing
 its ow

n

display
() beha

vior

for ho
w it loo

ks on

the sc
reen.

All ducks quack and swim, the
superclass takes care of the
implementation code.

In the last year, the company has been under increasing pressure
from competitors. After a week long off-site brainstorming
session over golf, the company executives think it’s time for a big
innovation. They need something really impressive to show at the
upcoming shareholders meeting in Maui next week.

The display() method is

abstract, since all duck

subtypes look different.

SimUDuck

intro to Design Patterns

you are here 4 3

Joe

I just need to add a fl y()
method in the Duck class and
then all the ducks will inherit it.
Now’s my time to really show my

true OO genius.

All subc
lasses

inherit
 fly()

.
What Joe added.

The executives decided that fl ying ducks is just what the
simulator needs to blow away the other duck sim competitors.
And of course Joe’s manager told them it’ll be no problem
for Joe to just whip something up in a week. “After all”, said
Joe’s boss, “he’s an OO programmer... how hard can it be?”

But now we need the ducks to FLY

Other Duck types...

Duck

quack()

swim()

display()

fly()
// OTHER duck-like methods...

display() {

// looks like a mallard }

MallardDuck

display() {

// looks like a redhead }

RedheadDuck

What we want.

4 Chapter 1

What he thought
was a great use
of inheritance
for the purpose
of reuse hasn’t
turned out so well
when it comes to
maintenance.

OK, so there’s a slight
fl aw in my design. I
don’t see why they can’t
just call it a “feature”.

It’s kind of cute...

Joe, I’m at the
shareholder’s meeting.

They just gave a demo and there
were rubber duckies fl ying around
the screen. Was this your idea of
a joke? You might want to spend
some time on Monster.com...

Joe failed to notice that not all
subclasses of Duck should fl y. When
Joe added new behavior to the
Duck superclass, he was also adding
behavior that was not appropriate
for some Duck subclasses. He now
has fl ying inanimate objects in the
SimUDuck program.

A localized update to the code caused a non-
local side effect (fl ying rubber ducks)!

What happened?

quack()

swim()

display()

fly()
// OTHER duck-like methods...

display() {

// looks like a mallard

}

MallardDuck

display() {

// looks like a redhead

}

RedheadDuck

quack() {

 // overridden to Squeak

}

display() {

// looks like a rubberduck

}

RubberDuck

Duck

Rubber ducks don
’t quack,

so quack() is ove
rrridden

to “Squeak”.

By putt
ing fly

() in t
he

superc
lass, h

e gave
 flying

ability
 to A

LL ducks
,

includ
ing th

ose th
at

should
n’t.

But something went horribly wrong...

something went wrong

intro to Design Patterns

you are here 4 5

Joe thinks about inheritance...

I could always just
override the fl y() method in
rubber duck, the way I am with

the quack() method...

quack() { // squeak}

display() { .// rubber duck }

fly() {
 // override to do nothing
}

RubberDuck

Sharpen your pencil

❏ A. Code is duplicated across subclasses.

❏ B. Runtime behavior changes are diffi cult.

❏ C. We can’t make ducks dance.

❏ D. Hard to gain knowledge of all duck behaviors.

❏ E. Ducks can’t fl y and quack at the same time.

❏ F. Changes can unintentionally affect other ducks.

Which of the following are disadvantages of using inheritance to
provide Duck behavior? (Choose all that apply.)

quack() {
 // override to do nothing
}

display() { // decoy duck}

fly() {
 // override to do nothing
}

DecoyDuck

Here’s anothe
r class in th

e

hierarchy; no
tice that lik

e

RubberDuck, it doesn
’t fly,

but it also d
oesn’t quack

.

But then what happens when
we add wooden decoy ducks

to the program? They aren’t
supposed to fl y or quack...

6 Chapter 1

I could take the fl y() out of the
Duck superclass, and make a
Flyable() interface with a fl y()

method. That way, only the ducks that
are supposed to fl y will implement that
interface and have a fl y() method... and
I might as well make a Quackable, too,
since not all ducks can quack.

display()

fly()

quack()

MallardDuck

display()

fly()

quack()

RedheadDuck

display()

quack()

RubberDuck

swim()

display()

// OTHER duck-like methods...

Duck

display()

DecoyDuck

fly()

Flyable
quack()

Quackable

How about an interface?

Joe realized that inheritance probably wasn’t the
answer, because he just got a memo that says that
the executives now want to update the product every
six months (in ways they haven’t yet decided on). Joe
knows the spec will keep changing and he’ll be forced
to look at and possibly override fl y() and quack() for
every new Duck subclass that’s ever added to the
program... forever.

So, he needs a cleaner way to have only some (but not
all) of the duck types fl y or quack.

What do YOU think about this design?

inheritance is not the answer

intro to Design Patterns

you are here 4 7

That is, like, the dumbest idea
you’ve come up with. Can you say,

“duplicate code”? If you thought
having to override a few methods was bad,
how are you gonna feel when you need
to make a little change to the flying
behavior... in all 48 of the flying

Duck subclasses?!

What would you do if you were Joe?
We know that not all of the subclasses should have flying or quacking
behavior, so inheritance isn’t the right answer. But while having
the subclasses implement Flyable and/or Quackable solves part of
the problem (no inappropriately flying rubber ducks), it completely
destroys code reuse for those behaviors, so it just creates a different
maintenance nightmare. And of course there might be more than
one kind of flying behavior even among the ducks that do fly...

At this point you might be waiting for a Design Pattern to come
riding in on a white horse and save the day. But what fun would that
be? No, we’re going to figure out a solution the old-fashioned way—
by applying good OO software design principles.

Wouldn’t it be dreamy if
only there were a way to build

software so that when we need to
change it, we could do so with the least
possible impact on the existing code?

We could spend less time reworking
code and more making the program

do cooler things...

8 Chapter 1

Okay, what’s the one thing you can always count on in software development?

No matter where you work, what you’re building, or what language you are programming in, what’s
the one true constant that will be with you always?

The one constant in software development

CHANGE
(use a mirror to see the answer)

No matter how well you design an application, over time an
application must grow and change or it will die.

Sharpen your pencil
Lots of things can drive change. List some reasons
you’ve had to change code in your applications (we put
in a couple of our own to get you started).

My customers or users decide they want something else, or they want new functionality.

My company decided it is going with another database vendor and it is also purchasing
its data from another supplier that uses a different data format. Argh!

change is constant

intro to Design Patterns

you are here 4 9

So we know using inheritance hasn’t worked out very well, since
the duck behavior keeps changing across the subclasses, and it’s
not appropriate for all subclasses to have those behaviors. The
Flyable and Quackable interface sounded promising at first—only
ducks that really do fly will be Flyable, etc.—except Java interfaces
have no implementation code, so no code reuse. And that means
that whenever you need to modify a behavior, you’re forced to
track down and change it in all the different subclasses where that
behavior is defined, probably introducing new bugs along the way!

Luckily, there’s a design principle for just this situation.

Zeroing in on the problem...

In other words, if you’ve got some aspect of your code that is
changing, say with every new requirement, then you know you’ve
got a behavior that needs to be pulled out and separated from all
the stuff that doesn’t change.

Here’s another way to think about this principle: take the parts
that vary and encapsulate them, so that later you can
alter or extend the parts that vary without affecting
those that don’t.

As simple as this concept is, it forms the basis for almost every
design pattern. All patterns provide a way to let some part of a system
vary independently of all other parts.

Okay, time to pull the duck behavior out of the Duck classes!

Take what varies and
“encapsulate” it so it won’t
affect the rest of your code.

The result? Fewer
unintended consequences
from code changes and more
f lexibility in your systems!

Design Principle

Identify the aspects of your
application that vary and separate

them from what stays the same.

Our first of many design
principles. We’ll spend more time
on these thruoghout the book.

10 Chapter 1

Separating what changes from what stays the same

Duck class

The Duck class is still the superc
lass

of all ducks, but we are pulling out

the fly and quack behavior
s and

putting them into another class

structure.

Various behavior
implementations are going

to live here.Now flying and quacking each get

their own set of classes.

Duck Behaviors

Quacking Behaviors

Flying Behaviors

Pull out what varies

Where do we start? As far as we can tell, other than the problems with fly() and quack(), the Duck
class is working well and there are no other parts of it that appear to vary or change frequently.
So, other than a few slight changes, we’re going to pretty much leave the Duck class alone.

Now, to separate the “parts that change from those that stay the same”, we are going to create two
sets of classes (totally apart from Duck), one for fly and one for quack. Each set of classes will hold
all the implementations of their respective behavior. For instance, we might have one class that
implements quacking, another that implements squeaking, and another that implements silence.

We know that fly() and quack() are the parts of the
Duck class that vary across ducks.

To separate these behaviors from the Duck class, we’ll
pull both methods out of the Duck class and create a
new set of classes to represent each behavior.

pull out what varies

intro to Design Patterns

you are here 4 11

So how are we going to design the set of classes that
implement the fl y and quack behaviors?

We’d like to keep things fl exible; after all, it was the infl exibility in
the duck behaviors that got us into trouble in the fi rst place. And we
know that we want to assign behaviors to the instances of Duck. For
example, we might want to instantiate a new MallardDuck instance
and initialize it with a specifi c type of fl ying behavior. And while
we’re there, why not make sure that we can change the behavior of
a duck dynamically? In other words, we should include behavior
setter methods in the Duck classes so that we can, say, change the
MallardDuck’s fl ying behavior at runtime.

Given these goals, let’s look at our second design principle:

Designing the Duck Behaviors

Design Principle

 Program to an interface, not an
implementation.

We’ll use an interface to represent each behavior – for instance,
FlyBehavior and QuackBehavior – and each implementation of a
behavior will implement one of those interfaces.

So this time it won’t be the Duck classes that will implement the
fl ying and quacking interfaces. Instead, we’ll make a set of classes
whose entire reason for living is to represent a behavior (for example,
“squeaking”), and it’s the behavior class, rather than the Duck class,
that will implement the behavior interface.

This is in contrast to the way we were doing things before, where
a behavior either came from a concrete implementation in the
superclass Duck, or by providing a specialized implementation in the
subclass itself. In both cases we were relying on an implementation. We
were locked into using that specifi c implementation and there was no
room for changing out the behavior (other than writing more code).

With our new design, the Duck subclasses will use a behavior
represented by an interface (FlyBehavior and QuackBehavior), so that
the actual implementation of the behavior (in other words, the specifi c
concrete behavior coded in the class that implements the FlyBehavior
or QuackBehavior) won’t be locked into the Duck subclass.

From now on, the Duck
behaviors will live in a
separate class—a class that
implements a particular
behavior interface.

That way, the Duck classes
won’t need to know any of
the implementation details
for their own behaviors.

<<interface>>
FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

12 Chapter 1

The word interface is overloaded here. There’s the concept of
interface, but there’s also the Java construct interface. You
can program to an interface, without having to actually use a
Java interface. The point is to exploit polymorphism by
programming to a supertype so that the actual runtime object
isn’t locked into the code. And we could rephrase “program to
a supertype” as “the declared type of the variables should be a
supertype, usually an abstract class or interface, so that the objects
assigned to those variables can be of any concrete implementation
of the supertype, which means the class declaring them doesn’t
have to know about the actual object types!”

This is probably old news to you, but just to make sure we’re
all saying the same thing, here’s a simple example of using a
polymorphic type – imagine an abstract class Animal, with two
concrete implementations, Dog and Cat.
 Programming to an implementation would be:

Dog d = new Dog();
d.bark();

But programming to an interface/supertype would be:

Animal animal = new Dog();
animal.makeSound();

Even better, rather than hard-coding the instantiation of the
subtype (like new Dog()) into the code, assign the concrete
implementation object at runtime:

a = getAnimal();
a.makeSound();

I don’t see why you have to
use an interface for FlyBehavior.
You can do the same thing with an

abstract superclass. Isn’t the
whole point to use polymorphism?

“Program to an interface” really means
“Program to a supertype.”

makeSound()

Animal

makeSound() {
 bark();
}
bark() { // bark sound }

Dog
implementation object at runtime:

a = getAnimal();
a.makeSound();

makeSound() {
 meow();
}
meow() { // meow sound }

Cat

abstract supertype (could
be an abstract class OR interface)

concrete
implementations

Declaring the variable “d” as type Dog (a concrete implementation of Animal) forces us to code to a concrete implementation.

We know it’s a Dog, but we can now use the animal reference polymorphically.

We don’t know WHAT the actual animal subtype is... all we care about is that it knows how to respond to makeSound().

program to an interface

intro to Design Patterns

you are here 4 13

FlyBehavior i
s an inte

rface th
at

all flying
 classes i

mplement. All

new flying c
lasses jus

t need t
o

implement the
fly method.

Here’s the implementation
of flying for all ducks
that have wings.

And here’s the implementation for
all ducks that can’t fly.

Quacks that really quack. Quacks that squeak.
Quacks that make
no sound at all.

Same thing here for the
 quack

behavior; we have an interface

that just includes a q
uack()

method that needs to
 be

implemented.

implement the
fly method.

<<interface>>
FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>
QuackBehavior

quack()

quack() {

 // implements duck quacking

}

Quack

quack() {

 // rubber duckie squeak

}

Squeak

quack() {

 // do nothing - can’t quack!

}

MuteQuack

Implementing the Duck Behaviors

Here we have the two interfaces, FlyBehavior and QuackBehavior along with
the corresponding classes that implement each concrete behavior:

So we get the
 benefit o

f

REUSE without all
the

baggage t
hat comes along

with inherit
ance.

With this design, other types of objects can
 reuse our fl y and quack behaviors because
these behaviors are no longer hidden away
in our Duck classes!

And we can add new behaviors without
modifying any of our existing behavior
classes or touching any of the Duck classes
that use fl ying behaviors.

14 Chapter 1

there are noDumb Questions
Q: Do I always have to implement my application first, see
where things are changing, and then go back and separate &
encapsulate those things?

A: Not always; often when you are designing an application,
you anticipate those areas that are going to vary and then go ahead
and build the flexibility to deal with it into your code. You’ll find
that the principles and patterns can be applied at any stage of the
development lifecycle.

Q: Should we make Duck an interface too?

A: Not in this case. As you’ll see once we’ve got everything
hooked together, we do benefit by having Duck not be an interface
and having specific ducks, like MallardDuck, inherit common
properties and methods. Now that we’ve removed what varies from
the Duck inheritance, we get the benefits of this structure without
the problems.

Q: It feels a little weird to have a class that’s just a
behavior. Aren’t classes supposed to represent things? Aren’t
classes supposed to have both state AND behavior?

A: In an OO system, yes, classes represent things that
generally have both state (instance variables) and methods. And in
this case, the thing happens to be a behavior. But even a behavior
can still have state and methods; a flying behavior might have
instance variables representing the attributes for the flying (wing
beats per minute, max altitude and speed, etc.) behavior.

Answers:

1) Create a FlyRocketPowered class
that implements the FlyBehavior
interface.

2) One example, a duck call (a
device that makes duck sounds).

Using our new design, what would you do if you needed to
add rocket-powered flying to the SimUDuck app?

Sharpen your pencil

1

Can you think of a class that might want to use the Quack
behavior that isn’t a duck?

2

behavior in a class

intro to Design Patterns

you are here 4 15

public class Duck {
 QuackBehavior quackBehavior;
 // more

 public void performQuack() {
 quackBehavior.quack();
 }
}

Integrating the Duck Behavior

First we’ll add two instance variables to the Duck class called fl yBehavior and
quackBehavior, that are declared as the interface type (not a concrete class implementation
type). Each duck object will set these variables polymorphically to reference the specifi c
behavior type it would like at runtime (FlyWithWings, Squeak, etc.).

We’ll also remove the fl y() and quack() methods from the Duck class (and any subclasses)
because we’ve moved this behavior out into the FlyBehavior and QuackBehavior classes.

We’ll replace fl y() and quack() in the Duck class with two similar methods, called
performFly() and performQuack(); you’ll see how they work next.

The key is that a Duck will now delegate its fl ying
and quacking behavior, instead of using quacking and
fl ying methods defi ned in the Duck class (or subclass).

Here’s how:

1

2

These methods replace
fly () and quack().

Instance variables hold a reference to
a specific behavior at runtime.

Now we implement performQuack():

a specific behavior at runtime.

performQuack()
swim()
display()
performFly()
// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior
QuackBehavior quackBehavior

Duck Behaviors

Quacking Behaviors

Flying Behaviors

Rather than handlin
g the quack behav

ior

itself, the Duck object delegat
es that

behavior to the ob
ject referenced b

y

quackBehavior.

Pretty simple, huh? To perform the quack, a Duck just allows the object that
is referenced by quackBehavior to quack for it.
In this part of the code we don’t care what kind of object it is, all we care
about is that it knows how to quack()!

Each Duck has a referenc
e to something that

implements the QuackBehavior interface.

The behavior variables are
declared as the behavior
INTERFACE type.

16 Chapter 1

More Integration...

3 Okay, time to worry about how the flyBehavior and
quackBehavior instance variables are set. Let’s take a look at
the MallardDuck class:

public class MallardDuck extends Duck {

 public MallardDuck() {
 quackBehavior = new Quack();
 flyBehavior = new FlyWithWings();
 }

 public void display() {
 System.out.println(“I’m a real Mallard duck”);
 }
}

So MallardDuck’s quack is a real live duck quack, not a squeak and
not a mute quack. So what happens here? When a MallardDuck
is instantiated, its constructor initializes the MallardDuck’s inherited
quackBehavior instance variable to a new instance of type Quack (a
QuackBehavior concrete implementation class).

And the same is true for the duck’s flying behavior—the MallardDuck’s
constructor initializes the flyBehavior instance variable with an instance
of type FlyWithWings (a FlyBehavior concrete implementation class).

A MallardDuck uses the Quack class to

handle its quack, s
o when performQuack

is called, the respo
nsibility for the

quack is delegated
 to the Quack object

and we get a real quack
.

And it uses FlyWithWings as its

FlyBehavior type.
Remember, MallardDuck inherits the quack-
Behavior and flyBehavior instance variables
from class Duck.

integrating duck behavior

intro to Design Patterns

you are here 4 17

Wait a second, didn’t you
say we should NOT program to an

implementation? But what are we doing
in that constructor? We’re making a

new instance of a concrete Quack
implementation class!

Good catch, that’s exactly what we’re doing...
for now.

Later in the book we’ll have more patterns in
our toolbox that can help us fix it.

Still, notice that while we are setting the
behaviors to concrete classes (by instantiating
a behavior class like Quack or FlyWithWings
and assigning it to our behavior reference
variable), we could easily change that at
runtime.

So, we still have a lot of flexibility here,
but we’re doing a poor job of initializing
the instance variables in a flexible way. But
think about it, since the quackBehavior
instance variable is an interface type, we
could (through the magic of polymorphism)
dynamically assign a different QuackBehavior
implementation class at runtime.

Take a moment and think about how you
would implement a duck so that its behavior
could change at runtime. (You’ll see the code
that does this a few pages from now.)

18 Chapter 1

Testing the Duck code

Type and compile the Duck class below (Duck.java), and the
MallardDuck class from two pages back (MallardDuck.java).

1

public abstract class Duck {

 FlyBehavior flyBehavior;
 QuackBehavior quackBehavior;

 public Duck() {
 }

 public abstract void display();

 public void performFly() {
 flyBehavior.fly();
 }

 public void performQuack() {
 quackBehavior.quack();
 }

 public void swim() {
 System.out.println(“All ducks float, even decoys!”);
 }
}

Declare two reference variables

for the behavior interface
types.

All duck subclasses (in the sam
e

package) inherit these.

Delegate to the behavior class.

Type and compile the FlyBehavior interface (FlyBehavior.java) and
the two behavior implementation classes (FlyWithWings.java and
FlyNoWay.java).

2

public interface FlyBehavior {
 public void fly();
}

public class FlyWithWings implements FlyBehavior {
 public void fly() {
 System.out.println(“I’m flying!!”);
 }
}

public class FlyNoWay implements FlyBehavior {
 public void fly() {
 System.out.println(“I can’t fly”);
 }
}

The interface that all flying
behavior classes implement.

Flying behavior implementation

for ducks that DO fly...

Flying behavior implementation for ducks that do NOT fly (like rubber ducks and decoy ducks).

testing duck behaviors

intro to Design Patterns

you are here 4 19

File Edit Window Help Yadayadayada

%java MiniDuckSimulator

Quack

I’m flying!!

public class MiniDuckSimulator {

 public static void main(String[] args) {

 Duck mallard = new MallardDuck();

 mallard.performQuack();

 mallard.performFly();
 }
}

5 Run the code!

This calls the MallardDuck’s inherited

performQuack() method, which then delegates to

the object’s QuackBehavior (i.e. calls quack() on
 the

duck’s inherited quackBehavior reference).

Then we do the same thing with MallardDuck’s

inherited performFly() method.

Type and compile the test class4

(MiniDuckSimulator.java).

Testing the Duck code continued...

Type and compile the QuackBehavior interface
(QuackBehavior.java) and the three behavior implementation
classes (Quack.java, MuteQuack.java, and Sqeak.java).

3

public interface QuackBehavior {
 public void quack();
}

public class Quack implements QuackBehavior {
 public void quack() {
 System.out.println(“Quack”);
 }
}

public class MuteQuack implements QuackBehavior {
 public void quack() {
 System.out.println(“<< Silence >>”);
 }
}

public class Squeak implements QuackBehavior {
 public void quack() {
 System.out.println(“Squeak”);
 }
}

20 Chapter 1

Setting behavior dynamically

What a shame to have all this dynamic talent built into our ducks and not be using
it! Imagine you want to set the duck’s behavior type through a setter method on the
duck subclass, rather than by instantiating it in the duck’s constructor.

1 Add two new methods to the Duck class:

We can call these methods anytime we want to change the
behavior of a duck on the fl y.

swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior;

QuackBehavior quackBehavior;

public void setFlyBehavior(FlyBehavior fb) {
 fl yBehavior = fb;
}

public void setQuackBehavior(QuackBehavior qb) {
 quackBehavior = qb;
}

editor note: gratuitous pun - fi x

public class ModelDuck extends Duck {
 public ModelDuck() {
 fl yBehavior = new FlyNoWay();
 quackBehavior = new Quack();
 }

 public void display() {
 System.out.println(“I’m a model duck”);
 }
}

public class FlyRocketPowered implements FlyBehavior {
 public void fl y() {
 System.out.println(“I’m fl ying with a rocket!”);
 }
}

2

Our model duck begins
life grounded...

without a way to fly.

That’s okay, we’re creating a
rocket powered flying behavior.

Make a new Duck type (ModelDuck.java).

3 Make a new FlyBehavior type
(FlyRocketPowered.java).

ducks with dynamic behavior

intro to Design Patterns

you are here 4 21

public class MiniDuckSimulator {

 public static void main(String[] args) {

 Duck mallard = new MallardDuck();

 mallard.performQuack();

 mallard.performFly();

 Duck model = new ModelDuck();

 model.performFly();

 model.setFlyBehavior(new FlyRocketPowered());

 model.performFly();

 }

}

The first call to pe
rformFly() delegates

to the flyBehavior object set
in the

ModelDuck’s constructor,
which is a

FlyNoWay instance.

File Edit Window Help Yabadabadoo

%java MiniDuckSimulator

Quack

I’m flying!!

I can’t fly

I’m flying with a rocket

4

Run it!5

Change the test class (MiniDuckSimulator.java), add the
ModelDuck, and make the ModelDuck rocket-enabled.

This invokes the model’s inherited behavior setter method, and...voila! The model suddenly has rocket-powered flying capability!If it worked, the model duck dynamically changed its flying behavior! You can’t do THAT if the implementation lives inside the duck class.

To change a duck’s
behavior at runtime, just
call the duck’s setter
method for that behavior.

before

after

22 Chapter 1

Below is the entire reworked class structure. We have everything you’d expect:
ducks extending Duck, fl y behaviors implementing FlyBehavior and quack
behaviors implementing QuackBehavior.

Notice also that we’ve started to describe things a little differently. Instead
of thinking of the duck behaviors as a set of behaviors, we’ll start thinking of
them as a family of algorithms. Think about it: in the SimUDuck design, the
algorithms represent things a duck would do (different ways of quacking or
fl ying), but we could just as easily use the same techniques for a set of classes
that implement the ways to compute state sales tax by different states.

Pay careful attention to the relationships between the classes. In fact, grab
your pen and write the appropriate relationship (IS-A, HAS-A and
IMPLEMENTS) on each arrow in the class diagram.

The Big Picture on encapsulated behaviors

Okay, now that we’ve done the deep dive on the
duck simulator design, it’s time to come back up
for air and take a look at the big picture.

swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior

QuackBehavior quackBehavior

<<interface>>
FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>
QuackBehavior

quack()

quack) {

 // implements duck quacking

}

Quack

quack() {

 // rubber duckie squeak

}

Squeak

quack() {

 // do nothing - can’t quack!

}

MuteQuack
display() {

// looks like a decoy duck }

DecoyDuck

display() {

// looks like a mallard }

MallardDuck

display() {

// looks like a redhead }

RedheadDuck

display() {

// looks like a rubberduck }

RubberDuck

Encapsulated fl y behavior

Encapsulated quack behavior

Think of
each

set of b
ehaviors

as a fam
ily of

algorithm
s.

Client

These b
ehavio

rs

“algor
ithms” are

interc
hange

able.

Client makes use of an
encapsulated family of algorithms
for both flying and quacking.

the big picture

intro to Design Patterns

you are here 4 23

The HAS-A relationship is an interesting one: each duck
has a FlyBehavior and a QuackBehavior to which it
delegates flying and quacking.

When you put two classes together like this you’re using
composition. Instead of inheriting their behavior, the
ducks get their behavior by being composed with the right
behavior object.

This is an important technique; in fact, we’ve been using
our third design principle:

Design Principle

Favor composition over inheritance.

A duck call is a device that hunters use to mimic the
calls (quacks) of ducks. How would you implement your
own duck call that does not inherit from the Duck class?

brain
powerA

As you’ve seen, creating systems using composition gives you
a lot more flexibility. Not only does it let you encapsulate
a family of algorithms into their own set of classes, but it
also lets you change behavior at runtime as long as
the object you’re composing with implements the correct
behavior interface.

Composition is used in many design patterns and you’ll
see a lot more about its advantages and disadvantages
throughout the book.

Master and Student...

Master: Grasshopper,
tell me what you have
learned of the Object-

Oriented ways.

Student: Master, I have learned that
the promise of the object-oriented way
is reuse.

Master: Grasshopper, continue...

Student: Master, through inheritance
all good things may be reused and
so we will come to drastically cut
development time like we swiftly cut
bamboo in the woods.

Master: Grasshopper, is more
time spent on code before or after
development is complete?

Student: The answer is after,
Master. We always spend more time
maintaining and changing software
than initial development.

Master: So Grasshopper, should effort
go into reuse above maintaintability
and extensibility?

Student: Master, I believe that there is
truth in this.

Master: I can see that you still have
much to learn. I would like for you to
go and meditate on inheritance further.
As you’ve seen, inheritance has its
problems, and there are other ways of
achieving reuse.

HAS-A can be better than IS-A

24 Chapter 1

Congratulations on
your first pattern!

You just applied your first design pattern—the
STRATEGY pattern. That’s right, you used the
Strategy Pattern to rework the SimUDuck app.
Thanks to this pattern, the simulator is ready for any
changes those execs might cook up on their next
business trip to Vegas.

Now that we’ve made you take the long road to apply it,
here’s the formal definition of this pattern:

The Strategy Pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable.
Strategy lets the algorithm vary independently from
clients that use it.

Speaking of Design Patterns...

Use THIS def
inition w

hen you

need to
 impress fr

iends an
d

influenc
e key ex

ecutives
.

the strategy pattern

intro to Design Patterns

you are here 4 25

Below you’ll fi nd a mess of classes and interfaces for an action adventure game. You’ll
fi nd classes for game characters along with classes for weapon behaviors the characters
can use in the game. Each character can make use of one weapon at a time, but can
change weapons at any time during the game. Your job is to sort it all out...

(Answers are at the end of the chapter.)

Character
WeaponBehavior weapon;

setWeapon(WeaponBehavior w) {
 this.weapon = w;
}

fight(); KnifeBehavior
useWeapon() { // implements cutting
with a knife }

Queen
fight() { ... }fight() { ... }

King
fight() { ... } Troll

fight() { ... }

BowAndArrowBehavior
useWeapon() { // implements shoot-
ing an arrow with a bow }

Knight
fight() { ... }

useWeapon() { // implements cutting
with a knife }

useWeapon() { // implements shoot-
ing an arrow with a bow }ing an arrow with a bow }<<interface>>

WeaponBehavior

useWeapon();useWeapon();

AxeBehavior
useWeapon() { // implements chop-
ping with an axe }

SwordBehavior
useWeapon() { // implements swing-
ing a sword }

1. Arrange the classes.

2. Identify one abstract class, one interface and eight classes.

3. Draw arrows between classes.

 a. Draw this kind of arrow for inheritance (“extends”).

 b. Draw this kind of arrow for interface (“implements”).

 c. Draw this kind of arrow for “HAS-A”.

4. Put the method setWeapon() into the right class.

1

2

3

4

Your task:

 Design Puzzle

26 Chapter 1

Overheard at the local diner...

I need a Cream cheese
with jelly on white bread, a

chocolate soda with vanilla ice cream, a
grilled cheese sandwich with bacon, a tuna
fish salad on toast, a banana split with
ice cream & sliced bananas and a coffee

with a cream and two sugars, ... oh,
and put a hamburger on the grill!

Give me a C.J.
White, a black & white, a

Jack Benny, a radio, a house
boat, a coffee regular and

burn one!

What’s the difference between these two orders? Not a thing! They’re both
the same order, except Alice is using twice the number of words and trying the
patience of a grumpy short order cook.

What’s Flo got that Alice doesn’t? A shared vocabulary with the short order
cook. Not only is it easier to communicate with the cook, but it gives the cook less
to remember because he’s got all the diner patterns in his head.

Design Patterns give you a shared vocabulary with other developers. Once you’ve
got the vocabulary you can more easily communicate with other developers and
inspire those who don’t know patterns to start learning them. It also elevates your
thinking about architectures by letting you think at the pattern level, not the
nitty gritty object level.

Flo

Alice

diner talk

intro to Design Patterns

you are here 4 27

Overheard in the next cubicle...

Rick

Rick, why
didn’t you just say
you were using the
Observer Pattern?

Exactly. If you
communicate in patterns,

then other developers know
immediately and precisely the

design you’re describing. Just don’t
get Pattern Fever... you’ll know

you have it when you start using
patterns for Hello
World...

So I created this broadcast
class. It keeps track of all
the objects listening to it and anytime

a new piece of data comes along it sends a
message to each listener. What’s cool is that
the listeners can join the broadcast at any

time or they can even remove themselves.
It is really dynamic and loosely-coupled! brain

powerA
Can you think of other shared vocabularies
that are used beyond OO design and diner
talk? (Hint: how about auto mechanics,
carpenters, gourmet chefs, air traffic control)
What qualities are communicated along with
the lingo?

Can you think of aspects of OO design
that get communicated along with pattern
names? What qualities get communicated
along with the name “Strategy Pattern”?

28 Chapter 1

Shared pattern vocabularies are POWERFUL.
When you communicate with another developer or your
team using patterns, you are communicating not just a
pattern name but a whole set of qualities, characteristics
and constraints that the pattern represents.

Patterns allow you to say more with less. When
you use a pattern in a description, other developers quickly
know precisely the design you have in mind.

Talking at the pattern level allows you to stay “in
the design” longer. Talking about software systems using
patterns allows you to keep the discussion at the design
level, without having to dive down to the nitty gritty details
of implementing objects and classes.

Shared vocabularies can turbo charge your
development team. A team well versed in design
patterns can move more quickly with less room for
misunderstanding.

Shared vocabularies encourage more junior
developers to get up to speed. Junior developers look
up to experienced developers. When senior developers
make use of design patterns, junior developers also become
motivated to learn them. Build a community of pattern
users at your organization.

The power of a shared pattern vocabulary

When you communicate using patterns you
are doing more than just sharing LINGO.

“We’re using th
e strategy p

attern to im
ple-

ment the var
ious behavior

s of our duc
ks.”

This tells you
 the duck b

ehavior has
been

encapsulated
 into its ow

n set of cla
sses

that can be
 easily expan

ded and cha
nged,

even at runt
ime if needed.

How many des
ign meetings

have yo
u

been in
that qu

ickly de
grade in

to

implementatio
n detail

s?

Think about starting a patterns study
group at your organization, maybe you
can even get paid while you’re learn-
ing... ;)

As your team begins to share design

ideas and experience in te
rms of

patterns, you will build a community

of patterns users.

shared vocabulary

intro to Design Patterns

you are here 4 29

We’ve all used off-the-shelf libraries and frameworks. We take them, write some code against their APIs,
compile them into our programs, and benefi t from a lot of code someone else has written. Think about
the Java APIs and all the functionality they give you: network, GUI, IO, etc. Libraries and frameworks go
a long way towards a development model where we can just pick and choose components and plug them
right in. But... they don’t help us structure our own applications in ways that are easier to understand, more
maintainable and fl exible. That’s where Design Patterns come in.

Design patterns don’t go directly into your code, they fi rst go into your BRAIN. Once you’ve loaded your
brain with a good working knowledge of patterns, you can then start to apply them to your new designs,
and rework your old code when you fi nd it’s degrading into an infl exible mess of jungle spaghetti code.

How do I use Design Patterns?

there are noDumb Questions
Q: If design patterns are so great,
why can’t someone build a library of
them so I don’t have to?

A: Design patterns are higher level
than libraries. Design patterns tell us
how to structure classes and objects to
solve certain problems and it is our job to
adapt those designs to fit our particular
application.

Q: Aren’t libraries and frameworks
also design patterns?

A: Frameworks and libraries are not
design patterns; they provide specific
implementations that we link into our
code. Sometimes, however, libraries and
 frameworks make use of design patterns
in their implementations. That’s great,
because once you understand design
patterns, you’ll more quickly

understand APIs that are structured
around design patterns.

Q: So, there are no libraries of
design patterns?

A: No, but you will learn later about
pattern catalogs with lists of patterns that
you can apply to your applications.

Your BRAIN

Your Code, now new

and improved with

design patterns!

A
Bu

nc
h o

f
Pa

tt
er

ns swim()

display()

performQuack()

performFly()

setFlyBehavior()

setQuackBehavior()

// OTHER duck-like methods...

Duck

FlyBehavior flyBehavior;

QuackBehavior quackBehavior;

<<interface>>

FlyBehavior

fly()

fly() {

 // implements duck flying

}

FlyWithWings

fly() {

 // implements duck flying

}

FlyWithWings

 // implements duck flying

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

fly() {

 // do nothing - can’t fly!

}

FlyNoWay

<<interface>>

QuackBehavior

quack()

quack) {

 // implements duck quacking

}

Quack

quack) {

 // implements duck quacking

Quack

 // implements duck quacking

quack() {

 // rubber duckie squeak

}

Squeak

quack() {

 // rubber duckie squeak

}

Squeak
quack() {

 // do nothing - can’t quack!

}

MuteQuack

quack() {

 // do nothing - can’t quack!

}

MuteQuack

quack) {

 // implements duck quacking

}
display() {

// looks like a decoy duck }

Decoy Duck

// looks like a decoy duck }

Decoy Duck

display() {

// looks like a mallard }

Mallard Duck

// looks like a mallard }

display() {

// looks like a redhead }

Redhead Duck
display() {

// looks like a decoy duck }

Decoy Duck

// looks like a redhead }

display() {

// looks like a rubberduck }

Rubber Duck
display() {

// looks like a decoy duck }

display() {

// looks like a rubberduck }

Rubber Duck

Encapsulated fl y behavior

Encapsulated quack behavior
Client

View

Controller

Model

Request

MVC

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

Automatic update/notification

Object that
holds state

De
pe

nd
en

t
Ob

jec
ts

OBSERVER

30 Chapter 1

Patterns are
nothing more than using

OO design principles...

Skeptical Developer
Friendly

Patterns Guru

Developer: Okay, hmm, but isn’t this all just good object-oriented design; I mean
as long as I follow encapsulation and I know about abstraction, inheritance, and
polymorphism, do I really need to think about Design Patterns? Isn’t it pretty
straightforward? Isn’t this why I took all those OO courses? I think Design
Patterns are useful for people who don’t know good OO design.

Guru: Ah, this is one of the true misunderstandings of object-oriented
development: that by knowing the OO basics we are automatically going to be good at
building flexible, reusable, and maintainable systems.

Developer: No?

Guru: No. As it turns out, constructing OO systems that have these properties is
not always obvious and has been discovered only through hard work.

Developer: I think I’m starting to get it. These, sometimes non-obvious, ways of
constructing object-oriented systems have been collected...

Guru: ...yes, into a set of patterns called Design Patterns.

Developer: So, by knowing patterns, I can skip the hard work and jump straight to
designs that always work?

Guru: Yes, to an extent, but remember, design is an art. There will always be
tradeoffs. But, if you follow well thought-out and time-tested design patterns, you’ll
be way ahead.

Developer: What do I do if I can’t find a pattern?

A common misconception,
Grasshopper, but it’s more
subtle than that. You have

much to learn...

why design patterns?

intro to Design Patterns

you are here 4 31

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you a good object oriented
designer. A design guru thinks about
how to create flexible designs that

are maintainable and that can
cope with change.

Guru: There are some object oriented-principles that
underlie the patterns, and knowing these will help you
to cope when you can’t find a pattern that matches your
problem.

Developer: Principles? You mean beyond abstraction,
encapsulation, and...

Guru: Yes, one of the secrets to creating maintainable
OO systems is thinking about how they might change in the
future and these principles address those issues.

32 Chapter 1

Tools for your Design Toolbox

 BULLET POINTS

ß Knowing the OO basics
does not make you a good
OO designer.

ß Good OO designs are
reusable, extensible and
maintainable.

ß Patterns show you how to
build systems with good
OO design qualities.

ß Patterns are proven object-
oriented experience.

ß Patterns don’t give you
code, they give you
general solutions to design
problems. You apply them
to your specific application.

ß Patterns aren’t invented,
they are discovered.

ß Most patterns and
principles address issues of
change in software.

ß Most patterns allow some
part of a system to vary
independently of all other
parts.

ß We often try to take what
varies in a system and
encapsulate it.

ß Patterns provide a
shared language that can
maximize the value of your
communication with other
developers.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Inheritance

Encapsulate what varies.

Favor composition over

inheritence.

Program to interfaces
, not

implementations.

OO Principles

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns

We assume you know
 the OO basics

of using cl
asses polym

orphically,

how inheritanc
e is like de

sign by

contract,
and how encapsulat

ion

works. If yo
u are a litt

le rusty

on these, p
ull out you

r Head First

Java and re
view, then skim

 this

chapter ag
ain.

We’ll be taking a c
loser look at

these down the road and
also

adding a few more to the list

One down, many to go !

Throughout the
book think about
how patterns rely
on OO basics and
principles.

You’ve nearly made it through the fi rst
chapter! You’ve already put a few tools
in your OO toolbox; let’s make a list of
them before we move on to Chapter 2.

your design toolbox

intro to Design Patterns

you are here 4 33

Let’s give your right brain something to do.

It’s your standard crossword; all of the solution words
are from this chapter.

�

� �

� �

� � �

�

�� �� ��

��

��

��

�� ��

�� ��

��

Across
2. _______ what varies
4. Design patterns _____
6. Java IO, Networking, Sound
9. Rubberducks make a
13. Bartender thought they were called
15. Program to this, not an implementation
17. Patterns go into your _______
18. Learn from the other guy's
19. Development constant
20. Patterns give us a shared _______

Down
1. Patterns ____ in many applications
3. Favor over inheritance
5. Dan was thrilled with this pattern
7. Most patterns follow from OO _______
8. Not your own
10. High level libraries
11. Joe's favorite drink
12. Pattern that fixed the simulator
13. Duck that can't quack
14. Grilled cheese with bacon
16. Duck demo was located where

�

� �

� �

� � �

�

�� �� ��

��

��

��

�� ��

�� ��

��

Across
2. _______ what varies
4. Design patterns _____
6. Java IO, Networking, Sound
9. Rubberducks make a
13. Bartender thought they were called
15. Program to this, not an implementation
17. Patterns go into your _______
18. Learn from the other guy's
19. Development constant
20. Patterns give us a shared _______

Down
1. Patterns ____ in many applications
3. Favor over inheritance
5. Dan was thrilled with this pattern
7. Most patterns follow from OO _______
8. Not your own
10. High level libraries
11. Joe's favorite drink
12. Pattern that fixed the simulator
13. Duck that can't quack
14. Grilled cheese with bacon
16. Duck demo was located where

34 Chapter 1

<<interface>>
WeaponBehavior

Character is the abstract class for all the other characters (King, Queen,
Knight and Troll) while Weapon is an interface that all weapons
implement. So all actual characters and weapons are concrete classes.

To switch weapons, each character calls the setWeapon() method, which
is defi ned in the Character superclass. During a fi ght the useWeapon()
method is called on the current weapon set for a given character to infl ict
great bodily damage on another character.

Character
WeaponBehavior weapon;

fight();
setWeapon(WeaponBehavior w) {
 this.weapon = w;
}

King
fight() { ... }fight() { ... }

Queen
fight() { ... }

Knight
fight() { ... }fight() { ... }

Troll
fight() { ... }

useWeapon();

BowAndArrowBehavior
useWeapon() { // implements shoot-
ing an arrow with a bow }
useWeapon() { // implements shoot-
ing an arrow with a bow }ing an arrow with a bow }

AxeBehavior
useWeapon() { // implements chop-
ping with an axe }

SwordBehavior
useWeapon() { // implements swing-
ing a sword }

useWeapon() { // implements shoot-
ing an arrow with a bow }

useWeapon() { // implements swing-
ing an arrow with a bow }

KnifeBehavior
useWeapon() { // implements cutting
with a knife }

 Design Puzzle Solution

Note that ANY object coul
d implement

the WeaponBehavior inter
face. Say, a

paperclip, a
tube of too

thpaste or a

mutated sea b
ass.

abstract

A Character HAS-A
WeaponBehavior.

design puzzle solution

intro to Design Patterns

you are here 4 35

�
�

�
�

� �
�

� � � � � � � �

� � �
�

�
�

� �

� � �
�

�
�

� � � �
�

� � � �
�

� � � � �

� � �
��

�
��

�
��

� �

�
��

� � � � � � � � � � � � � � � �

� � � � � � � �

� � � � � � � �
��

�

� � � � �
��

� � � � � � � �

� � � � � � � �

� � � � � � �

� �
��

� � � �
��

� � � �

� � � �

� �
��

� � � � � � � � �
��

� � � � �

� �

�
��

� � � � � � � � �

������

�� ������� ���� ������ �������������
��������������������������������
�� ���� ��� ����������� ����� ������
��������������������������������
���������������������������������������
������������������
���
�����������
��
���
����������������������������������
��������������������������������������
������������

����

��
�� ����� ���� ����������� �������������
���
��
������������
�� ��� ���� ��� ����������
��� ���� ����� ��������� ������������
�����������������������������������
��
��������������������������������������
��
���������������������������������������

Sharpen your pencil

❏ A. Code is duplicated across subclasses.

❏ B. Runtime behavior changes are difficult.

❏ C. We can’t make duck’s dance.

❏ C. Hard to gain knowledge of all duck behaviors.

❏ D. Ducks can’t fly and quack at the same time.

❏ E. Changes can unintentionally affect other ducks.

Which of the following are disadvantages of using subclassing to provide specific
Duck behavior? (Choose all that apply.)

Solutions

Sharpen your pencil What are some factors that drive change in your applications? You might
have a very different list, but here’s a few of ours. Look familiar?

My customers or users decide they want something else, or they want new functionality.
My company decided it is going with another database vendor and it is also purchasing its data
from another supplier that uses a different data format. Argh!
Well, technology changes and we’ve got to update our code to make use of protocols.
We’ve learned enough building our system that we’d like to go back and do things a little better.

this is a new chapter 37

Don’t miss out when something interesting happens! We’ve got a

pattern that keeps your objects in the know when something they might care about happens.

Objects can even decide at runtime whether they want to be kept informed. The Observer

Pattern is one of the most heavily used patterns in the JDK, and it’s incredibly useful. Before

we’re done, we’ll also look at one to many relationships and loose coupling (yeah, that’s right,

we said coupling). With Observer, you’ll be the life of the Patterns Party.

Keeping your
 Objects in the know

2 the Observer Pattern

Hey Jerry, I’m
notifying everyone that the

Patterns Group meeting moved to
Saturday night. We’re going to be
talking about the Observer Pattern.
That pattern is the best! It’s the

BEST, Jerry!

g

h
g

38 Chapter 2Chapter 2

Weather-O-Rama, Inc.

100 Main Street

Tornado Alley, OK 45021

Statement of Work

Congratulations on being selected to build our next generation

Internet-based Weather Monitoring Station!

The weather station will be based on our patent pending

WeatherData object, which tracks current weather conditions

(temperature, humidity, and barometric pressure). Weʼd like

for you to create an application that initially provides three

display elements: current conditions, weather statistics and a

simple forecast, all updated in real time as the WeatherData

object acquires the most recent measurements.

Further, this is an expandable weather station. Weather-O-

Rama wants to release an API so that other developers can

write their own weather displays and plug them right in. Weʼd

like for you to supply that API!

Weather-O-Rama thinks we have a great business model: once

the customers are hooked, we intend to charge them for each

display they use. Now for the best part: we are going to pay

you in stock options.

We look forward to seeing your design and alpha application.

Sincerely,

Johnny Hurricane, CEO

P.S. We are overnighting the WeatherData source fi les to you.

Congratulations!

Your team has just won the contract to build
 Weather-O-Rama, Inc.’s next generation,
Internet-based Weather Monitoring Station.

weather monitoring station

the observer pattern

you are here 4 39

The Weather Monitoring application overview

The three players in the system are the weather station (the physical device that
acquires the actual weather data), the WeatherData object (that tracks the data coming
from the Weather Station and updates the displays), and the display that shows users
the current weather conditions.

WeatherData
object

Weather Station
Display device

Temperature
sensor device

Humidity
sensor device

Pressure
sensor device

pulls data
displays

Current
Conditions
Temp: 72°
Humidity: 60
Pressure:

Weather-O-Rama provides What we implement

The WeatherData object knows how to talk to the physical Weather Station, to get
updated data. The WeatherData object then updates its displays for the three different
display elements: Current Conditions (shows temperature, humidity, and pressure),
Weather Statistics, and a simple forecast.

Current Conditions is one o
f

three different d
isplays. The

user can also get w
eather stats

and a forecast.

Our job, if we choose to accept it, is to create an app that
uses the WeatherData object to update three displays for
current conditions, weather stats, and a forecast.

40 Chapter 2

Unpacking the WeatherData class

WeatherData

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

// other methods

As promised, the next morning the WeatherData source fi les arrive.
Peeking inside the code, things look pretty straightforward:

These three
methods ret

urn the most recent

weather measurements for t
emperature, h

umidity

and barometric press
ure respect

ively.

We don’t car
e HOW these vari

ables are se
t; the

WeatherData object
 knows how to get upd

ated

info from the Weather Sta
tion.

The developers of t
he WeatherData

object left us a c
lue about what we

need to add...

/*
 * This method gets called
 * whenever the weather measurements
 * have been updated
 *
 */
public void measurementsChanged() {
 // Your code goes here
}

WeatherData.java

Display device

Current
Conditions
Temp: 72°
Humidity: 60
Pressure:

Our job is to implement measurementsChanged()
so that it updates the three displays for current
conditions, weather stats, and forecast.

Remember, this Current Conditions is just ONE of three different display screens.

weather data class

the observer pattern

you are here 4 41

R The WeatherData class has getter methods for three
measurement values: temperature, humidity and
barometric pressure.

R The measurementsChanged() method is called any
time new weather measurement data is available. (We
don’t know or care how this method is called; we just
know that it is.)

R We need to implement three display elements that
use the weather data: a current conditions display, a
statistics display and a forecast display. These displays
must be updated each time WeatherData has new
measurements.

R The system must be expandable—other developers
can create new custom display elements and users
can add or remove as many display elements as they
want to the application. Currently, we know about
only the initial three display types (current conditions,
statistics and forecast).

What do we know so far?

The spec from Weather-O-Rama wasn’t all that clear, but we have to
figure out what we need to do. So, what do we know so far?

getTemperature()
getHumidity()
getPressure()

measurementsChanged()

Display One

Current
Conditions
Temp: 72°
Humidity: 60
Pressure:

Display Two

Weather
Stats

Avg. temp: 62°
Min. temp: 50°
Max. temp: 78°

Display Three

Forecast

TT
T

Future displays

?

42 Chapter 2

public class WeatherData {

 // instance variable declarations

 public void measurementsChanged() {

 float temp = getTemperature();
 float humidity = getHumidity();
 float pressure = getPressure();

 currentConditionsDisplay.update(temp, humidity, pressure);
 statisticsDisplay.update(temp, humidity, pressure);
 forecastDisplay.update(temp, humidity, pressure);
 }

 // other WeatherData methods here
}

Call each display element to update its display, passing it the most recent measurements.

Grab the most recent measuremets
by calling the WeatherData’s getter
methods (already implemented).

Taking a first, misguided SWAG at
the Weather Station

Here’s a first implementation possibility—we’ll take the hint from the Weather-O-
Rama developers and add our code to the measurementsChanged() method:

Sharpen your pencil

❏ A. We are coding to concrete
implementations, not interfaces.

❏ B. For every new display element we need
to alter code.

❏ C. We have no way to add (or remove)
display elements at run time.

❏ D. The display elements don’t implement a
common interface.

❏ E. We haven’t encapsulated the part that
changes.

❏ F. We are violating encapsulation of the
WeatherData class.

Based on our first implementation, which of the following apply?
(Choose all that apply.)

Definition of SWAG: Scientific Wild A** Guess

Now update
the displays...

first try with the weather station

the observer pattern

you are here 4 43

Think back to all those Chapter 1 concepts and principles...

Umm, I know I’m new
here, but given that we are in

the Observer Pattern chapter,
maybe we should start using it?

What’s wrong with our implementation?

public void measurementsChanged() {

 float temp = getTemperature();
 float humidity = getHumidity();
 float pressure = getPressure();

 currentConditionsDisplay.update(temp, humidity, pressure);
 statisticsDisplay.update(temp, humidity, pressure);
 forecastDisplay.update(temp, humidity, pressure);
}

By coding to concrete implementations
we have no way to add or remove
other display elements without making
changes to the program.

Area of change, we need
to encapsulate this.

At least we seem to be using a
common interface to talk to the
display elements... they all have an
update() method takes the temp,
humidity, and pressure values.

We’ll take a look at
Observer, then come
back and figure out how
to apply it to the weather
monitoring app.

44 Chapter 2

Meet the Observer Pattern

You know how newspaper or magazine
subscriptions work:

A newspaper publisher goes into business and begins
publishing newspapers.

You subscribe to a particular publisher, and every time
there’s a new edition it gets delivered to you. As long as
you remain a subscriber, you get new newspapers.

You unsubscribe when you don’t want papers anymore,
and they stop being delivered.

While the publisher remains in business, people, hotels,
airlines and other businesses constantly subscribe and
unsubscribe to the newspaper.

1

2

3

4

Miss what’s going on
in Objectville? No way, of

course we subscribe!

meet the observer pattern

the observer pattern

you are here 4 45

Observer Objects

The observers have subscribed to
(registered with) the Subject
to receive updates when the
Subject’s data changes.

Subject object m
anages

some bit of data.

Subject Object

2

int

 Dog Objec
t

Mouse Objec
t

 Cat Object

If you understand newspaper subscriptions, you pretty much
understand the Observer Pattern, only we call the publisher
the SUBJECT and the subscribers the OBSERVERS.

Let’s take a closer look:

2

2

2

When data in the Subject c
hanges,

the observers are notified
.

New data values are
communicated to the
observers in some form
when they change.

 Duck Objec
t

This object isn’t an
observer, so it doesn’t

get notified when the

Subject’s data change
s.

Publishers + Subscribers = Observer Pattern

46 Chapter 2

A day in the life of the Observer Pattern

A Duck object comes along
and tells the Subject that
it wants to become an
observer.

Duck really wants in on the
action; those ints Subject is
sending out whenever its state
changes look pretty interesting...

Observers

Subject Object

2

int

 Dog Objec
t

Mouse Objec
t

 Cat Object

 Duck Objec
t

Subject Object

2

int

Observers

 Dog Objec
t

Mouse Objec
t

 Cat Object Duck Objec
t

The Duck object is now an
official observer.

Duck is psyched... he’s on the
list and is waiting with great
anticipation for the next
notification so he can get an int.

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

The Subject gets a new
data value!

Now Duck and all the rest of the
observers get a notification that
the Subject has changed.

Observers

8
8
8

8

“re
gis

ter
/su

bscr
ibe m

e”

a day in the life of the observer pattern

the observer pattern

you are here 4 47

The Mouse object asks to be
removed as an observer.
The Mouse object has been
getting ints for ages and is tired
of it, so it decides it’s time to
stop being an observer.

Mouse is outta here!
The Subject acknowledges the
Mouse’s request and removes it
from the set of observers.

Subject Object

14

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

The Subject has another
new int.
All the observers get another
notification, except for the
Mouse who is no longer included.
Don’t tell anyone, but the Mouse
secretly misses those ints...
maybe it’ll ask to be an observer
again some day.

Observers

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

14
14
14

“remove/unsubscribe me”

48 Chapter 2

3

Software
Developer #2

Hi, I’m Jill, I’ve
written a lot of EJB
systems, I’m interested
in any job you’ve got with
Java development.

Headhunter/Subject
2

Uh, yeah,
you and everybody

else, baby. I’m putting
you on my list of Java
developers, don’t call me,
I’ll call you!

1

This is
Ron, I’m looking for a

Java development position, I’ve
got five years experience and...

Software
Developer #1

I’ll add you to the list,
you’ll know along with
everyone else.

4

Subject

Five minute drama: a subject for observation
In today’s skit, two post-bubble software developers
encounter a real live head hunter...

five minute drama

the observer pattern

you are here 4 49

8

You can take me
off your call list, I

found my own job!

6
Subject

Hey
observers, there’s
a Java opening down at
JavaBeans-R-Us, jump
on it! Don’t blow it!

Bwahaha, money
in the bank, baby!

Arghhh!!! Mark my
words Jill, you’ll never work

in this town again if I have
anything to do with it. You’re

off my call list!!!

Subject
9

7

Thanks, I’ll
send my resume

right over.

Observer

Observer

This guy is a real jerk,
who needs him. I’m
looking for my own job.

Observer

5 Meanwhile for Ron and Jill life goes
on; if a Java job comes along, they’ll
get notified, after all, they are ob-
servers.

Jill lands her own job!

50 Chapter 2

Jill’s loving life, and no longer an observer.
She’s also enjoying the nice fat signing
bonus that she got because the company
didn’t have to pay a headhunter.

Two weeks later...

But what has become of our dear Ron? We hear
he’s beating the headhunter at his own game.
He’s not only still an observer, he’s got his own
call list now, and he is notifying his own observers.
Ron’s a subject and an observer all in one.

the observer pattern defined

the observer pattern

you are here 4 51

The Observer Pattern defines a one-to-many
dependency between objects so that when one
object changes state, all of its dependents are
notified and updated automatically.

The Observer Pattern defined

When you’re trying to picture the Observer Pattern, a newspaper
subscription service with its publisher and subscribers is a good
way to visualize the pattern.

In the real world however, you’ll typically see the Observer Pattern
defined like this:

The subject and observers define the one-to-many relationship.
The observers are dependent on the subject such that when the
subject’s state changes, the observers get notified. Depending on
the style of notification, the observer may also be updated with
new values.

As you’ll discover, there are a few different ways to implement
the Observer Pattern but most revolve around a class design that
includes Subject and Observer interfaces.

Let’s take a look...

The Observer Pattern
defines a one-to-many
relationship between a set
of objects.

When the state of one
object changes, all of its
dependents are notified.

Let’s relate this definition to how we’ve been talking about the
pattern:

Subject Object

8

int
 Dog Objec

t

Mouse Objec
t

 Cat Object Duck Objec
t

Observers

8
8
8

8

ONE TO MANY RELATIONSHIP

Automatic update/notification

Object that
holds state

De
pe

nd
en

t
Ob

jec
ts

52 Chapter 2

<<interface>>
Subject

registerObserver()

removeObserver()

notifyObservers()

<<interface>>
Observer

update()

registerObserver() {...}

removeObserver() {...}

notifyObservers() {...}

getState()

setState()

ConcreteSubject

Here’s th
e Subjec

t interf
ace.

Objects us
e this int

erface t
o registe

r

as observ
ers and a

lso to re
move

themselves fr
om being ob

servers.

All potential observers
 need

to implement the Observer

interface. This interface

just has one method, update(),

that gets called when the

Subject’s state chang
es.

Concrete observers can be
any class that implements the
Observer interface. Each
observer registers with a concrete
subject to receive updates.

A concrete subject always

implements the Subject
interface. In addition to

the register and remove
methods, the concrete subj

ect

implements a notifyObservers()

method that is used to upd
ate

all the current observers

whenever state changes.

update()

// other Observer specific

methods

ConcreteObserver

The Observer Pattern defined:
the class diagram

The concrete subject
may

also have methods for

setting and getting
its state

(more about this later)
.

observers

subject

Each subject
can have many
observers.

Q: What does this have to do
with one-to-many relationships?

A: With the Observer pattern, the
Subject is the object that contains the
state and controls it. So, there is ONE
subject with state. The observers, on
the other hand, use the state, even
if they don’t own it. There are many
observers and they rely on the Subject
to tell them when its state changes.
So there is a relationship between the
ONE Subject to the MANY Observers.

Q: How does dependence come
into this?

A: Because the subject is the sole
owner of that data, the observers are
dependent on the subject to update
them when the data changes. This
leads to a cleaner OO design than
allowing many objects to control the
same data.

loose coupling

there are noDumb Questions

the observer pattern

you are here 4 53

Q: What does this have to do
with one-to-many relationships?

A: With the Observer pattern, the
Subject is the object that contains the
state and controls it. So, there is ONE
subject with state. The observers, on
the other hand, use the state, even
if they don’t own it. There are many
observers and they rely on the Subject
to tell them when its state changes.
So there is a relationship between the
ONE Subject to the MANY Observers.

Q: How does dependence come
into this?

A: Because the subject is the sole
owner of that data, the observers are
dependent on the subject to update
them when the data changes. This
leads to a cleaner OO design than
allowing many objects to control the
same data.

The power of Loose Coupling

Design Principle

Strive for loosely coupled designs
between objects that interact.

When two objects are loosely coupled, they can interact,
but have very little knowledge of each other.

The Observer Pattern provides an object design where
subjects and observers are loosely coupled.

Why?

The only thing the subject knows about an observer is that it
implements a certain interface (the Observer interface). It doesn’t need to
know the concrete class of the observer, what it does, or anything else about it.

We can add new observers at any time. Because the only thing the subject
depends on is a list of objects that implement the Observer interface, we can add new
observers whenever we want. In fact, we can replace any observer at runtime with
another observer and the subject will keep purring along. Likewise, we can remove
observers at any time.

We never need to modify the subject to add new types of observers. Let’s
say we have a new concrete class come along that needs to be an observer. We don’t
need to make any changes to the subject to accommodate the new class type, all
we have to do is implement the Observer interface in the new class and register as
an observer. The subject doesn’t care; it will deliver notifications to any object that
implements the Observer interface.

We can reuse subjects or observers independently of each other. If we
have another use for a subject or an observer, we can easily reuse them because the
two aren’t tightly coupled.

Changes to either the subject or an observer will not affect the other.
Because the two are loosely coupled, we are free to make changes to either, as long as
the objects still meet their obligations to implement the subject or observer interfaces.

Loosely coupled designs allow us to build flexible OO
systems that can handle change because they minimize
the interdependency between objects.

How many
different kinds
of change can you
identify here?

54 Chapter 2

Sharpen your pencil
Before moving on, try sketching out the classes you’ll need to implement the
Weather Station, including the WeatherData class and its display elements.
Make sure your diagram shows how all the pieces fit together and also how
another developer might implement her own display element.

If you need a little help, read the next page; your teammates are already
talking about how to design the Weather Station.

planning the weather station

the observer pattern

you are here 4 55

Cubicle conversation

Mary: Well, it helps to know we’re using the Observer Pattern.

Sue: Right... but how do we apply it?

Mary: Hmm. Let’s look at the definition again:

Mary: That actually makes some sense when you think about it. Our WeatherData
class is the “one” and our “many” is the various display elements that use the weather
measurements.

Sue: That’s right. The WeatherData class certainly has state... that’s the temperature,
humidity and barometric pressure, and those definitely change.

Mary: Yup, and when those measurements change, we have to notify all the display
elements so they can do whatever it is they are going to do with the measurements.

Sue: Cool, I now think I see how the Observer Pattern can be applied to our Weather
Station problem.

Mary: There are still a few things to consider that I’m not sure I understand yet.

Sue: Like what?

Mary: For one thing, how do we get the weather measurements to the display elements?

Sue: Well, looking back at the picture of the Observer Pattern, if we make the
WeatherData object the subject, and the display elements the observers, then the
displays will register themselves with the WeatherData object in order to get the
information they want, right?

Mary: Yes... and once the Weather Station knows about a display element, then it can
just call a method to tell it about the measurements.

Sue: We gotta remember that every display element can be different... so I think that’s
where having a common interface comes in. Even though every component has a
different type, they should all implement the same interface so that the WeatherData
object will know how to send them the measurements.

Mary: I see what you mean. So every display will have, say, an update() method that
WeatherData will call.

Sue: And update() is defined in a common interface that all the elements implement…

The Observer Pattern defines a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

Back to the Weather Station project, your teammates have
already started thinking through the problem...

So, how are we
going to build this thing?Sue

56 Chapter 2

Designing the Weather Station

<<interface>>
Subject

registerObserver()

removeObserver()

notifyObservers()

<<interface>>
Observer

update()

registerObserver()

removeObserver()

notifyObservers()

getTemperature()

getHumidity()

getPressure()

measurementsChanged()

WeatherData

update()

display() { // display current

measurements }

CurrentConditionsDisplay

update()

display() { // display the aver-

age, min and max measure-

ments }

StatisticsDisplay

update()

display() { // display the

forecast }

ForecastDisplay

Here’s ou
r subject

 interfa
ce,

this shou
ld look f

amiliar.
All our weather components

implement the Observer

interface. This gives the

Subject a common interface

to talk to when it comes time

to update the observ
ers.

This display element shows the current measurements from the WeatherData object.

This one keeps track
of the min/avg/max
measurements and
displays them.

This display shows the weather
forecast based on the barometer.

WeatherData now
implements the
Subject interface.

observers

subject

update()

display() { // display

something else based on

measurements }

ThirdPartyDisplay

Developers
can implement
the Observer
and Display
interfaces to
create their own
display element.

<<interface>>
DisplayElement

display()

Let’s also create an
interface for all display
elements to implement. The
display elements just need to
implement a display() method.

These three display elements should have a pointer to
WeatherData labeled “subject” too, but boy would
this diagram start to look like spaghetti if they did.

How does this diagram compare with yours?

designing the weather station

the observer pattern

you are here 4 57

public interface DisplayElement {
 public void display();
}

public interface Observer {
 public void update(float temp, float humidity, float pressure);
}

Implementing the Weather Station

We’re going to start our implementation using the class diagram and following Mary
and Sue’s lead (from a few pages back). You’ll see later in this chapter that Java
provides some built-in support for the Observer pattern, however, we’re going to get
our hands dirty and roll our own for now. While in some cases you can make use of
Java’s built-in support, in a lot of cases it’s more flexible to build your own (and it’s
not all that hard). So, let’s get started with the interfaces:

Both of these methods take an
Observer as an argument; that is, the
Observer to be registered or removed.

This method is called to notify all observers
when the Subject’s state has changed.

The Observer interface is
implemented by all observers,
so they all have to implement
the update() method. Here
we’re following Mary and
Sue’s lead and passing the
measurements to the observers.

These are the state values the Observers get from
the Subject when a weather measurement changes

The DisplayElement interface just includes
one method, display(), that we will call when
the display element needs to be displayed.

Mary and Sue thought that passing the measurements directly to the
observers was the most straightforward method of updating state. Do
you think this is wise? Hint: is this an area of the application that
might change in the future? If it did change, would the change be well
encapsulated, or would it require changes in many parts of the code?

Can you think of other ways to approach the problem of passing the
updated state to the observers?

Don’t worry, we’ll come back to this design decision after we finish the
initial implementation.

brain
powerA

public interface Subject {
 public void registerObserver(Observer o);
 public void removeObserver(Observer o);
 public void notifyObservers();
}

58 Chapter 2

public class WeatherData implements Subject {
 private ArrayList observers;
 private float temperature;
 private float humidity;
 private float pressure;

 public WeatherData() {
 observers = new ArrayList();
 }

 public void registerObserver(Observer o) {
 observers.add(o);
 }

 public void removeObserver(Observer o) {
 int i = observers.indexOf(o);
 if (i >= 0) {
 observers.remove(i);
 }
 }

 public void notifyObservers() {
 for (int i = 0; i < observers.size(); i++) {
 Observer observer = (Observer)observers.get(i);
 observer.update(temperature, humidity, pressure);
 }
 }

 public void measurementsChanged() {
 notifyObservers();
 }

 public void setMeasurements(float temperature, float humidity, float pressure) {
 this.temperature = temperature;
 this.humidity = humidity;
 this.pressure = pressure;
 measurementsChanged();
 }

 // other WeatherData methods here
}

Implementing the Subject interface in
WeatherData

We notify the Observers when

we get updated m
easurements

from the Weather Station.

Remember our first attempt at implementing the WeatherData class at the
beginning of the chapter? You might want to refresh your memory. Now
it’s time to go back and do things with the Observer Pattern in mind...

WeatherData now implements
the Subject interface.

When an observer registers, we just
add it to the end of the list.

Likewise, when an observer wants to un-register,
we just take it off the list.

Here’s the fun part; this is where we
tell all the observers about the state.
Because they are all Observers, we
know they all implement update(), so
we know how to notify them.

Okay, while we wanted to ship a nice little weather station with each book, the publisher wouldn’t go for it. So, rather than reading actual weather data off a device, we’re going to use this method to test our display elements. Or, for fun, you could write code to grab measurements off the web.

We’ve added an ArrayList to

hold the Observers, and we
create it in the constructor.

He
re

 w
e i

mp
lem

en
t

th
e S

ub
jec

t
Int

er
fa

ce
.

implementing the weather station

REMEMBER: we don’t provide
import and package statements
in the code listings. Get the
complete source code from the
headfirstlabs web site. You’ll
find the URL on page xxxiii in
the Intro.

the observer pattern

you are here 4 59

public class CurrentConditionsDisplay implements Observer, DisplayElement {
 private float temperature;
 private float humidity;
 private Subject weatherData;

 public CurrentConditionsDisplay(Subject weatherData) {
 this.weatherData = weatherData;
 weatherData.registerObserver(this);
 }

 public void update(float temperature, float humidity, float pressure) {
 this.temperature = temperature;
 this.humidity = humidity;
 display();
 }

 public void display() {
 System.out.println(“Current conditions: “ + temperature
 + “F degrees and “ + humidity + “% humidity”);
 }
}

Now, let’s build those display elements

This display i
mplements Observer

so it can ge
t changes f

rom the

WeatherData object.

When update() is called, we
save the temp and humidity
and call display().

The display() method
just prints out the most
recent temp and humidity.

Now that we’ve got our WeatherData class straightened out, it’s time to build the
Display Elements. Weather-O-Rama ordered three: the current conditions display, the
statistics display and the forecast display. Let’s take a look at the current conditions
display; once you have a good feel for this display element, check out the statistics and
forecast displays in the head first code directory. You’ll see they are very similar.

It also implements DisplayElement, because our API is going to require all display elements to implement this interface.

The constructor is passed the
weatherData object (the Subject)
and we use it to register the
display as an observer.

there are noDumb Questions

Q: Is update() the best place to
call display?

A: In this simple example it made
sense to call display() when the values
changed. However, you are right,
there are much better ways to design

the way the data gets displayed. We
are going to see this when we get to
the model-view-controller pattern.

Q: Why did you store a reference
to the Subject? It doesn’t look
like you use it again after the
constructor?

A: True, but in the future we
may want to un-register ourselves as
an observer and it would be handy
to already have a reference to the
subject.

60 Chapter 2

Power up the Weather Station

File Edit Window Help StormyWeather

%java WeatherStation
Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0
Forecast: Improving weather on the way!
Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0
Forecast: Watch out for cooler, rainy weather
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0
Forecast: More of the same
%

public class WeatherStation {
 public static void main(String[] args) {
 WeatherData weatherData = new WeatherData();

 CurrentConditionsDisplay currentDisplay =
 new CurrentConditionsDisplay(weatherData);
 StatisticsDisplay statisticsDisplay = new StatisticsDisplay(weatherData);
 ForecastDisplay forecastDisplay = new ForecastDisplay(weatherData);

 weatherData.setMeasurements(80, 65, 30.4f);
 weatherData.setMeasurements(82, 70, 29.2f);
 weatherData.setMeasurements(78, 90, 29.2f);
 }
}

The Weather Station is ready to go, all we need is some code to glue
everything together. Here’s our first attempt. We’ll come back later in
the book and make sure all the components are easily pluggable via a
configuration file. For now here’s how it all works:

First, let’s create a test harness1

Run the code and let the Observer Pattern do its magic2

First, create the

WeatherData
object.

Create the three
displays and
pass them the
WeatherData object.Simulate new weather

measurements.

testing the weather station

If you don’t
want to
download the
code, you can
comment out
these two lines
and run it.

the observer pattern

you are here 4 61

File Edit Window Help OverdaRainbow

%java WeatherStation
Current conditions: 80.0F degrees and 65.0% humidity
Avg/Max/Min temperature = 80.0/80.0/80.0
Forecast: Improving weather on the way!
Heat index is 82.95535
Current conditions: 82.0F degrees and 70.0% humidity
Avg/Max/Min temperature = 81.0/82.0/80.0
Forecast: Watch out for cooler, rainy weather
Heat index is 86.90124
Current conditions: 78.0F degrees and 90.0% humidity
Avg/Max/Min temperature = 80.0/82.0/78.0
Forecast: More of the same
Heat index is 83.64967
%

Sharpen your pencil

Johnny Hurricane, Weather-O-Rama’s CEO just called, they can’t possibly ship without a Heat Index
display element. Here are the details:

The heat index is an index that combines temperature and humidity to determine the apparent
temperature (how hot it actually feels). To compute the heat index, you take the temperature, T, and the
relative humidity, RH, and use this formula:

So get typing!

Just kidding. Don’t worry, you won’t have to type that formula in; just create your own HeatIndexDisplay.
java file and copy the formula from heatindex.txt into it.

How does it work? You’d have to refer to Head First Meteorology, or try asking someone at the National
Weather Service (or try a Google search).

When you finish, your output should look like this:

Here
’s wh

at ch
anged

in th
is out

put.

 16.923 + 1.85212 * 10-1 * T + 5.37941 * RH - 1.00254 * 10-1 * T
* RH + 9.41695 * 10-3 * T2 + 7.28898 * 10-3 * RH2 + 3.45372 * 10-4
* T2 * RH - 8.14971 * 10-4 * T * RH2 + 1.02102 * 10-5 * T2 * RH2 -
3.8646 * 10-5 * T3 + 2.91583 * 10-5 * RH3 + 1.42721 * 10-6 * T3 * RH
+ 1.97483 * 10-7 * T * RH3 - 2.18429 * 10-8 * T3 * RH2 + 8.43296 *
10-10 * T2 * RH3 - 4.81975 * 10-11 * T3 * RH3

You can get heatindex.txt from headfirstlabs.com

heatindex =

62 Chapter 2

Tonight’s talk: A Subject and Observer spar over the right
way to get state information to the Observer.

Subject Observer

I’m glad we’re finally getting a chance to chat in
person. Really? I thought you didn’t care much about

us Observers.
Well, I do my job, don’t I? I always tell you what’s
going on... Just because I don’t really know who
you are doesn’t mean I don’t care. And besides, I
do know the most important thing about you—
you implement the Observer interface.

Well yeah, but that’s just a small part of who I
am. Anyway, I know a lot more about you...

Oh yeah, like what?

Well, you’re always passing your state around
to us Observers so we can see what’s going
on inside you. Which gets a little annoying at
times...

Well excuuuse me. I have to send my state with my
notifications so all you lazy Observers will know
what happened!

Ok, wait just a minute here; first, we’re not lazy,
we just have other stuff to do in between your
oh-so-important notifications, Mr. Subject, and
second, why don’t you let us come to you for
the state we want rather than pushing it out to
just everyone?

Well... I guess that might work. I’d have to open
myself up even more though to let all you Observers
come in and get the state that you need. That might
be kind of dangerous. I can’t let you come in and
just snoop around looking at everything I’ve got.

fireside chat: subject and observer

the observer pattern

you are here 4 63

Subject Observer

Why don’t you just write some public getter
methods that will let us pull out the state we
need?Yes, I could let you pull my state. But won’t that be

less convenient for you? If you have to come to me
every time you want something, you might have to
make multiple method calls to get all the state you
want. That’s why I like push better... then you have
everything you need in one notification. Don’t be so pushy! There’s so many different

kinds of us Observers, there’s no way you can
anticipate everything we need. Just let us come
to you to get the state we need. That way, if
some of us only need a little bit of state, we
aren’t forced to get it all. It also makes things
easier to modify later. Say, for example, you
expand yourself and add some more state, well
if you use pull, you don’t have to go around
and change the update calls on every observer,
you just need to change yourself to allow more
getter methods to access our additional state.

Well, I can see the advantages to doing it both ways.
I have noticed that there is a built-in Java Observer
Pattern that allows you to use either push or pull.

Oh really? I think we’re going to look at that
next....

Great... maybe I’ll get to see a good example of
pull and change my mind.

What, us agree on something? I guess there’s
always hope.

64 Chapter 2

Using Java’s built-in
Observer Pattern
So far we’ve rolled our own code for the
Observer Pattern, but Java has built-in support
in several of its APIs. The most general is the
Observer interface and the Observable class in
the java.util package. These are quite similar
to our Subject and Observer interface, but give
you a lot of functionality out of the box. You
can also implement either a push or pull style of
update to your observers, as you will see.

To get a high level feel for java.util.Observer and
java.util.Observable, check out this reworked
OO design for the WeatherStation:

With Java’s built-in
support, all you have to do is
extend Observable and tell it

when to notify the Observers.
The API does the rest for you.

Observable
addObserver()

deleteObserver()

notifyObservers()

setChanged()

getTemperature()

getHumidity()

getPressure()

WeatherData

The Observable class k
eeps

track of all you
r observers

and notifies the
m for you.

Observable is a
CLASS not an
interface, so
WeatherData
extends Observable.

Here’s our Subject, which we can

now also call the Observable. We

don’t need the register()
, remove()

and notifyObservers() methods

anymore; we inherit that behavior

from the superclass.

There will be a few changes to make to the update()

method in the concrete Observers, but basically it’s

the same idea... we have a common Observer interface,

with an update() method that’s called by the Subject.

<<interface>>
Observer

update()

This should look fam
iliar. In

fact, it’s exactly
 the same as

our previous class
diagram!

update()

display()

GeneralDisplay

update()

display()

StatisticsDisplay
update()

display()

ForecastDisplay

observers

subject

This does
n’t look

familiar! Ho
ld

tight, w
e’ll get

to

this in a
 sec...

We left out the
DisplayElement
interface, but all
the displays still
implement it too.

java’s built-in observer pattern

the observer pattern

you are here 4 65

How Java’s built-in Observer Pattern works

The built in Observer Pattern works a bit differently than the implementation that we used
on the Weather Station. The most obvious difference is that WeatherData (our subject)
now extends the Observable class and inherits the add, delete and notify Observer methods
(among a few others). Here’s how we use Java’s version:

You first must call the setChanged() method to signify
that the state has changed in your object

1

For an Object to become an observer...
As usual, implement the Observer interface (this time the java.util.Observer
interface) and call addObserver() on any Observable object. Likewise, to remove
yourself as an observer just call deleteObserver().

For the Observable to send notifications...

Then, call one of two notifyObservers() methods:2

For an Observer to receive notifications...

update(Observable o, Object arg)

This will be the data object that was
passed to notifyObservers(), or null if
a data object wasn’t specified.

The Subject that sent
the notification is passed
in as this argument.

If you want to “push” data to the observers you can pass the data as a data object
to the notifyObserver(arg) method. If not, then the Observer has to “pull” the data
it wants from the Observable object passed to it. How? Let’s rework the Weather
Station and you’ll see.

This version takes
 an

arbitrary data
object

that gets passe
d to

each Observer when it

is notified.

First of all you need to be Observable by extending the java.util.Observable
superclass. From there it is a two step process:

It implements the update method, as before, but the signature of the
method is a bit different: data object

either notifyObservers() or notifyObservers(Object arg)

66 Chapter 2

The setChanged() method is used to signify that the state has changed and that notifyObservers(),
when it is called, should update its observers. If notifyObservers() is called without first calling
setChanged(), the observers will NOT be notified. Let’s take a look behind the scenes of
Observable to see how this works:

Wait, before we get
to that, why do we need this

setChanged() method? We didn’t
need that before.

setChanged() {
 changed = true
}

notifyObservers(Object arg) {
 if (changed) {
 for every observer on the list {
 call update (this, arg)
 }
 changed = false
 }
}

notifyObservers() {
 notifyObservers(null)
}

Pseudoc
ode fo

r the

Observa
ble Class.

Why is this necessary? The setChanged() method is meant to give you more flexibility in how
you update observers by allowing you to optimize the notifications. For example, in our weather
station, imagine if our measurements were so sensitive that the temperature readings were
constantly fluctuating by a few tenths of a degree. That might cause the WeatherData object
to send out notifications constantly. Instead, we might want to send out notifications only if the
temperature changes more than half a degree and we could call setChanged() only after that
happened.

You might not use this functionality very often, but it’s there if you need it. In either case, you
need to call setChanged() for notifications to work. If this functionality is something that is useful
to you, you may also want to use the clearChanged() method, which sets the changed state back to
false, and the hasChanged() method, which tells you the current state of the changed flag.

Behind
the Scenes

The setChanged() method
sets a changed flag to true.

notifyObservers() only
notifies its observers if
the changed flag is TRUE.

And after it notifies
the observers, it sets the
changed flag back to false.

behind the scenes

the observer pattern

you are here 4 67

import java.util.Observable;
import java.util.Observer;

public class WeatherData extends Observable {
 private float temperature;
 private float humidity;
 private float pressure;

 public WeatherData() { }

 public void measurementsChanged() {
 setChanged();
 notifyObservers();
 }

 public void setMeasurements(float temperature, float humidity, float pressure) {
 this.temperature = temperature;
 this.humidity = humidity;
 this.pressure = pressure;
 measurementsChanged();
 }

 public float getTemperature() {
 return temperature;
 }

 public float getHumidity() {
 return humidity;
 }

 public float getPressure() {
 return pressure;
 }
}

We don’t need to keep track of
our observers anymore, or manage
their registration and removal,
(the superclass will handle that)
so we’ve removed the code for
register, add and notify.

1 Make sure we are importing the
right Observer/Observable.

2

We are now
subclassing Observable.

Our constructor no longer
needs to create a data
structure to hold Observers.

3

6 These methods aren’t new, but
because we are going to use “pull”
we thought we’d remind you
they are here. The Observers
will use them to get at the
WeatherData object’s state.

We now first call setChanged() to
indicate the state has changed
before calling notifyObservers().

5

Notice we aren’t sending a data object with
the notifyObservers() call. That means
we’re using the PULL model.

*

*

Reworking the Weather Station with the built-in support

First, let’s rework WeatherData to use
java.util.Observable

4

68 Chapter 2

1 Again, make sure we are importing
the right Observer/Observable.

Now, let’s rework the CurrentConditionsDisplay

2 We now are implementing the Observer interface from java.util.

3 Our constructor now takes an
Observable and we use this to
add the current conditions
object as an Observer.

4 We’ve changed the
update() method
to take both an
Observable and the
optional data argument.

5 In update(), we first
make sure the observable
is of type WeatherData
and then we use its
getter methods to
obtain the temperature
and humidity
measurements. After
that we call display().

import java.util.Observable;
import java.util.Observer;

public class CurrentConditionsDisplay implements Observer, DisplayElement {
 Observable observable;
 private float temperature;
 private float humidity;

 public CurrentConditionsDisplay(Observable observable) {
 this.observable = observable;
 observable.addObserver(this);
 }

 public void update(Observable obs, Object arg) {
 if (obs instanceof WeatherData) {
 WeatherData weatherData = (WeatherData)obs;
 this.temperature = weatherData.getTemperature();
 this.humidity = weatherData.getHumidity();
 display();
 }
 }

 public void display() {
 System.out.println(“Current conditions: “ + temperature
 + “F degrees and “ + humidity + “% humidity”);
 }
}

current conditions rework

the observer pattern

you are here 4 69

 Code Magnets
The ForecastDisplay class is all scrambled up on the fridge. Can you
reconstruct the code snippets to make it work? Some of the curly
braces fell on the floor and they were too small to pick up, so feel
free to add as many of those as you need!

import java.util.Ob
servable;

import java.util.Ob
server;

public class ForecastDisplay im
plements

Observer, DisplayElement {

private fl oat currentPressure = 29.92f;
private fl oat lastPressure;

pub
lic

 Fo
rec

ast
Dis

pla
y(O

bse
rva

ble

obs
erv

abl
e)

{

 observable.addObserver(this);

public void u
pdate(Observa

ble observabl
e,

 Object ar
g) {

if (observable instanceof WeatherData) {

public void u
pdate(Observa

ble observabl
e,

WeatherData weatherData = (WeatherData)observable;

private fl oat currentPressure = 29.92f;
private fl oat lastPressure;

last
Pres

sure
 = c

urre
ntPr

essu
re;

curr
entP

ress
ure

= we
athe

rDat
a.ge

tPre
ssur

e();

Observer, DisplayElement {

last
Pres

sure
 = c

urre
ntPr

essu
re;

curr
entP

ress
ure

= we
athe

rDat
a.ge

tPre
ssur

e();

public voi
d display(

) {

 // dis
play code

here

}

Exercise

display();

70 Chapter 2

Running the new code

File Edit Window Help TryTihisAtHome

%java WeatherStation
Forecast: Improving weather on the way!
Avg/Max/Min temperature = 80.0/80.0/80.0
Current conditions: 80.0F degrees and 65.0% humidity
Forecast: Watch out for cooler, rainy weather
Avg/Max/Min temperature = 81.0/82.0/80.0
Current conditions: 82.0F degrees and 70.0% humidity
Forecast: More of the same
Avg/Max/Min temperature = 80.0/82.0/78.0
Current conditions: 78.0F degrees and 90.0% humidity
%

Just to be sure, let’s run the new code...

Hmm, do you notice anything different? Look again...

You’ll see all the same calculations, but mysteriously, the order of the text output is
different. Why might this happen? Think for a minute before reading on...

Never depend on order of evaluation of the
Observer notifications

The java.util.Observable has implemented its notifyObservers() method such that the
Observers are notified in a different order than our own implementation. Who’s right?
Neither; we just chose to implement things in different ways.

What would be incorrect, however, is if we wrote our code to depend on a specific
notification order. Why? Because if you need to change Observable/Observer
implementations, the order of notification could change and your application would
produce incorrect results. Now that’s definitely not what we’d consider loosely coupled.

test drive

the observer pattern

you are here 4 71

Doesn’t
java.util.Observable

violate our OO design principle
of programming to interfaces
not implementations?

The dark side of java.util.Observable

Observable is a class

Yes, good catch. As you’ve noticed, Observable is a class, not an interface, and worse,
it doesn’t even implement an interface. Unfortunately, the java.util.Observable
implementation has a number of problems that limit its usefulness and reuse. That’s not
to say it doesn’t provide some utility, but there are some large potholes to watch out for.

You already know from our principles this is a bad idea, but what harm does it really
cause?

First, because Observable is a class, you have to subclass it. That means you can’t add
on the Observable behavior to an existing class that already extends another superclass.
This limits its reuse potential (and isn’t that why we are using patterns in the first place?).

Second, because there isn’t an Observable interface, you can’t even create your own
implementation that plays well with Java’s built-in Observer API. Nor do you have
the option of swapping out the java.util implementation for another (say, a new, multi-
threaded implementation).

Observable may serve your needs if you can extend java.util.Observable. On the other
hand, you may need to roll your own implementation as we did at the beginning of the
chapter. In either case, you know the Observer Pattern well and you’re in a good position
to work with any API that makes use of the pattern.

If you look at the Observable API, the setChanged() method is protected. So what? Well,
this means you can’t call setChanged() unless you’ve subclassed Observable. This means
you can’t even create an instance of the Observable class and compose it with your own
objects, you have to subclass. The design violates a second design principle here…favor
composition over inheritance.

Observable protects crucial methods

What to do?

72 Chapter 2

Other places you’ll find the Observer Pattern
in the JDK

The java.util implementation of Observer/Observable is not the only place you’ll
fi nd the Observer Pattern in the JDK; both JavaBeans and Swing also provide their
own implementations of the pattern. At this point you understand enough about
observer to explore these APIs on your own; however, let’s do a quick, simple Swing
example just for the fun of it.

Okay, our application is pretty simple. You’ve got a button that says “Should I do
it?” and when you click on that button the listeners (observers) get to answer the
question in any way they want. We’re implementing two such listeners, called the
AngelListener and the DevilListener. Here’s how the application behaves:

If you’re curious about
the Observer Pattern in

JavaBeans check out the

PropertyChangeListener

interface.

Let’s take a look at a simple part of the Swing API, the JButton. If you look under
the hood at JButton’s superclass, AbstractButton, you’ll see that it has a lot of add/
remove listener methods. These methods allow you to add and remove observers,
or as they are called in Swing, listeners, to listen for various types of events that
occur on the Swing component. For instance, an ActionListener lets you “listen in”
on any types of actions that might occur on a button, like a button press. You’ll fi nd
various types of listeners all over the Swing API.

A little background...

File Edit Window Help HeMadeMeDoIt

%java SwingObserverExample

Come on, do it!

Don’t do it, you might regret it!

%

A little life-changing application

And here’s the output when

we click on the button.

Here’s our fancy interface
.

Angel answer

Devil answer

observer and swing

the observer pattern

you are here 4 73

Simple Swing application that

just creates a fram
e and

throws a button in it.
public class SwingObserverExample {
 JFrame frame;

 public static void main(String[] args) {
 SwingObserverExample example = new SwingObserverExample();
 example.go();
 }

 public void go() {
 frame = new JFrame();
 JButton button = new JButton(“Should I do it?”);
 button.addActionListener(new AngelListener());
 button.addActionListener(new DevilListener());
 frame.getContentPane().add(BorderLayout.CENTER, button);
 // Set frame properties here
 }

 class AngelListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 System.out.println(“Don’t do it, you might regret it!”);
 }
 }

 class DevilListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 System.out.println(“Come on, do it!”);
 }
 }
}

Makes the devil and
angel objects listeners
(observers) of the button.

Here are the class definitions for the observers, defined as inner classes (but they don’t have to be).

Rather than update(), the
actionPerformed() method
gets called when the state
in the subject (in this case
the button) changes.

This life-changing application requires very little code. All we need to do is
create a JButton object, add it to a JFrame and set up our listeners. We’re going
to use inner classes for the listeners, which is a common technique in Swing
programming. If you aren’t up on inner classes or Swing you might want to
review the “Getting GUI” chapter of Head First Java.

And the code...

74 Chapter 2

Tools for your Design Toolbox BULLET POINTS

ß The Observer Pattern defines
a one-to-many relationship
between objects.

ß Subjects, or as we also know
them, Observables, update
Observers using a common
interface.

ß Observers are loosely coupled
in that the Observable knows
nothing about them, other
than that they implement the
Observer Interface.

ß You can push or pull data from
the Observable when using
the pattern (pull is considered
more “correct”).

ß Don’t depend on a specific
order of notification for your
Observers.

ß Java has several
implementations of the
Observer Pattern, including
the general purpose java.util.
Observable.

ß Watch out for issues with
the java.util.Observable
implementation.

ß Don’t be afraid to create
your own Observable
implementation if needed.

ß Swing makes heavy use of the
Observer Pattern, as do many
GUI frameworks.

ß You’ll also find the pattern in
many other places, including
JavaBeans and RMI.

Abstraction

Encapsulation

Polymorphism

Inheritence

OO Basics
Abstraction

Encapsulation

Polymorphism

Inheritence

Encapsulate what varies.

Favor composition over

inheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled

designs between objects th
at

interact.

OO Principles

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns

Welcome to the end of Chapter 2.
You’ve added a few new things to your
OO toolbox...

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns

Observer - defines a one
-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

Here’s your newest

principle. Remember,

loosely coupled de
signs are

much more flexible and

resilient to change
.

A new pattern for communicating state to a
set of objects in a loosely coupled manner. We
haven’t seen the last of the Observer Pattern

- just wait until we talk about MVC!

your design toolbox

the observer pattern

you are here 4 75

Design Principle

Identify the aspects of your application that vary
and separate them from what stays the same.

Design Principle

Program to an interface, not an implementation.

Design Principle

Favor composition over inheritance.

Exercise Design Principle Challenge
For each design principle, describe how the Observer Pattern
makes use of the principle.

This is a hard one, hint: think about how observers
and subjects work together.

76 Chapter 2

Time to give your right brain something to do again!

This time all of the solution words are from chapter 2.

� � �

�

� �

�

� � ��

��

�� �� ��

��

��

�� ��

��

��

�� ��

������

�� ���������� �� � ������ ��� �� ���������
�� ����� ��� ����� ��� ������� �� ��� ������
�� ��������� ���� ������ �� ��� ��������
�� ���� ��� ��� �� ��� ���
�� ������������������������ ���������� ����
���������
�� ��� �� ��� �������� ��� ��� �������� ����
��� ��� ������ ���� �� ������ ��� ������� ��������
���� ��� ����� ��� ������ ��
��� ��� ������� ����� �� ���� �� ����� ���������
��� ����� ����� �� ���� ��� ������������
��� ������������ �������� ��� �������
��� ��������� ��� �������� �� ��� �������
��� ������� �� �� ������� ��� ��
��������������
��� � ������� �� ������� �� � ����������

����

�� ��� ��� ���� �� �������� ��� � ����������
�� ��� ���� �� ���� ���� �������� ��������
�� �� ���� ��� ������ �� ��� ��
�� ����� ��� ������ ���� ��������� ��� ���
��� ���� ��������� ���� ���� �� ���������
��� ���������������� ��� ����� ����� ����
���� �� �����
��� ��������� ���� �� �� ��������� ����
��������� ��� �������
��� ��� ����������� ����� ��������� ���
������� ���������
��� �� ������ ���� ��� ���� ����� �� �� �������
�������
��� ��� ������ ������ ��� ������ ����� �������
��� ������� ��������� ������ �� ���� ��� ��� ����
�� ��������

� � �

�

� �

�

� � ��

��

�� �� ��

��

��

�� ��

��

��

�� ��

������

�� ���������� �� � ������ ��� �� ���������
�� ����� ��� ����� ��� ������� �� ��� ������
�� ��������� ���� ������ �� ��� ��������
�� ���� ��� ��� �� ��� ���
�� ������������������������ ���������� ����
���������
�� ��� �� ��� �������� ��� ��� �������� ����
��� ��� ������ ���� �� ������ ��� ������� �������� ����
��� ����� ��� ������ ��
��� ��� ������� ����� �� ���� �� ����� ���������
��� ����� ����� �� ���� ��� ������������
��� ������������ �������� ��� �������
��� ��������� ��� �������� �� ��� �������
��� ������� �� �� ������� ��� �� ��������������
��� � ������� �� ������� �� � ����������

����

�� ��� ��� ���� �� �������� ��� � ����������
�� ��� ���� �� ���� ���� �������� ��������
�� �� ���� ��� ������ �� ��� ��
�� ����� ��� ������ ���� ��������� ��� ���
��� ���� ��������� ���� ���� �� ���������
��� ���������������� ��� ����� ����� ���� ���� ��
�����
��� ��������� ���� �� �� ��������� ���� ���������
��� �������
��� ��� ����������� ����� ��������� ��� �������
���������
��� �� ������ ���� ��� ���� ����� �� �� �������
�������
��� ��� ������ ������ ��� ������ ����� �������
��� ������� ��������� ������ �� ���� ��� ��� ���� ��
��������

crossword puzzle

the observer pattern

you are here 4 77

Exercise
solutions

Sharpen your pencil

Design Principle

Identify the aspects of your application that
vary and separate them from what stays the
same.

Design Principle

Program to an interface, not an implementation.

Design Principle

Favor composition over inheritance.

The thing that varies in the Observer Pattern
is the state of the Subject and the number and
types of Observers. With this pattern, you can
vary the objects that are dependent on the state
of the Subject, without having to change that
Subject. That’s called planning ahead!

Both the Subject and Observer use interfaces.
The Subject keeps track of objects implement-
ing the Observer interface, while the observers
register with, and get notified by, the Subject
interface. As we’ve seen, this keeps things nice
and loosely coupled.

The Observer Pattern uses composition to compose
any number of Observers with their Subjects.
These relationships aren’t set up by some kind of
inheritance hierarchy. No, they are set up at
runtime by composition!

Design
Principle
Challenge

❏ A. We are coding to concrete
implementations, not interfaces.

❏ B. For every new display element we need
to alter code.

❏ C. We have no way to add display
elements at run time.

❏ D. The display elements don’t implement a
common interface.

❏ E. We haven’t encapsulated what changes.

❏ F. We are violating encapsulation of the
WeatherData class.

Based on our first implementation, which of the following apply?
(Choose all that apply.)

78 Chapter 2

�
�

� � � �
�

�
�

� � � � � � � �

�
�

� � � � � �

�
�

� � �
�

� � � � � � �

�
�

� �

�
�

� � �
�

� � � � � � � � � � �
��

�
��

� � � �

� � �
��

� � � � � �
��

� � � �
��

�

� � � � �
��

� � �

� � � � � �

� � � � �
��

�

� � � �
��

� �
��

� � � �

� � � � � � �

� � � � �
��

� � � � � � �

�
��

� � � � � � � � � � � �

� � �

�
��

� � � � � � � � � �
��

� � � � � � � �

������

�� ���������� �� � ������ ��� �� ��������� �������
�� ����� ��� ����� ��� ������� �� ��� ������
�����������
�� ��������� ���� ������ �� ��� �������� ��������
�� ���� ��� ��� �� ��� ��� �����
�� ������������������������ ���������� ����
��������� ����������
�� ��� �� ��� �������� ��� ��� �������� ����
����������������
��� ��� ������ ���� �� ������ ��� ������� �������� ����
��� ����� ��� ������ �� ������������
��� ��� ������� ����� �� ���� �� ����� ���������
������
��� ����� ����� �� ���� ��� ������������ �������
��� ������������ �������� ��� ������� ����������
��� ��������� ��� �������� �� ��� �������
�����������
��� ������� �� �� ������� ��� �� ��������������
�����������
��� � ������� �� ������� �� � ���������� �����������

����

�� ��� ��� ���� �� �������� ��� � ����������
���������
�� ��� ���� �� ���� ���� �������� �������� �������
�� �� ���� ��� ������ �� ��� �� ���������������
�� ����� ��� ������ ���� ��������� ��� ���
������������
��� ���� ��������� ���� ���� �� ��������� �������
��� ���������������� ��� ����� ����� ���� ���� ��
����� �����������
��� ��������� ���� �� �� ��������� ���� ���������
��� ������� ����������
��� ��� ����������� ����� ��������� ��� �������
��������� ������������
��� �� ������ ���� ��� ���� ����� �� �� �������
������� �������
��� ��� ������ ������ ��� ������ ����� ������� ������
��� ������� ��������� ������ �� ���� ��� ��� ���� ��
�������� ������

Exercise
solutions

import java.util.Ob
servable;

import java.util.Ob
server;

public class ForecastDisplay im
plements

Observer, DisplayElement {

private fl oat currentPressure = 29.92f;
private fl oat lastPressure;

public ForecastDisplay(Obs
ervable

observable) {

 observable.addObserver(this);

public void u
pdate(Observa

ble observabl
e,

 Object ar
g) {

if (observable instanceof WeatherData) {

WeatherData weatherData = (WeatherData)observable;

lastPressure = currentPressure;

currentPressure = weatherData.getPressure();

public voi
d display(

) {

 // dis
play code

here

}

currentPressure = weatherData.getPressure();

display();

public void u
pdate(Observa

ble observabl
e,

}

display();
}

public voi
d display(

) {

 // dis
play code

here

}

}

Code Magnets

exercise solutions

this is a new chapter 79

Just call this chapter “Design Eye for the Inheritance Guy.”
We’ll re-examine the typical overuse of inheritance and you’ll learn how to decorate

your classes at runtime using a form of object composition. Why? Once you know the

techniques of decorating, you’ll be able to give your (or someone else’s) objects new

responsibilities without making any code changes to the underlying classes.

Decorating Objects

3 the DecoratorPattern

I used to think real men
subclassed everything. That was

until I learned the power of
extension at runtime, rather than
at compile time. Now look at me!

g

h
g

80 Chapter 3

Starbuzz Coffee has made a name for itself as the
fastest growing coffee shop around. If you’ve seen one
on your local corner, look across the street; you’ll see
another one.

Because they’ve grown so quickly, they’re scrambling
to update their ordering systems to match their
beverage offerings.

When they fi rst went into business they designed their
classes like this...

Welcome to Starbuzz Coffee

Beverage is an abstract cl
ass,

subclassed by all beverag
es

offered in the coffee s
hop.

Each subclass implements cost() to return the cost of the beverage.

cost()

Espresso

cost()

Decaf

cost()

DarkRoast

cost()

HouseBlend

Beverage

description

getDescription()
cost()

// Other useful methods...

The description instance variable
is set in each subclass and holds a
description of the beverage, like
“Most Excellent Dark Roast”.

The getDescription() method
returns the description.

The cost() method is
abstract; subclassses
need to define their
own implementation.

the starbuzz story

the decorator pattern

you are here 4 81

Beverage

description

getDescription()
cost()

// Other useful methods...

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

 Here’s their fi rst attempt...

cost()

HouseBlendWithSteamedMilk
andCaramel

cost()

HouseBlendWithMocha

andCaramel

HouseBlendWithMocha

andCaramel

HouseBlendWithMocha

cost()

HouseBlendWithWhipandMocha

cost()

cost()

HouseBlendWithSteamedMilk
andSoy

cost()

cost()

HouseBlendWithSteamedMilk

HouseBlendWithSteamedMilk
andCaramelandCaramel
HouseBlendWithWhipandMocha

cost()

HouseBlendWithSteamedMilk
andMocha

andSoy

HouseBlendWithSteamedMilkHouseBlendWithSteamedMilkcost()

HouseBlendWithSoy

cost()cost()

cost()

HouseBlendWithWhip

cost()

HouseBlendWithSteamedMilk
andWhip

HouseBlendWithMochaHouseBlendWithMocha

HouseBlendWithSteamedMilk
andSoyandSoy

cost()

HouseBlendWithSoy

HouseBlendWithMochaHouseBlendWithMocha

HouseBlendWithSteamedMilk
andSoyandSoy

HouseBlendWithSoy

cost()

HouseBlendWithSoyandMocha

cost()

HouseBlendWithWhipandSoy

HouseBlendWithWhipandMocha

HouseBlendWithSoyandMochaHouseBlendWithSoyandMocha
cost()

DarkRoastWithSteamedMilk
andCaramel

HouseBlendWithSoyHouseBlendWithSoyHouseBlendWithSoyHouseBlendWithSoycost()

DarkRoastWithMocha

andCaramel

DarkRoastWithMochaDarkRoastWithMochacost()

DarkRoastWithWhipandMocha

cost()

cost()

DarkRoastWithSteamedMilk
andSoy

HouseBlendWithWhip

HouseBlendWithSteamedMilk
andWhipandWhip

HouseBlendWithWhipandSoy

HouseBlendWithSteamedMilk
andWhipandWhip
cost()

DarkRoastWithSteamedMilk

DarkRoastWithSteamedMilk

cost()

DarkRoastWithSteamedMilk
andMocha

cost()

DarkRoastWithSoy

cost()

DarkRoastWithWhip

cost()

DarkRoastWithSteamedMilk
andWhip

DarkRoastWithSteamedMilk

DarkRoastWithWhip

DarkRoastWithSteamedMilk

DarkRoastWithWhip

cost()

DarkRoastWithSoyandMocha

cost()

andWhip

cost()

DarkRoastWithWhipandSoy

DarkRoastWithWhipandMochaDarkRoastWithWhipandMochacost()

DecafWithSteamedMilk
andCaramel

cost()

DecafWithMocha

andCaramel

DecafWithMochaDecafWithMochacost()

DecafWithWhipandMocha

cost()

cost()

DecafWithSteamedMilk
andSoy

DarkRoastWithSoyandMochaDarkRoastWithSoyandMocha
cost()

DecafWithSteamedMilk

DarkRoastWithSteamedMilk

DecafWithSteamedMilk
andCaramel

DarkRoastWithSteamedMilk

cost()

DecafWithSteamedMilk
andMocha

cost()

DecafWithSoy

DarkRoastWithSteamedMilk

cost()

DecafWithWhip

cost()

DecafWithSteamedMilk
andWhip

DecafWithWhipDecafWithWhip

DecafWithSteamedMilk

DecafWithWhipDecafWithWhipcost()

DecafWithSoyandMocha

andWhip
cost()

cost()

DecafWithWhipandSoy

andSoy

DecafWithSteamedMilk

DecafWithSoyandMochaDecafWithSoyandMocha
cost()

DarkRoastWithSoy

DecafWithWhipandMochaDecafWithWhipandMocha

cost()

EspressoWithSteamedMilk
andCaramel

DecafWithSteamedMilk

DecafWithWhipandMocha

cost()

EspressoWithMocha

DecafWithWhipandMochaDecafWithWhipandMocha

cost()

andCaramel

DecafWithWhipandMocha

cost()

EspressoWithMochaEspressoWithMocha
cost()

EspressoWithWhipandMocha

cost()

cost()

EspressoWithSteamedMilk
andSoyDecafWithSteamedMilk

andSoyandSoy

DecafWithSoyandMochaDecafWithSoyandMocha
cost()

DecafWithSteamedMilk
andSoyandSoy

cost()
cost()

EspressoWithSteamedMilk

EspressoWithSteamedMilk
andCaramel

cost()

EspressoWithSteamedMilk
andMocha

EspressoWithSteamedMilk
andSoyandSoy

EspressoWithSteamedMilk
cost()

DecafWithSoy

DecafWithSteamedMilk

DecafWithSoyandMochaDecafWithSoyandMochaDecafWithSoyandMochaDecafWithSoyandMocha

cost()

EspressoWhip

DecafWithSteamedMilkDecafWithSteamedMilkDecafWithSteamedMilkDecafWithSteamedMilkDecafWithSteamedMilkDecafWithSteamedMilk
cost()

EspressoWithSteamedMilk
andWhip

EspressoWhipEspressoWhip

EspressoWithSteamedMilk

cost()

DecafWithSoyandMocha

DecafWithSteamedMilk
andWhipandWhip

DecafWithSteamedMilkDecafWithSteamedMilk
cost()

cost()

EspressoWithWhipandSoy

Each cost method computes the

cost of the coffee along w
ith the

other condiments in the order.

Whoa!
Can you say

“class explosion?”

82 Chapter 3

Well, let’s give it a try. Let’s start with the Beverage base
class and add instance variables to represent whether or
not each beverage has milk, soy, mocha and whip...

It’s pretty obvious that Starbuzz has created a maintenance nightmare for
themselves. What happens when the price of milk goes up? What do they do
when they add a new caramel topping?

Thinking beyond the maintenance problem, which of the design principles that
we’ve covered so far are they violating?

brain
powerA

Hint: they’re violating two of them in a big way!

This is stupid; why do we need
all these classes? Can’t we just use
instance variables and inheritance in

the superclass to keep track of the
condiments?

Beverage

description
milk
soy
mocha
whip

getDescription()
cost()

hasMilk()
setMilk()
hasSoy()
setSoy()
hasMocha()
setMocha()
hasWhip()
setWhip()

// Other useful methods..

These get and set the boo
lean

values for the condiments.

New boolean values for
each condiment.

Now we’ll implement cost() in Beverage (instead of
keeping it abstract), so that it can calculate the
costs associated with the condiments for a particular
beverage instance. Subclasses will still override
cost(), but they will also invoke the super version so
that they can calculate the total cost of the basic
beverage plus the costs of the added condiments.

violating design principles

the decorator pattern

you are here 4 83

cost()

Espresso

cost()

Decaf

cost()

DarkRoast

cost()

HouseBlend

Now let’s add in the subclasses, one
for each beverage on the menu:

Write the cost() methods for the following classes (pseudo-Java is okay):

Each cost() method needs to compute

the cost of the beverag
e and then

add in the condiments by calling the

superclass implementation of cost().

public class Beverage {
 public double cost() {

 }
}

public class DarkRoast extends Beverage {

 public DarkRoast() {
 description = “Most Excellent Dark Roast”;
 }

 public double cost() {

 }
}

Beverage

description
milk
soy
mocha
whip

getDescription()
cost()

hasMilk()
setMilk()
hasSoy()
setSoy()
hasMocha()
setMocha()
hasWhip()
setWhip()

// Other useful methods..

The superclass cost() will calculate the

costs for all of the cond
iments, while

the overridden cost() in
the subclasses

will extend that function
ality to

include costs for that sp
ecific

beverage type.

Sharpen your pencil

84 Chapter 3

See, five
classes total. This is
definitely the way to go.

I’m not so sure; I can
see some potential problems

with this approach by thinking
about how the design might need
to change in the future.

What requirements or other factors might change that will impact this design?

Price changes for condiments will force us to alter existing code.

New condiments will force us to add new methods and alter the cost method in the superclass.

We may have new beverages. For some of these beverages (iced tea?), the condiments
may not be appropriate, yet the Tea subclass will still inherit methods like hasWhip().

What if a customer wants a double mocha?

Sharpen your pencil

Your turn:

As we saw
 in

Chapte
r 1, t

his is

a ver
y bad

 idea!

impact of change

the decorator pattern

you are here 4 85

Master and Student...

Master: Grasshopper, it has been some time since our last
meeting. Have you been deep in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, I have
learned that it doesn’t always lead to the most flexible or

maintainable designs.

Master: Ah yes, you have made some progress. So, tell me my student, how
then will you achieve reuse if not through inheritance?

Student: Master, I have learned there are ways of “inheriting” behavior at
runtime through composition and delegation.

Master: Please, go on...

Student: When I inherit behavior by subclassing, that behavior is set statically
at compile time. In addition, all subclasses must inherit the same behavior. If
however, I can extend an object’s behavior through composition, then I can do
this dynamically at runtime.

Master: Very good, Grasshopper, you are beginning to see the power of
composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects
through this technique, including responsibilities that were not even thought of
by the designer of the superclass. And, I don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining
your code?

Student: Well, that is what I was getting at. By dynamically composing objects,
I can add new functionality by writing new code rather than altering existing
code. Because I’m not changing existing code, the chances of introducing bugs
or causing unintended side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. I would like for you to
go and meditate further on this topic... Remember, code should be closed (to
change) like the lotus flower in the evening, yet open (to extension) like the
lotus flower in the morning.

86 Chapter 3

The Open-Closed Principle

Design Principle

Classes should be open
for extension, but closed for

modifi cation.

Come on in; we’re
open. Feel free to extend

our classes with any new behavior you
like. If your needs or requirements change (and we
know they will), just go ahead and make your own
extensions.

Sorry, we’re closed.
That’s right, we spent
a lot of time getting this code correct and
bug free, so we can’t let you alter the existing code.
It must remain closed to modifi cation. If you don’t
like it, you can speak to the manager.

Grasshopper is on to one of the most important design principles:

Our goal is to allow classes to be easily extended to
incorporate new behavior without modifying existing code.
What do we get if we accomplish this? Designs that are
resilient to change and fl exible enough to take on new
functionality to meet changing requirements.

the open-closed principle

the decorator pattern

you are here 4 87

Q: Open for extension and closed
for modification? That sounds very
contradictory. How can a design be
both?

A: That’s a very good question. It
certainly sounds contradictory at first.
After all, the less modifiable something
is, the harder it is to extend, right?

As it turns out, though, there are some
clever OO techniques for allowing
systems to be extended, even if we can’t
change the underlying code. Think
about the Observer Pattern (in Chapter
2)... by adding new Observers, we can
extend the Subject at any time, without
adding code to the Subject. You’ll see
quite a few more ways of extending
behavior with other OO design
techniques.

Q: Okay, I understand Observable,
but how do I generally design
something to be extensible, yet closed
for modification?

A: Many of the patterns give us
time tested designs that protect your
code from being modified by supplying
a means of extension. In this chapter
you’ll see a good example of using the
Decorator pattern to follow the Open-
Closed principle.

Q: How can I make every part of
my design follow the Open-Closed
Principle?

A: Usually, you can’t. Making OO
design flexible and open to extension
without the modification of existing
code takes time and effort. In general,
we don’t have the luxury of tying down
every part of our designs (and it would
probably be wasteful). Following
the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

Q: How do I know which areas of
change are more important?

A: That is partly a matter of
experience in designing OO systems and
also a matter of knowing the domain
you are working in. Looking at other
examples will help you learn to identify
areas of change in your own designs.

While it may seem like a contradiction,
there are techniques for allowing code to be
extended without direct modif ication.

Be careful when choosing the areas of code
that need to be extended; applying the
Open-Closed Principle EVERYWHERE
is wasteful, unnecessary, and can lead to
complex, hard to understand code.

there are noDumb Questions

88 Chapter 3

Meet the Decorator Pattern

Okay, enough of the “Object
Oriented Design Club.” We have real
problems here! Remember us? Starbuzz
Coffee? Do you think you could use
some of those design principles to

actually help us?

Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well – we get class
explosions, rigid designs, or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate”
it with the condiments at runtime. For example, if the customer wants a
Dark Roast with Mocha and Whip, then we’ll:

1

2

Take a DarkRoast object

Decorate it with a Mocha object

3 Decorate it with a Whip object

4 Call the cost() method and rely on
delegation to add on the condiment costs

Okay, but how do you “decorate” an object, and how does delegation
come into this? A hint: think of decorator objects as “wrappers.” Let’s
see how this works...

meet the decorator pattern

the decorator pattern

you are here 4 89

Remember that D
arkRoast

inherits fro
m Beverage and

 has

a cost() method that
 computes

the cost of
 the drink.

 DarkRoast
cost()

 Mocha

cost()

 Whip

cost()

 Mocha

cost()

1

2

We start with our DarkRoast object.

The customer wants Mocha, so we create a Mocha
object and wrap it around the DarkRoast.

3 The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

The Mocha object is a dec
orator. Its

type mirrors the object it
 is decorating,

in this case, a Beverage. (By “mirror”,

we mean it is the same type..)

So, Mocha has a cost()
 method too,

and through polym
orphism we can treat

any Beverage wrapped in Mocha as

a Beverage, too (bec
ause Mocha is a

subtype of Beverage).

Whip is a decorator, so it also
mirrors DarkRoast’s type and
includes a cost() method.

Constructing a drink order with Decorators

So, a DarkRoast wrapped in Mocha and Whip is still
a Beverage and we can do anything with it we can do
with a DarkRoast, including call its cost() method.

 DarkRoast
cost()

 DarkRoast
cost()

90 Chapter 3

First, we call cost() on the

outmost decorator, Whip.

 Whip
 Mocha

 DarkRoast

Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.
Once it gets a cost, it will add on the cost of the Whip.

Whip calls cost() on Mocha.

Mocha adds its cost, 20

cents, to the result from

DarkRoast, and returns

the new total, $1.19.

4

.99.20.10$1.29

Whip adds its total, 10 cents,
to the result from Mocha, and
returns the final result—$1.29.

1

2

5

5

Okay, here’s what we know so far...

ß Decorators have the same supertype as the objects they decorate.

ß You can use one or more decorators to wrap an object.

ß Given that the decorator has the same supertype as the object it decorates, we can pass
around a decorated object in place of the original (wrapped) object.

ß The decorator adds its own behavior either before and/or after delegating to the object it
decorates to do the rest of the job.

ß Objects can be decorated at any time, so we can decorate objects dynamically at runtime
with as many decorators as we like.

Now let’s see how this all really works by looking at the
Decorator Pattern definition and writing some code.

3 Mocha calls cost() on
DarkRoast.

DarkRoast

returns its cost,

99 cents.

4

(You’ll see how in
a few pages.)

Key Point!

decorator characteristics

cost() cost()cost()

the decorator pattern

you are here 4 91

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a fl exible alternative to
subclassing for extending functionality.

The Decorator Pattern defined

Decorators implement the

same interface or abstr
act

class as the component they

are going to decorat
e.

methodA()

methodB()

// other methods

ConcreteComponent

component
methodA()

methodB()

// other methods

Component

methodA()

methodB()

// other methods

Decorator

The ConcreteDecorator has an
instance variable for the thing
it decorate (the Component the

Decorator wraps).

Decorators can add new methods; however, new
behavior is typically added by doing computation
before or after an existing method in the component.

Each decorator HAS-A
(wraps) a component, which
means the decorator has an
instance variable that holds
a reference to a component.

The ConcreteComponent
is the object we’re going
to dynamically add new
behavior to. It extends
Component.

Let’s fi rst take a look at the Decorator Pattern description:

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Each component can be used on its
own, or wrapped by a decorator.

Decorators can extend the
state of the component.

ConcereteDecoratorB

methodA()

methodB()

// other methods

Component wrappedObj

Object newState

ConcereteDecoratorA

methodA()

methodB()

newBehavior()

// other methods

Component wrappedObj

92 Chapter 3

Decorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

getDescription()

CondimentDecorator

getDescription()

cost()

// other useful methods

Beverage

description

Beverage beverage

cost()

getDescription()

Milk

cost()

HouseBlend

component

cost()

DarkRoast

cost()

Decaf

cost()cost()

Espresso

Beverage beverage

cost()

getDescription()

Soy
Beverage beverage

cost()

getDescription()

Beverage beverage

cost()

getDescription()

Mocha
Beverage beverage

cost()

getDescription()

Whip

The four c
oncrete

components,
one per

coffee t
ype.

And here are our condiment decorators; notice
they need to implement not only cost() but also
getDescription(). We’ll see why in a moment...

Beverage acts as our
abstract component class.

Before going further, think about how you’d implement the cost() method of
the coffees and the condiments. Also think about how you’d implement the
getDescription() method of the condiments.

brain
powerA

decorating beverages

the decorator pattern

you are here 4 93

Cubicle Conversation
Some confusion over Inheritance versus Composition

Mary

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?

Sue: True. I think the point is that it’s vital that the decorators have the same type as the
objects they are going to decorate. So here we’re using inheritance to achieve the type matching,
but we aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We
are acquiring new behavior not by inheriting it from a superclass, but by composing objects
together.

Mary: Okay, so we’re subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the composition of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a whole lot more
flexibility about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like... at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we’d have to go in and change existing code any time we
wanted new behavior.

Sue: Exactly.

Mary: I just have one more question. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already had an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if
the abstract class will work just fine.

Okay, I’m a little
confused...I thought we weren’t

going to use inheritance in this
pattern, but rather we were going

to rely on composition instead.

94 Chapter 3

Okay, I need for you to
make me a double mocha,

soy latte with whip.

New barista training

First, we call cost() on the

outmost decorator, Whip.

 Whip

cost()

 Mocha

 DarkRoast
cost()cost()

Whip calls cost() on Mocha.

Mocha adds its cost, 20

cents, to the result from

DarkRoast, and returns

the new total, $1.19.

.99.20.10$1.29

Whip adds its total, 10 cents,
to the result from Mocha, and
returns the fi nal result—$1.29.

1

2

5

5

3

DarkRoast

returns its cost,

99 cents.

4

Mocha calls cost() on
DarkRoast.

Sharpen your pencil

Make a picture for what happens when the order is for a
“double mocha soy latte with whip” beverage. Use the menu
to get the correct prices, and draw your picture using the
same format we used earlier (from a few pages back):

Starbuzz Coffee
Coffees
House Blend
Dark Roast
Decaf
Espresso

Condiments
Steamed Milk
Mocha
Soy
Whip

 .89
 .99
1.05
1.99

 .10
 .20
 .15
 .10

Draw your picture here.

This picture was for

a “dark roast
mocha

whip” beverage.

decorator training

94 Chapter 3

Starbuzz Coffee St
ar

bu
zz

 Coffee

HINT: you c
an make a

“doubl
e

mocha s
oy lat

te with whip”

by com
bining

HouseB
lend, S

oy,

two shot
s of M

ocha a
nd Whip!

the decorator pattern

you are here 4 95

Writing the Starbuzz code

It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t need to
change from Starbuzz’s original design. Let’s take a look:

public abstract class Beverage {
 String description = “Unknown Beverage”;

 public String getDescription() {
 return description;
 }

 public abstract double cost();
}

public abstract class CondimentDecorator extends Beverage {
 public abstract String getDescription();
}

Beverage is simple enough. Let’s implement the abstract
class for the Condiments (Decorator) as well:

Beverage is an abstr
act

class with the two methods

getDescription() and co
st().

getDescription is already
implemented for us, but we
need to implement cost()
in the subclasses.

First, we need to be

interchangeable with a Beverage,

so we extend the Beverage class.

We’re also going to require
that the condiment
decorators all reimplement the
getDescription() method. Again,
we’ll see why in a sec...

96 Chapter 3

Coding beverages

public class Espresso extends Beverage {

 public Espresso() {
 description = “Espresso”;
 }

 public double cost() {
 return 1.99;
 }
}

Starbuzz Coffee

Coffees

House Bl
end

Dark Roa
st

Decaf

Espresso

Condimen
ts

Steamed
Milk

Mocha

Soy
Whip

 .89
 .99
1.05
1.99

 .10
 .20
 .15
 .10

public class HouseBlend extends Beverage {
 public HouseBlend() {
 description = “House Blend Coffee”;
 }

 public double cost() {
 return .89;
 }
}

Now that we’ve got our base classes out of the way, let’s
implement some beverages. We’ll start with Espresso.
Remember, we need to set a description for the specifi c
beverage and also implement the cost() method.

First we extend the Beverage

class, since this is
a beverage.

To take care of the description, we
set this in the constructor for the
class. Remember the description instance
variable is inherited from Beverage.

Finally, we need to compute the cost of an
 Espresso. We don’t

need to worry about adding i
n condiments in this class, we just

need to return the
price of an Espresso: $1.99.

Okay, here’s another Beverage. All we
do is set the appropriate description,
“House Blend Coffee,” and then return
the correct cost: 89¢.

You can create the other two Beverage classses
(DarkRoast and Decaf) in exactly the same way.

implementing the beverages

the decorator pattern

you are here 4 97

Coding condiments

public class Mocha extends CondimentDecorator {
 Beverage beverage;

 public Mocha(Beverage beverage) {
 this.beverage = beverage;
 }

 public String getDescription() {
 return beverage.getDescription() + “, Mocha”;
 }

 public double cost() {
 return .20 + beverage.cost();
 }
}

If you look back at the Decorator Pattern class diagram, you’ll
see we’ve now written our abstract component (Beverage), we
have our concrete components (HouseBlend), and we have our
abstract decorator (CondimentDecorator). Now it’s time to
implement the concrete decorators. Here’s Mocha:

Mocha is a decorator, so we
extend CondimentDecorator. We’re going to instant

iate Mocha with

a reference to a Beverage using:

 (1) An instance variable t
o hold the

beverage we are wrapping.

 (2) A way to set this instan
ce

variable to the objec
t we are

wrapping. Here, we’re going to to pass

the beverage we’re wrapping to the

decorator’s construc
tor.

Now we need to compute the cost of our beve
rage

with Mocha. First, we delegate the call to the

object we’re decorating, so that it
 can compute the

cost; then, we add the cost of Mocha to the result.

We want our description to not only
include the beverage - say “Dark
Roast” - but also to include each
item decorating the beverage, for
instance, “Dark Roast, Mocha”. So
we first delegate to the object we are
decorating to get its description, then
append “, Mocha” to that description.

On the next page we’ll actually instantiate the beverage and
wrap it with all its condiments (decorators), but first...

Remember, CondimentDecorator

extends B
everage.

Sharpen your pencil Write and compile the code for the other Soy and Whip
condiments. You’ll need them to finish and test the application.

98 Chapter 3

public class StarbuzzCoffee {

 public static void main(String args[]) {
 Beverage beverage = new Espresso();
 System.out.println(beverage.getDescription()
 + “ $” + beverage.cost());

 Beverage beverage2 = new DarkRoast();
 beverage2 = new Mocha(beverage2);
 beverage2 = new Mocha(beverage2);
 beverage2 = new Whip(beverage2);
 System.out.println(beverage2.getDescription()
 + “ $” + beverage2.cost());

 Beverage beverage3 = new HouseBlend();
 beverage3 = new Soy(beverage3);
 beverage3 = new Mocha(beverage3);
 beverage3 = new Whip(beverage3);
 System.out.println(beverage3.getDescription()
 + “ $” + beverage3.cost());
 }
}

Serving some coffees

File Edit Window Help CloudsInMyCoffee

% java StarbuzzCoffee
Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49
House Blend Coffee, Soy, Mocha, Whip $1.34
%

Congratulations. It’s time to sit back, order a few coffees and marvel at
the flexible design you created with the Decorator Pattern.

Here’s some test code to make orders:

Order up an
espresso, no

 condiments

and print it
s descriptio

n and cost.

Make a DarkRoast object.

Finally, give us a HouseBlend
with Soy, Mocha, and Whip.

Now, let’s get those orders in:

We’re going to see a much better way of
creating decorated objects when we cover the
Factory Pattern (and the Builder Pattern,
which is covered in the appendix).

File Edit Window Help CloudsInMyCoffee

Wrap it with a Mocha.

Wrap it in a second Mocha.
Wrap it in a Whip.

testing the beverages

the decorator pattern

you are here 4 99

Our friends at Starbuzz have introduced sizes to their menu. You can now order
a coffee in tall, grande, and venti sizes (translation: small, medium, and large).
Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two
methods to the Beverage class: setSize() and getSize(). They’d also like for the
condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢
and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

Q: I’m a little worried about code
that might test for a specfic concrete
component – say, HouseBlend – and
do something, like issue a discount.
Once I’ve wrapped the HouseBlend
with decorators, this isn’t going to work
anymore.

A: That is exactly right. If you have
code that relies on the concrete component’s
type, decorators will break that code.
As long as you only write code against
the abstract component type, the use of
decorators will remain transparent to your
code. However, once you start writing code
against concrete components, you’ll want to
rethink your application design and your use
of decorators.

Q: Wouldn’t it be easy for some
client of a beverage to end up with
a decorator that isn’t the outermost
decorator? Like if I had a DarkRoast with
Mocha, Soy, and Whip, it would be easy
to write code that somehow ended up
with a reference to Soy instead of Whip,
which means it would not include Whip in
the order.

A: You could certainly argue that
you have to manage more objects with
the Decorator Pattern and so there is
an increased chance that coding errors
will introduce the kinds of problems you
suggest. However, decorators are typically
created by using other patterns like Factory
and Builder. Once we’ve covered these
patterns, you’ll see that the creation of the
concrete component with its decorator is
“well encapsulated” and doesn’t lead to
these kinds of problems.

Q: Can decorators know about the
other decorations in the chain? Say, I
wanted my getDecription() method to
print “Whip, Double Mocha” instead of
“Mocha, Whip, Mocha”? That would
require that my outermost decorator
know all the decorators it is wrapping.

A: Decorators are meant to add
behavior to the object they wrap. When
you need to peek at multiple layers into
the decorator chain, you are starting to
push the decorator beyond its true intent.
Nevertheless, such things are possible.
Imagine a CondimentPrettyPrint decorator
that parses the final decription and can print
“Mocha, Whip, Mocha” as “Whip, Double
Mocha.” Note that getDecription() could
return an ArrayList of descriptions to make
this easier.

there are noDumb Questions

Sharpen your pencil

100 Chapter 3

Real World Decorators: Java I/O

The large number of classes in the java.io package is... overwhelming. Don’t feel alone
if you said “whoa” the fi rst (and second and third) time you looked at this API. But
now that you know the Decorator Pattern, the I/O classes should make more sense
since the java.io package is largely based on Decorator. Here’s a typical set of
objects that use decorators to add functionality to reading data from a fi le:

LineNumberInputStre
am

BufferedInputStre
am

FileInputStream

FileInputStream
 is the component that’s

being decorate
d The Java I/O library

supplies severa
l components, includ

ing

FileInputStream
, StringBufferInputStr

eam,

ByteArrayInputStre
am and a few others.

All of these giv
e us a base com

ponent from

which to read b
ytes.

BufferedInputStream
is a concrete decorator.
BufferedInputStream adds
behavior in two ways: it
buffers input to improve
performance, and also augments
the interface with a new
method readLine() for reading
character-based input, a line
at a time.

LineNumberInputStream is
also a concrete decorator.
It adds the ability to
count the line numbers as
it reads data.

tr

tS

A text file for reading.

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

decorators in java i/o

the decorator pattern

you are here 4 101

FileInputStream ByteArrayInputStream FilterInputStreamStringBufferInputStream

InputStream

LineNumberInputStreamDataInputStreamBufferedInputStreamPushbackInputStream

Here’s our abstr
act component.

FilterInputStream
is an abstract
decorator.

These InputStreams act as
the concrete components that
we will wrap with decorators.
There are a few more we didn’t
show, like ObjectInputStream.

And finally, here are all our concrete
decorators.

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various input streams.

And you’ll see that the output streams have the same design. And you’ve
probably already found that the Reader/Writer streams (for character-based
data) closely mirror the design of the streams classes (with a few differences
and inconsistencies, but close enough to fi gure out what’s going on).

But Java I/O also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes
that can be overwhelming to a developer trying to use the Decorator-based
API. But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

Decorating the java.io classes

102 Chapter 3

Writing your own Java I/O Decorator

Okay, you know the Decorator Pattern, you’ve
seen the I/O class diagram. You should be ready to
write your own input decorator. No problem. I just have to

extend the FilterInputStream class
and override the read() methods.

public class LowerCaseInputStream extends FilterInputStream {
 public LowerCaseInputStream(InputStream in) {
 super(in);
 }

 public int read() throws IOException {
 int c = super.read();
 return (c == -1 ? c : Character.toLowerCase((char)c));
 }

 public int read(byte[] b, int offset, int len) throws IOException {
 int result = super.read(b, offset, len);
 for (int i = offset; i < offset+result; i++) {
 b[i] = (byte)Character.toLowerCase((char)b[i]);
 }
 return result;
 }
}

How about this: write a decorator that converts
all uppercase characters to lowercase in the
input stream. In other words, if we read in “I
know the Decorator Pattern therefore I RULE!”
then your decorator converts this to “i know the
decorator pattern therefore i rule!”

First, extend the FilterInputStream, the
abstract decorator for all InputStreams.

Now we need to implement two
read methods. They take a
byte (or an array of bytes)
and convert each byte (that
represents a character) to
lowercase if it’s an uppercase
character.

Don’t forget to
 import

java.io... (not s
hown)

write your own i/o decorator

REMEMBER: we don’t provide import and package
statements in the code listings. Get the complete
source code from the headfirstlabs web site. You’ll
find the URL on page xxxiii in the Intro.

the decorator pattern

you are here 4 103

public class InputTest {
 public static void main(String[] args) throws IOException {
 int c;
 try {
 InputStream in =
 new LowerCaseInputStream(
 new BufferedInputStream(
 new FileInputStream(“test.txt”)));

 while((c = in.read()) >= 0) {
 System.out.print((char)c);
 }

 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Write some quick code to test the I/O decorator:

% java InputTest
i know the decorator pattern therefore i rule!
%

File Edit Window Help DecoratorsRule

Give it a spin:

Set up the FileInputStream

and decorate i
t, first with

a BufferedInputSt
ream

and then our b
rand new

LowerCaseInputStream
 filter.

Just use the stream to read
characters until the end of
file and print as we go.

I know the Decorator Pattern therefore I RULE!

test.txt fi le

Test out your new Java I/O Decorator

You need to
make this file.

104 Chapter 3

HeadFirst: Welcome Decorator Pattern. We’ve heard that you’ve been a bit
down on yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but
you know, I’ve got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I’ve got the power to add flexibility to
designs, that much is for sure, but I also have a dark side. You see, I can sometimes
add a lot of small classes to a design and this occasionally results in a design
that’s less than straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/O libraries. These are notoriously difficult for
people to understand at first. But if they just saw the classes as a set of wrappers
around an InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You’re still a great pattern, and
improving this is just a matter of public education, right?

Decorator: There’s more, I’m afraid. I’ve got typing problems: you see,
people sometimes take a piece of client code that relies on specific types and
introduce decorators without thinking through everything. Now, one great thing
about me is that you can usually insert decorators transparently and
the client never has to know it’s dealing with a decorator. But like I
said, some code is dependent on specific types and when you start introducing
decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful
when inserting decorators, I don’t think this is a reason to be too down on
yourself.

Decorator: I know, I try not to be. I also have the problem that introducing
decorators can increase the complexity of the code needed to instantiate the
component. Once you’ve got decorators, you’ve got to not only instantiate the
component, but also wrap it with who knows how many decorators.

HeadFirst: I’ll be interviewing the Factory and Builder patterns next week – I
hear they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs
and staying true to the Open-Closed Principle, so keep your chin up and think
positively!

Decorator: I’ll do my best, thank you.

This week’s interview:
Confessions of a Decorator

Patterns Exposed

decorator interview

the decorator pattern

you are here 4 105

Tools for your Design Toolbox BULLET POINTS
ß Inheritance is one form of

extension, but not necessarily
the best way to achieve flexibility
in our designs.

ß In our designs we should allow
behavior to be extended without
the need to modify existing code.

ß Composition and delegation
can often be used to add new
behaviors at runtime.

ß The Decorator Pattern provides
an alternative to subclassing for
extending behavior.

ß The Decorator Pattern involves
a set of decorator classes that
are used to wrap concrete
components.

ß Decorator classes mirror the
type of the components they
decorate. (In fact, they are the
same type as the components
they decorate, either through
inheritance or interface
implementation.)

ß Decorators change the behavior
of their components by adding
new functionality before and/or
after (or even in place of) method
calls to the component.

ß You can wrap a component with
any number of decorators.

ß Decorators are typically
transparent to the client of the
component; that is, unless
the client is relying on the
component’s concrete type.

ß Decorators can result in many
small objects in our design, and
overuse can be complex.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics
Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for

extension but
closed for

modification.

OO Principles

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns

You’ve got another chapter under
your belt and a new principle and
pattern in the toolbox.

Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

We now have the Open-Closed
Principle to guide us. We’re going
to strive to design our system
so that the closed parts are
isolated from our new extensions.

And here’s our first
 pattern for creat

ing designs

that satisfy the O
pen-Closed Principle. Or was it

really the first?
Is there another p

attern we’ve

used that follows this principle as w
ell?

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automatically

And here’s our first
 pattern for creat

ing designs

And here’s our first
 pattern for creat

ing designs

that satisfy the O
pen-Closed Principle. Or was it

And here’s our first
 pattern for creat

ing designs

that satisfy the O
pen-Closed Principle. Or was it

that satisfy the O
pen-Closed Principle. Or was it

And here’s our first
 pattern for creat

ing designs

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

the decorator pattern

you are here 4 107

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee in
tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage class:
setSize() and getSize(). They’d also like for the condiments to be charged according to size, so
for instance, Soy costs 10¢, 15¢, and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

Exercise solutions

public class Soy extends CondimentDecorator {
 Beverage beverage;

 public Soy(Beverage beverage) {
 this.beverage = beverage;
 }

 public int getSize() {
 return beverage.getSize();
 }

 public String getDescription() {
 return beverage.getDescription() + “, Soy”;
 }

 public double cost() {
 double cost = beverage.cost();
 if (getSize() == Beverage.TALL) {
 cost += .10;
 } else if (getSize() == Beverage.GRANDE) {
 cost += .15;
 } else if (getSize() == Beverage.VENTI) {
 cost += .20;
 }
 return cost;
 }
}

Now we need to propagat
e the

getSize() method to the wrapped

beverage. We should also move this

method to the abst
ract class since

it’s used in all cond
iment decorators.

Here we get the size (which
propagates all the way to the
concrete beverage) and then
add the appropriate cost.

this is a new chapter 109

4 the Factory Pattern

Get ready to bake some loosely coupled OO designs. There is more to

making objects than just using the new operator. You’ll learn that instantiation is an activity that

shouldn’t always be done in public and can often lead to coupling problems. And you don’t want

that, do you? Find out how Factory Patterns can help save you from embarrasing dependencies.

Baking with OO Goodnessg

h

g

110 Chapter 4

Okay, it’s been three chapters
and you still haven’t answered my

question about new. We aren’t supposed
to program to an implementation but

every time I use new, that’s exactly
what I’m doing, right?

Yes, when you use new you are certainly instantiating a concrete
class, so that’s definitely an implementation, not an interface. And
it’s a good question; you’ve learned that tying your code to a
concrete class can make it more fragile and less flexible.

Duck duck;

if (picnic) {
 duck = new MallardDuck();
} else if (hunting) {
 duck = new DecoyDuck();
} else if (inBathTub) {
 duck = new RubberDuck();
}

Here we’ve got several concrete classes being instantiated, and the
decision of which to instantiate is made at runtime depending on
some set of conditions.

When you see code like this, you know that when it comes time for
changes or extensions, you’ll have to reopen this code and examine
what needs to be added (or deleted). Often this kind of code ends
up in several parts of the application making maintenance and
updates more difficult and error-prone.

Duck duck = new MallardDuck();

We want to use interfaces to keep code flexible.
But we have to create an

instance of a concrete cl
ass!

When you have a whole set of related concrete classes, often you’re
forced to write code like this:

We have a bunch of differe
nt

duck classes, and we don’t know

until runtime which one we need

to instantiate.

When you see “new”, think “concrete”.

thinking about “new”

the factory pattern

you are here 4 111

Technically there’s nothing wrong with new, after all, it’s a
fundamental part of Java. The real culprit is our old friend
CHANGE and how change impacts our use of new.

By coding to an interface, you know you can insulate yourself
from a lot of changes that might happen to a system down
the road. Why? If your code is written to an interface, then
it will work with any new classes implementing that interface
through polymorphism. However, when you have code
that makes use of lots of concrete classes, you’re looking for
trouble because that code may have to be changed as new
concrete classes are added. So, in other words, your code
will not be “closed for modification.” To extend it with new
concrete types, you’ll have to reopen it.

So what can you do? It’s times like these that you can fall back
on OO Design Principles to look for clues. Remember, our
first principle deals with change and guides us to identify the
aspects that vary and separate them from what stays the same.

But you have to create
an object at some point and

Java only gives us one way to
create an object, right? So

what gives?

How might you take all the parts of your application that instantiate concrete classes and
separate or encapsulate them from the rest of your application?

brain
powerA

Remember that designs should be “open for extension but closed for modification” - see Chapter 3 for a review.

What’s wrong with “new”?

112 Chapter 4

Identifying the aspects that vary

Let’s say you have a pizza shop, and as a cutting-edge pizza store
owner in Objectville you might end up writing some code like this:

Pizza orderPizza() {

 Pizza pizza = new Pizza();

 pizza.prepare();

 pizza.bake();

 pizza.cut();

 pizza.box();

 return pizza;

}

For flexibility, we really want this to be an abstract class or interface, but we can’t directly instantiate either of those.

So then you’d add some code that determines the appropriate type of pizza
and then goes about making the pizza:

We’re now passing in
the type of pizza to
orderPizza.

Based on the type of pizza, we instantiate the correct concrete class and assign it to the pizza instance variable. Note that each pizza here has to implement the Pizza interface.

Once we have a Pizza, we prepare it
(you know, roll the dough, put on the
sauce and add the toppings & cheese),
then we bake it, cut it and box it!

Each Pizza subtype (CheesePizza,
VeggiePizza, etc.) knows how to
prepare itself.

Pizza orderPizza(String type) {

 Pizza pizza;

 if (type.equals(“cheese”)) {

 pizza = new CheesePizza();

 } else if (type.equals(“greek”) {

 pizza = new GreekPizza();

 } else if (type.equals(“pepperoni”) {

 pizza = new PepperoniPizza();

 }

 pizza.prepare();

 pizza.bake();

 pizza.cut();

 pizza.box();

 return pizza;

}

But you need more than one type of pizza...

identify what varies

the factory pattern

you are here 4 113

Pizza orderPizza(String type) {

 Pizza pizza;

 if (type.equals(“cheese”)) {

 pizza = new CheesePizza();

 } else if (type.equals(“greek”) {

 pizza = new GreekPizza();

 } else if (type.equals(“pepperoni”) {

 pizza = new PepperoniPizza();

 } else if (type.equals(“clam”) {

 pizza = new ClamPizza();

 } else if (type.equals(“veggie”) {

 pizza = new VeggiePizza();

 }

 pizza.prepare();

 pizza.bake();

 pizza.cut();

 pizza.box();

 return pizza;

}

You realize that all of your competitors have added a couple of trendy pizzas to
their menus: the Clam Pizza and the Veggie Pizza. Obviously you need to keep
up with the competition, so you’ll add these items to your menu. And you haven’t
been selling many Greek Pizzas lately, so you decide to take that off the menu:

This is what varies.

As the pizza
selection changes

over time, you’ll
have to modify this

code over and over
.

This is what we expect to stay
the same. For the most part,
preparing, cooking, and packaging
a pizza has remained the same
for years and years. So, we
don’t expect this code to change,
just the pizzas it operates on.

This code i
s NOT closed

for modificatio
n. If

the Pizza Shop
 changes

its pizza
offerings

, we

have to g
et into t

his

code and
modify it.

Clearly, dealing with which concrete class is instantiated is really messing up our
orderPizza() method and preventing it from being closed for modification. But now
that we know what is varying and what isn’t, it’s probably time to encapsulate it.

But the pressure is on to add more pizza types

114 Chapter 4

 if (type.equals(“cheese”)) {

 pizza = new CheesePizza();

 } else if (type.equals(“pepperoni”) {

 pizza = new PepperoniPizza();

 } else if (type.equals(“clam”) {

 pizza = new ClamPizza();

 } else if (type.equals(“veggie”) {

 pizza = new VeggiePizza();

 }

So now we know we’d be better off moving the object creation
out of the orderPizza() method. But how? Well, what
we’re going to do is take the creation code and move it out
into another object that is only going to be concerned with
creating pizzas.

Pizza orderPizza(String type) {

 Pizza pizza;

 pizza.prepare();

 pizza.bake();

 pizza.cut();

 pizza.box();

 return pizza;

}

First we pull the object

creation code out of the

orderPizza Method

Then we place that code in an obj
ect that

is only going to worry about how to create

pizzas. If any other objec
t needs a pizza

created, this is the object
 to come to.

We’ve got a name for this new object: we
call it a Factory.

Factories handle the details of object creation. Once we have
a SimplePizzaFactory, our orderPizza() method just becomes a
client of that object. Any time it needs a pizza it asks the pizza
factory to make one. Gone are the days when the orderPizza()
method needs to know about Greek versus Clam pizzas. Now
the orderPizza() method just cares that it gets a pizza, which
implements the Pizza interface so that it can call prepare(),
bake(), cut(), and box().

We’ve still got a few details to fill in here; for instance, what does
the orderPizza() method replace its creation code with? Let’s
implement a simple factory for the pizza store and find out...

What’s going to go here?

SimplePizzaFact
or

y

Encapsulating object creation

encapsulate object creation

the factory pattern

you are here 4 115

Building a simple pizza factory

We’ll start with the factory itself. What we’re going to do is define a class that encapsulates the object
creation for all pizzas. Here it is...

Here’s the code we
plucked out of the
orderPizza() method.

First w
e def

ine a

creat
ePizz

a() method
 in

the f
actor

y. This is
the

method
 all cl

ients
will use

 to

instan
tiate

new objec
ts.

Here’s our new class, the SimplePizzaFactory. It has

one job in life: creating pizzas for
 its clients.

This code is still parameterized by
the type of the pizza, just like our
original orderPizza() method was.

Q: What’s the advantage of this?
It looks like we are just pushing the
problem off to another object.

A: One thing to remember is that the
SimplePizzaFactory may have many clients.
We’ve only seen the orderPizza() method;
however, there may be a PizzaShopMenu
class that uses the factory to get pizzas
for their current description and price. We
might also have a HomeDelivery class that
handles pizzas in a different way than our

PizzaShop class but is also a client of the
factory.

So, by encapsulating the pizza creating
in one class, we now have only one
place to make modifications when the
implementation changes.

Don’t forget, we are also just about to
remove the concrete instantiations from our
client code!

Q: I’ve seen a similar design where
a factory like this is defined as a static
method. What is the difference?

A: Defining a simple factory as a
static method is a common technique and
is often called a static factory. Why use a
static method? Because you don’t need
to instantiate an object to make use of the
create method. But remember it also has
the disadvanage that you can’t subclass and
change the behavior of the create method.

there are noDumb Questions

public class SimplePizzaFactory {
 public Pizza createPizza(String type) {
 Pizza pizza = null;

 if (type.equals(“cheese”)) {
 pizza = new CheesePizza();
 } else if (type.equals(“pepperoni”)) {
 pizza = new PepperoniPizza();
 } else if (type.equals(“clam”)) {
 pizza = new ClamPizza();
 } else if (type.equals(“veggie”)) {
 pizza = new VeggiePizza();
 }
 return pizza;
 }
}

116 Chapter 4

public class PizzaStore {
 SimplePizzaFactory factory;

 public PizzaStore(SimplePizzaFactory factory) {
 this.factory = factory;
 }

 public Pizza orderPizza(String type) {
 Pizza pizza;

 pizza = factory.createPizza(type);

 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
 }

 // other methods here
}

Reworking the PizzaStore class

PizzaStore gets the factory passed to it in the constructor.

And the orderPizza() method uses the
factory to create its pizzas by simply
passing on the type of the order.

Notice that we’ve replaced the new
operator with a create method on the
factory object. No more concrete
instantiations here!

Now it’s time to fix up our client code. What we want to do is rely on the
factory to create the pizzas for us. Here are the changes:

Now we give PizzaStore a reference
to a SimplePizzaFactory.

We know that object composition allows us to change behavior dynamically at runtime (among
other things) because we can swap in and out implementations. How might we be able to use
that in the PizzaStore? What factory implementations might we be able to swap in and out?

brain
powerA

We don’t know about you, but we’re thinking New York, Chicago, and California style pizza factories (let’s
not forget New Haven, too)

simple factory

the factory pattern

you are here 4 117

The Simple Factory defined

The Simple Factory isn’t actually a Design Pattern; it’s more of a programming idiom.
But it is commonly used, so we’ll give it a Head First Pattern Honorable Mention.
Some developers do mistake this idiom for the “Factory Pattern,” so the next time
there is an awkward silence between you and another developer, you’ve got a nice
topic to break the ice.

Just because Simple Factory isn’t a REAL pattern doesn’t mean we shouldn’t check out
how it’s put together. Let’s take a look at the class diagram of our new Pizza Store:

Pattern
Honorable
Mention

Head F
irst

Honorable

Mention

Think of Simple Factory as a warm up. Next, we’ll explore two heavy duty patterns
that are both factories. But don’t worry, there’s more pizza to come!

This is the factory where we create
pizzas; it should be the only part
of our application that refers to
concrete Pizza classes..

This is the client
of the

factory. PizzaStore

now goes through th
e

SimplePizzaFactory to get

instances of pizz
a.

SimplePizzaFactory

createPizza()

PizzaPizzaStore

orderPizza()

ClamPizzaVeggiePizza

CheesePizza PepperoniPizza

prepare()

bake()

cut()

box()

These are our concrete products. Each product needs to implement the Pizza interface* (which in this case means “extend the abstract Pizza class”) and be concrete. As long as that’s the case, it can be created by the factory and handed back to the client.

This is the product of

the factory: pizza!

We’ve defined Pizza

as an abstract class

with some helpful
implementations that

can be overridden.

The create method is often

declared statically.

*Just another reminder: in design patterns, the phrase “implement an interface” does NOT always mean
“write a class the implements a Java interface, by using the “implements” keyword in the class declaration.” In
the general use of the phrase, a concrete class implementing a method from a supertype (which could be a
class OR interface) is still considered to be “implementing the interface” of that supertype.

118 Chapter 4

Franchising the pizza store

Your Objectville PizzaStore has done so well that you’ve trounced
the competition and now everyone wants a PizzaStore in their
own neighborhood. As the franchiser, you want to ensure the
quality of the franchise operations and so you want them to use
your time-tested code.

But what about regional differences? Each franchise might
want to offer different styles of pizzas (New York, Chicago, and
California, to name a few), depending on where the franchise
store is located and the tastes of the local pizza connoisseurs.

 PizzaStore

 NYPizzaFactor
y

ChicagoPizzaFac
to

ry

You want all the franchise pizza stores
to leverage your PizzaStore code, so the
pizzas are prepared in the same way.

One franchise wants a factory
that makes NY style pizzas:
thin crust, tasty sauce and
just a little cheese.

Another franchise
wants a factory that
makes Chicago style
pizzas; their customers
like pizzas with thick
crust, rich sauce, and
tons of cheese.

We’ve seen one approach...

If we take out SimplePizzaFactory and create three different
factories, NYPizzaFactory, ChicagoPizzaFactory and
CaliforniaPizzaFactory, then we can just compose the PizzaStore
with the appropriate factory and a franchise is good to go. That’s
one approach.

Let’s see what that would look like...

pizza franchise

the factory pattern

you are here 4 119

NYPizzaFactory nyFactory = new NYPizzaFactory();
PizzaStore nyStore = new PizzaStore(nyFactory);
nyStore.order(“Veggie”);

ChicagoPizzaFactory chicagoFactory = new ChicagoPizzaFactory();
PizzaStore chicagoStore = new PizzaStore(chicagoFactory);
chicagoStore.order(“Veggie”);

Here we create a factory
for making NY style pizzas.

Then we create a PizzaStore and pass it
a reference to the NY factory.

...and when we make pizzas, we
get NY-styled pizzas.

Likewise for the Chicago pizza stores: we create
a factory for Chicago pizzas and create a store
that is composed with a Chicago factory. When
we make pizzas, we get the Chicago flavored
ones

But you’d like a little more quality control...

So you test marketed the SimpleFactory idea, and what you
found was that the franchises were using your factory to
create pizzas, but starting to employ their own home grown
procedures for the rest of the process: they’d bake things a
little differently, they’d forget to cut the pizza and they’d use
third-party boxes.

Rethinking the problem a bit, you see that what you’d really
like to do is create a framework that ties the store and the
pizza creation together, yet still allows things to remain
flexible.

In our early code, before the SimplePizzaFactory, we had
the pizza-making code tied to the PizzaStore, but it wasn’t
flexible. So, how can we have our pizza and eat it too?

I’ve been making pizza for
years so I thought I’d add my
own “improvements” to the
PizzaStore procedures...

Not what you want in a good

franchise. You do NOT want to know

what he puts on his pizzas.

120 Chapter 4

public abstract class PizzaStore {

 public Pizza orderPizza(String type) {
 Pizza pizza;

 pizza = createPizza(type);

 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();

 return pizza;
 }

 abstract Pizza createPizza(String type);
}

There is a way to localize all the pizza making activities to the PizzaStore
class, and yet give the franchises freedom to have their own regional style.

What we’re going to do is put the createPizza() method back into PizzaStore,
but this time as an abstract method, and then create a PizzaStore
subclass for each regional style.

First, let’s look at the changes to the PizzaStore:

A framework for the pizza store

Now createPizza is back to being a
call to a method in the PizzaStore
rather than on a factory object.

All this looks just the same...

Now we’ve moved our factory object to this method.

Our “factory method” is now abstract in PizzaStore.

PizzaStore is now abstract (see why below).

Now we’ve got a store waiting for subclasses; we’re going to have a
subclass for each regional type (NYPizzaStore, ChicagoPizzaStore,
CaliforniaPizzaStore) and each subclass is going to make the decision about
what makes up a pizza. Let’s take a look at how this is going to work.

let the subclasses decide

the factory pattern

you are here 4 121

public Pizza createPizza(type) {

 if (type.equals(“cheese”)) {

 pizza = new NYStyleCheesePizza();

 } else if (type.equals(“pepperoni”) {

 pizza = new NYStylePepperoniPizza();

 } else if (type.equals(“clam”) {

 pizza = new NYStyleClamPizza();

 } else if (type.equals(“veggie”) {

 pizza = new NYStyleVeggiePizza();

 }

}

createPizza()

ChicagoStylePizzaStore

createPizza()

NYStylePizzaStore

public Pizza createPizza(type) {

 if (type.equals(“cheese”)) {

 pizza = new ChicagoStyleCheesePizza();

 } else if (type.equals(“pepperoni”) {

 pizza = new ChicagoStylePepperoniPizza();

 } else if (type.equals(“clam”) {

 pizza = new ChicagoStyleClamPizza();

 } else if (type.equals(“veggie”) {

 pizza = new ChicagoStyleVeggiePizza();

 }

}

Similarly, by using the
Chicago subclass, we get an
implementation of createPizza()
with Chicago ingredients.

If a franchise wants NY style
pizzas for its customers, it
uses the NY subclass, which has
its own createPizza() method,
creating NY style pizzas.

Each subclass overrides the createPizza()
method, while all subclasses make use
of the orderPizza() method defined
in PizzaStore. We could make the
orderPizza() method final if we really
wanted to enforce this.

createPizza()

orderPizza()

PizzaStore

Allowing the subclasses to decide

Remember, the PizzaStore already has a well-honed order system in the orderPizza()
method and you want to ensure that it’s consistent across all franchises.

What varies among the regional PizzaStores is the style of pizzas they make – New York
Pizza has thin crust, Chicago Pizza has thick, and so on – and we are going to push all
these variations into the createPizza() method and make it responsible for creating the
right kind of pizza. The way we do this is by letting each subclass of PizzaStore defi ne
what the createPizza() method looks like. So, we will have a number of concrete subclasses
of PizzaStore, each with its own pizza variations, all fi tting within the PizzaStore
framework and still making use of the well-tuned orderPizza() method.

Remember: createPizza() is
abstract in PizzaStore, so all
pizza store subtypes MUST
implement the method.

122 Chapter 4

I don’t get it. The
PizzaStore subclasses are just

subclasses. How are they deciding
anything? I don’t see any logical decision-

making code in NYStylePizzaStore....

Well, think about it from the point of view of the PizzaStore’s orderPizza() method: it is
defi ned in the abstract PizzaStore, but concrete types are only created in the subclasses.

createPizza()

orderPizza()

PizzaStore

createPizza()

ChicagoStylePizzaStore

createPizza()

orderPizza()

pizza = createPizza();

pizza.prepare();

pizza.bake();

pizza.cut();

pizza.box();

PizzaStore

createPizza()

NYStylePizzaStore

orderPizza() is defined in the abstr
act

PizzaStore, not the subclasses.
 So, the

method has no idea which subclass is actually

running the code and making the pizzas.

Now, to take this a little further, the orderPizza() method does a lot of things with a
Pizza object (like prepare, bake, cut, box), but because Pizza is abstract, orderPizza() has
no idea what real concrete classes are involved. In other words, it’s decoupled!

When orderPizza() calls createPizza(), one of your subclasses will be called into action to
create a pizza. Which kind of pizza will be made? Well, that’s decided by the choice of
pizza store you order from, NYStylePizzaStore or ChicagoStylePizzaStore.

So, is there a real-time decision that subclasses make? No, but from the perspective of
orderPizza(), if you chose a NYStylePizzaStore, that subclass gets to determine which
pizza is made. So the subclasses aren’t really “deciding” – it was you who decided by
choosing which store you wanted – but they do determine which kind of pizza gets made.

orderPizza() calls createPizza() to actually get

a pizza object. But which kind of pizza will it

get? The orderPizza() method can’t decide; it

doesn’t know how. So who does decide?

how do subclasses decide?

the factory pattern

you are here 4 123

Let’s make a PizzaStore

public class NYPizzaStore extends PizzaStore {
 Pizza createPizza(String item) {
 if (item.equals(“cheese”)) {
 return new NYStyleCheesePizza();
 } else if (item.equals(“veggie”)) {
 return new NYStyleVeggiePizza();
 } else if (item.equals(“clam”)) {
 return new NYStyleClamPizza();
 } else if (item.equals(“pepperoni”)) {
 return new NYStylePepperoniPizza();
 } else return null;
 }
}

The NYPizzaStore extends
PizzaStore, so it inherits the orderPizza() method (among others).

We’ve got to implement
createPizza(), since it is
abstract in PizzaStore.

Being a franchise has its benefits. You get all the PizzaStore
functionality for free. All the regional stores need to do is subclass
PizzaStore and supply a createPizza() method that implements
their style of Pizza. We’ll take care of the big three pizza styles for
the franchisees.

Here’s the New York regional style:

Once we’ve got our PizzaStore subclasses built, it will be time
to see about ordering up a pizza or two. But before we do that,
why don’t you take a crack at building the Chicago Style and
California Style pizza stores on the next page.

Here’s where we create our
concrete classes. For each type
of Pizza we create the NY style.

* Note that the orderPizza() method in the
superclass has no clue which Pizza we are creating; it
just knows it can prepare, bake, cut, and box it!

createPizza() returns a Pizza, and the

subclass is fully responsible fo
r which

concrete Pizza it instantiates

124 Chapter 4

Sharpen your pencil
We’ve knocked out the NYPizzaStore, just two more to go and we’ll be ready to franchise!
Write the Chicago and California PizzaStore implementations here:

factory method

the factory pattern

you are here 4 125

With just a couple of transformations to the PizzaStore we’ve gone from
having an object handle the instantiation of our concrete classes to a set of
subclasses that are now taking on that responsibility. Let’s take a closer look:

The subclasses of

PizzaStore handle ob
ject

instantiation for us
 in the

createPizza() method.

createPizza()

NYStylePizzaStore

createPizza()

ChicagoStylePizzaStore

Declaring a factory method

public abstract class PizzaStore {

 public Pizza orderPizza(String type) {
 Pizza pizza;

 pizza = createPizza(type);

 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();

 return pizza;
 }

 protected abstract Pizza createPizza(String type);

 // other methods here
}

All the responsibility for
instantiating Pizzas has been
moved into a method that
acts as a factory.

Code Up Close
A factory method handles object creation and encapsulates it in
a subclass. This decouples the client code in the superclass from
the object creation code in the subclass.

abstract Product factoryMethod(String type)

A factory method is abstract so the subclasses are counted on to handle object creation.

A factory method may be

parameterized (or not)

to select among several

variations of a pro
duct.

A factory method isolates the client (
the

code in the superclass, like
orderPizza())

from knowing what kind of concrete

Product is actually created
.

A factory method returns
a Product that is typically
used within methods defined
in the superclass.

126 Chapter 4

I like NY Style pizza... you
know, thin, crispy crust
with a little cheese and

really good sauce.

I like Chicago style deep dish
pizza with thick crust and

tons of cheese.

Ethan needs to order his pizza from a NY pizza store.
Joel needs to order his
pizza from a Chicago
pizza store. Same pizza
ordering method, but
different kind of pizza!

JoelEthan

Let’s see how it works: ordering pizzas with
the pizza factory method

1

2

First, Joel and Ethan need an instance of a PizzaStore. Joel needs to instantiate a
ChicagoPizzaStore and Ethan needs a NYPizzaStore.

With a PizzaStore in hand, both Ethan and Joel call the orderPizza() method and pass
in the type of pizza they want (cheese, veggie, and so on).

4 The orderPizza() method has no idea what kind of pizza was created, but it knows it is
a pizza and it prepares, bakes, cuts, and boxes it for Ethan and Joel.

3 To create the pizzas, the createPizza() method is called, which is defined in the
two subclasses NYPizzaStore and ChicagoPizzaStore. As we defined them, the
NYPizzaStore instantiates a NY style pizza, and the ChicagoPizzaStore instantiates
Chicago style pizza. In either case, the Pizza is returned to the orderPizza() method.

So how do they order?

ordering a pizza

the factory pattern

you are here 4 127

Let’s check out how these pizzas are
really made to order...

Behind
the Scenes

1

2

PizzaStore nyPizzaStore = new NYPizzaStore();

Let’s follow Ethan’s order: first we need a NY PizzaStore:

nyPizzaStore.orderPizza(“cheese”);

Now that we have a store, we can take an order:

3 The orderPizza() method then calls the createPizza()
method:

4 Finally we have the unprepared pizza in hand and the
orderPizza() method finishes preparing it:

Pizza pizza = createPizza(“cheese”);

 nyPizzaStore

Creates a instance of NYPizzaStore.

The orderPizza() method is called on

the nyPizzaStore instance (the method

defined inside PizzaStore runs).

 Pizza

c
r
e
a
t
e
P
i
z
z
a
(
“
c
h
e
e
s
e
”
)

Remember, createPizza(), the factory
method, is implemented in the subclass. In
this case it returns a NY Cheese Pizza.

pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

All of these methods are defined

in the specific pizza returne
d

from the factory method

createPizza(), defined in the

NYPizzaStore.The orderPizza() method gets

back a Pizza, without knowing

exactly what concrete class it is.

128 Chapter 4

We’re just missing one thing: PIZZA!

public abstract class Pizza {
 String name;
 String dough;
 String sauce;
 ArrayList toppings = new ArrayList();

 void prepare() {
 System.out.println(“Preparing “ + name);
 System.out.println(“Tossing dough...”);
 System.out.println(“Adding sauce...”);
 System.out.println(“Adding toppings: “);
 for (int i = 0; i < toppings.size(); i++) {
 System.out.println(“ “ + toppings.get(i));
 }
 }

 void bake() {
 System.out.println(“Bake for 25 minutes at 350”);
 }

 void cut() {
 System.out.println(“Cutting the pizza into diagonal slices”);
 }

 void box() {
 System.out.println(“Place pizza in official PizzaStore box”);
 }

 public String getName() {
 return name;
 }
}

Our PizzaStore isn’t going to be very popular
without some pizzas, so let’s implement them:

We’ll start with an abstrac
t

Pizza class and
 all the concr

ete

pizzas will derive from
 this.

Each Pizza has a name, a type of dough, a

type of sauce, and a set of toppings.

The abstract class provides
some basic defaults for baking,
cutting and boxing.

Preparation follows a
number of steps in a
particular sequence.

the pizza classes

REMEMBER: we don’t provide import and package statements in the
code listings. Get the complete source code from the headfirstlabs
web site. You’ll find the URL on page xxxiii in the Intro.

the factory pattern

you are here 4 129

public class NYStyleCheesePizza extends Pizza {
 public NYStyleCheesePizza() {
 name = “NY Style Sauce and Cheese Pizza”;
 dough = “Thin Crust Dough”;
 sauce = “Marinara Sauce”;

 toppings.add(“Grated Reggiano Cheese”);
 }
}

public class ChicagoStyleCheesePizza extends Pizza {
 public ChicagoStyleCheesePizza() {
 name = “Chicago Style Deep Dish Cheese Pizza”;
 dough = “Extra Thick Crust Dough”;
 sauce = “Plum Tomato Sauce”;

 toppings.add(“Shredded Mozzarella Cheese”);
 }

 void cut() {
 System.out.println(“Cutting the pizza into square slices”);
 }
}

Now we just need some concrete subclasses... how about defining
New York and Chicago style cheese pizzas?

The NY Pizza has its own
marinara style sauce and thin crust.

And one topping, reggiano cheese!

The Chicago style deep dish pizza has lots of mozzarella cheese!

The Chicago style pizza also overrides the cut()
method so that the pieces are cut into squares.

The Chicago Pizza uses plum
tomatoes as a sauce along
with extra thick crust.

130 Chapter 4

public class PizzaTestDrive {

 public static void main(String[] args) {
 PizzaStore nyStore = new NYPizzaStore();
 PizzaStore chicagoStore = new ChicagoPizzaStore();

 Pizza pizza = nyStore.orderPizza(“cheese”);
 System.out.println(“Ethan ordered a “ + pizza.getName() + “\n”);

 pizza = chicagoStore.orderPizza(“cheese”);
 System.out.println(“Joel ordered a “ + pizza.getName() + “\n”);
 }
}

You’ve waited long enough, time for some pizzas!

File Edit Window Help YouWantMootzOnThatPizza?

%java PizzaTestDrive

Preparing NY Style Sauce and Cheese Pizza
Tossing dough...
Adding sauce...
Adding toppings:
 Grated Regiano cheese
Bake for 25 minutes at 350
Cutting the pizza into diagonal slices
Place pizza in official PizzaStore box
Ethan ordered a NY Style Sauce and Cheese Pizza

Preparing Chicago Style Deep Dish Cheese Pizza
Tossing dough...
Adding sauce...
Adding toppings:
 Shredded Mozzarella Cheese
Bake for 25 minutes at 350
Cutting the pizza into square slices
Place pizza in official PizzaStore box
Joel ordered a Chicago Style Deep Dish Cheese Pizza

First we create two

different sto
res.

Then use one one store
to make Ethan’s order.

And the other for Joel’s.

Both pizzas get prepared,
the toppings added, and the
pizzas baked, cut and boxed.

Our superclass never had to
know the details, the subclass

handled all that just by
instantiating the right pizza.

make some pizzas

the factory pattern

you are here 4 131

createPizza()

ChicagoPizzaStore

createPizza()

NYPizzaStore

Pizza

NYStyleCheesePizzaNYStyleCheesePizza

NYStyleVeggiePizza

NYStyleClamPizza

NYStylePepperoniPizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

createPizza()

orderPizza()

PizzaStore

It’s finally time to meet the Factory Method Pattern

All factory patterns encapsulate object creation. The Factory Method Pattern encapsulates
object creation by letting subclasses decide what objects to create. Let’s check out these class
diagrams to see who the players are in this pattern:

Often the creator contains code that
depends on an abstract product, which
is produced by a subclass. The creator
never really knows which concrete
product was produced.

Since each franchise gets its
own subclass of PizzaStore,
it’s free to create its
own style of pizza by
implementing createPizza().

The createPizza() method
is our factory method. It
produces products.

This is our abstract creator class. It defines an abstract factory method that the subclasses implement to produce products.

These are the concrete
products - all the pizzas that
are produced by our stores.

Factories produce products,
and in the PizzaStore, our
product is a Pizza.

The Creator classes

The Product classes

Classes that produce

products are called

concrete creators

132 Chapter 4

Another perspective: parallel class hierarchies

We’ve seen that the factory method provides a framework by supplying an
orderPizza() method that is combined with a factory method. Another way to look
at this pattern as a framework is in the way it encapsulates product knowledge into
each creator.

Let’s look at the two parallel class hierarchies and see how they relate:

Pizza

The NYPizza
Store

 enca
psulat

es

all th
e kno

wledge
 abou

t how
 to

make N
Y style

 pizz
as. The Chicago

Pizza
Store

encap
sulate

s all t
he

knowledge
 abou

t how
 to

make C
hicago

 style
 pizz

as.

Notice how these
class hierarchies are
parallel: both have
abstract classes that
are extended by
concrete classes, which
know about specific
implementations for NY
and Chicago.

The factory method is the key
to encapsulating t

his knowledge.

createPizza()

ChicagoPizzaStore

createPizza()

NYPizzaStore

createPizza()

orderPizza()

PizzaStore

NYStyleClamPizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

NYStylePepperoniPizza

NYStyleCheesePizza

NYStyleClamPizza

NYStyleVeggiePizza

The Creator classesThe Product classes

creators and products

the factory pattern

you are here 4 133

 Design Puzzle
We need another kind of pizza for those crazy Californians (crazy in a good way
of course). Draw another parallel set of classes that you’d need to add a new
California region to our PizzaStore.

createPizza()

orderPizza()

PizzaStore

Okay, now write the fi ve most bizarre things you can think of to put on a pizza.
Then, you’ll be ready to go into business making pizza in California!

NYStyleCheesePizzaNYStyleCheesePizza

NYStyleVeggiePizza

NYStyleClamPizza

NYStylePepperoniPizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

createPizza()

ChicagoPizzaStore

createPizza()

NYPizzaStore

Your draw
ing here.

..

134 Chapter 4

 Factory Method Pattern defined

The Factory Method Pattern defi nes an interface
for creating an object, but lets subclasses decide which
class to instantiate. Factory Method lets a class defer
instantiation to subclasses.

It’s time to roll out the offi cial defi nition of the Factory Method Pattern:

As with every factory, the Factory Method Pattern gives us a way to encapsulate the
instantiations of concrete types. Looking at the class diagram below, you can see that the
abstract Creator gives you an interface with a method for creating objects, also known as the

“factory method.” Any other methods implemented in the abstract Creator are written to
operate on products produced by the factory method. Only subclasses actually implement
the factory method and create products.

As in the offi cial defi nition, you’ll often hear developers say that the Factory Method lets
subclasses decide which class to instantiate. They say “decides” not because the pattern
allows subclasses themselves to decide at runtime, but because the creator class is written
without knowledge of the actual products that will be created, which is decided purely by
the choice of the subclass that is used.

Product

ConcreteProduct

factoryMethod()

anOperation()

Creator

factoryMethod()

ConcreteCreator

The Creator is a class th
at contains

the implementations for all o
f the

methods to manipulate products
,

except for the fa
ctory method.

The ConcreteCreator
implements the
factoryMethod(), which is
the method that actually
produces products.

All products must implement

the same interface so tha
t the

classes which use the produ
cts

can refer to the i
nterface,

not the concrete c
lass.

The ConcreteCreator is responsible for
creating one or more concrete products. It
is the only class that has the knowledge of
how to create these products.

The abstract factoryMethod()
is what all Creator subclasses
must implement.

You could
 ask the

m what

“decides
” means, bu

t we bet

you now
 underst

and this

better
than th

ey do!

factory method defi ned

the factory pattern

you are here 4 135

Q: What’s the advantage of the Factory Method
Pattern when you only have one ConcreteCreator?

A: The Factory Method Pattern is useful if
you’ve only got one concrete creator because you are
decoupling the implementation of the product from
its use. If you add additional products or change a
product’s implementation, it will not affect your Creator
(because the Creator is not tightly coupled to any
ConcreteProduct).

Q: Would it be correct to say that our NY and
Chicago stores are implemented using Simple
Factory? They look just like it.

A: They’re similar, but used in different ways. Even
though the implementation of each concrete store looks
a lot like the SimplePizzaFactory, remember that the
concrete stores are extending a class which has defined
createPizza() as an abstract method. It is up to each
store to define the behavior of the createPizza() method.
In Simple Factory, the factory is another object that is
composed with the PizzaStore.

Q: Are the factory method and the Creator
always abstract?

A: No, you can define a default factory method
to produce some concrete product. Then you always
have a means of creating products even if there are no
subclasses of the Creator.

Q: Each store can make four different kinds
of pizzas based on the type passed in. Do all
concrete creators make multiple products, or do they
sometimes just make one?

A: We implemented what is known as the
parameterized factory method. It can make more than
one object based on a parameter passed in, as you
noticed. Often, however, a factory just produces one
object and is not parameterized. Both are valid forms
of the pattern.

Q: Your parameterized types don’t seem “type-
safe.” I’m just passing in a String! What if I asked for
a “CalmPizza”?

A: You are certainly correct and that would cause,
what we call in the business, a “runtime error.” There
are several other more sophisticated techniques that
can be used to make parameters more “type safe”, or,
in other words, to ensure errors in parameters can be
caught at compile time. For instance, you can create
objects that represent the parameter types, use static
constants, or, in Java 5, you can use enums.

Q: I’m still a bit confused about the difference
between Simple Factory and Factory Method. They
look very similar, except that in Factory Method, the
class that returns the pizza is a subclass. Can you
explain?

A: You’re right that the subclasses do look a lot
like Simple Factory, however think of Simple Factory
as a one shot deal, while with Factory Method you are
creating a framework that let’s the subclasses decide
which implementation will be used. For example, the
orderPizza() method in the Factory Method provides a
general framework for creating pizzas that relies on a
factory method to actually create the concrete classes
that go into making a pizza. By subclassing the
PizzaStore class, you decide what concrete products
go into making the pizza that orderPizza() returns.
Compare that with SimpleFactory, which gives you a
way to encapsulate object creation, but doesn’t give
you the flexibility of the Factory Method because there
is no way to vary the products you’re creating.

there are noDumb Questions

136 Chapter 4

Master and Student...

Master: Grasshopper, tell me how your training is going?

Student: Master, I have taken my study of “encapsulate what
varies” further.

Master: Go on...

Student: I have learned that one can encapsulate the code that
creates objects. When you have code that instantiates concrete
classes, this is an area of frequent change. I’ve learned a
technique called “factories” that allows you to encapsulate this
behavior of instantiation.

Master: And these “factories,” of what benefit are they?

Student: There are many. By placing all my creation code in one
object or method, I avoid duplication in my code and provide one
place to perform maintenance. That also means clients depend
only upon interfaces rather than the concrete classes required to
instantiate objects. As I have learned in my studies, this allows me
to program to an interface, not an implementation, and that makes
my code more flexible and extensible in the future.

Master: Yes Grasshopper, your OO instincts are growing. Do
you have any questions for your master today?

Student: Master, I know that by encapsulating object creation
I am coding to abstractions and decoupling my client code from
actual implementations. But my factory code must still use
concrete classes to instantiate real objects. Am I not pulling the
wool over my own eyes?

Master: Grasshopper, object creation is a reality of life; we must
create objects or we will never create a single Java program. But,
with knowledge of this reality, we can design our code so that we
have corralled this creation code like the sheep whose wool you
would pull over your eyes. Once corralled, we can protect and
care for the creation code. If we let our creation code run wild,
then we will never collect its “wool.”

Student: Master, I see the truth in this.

Master: As I knew you would. Now, please go and meditate on
object dependencies.

master and student

the factory pattern

you are here 4 137

public class DependentPizzaStore {

 public Pizza createPizza(String style, String type) {
 Pizza pizza = null;
 if (style.equals(“NY”)) {
 if (type.equals(“cheese”)) {
 pizza = new NYStyleCheesePizza();
 } else if (type.equals(“veggie”)) {
 pizza = new NYStyleVeggiePizza();
 } else if (type.equals(“clam”)) {
 pizza = new NYStyleClamPizza();
 } else if (type.equals(“pepperoni”)) {
 pizza = new NYStylePepperoniPizza();
 }
 } else if (style.equals(“Chicago”)) {
 if (type.equals(“cheese”)) {
 pizza = new ChicagoStyleCheesePizza();
 } else if (type.equals(“veggie”)) {
 pizza = new ChicagoStyleVeggiePizza();
 } else if (type.equals(“clam”)) {
 pizza = new ChicagoStyleClamPizza();
 } else if (type.equals(“pepperoni”)) {
 pizza = new ChicagoStylePepperoniPizza();
 }
 } else {
 System.out.println(“Error: invalid type of pizza”);
 return null;
 }
 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
 }
}

Sharpen your pencil
Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore that
doesn’t use a factory; make a count of the number of concrete pizza objects this class is
dependent on. If you added California style pizzas to this PizzaStore, how many objects would it
be dependent on then?

A very dependent PizzaStore

You can write
your answers here: number number with California too

Handles all the NY
style pizzas

Handles all the
Chicago style
pizzas

138 Chapter 4

Looking at object dependencies
When you directly instantiate an object, you are depending on its
concrete class. Take a look at our very dependent PizzaStore one
page back. It creates all the pizza objects right in the PizzaStore class
instead of delegating to a factory.

If we draw a diagram representing that version of the PizzaStore
and all the objects it depends on, here’s what it looks like:

 PizzaStor
e

If the implementation of these classes change, then we may have to modify in PizzaStore.

NYStyleVeggieP
iz

za

NYStyleClamPiz
za

N
YStylePepperon

iP
i z

za

ChicagoStylePepper
on

i P
iz

za

ChicagoStyleChe
es

eP
iz

za

ChicagoStyleVeg
gi

eP
iz

za

ChicagoStyleClam
Pi

zz
a

NYStyleCheese
Pi

zz
a

Because any changes to the concrete
implementations of pizzas affects the
PizzaStore, we say that the PizzaStore
“depends on” the pizza implementations.

Every new kind of pizza
we add creates another
dependency for PizzaStore.

This version of the
PizzaStore depends on all
those pizza objects, because
it’s creating them directly.

object dependencies

the factory pattern

you are here 4 139

Design Principle

Depend upon abstractions. Do not
depend upon concrete classes.

At first, this principle sounds a lot like “Program to an
interface, not an implementation,” right? It is similar;
however, the Dependency Inversion Principle makes an even
stronger statement about abstraction. It suggests that our
high-level components should not depend on our low-level
components; rather, they should both depend on abstractions.

But what the heck does that mean?

Well, let’s start by looking again at the pizza store diagram
on the previous page. PizzaStore is our “high-level
component” and the pizza implementations are our “low-
level components,” and clearly the PizzaStore is dependent
on the concrete pizza classes.

Now, this principle tells us we should instead write our code
so that we are depending on abstractions, not concrete
classes. That goes for both our high level modules and our
low-level modules.

But how do we do this? Let’s think about how we’d
apply this principle to our Very Dependent PizzaStore
implementation...

It should be pretty clear that reducing dependencies to
concrete classes in our code is a “good thing.” In fact, we’ve
got an OO design principle that formalizes this notion; it even
has a big, formal name: Dependency Inversion Principle.

Here’s the general principle:

The Dependency Inversion Principle

Yet another ph
rase you can

use to impress the exec
s in

the room! Your raise will

more than offs
et the cost

of this book, a
nd you’ll gain

the admiration of you
r

fellow developers.

A “high-level” component is a class
with behavior defined in terms of
other, “low level” components.
For example, PizzaStore is a
high-level component because
its behavior is defined in terms
of pizzas - it creates all the
different pizza objects, prepares,
bakes, cuts, and boxes them, while
the pizzas it uses are low-level
components.

140 Chapter 4

Applying the Principle
Now, the main problem with the Very Dependent PizzaStore is that it depends
on every type of pizza because it actually instantiates concrete types in its
orderPizza() method.

While we’ve created an abstraction, Pizza, we’re nevertheless creating concrete
Pizzas in this code, so we don’t get a lot of leverage out of this abstraction.

How can we get those instantiations out of the orderPizza() method? Well, as
we know, the Factory Method allows us to do just that.

So, after we’ve applied the Factory Method, our diagram looks like this:

 PizzaStore

 Pizza

NYStyleVeggieP
iz

za

NYStyleClamPiz
za

N
YStylePepperon

iP
i z

za

NYStyleCheese
Pi

zz
a

ChicagoStylePepper
on

iP
iz

za

ChicagoStyleChe
es

eP
iz

za

ChicagoStyleVeg
gi

eP
iz

za

ChicagoStyleClam
Pi

zz
a

The concrete pizza classes
 depend on

the Pizza abstraction too, bec
ause they

implement the Pizza interface (remember,

we’re using “interface” in t
he general

sense) in the Pizza abstract class.

Pizza is an abstract class...an abstraction.

PizzaStore now depends only

on Pizza, the abstract class.

After applying the Factory Method, you’ll notice that our high-level component,
the PizzaStore, and our low-level components, the pizzas, both depend on Pizza,
the abstraction. Factory Method is not the only technique for adhering to the
Dependency Inversion Principle, but it is one of the more powerful ones.

dependency inversion principle

the factory pattern

you are here 4 141

Okay, I get the dependency
part, but why is it called

dependency inversion?

The “inversion” in the name Dependency Inversion
Principle is there because it inverts the way you
typically might think about your OO design. Look
at the diagram on the previous page, notice that the
low-level components now depend on a higher level
abstraction. Likewise, the high-level component
is also tied to the same abstraction. So, the top-to-
bottom dependency chart we drew a couple of pages
back has inverted itself, with both high-level and low-
level modules now depending on the abstraction.

Let’s also walk through the thinking behind the typical
design process and see how introducing the principle
can invert the way we think about the design...

Where’s the “inversion” in Dependency
Inversion Principle?

142 Chapter 4

Hmmm, Pizza Stores prepare, bake and
box pizzas. So, my store needs to be

able to make a bunch of different
pizzas: CheesePizza, VeggiePizza,

ClamPizza, and so on...

Right, you start at top and follow things down to
the concrete classes. But, as you’ve seen, you don’t
want your store to know about the concrete pizza
types, because then it’ll be dependent on all those
concrete classes!

Now, let’s “invert” your thinking... instead of
starting at the top, start at the Pizzas and think
about what you can abstract.

Well, a CheesePizza and a
VeggiePizza and a ClamPizza

are all just Pizzas, so they
should share a Pizza interface.

Since I now have a Pizza
abstraction, I can design my

Pizza Store and not worry about
the concrete pizza classes.

Right! You are thinking about the abstraction
Pizza. So now, go back and think about the design
of the Pizza Store again.

Close. But to do that you’ll have to rely on a
factory to get those concrete classes out of
your Pizza Store. Once you’ve done that, your
different concrete pizza types depend only on an
abstraction and so does your store. We’ve taken
a design where the store depended on concrete
classes and inverted those dependencies (along
with your thinking).

Okay, so you need to implement a PizzaStore.
What’s the first thought that pops into your head?

Inverting your thinking...

invert your thinking

the factory pattern

you are here 4 143

A few guidelines to help you follow the
Principle...

But wait, aren’t these
guidelines impossible to follow?

If I follow these, I’ll never be
able to write a single program!

You’re exactly right! Like many of our principles, this is a guideline
you should strive for, rather than a rule you should follow all the time.
Clearly, every single Java program ever written violates these guidelines!

But, if you internalize these guidelines and have them in the back of
your mind when you design, you’ll know when you are violating the
principle and you’ll have a good reason for doing so. For instance, if you
have a class that isn’t likely to change, and you know it, then it’s not the
end of the world if you instantiate a concrete class in your code. Think
about it; we instantiate String objects all the time without thinking twice.
Does that violate the principle? Yes. Is that okay? Yes. Why? Because
String is very unlikely to change.

If, on the other hand, a class you write is likely to change, you have some
good techniques like Factory Method to encapsulate that change.

The following guidelines can help you avoid OO designs that violate
the Dependency Inversion Principle:

ß No variable should hold a reference to a concrete class.

ß No class should derive from a concrete class.

ß No method should override an implemented method of
any of its base classes.

If you use new, you’ll be holding

a reference to a concret
e class.

Use a factory to get arou
nd that!

If you derive from a concrete class,
you’re depending on a concrete class.
Derive from an abstraction, like an
interface or an abstract class.

If you override an implemented method, then your base class wasn’t really an abstraction to start with. Those methods implemented in the base class are meant to be shared by all your subclasses.

144 Chapter 4

Dough

Sauce

Cheese
Veggies

Pepperoni

The design for the PizzaStore is really shaping up: it’s got a
fl exible framework and it does a good job of adhering to
design principles.

Now, the key to Objectville Pizza’s success has
always been fresh, quality ingredients, and
what you’ve discovered is that with the
new framework your franchises have been
following your procedures, but a few franchises
have been substituting inferior ingredients
in their pies to lower costs and increase
their margins. You know you’ve got to do
something, because in the long term this is
going to hurt the Objectville brand!

So how are you going to ensure each franchise is using
quality ingredients? You’re going to build a factory that
produces them and ships them to your franchises!

Now there is only one problem with this plan: the franchises are located in
different regions and what is red sauce in New York is not red sauce in Chicago.
So, you have one set of ingredients that need to be shipped to New York and a
different set that needs to shipped to Chicago. Let’s take a closer look:

Ensuring consistency in your
ingredients

Cheese Pizza
 Marinara Sauce, Reggiano, Garlic

Veggie Pizza
 Marinara Sauce, Reggiano, Mushrooms,
 Onions, Red Peppers

Clam Pizza
 Marinara Sauce, Reggiano, Fresh Clams

Pepperoni Pizza
 Marinara Sauce, Reggiano, Mushrooms, Onions, Red Peppers, Pepperoni

New York
PizzaMenu

Cheese Pizza
 Plum Tomato Sauce, Mozzarella, Parmesan,

 Oregano

Veggie Pizza
 Plum Tomato Sauce, Mozzarella, Parmesan,

 Eggplant, Spinach, Black Olives

Clam Pizza
 Plum Tomato Sauce, Mozzarella, Parmesan, Clams

Pepperoni Pizza
 Plum Tomato Sauce, Mozzarella, Parmesan,
 Eggplant, Spinach, Black Olives, Pepperoni

Chicago
PizzaMenu

We’ve got the
same product
families (dough,
sauce, cheese,
veggies, meats)
but different
implementations
based on region.

Meanwhile, back at the PizzaStore...

families of ingredients

the factory pattern

you are here 4 145

 Families of ingredients...

New York uses one set of
ingredients and Chicago another.
Given the popularity of Objectville
Pizza it won’t be long before you
also need to ship another set of
regional ingredients to California,
and what’s next? Seattle?

For this to work, you are going to
have to fi gure out how to handle
families of ingredients.

ReggianoCheese

ThinCrustDough

Calamari

FreshClams

MarinaraSauce

BruschettaSauce

GoatCheese

VeryThinCrust

California

FrozenClams

PlumTomatoSauce

MozzarellaCheese

ThickCrustDough

New York

Chicago

All Objectville’s Pizzas are made from the same

components, but each
region has a differ

ent

implementation of those
components.

In total, these three reg
ions make up ingredient families, with

each region implementing a complete family of ingredients.

Each family consists of a type of dough,
a type of sauce, a type of cheese, and a
seafood topping (along with a few more we
haven’t shown, like veggies and spices).

146 Chapter 4

Building the ingredient factories

Now we’re going to build a factory to create our ingredients; the
factory will be responsible for creating each ingredient in the
ingredient family. In other words, the factory will need to create
dough, sauce, cheese, and so on... You’ll see how we are going to
handle the regional differences shortly.

Let’s start by defining an interface for the factory that is going to
create all our ingredients:

public interface PizzaIngredientFactory {

 public Dough createDough();
 public Sauce createSauce();
 public Cheese createCheese();
 public Veggies[] createVeggies();
 public Pepperoni createPepperoni();
 public Clams createClam();

}

For each ingredien
t we define a

create method in our int
erface.

If we’d had some common “machinery”

to implement in each instance of
factory, we could have made this an

abstract class instead...

Here’s what we’re going to do:

Lots of new classes here,
one per ingredient.

1

2

3

Build a factory for each region. To do this, you’ll create a subclass of
PizzaIngredientFactory that implements each create method

Implement a set of ingredient classes to be used with the factory, like
ReggianoCheese, RedPeppers, and ThickCrustDough. These classes can be
shared among regions where appropriate.

Then we still need to hook all this up by working our new ingredient
factories into our old PizzaStore code.

ingredient factories

the factory pattern

you are here 4 147

Building the New York ingredient factory

Okay, here’s the implementation for
the New York ingredient factory. This
factory specializes in Marinara sauce,
Reggiano Cheese, Fresh Clams...

public class NYPizzaIngredientFactory implements PizzaIngredientFactory {

 public Dough createDough() {
 return new ThinCrustDough();
 }

 public Sauce createSauce() {
 return new MarinaraSauce();
 }

 public Cheese createCheese() {
 return new ReggianoCheese();
 }

 public Veggies[] createVeggies() {
 Veggies veggies[] = { new Garlic(), new Onion(), new Mushroom(), new RedPepper() };
 return veggies;
 }

 public Pepperoni createPepperoni() {
 return new SlicedPepperoni();
 }
 public Clams createClam() {
 return new FreshClams();
 }
}

The NY ingredient factory implements

the interface for all ingredient
factories

For each ingredient
 in the

ingredient family, we create

the New York version.

For veggies, we return an array of
Veggies. Here we’ve hardcoded the
veggies. We could make this more
sophisticated, but that doesn’t really
add anything to learning the factory
pattern, so we’ll keep it simple.

The best sliced pepperoni. This
is shared between New York
and Chicago. Make sure you
use it on the next page when
you get to implement the
Chicago factory yourself

New York is on the coast; it
gets fresh clams. Chicago has
to settle for frozen.

148 Chapter 4

Sharpen your pencil
Write the ChicagoPizzaIngredientFactory. You can
reference the classes below in your implementation:

SlicedPepperoni

EggPlant
Spinach

BlackOlives

FrozenClams

PlumTomatoSauce

Mozzarella

ThickCrustDough

build a factory

the factory pattern

you are here 4 149

Reworking the pizzas...
We’ve got our factories all fired up and ready to produce quality ingredients; now we
just need to rework our Pizzas so they only use factory-produced ingredients. We’ll
start with our abstract Pizza class:

public abstract class Pizza {
 String name;
 Dough dough;
 Sauce sauce;
 Veggies veggies[];
 Cheese cheese;
 Pepperoni pepperoni;
 Clams clam;

 abstract void prepare();

 void bake() {
 System.out.println(“Bake for 25 minutes at 350”);
 }

 void cut() {
 System.out.println(“Cutting the pizza into diagonal slices”);
 }

 void box() {
 System.out.println(“Place pizza in official PizzaStore box”);
 }

 void setName(String name) {
 this.name = name;
 }

 String getName() {
 return name;
 }

 public String toString() {
 // code to print pizza here
 }
}

Each pizza holds a set of ingredients
that are used in its preparation.

Our other methods remain the same, with

the exception of the pre
pare method.

We’ve now made the prepare method abstract.
This is where we are going to collect the
ingredients needed for the pizza, which of
course will come from the ingredient factory.

150 Chapter 4

Reworking the pizzas, continued...

public class CheesePizza extends Pizza {
 PizzaIngredientFactory ingredientFactory;

 public CheesePizza(PizzaIngredientFactory ingredientFactory) {
 this.ingredientFactory = ingredientFactory;
 }

 void prepare() {
 System.out.println(“Preparing “ + name);
 dough = ingredientFactory.createDough();
 sauce = ingredientFactory.createSauce();
 cheese = ingredientFactory.createCheese();
 }
}

Now that you’ve got an abstract Pizza to work from, it’s time to create
the New York and Chicago style Pizzas – only this time around they will
get their ingredients straight from the factory. The franchisees’ days of
skimping on ingredients are over!

When we wrote the Factory Method code, we had a NYCheesePizza and
a ChicagoCheesePizza class. If you look at the two classes, the only thing
that differs is the use of regional ingredients. The pizzas are made just
the same (dough + sauce + cheese). The same goes for the other pizzas:
Veggie, Clam, and so on. They all follow the same preparation steps; they
just have different ingredients.

So, what you’ll see is that we really don’t need two classes for each pizza;
the ingredient factory is going to handle the regional differences for us.
Here’s the Cheese Pizza:

To make a pizza now, we need

a factory to provide th
e

ingredients. So each Pizza

class gets a factory pass
ed

into its constructor, and
 it’s

stored in an instance var
iable.

Here’s where the magic happens!

The prepare() method steps through creating

a cheese pizza, and each time it needs an
ingredient, it asks the factory to produce it.

decoupling ingredients

the factory pattern

you are here 4 151

Code Up Close
The Pizza code uses the factory it has been composed with to produce the ingredients used in the
pizza. The ingredients produced depend on which factory we’re using. The Pizza class doesn’t care;
it knows how to make pizzas. Now, it’s decoupled from the differences in regional ingredients and
can be easily reused when there are factories for the Rockies, the Pacific Northwest, and beyond.

sauce = ingredientFactory.createSauce();

We’re setting the Pizza instance variable to refer to the specific sauce used in this pizza.

The createSauce() method returns the sauce

that is used in its region.
If this is a NY

ingredient factory, then w
e get marinara sauce.

This is our ingredient factory.
The Pizza doesn’t care which
factory is used, as long as it is
an ingredient factory.

Let’s check out the ClamPizza as well:

public class ClamPizza extends Pizza {
 PizzaIngredientFactory ingredientFactory;

 public ClamPizza(PizzaIngredientFactory ingredientFactory) {
 this.ingredientFactory = ingredientFactory;
 }

 void prepare() {
 System.out.println(“Preparing “ + name);
 dough = ingredientFactory.createDough();
 sauce = ingredientFactory.createSauce();
 cheese = ingredientFactory.createCheese();
 clam = ingredientFactory.createClam();
 }
}

ClamPizza also stashes an
ingredient factory.

To make a clam pizza, the
prepare method collects the right
ingredients from its local factory.

If it’s a New York factory,
the clams will be fresh; if it’s
Chicago, they’ll be frozen.

152 Chapter 4

Revisiting our pizza stores
We’re almost there; we just need to make a quick trip to our
franchise stores to make sure they are using the correct
Pizzas. We also need to give them a reference to their local
ingredient factories:

Compare this version of the createPizza() method
to the one in the Factory Method implementation
earlier in the chapter.

brain
powerA

public class NYPizzaStore extends PizzaStore {

 protected Pizza createPizza(String item) {
 Pizza pizza = null;
 PizzaIngredientFactory ingredientFactory =
 new NYPizzaIngredientFactory();

 if (item.equals(“cheese”)) {

 pizza = new CheesePizza(ingredientFactory);
 pizza.setName(“New York Style Cheese Pizza”);

 } else if (item.equals(“veggie”)) {

 pizza = new VeggiePizza(ingredientFactory);
 pizza.setName(“New York Style Veggie Pizza”);

 } else if (item.equals(“clam”)) {

 pizza = new ClamPizza(ingredientFactory);
 pizza.setName(“New York Style Clam Pizza”);

 } else if (item.equals(“pepperoni”)) {
 pizza = new PepperoniPizza(ingredientFactory);
 pizza.setName(“New York Style Pepperoni Pizza”);

 }
 return pizza;
 }
}

The NY Store is composed with a NY

pizza ingredie
nt factory. T

his will

be used to pro
duce the ingre

dients

for all NY style pizzas.

We now pass each pizza the
factory that should be used to
produce its ingredients.

Look back one page and make sure
you understand how the pizza and
the factory work together!

For each type of Pizza, we
instantiate a new Pizza and give it the factory it needs to get its ingredients.

use the right ingredient factory

the factory pattern

you are here 4 153

What have we done?

That was quite a series of
code changes; what exactly
did we do?

We provided a means
 of creating a family of
ingredients for pizzas by
introducing a new type of
factory called an Abstract
Factory.

An Abstract Factory gives
us an interface for creating
a family of products. By
writing code that uses this
interface, we decouple our
code from the actual factory
that creates the products.
That allows us to implement
a variety of factories that
produce products meant for
different contexts – such as
different regions, different
operating systems, or
different look and feels.

Because our code is
decoupled from the actual
products, we can substitute
different factories to get
different behaviors (like
getting marinara instead of
plum tomatoes).

An Abstract Factory provides an interface for
a family of products. What’s a family? In our
case it’s all the things we need to make a pizza:
dough, sauce, cheese, meats and veggies.

From the abstract factory, we
derive one or more concrete
factories that produce the same
products, but with different
implementations.

ObjectvilleAbstract IngredientFactory

New York Chicago

Defines the
interface.

We then write our code so that it uses the
factory to create products. By passing in
a variety of factories, we get a variety of
implementations of those products. But
our client code stays the same.

 PizzaStore

Provides
implementations

for products.

Pizza made with

ingredients pr
oduced by

concrete fact
ory.

154 Chapter 4

More pizza for Ethan and Joel...

Ethan and Joel can’t get enough Objectville Pizza! What they
don’t know is that now their orders are making use of the
new ingredient factories. So now when they order...

I’m still lovin’ NY Style. I’m stickin’
with Chicago.

The first part of the order process hasn’t changed at
all. Let’s follow Ethan’s order again:

1

2

3

 nyPizzaStore

createPiz
za(“chees

e”)

PizzaStore nyPizzaStore = new NYPizzaStore();

First we need a NY PizzaStore:

nyPizzaStore.orderPizza(“cheese”);

Now that we have a store, we can take an order:

The orderPizza() method first calls the cre-
atePizza() method:

Pizza pizza = createPizza(“cheese”);

Creates an instance of NYPizzaStore.

the orderPizza() method is called on

the nyPizzaStore instance.

Behind
the Scenes

order some more pizza

the factory pattern

you are here 4 155

From here things change, because we
are using an ingredient factory

Pizza pizza = new CheesePizza(nyIngredientFactory);

When the createPizza() method is called, that’s
when our ingredient factory gets involved:

Next we need to prepare the pizza. Once the
prepare() method is called, the factory is asked
to prepare ingredients:

Finally we have the prepared pizza in hand and the
orderPizza() method bakes, cuts, and boxes the pizza.

Creates a instance of Pizza that is composed with the New York
ingredient factory. Pizza

p
r
e
p
a
r
e
(
)

nyIngredientFac
to

ry

holds

For Ethan’s pizza the New York

ingredient factory is used, a
nd so we

get the NY ingredients.

 void prepare() {
 dough = factory.createDough();
 sauce = factory.createSauce();
 cheese = factory.createCheese();
 }

Thin crust

Marinara

Reggiano

The ingredient factory is
 chosen and

instantiated in the PizzaStore and then

passed into the construc
tor of each pizza.

4

5

6

Behind
the Scenes

156 Chapter 4

 Abstract Factory Pattern defined

The Abstract Factory Pattern provides an interface
for creating families of related or dependent objects
without specifying their concrete classes.

We’re adding yet another factory pattern to our pattern family, one that lets us create families
of products. Let’s check out the offi cial defi nition for this pattern:

We’ve certainly seen that Abstract Factory allows a client to use an abstract interface to
create a set of related products without knowing (or caring) about the concrete products that
are actually produced. In this way, the client is decoupled from any of the specifi cs of the
concrete products. Let’s look at the class diagram to see how this all holds together:

CreateProductA()

CreateProductB()

<<interface>>
AbstractFactory

Client

ProductB1

<<interface>>
AbstractProductB

ProductA1

ProductB2

<<interface>>
AbstractProductA

ProductA2

CreateProductA()

CreateProductB()

ConcreteFactory2

CreateProductA()

CreateProductB()

ConcreteFactory1

The Client is written against the
abstract factory and then composed at
runtime with an actual factory.

The concrete factories implement the
different product families. To create a
product, the client uses one of these factories,
so it never has to instantiate a product object.

The AbstractFactory defines the
interface that all Concrete factories
must implement, which consists of a set
of methods for producing products. This is the product

family. Each concrete
factory can produce an
entire set of products.

abstract factory defi ned

the factory pattern

you are here 4 157

<<interface>>
Clams

<<interface>>
Cheese

<<interface>>
Sauce

<<interface>>
Dough

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

ChicagoPizzaIngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

NYPizzaIngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

<<interface>>
PizzaIngredientFactory

prepare()

// other methods

Pizza

Each factory produces a different
implementation for the family of products.

The abstract PizzaIngredientFactory
is the interface that defines how to
make a family of related products

- everything we need to make a pizza.

The clients of the
Abstract Factory are
the concrete instances of
the Pizza abstract class.

The job of the concrete
pizza factories is to
make pizza ingredients.
Each factory knows
how to create the right
objects for their region.

That’s a fairly complicated class
diagram; let’s look at it all in terms of
our PizzaStore:

ThickCrustDough ThinCrustDough

PlumTomatoSauce MarinaraSauce

Mozzarella Cheese ReggianoCheese

FreshClamsFrozenClams

158 Chapter 4

HeadFirst: Wow, an interview with two patterns at once! This is a first for us.

Factory Method: Yeah, I’m not so sure I like being lumped in with Abstract Factory,
you know. Just because we’re both factory patterns doesn’t mean we shouldn’t get our own
interviews.

HeadFirst: Don’t be miffed, we wanted to interview you together so we could help clear up
any confusion about who’s who for the readers. You do have similarities, and I’ve heard that
people sometimes get you confused.

Abstract Factory: It is true, there have been times I’ve been mistaken for Factory Method,
and I know you’ve had similar issues, Factory Method. We’re both really good at decoupling
applications from specific implementations; we just do it in different ways. So I can see why
people might sometimes get us confused.

Factory Method: Well, it still ticks me off. After all, I use classes to create and you use
objects; that’s totally different!

This week’s interview:
Factory Method and Abstract Factory, on each other

Patterns Exposed

I noticed that each method in the
Abstract Factory actually looks like a Factory

Method (createDough(), createSauce(), etc.).
Each method is declared abstract and the

subclasses override it to create some
object. Isn’t that Factory Method?

Good catch! Yes, often the methods of an Abstract Factory are
implemented as factory methods. It makes sense, right? The job of an
Abstract Factory is to define an interface for creating a set of products.
Each method in that interface is responsible for creating a concrete
product, and we implement a subclass of the Abstract Factory to
supply those implementations. So, factory methods are a natural way to
implement your product methods in your abstract factories.

Is that a Factory Method lurking inside the
Abstract Factory?

interview with factory patterns

the factory pattern

you are here 4 159

HeadFirst: Can you explain more about that, Factory
Method?

Factory Method: Sure. Both Abstract Factory and
I create objects – that’s our jobs. But I do it through
inheritance...

Abstract Factory: ...and I do it through object
composition.

Factory Method: Right. So that means, to create
objects using Factory Method, you need to extend a class
and override a factory method.

HeadFirst: And that factory method does what?

Factory Method: It creates objects, of course! I mean,
the whole point of the Factory Method Pattern is that
you’re using a subclass to do your creation for you. In
that way, clients only need to know the abstract type they
are using, the subclass worries about the concrete type.
So, in other words, I keep clients decoupled from the
concrete types.

Abstract Factory: And I do too, only I do it in a
different way.

HeadFirst: Go on, Abstract Factory... you said
something about object composition?

Abstract Factory: I provide an abstract type for
creating a family of products. Subclasses of this type
define how those products are produced. To use the
factory, you instantiate one and pass it into some code
that is written against the abstract type. So, like Factory
Method, my clients are decoupled from the actual
concrete products they use.

HeadFirst: Oh, I see, so another advantage is that you
group together a set of related products.

Abstract Factory: That’s right.

HeadFirst: What happens if you need to extend that
set of related products, to say add another one? Doesn’t
that require changing your interface?

Abstract Factory: That’s true; my interface has to
change if new products are added, which I know people
don’t like to do....

Factory Method: <snicker>

Abstract Factory: What are you snickering at,
Factory Method?

Factory Method: Oh, come on, that’s a big deal!
Changing your interface means you have to go in and
change the interface of every subclass! That sounds like a
lot of work.

Abstract Factory: Yeah, but I need a big interface
because I am used to create entire families of products.
You’re only creating one product, so you don’t really need
a big interface, you just need one method.

HeadFirst: Abstract Factory, I heard that you often use
factory methods to implement your concrete factories?

Abstract Factory: Yes, I’ll admit it, my concrete
factories often implement a factory method to create
their products. In my case, they are used purely to create
products...

Factory Method: ...while in my case I usually
implement code in the abstract creator that makes use of
the concrete types the subclasses create.

HeadFirst: It sounds like you both are good at what
you do. I’m sure people like having a choice; after all,
factories are so useful, they’ll want to use them in all
kinds of different situations. You both encapsulate
object creation to keep applications loosely coupled
and less dependent on implementations, which is really
great, whether you’re using Factory Method or Abstract
Factory. May I allow you each a parting word?

Abstract Factory: Thanks. Remember me, Abstract
Factory, and use me whenever you have families of
products you need to create and you want to make sure
your clients create products that belong together.

Factory Method: And I’m Factory Method; use me to
decouple your client code from the concrete classes you
need to instantiate, or if you don’t know ahead of time
all the concrete classes you are going to need. To use me,
just subclass me and implement my factory method!

160 Chapter 4

createPizza()

ChicagoPizzaStore

createPizza()

NYPizzaStore

createPizza()

PizzaStore

NYStyleVeggiePizza

NYStyleClamPizza

NYStylePepperoniPizza

NYStyleCheesePizza

Pizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

 Factory Method and Abstract Factory compared

New York Store

PizzaStore is implemented as a Factory

Method because we want to be able to

create a product that varies by region.

With the Factory Method, each region

gets its own concrete factory that
knows how to make pizzas which are
appropriate for the area.

Each subclass decides which

concrete class to instant
iate.

The Factory Method

This is the product of the
PizzaStore. Clients only
rely on this abstract type.

Subclasses are instaniated
by the Factory Methods.

New York Chicago

The Factory Method

The NYPizzaStore subclass only
instantiates NY style pizzas.

The ChicagaoPizzaStore
subclass instantiates only
Chicago style pizzas.

Chicago Store

The createPizza() method is parameterized by pizza
type, so we can return many types of pizza products.

Provides an abstract
interface for
creating one product.

patterns compared

the factory pattern

you are here 4 161

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

<<interface>>
PizzaIngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

NYPizzaIngredientFactory

createDough()

createSauce()

createCheese()

createVeggies()

createPepperoni()

createClam()

ChicagoPizzaIngredientFactory

PizzaIngredientFactory is implemented as an

Abstract Factory because we need to create

families of products (the ingr
edients). Each

subclass implements the ingredients using
 its own

regional suppliers.

FreshClams FrozenClams

<<interface>>
Clams

<<interface>>
Sauce

<<interface>>
Dough

Mozzarella CheeseReggianoCheese

<<interface>>
Cheese

Each concrete subclass
creates a family of products.

ThickCrustDoughThinCrustDough

PlumTomatoSauceMarinaraSauce

Chicago

Provides an abstract
interface for creating a

family of products.

Methods to create products
in an Abstract Factory are
often implemented with a
Factory Method...

... or the type of clams.

New York

Each ingredient
represents a
product that is
produced by a
Factory Method
in the Abstract
Factory.

...for instance, the subclass
decides the type of dough...

The product subclasses create parallel sets of product families.
Here we have a New York ingredient family and a Chicago family.

162 Chapter 4

Tools for your Design Toolbox
In this chapter, we added two more tools to your
toolbox: Factory Method and Abstract Factory. Both
patterns encapsulate object creation and allow you to
decouple your code from concrete types.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics
Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for ex

tension

but closed for
 modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

OO Principles

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

OO Patterns

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.
Observer
dependency be

tween objects so
 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automatically

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.
automatically

OO Patterns
Observer defines a one-

to-many

Decorator
responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

 responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

alternative to
 subclassing fo

r extending

functionality.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without

Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

.
 BULLET POINTS

ß All factories encapsulate object
creation.

ß Simple Factory, while not a bona
fide design pattern, is a simple
way to decouple your clients
from concrete classes.

ß Factory Method relies on
inheritance: object creation is
delegated to subclasses which
implement the factory method to
create objects.

ß Abstract Factory relies on object
composition: object creation
is implemented in methods
exposed in the factory interface.

ß All factory patterns promote
loose coupling by reducing the
dependency of your application
on concrete classes.

ß The intent of Factory Method
is to allow a class to defer
instantiation to its subclasses.

ß The intent of Abstract Factory
is to create families of related
objects without having to depend
on their concrete classes.

ß The Dependency Inversion
Principle guides us to avoid
dependencies on concrete types
and to strive for abstractions.

ß Factories are a powerful
technique for coding to
abstractions, not concrete
classes

We have a new principle that
guides us to keep things
abstract whenever possible.

Both of these new patterns

encapsulate object c
reation

and lead to more decoupled,

flexible designs.

your design toolbox

the factory pattern

you are here 4 163

� �

�

�

� � �

�

� ��

��

��

�� ��

��

������

�� �� ������� ������� ���� ��������� �� �
��������������
�� �� ������� ������� ��� ������� ����� �����
�� ������������
���
��
������
���
� �������������
�� ���� ��� ��� ���� ��� ��� ����������� ��
�� �����������
��� ������������� �� � �������������� ����
������
��� ���� ����� ���� ���� �� �����
��
�������� ������ ��� ������ �� ���� �����������
��� ���� � ����� ������������ �� ������ ���� �
�������� ������ ���� ���������� �� ���� ������
��� ��� ������� �������� ����� �� �� ����������
������ ��������

����

�� �� ���� �������������� �� ������ �������
��� �������� ������� ��� ����������� �� �������
������
�� �������� ������� ������� � ����������� ��
��������
���
�����������
��� ����� ����� ���� ���� �� �����

It’s been a long chapter. Grab a slice of Pizza and relax while doing
this crossword; all of the solution words are from this chapter.

164 Chapter 4

Sharpen your pencil
We’ve knocked out the NYPizzaStore; just two more to go and we’ll be ready to franchise!
Write the Chicago and California PizzaStore implementations here:

public class ChicagoPizzaStore extends PizzaStore {
 protected Pizza createPizza(String item) {
 if (item.equals(“cheese”)) {
 return new ChicagoStyleCheesePizza();
 } else if (item.equals(“veggie”)) {
 return new ChicagoStyleVeggiePizza();
 } else if (item.equals(“clam”)) {
 return new ChicagoStyleClamPizza();
 } else if (item.equals(“pepperoni”)) {
 return new ChicagoStylePepperoniPizza();
 } else return null;
 }
}

public class CaliforniaPizzaStore extends PizzaStore {
 protected Pizza createPizza(String item) {
 if (item.equals(“cheese”)) {
 return new CaliforniaStyleCheesePizza();
 } else if (item.equals(“veggie”)) {
 return new CaliforniaStyleVeggiePizza();
 } else if (item.equals(“clam”)) {
 return new CaliforniaStyleClamPizza();
 } else if (item.equals(“pepperoni”)) {
 return new CaliforniaStylePepperoniPizza();
 } else return null;
 }
}

For the Chicago pizza

store, we just have to

make sure we create

Chicago style pizzas..
.

and for the California

pizza store, we create

California style pizza
s.

Both of these stores are almost exactly like the New York

store... they just create different kinds
 of pizzas

Exercise solutions

exercise solutions

the factory pattern

you are here 4 165

 Design Puzzle Solution
We need another kind of pizza for those crazy Californians (crazy in a GOOD way of
course). Draw another parallel set of classes that you’d need to add a new California
region to our PizzaStore.

createPizza()

orderPizza()

PizzaStore

Okay, now write the fi ve silliest things you can think of to put on a pizza. Then, you’ll
be ready to go into business making pizza in California!

createPizza()

NYPizzaStore

createPizza()

ChicagoPizzaStore

NYStyleVeggiePizza

NYStyleClamPizza

NYStylePepperoniPizza

NYStyleCheesePizza

ChicagoStyleVeggiePizza

ChicagoStyleClamPizza

ChicagoStylePepperoniPizza

ChicagoStyleCheesePizza

createPizza()

CaliforniaPizzaStore

CaliforniaStyleVeggiePizza

CaliforniaStyleClamPizza

CaliforniaStylePepperoniPizza

CaliforniaStyleCheesePizza

Here’s everything yo
u need to

add a California pizza sto
re,

the concrete pizza
 store class,

and the California style pizz
as.

Mashed Potatoes with Roasted Garlic
BBQ Sauce
Artichoke Hearts
M&M’s
Peanuts

Here are our
suggestions...

166 Chapter 4

public class DependentPizzaStore {

 public Pizza createPizza(String style, String type) {
 Pizza pizza = null;
 if (style.equals(“NY”)) {
 if (type.equals(“cheese”)) {
 pizza = new NYStyleCheesePizza();
 } else if (type.equals(“veggie”)) {
 pizza = new NYStyleVeggiePizza();
 } else if (type.equals(“clam”)) {
 pizza = new NYStyleClamPizza();
 } else if (type.equals(“pepperoni”)) {
 pizza = new NYStylePepperoniPizza();
 }
 } else if (style.equals(“Chicago”)) {
 if (type.equals(“cheese”)) {
 pizza = new ChicagoStyleCheesePizza();
 } else if (type.equals(“veggie”)) {
 pizza = new ChicagoStyleVeggiePizza();
 } else if (type.equals(“clam”)) {
 pizza = new ChicagoStyleClamPizza();
 } else if (type.equals(“pepperoni”)) {
 pizza = new ChicagoStylePepperoniPizza();
 }
 } else {
 System.out.println(“Error: invalid type of pizza”);
 return null;
 }
 pizza.prepare();
 pizza.bake();
 pizza.cut();
 pizza.box();
 return pizza;
 }
}

Sharpen your pencil
Let’s pretend you’ve never heard of an OO factory. Here’s a version of the PizzaStore
that doesn’t use a factory; make a count of the number of concrete pizza objects this
class is dependent on. If you added California style pizzas to this PizzaStore, how many
objects would it be dependent on then?

A very dependent PizzaStore

You can write
your answers here: number number with California too

Handles all the NY
style pizzas

Handles all the
Chicago style
pizzas

8 12

exercise solutions

the factory pattern

you are here 4 167

Sharpen your pencil
Go ahead and write the ChicagoPizzaIngredientFactory; you can reference the
classes below in your implementation:

SlicedPepperoni

EggPlant
Spinach

BlackOlives

FrozenClams

PlumTomatoSauce

MozzarellaCheese

ThickCrustDough

public class ChicagoPizzaIngredientFactory
 implements PizzaIngredientFactory
{
 public Dough createDough() {
 return new ThickCrustDough();
 }

 public Sauce createSauce() {
 return new PlumTomatoSauce();
 }

 public Cheese createCheese() {
 return new MozzarellaCheese();
 }

 public Veggies[] createVeggies() {
 Veggies veggies[] = { new BlackOlives(),
 new Spinach(),
 new Eggplant() };
 return veggies;
 }

 public Pepperoni createPepperoni() {
 return new SlicedPepperoni();
 }

 public Clams createClam() {
 return new FrozenClams();
 }
}

168 Chapter 4

Puzzle Solution

�
�

�
�

� � � � � � � � � � � � �

� �
�

� �
�

� � � � � � �

� �

�
�

�
�

� � � � � � �
�

� � � � � � �

� � �

� �
�

� � � � � � � � � � � � � �

� �

� �
�

� � � � � � � � � � � � �
��

� � �

�
��

� � � � � � � � � � � � �

� � �

� �
��

� � � � � � � � � � � �

� � �

� �
��

� � � � �
��

� � � � � � � �

� �

� �
��

� � � � � � � � � �

������

��
�������������� ��������� ��������
��
����� �� ������������ ����������
��
������� ���������
�� ��� ��� ���� ����� ������ ��� ���� ���� ��
������������������
��
������� �� � ������������� ���������
��������
��
�� ����������� ����������������
��� ������������� �� � �������������� ����
������������������������
��� ���� ����� ���� ���� �� ����� ��������������
��
���������������������������������������
����������� �������

����

�� �� ���� �������������� �� ������
���
���������������������������������������
�� �������� ������� ������� � �����������
���������������������
���
����������������������������
��� ����� ����� ���� ���� �� ����� ���������

crossword puzzle solution

this is a new chapter 169

Our next stop is the Singleton Pattern, our ticket to creating one-
of-a-kind objects for which there is only one instance. You might be

happy to know that of all patterns, the Singleton is the simplest in terms of its class diagram;

in fact, the diagram holds just a single class! But don’t get too comfortable; despite its

simplicity from a class design perspective, we are going to encounter quite a few bumps and

potholes in its implementation. So buckle up.

5 the Singleton Pattern

You talkin’ to me or the car? Oh,
and when can I get my oven mitt

back?

One of a Kind Objectsg
h
g

I tell ya she’s ONE OF A
KIND. Look at the lines,

the curves, the body,
the headlights!

170 Chapter 5

What is this? An
entire chapter about how to

instantiate just
ONE OBJECT!

Developer: What use is that?

Guru: There are many objects we only need one of: thread pools, caches, dialog boxes, objects that handle
preferences and registry settings, objects used for logging, and objects that act as device drivers to devices
like printers and graphics cards. In fact, for many of these types of objects, if we were to instantiate
more than one we’d run into all sorts of problems like incorrect program behavior, overuse of resources, or
inconsistent results.

Developer: Okay, so maybe there are classes that should only be instantiated once, but do I need a whole
chapter for this? Can’t I just do this by convention or by global variables? You know, like in Java, I could do it
with a static variable.

Guru: In many ways, the Singleton Pattern is a convention for ensuring one and only one object is instantiated
for a given class. If you’ve got a better one, the world would like to hear about it; but remember, like all
patterns, the Singleton Pattern is a time-tested method for ensuring only one object gets created. The
Singleton Pattern also gives us a global point of access, just like a global variable, but without the downsides.

Developer: What downsides?

Guru: Well, here’s one example: if you assign an object to a global variable, then that object might be created
when your application begins. Right? What if this object is resource intensive and your application never ends
up using it? As you will see, with the Singleton Pattern, we can create our objects only when they are needed.

Developer: This still doesn’t seem like it should be so difficult.

Guru: If you’ve got a good handle on static class variables and methods as well as access modifiers, it’s not.
But, in either case, it is interesting to see how a Singleton works, and, as simple as it sounds, Singleton code is
hard to get right. Just ask yourself: how do I prevent more than one object from being instantiated? It’s not
so obvious, is it?

That’s one and ONLY
ONE object.

one and only one

the singleton pattern

you are here 4 171

How would you create a single object? new MyObject();

And, what if another object wanted to create a
MyObject? Could it call new on MyObject again?

Yes, of course.

So as long as we have a class, can we always
instantiate it one or more times?

Yes. Well, only if it’s a public class.

And if not? Well, if it’s not a public class, only classes in the same
package can instantiate it. But they can still instantiate
it more than once.

Hmm, interesting.

Did you know you could do this?

No, I’d never thought of it, but I guess it makes
sense because it is a legal definition.

public MyClass {

 private MyClass() {}

}

What does it mean? I suppose it is a class that can’t be instantiated
because it has a private constructor.

Well, is there ANY object that could use
the private constructor?

Hmm, I think the code in MyClass is the only
code that could call it. But that doesn’t make
much sense.

The Little Singleton
A small Socratic exercise in the style of The Little Lisper

172 Chapter 5

Why not ? Because I’d have to have an instance of the
class to call it, but I can’t have an instance
because no other class can instantiate it. It’s
a chicken and egg problem: I can use the
constructor from an object of type MyClass,
but I can never instantiate that object because
no other object can use “new MyClass()”.

Okay. It was just a thought.

What does this mean?

MyClass is a class with a static method. We can
call the static method like this:

MyClass.getInstance();

public MyClass {

 public static MyClass getInstance() {
 }
}

Why did you use MyClass, instead of
some object name?

Well, getInstance() is a static method; in other
words, it is a CLASS method. You need to use
the class name to reference a static method.

Very interesting. What if we put things together.

public MyClass {

 private MyClass() {}

 public static MyClass getInstance() {
 return new MyClass();
 }
}

Wow, you sure can.

Now can I instantiate a MyClass?

So, now can you think of a second way to instantiate
an object?

MyClass.getInstance();

Can you finish the code so that only ONE instance
of MyClass is ever created?

Yes, I think so...

(You’ll find the code on the next page.)

creating a singleton

the singleton pattern

you are here 4 173

Dissecting the classic Singleton
Pattern implementation

public class Singleton {
 private static Singleton uniqueInstance;

 // other useful instance variables here

 private Singleton() {}

 public static Singleton getInstance() {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 return uniqueInstance;
 }

 // other useful methods here
}

We have a
static

variable
to hold o

ur

one insta
nce of t

he

class Sing
leton.

Our constructor is
declared private;
only Singleton can
instantiate this class!

The getInstance()
method gives us a way
to instantiate the class
and also to return an
instance of it.
Of course, Singleton is a normal class; it has other useful instance variables and methods.

if (uniqueInstance == null) {
 uniqueInstance = new MyClass();
}
return uniqueInstance;

If uniqueInstance is null, the
n we

haven’t created the instanc
e yet...
...and, if it doesn’t exist, we
instantiate Singleton through its
private constructor and assign
it to uniqueInstance. Note that
if we never need the instance, it
never gets created; this is lazy
instantiation.

By the time we hit this code, we
have an instance and we return it.

If uniqueInstance wasn’t null,
then it was previously created.
We just fall through to the
return statement.

Code Up Close

uniqueInstance holds our ONE
instance; remember, it is a
static variable.

Let’s rename MyClass
to Singleton.

.
Watch it!

If you’re just
flipping through
the book, don’t
blindly type in this
code, you’ll see a
it has a few issues
later in the chapter.

174 Chapter 5

HeadFirst: Today we are pleased to bring you an interview with a Singleton object. Why don’t
you begin by telling us a bit about yourself.

Singleton: Well, I’m totally unique; there is just one of me!

HeadFirst: One?

Singleton: Yes, one. I’m based on the Singleton Pattern, which assures that at any one time
there is only one instance of me.

HeadFirst: Isn’t that sort of a waste? Someone took the time to develop a full-blown class and
now all we can get is one object out of it?

Singleton: Not at all! There is power in ONE. Let’s say you have an object that contains
registry settings. You don’t want multiple copies of that object and its values running around
– that would lead to chaos. By using an object like me you can assure that every object in your
application is making use of the same global resource.

HeadFirst: Tell us more…

Singleton: Oh, I’m good for all kinds of things. Being single sometimes has its advantages you
know. I’m often used to manage pools of resources, like connection or thread pools.

HeadFirst: Still, only one of your kind? That sounds lonely.

Singleton: Because there’s only one of me, I do keep busy, but it would be nice if more
developers knew me – many developers run into bugs because they have multiple copies of
objects floating around they’re not even aware of.

HeadFirst: So, if we may ask, how do you know there is only one of you? Can’t anyone with a
new operator create a “new you”?

Singleton: Nope! I’m truly unique.

HeadFirst: Well, do developers swear an oath not to instantiate you more than once?

Singleton: Of course not. The truth be told… well, this is getting kind of personal but… I
have no public constructor.

HeadFirst: NO PUBLIC CONSTRUCTOR! Oh, sorry, no public constructor?

Singleton: That’s right. My constructor is declared private.

HeadFirst: How does that work? How do you EVER get instantiated?

Singleton: You see, to get a hold of a Singleton object, you don’t instantiate one, you just ask
for an instance. So my class has a static method called getInstance(). Call that, and I’ll show up
at once, ready to work. In fact, I may already be helping other objects when you request me.

HeadFirst: Well, Mr. Singleton, there seems to be a lot under your covers to make all this work.
Thanks for revealing yourself and we hope to speak with you again soon!

This week’s interview:
Confessions of a Singleton

Patterns Exposed

interview with singleton

the singleton pattern

you are here 4 175

The Chocolate Factory
Everyone knows that all modern chocolate factories have computer controlled
chocolate boilers. The job of the boiler is to take in chocolate and milk, bring them
to a boil, and then pass them on to the next phase of making chocolate bars.

Here’s the controller class for Choc-O-Holic, Inc.’s industrial strength Chocolate
Boiler. Check out the code; you’ll notice they’ve tried to be very careful to ensure
that bad things don’t happen, like draining 500 gallons of unboiled mixture, or
fi lling the boiler when it’s already full, or boiling an empty boiler!

public class ChocolateBoiler {
 private boolean empty;
 private boolean boiled;

 private ChocolateBoiler() {
 empty = true;
 boiled = false;
 }

 public void fill() {
 if (isEmpty()) {
 empty = false;
 boiled = false;
 // fi ll the boiler with a milk/chocolate mixture
 }
 }

 public void drain() {
 if (!isEmpty() && isBoiled()) {
 // drain the boiled milk and chocolate
 empty = true;
 }
 }

 public void boil() {
 if (!isEmpty() && !isBoiled()) {
 // bring the contents to a boil
 boiled = true;
 }
 }

 public boolean isEmpty() {
 return empty;
 }

 public boolean isBoiled() {
 return boiled;
 }
}

This code is only started
when the boiler is empty!

To fill the boiler it must be

empty, and, once it’s full, w
e set

the empty and boiled flags.

To drain the boiler, it must be full
(non empty) and also boiled. Once it is
drained we set empty back to true.

To boil the mixture, the boiler
has to be full and not already
boiled. Once it’s boiled we set
the boiled flag to true.

public

176 Chapter 5

Choc-O-Holic has done a decent job of ensuring bad things don’t happen, don’t ya think? Then
again, you probably suspect that if two ChocolateBoiler instances get loose, some very bad
things can happen.

How might things go wrong if more than one instance of ChocolateBoiler is created in an
application?

brain
powerA

Can you help Choc-O-Holic improve their ChocolateBoiler class
by turning it into a singleton?

Sharpen your pencil

public class ChocolateBoiler {
 private boolean empty;
 private boolean boiled;

public void fill() {
 if (isEmpty()) {
 empty = false;
 boiled = false;
 // fill the boiler with a milk/chocolate mixture
 }
}

 // rest of ChocolateBoiler code...
}

 private ChocolateBoiler() {
 empty = true;
 boiled = false;
 }

chocolate boiler singleton

the singleton pattern

you are here 4 177

Singleton

static uniqueInstance

// Other useful Singleton data...

static getInstance()

// Other useful Singleton methods...

The Singleton Pattern ensures a class has only one
instance, and provides a global point of access to it.

 Singleton Pattern defined

Now that you’ve got the classic implementation of Singleton
in your head, it’s time to sit back, enjoy a bar of chocolate,
and check out the fi ner points of the Singleton Pattern.

Let’s start with the concise defi nition of the pattern:

No big surprises there. But, let’s break it down a bit more:

ß What’s really going on here? We’re taking a class and letting it manage a
single instance of itself. We’re also preventing any other class from creating a
new instance on its own. To get an instance, you’ve got to go through the class
itself.

ß We’re also providing a global access point to the instance: whenever you
need an instance, just query the class and it will hand you back the single
instance. As you’ve seen, we can implement this so that the Singleton is created
in a lazy manner, which is especially important for resource intensive objects.

Okay, let’s check out the class diagram:

The getInstan
ce() method is sta

tic,

which means it’s a c
lass method, so yo

u

can convenie
ntly access

this method

from anywhere in your
 code using

Singleton.ge
tInstance().

 That’s just a
s

easy as acce
ssing a globa

l variable, b
ut

we get benef
its like lazy

 instantiatio
n

from the Singlet
on.

The uniqueInstance
class variable holds our
one and only instance
of Singleton.

A class implementing the Singleton

Pattern is more than a Singleton;

it is a general purpose class with its

own set of data and methods.

178 Chapter 5

Houston, we have a problem...
Hershey, PA

It looks like the Chocolate Boiler has let us down; despite
the fact we improved the code using Classic Singleton,
somehow the ChocolateBoiler’s fi ll() method was able
to start fi lling the boiler even though a batch of milk and
chocolate was already boiling! That’s 500 gallons of spilled
milk (and chocolate)! What happened!?

We don’t know what happened! The
new Singleton code was running fi ne. The only
thing we can think of is that we just added some
optimizations to the Chocolate Boiler Controller

that makes use of multiple threads.

Could the addition of threads have caused
this? Isn’t it the case that once we’ve set
the uniqueInstance variable to the sole
instance of ChocolateBoiler, all calls to
getInstance() should return the same
instance? Right?

threads are a problem

the singleton pattern

you are here 4 179

We have two threads, each executing this code. Your job is to play the JVM
and determine whether there is a case in which two threads might get ahold
of different boiler objects. Hint:
you really just need to look at the

sequence of operations
in the getInstance()
method and the value of
uniqueInstance to see
how they might overlap.

Use the code Magnets to help
you study how the code might interleave to create two boiler objects.

BE the JVM

if (uniqueInstance == null) {

}

Thread
One

Thread
Two

uniqueInstance =
 new ChocolateBoiler();

return uniqueInstance;

if (uniqueInstance == null) {

public static ChocolateBoiler
 getInstance() {

}

ChocolateBoiler boiler =
 ChocolateBoiler.getInstance();
fi ll();
boil();
drain();

Value of
uniqueInstance

Make sure you check your answer on
page 188 before turning the page!

180 Chapter 5

public class Singleton {
 private static Singleton uniqueInstance;

 // other useful instance variables here

 private Singleton() {}

 public static synchronized Singleton getInstance() {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 return uniqueInstance;
 }

 // other useful methods here
}

Dealing with multithreading

Our multithreading woes are almost trivially fixed by making
getInstance() a synchronized method:

By adding the synchronized
 keyword to

getInstance(), we force every thread to

wait its turn before it can
 enter the

method. That is, no two threads may

enter the method at the same time.

I agree this
fixes the problem.

But synchronization
is expensive; is this an

issue?

Good point, and it’s actually a little worse than you make out: the only
time synchronization is relevant is the first time through this method. In
other words, once we’ve set the uniqueInstance variable to an instance
of Singleton, we have no further need to synchronize this method. After
the first time through, synchronization is totally unneeded overhead!

multithreading and singleton

the singleton pattern

you are here 4 181

Using this approach, we rely on the JVM to create the unique instance of the Singleton when
the class is loaded. The JVM guarantees that the instance will be created before any thread
accesses the static uniqueInstance variable.

public class Singleton {
 private static Singleton uniqueInstance = new Singleton();

 private Singleton() {}

 public static Singleton getInstance() {
 return uniqueInstance;
 }
}

Can we improve multithreading?

For most Java applications, we obviously need to ensure that the Singleton works in the presence
of multiple threads. But, it looks fairly expensive to synchronize the getInstance() method, so what
do we do?

Well, we have a few options...

1. Do nothing if the performance of getInstance() isn’t critical to
your application
That’s right; if calling the getInstance() method isn’t causing substantial overhead for your
application, forget about it. Synchronizing getInstance() is straightforward and effective. Just keep
in mind that synchronizing a method can decrease performance by a factor of 100, so if a high
traffic part of your code begins using getInstance(), you may have to reconsider.

2. Move to an eagerly created instance rather than a lazily
created one
If your application always creates and uses an instance of the Singleton or the overhead of
creation and runtime aspects of the Singleton are not onerous, you may want to create your
Singleton eagerly, like this:

Go ahead and create an instance of Singleton in a static initializer. This code is guaranteed to be thread safe!

We’ve already got an

instance, so just retu
rn it.

182 Chapter 5

Check for an instance and

if there isn’t one, enter a

synchronized block.

public class Singleton {
 private volatile static Singleton uniqueInstance;

 private Singleton() {}

 public static Singleton getInstance() {
 if (uniqueInstance == null) {
 synchronized (Singleton.class) {
 if (uniqueInstance == null) {
 uniqueInstance = new Singleton();
 }
 }
 }
 return uniqueInstance;
 }
}

Once in the block, check again and
if still null, create an instance.

Note we only synchronize
the first time through!

The volatile keyword ensures that multiple threads
handle the uniqueInstance variable correctly when it
is being initialized to the Singleton instance.

If performance is an issue in your use of the getInstance() method then this method of
implementing the Singleton can drastically reduce the overhead.

Unfortunately, in Java version 1.4 and earlier, many

JVMs contain implementations of the volatile keyword

that allow improper synchronization for double-checked

locking. If you must use a JVM other than Java 5,

consider other methods of implementing your Singleton.

Double-checked locking doesn’t

work in Java 1.4 or earlier!
.

Watch it!

3. Use “double-checked locking” to reduce the use of
synchronization in getInstance()
With double-checked locking, we first check to see if an instance is created, and if not, THEN we
synchronize. This way, we only synchronize the first time through, just what we want.

Let’s check out the code:

double-checked locking

the singleton pattern

you are here 4 183

Meanwhile, back at the Chocolate Factory...

While we’ve been off diagnosing the multithreading problems, the chocolate boiler
has been cleaned up and is ready to go. But fi rst, we have to fi x the multithreading
problems. We have a few solutions at hand, each with different tradeoffs, so which
solution are we going to employ?

For each solution, describe its applicability to the problem of fi xing the Chocolate
Boiler code:

Sharpen your pencil

Synchronize the getInstance() method:

Use eager instantiation:

Double-checked locking:

At this point, the Chocolate Factory is a happy customer and Choc-O-Holic was glad to have some
expertise applied to their boiler code. No matter which multithreading solution you applied, the boiler
should be in good shape with no more mishaps. Congratulations. You’ve not only managed to escape
500lbs of hot chocolate in this chapter, but you’ve been through all the potential problems of the Singleton.

Congratulations!

184 Chapter 5

Rumors of Singletons being eaten by the garbage
collectors are greatly exaggerated

Prior to Java 1.2, a bug in the garbage collector allowed Singletons
to be prematurely collected if there was no global reference to them. In other
words, you could create a Singleton and if the only reference to the Singleton
was in the Singleton itself, it would be collected and destroyed by the garbage
collector. This leads to confusing bugs because after the Singleton is

“collected,” the next call to getInstance() produced a shiny new Singleton. In
many applications, this can cause confusing behavior as state is mysteriously
reset to initial values or things like network connections are reset.

Since Java 1.2 this bug has been fixed and a global reference is no longer
required. If you are, for some reason, still using a pre-Java 1.2 JVM, then be
aware of this issue, otherwise, you can sleep well knowing your Singletons
won’t be prematurely collected.

Q: For such a simple pattern
consisting of only one class,
Singletons sure seem to have some
problems.

A: Well, we warned you up
front! But don’t let the problems
discourage you; while implementing
Singletons correctly can be tricky, after
reading this chapter you are now
well informed on the techniques for
creating Singletons and should use
them wherever you need to control
the number of instances you are
creating.

Q: Can’t I just create a class in
which all methods and variables are
defined as static? Wouldn’t that be
the same as a Singleton?

A: Yes, if your class is self-
contained and doesn’t depend on
complex initialization. However,
because of the way static
initializations are handled in Java,
this can get very messy, especially if
multiple classes are involved. Often
this scenario can result in subtle,
hard to find bugs involving order
of initialization. Unless there is a
compelling need to implement your
“singleton” this way, it is far better to
stay in the object world.

Q: What about class loaders?
I heard there is a chance that two
class loaders could each end up with
their own instance of Singleton.

A: Yes, that is true as each class
loader defines a namespace. If you
have two or more classloaders, you
can load the same class multiple times
(once in each classloader). Now, if that
class happens to be a Singleton, then
since we have more than one version
of the class, we also have more than
one instance of the Singleton. So, if
you are using multiple classloaders
and Singletons, be careful. One way
around this problem is to specify the
classloader yourself.

there are noDumb Questions

q&a about singleton

the singleton pattern

you are here 4 185

Q: I’ve always been taught that
a class should do one thing and one
thing only. For a class to do two
things is considered bad OO design.
Isn’t a Singleton violating this?

A: You would be referring to
the “One Class, One Responsibility”
principle, and yes, you are correct,
the Singleton is not only responsible
for managing its one instance (and
providing global access), it is also re-
sponsible for whatever its main role is
in your application. So, certainly it can
be argued it is taking on two respon-
sibilities. Nevertheless, it isn’t hard
to see that there is utility in a class
managing its own instance; it certainly
makes the overall design simpler. In
addition, many developers are familiar
with the Singleton pattern as it is in
wide use. That said, some developers
do feel the need to abstract out the
Singleton functionality.

Q: I wanted to subclass my
Singleton code, but I ran into
problems. Is it okay to subclass a
Singleton?

A: One problem with subclassing
Singleton is that the constructor is
private. You can’t extend a class with
a private constructor. So, the first
thing you’ll have to do is change
your constructor so that it’s public
or protected. But then, it’s not really
a Singleton anymore, because other
classes can instantiate it.

If you do change your constructor,
there’s another issue. The
implementation of Singleton is based
on a static variable, so if you do a
straightforward subclass, all of your
derived classes will share the same
instance variable. This is probably
not what you had in mind. So, for
subclassing to work, implementing
registry of sorts is required in the base
class.

Before implementing such a scheme,
you should ask yourself what you
are really gaining from subclassing
a Singleton. Like most patterns, the
Singleton is not necessarily meant
to be a solution that can fit into a
library. In addition, the Singleton code
is trivial to add to any existing class.
Last, if you are using a large number
of Singletons in your application,
you should take a hard look at your
design. Singletons are meant to be
used sparingly.

Q: I still don’t totally understand
why global variables are worse than
a Singleton.

A: In Java, global variables are
basically static references to objects.
There are a couple of disadvantages
to using global variables in this
manner. We’ve already mentioned
one: the issue of lazy versus eager
instantiation. But we need to keep
in mind the intent of the pattern: to
ensure only one instance of a class
exists and to provide global access. A
global variable can provide the latter,
but not the former. Global variables
also tend to encourage developers
to pollute the namespace with lots
of global references to small objects.
Singletons don’t encourage this in
the same way, but can be abused
nonetheless.

186 Chapter 5

Tools for your Design Toolbox

 BULLET POINTS

ß The Singleton Pattern ensures
you have at most one instance
of a class in your application.

ß The Singleton Pattern also
provides a global access point
to that instance.

ß Java’s implementation of the
Singleton Pattern makes use
of a private constructor, a static
method combined with a static
variable.

ß Examine your performance
and resource constraints and
carefully choose an appropriate
Singleton implementation for
multithreaded applications
(and we should consider all
applications multithreaded!).

ß Beware of the double-checked
locking implementation; it is not
thread-safe in versions before
Java 2, version 5.

ß Be careful if you are using
multiple class loaders; this
could defeat the Singleton
implementation and result in
multiple instances.

ß If you are using a JVM earlier
than 1.2, you’ll need to create a
registry of Singletons to defeat
the garbage collector.

You’ve now added another pattern to your
toolbox. Singleton gives you another method
of creating objects – in this case, unique
objects.objects.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics
Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for ex

tension

but closed for
 modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

OO Principles

As you’ve seen, despite its apparent simplicity, there are a lot of details
involved in the Singleton’s implementation. After reading this chapter,
though, you are ready to go out and use Singleton in the wild.

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

OO Patterns

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.
Observer
dependency be

tween objects so
 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automatically

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Observer defines a one-

to-many

automatically

Decorator
responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

 responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

alternative to
 subclassing fo

r extending

functionality.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many

DecoratorAbstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract Factory

related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

Observer defines a one-
to-many

DecoratorAbstract Factory

specifying the
ir concrete cl

asses.
Factory Method - Define an

interface for
 creating an o

bject, but Factory Method

interface for
 creating an o

bject, but

interface for
 creating an o

bject, but Factory Method

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the instantiate. F
actory Method lets

a class defer
instantiation

to the

a class defer
instantiation

to the instantiate. F
actory Method lets

subclasses.

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

When you need to en
sure you

only have one insta
nce of a class

running around you
r application,

turn to the Single
ton.

your design toolbox

the singleton pattern

you are here 4 187

� � �

� �

� � � �

�� ��

��

��

��

��

��

������

�� �� ��� ���� �� � �����
�� ����� �� ��������� �� ��� ������
�� �� ��������� �������������� ������ ���� ��
��������
��� ��������� �������� � ������ �������� ���
������ ������
��� ������ �������������� �������� �� ��� �����
��������
��� ��������� ������� �� ��� ��
��� ��� ��������� ���� ������ ����������
������� ��������
��� ������� ���� �������� �������
��� �� ������� ������ ��� ��� ������������ ��
���� �� ������� ��� ����������� ��������

����

�� �������� ���������� ��� ����� ��������
�� � ��������� �� � ����� ���� ������� ��
�������� �� ��������
���
�������������� ��� ��� ������ ���� ��������
��������
�� ����� �� ���� ���� ��� ��� ���� ���������� ����
������
�� ��� ��������� ��� ���������� �� ��� ��
������ ������������
�� ��� ������� �������������� ������� ������
����
�� ��������� ������� ���� ��� �� ����� �����
��� ��� ��������� ������� ��� ���

Sit back, open that case of chocolate that you were sent for solving
the multithreading problem, and have some downtime working on
this little crossword puzzle; all of the solution words are from this
chapter.

� � �

� �

� � � �

�� ��

��

��

��

��

��

������

�� �� ��� ���� �� � �����
�� ����� �� ��������� �� ��� ������
�� �� ��������� �������������� ������ ���� ��
��������
��� ��������� �������� � ������ �������� ���
������ ������
��� ������ �������������� �������� �� ��� �����
��������
��� ��������� ������� �� ��� ��
��� ��� ��������� ���� ������ ����������
������� ��������
��� ������� ���� �������� �������
��� �� ������� ������ ��� ��� ������������ ��
���� �� ������� ��� ����������� ��������

����

�� �������� ���������� ��� ����� ��������
�� � ��������� �� � ����� ���� ������� ��
�������� �� ��������
���
�������������� ��� ��� ������ ���� ��������
��������
�� ����� �� ���� ���� ��� ��� ���� ���������� ����
������
�� ��� ��������� ��� ���������� �� ��� ��
������ ������������
�� ��� ������� �������������� ������� ������
����
�� ��������� ������� ���� ��� �� ����� �����
��� ��� ��������� ������� ��� ���

188 Chapter 5

Exercise
solutions

Can you help Choc-O-Holic improve their ChocolateBoiler class
by turning it into a singleton?

Sharpen your pencil

public class ChocolateBoiler {
 private boolean empty;
 private boolean boiled;

public void fi ll() {
 if (isEmpty()) {
 empty = false;
 boiled = false;
 // fi ll the boiler with a milk/chocolate mixture
 }
}

 // rest of ChocolateBoiler code...
}

 private ChocolateBoiler() {
 empty = true;
 boiled = false;
 }

private

public static ChocolateBoiler getInstance() {
 if (uniqueInstance == null) {
 uniqueInstance = new ChocolateBoiler();
 }
 return uniqueInstance;
}

private static ChocolateBoiler uniqueInstance;

Thead
One

Thead
Two

Value of
uniqueInstance

if (uniqueInstance == null) {

uniqueInstance =
 new ChocolateBoiler();

public static ChocolateBoiler
 getInstance() {

public static ChocolateBoiler
 getInstance() {

if (uniqueInstance == null) {

uniqueInstance =
 new ChocolateBoiler();

return uniqueInstance;

return uniqueInstance;

null

null

null

<object1>

<object2>

<object2>

<object1>

BE the JVM

Two different
objects are
returned! We have
two ChocolateBoiler
instances!!!

Uh oh, this doesn’t
look good!

exercise solutions

the singleton pattern

you are here 4 189

Exercise solutions

For each solution, describe its applicability to the problem of fixing the Chocolate
Boiler code:

A straightforward technique that is guaranteed to work. We don’t seem to have any

Sharpen your pencil

Synchronize the getInstance() method:

Use eager instantiation:

Double checked locking:

performance concerns with the chocolate boiler, so this would be a good choice.

We are always going to instantiate the chocolate boiler in our code, so statically inializing the

instance would cause no concerns. This solution would work as well as the synchronized method,

Given we have no performance concerns, double-checked locking seems like overkill. In addition, we’d

have to ensure that we are running at least Java 5.

although perhaps be less obvious to a developer familar with the standard pattern.

190 Chapter 5

�
�

� � �
�

�
�

� �

� �
�

�
�

�

� �
�

� �
�

� � �
�

� �
�

� � �

� � � � � � �

� � � �
��

� � � � � � � �
��

� � � � � � � �

� � � � � � � �

� � � � � � �

� � � � � � �

�
��

� � � � � � � � � � � � � �

� � � � � �
��

� � � � � �

� � � � �
��

� � �

� � � �

� � �

� �
��

� � � � � � � � � � �

� �

� �

�
��

� � � � � �

������

�� �� ��� ���� �� � ����� �����
���
��
�������� ��������
���
����������������������������������
��
�������������������������������
��
���
������� �������� ������
��
������
��
���� �� ������� ��� ����������� ��������
���������

����

�� �������� ���������� ��� ����� ��������
��������������
�� � ��������� �� � ����� ���� ������� ��
�������� �� �������� ��������
���
�������������� ��� ��� ������ ���� ��������
�������� ������������
�� ����� �� ���� ���� ��� ��� ���� ����������
�������������������������������
��
������ ������������ �������������
���
����������������������
���
����������
��

Exercise solutions

crossword puzzle solution

this is a new chapter 191

In this chapter, we take encapsulation to a whole new level:
we’re going to encapsulate method invocation. That’s right, by

encapsulating method invocation, we can crystallize pieces of computation so that the

object invoking the computation doesn’t need to worry about how to do things, it just uses

our crystallized method to get it done. We can also do some wickedly smart things with

these encapsulated method invocations, like save them away for logging or reuse them to

implement undo in our code.

Encapsulating Invocation
6 the Command Pattern

g

h
g

These top secret drop
boxes have revolutionized the spy

industry. I just drop in my request
and people disappear, governments
change overnight and my dry cleaning

gets done. I don’t have to worry
about when, where, or how; it

just happens!

192 Chapter 6

 Home Automation or Bust, Inc.

1221 Industrial Avenue, Suite 2000

Future City, IL 62914

Greetings!

I recently received a demo and briefi ng from Johnny

Hurricane, CEO of Weather-O-Rama, on their new

expandable weather station. I have to say, I was so

impressed with the software architecture that I’d like to

ask you to design the API for our new Home Automation

Remote Control. In return for your services we’d be happy

to handsomely reward you with stock options in Home

Automation or Bust, Inc.

I’m enclosing a prototype of our ground-breaking remote

control for your perusal. The remote control features seven

programmable slots (each can be assigned to a different

household device) along with corresponding on/off buttons

for each. The remote also has a global undo button.

I’m also enclosing a set of Java classes on CD-R that were

created by various vendors to control home automation

devices such as lights, fans, hot tubs, audio equipment, and

other similar controllable appliances.

We’d like you to create an API for programming the remote

so that each slot can be assigned to control a device or set of

devices. Note that it is important that we be able to control

the current devices on the disc, and also any future devices

that the vendors may supply.

Given the work you did on the Weather-O-Rama weather

station, we know you’ll do a great job on our remote control!

We look forward to seeing your design.

Sincerely,

Bill “X-10” Thompson, CEO

home automation or bust

the command pattern

you are here 4 193

There are “on” and “off”
buttons for each of the
seven slots.

 We’ve got seven slots
 to program. We

can put a differen
t device in each slo

t

and control it via t
he buttons.

Here’s the global “undo” button that
undoes the last button pressed.

 We’ve got seven slots
 to program. We

can put a differen
t device in each slo

t

and control it via t
he buttons.

These two buttons are used to control the household device stored in slot one...
... and these two control the household device stored in slot two...

... and so on.

Free hardware! Let’s check out the Remote Control...

Get your Sharpie out and

write your device names here.

194 Chapter 6

Taking a look at the vendor classes

Check out the vendor classes on the CD-R. These should give
you some idea of the interfaces of the objects we need to control
from the remote.

CeilingLight

on()

off()

dim()

Hottub

circulate()

jetsOn()

jetsOff()

setTemperaturet()

on()

off()

setInputChannel()

setVolume()

TVdim()

OutdoorLight

on()

off()

circulate()

jetsOn()

jetsOff()

setTemperaturet()

GarageDoor

up()

down()

stop()

lightOn()

lightOff()

Stereo

on()

off()

setCd()

setDvd()

setRadio()

setVolume()

Hottub

FaucetControl

openValue()

closeValue()

setTemperaturet()

Thermostat

setTemperature()

GardenLight

setDuskTime()

setDawnTime()

manualOn()

manualOff()

setVolume()

up()

down()

stop()

lightOn()

CeilingFan

high()

medium()

low()

off()

getSpeed()

Stereo

ApplianceControl

on()

off()

SecurityControl

arm()

disarm()

Sprinkler

waterOn()

waterOff() Light

on()

off()

It looks like we have quite a set of classes here, and not a lot of
industry effort to come up with a set of common interfaces. Not
only that, it sounds like we can expect more of these classes in the
future. Designing a remote control API is going to be interesting.
Let’s get on to the design.

vendor classes from home automation

the command pattern

you are here 4 195

Mary: Yes, I thought we’d see a bunch of classes with on()
and off() methods, but here we’ve got methods like dim(),
setTemperature(), setVolume(), setDirection().

Sue: Not only that, it sounds like we can expect more vendor
classes in the future with just as diverse methods.

Mary: I think it’s important we view this as a separation of
concerns: the remote should know how to interpret button presses
and make requests, but it shouldn’t know a lot about home
automation or how to turn on a hot tub.

Sue: Sounds like good design. But if the remote is dumb and
just knows how to make generic requests, how do we design the
remote so that it can invoke an action that, say, turns on a light or
opens a garage door?

Mary: I’m not sure, but we don’t want the remote to have to
know the specifics of the vendor classes.

Sue: What do you mean?

Mary: We don’t want the remote to consist of a set of if
statements, like “if slot1 == Light, then light.on(), else if slot1 =
Hottub then hottub.jetsOn()”. We know that is a bad design.

Sue: I agree. Whenever a new vendor class comes out, we’d have
to go in and modify the code, potentially creating bugs and more
work for ourselves!

Cubicle Conversation

Sue

Your teammates are already discussing how to design the remote control API...

Well, we’ve got another design to do.
My first observation is that we’ve got a
simple remote with on and off buttons but
a set of vendor classes that are quite

diverse.

196 Chapter 6

Mary: Yeah? Tell us more.

Joe: The Command Pattern allows you to decouple the requester of an action
from the object that actually performs the action. So, here the requester would be
the remote control and the object that performs the action would be an instance
of one of your vendor classes.

Sue: How is that possible? How can we decouple them? After all, when I press a
button, the remote has to turn on a light.

Joe: You can do that by introducing “command objects” into your design. A
command object encapsulates a request to do something (like turn on a light) on
a specific object (say, the living room light object). So, if we store a command
object for each button, when the button is pressed we ask the command object to
do some work. The remote doesn’t have any idea what the work is, it just has a
command object that knows how to talk to the right object to get the work done.
So, you see, the remote is decoupled from the light object!

Sue: This certainly sounds like it’s going in the right direction.

Mary: Still, I’m having a hard time wrapping my head around the pattern.

Joe: Given that the objects are so decoupled, it’s a little difficult to picture how the
pattern actually works.

Mary: Let me see if I at least have the right idea: using this pattern we, could
create an API in which these command objects can be loaded into button
slots, allowing the remote code to stay very simple. And, the command objects
encapsulate how to do a home automation task along with the object that needs
to do it.

Joe: Yes, I think so. I also think this pattern can help you with that Undo button,
but I haven’t studied that part yet.

Mary: This sounds really encouraging, but I think I have a bit of work to do to
really “get” the pattern.

Sue: Me too.

Hey, I couldn’t help
overhearing. Since Chapter 1
I’ve been boning up on Design

Patterns. There’s a pattern
called “Command Pattern” I think

might help.

command pattern might work

the command pattern

you are here 4 197

Meanwhile, back at the Diner...,
or,

A brief introduction to the Command Pattern

Okay, we all know how the Diner operates:

You, the Customer,
give the Waitress
your Order.

1

The Waitress
takes the Order,
places it on the
order counter
and says “Order
up!”

The Short-Order Cook prepares your meal
from the Order.

As Joe said, it is a little hard to understand the Command Pattern by just hearing
its description. But don’t fear, we have some friends ready to help:
remember our friendly diner from Chapter 1? It’s been a while since we
visited Alice, Flo, and the short-order cook, but we’ve got good reason
for returning (well, beyond the food and great conversation): the diner is
going to help us understand the Command Pattern.

So, let’s take a short detour back to the diner and study the interactions
between the customers, the waitress, the orders and the short-order
cook. Through these interactions, you’re going to understand the
objects involved in the Command Pattern and also get a feel for how
the decoupling works. After that, we’re going to knock out that remote
control API.

Checking in at the Objectville Diner...

2

3

Objectville Diner

Wish you were here...

Burger w
ith Cheese

 Malt Shak
e

198 Chapter 6

I’ll have a Burger
with Cheese and a

Malt Shake.

Burger w
ith Cheese

 Malt Shak
e

createOrder()

takeOrder()

Burger w
ith Cheese

 Malt Shak
e

ord
erU

p()

makeBurger(), makeShake()

outp
ut

The Order consists of an
 order

slip and the custom
er’s menu

items that are written on it.

The customer knows
what he wants and
creates an order.

The Waitress takes the Order, and when she gets around to it, she calls its orderUp() method to begin the Order’s preparation.

The Order has
 all

the inst
ructions

needed t
o prepar

e

the meal. The

Order dir
ects the

Short O
rder Cook

with methods l
ike

makeBurger().

The Short Order Cook follows the instructions of
the Order and
produces the meal.

Let’s study the interaction in a little more detail...
...and given this Diner is in Objectville, let’s think
about the object and method calls involved, too!

Start H
ere

the diner

the command pattern

you are here 4 199

The Objectville Diner roles and responsibilities

An Order Slip encapsulates a request to prepare a meal.

Think of the Order Slip as an object, an object that acts
as a request to prepare a meal. Like any object, it can be
passed around – from the Waitress to the order counter, or to the
next Waitress taking over her shift. It has an interface that consists
of only one method, orderUp(), that encapsulates the actions
needed to prepare the meal. It also has a reference to the object
that needs to prepare it (in our case, the Cook). It’s encapsulated
in that the Waitress doesn’t have to know what’s in the order
or even who prepares the meal; she only needs to pass the slip
through the order window and call “Order up!” Okay, in real life a waitress would probably

care what is on the Order Slip and who cooks
it, but this is Objectville... work with us here!

Okay, in real life a waitress would probably

public voi
d orderU

p() {

 cook.m
akeBurger();

 cook.m
akeShake

();

}

The Waitress’s job is to take Order Slips and
invoke the orderUp() method on them.

The Waitress has it easy: take an order from the customer,
continue helping customers until she makes it back to the
order counter, then invoke the orderUp() method to have
the meal prepared. As we’ve already discussed, in Objectville, the
Waitress really isn’t worried about what’s on the order or who is going to
prepare it; she just knows order slips have an orderUp() method she can
call to get the job done.

Now, throughout the day, the Waitress’s takeOrder() method gets
parameterized with different order slips from different customers, but
that doesn’t phase her; she knows all Order slips support the orderUp()
method and she can call orderUp() any time she needs a meal prepared.

Don’t ask me to cook,
I just take orders and

yell “Order up!”

You
can defi nitely say

the waitress and I are
decoupled. She’s not

even my type!

The Short Order Cook has the knowledge
required to prepare the meal.

The Short Order Cook is the object that really knows
how to prepare meals. Once the Waitress has invoked
the orderUp() method; the Short Order Cook takes over and
implements all the methods that are needed to create meals.
Notice the Waitress and the Cook are totally decoupled: the
Waitress has Order Slips that encapsulate the details of the
meal; she just calls a method on each order to get it prepared.
Likewise, the Cook gets his instructions from the Order Slip; he
never needs to directly communicate with the Waitress.

200 Chapter 6

Before we move on, spend some time studying
the diagram two pages back along with Diner
roles and responsibilities until you think you’ve
got a handle on the Objectville Diner objects and
relationships. Once you’ve done that, get ready
to nail the Command Pattern!

brain
powerA

I’ll have a Burger

with Cheese and a Malt

Shake

Burger
 with

 Cheese

 Malt Sh
ake

createOrder()

Burger
 with

 Cheese

 Malt Sh
ake

takeOrder()

ord
erU

p()

makeBurger(), makeShake()

ou
tp

ut

The Order con
sists of

an orde
r

slip and
the cust

omer’s menu

items that a
re written o

n it

The customer knows what he

wants prepa
red and cr

eates an

order

The Waitress takes the o
rder, and when she gets

around to it, she ca
lls its orderUp() method to begin

the order’s prepara
tion

The Order
has a

ll

the in
struc

tions

need
to pr

epare

the m
eal.

The

Order
direc

ts th
e

Short
 Order

Cook

with m
ethod

s like

makeBurger
()

The Short Order
Cook follows the
instructions of the
Order and produces
the meal

Okay, we have a
Diner with a Waitress who is

decoupled from the Cook by an
Order Slip, so what? Get to

the point!

Patience, we’re getting there...

Think of the Diner as a model for an OO design pattern that allows
us to separate an object making a request from the objects that
receive and execute those requests. For instance, in our remote
control API, we need to separate the code that gets invoked when
we press a button from the objects of the vendor-specifi c classes
that carry out those requests. What if each slot of the remote held
an object like the Diner’s order slip object? Then, when a button is
pressed, we could just call the equivalent of the “orderUp()” method
on this object and have the lights turn on without the remote
knowing the details of how to make those things happen or what
objects are making them happen.

Now, let’s switch gears a bit and map all this Diner talk to the
Command Pattern...

the diner is a model for command pattern

the command pattern

you are here 4 201

createCommandObject()

setCommand()

execute()

action1(), action2()

The client is responsible for
creating the command object. The

command object consists of a set
of actions on a receiver.

The client calls setCommand() on an Invoker object and passes it the command object, where it gets stored until it is needed.

At some point
in the f

uture

the Invo
ker calls

 the com
mand

object’s
 execute

() method...

...which results
in the actions
being invoked on
the Receiver. Receiver

 Command

execute()

 Invoker

setCommand()

action1()
action2()
 ...

 Client

create
Command
Object()

 Command

execute()

 Receiver

action1()
action2()
 ...

public voi
d execute

{

 receiv
er.action1

();

 receiv
er.action2

();

}

The command object

provides one method,

execute(), that encap
sulates

the actions and can b
e

called to invoke the a
ctions

on the Receiver.

The actions and the
Receiver are bound together in the command object.

From the Diner to the Command Pattern
Okay, we’ve spent enough time in the Objectville Diner that we know all the
personalities and their responsibilities quite well. Now we’re going to rework
the Diner diagram to refl ect the Command Pattern. You’ll see that all the
players are the same; only the names have changed.

Start H
ere

1

2

3

The client creates a
command object.

The client does a
setCommand() to store
the command object in
the invoker.

Later... the client asks
the invoker to execute
the command. Note:
as you’ll see later in
the chapter, once the
command is loaded into
the invoker, it may be
used and discarded, or
it may remain and be
used many times.

1

2

3

 Loading the Invoker

202 Chapter 6

Match the diner objects and methods with the corresponding names from the
Command Pattern.

Diner Command Pattern

Waitress

Short Order Cook

orderUp()

Order

Customer

takeOrder()

Command

execute()

Client

Invoker

Receiver

setCommand()

who does what?

the command pattern

you are here 4 203

Our first command object

Isn’t it about time we build our fi rst command object? Let’s go ahead and write
some code for the remote control. While we haven’t fi gured out how to design the
remote control API yet, building a few things from the bottom up may help us...

Implementing the Command interface

First things fi rst: all command objects implement the same interface, which
consists of one method. In the Diner we called this method orderUp(); however,
we typically just use the name execute().

Here’s the Command interface:

Now, let’s say you want to implement a command for turning a light on.
Referring to our set of vendor classes, the Light class has two methods: on()
and off(). Here’s how you can implement this as a command:

public class LightOnCommand implements Command {
 Light light;

 public LightOnCommand(Light light) {
 this.light = light;
 }

 public void execute() {
 light.on();
 }
}

Simple. All we need is one method called execute().

The execute method calls the

on() method on the receiving

object, which is the light we

are controlling.

The constructor is passed the specific
light that this command is going to
control - say the living room light

- and stashes it in the light instance
variable. When execute gets called, this
is the light object that is going to be
the Receiver of the request.

Now that you’ve got a LightOnCommand class, let’s see if we can put it to use...

Implementing a Command to turn a light on

This is a command, so we need to
implement the Command interface.

Light

on()
off()

public interface Command {
 public void execute();
}

204 Chapter 6

Using the command object

Okay, let’s make things simple: say we’ve got a remote control with only one
button and corresponding slot to hold a device to control:

Here’s just a bit of code to test out the simple remote control. Let’s take a look and
we’ll point out how the pieces match the Command Pattern diagram:

File Edit Window Help DinerFoodYum

%java RemoteControlTest

Light is On

%

We have one slot to hold
 our command,

which will control one device.

Creating a simple test to use the Remote Control

public class SimpleRemoteControl {
 Command slot;

 public SimpleRemoteControl() {}

 public void setCommand(Command command) {
 slot = command;
 }

 public void buttonWasPressed() {
 slot.execute();
 }
}

public class RemoteControlTest {
 public static void main(String[] args) {
 SimpleRemoteControl remote = new SimpleRemoteControl();
 Light light = new Light();
 LightOnCommand lightOn = new LightOnCommand(light);

 remote.setCommand(lightOn);
 remote.buttonWasPressed();
 }
}

We have a method for setting
the command the slot is going
to control. This could be called
multiple times if the client of
this code wanted to change the
behavior of the remote button.

This method is called when the button is pressed. All we do is take the current command bound to the slot and call its execute() method.

This is our Client in Command Pattern-speak.

The remote is our Invoker;

it will be passed a
command object that can

be used to make requests.

Now we create a Light
object, this will be the
Receiver of the request.

Here, create a command and
pass the Receiver to it.

Here, pass the command to the Invoker.

And then we simulate the
button being pressed.

Here’s the output of
running this test code!

using the command object

the command pattern

you are here 4 205

Sharpen your pencil

File Edit Window Help GreenEggs&Ham

%java RemoteControlTest

GarageDoor

up()

down()

stop()

lightOn()

lightOff()

Okay, it’s time for you to implement the
GarageDoorOpenCommand class. First, supply the code for
the class below. You’ll need the GarageDoor class diagram.

public class GarageDoorOpenCommand
 implements Command {

}

Now that you’ve got your class, what is the output of the following
code? (Hint: the GarageDoor up() method prints out “Garage Door is
Open” when it is complete.)

Your output here.

Your code here

public class RemoteControlTest {
 public static void main(String[] args) {
 SimpleRemoteControl remote = new SimpleRemoteControl();
 Light light = new Light();
 GarageDoor garageDoor = new GarageDoor();
 LightOnCommand lightOn = new LightOnCommand(light);
 GarageDoorOpenCommand garageOpen =
 new GarageDoorOpenCommand(garageDoor);

 remote.setCommand(lightOn);
 remote.buttonWasPressed();
 remote.setCommand(garageOpen);
 remote.buttonWasPressed();
 }
}

206 Chapter 6

The Command Pattern defined

The Command Pattern encapsulates a request as an
object, thereby letting you parameterize other objects
with different requests, queue or log requests, and support
undoable operations.

You’ve done your time in the Objectville Diner, you’ve partly
implemented the remote control API, and in the process you’ve
got a fairly good picture of how the classes and objects interact in
the Command Pattern. Now we’re going to define the Command
Pattern and nail down all the details.

Let’s start with its official definition:

Let’s step through this. We know that a command object
encapsulates a request by binding together a set of actions on a
specific receiver. To achieve this, it packages the actions and the
receiver up into an object that exposes just one method, execute().
When called, execute() causes the actions to be invoked on the
receiver. From the outside, no other objects really know what
actions get performed on what receiver; they just know that if they
call the execute() method, their request will be serviced.

We’ve also seen a couple examples of parameterizing an object with
a command. Back at the diner, the Waitress was parameterized
with multiple orders throughout the day. In the simple remote
control, we first loaded the button slot with a “light on” command
and then later replaced it with a “garage door open” command.
Like the Waitress, your remote slot didn’t care what command
object it had, as long as it implemented the Command interface.

What we haven’t encountered yet is using commands to
implement queues and logs and support undo operations. Don’t worry,
those are pretty straightforward extensions of the basic Command
Pattern and we will get to them soon. We can also easily support
what’s known as the Meta Command Pattern once we have the
basics in place. The Meta Command Pattern allows you to create
macros of commands so that you can execute multiple commands
at once.

 Command

execute() {
 receiver.action();
}

 Receiver

action()

An encapsulated request.

 LightOnComman
d

execute()

 Remote Slot

 GarageDoorO
pe

nexecute()

 CeilingFanH
ig

hexecute()

 StereoOff

execute()

An invoker - for instance
one slot of the remote
- can be parameterized with
different requests.

command pattern defined

the command pattern

you are here 4 207

 StereoOff

execute()
The ConcreteCommand defines a binding between an action

and a Receiver. The Invoker makes a request by calling

execute() and the ConcreteCommand carries it out by

calling one or more actions on the Receiver.

The Receiver knows how to
perform the work needed to
carry out the request. Any class
can act as a Receiver.

Command declares an interface for all commands. As

you already know, a command is invoked through its

execute() method, which asks a receiver to perform an

action. You’ll also notice this interface has an undo()

method, which we’ll cover a bit later in the chapter.
The Client is responsible for

creating a ConcreteCommand and

setting its Receiver.

The Command Pattern defined:

The Invoker holds
a command and at
some point asks the
command to carry
out a request by
calling its execute()
method.

Invoker <<interface>>
CommandCommand

execute()
undo()

action()

Receiver

Client

ConcreteCommand

execute()
undo()

public void execute() {
 receiver.action()
}

The execute
method invokes
the action(s)
on the receiver
needed to fulfill
the request.

How does the design of the Command Pattern support the decoupling of the invoker of a
request and the receiver of the request?

brain
powerA

the class diagram

setCommand()

208 Chapter 6

Mary: Me too. So where do we begin?

Sue: Like we did in the SimpleRemote, we need to provide a way
to assign commands to slots. In our case we have seven slots, each
with an “on” and “off ” button. So we might assign commands to
the remote something like this:

onCommands[0] = onCommand;
offCommands[0] = offCommand;

Okay, I think I’ve got a good feel
for the Command Pattern now. Great
tip Joe, I think we are going to look

like superstars after finishing off
the Remote Control API.

Mary: That makes sense, except for the Light objects. How does
the remote know the living room from the kitchen light?

Sue: Ah, that’s just it, it doesn’t! The remote doesn’t know
anything but how to call execute() on the corresponding
command object when a button is pressed.

Mary: Yeah, I sorta got that, but in the implementation, how do
we make sure the right objects are turning on and off the right
devices?

Sue: When we create the commands to be loaded into the
remote, we create one LightCommand that is bound to the living
room light object and another that is bound to the kitchen light
object. Remember, the receiver of the request gets bound to
the command it’s encapsulated in. So, by the time the button
is pressed, no one cares which light is which, the right thing just
happens when the execute() method is called.

Mary: I think I’ve got it. Let’s implement the remote and I think
this will get clearer!

Sue: Sounds good. Let’s give it a shot...

where do we begin?

the command pattern

you are here 4 209

 CeilingFanO
ff

execute()

 LightOnComman
d

execute()

 GarageDoorO

pe
n

execute()

 CeilingFanH
ig

h

execute()

 StereoOff

execute()

 GarageDoorC
los

e

execute()

 LightOffComman
d

execute()

 LightOnComman
d

execute()

 LightOffComman
d

execute()

 StereoOnF
or

CDexecute()

We’ll worry about the
remaining slots in a bit.

Assigning Commands to slots
So we have a plan: We’re going to assign each slot to a command in
the remote control. This makes the remote control our invoker. When
a button is pressed the execute() method is going to be called on the
corresponding command, which results in actions being invoked on the
receiver (like lights, ceiling fans, stereos).

(1) Each slot gets a command.

(2) When the button is pressed, the execute()
method is called on the corresponding command.

 Stereo

 off()
 on()

(3) In the execute() method actions
are invoked on the reciever.

The Invoker

210 Chapter 6

public class RemoteControl {
 Command[] onCommands;
 Command[] offCommands;

 public RemoteControl() {
 onCommands = new Command[7];
 offCommands = new Command[7];

 Command noCommand = new NoCommand();
 for (int i = 0; i < 7; i++) {
 onCommands[i] = noCommand;
 offCommands[i] = noCommand;
 }
 }

 public void setCommand(int slot, Command onCommand, Command offCommand) {
 onCommands[slot] = onCommand;
 offCommands[slot] = offCommand;
 }

 public void onButtonWasPushed(int slot) {
 onCommands[slot].execute();
 }

 public void offButtonWasPushed(int slot) {
 offCommands[slot].execute();
 }

 public String toString() {
 StringBuffer stringBuff = new StringBuffer();
 stringBuff.append(“\n------ Remote Control -------\n”);
 for (int i = 0; i < onCommands.length; i++) {
 stringBuff.append(“[slot “ + i + “] “ + onCommands[i].getClass().getName()
 + “ “ + offCommands[i].getClass().getName() + “\n”);
 }
 return stringBuff.toString();
 }
}

In the constructor all we need to do is
instantiate and initialize the on and off
arrays.

This time around the remote is going to

handle seven On and Off commands, which

we’ll hold in corresponding arrays.

The setCommand() method takes a slot position
and an On and Off command to be stored in
that slot. It puts these commands in the on and
off arrays for later use.

When an On or Off button is
pressed, the hardware takes
care of calling the corresponding
methods onButtonWasPushed() or
offButtonWasPushed().

We’ve overwritten toString() to print out each slot and its corresponding command. You’ll see us use this when we test the remote control.

Implementing the Remote Control

implementing the remote control

the command pattern

you are here 4 211

public class LightOffCommand implements Command {
 Light light;

 public LightOffCommand(Light light) {
 this.light = light;
 }

 public void execute() {
 light.off();
 }
}

Implementing the Commands

Well, we’ve already gotten our feet wet implementing the LightOnCommand for
the SimpleRemoteControl. We can plug that same code in here and everything
works beautifully. Off commands are no different; in fact the LightOffCommand
looks like this:

The LightOffCommand works exactly
the same way as the LightOnCommand,
except that we are binding the receiver
to a different action: the off() method.

Let’s try something a little more challenging; how about writing on and off
commands for the Stereo? Okay, off is easy, we just bind the Stereo to the off()
method in the StereoOffCommand. On is a little more complicated; let’s say we
want to write a StereoOnWithCDCommand...

Stereo

on()
off()
setCd()
setDvd()
setRadio()
setVolume()

public class StereoOnWithCDCommand implements Command {
 Stereo stereo;

 public StereoOnWithCDCommand(Stereo stereo) {
 this.stereo = stereo;
 }

 public void execute() {
 stereo.on();
 stereo.setCD();
 stereo.setVolume(11);
 }
}

Just like the LightOnCommand, we get

passed the instance of the stereo we

are going to be controlling and we store

it in a local instance variable.

To carry out this request, we need to call three methods on the stereo: first, turn it on, then set it to play the CD, and finally set the volume to 11. Why 11? Well, it’s better than 10, right?

Not too bad. Take a look at the rest of the vendor classes; by now, you can defi nitely
knock out the rest of the Command classes we need for those.

212 Chapter 6

Putting the Remote Control through its paces

public class RemoteLoader {

 public static void main(String[] args) {
 RemoteControl remoteControl = new RemoteControl();

 Light livingRoomLight = new Light(“Living Room”);
 Light kitchenLight = new Light(“Kitchen”);
 CeilingFan ceilingFan= new CeilingFan(“Living Room”);
 GarageDoor garageDoor = new GarageDoor(“”);
 Stereo stereo = new Stereo(“Living Room”);

 LightOnCommand livingRoomLightOn =
 new LightOnCommand(livingRoomLight);
 LightOffCommand livingRoomLightOff =
 new LightOffCommand(livingRoomLight);
 LightOnCommand kitchenLightOn =
 new LightOnCommand(kitchenLight);
 LightOffCommand kitchenLightOff =
 new LightOffCommand(kitchenLight);

 CeilingFanOnCommand ceilingFanOn =
 new CeilingFanOnCommand(ceilingFan);
 CeilingFanOffCommand ceilingFanOff =
 new CeilingFanOffCommand(ceilingFan);

 GarageDoorUpCommand garageDoorUp =
 new GarageDoorUpCommand(garageDoor);
 GarageDoorDownCommand garageDoorDown =
 new GarageDoorDownCommand(garageDoor);

 StereoOnWithCDCommand stereoOnWithCD =
 new StereoOnWithCDCommand(stereo);
 StereoOffCommand stereoOff =
 new StereoOffCommand(stereo);

Our job with the remote is pretty much done; all we need to do is run some tests and
get some documentation together to describe the API. Home Automation or Bust,
Inc. sure is going to be impressed, don’t you think? We’ve managed to come up with
a design that is going to allow them to produce a remote that is easy to maintain
and they’re going to have no trouble convincing the vendors to write some simple
command classes in the future since they are so easy to write.

Let’s get to testing this code!

Create all the devices in

their proper locations.

Create all the Light
Command objects.

Create the On and Off

for the ceiling fan.

Create the Up and Down
commands for the Garage.

Create the stereo On
and Off commands.

testing the remote control

the command pattern

you are here 4 213

File Edit Window Help CommandsGetThingsDone

% java RemoteLoader
------ Remote Control -------
[slot 0] headfirst.command.remote.LightOnCommand headfirst.command.remote.LightOffCommand
[slot 1] headfirst.command.remote.LightOnCommand headfirst.command.remote.LightOffCommand
[slot 2] headfirst.command.remote.CeilingFanOnCommand headfirst.command.remote.CeilingFanOffCommand
[slot 3] headfirst.command.remote.StereoOnWithCDCommand headfirst.command.remote.StereoOffCommand
[slot 4] headfirst.command.remote.NoCommand headfirst.command.remote.NoCommand
[slot 5] headfirst.command.remote.NoCommand headfirst.command.remote.NoCommand
[slot 6] headfirst.command.remote.NoCommand headfirst.command.remote.NoCommand

Living Room light is on
Living Room light is off
Kitchen light is on
Kitchen light is off
Living Room ceiling fan is on high
Living Room ceiling fan is off
Living Room stereo is on
Living Room stereo is set for CD input
Living Room Stereo volume set to 11
Living Room stereo is off

%

 remoteControl.setCommand(0, livingRoomLightOn, livingRoomLightOff);
 remoteControl.setCommand(1, kitchenLightOn, kitchenLightOff);
 remoteControl.setCommand(2, ceilingFanOn, ceilingFanOff);
 remoteControl.setCommand(3, stereoOnWithCD, stereoOff);

 System.out.println(remoteControl);

 remoteControl.onButtonWasPushed(0);
 remoteControl.offButtonWasPushed(0);
 remoteControl.onButtonWasPushed(1);
 remoteControl.offButtonWasPushed(1);
 remoteControl.onButtonWasPushed(2);
 remoteControl.offButtonWasPushed(2);
 remoteControl.onButtonWasPushed(3);
 remoteControl.offButtonWasPushed(3);
 }
}

Now that we’ve got
all our commands, we
can load them into
the remote slots.

Here’s where we use our toString() method to print each remote slot and the command that it is assigned to.

All right, we are ready to roll!
Now, we step through each slot
and push its On and Off button.

Now, let’s check out the execution of our remote control test...

On slots Off Slots

Our commands in action! Remember, the output from each device comes from the vendor classes. For instance, when a light object is turned on it prints “Living Room light is on.”

214 Chapter 6

 Wait a second, what
is with that NoCommand that

is loaded in slots four through six?
Trying to pull a fast one?

Good catch. We did sneak a little something in there. In the remote
control, we didn’t want to check to see if a command was loaded every
time we referenced a slot. For instance, in the onButtonWasPushed()
method, we would need code like this:

 public void onButtonWasPushed(int slot) {
 if (onCommands[slot] != null) {
 onCommands[slot].execute();
 }
 }

So, how do we get around that? Implement a command that does nothing!

public class NoCommand implements Command {
 public void execute() { }
}

Then, in our RemoteControl constructor, we assign every slot a
NoCommand object by default and we know we’ll always have some
command to call in each slot.

 Command noCommand = new NoCommand();
 for (int i = 0; i < 7; i++) {
 onCommands[i] = noCommand;
 offCommands[i] = noCommand;
 }

So in the output of our test run, you are seeing slots that haven’t been
assigned to a command, other than the default NoCommand object
which we assigned when we created the RemoteControl.

Pattern
Honorable
Mention

Head F
irst

Honorable

Mention

The NoCommand object is an example of a null object. A null object is useful
when you don’t have a meaningful object to return, and yet you want to remove
the responsibility for handling null from the client. For instance, in our remote
control we didn’t have a meaningful object to assign to each slot out of the box,
so we provided a NoCommand object that acts as a surrogate and does nothing
when its execute method is called.

You’ll find uses for Null Objects in conjunction with many Design Patterns and
sometimes you’ll even see Null Object listed as a Design Pattern.

null object

the command pattern

you are here 4 215

Time to write that documentation...

Remote Control API Design for Home Automation or Bust, Inc.,

We are pleased to present you with the following design and application programming interface for your Home

Automation Remote Control. Our primary design goal was to keep the remote control code as simple as possible so that

it doesn’t require changes as new vendor classes are produced. To this end we have employed the Command Pattern to

logically decouple the RemoteControl class from the Vendor Classes. We believe this will reduce the cost of producing

the remote as well as drastically reduce your ongoing maintenance costs.

The following class diagram provides an overview of our design:

Using the Command Interface, each action that can be

invoked by pressing a button on the remote is implemented

with a simple Command object. The Command Object holds

a reference to an object that is an instance of a Vendor Class

and implements an execute method that calls one or more

methods on that object. Here we show two such classes

that turn a light on and off, respectively.

The Vendor Classes are used to perform

the actual home-automation work of

controlling devices. Here, we are using the

Light class as an example.

All RemoteControl commands

implement the Command

interface, which consists of one

method: execute(). Commands

encapsulate a set of actions

on a specific vendor class. The

remote invokes these actions by

calling the execute() method.

The RemoteLoader creates a

number of Command Objects

that are loaded into the slots

of the Remote Control. Each

command object encapsulates

a request of a home

automation device.

RemoteControl

setCommand()

onButtonWasPushed()

offButtonWasPushed()

<<interface>>
CommandCommand

execute()

on()

off()

Light
on()

Light

RemoteLoader

LightOnCommandLightOnCommand

execute()execute()execute()
LightOffCommandLightOffCommand

execute()

public void execute() {

 light.on()

}
 light.on()

public void execute() {

 light.off()

}

onCommands

offCommands

The RemoteControl manages a set of Command

objects, one per button. When a button is pressed,

the corresponding ButtonWasPushed() method is

called, which invokes the execute() method on the

command. That is the full extent of the remote’s

knowledge of the classes it’s invoking as the

Command object decouples the remote from the

classes doing the actual home-automation work.

216 Chapter 6

Great job; it looks like
you’ve come up with a terrific design,

but aren’t you forgetting one little thing
the customer asked for?
LIKE THE UNDO BUTTON!!!!

public interface Command {
 public void execute();
 public void undo();
}

Whoops! We almost forgot... luckily, once we
have our basic Command classes, undo is easy
to add. Let’s step through adding undo to our
commands and to the remote control...

Here’s the new undo() method.

What are we doing?

Okay, we need to add functionality to support the undo button on the remote. It works like
this: say the Living Room Light is off and you press the on button on the remote. Obviously
the light turns on. Now if you press the undo button then the last action will be reversed – in
this case the light will turn off. Before we get into more complex examples, let’s get the light
working with the undo button:

1 When commands support undo, they have an undo() method that mirrors the execute()
method. Whatever execute() last did, undo() reverses. So, before we can add undo to our
commands, we need to add an undo() method to the Command interface:

That was simple enough.

Now, let’s dive into the Light command and implement the undo() method.

don’t forget undo

the command pattern

you are here 4 217

Could this be any easier? Okay, we aren’t done yet; we need to work a little
support into the Remote Control to handle tracking the last button pressed
and the undo button press.

Piece of cake! Now for the LightOffCommand. Here the undo() method just
needs to call the Light’s on() method.

public class LightOffCommand implements Command {
 Light light;

 public LightOffCommand(Light light) {
 this.light = light;
 }

 public void execute() {
 light.off();
 }

 public void undo() {
 light.on();
 }
}

And here, undo
() turns

the light bac
k on!

public class LightOnCommand implements Command {
 Light light;

 public LightOnCommand(Light light) {
 this.light = light;
 }

 public void execute() {
 light.on();
 }

 public void undo() {
 light.off();
 }
}

execute() tur
ns the

light on, so un
do()

simply turns the
 light

back off.

2 Let’s start with the LightOnCommand: if the LightOnCommand’s execute() method
was called, then the on() method was last called. We know that undo() needs to do the
opposite of this by calling the off() method.

218 Chapter 6

3

public class RemoteControlWithUndo {
 Command[] onCommands;
 Command[] offCommands;
 Command undoCommand;

 public RemoteControlWithUndo() {
 onCommands = new Command[7];
 offCommands = new Command[7];

 Command noCommand = new NoCommand();
 for(int i=0;i<7;i++) {
 onCommands[i] = noCommand;
 offCommands[i] = noCommand;
 }
 undoCommand = noCommand;
 }

 public void setCommand(int slot, Command onCommand, Command offCommand) {
 onCommands[slot] = onCommand;
 offCommands[slot] = offCommand;
 }

 public void onButtonWasPushed(int slot) {
 onCommands[slot].execute();
 undoCommand = onCommands[slot];
 }

 public void offButtonWasPushed(int slot) {
 offCommands[slot].execute();
 undoCommand = offCommands[slot];
 }

 public void undoButtonWasPushed() {
 undoCommand.undo();
 }

 public String toString() {
 // toString code here...
 }
}

To add support for the undo button we only have to make a few small changes to the Remote
Control class. Here’s how we’re going to do it: we’ll add a new instance variable to track the
last command invoked; then, whenever the undo button is pressed, we retrieve that command
and invoke its undo() method.

This is where we’ll stash the last command

executed for the undo button.

Just like the other slots, undo
starts off with a NoCommand, so
pressing undo before any other
button won’t do anything at all.

When a button is pressed, we take
the command and first execute
it; then we save a reference to
it in the undoCommand instance
variable. We do this for both “on”
commands and “off” commands.

When the undo button is pressed, we
invoke the undo() method of the
command stored in undoCommand.
This reverses the operation of the
last command executed.

implementing undo

the command pattern

you are here 4 219

public class RemoteLoader {

 public static void main(String[] args) {
 RemoteControlWithUndo remoteControl = new RemoteControlWithUndo();

 Light livingRoomLight = new Light(“Living Room”);

 LightOnCommand livingRoomLightOn =
 new LightOnCommand(livingRoomLight);
 LightOffCommand livingRoomLightOff =
 new LightOffCommand(livingRoomLight);

 remoteControl.setCommand(0, livingRoomLightOn, livingRoomLightOff);

 remoteControl.onButtonWasPushed(0);
 remoteControl.offButtonWasPushed(0);
 System.out.println(remoteControl);
 remoteControl.undoButtonWasPushed();
 remoteControl.offButtonWasPushed(0);
 remoteControl.onButtonWasPushed(0);
 System.out.println(remoteControl);
 remoteControl.undoButtonWasPushed();
 }
}

Time to QA that Undo button!

Create a Light, and our new undo()

enabled Light On and Off Commands.

Add the light Commands
to the remote in slot 0.

And here’s the test results...

Okay, let’s rework the test harness a bit to test the undo button:

Turn the light on, then
off and then undo.

Then, turn the light off, back on and undo.

File Edit Window Help UndoCommandsDefyEntropy

% java RemoteLoader
Light is on
Light is off

------ Remote Control -------
[slot 0] headfirst.command.undo.LightOnCommand headfirst.command.undo.LightOffCommand
[slot 1] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 2] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 3] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 4] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 5] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 6] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[undo] headfirst.command.undo.LightOffCommand

Light is on

Light is off
Light is on

------ Remote Control -------
[slot 0] headfirst.command.undo.LightOnCommand headfirst.command.undo.LightOffCommand
[slot 1] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 2] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 3] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 4] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 5] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 6] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[undo] headfirst.command.undo.LightOnCommand

Light is off

Undo was pressed... the LightOffCommand undo() turns the light back on.

Here’s the Light commands.
Turn the light on, then off.

Now undo holds the
LightOffCommand, the last
command invoked.

Then we turn the light off then back on.

Undo was pressed, the light is back off.
Now undo holds the LightOnCommand, the last command invoked.

220 Chapter 6

Using state to implement Undo

Okay, implementing undo on the Light was instructive but a little too easy. Typically,
we need to manage a bit of state to implement undo. Let’s try something a little more
interesting, like the CeilingFan from the vendor classes. The ceiling fan allows a
number of speeds to be set along with an off method.

Here’s the source code for the CeilingFan:

public class CeilingFan {
 public static fi nal int HIGH = 3;
 public static fi nal int MEDIUM = 2;
 public static fi nal int LOW = 1;
 public static fi nal int OFF = 0;
 String location;
 int speed;

 public CeilingFan(String location) {
 this.location = location;
 speed = OFF;
 }

 public void high() {
 speed = HIGH;
 // code to set fan to high
 }

 public void medium() {
 speed = MEDIUM;
 // code to set fan to medium
 }

 public void low() {
 speed = LOW;
 // code to set fan to low
 }

 public void off() {
 speed = OFF;
 // code to turn fan off
 }

 public int getSpeed() {
 return speed;
 }
}

CeilingFan

high()

medium()

low()

off()

getSpeed()

Notice that the
CeilingFan class holds lo

cal

state represent
ing the speed of

 the ceiling fan
.

These methods set the
speed of the ceiling fan.

We can get the cu
rrent

speed of the cei
ling fan

using getSpeed()
.

Hmm, so to properly
implement undo, I’d have

to take the previous speed of
the ceiling fan into account...

we need to keep some state for undo

the command pattern

you are here 4 221

public class CeilingFanHighCommand implements Command {
 CeilingFan ceilingFan;
 int prevSpeed;

 public CeilingFanHighCommand(CeilingFan ceilingFan) {
 this.ceilingFan = ceilingFan;
 }

 public void execute() {
 prevSpeed = ceilingFan.getSpeed();
 ceilingFan.high();
 }

 public void undo() {
 if (prevSpeed == CeilingFan.HIGH) {
 ceilingFan.high();
 } else if (prevSpeed == CeilingFan.MEDIUM) {
 ceilingFan.medium();
 } else if (prevSpeed == CeilingFan.LOW) {
 ceilingFan.low();
 } else if (prevSpeed == CeilingFan.OFF) {
 ceilingFan.off();
 }
 }
}

Now let’s tackle adding undo to the various CeilingFan commands. To
do so, we need to track the last speed setting of the fan and, if the undo()
method is called, restore the fan to its previous setting. Here’s the code for
the CeilingFanHighCommand:

We’ve added local s
tate

to keep track of
 the

previous speed of
 the fan.

In execute, before we change
the speed of the fan, we
need to first record its
previous state, just in case we
need to undo our actions.

To undo, we set the speed of the fan back to its
previous speed.

Adding Undo to the ceiling fan commands

We’ve got three more ceiling fan commands to write: low, medium, and off. Can you see
how these are implemented?

brain
powerA

222 Chapter 6

Get ready to test the ceiling fan

Time to load up our remote control with the ceiling fan
commands. We’re going to load slot zero’s on button with
the medium setting for the fan and slot one with the high
setting. Both corresponding off buttons will hold the ceiling
fan off command.

Here’s our test script:

public class RemoteLoader {

 public static void main(String[] args) {
 RemoteControlWithUndo remoteControl = new RemoteControlWithUndo();

 CeilingFan ceilingFan = new CeilingFan(“Living Room”);

 CeilingFanMediumCommand ceilingFanMedium =
 new CeilingFanMediumCommand(ceilingFan);
 CeilingFanHighCommand ceilingFanHigh =
 new CeilingFanHighCommand(ceilingFan);
 CeilingFanOffCommand ceilingFanOff =
 new CeilingFanOffCommand(ceilingFan);

 remoteControl.setCommand(0, ceilingFanMedium, ceilingFanOff);
 remoteControl.setCommand(1, ceilingFanHigh, ceilingFanOff);

 remoteControl.onButtonWasPushed(0);
 remoteControl.offButtonWasPushed(0);
 System.out.println(remoteControl);
 remoteControl.undoButtonWasPushed();

 remoteControl.onButtonWasPushed(1);
 System.out.println(remoteControl);
 remoteControl.undoButtonWasPushed();
 }
}

Here we instantiate three
commands: high, medium, and off.

Here we put medium in
slot zero, and high in
slot one. We also load
up the off commands.

First, turn the fan on medium.

Then turn it off.

Undo! It should go back to medium...

Turn it on to high this time.

And, one more undo; it should go back to medium.

test the ceiling fan

the command pattern

you are here 4 223

% java RemoteLoader

Living Room ceiling fan is on medium
Living Room ceiling fan is off

------ Remote Control -------
[slot 0] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 1] headfirst.command.undo.CeilingFanMediumCommand headfirst.command.undo.CeilingFanOff-
Command
[slot 2] headfirst.command.undo.CeilingFanHighCommand headfirst.command.undo.CeilingFanOffCom-
mand
[slot 3] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 4] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 5] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 6] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[undo] headfirst.command.undo.CeilingFanOffCommand

Living Room ceiling fan is on medium
Living Room ceiling fan is on high

------ Remote Control -------
[slot 0] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 1] headfirst.command.undo.CeilingFanMediumCommand headfirst.command.undo.CeilingFanOff-
Command
[slot 2] headfirst.command.undo.CeilingFanHighCommand headfirst.command.undo.CeilingFanOffCom-
mand
[slot 3] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 4] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 5] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[slot 6] headfirst.command.undo.NoCommand headfirst.command.undo.NoCommand
[undo] headfirst.command.undo.CeilingFanHighCommand

Living Room ceiling fan is on medium

%

File Edit Window Help UndoThis!

One more undo, and the ceiling fan
goes back to medium speed.

Turn the ceiling fan on
medium, then turn it off.

...and undo has the last
command executed, the
CeilingFanOfCommand.

Here are the commands

in the remote control...

Undo the last command, and it goes back to medium.
Now, turn it on high.

Now, high is the last
command executed.

Testing the ceiling fan...

Okay, let’s fire up the remote, load it with commands, and push some buttons!

224 Chapter 6

Every remote needs a Party Mode!

Hottub

on()

off()

circulate()

jetsOn()

jetsOff()

setTemperature()

Hottub

Stereo

on()

off()

setCd()

setDvd()

setRadio()

setVolume()

Light

on()

off()

dim()

Light

on()

off()

setInputChannel()

setVolume()

TV

Hold on Sue, don’t be
so sure. I think we can

do this without changing the
remote at all!

public class MacroCommand implements Command {
 Command[] commands;

 public MacroCommand(Command[] commands) {
 this.commands = commands;
 }

 public void execute() {
 for (int i = 0; i < commands.length; i++) {
 commands[i].execute();
 }
 }
}

Mary’s idea is to make a new
kind of Command that can
execute other Commands...
and more than one of them!
Pretty good idea, huh?

Take an array of
Commands and store them in the MacroCommand.

When the macro gets executed by the remote, execute those commands one at a time.

What’s the point of having a remote if you can’t
push one button and have the lights dimmed, the
stereo and TV turned on and set to a DVD and the
hot tub fi red up?

Hmm, our remote
control would need a

button for each device, I
don’t think we can do this.

macro commands

the command pattern

you are here 4 225

Using a macro command
Let’s step through how we use a macro command:

1 First we create the set of commands we want to go into the macro:

Light light = new Light(“Living Room”);
TV tv = new TV(“Living Room”);
Stereo stereo = new Stereo(“Living Room”);
Hottub hottub = new Hottub();

LightOnCommand lightOn = new LightOnCommand(light);
StereoOnCommand stereoOn = new StereoOnCommand(stereo);
TVOnCommand tvOn = new TVOnCommand(tv);
HottubOnCommand hottubOn = new HottubOnCommand(hottub);

Sharpen your pencil We will also need commands for the off buttons,
write the code to create those here:

2 Next we create two arrays, one for the On commands and one for the Off com-
mands, and load them with the corresponding commands:

Command[] partyOn = { lightOn, stereoOn, tvOn, hottubOn};
Command[] partyOff = { lightOff, stereoOff, tvOff, hottubOff};

MacroCommand partyOnMacro = new MacroCommand(partyOn);
MacroCommand partyOffMacro = new MacroCommand(partyOff);

3 Then we assign MacroCommand to a button like we always do:

remoteControl.setCommand(0, partyOnMacro, partyOffMacro);

Create all the devices, a light,
tv, stereo, and hot tub.

Now create all the On
commands to control them.

Create an array for On
and an array for Off
commands...

...and create two
corresponding macros
to hold them.

Assign the macro
command to a button as
we would any command.

226 Chapter 6

File Edit Window Help You Can’tBeatABabka

% java RemoteLoader
------ Remote Control -------
[slot 0] headfirst.command.party.MacroCommand headfirst.command.party.MacroCommand
[slot 1] headfirst.command.party.NoCommand headfirst.command.party.NoCommand
[slot 2] headfirst.command.party.NoCommand headfirst.command.party.NoCommand
[slot 3] headfirst.command.party.NoCommand headfirst.command.party.NoCommand
[slot 4] headfirst.command.party.NoCommand headfirst.command.party.NoCommand
[slot 5] headfirst.command.party.NoCommand headfirst.command.party.NoCommand
[slot 6] headfirst.command.party.NoCommand headfirst.command.party.NoCommand
[undo] headfirst.command.party.NoCommand

--- Pushing Macro On---
Light is on
Living Room stereo is on
Living Room TV is on
Living Room TV channel is set for DVD
Hottub is heating to a steaming 104 degrees
Hottub is bubbling!

--- Pushing Macro Off---
Light is off
Living Room stereo is off
Living Room TV is off
Hottub is cooling to 98 degrees

%

Here are the two macro commands.

All the Commands in the macro
are executed when we invoke
the on macro...

and when we invoke the off
macro. Looks like it works.

4 Finally, we just need to push some buttons and see if this works.

System.out.println(remoteControl);
System.out.println(“--- Pushing Macro On---”);
remoteControl.onButtonWasPushed(0);
System.out.println(“--- Pushing Macro Off---”);
remoteControl.offButtonWasPushed(0);

Here’s the output.

macro command exercise

the command pattern

you are here 4 227

Q: Do I always need a receiver?
Why can’t the command object
implement the details of the
execute() method?

A: In general, we strive for “dumb”
command objects that just invoke
an action on a receiver; however,
there are many examples of “smart”
command objects that implement
most, if not all, of the logic needed
to carry out a request. Certainly
you can do this; just keep in mind
you’ll no longer have the same level
of decoupling between the invoker
and receiver, nor will you be able to
parameterize your commands with
receivers.

Q: How can I implement a history
of undo operations? In other words,
I want to be able to press the undo
button multiple times.

A: Great question! It’s pretty
easy actually; instead of keeping just
a reference to the last Command
executed, you keep a stack of previous
commands. Then, whenever undo is
pressed, your invoker pops the first
item off the stack and calls its undo()
method.

Q: Could I have just implemented
Party Mode as a Command by
creating a PartyCommand and
putting the calls to execute the other
Commands in the PartyCommand’s
execute() method?

A: You could; however, you’d
essentially be “hardcoding” the
party mode into the PartyCommand.
Why go to the trouble? With the
MacroCommand, you can decide
dynamically which Commands you
want to go into the PartyCommand,
so you have more flexibility using
MacroCommands. In general, the
MacroCommand is a more elegant
solution and requires less new code.

there are noDumb Questions

The only thing our MacroCommand is missing its undo functionality. When the
undo button is pressed after a macro command, all the commands that were invoked
in the macro must undo their previous actions. Here’s the code for MacroCommand;
go ahead and implement the undo() method:

Exercise

public class MacroCommand implements Command {
 Command[] commands;

 public MacroCommand(Command[] commands) {
 this.commands = commands;
 }

 public void execute() {
 for (int i = 0; i < commands.length; i++) {
 commands[i].execute();
 }
 }

 public void undo() {

 }
}

228 Chapter 6

queuing requests

More uses of the Command Pattern: queuing requests

Note that the job queue classes are totally decoupled from the ob-
jects that are doing the computation. One minute a thread may be
computing a financial computation, and the next it may be retrieving
something from the network. The job queue objects don’t care; they
just retrieve commands and call execute(). Likewise, as long as you
put objects into the queue that implement the Command Pattern,
your execute() method will be invoked when a thread is available.

 Thread

 RayTrace

execute()

 CompilerT
as

k

 Thread

Threads computing
jobs

Objects implementing the

command interface are

added to the queue.

Threads remove commands
from the queue one by one
and call their execute()
method. Once complete,
they go back for a new
command object.

This gives us an effective way
to limit computation to a
fixed number of threads.

FinancialComput
at

io
n

 CompilerTas
k

execute()

 DownloadRe
qu

es
t

execute()

 CompilerTas
k

execute()

 NetworkFe
tc

hexecute()

FinancialComput

at
io

n execute()

 RayTrace

execute()

 DistributedCom
pt

at
io

n

execute()

execute()

 DownloadRe
qu

es
t

 CompilerT
as

kexecute()

 NetworkFe
tc

hexecute()

FinancialComput

at
io

n execute()

 RayTrace

execute()

execute()

Job queue

Commands

brain
powerA

How might a web server make
use of such a queue? What other
applications can you think of?

execute()

 DownloadRe
qu

es
t

 Thread

execute()

 NetworkFe
tc

h Thread

execute()

Commands give us a way to package a piece of
computation (a receiver and a set of actions) and pass it
around as a first-class object. Now, the computation itself
may be invoked long after some client application creates
the command object. In fact, it may even be invoked by a
different thread. We can take this scenario and apply it to
many useful applications such as schedulers, thread pools
and job queues, to name a few.

Imagine a job queue: you add commands to the queue
on one end, and on the other end sit a group of threads.
Threads run the following script: they remove a command
from the queue, call its execute() method, wait for the call
to finish, then discard the command object and retrieve a
new one.

the command pattern

you are here 4 229

The semantics of some applications require that we log all actions and be able to
recover after a crash by reinvoking those actions. The Command Pattern can support
these semantics with the addition of two methods: store() and load(). In Java we could
use object serialization to implement these methods, but the normal caveats for using
serialization for persistence apply.

How does this work? As we execute commands, we store a history of them on disk.
When a crash occurs, we reload the command objects and invoke their execute()
methods in batch and in order.

Now, this kind of logging wouldn’t make sense for a remote control; however, there
are many applications that invoke actions on large data structures that can’t be quickly
saved each time a change is made. By using logging, we can save all the operations
since the last check point, and if there is a system failure, apply those operations to our
checkpoint. Take, for example, a spreadsheet application: we might want to implement
our failure recovery by logging the actions on the spreadsheet rather than writing a copy
of the spreadsheet to disk every time a change occurs. In more advanced applications,
these techniques can be extended to apply to sets of operations in a transactional
manner so that all of the operations complete, or none of them do.

<<interface>>
Command

execute()
undo()
store()
load()

As each command
is executed, it is
stored on disk.

More uses of the Command Pattern: logging requests

 CommandOne

execute()
store()
load()

 CommandTwo

execute()
store()
load()

 CommandThr
ee

execute()
store()
load()

store

st
or

e

sto
re1. execute()

 Invoker

2. execute()

3. execute()

 CommandOne

execute()
store()
load()

 CommandTwo

execute()
store()
load()

 CommandThr
ee

execute()
store()
load()

load

load

load

 Invoker3. execute()

2. execute()

1. execute()

.
Crash!

Restore

After a system failure,

the objects are
reloaded and executed
in the correct order.

We add two methods
for logging.

230 Chapter 6

Tools for your Design Toolbox
Your toolbox is starting to get heavy! In this chapter
we’ve added a pattern that allows us to encapsulate
methods into Command objects: store them, pass them
around, and invoke them when you need them.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics
Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for

extension but
closed for

modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

OO Principles

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically
interchangeab

le. Strategy
lets the algor

ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer
dependency be

tween objects so
 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automatically

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Observer defines a one-

to-many

automatically

Decorator
responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

 responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

alternative to
 subclassing fo

r extending

functionality.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many

DecoratorAbstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract Factory

related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

Observer defines a one-
to-many

DecoratorAbstract Factory

specifying the
ir concrete cl

asses.
Factory Method Define an

interface for
 creating an o

bject, but Factory Method

interface for
 creating an o

bject, but

interface for
 creating an o

bject, but Factory Method

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the instantiate. F
actory Method lets

a class defer
instantiation

to the

a class defer
instantiation

to the instantiate. F
actory Method lets

subclasses.

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

Abstract Factory
Factory Method Define an

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.Command - Encapsulates a

request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

 BULLET POINTS

ß The Command Pattern
decouples an object, making
a request from the one that
knows how to perform it.

ß A Command object is at the
center of this decoupling and
encapsulates a receiver with
an action (or set of actions) .

ß An invoker makes a request of
a Command object by calling
its execute() method, which
invokes those actions on the
receiver.

ß Invokers can be parameterized
with Commands, even
dynamically at runtime.

ß Commands may support undo
by implementing an undo
method that restores the object
to its previous state before
the execute() method was last
called.

ß Macro Commands are a simple
extension of Command that
allow multiple commands to
be invoked. Likewise, Macro
Commands can easily support
undo().

ß In practice, it is not uncommon
for “smart” Command objects
to implement the request
themselves rather than
delegating to a receiver.

ß Commands may also be used
to implement logging and
transactional systems.

When you need to decou
ple an

object making requests from

the objects that know
 how

to perform the requests, use

the Command Pattern.

your design toolbox

the command pattern

you are here 4 231

Time to take a breather and let it all sink in.

It’s another crossword; all of the solution words are from
this chapter.

�

� �

� � �

�

�

� ��

�� ��

��

��

�� ��

��

������

�� ��� �������� ��� ���
�� � ������� ���� � ��� �� ������� ��� �
��������
�� ��� ����� ����� ����
��������������������
�� ��� �� ��� ��������� �� ��� ������ �������
��� ������ ���� ����� ��� ������� ��� ���
��������
��� ������� ����� ������� ��� ��
��� ������ ���� ����� ��� �� ��� ������ ����
��� � ������� ������������ ����

����

�� ���� �� �������� �� ��� ������� �������
�� ��� ����� ������� ������ ���������� ����
�� ������� ��� �������� ��� ��������������
�� ������� ���� ��� �� ���� �� ����� ��������
��� ��� �������� ������� ����
��� ��� ���� ��� ���� ������ ���� ����������
���������
��� ������� ��� � �������
��� �������� ������ �� ����

�

� �

� � �

�

�

� ��

�� ��

��

��

�� ��

��

������

�� ��� �������� ��� ���
�� � ������� ���� � ��� �� ������� ��� �
��������
�� ��� ����� ����� ����
��������������������
�� ��� �� ��� ��������� �� ��� ������ �������
��� ������ ���� ����� ��� ������� ��� ���
��������
��� ������� ����� ������� ��� ��
��� ������ ���� ����� ��� �� ��� ������ ����
��� � ������� ������������ ����

����

�� ���� �� �������� �� ��� ������� �������
�� ��� ����� ������� ������ ���������� ����
�� ������� ��� �������� ��� ��������������
�� ������� ���� ��� �� ���� �� ����� ��������
��� ��� �������� ������� ����
��� ��� ���� ��� ���� ������ ���� ����������
���������
��� ������� ��� � �������
��� �������� ������ �� ����

232 Chapter 6

Exercise
solutions

Sharpen your pencil

File Edit Window Help GreenEggs&Ham

%java RemoteControlTest

Light is on
Garage Door is Open

%

public class GarageDoorOpenCommand implements Command {
 GarageDoor garageDoor;
 public GarageDoorOpenCommand(GarageDoor garageDoor) {
 this.garageDoor = garageDoor;
 }

 public void execute() {
 garageDoor.up();
 }
}

Match the diner objects and methods with the corresponding names from the
Command Pattern

Diner Command Pattern

Waitress

Short Order Cook

orderUp()

Order

Customer

takeOrder()

Command

execute()

Client

Invoker

Receiver

setCommand()

exercise solutions

the command pattern

you are here 4 233

Exercise
solutions

Write the undo() method for MacroCommand

public class MacroCommand implements Command {
 Command[] commands;
 public MacroCommand(Command[] commands) {
 this.commands = commands;
 }

 public void execute() {
 for (int i = 0; i < commands.length; i++) {
 commands[i].execute();
 }
 }

 public void undo() {
 for (int i = 0; i < commands.length; i++) {
 commands[i].undo();
 }
 }
}

Exercise

Sharpen your pencil We will also need commands for the off button.
Write the code to create those here:

LightOffCommand lightOff = new LightOffCommand(light);
StereoOffCommand stereoOff = new StereoOffCommand(stereo);
TVOffCommand tvOff = new TVOffCommand(tv);
HottubOffCommand hottubOff = new HottubOffCommand(hottub);

�
�

�

�
�

�
�

� � � � � �

�
�

� � �
�

� �
�

�

� � �
�

� � � � � � � � � � � � � �

� � � �

� �
�

� � � � � � � � � �

� �

� �
�

� � � � � � � � � � �
��

�

�
��

� �
��

� �

� � � � �

� � � �
��

� � � � � � �

� � � �
��

� � �

�
��

� �
��

� � � � � �

� � � �
��

� � � � � � � �

� � � �

� � � �

������

����������������������������������
���
�����������������
��
�� ��� �������� ���� �������������
��
���������������
��
�������������������
��
���
����������
��

����

���
��������
��
�������
����������������������������
�������������� �����������
�������������������������������������
��������������������������
��
���
���������������������
��� ������� ��� � ������� ����������
�����������������������������������

this is a new chapter 235

In this chapter we’re going to attempt such impossible feats as
putting a square peg in a round hole. Sound impossible? Not when we have

Design Patterns. Remember the Decorator Pattern? We wrapped objects to give them new

responsibilities. Now we’re going to wrap some objects with a different purpose: to make their

interfaces look like something they’re not. Why would we do that? So we can adapt a design

expecting one interface to a class that implements a different interface. That’s not all; while

we’re at it, we’re going to look at another pattern that wraps objects to simplify their interface.

Being Adaptive

7 the Adapter and Facade Patterns

g
h

g

Do you think the readers are
really getting the impression we’re
watching a horse race rather than

sitting in a photo studio?

You
mean it’s not

supposed to be a
football match?

That’s the
beauty of our profession,

we can make things look
like something they’re not!

Wrapped in
this coat, I’m a

different man!

236 Chapter 7

You know what the adapter does: it sits in between the plug of your laptop and the
European AC outlet; its job is to adapt the European outlet so that you can plug your
laptop into it and receive power. Or look at it this way: the adapter changes the interface
of the outlet into one that your laptop expects.

Some AC adapters are simple – they only change the shape of the outlet so that it matches
your plug, and they pass the AC current straight through – but other adapters are more
complex internally and may need to step the power up or down to match your devices’
needs.

Okay, that’s the real world, what about object oriented adapters? Well, our OO adapters
play the same role as their real world counterparts: they take an interface and adapt it to
one that a client is expecting.

Adapters all around us

You’ll have no trouble understanding what an OO adapter is
because the real world is full of them. How’s this for an example:
Have you ever needed to use a US-made laptop in a European
country? Then you’ve probably needed an AC power adapter...

European Wall Outlet

Standard AC Plug
AC Power Adapter

The European wall outlet
exposes

one interf
ace for ge

tting power.

The US laptop expects
another interface.

The adapter converts one
interface into another.

How many oth
er real

world

adapter
s can yo

u think
of?

adapters everywhere

the adapter pattern

you are here 4 237

Say you’ve got an existing software system that you need to work a new vendor class library
into, but the new vendor designed their interfaces differently than the last vendor:

Object oriented adapters

Okay, you don’t want to solve the problem by changing your existing code (and you can’t
change the vendor’s code). So what do you do? Well, you can write a class that adapts the
new vendor interface into the one you’re expecting.

The adapter acts as the middleman by receiving requests from the client and converting
them into requests that make sense on the vendor classes.

Adapter Vendor
Class

Your
Existing
System

Vendor
Class

Your
Existing
System

Their interface
doesn’t match the one y

ou’ve

written your co
de against. This isn’t going t

o work!

The adapter implements the
interface your classes expect.

And talks to the ven
dor interface

to service your req
uests.

No code changes. No code changes.New code.

Can you think of
 a solution

that doesn’t r
equire YOU to

write ANY additional cod
e

to integrate t
he new vendor

classes? How about making the

vendor supply t
he adapter cla

ss.

Vendor
Class

AdapterYour
Existing
System

238 Chapter 7

If it walks like a duck and quacks like a duck,
then it must might be a duck turkey wrapped
with a duck adapter...

public interface Duck {
 public void quack();
 public void fly();
}

public class MallardDuck implements Duck {
 public void quack() {
 System.out.println(“Quack”);
 }

 public void fly() {
 System.out.println(“I’m flying”);
 }
}

It’s time to see an adapter in action. Remember our
ducks from Chapter 1? Let’s review a slightly simplified
version of the Duck interfaces and classes:

This time around, our

ducks implement a Duck

interface that
 allows

Ducks to quack
and fly.

Here’s a subclass of Duck, the MallardDuck.

Simple implementations: the
duck

just prints out
 what it is doing

.

Now it’s time to meet the newest fowl on the block:

public interface Turkey {
 public void gobble();
 public void fly();
}

Turkeys don’t q
uack, they gob

ble.

Turkeys can fly, although they
can only fly short distances.

turkey adapter

the adapter pattern

you are here 4 239

public class WildTurkey implements Turkey {
 public void gobble() {
 System.out.println(“Gobble gobble”);
 }

 public void fly() {
 System.out.println(“I’m flying a short distance”);
 }
}

Here’s a concrete implementation

of Turkey; like Duck, it just

prints out its actions.

Now, let’s say you’re short on Duck objects and you’d like to
use some Turkey objects in their place. Obviously we can’t
use the turkeys outright because they have a different interface.

So, let’s write an Adapter:

public class TurkeyAdapter implements Duck {
 Turkey turkey;

 public TurkeyAdapter(Turkey turkey) {
 this.turkey = turkey;
 }

 public void quack() {
 turkey.gobble();
 }

 public void fly() {
 for(int i=0; i < 5; i++) {
 turkey.fly();
 }
 }
}

Code Up Close
First, you need to implement the interface
of the type you’re adapting to. This is the
interface your client expects to see.

Next, we need to get a reference to
the object that we are adapting; here
we do that through the constructor.

Now we need to implement all the methods in
the interface; the quack() translation between
classes is easy: just call the gobble() method.

Even though both interfaces have a fly()
method, Turkeys fly in short spurts - they
can’t do long-distance flying like ducks. To
map between a Duck’s fly() method and a
Turkey’s, we need to call the Turkey’s fly()
method five times to make up for it.

240 Chapter 7

Test drive the adapter

public class DuckTestDrive {
 public static void main(String[] args) {
 MallardDuck duck = new MallardDuck();

 WildTurkey turkey = new WildTurkey();
 Duck turkeyAdapter = new TurkeyAdapter(turkey);

 System.out.println(“The Turkey says...”);
 turkey.gobble();
 turkey.fly();

 System.out.println(“\nThe Duck says...”);
 testDuck(duck);

 System.out.println(“\nThe TurkeyAdapter says...”);
 testDuck(turkeyAdapter);
 }

 static void testDuck(Duck duck) {
 duck.quack();
 duck.fly();
 }
}

File Edit Window Help Don’tForgetToDuck

%java RemoteControlTest

The Turkey says...

Gobble gobble

I’m flying a short distance

The Duck says...
Quack
I’m flying

The TurkeyAdapter says...
Gobble gobble
I’m flying a short distance
I’m flying a short distance
I’m flying a short distance
I’m flying a short distance
I’m flying a short distance

Let’s create
 a Duck...

Now we just need some code to test drive our adapter:

and a Turkey.

And then wrap the turkey
in a TurkeyAdapter, which
makes it look like a Duck.

Now let’s test the duck
by calling the testDuck()
method, which expects a
Duck object.

Then, let’s test the Turkey:
make it gobble, make it fly.

Now the big test: we try to pass

off the turkey as a duck...

The Duck quacks and flies
just like you’d expect.

The Turkey gobbles and
flies a short distance.

And the adapter gobbles when
quack() is called and flies a few
times when fly() is called. The
testDuck() method never knows it
has a turkey disguised as a duck!

Here’s our testDuck() method; it gets a duck and calls its quack() and fly() methods.

Test run

test the adapter

the adapter pattern

you are here 4 241

Adaptee

Client

Adapter

request() translatedRequest()

The Adapter Pattern explained

The Client is implemented
against the target interface.

The Adapter implements the
target interface and holds an
instance of the Adaptee.

target interface

adaptee interface

Now that we have an idea of what an Adapter is, let’s step back
and look at all the pieces again.

The client makes a request to the
adapter by calling a method on it using
the target interface.

The adapter translates the request into
one or more calls on the adaptee using
the adaptee interface.

The client receives the results of the
call and never knows there is an adapter
doing the translation.

Here’s how the Client uses the Adapter

1

2

3

Note that the Client and Adaptee

are decoupled – neither knows

about the other.

TurkeyAdapter implemented

the target
 interface,

 Duck.

Turkey was the
adaptee interface

242 Chapter 7

Sharpen your pencil
Let’s say we also need an Adapter that converts a Duck to a Turkey.
Let’s call it DuckAdapter. Write that class:

How did you handle the fly method (after all we know ducks fly longer than turkeys)? Check the answers at
the end of the chapter for our solution. Did you think of a better way?

Q: How much “adapting” does
an adapter need to do? It seems like
if I need to implement a large target
interface, I could have a LOT of work on
my hands.

A: You certainly could. The job
of implementing an adapter really is
proportional to the size of the interface you
need to support as your target interface.
Think about your options, however. You
could rework all your client-side calls to
the interface, which would result in a lot
of investigative work and code changes.
Or, you can cleanly provide one class that
encapsulates all the changes in one class.

Q: Does an adapter always wrap one
and only one class?

A: The Adapter Pattern’s role is to
convert one interface into another. While
most examples of the adapter pattern show
an adapter wrapping one adaptee, we both
know the world is often a bit more messy.
So, you may well have situations where an
adapter holds two or more adaptees that are
needed to implement the target interface.

This relates to another pattern called the
Facade Pattern; people often confuse the
two. Remind us to revisit this point when we
talk about facades later in this chapter.

Q: What if I have old and new parts
of my system, the old parts expect the
old vendor interface, but we’ve already
written the new parts to use the new
vendor interface? It is going to get
confusing using an adapter here and the
unwrapped interface there. Wouldn’t I be
better off just writing my older code and
forgetting the adapter?

A: Not necessarily. One thing you
can do is create a Two Way Adapter that
supports both interfaces. To create a Two
Way Adapter, just implement both interfaces
involved, so the adapter can act as an old
interface or a new interface.

there are noDumb Questions

adapter pattern defined

the adapter pattern

you are here 4 243

 Adapter Pattern defined

The Adapter Pattern converts the interface of a class
into another interface the clients expect. Adapter lets
classes work together that couldn’t otherwise because of
incompatible interfaces.

Enough ducks, turkeys and AC power adapters; let’s get real and look at the offi cial
defi nition of the Adapter Pattern:

Now, we know this pattern allows us to use a client with an incompatible interface by
creating an Adapter that does the conversion. This acts to decouple the client from
the implemented interface, and if we expect the interface to change over time, the
adapter encapsulates that change so that the client doesn’t have to be modifi ed each
time it needs to operate against a different interface.

We’ve taken a look at the runtime behavior of the pattern; let’s take a look at its class
diagram as well:

specificRequest()

Client

Adaptee

request()

<<interface>>
Target

request()

Adapter

The Adapter Pattern is full of good OO design principles: check out the use of object
 composition to wrap the adaptee with an altered interface. This approach has the
added advantage that we can use an adapter with any subclass of the adaptee.

Also check out how the pattern binds the client to an interface, not an
implementation; we could use several adapters, each converting a different backend
set of classes. Or, we could add new implementations after the fact, as long as they
adhere to the Target interface.

The Adapter implements
the Target interface.

Adapter is composed with the Adaptee.

All requests get
delegated to the
Adaptee.

The client sees only the
Target interface.

244 Chapter 7

Object and class adapters

Now despite having defi ned the pattern, we haven’t told you the whole story yet.
There are actually two kinds of adapters: object adapters and class adapters. This
chapter has covered object adapters and the class diagram on the previous page is a
diagram of an object adapter.

So what’s a class adapter and why haven’t we told you about it? Because you need
multiple inheritance to implement it, which isn’t possible in Java. But, that doesn’t
mean you might not encounter a need for class adapters down the road when using
your favorite multiple inheritance language! Let’s look at the class diagram for
multiple inheritance.

specificRequest()

request()

Adapter

Client Adaptee

request()

Target

Instead of using com-
position to adapt the
Adaptee, the Adapter now
subclasses the Adaptee
and the Target classes.

Look familiar? That’s right – the only difference is that with class adapter we
subclass the Target and the Adaptee, while with object adapter we use composition
to pass requests to an Adaptee.

Object adapters and class adapters use two different means of
adapting the adaptee (composition versus inheritance). How do these
implementation differences affect the fl exibility of the adapter?

brain
powerA

object and class adapters

the adapter pattern

you are here 4 245

Your job is to take the duck and turkey magnets and
drag them over the part of the diagram that describes
the role played by that bird, in our earlier example. (Try
not to fl ip back through the pages.) Then add your own
annotations to describe how it works.

 Duck Magnets

specificRequest()

Client

Adaptee

request()

<<interface>>
Target

request()

Adapter

specificRequest()

request()

Adapter

Client Adaptee

request()

Target

Class Adapter

Object Adapter

Drag these onto the class diagram, to show which part of the diagram represents the Duck and which represents the Turkey.

246 Chapter 7

Duck Magnets
Answer

specificRequest()

request()

Adapter

request()

Adapter

Client Adaptee

request()

Target Adaptee

specificRequest()

Client

Adaptee

request()

<<interface>>
Target

request()

Adapter

Class Adapter

Object Adapter

Client thinks he’s talking to a Duck. The Target is the

Duck class. This

is what the clien
t

invokes methods on.

Target

<<interface>>
Target

Adaptee

The Adapter lets the Turkey respond to requests on a Duck, by extending BOTH classes (Duck and Turkey).

The Turkey class d
oes not

have the sam
e methods as

Duck, but the
 Adapter can

take Duck method calls

and turn aro
und and invo

ke

methods on th
e Turkey.

Note: the class adapter uses multiple inheritance, so you can’t do it in Java...

Client thinks he’s talking to a Duck.
Just as with Class Adapter,

the Target is the
 Duck

class. This is what the clien
t

invokes methods on.

The Turkey class doesn’t have the same interface as the Duck. In other words, Turkeys don’t have quack() methods, etc.

The Adapter implements the Duck interface, but when it gets a method call it turns around and delegates the calls to a Turkey.

Thanks to the A
dapter, the Turkey

(Adaptee) will get calls tha
t the

client makes on the Duck interface.

Duck interface.

Turkey
object.

Duck class
Turkey class

exercise answers

the adapter pattern

you are here 4 247

Tonight’s talk: The Object Adapter and Class Adapter
meet face to face.

Object Adapter Class Adapter

Because I use composition I’ve got a leg up. I can
not only adapt an adaptee class, but any of its
subclasses.

That’s true, I do have trouble with that because
I am committed to one specific adaptee class,
but I have a huge advantage because I don’t
have to reimplement my entire adaptee. I can
also override the behavior of my adaptee if I
need to because I’m just subclassing.

Flexible maybe, efficient? No. Using a class
adapter there is just one of me, not an adapter
and an adaptee.

In my part of the world, we like to use
composition over inheritance; you may be
saving a few lines of code, but all I’m doing is
writing a little code to delegate to the adaptee.
We like to keep things flexible.

You’re worried about one little object? You
might be able to quickly override a method,
but any behavior I add to my adapter code
works with my adaptee class and all its
subclasses.

Hey, come on, cut me a break, I just need to
compose with the subclass to make that work.

You wanna see messy? Look in the mirror!

Yeah, but what if a subclass of adaptee adds
some new behavior. Then what?

Sounds messy...

248 Chapter 7

Real world adapters

If you’ve been around Java for a while
you probably remember that the early
collections types (Vector, Stack, Hashtable,
and a few others) implement a method
elements(), which returns an Enumeration.
The Enumeration interface allows you to
step through the elements of a collection
without knowing the specifi cs of how they
are managed in the collection.

<<interface>>
Enumeration

hasMoreElements()

nextElement()

Tells you if there are any
more elements in the collection.

Gives you the next element in the collection.

When Sun released their more recent
Collections classes they began using an
Iterator interface that, like Enumeration,
allows you to iterate through a set of items
in a collection, but also adds the ability to
remove items.

<<interface>
Iterator

hasNext()

next()

remove()

Analogous to hasMoreElements()
in the Enumeration interface.
This method just tells you if
you’ve looked at all the items in
the collection.

Gives you the next element in the collection.

Removes an item
from the collection.

We are often faced with legacy code that exposes the
Enumerator interface, yet we’d like for our new code to use
only Iterators. It looks like we need to build an adapter.

Old world Enumerators

New world Iterators

And today...

Let’s take a look at the use of a simple Adapter in the real world
(something more serious than Ducks at least)...

Enumeration has
 a simple interfa

ce.

real world adapters

the adapter pattern

you are here 4 249

Adapting an Enumeration to an Iterator

<<interface>>
Enumeration

hasMoreElements()
nextElement()

<<interface>>
Iterator

hasNext()
next()
remove()

These two methods look easy,
they map straight to hasNext()
and next() in Iterator.

But what about this method
remove() in Iterator? There’s
nothing like that in Enumeration.

Here’s what the classes should look like: we need an adapter that implements
the Target interface and that is composed with an adaptee. The hasNext() and
next() methods are going to be straightforward to map from target to adaptee:
we just pass them right through. But what do you do about remove()? Think
about it for a moment (and we’ll deal with it on the next page). For now, here’s
the class diagram:

<<interface>>
Enumeration

hasMoreElements()
nextElement()

<<interface>>
Iterator

hasNext()
next()
remove()

Your new code still gets
to use Iterators, even
if there’s really an
Enumeration underneath.

EnumerationIterator

hasNext()
next()
remove()

EnumerationIterator
is the adapter.

A class
implementing
the Enumeration
interface is the
adaptee.

We’re making the Enumerations
in your old code look like
Iterators for your new code.

Target interface

Adaptee interface

Designing the Adapter

First we’ll look at the two interfaces to fi gure out how the methods map from
one to the other. In other words, we’ll fi gure out what to call on the adaptee
when the client invokes a method on the target.

250 Chapter 7

public class EnumerationIterator implements Iterator
{
 Enumeration enum;

 public EnumerationIterator(Enumeration enum) {
 this.enum = enum;
 }

 public boolean hasNext() {
 return enum.hasMoreElements();
 }

 public Object next() {
 return enum.nextElement();
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

Since we’re adapting Enumeration
to Iterator, our Adapter
implements the Iterator interface...
it has to look like an Iterator.

The Enumeration we’re adapting.
We’re using composition so we stash
it in an instance variable.

The Iterator’s hasNext() method
is delegated to the Enumeration’s
hasMoreElements() method...
... and the Iterator’s next() method
is delegated to the Enumerations’s
nextElement() method.

Unfortunately, we can’t support
Iterator’s remove() method, so
we have to punt (in other words,
we give up!). Here we just throw
an exception.

Well, we know Enumeration just doesn’t support remove. It’s a “read only” interface.
There’s no way to implement a fully functioning remove() method on the adapter. The
best we can do is throw a runtime exception. Luckily, the designers of the Iterator
interface foresaw this need and defined the remove() method so that it supports an
UnsupportedOperationException.

This is a case where the adapter isn’t perfect; clients will have to watch out for potential
exceptions, but as long as the client is careful and the adapter is well documented this is
a perfectly reasonable solution.

Dealing with the remove() method

Writing the EnumerationIterator adapter

Here’s simple but effective code for all those legacy classes still producing Enumerations:

enumeration iterator adapter

the adapter pattern

you are here 4 251

While Java has gone in the direction of the Iterator, there is nevertheless a lot of
legacy client code that depends on the Enumeration interface, so an Adapter
that converts an Iterator to an Enumeration is also quite useful.

Write an Adapter that adapts an Iterator to an Enumeration. You can test your
code by adapting an ArrayList. The ArrayList class supports the Iterator interface
but doesn’t support Enumerations (well, not yet anyway).

Some AC adapters do more than just change the interface – they add other features like surge
protection, indicator lights and other bells and whistles.

If you were going to implement these kinds of features, what pattern would you use?

brain
powerA

Exercise

252 Chapter 7

Tonight’s talk: The Decorator Pattern and the Adapter
Pattern discuss their differences.

Decorator Adapter

I’m important. My job is all about responsibility –
you know that when a Decorator is involved there’s
going to be some new responsibilities or behaviors
added to your design.

You guys want all the glory while us adapters
are down in the trenches doing the dirty work:
converting interfaces. Our jobs may not be
glamorous, but our clients sure do appreciate
us making their lives simpler.

Cute. Don’t think we get all the glory; sometimes
I’m just one decorator that is being wrapped by
who knows how many other decorators. When a
method call gets delegated to you, you have no
idea how many other decorators have already dealt
with it and you don’t know that you’ll ever get
noticed for your efforts servicing the request.

Try being an adapter when you’ve got to bring
several classes together to provide the interface
your client is expecting. Now that’s tough. But
we have a saying: “an uncoupled client is a
happy client.”

That may be true, but don’t think we don’t
work hard. When we have to decorate a big
interface, whoa, that can take a lot of code.

Hey, if adapters are doing their job, our clients
never even know we’re there. It can be a thank-
less job.

fireside chats: decorator and adapter

the adapter pattern

you are here 4 253

But, the great thing about us adapters is that we
allow clients to make use of new libraries and
subsets without changing any code, they just rely
on us to do the conversion for them. Hey, it’s a
niche, but we’re good at it.

Oh yeah, I’m with you there.

Decorator Adapter

Well us decorators do that as well, only we allow
new behavior to be added to classes without altering
existing code. I still say that adapters are just fancy
decorators – I mean, just like us, you wrap an object.

No, no, no, not at all. We always convert the
interface of what we wrap, you never do. I’d
say a decorator is like an adapter; it is just that
you don’t change the interface!

Uh, no. Our job in life is to extend the
behaviors or responsibilities of the objects we
wrap, we aren’t a simple pass through.

Hey, who are you calling a simple pass
through? Come on down and we’ll see how
long you last converting a few interfaces!

Maybe we should agree to disagree. We seem
to look somewhat similar on paper, but clearly
we are miles apart in our intent.

254 Chapter 7

And now for something different...

There’s another pattern in this chapter.

Match each pattern with its intent:

Pattern Intent

Decorator

Adapter

Facade

Converts one interface to
another

Doesn’t alter the interface, but
adds responsibility

Makes an interface simpler

You’ve seen how the Adapter Pattern converts the interface of a class into
one that a client is expecting. You also know we achieve this in Java by
wrapping the object that has an incompatible interface with an object that
implements the correct one.

We’re going to look at a pattern now that alters an interface, but for a
different reason: to simplify the interface. It’s aptly named the Facade
Pattern because this pattern hides all the complexity of one or more
classes behind a clean, well-lit facade.

who does what?

the adapter pattern

you are here 4 255

Amplifier

tuner

dvdPlayer

cdPlayer

on()

off()

setCd()

setDvd()

setStereoSound()

setSurroundSoud()

setTuner()

setVolume()

DvdPlayer

amplifier

on()

off()

eject()

pause()

play()

play()

setSurroundAudio()

setTwoChannelAudio()

stop()

CdPlayer

on()

off()

eject()

pause()

play()

play()

stop()

amplifier

Tuner

on()

off()

setAm()

setFm()

setFrequency()

amplifier

Screen

up()

down()

Projector

on()

off()

tvMode()

wideScreenMode()

dvdPlayer

PopcornPopper

on()

off()

pop()
TheaterLights

on()

off()

dim()

Before we dive into the details of the Facade Pattern, let’s take a look
at a growing national obsession: building your own home theater.

You’ve done your research and you’ve assembled a killer system
complete with a DVD player, a projection video system, an
automated screen, surround sound and even a popcorn popper.

Check out all the components you’ve put together:

 Home Sweet Home Theater

You’ve spent weeks running wire, mounting the projector, making all
the connections and fi ne tuning. Now it’s time to put it all in motion
and enjoy a movie...

That’s a lot of
classes, a lot
of interactions,
and a big set of
interfaces to
learn and use

256 Chapter 7

I’m already exhausted
and all I’ve done is turn

everything on!

Pick out a DVD, relax, and get ready for movie magic. Oh,
there’s just one thing – to watch the movie, you need to
perform a few tasks:

Watching a movie (the hard way)

Turn on the popcorn popper

Start the popper popping

Dim the lights

Put the screen down

Turn the projector on

Put the projector on wide-screen mode

Turn the sound amplifier on

Set the amplifier to DVD input

Set the amplifier to surround sound

Set the amplifier volume to medium (5)

Turn the DVD Player on

Start the DVD Player playing

12

11

10

9

8

7

6

5

4

3

2

1

13

Set the projector input to DVD

tasks to watch a movie

the adapter pattern

you are here 4 257

popper.on();
popper.pop();

lights.dim(10);

screen.down();

projector.on();
projector.setInput(dvd);
projector.wideScreenMode();

amp.on();
amp.setDvd(dvd);
amp.setSurroundSound();
amp.setVolume(5);

dvd.on();
dvd.play(movie);

Turn on the popcorn popper and start
popping...

Dim the lights to 10%...

Put the screen down...

Turn on the projector and put it in
wide screen mode for the movie...

Turn on the amp, set it to DVD, put
it in surround sound mode and set the
volume to 5...

Turn on the DVD player...
and FINALLY, play the movie!

Let’s check out those same tasks in terms of the classes and the
method calls needed to perform them:

Six different class
es

involved!

But there’s more...

ß When the movie is over, how do you turn everything off ?
 Wouldn’t you have to do all of this over again, in reverse?

ß Wouldn’t it be as complex to listen to a CD or the radio?

ß If you decide to upgrade your system, you’re probably going
 to have to learn a slightly different procedure.

So what to do? The complexity of using your home theater is becoming apparent!

Let’s see how the Facade Pattern can get us out of this mess so we can enjoy the movie...

258 Chapter 7

A Facade is just what you need: with the Facade Pattern you can take a complex
subsystem and make it easier to use by implementing a Facade class that
provides one, more reasonable interface. Don’t worry; if you need the power
of the complex subsystem, it’s still there for you to use, but if all you need is a
straightforward interface, the Facade is there for you.

 Let’s take a look at how the Facade operates:

Lights, Camera, Facade!

watchMovie()

endMovie()

listenToCd()

endCd()

listenToRadio()

endRadio()

HomeTheaterFacade

TheaterLights

on()

off()

dim()

PopcornPopper

on()

off()

pop()

Screen
up()

down()

Tuner

on()

off()

setAm()

setFm()

setFrequency()

amplifier

CdPlayer

on()

off()

eject()

pause()

play()

play()

stop()

amplifier

Amplifier

tuner

dvdPlayer

cdPlayer

on()

off()

setCd()

setDvd()

setStereoSound()

setSurroundSoud()

setTuner()

setVolume()

Projector

on()

off()

tvMode()

wideScreenMode()

dvdPlayer

DvdPlayer

amplifier

on()

off()

eject()

pause()

play()

play()

setSurroundAudio()

setTwoChannelAudio()

stop()

Okay, time to create a

Facade for the home

theater system. To do

this we create a new class

HomeTheaterFacade,

which exposes a few

simple methods such as

watchMovie().

1

The Facade

The subsystem the

Facade is simplifying.

on()

play()

The Facade class treats
the home theater
components as a
subsystem, and calls
on the subsystem
to implement its
watchMovie() method.

2

lights camera facade

the adapter pattern

you are here 4 259

watchMovie()

Your client code now calls

methods on the home theater

Facade, not on the subsystem.

So now to watch a movie we just

call one method, watchMovie(),

and it communicates with the

lights, DVD player, projector,

amplifier, screen, and popcorn

maker for us.

3

A client of the
subsystem facade

Formerly president of
the Rushmore High School
A/V Science Club.

The Facade still leaves the subsystem
accessible to be used directly. If you
need the advanced functionality
of the subsystem classes, they are
available for your use.

4

I’ve got to have my
low-level access!

260 Chapter 7

Q: If the Facade encapsulates the
subsystem classes, how does a client
that needs lower-level functionality gain
access to them?

A: Facades don’t “encapsulate” the
subsystem classes; they merely provide a
simplified interface to their functionality. The
subsystem classes still remain available
for direct use by clients that need to use
more specific interfaces. This is a nice
property of the Facade Pattern: it provides
a simplified interface while still exposing the
full functionality of the system to those who
may need it.

Q: Does the facade add any
functionality or does it just pass through
each request to the subsystem?

A: A facade is free to add its own
“smarts” in addition to making use of the
subsystem. For instance, while our home
theater facade doesn’t implement any new
behavior, it is smart enough to know that the
popcorn popper has to be turned on before it
can pop (as well as the details of how to turn
on and stage a movie showing).

Q: Does each subsystem have only
one facade?

A: Not necessarily. The pattern
certainly allows for any number of facades to
be created for a given subsystem.

Q: What is the benefit of the facade
other than the fact that I now have a
simpler interface?

A: The Facade Pattern also allows
you to decouple your client implementation
from any one subsystem. Let’s say for
instance that you get a big raise and decide
to upgrade your home theater to all new
components that have different interfaces.
Well, if you coded your client to the facade
rather than the subsystem, your client code
doesn’t need to change, just the facade
(and hopefully the manufacturer is supplying
that!).

Q: So the way to tell the difference
between the Adapter Pattern and the
Facade Pattern is that the adapter wraps
one class and the facade may represent
many classes?

A: No! Remember, the Adapter Pattern
changes the interface of one or more
classes into one interface that a client is
expecting. While most textbook examples
show the adapter adapting one class, you
may need to adapt many classes to provide
the interface a client is coded to. Likewise,
a Facade may provide a simplified interface
to a single class with a very complex
interface.

The difference between the two is not in
terms of how many classes they “wrap,” it
is in their intent. The intent of the Adapter
Pattern is to alter an interface so that it
matches one a client is expecting. The
intent of the Facade Pattern is to provide a
simplified interface to a subsystem.

there are no
Dumb Questions

A facade not
only simplifies
an interface, it
decouples a client
from a subsystem
of components.

Facades and
adapters may
wrap multiple
classes, but a
facade’s intent is
to simplify, while
an adapter’s
is to convert
the interface
to something
different.

facade versus adapter

the adapter pattern

you are here 4 261

Constructing your home theater facade

Let’s step through the construction of the HomeTheaterFacade: The
first step is to use composition so that the facade has access to all the
components of the subsystem:

public class HomeTheaterFacade {
 Amplifier amp;
 Tuner tuner;
 DvdPlayer dvd;
 CdPlayer cd;
 Projector projector;
 TheaterLights lights;
 Screen screen;
 PopcornPopper popper;

 public HomeTheaterFacade(Amplifier amp,
 Tuner tuner,
 DvdPlayer dvd,
 CdPlayer cd,
 Projector projector,
 Screen screen,
 TheaterLights lights,
 PopcornPopper popper) {

 this.amp = amp;
 this.tuner = tuner;
 this.dvd = dvd;
 this.cd = cd;
 this.projector = projector;
 this.screen = screen;
 this.lights = lights;
 this.popper = popper;
 }

 // other methods here

}

The facade is passed a
reference to each component
of the subsystem in its
constructor. The facade
then assigns each to the
corresponding instance variable.

Here’s the composition; these
are all the components of the
subsystem we are going to use.

We’re just about to fill these in...

262 Chapter 7

Implementing the simplified interface

Now it’s time to bring the components of the subsystem together into a unified interface.
Let’s implement the watchMovie() and endMovie() methods:

public void watchMovie(String movie) {
 System.out.println(“Get ready to watch a movie...”);
 popper.on();
 popper.pop();
 lights.dim(10);
 screen.down();
 projector.on();
 projector.wideScreenMode();
 amp.on();
 amp.setDvd(dvd);
 amp.setSurroundSound();
 amp.setVolume(5);
 dvd.on();
 dvd.play(movie);
}

public void endMovie() {
 System.out.println(“Shutting movie theater down...”);
 popper.off();
 lights.on();
 screen.up();
 projector.off();
 amp.off();
 dvd.stop();
 dvd.eject();
 dvd.off();
}

watchMovie() follows the same sequence

we had to do by hand before, but wraps

it up in a handy method that does all

the work. Notice that for each task we

are delegating the responsibility to th
e

corresponding component in the subsystem.

.And endMovie() takes care
of shutting everything down
for us. Again, each task is
delegated to the appropriate
component in the subsystem.

Think about the facades you’ve encountered in the Java API.
Where would you like to have a few new ones?

brain
powerA

implementing facade

the adapter pattern

you are here 4 263

It’s SHOWTIME!

Time to watch a movie (the easy way)

public class HomeTheaterTestDrive {
 public static void main(String[] args) {
 // instantiate components here

 HomeTheaterFacade homeTheater =
 new HomeTheaterFacade(amp, tuner, dvd, cd,
 projector, screen, lights, popper);

 homeTheater.watchMovie(“Raiders of the Lost Ark”);
 homeTheater.endMovie();
 }
}

%java HomeTheaterTestDrive

Get ready to watch a movie...
Popcorn Popper on
Popcorn Popper popping popcorn!
Theater Ceiling Lights dimming to 10%
Theater Screen going down
Top-O-Line Projector on
Top-O-Line Projector in widescreen mode (16x9 aspect ratio)
Top-O-Line Amplifi er on
Top-O-Line Amplifi er setting DVD player to Top-O-Line DVD Player
Top-O-Line Amplifi er surround sound on (5 speakers, 1 subwoofer)
Top-O-Line Amplifi er setting volume to 5
Top-O-Line DVD Player on
Top-O-Line DVD Player playing “Raiders of the Lost Ark”
Shutting movie theater down...
Popcorn Popper off
Theater Ceiling Lights on
Theater Screen going up
Top-O-Line Projector off
Top-O-Line Amplifi er off
Top-O-Line DVD Player stopped “Raiders of the Lost Ark”
Top-O-Line DVD Player eject
Top-O-Line DVD Player off
%

File Edit Window Help SnakesWhy’dItHaveToBeSnakes?

First you instantiate
the Facade with all the
components in the subsystem.

Use the simplified interface to first start the movie up, and
then shut it down.

Here’s the output.
Calling the Facade’s
watchMovie() does all
this work for us...

...and here, we’re done
watching the movie, so
calling endMovie() turns
everything off.

Here we’re creating the components
right in the test drive. Normally the
client is given a facade, it doesn’t have
to construct one itself.

264 Chapter 7

 Facade Pattern defined

The Facade Pattern provides a unifi ed interface to a
set of interfaces in a subsytem. Facade defi nes a higher-
level interface that makes the subsystem easier to use.

To use the Facade Pattern, we create a class that simplifi es and unifi es a set of more
complex classes that belong to some subsystem. Unlike a lot of patterns, Facade is fairly
straightforward; there are no mind bending abstractions to get your head around. But that
doesn’t make it any less powerful: the Facade Pattern allows us to avoid tight coupling between
clients and subsystems, and, as you will see shortly, also helps us adhere to a new object
oriented principle.

Before we introduce that new principle, let’s take a look at the offi cial defi nition of the pattern:

There isn’t a lot here that you don’t already know, but one of the most important things
to remember about a pattern is its intent. This defi nition tells us loud and clear that the
purpose of the facade it to make a subsystem easier to use through a simplifi ed interface.
You can see this in the pattern’s class diagram:

Client Facade

subsystem classes

Unified interface
that is easier to use.

That’s it; you’ve got another pattern under your belt! Now, it’s time for that new OO principle.
Watch out, this one can challenge some assumptions!

More complex subsystem.

Happy client whose

job just became
easier because of
the facade.

facade pattern defi ned

the adapter pattern

you are here 4 265

The Principle of Least Knowledge

Design Principle

Principle of Least Knowledge -
talk only to your immediate friends.

The Principle of Least Knowledge guides us to reduce the
interactions between objects to just a few close “friends.”
The principle is usually stated as:

But what does this mean in real terms? It means when you
are designing a system, for any object, be careful of the
number of classes it interacts with and also how it comes to
interact with those classes.

This principle prevents us from creating designs that have
a large number of classes coupled together so that changes
in one part of the system cascade to other parts. When you
build a lot of dependencies between many classes, you are
building a fragile system that will be costly to maintain and
complex for others to understand.

How many classes is this code coupled to?

brain
powerA

 public float getTemp() {
 return station.getThermometer().getTemperature();
 }

266 Chapter 7

Notice that t
hese guidelin

es tell us not

to call methods on ob
jects that w

ere

returned fr
om calling othe

r methods!!

Think of a “component” as any object
 that is

referenced by an inst
ance variable. In othe

r

words think of this as
a HAS-A relationship.

Okay, but how do you keep from doing this? The principle
provides some guidelines: take any object; now from any
method in that object, the principle tells us that we should
only invoke methods that belong to:

ß The object itself

ß Objects passed in as a parameter to the method

ß Any object the method creates or instantiates

ß Any components of the object

This sounds kind of stringent doesn’t it? What’s the harm in
calling the method of an object we get back from another
call? Well, if we were to do that, then we’d be making a
request of another object’s subpart (and increasing the
number of objects we directly know). In such cases, the
principle forces us to ask the object to make the request for us;
that way we don’t have to know about its component objects
(and we keep our circle of friends small). For example:

How NOT to Win Friends and Influence Objects

public float getTemp() {
 Thermometer thermometer = station.getThermometer();
 return thermometer.getTemperature();
}

Without the
Principle

public float getTemp() {
 return station.getTemperature();
}

With the
Principle

Here we get the thermometer object
from the station and then call the
getTemperature() method ourselves.

When we apply the principle, we add a
method to the Station class that makes
the request to the thermometer for us.
This reduces the number of classes we’re
dependent on.

principle of least knowledge

the adapter pattern

you are here 4 267

Q: There is another principle called
the Law of Demeter; how are they
related?

A: The two are one and the same
and you’ll encounter these terms being
intermixed. We prefer to use the Principle of
Least Knowledge for a couple of reasons: (1)
the name is more intuitive and (2) the use of
the word “Law” implies we always have to

apply this principle. In fact, no principle is a
law, all principles should be used when and
where they are helpful. All design involves
tradeoffs (abstractions versus speed, space
versus time, and so on) and while principles
provide guidance, all factors should be taken
into account before applying them.

Q: Are there any disadvantages
to applying the Principle of Least
Knowledge?

A: Yes; while the principle reduces
the dependencies between objects and
studies have shown this reduces software
maintenance, it is also the case that
applying this principle results in more
“wrapper” classes being written to handle
method calls to other components. This
can result in increased complexity and
development time as well as decreased
runtime performance.

there are noDumb Questions

Keeping your method calls in bounds...

Here’s a Car class that demonstrates all the ways you can call methods and still
adhere to the Principle of Least Knowledge:

public class Car {
 Engine engine;
 // other instance variables

 public Car() {
 // initialize engine, etc.
 }

 public void start(Key key) {
 Doors doors = new Doors();

 boolean authorized = key.turns();

 if (authorized) {
 engine.start();
 updateDashboardDisplay();
 doors.lock();
 }
 }

 public void updateDashboardDisplay() {
 // update display
 }
}

You can call a local method
within the object.

You can call a method
on an object passed as
a parameter.

You can call a method on a

component of the object.

You can call a method on an
object you create or instantiate.

Here’s a component of

this class. We can call

its methods.

Here we’re creating a new
object, its methods are legal.

268 Chapter 7

public House {
 WeatherStation station;

 // other methods and constructor

 public fl oat getTemp() {
 return station.getThermometer().getTemperature();
 }
}

Sharpen your pencil

Can you think of a common use of Java that violates the Principle of Least Knowledge?

Should you care?

brain
powerA

Answer: How about System.out.println()?

Do either of these classes violate the Principle of Least Knowledge?
Why or why not?

public House {
 WeatherStation station;

 // other methods and constructor

 public fl oat getTemp() {
 Thermometer thermometer = station.getThermometer();
 return getTempHelper(thermometer);
 }

 public fl oat getTempHelper(Thermometer thermometer) {
 return thermometer.getTemperature();
 }
}

Hard hat area. watch out
for falling assumptions

violating the principle of least knowledge

the adapter pattern

you are here 4 269

watchMovie()

endMovie()

listenToCd()

endCd()

listenToRadio()

endRadio()

HomeTheaterFacade

TheaterLights

on()

off()

dim()

PopcornPopper

on()

off()

pop()

Screen
up()

down()

Tuner

on()

off()

setAm()

setFm()

setFrequency()

amplifier

CdPlayer

on()

off()

eject()

pause()

play()

play()

stop()

amplifier

Amplifier
tuner

dvdPlayer

cdPlayer

on()

off()

setCd()

setDvd()

setStereoSound()

setSurroundSoud()

setTuner()

setVolume()

Projector

on()

off()

tvMode()

wideScreenMode()

dvdPlayer

DvdPlayer
amplifier

on()

off()

eject()

pause()

play()

play()

setSurroundAudio()

setTwoChannelAudio()

stop()

The Facade and the Principle of Least Knowledge

Client

This client only ha
s one friend;

the HomeTheaterFacade. In

OO programming, having only

one friend is a G
OOD thing!

The HomeTheaterFacade
manages all those subsystem
components for the client.
It keeps the client simple
and flexible.

We try to keep subsyst
ems adhering

to the Principle of Least Knowledge

as well. If this gets too
complex and

too many friends are inter
mingling, we

can introduce additio
nal facades to

form layers of subsystems.

We can upgrade
the home

theater components without

affecting the
client .

270 Chapter 7

Tools for your Design Toolbox
Your toolbox is starting to get heavy! In this
chapter we’ve added a couple of patterns that
allow us to alter interfaces and reduce coupling
between clients and the systems they use.between clients and the systems they use.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics
Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies

Favor composition over i
nheritance

Program to interfaces
, not

implementations

Strive for loo
sely coupled d

esigns

between objects th
at interact

Classes should b
e open for ex

tension

but closed for
 modification

Depend on abst
ractions. Do not

depend on con
cretions

Only talk to yo
ur friends

OO Principles

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

OO Patterns
Observer
dependency be

tween objects so
 that

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Observer defines a one-

to-many

Decorator
responsibilities

 to an object
dynamically.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many

DecoratorAbstract Factory
Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

Observer defines a one-
to-many

DecoratorAbstract Factory
Factory Method Define an

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

DecoratorAbstract Factory
Factory Method Define an

Command - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

 BULLET POINTS

ß When you need to use an
existing class and its interface
is not the one you need, use an
adapter.

ß When you need to simplify
and unify a large interface or
complex set of interfaces, use a
facade.

ß An adapter changes an
interface into one a client
expects.

ß A facade decouples a client
from a complex subsystem.

ß Implementing an adapter may
require little work or a great deal
of work depending on the size
and complexity of the target
interface.

ß Implementing a facade requires
that we compose the facade
with its subsystem and use
delegation to perform the work
of the facade.

ß There are two forms of the
Adapter Pattern: object and
class adapters. Class adapters
require multiple inheritance.

ß You can implement more than
one facade for a subsystem.

ß An adapter wraps an object to
change its interface, a decorator
wraps an object to add new
behaviors and responsibilities,
and a facade “wraps” a set of
objects to simplify.

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its
responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

 responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

alternative to
 subclassing fo

r extending
Abstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract FactoryAbstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract Factory

related or de
pedent object

s without Factory Method

interface for
 creating an o

bject, but Factory Method

interface for
 creating an o

bject, but

interface for
 creating an o

bject, but Factory Method

SingletonSingleton Encapsulates a
request

as an object,
thereby lettin

g you

Adapter - Converts the in
terface of

a class into an
other interfa

ce clients

expect. Lets classes work together

that couldn’t
otherwise because of

incompatible interf
aces.

We have a new
 technique

for maintaining a
low level

of coupling i
n our designs

.

(remember, talk onl
y to your

friends)...

as an object,
thereby lettin

g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and
as an object,

thereby lettin
g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Converts the in
terface of

a class into an
other interfa

ce clients

expect. Lets classes work together
Facade - Provides a unif

ied interface

to a set of in
terfaces in a

subsystem.

Facade defines
 a higher-level interface

that makes the subsy
stem easier to use.

...and TWO new patterns.
Each changes an interface,
the adapter to convert
and the facade to unify
and simplify

your design toolbox

the adapter pattern

you are here 4 271

Yes, it’s another crossword. All of the solution words are from this chapter.

� �

�

� �

� � �

�

��

��

�� ��

�� ��

��

�� ��

��

������

�� ���� �� ������ �������� ��� ���� ���� ���
������
�� �� ������� ����� �� ���������
�� ����� �� ������� �� ������
��� �� �� ������ ��� ����� ���� ��� �� �����
���� ������
��� ������� ���� ��� ����� ���� ������
��� ������ ����� ����� ��� ����� ������
��� ����� �� �� ������ ���� �������
��� ������������ �� ��� ��������� �� �����
���������� ��� ���� ����������
��� � ��������� ���������� �� ���������
��� ��� �������� ����� ���� ������

����

�� ��������� ������ ������� ���� �� ������
�� ��� ��������� �� ������
�� ��������� ���� ������ �� ���� �� �� �������
���� ������
�� � ������ ���� ��� ��������
�� ������������ �� � ����
�� ������� ���� �������� ��� ��������� �� �����
���������� �����������������
��� �� ����� �� �������� ������� ����
��� ������� ������ ���� ��� ��������� ���������
��� �� ������� ��� � ��������� ��� �� ���� ��
����� �� ������

272 Chapter 7

Exercise
solutions

public House {
 WeatherStation station;

 // other methods and constructor

 public float getTemp() {
 return station.getThermometer().getTemperature();
 }
}

Sharpen your pencil
Do either of these classes violate the Principle of Least Knowledge?
For each, why or why not?

public House {
 WeatherStation station;

 // other methods and constructor

 public float getTemp() {
 Thermometer thermometer = station.getThermometer();
 return getTempHelper(thermometer);
 }

 public float getTempHelper(Thermometer thermometer) {
 return thermometer.getTemperature();
 }
}

Violates the P
rinciple of L

east Knowledge!

You are callin
g the method of an

 object

returned fr
om another cal

l.

Doesn’t violate Principle of Least Knowledge!

This seems like hacking our way around the

principle. Has anything really changed sin
ce we

just moved out the call to another
 method?

Sharpen your pencil
Let’s say we also need an adapter that converts a Duck to a Turkey.
Let’s call it DuckAdapter. Write that class:

public class DuckAdapter implements Turkey {
 Duck duck;
 Random rand;

 public DuckAdapter(Duck duck) {
 this.duck = duck;
 rand = new Random();
 }

 public void gobble() {
 duck.quack();
 }

 public void fly() {
 if (rand.nextInt(5) == 0) {
 duck.fly();
 }
 }
}

Now we are adapting
Turkeys

to Ducks, so we implement the

Turkey interfac
e.

We stash a reference to the Duck we are adapting.

We also recreate a random object;
take a look at the fly() method
to see how it is used.

A gobble just becomes a quack.

Since ducks fly a lot longer t
han

turkeys, we decided to only fly the

duck on average one of five
times.

exercise solutions

the adapter pattern

you are here 4 273

You’ve seen how to implement an adapter that adapts an Enumeration to an
Iterator; now write an adapter that adapts an Iterator to an Enumaration.

public class IteratorEnumeration implements Enumeration {
 Iterator iterator;

 public IteratorEnumeration(Iterator iterator) {
 this.iterator = iterator;
 }

 public boolean hasMoreElements() {
 return iterator.hasNext();
 }

 public Object nextElement() {
 return iterator.next();
 }
}

Exercise solutions

Match each pattern with its intent:

Pattern Intent

Decorator

Adapter

Facade

Convert one interface to
another

Don’t alter interface, but add
responsibility

Make interface simpler

274 Chapter 7

Exercise solutions

�
�

� � �
�

�

�
�

�

�
�

�
�

� � � � � � � �

� � �

�
�

� � �
�

� � � � � �
�

� � � � � � � � �

� � � � �

� � � � � �
�

� � � � �
��

� � � � � � � �

� � � � � �

�
��

� � � � � � � � �

� � � � �
��

�
��

�

�
��

� � � � � � � � �
��

� �

� � �
��

� � � � � � � �

�
��

� � � � � �
��

� � �

� � � � �

�
��

� � � � � � � � � � � � �

� � �

������

���
������ �������
�� �� ������� ����� �� ��������� ����������
������������������������������
���������������������
���
������������������������
���������������������������������������
��������
��� ������ ����� ����� ��� ����� ������
��������
��
���
���������� ��� ���� ���������� ����������
��� � ��������� ���������� �� ���������
��������
�����������������������������������
�������������

����

���
����������������������
��
�� ��������� ���� ������ �� ���� �� �� �������
�����������������������������
���
�����������������������������������
�� ������� ���� �������� ��� ��������� �� �����
���������� ����������������� ���������
��������������������������������������
���������
��� ������� ������ ���� ��� ���������
��������� ��������
��
����� �� ������ ������

crossword puzzle solution

this is a new chapter 275

We’re on an encapsulation roll; we’ve encapsulated object
creation, method invocation, complex interfaces, ducks,
pizzas... what could be next? We’re going to get down to encapsulating

pieces of algorithms so that subclasses can hook themselves right into a computation

anytime they want. We’re even going to learn about a design principle inspired by

Hollywood.

8 the Template Method Pattern

Yeah, he’s a great boss until
it comes to getting down in this

hole, then it ALL becomes MY job.
See what I mean? He’s nowhere

in sight!

Encapsulating
 Algorithms g

h
g

276 Chapter 8

It’s time for some more caffeine

Some people can’t live without their coffee; some
people can’t live without their tea. The common
ingredient? Caffeine of course!

But there’s more; tea and coffee are made in very
similar ways. Let’s check it out:

The recipe for
coffee looks a lot
like the recipe for
tea, doesn’t it?

Starbuzz Coffee Barista Training Manual

(1) Boil
 some wa

ter

(2) Brew
 coffee

in boili
ng water

(3) Pour
 coffee

in cup

(4) Add
sugar an

d milk

Starbuzz Tea Recipe

Starbuzz Coffee Recipe

Baristas
! Pleas

e follow
 these r

ecipes

precisel
y when p

reparing
 Starbuz

z bevera
ges.

(1) Boil
 some wa

ter

(2) Stee
p tea in

 boiling
 water

(3) Pour
 tea in

cup

(4) Add
lemon

All reci
pes are

Starbuzz
 Coffee

trade se
crets an

d should
 be kept

strictly
 confiden

tial.

coffee and tea recipes are similar

the template method pattern

you are here 4 277

Let’s play “coding barista” and write
some code for creating coffee and tea.

Here’s the coffee:

Whipping up some coffee and tea classes
(in Java)

public class Coffee {

 void prepareRecipe() {
 boilWater();
 brewCoffeeGrinds();
 pourInCup();
 addSugarAndMilk();
 }

 public void boilWater() {
 System.out.println(“Boiling water”);
 }

 public void brewCoffeeGrinds() {
 System.out.println(“Dripping Coffee through fi lter”);
 }

 public void pourInCup() {
 System.out.println(“Pouring into cup”);
 }

 public void addSugarAndMilk() {
 System.out.println(“Adding Sugar and Milk”);
 }
}

Here’s our Coffee class for making coffee.

Here’s our recipe
for coffee,

straight out of
the training manual.

Each of the step
s is implemented as

a separate method.

Each of these methods
implements one step of
the algorithm. There’s
a method to boil water,
brew the coffee, pour
the coffee in a cup and
add sugar and milk.

278 Chapter 8

public class Tea {

 void prepareRecipe() {
 boilWater();
 steepTeaBag();
 pourInCup();
 addLemon();
 }

 public void boilWater() {
 System.out.println(“Boiling water”);
 }

 public void steepTeaBag() {
 System.out.println(“Steeping the tea”);
 }

 public void addLemon() {
 System.out.println(“Adding Lemon”);
 }

 public void pourInCup() {
 System.out.println(“Pouring into cup”);
 }
}

This looks very similar to the
one we just implemented in
Coffee; the second and forth
steps are different, but it’s
basically the same recipe.

Notice that
these two
methods are
exactly the
same as they are
in Coffee! So
we definitely
have some code
duplication going
on here.

and now the Tea...

These two
methods are
specialized to
Tea.

When we’ve got code
duplication, that’s a good sign

we need to clean up the design. It
seems like here we should abstract

the commonality into a base class
since coffee and tea are so

similar?

tea implementation

the template method pattern

you are here 4 279

 Design Puzzle
You’ve seen that the Coffee and Tea classes have a fair bit of code duplication. Take
another look at the Coffee and Tea classes and draw a class diagram showing how you’d
redesign the classes to remove redundancy:

280 Chapter 8

Sir, may I abstract your Coffee, Tea?

Each subclass
implements its
own recipe.

It looks like we’ve got a pretty straightforward design
exercise on our hands with the Coffee and Tea classes.
Your fi rst cut might have looked something like this:

prepareRecipe()

boilWater()

pourInCup()

CaffeineBeverage

prepareRecipe()

steepTeaBag()

addLemon()

Tea

prepareRecipe()

brewCoffeeGrinds()

addSugarAndMilk()

Coffee

The boilWater() and pourInCup()

methods are shared by both
subclasses,

so they are defined in the
superclass.

The prepareRecipe() method differs in each subclass, so it is defined as abstract.

The methods specific to
 Coffee

and Tea stay in the sub
classes.

Each subclass overrides
the prepareRecipe()
method and implements
its own recipe.

Did we do a good job on the redesign? Hmmmm, take another look. Are we overlooking some other
commonality? What are other ways that Coffee and Tea are similar?

brain
powerA

fi rst cut at abstraction

the template method pattern

you are here 4 281

(1) Boil
 some wa

ter

(2) Brew
 coffee

in boili
ng water

(3) Pour
 coffee

in cup

(4) Add
sugar an

d milk

Starbuzz Coffee Recipe

Starbuzz Tea Recipe
(1) Boil some water
(2) Steep tea in boiling water(3) Pour tea in cup
(4) Add lemon

Taking the design further...

So what else do Coffee and Tea have in common? Let’s start with
the recipes.

Notice that both recipes follow the same algorithm:

1 Boil some water.

2

3

4

Use the hot water to extract the coffee
or tea.

Pour the resulting beverage into a cup.

Add the appropriate condiments to the
beverage.

These two are
already abstracted
into the base class.

These aren’t
abstracted, but
are the same,
they just apply
to different
beverages.

So, can we fi nd a way to abstract prepareRecipe() too? Yes, let’s fi nd out...

282 Chapter 8

Abstracting prepareRecipe()

The first problem we have is that Coffee uses brewCoffeeGrinds() and
addSugarAndMilk() methods while Tea uses steepTeaBag() and addLemon()
methods.

Let’s step through abstracting prepareRecipe()
from each subclass (that is, the Coffee and Tea
classes)...

1

Let’s think through this: steeping and brewing aren’t so different; they’re pretty analogous.
So let’s make a new method name, say, brew(), and we’ll use the same name whether
we’re brewing coffee or steeping tea.

Likewise, adding sugar and milk is pretty much the same as adding a lemon: both
are adding condiments to the beverage. Let’s also make up a new method name,
addCondiments(), to handle this. So, our new prepareRecipe() method will look like this:

 void prepareRecipe() {
 boilWater();
 brew();
 pourInCup();
 addCondiments();
 }

 void prepareRecipe() {
 boilWater();
 steepTeaBag();
 pourInCup();
 addLemon();
 }

Tea

 void prepareRecipe() {
 boilWater();
 brewCoffeeGrinds();
 pourInCup();
 addSugarAndMilk();
 }

Coffee

Now we have a new prepareRecipe() method, but we need to fit it into the code.
To do this we are going to start with the CaffeineBeverage superclass:

2

abstract the algorithm

the template method pattern

you are here 4 283

public abstract class CaffeineBeverage {

 final void prepareRecipe() {
 boilWater();
 brew();
 pourInCup();
 addCondiments();
 }

 abstract void brew();

 abstract void addCondiments();

 void boilWater() {
 System.out.println(“Boiling water”);
 }

 void pourInCup() {
 System.out.println(“Pouring into cup”);
 }
}

Now, the same prepareRecipe() method will be used

to make both Tea and Coffee. prepareRecipe() is

declared final because we don’t want our subclasses

to be able to override this method and change the

recipe! We’ve generalized steps 2 and 4 to brew()

the beverage and addCondiments().

CaffeineBeverage is abstract, just

like in the class design.

Because Coffee and Tea handle these methods
in different ways, they’re going to have to
be declared as abstract. Let the subclasses
worry about that stuff!

Remember, we moved these into
the CaffeineBeverage class (back
in our class diagram).

Finally we need to deal with the Coffee and Tea classes. They now rely on
CaffeineBeverage to handle the recipe, so they just need to handle brewing and
condiments:

3

public class Tea extends CaffeineBeverage {
 public void brew() {
 System.out.println(“Steeping the tea”);
 }
 public void addCondiments() {
 System.out.println(“Adding Lemon”);
 }
}

public class Coffee extends CaffeineBeverage {
 public void brew() {
 System.out.println(“Dripping Coffee through filter”);
 }
 public void addCondiments() {
 System.out.println(“Adding Sugar and Milk”);
 }
}

As in our design, Tea and Coffee
now extend CaffeineBeverage.

Tea needs to define brew() and
addCondiments() — the two abstract
methods from Beverage.

Same for Coffee, except Coffee deals
with coffee, and sugar and milk instead
of tea bags and lemon.

284 Chapter 8

Sharpen your pencil
Draw the new class diagram now that we’ve moved the
implementation of prepareRecipe() into the CaffeineBeverage class:

class diagram for caffeine beverages

the template method pattern

you are here 4 285

What have we done?

1 Boil some water

2

3

4

Steep the teabag in the water

Pour tea in a cup

Add lemon

1 Boil some water
2

3

4

Brew the coffee grinds
Pour coffee in a cup

Add sugar and milk

2

4

Steep the teabag in the water

Add lemon

Tea subclass Coffee subclass

2

4

Brew the coffee grinds

Add sugar and milk

1 Boil some water

2

3

4

Brew

Pour beverage in a cup

Add condiments

Caffeine Beverage

Tea Coffee

Caffeine Beverage knows

and controls the step
s of

the recipe, and perfo
rms

steps 1 and 3 itself,
but

relies on Tea or Coffee

to do steps 2 and 4.

We’ve recognized
that the two recipes
are essentially the

same, although
some of the steps
require different

implementations. So
we’ve generalized the
recipe and placed it in

the base class.

generalize

relies on

subclass for

some steps

generalize

relies on

subclass for

some steps

286 Chapter 8

Meet the Template Method
We’ve basically just implemented the Template Method Pattern. What’s that? Let’s look
at the structure of the CaffeineBeverage class; it contains the actual “template method:”

void final prepareRecipe() {

}

brew();

pourInCup();

addCondiments();

boilWater();

 abstract void brew();

 abstract void addCondiments();

 void boilWater() {
 // implementation
 }

 void pourInCup() {
 // implementation
 }

}

public abstract class CaffeineBeverage {

In the template, each step of
the algorithm is represented
by a method.

prepareRecipe() is our template method.
Why?

Because:

 (1) It is a method, after all.

 (2) It serves as a template for an
algorithm, in this case, an algorithm for
making caffeinated beverages.

Some methods are handled
by this class...

...and some are handled
by the subclass.

The methods that need to
be supplied by a subclass are
declared abstract.

The Template Method defines the steps of an algorithm and allows
subclasses to provide the implementation for one or more steps.

meet the template method pattern

the template method pattern

you are here 4 287

Let’s make some tea...
Behind
the ScenesLet’s step through making a tea and trace through

how the template method works. You’ll see that
the template method controls the algorithm; at
certain points in the algorithm, it lets the subclass
supply the implementation of the steps...

1

Tea myTea = new Tea();

Okay, fi rst we need a Tea object...

2

myTea.prepareRecipe();

Then we call the template method:

which follows the algorithm for making caffeine
beverages...

boilWater();
brew();
pourInCup();
addCondiments();

3

boilWater();

First we boil water:

which happens in CaffeineBeverage.

prepareRecipe()

boilWater()

pourInCup()

CaffeineBeverage

brew()

addCondiments();

Tea

4

brew();

Next we need to brew the tea, which only the subclass knows
how to do:

5

pourInCup();

Now we pour the tea in the cup; this is the same for all beverages so it
happens in CaffeineBeverage:

6

addCondiments();

Finally, we add the condiments, which are specifi c to each beverage, so
the subclass implements this:

The prepareRecipe()
method controls the
algorithm, no one can
change this, and it
counts on subclasses to
provide some or all of
the implementation.

288 Chapter 8

Underpowered Tea & Coffee
implementation

New, hip CaffeineBeverage
powered by Template Method

What did the Template Method get us?

Coffee and Tea are running the show;
they control the algorithm.

Code changes to the algorithm
require opening the subclasses and
making multiple changes.

The algorithm lives in one place and
code changes only need to be made
there.

Code is duplicated across Coffee and
Tea.

The CaffeineBeverage class
maximizes reuse among the
subclasses.

The CaffeineBeverage class runs
the show; it has the algorithm, and
protects it.

Classes are organized in a structure
that requires a lot of work to add a
new caffeine beverage.

The Template Method version provides
a framework that other caffeine
beverages can be plugged into. New
caffeine beverages only need to
implement a couple of methods.

The CaffeineBeverage class
concentrates knowledge about the
algorithm and relies on subclasses to
provide complete implementations.

Knowledge of the algorithm and how
to implement it is distributed over
many classes.

what did template method get us?

the template method pattern

you are here 4 289

 Template Method Pattern defined

The Template Method Pattern defi nes the skeleton
of an algorithm in a method, deferring some steps to
subclasses. Template Method lets subclasses redefi ne
certain steps of an algorithm without changing the
algorithm’s structure.

You’ve seen how the Template Method Pattern works in our Tea and Coffee example;
now, check out the offi cial defi nition and nail down all the details:

This pattern is all about creating a template for an algorithm. What’s a template?
As you’ve seen it’s just a method; more specifi cally, it’s a method that defi nes an
algorithm as a set of steps. One or more of these steps is defi ned to be abstract and
implemented by a subclass. This ensures the algorithm’s structure stays unchanged,
while subclasses provide some part of the implementation.

Let’s check out the class diagram:

templateMethod()

primitiveOperation1()

primitiveOperation2()

AbstractClass

primitiveOperation1()

primitiveOperation2()

ConcreteClass

primitiveOperation1();

primitiveOperation2();

The AbstractClass
contains the template
method.

...and abstract versions
of the operations used
in the template method.

The ConcreteClass implements
the abstract operations,
which are called when the
templateMethod() needs them.

There may be many

ConcreteClasses, each

implementing the
 full set o

f

operations
 required b

y the

template method.

The template method makes use of the
primitiveOperations to implement an
algorithm. It is decoupled from the actual
implementation of these operations.

290 Chapter 8

Code Up Close

Here we have our abstract class; it

is declared abstract and meant to

be subclassed by classes that provid
e

implementations of the operations.

Let’s take a closer look at how the AbstractClass is defined, including the template method
and primitive operations.

abstract class AbstractClass {

 final void templateMethod() {
 primitiveOperation1();
 primitiveOperation2();
 concreteOperation();
 }

 abstract void primitiveOperation1();

 abstract void primitiveOperation2();

 void concreteOperation() {
 // implementation here
 }
}

Here’s the template method. It’s

declared final to prevent subclasse
s

from reworking the sequence of

steps in the algorithm.

The template method defines the sequence of steps, each represented by a method.

In this example, two of the primitive operations must be implemented by concrete subclasses.

We also have a concrete operation defined
in the abstract class. More about these
kinds of methods in a bit...

template method pattern up close

the template method pattern

you are here 4 291

Now we’re going to look even closer at the types of method that can go in the abstract class:

abstract class AbstractClass {

 final void templateMethod() {
 primitiveOperation1();
 primitiveOperation2();
 concreteOperation();
 hook();
 }

 abstract void primitiveOperation1();

 abstract void primitiveOperation2();

 final void concreteOperation() {
 // implementation here
 }

 void hook() {}

}

We still have our primitive
methods; these are
abstract and implemented
by concrete subclasses.

A concrete operation is defined in
 the

abstract class. This one is declared

final so that subclasses can’t ove
rride it.

It may be used in the template method

directly, or used by subclasses.

We can also have concrete methods that do nothing
by default; we call these “hooks.” Subclasses are free
to override these but don’t have to. We’re going to
see how these are useful on the next page.

A concrete method, but
it does nothing!

We’ve changed the
templateMethod() to include

a new method call.

Code Way Up Close

292 Chapter 8

Hooked on
Template Method...

public abstract class CaffeineBeverageWithHook {

 final void prepareRecipe() {
 boilWater();
 brew();
 pourInCup();
 if (customerWantsCondiments()) {
 addCondiments();
 }
 }

 abstract void brew();

 abstract void addCondiments();

 void boilWater() {
 System.out.println(“Boiling water”);
 }

 void pourInCup() {
 System.out.println(“Pouring into cup”);
 }

 boolean customerWantsCondiments() {
 return true;
 }
}

With a hook, I can override
the method, or not. It’s my choice.

If I don’t, the abstract class
provides a default implementation.A hook is a method that is declared in the

abstract class, but only given an empty
or default implementation. This gives
subclasses the ability to “hook into” the
algorithm at various points, if they wish; a
subclass is also free to ignore the hook.

There are several uses of hooks; let’s take
a look at one now. We’ll talk about a few
other uses later:

We’ve added a little cond
itional statement

that bases its success o
n a concrete

method, customerWantsCondiments(). If

the customer WANTS condiments, only

then do we call addCondiments().

Here we’ve defined a method

with a (mostly) empty default

implementation. This method just

returns true and does n
othing else.

This is a hook because the
subclass can override this
method, but doesn’t have to.

implement a hook

the template method pattern

you are here 4 293

public class CoffeeWithHook extends CaffeineBeverageWithHook {

 public void brew() {
 System.out.println(“Dripping Coffee through filter”);
 }

 public void addCondiments() {
 System.out.println(“Adding Sugar and Milk”);
 }

 public boolean customerWantsCondiments() {
 String answer = getUserInput();

 if (answer.toLowerCase().startsWith(“y”)) {
 return true;
 } else {
 return false;
 }
 }

 private String getUserInput() {
 String answer = null;

 System.out.print(“Would you like milk and sugar with your coffee (y/n)? “);

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 try {
 answer = in.readLine();
 } catch (IOException ioe) {
 System.err.println(“IO error trying to read your answer”);
 }
 if (answer == null) {
 return “no”;
 }
 return answer;
 }
}

Using the hook

To use the hook, we override it in our subclass. Here, the hook controls whether
the CaffeineBeverage evaluates a certain part of the algorithm; that is, whether
it adds a condiment to the beverage.

How do we know whether the customer wants the condiment? Just ask !

Here’s where you override

the hook and provide y
our

own functionality.

Get the user’s input on
the condiment decision
and return true or false.
depending on the input.

This code asks the
user if he’d like m

ilk and

sugar and gets his
 input from the command line.

294 Chapter 8

public class BeverageTestDrive {
 public static void main(String[] args) {

 TeaWithHook teaHook = new TeaWithHook();
 CoffeeWithHook coffeeHook = new CoffeeWithHook();

 System.out.println(“\nMaking tea...”);
 teaHook.prepareRecipe();

 System.out.println(“\nMaking coffee...”);
 coffeeHook.prepareRecipe();
 }
}

Let’s run the TestDrive

Okay, the water’s boiling... Here’s the test code where
we create a hot tea and a hot coffee

%java BeverageTestDrive

Making tea...
Boiling water
Steeping the tea
Pouring into cup
Would you like lemon with your tea (y/n)? y
Adding Lemon

Making coffee...
Boiling water
Dripping Coffee through filter
Pouring into cup
Would you like milk and sugar with your coffee (y/n)? n
%

File Edit Window Help send-more-honesttea

And let’s give it a run...

A steaming cup of tea, and yes, of
course we want that lemon!

And a nice hot cup of co
ffee,

but we’ll pass on the waistline

expanding condiments.

Create a tea.

A coffee.

And call prepareRecipe() on both!

test drive

the template method pattern

you are here 4 295

Q: When I’m creating a template
method, how do I know when to use
abstract methods and when to use
hooks?

A: Use abstract methods when your
subclass MUST provide an implementation
of the method or step in the algorithm.
Use hooks when that part of the algorithm
is optional. With hooks, a subclass may
choose to implement that hook, but it doesn’t
have to.

Q: What are hooks really supposed
to be used for?

A: There are a few uses of hooks. As
we just said, a hook may provide a way for
a subclass to implement an optional part

of an algorithm, or if it isn’t important to
the subclass’ implementation, it can skip
it. Another use is to give the subclass
a chance to react to some step in the
template method that is about to happen,
or just happened. For instance, a hook
method like justReOrderedList() allows the
subclass to perform some activity (such as
redisplaying an onscreen representation)
after an internal list is reordered. As you’ve
seen a hook can also provide a subclass
with the ability to make a decision for the
abstract class.

Q: Does a subclass have to
implement all the abstract methods in the
AbstractClass?

A: Yes, each concrete subclass defines
the entire set of abstract methods and

provides a complete implementation of the
undefined steps of the template method’s
algorithm.

Q: It seems like I should keep my
abstract methods small in number,
otherwise it will be a big job to implement
them in the subclass.

A: That’s a good thing to keep in
mind when you write template methods.
Sometimes this can be done by not making
the steps of your algorithm too granular. But
it’s obviously a trade off: the less granularity,
the less flexibility.

Remember, too, that some steps will be
optional; so you can implement these as
hooks rather than abstract methods, easing
the burden on the subclasses of your
abstract class.

there are noDumb Questions

Now, I would have thought
that functionality like asking the
customer could have been used by

all subclasses?

You know what? We agree with you. But you
have to admit before you thought of that it was a
pretty cool example of how a hook can be used
to conditionally control the flow of the algorithm
in the abstract class. Right?

We’re sure you can think of many other more
realistic scenarios where you could use the
template method and hooks in your own code.

296 Chapter 8

The Hollywood Principle

The Hollywood Principle

Don’t call us, we’ll call you.

We’ve got another design principle for you; it’s called the
Hollywood Principle:

You’ve heard me say it
before, and I’ll say it again:

don’t call me, I’ll call you!

Easy to remember, right? But what has it got to do with OO
design?

The Hollywood principle gives us a way to prevent
“dependency rot.” Dependency rot happens when you have
high-level components depending on low-level components
depending on high-level components depending on sideways
components depending on low-level components, and so on.
When rot sets in, no one can easily understand the way a
system is designed.

With the Hollywood Principle, we allow low-level components
to hook themselves into a system, but the high-level
components determine when they are needed, and how. In
other words, the high-level components give the low-level
components a “don’t call us, we’ll call you” treatment.

High-Level Component

Low-Level
Component

Another
Low-Level
Component

Low-level components

can particip
ate in the

computation.

But the high-level

components control

when and how.

A low-level component never calls a high-level component directly.

the hollywood principle

the template method pattern

you are here 4 297

What other patterns make use of the Hollywood Principle?

brain
powerA

The Factory Method, Observer; any others?

 The Hollywood Principle and Template Method

The connection between the Hollywood Principle and the Template Method Pattern is probably somewhat
apparent: when we design with the Template Method Pattern, we’re telling subclasses, “don’t call us, we’ll call
you.” How? Let’s take another look at our CaffeineBeverage design:

prepareRecipe()
boilWater()
pourInCup()
brew()
addCondiments()

CaffeineBeverage

brew()
addCondiments()

Tea

brew()
addCondiments()

Coffee

CaffeineBeverage is our high-level

component. It has control over the

algorithm for the recipe, and calls on

the subclasses only when they’re needed

for an implementation of a method.

Tea and Coffee never

call the abstract clas
s

directly without being

“called” first.

The subclasses are used simply to provide implementation details.

Clients of beverages will depend on the CaffeineBeverage abstraction rather than a concrete Tea or Coffee, which reduces dependencies in the overall system.

298 Chapter 8

Q: How does the Hollywood Principle
relate to the Dependency Inversion
Principle that we learned a few chapters
back?

A: The Dependency Inversion
Principle teaches us to avoid the use of
concrete classes and instead work as
much as possible with abstractions. The
Hollywood Principle is a technique for
building frameworks or components so that
lower-level components can be hooked

into the computation, but without creating
dependencies between the lower-level
components and the higher-level layers. So,
they both have the goal of decoupling, but
the Dependency Inversion Principle makes a
much stronger and general statement about
how to avoid dependencies in design.

The Hollywood Principle gives us a
technique for creating designs that allow
low-level structures to interoperate while
preventing other classes from becoming too
dependent on them.

Q: Is a low-level component
disallowed from calling a method in a
higher-level component?

A: Not really. In fact, a low level
component will often end up calling a method
defined above it in the inheritance hierarchy
purely through inheritance. But we want to
avoid creating explicit circular dependencies
between the low-level component and the
high-level ones.

there are noDumb Questions

Match each pattern with its description:

Pattern Description

Template Method

Strategy

Factory Method

Encapsulate interchangeable
behaviors and use delegation to
decide which behavior to use

Subclasses decide how
to implement steps in an
algorithm

Subclasses decide which
concrete classes to create

who does what

the template method pattern

you are here 4 299

Template Methods in the Wild

The Template Method Pattern is a very common pattern and
you’re going to find lots of it in the wild. You’ve got to have
a keen eye, though, because there are many implementations
of the template methods that don’t quite look like the
textbook design of the pattern.

This pattern shows up so often because it’s a great design tool
for creating frameworks, where the framework controls how
something gets done, but leaves you (the person using the
framework) to specify your own details about what is actually
happening at each step of the framework’s algorithm.

Let’s take a little safari through a few uses in the wild (well,
okay, in the Java API)...

In training, we study the
classic patterns. However,

when we are out in the real world, we
must learn to recognize the patterns
out of context. We must also learn
to recognize variations of patterns,

because in the real world a square
hole is not always truly square.

300 Chapter 8

public static void sort(Object[] a) {
 Object aux[] = (Object[])a.clone();
 mergeSort(aux, a, 0, a.length, 0);
}

private static void mergeSort(Object src[], Object dest[],
 int low, int high, int off)
{

 for (int i=low; i<high; i++){
 for (int j=i; j>low &&
 ((Comparable)dest[j-1]).compareTo((Comparable)dest[j])>0; j--)
 {
 swap(dest, j, j-1);
 }
 }
 return;
}

What’s something we often need to do with arrays?
Sort them!

Recognizing that, the designers of the Java Arrays class
have provided us with a handy template method for
sorting. Let’s take a look at how this method operates:

Sorting with Template Method

We actually have two methods here and they act together to

provide the sort functionality.

compareTo() is the method we
need to implement to “fill out”
the template method.

This is a concrete method, already defined in the Arrays class.

We’ve pared down this
code a little to make it
easier to explain. If you’d
like to see it all, grab
the source from Sun and
check it out...

Think of this as the
template method.

The first method, sort(), is jus
t a helper method

that creates a cop
y of the array and

 passes it along

as the destination
array to the mergeSort() method.

It also passes along
 the length of the

 array and tells

the sort to start
at the first element.

The mergeSort() method contains the sort algorithm, and relies
on an implementation of the compareTo() method to complete the
algorithm. If you’re interested in the nitty gritty of how the
sorting happens, you’ll want to check out the Sun source code.

sorting with template method

the template method pattern

you are here 4 301

We’ve got an array of Ducks we need to sort.

We’ve got some ducks to sort...

The compareTo() method compares two objects and returns whether one is less than, greater than,
or equal to the other. sort() uses this as the basis of its comparison of objects in the array.

Am I greater
than you?

Let’s say you have an array of ducks that you’d like to sort. How
do you do it? Well, the sort template method in Arrays gives us the
algorithm, but you need to tell it how to compare ducks, which you do by
implementing the compareTo() method... Make sense?

No, it doesn’t. Aren’t
we supposed to be

subclassing something? I thought
that was the point of Template

Method. An array doesn’t subclass
anything, so I don’t get how we’d

use sort().

Good point. Here’s the deal: the designers of sort() wanted it
to be useful across all arrays, so they had to make sort() a static
method that could be used from anywhere. But that’s okay,
it works almost the same as if it were in a superclass. Now,
here is one more detail: because sort() really isn’t defined in
our superclass, the sort() method needs to know that you’ve
implemented the compareTo() method, or else you don’t have
the piece needed to complete the sort algorithm.

To handle this, the designers made use of the Comparable
interface. All you have to do is implement this interface, which
has one method (surprise): compareTo().

What is compareTo()?

I don’t know,
that’s what

compareTo() tells us.

302 Chapter 8

public class Duck implements Comparable {
 String name;
 int weight;

 public Duck(String name, int weight) {
 this.name = name;
 this.weight = weight;
 }

 public String toString() {
 return name + “ weighs “ + weight;
 }

 public int compareTo(Object object) {

 Duck otherDuck = (Duck)object;

 if (this.weight < otherDuck.weight) {
 return -1;
 } else if (this.weight == otherDuck.weight) {
 return 0;
 } else { // this.weight > otherDuck.weight
 return 1;
 }
 }
}

Comparing Ducks and Ducks

Okay, so you know that if you want to sort Ducks,
you’re going to have to implement this compareTo()
method; by doing that you’ll give the Arrays class
what it needs to complete the algorithm and sort your
ducks.

Here’s the duck implementation:

Remember, we need to implement the Comparable

interface since we aren’t really subclassing.

Our Ducks have a name and a weight

We’re keepin’ it simple; all Ducks do
is print their name and weight!

Okay, here’s what sort needs...

compareTo() takes another Duck to compare THIS Duck to.

Here’s where we specify how Ducks
compare. If THIS Duck weighs less
than otherDuck then we return -1;
if they are equal, we return 0; and if
THIS Duck weighs more, we return 1.

implementing comparable

the template method pattern

you are here 4 303

Let’s sort some Ducks

%java DuckSortTestDrive

Before sorting:
Daffy weighs 8
Dewey weighs 2
Howard weighs 7
Louie weighs 2
Donald weighs 10
Huey weighs 2

After sorting:
Dewey weighs 2
Louie weighs 2
Huey weighs 2
Howard weighs 7
Daffy weighs 8
Donald weighs 10
%

File Edit Window Help DonaldNeedsToGoOnADiet

The unsorted Ducks

The sorted Ducks

public class DuckSortTestDrive {
 public static void main(String[] args) {
 Duck[] ducks = {
 new Duck(“Daffy”, 8),
 new Duck(“Dewey”, 2),
 new Duck(“Howard”, 7),
 new Duck(“Louie”, 2),
 new Duck(“Donald”, 10),
 new Duck(“Huey”, 2)
 };

 System.out.println(“Before sorting:”);
 display(ducks);

 Arrays.sort(ducks);

 System.out.println(“\nAfter sorting:”);
 display(ducks);
 }

 public static void display(Duck[] ducks) {
 for (int i = 0; i < ducks.length; i++) {
 System.out.println(ducks[i]);
 }
 }
}

Let the sorting commence!

Here’s the test drive for sorting Ducks...

We need an array
 of

Ducks; these look
 good.

Let’s print them to see
their names and weights.

It’s sort time!

Let’s print them (again) to see
their names and weights.

Notice that we
call Arrays’ static
method sort, and
pass it our Ducks.

304 Chapter 8

The making of the sorting duck machine
Behind
the ScenesLet’s trace through how the Arrays sort() template

method works. We’ll check out how the template
method controls the algorithm, and at certain
points in the algorithm, how it asks our Ducks to
supply the implementation of a step...

1

Duck[] ducks = {new Duck(“Daffy”, 8), ... };

First, we need an array of Ducks:

2

Arrays.sort(ducks);

Then we call the sort() template method in the Array
class and pass it our ducks:

The sort() method (and its helper mergeSort()) control
the sort procedure.

for (int i=low; i<high; i++){
 ... compareTo() ...
 ... swap() ...
}

3

ducks[0].compareTo(ducks[1]);

To sort an array, you need to compare two items one
by one until the entire list is in sorted order.

When it comes to comparing two ducks, the sort
method relies on the Duck’s compareTo() method
to know how to do this. The compareTo() method
is called on the fi rst duck and passed the duck to be
compared to:

sort()
swap()

Arrays

compareTo()
toString()

Duck

4

swap()

If the Ducks are not in sorted order, they’re swapped with
the concrete swap() method in Arrays:

The sort() method controls
the algorithm, no class can
change this. sort() counts
on a Comparable class to
provide the implementation of
compareTo()

5 The sort method continues comparing and swapping Ducks
until the array is in the correct order!

First Duck
Duck to compare it to

No inheritance, unlike
a typical template
method.

behind the scenes: sorting ducks

the template method pattern

you are here 4 305

Q: Is this really the Template
Method Pattern, or are you trying too
hard?

A: The pattern calls for implementing
an algorithm and letting subclasses supply
the implementation of the steps – and the
Arrays sort is clearly not doing that! But,
as we know, patterns in the wild aren’t
always just like the textbook patterns. They
have to be modified to fit the context and
implementation constraints.

The designers of the Arrays sort() method
had a few constraints. In general, you can’t
subclass a Java array and they wanted the
sort to be used on all arrays (and each array
is a different class). So they defined a static
method and deferred the comparison part of

the algorithm to the items being sorted.

So, while it’s not a textbook template
method, this implementation is still in the
spirit of the Template Method Pattern. Also,
by eliminating the requirement that you have
to subclass Arrays to use this algorithm,
they’ve made sorting in some ways more
flexible and useful.

Q: This implementation of sorting
actually seems more like the Strategy
Pattern than the Template Method
Pattern. Why do we consider it
Template Method?

A: You’re probably thinking that
because the Strategy Pattern uses object
composition. You’re right in a way – we’re

using the Arrays object to sort our array, so
that’s similar to Strategy. But remember,
in Strategy, the class that you compose
with implements the entire algorithm. The
algorithm that Arrays implements for sort
is incomplete; it needs a class to fill in the
missing compareTo() method. So, in that
way, it’s more like Template Method.

Q: Are there other examples of
template methods in the Java API?

A: Yes, you’ll find them in a few
places. For example, java.io has a read()
method in InputStream that subclasses
must implement and is used by the tempate
method read(byte b[], int off, int len).

there are noDumb Questions

We know that we should favor composition over inheritance, right? Well, the implementers of the
sort() template method decided not to use inheritance and instead to implement sort() as a static
method that is composed with a Comparable at runtime. How is this better? How is it worse? How
would you approach this problem? Do Java arrays make this particularly tricky?

brain
powerA

Think of another pattern that is a specialization of the template method. In this specialization, primitive
operations are used to create and return objects. What pattern is this?

brain
powerA

2

306 Chapter 8

Swingin’ with Frames

public class MyFrame extends JFrame {

 public MyFrame(String title) {
 super(title);
 this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 this.setSize(300,300);
 this.setVisible(true);
 }

 public void paint(Graphics graphics) {
 super.paint(graphics);
 String msg = “I rule!!”;
 graphics.drawString(msg, 100, 100);
 }

 public static void main(String[] args) {
 MyFrame myFrame = new MyFrame(“Head First Design Patterns”);
 }
}

Up next on our Template Method safari... keep your eye out for swinging JFrames!

If you haven’t encountered JFrame, it’s the most basic Swing container and inherits
a paint() method. By default, paint() does nothing because it’s a hook! By overriding
paint(), you can insert yourself into JFrame’s algorithm for displaying its area of the
screen and have your own graphic output incorporated into the JFrame. Here’s
an embarrassingly simple example of using a JFrame to override the paint() hook
method: We’re extending JFrame, which contains

a method update() that controls the
algorithm for updating the screen.
We can hook into that algorithm by
overriding the paint() hook method.

JFrame’s update algorithm calls paint(). By

default, paint() does nothing... it’s a hook.

We’re overriding paint(), and telling the
JFrame to draw a message in the window.

Here’s the message that gets
painted in the frame because we’ve
hooked into the paint() method.

Don’t look behind the
curtain! Just some
initialization here...

the paint hook

the template method pattern

you are here 4 307

Applets
Our fi nal stop on the safari: the applet.

You probably know an applet is a small program that runs in a web page. Any
applet must subclass Applet, and this class provides several hooks. Let’s take a look
at a few of them:

The init hook allows the applet to do whatever

it wants to initialize the applet the first time.

The start hook allows the applet to do
something when the applet is just about
to be displayed on the web page.

If the user goes to another page, t
he

stop hook is used, and the applet ca
n do

whatever it needs to do to stop its
actions.

And the destroy hook is used when the applet
is going to be destroyed, say, when the browser
pane is closed. We could try to display
something here, but what would be the point?

Well looky here! Our old friend the
paint() method! Applet also makes
use of this method as a hook.

repaint() is a concrete method in the Applet

class that lets upper-level components know

the applet needs to be redrawn.

Concrete applets make extensive use of hooks to supply their
own behaviors. Because these methods are implemented as
hooks, the applet isn’t required to implement them.

public class MyApplet extends Applet {
 String message;

 public void init() {
 message = “Hello World, I’m alive!”;
 repaint();
 }

 public void start() {
 message = “Now I’m starting up...”;
 repaint();
 }

 public void stop() {
 message = “Oh, now I’m being stopped...”;
 repaint();
 }

 public void destroy() {
 // applet is going away...
 }

 public void paint(Graphics g) {
 g.drawString(message, 5, 15);
 }
}

308 Chapter 8

Hey Strategy, what are you doing in my
chapter? I figured I’d get stuck with someone
boring like Factory Method.

Hey, I heard
that!

Nope, it’s me, although be careful – you and
Factory Method are related, aren’t you?

I was just kidding! But seriously, what are you
doing here? We haven’t heard from you in eight
chapters!

You might want to remind the reader what
you’re all about, since it’s been so long.

I don’t know, since Chapter 1, people have
been stopping me in the street saying, “Aren’t
you that pattern...” So I think they know who
I am. But for your sake: I define a family of
algorithms and make them interchangeable.
Since each algorithm is encapsulated, the client
can use different algorithms easily.

Hey, that does sound a lot like what I do. But
my intent’s a little different from yours; my job
is to define the outline of an algorithm, but
let my subclasses do some of the work. That
way, I can have different implementations of an
algorithm’s individual steps, but keep control
over the algorithm’s structure. Seems like you
have to give up control of your algorithms.

Tonight’s talk: Template Method and Strategy
compare methods.

Template Method Strategy
Factory Method

I’m not sure I’d put it quite like that... and
anyway, I’m not stuck using inheritance for
algorithm implementations. I offer clients a
choice of algorithm implementation through
object composition.

I’d heard you were on the final draft of your
chapter and I thought I’d swing by to see how
it was going. We have a lot in common, so I
thought I might be able to help...

fireside chats: template method and strategy

the template method pattern

you are here 4 309

You might be a little more efficient (just a little)
and require fewer objects. And you might also
be a little less complicated in comparison to
my delegation model, but I’m more flexible
because I use object composition. With me,
clients can change their algorithms at runtime
simply by using a different strategy object.
Come on, they didn’t choose me for Chapter 1
for nothing!

Yeah, I guess... but, what about dependency?
You’re way more dependent than me.

How’s that? My superclass is abstract.
But you have to depend on methods
implemented in your superclass, which are part
of your algorithm. I don’t depend on anyone;
I can do the entire algorithm myself !

Like I said Strategy, I’m real happy for you.
Thanks for stopping by, but I’ve got to get the
rest of this chapter done.

Okay, okay, don’t get touchy. I’ll let you
work, but let me know if you need my special
techniques anyway, I’m always glad to help.

Template Method Strategy

I remember that. But I have more control over
my algorithm and I don’t duplicate code. In fact,
if every part of my algorithm is the same except
for, say, one line, then my classes are much more
efficient than yours. All my duplicated code
gets put into the superclass, so all the subclasses
can share it.

Yeah, well, I’m real happy for ya, but don’t
forget I’m the most used pattern around.
Why? Because I provide a fundamental
method for code reuse that allows subclasses to
specify behavior. I’m sure you can see that this
is perfect for creating frameworks.

Got it. Don’t call us, we’ll call you...

310 Chapter 8

It’s that time again....

� � �

�

�

� �

� �

��

�� ��

�� �� ��

��

������

�� �������� ���� ��������� ������ ����
�����������
�� ���� �� ���� ���� �� ������
�� ��� ������ ���� ������ ���� �� �������� ��
����� �� �����
�� ��� �������� ������ ������� ����
������������ �� ����� �������������� �� �����
�������
�� ������ ��� �����
�� ����� ���� ��� ����� ���� ��� �� ����� �� ���
����������������� ���������
��� � �������� ������ ������� ��� ����� �� ��
������������
��� �� ���� ������� �� ���� ��� ����
�������������
��� ��� �������� ������ �� ������� ������� �� ��
����������� �����
��� ����� ���� ����� ��� �����

����

�� ��������� ��������� ����� ��� �����������
�� ���� �������
�� ������� ������ �� � ��������������� ��
�������� ������
�� ��� ����� �� ��� ��������� ���� ���� ��
�������� �� ��� ���������� ��� ������� ��������
�����������
�� ����� ����� ��� ����� ��� ����� ��������
������
�� � ������ �� ��� �������� ���������� ���� ����
������� �� �������� ������� �������� �� ������ �
��������� ������
��� ��� ������ �������
��� ��� �������� ������ ���� �� �����������
��� ��� ������ ����� ���������� ��� ��������
������ �� � ��������� ������

crossword puzzle

� � �

�

�

� �

� �

��

�� ��

�� �� ��

��

������

�� �������� ���� ��������� ������ ����
�����������
�� ���� �� ���� ���� �� ������
�� ��� ������ ���� ������ ���� �� �������� ��
����� �� �����
�� ��� �������� ������ ������� ����
������������ �� ����� �������������� �� �����
�������
�� ������ ��� �����
�� ����� ���� ��� ����� ���� ��� �� ����� �� ���
����������������� ���������
��� � �������� ������ ������� ��� ����� �� ��
������������
��� �� ���� ������� �� ���� ��� ����
�������������
��� ��� �������� ������ �� ������� ������� �� ��
����������� �����
��� ����� ���� ����� ��� �����

����

�� ��������� ��������� ����� ��� �����������
�� ���� �������
�� ������� ������ �� � ��������������� ��
�������� ������
�� ��� ����� �� ��� ��������� ���� ���� ��
�������� �� ��� ���������� ��� ������� ��������
�����������
�� ����� ����� ��� ����� ��� ����� ��������
������
�� � ������ �� ��� �������� ���������� ���� ����
������� �� �������� ������� �������� �� ������ �
��������� ������
��� ��� ������ �������
��� ��� �������� ������ ���� �� �����������
��� ��� ������ ����� ���������� ��� ��������
������ �� � ��������� ������

the template method pattern

you are here 4 311

Tools for your Design Toolbox
We’ve added Template Method to your toolbox. With
Template Method you can reuse code like a pro while
keeping control of your algorithms.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics
Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for ex

tension

but closed for
 modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

Only talk to yo
ur friends.

Don’t call us, w
e’ll call you.

OO Principles

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically
interchangeab

le. Strategy
lets the algor

ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer
dependency be

tween objects so
 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automatically

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Observer defines a one-

to-many

automatically

Decorator
responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

 responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

alternative to
 subclassing fo

r extending

functionality.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many

DecoratorAbstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract Factory

related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

Observer defines a one-
to-many

DecoratorAbstract Factory

specifying the
ir concrete cl

asses.
Factory Method Define an

interface for
 creating an o

bject, but Factory Method

interface for
 creating an o

bject, but

interface for
 creating an o

bject, but Factory Method

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the instantiate. F
actory Method lets

a class defer
instantiation

to the

a class defer
instantiation

to the instantiate. F
actory Method lets

subclasses.

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

DecoratorAbstract Factory
Factory Method Define an

Singleton
one instance a

nd provide a g
lobal point

of access to i
t.Command - Encapsulates a

request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

 BULLET POINTS
ß A “template method” defines

the steps of an algorithm,
 deferring to subclasses for the
implementation of those steps.

ß The Template Method
Pattern gives us an important
technique for code reuse.

ß The template method’s
abstract class may define
concrete methods, abstract
methods and hooks.

ß Abstract methods are
implemented by subclasses.

ß Hooks are methods that do
nothing or default behavior in
the abstract class, but may be
overridden in the subclass.

ß To prevent subclasses from
changing the algorithm in the
template method, declare the
template method as final.

ß The Hollywood Principle guides
us to put decision-making in
high-level modules that can
decide how and when to call
low level modules.

ß You’ll see lots of uses of the
Template Method Pattern in
real world code, but don’t
expect it all (like any pattern) to
be designed “by the book.”

ß The Strategy and Template
Method Patterns both
encapsulate algorithms, one
by inheritance and one by
composition.

ß The Factory Method is a
specialization of Template
Method.

Factory Method

SingletonCommand
as an object,

thereby lettin
g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Adapter - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Our newest principle
 reminds

you that you
r superclasse

s

are running t
he show, so let

them call your su
bclasses when

they’re need
ed, just like

they

do in Hollywood.

Singleton

support undoa
ble operations

.

Adapter Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Facade - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

And our newest pattern
lets classes implementing
an algorithm defer some
steps to subclasses.

Adapter Encapsulates a
request

Facade - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Template Method - Define the

skeleton of an
 algorithm in an operati

on,

deferring som
e steps to sub

classes.

Template Method lets sub
classes redefin

e

certain steps
of an algorith

m without

changing the a
lgorithm’s structure.

312 Chapter 8

Exercise
solutions

Match each pattern with its description:

Pattern Description

Template Method

Strategy

Factory Method

Encapsulate interchangable
behaviors and use delegation to
decide which behavior to use

Subclasses decide how
to implement steps in an
algorithm

Subclasses decide which
concrete classes to create

prepareRecipe()
boilWater()
pourInCup()
brew()
addCondiments()

CaffeineBeverage

prepareRecipe()

CaffeineBeverage

brew()
addCondiments()

Coffee

brew()

Sharpen your pencil
Draw the new class diagram now that we’ve moved
prepareRecipe() into the CaffeineBeverage class:

brew()
addCondiments()

Tea

brew()

exercise solutions

the template method pattern

you are here 4 313

Exercise solutions

�
�

�
�

� � � �
�

� � � � �

� �

� �
�

� � � � � � � �

�
�

� � � � �

� �
�

� � � � � � � � � � �
�

� � �

�
�

� � �
�

� � � � � � � � �

� � � � �

� � � �
��

�

�
��

� �
��

� � � � � � � � �

� � � �

�
��

� � � � � � � �
��

� �
��

� � � � �

� � � �

� � � �
��

� � � � �

� � �

� � �

� �

������

�� �������� ���� ��������� ������ ����
��������������������������
���
���
�� ����� �� ����� �������
������������������������������������
������������ �� ����� �������������� ��
����� ������� �������������
�� ������ ��� ����� �����
�� ����� ���� ��� ����� ���� ��� �� ����� �� ���
����������������� ��������� �����������
���
�� ������������ �����������
�������������������������������������
������������� ����������
��
�� ����������� ����� ����������
��� ����� ���� ����� ��� ����� ��������

����

�� ��������� ��������� ����� ���
���������������������������������������
�� ������� ������ �� � ��������������� ��
���������������������������������
���
���������������������������������������
�������� ����������� ����������
�� ����� ����� ��� ����� ��� ����� ��������
�������������
��
���
������ � ��������� ������ ������
����������������������������������
��� ��� �������� ������ ���� �� �����������
����������
���
������ �� � ��������� ������ ��������

this is a new chapter 315

There are lots of ways to stuff objects into a collection. Put them

in an Array, a Stack, a List, a Hashtable, take your pick. Each has its own advantages and

tradeoffs. But at some point your client is going to want to iterate over those objects, and

when he does, are you going to show him your implementation? We certainly hope not!

That just wouldn’t be professional. Well, you don’t have to risk your career; you’re going

to see how you can allow your clients to iterate through your objects without ever getting

a peek at how you store your objects. You’re also going to learn how to create some

super collections of objects that can leap over some impressive data structures in a single

bound. And if that’s not enough, you’re also going to learn a thing or two about object

responsibility.

9 the Iterator and Composite Patterns

Well-Managed
 Collections g

hg

You
bet I keep my

collections well
encapsulated!

316 Chapter 9

Mel
Lou

They want to use
my Pancake House

menu as the breakfast menu
and the Diner’s menu as the

lunch menu. We’ve agreed on
an implementation for the

menu items...

That’s great news! Now we can get those delicious pancake breakfasts at the
Pancake House and those yummy lunches at the Diner all in one place. But,
there seems to be a slight problem...

Breaking News: Objectville Diner and
Objectville Pancake House Merge

big news

... but we can’t agree on
how to implement our menus.
That joker over there used an

ArrayList to hold his menu items, and
I used an Array. Neither one of us is
willing to change our implementations...

we just have too much code written
that depends on them.

the iterator and composite patterns

you are here 4 317

public class MenuItem {
 String name;
 String description;
 boolean vegetarian;
 double price;

 public MenuItem(String name,
 String description,
 boolean vegetarian,
 double price)
 {
 this.name = name;
 this.description = description;
 this.vegetarian = vegetarian;
 this.price = price;
 }

 public String getName() {
 return name;
 }

 public String getDescription() {
 return description;
 }

 public double getPrice() {
 return price;
 }

 public boolean isVegetarian() {
 return vegetarian;
 }
}

Check out the Menu Items
Objectville Diner

Vegetarian BLT 2.99
 (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT 2.99
 Bacon with lettuce & tomato on whole wheat
Soup of the day 3.29
 A bowl of the soup of the day, with a side of potato saladHot Dog 3.05

 A hot dog, with saurkraut, relish, onions, topped with cheeseSteamed Veggies and Brown Rice 3.99
 A medley of steamed vegetables over brown rice

 2.99
 (Fakin’) Bacon with lettuce & tomato on

 2.99
 Bacon with lettuce & tomato on whole wheat 3.29

 A bowl of the soup of the day, with a side of potato saladHot Dog 3.05
 A hot dog, with saurkraut, relish, onions,

Steamed Veggies and Brown Rice 3.99
 A medley of steamed vegetables over brown rice

K&B’s Pancake Breakfast 2.99
 Pancakes with scrambled eggs, and toast
Regular Pancake Breakfast 2.99
 Pancakes with fried eggs, sausage
Blueberry Pancakes 3.49

 Pancakes made with fresh blueberries, and blueberry syrup

Waffl es 3.59
 Waffl es, with your choice of blueberries or strawberries

Objectville Pancake House

A MenuItem consists of a name, a description, a flag to indicate if the item is vegetarian, and a price. You pass all these values into the constructor to initialize the MenuItem.

These getter methods
let you access the fields
of the menu item.

At least Lou and Mel agree on the
implementation of the MenuItems.
Let’s check out the items on each
menu, and also take a look at the
implementation.

The Diner menu has lots of lunch items,

while the Pancake House consists of

breakfast items. Every menu item has a

name, a description, and a price

318 Chapter 9

public class PancakeHouseMenu implements Menu {
 ArrayList menuItems;

 public PancakeHouseMenu() {
 menuItems = new ArrayList();

 addItem(“K&B’s Pancake Breakfast”,
 “Pancakes with scrambled eggs, and toast”,
 true,
 2.99);

 addItem(“Regular Pancake Breakfast”,
 “Pancakes with fried eggs, sausage”,
 false,
 2.99);

 addItem(“Blueberry Pancakes”,
 “Pancakes made with fresh blueberries”,
 true,
 3.49);

 addItem(“Waffles”,
 “Waffles, with your choice of blueberries or strawberries”,
 true,
 3.59);
 }
 public void addItem(String name, String description,
 boolean vegetarian, double price)
 {
 MenuItem menuItem = new MenuItem(name, description, vegetarian, price);
 menuItems.add(menuItem);
 }

 public ArrayList getMenuItems() {
 return menuItems;
 }

 // other menu methods here
}

I used an ArrayList
so I can easily

expand my menu.

Lou and Mel’s Menu implementations

Now let’s take a look at what Lou and Mel are
arguing about. They both have lots of time and
code invested in the way they store their menu
items in a menu, and lots of other code that
depends on it.

Lou’s using an ArrayList to store
his menu items

Each menu item is added to the
ArrayList here, in the constructor

To add a menu item, Lou creates a ne
w

MenuItem object, passing
 in each argument,

and then adds i
t to the ArrayList

Lou has a bunch of other menu code that depends

on the ArrayList implementation. He doesn’t want

to have to rewrite all that code!

{

The getMenuItems() method returns the list of menu items

Here’s Lou’s implementation of the

Pancake House menu.

Each MenuItem has a name, a

description, whether or not it’s a

vegetarian item, and the price

two menus

the iterator and composite patterns

you are here 4 319

public class DinerMenu implements Menu {
 static final int MAX_ITEMS = 6;
 int numberOfItems = 0;
 MenuItem[] menuItems;

 public DinerMenu() {
 menuItems = new MenuItem[MAX_ITEMS];

 addItem(“Vegetarian BLT”,
 “(Fakin’) Bacon with lettuce & tomato on whole wheat”, true, 2.99);
 addItem(“BLT”,
 “Bacon with lettuce & tomato on whole wheat”, false, 2.99);
 addItem(“Soup of the day”,
 “Soup of the day, with a side of potato salad”, false, 3.29);
 addItem(“Hotdog”,
 “A hot dog, with saurkraut, relish, onions, topped with cheese”,
 false, 3.05);
 // a couple of other Diner Menu items added here
 }

 public void addItem(String name, String description,
 boolean vegetarian, double price)
 {
 MenuItem menuItem = new MenuItem(name, description, vegetarian, price);
 if (numberOfItems >= MAX_ITEMS) {
 System.err.println(“Sorry, menu is full! Can’t add item to menu”);
 } else {
 menuItems[numberOfItems] = menuItem;
 numberOfItems = numberOfItems + 1;
 }
 }

 public MenuItem[] getMenuItems() {
 return menuItems;
 }

 // other menu methods here
}

And here’s Mel’s implementation of the Diner menu.

Mel takes a different approach; he’s using an Array so he

can control the max size of the menu and retrieve menu

items out without having to cast his objects.

Like Lou, Mel creates his menu items in the
constructor, using the addItem() helper method.

addItem() takes all the parameters
necessary to create a MenuItem and
instantiates one. It also checks to make

sure we haven’t hit the menu size limit.

Like Lou, Mel has a bunch of code that depends on the implementation of
his menu being an Array. He’s too busy cooking to rewrite all of this.

Mel specifically wants to keep his menu under a
certain size (presumably so he doesn’t have to
remember too many recipes).

{

getMenuItems() returns the array of menu items.

Haah! An Arraylist... I
used a REAL Array so I can

control the maximum size of my menu
and get my MenuItems without

having to use a cast.

320 Chapter 9

To see why having two different menu representations complicates
things, let’s try implementing a client that uses the two menus.
Imagine you have been hired by the new company formed by the
merger of the Diner and the Pancake House to create a Java-enabled
waitress (this is Objectville, after all). The spec for the Java-enabled
waitress specifi es that she can print a custom menu for customers on
demand, and even tell you if a menu item is vegetarian without having
to ask the cook – now that’s an innovation!

Let’s check out the spec, and then step through what it might take to
implement her...

What’s the problem with having two different
menu representations?

The Waitress is

getting Ja
va-enabled.

The Java-Enabled Waitress Specification

Java-Enabled W
aitress: code-

name “Alice”

printMenu()

 - prints
every item o

n the menu

printBreakfa
stMenu()

 - prints
just breakfa

st items

printLunchMe
nu()

 - prints
just lunch i

tems

printVegetar
ianMenu()

 - prints
all vegetari

an menu item
s

isItemVegeta
rian(name)

 - given t
he name of a

n item, retu
rns true

 if the
items is veg

etarian, oth
erwise,

 returns
 false

The spec for
the Waitress

java enabled waitress

the iterator and composite patterns

you are here 4 321

1

3

2

To print all the items on each menu, you’ll need to call the getMenuItem()
method on the PancakeHouseMenu and the DinerMenu to retrieve their
respective menu items. Note that each returns a different type:

PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu();
ArrayList breakfastItems = pancakeHouseMenu.getMenuItems();

DinerMenu dinerMenu = new DinerMenu();
MenuItem[] lunchItems = dinerMenu.getMenuItems();

Now, to print out the items from the PancakeHouseMenu, we’ll loop through the
items on the breakfastItems ArrayList. And to print out the Diner items we’ll
loop through the Array.

Implementing every other method in the Waitress is going to be a variation of
this theme. We’re always going to need to get both menus and use two loops to
iterate through their items. If another restaurant with a different implementation
is acquired then we’ll have three loops.

for (int i = 0; i < breakfastItems.size(); i++) {
 MenuItem menuItem = (MenuItem)breakfastItems.get(i);
 System.out.print(menuItem.getName() + “ “);
 System.out.println(menuItem.getPrice() + “ “);
 System.out.println(menuItem.getDescription());
}

for (int i = 0; i < lunchItems.length; i++) {
 MenuItem menuItem = lunchItems[i];
 System.out.print(menuItem.getName() + “ “);
 System.out.println(menuItem.getPrice() + “ “);
 System.out.println(menuItem.getDescription());
}

The method looks
the same, but the
calls are returning
different types.

Now, we have to
implement two different
loops to step through
the two implementations
of the menu items...

...one loop for the
ArrayList...

and another for
the Array.

The implementation
is showing through,
breakfast items are
in an ArrayList, lunch
items are in an Array.

Let’s start by stepping through how we’d implement the printMenu() method:

322 Chapter 9

Sharpen your pencil

❏ A. We are coding to the
PancakeHouseMenu and DinerMenu
concrete implementations, not to an
interface.

❏ B. The Waitress doesn’t implement the
Java Waitress API and so she isn’t
adhering to a standard.

❏ C. If we decided to switch from using
DinerMenu to another type of menu
that implemented its list of menu items
with a Hashtable, we’d have to modify
a lot of code in the Waitress.

❏ D. The Waitress needs to know how each
menu represents its internal collection of
menu items; this violates encapsulation.

❏ E. We have duplicate code: the printMenu()
method needs two separate loops to
iterate over the two different kinds of
menus. And if we added a third menu,
we’d have yet another loop.

❏ F. The implementation isn’t based on
MXML (Menu XML) and so isn’t as
interoperable as it should be.

Based on our implementation of printMenu(), which of the following apply?

Mel and Lou are putting us in a difficult position. They don’t want to change their
implementations because it would mean rewriting a lot of code that is in each respective menu
class. But if one of them doesn’t give in, then we’re going to have the job of implementing a
Waitress that is going to be hard to maintain and extend.

It would really be nice if we could find a way to allow them to implement the same interface for
their menus (they’re already close, except for the return type of the getMenuItems() method).
That way we can minimize the concrete references in the Waitress code and also hopefully get
rid of the multiple loops required to iterate over both menus.

Sound good? Well, how are we going to do that?

What now?

what’s the goal

the iterator and composite patterns

you are here 4 323

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

ArrayList

An ArrayList
of MenuItems

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Array

An Array of
MenuItems.

for (int i = 0; i < breakfastItems.size(); i++) {
 MenuItem menuItem = (MenuItem)breakfastItems.get(i);
}

for (int i = 0; i < lunchItems.length; i++) {
 MenuItem menuItem = lunchItems[i];
}

Can we encapsulate the iteration?

If we’ve learned one thing in this book, it’s encapsulate what varies. It’s obvious
what is changing here: the iteration caused by different collections of objects
being returned from the menus. But can we encapsulate this? Let’s work
through the idea...

1 To iterate through the breakfast items we use the size() and get()
methods on the ArrayList:

2 And to iterate through the lunch items we use the Array length field and
the array subscript notation on the MenuItem Array.

lunchItems[0]

lunchItems[1]

lunchItems[2]
lunchItems[3]

get(0)
get(1) get(2) get(3) get() helps us step

through each item.

We use the array
subscripts to step
through items.

324 Chapter 9

3 Now what if we create an object, let’s call it an Iterator,
that encapsulates the way we iterate through a
collection of objects? Let’s try this on the ArrayList

Iterator iterator = breakfastMenu.createIterator();

while (iterator.hasNext()) {
 MenuItem menuItem = (MenuItem)iterator.next();
}

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

ArrayList

 Iterator

We ask the breakfastMenu
for an iterator of its
MenuItems.

And while there are more items left...

We get the next item.

4 Let’s try that on the Array too:

Iterator iterator = lunchMenu.createIterator();

while (iterator.hasNext()) {
 MenuItem menuItem = (MenuItem)iterator.next();
}

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Array

lunchItems[0]

lunchItems[1]

lunchItems[2]
lunchItems[3]

 Iterator

The client just calls hasNext() and
next(); behind the scenes the iterator
calls get() on the ArrayList.

Same situation here: the client just calls
hasNext() and next(); behind the scenes,
the iterator indexes into the Array.

Wow, this code
is exactly the
same as the
breakfastMenu
code.

get(0)

get(1)

get(2)
get(3)

next()

next()

encapsulating iteration

the iterator and composite patterns

you are here 4 325

Meet the Iterator Pattern
Well, it looks like our plan of encapsulating iteration just might
actually work; and as you’ve probably already guessed, it is a
Design Pattern called the Iterator Pattern.

The fi rst thing you need to know about the Iterator Pattern is
that it relies on an interface called Iterator. Here’s one possible
Iterator interface:

hasNext()

next()

<<interface>>
Iterator

hasNext()

Iterator

The hasNext() method
tells us if there are
more elements in the
aggregate to iterate
through.

The next() method
returns the next
object in the aggregate.

Now, once we have this interface, we can implement Iterators for
any kind of collection of objects: arrays, lists, hashtables, ...pick
your favorite collection of objects. Let’s say we wanted to
implement the Iterator for the Array used in the DinerMenu. It
would look like this:

DinerMenuIterator is an
implementation of Iterator
that knows how to iterate
over an array of MenuItems.

hasNext()

next()

<<interface>>
Iterator

hasNext()

Iterator

hasNext()

next()

DinerMenuIterator

hasNext()

DinerMenuIterator

Let’s go ahead and implement this Iterator and hook it into the
DinerMenu to see how this works...

When we say
COLLECTION we just

mean a group of objects. They
might be stored in very different
data structures like lists, arrays,

hashtables, but they’re
still collections. We also
sometimes call these

AGGREGATES.

326 Chapter 9

public interface Iterator {
 boolean hasNext();
 Object next();
}

Adding an Iterator to DinerMenu

Here’s our two methods:

The hasNext() method returns a boolean

indicating whether or not there are more

elements to iterate over...

To add an Iterator to the DinerMenu we first need to define the
Iterator Interface:

...and the next() method returns the next element.

And now we need to implement a concrete Iterator that works
for the Diner menu:

public class DinerMenuIterator implements Iterator {
 MenuItem[] items;
 int position = 0;

 public DinerMenuIterator(MenuItem[] items) {
 this.items = items;
 }

 public Object next() {
 MenuItem menuItem = items[position];
 position = position + 1;
 return menuItem;
 }

 public boolean hasNext() {
 if (position >= items.length || items[position] == null) {
 return false;
 } else {
 return true;
 }
 }
}

We implement the
Iterator interface.

The constructor takes the
array of menu items we are
going to iterate over.

position maintains the

current position of
 the

iteration over the
array.

The next() method returns the
next item in the array and
increments the position.

The hasNext() method checks to
see if we’ve seen all the elements
of the array and returns true if
there are more to iterate through.

Because the diner chef went ahead and
allocated a max sized array, we need to
check not only if we are at the end of
the array, but also if the next item is
null, which indicates there are no more
items.

make an iterator

the iterator and composite patterns

you are here 4 327

public class DinerMenu implements Menu {
 static final int MAX_ITEMS = 6;
 int numberOfItems = 0;
 MenuItem[] menuItems;

 // constructor here

 // addItem here

 public MenuItem[] getMenuItems() {
 return menuItems;
 }

 public Iterator createIterator() {
 return new DinerMenuIterator(menuItems);
 }

 // other menu methods here
}

{

Reworking the Diner Menu with Iterator

Okay, we’ve got the iterator. Time to work it into the
DinerMenu; all we need to do is add one method to create a
DinerMenuIterator and return it to the client:

We’re not going to need the getMenuItems()
method anymore and in fact, we don’t want it
because it exposes our internal implementation!

Here’s the createIterator() method.
It creates a DinerMenuIterator
from the menuItems array and
returns it to the client.

We’re returning the Iterator interface. The client
doesn’t need to know how the menuItems are maintained
in the DinerMenu, nor does it need to know how the
DinerMenuIterator is implemented. It just needs to use the
iterators to step through the items in the menu.

Go ahead and implement the PancakeHouseIterator yourself and make the changes
needed to incorporate it into the PancakeHouseMenu.

Exercise

328 Chapter 9

Fixing up the Waitress code

public class Waitress {
 PancakeHouseMenu pancakeHouseMenu;
 DinerMenu dinerMenu;

 public Waitress(PancakeHouseMenu pancakeHouseMenu, DinerMenu dinerMenu) {
 this.pancakeHouseMenu = pancakeHouseMenu;
 this.dinerMenu = dinerMenu;
 }

 public void printMenu() {
 Iterator pancakeIterator = pancakeHouseMenu.createIterator();
 Iterator dinerIterator = dinerMenu.createIterator();
 System.out.println(“MENU\n----\nBREAKFAST”);
 printMenu(pancakeIterator);
 System.out.println(“\nLUNCH”);
 printMenu(dinerIterator);
 }

 private void printMenu(Iterator iterator) {
 while (iterator.hasNext()) {
 MenuItem menuItem = (MenuItem)iterator.next();
 System.out.print(menuItem.getName() + “, “);
 System.out.print(menuItem.getPrice() + “ -- “);
 System.out.println(menuItem.getDescription());
 }
 }

 // other methods here
}

In the constructor the Waitress
takes the two menus.

The printMenu()
method now
creates two
iterators, one for
each menu.

And then calls the
overloaded printMenu()
with each iterator.

The overloaded
printMenu()
method uses
the Iterator to
step through the
menu items and
print them.

Note that we’re down
to one loop.

Test if there are
any more items.

Get the
next item.

Use the item to
get name, price
and description
and print them.

Now we need to integrate the iterator code
into the Waitress. We should be able to get
rid of some of the redundancy in the process.
Integration is pretty straightforward: first we
create a printMenu() method that takes an
Iterator, then we use the createIterator() method
on each menu to retrieve the Iterator and pass it
to the new method.

New and improved
with Iterator.

the waitress iterates

the iterator and composite patterns

you are here 4 329

Testing our code

File Edit Window Help GreenEggs&Ham

% java DinerMenuTestDrive

MENU

BREAKFAST
K&B’s Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs, and toast
Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage
Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries
Waffles, 3.59 -- Waffles, with your choice of blueberries or strawberries

LUNCH
Vegetarian BLT, 2.99 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad
Hotdog, 3.05 -- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread

%

public class MenuTestDrive {
 public static void main(String args[]) {
 PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu();
 DinerMenu dinerMenu = new DinerMenu();

 Waitress waitress = new Waitress(pancakeHouseMenu, dinerMenu);

 waitress.printMenu();
 }
}

First we create the new menus.

Then we create a
Waitress and pass
her the menus.

Then we print them.

Here’s the test run...

It’s time to put everything to a test. Let’s write some
test drive code and see how the Waitress works...

First we iterate
through the pancake
menu.

And then
the lunch
menu, all
with the
same
iteration
code.

330 Chapter 9

What have we done so far? Woohoo! No
code changes other
than adding the

createIterator() method.

Veggie burger

For starters, we’ve made our Objectville cooks
very happy. They settled their differences and
kept their own implementations. Once we
gave them a PancakeHouseMenuIterator and a
DinerMenuIterator, all they had to do was add a
createIterator() method and they were finished.

We’ve also helped ourselves in the process. The
Waitress will be much easier to maintain and
extend down the road. Let’s go through exactly
what we did and think about the consequences:

Hard to Maintain
Waitress Implementation

New, Hip
Waitress Powered by Iterator

The Menus are not well
encapsulated; we can see the Diner
is using an Array and the Pancake
House an ArrayList.

The Waitress is bound to concrete
classes (MenuItem[] and ArrayList).

The Waitress now uses an interface
(Iterator).

We need two loops to iterate through
the MenuItems.

All we need is a loop that
polymorphically handles any
collection of items as long as it
implements Iterator.

The Menu implementations are now
encapsulated. The Waitress has
no idea how the Menus hold their
collection of menu items.

The Waitress is bound to two different
concrete Menu classes, despite their
interfaces being almost identical.

The Menu interfaces are now exactly
the same and, uh oh, we still don’t
have a common interface, which
means the Waitress is still bound to
two concrete Menu classes. We’d
better fix that.

iterator advantages

the iterator and composite patterns

you are here 4 331

hasNext()

next()

<<interface>>
Iterator

Before we clean things up, let’s get a bird’s eye view of our current design.

Note that the iterator give us a way to step through the elements of an aggregate without forcing the aggregate to clutter its own interface with a bunch of methods to support traversal of its elements. It also allows the implementation of the iterator to live outside of the aggregate; in other words, we’ve encapsulated the interation.

PancakeHouseMenu and DinerMenu implement

the new createIterator() method; they are

responsible for creatin
g the iterator for the

ir

respective menu items implementations.

printMenu()

Waitress

createIterator()

PancakeHouseMenu

menuItems

createIterator()

DinerMenu

menuItems

hasNext()

next()

DinerMenuIterator

hasNext()

next()

PancakeHouseMenuIterator

What we have so far...

These two menus implement the

same exact set of methods, but

they aren’t implementing the same

Interface. We’re going to fix this

and free the Waitress from any

dependencies on concrete M
enus.

We’re now
using a common
Iterator
interface
and we’ve
implemented
two concrete
classes.

The Iterator allows the Waitress to be decoupled
from the actual implementation of the concrete
classes. She doesn’t need to know if a Menu is
implemented with an Array, an ArrayList, or with
PostIt notes. All she cares is that she can get an
Iterator to do her iterating.

™

332 Chapter 9

Making some improvements...

Okay, we know the interfaces of PancakeHouseMenu and DinerMenu are exactly the same
and yet we haven’t defi ned a common interface for them. So, we’re going to do that and
clean up the Waitress a little more.

You may be wondering why we’re not using the Java Iterator interface – we did that so you
could see how to build an iterator from scratch. Now that we’ve done that, we’re going to
switch to using the Java Iterator interface, because we’ll get a lot of leverage by implementing
that instead of our home grown Iterator interface. What kind of leverage? You’ll soon see.

First, let’s check out the java.util.Iterator interface:

hasNext()

next()

remove()

<<interface>>
Iterator

hasNext()

Iterator
This looks just like our previous definition.

Except we have an additional method that allows us to remove the last item returned by the next() method from the aggregate.

Q: What if I don’t want to provide
the ability to remove something from the
underlying collection of objects?

A: The remove() method is considered
optional. You don’t have to provide remove
functionality. But, obviously you do need to
provide the method because it’s part of the
Iterator interface. If you’re not going to allow
remove() in your iterator you’llwant to throw

the runtime exception
java.lang.UnsupportedOperationException.
The Iterator API documentation specifies that
this exception may be thrown from remove()
and any client that is a good citizen will
check for this exception when calling the
remove() method.

Q: How does remove() behave
under multiple threads that may be
using different iterators over the same
collection of objects?

A: The behavior of the remove() is
unspecified if the collection changes while
you are iterating over it. So you should be
careful in designing your own multithreaded
code when accessing a collection
concurrently.

there are noDumb Questions

This is going to be a piece of cake: We just need to change the interface that both
PancakeHouseMenuIterator and DinerMenuIterator extend, right? Almost... actually, it’s
even easier than that. Not only does java.util have its own Iterator interface, but ArrayList has
an iterator() method that returns an iterator. In other words, we never needed to implement
our own iterator for ArrayList. However, we’ll still need our implementation for the
DinerMenu because it relies on an Array, which doesn’t support the iterator() method (or any
other way to create an array iterator).

improve the iterator

the iterator and composite patterns

you are here 4 333

Cleaning things up with java.util.Iterator

 public Iterator createIterator() {
 return menuItems.iterator();
 }

Let’s start with the PancakeHouseMenu, changing it over to java.util.Iterator is
going to be easy. We just delete the PancakeHouseMenuIterator class, add an
import java.util.Iterator to the top of PancakeHouseMenu and change one line
of the PancakeHouseMenu:

Instead of creating our own iterator
now, we just call the iterator() method
on the menuItems ArrayList.

And that’s it, PancakeHouseMenu is done.

Now we need to make the changes to allow the DinerMenu to work with java.util.Iterator.

import java.util.Iterator;

public class DinerMenuIterator implements Iterator {
 MenuItem[] list;
 int position = 0;

 public DinerMenuIterator(MenuItem[] list) {
 this.list = list;
 }

 public Object next() {
 //implementation here
 }

 public boolean hasNext() {
 //implementation here
 }

 public void remove() {
 if (position <= 0) {
 throw new IllegalStateException
 (“You can’t remove an item until you’ve done at least one next()”);
 }
 if (list[position-1] != null) {
 for (int i = position-1; i < (list.length-1); i++) {
 list[i] = list[i+1];
 }
 list[list.length-1] = null;
 }
 }
}

First we import java.util.Iterator, the
interface we’re going to implement.

None of our current
implementation changes...

...but we do need to implement remove().
Here, because the chef is using a fixed
sized Array, we just shift all the
elements up one when remove() is called.

334 Chapter 9

We are almost there...

We just need to give the Menus a common interface and rework the Waitress
a little. The Menu interface is quite simple: we might want to add a few more
methods to it eventually, like addItem(), but for now we will let the chefs control
their menus by keeping that method out of the public interface:

public interface Menu {
 public Iterator createIterator();
}

This is a simple interface that just
lets clients get an iterator for
the items in the menu.

Now we need to add an implements Menu to both the
PancakeHouseMenu and the DinerMenu class definitions and
update the Waitress:

import java.util.Iterator;

public class Waitress {
 Menu pancakeHouseMenu;
 Menu dinerMenu;

 public Waitress(Menu pancakeHouseMenu, Menu dinerMenu) {
 this.pancakeHouseMenu = pancakeHouseMenu;
 this.dinerMenu = dinerMenu;
 }

 public void printMenu() {
 Iterator pancakeIterator = pancakeHouseMenu.createIterator();
 Iterator dinerIterator = dinerMenu.createIterator();
 System.out.println(“MENU\n----\nBREAKFAST”);
 printMenu(pancakeIterator);
 System.out.println(“\nLUNCH”);
 printMenu(dinerIterator);
 }

 private void printMenu(Iterator iterator) {
 while (iterator.hasNext()) {
 MenuItem menuItem = (MenuItem)iterator.next();
 System.out.print(menuItem.getName() + “, “);
 System.out.print(menuItem.getPrice() + “ -- “);
 System.out.println(menuItem.getDescription());
 }
 }

 // other methods here
}

Now the Waitress uses the java.util.Iterator as well.

We need to replace the
concrete Menu classes
with the Menu Interface.

Nothing changes
here.

decouple the waitress from the menus

the iterator and composite patterns

you are here 4 335

The PancakeHouseMenu and DinerMenu classes implement an interface,
Menu. Waitress can refer to each menu object using the interface rather than
the concrete class. So, we’re reducing the dependency between the Waitress and
the concrete classes by “programming to an interface, not an implementation.”

The new Menu interface has one method, createIterator(), that is implemented
by PancakeHouseMenu and DinerMenu. Each menu class assumes the
responsibility of creating a concrete Iterator that is appropriate for its internal
implementation of the menu items.

printMenu()

Waitress

createIterator()

PancakeHouseMenu

menuItems

createIterator()

DinerMenu

menuItems

hasNext()

next()

remove()

<<interface>>
Iterator

Here’s our new Menu interface.
It specifies the new method,
createIterator().

Now, Waitress
only needs to
be concerned
with Menus and
Iterators.

We’ve decoupled Waitress from the

implementation of the menus, so now

we can use an Iterator
 to iterate

over any list of menu items without

having to know about how the list

of items is implemented.

PancakeHouseMenu and DinerMenu now implement the Menu interface, which means they need to implement the new createIterator() method.

DinerMenu returns an
DinerMenuIterator
from its
createIterator()
method because that’s
the kind of iterator
required to iterate
over its Array of
menu items.

Each concrete Menu is responsible
for creating the appropriate
concrete Iterator class.

What does this get us?

This solves the problem of

the Waitress depending on

the concrete Menus.

This solves the problem of
the Waitress depending on
the implementation of the
MenuItems.

createIterator()createIterator()

<<interface>>
Menu

createIterator()

hasNext()

next()

remove()

PancakeHouseMenuIterator

hasNext()

next()

remove()

DinerMenuIterator

We’re now using the ArrayList
iterator supplied by java.util.
We don’t need this anymore.

336 Chapter 9

Iterator Pattern defined

The Iterator Pattern provides a way to
access the elements of an aggregate object
sequentially without exposing its underlying
representation.

You’ve already seen how to implement the Iterator
Pattern with your very own iterator. You’ve also seen
how Java supports iterators in some of its collection
oriented classes (the ArrayList). Now it’s time to check
out the official definition of the pattern:

This makes a lot of sense: the pattern gives you a way
to step through the elements of an aggregate without
having to know how things are represented under the
covers. You’ve seen that with the two implementations
of Menus. But the effect of using iterators in your
design is just as important: once you have a uniform way
of accessing the elements of all your aggregate objects,
you can write polymorphic code that works with any
of these aggregates – just like the printMenu() method,
which doesn’t care if the menu items are held in an
Array or ArrayList (or anything else that can create an
Iterator), as long as it can get hold of an Iterator.

The other important impact on your design is that the
Iterator Pattern takes the responsibility of traversing
elements and gives that responsibility to the iterator
object, not the aggregate object. This not only keeps
the aggregate interface and implementation simpler,
it removes the responsibility for iteration from the
aggregate and keeps the aggregate focused on the
things it should be focused on (managing a collection of
objects), not on iteration.

Let’s check out the class diagram to put all the pieces in
context...

The Iterator Pattern allows
traversal of the elements
of an aggregate without
exposing the underlying
implementation.

It also places the task of
traversal on the iterator
object, not on the aggregate,
which simplifies the
aggregate interface and
implementation, and places
the responsibility where it
should be.

iterator pattern defined

the iterator and composite patterns

you are here 4 337

hasNext()

next()

remove()

<<interface>>
Iterator

hasNext()

next()

remove()

ConcreteIterator

createIterator()

<<interface>>
Aggregate

createIterator()

ConcreteAggregate

Client

The ConcreteAggregate
has a collection of
objects and implements
the method that
returns an Iterator
for its collection.

Each ConcreteAggregate
is responsible for
instantiating a
ConcreteIterator that
can iterate over its
collection of objects.

The Iterator interface
provides the interface
that all iterators
must implement, and
a set of methods
for traversing over
elements of a collection.
Here we’re using the
java.util.Iterator. If you
don’t want to use Java’s
Iterator interface, you
can always create your
own.

Having a common interface for your
aggregates is handy for your client;
it decouples your client from the
implementation of your collection of objects.

The class diagram for the Iterator Pattern looks very similar to another Pattern you’ve studied; can you
think of what it is? Hint: A subclass decides which object to create.

brain
powerA

The ConcreteIterator is
responsible for managing
the current position of
the iteration.

338 Chapter 9

Q: I’ve seen other books show the
Iterator class diagram with the methods
first(), next(), isDone() and currentItem().
Why are these methods different?

A: Those are the “classic” method
names that have been used. These names
have changed over time and we now have
next(), hasNext() and even remove() in
java.util.Iterator.

Let’s look at the classic methods. The
next() and currentItem() have been merged
into one method in java.util. The isDone()
method has obviously become hasNext();
but we have no method corresponding to
first(). That’s because in Java we tend to
just get a new iterator whenever we need to
start the traversal over. Nevertheless, you
can see there is very little difference in these
interfaces. In fact, there is a whole range
of behaviors you can give your iterators.
The remove() method is an example of an
extension in java.util.Iterator.

Q: I’ve heard about “internal”
iterators and “external” iterators. What
are they? Which kind did we implement
in the example?

A: We implemented an external iterator,
which means that the client controls the
iteration by calling next() to get the next
element. An internal iterator is controlled
by the iterator itself. In that case, because
it’s the iterator that’s stepping through the
elements, you have to tell the iterator what
to do with those elements as it goes through
them. That means you need a way to pass
an operation to an iterator. Internal iterators
are less flexible that external iterators
because the client doesn’t have control of
the iteration. However, some might argue

that they are easier to use because you just
hand them an operation and tell them to
iterate, and they do all the work for you.

Q: Could I implement an Iterator that
can go backwards as well as forwards?

A: Definitely. In that case, you’d
probably want to add two methods, one to
get to the previous element, and one to tell
you when you’re at the beginning of the
collection of elements. Java’s Collection
Framework provides another type of iterator
interface called ListIterator. This iterator
adds previous() and a few other methods
to the standard Iterator interface. It is
supported by any Collection that implements
the List interface.

Q: Who defines the ordering of the
iteration in a collection like Hashtable,
which are inherently unordered?

A: Iterators imply no ordering. The
underlying collections may be unordered as
in a hashtable or in a bag; they may even
contain duplicates. So ordering is related
to both the properties of the underlying
collection and to the implementation. In
general, you should make no assumptions
about ordering unless the Collection
documentation indicates otherwise.

Q: You said we can write
“polymorphic code” using an iterator;
can you explain that more?

A: When we write methods that take
Iterators as parameters, we are using
polymorphic iteration. That means we are
creating code that can iterate over any

collection as long as it supports Iterator.
We don’t care about how the collection
is implemented, we can still write code to
iterate over it.

Q: If I’m using Java, won’t I always
want to use the java.util.Iterator
interface so I can use my own iterator
implementations with classes that are
already using the Java iterators?

A: Probably. If you have a common
Iterator interface, it will certainly make it
easier for you to mix and match your own
aggregates with Java aggregates like
ArrayList and Vector. But remember, if you
need to add functionality to your Iterator
interface for your aggregates, you can
always extend the Iterator interface.

Q: I’ve seen an Enumeration
interface in Java; does that implement
the Iterator Pattern?

A: We talked about this in the Adapter
Chapter. Remember? The java.util.
Enumeration is an older implementation
of Iterator that has since been replaced
by java.util.Iterator. Enumeration has
two methods, hasMoreElements(),
corresponding to hasNext(), and
nextElement(), corresponding to next().
However, you’ll probably want to use Iterator
over Enumeration as more Java classes
support it. If you need to convert from one
to another, review the Adapter Chapter
again where you implemented the adapter
for Enumeration and Iterator.

there are noDumb Questions

q&a about iterator

the iterator and composite patterns

you are here 4 339

 Single Responsibility

Design Principle

A class should have only one
reason to change.

What if we allowed our aggregates to
implement their internal collections and
related operations AND the iteration
methods? Well, we already know that
would expand the number of methods in
the aggregate, but so what? Why is that
so bad?

Well, to see why, you fi rst need to recognize that when we allow
a class to not only take care of its own business (managing
some kind of aggregate) but also take on more responsibilities
(like iteration) then we’ve given the class two reasons to change.
Two? Yup, two: it can change if the collection changes in
some way, and it can change if the way we iterate changes. So
once again our friend CHANGE is at the center of another
design principle:

We know we want to avoid change in a class like the plague
– modifying code provides all sorts of opportunities for
problems to creep in. Having two ways to change increases
the probability the class will change in the future, and when
it does, it’s going to affect two aspects of your design.

The solution? The principle guides us to assign each
responsibility to one class, and only one class.

That’s right, it’s as easy as that, and then again it’s not:
separating responsibility in design is one of the most
diffi cult things to do. Our brains are just too good at seeing
a set of behaviors and grouping them together even when
there are actually two or more responsibilities. The only
way to succeed is to be diligent in examining your designs
and to watch out for signals that a class is changing in more
than one way as your system grows.

Every responsibility of a
class is an area of potential
change. More than one
responsibility means more
than one area of change.

This principle guides us to
keep each class to a single
responsibility.

OO Glue

Head First

Cohesion is a term you’ll
hear used as a measure of
how closely a class or a
module supports a single
purpose or responsibility.

We say that a module or
class has high cohesion

when it is designed around a set of
related functions, and we say it has low
cohesion when it is designed around a
set of unrelated functions.

Cohesion is a more general concept
than the Single Responsibility Principle,
but the two are closely related.
Classes that adhere to the principle
tend to have high cohesion and are
more maintainable than classes that
take on multiple responsibilities and
have low cohesion.

340 Chapter 9

hasNext()

next()

remove()

Iterator

hasNext()

next()

remove()

addCard()

removeCard()

shuffle()

DeckOfCards

setName()

setAddress()

setPhoneNumber()

save()

load()

Person

dial()

hangUp()

talk()

sendData()

flash()

Phone

getCount()

getState()

getLocation()

GumballMachine

add()

remove()

checkOut()

saveForLater()

ShoppingCart

login()

signup()

move()

fire()

rest()

Game

Examine these classes and determine which ones have multiple responsibilities.

brain
powerA

Hard hat area, watch out
for falling assumptions

multiple responsibilities

getHighScore()

getName()

Player

Determine if these classes have low or high cohesion.
brain
powerA

2

login()

signup()

move()

fire()

rest()

getHighScore()

getName()

Game
move()

fire()

rest()

PlayerActions

login()

signup()

GameSession

the iterator and composite patterns

you are here 4 341

Wow, and we thought things
were already complicated.

Now what are we going to do?

Come on,
think positively, I’m

sure we can find a way to
work them into the
Iterator Pattern.

Good thing you’re learning
about the Iterator pattern

because I just heard that Objectville
Mergers and Acquisitions has done
another deal... we’re merging with
Objectville Café and adopting their

dinner menu.

342 Chapter 9

Taking a look at the Café Menu

public class CafeMenu implements Menu {
 Hashtable menuItems = new Hashtable();

 public CafeMenu() {
 addItem(“Veggie Burger and Air Fries”,
 “Veggie burger on a whole wheat bun, lettuce, tomato, and fries”,
 true, 3.99);
 addItem(“Soup of the day”,
 “A cup of the soup of the day, with a side salad”,
 false, 3.69);
 addItem(“Burrito”,
 “A large burrito, with whole pinto beans, salsa, guacamole”,
 true, 4.29);
 }

 public void addItem(String name, String description,
 boolean vegetarian, double price)
 {
 MenuItem menuItem = new MenuItem(name, description, vegetarian, price);
 menuItems.put(menuItem.getName(), menuItem);
 }

 public Hashtable getItems() {
 return menuItems;
 }
}

{

Here’s the Café Menu. It doesn’t look like too much trouble to integrate the
Cafe Menu into our framework... let’s check it out.

CafeMenu doesn’t implement our new Menu

interface, but this is
 easily fixed.

The Café is storing their menu items in a Hashtable.

Does that support Iterator? We’ll see shortly...

Like the other Menus, the menu items are

initialized in the constructor.

Here’s where we create a new MenuItem

and add it to the menuItems hashtable.

We’re not going to need this anymore.

Sharpen your pencil
Before looking at the next page, quickly jot down the three things
we have to do to this code to fit it into our framework:

1.

2.

3.

the key is the item name.
the value is the menuItem object.

a new menu

the iterator and composite patterns

you are here 4 343

Code Up Close

public class CafeMenu implements Menu {
 Hashtable menuItems = new Hashtable();

 public CafeMenu() {
 // constructor code here
 }

 public void addItem(String name, String description,
 boolean vegetarian, double price)
 {
 MenuItem menuItem = new MenuItem(name, description, vegetarian, price);
 menuItems.put(menuItem.getName(), menuItem);
 }

 public Hashtable getItems() {
 return menuItems;
 }

 public Iterator createIterator() {
 return menuItems.values().iterator();
 }
}

Reworking the Café Menu code

Integrating the Cafe Menu into our framework is easy. Why? Because
Hashtable is one of those Java collections that supports Iterator. But it’s not
quite the same as ArrayList...

CafeMenu implements the Menu
interface, so the Waitress can use
it just like the other two Menus.

Just like before, we can get rid of getItems() so we don’t

expose the implementation of menuItems to the Waitress.

And here’s where we implement the createIterator()
method. Notice that we’re not getting an Iterator
for the whole Hashtable, just for the values.

 public Iterator createIterator() {
 return menuItems.values().iterator();
 }

First we get the values of the Hashtable,
which is just a collection of all the
objects in the hashtable.

Luckily that collection supports the iterator() method, which returns a object of type java.util.Iterator.

Hashtable is a little more complex than the ArrayList because it
supports both keys and values, but we can still get an Iterator
for the values (which are the MenuItems).

We’re using Hashtable because it’s a
common data structure for storing values;
you could also use the newer HashMap.

344 Chapter 9

public class Waitress {
 Menu pancakeHouseMenu;
 Menu dinerMenu;
 Menu cafeMenu;

 public Waitress(Menu pancakeHouseMenu, Menu dinerMenu, Menu cafeMenu) {
 this.pancakeHouseMenu = pancakeHouseMenu;
 this.dinerMenu = dinerMenu;
 this.cafeMenu = cafeMenu;
 }

 public void printMenu() {
 Iterator pancakeIterator = pancakeHouseMenu.createIterator();
 Iterator dinerIterator = dinerMenu.createIterator();
 Iterator cafeIterator = cafeMenu.createIterator();
 System.out.println(“MENU\n----\nBREAKFAST”);
 printMenu(pancakeIterator);
 System.out.println(“\nLUNCH”);
 printMenu(dinerIterator);
 System.out.println(“\nDINNER”);
 printMenu(cafeIterator);
 }

 private void printMenu(Iterator iterator) {
 while (iterator.hasNext()) {
 MenuItem menuItem = (MenuItem)iterator.next();
 System.out.print(menuItem.getName() + “, “);
 System.out.print(menuItem.getPrice() + “ -- “);
 System.out.println(menuItem.getDescription());
 }
 }
}

Adding the Café Menu to the Waitress

That was easy; how about modifying the Waitress to support our new Menu?
Now that the Waitress expects Iterators, that should be easy too.

The Café menu is passed into the Waitress in
the constructor with the other menus, and we
stash it in an instance variable.

We’re using the Café’s
menu for our dinner menu.
All we have to do to print
it is create the iterator,
and pass it to printMenu().
That’s it!

Nothing changes here

test drive the new menu

the iterator and composite patterns

you are here 4 345

File Edit Window Help Kathy&BertLikePancakes

% java DinerMenuTestDrive

MENU

BREAKFAST
K&B’s Pancake Breakfast, 2.99 -- Pancakes with scrambled eggs, and toast
Regular Pancake Breakfast, 2.99 -- Pancakes with fried eggs, sausage
Blueberry Pancakes, 3.49 -- Pancakes made with fresh blueberries
Waffles, 3.59 -- Waffles, with your choice of blueberries or strawberries

LUNCH
Vegetarian BLT, 2.99 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
BLT, 2.99 -- Bacon with lettuce & tomato on whole wheat
Soup of the day, 3.29 -- Soup of the day, with a side of potato salad
Hotdog, 3.05 -- A hot dog, with saurkraut, relish, onions, topped with cheese
Steamed Veggies and Brown Rice, 3.99 -- Steamed vegetables over brown rice
Pasta, 3.89 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread

DINNER
Soup of the day, 3.69 -- A cup of the soup of the day, with a side salad
Burrito, 4.29 -- A large burrito, with whole pinto beans, salsa, guacamole
Veggie Burger and Air Fries, 3.99 -- Veggie burger on a whole wheat bun,
 lettuce, tomato, and fries
%

Here’s the test run; check out the new dinner menu from the Café!

First we iterate
through the pancake
menu.

And then
the diner
menu.

And finally the
new café menu,
all with the
same iteration
code.

public class MenuTestDrive {
 public static void main(String args[]) {
 PancakeHouseMenu pancakeHouseMenu = new PancakeHouseMenu();
 DinerMenu dinerMenu = new DinerMenu();
 CafeMenu cafeMenu = new CafeMenu();

 Waitress waitress = new Waitress(pancakeHouseMenu, dinerMenu, cafeMenu);

 waitress.printMenu();
}

Breakfast, lunch AND dinner

Let’s update our test drive to make sure this all works.

Create a CafeMenu...

... and pass it to the waitress.

Now, when we print we should see all three menus.

346 Chapter 9

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

ArrayList

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Array

... and we didn’t want her to
know about how the menu
items are implemented.

ArrayList has a
built in iterator...

... Array doesn’t
have a built in
Iterator so we
built our own.

 Iterator

We wanted to give the
Waitress an easy way to
iterate over menu items...

Our menu items had two

different implementations

and two different

interfaces for iterat
ing.

 Iterator

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

ArrayList

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Array

So we gave the Waitress an
Iterator for each kind of
group of objects she needed
to iterate over... ... one for

ArrayList...

... and one for
Array.next()

next()

Now she doesn’t have to worry about which
implementation we used; she always uses the same
interface - Iterator - to iterate over menu items.
She’s been decoupled from the implementation.

What did we do?

We decoupled the Waitress....

what did we do?

the iterator and composite patterns

you are here 4 347

 Iterator

next()

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

Vector

 MenuItem

 MenuItem

 MenuItem

 MenuItem

Hashtable

 key

 key

 key

 key

Most have different
interfaces.

By giving her an Iterator
we have decoupled her from
the implementation of the
menu items, so we can easily
add new Menus if we want.

We easily added
another implementation
of menu items, and
since we provided an
Iterator, the Waitress
knew what to do.

Which is better for her, because now she can use the same code to iterate over any group of objects. And it’s better for us because the implementation details aren’t exposed.

...and more!

Making an Iterator
for the Hashtable
values was easy; when you call

LinkedList

 MenuItem
 MenuItem

 MenuItem
 MenuItem

But almost all of
them support a
way to obtain an
Iterator.

And if they don’t support
Iterator, that’s ok, because now
you know how to build your own.

... and we made the Waitress more extensible

But there’s more!

values.iterator()
you get an
Iterator.

Java gives you a lot of
“collection” classes that allow
you to store and retrieve
groups of objects. For example, Vector and LinkedList.

348 Chapter 9

Iterators and Collections

We’ve been using a couple of classes that are part of the Java Collections Framework.
This “framework” is just a set of classes and interfaces, including ArrayList, which we’ve
been using, and many others like Vector, LinkedList, Stack, and PriorityQueue. Each
of these classes implements the java.util.Collection interface, which contains a bunch of
useful methods for manipulating groups of objects.

 Let’s take a quick look at the interface:

The nice thing about Collections and
Iterator is that each Collection object
knows how to create its own Iterator.

Calling iterator() on an ArrayList returns a
concrete Iterator made for ArrayLists, but

you never need to see or worry about the
concrete class it uses; you just use the

Iterator interface.

add()

addAll()

clear()

contains()

containsAll()

equals()

hashCode()

isEmpty()

iterator()

remove()

removeAll()

retainAll()

size()

toArray()

<<interface>>
Collection

As you can see, there’s all kin
ds of good

stuff here. You can add and remove

elements from your collection without

even knowing how it’s implemented.

Here’s our old friend, the iterator()
method. With this method, you can get
an Iterator for any class that implements
the Collection interface.

Other handy methods include size(), to get the number of elements, and toArray() to turn your collection into an array.

Hashtable is one of a few
classes that indirectly
supports Iterator. As you saw
when we implemented the
CafeMenu, you could get an
Iterator from it, but only by
fi rst retrieving its Collection
called values. If you think
about it, this makes sense:
the Hashtable holds two
sets of objects: keys and
values. If we want to iterate
over its values, we fi rst need
to retrieve them from the
Hashtable, and then obtain
the iterator.

iterators and collections

the iterator and composite patterns

you are here 4 349

Java 5 includes a new form of the for statement, called
for/in, that lets you iterate over a collection or an array
without creating an iterator explicitly.

To use for/in, you use a for statement that looks like:

 for (Object obj: collection) {
 ...
 }

Here’s how you iterate over an ArrayList using for/in:

Iterators and Collections
in Java 5

ArrayList items = new ArrayList();
items.add(new MenuItem(“Pancakes”, “delicious pancakes”, true, 1.59);
items.add(new MenuItem(“Waffles”, “yummy waffles”, true, 1.99);
items.add(new MenuItem(“Toast”, “perfect toast”, true, 0.59);

for (MenuItem item: items) {
 System.out.println(“Breakfast item: “ + item);
}

Iterates over
each object in
the collection.

Check this out, in
Java 5 they’ve added
support for iterating

over Collections so that
you don’t even have to

ask for an iterator.

obj is assigned to the next
element in the collection
each time through the loop.

Load up an
ArrayList of
MenuItems.

Iterate over the list and print
each item.

You need to use Java 5’s new
generics feature to ensure for/
in type safety. Make sure you
read up on the details before
using generics and for/in.

350 Chapter 9

The Chefs have decided that they want to be able to alternate their lunch menu items; in other words,
they will offer some items on Monday, Wednesday, Friday and Sunday, and other items on Tuesday,
Thursday, and Saturday. Someone already wrote the code for a new “Alternating” DinerMenu Iterator
so that it alternates the menu items, but they scrambled it up and put it on the fridge in the Diner as a
joke. Can you put it back together? Some of the curly braces fell on the fl oor and they were too small
to pick up, so feel free to add as many of those as you need.

 Code Magnets

import java.util.Iterator;

import java.util.Calendar;

public class AlternatingDinerMenuIterator

MenuItem[] items;
int position;

this.items = items;
Calendar rightNow = Calendar.getInstance();
position = rightNow.get(Calendar.DAY_OF_WEEK) % 2;

MenuItem menuItem = items[position];

position = position + 2;

return menuItem;

throw new UnsupportedOperationException(
 “Alternating Diner Menu Iterator does not support remove()”);

public AlternatingDinerMenuIterator(Me
nuItem[] items)

implements Iterator

public Object next() {

public boolean hasNext() {

if (position >= items.length || items[position] == n
ull) {

 return false;

} else {
 return true;

}

public void remove() {

}

}

}

code magnets

the iterator and composite patterns

you are here 4 351

The Waitress still needs to make three calls to printMenu(), one for each menu. Can you think of a
way to combine the menus so that only one call needs to be made? Or perhaps so that one Iterator is
passed to the Waitress to iterate over all the menus?

brain
powerA

 public void printMenu() {
 Iterator pancakeIterator = pancakeHouseMenu.createIterator();
 Iterator dinerIterator = dinerMenu.createIterator();
 Iterator cafeIterator = cafeMenu.createIterator();

 System.out.println(“MENU\n----\nBREAKFAST”);
 printMenu(pancakeIterator);

 System.out.println(“\nLUNCH”);
 printMenu(dinerIterator);

 System.out.println(“\nDINNER”);
 printMenu(cafeIterator);
 }

Is the Waitress ready for prime time?

The Waitress has come a long way, but you’ve gotta admit
those three calls to printMenu() are looking kind of ugly.

Let’s be real, every time we add a new menu we are going to
have to open up the Waitress implementation and add more
code. Can you say “violating the Open Closed Principle?”

It’s not the Waitress’ fault. We have done a great job of decoupling the menu implementation and
extracting the iteration into an iterator. But we still are handling the menus with separate, independent
objects – we need a way to manage them together.

Three calls to printMenu.

Three createIterator() calls.

Everytime we add or remove a menu we’re going
to have to open this code up for changes.

352 Chapter 9

This isn’t so bad, all we
need to do is package

the menus up into an ArrayList
and then get its iterator to iterate

through each Menu. The code in the
Waitress is going to be simple
and it will handle any number of

menus.

Sounds like the chef is on to something. Let’s give it a try:

Now we just take an
ArrayList of menus.

And we iterate
through the
menus, passing each
menu’s iterator
to the overloaded
printMenu() method.

No code
changes here.

This looks pretty good, although we’ve lost the names of the menus,
but we could add the names to each menu.

a new design?

public class Waitress {
 ArrayList menus;

 public Waitress(ArrayList menus) {
 this.menus = menus;
 }

 public void printMenu() {
 Iterator menuIterator = menus.iterator();
 while(menuIterator.hasNext()) {
 Menu menu = (Menu)menuIterator.next();
 printMenu(menu.createIterator());
 }
 }

 void printMenu(Iterator iterator) {
 while (iterator.hasNext()) {
 MenuItem menuItem = (MenuItem)iterator.next();
 System.out.print(menuItem.getName() + “, “);
 System.out.print(menuItem.getPrice() + “ -- “);
 System.out.println(menuItem.getDescription());
 }
 }
}

the iterator and composite patterns

you are here 4 353

Okay, now what? Now we have to support not only multiple
menus, but menus within menus.

It would be nice if we could just make the dessert menu an
element of the DinerMenu collection, but that won’t work as
it is now implemented.

PancakeHouseM
en

u

 DinerMenu
 CafeMenu

1 2 3

 MenuItem
 MenuItem

 MenuItem
 MenuItem

1 2 3 4

Pancake Menu

 MenuItem

 MenuItem

 MenuItem

 MenuItem

Café Menu

 key

 key

 key

 key

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Diner Menu

All Menus

 MenuItem

 MenuItem

 MenuItem

 MenuItem

1

2

3

4

Dessert Menu

Here’s our Arraylist
that holds the menus
of each restaurant.

We need for Diner Menu to hold a submenu, but
we can’t actually assign a menu to a MenuItem
array because the types are different, so this
isn’t going to work.

Array

ArrayList

Hashtable

Just when we thought it was safe...

Now they want to add a dessert submenu.

What we want (something like this):

But th
is

won’t w
ork! We can’t assign a dessert menu to

a MenuItem array.

Time for a change!

I just heard the
Diner is going to be

creating a dessert menu that
is going to be an insert into

their regular menu.

354 Chapter 9

What do we need?

The time has come to make an executive decision to
rework the chef ’s implementation into something that
is general enough to work over all the menus (and
now sub menus). That’s right, we’re going to tell the
chefs that the time as come for us to reimplement their
menus.

The reality is that we’ve reached a level of complexity
such that if we don’t rework the design now, we’re
never going to have a design that can accommodate
further acquisitions or submenus.

So, what is it we really need out of our new design?

ß We need some kind of a tree shaped structure that
will accommodate menus, submenus and menu
items.

ß We need to make sure we maintain a way to
traverse the items in each menu that is at least
as convenient as what we are doing now with
iterators.

ß We may need to be able to traverse the items in
a more flexible manner. For instance, we might
need to iterate over only the Diner’s dessert menu,
or we might need to iterate over the Diner’s entire
menu, including the dessert submenu.

time to refactor

There comes a time
when we must refactor

our code in order for it to grow.
To not do so would leave us with

rigid, inflexible code that has
no hope of ever sprouting

new life.

the iterator and composite patterns

you are here 4 355

How would you handle this new wrinkle to our design requirements? Think about it before turning the page.

brain
powerA

 All Menus

 Dessert Men
u

Pancake House M
en

u Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

We need to
accomodate Menus...

...and menu items.

... and sub menus...

Because we need to represent

menus, nested sub menus and

menu items, we can naturally fit

them in a tree-like structure.

 All Menus

 Dessert Men
u

Pancake House M
en

u Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 Dessert Men
u

 MenuItem

 MenuItem
 MenuItem

 MenuItem

We still need to be able

to traverse all the items

in the tree. We also need to be able to traverse more flexibly, for instance over one menu.

356 Chapter 9

The Composite Pattern defined

That’s right, we’re going to introduce another pattern
to solve this problem. We didn’t give up on Iterator – it
will still be part of our solution – however, the problem
of managing menus has taken on a new dimension that
Iterator doesn’t solve. So, we’re going to step back and
solve it with the Composite Pattern.

We’re not going to beat around the bush on this pattern,
we’re going to go ahead and roll out the official definition
now:

The Composite Pattern allows you to
compose objects into tree structures to
represent part-whole hierarchies. Composite
lets clients treat individual objects and
compositions of objects uniformly.

Let’s think about this in terms of our menus: this pattern
gives us a way to create a tree structure that can handle
a nested group of menus and menu items in the same
structure. By putting menus and items in the same
structure we create a part-whole hierarchy; that is, a tree of
objects that is made of parts (menus and menu items) but
that can be treated as a whole, like one big über menu.

Once we have our über menu, we can use this pattern
to treat “individual objects and compositions uniformly.”
What does that mean? It means if we have a tree structure
of menus, submenus, and perhaps subsubmenus along with
menu items, then any menu is a “composition” because
it can contain both other menus and menu items. The
individual objects are just the menu items – they don’t hold
other objects. As you’ll see, using a design that follows the
Composite Pattern is going to allow us to write some simple
code that can apply the same operation (like printing!) over
the entire menu structure.

Here’s a tree structure

 Node

 Leaf Leaf

 Leaf

Elements without children
are called leaves.

Elements with
child elements
are called nodes.

 Menu

 MenuItem

 MenuItem

 MenuItem

Menus are nodes and
MenuItems are leaves.

We can represent
our Menu and
MenuItems in a
tree structure.

composite pattern defined

the iterator and composite patterns

you are here 4 357

The Composite Pattern
allows us to build structures
of objects in the form of
trees that contain both
compositions of objects and
individual objects as nodes.

Using a composite structure,
we can apply the same
operations over both
composites and individual
objects. In other words, in
most cases we can ignore
the differences between
compositions of objects and
individual objects.

 All Menus

 Dessert Men
u

Pancake House M
en

u Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

Menus

Submenu

MenuItems

We can create arbitrarily

complex trees.

 All Menus

 Dessert Men
u

Pancake House M
en

u Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

Menus

Submenu

MenuItems

And treat them as a whole...

....or as parts.

 All Menus

 Dessert Men
u

Pancake House M
en

u Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

Menus

Submenu

MenuItems

Operations can b
e

applied to the
whole.

Or the part
s.

print()

print()

358 Chapter 9

operation()

add(Component)

remove(Component)

getChild(int)

Component

add(Component)

remove(Component)

getChild(int)

operation()

Composite

Client

operation()

Leaf

The Component defines an

interface for all objec
ts in

the composition: both the

composite and the leaf nod
es.

The Component may implement a default behavior for add(), remove(), getChild() and its operations.

A Leaf has no
children.

A Leaf defines the behavior for the
elements in the composition. It does
this by implementing the operations
the Composite supports.

The Composite’s role is to define
behavior of the components
having children and to store child
components.

The Composite also

implements the Leaf-

related opera
tions.

Note that som
e of

these may not make

sense on a Composite,

so in that ca
se an

exception might be

generated.

The Client uses the
Component interface to

manipulate the objects in
 the

composition.

Note that the Leaf also inherits methods like add(), remove() and getChild(), which don’t necessarily make a lot of sense for a leaf node. We’re going to come back to this issue.

Q: Component, Composite, Trees?
I’m confused.

A: A composite contains components.
Components come in two flavors:
composites and leaf elements. Sound
recursive? It is. A composite holds a set
of children, those children may be other
composites or leaf elements.

When you organize data in this way you end
up with a tree structure (actually an upside
down tree structure) with a composite at the
root and branches of composites growing up
to leaf nodes.

Q: How does this relate to iterators?

A: Remember, we’re taking a new
approach. We’re going to re-implement the
menus with a new solution: the Composite
Pattern. So don’t look for some magical
transformation from an iterator to a
composite. That said, the two work very
nicely together. You’ll soon see that we
can use iterators in a couple of ways in the
composite implementation.

there are noDumb Questions

composite pattern class diagram

the iterator and composite patterns

you are here 4 359

getName()

getDescription()

getPrice()

isVegetarian()

print()

add(Component)

remove(Component)

getChild(int)

MenuComponent

getName()

getDescription()

getPrice()

isVegetarian()

print()

MenuItem

Waitress

getName()

getDescription()

print()

add(Component)

remove(Component)

getChild(int)

Menu

menuComponents

Designing Menus with Composite

So, how do we apply the Composite Pattern to our menus? To start with, we need to create a
component interface; this acts as the common interface for both menus and menu items and allows
us to treat them uniformly. In other words we can call the same method on menus or menu items.

Now, it may not make sense to call some of the methods on a menu item or a menu, but we can deal
with that, and we will in just a moment. But for now, let’s take a look at a sketch of how the menus
are going to fi t into a Composite Pattern structure:

MenuComponent represents the interface for
both MenuItem and Menu. We’ve used an abstract
class here because we want to provide default
implementations for these methods.

We have some of the
same methods you’ll
remember from our
previous versions of
MenuItem and Menu,
and we’ve added print(),
add(), remove() and
getChild(). We’ll describe
these soon, when we
implement our new Menu
and MenuItem classes.

MenuItem overrides the methods that make sense, and uses the default implementations in MenuComponent for those that don’t make sense (like add() - it doesn’t make sense to add a component to a MenuItem... we can only add components to a Menu).

Menu also overrides the methods that make

sense, like a way to add and remove menu items

(or other menus!) from its menuComponents.

In addition, we’ll use the getName() and

getDescription() methods to return the name

and description of the menu.

Both MenuItem and Menus override print().

The Waitress is going
to use the

MenuComponent interfac
e to access

both Menus and MenuItems.

Here are the methods for
manipulating the components.
The components are
MenuItem and Menu.

360 Chapter 9

Implementing the Menu Component

public abstract class MenuComponent {

 public void add(MenuComponent menuComponent) {
 throw new UnsupportedOperationException();
 }
 public void remove(MenuComponent menuComponent) {
 throw new UnsupportedOperationException();
 }
 public MenuComponent getChild(int i) {
 throw new UnsupportedOperationException();
 }

 public String getName() {
 throw new UnsupportedOperationException();
 }
 public String getDescription() {
 throw new UnsupportedOperationException();
 }
 public double getPrice() {
 throw new UnsupportedOperationException();
 }
 public boolean isVegetarian() {
 throw new UnsupportedOperationException();
 }

 public void print() {
 throw new UnsupportedOperationException();
 }
}

Okay, we’re going to start with the
MenuComponent abstract class; remember, the
role of the menu component is to provide an
interface for the leaf nodes and the composite
nodes. Now you might be asking, “Isn’t the
MenuComponent playing two roles?” It might
well be and we’ll come back to that point.
However, for now we’re going to provide a default
implementation of the methods so that if the
MenuItem (the leaf) or the Menu (the composite)
doesn’t want to implement some of the methods
(like getChild() for a leaf node) they can fall back
on some basic behavior:

MenuComponent provides default

implementations for every method.

We’ve grouped together the
“composite” methods - that is,
methods to add, remove and get
MenuComponents.

Here are the “operation” methods;

these are used by the MenuItems.

It turns out we can also use a
couple of them in Menu too, as

you’ll see in a couple of pages when

we show the Menu code.

print() is an “operation” method
that both our Menus and MenuItems
will implement, but we provide a
default operation here.

Because some of these methods only make sense
for MenuItems, and some only make sense for
Menus, the default implementation is
UnsupportedOperationException. That way,
if MenuItem or Menu doesn’t support an
operation, they don’t have to do anything,
they can just inherit the
default implementation.

All components must implement
the MenuComponent interface;
however, because leaves and
nodes have different roles we
can’t always define a default
implementation for each
method that makes sense.
Sometimes the best you can do
is throw a runtime exception.

implementing composite menus

the iterator and composite patterns

you are here 4 361

public class MenuItem extends MenuComponent {
 String name;
 String description;
 boolean vegetarian;
 double price;

 public MenuItem(String name,
 String description,
 boolean vegetarian,
 double price)
 {
 this.name = name;
 this.description = description;
 this.vegetarian = vegetarian;
 this.price = price;
 }

 public String getName() {
 return name;
 }

 public String getDescription() {
 return description;
 }

 public double getPrice() {
 return price;
 }

 public boolean isVegetarian() {
 return vegetarian;
 }

 public void print() {
 System.out.print(“ “ + getName());
 if (isVegetarian()) {
 System.out.print(“(v)”);
 }
 System.out.println(“, “ + getPrice());
 System.out.println(“ -- “ + getDescription());
 }
}

I’m glad we’re going in
this direction, I’m thinking this is

going to give me the flexibility I need
to implement that crêpe menu I’ve

always wanted.

Implementing the Menu Item

Okay, let’s give the MenuItem class a shot. Remember,
this is the leaf class in the Composite diagram and it
implements the behavior of the elements of the composite.

First we need to extend
the MenuComponent
interface.

The constructor just takes
the name, description, etc. and
keeps a reference to them all.
This is pretty much like our old
menu item implementation.

Here’s our getter methods - just
like our previous implementation.

This is different from the previous implementation.
Here we’re overriding the print() method in the
MenuComponent class. For MenuItem this method
prints the complete menu entry: name, description,
price and whether or not it’s veggie.

362 Chapter 9

public class Menu extends MenuComponent {
 ArrayList menuComponents = new ArrayList();
 String name;
 String description;

 public Menu(String name, String description) {
 this.name = name;
 this.description = description;
 }

 public void add(MenuComponent menuComponent) {
 menuComponents.add(menuComponent);
 }

 public void remove(MenuComponent menuComponent) {
 menuComponents.remove(menuComponent);
 }

 public MenuComponent getChild(int i) {
 return (MenuComponent)menuComponents.get(i);
 }

 public String getName() {
 return name;
 }

 public String getDescription() {
 return description;
 }

 public void print() {
 System.out.print(“\n” + getName());
 System.out.println(“, “ + getDescription());
 System.out.println(“---------------------”);
 }
}

Implementing the Composite Menu

Now that we have the MenuItem, we just need the composite class, which we’re
calling Menu. Remember, the composite class can hold MenuItems or other Menus.
There’s a couple of methods from MenuComponent this class doesn’t implement:
getPrice() and isVegetarian(), because those don’t make a lot of sense for a Menu.

Menu can have any number of children

of type MenuComponent, we’ll use an

internal ArrayList to hold these.

This is different than our old implementation:
we’re going to give each Menu a name and a
description. Before, we just relied on having
different classes for each menu.

Here’s how you add MenuItems or
other Menus to a Menu. Because
both MenuItems and Menus are
MenuComponents, we just need one
method to do both.

You can also remove a MenuComponent
or get a MenuComponent.

Here are the getter methods for getting the name and
description.
Notice, we aren’t overriding getPrice() or isVegetarian()
because those methods don’t make sense for a Menu
(although you could argue that isVegetarian() might make
sense). If someone tries to call those methods on a Menu,
they’ll get an UnsupportedOperationException.

To print the Menu, we print the
Menu’s name and description.

Menu is also a MenuComponent,
just like MenuItem.

composite structure

the iterator and composite patterns

you are here 4 363

public class Menu extends MenuComponent {
 ArrayList menuComponents = new ArrayList();
 String name;
 String description;

 // constructor code here

 // other methods here

 public void print() {
 System.out.print(“\n” + getName());
 System.out.println(“, “ + getDescription());
 System.out.println(“---------------------”);

 Iterator iterator = menuComponents.iterator();
 while (iterator.hasNext()) {
 MenuComponent menuComponent =
 (MenuComponent)iterator.next();
 menuComponent.print();
 }
 }
}

Look! We get to use an Iterator. We
use it to iterate through all the Menu’s
components... those could be other Menus,
or they could be MenuItems. Since both
Menus and MenuItems implement print(), we
just call print() and the rest is up to them.

Excellent catch. Because menu is a composite and contains
both Menu Items and other Menus, its print() method should
print everything it contains. If it didn’t we’d have to iterate
through the entire composite and print each item ourselves.
That kind of defeats the purpose of having a composite
structure.

As you’re going to see, implementing print() correctly is easy
because we can rely on each component to be able to print
itself. It’s all wonderfully recursive and groovy. Check it out:

All we need to do is change the
print() method

to make it print not only the in
formation about

this Menu, but all of this Menu’s components:

other Menus and MenuItems.

NOTE: If, during this iteration, we encounter another Menu
object, its print() method will start another iteration, and so on.

Wait a sec, I don’t understand the
implementation of print(). I thought I was

supposed to be able to apply the same operations to a
composite that I could to a leaf. If I apply print() to a

composite with this implementation, all I get is a
simple menu name and description. I don’t get a

printout of the COMPOSITE.

Fixing the print() method

364 Chapter 9

Getting ready for a test drive...

It’s about time we took this code for a test drive, but we need to update the Waitress code before
we do – after all she’s the main client of this code:

 All Menus

 Dessert Men
u

Pancake House M
en

u Diner Menu Cafe Menu

 MenuItem

 MenuItem

 MenuItem
 MenuItem

Composite

public class Waitress {
 MenuComponent allMenus;

 public Waitress(MenuComponent allMenus) {
 this.allMenus = allMenus;
 }

 public void printMenu() {
 allMenus.print();
 }
}

Yup! The Waitress code really is this simple.

Now we just hand her the top level menu

component, the one that contains all the

other menus. We’ve called that allMenus.

All she has to do to print the entire menu
hierarchy - all the menus, and all the menu
items - is call print() on the top level menu.

We’re gonna have one happy Waitress.

Okay, one last thing before we write our test drive. Let’s get an idea of what the menu
composite is going to look like at runtime:

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

 MenuItem
 MenuItem

 MenuItem

The top level menu holds all menus and items.

Each Menu
holds items...

...or items and
other menus.

Composite

Composite

Leaf

Every Menu and
MenuItem implements the
MenuComponent interface.

Leaf

Leaf

Leaf

test drive the menu composite

the iterator and composite patterns

you are here 4 365

Now for the test drive...

Okay, now we just need a test drive. Unlike our previous version, we’re going to
handle all the menu creation in the test drive. We could ask each chef to give us
his new menu, but let’s get it all tested first. Here’s the code:

public class MenuTestDrive {
 public static void main(String args[]) {
 MenuComponent pancakeHouseMenu =
 new Menu(“PANCAKE HOUSE MENU”, “Breakfast”);
 MenuComponent dinerMenu =
 new Menu(“DINER MENU”, “Lunch”);
 MenuComponent cafeMenu =
 new Menu(“CAFE MENU”, “Dinner”);
 MenuComponent dessertMenu =
 new Menu(“DESSERT MENU”, “Dessert of course!”);

 MenuComponent allMenus = new Menu(“ALL MENUS”, “All menus combined”);

 allMenus.add(pancakeHouseMenu);
 allMenus.add(dinerMenu);
 allMenus.add(cafeMenu);

 // add menu items here

 dinerMenu.add(new MenuItem(
 “Pasta”,
 “Spaghetti with Marinara Sauce, and a slice of sourdough bread”,
 true,
 3.89));

 dinerMenu.add(dessertMenu);

 dessertMenu.add(new MenuItem(
 “Apple Pie”,
 “Apple pie with a flakey crust, topped with vanilla icecream”,
 true,
 1.59));

 // add more menu items here

 Waitress waitress = new Waitress(allMenus);

 waitress.printMenu();
 }
}

Let’s first create all
the menu objects.

We also need two top
level menu now that we’ll
name allMenus.

We’re using the Composite add() method to add
each menu to the top level menu, allMenus.

And we’re also adding a menu to a
menu. All dinerMenu cares about is that
everything it holds, whether it’s a menu
item or a menu, is a MenuComponent.

Add some apple pie to the
dessert menu...

Once we’ve constructed our entire
menu hierarchy, we hand the whole
thing to the Waitress, and as
you’ve seen, it’s easy as apple pie
for her to print it out.

Now we need to add all
the menu items, here’s one
example, for the rest, look
at the complete source code.

366 Chapter 9

File Edit Window Help GreenEggs&Spam

% java MenuTestDrive

ALL MENUS, All menus combined

PANCAKE HOUSE MENU, Breakfast

 K&B’s Pancake Breakfast(v), 2.99
 -- Pancakes with scrambled eggs, and toast
 Regular Pancake Breakfast, 2.99
 -- Pancakes with fried eggs, sausage
 Blueberry Pancakes(v), 3.49
 -- Pancakes made with fresh blueberries, and blueberry syrup
 Waffles(v), 3.59
 -- Waffles, with your choice of blueberries or strawberries

DINER MENU, Lunch

 Vegetarian BLT(v), 2.99
 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
 BLT, 2.99
 -- Bacon with lettuce & tomato on whole wheat
 Soup of the day, 3.29
 -- A bowl of the soup of the day, with a side of potato salad
 Hotdog, 3.05
 -- A hot dog, with saurkraut, relish, onions, topped with cheese
 Steamed Veggies and Brown Rice(v), 3.99
 -- Steamed vegetables over brown rice
 Pasta(v), 3.89
 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread

DESSERT MENU, Dessert of course!

 Apple Pie(v), 1.59
 -- Apple pie with a flakey crust, topped with vanilla icecream
 Cheesecake(v), 1.99
 -- Creamy New York cheesecake, with a chocolate graham crust
 Sorbet(v), 1.89
 -- A scoop of raspberry and a scoop of lime

CAFE MENU, Dinner

 Veggie Burger and Air Fries(v), 3.99
 -- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
 Soup of the day, 3.69
 -- A cup of the soup of the day, with a side salad
 Burrito(v), 4.29
 -- A large burrito, with whole pinto beans, salsa, guacamole
%

Here’s all our menus... we printed all this
just by calling print() on the top level menu

The new dessert
menu is printed
when we are
printing all the
Diner menu
components

Getting ready for a test drive...
NOTE: this output is based on the complete source.

composite responsibilities

the iterator and composite patterns

you are here 4 367

What’s the story? First you tell us
One Class, One Responsibility, and now you

are giving us a pattern with two responsibilities
in one class. The Composite Pattern manages

a hierarchy AND it performs operations
related to Menus.

There is some truth to that observation. We could say that the
Composite Pattern takes the Single Responsibility design principle and
trades it for transparency. What’s transparency? Well, by allowing the
Component interface to contain the child management operations and
the leaf operations, a client can treat both composites and leaf nodes
uniformly; so whether an element is a composite or leaf node becomes
transparent to the client.

Now given we have both types of operations in the Component
class, we lose a bit of safety because a client might try to do something
inappropriate or meaningless on an element (like try to add a menu
to a menu item). This is a design decision; we could take the design in
the other direction and separate out the responsibilities into interfaces.
This would make our design safe, in the sense that any inappropriate
calls on elements would be caught at compile time or runtime, but we’d
lose transparency and our code would have to use conditionals and the
instanceof operator.

So, to return to your question, this is a classic case of tradeoff. We are
guided by design principles, but we always need to observe the effect
they have on our designs. Sometimes we purposely do things in a way
that seems to violate the principle. In some cases, however, this is a
matter of perspective; for instance, it might seem incorrect to have
child management operations in the leaf nodes (like add(), remove() and
getChild()), but then again you can always shift your perspective and see
a leaf as a node with zero children.

368 Chapter 9

Flashback to Iterator
We promised you a few pages back that we’d show you how to use Iterator
with a Composite. You know that we are already using Iterator in our internal
implementation of the print() method, but we can also allow the Waitress to
iterate over an entire composite if she needs to, for instance, if she wants to go
through the entire menu and pull out vegetarian items.

To implement a Composite iterator, let’s add a createIterator() method in every
component. We’ll start with the abstract MenuComponent class:

public class Menu extends MenuComponent {
 Iterator iterator = null;
 // other code here doesn’t change

 public Iterator createIterator() {
 if (iterator == null) {
 iterator = new CompositeIterator(menuComponents.iterator());
 }
 return iterator;
 }
}

public class MenuItem extends MenuComponent {

 // other code here doesn’t change

 public Iterator createIterator() {
 return new NullIterator();
 }

}

Now for the MenuItem...
Whoa! What’s this NullIterator?
You’ll see in two pages.

getName()

getDescription()

getPrice()

isVegetarian()

print()

add(Component)

remove(Component)

getChild(int)

createIterator()

MenuComponent

We’ve added a createIterator() method
to the MenuComponent. This means
that each Menu and MenuItem will
need to implement this method. It also
means that calling createIterator() on
a composite should apply to all children
of the composite.

Now we need to implement this method in the Menu and MenuItem classes:
Here we’re using a new iterator called
CompositeIterator. It knows how to
iterate over any composite.

fl ashback to iterator

We only need one
iterator per Menu.

We pass it the current
composite’s iterator.

the iterator and composite patterns

you are here 4 369

import java.util.*;

public class CompositeIterator implements Iterator {
 Stack stack = new Stack();

 public CompositeIterator(Iterator iterator) {
 stack.push(iterator);
 }

 public Object next() {
 if (hasNext()) {
 Iterator iterator = (Iterator) stack.peek();
 MenuComponent component = (MenuComponent) iterator.next();
 if (component instanceof Menu) {
 stack.push(component.createIterator());
 }
 return component;
 } else {
 return null;
 }
 }

 public boolean hasNext() {
 if (stack.empty()) {
 return false;
 } else {
 Iterator iterator = (Iterator) stack.peek();
 if (!iterator.hasNext()) {
 stack.pop();
 return hasNext();
 } else {
 return true;
 }
 }
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

The Composite Iterator
The CompositeIterator is a SERIOUS iterator. It’s got the job of iterating
over the MenuItems in the component, and of making sure all the child
Menus (and child child Menus, and so on) are included.

Here’s the code. Watch out, this isn’t a lot of code, but it can be a little mind
bending. Just repeat to yourself as you go through it “recursion is my friend,
recursion is my friend.”

Watch Out:
Recursion

Zone Ahead

Like all iterators, we’re
implementing the java.util.Iterator
interface.

The iterator of the top level
composite we’re going to iterate over
is passed in. We throw that in a
stack data structure.

Okay, when the client wants
to get the next element we
first make sure there is one
by calling hasNext()...

If there is a next element, we
get the current iterator off the
stack and get its next element.

If that element is a menu, we have
another composite that needs to
be included in the iteration, so we
throw it on the stack. In either
case, we return the component.

To see if there is a next element,
we check to see if the stack is
empty; if so, there isn’t.

Otherwise, we get the iterator
off the top of the stack and see
if it has a next element. If it
doesn’t we pop it off the stack
and call hasNext() recursively.

Otherwise there is a next element
and we return true.

We’re not supporting
remove, just traversal.

370 Chapter 9

That is serious code... I’m trying
to understand why iterating over

a composite like this is more difficult
than the iteration code we wrote for
print() in the MenuComponent class?

When we wrote the print() method in the
MenuComponent class we used an iterator to
step through each item in the component and if
that item was a Menu (rather than a MenuItem),
then we recursively called the print() method to
handle it. In other words, the MenuComponent
handled the iteration itself, internally.

With this code we are implementing an external
iterator so there is a lot more to keep track of.
For starters, an external iterator must maintain its
position in the iteration so that an outside client
can drive the iteration by calling hasNext() and
next(). But in this case, our code also needs to
maintain that position over a composite, recursive
structure. That’s why we use stacks to maintain
our position as we move up and down the
composite hierarchy.

internal and external

the iterator and composite patterns

you are here 4 371

Draw a diagram of the Menus and MenuItems. Then pretend you are the CompositeIterator, and your job is
to handle calls to hasNext() and next(). Trace the way the CompositeIterator traverses the structure as this
code is executed:

brain
powerA

public void testCompositeIterator(MenuComponent component) {
 CompositeIterator iterator = new CompositeIterator(component.iterator);

 while(iterator.hasNext()) {
 MenuComponent component = iterator.next();
 }
}

372 Chapter 9

import java.util.Iterator;

public class NullIterator implements Iterator {

 public Object next() {
 return null;
 }

 public boolean hasNext() {
 return false;
 }

 public void remove() {
 throw new UnsupportedOperationException();
 }
}

The Null Iterator

Okay, now what is this Null Iterator all about? Think about it this way: a
MenuItem has nothing to iterate over, right? So how do we handle the
implementation of its createIterator() method? Well, we have two choices:

Return null

Return an iterator that always returns
false when hasNext() is called

We could return null from createIterator(), but then we’d
need conditional code in the client to see if null was
returned or not.

This seems like a better plan. We can still return an iterator, but
the client doesn’t have to worry about whether or not null is ever
returned. In effect, we’re creating an iterator that is a “no op”.

Choice one:

Choice two:

The second choice certainly seems better. Let’s call it NullIterator and
implement it.

This is the laziest Iterator you’ve
ever seen, at every step of the
way it punts.

When next() is called, we return null.

Most importantly when hasNext() is
called we always return false.

And the NullIterator wouldn’t think
of supporting remove.

NOTE: Another example of the

Null Object “Design Pattern.”

the null iterator

the iterator and composite patterns

you are here 4 373

Give me the vegetarian menu

public class Waitress {
 MenuComponent allMenus;

 public Waitress(MenuComponent allMenus) {
 this.allMenus = allMenus;
 }

 public void printMenu() {
 allMenus.print();
 }

 public void printVegetarianMenu() {
 Iterator iterator = allMenus.createIterator();
 System.out.println(“\nVEGETARIAN MENU\n----”);
 while (iterator.hasNext()) {
 MenuComponent menuComponent =
 (MenuComponent)iterator.next();
 try {
 if (menuComponent.isVegetarian()) {
 menuComponent.print();
 }
 } catch (UnsupportedOperationException e) {}
 }
 }
}

Now we’ve got a way to iterate over every item of the Menu. Let’s
take that and give our Waitress a method that can tell us exactly
which items are vegetarian.

print() is
only called on
MenuItems, never
composites. Can you
see why?

The printVegetarianMenu() method
takes the allMenu’s composite and
gets its iterator. That will be our
CompositeIterator.

Iterate through
every element of the
composite.

Call each element’s
isVegetarian() method
and if true, we call its
print() method.

We implemented isVegetarian() on the
Menus to always throw an exception. If
that happens we catch the exception, but
continue with our iteration.

374 Chapter 9

The magic of Iterator & Composite together...

File Edit Window Help HaveUhuggedYurIteratorToday?

% java MenuTestDrive

VEGETARIAN MENU

 K&B’s Pancake Breakfast(v), 2.99
 -- Pancakes with scrambled eggs, and toast
 Blueberry Pancakes(v), 3.49
 -- Pancakes made with fresh blueberries, and blueberry syrup
 Waffles(v), 3.59
 -- Waffles, with your choice of blueberries or strawberries
 Vegetarian BLT(v), 2.99
 -- (Fakin’) Bacon with lettuce & tomato on whole wheat
 Steamed Veggies and Brown Rice(v), 3.99
 -- Steamed vegetables over brown rice
 Pasta(v), 3.89
 -- Spaghetti with Marinara Sauce, and a slice of sourdough bread
 Apple Pie(v), 1.59
 -- Apple pie with a flakey crust, topped with vanilla icecream
 Cheesecake(v), 1.99
 -- Creamy New York cheesecake, with a chocolate graham crust
 Sorbet(v), 1.89
 -- A scoop of raspberry and a scoop of lime
 Apple Pie(v), 1.59
 -- Apple pie with a flakey crust, topped with vanilla icecream
 Cheesecake(v), 1.99
 -- Creamy New York cheesecake, with a chocolate graham crust
 Sorbet(v), 1.89
 -- A scoop of raspberry and a scoop of lime
 Veggie Burger and Air Fries(v), 3.99
 -- Veggie burger on a whole wheat bun, lettuce, tomato, and fries
 Burrito(v), 4.29
 -- A large burrito, with whole pinto beans, salsa, guacamole
%

The Vegetarian Menu consists of the
vegetarian items from every menu.

Whooo! It’s been quite a development effort to get our code to this point. Now we’ve got a general
menu structure that should last the growing Diner empire for some time. Now it’s time to sit back and
order up some veggie food:

magic of iterator and composite

the iterator and composite patterns

you are here 4 375

I noticed in your
printVegetarianMenu() method that you

used the try/catch to handle the logic of the
Menus not supporting the isVegetarian() method.

I’ve always heard that isn’t good programming
form.

Let’s take a look at what you’re talking about:

try {
 if (menuComponent.isVegetarian()) {
 menuComponent.print();
 }
} catch (UnsupportedOperationException) {}

We call isVegetarian() on all

MenuComponents, but Menus

throw an exception because t
hey

don’t support the oper
ation.

In general we agree; try/catch is meant for error handling,
not program logic. What are our other options? We could
have checked the runtime type of the menu component with
instanceof to make sure it’s a MenuItem before making the
call to isVegetarian(). But in the process we’d lose transparency
because we wouldn’t be treating Menus and MenuItems
uniformly.

We could also change isVegetarian() in the Menus so that it
returns false. This provides a simple solution and we keep our
transparency.

In our solution we are going for clarity: we really want to
communicate that this is an unsupported operation on the
Menu (which is different than saying isVegetarian() is false). It
also allows for someone to come along and actually implement
a reasonable isVegetarian() method for Menu and have it work
with the existing code.

That’s our story and we’re stickin’ to it.

If the menu component doesn’t support the
operation, we just throw away the exception
and ignore it.

376 Chapter 9

HeadFirst: We’re here tonight speaking with the
Composite Pattern. Why don’t you tell us a little about
yourself, Composite?

Composite: Sure... I’m the pattern to use when you
have collections of objects with whole-part relationships
and you want to be able to treat those objects uniformly.

HeadFirst: Okay, let’s dive right in here... what do you
mean by whole-part relationships?

Composite: Imagine a graphical user interface; there
you’ll often find a top level component like a Frame or
a Panel, containing other components, like menus, text
panes, scrollbars and buttons. So your GUI consists
of several parts, but when you display it, you generally
think of it as a whole. You tell the top level component
to display, and count on that component to display all
its parts. We call the components that contain other
components, composite objects, and components that
don’t contain other components, leaf objects.

HeadFirst: Is that what you mean by treating the
objects uniformly? Having common methods you can
call on composites and leaves?

Composite: Right. I can tell a composite object to
display or a leaf object to display and they will do the
right thing. The composite object will display by telling
all its components to display.

HeadFirst: That implies that every object has the same
interface. What if you have objects in your composite
that do different things?

Composite: Well, in order for the composite to work
transparently to the client, you must implement the same
interface for all objects in the composite, otherwise, the
client has to worry about which interface each object
is implementing, which kind of defeats the purpose.
Obviously that means that at times you’ll have objects for
which some of the method calls don’t make sense.

HeadFirst: So how do you handle that?

Composite: Well there’s a couple of ways to handle
it; sometimes you can just do nothing, or return null or
false – whatever makes sense in your application. Other
times you’ll want to be more proactive and throw an
exception. Of course, then the client has to be willing to
do a little work and make sure that the method call didn’t
do something unexpected.

HeadFirst: But if the client doesn’t know which kind
of object they’re dealing with, how would they ever know
which calls to make without checking the type?

Composite: If you’re a little creative you can structure
your methods so that the default implementations do
something that does make sense. For instance, if the
client is calling getChild(), on the composite this makes
sense. And it makes sense on a leaf too, if you think of
the leaf as an object with no children.

HeadFirst: Ah... smart. But, I’ve heard some clients
are so worried about this issue, that they require separate
interfaces for different objects so they aren’t allowed
to make nonsensical method calls. Is that still the
Composite Pattern?

Composite: Yes. It’s a much safer version of the
Composite Pattern, but it requires the client to check the
type of every object before making a call so the object
can be cast correctly.

HeadFirst: Tell us a little more about how these
composite and leaf objects are structured.

Composite: Usually it’s a tree structure, some kind of
hierarchy. The root is the top level composite, and all its
children are either composites or leaf nodes.

HeadFirst: Do children ever point back up to their
parents?

Composite: Yes, a component can have a pointer to a
parent to make traversal of the structure easier. And, if
you have a reference to a child, and you need to delete it,
you’ll need to get the parent to remove the child. Having
the parent reference makes that easier too.

This week’s interview:
The Composite Pattern, on Implementation issues

Patterns Exposed

interview with composite

the iterator and composite patterns

you are here 4 377

HeadFirst: There’s really quite a lot to consider in your
implementation. Are there other issues we should think
about when implementing the Composite Pattern?

Composite: Actually there are... one is the ordering
of children. What if you have a composite that needs to
keep its children in a particular order? Then you’ll need
a more sophisticated management scheme for adding and
removing children, and you’ll have to be careful about
how you traverse the hierarchy.

HeadFirst: A good point I hadn’t thought of.

Composite: And did you think about caching?

HeadFirst: Caching?

Composite: Yeah, caching. Sometimes, if the
composite structure is complex or expensive to traverse,
it’s helpful to implement caching of the composite nodes.
For instance, if you are constantly traversing a composite
and all its children to compute some result, you could
implement a cache that stores the result temporarily to
save traversals.

HeadFirst: Well, there’s a lot more to the Composite
Patterns than I ever would have guessed. Before we
wrap this up, one more question: What do you consider
your greatest strength?

Composite: I think I’d definitely have to say
simplifying life for my clients. My clients don’t have to
worry about whether they’re dealing with a composite
object or a leaf object, so they don’t have to write if
statements everywhere to make sure they’re calling the
right methods on the right objects. Often, they can make
one method call and execute an operation over an entire
structure.

HeadFirst: That does sound like an important benefit.
There’s no doubt you’re a useful pattern to have around
for collecting and managing objects. And, with that,
we’re out of time... Thanks so much for joining us and
come back soon for another Patterns Exposed.

378 Chapter 9

� �

� �

�

� �

� �

��

�� ��

��

�� ��

��

��

������

�� ���� ��������� �������� ����� ��� ���� �������
��� ����� �����������
�� ���������� ��� �������� ��� �� ���� �������
�� �� ������������ �����
�� � �������� ������ ���� ��� �������� �
�����������
��� ������ ���� ��� ������
��� ��� �� ���������
��� ���� �� ��������� ���� ������ ���� ���
�������������� ��� ������
��� ����� ������� ���������
��� � ����� ������ ���� ���� ��� ������ �� ��
�����
��� ���� ����� ���������� �������� ���������
��� ���� ���� ������ �� �� ������ ��� ������
���������������

����

�� � ��������� ����� �����
�� �� ������������ ����
�� �� ������� ������������������������
������� ���� ����� ������� �������� �� ���������
�� ��� �������� ������� ��������� ��� ������ ����
��� ���������� ����������
�� ����������������� ���� � ��� �� �����
�� ��������� ��� ������� ������� ����� ����
��������
�� � ��������� ��� �� � ��������� �� �����
��� ��������� ��� ��������� ���� ��������� ����
����������

It’s that time again....

crossword puzzle

the iterator and composite patterns

you are here 4 379

Match each pattern with its description:

Pattern Description

Strategy

Adapter

Iterator

Facade

Composite

Observer

Clients treat collections of
objects and individual objects
uniformly

Provides a way to traverse a
collection of objects without
exposing the collection’s
implementation

Simplifies the interface of a
group of classes

Changes the interface of one
or more classes

Allows a group of objects to
be notified when some state
changes

Encapsulates interchangeable
behaviors and uses delegation
to decide which one to uses

380 Chapter 9

Tools for your Design Toolbox
Two new patterns for your toolbox – two great ways
to deal with collections of objects.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically
interchangeab

le. Strategy
lets the algor

ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer
dependency be

tween objects so
 that

when one object
 changes state

, all its Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Observer defines a one-

to-many

Decorator
responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

 responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many

DecoratorAbstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract Factory
Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

Observer defines a one-
to-many

DecoratorAbstract Factory
Factory Method Define an

interface for
 creating an o

bject, but Factory Method

interface for
 creating an o

bject, but

interface for
 creating an o

bject, but Factory Method

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

DecoratorAbstract Factory
Factory Method Define an

SingletonCommand - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

 BULLET POINTS

ß An Iterator allows access to an
aggregate’s elements without
exposing its internal structure.

ß An Iterator takes the job of
iterating over an aggregate
and encapsulates it in another
object.

ß When using an Iterator, we
relieve the aggregate of the
responsibility of supporting
operations for traversing its
data.

ß An Iterator provides a common
interface for traversing the
items of an aggregate, allowing
you to use polymorphism when
writing code that makes use of
the items of the aggregate.

ß We should strive to assign
only one responsibility to each
class.

ß The Composite Pattern
provides a structure to hold
both individual objects and
composites.

ß The Composite Pattern allows
clients to treat composites and
individual objects uniformly.

ß A Component is any object
in a Composite structure.
Components may be other
composites or leaf nodes.

ß There are many design
tradeoffs in implementing
Composite. You need to
balance transparency and
safety with your needs.

Factory Method

Singleton

Adapter - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Yet another i
mportant prin

ciple

based on cha
nge in a desi

gn.

Singleton
Encapsulates a

request

Facade - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Another two-for-one
Chapter.

Template Method - Define the

skeleton of an
 algorithm in an operati

on,

deferring som
e steps to sub

classes.

Template Method lets sub
classes

redefine cert
ain steps of a

n algorithm

without changin
g the algorith

m’s

structure

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automaticallyautomatically
Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

alternative to
 subclassing fo

r extending

functionality.

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without

specifying the
ir concrete cl

asses.interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

SingletonSingleton
one instance a

nd provide a g
lobal point

Command
AdapterAdapter Encapsulates a

request

Adapter Encapsulates a
request

Define the

structure

Iterator - Provide a way to access

the elements of an agg
regate object

sequentially w
ithout exposin

g its

underlying rep
resentation

Define the

skeleton of an
 algorithm in an operati

on,

deferring som
e steps to sub

classes.

Template Method lets sub
classes

redefine cert
ain steps of a

n algorithm

without changin
g the algorith

m’s

 - Define the

skeleton of an
 algorithm in an operati

on,

deferring som
e steps to sub

classes.

Template Method lets sub
classes

redefine cert
ain steps of a

n algorithm

without changin
g the algorith

m’s

structure

Provide a way to access

the elements of an agg
regate object

 Provide a way to access

the elements of an agg
regate object

the elements of an agg
regate object

 Provide a way to access

sequentially w
ithout exposin

g its

Composite - Compose objects in
to

tree structur
es to represen

t part-

whole hierarchie
s. Composite lets

clients treat
individual obje

cts and

compositions of o
bjects uniform

ly

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

OO PatternsOO Patterns

Encapsulate what varies

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for

extension but
closed for

modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

Only talk to yo
ur friends.

Don’t call us, w
e’ll call you.

A class should h
ave only one r

eason

to change.

OO Principles

your design toolbox

the iterator and composite patterns

you are here 4 381

Exercise solutions

Sharpen your pencil

❏ A. We are coding to the
PancakeHouseMenu and DinerMenu
concrete implementations, not to an
interface.

❏ B. The Waitress doesn’t implement the
Java Waitress API and so isn’t adhering
to a standard.

❏ C. If we decided to switch from using
DinerMenu to another type of menu
that implemented its list of menu items
with a Hashtable, we’d have to modify
a lot of code in the Waitress.

❏ D. The Waitress needs to know how each
menu represents its internal collection of
menu items is implemented, this violates
encapsulation.

❏ E. We have duplicate code: the printMenu()
method needs two separate loop
implementations to iterate over the two
different kinds of menus. And if we
added a third menu, we might have to
add yet another loop.

❏ F. The implementation isn’t based on
MXML (Menu XML) and so isn’t as
interoperable as it should be.

Based on our implementation of printMenu(), which of the following apply?

Sharpen your pencil
Before turning the page, quickly jot down the three things we have
to do to this code to fit it into our framework:

1.

2.

3.

implement the Menu interface

get rid of getItems()

add createIterator() and return an Iterator that can step through the Hashtable values

382 Chapter 9

Notice that this Iterator
implementation does not
support remove()

The unscrambled “Alternating” DinerMenu Iterator

Code Magnets Solution

import java.util.Iterator;

import java.util.Calendar;

public class AlternatingDinerMenuIterator

MenuItem[] items;
int position;

this.items = items;
Calendar rightNow = Calendar.getInstance();
position = rightNow.get(Calendar.DAY_OF_WEEK) % 2;

MenuItem menuItem = items[position];

position = position + 2;

return menuItem;

support remove()
throw new UnsupportedOperationException(
 “Alternating Diner Menu Iterator does not support remove()”);

public AlternatingDinerMenuIterator(Me
nuItem[] items)

implements Iterator

public Object next() {

public boolean hasNext() {public boolean hasNext() {

if (position >= items.length || items[position] == n
ull) {

 return false;

} else {
 return true;

}

throw new UnsupportedOperationException(

public void remove() {

}

}

}

}

}

}
}

exercise solutions

the iterator and composite patterns

you are here 4 383

Match each pattern with its description:

Pattern Description

Strategy

Adapter

Iterator

Facade

Composite

Observer

Clients treat collections of
objects and individual objects
uniformly

Provides a way to traverse a
collection of objects without
exposing the collection’s
implementation

Simplifies the interface of a
group of classes

Changes the interface of one
or more classes

Allows a group of objects to
be notified when some state
changes

Encapsulates interchangeable
behaviors and uses delegation
to decide which one to uses

384 Chapter 9

Exercise solutions

�
�

� � � � � � � � �
�

� �
�

� � �
�

� � � � �

� �
�

� � � � � � � � � �

� � �
�

� � � � � � �
�

� � �
�

�
�

� � �

� � �
��

� � � � � � � � � � � � �

� � � � � � �

� � �
��

� �
��

� � � � � �

� � � � � �

�
��

� � � � � � � � � � � � � � � � � � � �

� � � �

�
��

� � � � �
��

� � � � �

� � �

� � �

� � �
��

� � � � � � � �

� � �

� �
��

� � � � � �

������

��
��
�� ���������� ��� �������� ��� �� ���� �������
�����������
�� �� ������������ ����� �����������
���
����������� ����������
��
����������������������������
���
�������������� ��� ������ ����������������������
�����������������������������������
��
���������������
��� ���� ����� ���������� �������� ���������
�����������
���
��������������������������

����

��
�����������������������������������
���������������������������������������
���������������������������������������
��������� �����������
���
���� ��� ���������� ����������
����������������
���
�����������
�� ��������� ��� ������� ������� ����� ����
�������������������������
���
������
���
���� ���������� ������������

crossword puzzle solution

this is a new chapter 385

A little known fact: the Strategy and State Patterns were twins
separated at birth. As you know, the Strategy Pattern went on to create a wildly

successful business around interchangeable algorithms. State, however, took the perhaps

more noble path of helping objects to control their behavior by changing their internal

state. He’s often overheard telling his object clients, “Just repeat after me: I’m good

enough, I’m smart enough, and doggonit...”

10 the State Pattern

The State of Things
I thought things in Objectville
were going to be so easy, but now
every time I turn around there’s

another change request coming in.
I’m to the breaking point! Oh, maybe

I should have been going to Betty’s
Wednesday night patterns group all

along. I’m in such a state!

g
h

g

386 Chapter 10

Java toasters are so ‘90s. Today people are building Java into
real devices, like gumball machines. That’s right, gumball
machines have gone high tech; the major manufacturers have
found that by putting CPUs into their machines, they can
increase sales, monitor inventory over the network and measure
customer satisfaction more accurately.

But these manufacturers are gumball machine experts, not
software developers, and they’ve asked for your help:

Jaw Breakers

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Here’s the way we think the gumball machine controller needs to

work. We’re hoping you can implement this in Java for us! We

may be adding more behavior in the future, so you nee
d to keep

the design as flexible and maintainable as possible!

 - Mighty Gumball Engineers

Out of
Gumballs

 Has
Quarter

 No

Quarter

Gumball

 Sold

ins
er

ts
qu

ar
te

r

eje
ct

s q
ua

rt
er

turns crank

va

At least that’s
their story – we

think they just
 got bored with the

circa 1800’s technology a
nd needed

to find a way to make their jobs

more exciting.

dispense
gumball

gumballs = 0

gumballs > 0

meet mighty gumball

the state pattern

you are here 4 387

Cubicle Conversation
Let’s take a look

at this diagram and see
what the Mighty Gumball

guys want...

Anne: This diagram looks like a state diagram.

Joe: Right, each of those circles is a state...

Anne: ... and each of the arrows is a state transition.

Frank: Slow down, you two, it’s been too long since I studied state diagrams.
Can you remind me what they’re all about?

Anne: Sure, Frank. Look at the circles; those are states. “No Quarter” is
probably the starting state for the gumball machine because it’s just sitting
there waiting for you to put your quarter in. All states are just different
configurations of the machine that behave in a certain way and need some

action to take them to another state.

Joe: Right. See, to go to another state, you need to do something like put a quarter in the machine. See the arrow
from “No Quarter” to “Has Quarter?”

Frank: Yes...

Joe: That just means that if the gumball machine is in the “No Quarter” state and you put a quarter in, it will
change to the “Has Quarter” state. That’s the state transition.

Frank: Oh, I see! And if I’m in the “Has Quarter” state, I can turn the crank and change to the “Gumball Sold”
state, or eject the quarter and change back to the “No Quarter” state.

Anne: You got it!

Frank: This doesn’t look too bad then. We’ve obviously got four states, and I think we also have four actions: “inserts
quarter,” “ejects quarter,” “turns crank” and “dispense.” But... when we dispense, we test for zero or more gumballs
in the “Gumball Sold” state, and then either go to the “Out of Gumballs” state or the “No Quarter” state. So we
actually have five transitions from one state to another.

Anne: That test for zero or more gumballs also implies we’ve got to keep track of the number of gumballs too. Any
time the machine gives you a gumball, it might be the last one, and if it is, we need to transition to the “Out of
Gumballs” state.

Joe: Also, don’t forget that you could do nonsensical things, like try to eject the quarter when the gumball machine
is in the “No Quarter” state, or insert two quarters.

Frank: Oh, I didn’t think of that; we’ll have to take care of those too.

Joe: For every possible action we’ll just have to check to see which state we’re in and act appropriately. We can do
this! Let’s start mapping the state diagram to code...

Joe
Anne

Frank

388 Chapter 10

State machines 101

inserts quarter
ejects quarter

turns crank
These actions are
the gumball machine’s
interface - the things
you can do with it.

How are we going to get from that state diagram to actual code? Here’s a quick
introduction to implementing state machines:

First, gather up your states:1

Gumball

 Sold No

Quarter

 Has
Quarter

Out of
Gumballs

Here are the states - four in total.

Next, create an instance variable to hold the current state, and define values for each of the states:2

final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;

int state = SOLD_OUT;

Here’s each state represented
as a unique integer...

...and here’s an instance variable that holds the
current state. We’ll go ahead and set it to

“Sold Out” since the machine will be unfilled when
it’s first taken out of its box and turned on.

Now we gather up all the actions that can happen in the system:3

Looking at the diagram, invoking any of these

actions causes a state transition.

dispense

Dispense is more of an internal
action the machine invokes on itself.

Let’s just call “Out of Gumballs”
“Sold Out” for short.

review of state machines

the state pattern

you are here 4 389

Now we create a class that acts as the state machine. For each action,
we create a method that uses conditional statements to determine
what behavior is appropriate in each state. For instance, for the insert
quarter action, we might write a method like this:

4

 public void insertQuarter() {

 if (state == HAS_QUARTER) {

 System.out.println(“You can’t insert another quarter”);

 } else if (state == SOLD_OUT) {

 System.out.println(“You can’t insert a quarter, the machine is sold out”);

 } else if (state == SOLD) {

 System.out.println(“Please wait, we’re already giving you a gumball”);

 } else if (state == NO_QUARTER) {

 state = HAS_QUARTER;
 System.out.println(“You inserted a quarter”);

 }
 }

Here we’re talking
about a common technique:
modeling state within an object

by creating an instance variable to hold
the state values and writing conditional
code within our methods to handle

the various states.

Each possible
state is checked
with a conditional
statement...

...but can also transition to other
states, just as depicted in the diagram.

With that quick review, let’s go implement the Gumball Machine!

...and exhibits the a
ppropriate

behavior for each p
ossible state...

390 Chapter 10

public class GumballMachine {

 final static int SOLD_OUT = 0;
 final static int NO_QUARTER = 1;
 final static int HAS_QUARTER = 2;
 final static int SOLD = 3;

 int state = SOLD_OUT;
 int count = 0;

 public GumballMachine(int count) {
 this.count = count;
 if (count > 0) {
 state = NO_QUARTER;
 }
 }

 public void insertQuarter() {
 if (state == HAS_QUARTER) {
 System.out.println(“You can’t insert another quarter”);
 } else if (state == NO_QUARTER) {
 state = HAS_QUARTER;
 System.out.println(“You inserted a quarter”);
 } else if (state == SOLD_OUT) {
 System.out.println(“You can’t insert a quarter, the machine is sold out”);
 } else if (state == SOLD) {
 System.out.println(“Please wait, we’re already giving you a gumball”);
 }
 }

Writing the code

Here are the four stat
es; they match the

states in Mighty Gumball’s state diagram.

Here’s the instance variable that is going t
o

keep track of the current state we’re in.

We start in the SOLD_OUT state.

We have a second instance variable that keeps track of the number of gumballs in the machine.

The constructor takes an initial
inventory of gumballs. If the inventory isn’t zero, the machine enters state
NO_QUARTER, meaning it is waiting for someone to insert a quarter, otherwise it stays in the SOLD_OUT state.

Now we start implementing

the actions as methods....
When a quarter is inserted, if....

a quarter is already inserted
we tell the customer;

otherwise we accept the
quarter and transition to the
HAS_QUARTER state.

and if the machine is sold
out, we reject the quarter.

It’s time to implement the Gumball Machine. We know we’re going to have an instance
variable that holds the current state. From there, we just need to handle all the actions,
behaviors and state transitions that can happen. For actions, we need to implement inserting
a quarter, removing a quarter, turning the crank and dispensing a gumball; we also have the
empty gumball condition to implement as well.

If the customer just bought a
gumball he needs to wait until the
transaction is complete before
inserting another quarter.

implement the gumball machine

the state pattern

you are here 4 391

 public void ejectQuarter() {
 if (state == HAS_QUARTER) {
 System.out.println(“Quarter returned”);
 state = NO_QUARTER;
 } else if (state == NO_QUARTER) {
 System.out.println(“You haven’t inserted a quarter”);
 } else if (state == SOLD) {
 System.out.println(“Sorry, you already turned the crank”);
 } else if (state == SOLD_OUT) {
 System.out.println(“You can’t eject, you haven’t inserted a quarter yet”);
 }
 }

 public void turnCrank() {
 if (state == SOLD) {
 System.out.println(“Turning twice doesn’t get you another gumball!”);
 } else if (state == NO_QUARTER) {
 System.out.println(“You turned but there’s no quarter”);
 } else if (state == SOLD_OUT) {
 System.out.println(“You turned, but there are no gumballs”);
 } else if (state == HAS_QUARTER) {
 System.out.println(“You turned...”);
 state = SOLD;
 dispense();
 }
 }

 public void dispense() {
 if (state == SOLD) {
 System.out.println(“A gumball comes rolling out the slot”);
 count = count - 1;
 if (count == 0) {
 System.out.println(“Oops, out of gumballs!”);
 state = SOLD_OUT;
 } else {
 state = NO_QUARTER;
 }
 } else if (state == NO_QUARTER) {
 System.out.println(“You need to pay first”);
 } else if (state == SOLD_OUT) {
 System.out.println(“No gumball dispensed”);
 } else if (state == HAS_QUARTER) {
 System.out.println(“No gumball dispensed”);
 }
 }

 // other methods here like toString() and refill()
}

Now, if the customer tries to remove the quarter...
If there is a quarter, we
return it and go back to
the NO_QUARTER state.

If the customer just
turned the crank, we can’t
give a refund; he already
has the gumball!

Otherwise, if there isn’t
one we can’t give it back.

The customer tries to turn the crank...

We can’t deliver
gumballs; there
are none.

We need a
quarter first.

Success! They get a gumball. Change
the state to SOLD and call the
machine’s dispense() method.

Someone’s trying to cheat the machine.

You can’t eject if the machine is sold
out, it doesn’t accept quarters!

Called to dispense a gumball.

Here’s where we handle the

“out of gumballs” condition:

If this was the last one, we

set the machine’s state to

SOLD_OUT; otherwise, we’re

back to not having
 a quarter.

We’re in the
SOLD state; give

‘em a gumball!

None of these should
ever happen, but if
they do, we give ‘em an
error, not a gumball.

392 Chapter 10

In-house testing

That feels like a nice solid design using a well-thought out methodology doesn’t
it? Let’s do a little in-house testing before we hand it off to Mighty Gumball to
be loaded into their actual gumball machines. Here’s our test harness:

public class GumballMachineTestDrive {
 public static void main(String[] args) {
 GumballMachine gumballMachine = new GumballMachine(5);

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.ejectQuarter();
 gumballMachine.turnCrank();

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.ejectQuarter();

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();

 System.out.println(gumballMachine);
 }
}

test the gumball machine

Load it up with
five gumballs total.

Print out the state of the machine.
Throw a quarter in...

Turn the crank; we should get our gumball.

Print out the state of the machine, again.

Throw a quarter in...
Ask for it back.

Turn the crank; we shouldn’t get our gumball.

Print out the state of the machine, again.

Throw a quarter in...
Turn the crank; we should get our gumball
Throw a quarter in...
Turn the crank; we should get our gumball
Ask for a quarter back we didn’t put in.

Print out the state of the machine, again.

Throw TWO quarters in...
Turn the crank; we should get our gumball.

Now for the stress testing...

Print that machine state one more time.

the state pattern

you are here 4 393

File Edit Window Help mightygumball.com

%java GumballMachineTestDrive
Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs
Machine is waiting for quarter

You inserted a quarter
Quarter returned
You turned but there’s no quarter

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 4 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot
You inserted a quarter
You turned...
A gumball comes rolling out the slot
You haven’t inserted a quarter

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 2 gumballs
Machine is waiting for quarter

You inserted a quarter
You can’t insert another quarter
You turned...
A gumball comes rolling out the slot
You inserted a quarter
You turned...
A gumball comes rolling out the slot
Oops, out of gumballs!
You can’t insert a quarter, the machine is sold out
You turned, but there are no gumballs

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs
Machine is sold out

394 Chapter 10

Be a Winner!

One in Ten

get a FREE

GUMBALL

You knew it was coming... a change request!

Mighty Gumball, Inc. has loaded your code into their new-
est machine and their quality assurance experts are putting
it through its paces. So far, everything’s looking great from
their perspective.

In fact, things have gone so smoothly they’d like to take
things to the next level...

Be a Winner!

One in Ten

get a FREE

GUMBALL

We think that by turning
“gumball buying” into a game we

can signifi cantly increase our
sales. We’re going to put one of
these stickers on every machine.

We’re so glad we’ve got Java
in the machines because this is

going to be easy, right?

CEO, Mighty
Gumball, Inc.

JawBreaker or
Gumdrop?

10% of the time,

when the crank
is turned, the
customer gets two

gumballs instead

of one.

gumball buying game

Gumballs

the state pattern

you are here 4 395

Draw a state diagram for a Gumball Machine that handles the 1 in 10
contest. In this contest, 10% of the time the Sold state leads to two
balls being released, not one. Check your answer with ours (at the
end of the chapter) to make sure we agree before you go further...

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Use Mighty Gumball’s stationary to draw your state diagram.

 Design Puzzle

396 Chapter 10

public void insertQuarter() {
 // insert quarter code here
}

public void ejectQuarter() {
 // eject quarter code here
}

public void turnCrank() {
 // turn crank code here
}

public void dispense() {
 // dispense code here
}

The messy STATE of things...

Just because you’ve written your gumball machine using a well-thought out methodology doesn’t
mean it’s going to be easy to extend. In fact, when you go back and look at your code and think
about what you’ll have to do to modify it, well...

final static int SOLD_OUT = 0;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;

First, you’d have to add a new WINNER state

here. That isn’t too bad...

... but then, you’d have to add a new conditional in
every single method to handle the WINNER state;
that’s a lot of code to modify.

turnCrank() will get especially messy, because
you’d have to add code to check to see whether
you’ve got a WINNER and then switch to either
the WINNER state or the SOLD state.

Sharpen your pencil

❏ A. This code certainly isn’t adhering to the
Open Closed Principle.

❏ B. This code would make a FORTRAN
programmer proud.

❏ C. This design isn’t even very object
oriented.

❏ C. State transitions aren’t explicit; they
are buried in the middle of a bunch of
conditional statements.

❏ D. We haven’t encapsulated anything that
varies here.

❏ E. Further additions are likely to cause bugs
in working code.

Which of the following describe the state of our implementation?
(Choose all that apply.)

things get messy

the state pattern

you are here 4 397

Okay, this isn’t good. I think
our first version was great, but

it isn’t going to hold up over time as Mighty
Gumball keeps asking for new behavior. The
rate of bugs is just going to make us look

bad, not to mention that CEO will drive
us crazy.

Joe: You’re right about that! We need to refactor this code so that it’s easy
to maintain and modify.

Anne: We really should try to localize the behavior for each state so that if
we make changes to one state, we don’t run the risk of messing up the other
code.

Joe: Right; in other words, follow that ol’ “encapsulate what varies”
principle.

Anne: Exactly.

Joe: If we put each state’s behavior in its own class, then every state just
implements its own actions.

Anne: Right. And maybe the Gumball Machine can just delegate to the
state object that represents the current state.

Joe: Ah, you’re good: favor composition... more principles at work.

Anne: Cute. Well, I’m not 100% sure how this is going to work, but I think
we’re on to something.

Joe: I wonder if this will this make it easier to add new states?

Anne: I think so... We’ll still have to change code, but the changes will be
much more limited in scope because adding a new state will mean we just
have to add a new class and maybe change a few transitions here and there.

Joe: I like the sound of that. Let’s start hashing out this new design!

398 Chapter 10

The new design

1

2

3

First, we’re going to define a State interface that
contains a method for every action in the Gumball
Machine.

Then we’re going to implement a State class for
every state of the machine. These classes will be
responsible for the behavior of the machine when it
is in the corresponding state.

Finally, we’re going to get rid of all of our conditional
code and instead delegate to the state class to do
the work for us.

It looks like we’ve got a new plan: instead of maintaining our existing code, we’re going to
rework it to encapsulate state objects in their own classes and then delegate to the current
state when an action occurs.

We’re following our design principles here, so we should end up with a design that is easier to
maintain down the road. Here’s how we’re going to do it:

Not only are we following design principles, as you’ll see, we’re actually implementing the
State Pattern. But we’ll get to all the official State Pattern stuff after we rework our code...

a new state design

Now we’re going
put all the behavior of a

state into one class. That way,
we’re localizing the behavior and

making things a lot easier to
change and understand.

the state pattern

you are here 4 399

Defining the State interfaces and classes

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

<<interface>>
State

HasQuarterState
insertQuarter()

ejectQuarter()

turnCrank()

dispense()

NoQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldOutState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

public class GumballMachine {

 fi nal static int SOLD_OUT = 0;
 fi nal static int NO_QUARTER = 1;
 fi nal static int HAS_QUARTER = 2;
 fi nal static int SOLD = 3;

 int state = SOLD_OUT;
 int count = 0;

... and we map each state
directly to a class.

Here’s the interface for all states. The methods map directly

to actions that could happen to the Gumball Machine (these are

the same methods as in the previous code).

First let’s create an interface for State, which all our states implement:

To figure out what
states we need, we look
at our previous code...

Then take each state in our design
and encapsulate it in a class that
implements the State interface.

SoldState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

WinnerState

insertQuarter()
ejectQuarter()
turnCrank()
dispense()

Don’t forget, we need a new “winner” state too
that implements the state interface. We’ll come
back to this after we reimplement the first
version of the Gumball Machine.

400 Chapter 10

 Sharpen your pencil
To implement our states, we fi rst need to specify the behavior of the classes
when each action is called. Annotate the diagram below with the behavior of
each action in each class; we’ve already fi lled in a few for you.

what are all the states?

Go to HasQuarterState
Tell the customer, “You haven’t inserted a quarter.”

Tell the customer, “Please wait, we’re already giving you a gumball.”

Tell the customer, “There are no gumballs.”

Go to SoldState

NoQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldOutState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

HasQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

Dispense one gumball. Check number of gumballs; if > 0, go
to NoQuarterState, otherwise, go to SoldOutState

WinnerState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

Go ahead and fill this out even though we’re implementing it later.

the state pattern

you are here 4 401

Implementing our State classes

public class NoQuarterState implements State {
 GumballMachine gumballMachine;

 public NoQuarterState(GumballMachine gumballMachine) {
 this.gumballMachine = gumballMachine;
 }

 public void insertQuarter() {
 System.out.println(“You inserted a quarter”);
 gumballMachine.setState(gumballMachine.getHasQuarterState());
 }

 public void ejectQuarter() {
 System.out.println(“You haven’t inserted a quarter”);
 }

 public void turnCrank() {
 System.out.println(“You turned, but there’s no quarter”);
 }

 public void dispense() {
 System.out.println(“You need to pay first”);
 }
}

Time to implement a state: we know what behaviors we want; we just need to get it down in code. We’re going to
closely follow the state machine code we wrote, but this time everything is broken out into different classes.

Let’s start with the NoQuarterState:

First we need to implement the State interface.
We get passed a reference to
the Gumball Machine through the
constructor. We’re just going to
stash this in an instance variable.

If someone inserts a quarter,
we print a message saying the
quarter was accepted and then
change the machine’s state to
the HasQuarterState.

You can’t get money
back if you never gave
it to us!

And, you can’t get a gumball
if you don’t pay us.

What we’re doing is
implementing the behaviors

that are appropriate for the
state we’re in. In some cases, this

behavior includes moving the
Gumball Machine to a new state.

We can’t be dispensing
gumballs without payment.

You’ll see how these
work in just a sec...

402 Chapter 10

public class GumballMachine {

 State soldOutState;
 State noQuarterState;
 State hasQuarterState;
 State soldState;

 State state = soldOutState;
 int count = 0;

public class GumballMachine {

 fi nal static int SOLD_OUT = 0;
 fi nal static int NO_QUARTER = 1;
 fi nal static int HAS_QUARTER = 2;
 fi nal static int SOLD = 3;

 int state = SOLD_OUT;
 int count = 0;

In the GumballMachine, we update the

code to use the new classes rather than

the static integers. The code is quite

similar, except that in one c
lass we have

integers and in the other
 objects...

Before we finish the State classes, we’re going to rework the Gumball Machine – that way
you can see how it all fits together. We’ll start with the state-related instance variables
and switch the code from using integers to using state objects:

Reworking the Gumball Machine

Old code

New code

All the State objects are created
and assigned in the constructor. This now holds a

State object, not
an integer.

state objects in the gumball machine

the state pattern

you are here 4 403

public class GumballMachine {

 State soldOutState;
 State noQuarterState;
 State hasQuarterState;
 State soldState;

 State state = soldOutState;
 int count = 0;

 public GumballMachine(int numberGumballs) {
 soldOutState = new SoldOutState(this);
 noQuarterState = new NoQuarterState(this);
 hasQuarterState = new HasQuarterState(this);
 soldState = new SoldState(this);
 this.count = numberGumballs;
 if (numberGumballs > 0) {
 state = noQuarterState;
 }
 }

 public void insertQuarter() {
 state.insertQuarter();
 }

 public void ejectQuarter() {
 state.ejectQuarter();
 }

 public void turnCrank() {
 state.turnCrank();
 state.dispense();
 }

 void setState(State state) {
 this.state = state;
 }

 void releaseBall() {
 System.out.println(“A gumball comes rolling out the slot...”);
 if (count != 0) {
 count = count - 1;
 }
 }

 // More methods here including getters for each State...
}

Now, let’s look at the complete GumballMachine class...

Here are all the States ag
ain...

...and the State instance variable.
The count instance variable holds the count of gumballs – initially the machine is empty.

Our constructor takes the

initial number of gumballs and

stores it in an instance v
ariable.

It also creates the Stat
e

instances, one of each.

If there are more than 0
gumballs we set the state to the NoQuarterState.

Now for the actions
. These are

VERY EASY to implement now. We

just delegate to
 the current sta

te.

Note that we don’t need an
action method for dispense() in
GumballMachine because it’s just an
internal action; a user can’t ask the
machine to dispense directly. But we
do call dispense() on the State object
from the turnCrank() method.

The machine supports a releaseBall()
helper method that releases the ball and
decrements the count instance variable.

This method allows other objects (like
our State objects) to transition the
machine to a different state.

This includes methods like getNoQuarterState() for getting each
state object, and getCount() for getting the gumball count.

404 Chapter 10

public class HasQuarterState implements State {
 GumballMachine gumballMachine;

 public HasQuarterState(GumballMachine gumballMachine) {
 this.gumballMachine = gumballMachine;
 }

 public void insertQuarter() {
 System.out.println(“You can’t insert another quarter”);
 }

 public void ejectQuarter() {
 System.out.println(“Quarter returned”);
 gumballMachine.setState(gumballMachine.getNoQuarterState());
 }

 public void turnCrank() {
 System.out.println(“You turned...”);
 gumballMachine.setState(gumballMachine.getSoldState());
 }
 public void dispense() {
 System.out.println(“No gumball dispensed”);
 }
}

Implementing more states
Now that you’re starting to get a feel for how the Gumball Machine and the states
fit together, let’s implement the HasQuarterState and the SoldState classes...

An inappropriate

action for this
state.

Another
inappropriate
action for this
state.

Return the customer’s
quarter and
transition back to the
NoQuarterState.

When the crank is
turned we transition
the machine to the
SoldState state by
calling its setState()
method and passing it
the SoldState object.
The SoldState object
is retrieved by the
getSoldState()
getter method
(there is one of these
getter methods for
each state).

When the state is
instantiated

we pass it a refer
ence to the

GumballMachine. This is used

to transition th
e machine to a

different state.

more states for the gumball machine

the state pattern

you are here 4 405

public class SoldState implements State {
 //constructor and instance variables here

 public void insertQuarter() {
 System.out.println(“Please wait, we’re already giving you a gumball”);
 }

 public void ejectQuarter() {
 System.out.println(“Sorry, you already turned the crank”);
 }

 public void turnCrank() {
 System.out.println(“Turning twice doesn’t get you another gumball!”);
 }

 public void dispense() {
 gumballMachine.releaseBall();
 if (gumballMachine.getCount() > 0) {
 gumballMachine.setState(gumballMachine.getNoQuarterState());
 } else {
 System.out.println(“Oops, out of gumballs!”);
 gumballMachine.setState(gumballMachine.getSoldOutState());
 }
 }
}

Now, let’s check out the SoldState class...
Here are all the
inappropriate
actions for this
state

And here’s where the

real work begins... We’re in the SoldS
tate, which

means the customer paid. So,

we first need to
ask the

machine to release
 a gumball.

Then we ask the machine what

the gumball count is, and
 either

transition to the
 NoQuarterState

or the SoldOutState.

Look back at the GumballMachine implementation. If the crank is turned and not successful (say
the customer didn’t insert a quarter first), we call dispense anyway, even though it’s unnecessary.
How might you fix this?

brain
powerA

406 Chapter 10

Sharpen your pencil
We have one remaining class we haven’t implemented: SoldOutState.
Why don’t you implement it? To do this, carefully think through how
the Gumball Machine should behave in each situation. Check your
answer before moving on...

public class SoldOutState implements State {
 GumballMachine gumballMachine;

 public SoldOutState(GumballMachine gumballMachine) {

 }

 public void insertQuarter() {

 }

 public void ejectQuarter() {

 }

 public void turnCrank() {

 }

 public void dispense() {

 }

}

your turn to implement a state

the state pattern

you are here 4 407

For starters, you now have a Gumball Machine implementation that is structurally quite different from your
fi rst version, and yet functionally it is exactly the same. By structurally changing the implemention you’ve:

Now let’s look a little more at the functional aspect of what we did:

Let’s take a look at what we’ve done so far...

Gumball Machine States

ß Localized the behavior of each state into its own class.

ß Removed all the troublesome if statements that would have been diffi cult to maintain.

ß Closed each state for modifi cation, and yet left the Gumball Machine open to extension by
adding new state classes (and we’ll do this in a second).

ß Created a code base and class structure that maps much more closely to the Mighty Gumball
diagram and is easier to read and understand.

 SoldOut

 NoQuarter

 HasQuarterrtererre

 SoldS ld

GumballMachine

current state

The Gumball Machine now holds an

instance of each
 State class.

The current state of the
machine is always one of
these class instances.

oQuQuuQ auaau rte

SoldOdOOd ut

408 Chapter 10

 SoldOutoldOu

 NoQuarterQuarter

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 SoldSold

GumballMachine

Gumball Machine States

current state

turnCrank()

 SoldOutoldOut

 NoQuarterQuar er

GumballMachine

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 SoldSold

Gumball Machine States

current state

When an action is called, it is
delegated to the current state.

In this case the turnCrank()
method is being called when the
machine is in the HasQuarter
state, so as a result the machine
transitions to the Sold state.

....and then the
machine will
either go to
the SoldOut
or NoQuarter
state depending
on the number of
gumballs remaining
in the machine.

The machine enters

the Sold state
and a

gumball is dispensed
...

turnCrank()

more gumballs

sold out

TRANSITION TO SOLD STATE

dispense()

state transitions

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rte

SooldOdOOd ut

the state pattern

you are here 4 409

 SoldOut

 SoldOut

 NoQuarter

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 SoldSold

GumballMachine

Gumball Machine States

 NoQuarterr

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 SoldSold

GumballMachine

Gumball Machine States

 SoldOut

 NoQuarter

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 SoldSold

GumballMachine

GumballMachine

Gumball Machine States

 SoldOut

 NoQuarter

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 SoldSold

Gumball Machine States

1 2

43

Behind the Scenes:
Self-Guided Tour

Trace the steps of the Gumball Machine starting with the NoQuarter state. Also annotate the diagram with actions
and output of the machine. For this exercise you can assume there are plenty of gumballs in the machine.

Sharpen your pencil

NNoQQuQuuQ auaau rter

SSooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

410 Chapter 10

The State Pattern defined

The State Pattern allows an object to alter its behavior
when its internal state changes. The object will appear to
change its class.

request()

Context

Yes, it’s true, we just implemented the State Pattern! So now, let’s take a look at what it’s all about:

The fi rst part of this description makes a lot of sense, right? Because the pattern encapsulates state into
separate classes and delegates to the object representing the current state, we know that behavior changes
along with the internal state. The Gumball Machine provides a good example: when the gumball machine
is in the NoQuarterState and you insert a quarter, you get different behavior (the machine accepts the
quarter) than if you insert a quarter when it’s in the HasQuarterState (the machine rejects the quarter).

What about the second part of the defi nition? What does it mean for an object to “appear to change its
class?” Think about it from the perspective of a client: if an object you’re using can completely change its
behavior, then it appears to you that the object is actually instantiated from another class. In reality, however,
you know that we are using composition to give the appearance of a class change by simply referencing
different state objects.

Okay, now it’s time to check out the State Pattern class diagram:

state.handle()

handle()

State

handle()

ConcreteStateA
handle()

ConcreteStateB
Many concrete states are possible.

The Context is the class that
can have a number of internal
states. In our example, the
GumballMachine is the Context.

Whenever the request() is made on the Context it is delegated to the state to handle.

The State interface defines a common interface for all concrete states; the states all implement the same interface, so they are interchangeable.

ConcreteStates handle requests from the

Context. Each ConcreteState provides its

own implementation for a request. In this

way, when the Context changes state, its

behavior will change as well.

state pattern defi ned

the state pattern

you are here 4 411

Wait a sec,
from what I remember

of the Strategy Pattern,
this class diagram is
EXACTLY the same.

You’ve got a good eye! Yes, the class diagrams are essentially the
same, but the two patterns differ in their intent.

With the State Pattern, we have a set of behaviors encapsulated in
state objects; at any time the context is delegating to one of those
states. Over time, the current state changes across the set of state
objects to reflect the internal state of the context, so the context’s
behavior changes over time as well. The client usually knows very
little, if anything, about the state objects.

With Strategy, the client usually specifies the strategy object that
the context is composed with. Now, while the pattern provides the
flexibility to change the strategy object at runtime, often there is a
strategy object that is most appropriate for a context object. For
instance, in Chapter 1, some of our ducks were configured to fly
with typical flying behavior (like mallard ducks), while others were
configured with a fly behavior that kept them grounded (like rubber
ducks and decoy ducks).

In general, think of the Strategy Pattern as a flexible alternative to
subclassing; if you use inheritance to define the behavior of a class,
then you’re stuck with that behavior even if you need to change it.
With Strategy you can change the behavior by composing with a
different object.

Think of the State Pattern as an alternative to putting lots of
conditionals in your context; by encapsulating the behaviors within
state objects, you can simply change the state object in context to
change its behavior.

412 Chapter 10

Q: In the GumballMachine, the states decide
what the next state should be. Do the ConcreteStates
always decide what state to go to next?

A: No, not always. The alternative is to let the Context
decide on the flow of state transitions.

As a general guideline, when the state transitions are fixed
they are appropriate for putting in the Context; however,
when the transitions are more dynamic, they are typically
placed in the state classes themselves (for instance, in the
GumballMachine the choice of the transition to NoQuarter or
SoldOut depended on the runtime count of gumballs).

The disadvantage of having state transitions in the state
classes is that we create dependencies between the state
classes. In our implementation of the GumballMachine
we tried to minimize this by using getter methods on the
Context, rather than hardcoding explicit concrete state
classes.

Notice that by making this decision, you are making a
decision as to which classes are closed for modification
– the Context or the state classes – as the system evolves.

Q: Do clients ever interact directly with the
states?

A: No. The states are used by the Context to
represent its internal state and behavior, so all requests
to the states come from the Context. Clients don’t directly
change the state of the Context. It is the Context’s job
to oversee its state, and you don’t usually want a client
changing the state of a Context without that Context’s
knowledge.

Q: If I have lots of instances of the Context in my
application, is it possible to share the state objects
across them?

A: Yes, absolutely, and in fact this is a very common
scenario. The only requirement is that your state objects do
not keep their own internal state; otherwise, you’d need a

unique instance per context.

To share your states, you’ll typically assign each state to a
static instance variable. If your state needs to make use of
methods or instance variables in your Context, you’ll also
have to give it a reference to the Context in each handler()
method.

Q: It seems like using the State Pattern always
increases the number of classes in our designs. Look
how many more classes our GumballMachine had
than the original design!

A: You’re right, by encapsulating state behavior
into separate state classes, you’ll always end up with
more classes in your design. That’s often the price you
pay for flexibility. Unless your code is some “one off”
implementation you’re going to throw away (yeah, right),
consider building it with the additional classes and you’ll
probably thank yourself down the road. Note that often
what is important is the number of classes that you expose
to your clients, and there are ways to hide these extra
classes from your clients (say, by declaring them package
visible).

Also, consider the alternative: if you have an application
that has a lot of state and you decide not to use separate
objects, you’ll instead end up with very large, monolithic
conditional statements. This makes your code hard to
maintain and understand. By using objects, you make
states explicit and reduce the effort needed to understand
and maintain your code.

Q: The State Pattern class diagram shows
that State is an abstract class. But didn’t you use
an interface in the implementation of the gumball
machine’s state?

A: Yes. Given we had no common functionality to
put into an abstract class, we went with an interface. In
your own implementation, you might want to consider an
abstract class. Doing so has the benefit of allowing you to
add methods to the abstract class later, without breaking the
concrete state implementations.

there are noDumb Questions

q&a about the state pattern

the state pattern

you are here 4 413

We still need to finish the Gumball 1 in 10 game

Remember, we’re not done yet. We’ve got a game to implement; but now that we’ve got the State
Pattern implemented, it should be a breeze. First, we need to add a state to the GumballMachine class:

public class GumballMachine {

 State soldOutState;
 State noQuarterState;
 State hasQuarterState;
 State soldState;
 State winnerState;

 State state = soldOutState;
 int count = 0;

 // methods here
}

All you need to add here is the
new WinnerState and initialize
it in the constructor.

Now let’s implement the WinnerState class itself, it’s remarkably similar to the SoldState class:

public class WinnerState implements State {

 // instance variables and constructor

 // insertQuarter error message

 // ejectQuarter error message

 // turnCrank error message

 public void dispense() {
 System.out.println(“YOU’RE A WINNER! You get two gumballs for your quarter”);
 gumballMachine.releaseBall();
 if (gumballMachine.getCount() == 0) {
 gumballMachine.setState(gumballMachine.getSoldOutState());
 } else {
 gumballMachine.releaseBall();
 if (gumballMachine.getCount() > 0) {
 gumballMachine.setState(gumballMachine.getNoQuarterState());
 } else {
 System.out.println(“Oops, out of gumballs!”);
 gumballMachine.setState(gumballMachine.getSoldOutState());
 }
 }
 }
}

Here we release two gumballs and then
either go to the NoQuarterState or the

SoldOutState.

Just like SoldState.

As long as we
have a second
gumball we
release it.

Don’t forget you also have
to add a getter method for
WinnerState too.

414 Chapter 10

public class HasQuarterState implements State {
 Random randomWinner = new Random(System.currentTimeMillis());
 GumballMachine gumballMachine;

 public HasQuarterState(GumballMachine gumballMachine) {
 this.gumballMachine = gumballMachine;
 }

 public void insertQuarter() {
 System.out.println(“You can’t insert another quarter”);
 }

 public void ejectQuarter() {
 System.out.println(“Quarter returned”);
 gumballMachine.setState(gumballMachine.getNoQuarterState());
 }

 public void turnCrank() {
 System.out.println(“You turned...”);
 int winner = randomWinner.nextInt(10);
 if ((winner == 0) && (gumballMachine.getCount() > 1)) {
 gumballMachine.setState(gumballMachine.getWinnerState());
 } else {
 gumballMachine.setState(gumballMachine.getSoldState());
 }
 }
 public void dispense() {
 System.out.println(“No gumball dispensed”);
 }
}

First we add a
random number
generator to
generate the 10%
chance of winning...

Finishing the game

We’ve just got one more change to make: we need to implement the random
chance game and add a transition to the WinnerState. We’re going to add both to
the HasQuarterState since that is where the customer turns the crank:

...then we determine
if this customer won.

Wow, that was pretty simple to implement! We just added a new state to the GumballMachine
and then implemented it. All we had to do from there was to implement our chance game and
transition to the correct state. It looks like our new code strategy is paying off...

If they won, and there’s
enough gumballs left for
them to get two, we
go to the WinnerState;
otherwise, we go to the
SoldState (just like we
always did).

implementing the 1 in 10 game

the state pattern

you are here 4 415

Demo for the CEO of Mighty Gumball, Inc.

public class GumballMachineTestDrive {
 public static void main(String[] args) {
 GumballMachine gumballMachine = new GumballMachine(5);

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();

 System.out.println(gumballMachine);

 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();
 gumballMachine.insertQuarter();
 gumballMachine.turnCrank();

 System.out.println(gumballMachine);
 }
}

The CEO of Mighty Gumball has dropped by for a demo of your new gumball game code. Let’s
hope those states are all in order! We’ll keep the demo short and sweet (the short attention span of
CEOs is well documented), but hopefully long enough so that we’ll win at least once.

This code really hasn’t cha
nged at all;

we just shortened it a bit
.

Once, again, start with a gumball
machine with 5 gumballs.

We want to get a winning state,
so we just keep pumping in those
quarters and turning the crank. We
print out the state of the gumball
machine every so often...

The whole engineering team is waiting

outside the conference roo
m to see

if the new State Pattern-based

design is going to work!!

416 Chapter 10

File Edit Window Help Whenisagumballajawbreaker?

%java GumballMachineTestDrive
Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 5 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
YOU’RE A WINNER! You get two gumballs for your quarter
A gumball comes rolling out the slot...
A gumball comes rolling out the slot...

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 3 gumballs
Machine is waiting for quarter

You inserted a quarter
You turned...
A gumball comes rolling out the slot...
You inserted a quarter
You turned...
YOU’RE A WINNER! You get two gumballs for your quarter
A gumball comes rolling out the slot...
A gumball comes rolling out the slot...
Oops, out of gumballs!

Mighty Gumball, Inc.
Java-enabled Standing Gumball Model #2004
Inventory: 0 gumballs
Machine is sold out
%

Yes! That rocks!

Gee, did we get lucky or what?

In our demo to the CEO, we

won not once, but twice!

Q: Why do we need the WinnerState? Couldn’t we just have the SoldState dispense two gumballs?

A: That’s a great question. SoldState and WinnerState are almost identical, except that WinnerState dispenses two
gumballs instead of one. You certainly could put the code to dispense two gumballs into the SoldState. The downside
is, of course, that now you’ve got TWO states represented in one State class: the state in which you’re a winner, and the
state in which you’re not. So you are sacrificing clarity in your State class to reduce code duplication. Another thing to
consider is the principle you learned in the previous chapter: One class, One responsibility. By putting the WinnerState
responsibility into the SoldState, you’ve just given the SoldState TWO responsibilities. What happens when the
promotion ends? Or the stakes of the contest change? So, it’s a tradeoff and comes down to a design decision.

there are noDumb Questions

testing the gumball machine

the state pattern

you are here 4 417

Bravo! Great job,
gang. Our sales are already going
through the roof with the new game.

You know, we also make soda machines,
and I was thinking we could put one of

those slot machine arms on the side and
make that a game too. We’ve got four

year olds gambling with the gumball
machines; why stop there?

Sanity check...

Yes, the CEO of Mighty Gumball probably needs a sanity check, but that’s
not what we’re talking about here. Let’s think through some aspects of the
GumballMachine that we might want to shore up before we ship the gold version:

ß We’ve got a lot of duplicate code in the Sold and Winning
states and we might want to clean those up. How would we
do it? We could make State into an abstract class and build in
some default behavior for the methods; after all, error messages
like, “You already inserted a quarter,” aren’t going to be seen
by the customer. So all “error response” behavior could be
generic and inherited from the abstract State class.

ß The dispense() method always gets called, even if the crank is
turned when there is no quarter. While the machine operates
correctly and doesn’t dispense unless it’s in the right state, we
could easily fix this by having turnCrank() return a boolean,
or by introducing exceptions. Which do you think is a better
solution?

ß All of the intelligence for the state transitions is in the State
classes. What problems might this cause? Would we want to
move that logic into the Gumball Machine? What would be
the advantages and disadvantages of that?

ß Will you be instantiating a lot of GumballMachine objects?
If so, you may want to move the state instances into static
instance variables and share them. What changes would this
require to the GumballMachine and the States?

Dammit Jim,
I’m a gumball
machine, not a
computer!

418 Chapter 10

Tonight: A Strategy and State Pattern Reunion.

Strategy State

Hey bro. Did you hear I was in Chapter 1?

Yeah, word is definitely getting around.

I was just over giving the Template Method guys a
hand – they needed me to help them finish off their
chapter. So, anyway, what is my noble brother up
to?

Same as always – helping classes to exhibit different
behaviors in different states.

I don’t know, you always sound like you’ve just
copied what I do and you’re using different words
to describe it. Think about it: I allow objects to
incorporate different behaviors or algorithms
through composition and delegation. You’re just
copying me.

I admit that what we do is definitely related, but my
intent is totally different than yours. And, the way I
teach my clients to use composition and delegation
is totally different.

Oh yeah? How so? I don’t get it.

Well if you spent a little more time thinking about
something other than yourself, you might. Anyway,
think about how you work: you have a class you’re
instantiating and you usually give it a strategy
object that implements some behavior. Like, in
Chapter 1 you were handing out quack behaviors,
right? Real ducks got a real quack, rubber ducks
got a quack that squeaked.

Yeah, that was some fine work... and I’m sure you
can see how that’s more powerful than inheriting
your behavior, right? Yes, of course. Now, think about how I work; it’s

totally different.

Sorry, you’re going to have to explain that.

fireside chats: state and strategy

the state pattern

you are here 4 419

Strategy State

Okay, when my Context objects get created, I may
tell them the state to start in, but then they change
their own state over time.

Hey, come on, I can change behavior at runtime
too; that’s what composition is all about!

Sure you can, but the way I work is built around
discrete states; my Context objects change state
over time according to some well defined state
transitions. In other words, changing behavior is
built in to my scheme – it’s how I work!

Well, I admit, I don’t encourage my objects to have
a well-defined set of transitions between states. In
fact, I typically like to control what strategy my
objects are using.

Look, we’ve already said we’re alike in structure, but
what we do is quite different in intent. Face it, the
world has uses for both of us.

Yeah, yeah, keep living your pipe dreams brother.
You act like you’re a big pattern like me, but check
it out: I’m in Chapter 1; they stuck you way out in
Chapter 10. I mean, how many people are actually
going to read this far? Are you kidding? This is a Head First book and

Head First readers rock. Of course they’re going to
get to Chapter 10!

That’s my brother, always the dreamer.

420 Chapter 10

We almost forgot!

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Gumball

 Sold

 No
Quarter

 Has
Quarter

Out of
Gumballs

There’s one transition we forgot to put in the original spec...

we need a way to refill the gumball machine when it’s out of

gumballs! Here’s the new diagram - can you implement it for us?

You did such a good job on the rest of
 the gumball machine we

have no doubt you can add this in a ji
ffy!

 - The Mighty Gumball Engineers
ins

er
ts

qu
ar

te
r

eje
ct

s q
ua

rt
er

turns crank

dispense
gumball

gumballs = 0

gumballs > 0

refill

refi ll exercise

the state pattern

you are here 4 421

Sharpen your pencil
We need you to write the refill() method for the Gumball machine. It has one
argument − the number of gumballs you’re adding to the machine − and should
update the gumball machine count and reset the machine’s state.

You’ve done some amazing work!
I’ve got some more ideas that

are going to change the gumball
industry and I need you to implement
them. Shhhhh! I’ll let you in on these
ideas in the next chapter.

422 Chapter 10

Match each pattern with its description:

Pattern Description

State

Strategy

Template Method

Encapsulate interchangeable
behaviors and use delegation to
decide which behavior to use

Subclasses decide how
to implement steps in an
algorithm

Encapsulate state-based
behavior and delegate
behavior to the current state

who does what?

the state pattern

you are here 4 423

Tools for your Design Toolbox
It’s the end of another chapter; you’ve got enough
patterns here to breeze through any job interview!

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically
interchangeab

le. Strategy
lets the algor

ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer
dependency be

tween objects so
 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automatically

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Observer defines a one-

to-many

automatically

Decorator
responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

 responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

alternative to
 subclassing fo

r extending

functionality.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many

DecoratorAbstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract Factory

related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

Observer defines a one-
to-many

DecoratorAbstract Factory

specifying the
ir concrete cl

asses.
Factory Method Define an

interface for
 creating an o

bject, but Factory Method

interface for
 creating an o

bject, but

interface for
 creating an o

bject, but Factory Method

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the instantiate. F
actory Method lets

a class defer
instantiation

to the

a class defer
instantiation

to the instantiate. F
actory Method lets

subclasses.

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

DecoratorAbstract Factory
Factory Method Define an

Singleton
one instance a

nd provide a g
lobal point

of access to i
t.Command - Encapsulates a

request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

 BULLET POINTS

ß The State Pattern allows an
object to have many different
behaviors that are based on its
internal state.

ß Unlike a procedural state
machine, the State Pattern
represents state as a full-blown
class.

ß The Context gets its behavior
by delegating to the current
state object it is composed
with.

ß By encapsulating each state
into a class, we localize any
changes that will need to be
made.

ß The State and Strategy
Patterns have the same class
diagram, but they differ in
intent.

ß Strategy Pattern typically
configures Context classes
with a behavior or algorithm.

ß State Pattern allows a Context
to change its behavior as the
state of the Context changes.

ß State transitions can be
controlled by the State classes
or by the Context classes.

ß Using the State Pattern will
typically result in a greater
number of classes in your
design.

ß State classes may be shared
among Context instances.

Factory Method

SingletonCommand
as an object,

thereby lettin
g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Adapter - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

No new principles t
his

chapter, tha
t gives you

time to sleep on
 them.

Singleton

support undoa
ble operations

.

Adapter Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Facade - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Here’s our new
pattern. If you’re
managing state in
a class, the State
Pattern gives you
a technique for
encapsulating that
state.

Adapter Encapsulates a
request

Facade - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

State - Allow an object to
alter its

behavior when its intern
al state chang

es.

The object will appear to c
hange its

class.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for ex

tension

but closed for
 modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

Only talk to yo
ur friends.

Don’t call us, w
e’ll call you.

A class should h
ave only one r

eason

to change.

OO Principles

424 Chapter 10

Exercise solutions

Out of
Gumballs

 Has
Quarter

 No

Quarter

ins
er

ts
qu

ar
te

r

eje
ct

s q
ua

rt
er

turns crank, no winner

Winner

turns crank, we
have a winner!

Mighty Gumball, Inc.
Where the Gumball Machine

is Never Half Empty

Gumball

 Sold
dispense
gumball

gumballs = 0

gumballs > 0

gumballs = 0
gum

ba
lls

> 0

dis
pen

se
2

gum
bal

ls

exercise solutions

the state pattern

you are here 4 425

Sharpen your pencil

❏ A. This code certainly isn’t adhering to the
Open Closed Principle!

❏ B. This code would make a FORTRAN
programmer proud.

❏ C. This design isn’t even very object
oriented.

❏ C. State transitions aren’t explicit; they
are buried in the middle of a bunch of
conditional code.

❏ D. We haven’t encapsulated anything that
varies here.

❏ E. Further additions are likely to cause bugs
in working code.

Based on our first implementation, which of the following apply?
(Choose all that apply.)

Exercise solutions

Sharpen your pencil
We have one remaining class we haven’t implemented: SoldOutState.
Why don’t you implement it? To do this, carefully think through how
the Gumball Machine should behave in each situation. Check your
answer before moving on...

public class SoldOutState implements State {
 GumballMachine gumballMachine;

 public SoldOutState(GumballMachine gumballMachine) {
 this.gumballMachine = gumballMachine;
 }

 public void insertQuarter() {
 System.out.println(“You can’t insert a quarter, the machine is sold out”);
 }

 public void ejectQuarter() {
 System.out.println(“You can’t eject, you haven’t inserted a quarter yet”);
 }

 public void turnCrank() {
 System.out.println(“You turned, but there are no gumballs”);
 }

 public void dispense() {
 System.out.println(“No gumball dispensed”);
 }

In the Sold Out state, we really

can’t do anything
 until someone

refills the Gumball Machine.

}

426 Chapter 10

 Sharpen your pencil
To implement the states, we fi rst need to defi ne what the behavior will be
when the corresponding action is called. Annotate the diagram below with the
behavior of each action in each class; we’ve already fi lled in a few for you.

Go to HasQuarterState
Tell the customer “you haven’t inserted a quarter”

Tell the customer “please wait, we’re already giving you a gumball”
Tell the customer “sorry, you already turned the crank”
Tell the customer “turning twice doesn’t get you another gumball”

Tell the customer “the machine is sold out”
Tell the customer “you haven’t inserted a quarter yet”

Tell the customer “you can’t insert another quarter”

Tell the customer “There are no gumballs”

Go to SoldState

Give back quarter, go to No Quarter state

Tell the customer “you turned, but there’s no quarter”

NoQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldOutState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

SoldState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

HasQuarterState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()

Tell the customer “you need to pay first”

Tell the customer, “no gumball dispensed”

Dispense one gumball. Check number of gumballs; if > 0, go
to NoQuarter state, otherwise, go to Sold Out state

Tell the customer “no gumball dispensed”

Tell the customer “please wait, we’re already giving you a gumball”
Tell the customer “sorry, you already turned the crank”
Tell the customer “turning twice doesn’t get you another gumball”

WinnerState

insertQuarter()

ejectQuarter()

turnCrank()

dispense()Dispense two gumballs. Check number of gumballs; if > 0,
go to NoQuarter state, otherwise, go to SoldOutState

exercise solutions

the state pattern

you are here 4 427

 SoldOut

GumballMachine

GumballMachine

 Sold

GumballMachine

 SoldSold

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 NoQuarter

 SoldOut

Sold

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 NoQuarter

 SoldOut

 SoldSold

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 NoQuarter

GumballMachine

 SoldSold

 HasQuarterasassa QsQQs uQuuQ auaau rtererre

 NoQuarter

 SoldOut

Gumball Machine States

Gumball Machine StatesGumball Machine States

Gumball Machine States

1 2

43

current state

current state
current state

current state

Behind the Scenes:
Self-Guided Tour
Solution

insertQuarter()

insertQuarter()

delegates to
current state

turnCrank()

turnCrank()

delegates

transitions to
HasQuarter state

machine action machine action

transitions to
Sold state

dispense()

Here the machine
gives out a gumball
by calling the internal
dispense() action. and then transitions

to NoQuarter

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

NoQQuQuuQ auaau rter

SooldOdOOd ut

428 Chapter 10

Match each pattern with its description:

Pattern Description

State

Strategy

Template Method

Encapsulate interchangeable
behaviors and use delegation to
decide which behavior to use

Subclasses decide how
to implement steps in an
algorithm

Encapsulate state-based
behavior and delegate
behavior to the current state

Sharpen your pencil
We need you to write the refill() method for the Gumball machine. It has one
argument, the number of gumballs you’re adding to the machine, and should
update the gumball machine count and reset the machine’s state.

void refill(int count) {
 this.count = count;
 state = noQuarterState;
}

exercise solutions

this is a new chapter 429

Ever play good cop, bad cop? You’re the good cop and you provide all your

services in a nice and friendly manner, but you don’t want everyone asking you for services,

so you have the bad cop control access to you. That’s what proxies do: control and manage

access. As you’re going to see, there are lots of ways in which proxies stand in for the

objects they proxy. Proxies have been known to haul entire method calls over the Internet for

their proxied objects; they’ve also been known to patiently stand in the place for some pretty

lazy objects.

Controlling
 Object Access

11 the Proxy Pattern

g

h
g

With you as my Proxy, I’ll be
able to triple the amount of lunch
money I can extract from friends!

430 Chapter 11

Sounds easy enough. If you remember, we’ve already
got methods in the gumball machine code for getting the
count of gumballs (getCount()), and getting the current
state of the machine (getState()).

All we need to do is create a report that can be printed out
and sent back to the CEO. Hmmm, we should probably
add a location field to each gumball machine as well; that
way the CEO can keep the machines straight.

Let’s just jump in and code this. We’ll impress the CEO
with a very fast turnaround.

Hey team, I’d
really like to get

some better monitoring for
my gumball machines. Can you
find a way to get me a report of
inventory and machine state?

Remember the CEO of Mighty Gumball, Inc.?

what’s the goal

the proxy pattern

you are here 4 431

public class GumballMonitor {
 GumballMachine machine;

 public GumballMonitor(GumballMachine machine) {
 this.machine = machine;
 }

 public void report() {
 System.out.println(“Gumball Machine: “ + machine.getLocation());
 System.out.println(“Current inventory: “ + machine.getCount() + “ gumballs”);
 System.out.println(“Current state: “ + machine.getState());
 }
}

Coding the Monitor

Now let’s create another class, GumballMonitor, that retrieves the machine’s
location, inventory of gumballs and the current machine state and prints them
in a nice little report:

The monitor takes the machine in its constructor and assigns it to the machine instance variable.

Our report method just prints a report with location, inventory and the machine’s state.

Let’s start by adding support to the GumballMachine class so that it
can handle locations:

public class GumballMachine {
 // other instance variables
 String location;

 public GumballMachine(String location, int count) {
 // other constructor code here
 this.location = location;
 }

 public String getLocation() {
 return location;
 }

 // other methods here
}

A location is just a String.

The location is passed into the constructor and stored in the instance variable.

Let’s also add a getter method to
grab the location when we need it.

432 Chapter 11

public class GumballMachineTestDrive {
 public static void main(String[] args) {
 int count = 0;

 if (args.length < 2) {
 System.out.println(“GumballMachine <name> <inventory>”);
 System.exit(1);
 }

 count = Integer.parseInt(args[1]);
 GumballMachine gumballMachine = new GumballMachine(args[0], count);

 GumballMonitor monitor = new GumballMonitor(gumballMachine);

 // rest of test code here

 monitor.report();
 }
}

Testing the Monitor
We implemented that in no time. The CEO is going to be thrilled and amazed by our
development skills.

Now we just need to instantiate a GumballMonitor and give it a machine to monitor:

Don’t forget to give the constructor a
location and count...

...and instantiate a monitor and pass it a

machine to provide a report on.

And here’s the output!

When we need a report on
the machine, we call the
report() method.

Pass in a location and initial # of
gumballs on the command line.

File Edit Window Help FlyingFish

%java GumballMachineTestDrive Seattle 112

Gumball Machine: Seattle
Current Inventory: 112 gumballs
Current State: waiting for quarter

local gumball monitor

The monitor output looks great,
but I guess I wasn’t clear. I need to

monitor gumball machines REMOTELY!
In fact, we already have the networks

in place for monitoring. Come on guys,
you’re supposed to be the Internet

generation!

the proxy pattern

you are here 4 433

Well, that will teach us to gather
some requirements before we jump
in and code. I hope we don’t have

to start over...

Joe
Jim FrankJoe: A remote what?

Frank: Remote proxy. Think about it: we’ve already got the monitor code written, right? We give the
GumballMonitor a reference to a machine and it gives us a report. The problem is that monitor runs
in the same JVM as the gumball machine and the CEO wants to sit at his desk and remotely monitor the
machines! So what if we left our GumballMonitor class as is, but handed it a proxy to a remote object?

Joe: I’m not sure I get it.

Jim: Me neither.

Frank: Let’s start at the beginning... a proxy is a stand in for a real object. In this case, the proxy acts
just like it is a Gumball Machine object, but behind the scenes it is communicating over the network to
talk to the real, remote GumballMachine.

Jim: So you’re saying we keep our code as it is, and we give the monitor a reference to a proxy version
of the GumballMachine...

Joe: And this proxy pretends it’s the real object, but it’s really just communicating over the net to the
real object.

Frank: Yeah, that’s pretty much the story.

Joe: It sounds like something that is easier said than done.

Frank: Perhaps, but I don’t think it’ll be that bad. We have to make sure that the gumball machine
can act as a service and accept requests over the network; we also need to give our monitor a way to get
a reference to a proxy object, but we’ve got some great tools already built into Java to help us. Let’s talk
a little more about remote proxies first...

Don’t worry guys, I’ve
been brushing up on my design

patterns. All we need is a remote
proxy and we’ll be ready to go.

434 Chapter 11

A remote proxy acts as a local representative to a remote object. What’s a “remote
object?” It’s an object that lives in the heap of a different Java Virtual Machine
(or more generally, a remote object that is running in a different address space).
What’s a “local representative?” It’s an object that you can call local methods on
and have them forwarded on to the remote object.

The role of the ‘remote proxy’

Your client object acts like it’s making remote method calls.
But what it’s really doing is calling methods on a heap-
local ‘proxy’ object that handles all the low-level details of
network communication.

 Gumball Mach
in

e

Remote Heap

Gumball Monito
r

Local Heap

 ProxyHere the Gumball
Monitor is the client

object; it thinks it’
s

talking to the Real
gumball machine, but

it’s really just talki
ng

to the proxy, which

then talks to the
Real gumball machine

over the network.

The proxy pretends t
o

be the remote object,

but it’s just a stand
 in

for the Real Thing.

The Remote object
 IS

the Real Thing. It’s t
he

object with the method

that actua
lly does th

e

real work.

CEO’s desktop Remote Gumball Machine with a JVM.

Same as your old
code, only it’s
talking to a proxy.

remote proxy

the proxy pattern

you are here 4 435

Before going further, think about how you’d design a system to enable remote method invocation.
How would you make it easy on the developer so that she has to write as little code as possible?
How would you make the remote invocation look seamless?

brain
powerA

Should making remote calls be totally transparent? Is that a good idea? What might be a problem
with that approach?

brain
powerA

2

Hold on now, we
aren’t going to write that code

ourselves, it’s pretty much built
into Java’s remote invocation

functionality. All we have to do
is retrofit our code so that it

takes advantage of RMI.

This is a pretty slick idea. We’re
going to write some code that takes a

method invocation, somehow transfers it over
the network and invokes the same method on a

remote object. Then I presume when the call is
complete, the result gets sent back over the

network to our client. But it seems to me
this code is going to be very

tricky to write.

436 Chapter 11

Adding a remote proxy to the Gumball
Machine monitoring code

On paper this looks good, but how do we create a proxy that knows how to invoke a method on an
object that lives in another JVM?

Hmmm. Well, you can’t get a reference to something on another heap, right? In other words, you
can’t say:

 Duck d = <object in another heap>

Whatever the variable d is referencing must be in the same heap space as the code running the
statement. So how do we approach this? Well, that’s where Java’s Remote Method Invocation
comes in... RMI gives us a way to find objects in a remote JVM and allows us to invoke their
methods.

You may have encountered RMI in Head First Java; if not, we’re going to take a slight detour and
come up to speed on RMI before adding the proxy support to the Gumball Machine code.

So, here’s what we’re going to do:

An RMI Detour

If you’re new to RMI,
take the detour that runs
over the next few pages;
otherwise, you might want to
just quickly thumb through
the detour as a review.

1

2

3

First, we’re going to take the RMI
Detour and check RMI out. Even if
you are familiar with RMI, you might
want to follow along and check out the
scenery.

Then we’re going to take our
GumballMachine and make it a remote
service that provides a set of methods
calls that can be invoked remotely.

Then, we going to create a proxy that can
talk to a remote GumballMachine, again
using RMI, and put the monitoring system
back together so that the CEO can monitor
any number of remote machines.

RMI detour

the proxy pattern

you are here 4 437

Let’s say we want to design a system that allows us to call a local object that forwards each
request to a remote object. How would we design it? We’d need a couple of helper objects
that actually do the communicating for us. The helpers make it possible for the client to
act as though it’s calling a method on a local object (which in fact, it is). The client calls a
method on the client helper, as if the client helper were the actual service. The client helper
then takes care of forwarding that request for us.

In other words, the client object thinks it’s calling a method on the remote service, because
the client helper is pretending to be the service object. Pretending to be the thing with the
method the client wants to call.

But the client helper isn’t really the remote service. Although the client helper acts like it
(because it has the same method that the service is advertising), the client helper doesn’t
have any of the actual method logic the client is expecting. Instead, the client helper
contacts the server, transfers information about the method call (e.g., name of the method,
arguments, etc.), and waits for a return from the server.

On the server side, the service helper receives the request from the client helper (through
a Socket connection), unpacks the information about the call, and then invokes the real
method on the real service object. So, to the service object, the call is local. It’s coming from
the service helper, not a remote client.

The service helper gets the return value from the service, packs it up, and ships it back (over
a Socket’s output stream) to the client helper. The client helper unpacks the information
and returns the value to the client object.

Remote methods 101

Service object
Server heap

Client object

Client heap

Client helper Service helper

Client object thinks

it’s talking to the
Real Service. It
thinks the client
helper is the thing
that can actually
do the real work.

Client helper pretend
s

to be the service, b
ut

it’s just a proxy fo
r the

Real Thing.

Service helper gets the request from the client helper, unpacks it, and calls the method on the Real Service.

The Service
object IS

the Real Service
. It’s the

object with the method

that actua
lly does th

e

real work.

This should look familiar...

This is going
to be our
proxy.

An RMI Detour

438 Chapter 11

Service object

Server heap

Client object

Client heap

Client helper Service helper

How the method call happens
1 Client object calls doBigThing() on the client helper object.

Service object

Server heap

Client object

Client heap

Client helper Service helper

2 Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

doBigThing()

doBigThing()

“client wants to call a method”

Service object

Server heap

Client object

Client heap

Client helper Service helper

3 Service helper unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service object.

doBigThing()

“client wants to call a method”
doBigThing()

Remember, this is the

object with the REAL

method logic. The one

that does the real
work!

remote method invocation

the proxy pattern

you are here 4 439

Service object

Server heap

Client object

Client heap

Client helper Service helper

4
The method is invoked on the service object, which returns
some result to the service helper.

Service object

Server heap

Client object

Client heap

Client helper Service helper

5 Service helper packages up information returned from the
call and ships it back over the network to the client helper.

packaged up result

Service object

Server heap

Client object

Client heap

Client helper Service helper

6 Client helper unpackages the returned values and returns
them to the client object. To the client object, this was all
transparent.

result

result

An RMI Detour

440 Chapter 11

Okay, you’ve got the gist of how remote methods work;
now you just need to understand how to use RMI to
enable remote method invocation.

What RMI does for you is build the client and service
helper objects, right down to creating a client helper
object with the same methods as the remote service. The
nice thing about RMI is that you don’t have to write
any of the networking or I/O code yourself. With your
client, you call remote methods (i.e., the ones the Real
Service has) just like normal method calls on objects
running in the client’s own local JVM.

RMI also provides all the runtime infrastructure to make
it all work, including a lookup service that the client can
use to find and access the remote objects.

There is one difference between RMI calls and local
(normal) method calls. Remember that even though to
the client it looks like the method call is local, the client
helper sends the method call across the network. So
there is networking and I/O. And what do we know
about networking and I/O methods?

They’re risky! They can fail! And so, they throw
exceptions all over the place. As a result, the client does
have to acknowledge the risk. We’ll see how in a few
pages.

Java RMI, the Big Picture

Service object

Client object
Client helper Service helper

Server heapClient heap

RMI STUB RMI SKELETON

RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the
service helper is a ‘skeleton’.

This is going
to act as our
proxy!

Now let’s go through all the steps needed to make an object into a
service that can accept remote calls and also the steps needed to
allow a client to make remote calls.

You might want to make sure your seat belt is fastened; there are
a lot of steps and a few bumps and curves – but nothing to be too
worried about.

RMI: the big picture

Newer versions of Java don’t require an explicit skeleton object, but something on the server side is still handling skeleton behavior.

the proxy pattern

you are here 4 441

An RMI Detour
Making the Remote service

Make a Remote Interface

Make a Remote Implementation

Generate the stubs and skeletons using rmic

Start the RMI registry (rmiregistry)

Start the remote service

MyService.java

public interface
MyRemote extends
Remote { }

public interface
MyRemote extends

MyServiceImpl.java

public MyRemoteImpl
extends
UnicastRemoteObject
implements
MyRemote { }

public MyRemoteImpl

This is an overview of the fi ve steps for making the remote service. In other words, the
steps needed to take an ordinary object and supercharge it so it can be called by a remote
client. We’ll be doing this later to our GumballMachine. For now, let’s get the steps down
and then we’ll explain each one in detail.

The remote interface defi nes the methods that
a client can call remotely. It’s what the client
will use as the class type for your service. Both
the Stub and actual service will implement
this!

This interfa
ce defines

the

remote methods tha
t you

want clients
 to call.

This is the class that does the Real Work. It
has the real implementation of the remote
methods defi ned in the remote interface.
It’s the object that the client wants to call
methods on (e.g., our GumballMachine!).

The Real Service; the class
with the methods that do
the real work. It implements

the remote interface.

These are the client and server ‘helpers’. You
don’t have to create these classes or ever look
at the source code that generates them. It’s all
handled automatically when you run the rmic
tool that ships with your Java development kit.

File Edit Window Help Eat

%rmic MyServiceImpl

MyServiceImpl_Stub.class

MyServiceImpl_Skel.class

Running rmic against the actual

service implementation class...

...spits out two new classes for the helper objects.

File Edit Window Help Drink

%rmiregistry

File Edit Window Help BeMerry

%java MyServiceImpl

The rmiregistry is like the white pages of a phone
book. It’s where the client goes to get the proxy
(the client stub/helper object).

You have to get the service object up and running. Your
service implementation class instantiates an instance
of the service and registers it with the RMI registry.
Registering it makes the service available for clients.

Run this in
a separate
terminal.

Step one:

Step two:

Step three:

Step four:

Step fi ve:

101101
10 110 1
0 11 0
001 10
001 01

helper objects.
101101
10 110 1
0 11 0

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

442 Chapter 11

Step one: make a Remote interface

1 Extend java.rmi.Remote
Remote is a ‘marker’ interface, which means it has no methods. It has special
meaning for RMI, though, so you must follow this rule. Notice that we say
‘extends’ here. One interface is allowed to extend another interface.

public interface MyRemote extends Remote {

2 Declare that all methods throw a RemoteException
The remote interface is the one the client uses as the type for the service. In
other words, the client invokes methods on something that implements the
remote interface. That something is the stub, of course, and since the stub is
doing networking and I/O, all kinds of Bad Things can happen. The client
has to acknowledge the risks by handling or declaring the remote exceptions. If
the methods in an interface declare exceptions, any code calling methods on a
reference of that type (the interface type) must handle or declare the exceptions.

import java.rmi.*;

public interface MyRemote extends Remote {
 public String sayHello() throws RemoteException;
}

3 Be sure arguments and return values are primitives or Serializable
Arguments and return values of a remote method must be either primitive
or Serializable. Think about it. Any argument to a remote method has to
be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings, and
the majority of types in the API (including arrays and collections), you’ll be fine.
If you are passing around your own types, just be sure that you make your classes
implement Serializable.

public String sayHello() throws RemoteException;

This tells us that the

interface is going t
o be used

to support remote calls.

Every remote method call is considered ‘risky’. Declaring RemoteException on every method forces the client to pay attention and acknowledge that things might not work.

This return value is gonna be shipped over the wire from the server back to the client, so it must be Serializable. That’s how args and return values get packaged up and sent.

Remote interface is in java.rmi

Check out Head First
Java if you need to
refresh your memory
on Serializable.

make a remote interface

the proxy pattern

you are here 4 443

Step two: make a Remote implementation
1 Implement the Remote interface

Your service has to implement the remote interface—the one with
the methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {
 public String sayHello() {
 return “Server says, ‘Hey’”;
 }
 // more code in class
}

2 Extend UnicastRemoteObject
In order to work as a remote service object, your object needs some functionality
related to ‘being remote’. The simplest way is to extend UnicastRemoteObject
(from the java.rmi.server package) and let that class (your superclass) do the
work for you.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

3 Write a no-arg constructor that declares a RemoteException
Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws a RemoteException. The only way to deal with this is to
declare a constructor for your remote implementation, just so that you have a
place to declare the RemoteException. Remember, when a class is instantiated,
its superclass constructor is always called. If your superclass constructor throws
an exception, you have no choice but to declare that your constructor also throws
an exception.

public MyRemoteImpl() throws RemoteException { }

4 Register the service with the RMI registry

Now that you’ve got a remote service, you have to make it available to remote
clients. You do this by instantiating it and putting it into the RMI registry (which
must be running or this line of code fails). When you register the implementation
object, the RMI system actually puts the stub in the registry, since that’s what the
client really needs. Register your service using the static rebind() method of the
java.rmi.Naming class.
try {
 MyRemote service = new MyRemoteImpl();
 Naming.rebind(“RemoteHello”, service);
} catch(Exception ex) {...}

The compiler will make sure that you’ve implemented all the methods from the interface you implement. In this case, there’s only one.

You don’t have to put any
thing in

the constructor. You just need a

way to declare that your
superclass

constructor throws an exception.

Give your service a name (that clients can use

to look it up in the regis
try) and register it

with the RMI registry. When you bind the

service object, RMI swaps the service for the

stub and puts the stub in
 the registry.

An RMI Detour

444 Chapter 11

Step three: generate stubs and skeletons

1 Run rmic on the remote implementation class
(not the remote interface)

The rmic tool, which comes with the Java software
development kit, takes a service implementation and
creates two new classes, the stub and the skeleton. It uses
a naming convention that is the name of your remote
implementation, with either _Stub or _Skel added to
the end. There are other options with rmic, including
not generating skeletons, seeing what the source code
for these classes looked like, and even using IIOP as
the protocol. The way we’re doing it here is the way
you’ll usually do it. The classes will land in the current
directory (i.e. whatever you did a cd to). Remember,
rmic must be able to see your implementation class, so
you’ll probably run rmic from the directory where your
remote implementation is located. (We’re deliberately
not using packages here, to make it simpler. In the Real
World, you’ll need to account for package directory
structures and fully-qualifi ed names).

%rmic MyRemoteImpl
MyRemoteImpl_Stub.class

MyRemoteImpl_Skel.class

Notice that you don’t say “.cl
ass”

on the end. Just the class name.

RMIC generates two new classes for the helper objects.

Step four: run rmiregistry

1 Bring up a terminal and start the rmiregistry.
Be sure you start it from a directory that has access to
your classes. The simplest way is to start it from your
‘classes’ directory.

File Edit Window Help Huh?

%rmiregistry

File Edit Window Help Whuffi e

Step fi ve: start the service

1 Bring up another terminal and start your service
This might be from a main() method in your remote
implementation class, or from a separate launcher class.
In this simple example, we put the starter code in the
implementation class, in a main method that instantiates the
object and registers it with RMI registry.

File Edit Window Help Huh?

%java MyRemoteImpl

101101
10 110 1
0 11 0
001 10
001 01

helper objects.
101101
10 110 1
0 11 0

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

stubs and skeletons

the proxy pattern

you are here 4 445

Complete code for the server side

import java.rmi.*;
import java.rmi.server.*;

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

 public String sayHello() {
 return “Server says, ‘Hey’”;
 }

 public MyRemoteImpl() throws RemoteException { }

 public static void main (String[] args) {

 try {
 MyRemote service = new MyRemoteImpl();
 Naming.rebind(“RemoteHello”, service);
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

import java.rmi.*;

public interface MyRemote extends Remote {

 public String sayHello() throws RemoteException;
}

RemoteException and Remote

interface are in java.rmi package.

Your interface MUST extend java.rmi.Remote

All of your remote methods must
declare a RemoteException.

UnicastRemoteObject is in t
he

java.rmi.server pack
age.

The Remote interface:

The Remote service (the implementation):

Extending UnicastRemoteObject is the

easiest way to make a remote object.

You MUST implement your remote interface!!
You have to implement all the interface methods, of course. But notice that you do NOT have to declare the RemoteException.

Your superclass constructor (for
UnicastRemoteObject) declares an exception, so
YOU must write a constructor, because it means
that your constructor is calling risky code (its
super constructor).

Make the remote object, then ‘bind’ it to the rmiregistery using the static Naming.rebind(). The name you register it under is the name clients will use to look it up in the RMI registry.

An RMI Detour

446 Chapter 11

How does the client get the
stub object?

The client has to get the stub object (our proxy), since
that’s the thing the client will call methods on. And that’s
where the RMI registry comes in. The client does a
‘lookup’, like going to the white pages of a phone book,
and essentially says, “Here’s a name, and I’d like the stub
that goes with that name.”

Let’s take a look at the code we need to lookup and
retrieve a stub object.

Code Up Close

MyRemote service =
 (MyRemote) Naming.lookup(“rmi://127.0.0.1/RemoteHello”);

The client always uses the remote interface as the type of the service. In fact, the client never needs to know the actual class name of your remote service.

You have to cast it to the
interface, since the lookup
method returns type Object.

lookup() is a static method
of the Naming class.

The host name or IP
address where the
service is running.

This must be the name that the service was registered under.

Here’s how it works.

how to get the stub object

the proxy pattern

you are here 4 447

Service object

Client object
Stub

Skeleton

ServerClient

Remote
Hello

Stub

RMI registry (on server)

1 Client does a lookup on the RMI registry

2 RMI registry returns the stub object
(as the return value of the lookup method) and RMI deserializes the stub
automatically. You MUST have the stub class (that rmic generated for you)
on the client or the stub won’t be deserialized.

3 Client invokes a method on the stub, as if the
stub IS the real service

1

2

3

Naming.lookup(“rmi://127.0.0.1/RemoteHello”);

lookup()

stub returned

sayHello()

How it works...

An RMI Detour

448 Chapter 11

How does the client get the stub class?

Now we get to the interesting question. Somehow, some way, the client must have the stub class
(that you generated earlier using rmic) at the time the client does the lookup, or else the stub won’t
be deserialized on the client and the whole thing blows up. The client also needs classes for any
serialized objects returned by method calls to the remote object. In a simple system, you can simply
hand-deliver the these classes to the client.

There’s a much cooler way, although it’s beyond the scope of this book. But just in case you’re
interested, the cooler way is called “dynamic class downloading”. With dynamic class downloading,
Serialized objects (like the stub) are “stamped”with a URL that tells the RMI system on the client where
to find the class file for that object. Then, in the process of deserializing an object, if RMI can’t find the
class locally, it uses that URL to do an HTTP Get to retrieve the class file. So you’d need a simple web
server to serve up class files, and you’d also need to change some security parameters on the client.
There are a few other tricky issues with dynamic class downloading, but that’s the overview.

For the stub object specifically, there’s another way the client can get the class. This is only available in
Java 5, though. We’ll briefly talk about this near the end of the chapter.

import java.rmi.*;

public class MyRemoteClient {
 public static void main (String[] args) {
 new MyRemoteClient().go();
 }

 public void go() {

 try {
 MyRemote service = (MyRemote) Naming.lookup(“rmi://127.0.0.1/RemoteHello”);

 String s = service.sayHello();

 System.out.println(s);
 } catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Complete client code

The Naming class (for doing the rmiregistry lookup) is in the java.rmi package.

It comes out of the
 registry as t

ype

Object, so don
’t forget the

 cast.

You need the IP address or hostname.
and the name used to
bind/rebind the service.It looks just like a regular old method call! (Except it must acknowledge the RemoteException.)

Geek Bits

the remote client

the proxy pattern

you are here 4 449

The top three things programmers do wrong with RMI are:

1) Forget to start rmiregistry before starting remote service (when the service is registered using
Naming.rebind(), the rmiregistry must be running!)

2) Forget to make arguments and return types serializable (you won’t know until runtime; this is
not something the compiler will detect.)

3) Forget to give the stub class to the client.

Service object

Client object
Stub

Skeleton

ServerClient

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyServiceImpl_Stub.classClient.class

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyServiceImpl_Stub.class

Stub

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyRemote.class

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

MyRemote.class

MyServiceImpl.class

MyServiceImpl_Skel.class

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

101101
10 110 1
0 11 0
001 10
001 01

101101
10 110 1
0 11 0

Don’t forget, the client
uses the remote interface
to call methods on the stub.
The client JVM needs the
stub class, but the client
never refers to the stub
class in code. The client
always uses the remote
interface, as though the
remote interface WERE the
actual remote object.

Server needs both the Stub and Skeleton
classes, as well as the service and the
remote interface. It needs the stub class
because remember, the stub is substituted
for the real service when the real service
is bound to the RMI registry.

An RMI Detour

450 Chapter 11

GumballMachine

Server heap

GumballMonitor

Client heap

GumballStub
GumballSkeleto

n

This is our
Monitor code, it
uses a proxy to
talk to remote
gumball machines.

The stub is a proxy

to the remote
GumballMachine.

The skeleton accepts the remote calls and makes everything work on the service side.

The
GumballMachine is

our remote service
;

it’s going t
o expose

a remote interf
ace

for the cli
ent to

use.

Back to our GumballMachine
remote proxy
Okay, now that you have the RMI basics down, you’ve
got the tools you need to implement the gumball
machine remote proxy. Let’s take a look at how the
GumballMachine fits into this framework:

CEO’s desktop Remote Gumball Machine with a JVM.

remote gumball monitor

the proxy pattern

you are here 4 451

Getting the GumballMachine ready
to be a remote service

The first step in converting our code to use the remote proxy is to enable the
GumballMachine to service remote requests from clients. In other words,
we’re going to make it into a service. To do that, we need to:

1) Create a remote interface for the GumballMachine. This will provide a set
of methods that can be called remotely.

2) Make sure all the return types in the interface are serializable.

3) Implement the interface in a concrete class.

We’ll start with the remote interface:

import java.rmi.*;

public interface GumballMachineRemote extends Remote {
 public int getCount() throws RemoteException;
 public String getLocation() throws RemoteException;
 public State getState() throws RemoteException;
}

This is the remote interface.Don’t forget to import java.rmi.*

Here are the methods were going to support.
Each one throws RemoteException.All return types need

to be primitive or
Serializable...

We have one return type that isn’t Serializable: the State class. Let’s fix it up...

import java.io.*;

public interface State extends Serializable {
 public void insertQuarter();
 public void ejectQuarter();
 public void turnCrank();
 public void dispense();
}

Serializable is in the java.io package.

Then we just extend the Serializable
interface (which has no methods in it).
And now State in all the subclasses can
be transferred over the network.

452 Chapter 11

Actually, we’re not done with Serializable yet; we have one problem with State. As you may
remember, each State object maintains a reference to a gumball machine so that it can call the
gumball machine’s methods and change its state. We don’t want the entire gumball machine
serialized and transferred with the State object. There is an easy way to fix this:

public class NoQuarterState implements State {
 transient GumballMachine gumballMachine;

 // all other methods here
}

In each implementation of State, we
add the transient keyword to the
GumballMachine instance variable. This
tells the JVM not to serialize this field.
Note that this can be slightly dangerous
if you try to access this field once its
been serialized and transferred.

We’ve already implemented our GumballMachine, but we need to make sure it can act as a service and
handle requests coming from over the network. To do that, we have to make sure the GumballMachine is
doing everything it needs to implement the GumballMachineRemote interface.

As you’ve already seen in the RMI detour, this is quite simple, all we need to do is add a couple of things...

import java.rmi.*;
import java.rmi.server.*;

public class GumballMachine
 extends UnicastRemoteObject implements GumballMachineRemote
{
 // instance variables here

 public GumballMachine(String location, int numberGumballs) throws RemoteException {
 // code here
 }

 public int getCount() {
 return count;
 }

 public State getState() {
 return state;
 }

 public String getLocation() {
 return location;
 }

 // other methods here
}

First, we need to import the
rmi packages. GumballMachine is

going to subclass the
UnicastRemoteObject;
this gives it the ability to
act as a remote service.

GumballMachine also needs to implement the remote interface...

...and the constructor needs to throw a remote exception, because the superclass does.
That’s it! Nothing
changes here at all!

remote interface for the gumball machine

the proxy pattern

you are here 4 453

public class GumballMachineTestDrive {

 public static void main(String[] args) {
 GumballMachineRemote gumballMachine = null;
 int count;
 if (args.length < 2) {
 System.out.println(“GumballMachine <name> <inventory>”);
 System.exit(1);
 }

 try {
 count = Integer.parseInt(args[1]);

 gumballMachine =
 new GumballMachine(args[0], count);
 Naming.rebind(“//” + args[0] + “/gumballmachine”, gumballMachine);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

File Edit Window Help Huh?

% rmiregistry

Registering with the RMI registry...

That completes the gumball machine service. Now we just need to fire it up so it can
receive requests. First, we need to make sure we register it with the RMI registry so
that clients can locate it.

We’re going to add a little code to the test drive that will take care of this for us:

First we need to add a try/catch block around the gumball instantiation because our constructor can now throw exceptions.

We also add the call to Naming.rebind,
which publishes the GumballMachine stub
under the name gumballmachine.

Let’s go ahead and get this running...

File Edit Window Help Huh?

% java GumballMachineTestDrive seattle.mightygumball.com 100

Run this first.

Run this second.

This gets the RMI
registry service up
and running.

This gets the GumballMachine up and running
and registers it with the RMI registry.

We’re using the “official”

Mighty Gumball machines, you

should substitute your ow
n

machine name here.

454 Chapter 11

Now for the GumballMonitor client...

Remember the GumballMonitor? We wanted to reuse it without
having to rewrite it to work over a network. Well, we’re pretty much
going to do that, but we do need to make a few changes.

import java.rmi.*;

public class GumballMonitor {
 GumballMachineRemote machine;

 public GumballMonitor(GumballMachineRemote machine) {
 this.machine = machine;
 }

 public void report() {
 try {
 System.out.println(“Gumball Machine: “ + machine.getLocation());
 System.out.println(“Current inventory: “ + machine.getCount() + “ gumballs”);
 System.out.println(“Current state: “ + machine.getState());
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
}

We also need to catch any remote exceptions that might happen as we try to invoke methods that are ultimately happening over the network.

Now we’re going to rely on
 the remote

interface rather th
an the concrete

GumballMachine class.

We need to import the RMI package because w
e are

using the RemoteException class below
...

Frank was right; this
is working out quite

nicely!

gumball monitor client

the proxy pattern

you are here 4 455

Writing the Monitor test drive
Now we’ve got all the pieces we need. We just need to write some
code so the CEO can monitor a bunch of gumball machines:

import java.rmi.*;

public class GumballMonitorTestDrive {

 public static void main(String[] args) {
 String[] location = {“rmi://santafe.mightygumball.com/gumballmachine”,
 “rmi://boulder.mightygumball.com/gumballmachine”,
 “rmi://seattle.mightygumball.com/gumballmachine”};

 GumballMonitor[] monitor = new GumballMonitor[location.length];

 for (int i=0;i < location.length; i++) {
 try {
 GumballMachineRemote machine =
 (GumballMachineRemote) Naming.lookup(location[i]);
 monitor[i] = new GumballMonitor(machine);
 System.out.println(monitor[i]);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 for(int i=0; i < monitor.length; i++) {
 monitor[i].report();
 }
 }
}

Here’s all the locatio
ns

were going to monitor.

Here’s the monitor test drive. The
CEO is going to run this!

We create an
array of locations,
one for each
machine.

Then we iterate through each
machine and print out its report.

Now we need to get a proxy
to each remote machine.

We also create an
array of monitors.

456 Chapter 11

Code Up Close

On each machine, run rmiregistry in
the background or from a separate
terminal window...

 try {
 GumballMachineRemote machine =
 (GumballMachineRemote) Naming.lookup(location[i]);

 monitor[i] = new GumballMonitor(machine);

 } catch (Exception e) {
 e.printStackTrace();
 }

Remember, Naming.lookup() is a
static method in the RMI package
that takes a location and service
name and looks it up in the
rmiregistry at that location.

This returns a proxy to the remote
Gumball Machine (or throws an exception
if one can’t be located).

Once we get a proxy to the r
emote

machine, we create a new GumballMonitor

and pass it the machine to monitor.

Another demo for the CEO of Mighty Gumball...

...and then run the GumballMachine, giving it
a location and an initial gumball count.

% rmiregistry &

% java GumballMachine santafe.mightygumball.com 100

File Edit Window Help Huh?

File Edit Window Help Huh?

% rmiregistry &

% java GumballMachine boulder.mightygumball.com 100

File Edit Window Help Huh?

% rmiregistry &

% java GumballMachine seattle.mightygumball.com 250

popular machine!

Okay, it’s time to put all this work together and give another demo. First let’s make
sure a few gumball machines are running the new code:

the gumball machine proxy

the proxy pattern

you are here 4 457

And now let’s put the monitor in the hands of the CEO.
Hopefully this time he’ll love it:

File Edit Window Help GumballsAndBeyond

% java GumballMonitor

Gumball Machine: santafe.mightygumball.com

Current inventory: 99 gumballs

Current state: waiting for quarter

Gumball Machine: boulder.mightygumball.com

Current inventory: 44 gumballs

Current state: waiting for turn of crank

Gumball Machine: seattle.mightygumball.com

Current inventory: 187 gumballs

Current state: waiting for quarter

%

The monitor iterates
over each remote
machine and calls its
getLocation(),
getCount() and
getState() methods.

This is amazing;
it’s going to revolutionize my
business and blow away the

competition!

By invoking methods on the proxy, a remote call
is made across the wire and a String, an integer
and a State object are returned. Because we are
using a proxy, the GumballMonitor doesn’t know,
or care, that calls are remote (other than having
to worry about remote exceptions).

458 Chapter 11

This worked great! But
I want to make sure I

understand exactly what’s
going on...

CEO’s desktop
Remote Gumball Machine with a JVM

GumballMachine
GumballMonito

r Proxy/Stu
b Skeleton

seattle

Proxy/Stub

RMI registry (on gumball machine)1

3

lookup(“seattle”)

proxy returned

getState()

2

Type is GumballMachineRemote

1 The CEO runs the monitor, which first grabs the proxies to the remote
gumball machines and then calls getState() on each one (along with
getCount() and getLocation()).

Behind
the Scenes

proxy behind the scenes

the proxy pattern

you are here 4 459

GumballMachine

GumballMonito
r Proxy/Stu

b Skeleton

getState()

2 getState() is called on the proxy, which forwards the call to the remote
service. The skeleton receives the request and then forwards it to the
gumball machine.

getState()

3 GumballMachine returns the state to the skeleton, which serializes it and
transfers it back over the wire to the proxy. The proxy deserializes it and
returns it as an object to the monitor.

GumballMachine
GumballMonito

r Proxy/Stu
b Skeleton

State
object

State
object

Serialized
State

The monitor hasn’t change
d at all,

except it knows it may encounter

remote exceptions. It
also uses the

GumballMachineRemote interface rathe
r

than a concrete implementation.

Likewise, the GumballMachine
implements another interface and
may throw a remote exception in its
constructor, but other than that, the
code hasn’t changed.

We also have a small bit of code to register and locate stubs using the
RMI registry. But no matter what, if we were writing something to
work over the Internet, we’d need some kind of locator service.

460 Chapter 11

Well, we’ve seen how the Proxy Pattern provides a surrogate or
placeholder for another object. We’ve also described the proxy as
a “representative” for another object.

But what about a proxy controlling access? That sounds a little
strange. No worries. In the case of the gumball machine, just
think of the proxy controlling access to the remote object. The
proxy needed to control access because our client, the monitor,
didn’t know how to talk to a remote object. So in some sense the
remote proxy controlled access so that it could handle the network
details for us. As we just discussed, there are many variations of
the Proxy Pattern, and the variations typically revolve around the
way the proxy “controls access.” We’re going to talk more about
this later, but for now here are a few ways proxies control access:

Now that you’ve got the gist of the general pattern, check out the
class diagram...

The Proxy Pattern defined

The Proxy Pattern provides a surrogate or
placeholder for another object to control access to it.

We’ve already put a lot of pages behind us in this chapter; as you
can see, explaining the Remote Proxy is quite involved. Despite
that, you’ll see that the definition and class diagram for the Proxy
Pattern is actually fairly straightforward. Note that Remote Proxy is
one implementation of the general Proxy Pattern; there are actually
quite a few variations of the pattern, and we’ll talk about them later.
For now, let’s get the details of the general pattern down.

Here’s the Proxy Pattern definition:

ß As we know, a remote proxy controls access to a
remote object.

ß A virtual proxy controls access to a resource that is
expensive to create.

ß A protection proxy controls access to a resource
based on access rights.

Use the Proxy
Pattern to create a
representative object
that controls access
to another object,
which may be remote,
expensive to create or
in need of securing.

the proxy pattern defined

the proxy pattern

you are here 4 461

Both the Proxy and the

RealSubject implement the

Subject interface. T
his

allows any client to treat

the proxy just like t
he

RealSubject.

The RealSubject is
usually the object
that does most
of the real work;
the Proxy controls
access to it.

The Proxy keeps a
reference to the
Subject, so it can
forward requests
to the Subject
when necessary.

<<interface>>
Subject

request()

RealSubject

request()

Proxy
subject

request()

The Proxy often instantiates
or handles the creation of
the RealSubject.

Let’s step through the diagram...

First we have a Subject, which provides an interface for the RealSubject and the Proxy.
By implementing the same interface, the Proxy can be substituted for the RealSubject
anywhere it occurs.

The RealSubject is the object that does the real work. It’s the object that the Proxy
represents and controls access to.

The Proxy holds a reference to the RealSubject. In some cases, the Proxy may be
responsible for creating and destroying the RealSubject. Clients interact with the
RealSubject through the Proxy. Because the Proxy and RealSubject implement the
same interface (Subject), the Proxy can be substituted anywhere the subject can be
used. The Proxy also controls access to the RealSubject; this control may be needed
if the Subject is running on a remote machine, if the Subject is expensive to create in
some way or if access to the subject needs to be protected in some way.

Now that you understand the general pattern, let’s look at some other ways of using
proxy beyond the Remote Proxy...

462 Chapter 11

Get ready for Virtual Proxy

Okay, so far you’ve seen the definition of the Proxy Pattern and you’ve taken a look
at one specific example: the Remote Proxy. Now we’re going to take a look at a different
type of proxy, the Virtual Proxy. As you’ll discover, the Proxy Pattern can manifest
itself in many forms, yet all the forms follow roughly the general proxy design. Why
so many forms? Because the proxy pattern can be applied to a lot of different use
cases. Let’s check out the Virtual Proxy and compare it to Remote Proxy:

 RealSubject

 Client
Proxy

Remote Proxy request()

With Remote Proxy, the proxy
acts as a local representative
for an object that lives in a
different JVM. A method call
on the proxy results in the call
being transferred over the wire,
invoked remotely, and the result
being returned back to the proxy
and then to the Client.

 RealSubject Client
Proxy

Virtual Proxy
Virtual Proxy acts as a
representative for an object that
may be expensive to create. The
Virtual Proxy often defers the
creation of the object until it
is needed; the Virtual Proxy
also acts as a surrogate for
the object before and while it
is being created. After that, the
proxy delegates requests directly to
the RealSubject.

We know this diagram
pretty well by now...

Big “expensive to create”
object.

The proxy creates
the RealSubject
when it’s needed.

request()

request()

The proxy may handle the request, or if
the RealSubject has been created, delegate
the calls to the RealSubject.

virtual proxy

the proxy pattern

you are here 4 463

While the CD cover
is loading, the proxy
displays a message.

When the CD cover is

fully loaded
, the proxy

displays the
 image.

Choose the album cover of your liking here.

Displaying CD covers
Let’s say you want to write an application that displays your favorite compact disc
covers. You might create a menu of the CD titles and then retrieve the images
from an online service like Amazon.com. If you’re using Swing, you might create
an Icon and ask it to load the image from the network. The only problem is,
depending on the network load and the bandwidth of your connection, retrieving
a CD cover might take a little time, so your application should display something
while you are waiting for the image to load. We also don’t want to hang up the
entire application while it’s waiting on the image. Once the image is loaded, the
message should go away and you should see the image.

An easy way to achieve this is through a virtual proxy. The virtual proxy can
stand in place of the icon, manage the background loading, and before the
image is fully retrieved from the network, display “Loading CD cover, please
wait...”. Once the image is loaded, the proxy delegates the display to the Icon.

464 Chapter 11

Designing the CD cover Virtual Proxy

<<interface>>
Icon

getIconWidth()

getIconHeight()

paintIcon()

ImageProxy
subject

getIconWidth()

getIconHeight()

paintIcon()

getIconWidth()

getIconHeight()

paintIcon()

ImageIcon

This is javax.swing.ImageIcon, a class that displays an Image. This is our proxy, which first
displays a message and then when
the image is loaded, delegates to
ImageIcon to display the image.

This is the Swing
Icon interface used
to display images in a
user interface.

Before writing the code for the CD Cover Viewer, let’s look at the class diagram.
You’ll see this looks just like our Remote Proxy class diagram, but here the proxy is
used to hide an object that is expensive to create (because we need to retrieve the data
for the Icon over the network) as opposed to an object that actually lives somewhere
else on the network.

ImageProxy fi rst creates an ImageIcon and starts
loading it from a network URL.

While the bytes of the image are being retrieved,
ImageProxy displays “Loading CD cover, please
wait...”.

When the image is fully loaded, ImageProxy del-
egates all method calls to the image icon, including
paintIcon(), getWidth() and getHeight().

If the user requests a new image, we’ll create a
new proxy and start the process over.

How ImageProxy is going to work:

1

2

3

4

image proxy controls access

the proxy pattern

you are here 4 465

Writing the Image Proxy

class ImageProxy implements Icon {
 ImageIcon imageIcon;
 URL imageURL;
 Thread retrievalThread;
 boolean retrieving = false;

 public ImageProxy(URL url) { imageURL = url; }

 public int getIconWidth() {
 if (imageIcon != null) {
 return imageIcon.getIconWidth();
 } else {
 return 800;
 }
 }

 public int getIconHeight() {
 if (imageIcon != null) {
 return imageIcon.getIconHeight();
 } else {
 return 600;
 }
 }

 public void paintIcon(fi nal Component c, Graphics g, int x, int y) {
 if (imageIcon != null) {
 imageIcon.paintIcon(c, g, x, y);
 } else {
 g.drawString(“Loading CD cover, please wait...”, x+300, y+190);
 if (!retrieving) {
 retrieving = true;
 retrievalThread = new Thread(new Runnable() {
 public void run() {
 try {
 imageIcon = new ImageIcon(imageURL, “CD Cover”);
 c.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 retrievalThread.start();
 }
 }
 }
}

We pass the URL of the image into
the constructor. This is the image
we need to display once it’s loaded!

The imageIcon is the REAL icon that we
eventually want to display when it’s loaded.

We return a default width and height
until the imageIcon is loaded; then we
turn it over to the imageIcon.

Here’s where things get interesting.
This code paints the icon on the
screen (by delegating to the
imageIcon). However, if we don’t have
a fully created ImageIcon, then we
create one. Let’s look at this closer
on the next page...

<<interface>>
Icon

getIconWidth()

getIconHeight()

paintIcon()

The ImageProxy
implements the Icon
interface.

466 Chapter 11

.Code Up Close

 public void paintIcon(final Component c, Graphics g, int x, int y) {
 if (imageIcon != null) {

 imageIcon.paintIcon(c, g, x, y);

 } else {

 g.drawString(“Loading CD cover, please wait...”, x+300, y+190);
 if (!retrieving) {

 retrieving = true;
 retrievalThread = new Thread(new Runnable() {
 public void run() {
 try {
 imageIcon = new ImageIcon(imageURL, “CD Cover”);
 c.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });

 retrievalThread.start();
 }
 }
 }

This method is called when it’s time to paint the icon on the screen.

If we’ve got an icon already, we go
ahead and tell it to paint itself.

Otherwise we
display the

“loading” message.

Here’s where we load the REAL icon image. Note that

the image loading with IconImage is synchrono
us: the

ImageIcon constru
ctor doesn’t re

turn until the i
mage is

loaded. That doesn’t giv
e us much of a chance

 to do

screen updates
and have our m

essage displayed
, so we’re

going to do thi
s asynchronously

. See the “Code Way Up

Close” on the nex
t page for more...

image proxy up close

the proxy pattern

you are here 4 467

 if (!retrieving) {
 retrieving = true;

 retrievalThread = new Thread(new Runnable() {
 public void run() {
 try {
 imageIcon = new ImageIcon(imageURL, “CD Cover”);
 c.repaint();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 retrievalThread.start();
 }

In our thread we instantiate the Icon object. Its constructor will not return until the image is loaded.

If we aren’t already trying to retrieve the image...

We don’t want to hang up the
entire user interface, so we’re
going to use another thread to
retrieve the image.

When we have the image,
we tell Swing that we
need to be repainted.

So, the next time the display is painted after the ImageIcon is instantiated, the paintIcon
method will paint the image, not the loading message.

...then it’s time to start retrieving it (in case you

were wondering, only one thread calls paint, so we

should be okay here in terms of thread safety).

Code Way Up Close

468 Chapter 11

The ImageProxy class appears to have two states that are controlled
by conditional statements. Can you think of another pattern that
might clean up this code? How would you redesign ImageProxy?

Two states

Two states

Two states

 Design Puzzle

class ImageProxy implements Icon {
 // instance variables & constructor here

 public int getIconWidth() {
 if (imageIcon != null) {
 return imageIcon.getIconWidth();
 } else {
 return 800;
 }
 }

 public int getIconHeight() {
 if (imageIcon != null) {
 return imageIcon.getIconHeight();
 } else {
 return 600;
 }
 }

 public void paintIcon(final Component c, Graphics g, int x, int y) {
 if (imageIcon != null) {
 imageIcon.paintIcon(c, g, x, y);
 } else {
 g.drawString(“Loading CD cover, please wait...”, x+300, y+190);
 // more code here
 }
 }
}

design puzzle

the proxy pattern

you are here 4 469

public class ImageProxyTestDrive {
 ImageComponent imageComponent;
 public static void main (String[] args) throws Exception {
 ImageProxyTestDrive testDrive = new ImageProxyTestDrive();
 }

 public ImageProxyTestDrive() throws Exception{

 // set up frame and menus

 Icon icon = new ImageProxy(initialURL);
 imageComponent = new ImageComponent(icon);
 frame.getContentPane().add(imageComponent);
 }
}

Testing the CD Cover Viewer

Here we create an image proxy and set
it to an initial URL. Whenever you
choose a selection from the CD menu,
you’ll get a new image proxy.

Ready-bake
Code

Okay, it’s time to test out this fancy new virtual proxy. Behind the
scenes we’ve been baking up a new ImageProxyTestDrive that sets up
the window, creates a frame, installs the menus and creates our proxy.
We don’t go through all that code in gory detail here, but you can
always grab the source code and have a look, or check it out at the end
of the chapter where we list all the source code for the Virtual Proxy.

Here’s a partial view of the test drive code:

Next we wrap our proxy in a
component so it can be added to
the frame. The component will
take care of the proxy’s width,
height and similar details.Finally we add the proxy to the frame

so it can be displayed.
Now let’s run the test drive:

Running ImageProxyTestDrive should
give you a window like this.

Use the menu to load different CD covers; watch the
proxy display “loading” until the image has arrived.

Resize the window as the “loading” message is
displayed. Notice that the proxy is handling the loading
without hanging up the Swing window.

Add your own favorite CDs to the ImageProxyTestDrive.

Things to try...

1

2

3

File Edit Window Help JustSomeOfTheCDsThatGotUsThroughThisBook

% java ImageProxyTestDrive

470 Chapter 11

ImageIcon

get image

What did we do?

ImageIcon

 ImagePro

xy
image retrieved

We created an ImageProxy for the display. The paintIcon()
method is called and ImageProxy fi res off a thread to
retrieve the image and create the ImageIcon.

paintIcon()

ImageProxy creates a

thread to instantia
te the

ImageIcon, which starts

retrieving the image.

displays loading
message

At some point the image is returned and
the ImageIcon fully instantiated.

After the ImageIcon is created, the next time paintIcon() is
called, the proxy delegates to the ImageIcon.

ImageIcon
 ImagePro

xy

paintIcon()

displays the real image

paintIcon()

Behind
the Scenes

1

2

3

Some image
server on
the Internet

behind the scenes with image proxy

the proxy pattern

you are here 4 471

Q: The Remote Proxy and Virtual
Proxy seem so different to me; are
they really ONE pattern?

A: You’ll find a lot of variants of the
Proxy Pattern in the real world; what
they all have in common is that they
intercept a method invocation that
the client is making on the subject.
This level of indirection allows us to
do many things, including dispatching
requests to a remote subject, providing
a representative for an expensive
object as it is created, or, as you’ll see,
providing some level of protection that
can determine which clients should be
calling which methods. That’s just the
beginning; the general Proxy Pattern
can be applied in many different ways,
and we’ll cover some of the other ways
at the end of the chapter.

Q: ImageProxy seems just like
a Decorator to me. I mean, we are
basically wrapping one object with
another and then delegating the
calls to the ImageIcon. What am I
missing?

A: Sometimes Proxy and Decorator
look very similar, but their purposes are
different: a decorator adds behavior to
a class, while a proxy controls access
to it. You might say, “Isn’t the loading
message adding behavior?” In some

ways it is; however, more importantly,
the ImageProxy is controlling access
to an ImageIcon. How does it control
access? Well, think about it this way:
the proxy is decoupling the client from
the ImageIcon. If they were coupled
the client would have to wait until each
image is retrieved before it could paint
it entire interface. The proxy controls
access to the ImageIcon so that before
it is fully created, the proxy provides
another on screen representation.
Once the ImageIcon is created the
proxy allows access.

Q: How do I make clients use the
Proxy rather than the Real Subject?

A: Good question. One common
technique is to provide a factory that
instantiates and returns the subject.
Because this happens in a factory
method we can then wrap the subject
with a proxy before returning it. The
client never knows or cares that it’s
using a proxy instead of the real thing.

Q: I noticed in the ImageProxy
example, you always create a new
ImageIcon to get the image, even
if the image has already been
retrieved. Could you implement
something similar to the ImageProxy
that caches past retrievals?

A: You are talking about a special-
ized form of a Virtual Proxy called
a Caching Proxy. A caching proxy
maintains a cache of previous created
objects and when a request is made it
returns cached object, if possible.

We’re going to look this and at several
other variants of the Proxy Pattern at
the end of the chapter.

Q: I see how Decorator and Proxy
relate, but what about Adapter? An
adapter seems very similar as well.

A: Both Proxy and Adapter sit in
front of other objects and forward
requests to them. Remember that
Adapter changes the interface of
the objects it adapts, while the Proxy
implements the same interface.

There is one additional similarity that
relates to the Protection Proxy. A
Protection Proxy may allow or disallow
a client access to particular methods
in an object based on the role of the
client. In this way a Protection Proxy
may only provide a partial interface to
a client, which is quite similar to some
Adapters. We are going to take a look
at Protection Proxy in a few pages.

there are noDumb Questions

472 Chapter 11

Hello, Decorator. I presume you’re here
because people sometimes get us confused?

Well, I think the reason people get us confused
is that you go around pretending to be an
entirely different pattern, when in fact, you’re
just a Decorator in disguise. I really don’t
think you should be copying all my ideas.

Me copying your ideas? Please. I control access
to objects. You just decorate them. My job is
so much more important than yours it’s just not
even funny.

Fine, so maybe you’re not entirely frivolous...
but I still don’t get why you think I’m copying
all your ideas. I’m all about representing my
subjects, not decorating them. You can call it “representation” but if it looks

like a duck and walks like a duck... I mean, just
look at your Virtual Proxy; it’s just another
way of adding behavior to do something while
some big expensive object is loading, and your
Remote Proxy is a way of talking to remote
objects so your clients don’t have to bother
with that themselves. It’s all about behavior,
just like I said. I don’t think you get it, Decorator. I stand in for

my Subjects; I don’t just add behavior. Clients
use me as a surrogate of a Real Subject, because
I can protect them from unwanted access, or keep
their GUIs from hanging up while they’re waiting
for big objects to load, or hide the fact that their
Subjects are running on remote machines. I’d say
that’s a very different intent from yours!

Tonight’s talk: Proxy and Decorator get intentional.

Proxy Decorator

“Just” decorate? You think decorating is some
frivolous unimportant pattern? Let me tell
you buddy, I add behavior. That’s the most
important thing about objects - what they do!

Call it what you want. I implement the same
interface as the objects I wrap; so do you.

fireside chats: proxy and decorator

the proxy pattern

you are here 4 473

Okay, but we all know remote proxies are kinda
weird. Got a second example? I doubt it.

Think about a remote proxy... what object am
I wrapping? The object I’m representing and
controlling access to lives on another machine!
Let’s see you do that.

Oh yeah? Instantiate this!

Proxy Decorator

Okay, let’s review that statement. You wrap
an object. While sometimes we informally say
a proxy wraps its Subject, that’s not really an
accurate term. Oh yeah? Why not?

Sure, okay, take a virtual proxy... think about
the CD viewer example. When the client first
uses me as a proxy the subject doesn’t even
exist! So what am I wrapping there?

Hey, after this conversation I’m convinced
you’re just a dumb proxy!

Dumb proxy? I’d like to see you recursively
wrap an object with 10 decorators and keep
your head straight at the same time.

Uh huh, and the next thing you’ll be saying is
that you actually get to create objects.

I never knew decorators were so dumb! Of
course I sometimes create objects, how do you
think a virtual proxy gets its subject! Okay, you
just pointed out a big difference between us:
we both know decorators only add window
dressing; they never get to instantiate anything.

Very seldom will you ever see a proxy get into
wrapping a subject multiple times; in fact, if
you’re wrapping something 10 times, you
better go back reexamine your design. Just like a proxy, acting all real when in fact you

just stand in for the objects doing the real work.
You know, I actually feel sorry for you.

474 Chapter 11

Using the Java API’s Proxy to create a
protection proxy

Java’s got its own proxy support right in the java.lang.refl ect package. With this package, Java
lets you create a proxy class on the fl y that implements one or more interfaces and forwards
method invocations to a class that you specify. Because the actual proxy class is created at
runtime, we refer to this Java technology as a dynamic proxy.

We’re going to use Java’s dynamic proxy to create our next proxy implementation (a
protection proxy), but before we do that, let’s quickly look at a class diagram that shows how
dynamic proxies are put together. Like most things in the real world, it differs slightly from
the classic defi nition of the pattern:

<<interface>>
Subject

request()

RealSubject
request()

Proxy

request()

<<interface>>
InvocationHandler

invoke()

InvocationHandler

The Proxy now consists

of two classes.

The Proxy is generated
by Java and implements
the entire Subject
interface.

You supply the InvocationHandler, which gets

passed all method calls that are invoked on the

Proxy. The InvocationHandler controls access to

the methods of the RealSubject.

Because Java creates the Proxy class for you, you need a way to tell the Proxy class what to do. You can’t
put that code into the Proxy class like we did before, because you’re not implementing one directly. So, if
you can’t put this code in the Proxy class, where do you put it? In an InvocationHandler. The job of the
InvocationHandler is to respond to any method calls on the proxy. Think of the InvocationHandler as the
object the Proxy asks to do all the real work after it’s received the method calls.

Okay, let’s step through how to use the dynamic proxy...

invoke()

protection proxy

the proxy pattern

you are here 4 475

Matchmaking in Objectville

public interface PersonBean {

 String getName();
 String getGender();
 String getInterests();
 int getHotOrNotRating();

 void setName(String name);
 void setGender(String gender);
 void setInterests(String interests);
 void setHotOrNotRating(int rating);

}

Not
Hot

Every town needs a matchmaking service, right? You’ve risen to the task and
implemented a dating service for Objectville. You’ve also tried to be innovative by
including a “Hot or Not” feature in the service where participants can rate each
other – you figure this keeps your customers engaged and looking through possible
matches; it also makes things a lot more fun.

Your service revolves around a Person bean that allows you to set and get information
about a person:

Here we can get information about the person’s name, gender, interests and HotOrNot rating (1-10).

We can also set the same
information through the
respective method calls.

setHotOrNotRating() takes

an integer and ad
ds it to the

running average fo
r this person.

This is the inte
rface; we’ll

get to the im
plementation

in just a sec..
.

Now let’s check out the implementation...

476 Chapter 11

public class PersonBeanImpl implements PersonBean {
 String name;
 String gender;
 String interests;
 int rating;
 int ratingCount = 0;

 public String getName() {
 return name;
 }

 public String getGender() {
 return gender;
 }

 public String getInterests() {
 return interests;
 }

 public int getHotOrNotRating() {
 if (ratingCount == 0) return 0;
 return (rating/ratingCount);
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setGender(String gender) {
 this.gender = gender;
 }

 public void setInterests(String interests) {
 this.interests = interests;
 }

 public void setHotOrNotRating(int rating) {
 this.rating += rating;
 ratingCount++;
 }
}

The instance variables.

The PersonBeanImpl implements the PersonBean interface

All the getter methods; they each return
the appropriate instance variable...

...except for
getHotOrNotRating(), which
computes the average of the
ratings by dividing the ratings
by the ratingCount.

And here’s all the setter
methods, which set the
corresponding instance variable.

Finally, the
setHotOrNotRating() method increments the total ratingCount and adds the rating to the running total.

The PersonBean implementation

personbean needs protecting

the proxy pattern

you are here 4 477

I wasn’t very successful finding
dates. Then I noticed someone had changed

my interests. I also noticed that a lot of people
are bumping up their HotOrNot scores by giving

themselves high ratings. You shouldn’t be able
to change someone else’s interests or give

yourself a rating!

While we suspect other factors may be keeping Elroy from getting
dates, he is right: you shouldn’t be able to vote for yourself or to change
another customer’s data. The way our PersonBean is defined, any client
can call any of the methods.

This is a perfect example of where we might be able to use a Protection
Proxy. What’s a Protection Proxy? It’s a proxy that controls access to
an object based on access rights. For instance, if we had an employee
object, a protection proxy might allow the employee to call certain
methods on the object, a manager to call additional methods (like
setSalary()), and a human resources employee to call any method on the
object.

In our dating service we want to make sure that a customer can set his
own information while preventing others from altering it. We also want
to allow just the opposite with the HotOrNot ratings: we want the other
customers to be able to set the rating, but not that particular customer.
We also have a number of getter methods in the PersonBean, and
because none of these return private information, any customer should
be able to call them.

Elroy

478 Chapter 11

Five minute drama: protecting subjects
The Internet bubble seems a distant memory; those were the days
when all you needed to do to find a better, higher-paying job was to
walk across the street. Even agents for software developers were
in vogue...

Like a protect
ion proxy,

the agent pro
tects access

to his subject
, only letting

certain calls t
hrough...

Agent

Joe DotCom

five minute drama

I’d like to make an
offer, can we get her on

the phone?

She’s tied up ... uh ...
in a meeting right now,

what did you have in
mind?

We think we can
meet her current
salary plus 15%.

Come
on. You’re wasting our

time here! Not a chance!
Come back later with a

better offer.

the proxy pattern

you are here 4 479

Big Picture: creating a Dynamic Proxy
for the PersonBean
We have a couple of problems to fi x: customers shouldn’t be changing their own
HotOrNot rating and customers shouldn’t be able to change other customers’ personal
information. To fi x these problems we’re going to create two proxies: one for accessing
your own PersonBean object and one for accessing another customer’s PersonBean
object. That way, the proxies can control what requests can be made in each
circumstance.

<<interface>>
Subject

request()

RealSubject

request()

Proxy

request()

<<interface>>
InvocationHandler

invoke()

InvocationHandler

Create two InvocationHandlers.

Write the code that creates the
dynamic proxies.

Wrap any PersonBean object with
the appropriate proxy.

InvocationHandlers implement the behavior
of the proxy. As you’ll see Java will take care
of creating the actual proxy class and object,
we just need to supply a handler that knows
what to do when a method is called on it.

We need to write a little bit of code to
generate the proxy class and instantiate it.
We’ll step through this code in just a bit.

When we need to use a PersonBean object,
either it’s the object of the customer himself
(in that case, will call him the “owner”), or it’s
another user of the service that the customer is
checking out (in that case we’ll call him “non-
owner”).

In either case, we create the appropriate proxy
for the PersonBean.

Step one:

Step two:

Step three:

We need two
of these.

We create the
proxy itself at
runtime.

request()

Proxy

invoke()

OwnerInvocationHandler

request()

Proxy

invoke()

NonOwnerInvocationHandler

When a customer is viewing his own bean

When a customer is viewing someone else’s bean

invoke()

To create these proxies we’re going to use the
Java API’s dynamic proxy that you saw a few
pages back. Java will create two proxies for us;
all we need to do is supply the handlers that
know what to do when a method is invoked on
the proxy.

Remember this diagram
from a few pages back...

480 Chapter 11

Step one: creating Invocation Handlers

We know we need to write two invocation handlers, one for the owner and one for the non-owner. But
what are invocation handlers? Here’s the way to think about them: when a method call is made on the
proxy, the proxy forwards that call to your invocation handler, but not by calling the invocation handler’s
corresponding method. So, what does it call? Have a look at the InvocationHandler interface:

There’s only one method, invoke(), and no matter what methods get called on the proxy, the invoke()
method is what gets called on the handler. Let’s see how this works:

proxy.setHotOrNotRating(9);

invoke(Object proxy, Method method, Object[] args)

Let’s say the setHotOrNotRating()
method is called on the proxy.

The proxy then
turns around and
calls invoke() on the
InvocationHandler.

1

2

The handler decides
what it should do
with the request
and possibly
forwards it on to
the RealSubject.
How does the
handler decide?
We’ll fi nd out next.

3

return method.invoke(person, args);

Here we invoke the
original method that was
called on the proxy. This
object was passed to us in
the invoke call.

Only now we
invoke it on the
RealSubject...

with the original
arguments.

Here’s how we
invoke the method
on the Real
Subject.

create an invocation handler

The Method class, part of the
reflection API, tells us what
method was called on the proxy
via its getName() method.

<<interface>>
OwnerInvocationHandler

invoke()

the proxy pattern

you are here 4 481

import java.lang.reflect.*;

public class OwnerInvocationHandler implements InvocationHandler {
 PersonBean person;

 public OwnerInvocationHandler(PersonBean person) {
 this.person = person;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws IllegalAccessException {

 try {
 if (method.getName().startsWith(“get”)) {
 return method.invoke(person, args);
 } else if (method.getName().equals(“setHotOrNotRating”)) {
 throw new IllegalAccessException();
 } else if (method.getName().startsWith(“set”)) {
 return method.invoke(person, args);
 }
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }
 return null;
 }
}

Creating Invocation Handlers continued...

When invoke() is called by the proxy, how do you know what to do with the call?
Typically, you’ll examine the method that was called on the proxy and make
decisions based on the method’s name and possibly its arguments. Let’s implement
the OwnerInvocationHandler to see how this works:

InvocationHandler is part of the java.lang.reflect

package, so we need to import it.
All invocation
handlers implement the InvocationHandler interface.

We’re passed the
Real Subject in the constructor and we keep a reference to it.

Here’s the invoke
method that gets
called every time a
method is invoked
on the proxy.

If the method is a
getter, we go ahead
and invoke it on the
real subject.

Otherwise, if it is the
setHotOrNotRating()
method we disallow
it by throwing a
IllegalAccessException.

Because we are the owner any
other set method is fine and we go ahead and invoke it on the real
subject.

If any other method is called, we’re just going to return null rather than take a chance.

This will happen if the real subject throws an exception.

482 Chapter 11

The NonOwnerInvocationHandler works just like the
OwnerInvocationHandler except that it allows calls to setHotOrNotRating()
and it disallows calls to any other set method. Go ahead and write this
handler yourself:

Exercise

create your own invocation handler

the proxy pattern

you are here 4 483

Now, all we have left is to dynamically create the proxy class and instantiate the proxy object. Let’s start by writing a
method that takes a PersonBean and knows how to create an owner proxy for it. That is, we’re going to create the
kind of proxy that forwards its method calls to the OwnerInvocationHandler. Here’s the code:

Step two: creating the Proxy class and
instantiating the Proxy object

PersonBean getOwnerProxy(PersonBean person) {

 return (PersonBean) Proxy.newProxyInstance(
 person.getClass().getClassLoader(),
 person.getClass().getInterfaces(),
 new OwnerInvocationHandler(person));
}

This method takes a person object (the real
subject) and returns a proxy for it. Because the
proxy has the same interface as the subject, we
return a PersonBean.

This code creates the
proxy. Now this is some
mighty ugly code, so let’s
step through it carefully.

To create a proxy we use
the static newProxyInstance
method on the Proxy class...

We pass it the classloader
for our subject...

...and the set of interfaces the
proxy needs to implement...

...and an invocation handler, in this
case our OwnerInvocationHandler.

We pass the real subject into the constructor
of the invocation handler. If you look back
two pages you’ll see this is how the handler gets
access to the real subject.

Sharpen your pencil
While it is a little complicated, there isn’t much to creating a dynamic proxy.
Why don’t you write getNonOwnerProxy(), which returns a proxy for the
NonOwnerInvocationHandler:

Take it further: can you write one method getProxy() that takes a
handler and a person and returns a proxy that uses that handler?

484 Chapter 11

Testing the matchmaking service

public class MatchMakingTestDrive {
 // instance variables here

 public static void main(String[] args) {
 MatchMakingTestDrive test = new MatchMakingTestDrive();
 test.drive();
 }

 public MatchMakingTestDrive() {
 initializeDatabase();
 }
 public void drive() {
 PersonBean joe = getPersonFromDatabase(“Joe Javabean”);
 PersonBean ownerProxy = getOwnerProxy(joe);
 System.out.println(“Name is “ + ownerProxy.getName());
 ownerProxy.setInterests(“bowling, Go”);
 System.out.println(“Interests set from owner proxy”);
 try {
 ownerProxy.setHotOrNotRating(10);
 } catch (Exception e) {
 System.out.println(“Can’t set rating from owner proxy”);
 }
 System.out.println(“Rating is “ + ownerProxy.getHotOrNotRating());

 PersonBean nonOwnerProxy = getNonOwnerProxy(joe);
 System.out.println(“Name is “ + nonOwnerProxy.getName());
 try {
 nonOwnerProxy.setInterests(“bowling, Go”);
 } catch (Exception e) {
 System.out.println(“Can’t set interests from non owner proxy”);
 }
 nonOwnerProxy.setHotOrNotRating(3);
 System.out.println(“Rating set from non owner proxy”);
 System.out.println(“Rating is “ + nonOwnerProxy.getHotOrNotRating());
 }

 // other methods like getOwnerProxy and getNonOwnerProxy here
}

Let’s give the matchmaking service a test run and see how it controls access to the
setter methods based on the proxy that is used.

Main just creates the test
drive and calls its drive()
method to get things going.

The constructor initializes
our DB of people in the
matchmaking service.

Let’s retrieve a
person from the DB

...and create an
owner proxy.

Call a getter
and then a setter

and then try to
change the rating.

this shouldn’t work!

Now create a non-
owner proxy

...and call a getter
followed by a
setter

This shouldn’t work!

Then try to
set the rating

This should work!

find your match

the proxy pattern

you are here 4 485

File Edit Window Help Born2BDynamic

% java MatchMakingTestDrive

Name is Joe Javabean

Interests set from owner proxy

Can’t set rating from owner proxy

Rating is 7

Name is Joe Javabean

Can’t set interests from non owner proxy

Rating set from non owner proxy

Rating is 5

%

Running the code...

Our Owner proxy
allows getting and
setting, except for
the HotOrNot rating.

Our NonOwner proxy
allows getting only, but
also allows calls to set the
HotOrNot rating.

The new rating is the average of the previous rating, 7
and the value set by the nonowner proxy, 3.

486 Chapter 11

q&a about proxy

Q: So what exactly is the
“dynamic” aspect of dynamic
proxies? Is it that I’m instantiating
the proxy and setting it to a handler
at runtime?

A: No, the proxy is dynamic
because its class is created at runtime.
Think about it: before your code runs
there is no proxy class; it is created on
demand from the set of interfaces you
pass it.

Q: My InvocationHandler seems
like a very strange proxy, it doesn’t
implement any of the methods of
the class it’s proxying.

A: That is because the
InvocationHandler isn’t a proxy − it is
a class that the proxy dispatches to
for handling method calls. The proxy
itself is created dynamically at runtime
by the static Proxy.newProxyInstance()
method.

Q: Is there any way to tell if a
class is a Proxy class?

A: Yes. The Proxy class has a static
method called isProxyClass(). Calling
this method with a class will return
true if the class is a dynamic proxy
class. Other than that, the proxy class
will act like any other class that imple-
ments a particular set of interfaces.

Q: Are there any restrictions on
the types of interfaces I can pass into
newProxyInstance()?

A: Yes, there are a few. First, it is
worth pointing out that we always
pass newProxyInstance() an array of
interfaces – only interfaces are allowed,
no classes. The major restrictions are
that all non-public interfaces need to
be from the same package. You also
can’t have interfaces with clashing
method names (that is, two interfaces
with a method with the same
signature). There are a few other minor
nuances as well, so at some point you
should take a look at the fine print on
dynamic proxies in the javadoc.

Q: Why are you using skeletons?
I thought we got rid of those back in
Java 1.2.

A: You’re right; we don’t need
to actually generate skeletons. As
of Java 1.2, the RMI runtime can
dispatch the client calls directly to
the remote service using reflection.
But we like to show the skeleton,
because conceptually it helps you to
understand that there is something
under the covers that’s making that
communication between the client
stub and the remote service happen.

Q: I heard that in Java 5, I
don’t even need to generate stubs
anymore either. Is that true?

A: It sure is. In Java 5, RMI and
Dynamic Proxy got together and now
stubs are generated dynamically using
Dynamic Proxy. The remote object’s
stub is a java.lang.reflect.Proxy instance
(with an invocation handler) that is
automatically generated to handle all
the details of getting the local method
calls by the client to the remote object.
So, now you don’t have to use rmic at
all; everything you need to get a client
talking to a remote object is handled
for you behind the scenes.

there are noDumb Questions

the proxy pattern

you are here 4 487

Match each pattern with its description:

Pattern Description

Decorator

Facade

Proxy

Adapter

Wraps another object
and provides a different
interface to it

Wraps another object
and provides additional
behavior for it

Wraps another object to
control access to it

Wraps a bunch of
objects to simplify their
interface

488 Chapter 11

The Proxy Zoo

Welcome to the Objectville Zoo!

You now know about the remote, virtual and protection proxies, but
out in the wild you’re going to see lots of mutations of this pattern.
Over here in the Proxy corner of the zoo we’ve got a nice collection
of wild proxy patterns that we’ve captured for your study.

Our job isn’t done; we are sure you’re going to see more variations of
this pattern in the real world, so give us a hand in cataloging more
proxies. Let’s take a look at the existing collection:

Caching Proxy provides
temporary storage for
results of operations

that are expensive. It
can also allow multiple clients to share
the results to reduce computation or
network latency.

Firewall Proxy
controls access to a

set of network
resources, protecting

the subject from “bad” clients.

Smart Reference Proxy
provides additional actions

whenever a subject is
referenced, such as counting
the number of references to

an object.

Habitat: often seen in the location
of corporate firewall systems.

Habitat: often seen in web server proxies as well
as content management and publishing systems.

Help find a habitat

the proxy zoo

the proxy pattern

you are here 4 489

Synchronization Proxy
provides safe access to
a subject from multiple

threads.

Complexity Hiding Proxy
hides the complexity of

and controls access to a
complex set of classes.

This is sometimes called
the Facade Proxy for obvious reasons.

The Complexity Hiding Proxy differs
from the Facade Pattern in that the

proxy controls access, while the Facade
Pattern just provides an alternative

interface.
Copy-On-Write Proxy
controls the copying of
an object by deferring
the copying of an

object until it is required by
a client. This is a variant of
the Virtual Proxy.

Seen hanging around JavaSpaces, where it controls synchronized access to an underlying set of objects in a distributed environment.

Field Notes: please add your observations of other proxies in the wild here:

Habitat: seen in the vicinity of the
Java 5’s CopyOnWriteArrayList.

Help find a habitat

490 Chapter 11

It’s been a LONG chapter. Why not unwind by doing a
crossword puzzle before it ends?

� �

�

� � �

� �

�

��

��

��

��

��

��

��

��

�� ��

������

�� ����� �� ����� �� ����� ��������� ���� ������
�� ����� ���� ������ �� ��� ��������� �������
�� �� ���� ��� �� ����� �� ����� ���
�� ������ �������� ��� ���� �� ���������
��� ������� ������� ������� ���� ������
�� �������� ��������� ����� ��� ����� ���� ����
��������
��
�������� �� ��� ������� ����
��� ����� ���� �������� ������ ����� ����
������������ �������
��� � ������� ����� ����� �� ������� �� �������
��� ����� �� ����� ����� ��� ���� ����� ��������
��� �������� ���� ����� ��� ��� �������� ����
������
������������������������������������
��� ��� �� ������ ���� ���� ���� �� �����

����

�� ������ ������� ����� �������� ��� �������� ��
���� ���� ������
��������������������������������������
�� ���� ������� ���� �� � ������ ������� ��� ���
�������������������������������
��� ������� �� ������ ��� ���� � ��������� �������
��� ����������� ����������� ������� ������
������
��� ��� ����� �������� ��� ������� �������
��������� ��� ��� �������

crossword puzzle

the proxy pattern

you are here 4 491

Tools for your Design Toolbox
Your design toolbox is almost full; you’re prepared
for almost any design problem that comes your way.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically
interchangeab

le. Strategy
lets the algor

ithm

vary independ
ently from clients that

use it.

OO Patterns
Observer
dependency be

tween objects so
 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated when one object
 changes state

, all its

dependents ar
e notified and

 updated

dependents ar
e notified and

 updated when one object
 changes state

, all its

automatically

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Observer defines a one-

to-many

automatically

Decorator
responsibilities

 to an object
dynamically.

Decorators pro
vide a flexible

 responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

Decorators pro

vide a flexible
 responsibilities

 to an object
dynamically.

alternative to
 subclassing fo

r extending

functionality.

Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns
Observer defines a one-

to-many

DecoratorAbstract Factory

interface for
 creating fam

ilies of Abstract Factory

interface for
 creating fam

ilies of

interface for
 creating fam

ilies of Abstract Factory

related or de
pedent object

s without

specifying the
ir concrete cl

asses.related or de
pedent object

s without

specifying the
ir concrete cl

asses.
specifying the

ir concrete cl
asses.related or de

pedent object
s without Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

Observer defines a one-
to-many

DecoratorAbstract Factory

specifying the
ir concrete cl

asses.
Factory Method Define an

interface for
 creating an o

bject, but Factory Method

interface for
 creating an o

bject, but

interface for
 creating an o

bject, but Factory Method

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the instantiate. F
actory Method lets

a class defer
instantiation

to the

a class defer
instantiation

to the instantiate. F
actory Method lets

subclasses.

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

DecoratorAbstract Factory
Factory Method Define an

Singleton
one instance a

nd provide a g
lobal point

of access to i
t.Command - Encapsulates a

request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

 BULLET POINTS

ß The Proxy Pattern provides
a representative for another
object in order to control the
client’s access to it. There
are a number of ways it can
manage that access.

ß A Remote Proxy manages
interaction between a client
and a remote object.

ß A Virtual Proxy controls access
to an object that is expensive
to instantiate.

ß A Protection Proxy controls
access to the methods of an
object based on the caller.

ß Many other variants of
the Proxy Pattern exist
including caching proxies,
synchronization proxies,
firewall proxies, copy-on-write
proxies, and so on.

ß Proxy is structurally similar to
Decorator, but the two differ in
their purpose.

ß The Decorator Pattern adds
behavior to an object, while a
Proxy controls access.

ß Java’s built-in support for Proxy
can build a dynamic proxy
class on demand and dispatch
all calls on it to a handler of
your choosing.

ß Like any wrapper, proxies will
increase the number of classes
and objects in your designs.

Factory Method

SingletonCommand
as an object,

thereby lettin
g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Adapter - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

No new principles t
his chapter,

can you close
 the book an

d

remember them all?

Singleton

support undoa
ble operations

.

Adapter Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Facade - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

Our new pattern.
A Proxy acts as a
representative for
another object.

Adapter Encapsulates a
request

Facade
as an object,

thereby lettin
g you

parameterize client
s with different

as an object,

thereby lettin
g you

parameterize client
s with different

parameterize client
s with different

as an object,

thereby lettin
g you

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

State - Allow an object to
alter its

behavior when its intern
al state chang

es.

The object will appear to c
hange its

class.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

OO Patterns

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for ex

tension

but closed for
 modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

Only talk to yo
ur friends.

Don’t call us, w
e’ll call you.

A class should h
ave only one r

eason

to change.

OO Principles

Adapter
Facade

State - Allow an object to
alter its

behavior when its intern
al state chang

es.

The object will appear to c
hange its

class.

Proxy - Provide a surro
gate or

placeholder fo
r another obj

ect to

control access
 to it.

492 Chapter 11

The NonOwnerInvocationHandler works just like the
OwnerInvocationHandler, except that it allows calls to setHotOrNotRating()
and it disallows calls to any other set method. Go ahead and write this
handler yourself:

Exercise

import java.lang.reflect.*;

public class NonOwnerInvocationHandler implements InvocationHandler {
 PersonBean person;

 public NonOwnerInvocationHandler(PersonBean person) {
 this.person = person;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws IllegalAccessException {

 try {
 if (method.getName().startsWith(“get”)) {
 return method.invoke(person, args);
 } else if (method.getName().equals(“setHotOrNotRating”)) {
 return method.invoke(person, args);
 } else if (method.getName().startsWith(“set”)) {
 throw new IllegalAccessException();
 }
 } catch (InvocationTargetException e) {
 e.printStackTrace();
 }
 return null;
 }
}

Exercise solutions

Our ImageProxy class appears to have two states that are controlled
by conditional statements. Can you think of another pattern that
might clean up this code? How would you redesign ImageProxy?

Use State Pattern: implement two states, ImageLoaded and ImageNotLoaded. Then put the code from
the if statements into their respective states. Start in the ImageNotLoaded state and then transition to the
ImageLoaded state once the ImageIcon had been retrieved.

 Design Class

exercise solutions

the proxy pattern

you are here 4 493

Exercise solutions

�
�

� � � � � � �
�

�

�

�
�

� � � � � �

�
�

�
�

� � � �
�

�

� �
�

� � � � � � � � � � � � �
�

� �

� � � �

� �
�

� � � � � � � � � � �

� �
��

� � �

� � � �
��

� � � � � � � �

� � �
��

� �

�
��

� � � �

� �
��

� � � � � � � � � �

� � � � �
��

� � � � � �

�
��

� � � � � �

� � � �

�
��

� � � � � � � � �

�
��

� � � �
��

� � � � � �

������

��
�������������������
��
���������
�������������������������������������
��������
��
��
��������������������
���
���������������������������
��
��
��
����������������������������������
��� � ������� ����� ����� �� ������� ��
������������������
��
�������� �����

����

��
��
���������������������������������������
��������
�� ���� ������� ���� �� � ������ ������� ���
��� �������������
���
���
��������������������
���
������������������
��
��������� ��� ��� ������� ��������

Sharpen your pencil
While it is a little complicated, there isn’t much to creating a dynamic
proxy. Why don’t you write getNonOwnerProxy(), which returns a
proxy for the NonOwnerInvocationHandler:

PersonBean getNonOwnerProxy(PersonBean person) {

 return (PersonBean) Proxy.newProxyInstance(
 person.getClass().getClassLoader(),
 person.getClass().getInterfaces(),
 new NonOwnerInvocationHandler(person));
}

494 Chapter 11

The code for the CD Cover Viewer Ready-bake
Code

package headfi rst.proxy.virtualproxy;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;
public class ImageProxyTestDrive {
 ImageComponent imageComponent;
 JFrame frame = new JFrame(“CD Cover Viewer”);
 JMenuBar menuBar;
 JMenu menu;
 Hashtable cds = new Hashtable();

 public static void main (String[] args) throws Exception {
 ImageProxyTestDrive testDrive = new ImageProxyTestDrive();
 }

 public ImageProxyTestDrive() throws Exception{
 cds.put(“Ambient: Music for Airports”,”http://images.amazon.com/images/P/
B000003S2K.01.LZZZZZZZ.jpg”);
 cds.put(“Buddha Bar”,”http://images.amazon.com/images/P/B00009XBYK.01.LZZZZZZZ.
jpg”);
 cds.put(“Ima”,”http://images.amazon.com/images/P/B000005IRM.01.LZZZZZZZ.jpg”);
 cds.put(“Karma”,”http://images.amazon.com/images/P/B000005DCB.01.LZZZZZZZ.gif”);
 cds.put(“MCMXC A.D.”,”http://images.amazon.com/images/P/B000002URV.01.LZZZZZZZ.
jpg”);
 cds.put(“Northern Exposure”,”http://images.amazon.com/images/P/B000003SFN.01.
LZZZZZZZ.jpg”);
 cds.put(“Selected Ambient Works, Vol. 2”,”http://images.amazon.com/images/P/
B000002MNZ.01.LZZZZZZZ.jpg”);
 cds.put(“oliver”,”http://www.cs.yale.edu/homes/freeman-elisabeth/2004/9/Oliver_
sm.jpg”);

 URL initialURL = new URL((String)cds.get(“Selected Ambient Works, Vol. 2”));
 menuBar = new JMenuBar();
 menu = new JMenu(“Favorite CDs”);
 menuBar.add(menu);
 frame.setJMenuBar(menuBar);

ready-bake code: cd cover viewer

the proxy pattern

you are here 4 495

 for(Enumeration e = cds.keys(); e.hasMoreElements();) {
 String name = (String)e.nextElement();
 JMenuItem menuItem = new JMenuItem(name);
 menu.add(menuItem);
 menuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 imageComponent.setIcon(new ImageProxy(getCDUrl(event.getActionCom-
mand())));
 frame.repaint();
 }
 });
 }

 // set up frame and menus

 Icon icon = new ImageProxy(initialURL);
 imageComponent = new ImageComponent(icon);
 frame.getContentPane().add(imageComponent);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(800,600);
 frame.setVisible(true);

 }
 URL getCDUrl(String name) {
 try {
 return new URL((String)cds.get(name));
 } catch (MalformedURLException e) {
 e.printStackTrace();
 return null;
 }
 }
}

496 Chapter 11

The code for the CD Cover Viewer,
continued...

Ready-bake
Code

package headfi rst.proxy.virtualproxy;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class ImageProxy implements Icon {
 ImageIcon imageIcon;
 URL imageURL;
 Thread retrievalThread;
 boolean retrieving = false;

 public ImageProxy(URL url) { imageURL = url; }

 public int getIconWidth() {
 if (imageIcon != null) {
 return imageIcon.getIconWidth();
 } else {
 return 800;
 }
 }

 public int getIconHeight() {
 if (imageIcon != null) {
 return imageIcon.getIconHeight();
 } else {
 return 600;
 }
 }

 public void paintIcon(fi nal Component c, Graphics g, int x, int y) {
 if (imageIcon != null) {
 imageIcon.paintIcon(c, g, x, y);
 } else {
 g.drawString(“Loading CD cover, please wait...”, x+300, y+190);
 if (!retrieving) {
 retrieving = true;

 retrievalThread = new Thread(new Runnable() {
 public void run() {
 try {
 imageIcon = new ImageIcon(imageURL, “CD Cover”);
 c.repaint();
 } catch (Exception e) {

ready-bake code: cd cover viewer

the proxy pattern

you are here 4 497

package headfirst.proxy.virtualproxy;
import java.awt.*;
import javax.swing.*;

class ImageComponent extends JComponent {
 private Icon icon;

 public ImageComponent(Icon icon) {
 this.icon = icon;
 }

 public void setIcon(Icon icon) {
 this.icon = icon;
 }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 int w = icon.getIconWidth();
 int h = icon.getIconHeight();
 int x = (800 - w)/2;
 int y = (600 - h)/2;
 icon.paintIcon(this, g, x, y);
 }
}

 e.printStackTrace();
 }
 }
 });
 retrievalThread.start();
 }
 }
 }
}

this is a new chapter 499

Who would have ever guessed that Patterns could work together?
You’ve already witnessed the acrimonious Fireside Chats (and you haven’t even seen the Pattern

Death Match pages that the editor forced us to remove from the book*), so who would have thought

patterns can actually get along well together? Well, believe it or not, some of the most powerful OO

designs use several patterns together. Get ready to take your pattern skills to the next level; it’s time

for compound patterns.

Patterns

12 Compound Patterns

gh g

* send us email for a copy.

of Patterns

500 Chapter 12

Working together

One of the best ways to use patterns is to get them out of the house so they
can interact with other patterns. The more you use patterns the more you’re
going to see them showing up together in your designs. We have a special
name for a set of patterns that work together in a design that can be applied
over many problems: a compound pattern. That’s right, we are now talking
about patterns made of patterns!

You’ll find a lot of compound patterns in use in the real world. Now that
you’ve got patterns in your brain, you’ll see that they are really just patterns
working together, and that makes them easier to understand.

We’re going to start this chapter by revisiting our friendly ducks in the
SimUDuck duck simulator. It’s only fitting that the ducks should be here
when we combine patterns; after all, they’ve been with us throughout the
entire book and they’ve been good sports about taking part in lots of patterns.
The ducks are going to help you understand how patterns can work together
in the same solution. But just because we’ve combined some patterns doesn’t
mean we have a solution that qualifies as a compound pattern. For that, it
has to be a general purpose solution that can be applied to many problems.
So, in the second half of the chapter we’ll visit a real compound pattern:
that’s right, Mr. Model-View-Controller himself. If you haven’t heard of
him, you will, and you’ll find this compound pattern is one of the most
powerful patterns in your design toolbox.

Patterns are often used together and
combined within the same design solution.

A compound pattern combines two or
more patterns into a solution that solves a
recurring or general problem.

patterns can work together

compound patterns

you are here 4 501

public interface Quackable {
 public void quack();
}

public class MallardDuck implements Quackable {
 public void quack() {
 System.out.println(“Quack”);
 }
}

Quackables only
need to do

one thing well: Quack!

Your standard

Mallard duck.

We’ve got to have some variation
of species if we want this to be an
interesting simulator.

Duck reunion

As you’ve already heard, we’re going to get to work with the ducks again. This time the ducks
are going to show you how patterns can coexist and even cooperate within the same solution.

We’re going to rebuild our duck simulator from scratch and give it some interesting capabilities
by using a bunch of patterns. Okay, let’s get started...

Like we said, we’re starting from scratch. This time around, the Ducks are
going to implement a Quackable interface. That way we’ll know what things
in the simulator can quack() – like Mallard Ducks, Redhead Ducks, Duck
Calls, and we might even see the Rubber Duck sneak back in.

1 First, we’ll create a Quackable interface.

What good is an interface without some classes to implement it? Time to
create some concrete ducks (but not the “lawn art” kind, if you know what
we mean).

2 Now, some Ducks that implement Quackable

public class RedheadDuck implements Quackable {
 public void quack() {
 System.out.println(“Quack”);
 }
}

502 Chapter 12

public class DuckSimulator {
 public static void main(String[] args) {
 DuckSimulator simulator = new DuckSimulator();
 simulator.simulate();
 }

 void simulate() {
 Quackable mallardDuck = new MallardDuck();
 Quackable redheadDuck = new RedheadDuck();
 Quackable duckCall = new DuckCall();
 Quackable rubberDuck = new RubberDuck();

 System.out.println(“\nDuck Simulator”);

 simulate(mallardDuck);
 simulate(redheadDuck);
 simulate(duckCall);
 simulate(rubberDuck);
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

We need some ducks, so
here we create one of
each Quackable...

... then we simulate
each one.

Here we let polymorphism do its magic: no
matter what kind of Quackable gets passed in,
the simulate() method asks it to quack.

A DuckCall that quacks but doesn’t
sound quite like the real thing.

public class DuckCall implements Quackable {
 public void quack() {
 System.out.println(“Kwak”);
 }
}

A RubberDuck that makes a
squeak when it quacks.

public class RubberDuck implements Quackable {
 public void quack() {
 System.out.println(“Squeak”);
 }
}

Remember last time? We had duck calls (those things hunters use, they
are definitely quackable) and rubber ducks.

This wouldn’t be much fun if we didn’t add other kinds of Ducks too.

Let’s cook up a simulator that creates a few ducks and makes sure their
quackers are working...

3 Okay, we’ve got our ducks; now all we need is a simulator.

Here’s our main method to

get everything going.

We create a simulator
and then call its
simulate() method.

Here we overload the simulate
method to simulate just one duck.

adding more ducks

compound patterns

you are here 4 503

% java DuckSimulator

Duck Simulator
Quack
Quack
Kwak
Squeak

%

File Edit Window Help ItBetterGetBetterThanThis
Not too exciting yet, but we haven’t added patterns!

public class Goose {
 public void honk() {
 System.out.println(“Honk”);
 }
}

A Goose is a honker,
not a quacker.

Where there is one waterfowl, there are probably two. Here’s a Goose
class that has been hanging around the simulator.

4 When ducks are around, geese can’t be far.

It looks like everything is working; so far, so good.

They all implement the same Quackable

interface, but their implementations

allow them to quack in their own way.

Let’s say we wanted to be able to use a Goose anywhere we’d want to use a Duck. After all, geese
make noise; geese fly; geese swim. Why can’t we have Geese in the simulator?

What pattern would allow Geese to easily intermingle with Ducks?

brain
powerA

504 Chapter 12

The constructor takes the
goose we are going to adapt.

Remember, an Adapter
implements the target interface,

which in this case is Quackable.

When quack is called, the call is delegated
to the goose’s honk() method.

public class GooseAdapter implements Quackable {
 Goose goose;

 public GooseAdapter(Goose goose) {
 this.goose = goose;
 }

 public void quack() {
 goose.honk();
 }
}

public class DuckSimulator {
 public static void main(String[] args) {
 DuckSimulator simulator = new DuckSimulator();
 simulator.simulate();
 }
 void simulate() {
 Quackable mallardDuck = new MallardDuck();
 Quackable redheadDuck = new RedheadDuck();
 Quackable duckCall = new DuckCall();
 Quackable rubberDuck = new RubberDuck();
 Quackable gooseDuck = new GooseAdapter(new Goose());

 System.out.println(“\nDuck Simulator: With Goose Adapter”);

 simulate(mallardDuck);
 simulate(redheadDuck);
 simulate(duckCall);
 simulate(rubberDuck);
 simulate(gooseDuck);
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

We make a Goose that acts like

a Duck by wrapping the Goose

in the GooseAdapter.

Once the Goose is wrapped, we can treat
it just like other duck Quackables.

Our simulator expects to see Quackable interfaces. Since geese
aren’t quackers (they’re honkers), we can use an adapter to adapt
a goose to a duck.

5 We need a goose adapter.

All we need to do is create a Goose, wrap it in an adapter that
implements Quackable, and we should be good to go.

6 Now geese should be able to play in the simulator, too.

goose adapter

compound patterns

you are here 4 505

% java DuckSimulator

Duck Simulator: With Goose Adapter
Quack
Quack
Kwak
Squeak
Honk

%

File Edit Window Help GoldenEggs

There’s the goose! Now the
Goose can quack with the
rest of the Ducks.

7 Now let’s give this a quick run....

Quackology

This time when we run the simulator, the list of objects passed
to the simulate() method includes a Goose wrapped in a duck
adapter. The result? We should see some honking!

Quackologists are fascinated by all aspects of Quackable behavior. One
thing Quackologists have always wanted to study is the total number of
quacks made by a flock of ducks.

How can we add the ability to count duck quacks without having to
change the duck classes?

Can you think of a pattern that would help?

J. Brewer,
Park Ranger and
Quackologist

506 Chapter 12

public class QuackCounter implements Quackable {
 Quackable duck;
 static int numberOfQuacks;

 public QuackCounter (Quackable duck) {
 this.duck = duck;
 }

 public void quack() {
 duck.quack();
 numberOfQuacks++;
 }

 public static int getQuacks() {
 return numberOfQuacks;
 }
}

8 We’re going to make those Quackologists happy and give
them some quack counts.
How? Let’s create a decorator that gives the ducks some new
behavior (the behavior of counting) by wrapping them with a
decorator object. We won’t have to change the Duck code at all.

Like with Adapter, we need to
implement the target interface.

We’ve got an instance variable
to hold on to the quacker
we’re decorating.

And we’re counting ALL
quacks, so we’ll use a static variable to keep track.

We get the reference to the Quackable we’re decorating in the constructor.
When quack() is called, we delegate the call to the Quackable we’re decorating...

... then we increase the number of quacks.

We’re adding one other method
to the decorator. This static
method just returns the number
of quacks that have occurred
in all Quackables.

duck decorator

QuackCounter is a decorator

compound patterns

you are here 4 507

9 We need to update the simulator to create decorated ducks.

Now, we must wrap each Quackable object we instantiate in a
QuackCounter decorator. If we don’t, we’ll have ducks running
around making uncounted quacks.

public class DuckSimulator {
 public static void main(String[] args) {
 DuckSimulator simulator = new DuckSimulator();
 simulator.simulate();
 }
 void simulate() {
 Quackable mallardDuck = new QuackCounter(new MallardDuck());
 Quackable redheadDuck = new QuackCounter(new RedheadDuck());
 Quackable duckCall = new QuackCounter(new DuckCall());
 Quackable rubberDuck = new QuackCounter(new RubberDuck());
 Quackable gooseDuck = new GooseAdapter(new Goose());

 System.out.println(“\nDuck Simulator: With Decorator”);

 simulate(mallardDuck);
 simulate(redheadDuck);
 simulate(duckCall);
 simulate(rubberDuck);
 simulate(gooseDuck);

 System.out.println(“The ducks quacked “ +
 QuackCounter.getQuacks() + “ times”);
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

Here’s where we
gather the quacking
behavior for the
Quackologists.

Each time we create a
Quackable, we wrap it
with a new decorator.

Here’s the
output!

% java DuckSimulator
Duck Simulator: With Decorator
Quack
Quack
Kwak
Squeak
Honk
4 quacks were counted
%

File Edit Window Help DecoratedEggs

Nothing changes here; the decor
ated

objects are still Quackables.

The park ranger told us he didn’t
want to count geese honks, so we
don’t decorate it.

Remember, we’re

not counting ge
ese.

508 Chapter 12

This quack counting is
great. We’re learning things we

never knew about the little quackers.
But we’re finding that too many

quacks aren’t being counted. Can
you help?

10 We need a factory to produce ducks!
Okay, we need some quality control to make sure our ducks get wrapped.
We’re going to build an entire factory just to produce them. The factory
should produce a family of products that consists of different types of
ducks, so we’re going to use the Abstract Factory Pattern.

Let’s start with the definition of the AbstractDuckFactory:

He’s right, that’s the problem with wrapping objects:
you have to make sure they get wrapped or they don’t
get the decorated behavior.

Why don’t we take the creation of ducks and localize
it in one place; in other words, let’s take the duck
creation and decorating and encapsulate it.

What pattern does that sound like?

public abstract class AbstractDuckFactory {

 public abstract Quackable createMallardDuck();
 public abstract Quackable createRedheadDuck();
 public abstract Quackable createDuckCall();
 public abstract Quackable createRubberDuck();
}

We’re defining an abstract fact
ory

that subclasses will implement to

create different families.

Each method creates one kind of duck.

You have to decorate objects
to get decorated behavior.

duck factory

compound patterns

you are here 4 509

public class DuckFactory extends AbstractDuckFactory {

 public Quackable createMallardDuck() {
 return new MallardDuck();
 }

 public Quackable createRedheadDuck() {
 return new RedheadDuck();
 }

 public Quackable createDuckCall() {
 return new DuckCall();
 }

 public Quackable createRubberDuck() {
 return new RubberDuck();
 }
}

public class CountingDuckFactory extends AbstractDuckFactory {

 public Quackable createMallardDuck() {
 return new QuackCounter(new MallardDuck());
 }

 public Quackable createRedheadDuck() {
 return new QuackCounter(new RedheadDuck());
 }

 public Quackable createDuckCall() {
 return new QuackCounter(new DuckCall());
 }

 public Quackable createRubberDuck() {
 return new QuackCounter(new RubberDuck());
 }
}

Let’s start by creating a factory that creates ducks without decorators,
just to get the hang of the factory:

Now let’s create the factory we really want, the CountingDuckFactory:

DuckFactory extends the
abstract factory.

Each method creates a product:

a particular kind of Quackable.

The actual product is unknown

to the simulator - it just knows

it’s getting a Quackable.

CountingDuckFactory
also extends the
abstract factory.

Each method wraps the
Quackable with the quack
counting decorator. The
simulator will never know
the difference; it just
gets back a Quackable.
But now our rangers can
be sure that all quacks are
being counted.

510 Chapter 12

public class DuckSimulator {
 public static void main(String[] args) {
 DuckSimulator simulator = new DuckSimulator();
 AbstractDuckFactory duckFactory = new CountingDuckFactory();

 simulator.simulate(duckFactory);
 }

 void simulate(AbstractDuckFactory duckFactory) {
 Quackable mallardDuck = duckFactory.createMallardDuck();
 Quackable redheadDuck = duckFactory.createRedheadDuck();
 Quackable duckCall = duckFactory.createDuckCall();
 Quackable rubberDuck = duckFactory.createRubberDuck();
 Quackable gooseDuck = new GooseAdapter(new Goose());

 System.out.println(“\nDuck Simulator: With Abstract Factory”);

 simulate(mallardDuck);
 simulate(redheadDuck);
 simulate(duckCall);
 simulate(rubberDuck);
 simulate(gooseDuck);

 System.out.println(“The ducks quacked “ +
 QuackCounter.getQuacks() +
 “ times”);
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

11 Let’s set up the simulator to use the factory.
Remember how Abstract Factory works? We create a polymorphic method
that takes a factory and uses it to create objects. By passing in different
factories, we get to use different product families in the method.

We’re going to alter the simulate() method so that it takes a factory and
uses it to create ducks.

First we create

the factory
that we’re going

to pass into
the simulate()

method.

The simulate()
method takes an
AbstractDuckFactory
and uses it to create
ducks rather than
instantiating them
directly.

Nothing changes here!
Same ol’ code.

families of ducks

compound patterns

you are here 4 511

Same as last time, but

this time we’re ensuring

that the ducks
are

all decorated b
ecause

we are using the

CountingDuckFactory.

% java DuckSimulator
Duck Simulator: With Abstract Factory
Quack
Quack
Kwak
Squeak
Honk
4 quacks were counted
%

File Edit Window Help EggFactory

Sharpen your pencil
We’re still directly instantiating Geese by relying on concrete classes. Can you write
an Abstract Factory for Geese? How should it handle creating “goose ducks”?

Here’s the output using the factory...

512 Chapter 12

 Quackable mallardDuck = duckFactory.createMallardDuck();
 Quackable redheadDuck = duckFactory.createRedheadDuck();
 Quackable duckCall = duckFactory.createDuckCall();
 Quackable rubberDuck = duckFactory.createRubberDuck();
 Quackable gooseDuck = new GooseAdapter(new Goose());

 simulate(mallardDuck);
 simulate(redheadDuck);
 simulate(duckCall);
 simulate(rubberDuck);
 simulate(gooseDuck);

It’s getting a little difficult
to manage all these different ducks
separately. Is there any way you can
help us manage ducks as a whole, and

perhaps even allow us to manage a few
duck “families” that we’d like to keep

track of?

Here’s another good question from Ranger Brewer:
Why are we managing ducks individually?

This isn’t very
manageable!

What we need is a way to talk about collections of
ducks and even sub-collections of ducks (to deal with
the family request from Ranger Brewer). It would
also be nice if we could apply operations across the
whole set of ducks.

What pattern can help us?

Ah, he wants to manage a
flock of ducks.

flock of ducks

compound patterns

you are here 4 513

12 Let’s create a flock of ducks (well, actually a flock of Quackables).
Remember the Composite Pattern that allows us to treat a collection of
objects in the same way as individual objects? What better composite
than a flock of Quackables!

Let’s step through how this is going to work:

public class Flock implements Quackable {
 ArrayList quackers = new ArrayList();

 public void add(Quackable quacker) {
 quackers.add(quacker);
 }

 public void quack() {
 Iterator iterator = quackers.iterator();
 while (iterator.hasNext()) {
 Quackable quacker = (Quackable)iterator.next();
 quacker.quack();
 }
 }
}

Remember, the composite needs to implement

the same interface as the leaf elements. Our

leaf elements are Quackables.

We’re using an ArrayList inside
each Flock to hold the Quackables
that belong to the Flock.

The add() method adds a
Quackable to the Flock.

Now for the quack() method - after all, the Flock is a Quackable too.

The quack() method in Flock needs to work over the entire Flock. Here

we iterate through the ArrayList and call quack() on each element.

Code Up Close
Did you notice that we tried to sneak a Design Pattern by
you without mentioning it?

 public void quack() {
 Iterator iterator = quackers.iterator();
 while (iterator.hasNext()) {
 Quackable quacker = (Quackable)iterator.next();
 quacker.quack();
 }
 }

There it is! The Iterator
Pattern at work!

514 Chapter 12

13 Now we need to alter the simulator.
Our composite is ready; we just need some code to round up the
ducks into the composite structure.

public class DuckSimulator {
 // main method here

 void simulate(AbstractDuckFactory duckFactory) {
 Quackable redheadDuck = duckFactory.createRedheadDuck();
 Quackable duckCall = duckFactory.createDuckCall();
 Quackable rubberDuck = duckFactory.createRubberDuck();
 Quackable gooseDuck = new GooseAdapter(new Goose());
 System.out.println(“\nDuck Simulator: With Composite - Flocks”);

 Flock flockOfDucks = new Flock();

 flockOfDucks.add(redheadDuck);
 flockOfDucks.add(duckCall);
 flockOfDucks.add(rubberDuck);
 flockOfDucks.add(gooseDuck);

 Flock flockOfMallards = new Flock();

 Quackable mallardOne = duckFactory.createMallardDuck();
 Quackable mallardTwo = duckFactory.createMallardDuck();
 Quackable mallardThree = duckFactory.createMallardDuck();
 Quackable mallardFour = duckFactory.createMallardDuck();

 flockOfMallards.add(mallardOne);
 flockOfMallards.add(mallardTwo);
 flockOfMallards.add(mallardThree);
 flockOfMallards.add(mallardFour);

 flockOfDucks.add(flockOfMallards);

 System.out.println(“\nDuck Simulator: Whole Flock Simulation”);
 simulate(flockOfDucks);

 System.out.println(“\nDuck Simulator: Mallard Flock Simulation”);
 simulate(flockOfMallards);

 System.out.println(“\nThe ducks quacked “ +
 QuackCounter.getQuacks() +
 “ times”);
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

Create all the
Quackables, just
like before.

First we create a Flock, and
load it up with Quackables.

Here we’re
creating a
little family of
mallards...

Then we create a new
Flock of Mallards.

...and adding them to the
Flock of mallards.

Then we add the Flock of
mallards to the main flock.

Let’s test out the entire Flock!

Then let’s just test out the mallard’s Flock.

Finally, let’s give the
Quackologist the data.

Nothing needs to change here, a Flock is a Quackable!

duck composite

compound patterns

you are here 4 515

Let’s give it a spin...

% java DuckSimulator
Duck Simulator: With Composite - Flocks
Duck Simulator: Whole Flock Simulation
Quack
Kwak
Squeak
Honk
Quack
Quack
Quack
Quack

Duck Simulator: Mallard Flock Simulation
Quack
Quack
Quack
Quack

The ducks quacked 11 times

File Edit Window Help FlockADuck

Here’s the first flock.

And now the mallards.

The data looks
good (remember
the goose doesn’t
get counted).

Safety versus transparency

You might remember that in the Composite Pattern chapter the composites (the Menus) and the leaf nodes
(the MenuItems) had the same exact set of methods, including the add() method. Because they had the
same set of methods, we could call methods on MenuItems that didn’t really make sense (like trying to add
something to a MenuItem by calling add()). The benefit of this was that the distinction between leaves and
composites was transparent: the client didn’t have to know whether it was dealing with a leaf or a composite;
it just called the same methods on both.

Here, we’ve decided to keep the composite’s child maintenance methods separate from the leaf nodes: that
is, only Flocks have the add() method. We know it doesn’t make sense to try to add something to a Duck,
and in this implementation, you can’t. You can only add() to a Flock. So this design is safer – you can’t call
methods that don’t make sense on components – but it’s less transparent. Now the client has to know that a
Quackable is a Flock in order to add Quackables to it.

As always, there are trade-offs when you do OO design and you need to consider them as you create your
own composites.

516 Chapter 12

14 First we need an Observable interface.
Remember that an Observable is the object being observed. An Observable
needs methods for registering and notifying observers. We could also have
a method for removing observers, but we’ll keep the implementation simple
here and leave that out.

The Composite is working
great! Thanks! Now we have the

opposite request: we also need to
track individual ducks. Can you give
us a way to keep track of individual

duck quacking in real time?

It sounds like the Quackologist would like to observe individual
duck behavior. That leads us right to a pattern made for observing
the behavior of objects: the Observer Pattern.

public interface QuackObservable {
 public void registerObserver(Observer observer);
 public void notifyObservers();
}

public interface Quackable extends QuackObservable {
 public void quack();
}

QuackObservable is the interface

that Quackables should implement

if they want to be observed.

It also has a method for
notifying the observers.

It has a method for registering
Observers. Any object implementing
the Observer interface can listen
to quacks. We’ll define the Observer
interface in a sec.

Now we need to make sure all Quackables implement this interface...

So, we extend the Quackable
interface with QuackObserver.

Can you say “observer?’

duck observer

compound patterns

you are here 4 517

public class Observable implements QuackObservable {
 ArrayList observers = new ArrayList();
 QuackObservable duck;

 public Observable(QuackObservable duck) {
 this.duck = duck;
 }

 public void registerObserver(Observer observer) {
 observers.add(observer);
 }

 public void notifyObservers() {
 Iterator iterator = observers.iterator();
 while (iterator.hasNext()) {
 Observer observer = (Observer)iterator.next();
 observer.update(duck);
 }
 }
}

15 Now, we need to make sure all the concrete
classes that implement Quackable can handle
being a QuackObservable.
We could approach this by implementing registration and
notification in each and every class (like we did in Chapter
2). But we’re going to do it a little differently this time:
we’re going to encapsulate the registration and notification
code in another class, call it Observable, and compose it
with a QuackObservable. That way we only write the real
code once and the QuackObservable just needs enough
code to delegate to the helper class Observable.

Let’s start with the Observable helper class...

Stop looking at
me. You’re making

me nervous!

Observable implements all the functionality

a Quackable needs to be an observab
le.

We just need to plug it into a cla
ss and

have that class delegate to Observable.

QuackObserverable

In the constructor we get
passed the QuackObservable

that is using this object to
manage its observable behavior.

Check out the notify() method

below; you’ll see that when a

notify occurs, Observable passes

this object along so that the

observer knows which object is

quacking.

Here’s the code for
registering an observer.

And the code for doing
the notifications.

Now let’s see how a Quackable class uses this helper...

Observable must implement QuackObservable
because these are the same method calls
that are going to be delegated to it.

518 Chapter 12

public class MallardDuck implements Quackable {
 Observable observable;

 public MallardDuck() {
 observable = new Observable(this);
 }

 public void quack() {
 System.out.println(“Quack”);
 notifyObservers();
 }

 public void registerObserver(Observer observer) {
 observable.registerObserver(observer);
 }

 public void notifyObservers() {
 observable.notifyObservers();
 }
}

16 Integrate the helper Observable with the Quackable classes.
This shouldn’t be too bad. All we need to do is make sure the Quackable classes
are composed with an Observable and that they know how to delegate to it. After
that, they’re ready to be Observables. Here’s the implementation of MallardDuck;
the other ducks are the same.

Each Quackable has an
Observable instance variable.

In the constructor, we create an
Observable and pass it a reference
to the MallardDuck object.

When we quack, we
need to let the
observers know about it.

Here’s our two QuackObservable
methods. Notice that we just
delegate to the helper.

Sharpen your pencil
We haven’t changed the implementation of one Quackable, the QuackCounter
decorator. We need to make it an Observable too. Why don’t you write that one:

quack decorators are observables too

compound patterns

you are here 4 519

public interface Observer {
 public void update(QuackObservable duck);
}

public class Quackologist implements Observer {

 public void update(QuackObservable duck) {
 System.out.println(“Quackologist: “ + duck + “ just quacked.”);
 }
}

17 We’re almost there! We just need to work on the Observer side
of the pattern.

We’ve implemented everything we need for the Observables; now we
need some Observers. We’ll start with the Observer interface:

The Observer interface just has one method, update(), which is passed the QuackObservable that is quacking.

Now we need an Observer: where are
those Quackologists?!

The Quackologist is simple; it just has one method, update(), which prints out the Quackable that just quacked.

We need to implement the Observable interface or else
we won’t be able to register with a QuackObservable.

520 Chapter 12

Sharpen your pencil
What if a Quackologist wants to observe an entire flock? What does that mean
anyway? Think about it like this: if we observe a composite, then we’re observing
everything in the composite. So, when you register with a flock, the flock
composite makes sure you get registered with all its children (sorry, all its little
quackers), which may include other flocks.

Go ahead and write the Flock observer code before we go any further...

flock composites are observables too

compound patterns

you are here 4 521

public class DuckSimulator {
 public static void main(String[] args) {
 DuckSimulator simulator = new DuckSimulator();
 AbstractDuckFactory duckFactory = new CountingDuckFactory();

 simulator.simulate(duckFactory);
 }

 void simulate(AbstractDuckFactory duckFactory) {

 // create duck factories and ducks here

 // create flocks here

 System.out.println(“\nDuck Simulator: With Observer”);
 Quackologist quackologist = new Quackologist();
 flockOfDucks.registerObserver(quackologist);

 simulate(flockOfDucks);

 System.out.println(“\nThe ducks quacked “ +
 QuackCounter.getQuacks() +
 “ times”);
 }

 void simulate(Quackable duck) {
 duck.quack();
 }
}

18 We’re ready to observe. Let’s update the
simulator and give it try:

All we do here is create a
Quackologist and set him as

an observer of the flock.

Let’s give it a try and
see how it works!

This time we’ll we
just simulate the
entire flock.

522 Chapter 12

This is the big finale. Five, no, six patterns have come together to create
this amazing Duck Simulator. Without further ado, we present the
DuckSimulator!

File Edit Window Help DucksAreEverywhere

% java DuckSimulator
Duck Simulator: With Observer
Quack
Quackologist: Redhead Duck just quacked.
Kwak
Quackologist: Duck Call just quacked.
Squeak
Quackologist: Rubber Duck just quacked.
Honk
Quackologist: Goose pretending to be a Duck just quacked.
Quack
Quackologist: Mallard Duck just quacked.
Quack
Quackologist: Mallard Duck just quacked.
Quack
Quackologist: Mallard Duck just quacked.
Quack
Quackologist: Mallard Duck just quacked.
The Ducks quacked 7 times.

%

After each
quack, no matter
what kind of
quack it was, the
observer gets a
notification.

Q: So this was a compound pattern?

A: No, this was just a set of patterns
working together. A compound pattern is a
set of a few patterns that are combined to
solve a general problem. We’re just about
to take a look at the Model-View-Controller
compound pattern; it’s a collection of a few
patterns that has been used over and over in
many design solutions.

Q: So the real beauty of Design
Patterns is that I can take a problem, and
start applying patterns to it until I have a
solution. Right?

A: Wrong. We went through this
exercise with Ducks to show you how
patterns can work together. You’d never
actually want to approach a design like we
just did. In fact, there may be solutions to
parts of the duck simulator for which some
of these patterns were big time overkill.

Sometimes just using good OO design
principles can solve a problem well enough
on its own.

We’re going to talk more about this in the
next chapter, but you only want to apply
patterns when and where they make
sense. You never want to start out with the
intention of using patterns just for the sake
of it. You should consider the design of the
DuckSimulator to be forced and artificial.
But hey, it was fun and gave us a good
idea of how several patterns can fit into a
solution.

there are noDumb Questions

And the
quackologist still
gets his counts.

the duck finale

compound patterns

you are here 4 523

What did we do?

We started with a bunch of Quackables...

A goose came along and wanted to act like a Quackable too. So we
used the Adapter Pattern to adapt the goose to a Quackable. Now, you can call quack() on a
goose wrapped in the adapter and it will honk!

Then, the Quackologists decided they wanted to count quacks. So we
used the Decorator Pattern to add a QuackCounter decorator that keeps track of the number
of times quack() is called, and then delegates the quack to the Quackable it’s wrapping.

But the Quackologists were worried they’d forget to add the
QuackCounter decorator. So we used the Abstract Factory Pattern to create ducks
for them. Now, whenever they want a duck, they ask the factory for one, and it hands back
a decorated duck. (And don’t forget, they can also use another duck factory if they want an
un-decorated duck!)

We had management problems keeping track of all those ducks and
geese and quackables. So we used the Composite Pattern to group quackables
into Flocks. The pattern also allows the quackologist to create sub-Flocks to manage duck
families. We used the Iterator Pattern in our implementation by using java.util’s iterator in
ArrayList.

The Quackologists also wanted to be notified when any quackable
quacked. So we used the Observer Pattern to let the Quackologists register as Quackable
Observers. Now they’re notified every time any Quackable quacks. We used iterator again
in this implementation. The Quackologists can even use the Observer Pattern with their
composites.

That was quite a Design Pattern
workout. You should study the

class diagram on the next page
and then take a relaxing break before
continuing on with the Model-View-

Controller.

524 Chapter 12

DuckSimulator

createMallardDuck()

createRedheadDuck()

createDuckCall()

createRubberDuck()

AbstractDuckFactory

createMallardDuck()

createRedheadDuck()

createDuckCall()

createRubberDuck()

DuckFactory

createMallardDuck()

createRedheadDuck()

createDuckCall()

createRubberDuck()

CountingDuckFactory

update(QuackObservable)

<<interface>>
Observer

update(QuackObservable)

Quackologist

A bird’s duck’s eye view: the class diagram

The DuckSimulator uses a factory to create Ducks.

Here are two different
factories that produce
the same family of
products. The DuckFactory
creates ducks, and the
CountingDuckFactory
creates Ducks wrapped in
QuackCounter decorators.

We only implemented one kind of Observer for the Quackables - the Quackologist. But any class that implements the Observer interface can observe ducks... how about implementing a BirdWatcher observer?

If a class implements Observer, that
means it can observe Quackables, and will be notified whenever a Quackable quacks.

We’ve packed a lot of patterns into one small duck simulator! Here’s the big picture of what we did:

duck’s eye view

compound patterns

you are here 4 525

registerObserver(Observer)

notifyObservers()

<<interface>>
QuackObservable

quack()

<<interface>>
Quackable

quack()

registerObserver(Observer)

notifyObservers()

MallardDuck

quack()

registerObserver(Observer)

notifyObservers()

quack()

registerObserver(Observer)

notifyObservers()

registerObserver(Observer)
quack()

registerObserver(Observer)

notifyObservers()

RedheadDuck

quack()

registerObserver(Observer)

notifyObservers()

quack()

registerObserver(Observer)

notifyObservers()

registerObserver(Observer)
quack()

registerObserver(Observer)

notifyObservers()

DuckCall

registerObserver(Observer)

notifyObservers()

Observable

ArrayList observers

QuackObservable duck

quack()

registerObserver(Observer)

notifyObservers()

GooseAdapter

Goose goose

add(Quackable)

quack()

registerObserver(Observer)

notifyObservers()

Flock

ArrayList ducks

getQuacks()

quack()

registerObserver(Observer)

notifyObservers()

QuackCounter

Quackable duck

quack()

registerObserver(Observer)

notifyObservers()quack()

registerObserver(Observer)

notifyObservers()

RubberDuck

The QuackObservable interface

gives us a set of methods that

any Observable must implement.

We have two kinds of
Quackables: ducks and
other things that want
Quackable behavior: like the
GooseAdapter, which wraps a
Goose and makes it look like
a Quackable; Flock, which is
a Quackable Composite, and
QuackCounter, which adds
behavior to Quackables.

Quackable is the interface that all classes that have quacking behavior implement.

Each Quackable has an
instance of Observable
to keep track of their
observers and notify them
when the Quackable quacks.

This Adapter...

... and this
Composite...

... and this
Decorator
all act like
Quackables!

526 Chapter 12

The King of Compound Patterns
If Elvis were a compound pattern, his name would be Model-View-Controller,
and he’d be singing a little song like this...

Model, View, Controller
Lyrics and music by James Dempsey.

MVC’s a paradigm for factoring your code
into functional segments, so your brain does not explode.
To achieve reusability, you gotta keep those boundaries
clean
Model on the one side, View on the other, the
Controller’s in between.

Model View, it’s got three layers like Oreos do
Model View Controller
Model View, Model View, Model View Controller

Model objects represent your application’s raison d’être
Custom objects that contain data, logic, and et cetera
You create custom classes, in your app’s problem domain
you can choose to reuse them with all the views
but the model objects stay the same.

You can model a throttle and a manifold
Model the toddle of a two year old
Model a bottle of fine Chardonnay
Model all the glottal stops people say
Model the coddling of boiling eggs
You can model the waddle in Hexley’s legs

Model View, you can model all the models that pose for
GQ
Model View Controller

View objects tend to be controls used to display and edit
Cocoa’s got a lot of those, well written to its credit.
Take an NSTextView, hand it any old Unicode string
The user can interact with it, it can hold most anything
But the view don’t know about the Model
That string could be a phone number or the works of
Aristotle
Keep the coupling loose
and so achieve a massive level of reuse

Model View, all rendered very nicely in Aqua blue
Model View Controller

You’re probably wondering now
You’re probably wondering how
Data flows between Model and View
The Controller has to mediate
Between each layer’s changing state
To synchronize the data of the two

Model

View

Creamy
Controller

So does Ja
va!

the model view controller song

compound patterns

you are here 4 527

It pulls and pushes every changed value

Model View, mad props to the smalltalk crew!
Model View Controller

Model View, it’s pronounced Oh Oh not Ooo Ooo
Model View Controller

There’s a little left to this story
A few more miles upon this road
Nobody seems to get much glory
From writing the controller code

Well the model’s mission critical
And gorgeous is the view
I might be lazy, but sometimes it’s just crazy
How much code I write is just glue
And it wouldn’t be so tragic
But the code ain’t doing magic
It’s just moving values through

And I don’t mean to be vicious
But it gets repetitious
Doing all the things controllers do

And I wish I had a dime
For every single time

I sent a TextField StringValue.

Model View
How we gonna deep six all that glue
Model View Controller

Controllers know the Model and View very intimately
They often use hardcoding which can be foreboding for
reusability
But now you can connect each model key that you select
to any view property

And once you start binding
I think you’ll be finding less code in your source tree

Yeah I know I was elated by the stuff they’ve automated
and the things you get for free

And I think it bears repeating
all the code you won’t be needing
when you hook it up in IB.

Model View, even handles multiple selections too
Model View Controller

Model View, bet I ship my application before you
Model View Controller

Ear
power

Don’t just read! After all this is a Head First book... grab your iPod, hit this URL:

http://www.headfirstlabs.com/books/hfdp/media.html

Sit back and give it a listen.

Using Swing.

528 Chapter 12

Cute song, but is that really
supposed to teach me what Model-

View-Controller is? I’ve tried
learning MVC before and it made my

brain hurt.

We were just trying to whet your appetite.
Tell you what, after you finish reading this
chapter, go back and listen to the song again

– you’ll have even more fun.

It sounds like you’ve had a bad run in with
MVC before? Most of us have. You’ve
probably had other developers tell you it’s
changed their lives and could possibly create
world peace. It’s a powerful compound
pattern, for sure, and while we can’t claim it
will create world peace, it will save you hours
of writing code once you know it.

But first you have to learn it, right? Well,
there’s going to be a big difference this time
around because now you know patterns!

That’s right, patterns are the key to MVC.
Learning MVC from the top down is difficult;
not many developers succeed. Here’s the
secret to learning MVC: it’s just a few patterns
put together. When you approach learning
MVC by looking at the patterns, all of the
sudden it starts to make sense.

Let’s get started. This time around you’re
going to nail MVC!

No. Design Patterns are
your key to the MVC.

mvc is patterns put together

compound patterns

you are here 4 529

Meet the Model-View-Controller

View Controller

you use the

interface and

your actions

go to the

controller

class Player {
 play(){}
 rip(){}
 burn(){}
}

Model

Imagine you’re using your favorite MP3 player, like iTunes. You can use its interface to add
new songs, manage playlists and rename tracks. The player takes care of maintaining a little
database of all your songs along with their associated names and data. It also takes care of
playing the songs and, as it does, the user interface is constantly updated with the current song
title, the running time, and so on.

Well, underneath it all sits the Model-View-Controller...

controller

manipulates

the model

the model notifies
the view of a change

in state

the view display is
updated for you

“Play new song”

Controller asks

Player model to

begin playing

song

Model tells the

view the state has

changed

You see the song

display update and

hear the new song

playing

The model contains all the state,
data, and application logic needed
to maintain and play mp3s.

530 Chapter 12

Model

Controller

CONTROLLER

Takes user input and figures out
what it means to the model.

MODEL

The model holds all
the data, state and
application logic. The
model is oblivious to
the view and controller,
although it provides an
interface to manipulate
and retrieve its
state and it can send
notifications of state
changes to observers.

VIEW

Gives you a presentation
of the model. The view
usually gets the state
and data it needs to
display directly from
the model.

View

A closer look...

Now let’s zoom into the

2

I’ve changed!

I need your state

information

The user did

something

Change your
display

Change your
state

3

1

4

5

This is the user
interface.

Here’s the model;
it handles all
application data
and logic.

Here’s the creamy
controller; it lives in
the middle.

The MP3 Player description gives us a high level view of MVC, but it really doesn’t help you
understand the nitty gritty of how the compound pattern works, how you’d build one yourself, or
why it’s such a good thing. Let’s start by stepping through the relationships among the model, view
and controller, and then we’ll take second look from the perspective of Design Patterns.

class Player {
 play(){}
 rip(){}
 burn(){}
}

mvc up close

compound patterns

you are here 4 531

The view is your window to the model. When you do something to the view (like click
the Play button) then the view tells the controller what you did. It’s the controller’s
job to handle that.

1 You’re the user — you interact with the view.

The controller takes your actions and interprets them. If you click on a button, it’s
the controller’s job to figure out what that means and how the model should be
manipulated based on that action.

2 The controller asks the model to change its state.

When the controller receives an action from the view, it may need to tell the view
to change as a result. For example, the controller could enable or disable certain
buttons or menu items in the interface.

3 The controller may also ask the view to change.

When something changes in the model, based either on some action you took (like
clicking a button) or some other internal change (like the next song in the playlist
has started), the model notifies the view that its state has changed.

4 The model notifies the view when its state has changed.

The view gets the state it displays directly from the model. For instance, when the
model notifies the view that a new song has started playing, the view requests the
song name from the model and displays it. The view might also ask the model for
state as the result of the controller requesting some change in the view.

5 The view asks the model for state.

Q: Does the controller ever become
an observer of the model?

A: Sure. In some designs the controller
registers with the model and is notified
of changes. This can be the case when
something in the model directly affects the
user interface controls. For instance, certain
states in the model may dictate that some
interface items be enabled or disabled. If
so, it is really controller’s job to ask the view
to update its display accordingly.

Q: All the controller does is take user
input from the view and send it to the
model, correct? Why have it at all if that
is all it does? Why not just have the code
in the view itself? In most cases isn’t the
controller just calling a method on the
model?

A: The controller does more than
just “send it to the model”, the controller is
responsible for interpreting the input and
manipulating the model based on that input.
But your real question is probably “why can’t
I just do that in the view code?”

You could; however, you don’t want to
for two reasons: First, you’ll complicate
your view code because it now has two
responsibilities: managing the user interface
and dealing with logic of how to control the
model. Second, you’re tightly coupling your
view to the model. If you want to reuse
the view with another model, forget it. The
controller separates the logic of control from
the view and decouples the view from the
model. By keeping the view and controller
loosely coupled, you are building a more
flexible and extensible design, one that can
more easily accommodate change down the
road.

there are noDumb Questions

532 Chapter 12

Looking at MVC through
patterns-colored glasses
We’ve already told you the best path to learning the MVC is to see it for what it
is: a set of patterns working together in the same design.

Let’s start with the model. As you might have guessed the model uses
Observer to keep the views and controllers updated on the latest state changes.
The view and the controller, on the other hand, implement the Strategy Pattern. The controller
is the behavior of the view, and it can be easily exchanged with another controller if you
want different behavior. The view itself also uses a pattern internally to manage the windows,
buttons and other components of the display: the Composite Pattern.

Let’s take a closer look:

The display consists of a nested set of win-
dows, panels, buttons, text labels and so on.
Each display component is a composite (like
a window) or a leaf (like a button). When the
controller tells the view to update, it only has
to tell the top view component, and Composite
takes care of the rest.

The model implements the Observer Pattern
to keep interested objects updated when state
changes occur. Using the Observer Pattern
keeps the model completely independent of
the views and controllers. It allows us to use
different views with the same model, or even
use multiple views at once.

Model

Controller

View

I’ve changed!

I need your state

information

The user did

something

Change your
display

Change your
state

Strategy

Observer

Composite

The view and controller implement the classic Strategy Pattern: the
view is an object that is configured with a strategy. The controller
provides the strategy. The view is concerned only with the visual
aspects of the application, and delegates to the controller for any
decisions about the interface behavior. Using the Strategy Pattern also
keeps the view decoupled from the model because it is the controller
that is responsible for interacting with the model to carry out user
requests. The view knows nothing about how this gets done.

class Player {
 play(){}
 rip(){}
 burn(){}
}

the patterns in mvc

compound patterns

you are here 4 533

View

Model

class Foo {
 void bar()
{
 doBar();
 }
}

View

Controller

View

View

Observers

Observable

I’d like to register
as an observer

My state has
changed!

Observer

Controller

View

Strategy

Controller

The user did
something

Composite

All these observers will be
notified whenever state
changes in the model.

Any object that’s
interested in state
changes in the model
registers with the
model as an observer.

The controller is the

strategy for the vie
w

- it’s the object tha
t

knows how to handle

the user actions.

We can swap in another behavior for the view by changing the controller.

The view
delegates to the controller to handle the
user actions.

The view is a composite of

GUI components (labels,
buttons, text entry,
etc.). The top level
component contains other

components, which contain

other components and so

on until you get to the
leaf nodes.

paint()

The model has no dependencies on
viewers or controllers!

The view only worries about presentation, the controller worries
about translating user input to actions on the model.

534 Chapter 12

Using MVC to control the beat...

It’s your time to be the DJ. When you’re a DJ it’s all about the beat. You might start
your mix with a slowed, downtempo groove at 95 beats per minute (BPM) and then
bring the crowd up to a frenzied 140 BPM of trance techno. You’ll finish off your set
with a mellow 80 BPM ambient mix.

How are you going to do that? You have to control the beat and you’re going to build
the tool to get you there.

The view has two parts,

the part for viewing
the state of the model

and the part for
controlling things.

Increases
the BPM by
one beat per
minute.

Decreases
the BPM by
one beat per
minute.

You can enter a specific BPM and click
the Set button to set a specific beats
per minute, or you can use the increase
and decrease buttons for fine tuning.

A pulsing bar shows the beat in real time.

A display shows the current BPMs and is
automatically set whenever the BPM changes.

Meet the Java DJ View
Let’s start with the view of the tool. The view allows you to create a
driving drum beat and tune its beats per minute...

mvc and the dj view

compound patterns

you are here 4 535

Let’s not forget about the model underneath it all...
You can’t see the model, but you can hear it. The
model sits underneath everything else, managing the
beat and driving the speakers with MIDI.

Beat
Model

setBPM()

getBPM()

on()

off()

You can start the be
at

kicking by choosing t
he

Start menu item in the

“DJ Control” menu.

Notice Stop is
disabled until you
start the beat.

You use the Stop
button to shut
down the beat
generation.

Notice Start is
disabled after the
beat has started.

The controller is in the middle...

Controller

All user actions are
sent to the controller.

The controller sits between the view and
model. It takes your input, like selecting “Start”
from the DJ Control menu, and turns it into an
action on the model to start the beat generation.

The controller takes input
from the user and figures out
how to translate that into
requests on the model.

The BeatModel is the heart of the
application. It implements the logic
to start and stop the beat, set
the beats per minute (BPM), and
generate the sound.

Here’s a few more ways to control the DJ View...

The model also allows us to
obtain its current state through
the getBPM() method.

536 Chapter 12

Beat
Model

Controller

setBPM()

getBPM()

on()

off()

Click on the
increase beat
button...

The controller asks
the model to update
its BPM by one.

View is notified that the BPM

changed. It calls getBPM() on

the model state.

Because the BPM is 120, the view gets a beat notification every 1/2 second.

The beat is set at 119 BPM and you
would like to increase it to 120.

...which results in the
controller being invoked.

The view is updated
to 120 BPM.

You see the beatbar
pulse every 1/2 second.

View

View

Putting the pieces together

the dj model, view and controller

compound patterns

you are here 4 537

Building the pieces

public interface BeatModelInterface {
 void initialize();

 void on();

 void off();

 void setBPM(int bpm);

 int getBPM();

 void registerObserver(BeatObserver o);

 void removeObserver(BeatObserver o);

 void registerObserver(BPMObserver o);

 void removeObserver(BPMObserver o);
}

These are the methods
the controller will use to

direct the model based on
user interaction.

These methods allow
the view and the
controller to get

state and to become
observers.

This should look
familiar, these
methods allow
objects to register
as observers for
state changes.

We’ve split this into two kinds of
observers: observers that want to be
notified on every beat, and observers
that just want to be notified with
the beats per minute change.

Okay, you know the model is responsible for maintaining all the data, state and any
application logic. So what’s the BeatModel got in it? Its main job is managing the beat,
so it has state that maintains the current beats per minute and lots of code that generates
MIDI events to create the beat that we hear. It also exposes an interface that lets the
controller manipulate the beat and lets the view and controller obtain the model’s state.
Also, don’t forget that the model uses the Observer Pattern, so we also need some methods
to let objects register as observers and send out notifications.

This gets calle
d after the

BeatModel is instan
tiated.

These methods turn the beat
generator on and off.

This method sets the beats per
minute. After it is called, the beat
frequency changes immediately.

The getBPM() method returns
the current BPMs, or 0 if
the generator is off.

Let’s check out the BeatModelInterface before looking at the
implementation:

538 Chapter 12

public class BeatModel implements BeatModelInterface, MetaEventListener {
 Sequencer sequencer;
 ArrayList beatObservers = new ArrayList();
 ArrayList bpmObservers = new ArrayList();
 int bpm = 90;
 // other instance variables here

 public void initialize() {
 setUpMidi();
 buildTrackAndStart();
 }

 public void on() {
 sequencer.start();
 setBPM(90);
 }

 public void off() {
 setBPM(0);
 sequencer.stop();
 }

 public void setBPM(int bpm) {
 this.bpm = bpm;
 sequencer.setTempoInBPM(getBPM());
 notifyBPMObservers();
 }

 public int getBPM() {
 return bpm;
 }

 void beatEvent() {
 notifyBeatObservers();
 }

 // Code to register and notify observers

 // Lots of MIDI code to handle the beat
}

Ready-bake Code
This model uses Java’s MIDI support to generate beats. You can check out the
complete implementation of all the DJ classes in the Java source files available
on the headfirstlabs.com site, or look at the code at the end of the chapter.

Now let’s have a look at the concrete BeatModel class:

We implement the BeatModeIInterface.

The sequencer is the object that knows how to
generate real beats (that you can hear!).

This is needed for
the MIDI code.

These ArrayLists hold the two kinds of
observers (Beat and BPM observers).

The bpm instance variable holds the frequency
of beats - by default, 90 BPM.

This method does
setup on the sequencer
and sets up the beat
tracks for us.

The on() method starts the sequencer and
sets the BPMs to the default: 90 BPM.

And off() shuts it down by setting BPMs to
0 and stopping the sequencer.

The setBPM() method is the way the controller
manipulates the beat. It does three things:

(1) Sets the bpm instance variable

(2) Asks the sequencer to change its BPMs.

(3) Notifies all BPM Observers that the BPM
has changed.

The getBPM() method just returns the bpm instance variable, which

indicates the current beats per minute.

The beatEvent() method, which is not in the BeatModelInterface, is

called by the MIDI code whenever a new beat starts. This method

notifies all BeatObservers that a new beat has just occurred.

the beat model

compound patterns

you are here 4 539

The View
Now the fun starts; we get to hook up a view and visualize the BeatModel!

The first thing to notice about the view is that we’ve implemented it so that it is displayed in two separate
windows. One window contains the current BPM and the pulse; the other contains the interface
controls. Why? We wanted to emphasize the difference between the interface that contains the view of
the model and the rest of the interface that contains the set of user controls. Let’s take a closer look at
the two parts of the view:

We’ve separated
the view of the
model from the
view with the
controls.

The DJ view
displays two
aspects of the
BeatModel...

...the current beats
per minute, from
the BPMObserver
notifications...

...and a pulsing “beat
bar” pulses in synch
with the beat, driven
by the BeatObserver
notifications.

A textual view that displays a music genre based on the BPM (ambient, downbeat, techno, etc.).

Our BeatModel makes no assumptions about the view. The model is implemented using the
Observer Pattern, so it just notifies any view registered as an observer when its state changes. The
view uses the model’s API to get access to the state. We’ve implemented one type of view, can you
think of other views that could make use of the notifications and state in the BeatModel?

brain
powerA

A lightshow that is based on the real-time beat.

This is the part of the view that you use to change the beat. This view passes everything you do on to the controller.

540 Chapter 12

Implementing the View

The two parts of the view – the view of the model, and
the view with the user interface controls – are displayed
in two windows, but live together in one Java class. We’ll
first show you just the code that creates the view of the
model, which displays the current BPM and the beat bar.
Then we’ll come back on the next page and show you just
the code that creates the user interface controls, which
displays the BPM text entry field, and the buttons.

public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JFrame viewFrame;
 JPanel viewPanel;
 BeatBar beatBar;
 JLabel bpmOutputLabel;

 public DJView(ControllerInterface controller, BeatModelInterface model) {
 this.controller = controller;
 this.model = model;
 model.registerObserver((BeatObserver)this);
 model.registerObserver((BPMObserver)this);
 }

 public void createView() {
 // Create all Swing components here
 }

 public void updateBPM() {
 int bpm = model.getBPM();
 if (bpm == 0) {
 bpmOutputLabel.setText(“offline”);
 } else {
 bpmOutputLabel.setText(“Current BPM: “ + model.getBPM());
 }
 }

 public void updateBeat() {
 beatBar.setValue(100);
 }
}

DJView is an observer for both real-time beats and BPM changes.

Here, we create a few components for the display.

The view holds a reference to both the model and
the controller. The controller is only used by the
control interface, which we’ll go over in a sec...

The constructor gets a reference
to the controller and the model,
and we store references to those in
the instance variables.

We also register as a BeatObserver and a
BPMObserver of the model.

The updateBPM() method is called when a state change occurs in the model. When that happens we update the display with the current BPM. We can get this value by requesting it directly from the model.

Likewise, the updateBeat() method is called
when the model starts a new beat. When that
happens, we need to pulse our “beat bar.” We
do this by setting it to its maximum value (100)
and letting it handle the animation of the pulse.

What we’ve done here is split ONE

class into TWO, showing you one part

of the view on this page, and the other

part on the next page. All this code is

really in ONE class - DJView.java. It’s

all listed at the back of the chapter.

The code on these two

pages is just an outline!
.

Watch it!

the dj view

compound patterns

you are here 4 541

Implementing the View, continued...

Now, we’ll look at the code for the user interface controls part of the view. This view lets you control the
model by telling the controller what to do, which in turn, tells the model what to do. Remember, this code
is in the same class file as the other view code.

public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JLabel bpmLabel;
 JTextField bpmTextField;
 JButton setBPMButton;
 JButton increaseBPMButton;
 JButton decreaseBPMButton;
 JMenuBar menuBar;
 JMenu menu;
 JMenuItem startMenuItem;
 JMenuItem stopMenuItem;

 public void createControls() {
 // Create all Swing components here
 }
 public void enableStopMenuItem() {
 stopMenuItem.setEnabled(true);
 }

 public void disableStopMenuItem() {
 stopMenuItem.setEnabled(false);
 }

 public void enableStartMenuItem() {
 startMenuItem.setEnabled(true);
 }

 public void disableStartMenuItem() {
 startMenuItem.setEnabled(false);
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == setBPMButton) {
 int bpm = Integer.parseInt(bpmTextField.getText());
 controller.setBPM(bpm);
 } else if (event.getSource() == increaseBPMButton) {
 controller.increaseBPM();
 } else if (event.getSource() == decreaseBPMButton) {
 controller.decreaseBPM();
 }
 }
}

All these methods allow the start and stop items in the menu to be enabled and disabled. We’ll see that the controller uses these to change the interface.

This method creates all the controls and places them in the interface. It also takes care of the menu. When the stop or start items are chosen, the corresponding methods are called on the controller.

This method is called when a button is clicked.

If the Set button is
clicked then it is passed
on to the controller along
with the new bpm.

Likewise, if the increase
or decrease buttons are
clicked, this information is
passed on to the controller.

542 Chapter 12

Now for the Controller
It’s time to write the missing piece: the controller. Remember the controller is
the strategy that we plug into the view to give it some smarts.

Because we are implementing the Strategy Pattern, we need to start with an
interface for any Strategy that might be plugged into the DJ View. We’re going
to call it ControllerInterface.

public interface ControllerInterface {
 void start();
 void stop();
 void increaseBPM();
 void decreaseBPM();
 void setBPM(int bpm);
}

Here are all the
methods the view can
call on the controller.

These should look familiar after seeing the model’s
interface. You can stop and start the beat
generation and change the BPM. This interface is
“richer” than the BeatModel interface because you
can adjust the BPMs with increase and decrease.

You’ve seen that the view and controller together make use of the Strategy Pattern. Can you draw a
class diagram of the two that represents this pattern?

 Design Puzzle

the dj controller

compound patterns

you are here 4 543

public class BeatController implements ControllerInterface {
 BeatModelInterface model;
 DJView view;

 public BeatController(BeatModelInterface model) {
 this.model = model;
 view = new DJView(this, model);
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 model.initialize();
 }

 public void start() {
 model.on();
 view.disableStartMenuItem();
 view.enableStopMenuItem();
 }

 public void stop() {
 model.off();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 }

 public void increaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm + 1);
 }

 public void decreaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm - 1);
 }

 public void setBPM(int bpm) {
 model.setBPM(bpm);
 }
}

And here’s the implementation of the controller:

The controller implements
the ControllerInterface.

The controller is the creamy stuff
in the middle of the MVC oreo
cookie, so it is the object that
gets to hold on to the view and the
model and glues it all together.

The controller is passed the
model in the constructor and
then creates the view.

Likewise, when you choose Stop from the
menu, the controller turns the model off
and alters the user interface so that
the stop menu item is disabled and the
start menu item is enabled.

When you choose Start from the user

interface menu, the controller turns the

model on and then alters the user interfa
ce

so that the start menu item is disabled and

the stop menu item is enabled.

NOTE: the controller is
making the intelligent
decisions for the view.
The view just knows how
to turn menu items on
and off; it doesn’t know
the situations in which it
should disable them.

If the increase button is clicked, the
controller gets the current BPM
from the model, adds one, and then
sets a new BPM.

Same thing here, only we subtract
one from the current BPM.

Finally, if the user interface is used to
set an arbitrary BPM, the controller
instructs the model to set its BPM.

544 Chapter 12

Putting it all together...
We’ve got everything we need: a model, a view, and a controller.
Now it’s time to put them all together into a MVC! We’re going to
see and hear how well they work together.

All we need is a little code to get things started; it won’t take much:

public class DJTestDrive {
 public static void main (String[] args) {
 BeatModelInterface model = new BeatModel();
 ControllerInterface controller = new BeatController(model);
 }
}

First create a model...

...then create a controller and
pass it the model. Remember, the
controller creates the view, so we
don’t have to do that.

And now for a test run...

% java DJTestDrive
%

File Edit Window Help LetTheBassKick

Run this...

...and you’ll see this.

Start the beat generation with the Start menu item;
notice the controller disables the item afterwards.

Use the text entry along with the increase and decrease
buttons to change the BPM. Notice how the view
display reflects the changes despite the fact that it has
no logical link to the controls.

Notice how the beat bar always keeps up with the beat
since it’s an observer of the model.

Put on your favorite song and see if you can beat match
the beat by using the increase and decrease controls.

Stop the generator. Notice how the controller disables
the Stop menu item and enables the Start menu item.

Things to do

5

4

3

2

1

putting it all together

compound patterns

you are here 4 545

Exploring Strategy
Let’s take the Strategy Pattern just a little further to get a better
feel for how it is used in MVC. We’re going to see another
friendly pattern pop up too – a pattern you’ll often see hanging
around the MVC trio: the Adapter Pattern.

Think for a second about what the DJ View does: it displays
a beat rate and a pulse. Does that sound like something else?
How about a heartbeat? It just so happens we happen to have a
heart monitor class; here’s the class diagram:

getHeartRate()

registerBeatObserver()

registerBPMObserver()

// other heart methods

HeartModel We’ve got a method for getting

the current heart rate.

And luckily, its developers knew about
the Beat and BPM Observer interfaces!

It certainly would be nice to reuse our current view with the HeartModel, but we need a controller that
works with this model. Also, the interface of the HeatModel doesn’t match what the view expects
because it has a getHeartRate() method rather than a getBPM(). How would you design a set of
classes to allow the view to be reused with the new model?

brain
powerA

546 Chapter 12

Adapting the Model
For starters, we’re going to need to adapt the HeartModel to a BeatModel. If we don’t, the view
won’t be able to work with the model, because the view only knows how to getBPM(), and the
equivalent heart model method is getHeartRate(). How are we going to do this? We’re going to
use the Adapter Pattern, of course! It turns out that this is a common technique when working
with the MVC: use an adapter to adapt a model to work with existing controllers and views.

Here’s the code to adapt a HeartModel to a BeatModel:

public class HeartAdapter implements BeatModelInterface {
 HeartModelInterface heart;

 public HeartAdapter(HeartModelInterface heart) {
 this.heart = heart;
 }
 public void initialize() {}

 public void on() {}

 public void off() {}

 public int getBPM() {
 return heart.getHeartRate();
 }

 public void setBPM(int bpm) {}

 public void registerObserver(BeatObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BeatObserver o) {
 heart.removeObserver(o);
 }

 public void registerObserver(BPMObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BPMObserver o) {
 heart.removeObserver(o);
 }
}

We need to implement the
target interface, in this
case, BeatModelInterface.

Here, we store a reference
to the heart model.

We don’t know what these would do
to a heart, but it sounds scary. So
we’ll just leave them as “no ops.”

When getBPM() is called, we’ll just
translate it to a getHeartRate() call
on the heart model.

We don’t want to do this on a heart!
Again, let’s leave it as a “no op”.

Here are our observer methods.
We just delegate them to the
wrapped heart model.

mvc and adapter

compound patterns

you are here 4 547

Now we’re ready for a HeartController

With our HeartAdapter in hand we should be ready to create a controller and get the
view running with the HeartModel. Talk about reuse!

public class HeartController implements ControllerInterface {
 HeartModelInterface model;
 DJView view;

 public HeartController(HeartModelInterface model) {
 this.model = model;
 view = new DJView(this, new HeartAdapter(model));
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.disableStartMenuItem();
 }

 public void start() {}

 public void stop() {}

 public void increaseBPM() {}

 public void decreaseBPM() {}

 public void setBPM(int bpm) {}
}

The HeartController implements
the ControllerInterface, just
like the BeatController did.

Like before, the controller
creates the view and gets
everything glued together.

There is one change: we are passed a
HeartModel, not a BeatModel...

...and we need to wrap that
model with an adapter before
we hand it to the view.

There’s not a lot to do here;
after all, we can’t really control
hearts like we can beat machines.

And that’s it! Now it’s time for some test code...

public class HeartTestDrive {
 public static void main (String[] args) {
 HeartModel heartModel = new HeartModel();
 ControllerInterface model = new HeartController(heartModel);
 }
}

All we need to do is create
the controller and pass it a
heart monitor.

Finally, the HeartController disables the
menu items as they aren’t needed.

548 Chapter 12

% java HeartTestDrive
%

File Edit Window Help CheckMyPulse

Run this...

...and you’ll see this.

Notice that the display works great with a heart!
The beat bar looks just like a pulse. Because the
HeartModel also supports BPM and Beat Observers we
can get beat updates just like with the DJ beats.

As the heartbeat has natural variation, notice the
display is updated with the new beats per minute.

Each time we get a BPM update the adapter is doing
its job of translating getBPM() calls to getHeartRate()
calls.

The Start and Stop menu items are not enabled
because the controller disabled them.

The other buttons still work but have no effect
because the controller implements no ops for them.
The view could be changed to support the disabling of
these items.

Things to do

And now for a test run...

5

4

3

2

1

Nice healthy
heart rate.

test the heart model

compound patterns

you are here 4 549

MVC and the Web

DB

model/DB/
business logic

Client

Web
 browser

<html>
<body>
Refactor
<%= new Foo() %>
<% // more here %>
more here
</body>
</html>

jsp/view
bean

1

HTTP request

HTTP response

instantiates

5

2

4

4

3

servlet/controller

It wasn’t long after the Web was spun that developers started adapting the MVC to fi t the
browser/server model. The prevailing adaptation is known simply as “Model 2” and uses a
combination of servlet and JSP technology to achieve the same separation of model, view and
controller that we see in conventional GUIs.

Let’s check out how Model 2 works:

Using your web browser you make an HTTP request. This typically involves
sending along some form data, like your username and password. A servlet
receives this form data and parses it.

1 You make an HTTP request, which is received by a servlet.

The servlet plays the role of the controller and processes your request,
most likely making requests on the model (usually a database). The result
of processing the request is usually bundled up in the form of a JavaBean.

2 The servlet acts as the controller.

The View is represented by a JSP. The JSP’s only job is to generate
the page representing the view of model (which it obtains via the
JavaBean) along with any controls needed for further actions.

3 The controller forwards control to the view.

4

A page is returned to the browser, where it is displayed as the view. The
user submits further requests, which are processed in the same fashion.

5 The view returns a page to the browser via HTTP.

550 Chapter 12

The benefits of the separation of the view,
model and controller are pretty clear to
you now. But you need to know the “rest
of the story” with Model 2 – that it saved
many web shops from sinking into chaos.

How? Well, Model 2 not only provides
a separation of components in terms of
design, it also provides a separation in
production responsibilities. Let’s face it, in the
old days, anyone with access to your JSPs
could get in and write any Java code they
wanted, right? And that included a lot
of people who didn’t know a jar file from
a jar of peanut butter. The reality is that
most web producers know about content and
HTML, not software.

Luckily Model 2 came to the rescue.
With Model 2 we can leave the developer
jobs to the guys & girls who know their
Servlets and let the web producers loose
on simple Model 2 style JSPs where all
the producers have access to is HTML
and simple JavaBeans.

Model 2 is more than just
a clean design.

You don’t even want to
know what life was like before

Model 2 came on the scene. It was
ugly.

former DOT COM’er

model 2

compound patterns

you are here 4 551

Model 2: DJ’ing from a cell phone

You didn’t think we’d try to skip out without moving that
great BeatModel over to the Web did you? Just think, you can
control your entire DJ session through a web page on your
cellular phone. So now you can get out of that DJ booth and
get down in the crowd. What are you waiting for? Let’s write
that code!

The plan

Well, actually, we don’t have to fi x the model, it’s fi ne just
like it is!

1 Fix up the model.

We need a simple servlet that can receive our HTTP
requests and perform a few operations on the model. All it
needs to do is stop, start and change the beats per minute.

2 Create a servlet controller

We’ll create a simple view with a JSP. It’s going to receive
a JavaBean from the controller that will tell it everything
it needs to display. The JSP will then generate an HTML
interface.

3 Create a HTML view.

Setting up your Servlet environment

Showing you how to set up your servlet environment is a little bit off
topic for a book on Design Patterns, at least if you don’t want the book
to weigh more than you do!

Fire up your web browser and head straight to
http://jakarta.apache.org/tomcat/ for the Apache Jakarta Project’s
Tomcat Servlet Container. You’ll find everything you need there to get
you up and running.

You’ll also want to check out Head First Servlets & JSP by Bryan
Basham, Kathy Sierra and Bert Bates.

Geek Bits

552 Chapter 12

Step two: the controller servlet

public class DJView extends HttpServlet {

 public void init() throws ServletException {
 BeatModel beatModel = new BeatModel();
 beatModel.initialize();
 getServletContext().setAttribute(“beatModel”, beatModel);
 }

 // doPost method here

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 // implementation here
 }
}

Step one: the model

Remember that in MVC, the model doesn’t know anything about the views or
controllers. In other words it is totally decoupled. All it knows is that it may have
observers it needs to notify. That’s the beauty of the Observer Pattern. It also
provides an interface the views and controllers can use to get and set its state.

Now all we need to do is adapt it to work in the web environment, but, given that
it doesn’t depend on any outside classes, there is really no work to be done. We
can use our BeatModel off the shelf without changes. So, let’s be productive and
move on to step two!

Remember, the servlet is going to act as our controller; it will receive Web browser
input in a HTTP request and translate it into actions that can be applied to the
model.

Then, given the way the Web works, we need to return a view to the browser. To
do this we’ll pass control to the view, which takes the form of a JSP. We’ll get to
that in step three.

Here’s the outline of the servlet; on the next page, we’ll look at the full
implementation.

We extend the HttpServlet class
so that we can do servlet kinds of
things, like receive HTTP requests.

Here’s the init method;
this is called when the
servlet is first created.

...and place a reference to
it in the servlet’s context
so that it’s easily accessed.

We first create a
BeatModel object...

Here’s the doGet() method. This is where the real work
happens. We’ve got its implementation on the next page.

model 2 controller servlet

compound patterns

you are here 4 553

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
{
 BeatModel beatModel =
 (BeatModel)getServletContext().getAttribute(“beatModel”);

 String bpm = request.getParameter(“bpm”);
 if (bpm == null) {
 bpm = beatModel.getBPM() + “”;
 }

 String set = request.getParameter(“set”);
 if (set != null) {
 int bpmNumber = 90;
 bpmNumber = Integer.parseInt(bpm);
 beatModel.setBPM(bpmNumber);
 }

 String decrease = request.getParameter(“decrease”);
 if (decrease != null) {
 beatModel.setBPM(beatModel.getBPM() - 1);
 }
 String increase = request.getParameter(“increase”);
 if (increase != null) {
 beatModel.setBPM(beatModel.getBPM() + 1);
 }
 String on = request.getParameter(“on”);
 if (on != null) {
 beatModel.start();
 }
 String off = request.getParameter(“off”);
 if (off != null) {
 beatModel.stop();
 }

 request.setAttribute(“beatModel”, beatModel);

 RequestDispatcher dispatcher =
 request.getRequestDispatcher(“/jsp/DJView.jsp”);
 dispatcher.forward(request, response);
}

Here’s the implementation of the doGet() method from the page before:

First we grab the model from
the servlet context. We can’t
manipulate the model without a
reference to it.

Next we grab all the HTTP
commands/parameters...

If we get a set command, then
we get the value of the set,
and tell the model.

To increase or decrease,
we get the

current BPMs from the model, and

adjust up or down by one.

If we get an on or off command, we
tell the model to start or stop.

Finally, our job as a controller
is done. All we need to do is
ask the view to take over and
create an HTML view.

Following the Model 2 definition,
we pass the JSP a bean with the
model state in it. In this case, we
pass it the actual model, since it
happens to be a bean.

554 Chapter 12

<jsp:useBean id=”beatModel” scope=”request” class=”headfirst.combined.djview.BeatModel” />

<html>
<head>
<title>DJ View</title>
</head>
<body>

<h1>DJ View</h1>
Beats per minutes = <jsp:getProperty name=”beatModel” property=”BPM” />

<hr>

<form method=”post” action=”/djview/servlet/DJView”>
BPM: <input type=text name=”bpm”
 value=”<jsp:getProperty name=”beatModel”
 property=”BPM” />”>

<input type=”submit” name=”set” value=”set”>

<input type=”submit” name=”decrease” value=”<<”>
<input type=”submit” name=”increase” value=”>>”>

<input type=”submit” name=”on” value=”on”>
<input type=”submit” name=”off” value=”off”>

</form>

</body>
</html>

Now we need a view...

Here’s our bean, which
the servlet passed us.

Beginning of the HTML.
Here we use the model bean to extract the BPM property.

Now we
generate the
view, which
prints out
the current
beats per
minute.

And here’s the control part
of the view. We have a text
entry for entering a BPM
along with increase/decrease
and on/off buttons.

And here’s the end
of the HTML.

All we need is a view and we’ve got our browser-based beat generator ready to go!
In Model 2, the view is just a JSP. All the JSP knows about is the bean it receives
from the controller. In our case, that bean is just the model and the JSP is only
going to use its BPM property to extract the current beats per minute. With that
data in hand, it creates the view and also the user interface controls.

NOTICE that just like MVC, in Model 2
the view doesn’t alter the model (that’s the
controller’s job); all it does is use its state!

model 2 view

compound patterns

you are here 4 555

This is the view

of the model.

Here’s the set

of controls; when

you use these,
they get sent via

HTTP to the
servlet controlle

r

for processing.

(5) User enters new
BPM in text field.

(6) User clicks
Set button.

(7) HTTP request
is made.

Putting Model 2 to the test...

(1) User clicks the
on button.

(2) Request is sent to
controller via HTTP.

(3) Beat is turned
on and set at
default 90 BPM.

(4) View is returned
via HTTP and
displayed.

It’s time to start your web browser, hit the DJView Servlet and give
the system a spin...

556 Chapter 12

(8) Controller
changes model to
150 BPMs

(9) View returns
HTML reflecting
the current model.

First, hit the web page; you’ll see the beats per minute at 0. Go ahead and
click the “on” button.

Now you should see the beats per minute at the default setting: 90 BPM. You
should also hear a beat on the machine the server is running on.

Enter a specifi c beat, say, 120, and click the “set” button. The page should
refresh with a beats per minute of 120 (and you should hear the beat
increase).

Now play with the increase/decrease buttons to adjust the beat up and down.

Think about how each step of the system works. The HTML interface makes
a request to the servlet (the controller); the servlet parses the user input and
then makes requests to the model. The servlet then passes control to the
JSP (the view), which creates the HTML view that is returned and displayed.

Things to do

5

4

3

2

1

things 2 do with model 2

compound patterns

you are here 4 557

<html>
<body>
BPM
<jsp:getProperty />
more here
</body>
</html>

Web
 browser

Controller

Beat
Model

setBPM()

getBPM()

on()

off()

Observer

Design Patterns and Model 2

After implementing the DJ Control for the Web using Model 2, you might be wondering where the patterns
went. We have a view created in HTML from a JSP but the view is no longer a listener of the model. We have
a controller that’s a servlet that receives HTTP requests, but are we still using the Strategy Pattern? And what
about Composite? We have a view that is made from HTML and displayed in a web browser. Is that still the
Composite Pattern?

The view is no longer an observer
of the model in the classic
sense; that is, it doesn’t register
with the model to receive state
change notifi cations.

However, the view does receive
the equivalent of notifi cations
indirectly from the controller
when the model has been
changed. The controller even
passes the view a bean that
allows the view to retrieve the
model’s state.

If you think about the browser
model, the view only needs an
update of state information
when an HTTP response is
returned to the browser;
notifi cations at any other time
would be pointless. Only when
a page is being created and
returned does it make sense to
create the view and incorporate
the model’s state.

Model 2 is an adaptation of MVC to the Web

Even though Model 2 doesn’t look exactly like “textbook” MVC, all the parts are still there; they’ve just been
adapted to refl ect the idiosyncrasies of the web browser model. Let’s take another look...

bean

User has done

something

Change your
state

Okay, I changed

my state

Update your display,
here’s the new model

state

Here’s a new page
to display

JSP/HTML
View

The view now receives

notifications from
 the

controller when a page

is needed rather
than

on every state ch
ange

in the model.

558 Chapter 12

Composite
Like our Swing GUI, the
view is ultimately made up
of a nested set of graphical
components. In this case,
they are rendered by a
web browser from an
HTML description, however
underneath there is an
object system that most
likely forms a composite.

Strategy
In Model 2, the Strategy
object is still the controller
servlet; however, it’s not
directly composed with the
view in the classic manner.
That said, it is an object that
implements behavior for the
view, and we can swap it out
for another controller if we
want different behavior.

<html>
<body>
BPM
<jsp:getProperty />
more here
</body>
</html>

Web
 browser

Controller

Beat
Model

setBPM()

getBPM()

on()

off()

bean

User has done

something

Change your
state

Okay, I changed

my state

Update your display,
here’s the new model

state

Here’s a new page
to display

JSP/HTML
View

The controller still
provides the view
behavior, even if it
isn’t composed with
the view using object
composition.

model 2 patterns

compound patterns

you are here 4 559

Q: It seems like you are really hand
waving the fact that the Composite
Pattern is really in MVC. Is it really
there?

A: Yes, Virginia, there really is a
Composite Pattern in MVC. But, actually,
this is a very good question. Today GUI
packages, like Swing, have become so
sophisticated that we hardly notice the
internal structure and the use of composite
in the building and update of the display.
It’s even harder to see when we have Web
browsers that can take markup language
and convert it into a user interface.

Back when MVC was first discovered,
creating GUIs required a lot more manual
intervention and the pattern was more
obviously part of the MVC.

Q: Does the controller ever
implement any application logic?

A: No, the controller implements
behavior for the view. It is the smarts
that translates the actions from the view
to actions on the model. The model
takes those actions and implements the
application logic to decide what to do in
response to those actions. The controller
might have to do a little work to determine
what method calls to make on the model,
but that’s not considered the “application
logic.” The application logic is the code that
manages and manipulates your data and it
lives in your model.

Q: I’ve always found the word
“model” hard to wrap my head around.
I now get that it’s the guts of the
application, but why was such a vague,
hard-to-understand word used to
describe this aspect of the MVC?

A: When MVC was named they needed
a word that began with a “M” or otherwise
they couldn’t have called it MVC.

But seriously, we agree with you, everyone
scratches their head and wonders what a
model is. But then everyone comes to the
realization that they can’t think of a better
word either.

Q: You’ve talked a lot about the state
of the model. Does this mean it has the
State Pattern in it?

A: No, we mean the general idea of
state. But certainly some models do use the
State Pattern to manage their internal states.

Q: I’ve seen descriptions of the MVC
where the controller is described as a
“mediator” between the view and the
model. Is the controller implementing the
Mediator Pattern?

A: We haven’t covered the Mediator
Pattern (although you’ll find a summary of
the pattern in the appendix), so we won’t go
into too much detail here, but the intent of
the mediator is to encapsulate how objects
interact and promote loose coupling by
keeping two objects from referring to each
other explicitly. So, to some degree, the
controller can be seen as a mediator, since
the view never sets state directly on the
model, but rather always goes through the
controller. Remember, however, that the
view does have a reference to the model to
access its state. If the controller were truly a
mediator, the view would have to go through
the controller to get the state of the model
as well.

Q: Does the view always have to ask
the model for its state? Couldn’t we use
the push model and send the model’s
state with the update notification?

A: Yes, the model could certainly send
its state with the notification, and in fact, if
you look again at the JSP/HTML view, that’s
exactly what we’re doing. We’re sending
the entire model in a bean, which the view
uses to access the state it needs using the
bean properties. We could do something
similar with the BeatModel by sending just
the state that the view is interested in. If you
remember the Observer Pattern chapter,
however, you’ll also remember that there’s a
couple of disadvantages to this. If you don’t
go back and have a second look.

Q: If I have more than one view, do I
always need more than one controller?

A: Typically, you need one controller
per view at runtime; however, the same
controller class can easily manage many
views.

Q: The view is not supposed to
manipulate the model, however I noticed
in your implementation that the view has
full access to the methods that change
the model’s state. Is this dangerous?

A: You are correct; we gave the view
full access to the model’s set of methods.
We did this to keep things simple, but there
may be circumstances where you want to
give the view access to only part of your
model’s API. There’s a great design pattern
that allows you to adapt an interface to only
provide a subset. Can you think of it?

there are noDumb Questions

560 Chapter 12

Tools for your Design Toolbox
You could impress anyone with your design toolbox.
Wow, look at all those principles, patterns and now,
compound patterns!

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.
Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

OO Patterns

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

OO PatternsOO Patterns

Command - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

 BULLET POINTS

ß The Model View Controller
Pattern (MVC) is a compound
pattern consisting of the
Observer, Strategy and
Composite patterns.

ß The model makes use of the
Observer Pattern so that it can
keep observers updated yet
stay decoupled from them.

ß The controller is the strategy
for the view. The view can use
different implementations of
the controller to get different
behavior.

ß The view uses the Composite
Pattern to implement the
user interface, which usually
consists of nested components
like panels, frames and
buttons.

ß These patterns work together
to decouple the three players in
the MVC model, which keeps
designs clear and flexible.

ß The Adapter Pattern can be
used to adapt a new model to
an existing view and controller.

ß Model 2 is an adaptation of
MVC for web applications.

ß In Model 2, the controller is
implemented as a servlet and
JSP & HTML implement the
view.

OO PatternsOO Patterns

Adapter - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

OO Patterns

Facade - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

We have a new
category! MVC
and Model 2 are
compound patterns.

OO Patterns

State - Allow an object to
alter its

behavior when its intern
al state chang

es.

The object will appear to c
hange its

class.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics
Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for ex

tension

but closed for
 modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

Only talk to yo
ur friends.

Don’t call us, w
e’ll call you.

A class should h
ave only one r

eason

to change.

OO Principles

OO Patterns

Proxy - Provide a surro
gate or

placeholder fo
r another obj

ect to

control access
 to it. compound patterns.

control access
 to it.

A Compound Pattern combines two

or more patterns i
nto a solution

that

solves a recurr
ing or general

problem.

Compound Patterns

design toolbox

compound patterns

you are here 4 561

Exercise solutions

Sharpen your pencil
The QuackCounter is a Quackable too. When we change Quackable to extend
QuackObservable, we have to change every class that implements Quackable,
including QuackCounter:

public class QuackCounter implements Quackable {
 Quackable duck;
 static int numberOfQuacks;

 public QuackCounter(Quackable duck) {
 this.duck = duck;
 }

 public void quack() {
 duck.quack();
 numberOfQuacks++;
 }

 public static int getQuacks() {
 return numberOfQuacks;
 }

 public void registerObserver(Observer observer) {
 duck.registerObserver(observer);
 }

 public void notifyObservers() {
 duck.notifyObservers();
 }
}

QuackCounter is a Quackable, so

now it’s a QuackObservable too.

All of this code is the

same as the previous

version of QuackCounter.

Here’s the duck that the
QuackCounter is decorating.
It’s this duck that really
needs to handle the
observable methods.

Here are the two
QuackObservable
methods. Notice that
we just delegate both
calls to the duck that
we’re decorating.

562 Chapter 12

Sharpen your pencil
What if our Quackologist wants to observe an entire flock? What does that mean
anyway? Think about it like this: if we observe a composite, then we’re observing
everything in the composite. So, when you register with a flock, the flock composite
makes sure you get registered with all its children, which may include other flocks.

public class Flock implements Quackable {
 ArrayList ducks = new ArrayList();

 public void add(Quackable duck) {
 ducks.add(duck);
 }

 public void quack() {
 Iterator iterator = ducks.iterator();
 while (iterator.hasNext()) {
 Quackable duck = (Quackable)iterator.next();
 duck.quack();
 }
 }

 public void registerObserver(Observer observer) {
 Iterator iterator = ducks.iterator();
 while (iterator.hasNext()) {
 Quackable duck = (Quackable)iterator.next();
 duck.registerObserver(observer);
 }
 }

 public void notifyObservers() { }

}

Flock is a Quackable, so now

it’s a QuackObservable too.

Here’s the Quackables that
are in the Flock.

When you register as an Observer

with the Flock, you actually

get registered with everything

that’s IN the flock, which is

every Quackable, whether it’s a

duck or another Flock.

We iterate through all the
Quackables in the Flock and
delegate the call to each
Quackable. If the Quackable
is another Flock, it will do
the same.

Each Quackable does its own notification,
so Flock doesn’t have to worry about it.
This happens when Flock delegates quack()
to each Quackable in the Flock.

sharpen solution

compound patterns

you are here 4 563

You’ve seen that the View and Controller together make use of the Strategy Pattern. Can you draw a
class diagram of the two that shows this pattern?

 Design Class

setBPM()

increaseBPM()

decreaseBPM()

<<interface>>
ControllerInterface

createView()

updateBPM()

updateBeat()

createControls()

enableStopMenuItem()

disableStopMenuItem()

enableStartMenuItem()

disableStartMenuItem()

actionPerformed()

DJView

controller

setBPM()

increaseBPM()

decreaseBPM()

Controller

The
ControllerInterface
is the interface
that all concrete
controllers implement.
This is the strategy
interface.

We can plug in
different controllers
to provide different
behaviors for the view.

The view delegates
behavior to the
controller. The
behavior it
delegates is how to
control the model
based on user input.

Sharpen your pencil
We’re still directly instantiating Geese by relying on concrete classes. Can you write
an Abstract Factory for Geese? How should it handle creating “goose ducks?”

You could add a createGooseDuck() method to the existing Duck Factories. Or, you
could create a completely separate Factory for creating families of Geese.

564 Chapter 12

 Ready-bake Code Here’s the complete implementation of the DJView. It shows all the
MIDI code to generate the sound, and all the Swing components to
create the view. You can also download this code at
http://www.headfirstlabs.com. Have fun!

ready-bake code: the dj application

package headfi rst.combined.djview;

public class DJTestDrive {
 public static void main (String[] args) {
 BeatModelInterface model = new BeatModel();
 ControllerInterface controller = new BeatController(model);
 }
}

package headfi rst.combined.djview;

public interface BeatModelInterface {
 void initialize();

 void on();

 void off();

 void setBPM(int bpm);

 int getBPM();

 void registerObserver(BeatObserver o);

 void removeObserver(BeatObserver o);

 void registerObserver(BPMObserver o);

 void removeObserver(BPMObserver o);
}

The Beat Model

compound patterns

you are here 4 565

package headfirst.combined.djview;

import javax.sound.midi.*;
import java.util.*;
public class BeatModel implements BeatModelInterface, MetaEventListener {
 Sequencer sequencer;
 ArrayList beatObservers = new ArrayList();
 ArrayList bpmObservers = new ArrayList();
 int bpm = 90;
 // other instance variables here
 Sequence sequence;
 Track track;

 public void initialize() {
 setUpMidi();
 buildTrackAndStart();
 }

 public void on() {
 sequencer.start();
 setBPM(90);
 }

 public void off() {
 setBPM(0);
 sequencer.stop();
 }

 public void setBPM(int bpm) {
 this.bpm = bpm;
 sequencer.setTempoInBPM(getBPM());
 notifyBPMObservers();
 }

 public int getBPM() {
 return bpm;
 }

 void beatEvent() {
 notifyBeatObservers();
 }

 public void registerObserver(BeatObserver o) {
 beatObservers.add(o);
 }

 public void notifyBeatObservers() {
 for(int i = 0; i < beatObservers.size(); i++) {

566 Chapter 12

Ready-bake Code

 BeatObserver observer = (BeatObserver)beatObservers.get(i);
 observer.updateBeat();
 }
 }

 public void registerObserver(BPMObserver o) {
 bpmObservers.add(o);
 }

 public void notifyBPMObservers() {
 for(int i = 0; i < bpmObservers.size(); i++) {
 BPMObserver observer = (BPMObserver)bpmObservers.get(i);
 observer.updateBPM();
 }
 }

 public void removeObserver(BeatObserver o) {
 int i = beatObservers.indexOf(o);
 if (i >= 0) {
 beatObservers.remove(i);
 }
 }

 public void removeObserver(BPMObserver o) {
 int i = bpmObservers.indexOf(o);
 if (i >= 0) {
 bpmObservers.remove(i);
 }
 }

 public void meta(MetaMessage message) {
 if (message.getType() == 47) {
 beatEvent();
 sequencer.start();
 setBPM(getBPM());
 }
 }

 public void setUpMidi() {
 try {
 sequencer = MidiSystem.getSequencer();

ready-bake code: model

compound patterns

you are here 4 567

 sequencer.open();
 sequencer.addMetaEventListener(this);
 sequence = new Sequence(Sequence.PPQ,4);
 track = sequence.createTrack();
 sequencer.setTempoInBPM(getBPM());
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 public void buildTrackAndStart() {
 int[] trackList = {35, 0, 46, 0};

 sequence.deleteTrack(null);
 track = sequence.createTrack();

 makeTracks(trackList);
 track.add(makeEvent(192,9,1,0,4));
 try {
 sequencer.setSequence(sequence);
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 public void makeTracks(int[] list) {

 for (int i = 0; i < list.length; i++) {
 int key = list[i];

 if (key != 0) {
 track.add(makeEvent(144,9,key, 100, i));
 track.add(makeEvent(128,9,key, 100, i+1));
 }
 }
 }

 public MidiEvent makeEvent(int comd, int chan, int one, int two, int tick) {
 MidiEvent event = null;
 try {
 ShortMessage a = new ShortMessage();
 a.setMessage(comd, chan, one, two);
 event = new MidiEvent(a, tick);

 } catch(Exception e) {
 e.printStackTrace();
 }
 return event;
 }
}

568 Chapter 12

package headfi rst.combined.djview;

public interface BeatObserver {
 void updateBeat();
}

package headfi rst.combined.djview;

public interface BPMObserver {
 void updateBPM();
}

The View

package headfi rst.combined.djview;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class DJView implements ActionListener, BeatObserver, BPMObserver {
 BeatModelInterface model;
 ControllerInterface controller;
 JFrame viewFrame;
 JPanel viewPanel;
 BeatBar beatBar;
 JLabel bpmOutputLabel;
 JFrame controlFrame;
 JPanel controlPanel;
 JLabel bpmLabel;
 JTextField bpmTextField;
 JButton setBPMButton;
 JButton increaseBPMButton;
 JButton decreaseBPMButton;
 JMenuBar menuBar;
 JMenu menu;
 JMenuItem startMenuItem;
 JMenuItem stopMenuItem;

 public DJView(ControllerInterface controller, BeatModelInterface model) {
 this.controller = controller;
 this.model = model;
 model.registerObserver((BeatObserver)this);
 model.registerObserver((BPMObserver)this);
 }

 public void createView() {

Ready-bake Code

ready-bake code: view

compound patterns

you are here 4 569

 // Create all Swing components here
 viewPanel = new JPanel(new GridLayout(1, 2));
 viewFrame = new JFrame(“View”);
 viewFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 viewFrame.setSize(new Dimension(100, 80));
 bpmOutputLabel = new JLabel(“offline”, SwingConstants.CENTER);
 beatBar = new BeatBar();
 beatBar.setValue(0);
 JPanel bpmPanel = new JPanel(new GridLayout(2, 1));
 bpmPanel.add(beatBar);
 bpmPanel.add(bpmOutputLabel);
 viewPanel.add(bpmPanel);
 viewFrame.getContentPane().add(viewPanel, BorderLayout.CENTER);
 viewFrame.pack();
 viewFrame.setVisible(true);
 }

 public void createControls() {
 // Create all Swing components here
 JFrame.setDefaultLookAndFeelDecorated(true);
 controlFrame = new JFrame(“Control”);
 controlFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 controlFrame.setSize(new Dimension(100, 80));

 controlPanel = new JPanel(new GridLayout(1, 2));

 menuBar = new JMenuBar();
 menu = new JMenu(“DJ Control”);
 startMenuItem = new JMenuItem(“Start”);
 menu.add(startMenuItem);
 startMenuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 controller.start();
 }
 });
 stopMenuItem = new JMenuItem(“Stop”);
 menu.add(stopMenuItem);
 stopMenuItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 controller.stop();
 //bpmOutputLabel.setText(“offline”);
 }
 });
 JMenuItem exit = new JMenuItem(“Quit”);
 exit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 System.exit(0);
 }
 });

570 Chapter 12

Ready-bake Code

 menu.add(exit);
 menuBar.add(menu);
 controlFrame.setJMenuBar(menuBar);

 bpmTextField = new JTextField(2);
 bpmLabel = new JLabel(“Enter BPM:”, SwingConstants.RIGHT);
 setBPMButton = new JButton(“Set”);
 setBPMButton.setSize(new Dimension(10,40));
 increaseBPMButton = new JButton(“>>”);
 decreaseBPMButton = new JButton(“<<”);
 setBPMButton.addActionListener(this);
 increaseBPMButton.addActionListener(this);
 decreaseBPMButton.addActionListener(this);

 JPanel buttonPanel = new JPanel(new GridLayout(1, 2));

 buttonPanel.add(decreaseBPMButton);
 buttonPanel.add(increaseBPMButton);

 JPanel enterPanel = new JPanel(new GridLayout(1, 2));
 enterPanel.add(bpmLabel);
 enterPanel.add(bpmTextField);
 JPanel insideControlPanel = new JPanel(new GridLayout(3, 1));
 insideControlPanel.add(enterPanel);
 insideControlPanel.add(setBPMButton);
 insideControlPanel.add(buttonPanel);
 controlPanel.add(insideControlPanel);

 bpmLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));
 bpmOutputLabel.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));

 controlFrame.getRootPane().setDefaultButton(setBPMButton);
 controlFrame.getContentPane().add(controlPanel, BorderLayout.CENTER);

 controlFrame.pack();
 controlFrame.setVisible(true);
 }

 public void enableStopMenuItem() {
 stopMenuItem.setEnabled(true);
 }

 public void disableStopMenuItem() {
 stopMenuItem.setEnabled(false);

ready-bake code: view

compound patterns

you are here 4 571

 }

 public void enableStartMenuItem() {
 startMenuItem.setEnabled(true);
 }

 public void disableStartMenuItem() {
 startMenuItem.setEnabled(false);
 }

 public void actionPerformed(ActionEvent event) {
 if (event.getSource() == setBPMButton) {
 int bpm = Integer.parseInt(bpmTextField.getText());
 controller.setBPM(bpm);
 } else if (event.getSource() == increaseBPMButton) {
 controller.increaseBPM();
 } else if (event.getSource() == decreaseBPMButton) {
 controller.decreaseBPM();
 }
 }

 public void updateBPM() {
 int bpm = model.getBPM();
 if (bpm == 0) {
 bpmOutputLabel.setText(“offline”);
 } else {
 bpmOutputLabel.setText(“Current BPM: “ + model.getBPM());
 }
 }

 public void updateBeat() {
 beatBar.setValue(100);
 }
}

package headfirst.combined.djview;

public interface ControllerInterface {
 void start();
 void stop();
 void increaseBPM();
 void decreaseBPM();
 void setBPM(int bpm);
}

The Controller

572 Chapter 12

Ready-bake Code

ready-bake code: controller

package headfi rst.combined.djview;

public class BeatController implements ControllerInterface {
 BeatModelInterface model;
 DJView view;

 public BeatController(BeatModelInterface model) {
 this.model = model;
 view = new DJView(this, model);
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 model.initialize();
 }

 public void start() {
 model.on();
 view.disableStartMenuItem();
 view.enableStopMenuItem();
 }

 public void stop() {
 model.off();
 view.disableStopMenuItem();
 view.enableStartMenuItem();
 }

 public void increaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm + 1);
 }

 public void decreaseBPM() {
 int bpm = model.getBPM();
 model.setBPM(bpm - 1);
 }

 public void setBPM(int bpm) {
 model.setBPM(bpm);
 }
}

compound patterns

you are here 4 573

The Heart Model

package headfirst.combined.djview;

public class HeartTestDrive {
 public static void main (String[] args) {
 HeartModel heartModel = new HeartModel();
 ControllerInterface model = new HeartController(heartModel);
 }
}

package headfirst.combined.djview;
public interface HeartModelInterface {
 int getHeartRate();
 void registerObserver(BeatObserver o);
 void removeObserver(BeatObserver o);
 void registerObserver(BPMObserver o);
 void removeObserver(BPMObserver o);
}

package headfirst.combined.djview;
import java.util.*;

public class HeartModel implements HeartModelInterface, Runnable {
 ArrayList beatObservers = new ArrayList();
 ArrayList bpmObservers = new ArrayList();
 int time = 1000;
 int bpm = 90;
 Random random = new Random(System.currentTimeMillis());
 Thread thread;

 public HeartModel() {
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 int lastrate = -1;

 for(;;) {
 int change = random.nextInt(10);
 if (random.nextInt(2) == 0) {
 change = 0 - change;
 }
 int rate = 60000/(time + change);
 if (rate < 120 && rate > 50) {
 time += change;

574 Chapter 12

 notifyBeatObservers();
 if (rate != lastrate) {
 lastrate = rate;
 notifyBPMObservers();
 }
 }
 try {
 Thread.sleep(time);
 } catch (Exception e) {}
 }
 }
 public int getHeartRate() {
 return 60000/time;
 }

 public void registerObserver(BeatObserver o) {
 beatObservers.add(o);
 }

 public void removeObserver(BeatObserver o) {
 int i = beatObservers.indexOf(o);
 if (i >= 0) {
 beatObservers.remove(i);
 }
 }

 public void notifyBeatObservers() {
 for(int i = 0; i < beatObservers.size(); i++) {
 BeatObserver observer = (BeatObserver)beatObservers.get(i);
 observer.updateBeat();
 }
 }

 public void registerObserver(BPMObserver o) {
 bpmObservers.add(o);
 }

 public void removeObserver(BPMObserver o) {
 int i = bpmObservers.indexOf(o);
 if (i >= 0) {
 bpmObservers.remove(i);
 }
 }

 public void notifyBPMObservers() {
 for(int i = 0; i < bpmObservers.size(); i++) {
 BPMObserver observer = (BPMObserver)bpmObservers.get(i);
 observer.updateBPM();
 }
 }
}

Ready-bake Code

ready-bake code: heart beat model

compound patterns

you are here 4 575

package headfirst.combined.djview;
public class HeartAdapter implements BeatModelInterface {
 HeartModelInterface heart;

 public HeartAdapter(HeartModelInterface heart) {
 this.heart = heart;
 }

 public void initialize() {}

 public void on() {}

 public void off() {}

 public int getBPM() {
 return heart.getHeartRate();
 }

 public void setBPM(int bpm) {}

 public void registerObserver(BeatObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BeatObserver o) {
 heart.removeObserver(o);
 }

 public void registerObserver(BPMObserver o) {
 heart.registerObserver(o);
 }

 public void removeObserver(BPMObserver o) {
 heart.removeObserver(o);
 }
}

The Heart Adapter

576 Chapter 12

Ready-bake Code

package headfi rst.combined.djview;

public class HeartController implements ControllerInterface {
 HeartModelInterface model;
 DJView view;

 public HeartController(HeartModelInterface model) {
 this.model = model;
 view = new DJView(this, new HeartAdapter(model));
 view.createView();
 view.createControls();
 view.disableStopMenuItem();
 view.disableStartMenuItem();
 }

 public void start() {}

 public void stop() {}

 public void increaseBPM() {}

 public void decreaseBPM() {}

 public void setBPM(int bpm) {}
}

The Controller

ready-bake code: heart beat controller

this is a new chapter 577

Ahhhh, now you’re ready for a bright new world filled with
Design Patterns. But, before you go opening all those new doors of opportunity, we

need to cover a few details that you’ll encounter out in the real world – that’s right, things get

a little more complex than they are here in Objectville. Come along, we’ve got a nice guide to

help you through the transition on the next page...

Patterns in the

13 Better Living with Patterns

gh
g

Real World
h

578 Chapter 13

The Objectville Guide to

 Better Living with Design Patterns

Please accept our handy guide with tips & tricks for living with patterns in the real

world. In this guide you will:

b Learn the all too common misconceptions about the defi nition of a

“Design Pattern.”

b Discover those nifty Design Pattern Catalogs and why you just have to

get one.

b Avoid the embarrassment of using a Design Pattern at the wrong time.

b Learn how to keep patterns in classifi cations where they belong.

b See that discovering patterns isn’t just for the gurus; read our quick

HowTo and become a patterns writer too.

b Be there when the true identity of the mysterious Gang of Four is revealed.

b Keep up with the neighbors – the coffee table books any patterns user

must own.

b Learn to train your mind like a Zen master.

b Win friends and infl uence developers by improving your patterns

vocabulary.

what you’ll learn from the guide

better living with patterns

you are here 4 579

A Pattern is a solution to a problem in a context.

Design Pattern defined

We bet you’ve got a pretty good idea of what a pattern is after reading this book. But
we’ve never really given a definition for a Design Pattern. Well, you might be a bit
surprised by the definition that is in common use:

That’s not the most revealing definition is it? But don’t worry, we’re going to step
through each of these parts, context, problem and solution:

The context is the situation in which the pattern applies. This
should be a recurring situation.

The problem refers to the goal you are trying to achieve in this
context, but it also refers to any constraints that occur in the
context.

The solution is what you’re after: a general design that anyone
can apply which resolves the goal and set of constraints.

This is one of those definitions that takes a while to sink in, but take it one step at a
time. Here’s a little mnemonic you can repeat to yourself to remember it:

“If you find yourself in a context with a problem that has a goal
that is affected by a set of constraints, then you can apply
a design that resolves the goal and constraints and leads to a
solution.”

Now, this seems like a lot of work just to figure out what a Design Pattern is. After all,
you already know that a Design Pattern gives you a solution to a common recurring
design problem. What is all this formality getting you? Well, you’re going to see that
by having a formal way of describing patterns we can create a catalog of patterns,
which has all kinds of benefits.

Example: You have a
collection of objects.

You need to step
through the objects
without exposing
the collection’s
implementation.

Encapsulate the iteration into a separate class.

580 Chapter 13

You might be right; let’s think about this a bit... We need a problem, a
solution and a context:

Problem: How do I get to work on time?

Context: I’ve locked my keys in the car.

Solution: Break the window, get in the car, start
the engine and drive to work.

We have all the components of the definition: we have a problem,
which includes the goal of getting to work, and the constraints of time,
distance and probably some other factors. We also have a context in
which the keys to the car are inaccessible. And we have a solution that
gets us to the keys and resolves both the time and distance constraints.
We must have a pattern now! Right?

I’ve been thinking
about the three-part

definition, and I don’t think
it defines a pattern at all.

We followed the Design Pattern definition and defined a problem, a context, and a solution (which
works!). Is this a pattern? If not, how did it fail? Could we fail the same way when defining an OO
Design Pattern?

brain
powerA

design pattern defined

better living with patterns

you are here 4 581

Q: Am I going to see pattern
descriptions that are stated as a problem,
a context and a solution?

A: Pattern descriptions, which you’ll
typically find in pattern catalogs, are usually
a bit more revealing than that. We’re going
to look at pattern catalogs in detail in just
a minute; they describe a lot more about a
pattern’s intent and motivation and where it
might apply, along with the solution design
and the consequences (good and bad) of
using it.

Q: Is it okay to slightly alter a
pattern’s structure to fit my design? Or
am I going to have to go by the strict
definition?

A: Of course you can alter it. Like
design principles, patterns are not meant
to be laws or rules; they are guidelines that
you can alter to fit your needs. As you’ve
seen, a lot of real-world examples don’t fit
the classic pattern designs.

However, when you adapt patterns, it
never hurts to document how your pattern
differs from the classic design – that way,
other developers can quickly recognize the
patterns you’re using and any differences
between your pattern and the classic
pattern.

Q: Where can I get a patterns
catalog?

A: The first and most definitive
patterns catalog is Design Patterns:
Elements of Reusable Object-Oriented
Software, by Gamma, Helm, Johnson &
Vlissides (Addison Wesley). This catalog
lays out 23 fundamental patterns. We’ll talk
a little more about this book in a few pages.

Many other patterns catalogs are starting to
be published in various domain areas such
as enterprise software, concurrent systems
and business systems.

Looking more closely at the
Design Pattern definition
Our example does seem to match the Design
Pattern definition, but it isn’t a true pattern. Why?
For starters, we know that a pattern needs to apply
to a recurring problem. While an absent-minded
person might lock his keys in the car often, breaking
the car window doesn’t qualify as a solution that
can be applied over and over (or at least isn’t likely
to if we balance the goal with another constraint:
cost).

It also fails in a couple of other ways: first, it isn’t
easy to take this description, hand it to someone
and have him apply it to his own unique problem.
Second, we’ve violated an important but simple
aspect of a pattern: we haven’t even given it a
name! Without a name, the pattern doesn’t
become part of a vocabulary that can be shared
with other developers.

Luckily, patterns are not described and documented
as a simple problem, context and solution; we
have much better ways of describing patterns and
collecting them together into patterns catalogs.

PatternsA-C
PatternsD-G

PatternsH-N
PatternsO-R

PatternsS-Z

Next time someone tells you
a pattern is a solution to a problem
in a context, just nod and smile. You

know what they mean, even if it isn’t a
definition sufficient to describe what

a Design Pattern really is.

582 Chapter 13

May the force be with you

The Design Pattern
definition tells us that

the problem consists of a
goal and a set of constraints.

Patterns gurus have a term
for these: they call them

forces. Why? Well, we’re sure
they have their own reasons, but if

you remember the movie, the force
“shapes and controls the Universe.”

Likewise, the forces in the pattern
definition shape and control the solution.

Only when a solution balances both sides of
the force (the light side: your goal, and the dark

side: the constraints) do we have a useful pattern.

This “force” terminology can be quite confusing
when you first see it in pattern discussions, but

just remember that there are two sides of the force
(goals and constraints) and that they need to be

balanced or resolved to create a pattern solution. Don’t
let the lingo get in your way and may the force be with you!

Geek Bits

forces goals constraints

better living with patterns

you are here 4 583

Frank: Fill us in, Jim. I’ve just been learning patterns by reading a
few articles here and there.

Jim: Sure, each pattern catalog takes a set of patterns and describes
each in detail along with its relationship to the other patterns.

Joe: Are you saying there is more than one patterns catalog?

Jim: Of course; there are catalogs for fundamental Design Patterns
and there are also catalogs on domain specific patterns, like EJB
patterns.

Frank: Which catalog are you looking at?

Jim: This is the classic GoF catalog; it contains 23 fundamental
Design Patterns.

Frank: GoF?

Jim: Right, that stands for the Gang of Four. The Gang of Four are
the guys that put together the first patterns catalog.

Joe: What’s in the catalog?

Jim: There is a set of related patterns. For each pattern there is a
description that follows a template and spells out a lot of details of the
pattern. For instance, each pattern has a name.

I wish I’d known about
patterns catalogs a long

time ago...

Joe
JimFrank

584 Chapter 13

Frank: Wow, that’s earth-shattering – a name! Imagine that.

Jim: Hold on Frank; actually, the name is really important. When we have a name
for a pattern, it gives us a way to talk about the pattern; you know, that whole shared
vocabulary thing.

Frank: Okay, okay. I was just kidding. Go on, what else is there?

Jim: Well, like I was saying, every pattern follows a template. For each pattern we have
a name and a few sections that tell us more about the pattern. For instance, there is an
Intent section that describes what the pattern is, kind of like a definition. Then there are
Motivation and Applicability sections that describe when and where the pattern might be
used.

Joe: What about the design itself ?

Jim: There are several sections that describe the class design along with all the classes
that make it up and what their roles are. There is also a section that describes how to
implement the pattern and often sample code to show you how.

Frank: It sounds like they’ve thought of everything.

Jim: There’s more. There are also examples of where the pattern has been used in real
systems as well as what I think is one of the most useful sections: how the pattern relates
to other patterns.

Frank: Oh, you mean they tell you things like how state and strategy differ?

Jim: Exactly!

Joe: So Jim, how are you actually using the catalog? When you have a problem, do you
go fishing in the catalog for a solution?

Jim: I try to get familiar with all the patterns and their relationships first. Then, when I
need a pattern, I have some idea of what it is. I go back and look at the Motivation and
Applicability sections to make sure I’ve got it right. There is also another really important
section: Consequences. I review that to make sure there won’t be some unintended effect
on my design.

Frank: That makes sense. So once you know the pattern is right, how do you approach
working it into your design and implementing it?

Jim: That’s where the class diagram comes in. I first read over the Structure section to
review the diagram and then over the Participants section to make sure I understand each
classes’ role. From there I work it into my design, making any alterations I need to make
it fit. Then I review the Implementation and Sample code sections to make sure I know
about any good implementation techniques or gotchas I might encounter.

Joe: I can see how a catalog is really going to accelerate my use of patterns!

Frank: Totally. Jim, can you walk us through a pattern description?

using a pattern catalog

better living with patterns

you are here 4 585

SINGLETON
Object Creational

Intent
Et aliquat, velesto ent lore feuis acillao rperci tat, quat nonsequam il ea at nim nos do enim qui eratio ex ea faci tet, sequis dion utat, volore magnisi.

Motivation
Et aliquat, velesto ent lore feuis acillao rperci tat, quat nonsequam il ea at nim nos do enim qui eratio ex ea faci tet, sequis dion utat, volore magnisi.Rud modolore dit laoreet augiam iril el dipis dionsequis dignibh eummy nibh esequat. Duis nulputem ipisim esecte conullut wissi.Os nisissenim et lumsandre do con el utpatuero corercipis augue doloreet luptat amet vel iuscidunt digna feugue dunt num etummy nim dui blaor sequat num vel etue magna augiat.Aliquis nonse vel exer se minissequis do dolortis ad magnit, sim zzrillut ipsummo dolorem dignibh euguer sequam ea am quate magnim illam zzrit ad magna feu facinit delit ut

Applicability
Duis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

Structure

Singleton

static uniqueInstance

// Other useful Singleton data...

static getInstance()

// Other useful Singleton methods...

Participants
Duis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er
ß A dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er
 – A feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissec
 – Ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit

Collaborations
ß Feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore.

Consequences

Duis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre: 1. Dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.
 2. Modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem.
 3. Dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.
 4. Modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem.

Implementation/Sample Code
DuDuis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

Nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

public class Singleton {
 private static Singleton uniqueInstance;
 // other useful instance variables here
 private Singleton() {}

 public static synchronized Singleton getInstance() { if (uniqueInstance == null) { uniqueInstance = new Singleton(); }
 return uniqueInstance;
 }

 // other useful methods here
}

Known Uses

DuDuis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.
DuDuis nulputem ipisim esecte conullut wissiEctem ad magna aliqui blamet, conullandre dolore magna feuis nos alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er. alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

Related Patterns

Elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er. alit ad magnim quate modolore vent lut luptat prat. Dui blaore min ea feuipit ing enit laore magnibh eniat wisissecte et, suscilla ad mincinci blam dolorpe rcilit irit, conse dolore dolore et, verci enis enit ip elesequisl ut ad esectem ing ea con eros autem diam nonullu tpatiss ismodignibh er.

The structure provides a
diagram illustrating the
relationships among the
classes that participate
in the pattern.

The participants are the classes and
objects in the design. This section
describes their responsibilities and
roles in the pattern.

Collaborations tells us
how the participants work
together in the pattern.

The consequences describe the
effects that using this pattern
may have: good and bad.

All patterns in a catalog start
with a name. The name is a vital
part of a pattern - without a
good name, a pattern can’t become
part of the vocabulary that you
share with other developers.

This is the pattern’s classification or
category. We’ll talk about these in a
few pages.

The intent describes what
the pattern does in a short
statement. You can also think
of this as the pattern’s
definition (just like we’ve been
using in this book).

The motivation gives you a concrete
scenario that describes the problem and
how the solution solves the problem.

The applicability describes situations
in which the pattern can be applied.

Implementation provides
techniques you need to use when
implementing this pattern, and
issues you should watch out for.

Sample code provides code fragments that might help with your implementation.

Known uses describes
examples of this pattern
found in real systems.

Related patterns
describes the
relationship between
this pattern and others.

586 Chapter 13

Q: Is it possible to create your own Design
Patterns? Or is that something you have to be a
“patterns guru” to do?

A: First, remember that patterns are discovered,
not created. So, anyone can discover a Design Pattern
and then author its description; however, it’s not easy
and doesn’t happen quickly, nor often. Being a “patterns
writer” takes commitment.

You should first think about why you’d want to – the
majority of people don’t author patterns; they just use
them. However, you might work in a specialized domain
for which you think new patterns would be helpful, or
you might have come across a solution to what you
think is a recurring problem, or you may just want to get
involved in the patterns community and contribute to the
growing body of work.

Q: I’m game; how do I get started?

A: Like any discipline, the more you know the
better. Studying existing patterns, what they do and
how they relate to other patterns is crucial. Not only
does it make you familiar with how patterns are crafted,
it prevents you from reinventing the wheel. From there
you’ll want to start writing your patterns on paper, so you
can communicate them to other developers; we’re going
to talk more about how to communicate your patterns in
a bit. If you’re really interested, you’ll want to read the
section that follows these Q&As.

Q: How do I know when I really have a pattern?

A: That’s a very good question: you don’t have a
pattern until others have used it and found it to work.
In general, you don’t have a pattern until it passes the
“Rule of Three.” This rule states that a pattern can be
called a pattern only if it has been applied in a real-world
solution at least three times.

there are noDumb Questions

So you wanna be a design
patterns star?

Well listen now to what I tell.

Get yourself a patterns
catalog,

Then take some time and
learn it well.

And when you’ve got your
description right,

And three developers agree
without a fight,

Then you’ll know it’s a
pattern alright.

To the tune of “So you wanna
be a Rock’n Roll Star.”

discovering your own patterns

better living with patterns

you are here 4 587

Use one of the existing
pattern templates to
define your pattern. A
lot of thought has gone
into these templates and
other pattern users will
recognize the format.

So you wanna be a Design Patterns writer

Name

Intent

Motivation

Applicability

Structure

Participants

Collaborations

 ...

Do your homework. You need to be well versed in the
existing patterns before you can create a new one. Most patterns
that appear to be new, are, in fact, just variants of existing
patterns. By studying patterns, you become better at recognizing
them, and you learn to relate them to other patterns.

Take time to reflect, evaluate. Your experience – the
problems you’ve encountered, and the solutions you’ve used – are
where ideas for patterns are born. So take some time to reflect
on your experiences and comb them for novel designs that recur.
Remember that most designs are variations on existing patterns
and not new patterns. And when you do find what looks like a
new pattern, its applicability may be too narrow to qualify as a
real pattern.

Get your ideas down on paper in a way others can
understand. Locating new patterns isn’t of much use if others
can’t make use of your find; you need to document your pattern
candidates so that others can read, understand, and apply them
to their own solution and then supply you with feedback. Luckily,
you don’t need to invent your own method of documenting your
patterns. As you’ve already seen with the GoF template, a lot of
thought has already gone into how to describe patterns and their
characteristics.

Have others try your patterns; then refine and refine
some more. Don’t expect to get your pattern right the first
time. Think of your pattern as a work in progress that will
improve over time. Have other developers review your candidate
pattern, try it out, and give you feedback. Incorporate that
feedback into your description and try again. Your description
will never be perfect, but at some point it should be solid enough
that other developers can read and understand it.

Don’t forget the rule of three. Remember, unless your
pattern has been successfully applied in three real-world
solutions, it can’t qualify as a pattern. That’s another good
reason to get your pattern into the hands of others so they can
try it, give feedback, and allow you to converge on a working
pattern.

588 Chapter 13

Match each pattern with its description:

Pattern Description

Wraps an object and provides a different
interface to it.
Subclasses decide how to implement steps
in an algorithm.
Subclasses decide which concrete classes to
create.
Ensures one and only object is created.
Encapsulates interchangeable behaviors and
uses delegation to decide which one to use.
Clients treat collections of objects and
individual objects uniformly.
Encapsulates state-based behaviors and uses
delegation to switch between behaviors.
Provides a way to traverse a collection of
objects without exposing its implementation.
Simplifies the interface of a set of classes.
Wraps an object to provide new behavior.
Allows a client to create families of objects
without specifying their concrete classes.
Allows objects to be notified when state
changes.
Wraps an object to control access to it.
Encapsulates a request as an object.

Decorator

State

Iterator

Facade

Strategy

Proxy

Factory Method

Adapter

Observer

Template Method

Composite

Singleton

Abstract Factory

Command

who does what?

better living with patterns

you are here 4 589

 Organizing Design Patterns
As the number of discovered Design Patterns grows, it makes sense to partition them into classifi cations so
that we can organize them, narrow our searches to a subset of all Design Patterns, and make comparisons
within a group of patterns.

In most catalogs you’ll fi nd patterns grouped into one of a few classifi cation schemes. The most well-known
scheme was used by the fi rst pattern catalog and partitions patterns into three distinct categories based on
their purposes: Creational, Behavioral and Structural.

Any pattern that is a Behavioral
Pattern is concerned with how
classes and objects interact and
distribute responsibility.

Structural patterns let you
compose classes or objects
into larger structures.

Abstract Factory

Factory Method
Singleton

AdapterAdapter

CompositeComposite
Decorator

Facade
ProxyCommand

Iterator

Observer

State

Strategy

Facade
Template Method

BehavioralCreational

Structural

Creational patterns involve
object instantiation and all
provide a way to decouple a client
from the objects it needs to
instantiate.

Sharpen your pencil
Read each category description and see
if you can corral these patterns into their
correct categories. This is a toughy! But
give it your best shot and then check out
the answers on the next page.

Each of these pattern
s belongs

in one of those categ
ories

590 Chapter 13

Any pattern that is a Behavioral
Pattern is concerned with how
classes and objects interact and
distribute responsibility.

Structural patterns let you
compose classes or objects
into larger structures.

Abstract Factory
Factory Method

Singleton

Adapter

Composite
Decorator

Facade
Proxy

Command
Iterator

Observer

State
Strategy

Template Method

BehavioralCreational

Structural

Prototype
Builder

Interpreter
Chain of Responsibility

Mediator

Memento

Visitor

BridgeFlyweight

We’ve got a few patterns
(in grey) that you haven’t
seen yet. You’ll find an
overview of the these
patterns in the appendix.

Creational patterns involve
object instantiation and all
provide a way to decouple a client
from the objects it needs to
instantiate.

Solution: Pattern Categories
Here’s the grouping of patterns into categories. You probably found the exercise difficult,
because many of the patterns seem like they could fit into more than one category. Don’t worry,
everyone has trouble figuring out the right categories for the patterns.

pattern categories

better living with patterns

you are here 4 591

Class patterns describe how relationships between
classes are defined via inheritance. Relationships in
class patterns are established at compile time.

Abstract Factory

Factory Method

Singleton

Adapter
Composite

Decorator
FacadeProxy

Command
Iterator

Observer

State

Strategy

Template Method
ObjectClass

Prototype

Builder

Interpreter

Chain of Responsibility
Mediator

Memento

Visitor

Bridge

Flyweight

Patterns are often classified by a second attribute: whether or not
the pattern deals with classes or objects:

Object patterns describe
relationships between
objects and are primarily
defined by composition.
Relationships in object
patterns are typically
created at runtime and

are more dynamic and
flexible.

Notice there’s a
lot more object
patterns than
class patterns!

Q: Are these the only classification
schemes?

A: No, other schemes have been
proposed. Some other schemes start
with the three categories and then add
subcategories, like “Decoupling Patterns.”
You’ll want to be familiar with the most
common schemes for organizing patterns,
but also feel free to create your own, if it
helps you to understand the patterns better.

Q: Does organizing patterns into
categories really help you remember
them?

A: It certainly gives you a framework
for the sake of comparison. But many
people are confused by the creational,
structural and behavioral categories; often
a pattern seems to fit into more than one
category. The most important thing is to
know the patterns and the relationships
among them. When categories help, use
them!

Q: Why is the Decorator Pattern in
the structural category? I would have
thought of that as a behavioral pattern;
after all it adds behavior!

A: Yes, lots of developers say that!
Here’s the thinking behind the Gang of Four
classification: structural patterns describe
how classes and objects are composed to
create new structures or new functionality.
The Decorator Pattern allows you to
compose objects by wrapping one object
with another to provide new functionality.
So the focus is on how you compose the
objects dynamically to gain functionality,
rather than on the communication and
interconnection between objects, which is
the purpose of behavioral patterns. But
remember, the intent of these patterns
is different, and that’s often the key to
understanding which category a pattern
belongs to.

there are noDumb Questions

592 Chapter 13

Master and Student...

Master: Grasshopper, you look troubled.

Student: Yes, I’ve just learned about
pattern classification and I’m confused.

Master: Grasshopper, continue...

Student: After learning much about patterns, I’ve
just been told that each pattern fits into one of three
classifications: structural, behavioral or creational. Why
do we need these classifications?

Master: Grasshopper, whenever we have a large
collection of anything, we naturally find categories to fit
those things into. It helps us to think of the items at a
more abstract level.

Student: Master; can you give me an example?

Master: Of course. Take automobiles; there are many
different models of automobiles and we naturally put
them into categories like economy cars, sports cars,
SUVs, trucks and luxury car categories.

Master: Grasshopper, you look shocked, does this not
make sense?

Student: Master, it makes a lot of sense, but I am
shocked you know so much about cars!

Master: Grasshopper, I can’t relate everything to lotus
flowers or rice bowls. Now, may I continue?

Student: Yes, yes, I’m sorry, please continue.

Master: Once you have classifications or categories
you can easily talk about the different groupings: “If
you’re doing the mountain drive from Silicon Valley to
Santa Cruz, a sports car with good handling is the best
option.” Or, “With the worsening oil situation you really
want to buy a economy car, they’re more fuel-efficient.”

Student: So by having categories we can talk about a
set of patterns as a group. We might know we need a
creational pattern, without knowing exactly which one,
but we can still talk about creational patterns.

Master: Yes, and it also gives us a way to compare a
member to the rest of the category, for example, “the
Mini really is the most stylish compact car around”, or
to narrow our search, “I need a fuel efficient car.”

pattern categories

better living with patterns

you are here 4 593

Student: I see, so I might say that the Adapter pattern
is the best structural pattern for changing an object’s
interface.

Master: Yes. We also can use categories for one more
purpose: to launch into new territory; for instance,

“we really want to deliver a sports car with ferrari
performance at miata prices.”

Student: That sounds like a death trap.

Master: I’m sorry, I did not hear you Grasshopper.

Student: Uh, I said “I see that.”

Student: So categories give us a way to think about the
way groups of patterns relate and how patterns within
a group relate to one another. They also give us a way
to extrapolate to new patterns. But why are there three
categories and not four, or five?

Master: Ah, like stars in the night sky, there are as many
categories as you want to see. Three is a convenient
number and a number that many people have decided
makes for a nice grouping of patterns. But others have
suggested four, five or more.

594 Chapter 13

Thinking in Patterns

Your Brain on Patterns

Contexts, constraints, forces, catalogs, classifications... boy, this
is starting to sound mighty academic. Okay, all that stuff is
important and knowledge is power. But, let’s face it, if you
understand the academic stuff and don’t have the experience
and practice using patterns, then it’s not going to make much
difference in your life.

Here’s a quick guide to help you start to think in patterns. What do
we mean by that? We mean being able to look at a design and see
where patterns naturally fit and where they don’t.

Keep it simple (KISS)
First of all, when you design, solve things in the simplest way possible. Your goal should be simplicity, not

“how can I apply a pattern to this problem.” Don’t feel like you aren’t a sophisticated developer if you
don’t use a pattern to solve a problem. Other developers will appreciate and admire the simplicity of your
design. That said, sometimes the best way to keep your design simple and flexible is to use a pattern.

Design Patterns aren’t a magic bullet; in fact they’re not even a bullet!
Patterns, as you know, are general solutions to recurring problems. Patterns also have the benefit of being
well tested by lots of developers. So, when you see a need for one, you can sleep well knowing many
developers have been there before and solved the problem using similar techniques.

However, patterns aren’t a magic bullet. You can’t plug one in, compile and then take an early lunch. To
use patterns, you also need to think through the consequences on the rest of your design.

You know you need a pattern when...
Ah... the most important question: when do you use a pattern? As you approach your design, introduce a
pattern when you’re sure it addresses a problem in your design. If a simpler solution might work, give that
consideration before you commit to using a pattern.

Knowing when a pattern applies is where your experience and knowledge come in. Once you’re sure a
simple solution will not meet your needs, you should consider the problem along with the set of constraints
under which the solution will need to operate — these will help you match your problem to a pattern. If
you’ve got a good knowledge of patterns, you may know of a pattern that is a good match. Otherwise,
survey patterns that look like they might solve the problem. The intent and applicability sections of the
patterns catalogs are particularly useful for this. Once you’ve found a pattern that appears to be a good
match, make sure it has a set of consequences you can live with and study its effect on the rest of your
design. If everything looks good, go for it!

thinking in patterns

better living with patterns

you are here 4 595

There is one situation in which you’ll want to use a pattern even if a
simpler solution would work: when you expect aspects of your system to
vary. As we’ve seen, identifying areas of change in your design is usually a
good sign that a pattern is needed. Just make sure you are adding patterns
to deal with practical change that is likely to happen, not hypothetical change
that may happen.

Design time isn’t the only time you want to consider introducing patterns,
you’ll also want to do so at refactoring time.

Refactoring time is Patterns time!
Refactoring is the process of making changes to your code to improve
the way it is organized. The goal is to improve its structure, not change
its behavior. This is a great time to reexamine your design to see if it
might be better structured with patterns. For instance, code that is full
of conditional statements might signal the need for the State pattern. Or,
it may be time to clean up concrete dependencies with a Factory. Entire
books have been written on the topic of refactoring with patterns, and as
your skills grow, you’ll want to study this area more.

Take out what you don’t really need. Don’t be afraid
to remove a Design Pattern from your design.
No one ever talks about when to remove a pattern. You’d think it was
blasphemy! Nah, we’re all adults here; we can take it.

So when do you remove a pattern? When your system has become
complex and the flexibility you planned for isn’t needed. In other words,
when a simpler solution without the pattern would be better.

If you don’t need it now, don’t do it now.
Design Patterns are powerful, and it’s easy to see all kinds of ways
they can be used in your current designs. Developers naturally love to
create beautiful architectures that are ready to take on change from any
direction.

Resist the temptation. If you have a practical need to support change in
a design today, go ahead and employ a pattern to handle that change.
However, if the reason is only hypothetical, don’t add the pattern, it is
only going to add complexity to your system, and you might never need it!

Center your thinking
on design, not on patterns.
Use patterns when there
is a natural need for them.

If something simpler will
work, then use it.

596 Chapter 13

Master and Student...

Master: Grasshopper, your initial training is almost
complete. What are your plans?

Student: I’m going to Disneyland! And, then I’m
going to start creating lots of code with patterns!

Master: Whoa, hold on. Never use your big guns unless you have to.

Student: What do you mean, Master? Now that I’ve learned design
patterns shouldn’t I be using them in all my designs to achieve
maximum power, flexibility and manageability?

Master: No; patterns are a tool, and a tool that should only be used
when needed. You’ve also spent a lot of time learning design principles.
Always start from your principles and create the simplest code you can
that does the job. However, if you see the need for a pattern emerge,
then use it.

Student: So I shouldn’t build my designs from patterns?

Master: That should not be your goal when beginning a design. Let
patterns emerge naturally as your design progresses.

Student: If patterns are so great, why should I be so careful about
using them?

Master: Patterns can introduce complexity, and we never want
complexity where it is not needed. But patterns are powerful when used
where they are needed. As you already know, patterns are proven
design experience that can be used to avoid common mistakes. They’re
also a shared vocabulary for communicating our design to others.

Student: Well, when do we know it’s okay to introduce design patterns?

Master: Introduce a pattern when you are sure it’s necessary to solve a
problem in your design, or when you are quite sure that it is needed to
deal with a future change in the requirements of your application.

Student: I guess my learning is going to continue even though I already
understand a lot of patterns.

Master: Yes, grasshopper; learning to manage the complexity and
change in software is a life long pursuit. But now that you know a good
set of patterns, the time has come to apply them where needed in your
design and to continue learning more patterns.

Student: Wait a minute, you mean I don’t know them ALL?

Master: Grasshopper, you’ve learned the fundamental patterns; you’re
going to find there are many more, including patterns that just apply to
particular domains such as concurrent systems and enterprise systems.
But now that you know the basics, you’re in good shape to learn them!

patterns emerge naturally

better living with patterns

you are here 4 597

Zen Mind

Beginner Mind

Intermediate
Mind

 Your Mind on Patterns

The Beginner uses patterns everywhere. This is good:
the beginner gets lots of experience with and practice using
patterns. The beginner also thinks, “The more patterns I use,
the better the design.” The beginner will learn this is not so,
that all designs should be as simple as possible. Complexity
and patterns should only be used where they are needed for
practical extensibility.

As learning progresses, the Intermediate mind
starts to see where patterns are needed and
where they aren’t. The intermediate mind still tries
to fit too many square patterns into round holes, but
also begins to see that patterns can be adapted to
fit situations where the canonical pattern doesn’t fit.

The Zen mind is able to see patterns where they fit naturally.
The Zen mind is not obsessed with using patterns; rather it
looks for simple solutions that best solve the problem. The Zen
mind thinks in terms of the object principles and their trade-offs.
When a need for a pattern naturally arises, the Zen mind applies
it knowing well that it may require adaptation. The Zen mind
also sees relationships to similar patterns and understands the
subtleties of differences in the intent of related patterns. The
Zen mind is also a Beginner mind — it doesn’t let all that pattern
knowledge overly influence design decisions.

“I need a pattern for Hello World.”

“Maybe I need a Singleton here.”

“This is a natural place for Decorator.”

598 Chapter 13

WARNING: Overuse of design patterns can lead to code that is downright over-engineered. Always go with the simplest solution that does the job and introduce patterns where the need emerges.

But we want you to be a good OO designer even
more.

When a design solution calls for a pattern, you get
the benefits of using a solution that has been time
tested by lots of developers. You’re also using a
solution that is well documented and that other
developers are going to recognize (you know, that
whole shared vocabulary thing).

However, when you use Design Patterns, there
can also be a downside. Design Patterns often
introduce additional classes and objects, and so
they can increase the complexity of your designs.
Design Patterns can also add more layers to your
design, which adds not only complexity, but also
inefficiency.

Also, using a Design Pattern can sometimes be
outright overkill. Many times you can fall back on
your design principles and find a much simpler
solution to solve the same problem. If that
happens, don’t fight it. Use the simpler solution.

Don’t let us discourage you, though. When a
Design Pattern is the right tool for the job, the
advantages are many.

Of course we want you to
use Design Patterns!

when not to use patterns

Wait a minute; I’ve
read this entire book and now
you’re telling me NOT to use

patterns?

better living with patterns

you are here 4 599

Don’t forget the power of the
shared vocabulary

So I created this broadcast class. It
keeps track of all the objects listening to it
and anytime a new piece of data comes along

it sends a message to each listener. What’s cool
is that the listeners can join the broadcast at any
time or they can even remove themselves. And the
broadcast class itself doesn’t know anything about
the listeners, any object can register that

implements the right interface.

Time-consuming

Incomplete Confusing

We’ve spent so much time in this book discussing OO nuts and bolts that it’s
easy to forget the human side of Design Patterns – they don’t just help load
your brain with solutions, they also give you a shared vocabulary with other
developers. Don’t underestimate the power of a shared vocabulary, it’s one of
the biggest benefits of Design Patterns.

Just think, something has changed since the last time we talked about shared
vocabularies; you’ve now started to build up quite a vocabulary of your own!
Not to mention, you have also learned a full set of OO design principles from
which you can easily understand the motivation and workings of any new
patterns you encounter.

Now that you’ve got the Design Pattern basics down, it’s time for you to
go out and spread the word to others. Why? Because when your fellow
developers know patterns and use a shared vocabulary as well, it leads to
better designs, better communication and, best of all, it’ll save you a lot of
time that you can spend on cooler things.

600 Chapter 13

ObserverPrecise

Succinct

Complete

Top five ways to share your vocabulary

1 In design meetings: When you meet with your team to discuss
a software design, use design patterns to help stay “in the design”
longer. Discussing designs from the perspective of Design Patterns
and OO principles keeps your team from getting bogged down in
implementation details and prevent many misunderstandings.

2 With other developers: Use patterns in your discussions with
other developers. This helps other developers learn about new
patterns and builds a community. The best part about sharing what
you’ve learned is that great feeling when someone else “gets it!”

3 In architecture documentation: When you write
architectural documentation, using patterns will reduce the amount
of documentation you need to write and gives the reader a clearer
picture of the design.

4 In code comments and naming conventions: When
you’re writing code, clearly identify the patterns you’re using in
comments. Also, choose class and methods names that reveal any
patterns underneath. Other developers who have to read your
code will thank you for allowing them to quickly understand your
implementation.

5 To groups of interested developers: Share your knowledge.
Many developers have heard about patterns but don’t have a good
understanding of what they are. Volunteer to give a brown-bag lunch
on patterns or a talk at your local user group.

five ways to share your vocabulary

better living with patterns

you are here 4 601

Patterns are
tools not rules - they

need to be tweaked and
adapted to

your problem.

Erich Gamma

Cruisin’ Objectville with
the Gang of Four
You won’t find the Jets or Sharks hanging around Objectville, but
you will find the Gang of Four. As you’ve probably noticed, you
can’t get far in the World of Patterns without running into them.
So, who is this mysterious gang?

Put simply, “the GoF,” which includes Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides, is the group of guys who
put together the first patterns catalog and in the process, started an
entire movement in the software field!

How did they get that name? No one knows for sure; it’s just a
name that stuck. But think about it: if you’re going to have a

“gang element” running around Objectville, could you think of a
nicer bunch of guys? In fact, they’ve even agreed to pay us a visit...

Objectville Patterns Tour

The GoF launched the software
patterns movement, but many others
have made significant contributions,
including Ward Cunningham, Kent
Beck, Jim Coplien, Grady Booch, Bruce
Anderson, Richard Gabriel, Doug Lea,
Peter Coad, and Doug Schmidt, to
name just a few.

Go for simplicity
and don’t become over-excited.

If you can come up with a
simpler solution without using a

pattern, then go for it.

John Vlissides

Richard
Helm

Ralph
Johnson

Shoot for practical
extensibility. Don’t
provide hypothetical

generality; be extensible
in ways that matter.

Today
there are more

patterns than in the
GoF book; learn about

them as well.

602 Chapter 13

Your journey has just begun...

The authors of Design Patterns are

affectionately known as the “Gang of Four”

or GoF for short.

Now that you’re on top of Design Patterns and ready to dig deeper, we’ve got three defi nitive
texts that you need to add to your bookshelf...

This is the book that kicked off the entire fi eld of Design
Patterns when it was released in 1995. You’ll fi nd all the
fundamental patterns here. In fact, this book is the basis for
the set of patterns we used in Head First Design Patterns.

You won’t fi nd this book to be the last word on Design
Patterns – the fi eld has grown substantially since its
publication – but it is the fi rst and most defi nitive.

Picking up a copy of Design Patterns is a great way to start
exploring patterns after Head First.

Patterns didn’t start with the GoF; they started with
 Christopher Alexander, a Professor of Architecture
at Berkeley – that’s right, Alexander is an architect,
not a computer scientist. Alexander invented
patterns for building living architectures (like
houses, towns and cities).

The next time you’re in the mood for some deep,
engaging reading, pick up The Timeless Way of
Building and A Pattern Language. You’ll see the true
beginnings of Design Patterns and recognize
the direct analogies between creating “living
architecture” and fl exible, extensible software.

So grab a cup of Starbuzz Coffee, sit back, and
enjoy...

The defi nitive Design Patterns text

The defi nitive Patterns texts

Christopher Alexander invented
patterns, which inspired applying
similar solutions to software.

patterns resources

better living with patterns

you are here 4 603

Other Design Pattern resources

��
���
��������������������
���
�����������������������������������

���
���
��
���
��
��
��
���
�� ���

��
���
�������������������������������������

����������������

����������������������
��������������������������������������
���������������������������

�����������������������
��������������
���������������������������������������
��
���

��������������������������
������������������
��

�����������������������
���

��������������������������
���������������������������������
���������������������

������������������������
����������������������������

�������������

��������������������
��������������
�����������
�����������
�������������
������������������������������
���������������

��������������������
��������������
�����������
�����������
��������������������
����������������������
����������������������
��������������������

���������������������
��������������
�����������
�������������
���������
����������������������
������������������
��������
�� ����������������
������������
��������������������

�����������������������
��������������
�����������
���������
����������������������
������������������
��������
�� ����������������
������������
�����������������������
������������������

����������������������
��������������
�����������
�����������
���������
����������������������
������������������
��������
�� ����������������
�� �����������������
����������������������

����������������������������

���������������������������������������

���

���
��� ���
��� ��

���������������
��
��
��

������������

�������
�������

����
���������
����������

������
���������
���������

Websites

The Portland Patterns Repository, run by
Ward Cunningham, is a WIKI devoted to all
things related to patterns. Anyone can participate.
You’ll fi nd threads of discussion on every topic
you can think of related to patterns and OO
systems.

http://c2.com/cgi/wiki?WelcomeVisitors

The Hillside Group fosters common
programming and design practices and provides
a central resource for patterns work. The site
includes information on many patterns-related
resources such as articles, books, mailing lists and
tools.

http://hillside.net/

You’re going to fi nd there is a vibrant, friendly community of patterns
users and writers out there and they’re glad to have you join them.
Here’s a few resources to get you started...

Conferences and Workshops

And if you’d like to get some face-to-face time with
the patterns community, be sure to check out the
many patterns related conferences and workshops.
The Hillside site maintains a complete list. At
the least you’ll want to check out OOPSLA, the
ACM Conference on Object-Oriented Systems,
Languages and Applications.

604 Chapter 13

The Patterns Zoo

Architectural Patterns are
used to create the living,
vibrant architecture of
buildings, towns, and cities.
This is where patterns got
their start.

Application Patterns are
patterns for creating

system level architecture.
Many multi-tier

architectures fall into this
category.

Habitat: found in buildings you
like to live in, look at and visit.

As you’ve just seen, patterns didn’t start with software; they started
with the architecture of buildings and towns. In fact, the patterns
concept can be applied in many different domains. Take a walk
around the Patterns Zoo to see a few...

Habitat: seen hanging around
3-tier architectures, client-
server systems and the web.

Field note: MVC has been
known to pass for an
application pattern.

Domain-Specific Patterns
are patterns that concern
problems in specific domains,
like concurrent systems or
real-time systems.

Help find a habitat
J2EE

patterns zoo

better living with patterns

you are here 4 605

Business Process Patterns
describe the interaction

between businesses, customers
and data, and can be applied

to problems such as how
to effectively make and
communicate decisions.

Organizational Patterns
describe the structures
and practices of human

organizations. Most
efforts to date have

focused on organizations
that produce and/or

support software.

User Interface
Design Patterns

address the
problems of how to
design interactive

software programs.

Seen hanging around corporate boardrooms and project management meetings.

Field notes: please add your observations of pattern domains here:

Habitat: seen in the vicinity
of video game designers, GUI
builders, and producers.

Help find a habitat
Development team
Customer support team

606 Chapter 13

Annihilating evil with Anti-Patterns
The Universe just wouldn’t be complete if we had patterns and no
anti-patterns, now would it?

If a Design Pattern gives you a general solution to a recurring
problem in a particular context, then what does an anti-pattern
give you? An anti-pattern always

looks like a good solution,
but then turns out to be
a bad solution when it is
applied.

By documenting anti-
patterns we help
others to recognize bad
solutions before they
implement them.

Like patterns, there
are many types
of anti-patterns
including development,
OO, organizational,
and domain specific
anti-patterns.

An Anti-Pattern tells you how to go from a problem
to a BAD solution.

You’re probably asking yourself, “Why on earth would anyone
waste their time documenting bad solutions?”

Think about it like this: if there is a recurring bad solution to a
common problem, then by documenting it we can prevent other
developers from making the same mistake. After all, avoiding bad
solutions can be just as valuable as finding good ones!

Let’s look at the elements of an anti-pattern:

An anti-pattern tells you why a bad solution is
attractive. Let’s face it, no one would choose a bad solution if
there wasn’t something about it that seemed attractive up front.
One of the biggest jobs of the anti-pattern is to alert you to the
seductive aspect of the solution.

An anti-pattern tells you why that solution in the long
term is bad. In order to understand why it’s an anti-pattern,
you’ve got to understand how it’s going to have a negative effect
down the road. The anti-pattern describes where you’ll get into
trouble using the solution.

An anti-pattern suggests other patterns that are
applicable which may provide good solutions. To be
truly helpful an anti-pattern needs to point you in the right
direction; it should suggest other possibilities that may lead to
good solutions.

Let’s have a look at an anti-pattern.

anti-patterns

better living with patterns

you are here 4 607

Anti-Pattern
Name: Golden Hammer

Problem: You need to choose technologies for
your development and you believe that exactly one
technology must dominate the architecture.

Context: You need to develop some new system
or piece of software that doesn’t fit well with the
technology that the development team is familiar with.

Forces:

• The development team is committed to the
technology they know.

• The development team is not familiar with
other technologies.

• Unfamiliar technologies are seen as risky.

• It is easy to plan and estimate for
development using the familiar technology.

Supposed Solution: Use the familiar technology
anyway. The technology is applied obsessively to
many problems, including places where it is clearly
inappropriate.

Refactored Solution: Expanding the knowledge of
developers through education, training, and book
study groups that expose developers to new solutions.

Examples:

Web companies keep using and maintaining their
internal homegrown caching systems when open
source alternatives are in use.

Adapted from the Portland Pattern

Repository’s WIKI at http://c2.com/

where you’ll find many anti patterns an
d

discussions.

The bad, yet attractive solution.

Tells you why
the solution is
attractive.

How to get to a
good solution.

The problem and context,
just like a Design Pattern
description.

Just like a Design Pattern,
an anti-pattern has a name
so we can create a shared
vocabulary.

Here’s an example of a software development anti-pattern.

Example of where this anti-pattern
has been observed.

608 Chapter 13

Tools for your Design Toolbox
You’ve reached that point where you’ve outgrown us.
Now’s the time to go out in the world and explore
patterns on your own...

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Strategy - defines a fam
ily of algorith

ms,

encapsulates e
ach one, and m

akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

OO Patterns
Observer - defines a one

-to-many

dependency be
tween objects so

 that

when one object
 changes state

, all its

dependents ar
e notified and

 updated

automatically

Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns

Decorator - Attach additio
nal

responsibilities
 to an object

dynamically.

Decorators pro
vide a flexible

alternative to
 subclassing fo

r extending

functionality.

OO Patterns
Strategy
encapsulates e

ach one, and m
akes them

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.

OO Patterns
Abstract Factory - Provide an

interface for
 creating fam

ilies of

related or de
pedent object

s without

specifying the
ir concrete cl

asses.

OO Patterns

interchangeab
le. Strategy

lets the algor
ithm

vary independ
ently from clients that

use it.
Factory Method - Define an

interface for
 creating an o

bject, but

let subclasses
decide which class to

instantiate. F
actory Method lets

a class defer
instantiation

to the

subclasses.

OO Patterns

Singleton - Ensure a class o
nly has

one instance a
nd provide a g

lobal point

of access to i
t.

OO PatternsOO Patterns

Command - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

 BULLET POINTS

ß Let Design Patterns emerge in
your designs, don’t force them
in just for the sake of using a
pattern.

ß Design Patterns aren’t set in
stone; adapt and tweak them to
meet your needs.

ß Always use the simplest
solution that meets your needs,
even if it doesn’t include a
pattern.

ß Study Design Pattern catalogs
to familiarize yourself with
patterns and the relationships
among them.

ß Pattern classifications (or
categories) provide groupings
for patterns. When they help,
use them.

ß You need to be committed to
be a patterns writer: it takes
time and patience, and you
have to be willing to do lots of
refinement.

ß Remember, most patterns you
encounter will be adaptations
of existing patterns, not new
patterns.

ß Build your team’s shared
vocabulary. This is one of the
most powerful benefits of using
patterns.

ß Like any community, the
patterns community has its
own lingo. Don’t let that hold
you back. Having read this
book, you now know most of it.

OO PatternsOO Patterns

Adapter - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

OO Patterns

Facade - Encapsulates a
request

as an object,
thereby lettin

g you

parameterize client
s with different

requests, queu
e or log reque

sts, and

support undoa
ble operations

.

The time has come
for you to go out and
discover more patterns
on your own. There are
many domain-specific
patterns we haven’t even
mentioned and there are
also some foundational
ones we didn’t cover.
You’ve also got patterns
of your own to create.

OO Patterns

State - Allow an object to
alter its

behavior when its intern
al state chang

es.

The object will appear to c
hange its

class.

OO Patterns

Proxy - Provide a surro
gate or

placeholder fo
r another obj

ect to

control access
 to it.placeholder fo
r another obj

ect to

control access
 to it.

A Compound Pattern combines two

or more patterns i
nto a solution

that

solves a recurr
ing or general

problem.

Compound Patterns

Provide a surro
gate or

placeholder fo
r another obj

ect to

placeholder fo
r another obj

ect to

control access
 to it.

A Compound Pattern combines two

or more patterns i
nto a solution

that

solves a recurr
ing or general

problem.

Compound Patterns

Your Patterns Here! Check out the
Appendix, we’ll
give you a heads
up on some more
foundational
patterns you’ll
probably want to
have a look at.

Abstraction

Encapsulation

Polymorphism

Inheritance

OO Basics

Encapsulate what varies.

Favor composition over i
nheritance.

Program to interfaces
, not

implementations.

Strive for loo
sely coupled d

esigns

between objects th
at interact.

Classes should b
e open for ex

tension

but closed for
 modification.

Depend on abst
ractions. Do not

depend on con
crete classes.

Only talk to yo
ur friends.

Don’t call us, w
e’ll call you.

A class should h
ave only one r

eason to

change.

OO Principles

design toolbox

better living with patterns

you are here 4 609

We’re going to miss you, for sure. But don’t worry – before you know it, the

next Head First book will be out and you can visit again. What’s the next book,

you ask? Hmmm, good question! Why don’t you help us decide? Send email

to booksuggestions@wickedlysmart.com.

Boy, it’s been great having you in Objectville.

Leaving Objectville...

610 Chapter 13

Decorator

State

Iterator

Facade

Strategy

Proxy

Factory Method

Adapter

Observer

Template Method

Composite

Singleton

Abstract Factory

Command

Exercise solutions

Match each pattern with its description:

Pattern Description

Wraps an object and provides a different
interface to it.
Subclasses decide how to implement steps in
an algorithm.
Subclasses decide which concrete classes to
create.
Ensures one and only object is created.
Encapsulates interchangeable behaviors and
uses delegation to decide which one to use.
Clients treat collections of objects and
individual objects uniformly.
Encapsulates state-based behaviors and uses
delegation to switch between behaviors.
Provides a way to traverse a collection of
objects without exposing its implementation.
Simplifies the interface of a set of classes.
Wraps an object to provide new behavior.
Allows a client to create families of objects
without specifying their concrete classes.
Allows objects to be notified when state
changes.
Wraps an object to control access to it.
Encapsulates a request as an object.

who does what? solution

this is the appendix 611

Not everyone can be the most popular. A lot has changed in

the last 10 years. Since Design Patterns: Elements of Reusable Object-Oriented

Software fi rst came out, developers have applied these patterns thousands

of times. The patterns we summarize in this appendix are full-fl edged, card-

carrying, offi cial GoF patterns, but aren’t always used as often as the patterns

we’ve explored so far. But these patterns are awesome in their own right, and

if your situation calls for them, you should apply them with your head held high.

Our goal in this appendix is to give you a high level idea of what these patterns

are all about.

14 Appendix

Appendix: Leftover Patterns

612 appendix

Bridge
Use the Bridge Pattern to vary not only your
implementations, but also your abstractions.

Imagine you’re going to revolutionize “extreme
lounging.” You’re writing the code for a new
ergonomic and user-friendly remote control for
TVs. You already know that you’ve got to use
good OO techniques because while the remote is
based on the same abstraction, there will be lots of
implementations – one for each model of TV.

A scenario

Your dilemma
You know that the remote’s user interface won’t be right the
fi rst time. In fact, you expect that the product will be refi ned
many times as usability data is collected on the remote
control.

So your dilemma is that the remotes are going to change and
the TVs are going to change. You’ve already abstracted the user
interface so that you can vary the implementation over the many
TVs your customers will own. But you are also going to need
to vary the abstraction because it is going to change over time as
the remote is improved based on the user feedback.

So how are you going to create an OO design that allows you
to vary the implementation and the abstraction?

Every remote has the
same abstraction.

RemoteControl

on()

off()

setChannel()

// more methods

Lots of
implementations,
one for each TV.

SonyControl

on()

off()

setChannel()

// more methods

RCAControl

on()

off()

setChannel()

// more methods

This is an abstraction. It could be
an interface or an abstract class.

{
 tuneChannel(channel);
}

Using this design we can vary
only the TV implementation, not
the user interface.

bridge pattern

leftover patterns

you are here 4 613

Bridge Benefi ts
ß Decouples an implementation so that it is not bound

permanently to an interface.

ß Abstraction and implementation can be extended
independently.

ß Changes to the concrete abstraction classes don’t
affect the client.

ß Useful in graphic and windowing systems that need to
run over multiple platforms.

ß Useful any time you need to vary an interface and an
implementation in different ways.

ß Increases complexity.

Bridge Uses and Drawbacks

Why use the Bridge Pattern?
The Bridge Pattern allows you to vary the implementation and
the abstraction by placing the two in separate class hierarchies.

TV

on()

off()

tuneChannel()

// more methods

Sony

on()

off()

tuneChannel()

// more methods

RCA

on()

off()

tuneChannel()

// more methods

ConcreteRemote

on()

off()

setStation()

nextChannel()

previousChannel()

// more methods

RemoteControl

implementor

on()

off()

setChannel()

// more methods

Has-A

 implementor.tuneChannel(channel);

Abstraction
class hierarchy

.

Implementation class hierarchy.
The relationship between
the two is referred to
as the “bridge.”

All methods in the abstraction
are implemented in terms of
the implementation.

setChannel(currentStation + 1);

currentStation

Concrete subclasses are implemented in terms of the
abstraction, not the implementation.

Now you have two hierarchies, one for the remotes and a separate one for platform
specifi c TV implementations. The bridge allows you to vary either side of the two
hierarchies independently.

614 appendix

Builder
Use the Builder Pattern to encapsulate the construction of
a product and allow it to be constructed in steps.

You’ve just been asked to build a vacation planner for Patternsland, a new theme
park just outside of Objectville. Park guests can choose a hotel and various types of
admission tickets, make restaurant reservations, and even book special events. To create
a vacation planner, you need to be able to create structures like this:

A scenario

You need a flexible design
Each guest’s planner can vary in the number of days and types of activities it includes.
For instance, a local resident might not need a hotel, but wants to make dinner and
special event reservations. Another guest might be flying into Objectville and needs a
hotel, dinner reservations, and admission tickets.

So, you need a flexible data structure that can represent guest planners and all their
variations; you also need to follow a sequence of potentially complex steps to create the
planner. How can you provide a way to create the complex structure without mixing it
with the steps for creating it?

Each day can ha
ve any combination

of hotel reser
vations, ticket

s,

meals and specia
l events.

Each vacation is planned
over some number of days.

 Vacation

 DayOne

 DayTwo DayThree

 Dining
 Special Even

t Park Tickets Park Tickets

 Park Tickets

 Hotel

 Hotel

 Dinner

Patterns on Ic
e

 Hotel

 Dining

 Dinner

 Special Even
t

Cirque Du Patt
er

ns

builder pattern

leftover patterns

you are here 4 615

Builder Benefi ts

ß Encapsulates the way a complex object is
constructed.

ß Allows objects to be constructed in a multistep and
varying process (as opposed to one step factories).

ß Hides the internal representation of the product from
the client.

ß Product implementations can be swapped in and out
because the client only sees an abstract interface.

ß Often used for building composite structures.

ß Constructing objects requires more domain
knowledge of the client than when using a Factory.

Builder Uses and Drawbacks

Why use the Builder Pattern?
Remember Iterator? We encapsulated the iteration into a separate
object and hid the internal representation of the collection from the
client. It’s the same idea here: we encapsulate the creation of the
trip planner in an object (let’s call it a builder), and have our client
ask the builder to construct the trip planner structure for it.

The Client
directs the
builder to
construct the
planner.

AbstractBuilder

buildDay()
addHotel()
addReservation()
addSpecialEvent()
addTickets()
getVacationPlanner()

Client

constructPlanner()

builder.buildDay(date);
builder.addHotel(date, “Grand Facadian”);
builder.addTickets(“Patterns on Ice”);

 // plan rest of vacation

Planner yourPlanner =
 builder.getVacationPlanner();

The client uses an
abstract interface to
build the planner.

The concrete builder
creates real products
and stores them
in the vacation
composite structure.

The Client directs the builder t
o create

the planner in a number of steps and

then calls the getVacationPlanner()

method to retrieve the com
plete object.

VacationBuilder

vacation

buildDay()
addHotel()
addReservation()
addSpecialEvent()
addTickets()
getVacationPlanner()

builder

616 appendix

Chain of Responsibility

Use the Chain of Responsibility Pattern when you want to
give more than one object a chance to handle a request.

chain of responsibility pattern

Mighty Gumball has been getting more email
than they can handle since the release of the
Java-powered Gumball Machine. From their
own analysis they get four kinds of email: fan
mail from customers that love the new 1 in 10
game, complaints from parents whose kids
are addicted to the game and requests to put
machines in new locations. They also get a fair
amount of spam.

All fan mail needs to go straight to the CEO,
all complaints go to the legal department and
all requests for new machines go to business
development. Spam needs to be deleted.

A scenario

Your task
Mighty Gumball has already written some AI
detectors that can tell if an email is spam, fan
mail, a complaint, or a request, but they need you
to create a design that can use the detectors to
handle incoming email.

You’ve
got to help us

deal with the flood
of email we’re getting

since the release of
the Java Gumball

Machine.

leftover patterns

you are here 4 617

 Chain of Responsibility Benefi ts

ß Decouples the sender of the request and its
receivers.

ß Simplifies your object because it doesn’t have to
know the chain’s structure and keep direct references
to its members.

ß Allows you to add or remove responsibilities
dynamically by changing the members or order of the
chain.

ß Commonly used in windows systems to handle
events like mouse clicks and keyboard events.

ß Execution of the request isn’t guaranteed; it may fall
off the end of the chain if no object handles it (this can
be an advantage or a disadvantage).

ß Can be hard to observe the runtime characteristics
and debug.

Chain of Responsibility Uses and Drawbacks

How to use the Chain of Responsibility Pattern
With the Chain of Responsibility Pattern, you create a chain of objects
that examine a request. Each object in turn examines the request and
handles it, or passes it on to the next object in the chain.

Handler

successor

handleRequest()

SpamHandler

handleRequest()

FanHandler

handleRequest()

ComplaintHandler

handleRequest()

NewLocHandler

handleRequest()

Spam
Handler

Fan
Handler

Complaint
Handler

NewLoc
Handler

Each object in the chain
acts as a handler and has

a successor object. If it

can handle the request,
it does; otherwise, it
forwards the request to
its successor.

As email is received, it is passed to the fi rst handler: the
SpamHandler. If the SpamHandler can’t handle the request,
it is passed on to the FanHandler. And so on...

Each email is passed to
the first handler.

Email is not handled if it
falls off the end of the chain
- although, you can always
implement a catch-all handler.

618 appendix

Flyweight
Use the Flyweight Pattern when one instance of a class
can be used to provide many “virtual instances.”

You want to add trees as objects in your hot new landscape design application. In
your application, trees don’t really do very much; they have an X-Y location, and they
can draw themselves dynamically, depending on how old they are. The thing is, a user
might want to have lots and lots of trees in one of their home landscape designs. It
might look something like this:

A scenario

Your big clientʼs dilemma
You’ve just landed your “reference account.” That key client
you’ve been pitching for months. They’re going to buy 1,000
seats of your application, and they’re using your software
to do the landscape design for huge planned communities.
After using your software for a week, your client is
complaining that when they create large groves of trees, the
app starts getting sluggish...

Tree

Tree Tree
Tree

Tree

Tree

Tree

House Tree

xCoord
yCoord
age

display() {
 // use X-Y coords
 // & complex age
 // related calcs

 }

Each Tree instance maintains its own state.

fl yweight pattern

leftover patterns

you are here 4 619

 Flyweight Benefi ts

ß Reduces the number of object instances at runtime,
saving memory.

ß Centralizes state for many “virtual” objects into a
single location.

ß The Flyweight is used when a class has many
instances, and they can all be controlled identically.

ß A drawback of the Flyweight pattern is that once
you’ve implemented it, single, logical instances of the
class will not be able to behave independently from
the other instances.

Flyweight Uses and Drawbacks

Why use the Flyweight Pattern?
What if, instead of having thousands of Tree objects, you
could redesign your system so that you’ve got only one
instance of Tree, and a client object that maintains the state
of ALL your trees? That’s the Flyweight!

Tree

display(x, y, age) {
 // use X-Y coords
 // & complex age
 // related calcs
 }

TreeManager

treeArray

displayTrees() {
 // for all trees {
 // get array row
 display(x, y, age);
 }
}

One, single, state-free Tree object.

All the state, for ALL
of your virtual Tree
objects, is stored in
this 2D-array.

620 appendix

interpreter pattern

The Interpreter Pattern requires

some knowledge of formal grammars.

If you’ve never studied formal

grammars, go ahead and read through

the pattern; you’ll still get the gist of it.

Interpreter
Use the Interpreter Pattern to build an
interpreter for a language.

Remember the Duck Pond Simulator? You have a hunch it
would also make a great educational tool for children to learn
programming. Using the simulator, each child gets to control one
duck with a simple language. Here’s an example of the language:

A scenario

Now what?
You’ve got a grammar; now all you need is a way to represent and
interpret sentences in the grammar so that the students can see the
effects of their programming on the simulated ducks.

Now, remembering how to create grammars from one of your old
introductory programming classes, you write out the grammar:

Turn the duck rig
ht.

Fly all day...

...and then quack.

A program is an expression
 consisting

of sequences of
 commands and

repetitions (“while” statements).

A while statement is just a conditional variable and an expression.

right;
while (daylight) fly;
quack;

expression ::= <command> | <sequence> | <repetition>
sequence ::= <expression> ‘;’ <expression>
command ::= right | quack | fly
repetition ::= while ‘(‘ <variable> ‘)’<expresion>
variable ::= [A-Z,a-z]+

A sequence is a
set of expressions
separated by
semicolons.

We have three
commands: right,
quack, and fly.

leftover patterns

you are here 4 621

Interpreter Benefi ts

ß Representing each grammar rule in a class makes
the language easy to implement.

ß Because the grammar is represented by classes, you
can easily change or extend the language.

ß By adding additional methods to the class structure,
you can add new behaviors beyond interpretation,
like pretty printing and more sophisticated program
validation.

ß Use interpreter when you need to implement a
simple language.

ß Appropriate when you have a simple grammar and
simplicity is more important than efficiency.

ß Used for scripting and programming languages.

ß This pattern can become cumbersome when the
number of grammar rules is large. In these cases a
parser/compiler generator may be more appropriate.

Interpreter Uses and Drawbacks

How to implement an interpreter
When you need to implement a simple language, the
Interpreter Pattern defi nes a class-based representation for its
grammar along with an interpreter to interpret its sentences.
To represent the language, you use a class to represent each
rule in the language. Here’s the duck language translated
into classes. Notice the direct mapping to the grammar.

To interpret the language, call the interpret() method on each
expression type. This method is passed a context – which
contains the input stream of the program we’re parsing – and
matches the input and evaluates it.

Expression

interpret(context)

Sequence
expression1
expression2
interpret(context)

Repetition
variable
expression
interpret(context)

FlyCommand

interpret(context)

Variable RightCommandQuackCommand

interpret(context)interpret(context)interpret(context)

622 appendix

Mediator
Use the Mediator Pattern to centralize complex
communications and control between related objects.

Calendar

mediator pattern

Bob has a Java-enabled auto-house, thanks to the good folks at HouseOfTheFuture.
All of his appliances are designed to make his life easier. When Bob stops hitting the
snooze button, his alarm clock tells the coffee maker to start brewing. Even though
life is good for Bob, he and other clients are always asking for lots of new features:
No coffee on the weekends... Turn off the sprinkler 15 minutes before a shower is
scheduled... Set the alarm early on trash days...

A scenario

Sprinkler

CoffeePot

Alarm

CoffeePot

onEvent() {
 checkCalendar()
 checkAlarm()
 // do more stuff
}

Alarm

onEvent() {
 checkCalendar()
 checkSprinkler()
 startCoffee()
 // do more stuff
}

Calendar

onEvent() {
 checkDayOfWeek()
 doSprinkler()
 doCoffee()
 doAlarm()
 // do more stuff
}

Sprinkler

onEvent() {
 checkCalendar()
 checkShower()
 checkTemp()
 checkWeather()
 // do more stuff
}

HouseOfTheFutureʼs dilemma
It’s getting really hard to keep track of which rules reside in which objects, and how
the various objects should relate to each other.

leftover patterns

you are here 4 623

 Mediator Benefi ts

ß Increases the reusability of the objects supported by
the Mediator by decoupling them from the system.

ß Simplifies maintenance of the system by centralizing
control logic.

ß Simplifies and reduces the variety of messages sent
between objects in the system.

ß The Mediator is commonly used to coordinate related
GUI components.

ß A drawback of the Mediator pattern is that without
proper design, the Mediator object itself can become
overly complex.

 Mediator Uses and Drawbacks

Mediator

Calendar
Sprinkler

CoffeePotAlarm

Mediator

if(alarmEvent){
 checkCalendar()
 checkShower()
 checkTemp()
}
if(weekend) {
 checkWeather()
 // do more stuff
}
if(trashDay) {
 resetAlarm()
 // do more stuff
}

Mediator in action...
With a Mediator added to the system, all
of the appliance objects can be greatly
simplifi ed:

ß They tell the Mediator when their state
changes.

ß They respond to requests from the
Mediator.

Before adding the Mediator, all of the
appliance objects needed to know about each
other... they were all tightly coupled. With the
Mediator in place, the appliance objects are
all completely decoupled from each other.

The Mediator contains all of the control
logic for the entire system. When an existing
appliance needs a new rule, or a new
appliance is added to the system, you’ll know
that all of the necessary logic will be added to
the Mediator.

It’s such a

relief, not having to
fi gure out that Alarm

clock’s picky rules!

624 appendix

Memento
Use the Memento Pattern when you need
to be able to return an object to one of its
previous states; for instance, if your user
requests an “undo.”

Your interactive role playing game is hugely successful,
and has created a legion of addicts, all trying to get
to the fabled “level 13.” As users progress to more
challenging game levels, the odds of encountering
a game-ending situation increase. Fans who have
spent days progressing to an advanced level are
understandably miffed when their character gets snuffed,
and they have to start all over. The cry goes out for a

“save progress” command, so that players can store their
game progress and at least recover most of their efforts
when their character is unfairly extinguished. The

“save progress” function needs to be designed to return
a resurrected player to the last level she completed
successfully.

A scenario

Just be careful how you go about
saving the game state. It’s pretty

complicated, and I don’t want anyone
else with access to it mucking it up and
breaking my code.

memento pattern

leftover patterns

you are here 4 625

The Memento at work
The Memento has two goals:

ß Saving the important state of a system’s key object.
ß Maintaining the key object’s encapsulation.

Client

// when new level is reached
Object saved =
 (Object) mgo.getCurrentState();

// when a restore is required
mgo.restoreState(saved);

GameMemento

savedGameState

MasterGameObject

gameState

Object getCurrentState() {
 // gather state
 return(gameState);
}

restoreState(Object savedState) {
 // restore state
}

// do other game stuff

 Memento Benefi ts

ß Keeping the saved state external from the key object
helps to maintain cohesion.

ß Keeps the key object’s data encapsulated.

ß Provides easy-to-implement recovery capability.

ß The Memento is used to save state.

ß A drawback to using Memento is that saving and
restoring state can be time consuming.

ß In Java systems, consider using Serialization to save
a system’s state.

Memento Uses and Drawbacks

Keeping the single responsibility principle in mind, it’s also
a good idea to keep the state that you’re saving separate
from the key object. This separate object that holds the
state is known as the Memento object.

While this isn’t a terribly
fancy implementation,
notice that the Client
has no access to the
Memento’s data.

626 appendix

Your interactive role playing game has an insatiable appetite for monsters. As your
heros make their journey through a dynamically created landscape, they encounter
an endless chain of foes that must be subdued. You’d like the monster’s characteristics
to evolve with the changing landscape. It doesn’t make a lot of sense for bird-like
monsters to follow your characters into underseas realms. Finally, you’d like to allow
advanced players to create their own custom monsters.

Prototype
Use the Prototype Pattern when creating an
instance of a given class is either expensive or
complicated.

A scenario

It would be a lot cleaner if we
could decouple the code that handles
the details of creating the monsters
from the code that actually needs to

create the instances on the fly.

Yikes! Just the act
of creating all of these different
kinds of monster instances is getting

tricky... Putting all sorts of state detail in the
constructors doesn’t seem to be very cohesive. It
would be great if there was a single place where
all of the instantiation details could be

encapsulated...

prototype pattern

leftover patterns

you are here 4 627

<<interface>>
 Monster

Prototype to the rescue
The Prototype Pattern allows you to make new instances by
copying existing instances. (In Java this typically means using
the clone() method, or de-serialization when you need deep
copies.) A key aspect of this pattern is that the client code can
make new instances without knowing which specifi c class is
being instantiated.

 Prototype Benefi ts

ß Hides the complexities of making new instances from
the client.

ß Provides the option for the client to generate objects
whose type is not known.

ß In some circumstances, copying an object can be
more efficient than creating a new object.

ß Prototype should be considered when a system must
create new objects of many types in a complex class
hierarchy.

ß A drawback to using the Prototype is that making a
copy of an object can sometimes be complicated.

Prototype Uses and Drawbacks

MonsterMaker

makeRandomMonster() {
 Monster m =
 MonsterRegistry.getMonster();
}

The registry finds the appropriate monster, makes a clone of it, and returns the clone.

The client needs a new monster
appropriate to the current
situation. (The client won’t know
what kind of monster he gets.)

WellKnownMonster DynamicPlayerGeneratedMonster

MonsterRegistry

Monster getMonster() {
 // fi nd the correct monster
 return correctMonster.clone();
}

628 appendix

Visitor
Use the Visitor Pattern when you want to
add capabilities to a composite of objects
and encapsulation is not important.

Customers who frequent the Objectville Diner and Objectville
Pancake House have recently become more health conscious. They
are asking for nutritional information before ordering their meals.
Because both establishments are so willing to create special orders,
some customers are even asking for nutritional information on a
per ingredient basis.

A scenario

Louʼs proposed solution:

MenuItem

Menu

Ingredient

MenuItem

Ingredient

// new methods

getHealthRating
getCalories
getProtein
getCarbs

// new methods

getHealthRating
getCalories
getProtein
getCarbs

Melʼs concerns...
“Boy, it seems like we’re opening Pandora’s box. Who knows what
new method we’re going to have to add next, and every time we
add a new method we have to do it in two places. Plus, what if
we want to enhance the base application with, say, a recipes class?
Then we’ll have to make these changes in three different places...”

visitor pattern

leftover patterns

you are here 4 629

The Visitor drops by
The Visitor must visit each element of the Composite; that
functionality is in a Traverser object. The Visitor is guided by the
Traverser to gather state from all of the objects in the Composite.
Once state has been gathered, the Client can have the Visitor perform
various operations on the state. When new functionality is required,
only the Visitor must be enhanced.

 Visitor Benefi ts

ß Allows you to add operations to a Composite
structure without changing the structure itself.

ß Adding new operations is relatively easy.

ß The code for operations performed by the Visitor is
centralized.

ß The Composite classes’ encapsulation is broken
when the Visitor is used.

ß Because the traversal function is involved, changes to
the Composite structure are more difficult.

Visitor Drawbacks

MenuItem

Menu

Ingredient

MenuItem

Ingredient

Visitor

 Client /
Traverser

getState()
getState()

getState()

getState()

getState()

getHealthRating()

getCalorie
s()

getProtein()

getCarbs()

All these composite
classes have to do is add
a getState() method
(and not worry about
exposing themselves).

The Client asks
the Visitor to get
information from the
Composite structure...
New methods can be
added to the Visitor
without affecting the
Composite.

The Visitor needs to be able to call

getState() across classes, and this
is

where you can add new methods for

the client to use.

The Traverser knows how to
guide the Visitor through
the Composite structure.

this is the index 631

A
Abstract Factory Pattern 156. See also Factory Pattern
Adapter Pattern

advantages 242
class adapters 244
class diagram 243
combining patterns 504
defined 243
duck magnets 245
Enumeration Iterator Adapter 248
exercise 251
explained 241
fireside chat 247, 252–253
introduction 237
object adapters 244

Alexander, Christopher 602
annihilating evil 606
Anti-Patterns 606–607

Golden Hammer 607
application patterns 604
architectural patterns 604

B
Bridge Pattern 612–613
Builder Pattern 614–615
bullet points 32, 74, 105, 162, 186, 230, 270, 311, 380,

423, 491, 560, 608

business process patterns 605

C
CD Cover Viewer 463
Chain of Responsibility Pattern 616–617
change 339

anticipating 14
constant in software development 8
identifying 53

Choc-O-Holic, Inc. 175
class explosion 81
code magnets 69, 179, 245, 350
cohesion 339–340
Combining Patterns 500

Abstract Factory Pattern 508
Adapter Pattern 504
class diagram 524
Composite Pattern 513
Decorator Pattern 506
Observer Pattern 516

Command Pattern
class diagram 207
command object 203
defined 206–207
introduction 196
loading the Invoker 201

Indexg
h
g

632 index

Command Pattern, continued
logging requests 229
macro command 224
Null Object 214
queuing requests 228
undo 216, 220, 227

Composite Pattern
and Iterator Pattern 368
class diagram 358
combining patterns 513
composite behavior 363
default behavior 360
defined 356
interview 376–377
safety 367
safety versus transparency 515
transparency 367, 375

composition 23, 85, 93, 247, 309
compound pattern 500, 522
controlling access 460. See also Proxy Pattern
creating objects 134
crossword puzzle 33, 76, 163, 187, 231, 271, 310, 378,

490
cubicle conversation 55, 93, 195, 208, 387, 397, 433,

583–584

D
Decorator Pattern

and Proxy Pattern 472–473
class diagram 91
combining patterns 506
cubicle conversation 93
defined 91
disadvantages 101, 104

fireside chat 252–253
interview 104
introduction 88
in Java I/O 100–101
structural pattern 591

Dependency Inversion Principle 139–143
and the Hollywood Principle 298

Design Patterns
Abstract Factory Pattern 156
Adapter Pattern 243
benefits 599
Bridge Pattern 612–613
Builder Pattern 614–615
categories 589, 592–593
Chain of Responsibility Pattern 616–617
class patterns 591
Command Pattern 206
Composite Pattern 356
Decorator Pattern 91
defined 579, 581
discover your own 586–587
Facade Pattern 264
Factory Method Pattern 134
Flyweight Pattern 618–619
Interpreter Pattern 620–621
Iterator Pattern 336
Mediator Pattern 622–623
Memento Pattern 624–625
Null Object 214
object patterns 591
Observer Pattern 51
organizing 589
Prototype Pattern 626–627
Proxy Pattern 460

D-G

the index

you are here 4 633

Simple Factory 114
Singleton Pattern 177
State Pattern 410
Strategy Pattern 24
Template Method Pattern 289
use 29
versus frameworks 29
versus libraries 29
Visitor Pattern 628–629

Design Principles. See Object Oriented Design Principles
Design Puzzle 25, 133, 279, 395, 468, 542
Design Toolbox 32, 74, 105, 162, 186, 230, 270, 311,

380, 423, 491, 560, 608
DJ View 534
domain specific patterns 604

E
Elvis 526
encapsulate what varies 8–9, 75, 136, 397, 612
encapsulating algorithms 286, 289
encapsulating behavior 11
encapsulating iteration 323
encapsulating method invocation 206
encapsulating object construction 614–615
encapsulating object creation 114, 136
encapsulating requests 206
encapsulating state 399

F
Facade Pattern

advantages 260
and Principle of Least Knowledge 269
class diagram 264

defined 264
introduction 258

Factory Method Pattern 134. See also Factory Pattern
Factory Pattern

Abstract Factory
and Factory Method 158–159, 160–161
class diagram 156–157
combining patterns 508
defined 156
interview 158–159
introduction 153

Factory Method
advantages 135
and Abstract Factory 160–161
class diagram 134
defined 134
interview 158–159
introduction 120, 131–132
up close 125

Simple Factory
defined 117
introduction 114

family of algorithms. See Strategy Pattern
family of products 145
favor composition over inheritance 23, 75
fireside chat 62, 247, 252, 308, 418, 472–473
Five minute drama 48, 478
Flyweight Pattern 618–619
forces 582
Friedman, Dan 171

G
Gamma, Erich 601

634 index

Gang of Four 583, 601
Gamma, Erich 601
Helm, Richard 601
Johnson, Ralph 601
Vlissides, John 601

global access point 177
gobble gobble 239
Golden Hammer 607
guide to better living with Design Patterns 578
Gumball Machine Monitor 431

H
HAS-A 23
Head First learning principles xxx
Helm, Richard 601
Hillside Group 603
Hollywood Principle, The 296

and the Dependency Inversion Principle 298
Home Automation or Bust, Inc. 192
Home Sweet Home Theater 255
Hot or Not 475

I
inheritance

disadvantages 5
for reuse 5–6
versus composition 93

interface 12
Interpreter Pattern 620–621
inversion 141–142
IS-A 23
Iterator Pattern

advantages 330

and collections 347–349
and Composite Pattern 368
and Enumeration 338
and Hashtable 343, 348
class diagram 337
code magnets 350
defined 336
exercise 327
external iterator 338
for/in 349
internal iterator 338
introduction 325
java.util.Iterator 332
Null Iterator 372
polymorphic iteration 338
removing objects 332

J
Johnson, Ralph 601

K
KISS 594

L
Law of Demeter. See Principle of Least Knowledge
lazy instantiation 177
loose coupling 53

M
magic bullet 594
master and student 23, 30, 85, 136, 592, 596
Matchmaking in Objectville 475

H-P

the index

you are here 4 635

Mediator Pattern 622–623
Memento Pattern 624–625
middleman 237
Mighty Gumball, Inc. 386
Model-View-Controller

Adapter Pattern 546
and design patterns 532
and the Web 549
Composite Pattern 532, 559
introduction 529
Mediator Pattern 559
Observer Pattern 532
ready-bake code 564–576
song 526
Strategy Pattern 532, 545
up close 530

Model 2 549. See also Model-View-Controller
and design patterns 557–558

MVC. See Model-View-Controller

N
Null Object 214, 372

O
Objectville Diner 26, 197, 316, 628
Objectville Pancake House 316, 628
Object Oriented Design Principles 9, 30–31

Dependency Inversion Principle 139–143
encapsulate what varies 9, 111
favor composition over inheritance 23, 243, 397
Hollywood Principle 296
one class, one responsibility 185, 336, 339, 367
Open-Closed Principle 86–87, 407

Principle of Least Knowledge 265
program to an interface, not an implementation 11,

243, 335
strive for loosely coupled designs between objects that

interact 53
Observable 64, 71
Observer Pattern

class diagram 52
code magnets 69
combining patterns 516
cubicle conversation 55
defined 51–52
fireside chat 62
Five minute drama 48
introduction 44
in Swing 72–73
Java support 64
pull 63
push 63

one-to-many relationship 51–52
OOPSLA 603
Open-Closed Principle 86–87
oreo cookie 526
organizational patterns 605

P
part-whole hierarchy 356. See also Composite Pattern
patterns catalog 581, 583, 585
Patterns Exposed 104, 158, 174, 377–378
patterns in the wild 299, 488–489
patterns zoo 604
Pattern Honorable Mention 117, 214
Pizza shop 112
Portland Patterns Repository 603

636 index

Principle of Least Knowledge 265–268
disadvantages 267

program to an implementation 12, 17, 71
program to an interface 12
program to an interface, not an implementation 11, 75
Prototype Pattern 626–627
Proxy Pattern

and Adapter Pattern 471
and Decorator Pattern 471, 472–473
Caching Proxy 471
class diagram 461
defined 460
Dynamic Proxy 474, 479, 486

and RMI 486
exercise 482
fireside chat 472–473
java.lang.reflect.Proxy 474
Protection Proxy 474, 477
Proxy Zoo 488–489
ready-bake code 494
Remote Proxy 434
variants 471
Virtual Proxy 462

image proxy 464
publisher/subscriber 45

Q
Quality, The. See Quality without a name
Quality without a name. See Quality, The

R
refactoring 354, 595
remote control 193, 209

Remote Method Invocation. See RMI
remote proxy 434. See also Proxy Pattern
reuse 13, 23, 85
RMI 436

S
shared vocabulary 26–28, 599–600
sharpen your pencil 5, 42, 54, 61, 94, 97, 99, 124, 137,

148, 176, 183, 205, 225, 242, 268, 284, 322, 342,
396, 400, 406, 409, 421, 483, 511, 518, 520, 589

Simple Factory 117
SimUDuck 2, 500
Singleton Pattern

advantages 170, 184
and garbage collection 184
and global variables 185
and multithreading 180–182
class diagram 177
defined 177
disadvantages 184
double-checked locking 182
interview 174
up close 173

Single Responsibility Principle 339. See also Object
Oriented Design Principles: one class, one respon-
sibility

skeleton 440
Starbuzz Coffee 80, 276
state machines 388–389
State Pattern

and Strategy Pattern 411, 418–419
class diagram 410
defined 410

Q-Y

the index

you are here 4 637

disadvantages 412, 417
introduction 398
sharing state 412

static factory 115
Strategy Pattern 24

and State Pattern 411, 418–419
and Template Method Pattern 308–309
encapsulating behavior 22
family of algorithms 22
fireside chat 308

stub 440

T
Template Method Pattern

advantages 288
and Applet 307
and java.util.Arrays 300
and Strategy Pattern 305, 308–309
and Swing 306
and the Hollywood Principle 297
class diagram 289
defined 289
fireside chat 308–309
hook 292, 295
introduction 286
up close 290–291

The Little Lisper 171
thinking in patterns 594–595
tightly coupled 53

U
undo 216, 227
user interface design patterns 605

V
varies. See encapsulate what varies
Visitor Pattern 628–629
Vlissides, John 601

W
Weather-O-Rama 38
when not to use patterns 596–598
Who Does What? 202, 254, 298, 379, 422, 487, 588
Why a duck? 500
wrapping objects 88, 242, 252, 260, 473, 508. See

also Adapter Pattern, Decorator Pattern, Facade
Pattern, Proxy Pattern

Y
your mind on patterns 597

638 index

All interior layouts were designed by Eric Freeman, Elisabeth Freeman,
Kathy Sierra and Bert Bates. Kathy and Bert created the look & feel of the Head First series.

The book was produced using Adobe InDesign CS (an unbelievably cool design tool that we can’t get

enough of) and Adobe Photoshop CS. The book was typeset using Uncle Stinky, Mister Frisky (you think

we’re kidding), Ann Satellite, Baskerville, Comic Sans, Myriad Pro, Skippy Sharp, Savoye LET, Jokerman

LET, Courier New and Woodrow typefaces.

Interior design and production all happened exclusively on Apple Macintoshes–at Head First we’re all

about “Think Different” (even if it isn’t grammatical). All Java code was created using James Gosling’s

favorite IDE, vi, although we really should try Erich Gamma’s Eclipse.

Long days of writing were powered by the caffeine fuel of Honest Tea and Tejava, the clean Santa Fe air,

and the grooving sounds of Banco de Gaia, Cocteau Twins, Buddha Bar I-VI, Delerium, Enigma, Mike

Oldfi eld, Olive, Orb, Orbital, LTJ Bukem, Massive Attack, Steve Roach, Sasha and Digweed, Thievery

Corporation, Zero 7 and Neil Finn (in all his incarnations) along with a heck of a lot of acid trance and

more 80s music that you’d care to know about.

g
h
gColophon

the index

you are here 4 639

And now, a final word from Head First Labs...

Our world class researchers are working day and night in a mad race to

uncover the mysteries of Life, the Universe and Everything–before it’s too late.

Never before has a research team with such noble and daunting goals been

assembled. Currently, we are focusing our collective energy and brain power on

creating the ultimate learning machine. Once perfected, you and others will join

us in our quest!

You’re fortunate to be holding one of our first protoypes in your hands. But only

through constant refinement can our goal be achieved. We ask you, a pioneer

user of the technology, to send us periodic field reports of your progress, at

fieldreports@headfirstlabs.com

And next time you’re in Objectville,
drop by and take one of our behind

the scenes laboratory tours.

Come join us at the Head First Labs Web site, our virtual

hangout where you’ll fi nd Head First resources including

podcasts, forums, code and more.

But you won’t just be a spectator; we also encourage you to

join the fun by participating in discussions and brainstorming.

Now that you’ve applied the Head First approach to
Design Patterns, why not apply it to the rest of your life?

Whatʼs in it for you?

ß Get the latest news about what’s

happening in the Head First World.

ß Participate in our upcoming books and

technologies.

ß Learn how to tackle those tough

technical topics (say that three times fast)

in as little time as possible.

ß Look behind the scenes at how Head

First books are created.

ß Meet the Head First authors and the

support team who keep everything

running smoothly.

ß Why not audition to be a Head First

author yourself ?

http://www.headfi rstlabs.comWhy wait?

Our web servers

are standing by.

Visit now!

Search
inside electronic versions

of thousands of books

Find
answers in an instant

Search Safari! The premier electronic reference
library for programmers and IT professionals

Browse
books by category.

With Safari researching
any topic is a snap

Better than
e-books

Try itFREE!

Sign up today and get your first 14 days free.

safari.oreilly.com

Read books from cover
to cover. Or, simply click

to the page you need.

hdfst_despatterns_bm.qxd 10/13/04 12:45 PM Page 1

Related Titles Available from O’Reilly

Our books are available at most retail and online bookstores.
To order direct: 1-800-998-9938 • order@oreilly.com • www.oreilly.com

Online editions of most O’Reilly titles are available by subscription at safari.oreilly.com

Ant: The Definitive Guide

Better, Faster, Lighter Java

Eclipse

Eclipse Cookbook

Enterprise JavaBeans,
4th Edition

Hardcore Java

Head First Java

Head First Servlets & JSP

Head First EJB

Hibernate:
A Developer’s Notebook

J2EE Design Patterns

Java 1.5 Tiger:
A Developer’s Notebook

Java & XML Data Binding

Java & XML

Java Cookbook, 2nd Edition

Java Data Objects

Java Database Best Practices

Java Enterprise Best Practices

Java Enterprise in a Nutshell,
2nd Edition

Java Examples in a Nutshell,
3rd Edition

Java Extreme Programming
Cookbook

Java in a Nutshell, 4th Edition

Java Management Extensions

Java Message Service

Java Network Programming,
2nd Edition

Java NIO

Java Performance Tuning,
2nd Edition

Java RMI

Java Security, 2nd Edition

JavaServer Faces

Java ServerPages, 2nd Edition

Java Servlet & JSP Cookbook

Java Servlet Programming,
2nd Edition

Java Swing, 2nd Edition

Java Web Services in a Nutshell

Learning Java, 2nd Edition

Mac OS X for Java Geeks

Programming Jakarta Struts
2nd Edition

Tomcat: The Definitive Guide

WebLogic:
The Definitive Guide

Java

hdfst_despatterns_bm.qxd 10/13/04 12:45 PM Page 2

1. Download examples from our books
To find example files for a book, go to:

www.oreilly.com/catalog

select the book, and follow the “Examples” link.

2. Register your O’Reilly books
Register your book at register.oreilly.com

Why register your books?
Once you’ve registered your O’Reilly books you can:

• Win O’Reilly books, T-shirts or discount
coupons in our monthly drawing.

• Get special offers available only to registered
O’Reilly customers.

• Get catalogs announcing new books
(US and UK only).

• Get email notification of new editions of the
O’Reilly books you own.

3. Join our email lists
Sign up to get topic-specific email announcements
of new books and conferences, special offers, and
O’Reilly Network technology newsletters at:

elists.oreilly.com

It’s easy to customize your free elists subscription so
you’ll get exactly the O’Reilly news you want.

4. Get the latest news, tips, and tools
www.oreilly.com

• “Top 100 Sites on the Web”—PC Magazine

• CIO Magazine’s Web Business 50 Awards

Our web site contains a library of comprehensive
product information (including book excerpts and
tables of contents), downloadable software, back-
ground articles, interviews with technology leaders,
links to relevant sites, book cover art, and more.

5. Work for O’Reilly
Check out our web site for current employment
opportunities:

jobs.oreilly.com

6. Contact us
O’Reilly & Associates
1005 Gravenstein Hwy North
Sebastopol, CA 95472 USA

TEL: 707-827-7000 or 800-998-9938
(6am to 5pm PST)

FAX: 707-829-0104

order@oreilly.com
For answers to problems regarding your order or our
products. To place a book order online, visit:

www.oreilly.com/order_new

catalog@oreilly.com
To request a copy of our latest catalog.

booktech@oreilly.com
For book content technical questions or corrections.

corporate@oreilly.com
For educational, library, government, and
corporate sales.

proposals@oreilly.com
To submit new book proposals to our editors and
product managers.

international@oreilly.com
For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:

international.oreilly.com/distributors.html

adoption@oreilly.com
For information about academic use of O’Reilly
books, visit:

academic.oreilly.com

Keep in touch with O’Reilly

Our books are available at most retail and online bookstores.
To order direct: 1-800-998-9938 • order@oreilly.com • www.oreilly.com

Online editions of most O’Reilly titles are available by subscription at safari.oreilly.com

hdfst_despatterns_bm.qxd 10/13/04 12:45 PM Page 3

	Table of Contents
	Intro
	Chapter 1: Intro to Design Patterns
	Chapter 2: the Observer Pattern
	Chapter 3: the Decorator Pattern
	Chapter 4: the Factory Pattern
	Chapter 5: the Singleton Pattern
	Chapter 6: the Command Pattern
	Chapter 7: the Adapter and Facade Patterns
	Chapter 8: the Template Method Pattern
	Chapter 9: the Iterator and Composite Patterns
	Chapter 10: the State Pattern
	Chapter 11: the Proxy Pattern
	Chapter 12: Compound Patterns
	Chapter 13: Better Living with Patterns
	Appendix: Leftover Patterns
	Index

