

Artificial Intelligence
By Example

Develop machine intelligence from scratch using real artificial
intelligence use cases

Denis Rothman

BIRMINGHAM - MUMBAI

Artificial Intelligence By Example
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Tushar Gupta
Content Development Editor: Mayur Pawanikar
Technical Editor: Prasad Ramesh
Copy Editor: Vikrant Phadkay
Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tania Dutta
Production Coordinator: Aparna Bhagat

First published: May 2018

Production reference: 2200618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-054-7

www.packtpub.com

http://www.packtpub.com

To my family and friends for bringing me joy on the good days
and comfort on the bad ones.

-Denis Rothman

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Denis Rothman graduated from l'Université Paris-Sorbonne and l'Université Paris-Diderot,
writing one of the very first word2matrix embedding solutions. He began his career
authoring one of the first AI cognitive NLP chatbots applied as a language teacher for Moët
et Chandon and other companies. He authored an AI resource optimizer for IBM and
apparel producers. He then authored an Advanced Planning and Scheduling (APS)
solution used worldwide.

I want to thank the corporations who trusted me from the start to deliver artificial
intelligence solutions and share the risks of continuous innovation. I also thank my family,
who believed I would make it big at all times.

About the reviewers
Armando Fandango creates AI-powered products by leveraging his expertise in deep
learning, machine learning, distributed computing, and computational methods. He
advises Owen.ai Inc., Real Engagement, and Loyalty Inc. on AI product strategy. He
founded NeuraSights to create insights using neural networks. He was the chief data
scientist and CTO for Epic Engg., Consulting Group LLC, and director of data science for
Sonobi. He has advised high-tech startups as an AI expert and advisory board member.

Nicolas Guet is a financial controller at GRDF. He was a project leader for ENGIE and a
SAP BI consultant for Capgemini.

He graduated from Université Pierre et Marie Curie (Paris VI) and Université Paris Sud
(Paris XI). He also designed a decision-making tool in Java that was part of an AI Advanced
Planning System, managing hundreds of thousands of orders for 100+ suppliers
worldwide. He is dedicated to promoting sustainable energy and smart grids.

Jérémie Rothman is an IT project manager at the French National Forest Office (ONF). He
was an IT consultant for TCS France and worked on a Total SA route optimizing project. He
graduated from Université Paris 1 Panthéon Sorbonne in economics and holds a degree in
software mathematics (Université Paris 5 René Descartes).

He designed a Nash equilibrium theory of games algorithm to optimize warehouse
locations for an AI Advanced Planning System (APS). The APS program is used to this day.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Become an Adaptive Thinker 8
Technical requirements 9
How to be an adaptive thinker 9

Addressing real-life issues before coding a solution 10
Step 1 – MDP in natural language 11
Step 2 – the mathematical representation of the Bellman equation and MDP 14

From MDP to the Bellman equation 14
Step 3 – implementing the solution in Python 18

The lessons of reinforcement learning 20
How to use the outputs 21
Machine learning versus traditional applications 25

Summary 26
Questions 27
Further reading 27

Chapter 2: Think like a Machine 28
Technical requirements 29
Designing datasets – where the dream stops and the hard work
begins 30

Designing datasets in natural language meetings 30
Using the McCulloch-Pitts neuron 31
The McCulloch-Pitts neuron 32
The architecture of Python TensorFlow 36

Logistic activation functions and classifiers 38
Overall architecture 38
Logistic classifier 39
Logistic function 39
Softmax 40

Summary 44
Questions 45
Further reading 45

Chapter 3: Apply Machine Thinking to a Human Problem 46
Technical requirements 47
Determining what and how to measure 47

Convergence 49
Implicit convergence 50
Numerical – controlled convergence 50

Table of Contents

[ii]

Applying machine thinking to a human problem 52
Evaluating a position in a chess game 52
Applying the evaluation and convergence process to a business problem 56
Using supervised learning to evaluate result quality 58

Summary 62
Questions 63
Further reading 63

Chapter 4: Become an Unconventional Innovator 64
Technical requirements 65
The XOR limit of the original perceptron 65

XOR and linearly separable models 65
Linearly separable models 66
The XOR limit of a linear model, such as the original perceptron 67

Building a feedforward neural network from scratch 68
Step 1 – Defining a feedforward neural network 68
Step 2 – how two children solve the XOR problem every day 69
Implementing a vintage XOR solution in Python with an FNN and
backpropagation 73

A simplified version of a cost function and gradient descent 75
Linear separability was achieved 78

Applying the FNN XOR solution to a case study to optimize subsets
of data 80
Summary 86
Questions 87
Further reading 87

Chapter 5: Manage the Power of Machine Learning and Deep Learning 88
Technical requirements 89
Building the architecture of an FNN with TensorFlow 89

Writing code using the data flow graph as an architectural roadmap 90
A data flow graph translated into source code 91

The input data layer 91
The hidden layer 92
The output layer 93
The cost or loss function 94
Gradient descent and backpropagation 94
Running the session 96
Checking linear separability 97

Using TensorBoard to design the architecture of your machine
learning and deep learning solutions 98

Designing the architecture of the data flow graph 98
Displaying the data flow graph in TensorBoard 100
The final source code with TensorFlow and TensorBoard 100

Using TensorBoard in a corporate environment 101

Table of Contents

[iii]

Using TensorBoard to explain the concept of classifying customer products
to a CEO 102
Will your views on the project survive this meeting? 102

Summary 105
Questions 106
Further reading 106
References 106

Chapter 6: Don't Get Lost in Techniques – Focus on Optimizing Your
Solutions 107

Technical requirements 108
Dataset optimization and control 108

Designing a dataset and choosing an ML/DL model 109
Approval of the design matrix 110

Agreeing on the format of the design matrix 110
Dimensionality reduction 112
The volume of a training dataset 113

Implementing a k-means clustering solution 113
The vision 114

The data 114
Conditioning management 115

The strategy 116
The k-means clustering program 116

The mathematical definition of k-means clustering 118
Lloyd's algorithm 119

The goal of k-means clustering in this case study 119
The Python program 120

1 – The training dataset 120
2 – Hyperparameters 120
3 – The k-means clustering algorithm 121
4 – Defining the result labels 122
5 – Displaying the results – data points and clusters 122
Test dataset and prediction 123

Analyzing and presenting the results 124
AGV virtual clusters as a solution 125

Summary 127
Questions 127
Further reading 128

Chapter 7: When and How to Use Artificial Intelligence 129
Technical requirements 130
Checking whether AI can be avoided 130

Data volume and applying k-means clustering 131
Proving your point 132

NP-hard – the meaning of P 132
NP-hard – The meaning of non-deterministic 133
The meaning of hard 133

Random sampling 133

Table of Contents

[iv]

The law of large numbers – LLN 134
The central limit theorem 135

Using a Monte Carlo estimator 135
Random sampling applications 136

Cloud solutions – AWS 136
Preparing your baseline model 136

Training the full sample training dataset 136
Training a random sample of the training dataset 137
Shuffling as an alternative to random sampling 139

AWS – data management 141
Buckets 141
Uploading files 142
Access to output results 142

SageMaker notebook 143
Creating a job 144
Running a job 146

Reading the results 147
Recommended strategy 148

Summary 148
Questions 149
Further reading 149

Chapter 8: Revolutions Designed for Some Corporations and
Disruptive Innovations for Small to Large Companies 150

Technical requirements 151
Is AI disruptive? 151

What is new and what isn't in AI 152
AI is based on mathematical theories that are not new 152
Neural networks are not new 153
Cloud server power, data volumes, and web sharing of the early 21st century
started to make AI disruptive 153
Public awareness contributed to making AI disruptive 154

Inventions versus innovations 154
Revolutionary versus disruptive solutions 155
Where to start? 155

Discover a world of opportunities with Google Translate 156
Getting started 156
The program 157

The header 157
Implementing Google's translation service 158

Google Translate from a linguist's perspective 159
Playing with the tool 160
Linguistic assessment of Google Translate 160

Lexical field theory 160
Jargon 161
Translating is not just translating but interpreting 162
How to check a translation 163

Table of Contents

[v]

AI as a new frontier 164
Lexical field and polysemy 165
Exploring the frontier – the program 167

k-nearest neighbor algorithm 168
The KNN algorithm 169
The knn_polysemy.py program 171
Implementing the KNN compressed function in Google_Translate_Customized.py 173
Conclusions on the Google Translate customized experiment 181

The disruptive revolutionary loop 182
Summary 182
Questions 183
Further reading 184

Chapter 9: Getting Your Neurons to Work 185
Technical requirements 186
Defining a CNN 187

Defining a CNN 187
Initializing the CNN 189
Adding a 2D convolution 190

Kernel 190
Intuitive approach 191
Developers' approach 192
Mathematical approach 193

Shape 194
ReLu 195

Pooling 197
Next convolution and pooling layer 198
Flattening 199
Dense layers 199

Dense activation functions 200
Training a CNN model 201

The goal 201
Compiling the model 202

Loss function 202
Quadratic loss function 203
Binary cross-entropy 203

Adam optimizer 205
Metrics 205

Training dataset 206
Data augmentation 206
Loading the data 207

Testing dataset 207
Data augmentation 208
Loading the data 208

Training with the classifier 208
Saving the model 209

Next steps 210
Summary 210

Table of Contents

[vi]

Questions 211
Further reading and references 211

Chapter 10: Applying Biomimicking to Artificial Intelligence 212
Technical requirements 213
Human biomimicking 214

TensorFlow, an open source machine learning framework 214
Does deep learning represent our brain or our mind? 216

A TensorBoard representation of our mind 217
Input data 217
Layer 1 – managing the inputs to the network 219

Weights, biases, and preactivation 220
Displaying the details of the activation function through the preactivation process 223
The activation function of Layer 1 225

Dropout and Layer 2 226
Layer 2 227
Measuring the precision of prediction of a network through accuracy values 228

Correct prediction 228
accuracy 229

Cross-entropy 231
Training 233

Optimizing speed with Google's Tensor Processing Unit 234
Summary 237
Questions 238
Further reading 238

Chapter 11: Conceptual Representation Learning 239
Technical requirements 240
Generate profit with transfer learning 241

The motivation of transfer learning 241
Inductive thinking 241
Inductive abstraction 242
The problem AI needs to solve 242

The Γ gap concept 244
Loading the Keras model after training 244

Loading the model to optimize training 244
Loading the model to use it 247

Using transfer learning to be profitable or see a project stopped 250
Defining the strategy 251

Applying the model 251
Making the model profitable by using it for another problem 252

Where transfer learning ends and domain learning begins 253
Domain learning 253

How to use the programs 253
The trained models used in this section 253
The training model program 254

GAP – loaded or unloaded 254
GAP – jammed or open lanes 257

Table of Contents

[vii]

The gap dataset 259
Generalizing the Γ(gap conceptual dataset) 259
Generative adversarial networks 260

Generating conceptual representations 261
The use of autoencoders 262

The motivation of conceptual representation learning meta-models 263
The curse of dimensionality 263
The blessing of dimensionality 264

Scheduling and blockchains 264
Chatbots 265
Self-driving cars 266

Summary 266
Questions 267
Further reading 267

Chapter 12: Automated Planning and Scheduling 268
Technical requirements 269
Planning and scheduling today and tomorrow 270

A real-time manufacturing process 271
Amazon must expand its services to face competition 271
A real-time manufacturing revolution 271

CRLMM applied to an automated apparel manufacturing process 275
An apparel manufacturing process 275
Training the CRLMM 277

Generalizing the unit-training dataset 278
Food conveyor belt processing – positive pγ and negative nγ gaps 278
Apparel conveyor belt processing – undetermined gaps 279
The beginning of an abstract notion of gaps 280

Modifying the hyperparameters 282
Running a prediction program 283

Building the DQN-CRLMM 284
A circular process 285
Implementing a CNN-CRLMM to detect gaps and optimize 285
Q-Learning – MDP 286

MDP inputs and outputs 287
The input is a neutral reward matrix 287
The standard output of the MDP function 288
A graph interpretation of the MDP output matrix 289

The optimizer 290
The optimizer as a regulator 291

Implementing Z – squashing the MDP result matrix 291
Implementing Z – squashing the vertex weights vector 292

Finding the main target for the MDP function 294
Circular DQN-CRLMM – a stream-like system that never starts nor ends 296

Summary 301
Questions 301
Further reading 301

Chapter 13: AI and the Internet of Things (IoT) 302

Table of Contents

[viii]

Technical requirements 303
The Iotham City project 304
Setting up the DQN-CRLMM model 304

Training the CRLMM 305
The dataset 305
Training and testing the model 306

Classifying the parking lots 307
Adding an SVM function 307

Motivation – using an SVM to increase safety levels 307
Definition of a support vector machine 309
Python function 311

Running the CRLMM 313
Finding a parking space 313
Deciding how to get to the parking lot 316

Support vector machine 317
The itinerary graph 319
The weight vector 320

Summary 321
Questions 321
Further reading 322
References 322

Chapter 14: Optimizing Blockchains with AI 323
Technical requirements 324
Blockchain technology background 324

Mining bitcoins 324
Using cryptocurrency 325
Using blockchains 326

Using blockchains in the A-F network 328
Creating a block 328
Exploring the blocks 329

Using naive Bayes in a blockchain process 330
A naive Bayes example 330

The blockchain anticipation novelty 332
The goal 333

Step 1 the dataset 333
Step 2 frequency 334
Step 3 likelihood 335
Step 4 naive Bayes equation 335

Implementation 336
Gaussian naive Bayes 336

The Python program 337
Implementing your ideas 339

Summary 339
Questions 340
Further reading 341

Table of Contents

[ix]

Chapter 15: Cognitive NLP Chatbots 342
Technical requirements 343
IBM Watson 343

Intents 343
Testing the subsets 345

Entities 346
Dialog flow 348

Scripting and building up the model 349
Adding services to a chatbot 351

A cognitive chatbot service 351
The case study 352

A cognitive dataset 352
Cognitive natural language processing 353

Activating an image + word cognitive chat 355
Solving the problem 357

Implementation 358
Summary 358
Questions 359
Further reading 359

Chapter 16: Improve the Emotional Intelligence Deficiencies of
Chatbots 360

Technical requirements 361
Building a mind 362

How to read this chapter 363
The profiling scenario 364

Restricted Boltzmann Machines 364
The connections between visible and hidden units 365
Energy-based models 367

Gibbs random sampling 368
Running the epochs and analyzing the results 368

Sentiment analysis 370
Parsing the datasets 370

Conceptual representation learning meta-models 372
Profiling with images 372

RNN for data augmentation 374
RNNs and LSTMs 375

RNN, LSTM, and vanishing gradients 376
Prediction as data augmentation 377

Step1 – providing an input file 377
Step 2 – running an RNN 377
Step 3 – producing data augmentation 378

Word embedding 378
The Word2vec model 379

Principal component analysis 382

Table of Contents

[x]

Intuitive explanation 383
Mathematical explanation 383

Variance 383
Covariance 385
Eigenvalues and eigenvectors 385
Creating the feature vector 387
Deriving the dataset 387
Summing it up 387

TensorBoard Projector 387
Using Jacobian matrices 388

Summary 389
Questions 389
Further reading 390

Chapter 17: Quantum Computers That Think 391
Technical requirements 392
The rising power of quantum computers 393

Quantum computer speed 393
Defining a qubit 396

Representing a qubit 396
The position of a qubit 397

Radians, degrees, and rotations 398
Bloch sphere 399

Composing a quantum score 400
Quantum gates with Quirk 400
A quantum computer score with Quirk 402
A quantum computer score with IBM Q 404

A thinking quantum computer 406
Representing our mind's concepts 406
Expanding MindX's conceptual representations 408
Concepts in the mind-dataset of MindX 409

Positive thinking 409
Negative thinking 410
Gaps 412
Distances 412

The embedding program 413
The MindX experiment 415

Preparing the data 416
Transformation Functions – the situation function 416
Transformation functions – the quantum function 418
Creating and running the score 419
Using the output 420
IBM Watson and scripts 421

Summary 422
Questions 423
Further reading 423

Table of Contents

[xi]

Appendix A: Answers to the Questions 424
Chapter 1 – Become an Adaptive Thinker 424
Chapter 2 – Think like a Machine 426
Chapter 3 – Apply Machine Thinking to a Human Problem 427
Chapter 4 – Become an Unconventional Innovator 428
Chapter 5 – Manage the Power of Machine Learning and Deep
Learning 430
Chapter 6 – Don't Get Lost in Techniques, Focus on Optimizing
Your Solutions 431
Chapter 7 – When and How to Use Artificial Intelligence 433
Chapter 8 – Revolutions Designed for Some Corporations and
Disruptive Innovations for Small to Large Companies 435
Chapter 9 – Getting Your Neurons to Work 437
Chapter 10 – Applying Biomimicking to AI 439
Chapter 11 – Conceptual Representation Learning 441
Chapter 12 – Automated Planning and Scheduling 443
Chapter 13 – AI and the Internet of Things 444
Chapter 14 – Optimizing Blockchains with AI 445
Chapter 15 – Cognitive NLP Chatbots 446
Chapter 16 – Improve the Emotional Intelligence Deficiencies of
Chatbots 448
Chapter 17 – Quantum Computers That Think 449

Index 453

Preface
This book will take you through all of the main aspects of artificial intelligence:

The theory of machine learning and deep learning
Mathematical representations of the main AI algorithms
Real life case studies
Tens of opensource Python programs using TensorFlow, TensorBoard, Keras and
more
Cloud AI Platforms: Google, Amazon Web Services, IBM Watson and IBM Q to
introduce you to quantum computing
An Ubuntu VM containing all the opensource programs that you can run in one-
click
Online videos

This book will take you to the cutting edge and beyond with innovations that show how to
improve existing solutions to make you a key asset as a consultant, developer, professor or
any person involved in artificial intelligence.

Who this book is for
This book contains the main artificial intelligence algorithms on the market today. Each
machine learning and deep learning solution is illustrated by a case study and an open
source program available on GitHub.

Project managers and consultants: To understand how to manage AI input
datasets, make a solution choice (cloud platform or development), and use the
outputs of an AI system.
Teachers, students, and developers: This book provides an overview of many key
AI components, with tens of Python sample programs that run on Windows and
Linux. A VM is available as well.
Anybody who wants to understand how AI systems are built and what they are
used for.

Preface

[2]

What this book covers
Chapter 1, Become an Adaptive Thinker, covers reinforcement learning through the Bellman
equation based on the Markov Decision Process (MDP). A case study describes how to
solve a delivery route problem with a human driver and a self-driving vehicle.

Chapter 2, Think like a Machine, demonstrates neural networks starting with the McCulloch-
Pitts neuron. The case study describes how to use a neural network to build the reward
matrix used by the Bellman equation in a warehouse environment.

Chapter 3, Apply Machine Thinking to a Human Problem, shows how machine evaluation
capacities have exceeded human decision-making. The case study describes a chess
position and how to apply the results of an AI program to decision-making priorities.

Chapter 4, Become an Unconventional Innovator, is about building a feedforward neural
network (FNN) from scratch to solve the XOR linear separability problem. The business
case describes how to group orders for a factory.

Chapter 5, Manage the Power of Machine Learning and Deep Learning, uses TensorFlow and
TensorBoard to build an FNN and present it in meetings.

Chapter 6, Don't Get Lost in Techniques – Focus on Optimizing Your Solutions, covers a K-
means clustering program with Lloyd's algorithm and how to apply to the optimization of
automatic guided vehicles in a warehouse.

Chapter 7, When and How to Use Artificial Intelligence, shows cloud platform machine
learning solutions. We use Amazon Web Services SageMaker to solve a K-means clustering
problem. The business case describes how a corporation can analyze phone call durations
worldwide.

Chapter 8, Revolutions Designed for Some Corporations and Disruptive Innovations for Small to
Large Companies, explains the difference between a revolutionary innovation and a
disruptive innovation. Google Translate will be described and enhanced with an innovative
opensource add-on.

Chapter 9, Getting Your Neurons to Work, describes convolutional neural networks (CNN)
in detail: kernels, shapes, activation functions, pooling, flattening, and dense layers. The
case study illustrates the use of a CNN in a food processing company.

Preface

[3]

Chapter 10, Applying Biomimicking to Artificial Intelligence, describes the difference between
neuroscience models and deep learning solutions when representing human thinking. A
TensorFlow MNIST classifier is explained component by component and displayed in
detail in TensorBoard. We cover images, accuracy, cross-entropy, weights, histograms, and
graphs.

Chapter 11, Conceptual Representation Learning, explains Conceptual Representation
Learning (CRL), an innovative way to solve production flows with a CNN transformed into
a CRL Meta-model. The case study shows how to use a CRLMM for transfer and domain
learning, extending the model to scheduling and self-driving cars.

Chapter 12, Automated Planning and Scheduling, combines CNNs with MDPs to build a
DQN solution for automatic planning and scheduling with an optimizer. The case study is
the optimization of the load of sewing stations in an apparel system, such as Amazon's
production lines.

Chapter 13, AI and the Internet of Things (IoT), covers Support Vector Machines (SVMs)
assembled with a CNN. The case study shows how self-driving cars can find an available
parking space automatically.

Chapter 14, Optimizing Blockchains with AI, is about mining blockchains and describes how
blockchains function. We use Naive Bayes to optimize the blocks of a Supply Chain
Management (SCM) blockchain by predicting transactions to anticipate storage levels.

Chapter 15, Cognitive NLP Chatbots, shows how to implement IBM Watson's chatbot with
intents, entities, and a dialog flow. We add scripts to customize the dialogs, add sentiment
analysis to give a human touch to the system, and use conceptual representation learning
meta-models (CRLMMs) to enhance the dialogs.

Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots, shows how to turn a
chatbot into a machine that has empathy by using a variety of algorithms at the same time
to build a complex dialog. We cover Restricted Boltzmann Machines (RBMs), CRLMM,
RNN, word to vector (word2Vec) embedding, and principal component analysis (PCA). A
Python program illustrates an empathetic dialog between a machine and a user.

Chapter 17, Quantum Computers That Think, describes how a quantum computer works,
with qubits, superposition, and entanglement. We learn how to create a quantum program
(score). A case study applies quantum computing to the building of MindX, a thinking
machine. The chapter comes with programs and a video.

Appendix, Answers to the Questions, contains answers to the questions listed at the end of the
chapters.

Preface

[4]

To get the most out of this book
Artificial intelligence projects rely on three factors:

Subject Matter Experts (SMEs). This implies having a practical view of how
solutions can be used, not just developed. Find real-life examples around you to
extend the case studies presented in the book.
Applied mathematics and algorithms. Do not skip the mathematical equations if
you have the energy to study them. AI relies heavily on mathematics. There are
plenty of excellent websites that explain the mathematics used in the book.
Development and production.

An artificial intelligence solution can be directly used on a cloud platform machine learning
site (Google, Amazon, IBM, Microsoft, and others) online or with APIs. In the book,
Amazon, IBM, and Google are described. Try to create an account of your own to explore
cloud platforms.

Development still remains critical for artificial intelligence projects. Even with a cloud
platform, scripts and services are necessary. Also, sometimes, writing an algorithm is
mandatory because the ready-to-use online algorithms are insufficient for a given problem.
Explore the programs delivered with the book. They are open source and free.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Artificial- Intelligence- By- Example. We also have other code
bundles from our rich catalog of books and videos available at https:/ / github. com/
PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceByE

xample_ColorImages.pdf.

Code in Action
Visit the following link to check out videos of the code being run:
https://goo.gl/M5ACiy

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

MS1='full'
MS2='space'
I=['1','2','3','4','5','6']
for im in range(2):

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceByExample_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceByExample_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceByExample_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ArtificialIntelligenceByExample_ColorImages.pdf
https://goo.gl/M5ACiy
https://goo.gl/M5ACiy
https://goo.gl/M5ACiy
https://goo.gl/M5ACiy
https://goo.gl/M5ACiy
https://goo.gl/M5ACiy
https://goo.gl/M5ACiy
https://goo.gl/M5ACiy
https://goo.gl/M5ACiy

Preface

[6]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

Weights:
[[0.913269 -0.06843517 -1.13654324]
[3.00969897 1.70999493 0.58441134]
[2.98644016 1.73355337 0.59234319]
[0.953465 0.08329804 -3.26016158]
[-1.10051951 -1.2227973 2.21361701]
[0.20618461 0.30940653 2.59980058]
[0.98040128 -0.06023325 -3.00127746]]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"For this example, click on Load data."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/submit-errata

Preface

[7]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com/
https://www.packtpub.com/

1
Become an Adaptive Thinker

In May 2017, Google revealed AutoML, an automated machine learning system that could
create an artificial intelligence solution without the assistance of a human engineer. IBM
Cloud and Amazon Web Services (AWS) offer machine learning solutions that do not
require AI developers. GitHub and other cloud platforms already provide thousands of
machine learning programs, reducing the need of having an AI expert at hand. These cloud
platforms will slowly but surely reduce the need for artificial intelligence developers.
Google Cloud's AI provides intuitive machine learning services. Microsoft Azure offers
user-friendly machine learning interfaces.

At the same time, Massive Open Online Courses (MOOC) are flourishing everywhere.
Anybody anywhere can pick up a machine learning solution on GitHub, follow a MOOC
without even going to college, and beat any engineer to the job.

Today, artificial intelligence is mostly mathematics translated into source code which
makes it difficult to learn for traditional developers. That is the main reason why Google,
IBM, Amazon, Microsoft, and others have ready-made cloud solutions that will require
fewer engineers in the future.

As you will see, starting with this chapter, you can occupy a central role in this new world
as an adaptive thinker. There is no time to waste. In this chapter, we are going to dive
quickly and directly into reinforcement learning, one of the pillars of Google Alphabet's
DeepMind asset (the other being neural networks). Reinforcement learning often uses the
Markov Decision Process (MDP). MDP contains a memoryless and unlabeled action-
reward equation with a learning parameter. This equation, the Bellman equation (often
coined as the Q function), was used to beat world-class Atari gamers.

Become an Adaptive Thinker Chapter 1

[9]

The goal here is not to simply take the easy route. We're striving to break complexity into
understandable parts and confront them with reality. You are going to find out right from
the start how to apply an adaptive thinker's process that will lead you from an idea to a
solution in reinforcement learning, and right into the center of gravity of Google's
DeepMind projects.

The following topics will be covered in this chapter:

A three-dimensional method to implement AI, ML, and DL
Reinforcement learning
MDP
Unsupervised learning
Stochastic learning
Memoryless learning
The Bellman equation
Convergence
A Python example of reinforcement learning with the Q action-value function
Applying reinforcement learning to a delivery example

Technical requirements
Python 3.6x 64-bit from https:/ /www.python. org/
NumPy for Python 3.6x
Program on Github, Chapter01 MDP.py

Check out the following video to see the code in action:

https://goo.gl/72tSxQ

How to be an adaptive thinker
Reinforcement learning, one of the foundations of machine learning, supposes learning
through trial and error by interacting with an environment. This sounds familiar, right?
That is what we humans do all our lives—in pain! Try things, evaluate, and then continue;
or try something else.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/72tSxQ
https://goo.gl/72tSxQ
https://goo.gl/72tSxQ
https://goo.gl/72tSxQ
https://goo.gl/72tSxQ
https://goo.gl/72tSxQ
https://goo.gl/72tSxQ
https://goo.gl/72tSxQ
https://goo.gl/72tSxQ

Become an Adaptive Thinker Chapter 1

[10]

In real life, you are the agent of your thought process. In a machine learning model, the
agent is the function calculating through this trial-and-error process. This
thought process in machine learning is the MDP. This form of action-value learning is
sometimes called Q.

To master the outcomes of MDP in theory and practice, a three-dimensional method is a
prerequisite.

The three-dimensional approach that will make you an artificial expert, in general terms,
means:

Starting by describing a problem to solve with real-life cases
Then, building a mathematical model
Then, write source code and/or using a cloud platform solution

It is a way for you to enter any project with an adaptive attitude from the outset.

Addressing real-life issues before coding a
solution
In this chapter, we are going to tackle Markov's Decision Process (Q function) and apply it
to reinforcement learning with the Bellman equation. You can find tons of source code and
examples on the web. However, most of them are toy experiments that have nothing to do
with real life. For example, reinforcement learning can be applied to an e-commerce
business delivery person, self-driving vehicle, or a drone. You will find a program that
calculates a drone delivery. However, it has many limits that need to be overcome. You as
an adaptive thinker are going to ask some questions:

What if there are 5,000 drones over a major city at the same time?
Is a drone-jam legal? What about the noise over the city? What about tourism?
What about the weather? Weather forecasts are difficult to make, so how is this
scheduled?

In just a few minutes, you will be at the center of attention, among theoreticians who know
more than you on one side and angry managers who want solutions they cannot get on the
other side. Your real-life approach will solve these problems.

Become an Adaptive Thinker Chapter 1

[11]

A foolproof method is the practical three-dimensional approach:

Be a subject matter expert (SME): First, you have to be an SME. If a theoretician
geek comes up with a hundred Google DeepMind TensorFlow functions to solve
a drone trajectory problem, you now know it is going to be a tough ride if real-
life parameters are taken into account.
An SME knows the subject and thus can quickly identify the critical factors of a
given field. Artificial intelligence often requires finding a solution to a hard
problem that even an expert in a given field cannot express mathematically.
Machine learning sometimes means finding a solution to a problem that humans
do not know how to explain. Deep learning, involving complex networks, solves
even more difficult problems.
Have enough mathematical knowledge to understand AI concepts: Once you
have the proper natural language analysis, you need to build your abstract
representation quickly. The best way is to look around at your everyday life and
make a mathematical model of it. Mathematics is not an option in AI, but a
prerequisite. The effort is worthwhile. Then, you can start writing solid source
code or start implementing a cloud platform ML solution.
Know what source code is about as well as its potential and limits: MDP is an
excellent way to go and start working in the three dimensions that will make you
adaptive: describing what is around you in detail in words, translating that into
mathematical representations, and then implementing the result in your source
code.

Step 1 – MDP in natural language
Step 1 of any artificial intelligence problem is to transpose it into something you know in
your everyday life (work or personal). Something you are an SME in. If you have a driver's
license, then you are an SME of driving. You are certified. If you do not have a driver's
license or never drive, you can easily replace moving around in a car by moving around on
foot.

Let's say you are an e-commerce business driver delivering a package in an area you do not
know. You are the operator of a self-driving vehicle. You have a GPS system with a
beautiful color map on it. The areas around you are represented by the letters A to F, as
shown in the simplified map in the following diagram. You are presently at F. Your goal is
to reach area C. You are happy, listening to the radio. Everything is going smoothly, and it
looks like you are going to be there on time. The following graph represents the locations
and routes that you can possibly cover.

Become an Adaptive Thinker Chapter 1

[12]

The guiding system's state indicates the complete path to reach C. It is telling you that you
are going to go from F to B to D and then to C. It looks good!

To break things down further, let's say:

The present state is the letter s.
Your next action is the letter a (action). This action a is not location A.
The next action a (not location A) is to go to location B. You look at your guiding
system; it tells you there is no traffic, and that to go from your present state F to
your next state B will take you only a few minutes. Let's say that the next state B
is the letter B.

At this point, you are still quite happy, and we can sum up your situation with the
following sequence of events:

The letter s is your present state, your present situation. The letter a is the action you're
deciding, which is to go to the next area; there you will be in another state, s'. We can say
that thanks to the action a, you will go from s to s'.

Now, imagine that the driver is not you anymore. You are tired for some reason. That is
when a self-driving vehicle comes in handy. You set your car to autopilot. Now you are not
driving anymore; the system is. Let's call that system the agent. At point F, you set your car
to autopilot and let the self-driving agent take over.

The agent now sees what you have asked it to do and checks its mapping environment,
which represents all the areas in the previous diagram from A to F.

Become an Adaptive Thinker Chapter 1

[13]

In the meantime, you are rightly worried. Is the agent going to make it or not? You are
wondering if its strategy meets yours. You have your policy P—your way of
thinking—which is to take the shortest paths possible. Will the agent agree? What's going
on in its mind? You observe and begin to realize things you never noticed before. Since this
is the first time you are using this car and guiding system, the agent is memoryless, which
is an MDP feature. This means the agent just doesn't know anything about what went on
before. It seems to be happy with just calculating from this state s at area F. It will use
machine power to run as many calculations as necessary to reach its goal.

Another thing you are watching is the total distance from F to C to check whether things
are OK. That means that the agent is calculating all the states from F to C.

In this case, state F is state 1, which we can simplify by writing s1. B is state 2, which we can
simplify by write s2. D is s3 and C is s4. The agent is calculating all of these possible states to
make a decision.

The agent knows that when it reaches D, C will be better because the reward will be higher
to go to C than anywhere else. Since it cannot eat a piece of cake to reward itself, the agent
uses numbers. Our agent is a real number cruncher. When it is wrong, it gets a poor reward
or nothing in this model. When it's right, it gets a reward represented by the letter R. This
action-value (reward) transition, often named the Q function, is the core of many
reinforcement learning algorithms.

When our agent goes from one state to another, it performs a transition and gets a reward.
For example, the transition can be from F to B, state 1 to state 2, or s1 to s2.

You are feeling great and are going to be on time. You are beginning to understand how the
machine learning agent in your self-driving car is thinking. Suddenly your guiding system
breaks down. All you can see on the screen is that static image of the areas of the last
calculation. You look up and see that a traffic jam is building up. Area D is still far away,
and now you do not know whether it would be good to go from D to C or D to E to get a
taxi that can take special lanes. You are going to need your agent!

The agent takes the traffic jam into account, is stubborn, and increases its reward to get to
C by the shortest way. Its policy is to stick to the initial plan. You do not agree. You have
another policy.

Become an Adaptive Thinker Chapter 1

[14]

You stop the car. You both have to agree before continuing. You have your opinion and
policy; the agent does not agree. Before continuing, your views need to converge.
Convergence is the key to making sure that your calculations are correct. This is the kind of
problem that persons, or soon, self-driving vehicles (not to speak about drone air jams),
delivering parcels encounter all day long to get the workload done. The number of parcels
to delivery per hour is an example of the workload that needs to be taken into account
when making a decision.

To represent the problem at this point, the best way is to express this whole process
mathematically.

Step 2 – the mathematical representation of the Bellman
equation and MDP
Mathematics involves a whole change in your perspective of a problem. You are going
from words to functions, the pillars of source coding.

Expressing problems in mathematical notation does not mean getting lost in academic math
to the point of never writing a single line of code. Mathematics is viewed in the perspective
of getting a job done. Skipping mathematical representation will fast-track a few functions
in the early stages of an AI project. However, when the real problems that occur in all AI
projects surface, solving them with source code only will prove virtually impossible. The
goal here is to pick up enough mathematics to implement a solution in real-life companies.

It is necessary to think of a problem through by finding something familiar around us, such
as the delivery itinerary example covered before. It is a good thing to write it down with
some abstract letters and symbols as described before, with a meaning an action
and s meaning a state. Once you have understood the problem and expressed the
parameters in a way you are used to, you can proceed further.

Now, mathematics well help clarify the situation by shorter descriptions. With the main
ideas in mind, it is time to convert them into equations.

From MDP to the Bellman equation
In the previous step 1, the agent went from F or state 1 or s to B, which was state 2 or s'.

Become an Adaptive Thinker Chapter 1

[15]

To do that, there was a strategy—a policy represented by P. All of this can be shown in one
mathematical expression, the MDP state transition function:

P is the policy, the strategy made by the agent to go from F to B through action a. When
going from F to B, this state transition is called state transition function:

a is the action
s is state 1 (F) and s' is state 2 (B)

This is the basis of MDP. The reward (right or wrong) is represented in the same way:

That means R is the reward for the action of going from state s to state s'. Going from one
state to another will be a random process. This means that potentially, all states can go to
another state.

The example we will be working on inputs a reward matrix so that the program can choose
its best course of action. Then, the agent will go from state to state, learning the best
trajectories for every possible starting location point. The goal of the MDP is to go to C (line
3, column 3 in the reward matrix), which has a starting value of 100 in the following Python
code.

Markov Decision Process (MDP) - The Bellman equations adapted to
Reinforcement Learning
R is The Reward Matrix for each state
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Each line in the matrix in the example represents a letter from A to F, and each column
represents a letter from A to F. All possible states are represented. The 1 values represent
the nodes (vertices) of the graph. Those are the possible locations. For example, line 1
represents the possible moves for letter A, line 2 for letter B, and line 6 for letter F. On the
first line, A cannot go to C directly, so a 0 value is entered. But, it can go to E, so a 1 value is
added.

Become an Adaptive Thinker Chapter 1

[16]

Some models start with -1 for impossible choices, such as B going directly to C and 0 values
to define the locations. This model starts with 0 and 1 values. It sometimes takes weeks to
design functions that will create a reward matrix (see Chapter 2, Think like a Machine).

There are several properties of this decision process. A few of them are mentioned here:

The Markov property: The process is applied when the past is not taken into
account. It is the memoryless property of this decision process, just as you do in a
car with a guiding system. You move forward to reach your goal. This is called
the Markov property.
Unsupervised learning: From this memoryless Markov property, it is safe to say
that the MDP is not supervised learning. Supervised learning would mean that
we would have all the labels of the trip. We would know exactly what A means
and use that property to make a decision. We would be in the future looking at
the past. MDP does not take these labels into account. This means that this is
unsupervised learning. A decision has to be made in each state without knowing
the past states or what they signify. It means that the car, for example, was on its
own at each location, which is represented by each of its states.
Stochastic process: In step 1, when state B was reached, the agent controlling the
mapping system and the driver didn't agree on where to go. A random choice
could be made in a trial-and-error way, just like a coin toss. It is going to be a
heads-or-tails process. The agent will toss the coin thousands of times and
measure the outcomes. That's precisely how MDP works and how the agent will
learn.
Reinforcement learning: Repeating a trial and error process with feedback from
the agent's environment.
Markov chain: The process of going from state to state with no history in a
random, stochastic way is called a Markov chain.

To sum it up, we have three tools:

Pa(s,s'): A policy, P, or strategy to move from one state to another
Ta(s,s'): A T, or stochastic (random) transition, function to carry out that action
Ra(s,s'): An R, or reward, for that action, which can be negative, null, or positive

T is the transition function, which makes the agent decide to go from one point to another
with a policy. In this case, it will be random. That's what machine power is for, and that's
how reinforcement learning is often implemented.

Become an Adaptive Thinker Chapter 1

[17]

Randomness is a property of MDP.

The following code describes the choice the agent is going to make.

next_action = int(ql.random.choice(PossibleAction,1))
return next_action

Once the code has been run, a new random action (state) has been chosen.

The Bellman equation is the road to programming reinforcement learning.

Bellman's equation completes the MDP. To calculate the value of a state, let's use Q, for the
Q action-reward (or value) function. The pre-source code of Bellman's equation can be
expressed as follows for one individual state:

The source code then translates the equation into a machine representation as in the
following code:

The Bellman equation
 Q[current_state, action] = R[current_state, action] + gamma * MaxValue

The source code variables of the Bellman equation are as follows:

Q(s): This is the value calculated for this state—the total reward. In step 1 when
the agent went from F to B, the driver had to be happy. Maybe she/he had a
crunch in a candy bar to feel good, which is the human counterpart of the reward
matrix. The automatic driver maybe ate (reward matrix) some electricity,
renewable energy of course! The reward is a number such as 50 or 100 to show
the agent that it's on the right track. It's like when a student gets a good grade in
an exam.
R(s): This is the sum of the values up to there. It's the total reward at that point.

Become an Adaptive Thinker Chapter 1

[18]

ϒ = gamma: This is here to remind us that trial and error has a price. We're
wasting time, money, and energy. Furthermore, we don't even know whether the
next step is right or wrong since we're in a trial-and-error mode. Gamma is often
set to 0.8. What does that mean? Suppose you're taking an exam. You study and
study, but you don't really know the outcome. You might have 80 out of 100 (0.8)
chances of clearing it. That's painful, but that's life. This is what makes Bellman's
equation and MDP realistic and efficient.
max(s'): s' is one of the possible states that can be reached with Pa (s,s'); max is
the highest value on the line of that state (location line in the reward matrix).

Step 3 – implementing the solution in Python
In step 1, a problem was described in natural language to be able to talk to experts and
understand what was expected. In step 2, an essential mathematical bridge was built
between natural language and source coding. Step 3 is the software implementation phase.

When a problem comes up—and rest assured that one always does—it will be possible to
go back over the mathematical bridge with the customer or company team, and even
further back to the natural language process if necessary.

This method guarantees success for any project. The code in this chapter is in Python 3.6. It
is a reinforcement learning program using the Q function with the following reward
matrix:

import numpy as ql
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

Q = ql.matrix(ql.zeros([6,6]))

gamma = 0.8

R is the reward matrix described in the mathematical analysis.

Become an Adaptive Thinker Chapter 1

[19]

Q inherits the same structure as R, but all values are set to 0 since this is a learning matrix.
It will progressively contain the results of the decision process. The gamma variable is a
double reminder that the system is learning and that its decisions have only an 80% chance
of being correct each time. As the following code shows, the system explores the possible
actions during the process.

agent_s_state = 1

The possible "a" actions when the agent is in a given state
def possible_actions(state):
 current_state_row = R[state,]
 possible_act = ql.where(current_state_row >0)[1]
 return possible_act

Get available actions in the current state
PossibleAction = possible_actions(agent_s_state)

The agent starts in state 1, for example. You can start wherever you want because it's a
random process. Note that only values > 0 are taken into account. They represent the
possible moves (decisions).

The current state goes through an analysis process to find possible actions (next possible
states). You will note that there is no algorithm in the traditional sense with many rules. It's
a pure random calculation, as the following random.choice function shows.

def ActionChoice(available_actions_range):
 next_action = int(ql.random.choice(PossibleAction,1))
 return next_action

Sample next action to be performed
action = ActionChoice(PossibleAction)

Now comes the core of the system containing Bellman's equation, translated into the
following source code:

def reward(current_state, action, gamma):
 Max_State = ql.where(Q[action,] == ql.max(Q[action,]))[1]

 if Max_State.shape[0] > 1:
 Max_State = int(ql.random.choice(Max_State, size = 1))
 else:
 Max_State = int(Max_State)
 MaxValue = Q[action, Max_State]

Become an Adaptive Thinker Chapter 1

[20]

 # Q function
 Q[current_state, action] = R[current_state, action] + gamma * MaxValue

Rewarding Q matrix
reward(agent_s_state,action,gamma)

You can see that the agent looks for the maximum value of the next possible state chosen at
random.

The best way to understand this is to run the program in your Python environment and
print() the intermediate values. I suggest that you open a spreadsheet and note the
values. It will give you a clear view of the process.

The last part is simply about running the learning process 50,000 times, just to be sure that
the system learns everything there is to find. During each iteration, the agent will detect its
present state, choose a course of action, and update the Q function matrix:

for i in range(50000):
 current_state = ql.random.randint(0, int(Q.shape[0]))
 PossibleAction = possible_actions(current_state)
 action = ActionChoice(PossibleAction)
 reward(current_state,action,gamma)
Displaying Q before the norm of Q phase
print("Q :")
print(Q)

Norm of Q
print("Normed Q :")
print(Q/ql.max(Q)*100)

After the process is repeated and until the learning process is over, the program will print
the result in Q and the normed result. The normed result is the process of dividing all
values by the sum of the values found. The result comes out as a normed percentage.

View the Python program at https:/ /github. com/ PacktPublishing/ Artificial-
Intelligence-By- Example/ blob/ master/ Chapter01/ MDP. py.

The lessons of reinforcement learning
Unsupervised reinforcement machine learning, such as MDP and Bellman's equation, will
topple traditional decision-making software in the next few years. Memoryless
reinforcement learning requires few to no business rules and thus doesn't require human
knowledge to run.

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter01/MDP.py

Become an Adaptive Thinker Chapter 1

[21]

Being an adaptive AI thinker involves three requisites—the effort to be an SME, working on
mathematical models, and understanding source code's potential and limits:

Lesson 1: Machine learning through reinforcement learning can beat human
intelligence in many cases. No use fighting! The technology and solutions are
already here.
Lesson 2: Machine learning has no emotions, but you do. And so do the people
around you. Human emotions and teamwork are an essential asset. Become an
SME for your team. Learn how to understand what they're trying to say
intuitively and make a mathematical representation of it for them. This job will
never go away, even if you're setting up solutions such as Google's AutoML that
don't require much development.

Reinforcement learning shows that no human can solve a problem the way a machine does;
50,000 iterations with random searching is not an option. The days of neuroscience
imitating humans are over. Cheap, powerful computers have all the leisure it takes to
compute millions of possibilities and choose the best trajectories.

Humans need to be more intuitive, make a few decisions, and see what happens because
humans cannot try 50,000 ways of doing something. Reinforcement learning marks a new
era for human thinking by surpassing human reasoning power.

On the other hand, reinforcement learning requires mathematical models to function.
Humans excel in mathematical abstraction, providing powerful intellectual fuel to those
powerful machines.

The boundaries between humans and machines have changed. Humans' ability to build
mathematical models and every-growing cloud platforms will serve online machine
learning services.

Finding out how to use the outputs of the reinforcement learning program we just studied
shows how a human will always remain at the center of artificial intelligence.

How to use the outputs
The reinforcement program we studied contains no trace of a specific field, as in traditional
software. The program contains Bellman's equation with stochastic (random) choices based
on the reward matrix. The goal is to find a route to C (line 3, column 3), which has an
attractive reward (100):

Markov Decision Process (MDP) - Bellman's equations adapted to
Reinforcement Learning with the Q action-value(reward) matrix

Become an Adaptive Thinker Chapter 1

[22]

R is The Reward Matrix for each state
R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

That reward matrix goes through Bellman's equation and produces a result in Python:

Q :
[[0. 0. 0. 0. 258.44 0.]
 [0. 0. 0. 321.8 0. 207.752]
 [0. 0. 500. 321.8 0. 0.]
 [0. 258.44 401. 0. 258.44 0.]
 [207.752 0. 0. 321.8 0. 0.]
 [0. 258.44 0. 0. 0. 0.]]
Normed Q :
[[0. 0. 0. 0. 51.688 0.]
 [0. 0. 0. 64.36 0. 41.5504]
 [0. 0. 100. 64.36 0. 0.]
 [0. 51.688 80.2 0. 51.688 0.]
 [41.5504 0. 0. 64.36 0. 0.]
 [0. 51.688 0. 0. 0. 0.]]

The result contains the values of each state produced by the reinforced learning process,
and also a normed Q (highest value divided by other values).

As Python geeks, we are overjoyed. We made something rather difficult to work,
namely reinforcement learning. As mathematical amateurs, we are elated. We know what
MDP and Bellman's equation mean.

However, as natural language thinkers, we have made little progress. No customer or user
can read that data and make sense of it. Furthermore, we cannot explain how we
implemented an intelligent version of his/her job in the machine. We didn't.

We hardly dare say that reinforcement learning can beat anybody in the company making
random choices 50,000 times until the right answer came up.

Furthermore, we got the program to work but hardly know what to do with the result
ourselves. The consultant on the project cannot help because of the matrix format of the
solution.

Being an adaptive thinker means knowing how to be good in all the dimensions of a
subject. To solve this new problem, let's go back to step 1 with the result.

Become an Adaptive Thinker Chapter 1

[23]

By formatting the result in Python, a graphics tool, or a spreadsheet, the result that is
displayed as follows:

 A B C D E F

A - - - - 258.44 -

B - - - 321.8 - 207.752

C - - 500 321.8 - -

D - 258.44 401. - 258.44 -

E 207.752 - - 321.8 - -

F - 258.44 - - - -

Now, we can start reading the solution:

Choose a starting state. Take F for example.
The F line represents the state. Since the maximum value is 258.44 in the B
column, we go to state B, the second line.
The maximum value in state B in the second line leads us to the D state in the
fourth column.
The highest maximum of the D state (fourth line) leads us to the C state.

Note that if you start at the C state and decide not to stay at C, the D state becomes the
maximum value, which will lead you to back to C. However, the MDP will never do this
naturally. You will have to force the system to do it.

You have now obtained a sequence: F->B->D->C. By choosing other points of departure,
you can obtain other sequences by simply sorting the table.

The most useful way of putting it remains the normalized version in percentages. This
reflects the stochastic (random) property of the solution, which produces probabilities and
not certainties, as shown in the following matrix:

 A B C D E F

A - - - - 51.68% -

B - - - 64.36% - 41.55%

C - - 100% 64.36% - -

D - 51.68% 80.2% - 51.68% -

E 41.55% - - 64.36% - -

F - 51.68% - - - -

Become an Adaptive Thinker Chapter 1

[24]

Now comes the very tricky part. We started the chapter with a trip on a road. But I made no
mention of it in the result analysis.

An important property of reinforcement learning comes from the fact that we are working
with a mathematical model that can be applied to anything. No human rules are needed.
This means we can use this program for many other subjects without writing thousands of
lines of code.

Case 1: Optimizing a delivery for a driver, human or not

This model was described in this chapter.

Case 2: Optimizing warehouse flows

The same reward matrix can apply to going from point F to C in a warehouse, as shown in
the following diagram:

In this warehouse, the F->B->D->C sequence makes visual sense. If somebody goes from
point F to C, then this physical path makes sense without going through walls.

It can be used for a video game, a factory, or any form of layout.

Case 3: Automated planning and scheduling (APS)

By converting the system into a scheduling vector, the whole scenery changes. We have left
the more comfortable world of physical processing of letters, faces, and trips. Though
fantastic, those applications are social media's tip of the iceberg. The real challenge of
artificial intelligence begins in the abstract universe of human thinking.

Become an Adaptive Thinker Chapter 1

[25]

Every single company, person, or system requires automatic planning and scheduling (see
Chapter 12, Automated Planning and Scheduling). The six A to F steps in the example of this
chapter could well be six tasks to perform in a given unknown order represented by the
following vector x:

The reward matrix then reflects the weights of constraints of the tasks of vector x to
perform. For example, in a factory, you cannot assemble the parts of a product before
manufacturing them.

In this case, the sequence obtained represents the schedule of the manufacturing process.

Case 4 and more: Your imagination

By using physical layouts or abstract decision-making vectors, matrices, and tensors, you
can build a world of solutions in a mathematical reinforcement learning model. Naturally,
the following chapters will enhance your toolbox with many other concepts.

Machine learning versus traditional applications
Reinforcement learning based on stochastic (random) processes will evolve beyond
traditional approaches. In the past, we would sit down and listen to future users to
understand their way of thinking.

We would then go back to our keyboard and try to imitate the human way of thinking.
Those days are over. We need proper datasets and ML/DL equations to move forward.
Applied mathematics has taken reinforcement learning to the next level. Traditional
software will soon be in the museum of computer science.

An artificial adaptive thinker sees the world through applied mathematics translated into
machine representations.

Become an Adaptive Thinker Chapter 1

[26]

Use the Python source code example provided in this chapter in different
ways. Run it; try to change some parameters to see what happens. Play
around with the number of iterations as well. Lower the number from
50,000 down to where you find its best. Change the reward matrix a little
to see what happens. Design your own reward matrix trajectory. It can be
an itinerary or a decision-making process.

Summary
Presently, artificial intelligence is predominantly a branch of applied mathematics, not of
neurosciences. You must master the basics of linear algebra and probabilities. That's a
difficult task for a developer used to intuitive creativity. With that knowledge, you will see
that humans cannot rival with machines that have CPU and mathematical functions. You
will also understand that machines, contrary to the hype around you, don't have emotions
although we can represent them to a scary point (See Chapter 16, Improve the Emotional
Intelligence Deficiencies of Chatbots, and Chapter 17, Quantum Computers That Think) in
chatbots.

That being said, a multi-dimensional approach is a requisite in an AI/ML/DL project—first
talk and write about the project, then make a mathematical representation, and finally go
for software production (setting up an existing platform and/or writing code). In real-life,
AI solutions do not just grow spontaneously in companies like trees. You need to talk to the
teams and work with them. That part is the real fulfilling aspect of a project—imagining it
first and then implementing it with a group of real-life people.

MDP, a stochastic random action-reward (value) system enhanced by Bellman's equation,
will provide effective solutions to many AI problems. These mathematical tools fit perfectly
in corporate environments.

Reinforcement learning using the Q action-value function is memoryless (no past) and
unsupervised (the data is not labeled or classified). This provides endless avenues to solve
real-life problems without spending hours trying to invent rules to make a system work.

Now that you are at the heart of Google's DeepMind approach, it is time to go to Chapter
2, Think Like a Machine, and discover how to create the reward matrix in the first place
through explanations and source code.

Become an Adaptive Thinker Chapter 1

[27]

Questions
The answers to the questions are in Appendix B, with more explanations.

Is reinforcement learning memoryless? (Yes | No)1.
Does reinforcement learning use stochastic (random) functions? (Yes | No)2.
Is MDP based on a rule base? (Yes | No)3.
Is the Q function based on the MDP? (Yes | No)4.
Is mathematics essential to artificial intelligence? (Yes | No)5.
Can the Bellman-MDP process in this chapter apply to many problems? (Yes |6.
No)
Is it impossible for a machine learning program to create another program by7.
itself? (Yes | No)
Is a consultant required to enter business rules in a reinforcement learning8.
program? (Yes | No)
Is reinforcement learning supervised or unsupervised? (Supervised |9.
Unsupervised)
Can Q Learning run without a reward matrix? (Yes | No)10.

Further reading
Andrey Markov: https:/ /www. britannica. com/biography/ Andrey- Andreyevich- Markov

The Markov Process: https:/ /www. britannica. com/science/ Markov- process

https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/biography/Andrey-Andreyevich-Markov
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process
https://www.britannica.com/science/Markov-process

2
Think like a Machine

The first chapter described a reinforcement learning algorithm through the Q action-value
function used by DQN. The agent was a driver. You are at the heart of DeepMind's
approach to AI.

DeepMind is no doubt one of the world leaders in applied artificial intelligence. Scientific,
mathematical, and applications research drives its strategy.

DeepMind was founded in 2010, was acquired by Google in 2014, and is now part of
Alphabet, a collection of companies that includes Google.

One of the focuses of DeepMind is on reinforcement learning. They came up with an
innovate version of reinforcement learning called DQN and referring to deep neural
networks using the Q function (Bellman's equation). A seminal article published in
February 2015 in Nature (see the link at the end of the chapter) shows how DQN
outperformed other artificial intelligence research by becoming a human game tester itself.
DQN then went on to beat human game testers.

In this chapter, the agent will be an automated guided vehicle (AGV). An AGV takes over
the transport tasks in a warehouse. This case study opens promising perspectives for jobs
and businesses using DQN. Thousands upon thousands of warehouses require complex
reinforcement learning and customized transport optimization.

This chapter focuses on creating the reward matrix, which was the entry point of the
Python example in the first chapter. To do so, it describes how to add a primitive
McCulloch-Pitts neuron in TensorFlow to create an intelligent adaptive network and add
an N (network) to a Q model. It's a small N that will become a feedforward neural network
in Chapter 4, Become an Unconventional Innovator, and more in Chapter 12, Automated
Planning and Scheduling. The goal is not to copy DQN but to use the conceptual power of the
model to build a variety of solutions.

Think like a Machine Chapter 2

[29]

The challenge in this chapter will be to think literally like a machine. The effort is not to
imitate human thinking but to beat humans with machines. This chapter will take you very
far from human reasoning into the depth of machine thinking.

The following topics will be covered in this chapter:

AGV
The McCulloch-Pitts neuron
Creating a reward matrix
Logistic classifiers
The logistic sigmoid
The softmax function
The one-hot function
How to apply machine learning tools to real-life problems such as warehouse
management

Technical requirements
Python 3.6x 64-bit from https:/ /www.python. org/

NumPy for Python 3.6x
TensorFlow from https:/ /deepmind. com/ with TensorBoard

The following files:

https:// github. com/ PacktPublishing/ Artificial- Intelligence- By- Example/
blob/master/ Chapter02/ MCP. py

https:// github. com/ PacktPublishing/ Artificial- Intelligence- By- Example/
blob/master/ Chapter02/ SOFTMAX. py

Check out the following video to see the code in action:

https://goo.gl/jMWLg8

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/MCP.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter02/SOFTMAX.py
https://goo.gl/jMWLg8
https://goo.gl/jMWLg8
https://goo.gl/jMWLg8
https://goo.gl/jMWLg8
https://goo.gl/jMWLg8
https://goo.gl/jMWLg8
https://goo.gl/jMWLg8
https://goo.gl/jMWLg8
https://goo.gl/jMWLg8

Think like a Machine Chapter 2

[30]

Designing datasets – where the dream stops
and the hard work begins
As in the previous chapter, bear in mind that a real-life project goes through a three-
dimensional method in some form or the other. First, it's important to just think and talk
about the problem to solve without jumping onto a laptop. Once that is done, bear in mind
that the foundation of machine learning and deep learning relies on mathematics. Finally,
once the problem has been discussed and mathematically represented, it is time to develop
the solution.

First, think of a problem in natural language. Then, make a mathematical
description of a problem. Only then, start the software implementation.

Designing datasets in natural language meetings
The reinforcement learning program described in the first chapter can solve a variety of
problems involving unlabeled classification in an unsupervised decision-making process.
The Q function can be applied indifferently to drone, truck, or car deliveries. It can also be
applied to decision-making in games or real life.

However, in a real-life case study problem (such as defining the reward matrix in a
warehouse for the AGV, for example), the difficulty will be to design a matrix that
everybody agrees with.

This means many meetings with the IT department to obtain data, the SME and
reinforcement learning experts. An AGV requires information coming from different
sources: daily forecasts and real-time warehouse flows.

At one point, the project will be at a standstill. It is simply too complicated to get the right
data for the reinforcement program. This is a real-life case study that I modified a little for
confidentiality reasons.

The warehouse manages thousands of locations and hundreds of thousands of inputs and
outputs. The Q function does not satisfy the requirement in itself. A small neural network is
required.

Think like a Machine Chapter 2

[31]

In the end, through tough negotiations with both the IT department and the users, a dataset
format is designed that fits the needs of the reinforcement learning program and has
enough properties to satisfy the AGV.

Using the McCulloch-Pitts neuron
The mathematical aspect relies on finding a model for inputs for huge volumes in a
corporate warehouse.

In one mode, the inputs can be described as follows:

Thousands of forecast product arrivals with a low priority weight: w1 = 10
Thousands of confirmed arrivals with a high priority weight: w2 = 70
Thousands of unplanned arrivals decided by the sales department: w3 = 75
Thousands of forecasts with a high priority weight: w4 = 60
Thousands of confirmed arrivals that have a low turnover and so have a low
weight: w5 = 20

These weights represent vector w:

All of these products have to be stored in optimal locations, and the distance between
nearly 100 docks and thousands of locations in the warehouse for the AGV has to
be minimized.

Let's focus on our neuron. Only these weights will be used, though a system such as this
one will add up to more than 50 weights and parameters per neuron.

In the first chapter, the reward matrix was size 6x6. Six locations were described (A to F),
and now six locations (l1 to l6) will be represented in a warehouse.

A 6x6 reward matrix represents the target of the McCulloch-Pitts layer implemented for the
six locations.

Think like a Machine Chapter 2

[32]

Also, this matrix was the input in the first chapter. In real life, and in real companies, you
will have to find a way to build datasets from scratch. The reward matrix becomes the
output of this part of the process. The following source code shows the input of the
reinforcement learning program used in the first chapter. The goal of this chapter describes
how to produce the following reward matrix.

R is The Reward Matrix for each location in a warehouse (or any other
problem)

R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],
 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

For this warehouse problem, the McCulloch-Pitts neuron sums up the weights of the
priority vector described previously to fill in the reward matrix.

Each location will require its neuron, with its weights.

Inputs are the flows in a warehouse or any form of data
Weights will be defined in this model
Bias is for stabilizing the weights
Values will be the output

There are as many ways as you can imagine to create reward matrices.
This chapter describes one way of doing it that works.

The McCulloch-Pitts neuron
The McCulloch-Pitts neuron dates back to 1943. It contains inputs, weights, and an
activation function. This is precisely where you need to think like a machine and forget
about human neuroscience brain approaches for this type of problem. Starting from
Chapter 8, Revolutions Designed for Some Corporations and Disruptive Innovations Small to
Large Companies, human cognition will be built on top of these models, but the foundations
need to remain mathematical.

Think like a Machine Chapter 2

[33]

The following diagram shows the McCulloch-Pitts, neuron model.

This model contains a number of input x weights that are summed to either reach a
threshold which will lead, once transformed, to y = 0, or 1 output. In this model, y will be
calculated in a more complex way.

A Python-TensorFlow program, MCP.py will be used to illustrate the neuron.

When designing neurons, the computing performance needs to be taken into account. The
following source code configures the threads. You can fine-tune your model according to
your needs.

config = tf.ConfigProto(
 inter_op_parallelism_threads=4,
 intra_op_parallelism_threads=4
)

In the following source code, the placeholders that will contain the input values (x), the
weights (w), and the bias (b) are initialized. A placeholder is not just a variable that you can
declare and use later when necessary. It represents the structure of your graph:

x = tf.placeholder(tf.float32, shape=(1, 6), name='x')
w = tf.placeholder(tf.float32, shape=(6, 1), name='w')
b = tf.placeholder(tf.float32, shape=(1), name='b')

In the original McCulloch-Pitts artificial neuron, the inputs (x) were multiplied by the
following weights:

Think like a Machine Chapter 2

[34]

The mathematical function becomes a one-line code with a logistic activation function
(sigmoid), which will be explained in the second part of the chapter. Bias (b) has been
added, which makes this neuron format useful even today shown as follows.

y = tf.matmul(x, w) + b
s = tf.nn.sigmoid(y)

Before starting a session, the McCulloch-Pitts neuron (1943) needs an operator to directly
set its weights. That is the main difference between the McCulloch-Pitts neuron and the
perceptron (1957), which is the model of modern deep learning neurons. The perceptron
optimizes its weights through optimizing processes. Chapter 4, Become an
Unconventional Innovator, describes the modern perceptron.

The weights are now provided, and so are the quantities for each x stored at l1, one of the
locations of the warehouse:

The weight values will be divided by 100, to represent percentages in terms of 0 to 1 values
of warehouse flows in a given location. The following code deals with the choice of one
location, l1 only, its values, and parameters.

with tf.Session(config=config) as tfs:
 tfs.run(tf.global_variables_initializer())
 w_t = [[.1, .7, .75, .60, .20]]
 x_1 = [[10, 2, 1., 6., 2.]]
 b_1 = [1]
 w_1 = np.transpose(w_t)
 value = tfs.run(s,
 feed_dict={
 x: x_1,
 w: w_1,
 b: b_1
 }
)
print ('value for threshold calculation',value)

Think like a Machine Chapter 2

[35]

The session starts; the weights (w_t) and the quantities (x_1) of the warehouse flow are
entered. Bias is set to 1 in this model. w_1 is transposed to fit x_1. The placeholders are
solicited with feed_dict, and the value of the neuron is calculated using the sigmoid
function.

The program returns the following value.

print ('value for threshold calculation',value)
value for threshold calculation [[0.99971133]]

This value represents the activity of location l1 at a given date and a given time. The higher the
value, the higher the probable saturation rate of this area. That means there is little space
left for an AGV that would like to store products. That is why the reinforcement learning
program for a warehouse is looking for the least loaded area for a given product in this
model.

Each location has a probable availability:

A = Availability = 1 - load

The probability of a load of a given storage point lies between 0 and 1.

High values of availability will be close to 1, and low probabilities will be close to 0 as
shown in the following example:

>>>print ('Availability of lx',1-value)
Availability of lx [[0.00028867]]

For example, the load of l1 has a probable load of 0.99 and its probable availability is 0.002.
The goal of the AGV is to search and find the closest and most available location to
optimize its trajectories. l1 is obviously not a good candidate at that day and time. Load is a
keyword in production activities as in the Amazon example in Chapter 12, Automated
Planning and Scheduling.

When all of the six locations' availabilities has been calculated by the McCulloch-Pitts
neuron—each with its respective x quantity inputs, weights, and bias—a location vector of
the results of this system will be produced. This means that the program needs to be
implemented to run all six locations and not just one location:

A(L) = {a(l1),a(l2),a(l3),a(l4),a(l5),a(l6)}

Think like a Machine Chapter 2

[36]

The availability (1 - output value of the neuron) constitutes a six-line vector. The following
vector will be obtained by running the previous sample code on all six locations.

lv is the vector containing the value of each location for a given AGV to choose from. The
values in the vector represent availability. 0.0002 means little availability. 0.9 means high
availability. Once the choice is made, the reinforcement learning program presented in the
first chapter will optimize the AGV's trajectory to get to this specific warehouse location.

The lv is the result of the weighing function of six potential locations for the AGV. It is also
a vector of transformed inputs.

The architecture of Python TensorFlow
Implementation of the McCulloch-Pitts neuron can best be viewed with TensorBoard, as
shown in the following graph:

Think like a Machine Chapter 2

[37]

This is obtained by adding the following TensorBoard code at the end of your session. This
data flow graph will help optimize a program when things go wrong.

#___________Tensorboard________________________

#with tf.Session() as sess:

Writer = tf.summary.FileWriter("directory on your machine", tfs.graph)
Writer.close()

def launchTensorBoard():
 import os
 #os.system('tensorboard --logdir=' + 'your directory')
 os.system('tensorboard --logdir=' + 'your directory')
 return

import threading
t = threading.Thread(target=launchTensorBoard, args=([]))
t.start()

tfs.close()
#Open your browser and go to http://localhost:6006
#Try the various options. It is a very useful tool.
#close the system window when your finished.

When you open the URL indicated in the code on your machine, you will see the following
TensorBoard data flow graph:

Think like a Machine Chapter 2

[38]

Logistic activation functions and classifiers
Now that the value of each location of L={l1,l2,l3,l4,l5,l6} contains its availability in a vector,
the locations can be sorted from the most available to least available location. From there,
the reward matrix for the MDP process described in the first chapter can be built.

Overall architecture
At this point, the overall architecture contains two main components:

Chapter 1: Become an Adaptive Thinker: A reinforcement learning program based
on the value-action Q function using a reward matrix that is yet to be calculated.
The reward matrix was given in the first chapter, but in real life, you'll often have
to build it from scratch. This could take weeks to obtain.
Chapter 2: A set of six neurons that represent the flow of products at a given time
at six locations. The output is the availability probability from 0 to 1. The highest
value is the highest availability. The lowest value is the lowest availability.

At this point, there is some real-life information we can draw from these two main
functions:

An AGV is moving in a warehouse and is waiting to receive its next location to
use an MDP, in order to calculate an optimal trajectory of its mission, as shown in
the first chapter.
An AGV is using a reward matrix that was given in the first chapter, but it needs
to be designed in a real-life project through meetings, reports, and acceptance of
the process.
A system of six neurons, one per location, weighing the real quantities and
probable quantities to give an availability vector lv has been calculated. It is
almost ready to provide the necessary reward matrix for the AGV.

To calculate the input values of the reward matrix in this reinforcement learning warehouse
model, a bridge function between lv and the reward matrix R is missing.

That bridge function is a logistic classifier based on the outputs of the y neurons.

At this point, the system:

Took corporate data
Used y neurons calculated with weights
Applied an activation function

Think like a Machine Chapter 2

[39]

The activation function in this model requires a logistic classifier, a commonly used one.

Logistic classifier
The logistic classifier will be applied to lv (the six location values) to find the best location
for the AGV. It is based on the output of the six neurons (input x weight + bias).

What are logistic functions? The goal of a logistic classifier is to produce a probability
distribution from 0 to 1 for each value of the output vector. As you have seen so far, AI
applications use applied mathematics with probable values, not raw outputs. In the
warehouse model, the AGV needs to choose the best, most probable location, li. Even in a
well-organized corporate warehouse, many uncertainties (late arrivals, product defects, or a
number of unplanned problems) reduce the probability of a choice. A
probability represents a value between 0 (low probability) and 1 (high probability). Logistic
functions provide the tools to convert all numbers into probabilities between 0 and 1 to
normalize data.

Logistic function
The logistic sigmoid provides one of the best ways to normalize the weight of a given
output. This will be used as the activation function of the neuron. The threshold is usually a
value above which the neuron has a y=1 value; or else it has y=0. In this case, the minimum
value will be 0 because the activation function will be more complex.

The logistic function is represented as follows.

e represents Euler's number, or 2.71828, the natural logarithm.
x is the value to be calculated. In this case, x is the result of the logistic sigmoid
function.

The code has been rearranged in the following example to show the reasoning process:

#For given variables:
x_1 = [[10, 2, 1., 6., 2.]] # the x inputs
w_t = [[.1, .7, .75, .60, .20]] # the corresponding weights
b_1 = [1] # the bias
A given total weight y is calculated
y = tf.matmul(x, w) + b

Think like a Machine Chapter 2

[40]

then the logistic sigmoid is applied to y which represents the "x" in the
formal definition of the Logistic Sigmoid
s = tf.nn.sigmoid(y)

Thanks to the logistic sigmoid function, the value for the first location in the model comes
out as 0.99 (level of saturation of the location).

To calculate the availability of the location once the 0.99 has been taken into account, we
subtract the load from the total availability, which is 1, as follows:

As seen previously, once all locations are calculated in this manner, a final availability
vector, lv, is obtained.

When analyzing lv, a problem has stopped the process. Individually, each line appears to
be fine. By applying the logistic sigmoid to each output weight and subtracting it from 1,
each location displays a probable availability between 0 and 1. However, the sum of the
lines in lv exceeds 1. That is not possible. Probability cannot exceed 1. The program needs to
fix that. In the source code, lv will be named y.

Each line produces a [0,1] solution, which fits the prerequisite of being a valid probability.

In this case, the vector lv contains more than one value and becomes a multiple distribution.
The sum of lv cannot exceed 1 and needs to be normalized.

The softmax function provides an excellent method to stabilize lv. Softmax is widely used in
machine learning and deep learning.

Bear in mind that these mathematical tools are not rules. You can adapt them to your problem
as much as you wish as long as your solution works.

Think like a Machine Chapter 2

[41]

Softmax
The softmax function appears in many artificial intelligence models to normalize data. This
is a fundamental function to understand and master. In the case of the warehouse model,
an AGV needs to make a probable choice between six locations in the lv vector. However,
the total of the lv values exceeds 1. lv requires normalization of the softmax function S. In
this sense, the softmax function can be considered as a generalization of the logistic sigmoid
function. In the code, lv vector will be named y.

The following code used is SOFTMAX.py; y represents the lv vector in the following source
code.

y is the vector of the scores of the lv vector in the warehouse example:
y = [0.0002, 0.2, 0.9,0.0001,0.4,0.6]

 is the exp(i) result of each value in y (lv in the warehouse example), as follows:

y_exp = [math.exp(i) for i in y]

is the sum of iterations, as shown in the following code:

sum_exp_yi = sum(y_exp)

Now, each value of the vector can be normalized in this type of multinomial distribution
stabilization by simply applying a division, as follows:

softmax = [round(i / sum_exp_yi, 3) for i in y_exp]

#Vector to be stabilized [2.0, 1.0, 0.1, 5.0, 6.0, 7.0]
#Stabilized vector [0.004, 0.002, 0.001, 0.089, 0.243, 0.661]

Think like a Machine Chapter 2

[42]

softmax(lv) provides a normalized vector with a sum equal to 1 and is shown in this
compressed version of the code. The vector obtained is often described as containing logits.

The following code details the process:

def softmax(x):
 return np.exp(x) / np.sum(np.exp(x), axis=0)

y1 = [0.0002, 0.2, 0.9,0.0001,0.4,0.6]
print("Stablized vector",softmax(y1))
print("sum of vector",sum(softmax(y1)))
Stabilized vector [0.11119203 0.13578309 0.27343357 0.11118091
0.16584584 0.20256457]
sum of vector 1.0

The softmax function can be used as the output of a classifier (pixels for example) or to
make a decision. In this warehouse case, it transforms lv into a decision-making process.

The last part of the softmax function requires softmax(lv) to be rounded to 0 or 1. The
higher the value in softmax(lv), the more probable it will be. In clear-cut transformations,
the highest value will be close to 1 and the others will be closer to 0. In a decision-making
process, the highest value needs to be found, as follows:

print("highest value in transformed y vector",max(softmax(y1)))
#highest value in normalized y vector 0.273433565194

Once line 3 (value 0.273) has been chosen as the most probable location, it is set to 1 and
the other, lower values are set to 0. This is called a one-hot function. This one-hot function
is extremely helpful to encode the data provided. The vector obtained can now be applied
to the reward matrix. The value 1 probability will become 100 in the R reward matrix, as
follows.

The softmax function is now complete. Location l3 or C is the best solution for the AGV. The
probability value is multiplied by 100 in the R function and the reward matrix described
can now receive the input.

Think like a Machine Chapter 2

[43]

Before continuing, take some time to play around with the values in the
source code and run it to become familiar with softmax.

We now have the data for the reward matrix. The best way to understand the mathematical
aspect of the project is to go to a paperboard and draw the result using the actual
warehouse layout from locations A to F.

Locations={l1-A, l2-B, l3-C, l4-D, l5-E, l6-F}

Value of locations in the reward matrix={0,0,100,0,0,0} where C (the third value) is now the
target for the self-driving vehicle, in this case, an AGV in a warehouse.

We obtain the following reward matrix R described in the first chapter.

State/values A B C D E F
A - - - - 1 -
B - - - 1 - 1
C - - 100 1 - -
D - 1 1 - 1 -
E 1 - - 1 - -
F - 1 - - - -

This reward matrix is exactly the one used in the Python reinforcement learning program
using the Q function in the first chapter. The output of this chapter is the input of the R
matrix in the first chapter. The 0 values are there for the agent to avoid those values. This
program is designed to stay close to probability standards with positive values, as shown in
the following R matrix.

R = ql.matrix([[0,0,0,0,1,0],
 [0,0,0,1,0,1],
 [0,0,100,1,0,0],
 [0,1,1,0,1,0],

Think like a Machine Chapter 2

[44]

 [1,0,0,1,0,0],
 [0,1,0,0,0,0]])

At this point, the building blocks are in place to begin evaluating the results of the
reinforcement learning program.

Summary
Using a McCulloch-Pitts neuron with a logistic activation function in a one-layer network
to build a reward matrix for reinforcement learning shows how to build real-life
applications with AI technology.

Processing real-life data often requires a generalization of a logistic sigmoid function
through a softmax function, and a one-hot function applied to logits to encode the data.

This shows that machine learning functions are tools that must be understood to be able to
use all or parts of them to solve a problem. With this practical approach to artificial
intelligence, a whole world of projects awaits you.

You can already use these first two chapters to present powerful trajectory models such as
Amazon warehouses and deliveries to your team or customers. Furthermore, Amazon,
Google, Facebook, Netflix, and many others are growing their data centers as we speak.
Each data center has locations with data flows that need to be calibrated. You can use the
ideas given in this chapter to represent the problems and real-time calculations required to
calibrate product and data flows.

This neuronal approach is the parent of the multi-layer perceptron that will be introduced
in Chapter 5, Manage The Power of Machine Learning and Deep Learning. There, a shift from
machine learning to deep learning will be made.

However, before that, machine learning or deep learning requires evaluation functions. No
result can be validated without evaluation, as explained in Chapter 3, Apply Machine
Thinking to a Human Problem. In the next chapter, the evaluation process will be illustrated
with chess and a real-life situation.

Think like a Machine Chapter 2

[45]

Questions
Was the concept of using an artificial neuron discovered in 1990? (Yes | No)1.
Does a neuron require a threshold? (Yes | No)2.
A logistic sigmoid activation function makes the sum of the weights larger. (Yes |3.
No)
A McCulloch-Pitts neuron sums the weights of its inputs. (Yes | No)4.
A logistic sigmoid function is a log10 operation. (Yes | No)5.
A logistic softmax is not necessary if a logistic sigmoid function is applied to a6.
vector. (Yes | No)
A probability is a value between -1 and 1. (Yes | No)7.

Further reading
Exploring DeepMind https:/ /deepmind. com/

The TensorFlow site, and support https:/ /www. tensorflow. org/

The original DQN article https:/ /storage. googleapis. com/ deepmind- media/
dqn/DQNNaturePaper. pdf

Automated solutions in logistics https:/ /www. logistics- systems. ie/
automated- solutions- apm

https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm
https://www.logistics-systems.ie/automated-solutions-apm

3
Apply Machine Thinking to a

Human Problem
In the first chapter, the MDP reinforcement program produced a result as an output matrix.
In Chapter 2, Think Like a Machine, the McCulloch-Pitts system of neurons produced an
input reward matrix. However, the intermediate or final results of these two functions need
to be constantly measured. Good measurement solves a substantial part of a given problem
since decisions rely on them. Reliable decisions are made with reliable evaluations. The
goal of this chapter is to introduce measurement methods.

The key function of human intelligence, decision-making, relies on the ability to evaluate a
situation. No decision can be made without measuring the pros and cons and factoring the
parameters.

Mankind takes great pride in its ability to evaluate. However, in many cases, a machine can
do better. Chess represents the pride of mankind in thinking strategy. A chessboard is often
present in many movies to symbolize human intelligence.

Today, not a single chess player can beat the best chess engines. One of the extraordinary
core capacities of a chess engine is the evaluation function; it takes many parameters into
account more precisely than humans.

This chapter focuses on the main concepts of evaluation and measurement; they set the
path to deep learning gradient descent-driven models, which will be explained in the
following chapter.

The following topics will be covered in this chapter:

Evaluation of the episodes of a learning session
Numerical convergence measurements
An introduction to the idea of cross-entropy convergence
Decision tree supervised learning as an evaluation method

Apply Machine Thinking to a Human Problem Chapter 3

[47]

Decision tree supervised learning as a predictive model
How to apply evaluation tools to a real-life problem you build on your own

Technical requirements
Python version 3.6 is recommended
NumPy compatible with Python 3.6
TensorFlow with TensorBoard
Graphviz 2.28 for use in Python

Programs are available on GitHub, Chapter03:

Q_learning_convergence.py

Decision_Tree_Priority_classifier.py

Check out the following video to see the code in action:

https://goo.gl/Yrgb3i

Determining what and how to measure
In Chapter 2, Think Like a Machine, the system of McCulloch-Pitts neurons generated a
vector with a one-hot function in the following process.

R, the reward vector, represents the input of the reinforcement learning program and needs
to be measured.

https://goo.gl/Yrgb3i
https://goo.gl/Yrgb3i
https://goo.gl/Yrgb3i
https://goo.gl/Yrgb3i
https://goo.gl/Yrgb3i
https://goo.gl/Yrgb3i
https://goo.gl/Yrgb3i
https://goo.gl/Yrgb3i
https://goo.gl/Yrgb3i

Apply Machine Thinking to a Human Problem Chapter 3

[48]

This chapter deals with an approach designed to build a reward matrix based on the
company data. It relies on the data, weights, and biases provided. When deep learning
forward feedback neural networks based on perception are introduced (Chapter 4, Become
an Unconventional Innovator), a system cannot be content with a training set. Systems have a
natural tendency to learn training sets through backpropagation. In this case, one set of
company data is not enough.

In real-life company projects, a system will not be validated until tens of thousands of
results have been produced. In some cases, a corporation will approve the system only after
hundreds of datasets with millions of data samples have been tested to be sure that all
scenarios are accurate. Each dataset represents a scenario consultants can work on with
parameter scripts. The consultant introduces parameter scenarios that are tested by the
system and measured. In systems with up to 200 parameters per neuron, a consultant will
remain necessary for many years to come in an industrial environment. As of Chapter
4, Become an Unconventional Innovator, the system will be on its own without the help of a
consultant. Even then, consultants often are needed to manage the hyperparameters. In
real-life systems, with high financial stakes, quality control will always remain essential.

Measurement should thus apply to generalization more than simply applying to a single or
few datasets. Otherwise, you will have a natural tendency to control the parameters and
overfit your model in a too-good-to-be-true scenario.

Beyond the reward matrix, the reinforcement program in the first chapter had a learning
parameter λ = 0.8, as shown in the following code source.

Gamma : It's a form of penalty or uncertainty for learning
If the value is 1 , the rewards would be too high.
This way the system knows it is learning.
gamma = 0.8

The λ learning parameter in itself needs to be closely monitored because it introduces
uncertainty into the system. This means that the learning process will always remain a
probability, never a certainty. One might wonder why this parameter is not just taken out.
Paradoxically, that will lead to even more global uncertainty. The more the λ learning
parameter tends to 1, the more you risk overfitting your results. Overfitting means that you
are pushing the system to think it's learning well when it isn't. It's exactly like a teacher
who gives high grades to everyone in the class all the time. The teacher would be
overfitting the grade-student evaluation process, and nobody would know whether the
students have learned something.

Apply Machine Thinking to a Human Problem Chapter 3

[49]

The results of the reinforcement program need to be measured as they go through episodes.
The range of the learning process itself must be measured. In the following code, the range
is set to 50,000 to make sure the learning process reaches its goal.

for i in range(50000):
 current_state = ql.random.randint(0, int(Q.shape[0]))
 PossibleAction = possible_actions(current_state)
 action = ActionChoice(PossibleAction)
 reward(current_state,action,gamma)

All of these measurements will have a deep effect on the results obtained.

Convergence
Building the system was fun. Finding the factors that make the system go wrong is another
story.

The model presented so far can be summed up as follows:

From lv to R, the process creates the reward matrix (Chapter 2, Think Like a Machine)
required for the reinforcement learning program (Chapter 1, Become an Adaptive Thinker),
which runs from reading R (reward matrix) to the results. Gamma is the learning
parameter, Q is the Q learning function, and the results are the states of Q described in the
first chapter.

The parameters to be measured are as follows:

The company's input data. The training sets found on the Web such as MNIST
are designed to be efficient. These ready-made datasets often contain some noise
(unreliable data) to make them realistic. The same process must be achieved with
raw company data. The only problem is that you cannot download a corporate dataset
from somewhere. You have to build the datasets.
The weights and biases that will be applied.
The activation function (a logistic function or other).

Apply Machine Thinking to a Human Problem Chapter 3

[50]

The choices to make after the one-hot process.
The learning parameter.
Episode management through convergence.

The best way to start relies on measuring the quality of convergence of the system, the last
step of the whole process.

If the system provides good convergence, it will avoid the headache of having to go back
and check everything.

Implicit convergence
In the last part of Reinforcement_Learning_Q_function.py in the first chapter, a range
of 50,000 is implemented.

The idea is to set the number of episodes at such a level that convergence is certain. In the
following code, the range (50000) is a constant.

for i in range(50000):
 current_state = ql.random.randint(0, int(Q.shape[0]))
 PossibleAction = possible_actions(current_state)
 action = ActionChoice(PossibleAction)
 reward(current_state,action,gamma)

Convergence, in this case, will be defined as the point at which no matter how long you run
the system, the Q result matrix will not change anymore.

By setting the range to 50000, you can test and verify this. As long as the reward matrices
remain homogeneous, this will work. If the reward matrices strongly vary from one
scenario to another, this model will produce unstable results.

Try to run the program with different ranges. Lower the ranges until you
see that the results are not optimal.

Numerical – controlled convergence
This approach can prove time-saving by using the target result, provided it exists
beforehand. Training the reinforcement program in this manner validates the process.

Apply Machine Thinking to a Human Problem Chapter 3

[51]

In the following source code, an intuitive cross-entropy function is introduced (see Chapter
9, Getting Your Neurons to Work, for more on cross-entropy).

Cross-entropy refers to energy. The main concepts are as follows:

Energy represents the difference between one distribution and another
It is what makes the system continue to train
When a lot of training needs to be done, there is a high level of energy
When the training reaches the end of its cycles, the level of energy is low
In the following code, cross-entropy value (CEV) measures the difference
between a target matrix and the episode matrix
Cross-entropy is often measured in more complex forms when necessary (see
Chapter 9, Getting Your Neurons to Work, and Chapter 10, Applying Biomimicking
to Artificial Intelligence)

In the following code, a basic function provides sufficient results.

for i in range(50000):
 current_state = ql.random.randint(0, int(Q.shape[0]))
 PossibleAction = possible_actions(current_state)
 action = ActionChoice(PossibleAction)
 reward(current_state,action,gamma)
 if Q.sum()>0:
 #print("convergent episode:",i,"Q.Sum",Q.sum(),"numerical convergent
value e-1:",Q.sum()-sum)
 #print("convergent episode:",i,"numerical convergent value:",ceg-
Q.sum())
 CEV=-(math.log(Q.sum())-math.log(ceg))
 print("convergent episode:",i,"numerical convergent value:",CEV)
 sum=Q.sum()
 if(Q.sum()-3992==0):
 print("Final convergent episode:",i,"numerical convergent
value:",ceg-Q.sum())
 break; #break on average (the process is random) before 50000

The previous program stops before 50,000 epochs. This is because, in the model described
in this chapter (see the previous code excerpt), the system stops when it reaches an
acceptable CEV convergence value.

convergent episode: 1573 numerical convergent value: -0.0
convergent episode: 1574 numerical convergent value: -0.0
convergent episode: 1575 numerical convergent value: -0.0
convergent episode: 1576 numerical convergent value: -0.0
convergent episode: 1577 numerical convergent value: -0.0
Final convergent episode: 1577 numerical convergent value: 0.0

Apply Machine Thinking to a Human Problem Chapter 3

[52]

The program stopped at episode 1577. Since the decision process is random, the same
number will not be obtained twice in a row. Furthermore, the constant 3992 was known in
advance. This is possible in closed environments where a pre-set goal has been set. This is
not the case often but was used to illustrate the concept of convergence. The following
chapters will explore better ways to reach convergence, such as gradient descent.

The Python program is available at:

https://github.com/ PacktPublishing/ Artificial- Intelligence- By- Example/ blob/
master/Chapter03/ Q_ learning_ convergence. py

Applying machine thinking to a human
problem

"An efficient manager has a high evaluation quotient. A machine has a better one, in chess
and a number of increasing fields. The problem now is to keep up with what the machines
are learning!"

-Denis Rothman

Evaluation is one of the major keys to efficient decision making in all fields: from chess,
production management, rocket launching, and self-driving cars to data center calibration,
software development, and airport schedules. Chess engines are not high-level deep-
learning-based software. They rely heavily on evaluations and calculations. They evaluate
much better than humans, and there is a lot to learn from them. The question now is to
know whether any human can beat a chess engine or not. The answer is no.

To evaluate a position in chess, you need to examine all the pieces, their quantitative value,
their qualitative value, cooperation between pieces, who owns each of the 64 squares, the
king's safety, bishop pairs, knight positioning, and many other factors.

Evaluating a position in a chess game
Evaluating a position in a chess game shows why machines will surpass humans in quite
some decision-making fields within the next few years.

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Q_learning_convergence.py

Apply Machine Thinking to a Human Problem Chapter 3

[53]

The following position is after move 23 in the Kramnik-Bluebaum 2017 game. It cannot be
correctly evaluated by humans. It contains too many parameters to analyze and too many
possibilities.

It is white's turn to play, and a close analysis shows that both players are lost at this point.
In a tournament like this, they must each continue to keep a poker face. They often look at
the position with a confident face to hide their dismay. Some even shorten their thinking
time to make their opponent think they know where they are going.

These unsolvable positions for humans are painless to solve with chess engines, even
cheap, high-quality chess engines on a smartphone. This can be generalized to all human
activity that has become increasingly complex, unpredictable and chaotic. Decision-makers
will increasingly rely on artificial intelligence to help them make the right choices.

No human can play chess and evaluate the way a chess engine does by simply calculating
the positions of the pieces, their squares of liberty, and many other parameters. A chess
engine generates an evaluation matrix with millions of calculations. The following table is
the result of an evaluation of only one position among many others (real and potential).

Position
evaluated 0,3

White 34

 Initial
position position Value Quality

Value TotalValue

Pawn a2 a2 1 a2-b2 small pawn island 0,05 1,05
Pawn b2 b2 1 a2-b2 small pawn island 0,05 1,05

Apply Machine Thinking to a Human Problem Chapter 3

[54]

Pawn c2 x 0 captured 0 0
Pawn d2 d4 1 occupies center,defends Be5 0,25 1,25
Pawn e2 e2 1 defends Qf3 0,25 1,25
Pawn f2 x 0 captured 0 0
Pawn g2 g5 1 unattacked, attacking 2 squares 0,3 1,3
Pawn h2 h3 1 unattacked, defending g4 0,1 1,1

Rook a1 c1 5 occupying c-file, attacking b7 with
Nd5-Be5 1 6

Knight b1 d5 3 attacking Nb6, 8 squares 0,5 3,5

BishopDS c1 e5 3 central position, 10 squares,
attacking c7 0,5 3,5

Queen d1 f3 9 battery with Bg2, defending Ne5, X-
Ray b7 2 11

King e1 h1 0 X-rayed by Bb6 on a7-g1 diagonal -0,5 -0,5

BishopWS f1 g2 3 supporting Qf3 in defense and
attack 0,5 3,5

Knight g1 x 0 captured 0 0
Rook h1 x 0 captured 0 0
 29 5 34

White:34

The value of the position of white is 34.

White 34
Black 33,7

 Initial
position position Value Quality

Value TotalValue

Pawn a7 a7 1 a7-b7 small pawn island 0,05 1,05
Pawn b7 b7 1 a7-b7 small pawn island 0,05 1,05
Pawn c7 x 0 captured 0 0
Pawn d7 x 0 captured 0 0
Pawn e7 f5 1 doubled, 2 squares 0 1
Pawn f7 f7 1 0 1
Pawn g7 g6 1 defending f5 but abandoning Kg8 0 1
Pawn h7 h5 1 well advanced with f5,g6 0,1 1,1
Rook a8 d8 5 semi-open d-file attacking Nd5 2 7
Knight b8 x 0 captured 0 0
BishopDS c8 b6 3 attacking d4, 3 squares 0,5 3,5
Queen d8 e6 9 attacking d4,e5 , a bit cramped 1,5 10,5
King e8 g8 0 f6,h6, g7,h8 attacked -1 -1

Apply Machine Thinking to a Human Problem Chapter 3

[55]

BishopWS f8 x 0 captured, White lost bishop pair 0,5 0,5
Knight g8 e8 3 defending c7,f6,g7 1 4
Rook h8 f8 5 out of play -2 3
 31 2,7 Black:33,7

The value of black is 33.7.

So white is winning by 34-33.7 = 0.3.

The evaluation system can easily be represented with two McCulloch-Pitts neurons, one for
black and one for white. Each neuron would have 30 weights = {w1,w2....w30}, as shown in
the previous table. The sum of both neurons requires an activation function that converts
the evaluation into 1/100th of a pawn, which is the standard measurement unit in chess.
Each weight will be the output of squares and piece calculations. Then the MDP can be
applied to Bellman's equation with a random generator of possible positions.

Present-day chess engines contain barely more intelligence than this type
of pure calculation approach. They don't need more to beat humans.

No human, not even world champions, can calculate this position with this accuracy. The
number of parameters to take into account overwhelms them each time they reach a
position like this. They then play more or less randomly with some kind of idea in mind. It
resembles a lottery sometimes. Chess expert annotators discover this when they run
human-played games with powerful chess engines to check the game. The players
themselves now tend to reveal their incapacity when questioned.

Now bear in mind that the position analyzed represents only one possibility. A chess
engine will test millions of possibilities. Humans can test only a few.

Measuring a result like this has nothing to do with natural human thinking. Only machines
can think like that. Not only do chess engines solve the problem, but also they are
impossible to beat.

At one point, there are problems humans face that only machines can
solve.

Apply Machine Thinking to a Human Problem Chapter 3

[56]

Applying the evaluation and convergence
process to a business problem
What was once considered in chess as the ultimate proof of human intelligence has been
battered by brute-force calculations with great CPU/RAM capacity. Almost any human
problem requiring logic and reasoning can most probably be solved by a machine using
relatively elementary processes expressed in mathematical terms.

Let's take the result matrix of the reinforcement learning example of the first chapter. It can
also be viewed as a scheduling tool. Automated planning and scheduling have become a
crucial artificial intelligence field, as explained in Chapter 12, Automated Planning and
Scheduling. In this case, evaluating and measuring the result goes beyond convergence
aspects.

In a scheduling process, the input of the reward matrix can represent the priorities of the
packaging operation of some products in a warehouse. It would determine in which order
customer products must be picked to be packaged and delivered. These priorities extend to
the use of a machine that will automatically package the products in a FIFO mode (first in,
first out). The systems provide good solutions, but, in real life, many unforeseen events
change the order of flows in a warehouse and practically all schedules.

In this case, the result matrix can be transformed into a vector of a scheduled packaging
sequence. The packaging department will follow the priorities produced by the system.

The reward matrix (see Q_learning_convergence.py) in this chapter is R (see the
following code).

R = ql.matrix([[-1,-1,-1,-1,0,-1],
 [-1,-1,-1,0,-1,0],
 [-1,-1,100,0,-1,-1],
 [-1,0,100,-1,0,-1],
 [0,-1,-1,0,-1,-1],
 [-1,0,-1,-1,-1,-1]])

Its visual representation is the same as in Chapter 1, Become an Adaptive Thinker. But the
values are a bit different for this application:

Negative values (-1): The agent cannot go there
0 values: The agent can go there
100 values: The agent should favor these locations

Apply Machine Thinking to a Human Problem Chapter 3

[57]

The result is produced in a Q function early in the first section of the chapter, in a matrix
format, displayed as follows:

Q :
[[0. 0. 0. 0. 258.44 0.]
 [0. 0. 0. 321.8 0. 207.752]
 [0. 0. 500. 321.8 0. 0.]
 [0. 258.44 401. 0. 258.44 0.]
 [207.752 0. 0. 321.8 0. 0.]
 [0. 258.44 0. 0. 0. 0.]]
Normed Q :
[[0. 0. 0. 0. 51.688 0.]
 [0. 0. 0. 64.36 0. 41.5504]
 [0. 0. 100. 64.36 0. 0.]
 [0. 51.688 80.2 0. 51.688 0.]
 [41.5504 0. 0. 64.36 0. 0.]
 [0. 51.688 0. 0. 0. 0.]]

From that result, the following packaging priority order matrix can be deduced.

Priorities O1 O2 O3 O4 O5 O6
O1 - - - - 258.44 -
O2 - - - 321.8 - 207.75
O3 - - 500 321.8 - -
O4 - 258.44 401 - 258.44 -
O5 207.75 - - 321.8 - -
O6 - 258.44 - - - -

The non-prioritized vector (npv) of packaging orders is np.

The npv contains the priority value of each cell in the matrix, which is not a location but an
order priority. Combining this vector with the result matrix, the results become priorities of
the packaging machine. They now need to be analyzed, and a final order must be decided
to send to the packaging department.

Apply Machine Thinking to a Human Problem Chapter 3

[58]

Using supervised learning to evaluate result
quality
Having now obtained the npv, a more business-like measurement must be implemented.

A warehouse manager, for example, will tell you the following:

Your reinforcement learning program looks satisfactory (Chapter 1, Become an
Adaptive Thinker)
The reward matrix generated by the McCulloch-Pitts neurons works very well
(Chapter 2, Think Like a Machine)
The convergence values of the system look nice
The results on this dataset look satisfactory

But then, the manager will always come up with a killer question, How can you prove that
this will work with other datasets in the future?

The only way to be sure that this whole system works is to run thousands of datasets with
hundreds of thousands of product flows.

The idea now is to use supervised learning to create relationships between the input and
output data. It's not a random process like MDP. They are not trajectories anymore. They
are priorities. One method is to used decision trees. In Chapter 4, Become an Unconventional
Innovator, the problem will be solved with a feedforward backpropagation network.

In this model, the properties of the customer orders are analyzed so that we can classify
them. This can be translated into decision trees depending on real-time data, to create a
distribution representation to predict future outcomes.

The first step is to represent the properties of the orders O1 to O6.1.

features = ['Priority/location', 'Volume', 'Flow_optimizer']

In this case, we will limit the model to three properties:

Priority/location, which is the most important property in a
warehouse flow in this model
Volumes to transport
Optimizing priority—the financial and customer satisfaction
property

Apply Machine Thinking to a Human Problem Chapter 3

[59]

The second step is to provide some priority parameters to the learning dataset:2.

Y = ['Low', 'Low', 'High', 'High', 'Low', 'Low

Step 3 is providing the dataset input matrix, which is the output matrix of the3.
reinforcement learning program. The values have been approximated but are
enough to run the model. This simulates some of the intermediate decisions and
transformations that occur during the decision process (ratios applied,
uncertainty factors added, and other parameters). The input matrix is X:

X = [[256, 1,0],
 [320, 1,0],
 [500, 1,1],
 [400, 1,1],
 [320, 1,0],
 [256, 1,0]]

The features in step 1 apply to each column.

The values in step 2 apply to every line.

Step 4 is running a standard decision tree classifier. This classifier will distribute4.
the representations (distributed representations) into two categories:

The properties of high-priority orders
The properties of low-priority orders

There are many types of algorithms. In this case, a standard sklearn function is called to
do the job, as shown in the following source code.

classify = tree.DecisionTreeClassifier()
classify = classify.fit(X,Y)

Applied to thousands of orders on a given day, it will help adapt to real-time unplanned
events that destabilize all scheduling systems: late trucks, bad quality products, robot
breakdowns, and absent personnel. This means that the system must be able to constantly
adapt to new situations and provide priorities to replan in real time.

Apply Machine Thinking to a Human Problem Chapter 3

[60]

The program will produce the following graph, which separates the orders into priority
groups.

The goal now is to separate the best orders to replan among hundreds of thousands of
simulating orders. In this case, the learning dataset has the six values you have been
studying in the first two chapters from various angles.

Priority/location<=360.0 is the division point between the most probable
optimized orders (high) and less interesting ones (low).
Gini impurity. This would be the measure of incorrect labeling if the choice were
random. In this case, the dataset is stable.
The false arrow points out the two values that are not <=360, meaning they are
good choices, the optimal separation line of the representation. The ones that are
not classified as False are considered as don't eliminate orders.
The True elements mean: eliminate orders as long as possible.
The value result reads as [number of false elements, number of true elements] of the
dataset.

If you play around with the values in steps 1, 2, and 3, you'll obtain different separation
points and values. This sandbox program will prepare you for the more complex
scheduling problems of Chapter 12, Automated Planning and Scheduling.

You can use this part of the source code to generate images of this decision tree-supervised
learning program:

5.Producing visualization if necessary
info =
tree.export_graphviz(classify,feature_names=features,out_file=None,filled=F
alse,rounded=False)
graph = pydotplus.graph_from_dot_data(info)

edges = collections.defaultdict(list)
for edge in graph.get_edge_list():

Apply Machine Thinking to a Human Problem Chapter 3

[61]

 edges[edge.get_source()].append(int(edge.get_destination()))

for edge in edges:
 edges[edge].sort()
 for i in range(2):
 dest = graph.get_node(str(edges[edge][i]))[0]

graph.write_png('warehouse_example_decision_tree.png')
print("Open the image to verify that the priority level prediction of the
results fits the reality of the reward matrix inputs")

The preceding information represents a small part of what it takes to manage a real-life
artificial intelligence program on premise.

A warehouse manager will want to run this supervised learning decision tree program on
top of the system described in Chapter 2, Think Like a Machine, and Chapter 3, Apply
Machine Thinking to a Human Problem. This is done to generalize these distributed
representations directly to the warehouse data to improve the initial corporate data inputs.
With better-proven priorities, the system will constantly improve, week by week.

This way of scheduling shows that human thinking was not used nor necessary.

Contrary to the hype surrounding artificial intelligence, most problems can be solved with
no human intelligence involved and relatively little machine learning technology.

Human intelligence simply proves that intelligence can solve a problem.

Fortunately for the community of artificial intelligence experts, there are very difficult
problems to solve that require more artificial intelligence thinking.

Such a problem will be presented and solved in Chapter 4, Become an Unconventional
Innovator.

The Python program is available at https:/ /github. com/ PacktPublishing/ Artificial-
Intelligence-By- Example/ blob/ master/ Chapter03/ Decision_ Tree_ Priority_
classifier.py.

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter03/Decision_Tree_Priority_classifier.py

Apply Machine Thinking to a Human Problem Chapter 3

[62]

Summary
This chapter led artificial intelligence exploration one more step away from neuroscience to
reproduce human thinking. Solving a problem like a machine means using a chain of
mathematical functions and properties.

The further you get in machine learning and deep learning, the more you will find
mathematical functions that solve the core problems. Contrary to the astounding amount of
hype, mathematics relying on CPUs is replacing humans, not some form of alien
intelligence.

The power of machine learning with beyond-human mathematical reasoning is that
generalization to other fields is easier. A mathematical model, contrary to the complexity of
humans entangled in emotions, makes it easier to deploy the same model in many fields.
The models of the first three chapters can be used for self-driving vehicles, drones, robots in
a warehouse, scheduling priorities, and much more. Try to imagine as many fields you can
apply these to as possible.

Evaluation and measurement are at the core of machine learning and deep learning. The
key factor is constantly monitoring convergence between the results the system produces
and the goal it must attain. This opens the door to the constant adaptation of the weights of
the network to reach its objectives.

Machine evaluation for convergence through a chess example that has nothing to do with
human thinking proves the limits of human intelligence. The decision tree example can beat
most humans in classification situations where large amounts of data are involved.

Human intelligence is not being reproduced in many cases and has often been surpassed.
In those cases, human intelligence just proves that intelligence can solve a problem, nothing
more.

The next chapter goes a step further from human reasoning with self-weighting neural
networks and introduces deep learning.

Apply Machine Thinking to a Human Problem Chapter 3

[63]

Questions
Can a human beat a chess engine? (Yes | No)1.
Humans can estimate decisions better than machines with intuition when it2.
comes to large volumes of data. (Yes | No)
Building a reinforcement learning program with a Q function is a feat in itself.3.
Using the results afterward is useless. (Yes | No)
Supervised learning decision tree functions can be used to verify that the result4.
of the unsupervised learning process will produce reliable, predictable
results. (Yes | No)
The results of a reinforcement learning program can be used as input to a5.
scheduling system by providing priorities. (Yes | No)
Can artificial Intelligence software think like humans? (Yes | No)6.

Further reading
For more on decision trees: https:/ /youtu. be/ NsUqRe- 9tb4

For more on chess analysis by experts such as Zoran Petronijevic: https:/ /
chessbookreviews. wordpress. com/tag/ zoran- petronijevic/

https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://youtu.be/NsUqRe-9tb4
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/
https://chessbookreviews.wordpress.com/tag/zoran-petronijevic/

4
Become an Unconventional

Innovator
In corporate projects, there always comes the point when a problem that seems
impossible to solve hits you. At that point, you try everything you learned, but it doesn't
work for what's asked of you. Your team or customer begins to look elsewhere. It's time to
react.

In this chapter, an impossible-to-solve business case regarding material optimization will
be implemented successfully with an example of a feedforward neural network (FNN)
with backpropagation.

Feedforward networks are the building blocks of deep learning. The battle around the XOR
function perfectly illustrates how deep learning regained popularity in corporate
environments. The XOR FNN illustrates one of the critical functions of neural networks:
classification. Once information becomes classified into subsets, it opens the doors to
prediction and many other functions of neural networks, such as representation learning.

An XOR FNN network will be built from scratch to demystify deep learning from the start.
A vintage, start-from-scratch method will be applied, blowing the deep learning hype off
the table.

The following topics will be covered in this chapter:

How to hand build an FNN
Solving XOR with an FNN
Classification
Backpropagation
A cost function

Become an Unconventional Innovator Chapter 4

[65]

Cost function optimization
Error loss
Convergence

Technical requirements
Python 3.6x 64-bit from https:/ /www.python. org/

NumPy for Python 3.6x

Programs from GitHub Chapter04:

FNN_XOR_vintage_tribute.py

FFN_XOR_generalization.py

Check out the following video to see the code in action:

https://goo.gl/ASyLWz

The XOR limit of the original perceptron
Once the feedforward network for solving the XOR problem is built, it will be applied to a
material optimization business case. The material-optimizing solution will choose the best
combinations of dimensions among billions to minimize the use of a material with the
generalization of the XOR function. First, a solution to the XOR limitation of a perceptron
must be fully clarified.

XOR and linearly separable models
In the academic world, like the private world, competition exists. Such a situation took
place in 1969. Minsky and Papert published Perceptrons. They proved mathematically that a
perceptron could not solve an XOR function. Fortunately, today the perceptron and its
neocognitron version form the core model for neural networking.

One might be tempted to think, So what? However, the entire field of neural networks relies
on solving problems such as this to classify patterns. Without pattern classification, images,
sounds, and words mean nothing to a machine.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/ASyLWz
https://goo.gl/ASyLWz
https://goo.gl/ASyLWz
https://goo.gl/ASyLWz
https://goo.gl/ASyLWz
https://goo.gl/ASyLWz
https://goo.gl/ASyLWz
https://goo.gl/ASyLWz
https://goo.gl/ASyLWz

Become an Unconventional Innovator Chapter 4

[66]

Linearly separable models
The McCulloch-Pitts 1943 neuron (see Chapter 2, Think Like a Machine) lead to Rosenblatt's
1957-1962 perceptron and the 1960 Widrow-Hoff adaptive linear element (Adaline).

These models are linear models based on f(x,w), requiring a line to separate results. A
perceptron cannot achieve this goal and thus cannot classify many objects it faces.

A standard linear function can separate values. Linear separability can be represented in
the following graph:

Imagine that the line separating the preceding dots and the part under it represent a picture
that needs to be represented by a machine learning or deep learning application. The dots
above the line represent clouds in the sky; the dots below the line represent trees on a hill.
The line represents the slope of that hill.

To be linearly separable, a function must be able to separate the clouds from the trees to
classify them. The prerequisite to classification is separability of some sort, linear or
nonlinear.

Become an Unconventional Innovator Chapter 4

[67]

The XOR limit of a linear model, such as the original
perceptron
A linear model cannot solve the XOR problem expressed as follows in a table:

Value of x1 Value of x2 Output

1 1 0

0 0 0

1 0 1

0 1 1

The following graph shows the linear inseparability of the XOR function represented by
one perceptron:

The values of the table represent the Cartesian coordinates in this graph. The circle with a
cross at (1,1) and (0,0) cannot be separated from the circles at (1,0) and (0,11). That's a huge
problem. It means that Frank Rosenblatt's f(x,w) perceptron cannot separate, and thus not
classify, these dots into clouds and trees; an object used to identify that requires linear
separability.

Having invented the most powerful concept of the 20th century—a neuron that can
learn—Frank Rosenblatt had to bear with this limitation through the 1960s.

Let's vindicate this injustice with a vintage solution.

Become an Unconventional Innovator Chapter 4

[68]

Building a feedforward neural network from
scratch
Let's get into a time machine. In nanoseconds, it takes us back to 1969. We have today's
knowledge but nothing to prove it. Minsky and Papert have just published their book,
Perceptrons. They've proven that a perceptron cannot implement the exclusive OR function
XOR.

We are puzzled. We know that deep learning will be a great success in the 21st century. We
want to try to change the course of history. Thanks to our time machine, we land in a small
apartment. It's comfortable, with a vinyl record playing the music we like! There is a
mahogany desk with a pad, a pencil, sharpener, and eraser waiting for us. We sit. A warm
cup of coffee appears in a big mug. We're ready to solve the XOR problem from scratch. We
have to find a way to classify those dots with a neural network.

Step 1 – Defining a feedforward neural network
We look at our piece of paper. We don't have a computer. We're going to have to write
code; then we'll hopefully find a computer in a university or a corporation that has a 1960
state-of-the-art language to program in.

We have to be unconventional to solve this problem. First, we must ignore Minsky and
Papert's publication and also forget complicated words and theory of the 21st century. In
fact, we don't remember much anyway. Time travel made our future fuzzy!

A perceptron is usually represented by a graph. But that doesn't mean much right now.
After all, I can't compute circles and lines. In fact, beyond seeing circles and lines, we type
characters in computer languages, not circles. So, I decide to simply to write a layer in high-
school format. A hidden layer will simply be:

Ok, now I have one layer. In fact, I just realized that a layer is merely a function. This
function can be expressed as:

Become an Unconventional Innovator Chapter 4

[69]

In which x is the input value and w is some kind of value to multiply x by. I also realized
that hidden just means that it's the computation, just as x=2 and x+2 is the hidden layer that
leads to 4.

At this point, I've defined a neural network in three lines:

Input x.
Some kind of function that changes its value, like 2 x 2 = 4, which transformed 2.
That is a layer. And if the result is superior to 2, for example, then great! The
output is 1, meaning yes or true. Since we don't see the computation, this is the
hidden layer.
An output.

Now that I know that basically any neural network is built with values transformed by an
operation to become an output of something, I need the logic to solve the XOR problem.

Step 2 – how two children solve the XOR problem
every day
Let's see how two children solve the XOR problem using a plain everyday example. I
strongly recommend this method. I have taken very complex problems, broken them down
into small parts to children's level, and often solved them in a few minutes. Then, you get
the sarcastic answer from others such as Is that all you did? But, the sarcasm vanishes when
the solution works over and over again in high-level corporate projects.

First, let's convert the XOR problem into a candy problem in a store. Two children go to the
store and want to buy candy. However, they only have enough money to buy one pack of
candy. They have to agree on a choice between two packs of different candy. Let's say pack
one is chocolate and the other is chewing gum. Then, during the discussion between these
two children, 1 means yes, 0 means no. Their budget limits the options of these two
children:

Going to the store and not buying any of chocolate or chewing gum = no, no (0,0).
That's not an option for these children! So the answer is false.
Going to the store and buying both chocolate and chewing gum = yes, yes (1,1).
That would be fantastic, but that's not possible. It's too expensive. So, the answer
is unfortunately false.
Going to the store and either buying chocolate or chewing gum = (1,0 or 0,1) = yes
or no/no or yes. That's possible. So, the answer is true.

Become an Unconventional Innovator Chapter 4

[70]

Sipping my coffee in 1969, I imagine the two children. The eldest one is reasonable. The
younger one doesn't know really how to count yet and wants to buy both packs of candy.

I decide to write that down on my piece of paper:

x1 (eldest child's decision yes or no, 1 or 0) * w1 (what the elder child thinks).
The elder child is thinking this, or:

The elder child weighs a decision like we all do every day, such as purchasing a
car (x=0 or 1) multiplied by the cost (w1).

x2 (the younger child's decision yes or no, 1 or 0) * w3 (what the younger child
thinks). The younger child is also thinking this, or:

Theory: x1 and x2 are the inputs. h1 and h2 are neurons (the result of a
calculation). Since h1 and h2 contain calculations that are not visible during
the process, they are hidden neurons. h1 and h2 thus form a hidden layer.

Now I imagine the two children talking to each other.

Hold it a minute! This means that now each child is communicating with the other:

x1 (the elder child) says w2 to the younger child. Thus w2 = this is what I think and
am telling you:

x2 (the younger child) says please add my views to your decision, which is
represented by: w4

Become an Unconventional Innovator Chapter 4

[71]

I now have the first two equations expressed in high-school-level code. It's what one thinks +
what one says to the other asking the other to take that into account:

h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

h1 sums up what is going on in one child's mind: personal opinion + other child's opinion.

h2 sums up what is going on in the other child's mind and conversation: personal opinion +
other child's opinion.

Theory. The calculation now contains two input values and one hidden
layer. Since in the next step we are going to apply calculations to h1 and
h2, we are in a feedforward neural network. We are moving from the
input to another layer, which will lead us to another layer, and so on. This
process of going from one layer to another is the basis of deep learning.
The more layers you have, the deeper the network is. The reason h1 and
h2 form a hidden layer is that their output is just the input of another
layer.

I don't have time to deal with complicated numbers in an activation function such as
logistic sigmoid, so I decide to simply decide whether the output values are less than 1 or
not:

if h1+h2 >=1 then y1=1

if h1+h2<1 then y2=0

Theory: y1 and y2 form a second hidden layer. These variables can be
scalars, vectors, or matrices. They are neurons.

Now, a problem comes up. Who is right? The elder child or the younger child?

The only way seems to be to play around, with the weights W representing all the weights.

I decided that at this point, I liked both children. Why would I have to hurt one of them? So
from now on, w3=w2,w4=w1. After all, I don't have a computer and my time travel window is
consuming a lot of energy. I'm going to be pulled back soon.

Now, somebody has to be an influencer. Let's leave this hard task to the elder child. The
elder child, being more reasonable, will continuously deliver the bad news. You have to
subtract something from your choice, represented by a minus (-) sign.

Become an Unconventional Innovator Chapter 4

[72]

Each time they reach the point hi, the eldest child applies a critical negative view on
purchasing packs of candy. It's -w of everything comes up to be sure not to go over the
budget. The opinion of the elder child is biased, so let's call the variable a bias, b1. Since the
younger child's opinion is biased as well, let's call this view a bias too b2. Since the eldest
child's view is always negative, -b1 will be applied to all of the eldest child's thoughts.

When we apply this decision process to their view, we obtain:

Then, we just have to use the same result. If the result is >=1 then the threshold has been
reached. The threshold is calculated as shown in the following function.

Since I don't have a computer, I decide to start finding the weights in a practical manner,
starting by setting the weights and biases to 0.5, as follows:

It's not a full program yet, but its theory is done.

Only the communication going on between the two children is making the difference; I
focus on only modifying w2 and b1 after a first try. An hour later, on paper, it works!

I can't believe that this is all there is to it. I copy the mathematical process on a clean sheet
of paper:

Solution to the XOR implementation with
a feedforward neural network(FNN)

I.Setting the first weights to start the process
w1=0.5;w2=0.5;b1=0.5
w3=w2;w4=w1;b2=b1

#II hidden layer #1 and its output
h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I, hidden layer 2
if(h1>=1):h1=1;

Become an Unconventional Innovator Chapter 4

[73]

if(h1<1):h1=0;
if(h2>=1):h2=1
if(h2<1):h2=0
h1= h1 * -b1
h2= h2 * b2

IV.Threshold II and Final OUTPUT y
y=h1+h2
if(y>=1):y=1
if(y<1):y=0

V. Change the critical weights and try again until a solution is found
w2=w2+0.5
b1=b1+0.5

I'm overexcited by the solution. I need to get this little sheet of paper to a newspaper to get
it published and change the course of history. I rush to the door, open it but find myself
back in the present! I jump and wake up in my bedroom sweating.

I rush to my laptop while this time-travel dream is fresh in my mind to get it into Python
for this book.

Why wasn't this deceiving simple solution found in 1969? Because it seems
simple today but wasn't so at that time like all inventions found by our genius
predecessors. Nothing is easy at all in artificial intelligence and
mathematics.

Implementing a vintage XOR solution in Python
with an FNN and backpropagation
I'm still thinking that implementing XOR with so little mathematics might not be that
simple. However, since the basic rule of innovating is to be unconventional, I write the
code.

To stay in the spirit of a 1969 vintage solution, I decide not to use NumPy, TensorFlow,
Theano, or any other high-level library. Writing a vintage FNN with backpropagation
written in high-school mathematics is fun.

This also shows that if you break a problem down into very elementary parts, you
understand it better and provide a solution to that specific problem. You don't need to use a
huge truck to transport a loaf of bread.

Become an Unconventional Innovator Chapter 4

[74]

Furthermore, by thinking through the minds of children, I went against running 20,000 or
more episodes in modern CPU-rich solutions to solve the XOR problem. The logic used
proves that, basically, both inputs can have the same parameters as long as one bias is
negative (the elder reasonable critical child) to make the system provide a reasonable
answer.

The basic Python solution quickly reaches a result in 3 to 10 iterations (epochs or episodes)
depending on how we think it through.

The top of the code simply contains a result matrix with four columns. Each represents the
status (1=correct, 0=false) of the four predicates to solve:

#FEEDFORWARD NEURAL NETWORK(FNN) WITH BACK PROPAGATION SOLUTION FOR XOR
result=[0,0,0,0] #trained result
train=4 #dataset size to train

The train variable is the number of predicates to solve: (0,0), (1,1),(1,0),(0,1). The variable of
the predicate to solve is pred.

The core of the program is practically the sheet of paper I wrote, as in the following code.

#II hidden layer 1 and its output
def hidden_layer_y(epoch,x1,x2,w1,w2,w3,w4,b1,b2,pred,result):
 h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
 h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I,a hidden layer 2 with bias
 if(h1>=1):h1=1;
 if(h1<1):h1=0;
 if(h2>=1):h2=1
 if(h2<1):h2=0

 h1= h1 * -b1
 h2= h2 * b2
#IV. threshold II and OUTPUT y
 y=h1+h2
 if(y<1 and pred>=0 and pred<2):
 result[pred]=1

 if(y>=1 and pred>=2 and pred<4):
 result[pred]=1

Become an Unconventional Innovator Chapter 4

[75]

pred is an argument of the function from 1 to 4. The four predicates can be represented in
the following table:

Predicate (pred) x1 x2 Expected result

0 1 1 0

1 0 0 0

2 1 0 1

3 0 1 1

That is why y must be <1 for predicates 0 and 1. Then, y must be >=1 for predicates 2 and 3.

Now, we have to call the following function limiting the training to 50 epochs, which are
more than enough:

#I Forward and backpropagation
for epoch in range(50):
 if(epoch<1):
 w1=0.5;w2=0.5;b1=0.5
 w3=w2;w4=w1;b2=b1

At epoch 0, the weights and biases are all set to 0.5. No use thinking! Let the program do
the job. As explained previously, the weight and bias of x2 are equal.

Now the hidden layers and y calculation function are called four times, one for each
predicate to train, as shown in the following code snippet:

#I.A forward propagation on epoch 1 and IV.backpropagation starting epoch 2
 for t in range (4):
 if(t==0):x1 = 1;x2 = 1;pred=0
 if(t==1):x1 = 0;x2 = 0;pred=1
 if(t==2):x1 = 1;x2 = 0;pred=2
 if(t==3):x1 = 1;x2 = 0;pred=3
 #forward propagation on epoch 1
 hidden_layer_y(epoch,x1,x2,w1,w2,w3,w4,b1,b2,pred,result)

A simplified version of a cost function and gradient
descent
Now the system must train. To do that, we need to measure the number of predictions, 1 to
4, that are correct at each iteration and decide how to change the weights/biases until we
obtain proper results.

Become an Unconventional Innovator Chapter 4

[76]

A slightly more complex gradient descent will be described in the next chapter. In this
chapter, only a one-line equation will do the job. The only thing to bear in mind as an
unconventional thinker is: so what? The concept of gradient descent is minimizing loss or
errors between the present result and a goal to attain.

First, a cost function is needed.

There are four predicates (0-0, 1-1, 1-0, 0-1) to train correctly. We simply need to find out
how many are correctly trained at each epoch.

The cost function will measure the difference between the training goal (4) and the result of
this epoch or training iteration (result).

When 0 convergence is reached, it means the training has succeeded.

result[0,0,0,0] contains a 0 for each value if none of the four predicates has been
trained correctly. result[1,0,1,0] means two out of four predicates are
correct. result[1,1,1,1] means that all four predicates have been trained and that the
training can stop. 1, in this case, means that the correct training result was obtained. It can
be 0 or 1. The result array is the result counter.

The cost function will express this training by having a value of 4, 3, 2, 1, or 0 as the
training goes down the slope to 0.

Gradient descent measures the value of the descent to find the direction of the slope: up,
down, or 0. Then, once you have that slope and the steepness of it, you can optimize the
weights. A derivative is a way to know whether you are going up or down a slope.

In this case, I hijacked the concept and used it to set the learning rate with a one-line
function. Why not? It helped to solve gradient descent optimization in one line:

if(convergence<0):w2+=0.05;b1=w2

By applying the vintage children buying candy logic to the whole XOR problem, I found that
only w2 needed to be optimized. That's why b1=w2. That's because b1 is doing the tough
job of saying something negative (-) all the time, which completely changes the course of
the resulting outputs.

Become an Unconventional Innovator Chapter 4

[77]

The rate is set at 0.05, and the program finishes training in 10 epochs:

epoch: 10 optimization 0 w1: 0.5 w2: 1.0 w3: 1.0 w4: 0.5 b1: -1.0 b2: 1.0

This is not a mathematical calculation problem but a logical one, a yes or no problem. The
way the network is built is pure logic. Nothing can stop us from using whatever training
rates we wish. In fact, that's what gradient descent is about. There are many gradient
descent methods. If you invent your own and it works for your solution, that is fine.

This one-line code is enough, in this case, to see whether the slope is going down. As long
as the slope is negative, the function is going downhill to cost = 0:

convergence=sum(result)-train #estimating the direction of the slope
if(convergence>=-0.00000001): break

The following graph sums up the whole process:

Too simple? Well, it works, and that's all that counts in real-life development. If your code
is bug-free and does the job, then that's what counts.

Finding a simple development tool means nothing more than that. It's just another tool in
the toolbox. We can get this XOR function to work on a neural network and generate
income.

Become an Unconventional Innovator Chapter 4

[78]

Companies are not interested in how smart you are but how efficient (profitable)
you can be.

Linear separability was achieved
Bear in mind that the whole purpose of this feedforward network with backpropagation
through a cost function was to transform a linear non-separable function into a linearly
separable function to implement classification of features presented to the system. In this
case, the features had 0 or 1 value.

One of the core goals of a layer in a neural network is to make the input
make sense, meaning to be able to separate one kind of information from
another.

h1 and h2 will produce the Cartesian coordinate linear separability training axis, as
implemented in the following code:

h1= h1 * -b1
h2= h2 * b2
print(h1,h2)

Running the program provides a view of the nonlinear input values once they have been
trained by the hidden layers. The nonlinear values then become linear values in a linearly
separable function:

linearly separability through cartesian training -1.0000000000000004
1.0000000000000004
linearly separability through cartesian training -0.0 0.0
linearly separability through cartesian training -0.0 1.0000000000000004
linearly separability through cartesian training -0.0 1.0000000000000004
epoch: 10 optimization 0 w1: 0.5 w2: 1.0 w3: 1.0 w4: 0.5 b1: -1.0 b2: 1.0

Become an Unconventional Innovator Chapter 4

[79]

The intermediate result and goal are not a bunch of numbers on a screen to show that the
program works. The result is a set of Cartesian values that can be represented in the
following linearly separated graph:

We have now obtained a separation between the top values (empty circle) representing the
intermediate values of the 1,0 and 0,1 inputs, and the bottom values representing the 1,1
and 0,0 inputs. We now have clouds on top and trees below the line that separates them.

The layers of the neural network have transformed nonlinear values into linear separable
values, making classification possible through standard separation equations, such as the
one in the following code:

#IV. threshold II and OUTPUT y
y=h1+h2 # logical separation
if(y<1 and pred>=0 and pred<2):
result[pred]=1

if(y>=1 and pred>=2 and pred<4):
result[pred]=1

The ability of a neural network to make non-separable information separable and classifiable
represents one of the core powers of deep learning. From this technique, many operations can be
performed on data, such as subset optimization.

Become an Unconventional Innovator Chapter 4

[80]

Applying the FNN XOR solution to a case
study to optimize subsets of data
The case study described here is a real-life project. The environment and functions have
been modified to respect confidentiality. But, the philosophy is the same one as that used
and worked on.

We are 7.5 billion people breathing air on this planet. In 2050, there will be about 2.5 billion
more. All of these people need to wear clothes and eat. Just those two activities involve
classifying data into subsets for industrial purposes. Grouping is a core concept for any
kind of production. Production relating to producing clothes and food requires grouping to
optimize production costs. Imagine not grouping and delivering one t-shirt at a time from
one continent to another instead of grouping t-shirts in a container and grouping many
containers (not just two on a ship). Let's focus on clothing, for example.

A brand of stores needs to replenish the stock of clothing in each store as the customers
purchase their products. In this case, the corporation has 10,000 stores. The brand produces
jeans, for example. Their average product is a faded jean. This product sells a slow 50 units
a month per store. That adds up to 10,000 stores x 50 units = 500,000 units or stock keeping
unit (SKU) per month. These units are sold in all sizes grouped into average, small, and
large. The sizes sold per month are random.

The main factory for this product has about 2,500 employees producing those jeans at
an output of about 25,000 jeans per day. The employees work in the following main fields:
cutting, assembling, washing, laser, packaging, and warehouse. See Chapter 12, Automated
Planning and Scheduling, for Amazon's patented approach to apparel production.

The first difficulty arises with the purchase and use of fabric. The fabric for this brand is not
cheap. Large amounts are necessary. Each pattern (the form of pieces of the pants to be
assembled) needs to be cut by wasting as little fabric as possible.

Imagine you have an empty box you want to fill up to optimize the volume. If you only put
soccer balls in it, there will be a lot of space. If you slip tennis balls in the empty spaces,
space will decrease. If on top of that, you fill the remaining empty spaces with ping pong
balls, you will have optimized the box.

Building optimized subsets can be applied to containers, warehouse flows and
storage, truckload optimizing, and almost all human activities.

Become an Unconventional Innovator Chapter 4

[81]

In the apparel business, if 1% to 10% of fabric is wasted while manufacturing jeans, the
company will survive the competition. At over 10%, there is a real problem to solve. Losing
20% on all the fabric consumed to manufacture jeans can bring the company down and
force it into bankruptcy.

The main rule is to combine larger pieces and smaller pieces to make optimized
cutting patterns.

Optimization of space through larger and smaller objects can be applied to cutting the
forms which are patterns of the jeans, for example. Once they are cut, they will be
assembled at the sewing stations.

The problem can be summed up as:

Creating subsets of the 500,000 SKUs to optimize the cutting process for the
month to come in a given factory
Making sure that each subset contains smaller sizes and larger sizes to minimize
loss of fabric by choosing six sizes per day to build 25,000 unit subsets per day
Generating cut plans of an average of three to six sizes per subset per day for a
production of 25,000 units per day

In mathematical terms, this means trying to find subsets of sizes among 500,000 units for a
given day.

The task is to find six well-matched sizes among 500,000 units. This is calculated by the
following combination formula:

At this point, most people abandon the idea and just find some easy way out of this even if
it means wasting fabric. The problem was that in this project, I was paid on a percentage of
the fabric I would manage to save. The contract stipulated that I must save 3% of all fabric
consumption per month for the whole company to get paid a share of that. Or receive
nothing at all. Believe me, once I solved that, I kept that contract as a trophy and a tribute to
simplicity.

The first reaction we all have is that this is more than the number of stars in the universe
and all that hype!

Become an Unconventional Innovator Chapter 4

[82]

That's not the right way to look at it at all. The right way is to look exactly in the opposite
direction. The key to this problem is to observe the particle at a microscopic level, at the
bits of information level. This is a fundamental concept of machine learning and deep
learning. Translated into our field, it means that to process an image, ML and DL process
pixels. So, even if the pictures to analyze represent large quantities, it will come down to
small units of information to analyze:

yottabyte (YB) 1024 yobibyte (YiB) 280

Today, Google, Facebook, Amazon, and others have yottabytes of data to classify and make
sense of. Using the word big data doesn't mean much. It's just a lot of data, and so what?

You do not need to analyze individual positions of each data point in a dataset, but use the
probability distribution.

To understand that, let's go to a store to buy some jeans for a family. One of the parents
wants a pair of jeans, and so does a teenager in that family. They both go and try to find
their size in the pair of jeans they want. The parent finds 10 pairs of jeans in size x. All of
the jeans are part of the production plan. The parent picks one at random, and the teenager
does the same. Then they pay for them and take them home.

Some systems work fine with random choices: random transportation (taking jeans from
the store to home) of particles (jeans, other product units, pixels, or whatever is to be
processed) making up that fluid (a dataset).

Translated into our factory, this means that a stochastic (random) process can be introduced
to solve the problem.

All that was required is that small and large sizes were picked at random among the
500,000 units to produce. If six sizes from 1 to 6 were to be picked per day, the sizes could
be classified as follows in a table:

Smaller sizes= S={1,2,3}

Larger sizes=L=[4,5,6}

Become an Unconventional Innovator Chapter 4

[83]

Converting this into numerical subset names, S=1 and L=6. By selecting large and small sizes to
produce at the same time, the fabric will be optimized:

Size of choice 1 Size of Choice 2 Output

6 6 0

1 1 0

1 6 1

6 1 1

Doesn't this sound familiar? It looks exactly like our vintage FNN, with 1 instead of 0 and 6
instead of 1. All that has to be done is to stipulate that subset S=value 0, and subset L=value 1;
and the previous code can be generalized.

If this works, then smaller and larger sizes will be chosen to send to the cut planning
department, and the fabric will be optimized. Applying the randomness concept of
Bellman's equation, a stochastic process is applied, choosing customer unit orders at
random (each order is one size and a unit quantity of 1):

w1=0.5;w2=1;b1=1
w3=w2;w4=w1;b2=b1
s1=random.randint(1,500000)#choice in one set s1
s2=random.randint(1,500000)#choice in one set s2

The weights and bias are now constants obtained by the result of the XOR training FNN.
The training is done; the FNN is simply used to provide results. Bear in mind that the word
learning in machine learning and deep learning doesn't mean you have to train systems
forever. In stable environments, training is run only when the datasets change. At one point
in a project, you are hopefully using deep trained systems and are not just stuck in the deep
learning process. The goal is not to spend all corporate resources on learning but on using
trained models.

Deep learning architecture must rapidly become deep trained models to
produce a profit or disappear from a corporate environment.

For this prototype validation, the size of a given order is random. 0 means the order fits in
the S subset; 1 means the order fits in the L subset. The data generation function reflects the
random nature of consumer behavior in the following six-size jean consumption model.

x1=random.randint(0, 1)#property of choice:size smaller=0
x2=random.randint(0, 1)#property of choice :size bigger=1
hidden_layer_y(x1,x2,w1,w2,w3,w4,b1,b2,result)

Become an Unconventional Innovator Chapter 4

[84]

Once two customer orders have been chosen at random chosen at random in the right size
category, the FNN is activated, the FNN is activated and runs like the previous example.
Only the result array has been changed because no training is required. Only a yes (1) or no
(0) is expected, as shown in the following code:

#II hidden layer 1 and its output
def hidden_layer_y(x1,x2,w1,w2,w3,w4,b1,b2,result):
 h1=(x1*w1)+(x2*w4) #II.A.weight of hidden neuron h1
 h2=(x2*w3)+(x1*w2) #II.B.weight of hidden neuron h2

#III.threshold I,a hidden layer 2 with bias
 if(h1>=1):h1=1;
 if(h1<1):h1=0;
 if(h2>=1):h2=1
 if(h2<1):h2=0
 h1= h1 * -b1
 h2= h2 * b2

#IV. threshold II and OUTPUT y
 y=h1+h2
 if(y<1):
 result[0]=0
 if(y>=1):
 result[0]=1

The number of subsets to produce needs to be calculated to determine the volume of
positive results required.

The choice is made of six sizes among 500,000 units. But, the request is to produce a daily
production plan for the factory. The daily production target is 25,000. Also, each subset can
be used about 20 times. There is always, on average, 20 times the same size in a given pair
of jeans available.

Each subset result contains two orders, hence two units:

R=2 x 20 = 120

Each result produced by the system represents a quantity of 120 for 2 sizes.

Six sizes are required to obtain good fabric optimization. This means that after three
choices, the result represents one subset of potential optimized choices:

R = 120 x 3 subsets of 2 sizes= 360

Become an Unconventional Innovator Chapter 4

[85]

The magic number has been found. For every 3 choices, the goal of producing 6 sizes
multiplied by a repetition of 20 will be reached.

The production per day request is 25,000:

The number of subsets requested = 25000/3=8333. 333

The system can run 8333 products as long as necessary to produce the volume of subsets
requested. In this case, the range is set to 1000000 products because only the
positive results are accepted. The system is filtering the correct subsets through the
following function:

for element in range(1000000):
if(result[0]>0):
subsets+=1
print("Subset:",subsets,"size subset #",x1," and ","size subset #",x2,"
result:",result[0],"order #"," and ",s1,"order #",s2)
if(subsets>=8333):
break

When the 8333 subsets have been found respecting the smaller-larger size distribution, the
system stops, as shown in the following output.

Subset: 8330 size subset # 1 and size subset # 0 result: 1 order # and
53154 order # 14310
Subset: 8331 size subset # 1 and size subset # 0 result: 1 order # and
473411 order # 196256
Subset: 8332 size subset # 1 and size subset # 0 result: 1 order # and
133112 order # 34827
Subset: 8333 size subset # 0 and size subset # 1 result: 1 order # and
470291 order # 327392

This prototype proves the point. Not only was this project a success with a similar
algorithm, but also the software ran for years in various forms on key production sites,
reducing material consumption and generating a profit each time it ran. The software later
mutated in a powerfully advanced planning and scheduling application.

Two main functions, among some minor ones, must be added:

After each choice, the orders chosen must be removed from the 500,000-order
dataset. This will preclude choosing the same order twice and reduce the number
of choices to be made.

Become an Unconventional Innovator Chapter 4

[86]

An optimization function to regroup the results by trained optimized patterns,
by an automated planning program for production purposes, as described in
Chapter 12, Automated Planning and Scheduling.

Application information:

The core calculation part of the application is less than 50-lines long
When a few control functions and dataset tensors are added, the program might
reach 200 lines maximum
This guarantees easy maintenance for a team

It takes a lot of time to break a problem down into elementary parts and
find a simple, powerful solution. It thus takes much longer than just
typing hundreds to thousands of lines of code to make things work. The
simple solution, however, will always be more profitable and software
maintenance will prove more cost effective.

Summary
Building a small neural network from scratch provides a practical view of the elementary
properties of a neuron. We saw that a neuron requires an input that can contain many
variables. Then, weights are applied to the values with biases. An activation function then
transforms the result and produces an output.

Neuronal networks, even one- or two-layer networks, can provide real-life solutions in a
corporate environment. The real-life business case was implemented using complex theory
broken down into small functions. Then, these components were assembled to be as
minimal and profitable as possible.

Customers expect quick-win solutions. Artificial intelligence provides a large variety of
tools that satisfy that goal. When solving a problem for a customer, do not look for the best
theory, but the simplest and fastest way to implement a profitable solution no matter how
unconventional it seems.

In this case, an enhanced perceptron solved a complex business problem. In the next
chapter, an FNN will be introduced using TensorFlow.

Become an Unconventional Innovator Chapter 4

[87]

Questions
Can the perceptron alone solve the XOR problem? (Yes | No)1.
Is the XOR function linearly non-separable? (Yes | No)2.
One of the main goals of layers in a neural network is classification. (Yes | No)3.
Is deep learning the only way to classify data? (Yes | No)4.
A cost function shows the increase in the cost of a neural network. (Yes | No)5.
Can simple arithmetic be enough to optimize a cost function? (Yes | No)6.
A feedforward network requires inputs, layers, and an output. (Yes | No)7.
A feedforward network always requires training with backpropagation. (Yes |8.
No)
In real-life applications, solutions are only found by following existing theory.9.
(Yes | No)

Further reading
Linear separability:

http://www.ece.utep. edu/ research/ webfuzzy/ docs/ kk-thesis/ kk-thesis- html/ node19.
html

http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html
http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html

5
Manage the Power of Machine

Learning and Deep Learning
Mastering machine learning and deep learning is proportional to your ability to design the
architectures of these solutions. As developers, we tend to rush to some sample code, run it,
and then try to implement it somehow. That's like going to a big city we don't know, with
no map and no guiding system, and trying to find a street. Even worse, it's like trying to
build a 50-storey building with no architect or plans.

An efficient, well-thought architecture will lead to a good solution. Deep learning networks
are data flow graph calculations as shown in Chapter 4, Become an Unconventional Innovator.
A node or edge is, in fact, a mathematical operation. The lines connecting these nodes are
data flows and mathematical representations. Tools such as TensorFlow and TensorBoard
have been designed for data flow graph representations and calculations. Without using
TensorBoard, the graph representation of a network, there is little to no chance of
understanding and designing deep networks.

The sponsors of a project need to understand the concepts of a given solution. This chapter
explores how to use these tools and, at the same time, make a successful presentation to a
CEO, top managers, or your team.

The following topics will be covered in this chapter:

Building a feedforward neural network (FNN) with TensorFlow
Using TensorBoard, a data flow graph, to design your program
Using the data flow graph to write a program
A cost function, a loss function
Gradient descent
Backpropagation in a feedforward network
Presenting an FNN to a team or management

Manage the Power of Machine Learning and Deep Learning Chapter 5

[89]

Technical requirements
Python 3.6x 64-bit from https:/ /www.python. org/

NumPy for Python 3.6x
TensorFlow from https:/ /deepmind. com/ with TensorBoard

Programs: GitHub Chapter05.

The Python programs delivered with this chapter constitute a sandbox for
you to play around with to become familiar with TensorFlow and
TensorBoard. Feel free to run them, modify the TensorFlow data flow
graphs, and see what happens in TensorBoard.

FNN_XOR_Tensorflow.py: This program shows how to train an FNN to solve
the XOR problem in a few lines.
FNN_XOR_Tensorflow_graph.py: This program adds TensorBoard metadata to
display the data flow graph of the program.
FNN_XOR_Tensorflow_graph_only.py: This program contains a data flow
graph of the program just to show that mastering the graph means mastering the
program.
Tensorboard.reader.py: This program runs with the preceding programs. It
finds the /log file containing the data to display in TensorBoard and runs the
TensorBoard local service.
FNN_XOR_Tensorflow_tensorboard_MODEL1.py: This program shows how to
tweak a FNN_XOR_Tensorflow_graph_only.py to add some labels to prepare a
corporate presentation.

Check out the following video to see the code in action:

https://goo.gl/QrKrSA

Building the architecture of an FNN with
TensorFlow
Before applying an FNN to a problem, an architecture of the network must be built. A
TensorFlow architecture and solution to the XOR function is the place to start. The
architecture of the example differs from the vintage, built-from-scratch solution but the
concepts remain the same.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://deepmind.com/
https://goo.gl/QrKrSA
https://goo.gl/QrKrSA
https://goo.gl/QrKrSA
https://goo.gl/QrKrSA
https://goo.gl/QrKrSA
https://goo.gl/QrKrSA
https://goo.gl/QrKrSA
https://goo.gl/QrKrSA
https://goo.gl/QrKrSA

Manage the Power of Machine Learning and Deep Learning Chapter 5

[90]

Writing code using the data flow graph as an
architectural roadmap
TensorFlow is a graph-driven solution based on graph theory, a branch of mathematics.
Designing deep learning without graphs would prove quite difficult. My XOR FNN built
from scratch in Chapter 4, Become an Unconventional Innovator, fits the need of the case
study described. However, if thousands of nodes are required, TensorFlow, Keras (with
TensorFlow backend), or other similar solutions will be needed. In this chapter, a neural
network will be developed in TensorFlow.

The building blocks of graphs are nodes (or vertices, or points) and edges (or lines) that
connect the nodes to one another.

In TensorFlow parlance, nodes are cleverly named ops for operations. In Chapter 4, Become
an Unconventional Innovator, the Python example shows exactly that: nodes as operations
and calculations.

Mathematical models will be described through a data flow graph. The first step is to build
the model, your architecture.

In a TensorFlow program, the first top source code lines are not just a new way to describe
variables that you will use later. They are the program. They are critical to the computation
of the graph. In fact, TensorFlow uses the graph to compute the operations. The graph is the
architecture, the roadmap that describes the whole computation process of a deep learning neural
network. The following graph has taken the code lines and transformed them into a graph.
Imagine that the following graph is a network of water pipes in the city. First, the city
builds the pipes. Only then does the water (data in our case) flow in those pipes. The pipes
(TensorFlow variables, arrays, and other objects) are not a formality. They represent the
core architecture of a system.

This graph is built with FNN_XOR_Tensorflow_graph_only.py to show how to use
TensorBoard to analyze your network. It will prove easier to fix design errors with
TensorBoard. Click on the nodes to explore the details of each part of the graph. Run the
program; then run TensorBoard_reader.py to launch TensorBoard.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[91]

The following diagram illustrates this:

A dataflow graph

A data flow graph translated into source code
The data flow graph will be used to build the architecture of a project. It can be used as a
project management tool and project optimization tool as shown in the last part of this
chapter.

The input data layer
The input data on the graph represents each pair of two inputs computed at a time in this
XOR model using FNN_XOR_Tensorflow.py.

This program shows how to build a TensorFlow network in a few lines. In other models,
millions of pixels or other values can constitute the input. In this case, XOR is trained with
this model:

XOR_X = [[0,0],[0,1],[1,0],[1,1]]

Manage the Power of Machine Learning and Deep Learning Chapter 5

[92]

The first two inputs are (0,0), for example. The input will contain x1=0 and x2=0. Those
inputs are sent to the hidden layer along with the weights and biases:

W1 = tf.Variable(tf.random_uniform([2,2], -1, 1), name = "Weights1")
B1 = tf.Variable(tf.zeros([2]), name = "Bias1")

The hidden layer
The hidden layer contains a multiplication function of weights and an addition of biases, as
shown in the following diagram:

A dataflow graph with multiplication function

The input is sent to the multiplication function along with the weights. Thus x1 and x2 will
be multiplied by the weights as explained in Chapter 4, Become an Unconventional Innovator.
In this model, the bias variable is added to the result of the multiplications to each of the
hidden neurons (one for each x). Go back to Chapter 4, Become an Unconventional Innovator,
again to see the low-level mechanics of the system if necessary.

Bear in mind that there are several mathematical ways, and thus there are several
architectures represented in graphs that can solve the FNN XOR problem. Once the
multiplication and addition have been computed, a logistic sigmoid function (see Chapter
2, Think like a Machine) is applied to the result.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[93]

Why is a logistic sigmoid function needed here?

In Chapter 4, Become an Unconventional Innovator, in my vintage program, I did not use one.
I just rounded the values to 0 or 1. That works in a limited environment. However, as
explained in Chapter 2, Think like a Machine, the output of the neurons needs to be
normalized to be useful when the input data starts increasing and diversifying. To sum it
up, suppose we obtain 200 as an input of a neuron and 2 as an output of another neuron.
That makes it very difficult to manage this in the next layer. It's as if you went to a shop and
had to pay for one product in a given currency and another product in a different currency.
Now the cashier has to add that up. It's not practical at all in a shop and even less in a
network with thousands of neurons.

The following LS logistic sigmoid is thus a very handy tool for the outputs to level the
values:

LS = tf.sigmoid(tf.matmul(x_, W1) + B1)

Basically, the values are squashed into small numbers that are compatible with the next
step, which is the computation of the output layer.

The output layer
The output layer will now receive the result y = (input * weights+ bias) squashed by logistic
sigmoid (y), as shown in the following diagram:

A dataflow graph with output layer

Manage the Power of Machine Learning and Deep Learning Chapter 5

[94]

The output layer takes the y output of the hidden layer (on the right-hand side of the graph)
and receives the weights and bias to apply to this layer in this model. Once the
multiplication of weights and addition of bias are computed, the logistic sigmoid function
squashes this output as well. This is a very nice way of keeping values homogeneous over
the network. It's a tidy way of always sending small computable values to the next layer as
implemented in the following code.

Output = tf.sigmoid(tf.matmul(LS, W2) + B2)

Now that the output has been obtained, what is it worth? How is it evaluated and how are
the weights adjusted?

The cost or loss function
The following cost function compares the expected result y_ with the present result
produced by the network.

cost = tf.reduce_mean(((y_ * tf.log(Output)) + ((1 - y_) * tf.log(1.0 -
Output))) * -1)

The tf.log is applied to the results to squash them for efficient comparisons.
The tf.reduce_mean supports a variety of cost functions; this is one way to calculate the
error between the training dataset and the intermediate result.

Another way to calculate a cost function, as shown in the following code, is to compare the
output of the current iteration with the target output and square both to obtain a visible
difference.

cost = tf.reduce_mean(tf.square(y_-Output))

Choosing a cost function will depend on your model. This method in its minimized format
is called least squares. It produces efficient results in this model.

Gradient descent and backpropagation
Gradient descent defines two concepts:

Gradient or derivative measurement of the slope (up or down / how steep)
Descent or reducing the error level between the present result, relying on the
parameters (weights and biases), and the target training dataset

Manage the Power of Machine Learning and Deep Learning Chapter 5

[95]

There are several ways to measure whether you are going up or down a slope. Derivatives
are the most commonly used mathematical tool for this. Let us say you have 15 steps to go
from one floor of a building down to the next floor. At each step, you feel you are going
down.

The slope or derivative is the function describing you going down those stairs:

S = slope of you going down the stairs
dy = where you are once you have made a step (up, down, or staying on a step)
dx = the size of your steps (one at a time, two at a time, and so on)
f(x) = the fact of going downstairs, for example from step 4 to step 3, step by step.
The derivative or slope is thus:

f(x) is the function of you going down (or up or stopping on a step). For example, when you
move one step forward, you are going from step 4 to step 3 (down). Thus f(x)=x-b, in which
b = 1 in this example. This is called a decreasing function. h = the number of steps you are
going at each pace, for example, one step down if you are not in a hurry and two steps
down if you are in a hurry. In this example, you are going down one step at a time from
step 4 to 3; thus h = 1 (one step at a time).

We obtain the following formula:

This means that we are at step 3 after taking one step. We started at step 4, so we went
down -1 step. The minus sign means you are going downstairs from step 4 to step 3 or -1
step.

The gradient is the direction the function is taking. In this case, it is -1 step. If you go down
two steps at a time, it would be -2. A straightforward way is just to take the derivative and
use it. If it's 0, we're not moving. If it's negative we're going down (less computation or less
remaining time to train).

If the slope is positive, we are in trouble, we're going up and increase the cost of the
function (more training or more remaining time to train).

Manage the Power of Machine Learning and Deep Learning Chapter 5

[96]

The goal of an FNN is to converge to 0. This means that as long as the parameters (weights
and biases) are not optimized, the output is far from the target expected. In this case, for
example, there are four predicates to train (1-1,0-0,1-0,0-1). If only two results are correct,
the present situation is negative, which is 2 - 4 = -2. When three results are correctly trained,
the output gradient descent is 3 - 4 = -1. This will be translated into derivative gradient
descent form using the cost calculated. Descent means that 0 is the target when all four
outputs out of four are correct. This arithmetic works for an example without complicated
calculations. But TensorFlow provides functions for all situations to calculate the cost (cost
function), see whether the training session is going well (down), and optimize the weights
to be sure that the cost is diminishing (gradient descent). The
following GradientDescentOptimizer will optimize the training of the weights.

cost = tf.reduce_mean(tf.square(y_-Output))
train_step = tf.train.GradientDescentOptimizer(0.10).minimize(cost)

A current learning rate for the gradient descent optimizer is 0.01. However, in this model, it
can be sped up to 0.10.

The GradientDescentOptimizer will make sure the slope is following a
decreasing function's gradient descent by optimizing the weights of the
network accordingly.

In this TensorFlow example, the means of the output values are calculated and then
squashed with the logistic function. It will provide information for the inbuilt gradient
descent optimizer to minimize the cost, with a small training step (0.01). This means that
the weights will be slightly changed before each iteration. An iteration defines
backpropagation. By going back running the FNN again, then measuring, and going back
again, we are propagating many combinations of weights—hopefully in the right direction
(down the slope)—to optimize the network.

Stochastic gradient descent (SGD) consists of calculating gradient
descent on samples of random (stochastic) data instead of using the whole
dataset every time.

Running the session
The last step is to run the architecture that has just been designed. The thinking was done in
the previous steps.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[97]

To run the program, the minimum code is for opening a session and running iterations, as
shown in the following code snippet:

#II.data

XOR_X = [[0,0],[0,1],[1,0],[1,1]]
XOR_Y = [[0],[1],[1],[0]]

#III.data flow graph computation

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

for epoch in range(50000):
 sess.run(train_step, feed_dict={x_: XOR_X, y_: XOR_Y})

Feeding the data into the data flow graph is done with feed_dict. Feed is a keyword in
FNN. This is an important feature. It is possible to feed parts of a dataset, not all of the data
in stochastic (picking only parts of the dataset to train) gradient descent models as
explained in Chapter 6, Don't Get Lost in Techniques – Focus on Optimizing Your Solutions.

Checking linear separability
The session has now taken the four XOR linearly non-separable (see Chapter 4, Become an
Unconventional Innovator) predicates, that is, four possibilities, and computed a linearly
separable solution:

The input of the output expected was the following:

XOR_Y = [[0],[1],[1],[0]]

One of the results obtained is the following:

Output [[0.01742549]
 [0.98353356]
 [0.98018438]
 [0.01550745]

The results are separable as described in Chapter 4, Become an Unconventional Innovator. If
you plot the values, you can separate them with a line.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[98]

The results are displayed by printing the intermediate values as the session runs, as shown
in the following code:

if epoch % 10000 == 0:
 print('Epoch ', epoch)
 print('Output ', sess.run(Output, feed_dict={x_: XOR_X, y_: XOR_Y}))
 print('Weights 1 ', sess.run(W1))
 print('Bias 1 ', sess.run(B1))
 print('Weights 2 ', sess.run(W2))
 print('Bias 2 ', sess.run(B2))
 print('cost ', sess.run(cost, feed_dict={x_: XOR_X, y_: XOR_Y}))

These source code lines are difficult to visualize. Using a graph to represent your
architecture helps to see the strong and weak points of a solution.

Using TensorBoard to design the
architecture of your machine learning and
deep learning solutions
FNN_XOR_Tensorflow_tensorbard_graph_only.py contains no program in the
traditional sense. It contains an essential aspect of developing machine learning and neural
networks: the architecture. This program is overloaded with basic graph summaries
to grasp the core concept of the data flow graph. In subsequent programs in this book, the
summaries will be less literal.

Master the architecture of a machine learning and deep learning program
and you'll master your solutions.

Designing the architecture of the data flow graph
First import TensorFlow with the following code:

import tensorflow as tf

Manage the Power of Machine Learning and Deep Learning Chapter 5

[99]

Then use the following code to give a name of the scope of each object you want to display
in one line. Write your variable or object on the second line and include it in the
TensorBoard summary as an image (histograms, scalars, and other summaries are possible),
as shown in the following code:

with tf.name_scope("Input"):
 x_ = tf.placeholder(tf.float32, shape=[4,2], name = 'x-input-predicates')
 tf.summary.image('input predicates x', x_, 10)

name provides a label for the objects in the graph. scope is a way to group
the names to simplify the visual representation of your architecture.

Repeat that with all the elements described in the previous section, as follows.

with tf.name_scope("Input_expected_output"):
 y_ = tf.placeholder(tf.float32, shape=[4,1], name = 'y-expected-output')
 tf.summary.image('input expected values of y', x_, 10)

...

with tf.name_scope("Error_Loss"):
 cost = tf.reduce_mean(((y_ * tf.log(Output)) + ((1 - y_) * tf.log(1.0 -
Output))) * -1)
 tf.summary.image("Error_Loss", cost, 10)

Then, once the session is created, set up the log writer directory, as shown in the following
code:

init = tf.global_variables_initializer()
sess = tf.Session()
writer = tf.summary.FileWriter("./logs/tensorboard_logs", sess.graph)
sess.run(init)
#THE PROGRAM DATE FEED CODE GOES HERE. See FNN_XOR_Tensorflow.py
writer.close()

Those are the basic steps to create the logs to display in TensorBoard.

Note that this source code only contains the architecture of the data flow
graph and no program running the data. The program is the architecture
that defines computations. The rest is defining the datasets—how they
will be fed (totally or partially) to the graph. I recommend that you use
TensorBoard to design the architecture of your solutions with the
TensorFlow graph code. Only then, introduce the dynamics of feeding
data and running a program.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[100]

Displaying the data flow graph in TensorBoard
A practical way to obtain a visual display of your architecture and results is to have your
own little TensorBoard_reader.py, as shown in the following lines of code:

def launchTensorBoard():
 import os
 os.system('tensorboard --logdir=' + './logs/tensorboard_logs')
 return

import threading
t = threading.Thread(target=launchTensorBoard, args=([]))
t.start()

#In your browser, enter http://localhost:6006 as the URL
#and then click on Graph tab. You will then see the full graph.

All you have to do is git the output directory to the log directory path in your program. It
can be included in the main source code.

Once launched, you will see images of the previous section. You are now ready to enter
corporate environments as a solid architect thinker and designer.

Use a TensorBoard reader such as this for your meetings. You will be
viewed as an architect. You can use Microsoft PowerPoint or other tools
naturally. But at one point, even a single view of this data flow graph,
from a few seconds up to as long as your audience is interested, shows
that you master the architecture of the solution. That is, you master the
subject.

The final source code with TensorFlow and
TensorBoard
After running the programs, to make sure nothing is missing, the TensorFlow and
TensorBoard models can be merged and simplified as shown
in FNN_XOR_Tensorflow_graph.py.

The summaries have been simplified, the cost function uses the optimized least squares
method, and XOR linear separability has been proven with this model.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[101]

Using TensorBoard in a corporate
environment
Choosing the right architecture for your machine learning or deep learning solution is key
to the technical success of your project.

Then, being able to explain it fewer than 2 minutes to a CEO, a top manager, or even a
member of your team is key to the commercial success of your project. If they are
interested, they will ask more questions and you can drill down. First, you have to
captivate their attention. You spend time on your work. However, selling that idea or work
to somebody else is extremely difficult.

A slight change in the inputs can do the job, as shown
in FNN_XOR_Tensorflow_tensorboard_MODELI.py in the following code sample:

with tf.name_scope("input_store_products"):
x_ = tf.placeholder(tf.float32, shape=[4,2], name = 'x-input-
predicates')#placeholder is an operation supplied by the feed
tf.summary.image('input store products', x_, 10)

withtf.name_scope("input_expected_top_ranking"):
y_ = tf.placeholder(tf.float32, shape=[4,1], name = 'y-expected-output')
tf.summary.image('input expected classification', x_, 10)

Show the graph in full-screen mode and double-click on each node to highlight it while
speaking about a particular aspect of your architecture. The graph can be grouped into
large scopes by putting placeholders under the same tr.name.scope. For example, in the
following code, input_store_products was added to make a presentation:

with tf.name_scope("input_store_products"):
x_ = tf.placeholder(tf.float32, shape=[4,2], name = 'x-input-
predicates')#placeholder is an operation supplied by the feed
y_ = tf.placeholder(tf.float32, shape=[4,1], name = 'y-expected-output')

Use your imagination to find the best and clearest way to make your architecture
understood.

Display the graph in full-screen mode and double-click on each node to highlight it while
speaking about it.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[102]

Using TensorBoard to explain the concept of
classifying customer products to a CEO
Designing solutions seem fine, but if you can't sell them to your team or management, they
won't go far. More often than not, we think that since we have a good
technical background, we'll be recognized. Nothing is more deceiving. In a world where
knowledge is everywhere, competition will be at your door everyday. Furthermore,
managers will have less and less time to listen to what we have to say.

The architecture of your solution depends on what your buyers (team
managers, prospects, or customers) ask you. Your freedom to implement your
views depends on how well you present your architecture in a way that fits their
needs.

It's 8:30. The CEO has dropped into your office and is touring the company. The CEO is
sharp, bright, and has no patience with people who can't express themselves clearly. You
lower your head and look in the garbage can to find something that's not there. It doesn't
work. The CEO comes straight to you, invites you to a meeting room and asks you to
present what you are doing. A few other managers come in to see what's going on and
whether you will survive the presentation.

Will your views on the project survive this
meeting?
You can take your corporate PowerPoint out and bore your audience, or you can captivate
it.

I have gone through these meetings hundreds of times with a 90% sales success rate and
have refined a method that can be summed up in my 2-minute pitch, which always goes
something like the following.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[103]

I will display a chart and the following graph and say:

"Let's go straight to the point. We're trying to analyze the details of products based on
their images and find the most profitable ones. Here is a one-page chart showing the list of
the most promising products. Here is TensorBoard; it comes with TensorFlow package.
The computation power of TensorFlow's data flow guarantees disruptive innovative
profits for this project.
At the bottom of the screen, you can see that we are going to input store products (point to
the input_store_products box). What we expect is the profitable classification of
products: the best ones that represent our brand AND the ones that also generate the most
profit. So basically, there are two main types of features to extract: forms, shapes, and
colors of the most trendy products; and profit.
To achieve that, we feed (that's literally the language we use in code) the system with the
results we expect, a dataset of good choices (point to the
input_expect_classification box). Then we run the system; it optimizes until it
has been trained through gradient descent (point your arm and finger downwards), which
is simply a cost function to lower (CEO's understand lowering costs in 1/1,000,000th of a
second) the errors. Once the weights (just as we weigh decisions) are optimized (I point to
the weights), that's it. We will provide you each day with reports to drive the marketing
department."

A dataflow graph with input_store_products

Manage the Power of Machine Learning and Deep Learning Chapter 5

[104]

Then I stop immediately, slowly look at everybody, and say:

"To sum it up, we select the most profitable products in real time with this system and
provide the marketing department with real-time AI reports to boost their marketing
campaigns. By analyzing the features of the products, they will have more precise
marketing data to drive their sales."

If you read this aloud slowly, it should take you be under 2 minutes, which is your first-
level survival time.

The rules I've applied successfully are as follows:

Explain from off the top (global concepts).
Use as few words as possible, but choose the right ones. Don't avoid technical
concepts, but break them down into small key parts. This means that, once again,
TensorBoard architecture will develop this ability.
Speak slowly. Speaking slowly, stopping at each sentence, emphasizing each
keyword, and pointing to the graph at the same time is the only way to make
sure you are not losing anybody.
After 2 minutes, sum your introduction up and ask: "Am I clear? Do you want me
to continue. Questions?" If they want you to continue, then you can drill down,
stopping at every key point to make sure that everybody is still with you.

Bear in mind that many CEOs are business visionaries. They see things we
don't. So, if they come up with an idea, be very constructive and
innovative.

Was the sales pitch convincing?

At this point, if you have a good project, the CEO will most probably say one of the
following:

"Gee, that was clear and I understand what you are doing. Thanks. Bye." That's not too
bad.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[105]

"That looks too simple to be true. Can you give some more details?" This could be an
opportunity. The CEO wants me to explain more. So I drill down another 2
minutes around the way the weights are optimized in a clear way just like the
first 2 minutes. At that point, in 20% of my meetings, I ended up having lunch or
dinner with the CEO, who always has 100 other ideas for uses of such a program.
Bear in mind that many CEOs are business visionaries. They see things we don't.
So, if a new idea comes up, I generally say, "Great. I'll look into this and get back to
you tomorrow." Then I spend the night coming up with something that works and
is explained clearly.
"Good. I'd like you to talk to X and see where this is going." Not bad either.
Hopefully, X will listen to the CEO.

Statistically, being short and concise with real technical tangible objects to show worked
90% of the time for me. The 10% failures are lessons to learn from to keep the statistic up
the next time around.

The percentage of failure of our presentations is our cost function. We have
to bring that number down by learning from these failures by
backpropagation as well. We need to go back and change our parameters
to adapt to the next run.

Summary
Mastering the architecture of a machine learning and deep learning solution means first,
and above all, becoming an expert in designing the architecture of a solution and being able
to explain it.

The early lines of a source code program are not just variable declaration lines; they
represent the data flow graph that drives the computation of a neural network. These lines
define the architecture of your solutions. They are critical to the future of an artificial
intelligence solution.

The architecture of the solution, represented by TensorBoard, for example, serves two
purposes. The first purpose defines the way the computation of the graph will behave. The
second purpose is to use the architecture as a communication tool to sell your project to
your team, management, prospects, and customers. Our environment defines our project
and not simply our technical abilities, no matter how much we know.

The next chapter focuses on analyzing the core problems of machine learning and deep
learning programs.

Manage the Power of Machine Learning and Deep Learning Chapter 5

[106]

Questions
TensorBoard is simply a nice displaying program. (Yes | No).1.
Defining functions at the beginning of the source code, is just like in standard2.
programs. (Yes | No).
TensorFlow is a library add-on to Python to get some cool functions. (Yes | No).3.
TensorBoard is not necessary to deploy Machine Learning and Deep Learning4.
programs. (Yes | No).
As long as we're technical experts, we don't have to worry about our5.
environment. They will adapt. (Yes | No).
Presenting ML/DL projects doesn't change the architecture of a solution. (Yes |6.
No).
Managers don't need to understand the technical aspect of a solution as long as it7.
works. (Yes | No).

Further reading
https:// pythonprogramming. net/tensorflow- deep- neural- network- machine-
learning- tutorial/ ?completed= /tensorflow- introduction- machine-
learning- tutorial/ https:/ / www.tensorflow. org/ programmers_ guide/ graphs

https:// www. tensorflow. org/ versions/ r0. 12/ get_started/ basic_ usage

References
https://aimatters. wordpress. com/ 2016/ 01/16/ solving- xor- with- a- neural- network-
in-tensorflow/

https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://pythonprogramming.net/tensorflow-deep-neural-network-machine-learning-tutorial/?completed=/tensorflow-introduction-machine-learning-tutorial/https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://www.tensorflow.org/versions/r0.12/get_started/basic_usage
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow
https://aimatters.wordpress.com/2016/01/16/solving-xor-with-a-neural-network-in-tensorflow

6
Don't Get Lost in Techniques –

Focus on Optimizing Your
Solutions

No matter how much we know, the key point remains being able to deliver an artificial
intelligence solution or not. Implementing a machine learning (ML) or deep learning (DL)
program remains difficult and will become more complex as technology progresses at
exponential rates. This will be shown in Chapter 15, Cognitive NLP Chatbots, on quantum
computing, which may revolutionize computing with its mind-blowing concepts. There is
no such thing as a simple or easy way to design AI systems. A system is either efficient or
not, beyond being either easy or not. Either the designed AI solution provides real-life
practical uses or it builds up into a program that fails to work in various environments
beyond the scope of training sets.

This chapter doesn't deal with how to build the most difficult system possible to show our
knowledge and experience. It faces the hard truth of real-life delivery and ways to
overcome obstacles. Without data, your project will never take off. Even an unsupervised
ML program requires unlabeled data in some form or other.

Beyond understanding convolutional neural networks (CNN) that can recognize
Modified National Institute of Standards and Technology (MNIST) training sets of
handwritten images as described in Chapter 10, Applying Biomimicking to Artificial
Intelligence, efficiency comes first. In a corporate environment, you will often have to deal
with designing datasets and obtaining data. Doubts follow quickly. Are the datasets for a
given project reliable? How can this be measured? How many features need to be
implemented? What about optimizing the cost function and training functions?

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[108]

This chapter provides the methodology and tools needed to overcome everyday artificial
intelligence project obstacles. k-means clustering, a key ML algorithm, will be applied to
the increasing need for warehouse intelligence (Amazon and all online product-selling
sites). Quickly showing the solution to a problem will keep a project alive. Focusing on the
solution, and not the techniques, will get you there.

The following topics will be covered in this chapter:

Designing datasets
The design matrix
Dimensionality reduction
Determining the volume of a training set
k-means clustering
Unsupervised learning
Data conditioning management for the training dataset
Lloyd's algorithm
Building a Python k-means clustering program from scratch
Hyperparameters
Test dataset and prediction
Presenting the solution to a team

Technical requirements
Python 3.6x 64-bit from https:/ /www.python. org/

sklearn
pandas
matplotlib

Programs, Chapter06:

k-means_clustering_ch6.py with data.csv

Check out the following video to see the code in action:

https://goo.gl/kBzrp6

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/kBzrp6
https://goo.gl/kBzrp6
https://goo.gl/kBzrp6
https://goo.gl/kBzrp6
https://goo.gl/kBzrp6
https://goo.gl/kBzrp6
https://goo.gl/kBzrp6
https://goo.gl/kBzrp6
https://goo.gl/kBzrp6

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[109]

Dataset optimization and control
On day one of a project, a manager or customer will inevitably ask the AI expert what kind
of data is being dealt with, and in which format. Providing an answer to that will take some
hard work. The AI expert never really thought of that, having acquired expertise using the
available, optimized, and downloadable training datasets to test the programs. The expert's
name is Pert Ex (an anagram of expert) in this chapter. The expert likes to be called Pert.

The CEO of the corporation (or boss or customer) wants Pert to lead an Amazonization
project. Pert doesn't quite understand what that means. The CEO has the patience to
explain that wholesale e-commerce has overtaken traditional ways of doing business.
Wholesale means increasing use of warehouses. How those warehouses are managed will
make a difference to the cost of each project and the sales price.

Although the business is now huge and the warehouse is expanding, the costs of retrieving
products from the warehouse locations have been increasing. The corporation, which we
will name AGV-AI in this chapter, represents the sum of several real-life projects I have
managed on various warehouse and aerospace sites. Bear in mind that moving large
components in an aerospace project requires precise scheduling. Moving large volumes of
small products in an Amazonization process or small volumes of oversized products (25
meters or 82 feet for example) such as aerospace components can be costly if badly planned.
In AGV-AI, automatic guided vehicles (AGVs) are surprisingly taking longer routes from
a warehouse location to a pier. AGV-AI manufactures, stores, and delivers large volumes of
consumer goods.

The CEO wants Pert's team to find out what is going on and Pert must lead the technical
aspects of the project.

Designing a dataset and choosing an ML/DL
model
Pert goes back to his desk in an open space occupied by a team of 50 people and tries to
represent what is wrong in the Amazonization process at the warehouse level.

On paper, it comes down to moving from warehouse locations to piers represented by a
distance. The sum of the distances D could be a way to measure the process:

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[110]

f(p) represents the action of going from a warehouse location to a pier and the distance it
represents. Exactly like the distance, it takes you from a location in a shop where you
picked (p) something up and the door of the shop on your way out. You can imagine that if
you go straight from that location, pay, and go out, then that is a shorter way. But if you
pick the product up, wander around the shop first, and then go out, the distance (and time)
is longer. The sum of all of the distances of all the people wandering in this shop is D.

Pert now has a clear representation of the concept of the problem to solve: find the
wanderers. How can an AGV wander? It's automatic. After spending a few days watching
the AGVs in the warehouse, Pert understands why the AGVs are taking longer routes
sometimes.

When an AGV encounters an obstacle either it stops or, in this case, it
takes another route. Just like us in a shop when we have to walk around
an obstacle to get where we want.

Pert smiles. Pert has a plan.

Approval of the design matrix
Pert's plan is to first obtain as much data as possible and then choose an ML/DL model. His
plan is to represent all locations the AGVs come from on their way to the piers on a given
day. It's a location-to-pier analysis. Since the AGVs were at that location at one point and
their distances are recorded in their system, Pert goes over to the IT manager with a design
matrix. A design matrix contains a different example on each row, and each column is a
feature. Pert wants to play safe and comes up with the following format:

AGV number Start from location: Timestamp:yyyy,mm,dd,hh,mm End at pier: Timestamp:yyyy,mm,dd,hh,mm Location Pier number Distance

Ex1 1 year-month-day-hour-minute year-month-day-hour-minute 80

Ex2 2

Ex3 3

Ex4 4

Ex5 5

Agreeing on the format of the design matrix
The IT manager has been around AGV-AI for over 10 years and knows where all the
existing data is stored. Pert explains that the design matrix is one of the best ways to start
training a ML program. In this case:

AGV number identifies the vehicle.
Start indicates when the AGV left a location (Location column).

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[111]

End indicates when the AGV reached a pier (Pier column).
Distance is expressed in the metric system. Pert explains that most space agencies
around the world use the metric system.

The IT manager starts off by saying the following:

The AGV number is not stored in the mainframe but the local system that
manages the AGVs
In the mainframe, there is a start time when an AGV picks up its load at the
location and an end time when it reaches the pier
The location can be obtained in the mainframe as well as the pier
No distance is recorded

Pert would like to have access to the data in the AGV's local system to retrieve the AGV
number and correlate it with the data in the mainframe.

The IT manager looks at Pert and decides to tell the artificial intelligence expert the simple
truth:

Retrieving data from the AGV guiding system is not possible this fiscal year.1.
Those vehicles are expensive and no additional budget can be allocated.
Nobody knows the distance it takes from a location to a pier. As long as the2.
AGVs deliver the proper products on time at the right piers, nobody so far has
been interested in distances.
The AGV mission codes in the mainframe are not the same as in the local AGV3.
guiding system, so they cannot be merged into a dataset without development.

The project is slipping away. AGV-AI doesn't have the leisure or budget to invest man days
in extracting data that may or may not be used to optimize warehouse distances in its
Amazonization process. Pert has to find a solution very quickly before the very busy IT
manager drops the whole idea. Pert decides to think of this overnight and come back
quickly the next day.

Keeping an AI project alive means moving quickly.

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[112]

Dimensionality reduction
Pert is in trouble, and he knows it. Not all the data Pert would have liked can be obtained
for the moment. Some features must be left aside for the moment. He thinks back to his
walk from the IT manager's office to his office and looks at his cup of coffee.

Dimensionality reduction comes up!

DL uses dimensionality reduction to reduce the number of features in, for example, an
image. Each pixel of a 3D image, for example, is linked to a neuron, which in turn brings
the representation down to a 2D view with some form of function. For example, converting
a color image into shades of a now-gray image can do the trick. Once that is done, simply
reducing the values to, for example, 1 (light) or 0 (dark) makes it even easier for the
network. Using an image converted to 0 and 1 pixels makes some classification processes
more efficient, just like when we avoid a car on the road. We just see the object and avoid it.
We are not contemplating the nice color or the car to avoid or other dimensions.

We perform dimensionality reduction all day long. When you walk from one office to
another on the same floor of a building requiring no stairs or an elevator, you are not
thinking that the earth is round and that you're walking over a slight curve. You have
performed a dimensionality reduction. You are also performing a manifold operation.
Basically, it means that locally, on that floor, you do not need to worry about the global
roundness of the earth. Your manifold view of earth in your dimensionality reduction
representation is enough to get you from your office to another one on that floor.

When you pick up your cup of coffee, you just focus on not missing it and aiming for the
edges of it. You don't think about every single feature of that cup, such as its size, color,
decoration, diameter, and the exact volume of coffee in it. You just identify the edge of the
cup and pick it up. That is dimensionality reduction. Without dimensionality reduction,
nothing can be accomplished. It would take you 10 minutes to analyze the cup of coffee and
pick it up in that case!

When you pick that cup of coffee up, you test to see whether it is too hot, too cold, too
warm, or just fine. You don't put a thermometer in the cup to obtain the precise
temperature. You have again performed a dimensionality reduction of the features of that
cup of coffee. Furthermore, when you picked it up, you computed a manifold
representation by just observing the little distance around the cup, reducing the dimension
of information around you. You are not worrying about the shape of the table, whether it
was dirty on the other side, and other features.

Pert begins to imagine a (CNN) with dimensionality reduction. But the data will be
insufficient for a CNN (see Chapter 9, Getting Your Neurons to Work).

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[113]

There is no time to build a complicated DL program to compute dimensionality reduction
and satisfy this need. Automatic dimensionality reduction will be dealt with later when the
project has been accepted.

ML and DL techniques such as dimensionality reduction can be viewed as
tools and be used in any field in which you find them useful. Reducing
the number of features or modifying them can be done on a spreadsheet
by selecting the useful columns and/or modifying the data. By focusing on
the solution, you can use any tool in any way you want as long as it works
in a reliable way.

Pert then turns to a k-means clustering ML algorithm and decides to perform
dimensionality reduction by analysis of the data and defining it for a computation. Each
location will form a cluster as explained in the next section. With this intuition, Pert goes
back and presents the following format:

Location Start from location:
Timestamp:yyyy,mm,dd,hh,mm

End at location:
Timestamp:yyyy,mm,dd,hh,mm

Ex1

The IT manager is puzzled. Pert explains that as long as each location represents a separate
AGV task from start time to the end time and the pier, the rest will be calculated.

The IT manager says that it can be extracted in .csv format within a couple of days for a
test but asks how that makes the project possible. Pert says, "Provide the data, and I'll be back
with a prototype within a couple of days as well."

The volume of a training dataset
Pert decides to keep the dataset down to six locations over two days. Six locations are
chosen in the main warehouse with a group of truck loading points. Taking around 5,000
examples into account, that should represent the work of all the 25 AGVs purchased by
AGI-AI running 24 hours a day. The IT manager delivers the data.csv file the next day.

Implementing a k-means clustering solution
Pert now has a real data.csv dataset. The dataset needs to be converted into a prototype
to prove the financial value of the project he has in mind. The amount of the money saved
must capture the imagination of the CEO. Making a machine learning program work in a
corporate environment means nothing without profit to justify its existence.

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[114]

Do not speak about a project in a corporate environment without knowing
how much profit it represents and the cost of getting the job done.

The vision
Pert's primary goal can be summed up in one sentence: finding profit by optimizing AGVs.
Achieving that goal will lead to obtaining a budget for a full-scale project.

The data provided does not contain distances. However, an estimation can be made per
location as follows:

distance=(end time- start time)/average speed of an AGV

The start location is usually a loading point near a pier in this particular warehouse
configuration.

The data
The data provided contains start times (st), end times (endt), and delivery locations. To
calculate distances, Pert needs to convert those times into a distance (di) with the following
estimation for each location (ll):

di(ll)=(endt-st)/v

v = velocity of the AGV per minute
endt-st is expressed in minutes
di = estimated distance an AGV has gone in a given time

A Python program reads the initial file format and data and outputs a new file and format
as follows:

Distance Location

55 53

18 17

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[115]

Conditioning management
The data file is available at https:/ / github. com/ PacktPublishing/ Artificial-
Intelligence-By- Example/ blob/ master/ Chapter06/ data. csv.

Data conditioning means preparing the data that will become the input of the system. Poor
conditioning can have two outcomes:

Bad data making no difference (large volumes and minor errors)
Bad data making a difference (regardless of volumes, the data influences the
outcome)

In this particular case, out of the 5,000 records provided for the dataset, 25 distances are
missing.

Pert has analyzed the warehouse and is lucky!

The location numbers start at #1. #1 is near the loading point of the products. The AGV has
to bring the products to this point. To be more precise, in this warehouse configuration, the
AGV goes and gets a box (or crate) of products and brings them back to location 1. At
location 1, humans check the products and package them. After that, humans carefully load
the products in the delivery trucks.

Having spent hours measuring distances in the warehouse, Pert knows that the distance
from one location to the next is about 1 meter. For example, from location 1 to location 5,
the distance is about 5 meters, or 5 m. Also since all locations lead to location 1 for the
AGVs in this model, the theoretical distances will be calculated from location 1. Pert
decides to generalize the rule and defines a distance di for a location lj as follows:

di(lj)=lj

di is expressed in meters. Since the locations start at number 1 through n, the location
number is equal to the approximate distance from the first location from which the AGVs
depart. Looking at the data, it quickly appears that many distances are superior to their
location numbers. That is strange because the distance should be about equal to the
location.

The time has come to build a strategy and program.

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter06/data.csv

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[116]

The strategy
Pert's strategy can be summed up as follows:

Quickly write a program to represent the AGV's trajectories in a visual way
Go to the warehouse to check the results
Calculate the potential optimized profit with a solution that is yet to be found
Go back to present this to the top management to get a project budget approval

The k-means clustering program
k-means clustering is a powerful unsupervised learning algorithm. We often perform k-
means clustering in our lives. Take, for example, a lunch you want to organize for a team of
about 50 people in an open space that can just fit those people. It will be a bit cramped but a
project must be finished that day and it is a good way to bind the team for the final sprint.

A friend and a friend first decide to set up a table in the middle. Your friend points out that
the people in that room will form a big cluster k, and with only one table in the geometric
center (or centroid) c, it will not be practical. The people near the wall will not have access
to the main table.

You have an idea. You call Pert, who runs a computation to confirm your friend's intuition.
Pert shows them the problem with the following one-table plan:

The people not close to the table (rectangle in the middle) will not have easy access to the
table.

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[117]

You go to the room with your friend and Pert and try moving two tables c1 and c2 in various
places for two clusters of people k1 and k2.

The people x1 to xn form a dataset X. Your friend still has doubts and says, "Look at table c1. It
is badly positioned. Some people x near the wall will be right next to it and the others too far away.
We need the table c1 to be in the center of that cluster k1. The same goes for table c2."

You and your friend move a table c, and then estimate that the mean distance of the people
x around it will be about the same in their group or cluster k. They do the same for the other
table. They draw a line with chalk on the floor to make sure that each group or cluster is at
about the mean distance from its table.

Pert speaks up and says, "Gee, we can simulate that with this Python program I am writing for
my project!":

Step 1: You have been drawing lines with chalk to decide which group (cluster k)
each person x will be in, by looking at the mean distance from the table c
Step 2: You have been moving the tables around accordingly to optimize step 1

Pert shows them the two-table model computed by the k-means clustering program; it
looks exactly like what you just did. Then they finally add a third table and it looks good.
Pert says, "Look at what you did on the following screenshot.":

You and your friend look at Pert and say, "So what?"

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[118]

Pert smiles and says, "Well, you just re-invented Lloyd's algorithm to solve a k-means clustering
problem!"

You and your friend are curious. You want to know more. So you each get a paperboard,
and ask Pert to explain to you the warehouse project or any project with this model in
mathematical terms.

The mathematical definition of k-means clustering
The dataset X provides N points. These points or data points are formed by using distance
as the x axis in a Cartesian representation and the location as the y axis in a Cartesian
representation. If you have 1 person in on location 1 as the first record of your file, it will be
represented as x axis = 1 and y axis = 1 by the black dot, which is the data point, as shown in
the following diagram:

Cartesian representation

In this example, 5,000 records are loaded from data.csv, which is in the same directory as
the program. The data is unlabeled with no linear separation. The goal is to allocate the X
data points to K clusters. The number of clusters is an input value. Each cluster will have its
geometric center or centroid. If you decide to have three clusters K, then the result will be as
follows:

Three clusters K in three colors in a visual representation
Three geometric centers or centroids representing the center of the mean of the
sum of distances of x data points of that cluster

If you decide on six clusters, then you will obtain six centroids, and so on.

Described in mathematical terms, the formula in respect of Kk, µk is as follows:

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[119]

This means that the sum of each k (cluster) from 1 to the number of clusters K of the sum of
all distances of members xi to xn of each cluster K from their position to the geometric center
(centroid) µ must be minimized.

The smaller the distance from each member x to centroid µ, the more the system is
optimized. Note that the distance is squared each time because this is a Euclidean distance
in this version of the equation.

Lloyd's algorithm
There are several variations of Lloyd's algorithm. But all of them follow a common
philosophy.

For a given xn (data point), the distance from the centroid µ in its cluster must be less than
going to another center. Exactly like how a person in the lunch example wants to be closer
to one table rather than having to go far to get a sandwich because of the crowd!

The best centroid µ for a given xn is as follows:

This calculation is done for all µ (centroids) in all the clusters from k1 to K.

Once each xi has been allocated to a Kk, the algorithm recomputes µ by calculating the
means of all the points that belong to each cluster and readjusts the centroid µk.

The goal of k-means clustering in this case study
The goal must be clear, not simple, not easy, for Pert's managers to understand. Pert
decides to write a Python program first. Then if things go well, a full-scale project will be
designed. The goal must be to find the gain zone. The gain zone will be the data points that
could have been optimized in terms of distances.

In projects you build, distances can be replaced by costs, hours, or any optimization
measurement feature. Location can be replaced by a feature such as the number of people,
phone calls, or any other measurement.

k-means clustering can be applied to a range of applications as explained in Chapter
7, When to Use Artificial Intelligence.

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[120]

The Python program
The Python program uses the sklearn library (which contains efficient algorithms),
pandas for data analysis (only used to import the data in this program), and Matplotlib
to plot the results as data points (the coordinates of the data) and clusters (data points
classified in each cluster with a color). First the following models are imported:

from sklearn.cluster import KMeans
import pandas as pd
from matplotlib import pyplot as plt

NumPy is not a prerequisite since sklearn runs the computation.

1 – The training dataset
The training dataset consists of 5,000 lines. The first line contains a header for maintenance
purposes (data checking), which is not used. k-means clustering is an unsupervised
learning algorithm, meaning that it classifies unlabeled data into cluster-labeled data to
make future predictions. The following code displays the dataset:

#I.The training Dataset
dataset = pd.read_csv('data.csv')
print (dataset.head())
print(dataset)

The print(dataset) line can be useful though not necessary to check the training data
during a prototype phase or for maintenance purposes. The following output confirms that
the data was correctly imported:

'''Output of print(dataset)
 Distance location
0 80 53
1 18 8
2 55 38
...
'''

2 – Hyperparameters
Hyperparameters determine the behavior of computation method. In this case, two
hyperparameters are necessary:

The k number of clusters that will be computed. This number can and will be
changed during the case study meetings to find out the best organization

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[121]

process, as explained in the next section. After a few runs, Pert intuitively set k to
6.
The f number of features that will be taken into account. In this case, there are
two features: distance and location.

The program implements a k-means function as shown in the following code:

#II.Hyperparameters
Features = 2
k = 6
kmeans = KMeans(n_clusters=k)

Note that the Features hyperparameter is commented. In this case, the number of features
is implicit and determined by the format of the training dataset, which contains two
columns.

3 – The k-means clustering algorithm
sklearn now does the job using the training dataset and hyperparameters in the following
lines of code:

#III.k-means clustering algorithm
kmeans = kmeans.fit(dataset) #Computing k-means clustering

The gcenter array contains the geometric centers or centroids and can be printed for
verification purposes, as shown in this snippet:

gcenters = kmeans.cluster_centers_
print("The geometric centers or centroids:"
print(gcenters)
'''Ouput of centroid coordinates
[[48.7986755 85.76688742]
[32.12590799 54.84866828]
[96.06151645 84.57939914]
[68.84578885 55.63226572]
[48.44532803 24.4333996]
[21.38965517 15.04597701]]
'''

These geometric centers need to be visualized with labels for decision-making purposes.

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[122]

4 – Defining the result labels
The initial unlabeled data can now be classified into cluster labels as shown in the following
code:

#IV.Defining the Result labels
labels = kmeans.labels_
colors = ['blue','red','green','black','yellow','brown','orange']

Colors can be used for semantic purposes beyond nice display labels. A color for each top
customer or leading product can be assigned, for example.

5 – Displaying the results – data points and clusters
To make sense to a team or management, the program now prepares to display the results
as data points and clusters. The data will be represented as coordinates and the clusters as
colors with a geometric center or centroid, as implemented in this code:

#V.Displaying the results : datapoints and clusters
y = 0
for x in labels:
plt.scatter(dataset.iloc[y,0], dataset.iloc[y,1],color=colors[x])
y+=1
for x in range(k):
lines = plt.plot(gcenters[x,0],gcenters[x,1],'kx')

title = ('No of clusters (k) = {}').format(k)
plt.title(title)
plt.xlabel('Distance')
plt.ylabel('Location')
plt.show()

The dataset is now ready to be analyzed. The data has been transformed into data points
(Cartesian points) and clusters (the colors). The x points represent the geometric centers or
centroids, as shown in the following screenshot:

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[123]

Output (data point and clusters)

Test dataset and prediction
In this case, the test dataset has two main functions. First, some test data confirms the
prediction level of the trained and now-labeled dataset. The input contains random
distances and locations. The following code implements the output that predicts which
cluster the data points will be in:

#VI.Test dataset and prediction
x_test = [[40.0,67],[20.0,61],[90.0,90],
[50.0,54],[20.0,80],[90.0,60]]
prediction = kmeans.predict(x_test)
print("The predictions:")
print (prediction)
'''
Output of the cluster number of each example
[3 3 2 3 3 4]
'''

The second purpose, in future, will be to enter new warehouse data for decision-making
purposes, as explained in the next section.

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[124]

Analyzing and presenting the results
Pert knows the two-minute presentation rule.

If you have not captivated your manager or any audience within the two
minutes of a presentation, it's over.

People will begin to look at their mail on their phones or laptops; pain replaces the pleasure
of sharing a solution.

Pert decides to start the presentation with the following screenshot and a strong
introduction:

Gain zone area

Pert points to the gain zone area and says:

From the computations made, that gain zone is only part of the losses of the present way
AGVs are used in our company. It takes only a few locations into account. I would say
that we could save 10% of the distances of our 25 AGVs on this site only. If we add nine
other major sites in the world that adds up to:

10% of (25 AGVs * 10 sites) = a gain of 25 AGVs

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[125]

That's because the AGVs are not going directly to the right locations but are wandering
around unplanned obstacles.

Pert has everybody's attention!

In real life, I started my career with major corporations by making the following statement
in similar cases (factories, warehouses, purchasing department, scheduling departments,
and many other fields):

Pay me a percentage of that gain, and I will do the project for free until that is proven.

If the solution is mathematically solid and the data available, there is a risk to calculate to
enter a corporation. When that is achieved once, it is easier the times after.

In this case, Pert's audience asks how this was estimated. The explanation is not simple but
clear. The average distance from one location to another is 1 meter. The AGVs all start out
from location 0 or 1. So the distance is strictly proportional to the locations in this particular
example (which is not always the case).

To find the gain zone of a location, you draw a red horizontal line from location 80, for
example, and a vertical line from distance 80 (add a couple of meters to take small variances
into account).

None of the data points on the 80 location line should be beyond the maximum limit. The
limit is 80 meters + a small variance of a few meters. Beyond that line, on the right-hand
side of the figure, is where the company is losing money and something must be done to
optimize the distances. This loss zone is the gain zone for a project. The gain zone on the k-
means cluster results shows that some of the locations of 40 to 60 exceed 80 meters distance.

Something is wrong, and a project can fix it.

AGV virtual clusters as a solution
The planners anticipate AGVs tasks. They send them to probable locations from which they
will have to pick up products and bring them back to the truck-loading points.

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[126]

One of the solutions is to provide AGV virtual clusters as a business rule, as shown in the
following screenshot:

AGV virtual clusters

Rule 1: The line in the middle represents a new business rule. In phase 1 of the
project, an AGV used for locations 40 to 60 cannot go beyond that 60 meter +
small variance line.
Rule 2: A cluster will represent the pick-up zone for an AGV. The centroid will
now be its parking zone. Distances will be optimized until all the clusters respect
rule 1.

The financial manager and CEO approve Pert's prototype. But there now two conditions for
this to become a project:

Present an architecture for large volumes for 10 sites, not just this site.
Present the same model but with different features to optimize the e-commerce of
the corporation's websites that now represent 90% of all sales. Using the solution
for another project will generate more profit with this approach.

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[127]

Summary
Up to this point, we have explored Python with NumPy, TensorFlow, sklearn,
pandas, and matplotlib libraries. More platforms and libraries will be implemented in
this book. In the months and years to come, even more languages, libraries, frameworks,
and platforms will appear on the market. However, artificial intelligence is not only about
development techniques. It is a branch of applied mathematics that requires a real-life interest
in the field to deliver. Building a k-means clustering program from scratch requires careful
planning. The program relies on data that is rarely available as we expect it. That's where
our imagination comes in handy to find the right features for our datasets.

Once the dataset has been defined, poor conditioning can compromise the project. Some
small changes in the data will lead to incorrect results.

Preparing the training dataset from scratch takes much more time that we would initially
expect. Artificial intelligence was designed to make life easier but that's after a project has
been successfully implemented. The problem is that building a solution requires major
dataset work and constant surveillance.

Then comes the hard work of programming a k-means clustering solution that must be
explained to a team. Lloyd's algorithm comes in very handy to that effect by reducing
development time.

k-means clustering can be applied to many fields and architectures as will be explained in
Chapter 7, When to Use Artificial Intelligence.

Questions
Can a prototype be built with random data in corporate environments? (Yes |1.
No)
Do design matrices contain one example per matrix? (Yes | No)2.
AGVs can never be widespread. (Yes | No)3.
Can k-means clustering be applied to drone traffic? (Yes | No)4.
Can k-means clustering be applied to forecasting? (Yes | No)5.
Llyod's algorithm is a two-step approach. (Yes | No)6.
Do hyperparameters control the behavior of the algorithm? (Yes | No)7.
Once a program works, the way it is presented does not really matter. (Yes | No)8.
k-means is only a classification algorithm. It's not a prediction algorithm. (Yes |9.
No)

Don't Get Lost in Techniques – Focus on Optimizing Your Solutions Chapter 6

[128]

Further reading
The scikit-learn website contains additional information on k-means clustering:

http://scikitlearn. org/ stable/ modules/ generated/ sklearn. cluster. KMeans. html

You can find Python's Data Analysis Library here:

https://pandas.pydata. org/

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/

7
When and How to Use Artificial

Intelligence
Using artificial intelligence (AI) in a corporate environment follows a normal process of
risk assessment. Managers evaluate the feasibility of a project and return on investment
before giving a green signal to an AI implementation.

This chapter builds on the k-means clustering presentation that Pert Ex, our AI expert,
made in Chapter 6, Don't Get Lost in Techniques – Focus on Optimizing Your Solutions. The
time has come to carefully deploy a large number of datasets by first showing that a
classical approach will not work. Then we use the proper architecture to get the project on
track.

Amazon Web Services(AWS) SageMaker and Amazon S3 provide an innovative way to
train machine learning datasets. The goal here is not to suggest that AWS could be the best
solution but to show the best of AWS. AWS will constantly evolve, just like Google, IBM,
Microsoft, and other platforms.

However, even though machine learning platforms might differ, the implementation
method will necessarily remain the same.

The following topics will be covered in this chapter:

Proving that AI must or not be used
Data volume issues
Proving the NP-hard characteristic of k-means clustering
The central limit theorem (CLT)
Random sampling
Monte Carlo sampling
Stochastic sampling

When and How to Use Artificial Intelligence Chapter 7

[130]

Shuffling a training dataset
How to use AWS SageMaker for a machine learning training model

Technical requirements
You will need Python 3.6x 64-bit from https:/ /www. python. org/ :

from sklearn.cluster import KMeans
import pandas as pd
from matplotlib import pyplot as plt
from random import randint
import numpy as np

You will need programs from GitHub Chapter07:

k-means_clustering_minibatch.py

k-means_clustering_minibatch_shuffling.py

Check out the following video to see the code in action:

https://goo.gl/1nRPH6

Checking whether AI can be avoided
Trying to avoid AI in a book on AI may seem paradoxical. However, AI tools can be
compared to having a real toolkit in real life. If you are at home and you just need to change
a light bulb, you do not have to get your brand new toolkit to show off to everybody
around you. You just change the light bulb and that's it.

In AI, as in real life, use the right tools at the right time. If AI is not
necessary to solve a problem, do not use it.

Use a proof of concept (POC) approach to prove your point for an AI project. A POC
should cost much less than the project itself and helps to build a team that believes in the
outcome. The first step is exploring the data volume and the method that will be used.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/1nRPH6
https://goo.gl/1nRPH6
https://goo.gl/1nRPH6
https://goo.gl/1nRPH6
https://goo.gl/1nRPH6
https://goo.gl/1nRPH6
https://goo.gl/1nRPH6
https://goo.gl/1nRPH6
https://goo.gl/1nRPH6

When and How to Use Artificial Intelligence Chapter 7

[131]

Data volume and applying k-means clustering
Anybody who has run MNIST with 60,000 handwritten image examples on a laptop knows
that it takes some time for a machine learning program to train and test these examples.
Whether a machine learning program or a deep learning convolutional network is applied,
it uses a lot of the local machine's resources. Even if you run it on training on GPUs (short
for graphics processing unit) hoping to get better performance than with CPUs, it still
takes a lot of time for the training process to run through all the learning epochs.

If you go on and you want to train your program on images, CIFAR-10, a-60,000 image
subset of the tiny image dataset, will consume even more resources on your local machine.

Suppose now, in this case, Pert Ex has to start using k-means clustering in a corporation
with hundreds of millions of records of data to analyze in a SQL Server or Oracle database.
Pert calls you in to manage the POC phase of the project. For example, you find that you
have to work for the phone operating activity of the corporation and apply a k-means
clustering program to the duration of phone calls to locations around the world every
morning for several weeks. That represents about several million records per day, adding
up to 3 billion records in a month. Once that has been implemented, the top marketing
manager wants to use the visual result of the clusters and centroids for an investment
meeting at the end of the month.

You go to the IT department and ask for a server to do the k-means clustering training and
simulation process. You get a flat number. Everybody knows that a machine learning k-
means clustering training program running over 3 billion records will consume too much
CPU/GPU. A shrewd colleague points out that 3 billion records represent only one feature.
If you talk about location and duration, that represents two features, bringing the data
volume to 6 billion cells in a matrix.

You clearly understand the point and agree that there is a resource problem here. You go
back to the marketing manager with your "No" for the project to run on local servers. You
want to obtain permission to use AWS (Amazon Web Services). Your marketing manager
immediately lets you use it. Obtaining those centroids per location cluster is critical to the
business plan of the company.

When and How to Use Artificial Intelligence Chapter 7

[132]

Proving your point
While you are gone, the IT department try to run a query on the SQL server database on
one continent and the Oracle database on another. They come up with the duration per
location but simply cannot provide the centroids and clusters. They are puzzled because
they would like to avoid using AWS. Now that they've tried and failed, they are ready to
move forward and get the project rolling. They need an explanation first.

Never force a team to do what you think is necessary without proving
why it is necessary. The explanation must be clear and each part of the
project must be broken down into elementary parts that everybody can
understand, including yourself!

You start by explaining that solving a k-means clustering problem is NP-hard. The P stands
for polynomial and the N for non-deterministic.

NP-hard – the meaning of P
The P here means that the time to solve or verify the solution of a problem is polynomial
(poly=many, nomial=terms). For example, x3 is a polynomial.

Once x is known, then x3 will be computed. Applied to 3,000,000,000 records, an estimation
can be applied:

x3 = 3,000,000^3

It seems a lot but it isn't that much for two reasons:

In a world of big data, the number can be subject to large-scale randomized
sampling
K-means clustering can be trained by mini-batches (subsets of the dataset) to
speed up computations

The big difference between a polynomial function and an exponential function relies, in this
case, on x being the variable, and 3 the exponent.

In an exponential function, x would be the variable and 3 the constant. With x as an
exponent, the time to solve this problem would be exponential. It's certainly not a
polynomial time you can predict.

33,000,000,000 is something you don't even want to think about!

When and How to Use Artificial Intelligence Chapter 7

[133]

Polynomial time means that this time will be more or less proportional to the size of the
input. Even if the time it takes to train the k-means clustering remains a bit fuzzy, as long as
the time it will take to verify the solution remains proportional to the size of the input, the
problem remains a polynomial.

The IT department feels better about the problem. The volume of the training process will
overload their servers. They do not have the time to purchase a server and set it up.

NP-hard – The meaning of non-deterministic
The IT department tried to find a solution with a query but did not succeed.

Non-deterministic problems require a heuristic approach, which implies some form of
practical approach. The most widespread heuristic is trial and error. K-means goes beyond
trial and error. It is more like a progressive-iterative approximation of the goals to attain.

In any case, k-means clustering requires a well-tuned algorithm to solve the volume of data
involved in this project.

The meaning of hard
NP-hard, as opposed to NP, can solve a problem in a straightforward deterministic way,
without a non-deterministic method.

The IT department is not only satisfied with the answer but also very pleased that you took
the time to explain why AWS was necessary and did not just say, "The boss said so."

AI requires clear explanations and scientific proof of its necessity.

The last question comes up: what are mini-batches and how are they used?

Random sampling
A large portion of machine learning and deep learning contains random sampling in
various forms. In this case, a training set of 3,000,000,000 elements will prove difficult to
implement without random sampling.

When and How to Use Artificial Intelligence Chapter 7

[134]

Random sampling applies to many methods as described in this book: Monte Carlo,
stochastic gradient descent, and many others. No matter what name the sampling takes,
they share common concepts to various degrees depending on the size of the dataset. The
following description fits the Monte Carlo philosophy.

The law of large numbers – LLN
In probability, the law of large numbers states that when dealing with very large volumes
of data, significant samples can be effective enough to represent the whole set of data. We
are all familiar with polling, for example, a population on all sorts of subjects.

This principle, like all principles, has its merits and limits. But whatever its limitations, this
law applies to everyday machine learning algorithms.

In machine learning, sampling resembles polling. The right, smaller number of individuals
makes up efficient datasets.

In machine learning, the word "mini-batch" replaces a group of people in the polling
system.

Sampling mini-batches and averaging them can prove as efficient as calculating the whole
dataset as long as a scientific method is applied:

Training with mini-batches or subsets of data
Using an estimator in one form or another to measure the progression of the
training session until a goal has been reached

You may be surprised to see "until a goal has been reached" and not "the optimal solution."

The optimal solution may not represent the best solution. All the features and all the
parameters are often not expressed. This makes being too precise useless.

In this case, the marketing manager wants to know where the centroids (geometric center)
of each cluster (region of locations) have been computed for his marketing campaign. The
corporation may decide to open a new company at the location of each centroid and
provide additional services through local spin-offs to increase their market penetration.

Taking that into account, a centroid does not need to be extremely precise. Finding the
nearest large city within a reasonable distance will prove good enough.

The LLN explains why random functions are widely used in machine learning and deep
learning.

When and How to Use Artificial Intelligence Chapter 7

[135]

The central limit theorem
As shown in by the LLN applied to this business case, the k-means clustering project must
provide a reasonable set of centroids and clusters (regions of locations for long-duration
phone calls).

This approach can now be extended to the CLT, which states, in machine learning parlance,
that when training a large dataset, a subset of mini-batch samples is sufficient. The
following two conditions define the main properties of the central limit theorem:

The variance between the data points of the subset (mini-batch) remains
reasonable. In this case, filtering only long-duration calls solves the problem.
The normal distribution pattern with mini-batch variances close to the variance
of the whole dataset.

Using a Monte Carlo estimator
The name Monte Carlo comes from the casinos in Monte Carlo and gambling. Gambling
represents an excellent memoryless random example. No matter what happens before a
gambler plays, prior knowledge provides no insight.

Applied to machine learning, the sum of the distribution of f(x) is computed. Then random
samples are extracted from the following dataset: x1, x2, x3, ..., xn.

No matter what form f(x) takes, such as in a k-means clustering process, to estimate the
average result, it can be represented by the following equation:

The estimator ê represents an average of the result of the k-means clustering algorithm or
any model implemented.

When and How to Use Artificial Intelligence Chapter 7

[136]

Random sampling applications
Random sampling can be applied to many functions and methods as we will see in
subsequent chapters in this book: Monte Carlo sampling, as described previously, and
stochastic gradient descent by extracting samples from the dataset to evaluate the cost
function and many other functions.

Randomness represents a key asset when dealing with large datasets.

Cloud solutions – AWS
Implementing large number data volumes involves using server resources in one form or
the other. We have to use on-premise servers or cloud platforms. In this case, it has been
decided to outsource server resources and algorithm development to face a large amount of
data billion to train.

Several online cloud services offer the solution to machine learning projects. In this chapter,
the project was carried out with AWS SageMaker on an AWS S3 data management
platform.

Preparing your baseline model
3,000,000 records containing two features, adding up to a 6,000,000 cell matrix dataset,
require mini-batches as defined in the next section through hyperparameters.

In the AWS interface, the size of a mini-batch will be a number. To see what it does, let's
apply a mini-batch to the Python program example of Chapter 6, Don't Get Lost in
Techniques – Focus on Optimizing Your Solutions.

Training the full sample training dataset
In Chapter 6, Don't Get Lost in Techniques – Focus on Optimizing Your Solutions, 5,000 records
and a six-cluster configuration produced six centroids (geometric centers), as shown here:

When and How to Use Artificial Intelligence Chapter 7

[137]

Six centroids

The problem now is how to avoid costly machine resources to train this k-means clustering
dataset.

Training a random sample of the training dataset
Before spending resources on AWS, we must prepare a model locally and make sure it
works. AWS possesses efficient mini-batch algorithms. But to master them, a local baseline
will guarantee good AWS job management.

The k-means_clustering_ch7_minibatch.py file provides a way to verify the mini-
batch solution.

The program begins by loading the data in the following lines of code:

dataset = pd.read_csv('data.csv')
print (dataset.head())
print(dataset)

Now a mini-batch dataset name dataset1 will be randomly created using Monte Carlo's
large data volume principle with a mini-batch size of 1,000. Many variations of the
method's Monte Carlo approaches apply to machine learning. The estimator within the k-
means function will be used as the Monte Carlo type averaging function, as shown in the
following source code.

n=1000
dataset1=np.zeros(shape=(n,2))li=0

When and How to Use Artificial Intelligence Chapter 7

[138]

for i in range (n):
j=randint(0,4999)
dataset1[li][0]=dataset.iloc[j,0]
dataset1[li][1]=dataset.iloc[j,1]
li+=1

Finally, the k-means clustering algorithm runs on a standard basis, as shown in the
following snippet.

#II.Hyperparameters
Features = 2 :implict through the shape of the dataset (2 columns)
k = 6
kmeans = KMeans(n_clusters=k)

#III.K-means clustering algorithm
kmeans = kmeans.fit(dataset1) #Computing k-means clustering
gcenters = kmeans.cluster_centers_ # the geometric centers or centroids
print("The geometric centers or centroids:")
print(gcenters)

The following screenshot, displaying the result produced, resembles the full dataset trained
by k-means clustering in Chapter 6, Don't Get Lost in Techniques – Focus on Optimizing Your
Solutions.

Output (k-means clustering)

When and How to Use Artificial Intelligence Chapter 7

[139]

The centroids obtained can solve the marketing problem as shown in this output.

The geometric centers or centroids:
[[19.6626506 14.37349398]
 [49.86619718 86.54225352]
 [65.39306358 54.34104046]
 [29.69798658 54.7852349]
 [48.77202073 23.74611399]
 [96.14124294 82.44067797]]

Shuffling as an alternative to random sampling
K-means clustering is an unsupervised training algorithm. As such, it trains unlabeled data.
One random computation does not consume a high level of machine resources, but several
random selections in a row can.

Shuffling can reduce machine consumption costs.

Proper shuffling of the data before starting training, just like shuffling cards before a Poker
game, will avoid repetitive and random mini-batch computations. In this model, the
loading data phase and training phase do not change. However, instead of one or several
random choices for dataset1, the mini-batch dataset, we shuffle the complete dataset once
before starting the training. The following code shows how to shuffle datasets.

sn=4999
shuffled_dataset=np.zeros(shape=(sn,2))
for i in range (sn):
 shuffled_dataset[i][0]=dataset.iloc[i,0]
 shuffled_dataset[i][1]=dataset.iloc[i,1]

Then we select the first 1,000 shuffled records for training, as shown in the following code
snippet.

n=1000
dataset1=np.zeros(shape=(n,2))
for i in range (n):
dataset1[i][0]=shuffled_dataset[i,0]
dataset1[i][1]=shuffled_dataset[i,1]

When and How to Use Artificial Intelligence Chapter 7

[140]

The result in the following screenshot corresponds to the one with the full dataset and the
random mini-batch dataset sample.

Full and random mini-batch dataset sample

The centroids produced can provide first-level results to confirm the model, as shown in
the following output.

The geometric centers or centroids:
[[29.51298701 62.77922078]
 [57.07894737 84.21052632]
 [20.34337349 15.48795181]
 [45.19900498 23.95024876]
 [96.72262774 83.27737226]
 [63.54210526 51.53157895]]

Now that the model exists locally, the implementation on AWS can proceed.

Using shuffling instead of random mini-batches has two advantages:
limiting the number of mini-batch calculations and avoiding training the
same samples twice.

When and How to Use Artificial Intelligence Chapter 7

[141]

AWS – data management
No matter which cloud solution you choose, data management will involve the following:

Security and permissions—this will depend on your security policy and the
cloud platform's policies
Managing input data and output data related to your machine learning model

Buckets
AWS has a data repository named buckets. You can create a bucket on Amazon S3. On
other platforms, different names are used but the concept remains the same. Your data has
to reach the platform one way or the other with an API, a data connection, or loading of the
data. In the present example, the best choice remains a bucket, as shown in the following
screenshot:

Amazon S3 bucket creation

When and How to Use Artificial Intelligence Chapter 7

[142]

Uploading files
Once the bucket has been created, files can be loaded in various formats. In this example,
data.csv was loaded without the headers. The data.csv used in the previous chapter has
been loaded without headers. AWS requires format verification (number of columns,
possible indexes) on an ever-evolving platform. The following screenshot shows how you
can organize your data.

Amazon S3 bucket data

Access to output results
SageMaker automatically writes the results of the k-means clustering training session in an
output directory in the following Amazon S3 bucket as shown in the following screenshot.

When and How to Use Artificial Intelligence Chapter 7

[143]

Output directory

SageMaker notebook
To create your machine jobs on any platform, you will have to configure an interface, use
command lines, or write commands through APIs.

In this example, Amazon SageMaker notebooks will be managing the k-means clustering
job. First, access AWS services with your account, as shown in this screenshot.

AWS services

When and How to Use Artificial Intelligence Chapter 7

[144]

Then go to SageMaker, as shown in the following screenshot.

SageMaker notebook instances

ML1 is the notebook instance for the k-means clustering baseline model that will be run.

Creating a job
To create a job, we click on Create training job, as seen in the following screenshot.

Job creation

When and How to Use Artificial Intelligence Chapter 7

[145]

Once the input data path and output path have been created, the most important part
consists of setting up the right hyperparameters (see the following screenshot) that will
control the behavior of the machine learning job.

Setting hyperparameters

The main parameters are these:

k: This determines the number of clusters and centroids that will be computed.
For this example, setting it to 6 was used. If you are running handwritten letter
recognition, you might want to have a centroid per letter.
Feature_dim: The number of features in this example was set to 2. Many more
features can be integrated into your model as long as they prove necessary.
mini-batch_size: Mini-batch, as described in the previous section. The whole
dataset batch cannot be trained with large data volumes. A batch size of 5,000 for
large datasets can produce interesting results. However, finding the right
parameter might take several tries.
init_method: K-means generally starts with random ks centroids. The best way
remains to get the system to work and then explore other avenues with AWS
documentation.

When and How to Use Artificial Intelligence Chapter 7

[146]

extra_center_factor: Keeping this value to auto to start with remains a good
option. AWS put a lot of work into optimizing the algorithm by managing
(adding centers when necessary) the number of ks. In the end, the algorithm will
always return the right number of centroids.
local_lloyd_max_iter: Lloyd's algorithm was described in the previous
chapter. In brief, each data points goes to the closest centroid and becomes part
of that cluster. The centroids are recalculated and the process continues until the
data points stabilize. This parameter limits the number of iterations.
local_lloyd_tol: Early stopping occurs when a local minimum is reached. The
algorithm can reach stability although the optimizing process remains
incomplete. The tolerance factor decides whether the variance is acceptable or
not.
local_lloyd_num_trials: The number of trials in a local computation
measure with loss function.
half_life_time_size: The k-means clustering algorithm has a loss function
and evaluation metrics. As such, weights are updated as in other machine
learning algorithms. Weight decay is just like when you are on a highway and
have to get off at an exit. You must slow down or overshoot your exit goal.
Weight decay reduces the values of weights exponentially has the loss function
optimizes the clusters. At half-time, the weight will reach half of their value. You
can choose not to trigger weight decay off by setting this parameter to 0.
epochs: The number of episodes the algorithm will optimize the data points.
eval_metrics: ["msd"] or ["ssd"] methods can be used as evaluation metrics. In
any case, distance measurement remains a key factor in k-means optimizing
algorithms.

Running a job
Running starts by clicking on Create training job:

Creating training job

When and How to Use Artificial Intelligence Chapter 7

[147]

After a few minutes or hours, depending on the volume of data provided or the complexity
of the machine learning algorithm chosen, AWS SageMaker provides the status of the
training session, as shown in the following screenshot.

Status of the training session—Completed

If the status column displays Completed, then the results will be analyzed. If not, we must
solve the errors in the configuration process.

Reading the results
As explained previously, the results appear in the Amazon S3 bucket. In this case, a TAR
file was created as shown in the following screenshot.

TAR file

The TAR file contains model_algo-1, a data-serialized file.

To read the file, mxnet can be imported, the file opened, and the result displayed in a short
read.py program, as shown in this code.

import mxnet as mxr=mx.ndarray.load('model_algo-1')
print(r)

The following result comes close to the local model.

[[23.70976257 16.17502213]
[97.42507935 81.57003784]
[58.39919281 45.75806427]
[29.69905663 65.11740875]
[61.08079529 81.22251892]
[56.15731812 12.13902283]]
<NDArray 6x2 @cpu(0)>]

When and How to Use Artificial Intelligence Chapter 7

[148]

Recommended strategy
Taking the data volume issue into account, data shuffling could prove effective. Then,
depending on corporate practices, the data could be streamed to AWS in batches or loaded
in batches.

Training will take many hours of working on the hyperparameters and result analyzing.

Summary
In any machine learning project, we should start by proving that classical programs using
SQL queries will not suffice. Then, a baseline or prototype using a sample should prove
that the model will work.

Using a cloud platform such as AWS SageMaker with S3 will save corporate investment
resources in order to focus on the training job. This proves once again that the future of
artificial intelligence experts relies upon their ability to imagine solutions and not to get lost
in programming.

No matter what happens, the basic steps will always remain the same, which include
proving that artificial intelligence is necessary, building a prototype model, dataset
management, and hyperparameter and job optimization.

Amazon, Google, IBM, Microsoft, and others will be offering more platforms, frameworks,
and resources for machine learning. These platforms will constantly evolve and change. As
these giants innovate, programming will become less and less necessary so that all
companies, small or large, can access the AI cloud platforms. Programming AI will remain
fascinating as well as standard non-AI development. However, nothing will stop cloud
ready-to-use platforms from expanding.

These platforms are the cutting edge of artificial intelligence and will lead you to the
fascinating frontier of present knowledge. You can cross the border into the wild and
discover new ways of solving hard problems. A cloud platform has limits that you can
push much further, as we will discover in the next chapter.

When and How to Use Artificial Intelligence Chapter 7

[149]

Questions
The questions will focus on the hyperparameters.

The number of k clusters is not that important. (Yes | No)1.
Mini-batches and batches contain the same amount of data. (Yes | No)2.
K-means can run without mini-batches. (Yes | No)3.
Must centroids be totally optimized for result acceptance? (Yes | No)4.
It does not take long to optimize hyperparameters. (Yes | No)5.
It sometimes takes weeks to train a large dataset. (Yes | No)6.
AWS SageMaker has a k-means algorithm only. (Yes | No)7.

Further reading
Further information on Amazon Web Services, Sagemaker, and k-means
clustering can be found here:

https:/ / docs. aws. amazon. com/ sagemaker/ latest/ dg/ k-means.
html

https:/ / github. com/ aws/ sagemaker- python- sdk/ blob/ master/
src/ sagemaker/ amazon/ kmeans. py

Further information on k-means clustering can be found here:
https:/ / www. eecs. tufts. edu/ ~dsculley/ papers/ fastkmeans.
pdf

https:/ / docs. aws. amazon. com/ sagemaker/ latest/ dg/ algo-
kmeans- tech- notes. html

https:/ / pdfs. semanticscholar. org/ 0074/
4cb7cc9ccbbcdadbd5ff2f2fee6358427271. pdf

Further information on MXNET can be found here:
https:/ / mxnet. incubator. apache. org/ architecture/ overview.
html

https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/k-means.html
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/amazon/kmeans.py
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://pdfs.semanticscholar.org/0074/4cb7cc9ccbbcdadbd5ff2f2fee6358427271.pdf
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html
https://mxnet.incubator.apache.org/architecture/overview.html

8
Revolutions Designed for Some

Corporations and Disruptive
Innovations for Small to Large

Companies
Contrary to media hype, artificial intelligence has just begun innovating human processes.
A huge amount of work remains to be done. To achieve progress, everybody must get
involved, as shown in this chapter. Even if Google, Amazon, Microsoft, IBM, and others
offer a solution, it does not mean it cannot be improved by third parties as add-ons to
existing solutions or new standalone products. After all, once Ford invented the Model T
over a hundred years ago, it did not mean it was no use inventing other better cars. On the
contrary, look around you!

This chapter first explains the differences between inventions, innovations, disruption,
high-priced products, revolutions, and how to innovate in AI no matter what.

Then Google Translate will be explored to illustrate innovation concepts using natural
language processing. This is a prerequisite to building not only translation solutions but
also chatbots (see Chapter 15, Cognitive NLP Chatbots, and Chapter 16, Improve the
Emotional Intelligence Deficiencies of Chatbots).

Google Translate entered the market in 2006 and was enhanced by neural networks in 2016,
but still it often produces bad answers. Is that good news or bad news? Let's find out by
exploring Google's API in a Python program, adding a k-nearest neighbor algorithm and
measuring the results statistically.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[151]

The following topics will be covered in this chapter:

The difference between inventions and innovations
The difference between standard sales and disruptive marketing
Google Translate API implementation in Python
Introducing linguistics (prerequisites to building chatbots)
Natural language processing prerequisites (for translations and chatbots)
k-nearest neighbor (KNN) algorithm

Technical requirements
You will need Python 3.6x 64-bit from https:/ /www. python. org/ .

You will also need these libraries:

from googleapiclient.discovery import build
import html.parser as htmlparser
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.neighbors import KNeighborsClassifier

And you will need programs from GitHub Chapter08:

google_translate.py

Google_translate_a_few_test_expressions.py

knn_polysemy.py (download V1.csv in the same directory)
Google_Translate_customized.py (download V1.csv in the same directory)

Check out the following video to see the code in action:

https://goo.gl/aMcfcf

Is AI disruptive?
The word "disruptive" is more often than not associated with artificial intelligence. Media
hype tells us that AI robots will soon have replaced humans around the world. Although
media hype made it much easier to obtain AI budgets, we need to know where we stand if
we want to implement an AI solution. If we want to innovate, we need to find the cutting
edge and build new ideas from there.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/aMcfcf
https://goo.gl/aMcfcf
https://goo.gl/aMcfcf
https://goo.gl/aMcfcf
https://goo.gl/aMcfcf
https://goo.gl/aMcfcf
https://goo.gl/aMcfcf
https://goo.gl/aMcfcf
https://goo.gl/aMcfcf

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[152]

Why not just plunge into the tools and see what happens? Is that a good idea or a risky
one? Unlike corporations with huge budgets, a single human has limited resources. If you
spend time learning in the wrong direction, it will take months to gather enough experience
in another better direction to reach your goal. For example, suppose you have trouble
classifying large amounts of data (see the example in Chapter 7, When and How to Use
Artificial Intelligence); you spend months on a project on a server in your company and fail.
It could cost you your job. If you find the right cloud platform as shown in Chapter 7,
When and How to Use Artificial Intelligence and learn the key concepts, your project can take
off in a few days.

Before diving into a project, find out the best way to start it.

What is new and what isn't in AI
Most AI theory and tools have been around for decades, if not centuries. We often tend to
think that since something appears new to us, it has just been invented or discovered. This mistake
can prove fatal in many projects. If you know that a theory or function has been around for
decades or centuries, you can do some deep research and use solutions found 100+ years
ago to solve your present problems.

Finding out what is new and what is not will make a major difference in your personal or
professional AI projects.

AI is based on mathematical theories that are not new
Artificial intelligence theory presently relies heavily on applied mathematics. In Chapter 1,
Become an Adaptive Thinker, the Markov Decision Process (MDP) was described. Google
Brain has proudly and rightly so won some competitions using the MDP combined with
neural networks.

However, Andrey Andreyevich Markov was a Russian mathematician born in 1856 who
invented the MDP among other functions. Richard Bellman published an enhanced version
of the Markov Decision Process in 1957.

Bellman also coined the expression "curse of dimensionality" and published books on
mathematical tools widely used today in AI. It is now well known that dimensionality
reduction can be performed to avoid facing thousands of dimensions (features, for
example) in an algorithm.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[153]

The logistic function (see Chapter 2, Think like a Machine) can be traced back to Pierre
François Verhulst (1844-1845), a Belgian mathematician. The logistic function uses e, the
natural logarithm base, which is also named after Euler's number. Leonhard Euler
(1707-1783), a Swiss mathematician who worked on this natural logarithm.

Thomas Bayes (1701-1761) invented the theorem that bears his name: Bayes' Theorem. It is
widely used in artificial intelligence.

In fact, almost all of the applied mathematics in artificial intelligence, machine learning, and
deep learning can be traced from 17th-century to 20th-century mathematicians.

We must look elsewhere for 21st century AI innovations.

Neural networks are not new
Neural networks as explained in Chapter 4, Become an Unconventional Innovator, date back
to the 1940s and 1950s. Even convolutional neural networks (CNN) date back to the 20th
century. Yann LeCun, a French computer scientist, laid down the basics of a CNN (see
Chapter 9, Getting Your Neurons to Work) in the 1980s; he successfully applied them as we
know them today in the 1990s.

We must again look elsewhere for 21st AI innovations.

Cloud server power, data volumes, and web sharing of
the early 21st century started to make AI disruptive
 The first sign of AI's innovative disruption appeared between 2000 and 2010. Before then,
the internet existed, and servers existed. But starting from around 2005, cloud servers were
made widely available. With that kind of computer power, developers around the world
could try using the highly greedy resources required by machine learning and deep
learning.

At the same moment, as powerful servers became available, the internet
provided the largest library of knowledge in the history of mankind.

On top of that, social networking became widely used. Sharing discoveries and source code
became commonplace. The World Wide Web (WWW) encouraged open source software,
boosting local research and development.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[154]

The era of artificial intelligence became possible for local experts starting from the middle
of the first decade of the 21st century.

What makes artificial appear as an innovation today is the conjunction of
more powerful machines and the availability of intellectual resources.

Public awareness contributed to making AI disruptive
 Public awareness of artificial intelligence remained dim for several years after the cloud
architectural revolution occurred from around 1995 to 2005.

Artificial intelligence hit us hard by around 2015 when we all woke up realizing that AI
could massively replace humans and create job displacement at levels never seen in human
history.

Worse, we realized that machines could beat us in fields we took pride in, such as chess
(Chapter 3, Apply Machine Thinking to a Human Problem), the game of Go, other video
games, manufacturing jobs with robots, office jobs with bots, and more fields that appear
every day.

For the first time in human history, the human species can be surpassed by a new species:
bots. As developers, we thought we were safe until Google presented AutoML, a solution
that could create machine learning solutions better than humans. At the same time, ready-
to-use machine learning platforms have spread that can reduce and even replace AI
software development.

Artificial intelligence forces awe and fear upon us. How far will machines go? Will we
simply experience job displacement or will it go as far as species replacement?

Could this be an opportunity for many? Who knows? In any case, this chapter provides
solutions to constantly innovating and being useful as humans.

Inventions versus innovations
Some artificial intelligence programs, especially deep learning algorithms, remained
inventions and not innovations until they were widely used by Google and other major
players.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[155]

If you have invented a better algorithm than Google for some applications, it remains an
invention until it actually changes something in your corporation or on the Web.

Suppose you find a quicker way to recognize an image through an optimized number of
neurons and a new activation function. If nobody uses it, then that invention remains a
personal theoretical fining no matter how good it appears. When others begin to use this
new algorithm, then it becomes an innovation.

An invention becomes an innovation only when it changes a process
within a company or by a sufficient number of private users.

Revolutionary versus disruptive solutions
Suppose the new image recognition algorithm described just now becomes an innovation in
a significant corporation. This new algorithm has gone from being an invention (not really used)
to an innovation (a solution making a difference).

The corporation now widely uses the algorithm. Every subsidiary has access to it. For this
corporation, the new image recognition algorithm has attained revolutionary status.
Corporate sales have gone up, and profit margins have as well.

But maybe this corporation does not dominate the market and nobody has followed its
example. The innovation remains revolutionary but has not become disruptive.

Then the person who created the algorithm decides to leave the company and start a
business with the algorithm. It appears on GitHub as an open source program. Everybody
wants it and the number of downloads increases daily until 1,000,000+ users have begun to
implement it. Some very low priced add-ons are provided on the company website. Within
a year, it becomes the new way of recognizing images. All companies must follow suit or
stay behind. The solution has become disruptive because it has globally changed its market.

Where to start?
We have finished reading about such fantastic innovations and have tested mind-blowing
AI solutions, knowing that all of this can be discouraging. Where to start? First of all, even
if a solution exists, it has limits and can be improved, customized, packaged, and sold. This
means that if there is a limit, there is a market.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[156]

Never criticize the flaws you find in an AI solution. They are gold mines!

Where there is a limit, there lies an opportunity.

Let's go to the cutting edge and then over the border into unchartered territory using
Google Translate to illustrate this.

Discover a world of opportunities with
Google Translate
Starting out with Google Translate to explore natural language processing (NLP) is a good
way to prepare for chatbots. Any disruptive web-based solution must be able to run in at
least a few languages.

Google provides many resources to use, explore, or improve Google Translate. Getting a
Python code to run and then assess the quality of the results will prove vital before
implementing it for crucial translations in a company.

Getting started
Go the Google's developers API Client Libary page: https:/ /developers. google. com/ api-
client-library/. On that page, you will see libraries for many languages: Java, PHP,
.NET, JavaScript, Objective-C, Dart, Ruby,Node.js, Go, and probably more to come.

This does not change a thing about reaching the limits of Google Translate and entering the
adventurous frontier of innovating the linguistic dimension of AI described in this chapter.

Then click on the GET STARTED option under Python. Follow the instructions to sign up,
create a project in the Google API Console, and install the library.

To install the library, use pip (preferred):

$ pip install--upgrade google-api-python-client

https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/
https://developers.google.com/api-client-library/

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[157]

If you encounter problems doing this part or do not wish to install
anything yet, this chapter is self-contained. The source code is described
in the chapter.

You are now ready to go ahead, whether you installed the tools or not.

The program
The goal of this section is to implement Google Translate functionality. You can follow the
steps and get it working or simply read the chapter to get the idea.

The header
The standard Google header provided by Google was enough for the program I wrote, as
shown in the following code.

from googleapiclient.discovery import build

Considering the many languages Google manages, special characters are a major problem
to handle. Many forums and example programs on the Web struggle with the UTF-8
header when using Google Translate. Many solutions are suggested, such as the following
source code header.

-*- coding: utf-8 -*-

Then, when Google translate returns the result, more problems occur and many develop
their own functions. They work fine but I was looking for a straightforward one-line
solution. The goal here was not to have many lines of code but focus on the limit of Google
Translate to discover the cutting-edge interpreting languages in AI.

So, I did not use the UTF-8 header but implemented this HTML parser.

import html.parser as htmlparser
parser = htmlparser.HTMLParser()

When confronted with a result, the following one-line HTML parser code did the job.

print("result:",parser.unescape(result))

It works well because, in fact, Google will return an HTML string or a text string depending
on what option you implement. This means that the HTML parser can do the job.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[158]

Implementing Google's translation service
Google's translation service needs at least three values to return a result:

developerKey: This is the API key obtained at the end of the "getting started"
process described previously
q="text to translate": In my code, I used source
target="abbreviation of the translated text": en for English, fr for
French, and so on

More options are available as described in the following sections.

With this in mind, the translation function will work as follows:

def g_translate(source,targetl):
 service = build('translate', 'v2',developerKey='your Key')
 request = service.translations().list(q=source, target=targetl)
 response = request.execute()
 return response['translations'][0]['translatedText']

In the Google_translate.py program, q and target will be sent to the function to
obtain a parsed result:

source="your text"
 targetl="abbreviation of the target language"
 result = g_translate(source,targetl)
print(result)

To sum up the program, let's translate Google Translate into French, which contains accents
parsed by the HTML parser:

from googleapiclient.discovery import build
import html.parser as htmlparser
parser = htmlparser.HTMLParser()

def g_translate(source,targetl):
 service = build('translate', 'v2',developerKey='your key')
 request = service.translations().list(q=source, target=targetl)
 response = request.execute()
 return response['translations'][0]['translatedText']

source='Google Translate is great!'

targetl="fr"
result = g_translate(source,targetl)
print(result)

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[159]

Google_Translate.py works fine. The result will come out with the correct answer and
the parsed accent:

Google Translate est génial!

At this point, everyone is happy in our corporation, named Example-Corporation:

The developer has the starting point for whatever solution is requested
The project manager has reached the goal set by the company
The manager has a ready-to-use AI solution to translate commercial offers and
contracts into many languages in many countries

Google Translate has satisfied everyone. It is disruptive, has changed the world, and can
replace translators in many corporations for all corporate needs.

Fantastic!

In fact, we could end the chapter here, go to our favorite social network, and build some
hype on our translation project!

Happy ending?

Well, not yet! The CEO, who happens to be the main shareholder of Example-Corporation,
wants to make sure that everything really works before firing the 20 freelance translators
working in the corporation.

The CEO phones a linguist from Example_University and asks for some expert advice. The
next day, professor Ustiling comes in, gray-haired and smiling, "You can call me Usty. So let's
get to work!"

Google Translate from a linguist's perspective
Usty is fascinated by Google Translate as presented previously. The possibilities seem
endless.

Usty applies a linguist's approach to the program.

By the time this book is published, maybe Google will have improved the
examples in this chapter. But don't worry; in this case, you will quickly
find hundreds of other examples that are incorrect. The journey has just
begun!

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[160]

Playing with the tool
They open the source code and Usty adds some paragraphs. This source code is saved as
Google_translate_a_few_test_expressions.py. Usty has spent quite some time on
automatic translating as a professor.

Usty, like many linguists, wants to play with the program first to get a feel of the program.
The first two examples go well from English to French. Then Usty complicates the third
example, as shown in the following code.

source='Hello. My name is Usty!'
 >>>result:Bonjour. Je m'appelle Usty!

source='The weather is nice today'
 >>>result: Le temps est beau aujourd'hui

source='Ce professor me cherche des poux.'
 >>>result: This professor is looking for lice!

The first two examples look fine in French although the second translation is a bit strange.
But in the third test, the expression chercher des poux means looking for trouble in
English not looking for lice as translated into French.

Usty has a worried look on his face. The corporate project teams ask him what is wrong.

Usty starts an assessment of Google Translate.

Linguistic assessment of Google Translate
Professor Usty both wants to assess Google Translate correctly and likes limits.

Limits are the boundaries researchers crave for! We are frontiersmen!

Usty starts an expert assessment that will lead the project team to the frontier and beyond.

Lexical field theory
Lexical fields describe word fields. A word only acquires its full meanings in a context. This
context often goes beyond a few other words or even a sentence.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[161]

Chercher des poux translated as such means look for lice. But in French, it can mean looking for
trouble or literally looking for lice. The result Google Translate comes up with contains three
basic problems.

source='chercher des poux'
>>result: look for lice

Problem 1, the lexical field: There is no way of knowing whether this means really looking
for lice or looking for trouble without a context.

Problem 2, metaphors or idiomatic expressions: Suppose you have to translate this is
giving you a headache. There is no way of knowing whether it is a physical problem or a
metaphor meaning this is driving you crazy. These two idiomatic expressions happen to
have the same metaphors when translated into French. But the lice metaphor in French
means nothing in English.

Problem 3: chercher is an infinitive in French and the result should have been looking for lice
in English. But chercher des limites est intéressant provides the right answer, which is looking
for:

source='Chercher des limites est intéressant.'
>>>result:Looking for boundaries is interesting.

The answer is correct because is splits the sentence into two, making it easier for Google
Translate to identify chercher as the first part of a sentence, thus using looking in English.

Professor Usty looks excited by these limits but this worries the project team. Will this
project be shelved by the CEO or not?

Jargon
Jargon arises when fields specialize. In AI, hidden neurons are jargon. This expression
means nothing for a lawyer for example. A lawyer may think you have hidden intelligence
on the subject somewhere or are hiding money in a cryptocurrency called hidden neuron.

In the same way, if somebody asks an artificial intelligence expert to explain how to file a
motion, that would prove difficult.

In a legal corporate environment, beyond using Google Translate as a dictionary,
translating sentences might be risky if only a random number of results prove to be correct.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[162]

Translating is not just translating but interpreting
Usty likes challenges. He goes online and takes a sentence from a standard description of
French commercial law:

source='Une SAS ne dispense pas de suivre les recommandations en vigueur
autour des pratiques commerciales.'

>>>result:An SAS does not exempt from following the recommendations in
force around commercial practices.

The French sentence means that a company such as a SAS (a type of company like inc., ltd.,
and so on). In English, SAS means Special Air Forces. Then comes the grammar that does
not sound right.

A translator would write better English and also specify what a SAS is:

"A SAS (a type of company in France) must follow the recommendations that cover
commercial practices."

Translating often means interpreting, not simply translating words.

In this case, a legal translator may interpret the text in a contract and go as far as writing:

The COMPANY must respect the legal obligation to treat all customers fairly.

The legal translator will suggest that COMPANY be defined in the contract so as to avoid
confusions such as the one Google Translate just made.

At this point, the project team is ready to give up. They are totally discouraged!

When reading about natural language processing, chatbots, and
translation, everything seems easy. However, really working on Google
Translate can easily turn into a nightmare!

How can they go back to their CEO with Usty and explain that Google Translate provides a
random quality of results?

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[163]

In fact, Google Translate is:

Sometimes correct
Sometimes wrong
Sometimes partly correct and partly wrong

Usty has much more to say but the team has had enough!

However, Usty will not give up and will want to explain a global fundamental problem.
Then Usty offers to provide solutions. Google Translate is worth exploring and improving
because of the available online datasets provided through the API.

He tries to translate the following:

The project team is all ears

Google Translate provides the output in French:

source:"The project team is all ears".
>>>result: L'équipe de projet est tout ouïe.

In French, as in English, it is better just to say project team and not use of to say the team of the
project. In French équipe projet (équipe = team used before project).

How to check a translation
How can you check a translation if you do not know the language?

Be careful. If Google Translate provides randomly correct answers in
another language, then you have no way of knowing whether the
translation is reliable or not.

You may even send the opposite of what you mean to somebody important for you. You
may misunderstand a sentence you are trying to understand.

In a travel company, you write an email stating that the coach stopped and people were
complaining:

source='The coach stopped and everybody was complaining.'

Google Translate, for lexical field reasons, got it wrong and translated coach as a trainer
(sports) in French, which would mean nothing in this context:

result: L'entraîneur s'est arrêté et tout le monde se plaignait.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[164]

Even in this situation, if you do not speak French, you have to trust professor Usty on this
issue.

Now the situation gets worse. To help Google Translate, let's add some context.

source='The coach broke down and stopped and everybody was complaining.'

The answer is worse. Google Translate translates broke down correctly with the French
expression en panne but still translates coach as entraineur (trainer) in French, meaning the
trainer broke down, not the coach (bus).

result: L'entraîneur est tombé en panne et s'est arrêté et tout le monde se
plaignait.

Google will no doubt improve the program as it has done since 2006. Maybe this will be
achieved even by the time you read this book or with some workarounds as shown in the
next section. But a human translator will find hundreds of expressions Google Translate
cannot deal with yet.

Understanding a sentence in your native language can prove difficult
when a word or an expression has several meanings. Adding a translation
function to the issue makes it even more difficult to provide a reliable
answer.

And that is where we reach the frontier, just beyond the cutting edge.

As a researcher, Usty seems overexcited in contrast to the look of despair on the project
team's faces. But soon the project team will share the excitement of discovering new AI
lands.

AI as a new frontier
Google has a great but very limited translation program. Use the flaws to innovate! AI
research and development has just scratched the surface of the innovations to come.

First, implement an AI solution. Then use it for what it is. But don't accept
its limits. Don't be negative about it. Innovate! Imagine ideas or listen to
other ideas you like, and build solutions in a team! Google might even
publish your solutions!

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[165]

Usty's excitement is contagious. The project team would like to build a prototype program.
Usty suggests forgetting about generalizing the solution for the moment and just focusing
on customizing Google Translation for their corporation. Usty decides to dive directly with
the team into a prototype Python program: Google_Translate_Customized.py.

Lexical field and polysemy
A lexical field contains words that form sets and subsets. They differ from one language to
another. A language itself forms a set and contain subsets of lexical fields.

Colder countries have more words describing water in its frozen form than tropical
countries where snow hardly ever falls. A lexical field of cold could be a subset of C:

C = {ice, hail, snowflakes, snowman, slushy, powder, flake, snowball, blizzard, melting, crunch....n}

The curse of dimensionality, well known in artificial intelligence, applies here. Words
contain an incredible number of dimensions and definitions. To translate certain
expressions, Google Translate suppresses their dimension and reduces them.

Google Translate often uses n-grams to translate. An n-gram is a fixed-
length sequence of tokens. Tokens can be a word, a character or even
numerical representations of words and characters.

The probability that token n means something is calculated given the preceding/following
n - x or n + x tokens. x is a variable depending on the algorithm applied.

For example, slushy has a special meaning in the expression slushy snow. The snow is
partly melting, it's watery and making slush sound when we walk through it. Melting is
only a component of the meaning of slush.

Google Translate, at this point, will only translate slushy snow in French by:

 neige (snow) fondante (melting)

Google Translate will also translate melting snow by:

 neige (snow) fondante (melting)

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[166]

To translate slushy into French, you have to use a phrase. To find that phrase, you need
some imagination or have some parsed (searched) novels or other higher levels of speech
representations. That takes time and resources. It will most probably take years before
Google Translate reaches an acceptable native level in all the languages publicized.

Another dimension to take into account is polysemy.

Polysemy means a word can have several very different meanings in a
language. The equivalent word in another language may simply have one
meaning or other, very different meanings.

"Go + over" in English can mean go over a bridge or go over some notes. At this point
(hopefully, it will improve by the time you read this book), it is translated in both cases in
French by aller sur. This means to go on (not over), which is incorrect in both cases.
Prepositions in English constitute a field in themselves, generating many meanings with the
same word. The verb go can have a wide list of meanings: go up (upstairs), go up (stock
market), go down (downstairs), go down (fall apart), and many more possibilities.

Linguistics involves many more concepts and techniques than just statistics. More will be
described in Chapter 15, Cognitive NLP Chatbots, and Chapter 16, Improve the Emotional
Intelligence Deficiencies of Chatbots.

The prototype customized program starts with defining X, a small dataset to translate that
will be more than enough to get things going:

X=['Eating fatty food can be unhealthy.',
 'This was a catch-22 situation.',
 'She would not lend me her tote bag',
 'He had a chip on her shoulder',
 'The market was bearish yesterday',
 'That was definitely wrong',
 'The project was compromised but he pulled a rabit out of his hat',
 'So just let the chips fall where they may',
 'She went the extra mile to satisfy the customer',
 'She bailed out when it became unbearable',
 'The term person includes one or more individuals, labor unions,
partnerships, associations, corporations, legal representatives, mutual
companies, joint-stock companies, trusts, unincorporated organizations,
trustees, trustees in bankruptcy, or receivers.',
 'The coach broke down, stopped and everybody was complaining']

These sentences will be automatically translated by Google Translate.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[167]

X1 , as implemented in the following code, defines some keywords statistically related to
the sentences; it applies the n-gram probability theory described previously.

X1=['grasse',
 'insoluble',
 'sac',
 'agressif',
 'marché',
 'certainement',
 'chapeau',
 'advienne',
 'supplémentaire',
 'parti',
 'personne',
 'panne']

Each X1 line fits the corresponding X line. As explained, this only remains a probability and
may not be correct.

We are not seeking perfection at this point but an improvement.

Exploring the frontier – the program
Now it's time to add some customized novelties. The use of the vectors in this section will
be explained in the next section, again through the source code that uses them.

A trigger vector will force the program to try an alternate method to translate a
mistranslated sentence. When the sentence has been identified and if its value in X2 is equal
to 1, it triggers a deeper translation function as implemented here:

X2=[0,0,0,1,0,0,0,0,0,0,0,1]

0 and 1 are flags. Each value represents a line in X.

Note for developers: To use this method correctly, all the values of this
vector should be set to 1. That will automatically use several alternate
methods to translate Google Translate errors. A lot of work remains to be
done here.

The case study is a transportation business. A transport phrase dictionary should be built.
In this case, a general phrase_translate dictionary has been implemented with one
expression, as shown in the following array.

phrase_translation=['','','','Il est agressif','','','','','','','','']

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[168]

What remains to be done to fill up this dictionary ?

Scan all the documents of the company—emails, letters, contracts, and every
form of written documents.
Store the words and sentences.
Run an embedding Word2Vector program (see Chapter 16, Improve the Emotional
Intelligence Deficiencies of Chatbots); it will find correlations between words. Add
an expression correlation program to this search.
Train the team to use the program to improve it by providing feedback (the right
answer) in a learning interface when the system returns incorrect answers.

What Google Translate cannot do on a global scale, you can implement at
a local scale to greatly improve the system.

k-nearest neighbor algorithm
No matter how you address a linguistic problem, it will always boil down to the word
"context". When somebody does not understand somebody else, they say, you took my words
out of their context or that is not what I meant; let me explain...

In Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots, the
embedding Word2Vector method will be explored. In any case,
"proximity" and "nearness" remain the key concepts.

As explained before, in many cases, you cannot translate a word or expression without a
lexical field. The difficulty remains proportional to the polysemy property as the program
will show.

Using the k-nearest neighbor (KNN) algorithm as a classification method can prove
extremely useful. In fact, any language interpretation (translation or chatbot) will have to
use a context-orientated algorithm.

By finding the words closest (neighbors) to each other, KNN will create the lexical fields
required to interpret a language. Even better, when provided with the proper datasets, it
will solve the polysemy problem as shown in the upcoming sections.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[169]

The KNN algorithm
Generally, a word requires a context to mean something. Looking for "neighbors" close by
provides an efficient way to determine where the word belongs.

KNN is supervised because it uses the labels of the data provided to train its algorithm.
KNN, in this case, is used for classification purposes. For a given point p, KNN will
calculate the distances to all other points. Then k represents the k-nearest neighbors to take
into account.

Let's clear this up through an example. In English, the word "coach" can mean a trainer on a
football field, a bus, or a railroad passenger car. Since the prototype is for a transportation
company, "coach" will mostly be a bus that should not be confused with a trainer:

Step 1: Parsing (examining in a detailed manner) texts with "coach" as a bus and
"coach" as a trainer. Thus the program is searching for three target words: trainer,
bus, and coach.
Step 2: Finding some words that appear close to the target words we are
searching. As recommended do the following:

Parse all the company documents you can use with a standard
program
Use a Python function such as if(ngram in the source) then
store the data

In this case, the V1.csv shown in the following output excerpt provided with the source
code contains the result of such a parsing function:

broke,road,stopped,shouted,class
1,3.5,6.4,9,trainer
1,3.0,5.4,9,trainer
1,3.2,6.3,9,trainer
...
6.4,6.2,9.5,1.5,bus
2,3.2,9,1,bus
6.4,6.2,9.5,1.5,bus
...
3.3,7.3,3.0,2.5,coach
4.7,5.7,3.1,3.7,coach
2.0,6.0,2.7,3.1,coach

The program parsed emails, documents, and contracts. Each line represents the result of
parsing of one document. The numbers represent the occurrences (number of times the
word was present). The numbers have been "squashed" (divided again and again) to
remain small and manageable.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[170]

Progressively, the words that came out with "trainer" were "shouted" more than "stopped."
For a bus, "broke" (broken down as in breaking down), "road" and "stopped" appeared
more than "shout."

"Coach" appeared on an average of "shouted", "stopped", "road" and broke because it could
be either a trainer or a bus, hence the problem we face when translating this word. The
polysemy (several meanings) of "coach" can lead to poor translations.

The KNN algorithm loaded the V1.csv file that contains the data to be trained and finds
the following result:

The knn_polysemy.py program determined the following:

The verb "broke" in blue has a better chance of applying to a bus (x axis value >6)
than to a trainer (x axis value <4). However, "coach" remains above trainer and
below "bus" because it can be both.
The word "road" follows the same logic as the blue chart.
The verb "stopped" can apply to a trainer and more to a bus. "Coach" remains
undecided again.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[171]

The verb "shouted" applies clearly to a trainer more than a bus. "Coach" remains
undecided again.

Note that the coordinates of each point in these charts are as follows:

y axis: bus = 1, coach=2, trainer=3
x axis: The value represents the "squashed" occurrence (the number of times the
word appeared) values.

This is the result of the search of those words in many sources.

When a new point, a data point named Pn, is introduced in the system, it will find its
nearest neighbor(s) depending on the value of k.

The KNN algorithm will calculate the Euclidean distance between Pn and all the other
points from P1 to Pn-1 using the Euclidean distance formula. The k in KNN represents the
number of "nearest neighbors" the calculation will take into account for classification
purposes. The Euclidean distance (d1) between two given points, for example,
between Pn(x1,y1) and P1(x2,y2), is:

Considering the number of distances to calculate, a function such as the one provided by
sklearn.neighbors proves necessary.

The knn_polysemy.py program
The program imports the V1.csv file described before, prints a few lines, and prepares the
labels in the right arrays in their respective x axis and y axis, as shown in this source code
example.

import pandas as pd
from matplotlib import pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
Import data
df = pd.read_csv('V1.csv')
print (df.head())
Classification labels
X = df.loc[:,'broke':'shouted']
Y = df.loc[:,'class']

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[172]

Then the model is trained as shown in the following code:

Trains the model
knn = KNeighborsClassifier()
knn.fit(X,Y)

Once the model is trained, a prediction is requested and is provided by the following code.

Requesting a prediction
#broke and stopped are
#activated to see the best choice of words to fit these features.
brock and stopped were found in the sentence to be interpreted.
In X_DL as in X, the labels are : broke, road, stopped,shouted.
X_DL = [[9,0,9,0]]
prediction = knn.predict(X_DL)
print ("The prediction is:",str(prediction).strip('[]'))

This is the result displayed:

The prediction is: 'bus'

The initial data is plotted for visualization purposes, as implemented in the following code.

#Uses the same V1.csv because the parsing has
been checked and is reliable as "dataset lexical rule base".
df = pd.read_csv('V1.csv')
Plotting the relation of each feature with each class
figure,(sub1,sub2,sub3,sub4)=plt.subplots(4,sharex=True,sharey=True)
plt.suptitle('k-nearest neighbors')
plt.xlabel('Feature')
plt.ylabel('Class')
X = df.loc[:,'broke']
Y = df.loc[:,'class']
sub1.scatter(X, Y,color='blue',label='broke')
sub1.legend(loc=4, prop={'size': 5})
sub1.set_title('Polysemy')
X = df.loc[:,'road']
Y = df.loc[:,'class']
sub2.scatter(X, Y,color='green',label='road')
sub2.legend(loc=4, prop={'size': 5})
X = df.loc[:,'stopped']
Y = df.loc[:,'class']
sub3.scatter(X, Y,color='red',label='stopped')
sub3.legend(loc=4, prop={'size': 5})
X = df.loc[:,'shouted']

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[173]

Y = df.loc[:,'class']
sub4.scatter(X, Y,color='black',label='shouted')
sub4.legend(loc=4, prop={'size': 5})
figure.subplots_adjust(hspace=0)
plt.show()

A compressed version of this program has been introduced in
Google_Translate_Customized.py as shown here:

def knn(polysemy,vpolysemy,begin,end):
 df = pd.read_csv(polysemy+'.csv')
 X = df.loc[:,'broke':'shouted']
 Y = df.loc[:,'class']
 knn = KNeighborsClassifier()
 knn.fit(X,Y)
 prediction = knn.predict(vpolysemy)
 return prediction

The description is as follows:

polysemy is the name of the file to read because it can be any file
vpolysemy is the vector that needs to be predicted
In future, in the to do list, begin should replace broke and end should replace
shouted so that the function can predict the values of any vector
The KNN classifier is called and the prediction returned

Implementing the KNN compressed function
in Google_Translate_Customized.py
This program requires more time and focus because of the concepts of linguistics involved.
The best way to grasp the algorithm is to run it in order.

Google Translate offers two translation methods, as shown in the following code:

#print('Phrase-Based Machine Translation(PBMT)model:base'): #m='base'
print('Neural Machine Translation model:nmt')

These are explained as follows:

Phrase-Based Machine Translation (PBMT): This translates the whole sequence
of words. The phrase or rather phraseme (multi-word expression) is not always
quite a sentence.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[174]

Neural Machine Translation (NMT): This uses neural networks such as
Recurrent Neural Network (RNN), which will be detailed later in this book. This
method goes beyond the phraseme and takes the whole sentence into account.
On the dataset presented in this chapter, this neural network method provides
slightly better results.

Both methods, though interesting, still require the type of additional algorithms, among
others, presented in this chapter. As you have seen so far, the subject is extremely complex
if you take the lexical fields and structures of the many languages on our planet into
account.

Step 1: Translating the X dataset line by line from English into French

The following code calls the translation function:

for xi in range(len(X)):
source=X[xi]
targetl="fr";m='nmt'
result = g_translate(source,targetl,m)

The code is explained here:

xi is the line number in X.
source is the xi line in X.
targetl is the target language, in this case, fr (French).
m is the method (PBT or NMT) as described previously. In this case, nmt is
applied.
Then the Google Translate function is called as described earlier in this chapter.
The result is stored in the result variable.

Step 2: Back translation

How can somebody know the correctness of a translation from language L1 to language L2
if L1 is the person's native language and L2 is a language the person does not understand at
all?

This is one of the reasons, among others, that translators use back translation to check
translations:

Translation = Initial translation from L1 to L2

Back translation = Translation back from L2 to L1

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[175]

If the initial text is not obtained, then there is probably a problem. In this case, the length of
the initial sentence L1 can be compared to the length of the same sentence translated back
to L1. Back translation is called by the following code:

 back_translate=result
 back_translate = g_translate(back_translate,targetl,m)
 print("source:",source,":",len(source))
 print("result:",result)
 print("target:",back_translate,":",len(back_translate))

Length comparison can be used to improve the algorithm :

Length of the initial n-gram = Length of back translation

If it's equal, then the translation may be correct. If not, it could be incorrect. More methods
must be applied during each translation. In this case, the source (initial sentence) is
compared to the back translation in the following code:

if(source == back_translate):
 print("true",)
 t+=1
else:
 f+=1;print("false")

t is a true counter
f is a false counter

The first line of X runs as follows:

source: Eating fatty food can be unhealthy. : 35
result: Manger de la nourriture grasse peut être malsain.
target: Eating fat food can be unhealthy. : 33
false

Eating fatty food is back translated as eating fat food, which is slightly wrong. Something may
be wrong.

The French sentence sounds wrong too. Fatty food cannot be translated as such. Usually,
the common sentence is manger gras meaning eating (manger) fatty (gras) which cannot be
translated into English as such.

X[2] an X[3] come back as false as well.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[176]

At example X[4], I programmed a phrase-based translation using a trigger in the false
condition in the following code.

else:
f+=1;print("false")
if(X2[xi]>0):
DT=deeper_translate(source,xi)
dt+=1

Since I did not write a complete application for this book but just some examples that can
be extended in the future, I used X2 as a trigger. If X2[x1]>0, then the
deeper_translation function is activated.

Step 3: Deeper translation with phrase-based translations

Deeper_translate has two arguments:

source: The initial sentence to translate
x1: The target sentence

In this case, the problem to solve is an idiomatic expression that exists in English but does
not exist in French:

source: He had a chip on his shoulder : 29
result: Il avait une puce sur son épaule
target: He had a chip on his shoulder : 29
false

To have a chip on the shoulder means to have an issue with something or somebody. It
expresses some form of tension.

Google translated chip by assuming computer chip, or puce in French, which means both
computer chip and flea. The translation is meaningless.

Chip enters three categories and should be labeled as such:

Idiomatic expression
Jargon
Polysemy

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[177]

At this point, the following function I created simulates the phrase-based solution to
implement deeper translations.

def deeper_translate(source,index):
 dt=source
 deeper_response=phrase_translation[index]
 print("deeper translation program result:",deeper_response)

The deeper_translation looks for the translated sentence containing chip in the
following phrase_translation array (list, vector, or whatever is necessary).

phrase_translation=['','','','Il est agressif','','','','','','','','']

The final result comes out with a translation, back translation, term search, and phrase
translation. The following is the result produced, with comments added here before each
line:

Initial sentence:
source: He had a chip on his shoulder : 29
Wrong answer:
result: Il avait une puce sur son épaule
The back-translation works:
target: He had a chip on his shoulder : 29
term: aggressif
false
ddeeper translation program result: Il est agressif

The question is, where did the term come from?

term comes from X1, a list of keywords that should be in the translation. X1 has been
entered manually but it should be a list of possibilities resulting from a KNN search on the
words in the sentence viewed as classes. This means that the sentence to be translated
should have several levels of meaning, not just the literal one that is being calculated.

The actual true/false conditions contain the following deeper translation-level words to
check:

if(source == back_translate):
 print("true")
 if((term not in words)and (xi!=4)):
 t+=1
 else:
 f+=1;print("false")
 if(X2[xi]>0):
 DT=deeper_translate(source,xi)
 dt+=1

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[178]

In the present state of the prototype, only example four activates a phrase-based
translation. Otherwise, true is accepted. If false is the case, the deeper translation is only
activated for two cases in this sample code. The flag is in X2 (0 or 1).

Deeper_translation is called for either the phrase-based translation (described
previously) or the KNN routine, which is activated if the phrase-based translation did not
work.

If the translation did not work, an n-gram is prepared for the KNN algorithm, as shown in
the following code:

 if(len(deeper_response)<=0):
 v1=0
 for i in range(4):
 ngram=V1[i]
 if(ngram in source):
 vpolysemy[0][i]=9
 v1=1

V1[i] contains the keywords (n-grams) described in the preceding KNN algorithm for the
transport lexical field, as shown in the following code:

V1=['broke','road','stopped','shouted','coach','bus','car','truck','break',
'broke','roads','stop']

The source (sentence to translate) is parsed for each n-gram. If the n-gram is found, the
polysemy vector is activated with a nine value for that n-gram. The initial values are set to
0, as shown in the following code.

vpolysemy=[[0,0,0,0]]

The variable v1 is activated, which informs the program that V1.csv must be read for this
case. An unlimited number of KNN references should be automatically created as
described previously in the KNN section.

In this case, only v1 is activated. But after several months of working on the project for the
company to customize their local needs, many other files should be created.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[179]

In this case, when v1 is activated, it fills out the variables as follows.

if(v1>0):
polysemy='V1'
begin=str(V1[0]).strip('[]');end=str(V1[3]).strip('[]')
sememe=knn(polysemy,vpolysemy,begin,end)

polysemy indicates the KNN file to open
begin is the first label of the V1 vector and end is the last label of the V1 vector
sememe is the prediction we expect

Now a condensed version of the KNN algorithm is called as described before for
knn.polysemy.py is called in the following code:

def knn(polysemy,vpolysemy,begin,end):
 df = pd.read_csv(polysemy+'.csv')
 X = df.loc[:,begin:end]
 Y = df.loc[:,'class']
 knn = KNeighborsClassifier()
 knn.fit(X,Y)
 prediction = knn.predict(vpolysemy)
 return prediction

The example, in this case, is the polysemy feature of a coach as explained in the KNN
section. The output will be produced as follows:

Source: The coach broke down, stopped and everybody was complaining : 59
result: L'entraîneur est tombé en panne, s'est arrêté et tout le monde se
plaignait
target: The coach broke down, stopped, and everyone was complaining : 59
term: bus
false

The translation is false because Google Translate returns trainer instead of bus.

The term bus is identical in English and French.

The KNN routine returned bus in English as the correct word to use when broke down and
stopped were found as shown in the KNN section.

The goal of the rest of the source code in the deeper_translate function is to
replace coach—the word increasing the polysemy feature to translate—by a better word
(limited polysemy) to translate: sememe.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[180]

The sememe variable is initialized by the KNN function in the following code:

 sememe=knn(polysemy,vpolysemy,beg in,end)
 for i in range(2):
 if(V1_class[i] in source):
 replace=str(V1_class[i]).strip('[]')
 sememe=str(sememe).strip('[]')
 dtsource = source.replace(replace,sememe)
 targetl="fr";m='base'
 result = g_translate(dtsource,targetl,m)
 print('polysemy narrowed result:',result,":Now true")

The function replaces coach by bus found by the KNN algorithm in the English sentence and
then asks Google Translate to try again. The correct answer is returned.

Instead of trying to translate a word with too many meanings (polysemy),
the deeper_translate function first replaces the word with a better
word (less polysemy). Better results will often be attained.

A frequentist error probability function is added to measure the performance, as shown in
the following code:

def frequency_p(tnumber,cnumber):
 ff=cnumber/tnumber #frequentist interpretation and probability
 return ff

cnumber is the number of false answers returned by Google Translate
tnumber is the number of sentences translated
ff gives a straightforward error (translation) probability, ETP

The function is called when a translation is false, or f>0, as implemented in the following
code:

 if(f>0):
 B1=frequency_p(xi+1,f) #error detection probability before deep
translation
 B2=frequency_p(xi+1,f-dt) #error detection probability after deep
translation
 if(f>0):
 print("ETP before DT",round(B1,2),"ETP with DT",round(B2,2))
 else:
 print('Insufficient data in probability distribution')

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[181]

B1 is the error (translation) probability (ETP) before the deeper_translate
function is called
B2 is the ETP after the deeper_translate function is called

At the end of the program, a summary is displayed, as shown in the following output:

print("------Summary------")
print('Neural Machine Translation model:nmt')
print('Google Translate:',"True:",t,"False:",f,'ETP',round(f/len(X),2))
print('Customized Google Translate:',"True:",t,"False:",f-
dt,'ETP',round((f-dt)/len(X),2))
a=2.5;at=t+a;af=f-a #subjective acceptance of an approximate result
print('Google Translate
acceptable:',"True:",at,"False:",af,'ETP',round(af/len(X),2))
#The error rate should decrease and be stabilized as the KNN knowledge base
increases
print('Customized Google Translate acceptable:',"True:",at,"False:",af-
dt,'ETP',round((af-dt)/len(X),2))

A subjective acceptance of an approximate result has been added to increase the
true probability.
The error rate should decrease as the quality of the KNN knowledge base
increases. In frequent probability theory, this means that a stabilized prediction
rate should be reached.

Conclusions on the Google Translate customized experiment
The final error (translation) probability produced is interesting, as shown in the following
output:

>>------Summary------
>>Neural Machine Translation model:nmt
>>Google Translate: True: 2 False: 8 ETP 0.67
>>Customized Google Translate: True: 2 False: 7 ETP 0.58
>>Google Translate acceptable: True: 4.5 False: 5.5 ETP 0.46
>>Customized Google Translate acceptable: True: 4.5 False: 4.5 ETP 0.38

Even with its NMT model, Google Translate is still struggling.

This provides great opportunities for AI linguists, as shown with some of the methods
presented to improve Google Translate at a local level that could even go further.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[182]

This experiment with Google Translate shows that Google has just scratched the surface of
real-life translations that sound right to the native speakers that receive these translations. It
would take a real company project to get this on track with a financial analysis of its
profitability before consuming resources.

The disruptive revolutionary loop
As you now see, Google Translate, like all artificial intelligence solutions, has limits. Once
this limit has been reached, you are at the cutting edge.

Cross the border into AI Frontierland; innovate on your own or with a
team.

If you work for a corporation, you can create a revolutionary customized solution for
hundreds of users. It does not have to go public. It can remain a strong asset to your
company.

At some point or another, the revolutionary add-on will reach beyond the company and
others will use it. It will become disruptive.

Finally, others will reach the limit of your now-disruptive solution. They will then innovate
and customize it in their corporation as a revolutionary solution. This is what I call the
disruptive revolutionary loop. It is challenging and exciting because it means that AI
developers will not all be replaced soon by AutoAI bots!

Summary
Designing a solution does not mean it will be an invention, an innovation, revolutionary, or
disruptive. But that does not really matter. What a company earns with a solution
represents more than the novelty of what it sells as long as it is profitable. That is rule
number #1. That said, without innovating in its market, that company will not survive
through the years.

If a product requires quality for security reasons, it should remain in its invention state as
long as necessary. If a product can produce sales at the low end of the market before its
total completion, then the company should sell it. The company will acquire a reputation
for innovation, get more money to invest, and take over the territory of its competitors.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[183]

Google Translate is a good example of disruptive marketing. As shown the theory, the
model and even the cloud architecture are over 10 years old. But each time one of the
hundreds of millions of users stumbles across it, it creates more disruption by hooking the
user onto Google solutions. The user will come back again and again to view more
advertisements, and everyone is happy!

Artificial intelligence has only begun. Google Translate has been around since 2006.
However, the results still leave room for developers, linguists, and mathematicians to
improve upon. Google has added a neural network, Google NMT, to improve translations
by analyzing whole sentences. How long will it take to be really reliable? In the meantime,
the next chapter will describe a CNN in more detail and provide ideas to help our
community to move AI forward beyond the cutting edge into Frontierland. Before moving
on to the next chapter, check your knowledge of some aspects of disruptive innovations.

Questions
It is better to wait until you have a top quality product before putting it on the1.
market? (Yes | No)
Considering the investment made, a new product should always be2.
priced high to reach the top segment of the market. (Yes | No)
Inventing a new solution will make it known in itself. (Yes | No)3.
Artificial Intelligence can solve most problems without using standard non-4.
learning algorithms. (Yes | No)
Google Translate can translate all languages in a satisfactory way. (Yes | No)5.
If you are not creative, it is no use trying to innovate. (Yes | No)6.
If you are not a linguist, it is no use bothering with trying to improve Google7.
Translate. (Yes | No)
Translation is too complicated to understand. (Yes | No)8.
Artificial intelligence has already reached its limits. (Yes | No)9.

Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies Chapter 8

[184]

Further reading
The Harvard Business Review on disruptive innovations can be found here:

https:/ / hbr. org/2015/ 12/ what- is- disruptive- innovation

Google Translate documentation can be found here:
https:/ / cloud. google. com/ translate/ docs/

Insights on English-French translations that can be extended to all languages
with more difficulties:

http:/ /www. oneskyapp. com/ blog/ french- translation-
challenges/

https:/ / research. googleblog. com/ 2016/ 09/a- neural- network-
for- machine. html

http:/ /scikit- learn. org/ stable/ modules/ neighbors.
html#neighbors

https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://hbr.org/2015/12/what-is-disruptive-innovation
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
http://www.oneskyapp.com/blog/french-translation-challenges/
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors
http://scikit-learn.org/stable/modules/neighbors.html#neighbors

9
Getting Your Neurons to Work

The invention of convolutional neural networks (CNNs) applied to vision represents by far
one of the most innovative achievements in the history of applied mathematics. With its
multiple layers (visible and hidden), CNN has brought artificial intelligence from machine
learning to deep learning.

A CNN relies on two basic tools of linear algebra: kernels and applying them to
convolutions as described in this chapter. These tools have been used in applied
mathematics for decades.

However, it took the incredible imagination of Yan LeCunn, Yoshua Bengio, and
others—who built a mathematical model of several layers—to solve real-life problems with
CNNs.

This chapter describes the marvels of CNNs, one of the pillars of Artificial Neural
Networks (AANs). A CNN will be built from scratch, trained, and saved. The classification
model described will detect production failures on a food-processing production line.

A Python Keras program running with TensorFlow on the backend will be built layer by
layer and trained. Additional sample programs will illustrate key functions.

The following topics will be covered in this chapter:

The differences between 1D, 2D, and 3D CNNs
Adding layers to a convolutional neural network
Kernels and filters
Shaping images
ReLU activation function
Kernel initialization
Pooling
Flattening
Dense layers

Getting Your Neurons to Work Chapter 9

[186]

Compiling the model
Cross-entropy loss function
Adam optimizer
Training the model
Saving the model
Visualizing the PNG of a model

Technical requirements
You will need Python 3.6x 64-bit from https:/ /www. python. org/ :

You will also need the following libraries:

from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json
from keras.models import save_model
from keras.models import load_model
from keras import backend as K
from pprint import pprint

import Numpy as np

import matplotlib.image as mpimg
import scipy.ndimage.filters as filter
import matplotlib.pyplot as plt

Programs, GitHub Chapter09:

CNN_STRATEGY_MODEL.py

Edge_detection_Kernel.py

ReLU.py

Check out the following video to see the code in action:

https://goo.gl/cGY1wK

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/cGY1wK
https://goo.gl/cGY1wK
https://goo.gl/cGY1wK
https://goo.gl/cGY1wK
https://goo.gl/cGY1wK
https://goo.gl/cGY1wK
https://goo.gl/cGY1wK
https://goo.gl/cGY1wK
https://goo.gl/cGY1wK

Getting Your Neurons to Work Chapter 9

[187]

Defining a CNN
This section describes the basic components of a CNN. 01_CNN_SRATEGY_MODEL.py will
illustrate the basic CNN components the chapter used to build the case study model for a
food-processing conveyor belt. CNNs constitute one of the pillars of deep learning
(multiple layers and neurons).

In this chapter, a Keras neural network written in Python will be running on top of
TensorFlow. If you do not have Python or do not wish to program, the chapter is self-
contained with graphs and explanations.

Defining a CNN
A convolutional neural network takes an image, for example, and processes it until it can be
interpreted.

For example, imagine you have to represent the sun with an ordinary pencil and a piece of
paper. It is a sunny day, and the sun shines very brightly, too brightly. You put on a special
pair of very dense sunglasses. Now you can look at the sun for a few seconds. You have just
applied a color reduction filter, one of the first operations of a convolutional network. Then
you try to draw the sun. You draw a circle and put some gray in the middle. You have just
applied an edge filter. Finally, you go over the circle several times to make it easy to
recognize, reducing the image you saw progressively into a representation of it. Now with
the circle, some gray in the middle, and a few lines of the rays around it, anybody can see
you drew a sun. You smile; you did it! You took a color image of the sun and made a
mathematical representation of it as a circle, which would probably look something like
this:

Mathematical representation of a circle

You just went through the basic processes of a convolutional network.

Getting Your Neurons to Work Chapter 9

[188]

The word convolutional means that you transformed the image of the sun you were
looking at into a drawing, area by area. But, you did not look at the whole sky at once. You
made many eye movements to capture the sun, area by area, and you did the same when
drawing. If you made a mathematical representation of the way you transformed each area
from vision to your paper abstraction, it would be a kernel.

With that concept in mind, the following graph shows the successive mathematical steps to
follow in this chapter's model for a machine to process an image just as you did. A
convolutional network is a succession of steps that will transform what you see into a
classification status. In your example, it would serve to find out whether your drawing
represents the sun. This falls under the binary classification model (yes or no, 1 or 0).

Getting Your Neurons to Work Chapter 9

[189]

Notice that the size of the outputs diminishes progressively until the outputs reach 1, the
binary classification status that will return (1 or 0). These successive steps, or layers,
represent what you did when you went from observing the sun to drawing it. In the end, if
we draw poorly and nobody recognizes the sun, it means that we have to go back to step 1
and change some parameters (weights in this case). That way, we train to represent the sun
better until somebody says, "Yes, it is a sun!" That is probability = 1. Another person may
say that it is not a sun (probability = 0; thus, more training would be required).

If you carry out this experiment of drawing the sun, you will notice that, as a human, you
transform one area at a time with your eye and pencil. You repeat the way you do it in each
area. That mathematical repetition you perform is your kernel. Using a kernel per area is
the fastest way to draw. For us humans, in fact, it is the only way we can draw. A CNN is
based on this process.

This section describes each component of this model. Hundreds of different models can be
implemented. However, once you understand one model, you can implement the many
others.

Initializing the CNN
The model used is a Keras sequential() model; it requires adding one layer at a time in a
certain order with TensorFlow as the backend:

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
from keras.layers import Convolution2D, MaxPooling2D, Activation
from keras.models import Sequential
from keras.layers import Flatten
from keras.layers import Dense
from PIL import Image
from keras.preprocessing.image import ImageDataGenerator

model = Sequential()

The import libraries will be used for each layer of the model. The model can now be built.

Getting Your Neurons to Work Chapter 9

[190]

Adding a 2D convolution
In the example of a drawing (image), we used our inbuilt human spacial module, working
on a two-dimensional piece of paper with (x, y) coordinates. Two-dimensional relationships
can be real-life images and also many other objects as described in this chapter. This
chapter describes a two-dimensional network, although others exist:

A one-dimensional CNN mostly describes a temporal mode, for example, a
sequence of sounds (phonemes = parts of words), words, numbers and any other
type of sequence
A volumetric module is a 3D convolution, such as recognizing a cube or a video

In this chapter, a spatial 2D convolution module will be applied to images of different
kinds. The main program, CNN_STRATEGY_MODEL.py, will describe how to build and save
a model.

classifier.add will add a layer to the model. The name classifier does not represent a
function but simply the arbitrary name that was given to this model in this particular
program. The model will end up with n layers. Look at the following line of code:

classifier.add(Conv2D(32, (3, 3),input_shape = (64, 64, 3), activation =
'relu'))

This line of code contains a lot of information: the filters (applied with kernels), the input
shape, and an activation function. The function contains many more options. Once you
understand these in depth, you can implement other options one by one, as you deem
necessary, for each project you have to work on.

Kernel
Just to get started, intuitively let's take another everyday model. This model is a bit more
mathematical and closer to CNN's kernel representation. Imagine a floor of very
small square tiles in an office building. You would like each tile of the floor to be converted
from dirty to clean, for example. You can imagine a cleaning machine converting 3 x 3 small
tiles (pixels) at a time from dirty to clean. You would laugh if you saw somebody come
with 50 cleaning machines to clean all of the 32 x 32 tiles (pixels) at the same time. You
know it would consume more resources, intuitively. Not only is a kernel an efficient way to
filter but also a kernel convolution is a time-saving resource process. The single cleaning
machine is the kernel (dirty-to-clean filter), which will save you that time to perform
the convolution (going over all of the tiles to clean, 3 x 3 area by 3 x 3 area) of transforming
the floor from dirty to clean.

Getting Your Neurons to Work Chapter 9

[191]

In this case, 32 different filters have been added with 3 x 3 sized kernels:

classifier.add(Conv2D(32, (3, 3)...

The use of kernels as filters is the core of a convolutional network. (32, (3,3)) means
(number of filters, (size of kernels)).

Intuitive approach
To understand a kernel intuitively, keep the sun and cleaning tiles examples in mind. In
this section, a photograph of a cat will show how kernels work.

In a model analyzing cats, the initial photograph would look like this:

Cat photograph for model analyzing

On the first run of this layer, even with no training, an untrained kernel will transform the
photograph.

Cat photograph transformation

Getting Your Neurons to Work Chapter 9

[192]

The first layer already has begun isolating the features of the cat. The edges have begun to
appear: the cat's body, ears, nose, and eyes. In itself, this first filter (one of 32) with a size 3 x
3 kernel—in the first layer and with no training—already produces effective results.

Each subsequent layer will make the features stand out much better with smaller and
smaller matrices and vectors until the program obtains a clear mathematical representation.

Developers' approach
Developers like to see the result first to decide how to approach a problem.

Let's take a quick, tangible shortcut to understand kernels
through Edge_detection_Kernel.py with an edge detection kernel.

#I.An edge detection kernel
kernel_edge_detection = np.array([[0.,1.,0.],
[1.,-4.,1.],
[0.,1.,0.]])

The Kernel is a 3 x 3 matrix, like the cat example. But the values are preset, and not trained
with weights. There is no learning here; only a matrix needs to be applied. The major
difference with a CNN network is that it will learn how to optimize kernels itself through
weights and biases.

imp.bmp is loaded, and the 3 x 3 matrix is applied to the pixels of the loaded image, area by
area:

#II.Load image and convolution
image=mpimg.imread('img.bmp')[:,:,0]
shape = image.shape

The image before the convolution applying the kernel is the letter A (letter recognition):

Now the convolution transforms the image, as shown in the following code:

#III.Convolution
image_after_kernel =
filter.convolve(image,kernel_edge_detection,mode='constant', cval=0)

Getting Your Neurons to Work Chapter 9

[193]

The edges of A now appear clearly in white, as shown in the following graph:

White edge of A is visible

The original image on top displayed a very thick A. In the preceding graph it displays a
thin identifiable A feature through thin edges that a neural network can classify within a
few mathematical operations. The first layers of a convolutional network train to find the
right weights to generate the right kernel automatically.

Mathematical approach
The initial image has a set of values you can display, as follows:

#II.Load image
image=mpimg.imread('img.bmp')[:,:,0]
shape = image.shape
print("image shape",shape)

Getting Your Neurons to Work Chapter 9

[194]

The code will print a numerical output of the image as follows:

image shape (100, 100)
image before convolution
[[255 255 255 ..., 255 255 255]
 [255 255 255 ..., 255 255 255]
 [255 255 255 ..., 255 255 255]
 ...,

The convolution filter is applied using filter.convolve, a mathematical function, to
transform the image and filter it.

The convolution filter function uses several variables:

The spatial index for the 3 x 3 kernel to apply; in this case, it must know how to
access the data. This is performed through a spatial index, j, which manages data
in grids. Databases also use spatial indexes to access data. The axes of those grids
determine the density of a spatial index. Kernels and the image are convolved
using j over W, the weights kernel.
W is the weights kernel.
I is the input image.
k is the coordinate of the center of W. The default value is 0 in this case.

These variables then enter the filter.convolve function as represented by the following
equation:

A CNN relies on kernels. Take all the time you need to explore convolutions through the
three dimensions required to master AI: intuitive approach, development testing, and
mathematical representation.

Shape
Shape defines the size of the image, which is 64 x 64 pixels (height x width), as shown here.

classifier.add(...input_shape = (64, 64, 3)...)

3 indicates the number of channels. In this case, 3 indicates the three parameters of an RGB
color. Each number can have a given value of 0 to 255.

Getting Your Neurons to Work Chapter 9

[195]

ReLu
Activation functions provide useful ways to influence the transformation of the input data
weight bias calculations. Their output will change the course of a classification, a
prediction, or whatever goal the network was built for. This model applies rectified linear
unit (ReLU), as shown in the following code:

classifier.add(..., activation = 'relu'))

ReLU activation functions apply variations of the following function to an input value:

f(x) = max{0, x}

The function returns 0 for negative values; it returns the positive values as x; it returns 0 for
0 values.

ReLU appears to be easier to optimize. Half of the domain of the function will return zeros.
This means that when you provide positive values, the derivative will always be 1. This
avoids the squashing effect of the logistic sigmoid function, for example. However, the
decision to use one activation function rather than another will depend on the goal of each
ANN model.

In mathematical terms, a rectified linear unit function will take all the negative values and
apply 0 to them. And all the positive values remain unchanged.

The ReLu.py program provides some functions including a NumPy function to test how
ReLu works.

You can enter test values or use the ones in the source code:

import numpy as np
nx=-3
px=1

nx expects a negative value and px expects a positive value for testing purposes for the
relu(x) and lrelu(x) functions. Use the f(x) function if you wish to include zeros in
your testing session.

Getting Your Neurons to Work Chapter 9

[196]

The relu(x) function will calculate the ReLU value:

def relu(x):
if(x<0):ReLU=0
if(x>0):ReLU=1
return ReLU

In this case, the program will return the following result:

negative x= -3 positive x= 5
ReLU nx= 0
ReLU px= 5

The result of a negative value becomes 0, and the positive value remains unchanged. The
derivative or slope is thus always one, which is practical in many cases and provides good
visibility when debugging a CNN or any other ANN.

The NumPy function defined as follows will provide the same results.

def f(x):
 vfx=np.maximum(0,x)
 return vfx

Through trial and error, ANN research has come up with several variations of ReLU.

One important example occurs when many input values are negative. ReLu will constantly
produce zeros, making gradient descent difficult if not impossible.

A clever solution was found using a leaky ReLU. A leaky ReLU does not return a zero for a
negative value but a small value you can choose, 0.1 instead of 0, for example. See the
following equation:

f(x) = max{0.1, x}

Now gradient descent will work fine. In the sample code, the function is implemented as
follows:

def lrelu(x):
 if(x<0):lReLU=0.01
 if(x>0):lReLU=x
 return lReLU

Although many other variations of ReLUs exist, with this in mind, you have an idea of
what it does.

Getting Your Neurons to Work Chapter 9

[197]

Enter some values of your own, and the program will display the results as shown here:

print("negative x=",nx,"positive x=",px)
print("ReLU nx=",relu(nx))
print("ReLU px=",relu(px))
print("Leaky ReLU nx=",lrelu(nx))
print("f(nx) ReLu=",f(nx))
print("f(px) ReLu=",f(px))
print("f(0):",f(0))

The results will display the ReLU results as follows:

negative x= -3 positive x= 5
ReLU nx= 0
ReLU px= 5
Leaky ReLU nx= 0.01

Pooling
Pooling reduces the size of an input representation, in this case, an image. Max pooling
consists of applying a max pooling window to a layer of the image:

classifier.add(MaxPooling2D(pool_size = (2, 2)))

This pool_size 2 x 2 window will first find the maximum value of the 2 x 2 matrix on the
top left of the image matrix. This first maximum value is 4. It is thus the first value of the
pooling window on the right.

Then the max pooling window hops over two squares and finds that 5 is the highest value.
5 is written in the max pooling window. The hop action is called a stride. A stride value of 2
will avoid overlapping although some CNN models have strides that overlap. It all
depends on your goal. Look at the following diagram:

Pooling example

Getting Your Neurons to Work Chapter 9

[198]

The output size has now gone from a 62 x 62 x 32 (number of filters) to a 31 x 31 x 32, as
shown in the following diagram:

Output size changes (pooling)

Other pooling methods exist, such as average pooling, which will use the average of the
pooling window and not the maximum value. This depends on the model and shows the
hard work to put in to train a model.

Next convolution and pooling layer
The next two layers of the CNN repeat the same method as the first two described
previously, and it is implemented as follows in the source code:

Adding a second convolutional layer
print("Step 3a Convolution")
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
imp=classifier.input
outputs = [layer.output for layer in classifier.layers]

print("Step 3b Pooling")
classifier.add(MaxPooling2D(pool_size = (2, 2)))

These two layers have drastically downsized the input to 14 x 14 x 32, as shown in this
diagram:

Convolution and pooling layer

Getting Your Neurons to Work Chapter 9

[199]

The next layer can now flatten the output.

Flattening
The flattening layer takes the output of the max pooling layer and transforms into a vector
of size x * y * z in the following code:

Step 4 - Flattening
print("Step 4 Flattening")
classifier.add(Flatten())

In this case, the layer vector will be 14 x 14 x 32 = 6,272, as shown in the following diagram:

Flattening layer

This operation creates a standard layer with 6,272 very practical connections for the dense
operations that follow. After flattening has been carried out, a fully connected, dense
network can be implemented.

Flattening layer

Dense layers
Dense layers are fully connected. This has been made possible by the reductions in size
calculated up to here, as shown before.

Getting Your Neurons to Work Chapter 9

[200]

The successive layers in this sequential model have brought the size of the image down
enough to use dense layers to finish the job. Dense 1 comes first, as shown here:

Dense layer

The flattening layer produced 14 x 14 x 32 size 6,272 layer with a weight for each input. If it
had not gone through the previous layers, the flattening would have produced a much
larger layer, and the features would not have been extracted by the filters. The result would
produce nothing effective.

With the main features extracted by the filters through successive layers and size reduction,
the dense operations will lead directly to a prediction using the ReLu on the dense 1
operation and the logistic sigmoid function on the dense operation.

Dense activation functions
This is how to apply the ReLU activation function.

The domain of the ReLU activation function is applied to the result of the first dense
operation. The ReLU activation function will output the initial input for values >=0 and will
output 0 for values <0:

f(input value) = max{0, input_value)

This is how to apply the logistic sigmoid activation function.

The logistic activation function applied to the second dense operation, as described in
Chapter 2, Think like a Machine, will produce a value between 0 and 1:

LS(x)={0,1}

We will now discuss the last dense layer after the LS activation function.

Getting Your Neurons to Work Chapter 9

[201]

The last dense layer is size 1 and will classify the initial input, an image in this case:

Dense layer 2

The layers of the model have now been added. Training can begin.

Training a CNN model
Training a CNN model involves four phases: compiling the model, loading the training
data, loading the test data, and running the model through epochs of loss evaluation and
parameter-updating cycles.

In this section, the choice of the theme of the training dataset will be a real-life case study
from the food-processing industry.

The goal
The primary goal of this model consists of detecting production efficiency flaws on a food-
processing conveyor belt. The use of CIFAR-10 (images) and MNIST (handwritten digit
base) proves useful to understand and train some models (see Chapter 10, Applying
Biomimicking to Artificial Intelligence). However, at one point, real-life datasets must be used
to sell and implement deep learning and artificial intelligence in general.

The following photograph shows a section of the conveyor belt that contains an acceptable
level of products, in this case, portions of chocolate cakes:

Portions of chocolate cake example

Getting Your Neurons to Work Chapter 9

[202]

However, sometimes the production slows down, and the output goes down to an alert
level, as shown in the following photograph:

Portions of chocolate cake example

The alert-level image shows a gap that will slow down the packaging section of the factory
dramatically.

Chapter 10, Applying Biomimicking to Artificial Intelligence, describes how this model can
apply to the food-processing industry and be transferred to other applications.

Compiling the model
Compiling a Keras model requires a minimum of two options: a loss function and an
optimizer. You evaluate how much you are losing and then optimize your parameters, just
as in real life. A metric option has been added to measure the performance of the model.
With a metric, you can analyze your losses and optimize your situation, as shown in the
following code:

classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy',
metrics = ['accuracy'])

Loss function
The loss function provides information on how far the state of the model y1 (weights,
biases) is from its target state y.

A description of the quadratic loss function precedes that of the binary cross-entropy
functions applied to the case study model in this chapter.

Getting Your Neurons to Work Chapter 9

[203]

Quadratic loss function
For gradient descent, see Chapter 5, Manage the Power of Machine Learning and Deep
Learning. Let us refresh the concept. Imagine you are on a hill and want to walk down that
hill. Your goal is to get to y, the bottom of the hill. Presently you are at a. Google Maps
shows you that you still have to go a certain distance:

That formula is great for the moment. But now suppose you are almost at the bottom of the
hill, and the person walking in front of you dropped a coin. You have to slow down now,
and Google Maps is not helping much because it doesn't display such small distances that
well. You open an imaginary application called tiny maps that zooms into small distances
with a quadratic objective (or cost) function:

To make it more comfortable to analyze, O is divided by 2, producing a standard quadratic
cost function:

y is the goal. a is the result of the operation of applying the weights, biases, and finally the
activation functions.

With the derivatives of the results, the weights and biases can be updated. In our hill
example, if you move one meter (y) per step (x), that is much more than moving 0.5 meters
(y) per step. Depending on your position on the hill, you can see that you cannot apply a
constant learning rate (conceptually the length of your step); you adapt it just like Adam,
the optimizer, does.

Binary cross-entropy
Cross-entropy comes in handy when the learning slows down. In the hill example, it
slowed down at the bottom. But, remember, a path can lead you sideways, meaning you
are momentarily stuck at a given height. Cross-entropy solves that by being able to function
well with very small values (steps on the hill).

Getting Your Neurons to Work Chapter 9

[204]

Suppose you have the following structure:

Inputs is {x1, x2, ..., xn}
Weights is {w1, w2, ..., wn}
A bias (or sometimes more) is b
An activation function(ReLU, logistic sigmoid, or other)

Before the activation, z represents the sum of the classical operations:.

Now the activation function is applied to z to obtain the present output of the model.

With this in mind, the cross-entropy loss formula can be explained:

In this function:

n is the total number of items of the input training, with multiclass data. M > 2
means situations in which a separate loss of each class label is calculated. The
choice of the logarithm base (2, e, 10) will produce different effects.
y is the output goal.
y1 is the present value, as described previously.

This loss function is always positive; the values have a minus sign in front of them, and the
function starts with a minus. The output produces small numbers that tend to zero as the
system progresses.

The loss function in Keras, which uses TensorFlow, uses this basic concept with more
mathematical inputs to update the parameters.

A binary cross-entropy loss function is a binomial function that will produce a probability
output of 0 or 1 and not a value between 0 and 1 as in standard cross-entropy. In the
binomial classification model, the output will be 0 or 1.

Getting Your Neurons to Work Chapter 9

[205]

In this case, the sum is not necessary when M (number of classes) = 2. The binary cross-
entropy loss function is then as follows:

The whole concept of this loss function method is for the CNN network to be used in
specific real-life case studies described in the training dataset section and Chapter 10,
Applying Biomimicking to Artificial Intelligence.

Adam optimizer
In the hill example, you first walked with big strides down the hill
using momentum (larger strides because you are going in the right direction). Then you
had to take smaller steps to find the object. You are adapting your estimation of
your moment to your need; hence, the name adaptive moment estimation (Adam).

Adam constantly compares the mean past gradients to present gradients. In the hill
example, it compares how fast you were going.

The Adam optimizer represents an alternative to the classical gradient descent method or
stochastic gradient descent method (see Chapter 5, Manage the Power of Machine Learning
and Deep Learning). Adam goes further by applying its optimizer to random (stochastic)
mini-batches of the dataset. This makes it a version of stochastic gradient descent.

Then, with even more inventiveness, Adam adds root-mean-square deviation (RMSprop)
to the process by applying per-parameter learning weights. It analyzes how fast the means
of the weights are changing (such as the gradients in our hill slope example) and adapts the
learning weights.

Metrics
Metrics are there to measure the performance of your model. The metric function behaves
like a loss function. However, it is not used to train the model.

In this case, the accuracy parameter was this:

...metrics = ['accuracy'])

Here, a value that descends towards 0 shows whether the training is on the right track and
moves up to one when the training requires Adam function optimizing to set the training
on track again.

Getting Your Neurons to Work Chapter 9

[206]

Training dataset
The training dataset is available on GitHub, along with the installation instructions and
explanations. The dataset contains the photo shown previously for the food-processing
conveyor belt example.

The class A directory contains the acceptable level images of a production line that
is producing acceptable levels of products. The class B directory contains the alert-level
images of a production line that is producing unacceptable levels of products.

The number of images of the dataset is limited because of the following:

For the purpose of training this limited industrial model, the images produced
good results
The training-testing phase runs faster to study the program

The goal of the model is to detect the alert levels as described in more detail in Chapter 10,
Applying Biomimicking to Artificial Intelligence, when it will be applied to the trained images
and generalized to similar ones.

Data augmentation
Data augmentation increases the size of the dataset by generating distorted versions of the
images provided.

The ImageDataGenerator function generates batches of all images found in tensor
formats. It will perform data augmentation by distorting the images (shear range, for
example). Data augmentation is a fast way to use the images you have and create more
virtual images through distortions:

train_datagen = ImageDataGenerator(re
scale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)

The code description is as follows:

scale will rescale the input image if not 0 (or none). In this case, the data is
multiplied by 1/255 before applying any other operation.
shear_range will displace each value in the same direction determined, in this
case by the 0.2. It will slightly distort the image at one point, giving some more
virtual images to train.

Getting Your Neurons to Work Chapter 9

[207]

zoom_range is the value of zoom.
horizontal_flip is set to true. This is a Boolean that randomly flips inputs
horizontally.

ImageDataGenerator provides many more options for real-time data augmentation, such
as rotation range, height shift, and more.

Loading the data
Loading the data goes through the train_datagen preprocessing image function
(described previously) and is implemented in the following code:

print("Step 7b training set")
training_set = train_datagen.flow_from_directory(directory+'training_set',
target_size = (64, 64),
batch_size = batchs,
class_mode = 'binary')

The flow in this program uses the following options:

flow_from_directory sets the directory + 'training_set' to the path where
the two binary classes to train are stored.
target_size will all be resized to that dimension. In this case, it is 64 x 64.
batch_size is the size of batches of data. The default value is 32 and set to 10 in
this case.
class_mode determines the label arrays returned: none or categorical will be 2D
one-hot encoded labels. In this case, binary returns 1D binary labels.

Testing dataset
The testing dataset flow follows the same structure as the training dataset flow described
previously. However, for testing purposes, the task can be made easier or more difficult
depending on the choice of the model. This can be done by adding images with defects or
noise. This will force the system into more training and the project team into more hard
work to fine-tune the model. Data augmentation provides an efficient way of producing
distorted images without adding images to the dataset. Both methods, among many others,
can be applied at the same time when necessary.

Getting Your Neurons to Work Chapter 9

[208]

Data augmentation
In this model, the data only goes through rescaling. Many other options could be added to
complicate the training task to avoid overfitting, for example, or simply because the dataset
is small:

print("Step 8a test")
test_datagen = ImageDataGenerator(rescale = 1./255)

Loading the data
Loading the testing data remains limited to what is necessary for this model. Other options
can fine-tune the task at hand:

print("Step 8b testing set")
test_set = test_datagen.flow_from_directory(directory+'test_set',
target_size = (64, 64),
batch_size = batchs,
class_mode = 'binary')

Never underestimate dataset fine-tuning. Sometimes, this phase can last weeks before
finding the right dataset and arguments.

Training with the classifier
The classifier has been built and can be run:

print("Step 9 training")
print("Classifier",classifier.fit_generator(training_set,
steps_per_epoch = estep,
epochs = ep,
validation_data = test_set,
validation_steps = vs))

The fit_generator function, which fits the model generated batch by batch, contains the
main hyperparameters to run the training session through the following arguments in this
model. The hyperparameters settings determine the behavior of the training algorithm:

training_set is the training set flow described previously.
steps_per_epoch is the total number of steps (batches of samples) to yield from
the generator. The variable used in the following code is estep.

Getting Your Neurons to Work Chapter 9

[209]

epochs is the variable of the total number of iterations made on the data input.
The variable used is ep in the preceding code.
validation_data=test_set is the testing data flow.
validation_steps=vs is used with the generator and defines the number of
batches of samples to test as defined by vs in the following code:

estep=100 #10000
vs=100 #5000
ep=2 #50

While the training runs, measurements are displayed: loss, accuracy, epochs, information
on the structure of the layers, and the steps calculated by the algorithm.

Here is an example of the loss and accuracy data displayed:

Epoch 1/2
 - 23s - loss: 0.1437 - acc: 0.9400 - val_loss: 0.4083 - val_acc: 0.5000
Epoch 2/2
 - 21s - loss: 1.9443e-06 - acc: 1.0000 - val_loss: 0.3464 - val_acc:
0.5500

Saving the model
Saving the model, in this case, consists in saving three files.

First, we will discuss the model file.

model.json, saved in the following code, contains serialized data describing the model
itself without weights. It contains the parameters and options of each layer. This
information is very useful to fine-tune the model:

serialize model to JSON
model_json = classifier.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)

More details on this file are provided in the next section, in the Loading the model section.

Now we will discuss the weights file.

To understand a CNN model or any other type of model, having access to the
weights can provide useful information when nothing works or to solve some of
the problems that come up.

Getting Your Neurons to Work Chapter 9

[210]

The weights are saved in the following code:

serialize weights to HDF5
classifier.save_weights("model.h5")
from keras.utils import plot_model
plot_model(classifier, to_file='model.png',show_shapes=True)
print("Model saved to disk")

A model.png file

This file will display the layers of the model, the input, and output sizes. The
following code saves the model in .png format:

from keras.utils import plot_model
plot_model(classifier,
to_file=directory+'model/model.png',show_shapes=True)
print("Model saved to disk")

model.png can prove useful to understand how the model went down from the
number of pixels of the original image to the binary classification layer containing
the classification status. The diagram at the beginning of the chapter, displaying
the layers and input/output values, was produced by this program.

Next steps
The model has been built and trained. In Chapter 10, Applying Biomimicking to artificial
intelligence, it will be loaded and implemented in the food-processing company and other
similar applications through transfer leaning.

Summary
Building and training a CNN will only succeed with hard work at choosing the model, the
right dataset, and hyperparameters. Convolutions, pooling, flattening, dense layers,
activations, and optimizing parameters (weights and biases) form solid building blocks to
train and use a model.

Training a CNN to solve an everyday industrial problem helps sell AI to a manager or a
sales prospect. In this case, using the model to help a food-processing factory solve a
conveyor belt productivity problem takes artificial intelligence a step further into
everyday corporate life.

Getting Your Neurons to Work Chapter 9

[211]

Saving the model provides a practical way to use it by loading it and applying it to new
images to classify them. This chapter concluded after we had trained and saved the model.

Chapter 10, Applying Biomimicking to Artificial Intelligence, will dive deeper into how neural
networks were inspired by human neural networks and describe how to analyze a neural
network with TensorBoard tools in more detail. Then the saved model CNN model will be
applied to the food industry through transfer learning; and we'll expand far beyond those
limits through domain learning in Chapter 11, Conceptual Representation Learning.

Questions
A CNN can only process images. (Yes | No)1.
A kernel is a preset matrix used for convolutions. (Yes | No)2.
Does pooling have a pooling matrix or is it random?3.
The size of the dataset always has to be large. (Yes | No)4.
Finding a dataset is not a problem with all the available image banks on the5.
web. (Yes | No)
Once a CNN is built, training it does not take much time. (Yes | No)6.
A trained CNN model applies to only one type of images. (Yes | No)7.
A quadratic loss function is not very efficient compared to a cross-entropy8.
function. (Yes | No)
The performance of a deep learning CNN does not a represent a real issue with9.
modern CPUs and GPUs. (Yes | No)

Further reading and references
Keras provides good explanations and samples from its community that will lead the
reader to interesting aspects of CNNs and practical issues:

https:// blog. keras. io/ building- powerful- image- classification- models-
using-very- little- data. html

https:// keras. io/ activations/

https:// github. com/ keras- team/ keras/ issues/

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://keras.io/activations/
https://keras.io/activations/
https://keras.io/activations/
https://keras.io/activations/
https://keras.io/activations/
https://keras.io/activations/
https://keras.io/activations/
https://keras.io/activations/
https://keras.io/activations/
https://keras.io/activations/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/
https://github.com/keras-team/keras/issues/

10
Applying Biomimicking to

Artificial Intelligence
Heated debates have been raging over biomimicking humans in various forms of artificial
intelligence for decades. In the 1940s, McCulloch and Pitts (see Chapter 2, Think like a
Machine) came up with a human neuron. Then Rosenblatt came up with a human
perceptron (Chapter 4, Become an Unconventional Innovator). Mimicking humans seemed to
have conquered the world of artificial intelligence networks. Then, in 1969, Minsky slowed
research down by proving that a perceptron could not solve the XOR problem (see Chapter
4, Become an Unconventional Innovator).

Today, deep learning networks reproduce our mental way of thinking. Neuroscientists now
work on representing our physical brain functions. These two different fields, though
different, still inspire each other.

Neural networks provide good mathematical models of how our mind works on the
number side. Mental images on top of words and numbers to describe them constitute the
larger part of human thinking. As shown in Chapter 8, Revolutions Designed for Some
Corporations and Disruptive Innovations Small to Large Companies, the uncharted territory of
AI must be continuously explored. Our community needs to make progress in this
direction with tools that will represent our way of thinking at higher levels.

The following topics will be covered in this chapter:

Showing how a neural network mimics the way a human mind represents
images
Showing how to use the graph structure representation of deep learning neural
networks to build and debug them
Exploring how the mathematical model neural networks are built today with
TensorBoard

Applying Biomimicking to Artificial Intelligence Chapter 10

[213]

Understanding the cutting edge of the mathematical data flow graph structures
such as TensorFlow, which will lead us to the cutting edge of biomimicking
humans with these methods
The difference between neuroscience computing models and deep learning
models
A TensorFlow MNIST classifier
TensorBoard dashboards
TensorFlow scopes, placeholders, variables, and other components
Analyzing accuracy, cross-entropy, and weights during the training process

This chapter prepares the reader for Chapter 11, Conceptual Representation Learning, which
goes right over the cutting edge and into the uncharted territory of conceptual
representation learning (CRL) and meta networks.

Technical requirements
You will need Python 3x with the following libraries:

from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import matplotlib.pyplot as plt
import keras
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json
from keras.models import load_model
import numpy as np
import cv2
from PIL import Image

import json
from pprint import pprint

For the TensorFlow classifier you will need this:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

#argparse is a Python command-line parsing module
import argparse
import os
import sys

Applying Biomimicking to Artificial Intelligence Chapter 10

[214]

Programs from GitHub can be found here:

https:// github. com/ PacktPublishing/ Artificial- Intelligence- By- Example/
blob/master/ Chapter10/ Google_ Tensor_ Classifier. py

https:// github. com/ PacktPublishing/ Artificial- Intelligence- By- Example/
blob/master/ Chapter10/ Tensorboard_ reader. py

Check out the following video to see the code in action:

https://goo.gl/psrZzS

Human biomimicking
In this section, the difference between neuroscience research on the brain and deep learning
research on the mind has led to TensorFlow and TensorBoard. With TensorFlow, our
representation of image recognition in a mathematical graph data flow structure has
become an extremely efficient model. TensorBoard provides a visual representation of what
we are building.

TensorFlow represents how our mind recognizes images (and other elements).
TensorBoard enables our minds to visualize that representation and improve it.

TensorFlow, an open source machine learning
framework
TensorFlow relies on graph representations of data flow. The graph computes
dependencies between operations.

When using Keras, as in Chapter 9, Getting Your Neurons to Work, the details of graphs and
sessions do not appear. However, to compare our brain with deep learning, some details
need to be examined using Google_Tensor_Classifier.py, which classifies MNIST
handwritten images and saves the summaries (information about the model).

https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Google_Tensor_Classifier.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://github.com/PacktPublishing/Artificial-Intelligence-By-Example/blob/master/Chapter10/Tensorboard_reader.py
https://goo.gl/psrZzS
https://goo.gl/psrZzS
https://goo.gl/psrZzS
https://goo.gl/psrZzS
https://goo.gl/psrZzS
https://goo.gl/psrZzS
https://goo.gl/psrZzS
https://goo.gl/psrZzS
https://goo.gl/psrZzS

Applying Biomimicking to Artificial Intelligence Chapter 10

[215]

The graph of the program is as shown in the following diagram:

Main graph

The nodes (labels with lines around them) and edges (lines connecting the labels) constitute
the graph structure. The graph structure, in turn, indicates how the operations are
connected to one another.

Chapter 9, Getting Your Neurons to Work, described all the nodes except dropout. In that
chapter, two dense layers were added to the classifier model. Sometimes, when
constructing a dense layer, some elements will not be trained. This is done to
avoid overfitting (see the transfer learning section later), which means that the model will
know the training set too well and will not adapt efficiently to new objects (images, sounds,
or words). This method, among others, helps to fine-tune the model during
the regularization process (methods to avoid overfitting, for example). The
dropout regularization rate can be added to the graph structure. Dropouts can be used
several times and at different places in a given model.

Applying Biomimicking to Artificial Intelligence Chapter 10

[216]

Does deep learning represent our brain or our mind?
After reading Chapter 9, Getting Your Neurons to Work, and the beginning of this chapter, it
takes a major effort to see how a data flow graph structure representing a deep learning
model has something to do with our brain.

We have gone a long way since the McCulloch-Pitts neuron proudly tried to represent a
neuron in our brain (see Chapter 2, Think like a Machine).

Neuroscience research that tries to create computer models of our brain is now named
computational neuroscience. Computer systems represent mathematical models of the
brain. Understanding how the brain works remains a critical field of physiology, nervous
system, cognitive ability, and related research. It sometimes provides some ideas for deep
learning networks.

But a TensorFlow data flow graph structure represents a deep learning model (or other
models) of a mathematical solution to a classification or prediction problem.

Deep learning networks have moved away from neuroscience, and their source of
inspiration comes mostly from other areas such as applied mathematics (linear algebra),
probability, information theory (for entropy, for example), and other related fields.

Naturally, the media hype surrounding artificial intelligence seems a bit confusing because
marketing managers make some impressive demonstrations of robots that look like us, try
to act like us, and speak like us. No matter what those systems do right now, their learning
model relies on data flow graph structures based mostly on mathematical representations
of our mind, not our brain.

Our mind thinks and reasons. When we think, we do not feel our brain following through
neurons and synapses. Our mind acts like a high-level API between what we want to do
and what our brain does for us.

To improve our API, we create abstract representations of almost everything around us. We
try to make sense of the chaos of all the incoming perceptions and thoughts we have to
manage. The better our representations, the more efficient our API to our brain will
become.

The TensorFlow data flow graph structure represents our mind's API
relaying information seamlessly to our brain, not our brain structure
which we cannot see when we think.

In the end, a deep learning network is a way of mimicking humans.

Applying Biomimicking to Artificial Intelligence Chapter 10

[217]

Biomimicking in deep learning simply mimics a deep learning network
and imitates our mathematical mind.

A TensorBoard representation of our mind
Nobody is sure how our brains can learn quickly with a few labeled objects and then apply
the patterns to unsupervised, unlabeled learning. Research on the subject will eventually
produce some helpful explanations.

In the meantime, we must rely on our mind's representations to train deep learning models.

If you want to follow the explanations of this chapter through programs,
first run Google_Tensor_Classifier.py as it is. Then
run Tensorboard_reader.py and follow the instructions in the code to
open TensorBoard in your browser. Otherwise, the chapter is self-
contained with source code excerpts and screenshots.

Many of the concepts in the TensorFlow_Classifier.py program were explained in
Chapter 9, Getting your Neurons to Work.

The following sections focus on TensorFlow objects that are not always perceived with
high-level interfaces, such as Keras.

Input data
This program is a unit-testing model. It uses unit-testing data in a unit-testing deep
learning model:

mnist =
input_data.read_data_sets(FLAGS.data_dir,one_hot=True,fake_data=FLAGS.fake_
data)

fake_data refers to an MNIST (handwritten digits) unit testing dataset and FLAGS are
command-line parameters (in this case, path information).

one-hot=true means that the labels of the data must be encoded into values. The presence
of labels means that this is a supervised (with labels) training classifier and not an
unsupervised (training with no labels) classifier.

Applying Biomimicking to Artificial Intelligence Chapter 10

[218]

The one-hot function (see Chapter 2, Think like a Machine) will encode labels into distinct
one-hot values as in the following example:

[[0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
...]

The inputs are stored in placeholders as in the following code:

with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

Placeholders are not just variables that will be filled up later. They define one of the
fundamental building blocks of a TensorFlow data flow graph. They contain the methods
that will be used in the node they are in.

tf.name.scope is the title label that will appear on TensorBoard, and name identifies this
element of the graph. The following graph displays the input scope with its two inputs.

Input scope with two inputs

TensorBoard provides the visual representation our mind needs to think. The placeholders
are in nodes that are linked to other operations through edges (lines) that represent the flow
of data and operations.

y-input, as you can see, skips the input_reshape function in layer 1; it goes straight to
the deeper operations of cross-entropy and accuracy as explained later.

x-input goes through the input-reshape node in the following code:

with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', image_shaped_input, 10)

Applying Biomimicking to Artificial Intelligence Chapter 10

[219]

tf.name_scope defines the title, input_reshape. The interesting part is the details you
will see if you click on the node and drill down, as shown in the following screenshot:

Input description

We usually represent the reshape function as one channel output when in fact there are
three outputs to subsequent operations.

The IMAGES section provides a visual representation of the reshaped images as shown in
the following screenshot:

Reshaped image

When building a model, TensorBoard visual representations of the reshaped images can
prove helpful for validation purposes.

Layer 1 – managing the inputs to the network
As with the Keras, implementing a layer in TensorFlow is done in a few lines but with
TensorBoard. Layer 1 takes x-input, calculates a weight, applies an activation function
and sends its output directly to the training node and also to the dropout node. The
following graph represents layer 1 and the result of the operations to OUTPUTS (dropout
and train):

Applying Biomimicking to Artificial Intelligence Chapter 10

[220]

Layer 1 and result of operations

Weights, biases, and preactivation
The core lines have the visual representation TensorBoard tf.name_scope functions as
described before as implemented in the following code.

with tf.name_scope(layer_name):
This Variable will hold the state of the weights for the layer
with tf.name_scope('weights'):
weights = weight_variable([input_dim, output_dim])
variable_summaries(weights)
with tf.name_scope('biases'):
biases = bias_variable([output_dim])
variable_summaries(biases)
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor, weights) + biases
tf.summary.histogram('pre_activations', preactivate)
activations = act(preactivate, name='activation')
tf.summary.histogram('activations', activations)
return activations

Applying Biomimicking to Artificial Intelligence Chapter 10

[221]

Notice the tf.summary module in the code. Not only does TensorFlow
provide a data flow graph structure with the tf.name.scope that shows
the operation, but also the values of the variables are stored
with tf.summary. It stores the structure of the operations as well.

The values themselves can be viewed in following charts:

Data flow graph

Each chart has its statistics described in a summary function that defines the information
needed to fine-tune and debug a model.

Applying Biomimicking to Artificial Intelligence Chapter 10

[222]

def variables_summaries(var) contains a list of very useful pieces of information. The
following Python source code contains comments that provide information on the variables
defined:

#Defining many summaries for TensorBoard Visualization of:
a)weights that will send weights to this function
:variable_summaries(weights)
b)biases that will send biasesto this function:
variable_summaries(biases)
TensorBoard will then display charts of summaries described as follows on
the related
TensorBoard dashboards
These weight and bias summaries provide a clear view, in TensorBoard of
the direction
the values are taking during training.It will help fine-tune the
hyperparameters when
things go wrong or training does not go fast enough.
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var) #the mean of the elements of a tensor
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))#var-mean will be
displayed
tf.summary.scalar('stddev', stddev) # calculates the standard deviation of
the input
tf.summary.scalar('max', tf.reduce_max(var)) #calculates the maximum of the
elements in the tensor
tf.summary.scalar('min', tf.reduce_min(var)) #calculates the minimum of the
elements in the tensor
tf.summary.histogram('histogram', var) # summarizes var for the histogram
tab on TensorBoard

With this number of quality controls, exploring TensorBoard will provide deep insights
into the neural network.

Applying Biomimicking to Artificial Intelligence Chapter 10

[223]

Displaying the details of the activation function through the preactivation
process
We often focus on the activation function in a layer. However, when a system fails and we
have to debug it, having a peek at the preactivation function sometimes provides effective
clues on what is going wrong. To visualize the preactivation output shown in the following
graph, click on Wx_plus_b in layer 1, which shows that many events are influencing the
training process:

preactivation output

Several notable operations occur with Wx_plus_b:

The weights and biases are connected to the training process, which is
continuously modifying them; this happens even before the MatMul operation.
Several tensors are sent to the training node and Matmul.
The Matmul operation carries out the multiplications (Wx). But its output sends
information to the training node and produces an output for the add node.
The add node itself sends its output to the activation function and also to the
preactivation data to the histogram summary so that we can analyze the behavior
of this hidden layer.

Now when we click on the HISTOGRAMS section on TensorBoard, we can visualize the
evolution of weight and bias training in the following diagrams:

Applying Biomimicking to Artificial Intelligence Chapter 10

[224]

Evolution of weight and bias training

In this model, the preactivation diagrams show a smooth Gaussian-like bell (peak in the
middle and similar slopes on each side). When building a model, everything seems fine.
But if the curves become erratic and training the model fails, these histograms will provide
critical information.

You can zoom in and check the values if necessary as shown in the following screenshot:

Evolution (Zoom in)

Applying Biomimicking to Artificial Intelligence Chapter 10

[225]

TensorBoard makes hidden layer intermediate values visible, which enhances our mental
representation of a model.

In a real-life project, if the activation node goes wrong, checking the preactivation status of
the layer eliminates a possible cause of design errors.

The activation function of Layer 1
The activation function of this model the is ReLU function (see Chapter 9, Getting Your
Neurons to Work).

When we peek into its structure, once again we see that it is not just an activation function
in a sequential process. Its output goes to the dropout and training nodes with complex
intermediate calculations as shown in the following description of the activation function:

Activation function description

TensorBoard provides us with yet another visual representation to control the distribution
of preactivation and, in this case, activations. The DISTRIBUTIONS section enables us to
detect anomalies in the activation phase once we have verified that the preactivation
functions produce acceptable results.

Applying Biomimicking to Artificial Intelligence Chapter 10

[226]

Visual representation complex node and edge structure

The visual representation of the complex node and edge structure of a TensorFlow data
flow graph come in handy when design errors slow a project down.

Dropout and Layer 2
Dropouts and the designing of a layer were explained previously.

However, let us focus on some features of the dropout node: dropout keep probability and
the outputs in the following diagram.

Dropout node

Applying Biomimicking to Artificial Intelligence Chapter 10

[227]

A dropout keep probability plays an overfitting reduction role. The probability leads to
dropping neurons during the training process. The scaling is done automatically.
Furthermore, this dropout feature is turned on and off during testing:

with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probability', keep_prob)
dropped = tf.nn.dropout(hidden1, keep_prob)

TensorBoard receives the information through the summary.scalar and can be viewed in
the following SCALARS section:

SCALARS view

Layer 2
The graph structure of layer 2 is the same as that of layer 1.

However, there are notable output differences in the connections (edges) to other nodes:

Layer 1 sends an output to the drop node and the layer 2 node
Layer 2 now sends its output to the training node, the accuracy node, and the
cross-entropy node as shown in TensorBoard

Applying Biomimicking to Artificial Intelligence Chapter 10

[228]

Layer 2 description

Measuring the precision of prediction of a network
through accuracy values
The accuracy node contains two parts: correct prediction and accuracy. The output value is
not sent to the training node but the correct predictions (see next section, Correct prediction)
part of it is used by cross-entropy. Accuracy measures the performance of the system. You
can stop training by limiting the number of epochs hyperparameter if you estimate that the
accuracy is sufficient to achieve your goals. Or you can use accuracy to fine-tune the
training model to increase its rate faster by modifying the hyperparameters or the design of
your model.

Correct prediction
The following code implements correct_prediction, which uses an argmax function.

with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

tf.argmax will output the index of the largest value of the input tensors. This simplifies
the task considerably by avoiding the need to manage scores of values. When things go
wrong—and they often do in real-life projects—we can go back to the preceding nodes and
debug the data flow or improve the design of the data flow graph structure.

Applying Biomimicking to Artificial Intelligence Chapter 10

[229]

When accuracy fails to meet expectations, TensorBoard provides us with a
two-dimensional debugging approach: fine-tune the data flow graph
structure itself and also explore the data flow values that the node
operations produce and send to other nodes through the edges.

The following graph of the correct_prediction node has two inputs. The first one is the
y-input, which comes straight from the input node. The second input is the output of
layer 2, which has processed the x-input input that came from its preceding nodes and is
communicating with the core training and cross-entropy nodes as well.

correct_prediction graph

argmax is applied separately to both inputs and sent to the accuracy node, and correct
predictions are used by the cross-entropy node.

accuracy
The accuracy uses the output of the correct prediction to compute the mean of the
elements of the tensor in the following code:

with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)

Applying Biomimicking to Artificial Intelligence Chapter 10

[230]

tf.reduce.mean calculates the mean in a standard way. For example, the mean of 2 and 4
is 3. Reducing the values of the input gives a good picture of how the model is doing
during training without overloading the designer with too many values to analyze, as
shown in the following diagram:

Accuracy scalar

The accuracy scalar is sent to accuracy, which can be viewed in the following screenshot
of the SCALARS section.

SCALARS section

Applying Biomimicking to Artificial Intelligence Chapter 10

[231]

You will notice that the accuracy values go up and up until we almost reach a 1 top score
value.

Take another good look. This rarely happens in real-life projects.

Accuracy fails to increase in many real-life projects without hard work
and analysis.

 Bad accuracy will tell you to go back and do the following:

Check the data flow—initial datasets, initial hyperparameters, and any value that
you can check and change in the data flow
Check the data flow graph structure to find flaws and improve them

Then start the training process again.

Cross-entropy
Cross-entropy was described in Chapter 9, Getting Your Neurons to Work. The first input
comes from layer 2, the result of the preceding nodes computing x-input. The second
input, y-input, comes directly from the input node, as implemented in the following code:

with tf.name_scope('total'):
cross_entropy = tf.reduce_mean(diff)
tf.summary.scalar('cross_entropy', cross_entropy)

TensorFlow measures its progression as shown in the cross_entropy_1 and accuarcy_1
charts that follow:

Applying Biomimicking to Artificial Intelligence Chapter 10

[232]

cross_entropy_1 and accuracy_1 charts

Note how nicely the value of cross-entropy goes down a nice gradient (slope) as the loss
function as the training progresses. This curve shows that the errors are being reduced.
Then note how nicely the accuracy curve goes up as the errors diminish.

Think about it. In real-life projects, the cross-entropy completely slows down at one point
while accuracy becomes erratic. The effect of this will be limited because cross-entropy
takes the correct predictions into account.

However, more often than not, hard work needs to be put in when facing our
implementations.

Applying Biomimicking to Artificial Intelligence Chapter 10

[233]

Training
As in Chapter 9, Getting Your Neurons to Work, an algorithm with adaptive learning rates
trains the model. The Adam algorithm using a cross-entropy loss function just like Chapter
9, Getting Your Neurons to Work, as shown here:

with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
cross_entropy)

The similarity between the Keras model in Chapter 9, Getting Your
Neurons to Work, and this TensorFlow model does not come as a surprise
since Keras uses TensorFlow as a backend.

The train node has several inputs from other nodes for its Adam optimizer—cross-

entropy, layer2, dropout, layer1, and x-input, as shown in the following graph:

Train node

At this point, TensorFlow provides all the necessary information to build and debug the
model.

Drill down into all the nodes in this model on the GRAPHS dashboard.
Explore all of the information about all the other sections: SCALARS,
IMAGES, DISTRIBUTIONS, and HISTOGRAMS provided by this unit
testing program. The more you know when things go wrong, the faster
you will correct them.

Applying Biomimicking to Artificial Intelligence Chapter 10

[234]

Optimizing speed with Google's Tensor
Processing Unit
Exploring a unit-testing model represents an effort on our part. Now, imagine having to
build a model that is 10 times this size. Training the model to find out where and why
things went wrong may prove time consuming.

Google has come up with an innovation: a Tensor Processing Unit (TPU). Google Search,
Google Translate, and Google Photos use a TPU to speed up computations.

Making that available to us on its data centers will make a difference. TensorBoard already
has a key function you might want to explore while building a complex and time-
consuming model. This function is the TPU Compatibility option on TensorBoard (see the
following screenshot).

TPU Compatibility

Click on TPU Compatibility (this chapter used the Structure option until now).

Applying Biomimicking to Artificial Intelligence Chapter 10

[235]

The following graph will now display the levels of TPU compatibility of each node (green +
red proportions):

TPU compatibility of each node

This means that, in future when you are designing a complex model, you should keep an
eye on TPU compatibility if you are going to consume a lot of CPU/GPU.

Applying Biomimicking to Artificial Intelligence Chapter 10

[236]

TensorBoard also provides the following list, for example, to display each level you are
drilling down to:

TPU each level

Even if you do not have access to a TPU, the read nodes will signal where you have to be
careful. You may want to optimize the model before even starting to train it.

Applying Biomimicking to Artificial Intelligence Chapter 10

[237]

One of the main nodes to keep an eye on is the training node that contains the Adam
optimizer, as shown in the following screenshot:

As models grow larger and larger, optimization will become a key field. Teams will have to
optimize data graph structures, data flows, and machine configuration, including network
speeds (and balancing).

Summary
The TensorFlow model represented in TensorBoard contains several basic building blocks
of ANNs, whether they are CNNs, RNNs such as LTSM networks, or other forms. All of
these models rely on numerical computation in one form or the other: weights,
biases, matmul operations, activation functions (logistic sigmoid, ReLU, or others), layers,
optimizers, loss functions, and more. All of these tools belong to the field of applied
mathematics.

This approach has been around for decades. However, as time goes by, linguists,
philosophers, historians, and many more people fascinated by AI will bring new ideas, new
programming languages, interfaces, and APIs. Focus on the core concepts, not the tools,
and you will always be able to keep up to date and innovate.

Applying Biomimicking to Artificial Intelligence Chapter 10

[238]

Biomimicking humans will inevitably be extended to conceptual representation learning,
the fascinating world of our video-clipped minds.

Complex projects require conceptual representation.

Chapter 11, Conceptual Representation Learning, will lead you into the uncharted territory of
conceptual representation learning.

Questions
Deep learning and machine learning mean the same thing. (Yes | No)1.
Deep learning networks mostly reproduce human brain functions (Yes | No)2.
Overfitting is unacceptable. (Yes | No)3.
Transfer learning can save the cost of building another model. (Yes | No)4.
Training a corporate model on MNIST is enough to implement it on a production5.
line, for example. (Yes | No)
Exploring artificial intelligence beyond the cutting edge is not necessary. It is6.
easier to wait for the next ideas that are published. (Yes | No)
Some researchers have reproduced all the physical and biological reasoning7.
functions of the human brain in robots. In fact, some robots have human brain
clones in them. (Yes | No)
Artificial general intelligence software, a program that can adapt to any human8.
function (natural language processing, image processing, or sound streams)
better than a human, already exists in some labs. (Yes | No)
Training deep learning networks has become a quick and easy task. (Yes | No)9.

Further reading
More on TensorFlow graphs and layers can be found here:

https:// www. tensorflow. org/ programmers_ guide/ graphs

https:// www. tensorflow. org/ tutorials/ layers

https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/programmers_guide/graphs
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers
https://www.tensorflow.org/tutorials/layers

11
Conceptual Representation

Learning
Artificial intelligence has just begun its long tryst with human intellect. Chapter 9, Getting
Your Neurons to Work, showed the possibilities of a CNN built with Keras. Chapter 10,
Applying Biomimicking to Artificial Intelligence, reproduced what humans use the most to
represent a problem: visualization.

Understanding cutting-edge machine learning, and deep learning theory only marks the
beginning of your adventure. The knowledge you have acquired should help you become
an AI visionary. Take everything you see as opportunities and see how it can fit in your
projects. Reach the limits and skydive beyond them.

This chapter focuses on decision-making and visual representations and explains the
motivation leading to conceptual representation learning (CRL) and meta models (MM),
which form CRLMMs. I developed this CRLMM method successfully for automatic
planning and scheduling (APS) software (see Chapter 12, Automated Planning and
Scheduling) for corporate projects. I also used this CRLMM method for cognitive NLP
chatbots (see Chapter 15, Cognitive NLP Chatbots, and Chapter 16, Improve the Emotional
Intelligence Deficiencies of Chatbots).

To plan, humans need to visualize necessary information (events, locations, and so on) and
more critical dimensions such as concepts. A human being thinks in mental images. When we
think, mental images flow through minds with numbers, sounds, odors, and sensations,
transforming our environment into fantastic multidimensional representations similar to
video clips.

Conceptual Representation Learning Chapter 11

[240]

The following topics will be covered in this chapter:

An approach to CRLMM in three steps: transfer learning, domain learning, and
the motivation for using CRLMM. Over the years, I've successfully implemented
CRL in C++, Java, and logic programming (Prolog) in various forms on corporate
sites. In this chapter, I used Python to illustrate the approach with the Keras
Convolutional Neural Network (CNN) built in Chapter 9, Getting Your Neurons
to Work.
Transfer learning using the Keras model trained in Chapter 9, Getting Your
Neurons to Work, to generalize image recognition.
Domain learning to extend image recognition trained in one field to another
field.
Possible use of GANs (Generative Adversarial Networks) to produce CRL
datasets.
The use (or not) of Autoencoders.

Technical requirements
Python 3.6x 64-bit from https:/ /www. python. org/ :

Packages and modules:

from keras.models import model_from_json
from keras.models import load_model
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.preprocessing.image import ImageDataGenerator
from keras.models import save_model
from keras import backend as K
from pprint import pprint

import Numpy as np
import matplotlib.image as mpimg
import scipy.ndimage.filters as filter
import matplotlib.pyplot as plt

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

Conceptual Representation Learning Chapter 11

[241]

Programs in GitHub Chapter11:

EAD_CNN_MODEL.py

CNN_STRATEGY_MODEL.py

CNN_TDC_TRAINING.py

CNN_TDC_STRATEGY.py

Check out the following video to see the code in action:

https://goo.gl/e7p9Lg

Generate profit with transfer learning
When it comes to reasoning and thinking in general, we use mental images with some
words. Our thoughts contain concepts, on which we build solutions. The trained model of
Chapter 9, Getting Your Neurons to Work, can now classify images of a certain type. In this
section, the trained model will be loaded and then generalized through transfer learning to
classify similar images.

The motivation of transfer learning
Transfer learning provides a cost-effective way of using trained models for other purposes
within the same company, such as the food processing company described in Chapter 9,
Getting Your Neurons to Work. This chapter describes how this food processing company
used the model for other similar purposes.

The company that succeeds in doing this will progressively generalize the use of the
solution. By doing so, inductive abstraction will take place and lead to other AI projects,
which proves gratifying to the management of a corporation and the teams providing the
solutions.

Inductive thinking
Induction uses inferences to reach a conclusion. For example, a food processing conveyor
belt with missing products will lead to packaging productivity problems. If insufficient
amounts of products reach the packaging section, this will slow down the whole
production process.

https://goo.gl/e7p9Lg
https://goo.gl/e7p9Lg
https://goo.gl/e7p9Lg
https://goo.gl/e7p9Lg
https://goo.gl/e7p9Lg
https://goo.gl/e7p9Lg
https://goo.gl/e7p9Lg
https://goo.gl/e7p9Lg
https://goo.gl/e7p9Lg

Conceptual Representation Learning Chapter 11

[242]

By observing similar problems in other areas of the company, inferences from managers
will come up, such as, If insufficient amounts of products flow through the process, production
will slow down.

Inductive abstraction
The project team in charge of improving efficiency in the company needs to find an abstract
representation of the problem to implement a solution through organization or software.
This book deals with the AI side of solving the problem. Organizational processes need to
define how AI will fit in with several on-site meetings.

The problem AI needs to solve
In this particular case, each section of the factory has an optimal production rate defined
per hour or per day, for example. The equation of an optimal production rate (OPR) per
hour can be summed up as follows:

OPR : min(p(s))<=opr<=max(p(s))

Where:

p is the production rate of a given section (different production departments of a
factory) s.
p(s) is the production rate of the section.
min(p(s)) is the historical minimum (trial and error over months of analysis).
Under that level, the whole production process will slow down.
max(p(s)) is the historical maximum. Over that level, the whole production
process will slow down as well.
OPR is the optimal production rate.

The first time somebody sees this equation, it seems difficult to understand. The difficulty
arises because one has to visualize the process, which is the goal of this chapter. Every
warehouse, industry, and service uses production rates as a constraint to reach profitable
levels.

Conceptual Representation Learning Chapter 11

[243]

Visualization requires representation at two levels:

Ensuring that if a packaging department is not receiving enough products, it will
have to slow down or even stop sometimes.
Ensuring that if a packaging department receives too many products, it will not
be able to package them. If the input is a conveyor belt with no intermediate
storage (present-day trends), then it will have to be slowed down, slowing down
or stopping the processes before that point.

In both cases, slowing down production leads to bad financial results and critical
sales problems through late deliveries.

In both cases, an OPR gap is a problem. To solve it, another level of abstraction is required.
First, let's separate the OPR equation into two parts:

Now let's find a higher control level through variance variable v:

v min and v max are the absolute values of the variance in both situations (not enough
products to produce and too many to produce respectively).

The final representation is through a single control, detection, and learning rate (Greek
gamma letter):

This means that the variance between the optimal production rate of a given section of a
company and its minimum speed (products per hour) will slow the following section
down. If too few cakes (vmin), for example, are produced, then the cake packaging
department will be waiting and stopping. If too many cakes are produced (vmax), then this
section will have to slow down or stop. Both variances will create problems in a company
that cannot manage intermediate storage easily, which is the case with the food processing
industry.

With this single Γ parameter, Chapter 9, Getting Your Neurons to Work, Keras CNN, can
start teaching a fundamental production concept: what a physical gap is.

Conceptual Representation Learning Chapter 11

[244]

The Γ gap concept
Teaching the CNN the gap concept will help it extend its thinking power to many fields:

A gap in production, as explained before
A gap in a traffic lane for a self-driving vehicle to move into
Any incomplete, deficient area
Any opening or window

Let's teach a CNN the Γ gap concept, or simply Γ. To achieve that goal, the CNN Keras
model that was trained and saved in Chapter 9, Getting Your Neurons to Work, now needs to
be loaded and used. To grasp the implications of the Γ concept, imagine the cost of not
producing enough customer orders or having piles of unfinished products everywhere. The
financial transposition of the physical gap is a profit variance on set goals. We all know the
pain those variances lead to. Understanding and solving the Γ-gap problem will constitute
a primary goal in Chapter 12, Automated Planning and Scheduling.

Loading the Keras model after training
The technical goal is to load and use the trained CNN Keras model and then use the same
model for other similar areas. The practical goal is to teach the CNN how to use the Γ
concept to enhance the thinking abilities of the scheduling, chatbot, and other applications.

Loading the model has two main functions:

Loading the model to compile and classify new images without training the
model
Displaying the parameters used layer by layer and displaying the weights
reached during the learning and training phase

Loading the model to optimize training
A limited number of headers suffice to read a saved model with READ_CNN_MODEL.py, as
implemented in the following lines:

from keras.models import model_from_json
from keras.models import load_model
import json
from pprint import pprint

Conceptual Representation Learning Chapter 11

[245]

#Direction containing the model file
directory='dataset/'
print("directory",directory)

The .json model saved is now loaded from its file as shown here:

#____________________LOAD MODEL___________________________
json_file = open(directory+'model/model.json', 'r')
loaded_jsonf = json_file.read()
loaded_json=json.loads(loaded_jsonf)
json_file.close()
print("MODEL:")
pprint(loaded_json)

I used the pprint function in the following code instead of print to obtain a pretty
print formatted display of the model:

print("MODEL:")
pprint(loaded_json)

Reading the model is not a formality. The output of the program will help you train the
model. Each layer starts with a marker. In this case, class name: indicates one of the
layers added. For example, Conv2D in the following output provides vital information on
the parameters and additional options of that layer:

MODEL:
{'backend': 'tensorflow',
'class_name': 'Sequential',
'config': [{'class_name': 'Conv2D',
'config': {'activation': 'relu',
'activity_regularizer': None,
'batch_input_shape': [None, 64, 64, 3],
'bias_constraint': None,
'bias_initializer': {'class_name': 'Zeros',
'config': {}},
'bias_regularizer': None,
'data_format': 'channels_last',
'dilation_rate': [1, 1],
'dtype': 'float32',
'filters': 32,
'kernel_constraint': None,
'kernel_initializer': {'class_name': 'VarianceScaling',
'config': {'distribution': 'uniform',
'mode': 'fan_avg',
'scale': 1.0,
'seed': None}},
'kernel_regularizer': None,

Conceptual Representation Learning Chapter 11

[246]

'kernel_size': [3, 3],
'name': 'conv2d_1',
'padding': 'valid',
'strides': [1, 1],
'trainable': True,
'use_bias': True}},

Each parameter contains very useful information. For example, 'padding':'valid'
means that padding has not been applied (no padding). In this model, the number and size
of the kernels provide satisfactory results without padding and the shape decreases to the
final status layer (classification) as shown here:

initial shape (570, 597, 4)
lay: 1 filters shape (568, 595, 3)
lay: 2 Pooling shape (113, 119, 3)
lay: 3 filters shape (111, 117, 3)
lay: 4 pooling shape (22, 23, 3)
lay: 5 flatten shape (1518,)
lay: 6 dense shape (128,)
lay: 7 dense shape (1,)

However, suppose you want to control the output shape of a layer so that the spatial
dimensions do not decrease faster than necessary. One reason could be that the next layer
will explore the edge of the image and that we need to explore them with kernels that fit in
the shape.

In that case, a padding of size 1 can be added with 0 values as shown in the following
matrix:

0 0 0 0 0 0

0 1 3 24 4 0

0 3 7 8 5 0

0 6 4 5 4 0

0 5 4 3 1 0

0 0 0 0 0 0

A padding of size 2 would add two rows and columns around the initial shape.

Conceptual Representation Learning Chapter 11

[247]

With that in mind, fine-tuning your training model by adding as many options as necessary
will improve the quality of the results. The weights can be viewed by extracting them from
the saved model file layer by layer, as shown in the following code snippet:

#___________________ LOAD WEIGHTS_________________________

loaded_model=model_from_json(loaded_jsonf)
loaded_model.load_weights(directory+"model/model.h5")
print("WEIGHTS")
for layer in loaded_model.layers:
 weights = layer.get_weights() # list of numpy arrays
 print(weights)

Analyzing the weights used by the program will provide useful information about the way
the optimizing process was carried out by the program. Sometimes, a program will get
stuck, and the weights might seem off track. After all, a CNN can contain imperfections like
any other program.

A look at the following output, for example, can help understand where the system went
wrong:

WEIGHTS
[array([[[[-0.1005416 , -0.08582606, -0.058176 , 0.11453936, 0.04511052,
 0.05389464, 0.03316241, 0.10681037, 0.08743957, 0.0007824 ,
 0.09682989, 0.01926496, -0.00474238, -0.05053157, -0.07657856,
 -0.10017087, -0.08425587, 0.06652132, 0.04018607, 0.13323469,
 0.12131914, -0.11700463, -0.09595016, -0.08730403, -0.06408932,
 -0.0613227 , 0.13427697, -0.08226932, 0.09776273, 0.00540088,
 -0.02313543, -0.03464791],

Much has been written about how to build CNNs and little about how to
maintain them. This program provides one of the many tools to repair
problems.

Loading the model to use it
Loading the model with CNN_CONCEPT_STRATEGY.py to use it requires more headers. I
played it safe and loaded whatever would be needed to save the time otherwise spent in
crashing and looking for imports as shown here:

from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import matplotlib.pyplot as plt
import keras

Conceptual Representation Learning Chapter 11

[248]

import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json
from keras.models import load_model
import numpy as np
import cv2
from PIL import Image

Loading the .json file and weights is done by using the same code as in
the READ_CNN_MODEL.py described previously. Once you load it, compile the model with
the model.compile function, as follows:

__compile loaded model
loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])

The model used for this case study and the image identification function has been
implemented in two parts. First, we're loading and resizing the image with the following
function, for example:

def identify(target_image):
 filename = target_image
 original = load_img(filename, target_size=(64, 64))
 #print('PIL image size',original.size)
 plt.imshow(original)
 plt.show()
 numpy_image = img_to_array(original)
 arrayresized = cv2.resize(numpy_image, (64,64))
 #print('Resized',arrayresized)
 inputarray = arrayresized[np.newaxis,...] # extra dimension to fit model

Keras expects another dimension in the input array to predict, so one is added to fit the
model. In this case study, one image at a time needs to be identified. These little details are
time-savers in the development phase.

I added the following two prediction methods and returned one:

#___PREDICTION___
 prediction1 = loaded_model.predict_proba(inputarray)
 prediction2 = loaded_model.predict(inputarray)
print("image",target_image,"predict_proba:",prediction1,"predict:",predicti
on2)
 return prediction1

Conceptual Representation Learning Chapter 11

[249]

Two prediction methods are there because, basically, every component needs to be checked
in a CNN during a project's implementation phase to choose the best and fastest ones. To
test prediction2, just change the return instruction.

Once a CNN is running, it can prove difficult to find out what went
wrong. Checking the output of each layer and component while building
the network saves fine-tuning time once the full-blown model produces
thousands of results.

The following example detects product Γ gaps on a conveyor belt in a food processing
factory. The program loads the first image stored in the classify directory to predict its
value. The program describes the prediction:

MS1='productive'
MS2='gap'

s=identify(directory+'classify/img1.jpg')
if (int(s)==0):
 print('Classified in class A')
 print(MS1)

The program displays (optional) the shaped image, such as the following frame, which
shows that the conveyor belt has a sufficient number of products at that point:

Output (shaped image)

The program then makes and displays its prediction 0, meaning no real gap has been found
on the conveyor belt on this production line:

directory dataset/
Strategy model loaded from training repository.
image dataset/classify/img1.jpg predict_proba: [[0.]] predict: [[0.]]
Classified in class A
productive
Seeking...

Conceptual Representation Learning Chapter 11

[250]

Seeking... means it is going to analyze the second image in the classify direction. It
loads, displays, and predicts its value as shown in the following frame:

Output (shaped image)

The prediction (value = 1) correctly detected gaps on the conveyor belt, as shown in the
following output:

image dataset/classify/img2.jpg predict_proba: [[1.]] predict: [[1.]]
Classified in class B
gap

Now that the predictions of the CNN have been verified, the implementation strategy
needs approval. A convolutional neural network contains marvels of applied mathematics.
CNNs epitomize deep learning in themselves. A researcher could easily spend hundreds of
hours studying them.

However, applied mathematics in the business world requires profitability. As such, the
components of CNNs appear as ever-evolving concepts. Added kernels, activation
functions, pooling, flattening, dense layers, and compiling and training methods act as a
starting point for architectures, not as a finality.

Using transfer learning to be profitable or see a project stopped
At one point, a company will demand results or shelve the project. If a spreadsheet
represents a faster and a sufficient solution, a deep learning project will face potential
competition and rejection. Many engineers learning artificial intelligence will have to
assume the role of standard SQL reporting experts before accessing real AI projects.

Transfer learning appears as a solution to the present cost of building and training a CNN
program. Your model might just pay off that way. The idea is to get a basic AI model
rolling profits in fast for your customer and management. Then you will have everybody's
attention. To do that, you must define strategies.

Conceptual Representation Learning Chapter 11

[251]

Defining the strategy
If a deep learning CNN expert, for example, our friend Pert Ex, comes to a top manager
saying that this CNN model can classify CIFAR-10 images of dogs, cats, cars, plants, and
more, the answer will be, So what? My 3-year-old child can too. In fact, so can my dog!

The IT manager in that meeting might even blurt out something like, We have all the decision
tools we need right now, and our profits are increasing. Why would we invest in a CNN?

The core problem of marketing AI to real-world companies is that it relies upon the belief in
the necessity of a CNN in the first place. Spreadsheets, SQL queries, standard automation,
and software do 99% of the job. Most of the time, it does not take a CNN to replace many
jobs; just an automated spreadsheet, a query, or standard and straightforward software is
enough. Jobs have been sliced into simple-enough parts for decades to replace humans with
basic software.

Before presenting a CNN, Pert Ex has to find out how much the company can earn using
it. Pert has found an area with a quick win to show the power of the system in a cost-
effective way.

Understanding, designing, building, and running a CNN does not mean
much regarding business. All the hard work we put in to understanding
and running these complex programs will add up to nothing if we cannot
prove that a solution will generate profit. Without profit, the
implementation costs cannot be recovered, and nobody will listen to a
presentation about even a fantastic program.

Pert Ex describes the example in the previous section applied to this food processing
company.

Applying the model
At the food processing company, one of the packaging lines has a performance problem.
Sometimes, randomly, some of the cakes are missing on the conveyor belt, as shown in the
following frame:

Food processing company example

Conceptual Representation Learning Chapter 11

[252]

Pert explains that to start a cost-effective project, a cheap webcam could be installed over
the conveyor belt. It'll take a random sample picture every 10 seconds and process it to find
the holes as shown in the interval between the two blue lines. If a hole is detected, it means
some cakes have not made it to the conveyor belt (production errors).

Pert estimates that a 2% to 5% productivity rate increase could be
obtained by automatically sending a signal to the production robot when
some cakes are missing.

The CEO decides to try this system out and approves a prototype test budget.

Making the model profitable by using it for another
problem
The food processing experiment on the conveyor belt turns out to work well enough with
dataset type d1 and the CNN model M to encourage generalization to another dataset, d2, in
the same company.

Transfer learning consists of going from M(d1) to M(d2) using the same CNN model M, with
some limited, cost-effective additional training. Variations will appear, but they will be
solved by shifting a few parameters and working on the input data following some basic
dataset preparation rules:

Overfitting: When the model fits the training data quickly with 100% accuracy,
this may or not be a problem. In the case of classifying holes on the conveyor,
belt overfitting might not prove critical. The shapes are always the same and the
environment remains stable. However, in an unstable situation with all sorts of
different images or products, then overfitting will limit the effectiveness of a
system.
Underfitting: If the accuracy drops down to low levels such as 20%, then the
CNN or any other model will not work. The datasets and parameters need
optimizing. Maybe the number of samples needs to be increased for M(d2), or
reduced, or split into different groups.
Regularization: Regularization, in general, involves the process of finding how
to fix the generalization problem of M(d2), not the training errors of M(d2). Maybe
an activation function needs some improvements, or the way the weights have
been implemented require attention.

Conceptual Representation Learning Chapter 11

[253]

There is no limit to the number of methods you can apply to find a solution, just like
standard software program improvement.

Where transfer learning ends and domain learning begins
Transfer learning can be used for similar types of objects, or images in this case as
explained. The more similar images you can train within a company with the same model,
the more the return on investment (ROI) it will produce and the more this company will
ask you for more AI innovations.

Domain learning takes a model such as the one described in Chapter 9, Getting your
Neurons to Work, and that describe in this chapter to generalize it. The generalization
process will lead us to domain learning.

Domain learning
This section on domain learning builds a bridge between classic transfer learning, as
described previously, and another use of domain learning I found profitable in corporate
projects: teaching a machine a concept (CRLMM). The chapter focuses on teaching a
machine to learn to recognize a gap in situations other than at the food processing
company.

How to use the programs
You can read the chapter first to grasp the concepts, or play with the programs first. In any
case, CNN_TDC_STRATEGY.py loads trained models (you do not have to train them again
for this chapter) and CNN_CONCEPT_STRATEGY.py trains the models.

The trained models used in this section
This section uses CNN_TDC_STRATEGY.py to apply the trained models to the target concept
images. READ_CNN_MODEL.py (as shown previously) was converted
into CNN_TDC_STRATEGY.py by adding variable directory paths (for the model.h5 files
and images) and classification messages, as shown in the following code:

#loads,traffic,food processing
A=['dataset_O/','dataset_traffic/','dataset/']
MS1=['loaded','jammed','productive']
MS2=['unloaded','change','gap']

Conceptual Representation Learning Chapter 11

[254]

#____________________LOAD MODEL____________________________
json_file = open(directory+'model/model.json', 'r')
....
s=identify(directory+'classify/img1.jpg')

Each subdirectory contains four subdirectories:

classify: Contains the images to classify
model: The trained model.h5 used to classify the images
test_set: The test set of conceptual images
training_set: The training set of conceptual images

Chapter 9, Getting Your Neurons to Work, describes the whole process.

The training model program
For this chapter, you do not need to train the models; they were already trained
using CNN_TDC_TRAINING.py. This program is an extension of the training program in
Chapter 9, Getting Your Neurons to Work. The directory paths have become variables to
access the subdirectories described previously. The paths can be called, as shown in the
following code:

A=['dataset_O/','dataset_traffic/','dataset/']
scenario=3 #reference to A
directory=A[scenario] #transfer learning parameter (choice of images)
print("directory",directory)

You do not need to use this program for this chapter. The models were trained and
automatically stored in their respective subdirectories on the virtual machine delivered
with the book.

For this chapter, focus on understanding the concepts. You can read the
chapter without running the programs, open them without running them,
or run them, whatever makes you comfortable. The main goal is to grasp
the concepts to prepare for the subsequent chapters.

GAP – loaded or unloaded
In Chapter 12, Automated Planning and Scheduling, CRLMM will be applied to automatic
planning and scheduling (APS). When planning in general, in a factory for example, a key
concept of a gap is unloaded, loaded.

Conceptual Representation Learning Chapter 11

[255]

Set the scenario to 0 in CNN_TDC_STRATEGY.py to run this conceptual
model: scenario=0 #reference to A,MS1,MS2.

The gap concept has just become a polysemy word concept (polysemy means different
meanings; see Chapter 8, Revolutions Designed for Some Corporations and Disruptive
Innovations Small to Large Companies).

In the cake situation, the Γ gap was negative in its g1 subset of meaning and concepts
applied to a CNN, relating it to negative images n+g1:

ng1={missing, not enough, slowing production down...bad}

The full-of-products image was positive, p+g2:

pg2={good production flow, no gap}

In this example, the CNN is learning how to distinguish an abstract representation, not an
image like for the cakes. Another subset of Γ(gap conceptual dataset) is loaded/unloaded.

The following abstract image is loaded. The squares represent some kind of production
machine and the arrows represent the load-in time. This means that the x axis represents
time and the y axis represents machine production resources.

Abstract image

Conceptual Representation Learning Chapter 11

[256]

The CNN model runs and produces the following result:

directory dataset_O/
Strategy model loaded from training repository.
image dataset_O/classify/img1.jpg predict_proba: [[0.]] predict: [[0.]]
Classified in class A
loaded
Seeking...

The CNN recognizes this as loaded. The task goes beyond classifying. The system needs to
recognize this to make a decision.

Another image produces a different result. In this case, an unloaded gap appears in the
following screenshot:

Abstract image

And the CNN has a different output, as shown here:

Seeking...
image dataset_O/classify/img2.jpg predict_proba: [[1.]] predict: [[1.]]
Classified in class
unloaded

The gap concept Γ has added two other subsets, g3 and g4, to its dataset. We now have:

Γ={ng1,g2,g3,g4...gn}

Conceptual Representation Learning Chapter 11

[257]

The four g1 to g4 subsets of Γ are:

ng1={missing, not enough, slowing production down...bad}

pg2=pg2={good production flow, no gap}

g3={loaded}

g4={unloaded}

The remaining problem will take some time to solve. g4 (gap) can sometimes represent an
opportunity for a machine that does not have a good workload to be open to more
production. In some cases, g4 becomes pg4(p = positive). In other cases, it will become ng4
(n=negative) if production rates go down.

As in Chapter 8, Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies, the context had become strategic when a bus (coach) broke down
and the translation came out as a trainer (coach) and not as a vehicle. The problem in these
situations relies on the fact that additional input information is required. More words will
not help. CRLMM will bring additional concepts into the model.

GAP – jammed or open lanes
A self-driving car needs to recognize whether it is in a traffic jam or not. Also, the self-
driving car has to know how to change lanes when it detects enough space (a gap) to do
that.

This produces two new subsets:

g5={traffic jam, heavy traffic...too much traffic}

g6={open lane, light traffic...normal traffic}

Conceptual Representation Learning Chapter 11

[258]

The model now detects g5 (traffic jam), as shown in the following screenshot:

Traffic jam example

The following output appears correctly:

directory dataset_traffic/
Strategy model loaded from training repository.
image dataset_traffic/classify/img1.jpg predict_proba: [[0.]] predict: [[
0.]]
Classified in class A
jammed

g6 comes out right as well, as shown in this screenshot:

Traffic jam example

Conceptual Representation Learning Chapter 11

[259]

A potential lane change has become possible, as detected by the following code:

Seeking...
image dataset_traffic/classify/img2.jpg predict_proba: [[1.]] predict: [[
1.]]
Classified in class B
change

The gap dataset
At this point, the Γ(gap conceptual dataset) has begun to learn several subsets:

Γ={g1,g2,g3,g4,g5,g6}

In which:

ng1={missing, not enough, slowing production down...bad}

pg2=pg2={good production flow, no gap}

g2={loaded}

g3={unloaded}

pg4={traffic jam, heavy traffic...too much traffic}ng5={open lane, light traffic...normal traffic}

Notice that g2 and g3 do not have labels yet. The food processing context provided the
label. Concept detection requires a context, which CRLMMs will provide.

Generalizing the Γ(gap conceptual dataset)
The generalization of Γ(gap conceptual dataset) will provide a conceptual tool for meta-
models.

Conceptual Representation Learning Chapter 11

[260]

Γ(gap conceptual dataset) refers to negative, positive, or undetermined
space between two elements (objects, locations, or products on a
production line).

Γ (gamma) also refers to a gap in time: too long, not long enough, too short, or not short
enough.

Γ represents the distance between two locations: too far or too close.

Γ represents a misunderstanding or an understanding between two parties: a divergence of
opinions or a convergence.

All of these examples refer to gaps in space and time viewed as space.

Generative adversarial networks
Using GANs to generate concept-word images can boost the production CRL datasets and
produce millions of concept-word images. No single solution will suffice. CNNs can do the
job; GANs can also.

Suppose the Γ gap concept needs to be generalized to thousands of situations. Millions of
images with words could be analyzed and automatically stored in a Γ dataset, with tens of
thousands of image-word concepts of gaps.

A GAN could be built in a few lines with the following components:

Input data for the generator
The generator
Real data input
A discriminator (detects fake data from real data)
An optimizer (training)

Conceptual Representation Learning Chapter 11

[261]

The network starts by inputting real data and fake data (with the generator), as shown in
the following diagram:

The discriminator function accepts or rejects the generated data. If the data is rejected, then
we are back to known territory (see Chapter 9, Getting Your Neurons to Work) with cross-
entropy to measure the loss and an Adam optimizer, for example.

The system will train until it distinguishes right images from fake images like other
networks.

What makes GANs interesting is the fact that the generator data has no
direct connection with the real data.

It has to go through the discriminator and be trained if it's wrong. Furthermore, the
generated data can be labeled with accurate or inaccurate labels although the real data is
correctly labeled.

Generating conceptual representations
A GAN can be used to generate the large datasets required for CRLMMs. The real data
could be a set of images with the correct word vectors. The generator could then produce
millions of images and labels that the discriminator would work on. The accurately
generated datasets could be stored in a CRL repository.

Conceptual Representation Learning Chapter 11

[262]

A GAN can be implemented in a few lines of code in TensorFlow, for example. The Further
reading section at the end of the chapter provides links that detail this simple but effective
type of network.

The use of autoencoders
The use of autoencoders must be explored although not recommended for the generation of
a conceptual learning dataset.

Data compression has become a part of our daily life through MP3 algorithms, for example.
Autoencoding in machine learning is a data compression algorithm.

It takes the original data, compresses it, and can then reconstruct it:

Original input
The encoder compresses the data (compressed representation)
The decoder reconstructs the data
The reconstructed output is produced

They were used for CNNs at a time for data representations. But as shown in Chapter 9,
Getting Your Neurons to Work, random weight initialization scenarios are as effective if not
more reliable and flexible.

Two main limitations of autoencoders have restrained their use:

Autoencoders need to be trained on specific data. Being data-specific makes
transfer learning tedious.
The decompressed output is not 100% reliable. They are lossy, which means that
information is lost during the encoding-decoding phase, unlike standard lossless
compression algorithms.

Autoencoders can be used in some cases of dimensionality reduction for data visualization
and data denoising.

Beyond that, present-day random weight initialization methods are favored for CNN
applications.

Conceptual Representation Learning Chapter 11

[263]

The motivation of conceptual representation
learning meta-models
A CRLMM converts images into concepts. These abstract concepts will then be embedded
in vectors that become logits for a softmax function and in turn be converted into
parameters for complex artificial intelligence programs such as :

Automated planning and scheduling (see Chapter 12, Automated Planning and
Scheduling)
Cognitive NLP Chatbots (see Chapter 15, Cognitive NLP Chatbots, and Chapter
16, Improve the Emotional Intelligence Deficiencies of Chatbots)

At one point, in some artificial intelligence projects, dimension reduction does not produce
good results. When scheduling maintenance on airplanes, rockets, and satellite launcher,
for example, thousands of features enter the system without leaving any out. A single
missing screw in the wrong place can create a disaster.

The curse of dimensionality
The features for a given project can reach large numbers. The following example contains
1,024 dimensions:

The curse of dimensionality

Conceptual Representation Learning Chapter 11

[264]

In Chapter 9, Getting Your Neurons to Work, and Chapter 10, Applying Biomimicking to
Artificial Intelligence, kernels and pooling reduced the number of dimensions to extract key
features. With those key features in tensors, arrays and/or vectors, classification and
prediction processes are possible. This process produces effective results in many areas.

The limit of this approach occurs when the result does not reach expectations, such as in
some of the cases we will discover in the following chapters. In those cases, CRLMMs will
increase the productivity of the solution providing a useful abstract model.

When a solution requires a large number of unreduced dimensions, kernels, pooling, and
other dimension reduction methods cannot be applied. CRLMMs will provide a pair of
glasses to the system.

The blessing of dimensionality
In some projects, when the model reaches limits that comprise a project, dimensionality is a
blessing. Let's focus on three examples described in the next chapters: scheduling, chatbots,
and self-driving cars.

Scheduling and blockchains
An artificial neural network (ANN) system built on dimension reduction might sometimes
be seriously underfitted. As long as it was trained with ready-to-use datasets (MNIST,
CIFAR, and others), the system worked fine. It even ran perfectly on small datasets.

Then all of a sudden, on the first week in the food processing industry, for example, it
mistakes a positive gap (an available resource) for a negative gap (not enough production).

For example, since a gap meant missing products for several days, the AI system wrongly
predicted a negative gap when it was not supposed to. In this circumstance, this was a
deliberate choice of the management to slow production down due to resource shortages
(see Chapter 12, Automated Planning and Scheduling). Dimensionality enhancements will
solve the problem.

Humans reduce the number of possibilities of a problem with logic and inbuilt decision
trees. Machines can beat humans in some forms of computation with no logic at all using
random memoryless algorithms (MDP; see Chapter 1, Become an Adaptive Thinker).
However, present-day deep learning networks, however innovative they are, reduce the
dimensions of representation, layer by layer. They flatten them out, drop out information
and more to reach a result.

Conceptual Representation Learning Chapter 11

[265]

The future of AI will no doubt rely on increasing the number of dimensions way
beyond human limits and performing powerful calculations without present-day
levels of reduction. Today's state-of-the-art is tomorrow's past. Blow the
number of dimensions up to indefinite numbers when it is necessary and
possible!

Chatbots
Most NLP algorithms use probabilities to predict the next words. Or they use preset
sentences to answer questions without analyzing the real meaning.

This means building systems that guess, sometimes effectively, sometimes with errors. In
any case, they do not think. Many applications produce good results with statistical
approaches. But for some projects, customizing a chatbot comes in handy.

For example, imagine that somebody is speaking to you in a language you do not know at
all. You have the inbuilt ability of present NLP algorithms to predict representations
through statistics on your smartphone.

Although you do not understand a single word, you produce words, statistically, that could
fit the situation. For isolated words and simple sentences, you are doing well.

Then all of a sudden, the person frowns. You are totally off track, like many NLP systems
today. The person is astonished by your ability to speak and has just said in French, for
example, "tu as la patate!"

You understand what Google Translate tells you: "You have the potato!" You have a big
question mark on your face. The other person frowns. Oops!

You just spoke in body language: your question mark, the person's frown. Body language
constitutes a major part of real communication between humans. Body language needs to
be compensated for with empathy as we will explore in the chatbot chapters.

In the meantime, in French colloquial or slang language potate means pep (lots of energy) in
English.

Classifying documents, finding keywords, and doing first-level translations (see Chapter 8,
Revolutions Designed for Some Corporations and Disruptive Innovations for Small to Large
Companies) is one thing; building a smart chatbot beyond language statistics when
necessary is another. A CRLMM solution will provide a deeper interaction between a
system and humans such as described in the chatbot chapters.

Conceptual Representation Learning Chapter 11

[266]

Self-driving cars
Self-driving cars will progressively drive everywhere for everything. In the meantime,
accidents caused by self-driving cars grab the headlines. Let's imagine some solutions to
help them avoid accidents and improve maintenance problems with small but effective
CRLMM enhancements.

Humans increase dimensionality to solve problems, find new ideas, clear
misunderstandings up, and adapt.

The CRLMMs built as add-ons on the awesome tools we all have access to, give us the
opportunity to push the limits of AI further every day.

Summary
In this chapter, the Convolution Neural Network (CNN) architecture built in Chapter 9,
Getting Your Neurons to Work, was loaded to classify physical gaps in a food processing
company.

Then the trained models were applied to transfer learning by identifying similar types of
images. Some of these images represented concepts that lead the trained CNN to identify Γ
concept gaps.

Γ concept gaps were applied to different fields using the CNN as a training and
classification tool in domain learning.

Γ concept gaps have two main properties: negative n-gaps and positive p-gaps. To
distinguish one from the other, a CRLMM provides a useful add-on. In the food processing
company, installing a webcam on the right food processing conveyor belt provided a
context for the system to decide whether the gap was positive or negative.

With these concepts in mind, let's build a solution for advanced planning and scheduling
(APS) in the next chapter.

Conceptual Representation Learning Chapter 11

[267]

Questions
The curse of dimensionality leads to reducing dimensions and features in1.
machine learning algorithms. (Yes | No)
Transfer learning determines the profitability of a project. (Yes | No)2.
Reading model.h5 does not provide much information. (Yes | No)3.
Numbers without meaning are enough to replace humans. (Yes | No)4.
Chatbots prove that body language doesn't mean that much. (Yes | No)5.
Present-day ANNs provide enough theory to solve all AI requests. (Yes | No)6.
Chatbots can now replace humans in all situations. (Yes | No)7.
Self-driving cars have been approved and do not need conceptual training. (Yes |8.
No)
Industries can implement AI algorithms for all of their needs. (Yes | No)9.

Further reading
More on convolutional networks: http:/ /ufldl. stanford. edu/ tutorial/
supervised/ ConvolutionalNeuralNetwork/

A Keras introduction to autoencoders: https:/ / blog. keras. io/building-
autoencoders- in- keras. html

More on GANs: https:/ / medium. com/ @devnag/ generative- adversarial-
networks- gans- in- 50- lines- of-code- pytorch- e81b79659e3f

http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f
https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f

12
Automated Planning and

Scheduling
Amazon is one of the world's leading e-retailers, with sales exceeding US$ 170 billion US.
Amazon's e-store sales exceed all of their other activities, such as AWS subscription services
(premium, for example), retail third-party seller services, and physical stores.

This chapter focuses on Amazon Fashion, one of Amazon's web stores for which Amazon
recently registered a patent. Prime Wardrobe even offers a try-and-easy-return service. This
new activity requires planning and scheduling. Amazon took the matter seriously and
registered a patent for an apparel manufacturing system to control the production process
of its apparel products.

Artificial intelligence already plays a role in automatic planning and
scheduling in the apparel business, from customer order to delivery.

Recently, Google—through its DeepMind projects—is also working on improving the
Deep Q-Network (DQN), a system that can beat humans at video games.

This chapter unites both systems with an innovation for the apparel manufacturing
industry and adds a Conceptual Representation Learning Meta Model (CRLMM) to
DQN. Going from scratch to a prototype that could be implemented on site, the
foundations are being set for more applications in the coming chapters.

The following topics will be covered in this chapter:

Further generalization of the CRLMM described in Chapter 11, Conceptual
Representation Learning, applied to an apparel production process
Feeding the CRLMM Convolutional Neural Network (CNN) with a simulation
of frames coming from a webcam on a production line

Automated Planning and Scheduling Chapter 12

[269]

Introducing an optimizer that will use weights applied to production stations to
input a reward matrix to a Markov Decision Process (MDP), which will then
update the weights
Building a program that will run continuously (no beginning, no end) on a
production line using all the three components mentioned previously

Technical requirements
Python 3.6x 64-bit from https:/ /www. python. org/ .

Packages and modules:

 import numpy as ql
 from matplotlib.ticker import FuncFormatter
 import matplotlib.pyplot as plt
 from matplotlib.path import Path
 import matplotlib.patches as patches
 import random
 import math
 import time
 from keras.preprocessing.image import load_img
 from keras.preprocessing.image import img_to_array
 import keras
 from keras.preprocessing.image import ImageDataGenerator
 from keras.models import model_from_json
 from keras.models import load_model
 import scipy.misc
 from PIL import Image

GitHub Chapter12:

CNN_CONCEPT_STRATEGY.py

MDP_Graph.py

Check out the following video to see the code in action:

https://goo.gl/vScnD3

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/vScnD3
https://goo.gl/vScnD3
https://goo.gl/vScnD3
https://goo.gl/vScnD3
https://goo.gl/vScnD3
https://goo.gl/vScnD3
https://goo.gl/vScnD3
https://goo.gl/vScnD3
https://goo.gl/vScnD3

Automated Planning and Scheduling Chapter 12

[270]

Planning and scheduling today and
tomorrow
When Amazon decided to launch Prime Wardrobe, it brought a new service to its
customers. The customer can establish a purchase plan, the list of tasks to carry out:

Fill a box with clothing, for example
Try the clothing at home
Return the clothing if it does not fit
Purchase the items that are kept

Once the customer agrees to follow this plan, the time sequence becomes crucial:

First, a box must be chosen
Then there is a delivery time
Then there is a trying time (you cannot try the products forever)
Finally, the customer has a purchase time

Whether Amazon Prime Wardrobe will remain a service in the years to come or not, the
precedent is set; just as physical bookstores disappear every year, shopping for clothing
online will continue its progression.

On top of that distribution, corporations will continue to expand their own production sites
to become manufacturing-distributing giants. Warehouses will progressively replace many
stores as per the warehouse examples provided in some of the chapters in this book.

Supply Chain Management (SCM) combined with APS has become a necessity.
Blockchains ensure the transactions (see Chapter 14, Optimizing Blockchains with AI) and
this technology will only expand with these trends.

SCM-APS constraints (depending on the manufacturer) have encouraged Amazon to
produce its own clothing. Amazon has produced its own in-house fashion labels with
apparel and accessories sold worldwide.

To prove that it means business, Amazon registered patents for a blended reality mirror, an
apparel manufacturing system, and more. This way a person can actually visualize how the
clothing will fit.

Automated Planning and Scheduling Chapter 12

[271]

We will explore the planning and scheduling side of Amazon's apparel in-house
manufacturing plans which will have the same effect on apparel factories as it did on
physical bookstores and all types of shops. Many new jobs will emerge, such as hundreds
of thousands of jobs in the artificial intelligence business, on websites, and in marketing
and SCM. Many jobs will disappear as well. The improvement made will boost medical
progress and also the defense industry. The social and economical implications are beyond
the scope of this book and possibly beyond our comprehension as in all disruptive eras in
the past.

We will focus in depth on the main aspects of Amazon's patented custom clothing process.
As mentioned before, whether it turns into a success or not, the precedent is set.

A real-time manufacturing process
The key concept in Amazon's approach is real-time. Pushing the physical limits of centuries
of commerce, Amazon's brand takes the manufacturing process right beyond the cutting
edge.

Amazon must expand its services to face competition
Amazon could have continued to purchase products from its suppliers and not
manufacture them. Instead of using artificial intelligence to solve the conveyor belt
problem, several sensors could be installed with traditional software solutions.

Mankind could also have continued to use horses instead of cars and paper instead of
computers. However, once a disruptive innovation has been successfully launched by a
company, competition must either follow or disappear. Amazon needs to get involved in
manufacturing somehow with this apparel manufacturing patent, 3-D printers, and other
innovations in order to increase its productivity.

Artificial intelligence needs to be confronted with difficult industrial problems to improve
its experience and progress to achieve higher machine learning levels and meet greater
challenges.

A real-time manufacturing revolution
Artificial intelligence software, though spectacular, is not the only revolution changing our
lives forever. Real-time is a strong force that will change every process in the world.

Automated Planning and Scheduling Chapter 12

[272]

Apparel manufacturing and manufacturing, in general, follow an advanced planning and
scheduling process today. Amazon's manufacturing department, just like Elon Musk's Tesla
self-driving cars (see Chapter 13, AI and The Internet of Things (IoT), and Chapter
14, Optimizing Blockchains with AI), require automated planning and scheduling, not
advanced planning and scheduling.

The fundamental difference between the two systems relies on the time factor as shown in
the following comparison table. The difference between an advanced and an automated
system seems small but Amazon, like others, will change the course of history with those
differences. Both systems, in theory, can do both types of tasks. In practice, these methods
will specialize in the years to come:

A plan consists of processes preparing production for the future: purchasing
material components and adapting human resources and physical resources.
Amazon, for example, has a yearly business plan: putting together the necessary
resources in advance in order to be ready for production. This means purchasing
or building warehouses, hiring employees, and purchasing basic material
resources (boxes, labels, and other components).
Scheduling confronts the plan with the time factor on a shorter horizon.
Scheduling determines when each part of the plan will come first and be
produced. For example, now that the warehouse is built or purchased (plan), at
what time (schedule) should the packaging start working next Monday and for
the weeks to come?

A schedule can be seen as a zoomed version of a plan.

If somebody walks into Jeff Bezos' office with a plan to build a warehouse at a given
location with the cost and general timing of the implementation, that is fine.

Then, that person might (I suggest not!) say: The plan is great since it will be ready in 10
months. But I'm worried about the daily schedule in 1 year of shift #2. Should they start at 7:30 am
or 7:45? Jeff Bezos will not be listening anymore. That zoom level is not part of his job
description. He has to focus on a higher level.

Automated Planning and Scheduling Chapter 12

[273]

The trend of automated planning and scheduling is becoming a time-squashed version of
advanced planning and scheduling. The figures in the following table do not reflect the
exact numbers but the trends:

Function Advanced planning and
scheduling

Automated planning and
scheduling

Long-term plan 1 month to 5 years A few days to less than a
month

Short-term plan 1 day 1 minute

Production or event measurement Taken into account on a daily
basis in general Real-time

Scheduling An hour to 1 week Real-time

Re-planning when there is a problem 1 hour to 1 month Real-time

Re-scheduling 1 hours to 1 week Real-time

Resource adjustment 1 day to 1 month Real-time

Load balancing 1 hour to 1 week Real-time

Automatic functions of planning and
scheduling 80% 99%

Although this table contains approximate information, the underlying trend is extremely
strong.

An advanced planning and scheduling system mostly imports data from
ERPs to make plans in the future. An automated planning and scheduling
program mostly detects data with sensors to react and optimize in real
time. The present chapter deals with automated planning programs, not
advanced planning and scheduling systems.

Think of the evolution between an advanced APS and an automated APS as a logistic
sigmoid function applied to planning-scheduling time squashing. Here are some examples:

The advanced plan to manufacture a car spans a month to a year
The Google Maps itinerary automated plan for a self-driving car at its starting
point: a few seconds to a minute depending on the connection status of that
location
The schedule to manufacture a car: 1 day to 1 month
The schedule to pilot a self-driving car following the Google Map itineray=real
time

Automated Planning and Scheduling Chapter 12

[274]

To sum it up, the present trend represents a revolution in the history of human processes.

Amazon's manufacturing patent reflects the revolution of real-time
applied to every field.

Planning in advance has moved up to planning in real time as shown in the following
equation.

In which:

x is a quantity to produce or any unit event
tx is the time (t) it takes for x to start and end
A logistic function squashes tx

λ (lambda) is the learning factor; the more a task is carried out, the more it is
optimized

Xt is the total weight of a group of n tasks at a given time t:

Xt={x1,x2,x3...xn}

The difference between Xt and Z(Xt) is:

 Xt is the actual time it takes to produce products
Z(Xt) is not the actual time it takes. Z(Xt) is the result of an activation function
that squashes times as an output of Xt in a DQN-CRLMM network. Z(Xt) is a
weighting factor.

The key to reducing the weighting factory further is a physical production process and
other physical events (outputs, for example), that I call lambda: λ all the improvements in
real-life production that can reduce the production cycle as well as the natural events such
as production output.

Automated Planning and Scheduling Chapter 12

[275]

In Chapter 11, Conceptual Representation Learning, Γ was introduced to reduce gaps. In this
chapter, Γ will be generalized a step further to optimize λ (lambda)

This means a DQN-CRLMM system will optimize a manufacturing process.

CRLMM applied to an automated apparel
manufacturing process
With an automated planning and scheduling system, not an advanced planning and
scheduling system, Amazon has brought apparel manufacturing closer to the consumer.

 Artificial intelligence will boost existing processes. In this section, a DQN-CRLMM will
optimize an apparel manufacturing process.

An apparel manufacturing process
Amazon's apparel manufacturing patent can be summed up as follows:

P1: Grouping apparel customer orders by products and sizes. This process is
around since the origins of industrial apparel manufacturing centuries ago.
P2: Automatically cutting lays (such as cutting a circle in several pieces of paper
at the same time).
P3: Moving the packs of the parts of clothing to the assembly lines on conveyor
belts (see Chapter 11, Conceptual Representation Learning).
P4: Other operations depending on the products (packaging or printing or other).
P5: Storing and optimizing the distribution process through warehouses and
deliveries and many more processes (tracking and data analysis, for example,
finding late deliveries and optimizing their routes).

https://cdp.packtpub.com/artificial_intelligence_by_example/wp-admin/post.php?post=159&action=edit#post_157

Automated Planning and Scheduling Chapter 12

[276]

The following figure represents the production flow at an apparel manufacturing company.
First, the fabric is cut; then it is stacked in piles and sent by a conveyor belt to sewing
stations to assemble the clothing:

A webcam is set up right over P3, the conveyor belt. The following image represents the
webcam above the conveyor belt:

Webcam overview

The webcam freezes a frame (within the red rectangle) every n seconds. The frame is
the input of the CRL-CNN described later.

This image is a representation of the concepts. In reality, the webcam might be located at
the beginning of the conveyor belt or even over the output of the cutting process. For the
purpose of the prototype in this chapter, just keep in mind that every n seconds a frozen
frame is sent to the trained CNN.

Automated Planning and Scheduling Chapter 12

[277]

This P1 to P5 flowchart provides a general idea of an apparel manufacturing process. In a
real-life company, many more processes are required: market studies, designing products,
testing prototypes, adding manufacturing processes for jeans (making holes with a laser,
for example), and much more.

Every process described so far was individually invented 30+ years ago, including
automatic cutting and conveyor belts applied to the apparel business. What's new
here? comes up in the minds of many apparel experts reading about Amazon. And that is
the mind trap! Thinking that Amazon's apparel patent does not contain new components.

Time squashing is the innovation. Bringing manufacturing closer to the consumer in near-
real time is a revolution that will become disruptive. Add 3-D printers to the time
squashing equation and you will easily picture the future of our consumer
markets. However, artificial intelligence has the right to enter the optimizing competition as
well.

To illustrate this, let's build an AI model that optimizes P3, the conveyor belt. Many
solutions already exist as well, but DQN can most probably beat them just as it will in
many fields.

The first step is to generalize the Γ model described in Chapter 11, Conceptual
Representation Learning, a bit further. Then the DQN-CRLMM can be built.

Training the CRLMM
In Chapter 9, Getting Your Neurons to Work, and Chapter 11, Conceptual Representation
Learning, the CRLMM program CNN_STRATEGY_MODEL.py was trained to identify gaps in
outputs on the conveyor belt of a food processing factory. Chapter 11, Conceptual
Representation Learning, introduced CRLMMs using Γ (gap concept) to illustrate one.

In the previous, chapters, conceptual subsets around Γ (gap concepts) were designed as
follows:

Γ={g1,g2,g3,g4,g5,g6} which contains pgi (p=positive) and ngi(n=negative subsets)
ng1 is a subset of Γ; ng1={missing, not enough, slowing production down...bad},
pg2 is a subset of Γ;pg2=pg2={good production flow, no gap}
g2={loaded}
g3={unloaded},
pg4={traffic jam, heavy traffic...too much traffic}
ng5={open lane, light traffic...normal traffic}

Automated Planning and Scheduling Chapter 12

[278]

CNN_STRATEGY_MODEL.py needs to be trained to recognize Γ in an apparel production
environment as well as remember how to recognize former Γ concepts:

The cutting section P2(A and B) output of apparel packs flowing on a conveyor
belt (P3)
Remember know how to classify the cakes of the food processing company to
teach the model to recognize more situations.
Remember how to perform a traffic analysis (see Chapter 11, Conceptual
Representation Learning)
Learn how to be able to classify an abstract representation of a gap

Generalizing the unit-training dataset
To generalize the unit training dataset, six types of images were created. Each image
represents a webcam frame taken over a conveyor build every n seconds. Four images are
figurative in the sense of figurative painting. Two images bring the CRLMM program to a
higher level of abstraction, which will be applied to cognitive chatbots (Chapter 15,
Cognitive NLP Chatbots, and Chapter 16, Improve the Emotional Intelligence Deficiencies of
Chatbots) with further training.

Food conveyor belt processing – positive pγ and negative nγ gaps
In the food processing industry example (see Chapter 9, Getting Your Neurons to Work, and
Chapter 11, Conceptual Representation Learning), a gap on the conveyor built was most often
negative, a negative gamma= nγ.

The following frame shows that the first line of production is complete but not lines two
and three:

Food conveyor belt processing frame

Automated Planning and Scheduling Chapter 12

[279]

On the contrary, with approximately no gaps, the load on the conveyor built was viewed as
positive, a positive gamma= pγ.

The following frame shows that there is an acceptable number of products per line:

Food conveyor belt processing frame

Apparel conveyor belt processing – undetermined gaps
A gap in an apparel conveyor belt process is most often undetermined. This constitutes a
major optimization problem in itself. Naturally, if the conveyor belt is empty or totally
saturated, the variance will attract the attention of a human operator. However, most of the
time, optimization solves the problem.

The following frame shows a relatively well-loaded production flow of apparel packs of
pieces of clothing to be assembled (by sewing them together) further down the line:

Well-loaded production flow

Automated Planning and Scheduling Chapter 12

[280]

The following frame clearly shows a gap, meaning that the quantity that will be sent to a
sewing station will not be high:

Production flow (gap)

Several observations are necessary to optimize this problem:

The conveyor built real-time problem excludes running an advanced planning
and scheduling
This problem requires real-time automated planning and scheduling
The automated planning and scheduling solution will have to both plan and
schedule in real time
It will take planning constraints into account (as explained in the following
sections) to predict outputs
It will take scheduling constraints into account to optimize the sewing sections

Amazon and others have slowly but surely brought many planning
horizon problems (longer) down to shorter scheduling horizons, pushing
the limits of SCM further and further.

The beginning of an abstract notion of gaps
The gaps shown have negative or positive properties depending on the context. The
CRLMM model now has to learn a metaconcept, an abstract representation of all the gaps
mentioned up to now. These gaps are all flow gaps of one sort or the other. Something is
moving from one point to another in small packs. The packs, so are often not the same size
and gaps form.

Automated Planning and Scheduling Chapter 12

[281]

These concepts can be applied to cattle herds, horse races, team sports attacks (football,
soccer, rugby, basketball, handball, and other fields), Olympic races, marathons, conveyor
belts, and much more, as will be detailed in the chatbot in Chapter 15, Cognitive NLP
Chatbots, and Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots.

When the packs in the flow are close to each other, an individual mental image comes up.
Each person has a customized version. The following image is a generalized representation
of a no gap concept:

Generalized representation of a no gap concept

Then the packs have leaders and followers, then an abstract representation comes up as
well. The following image shows a generalized representation of a gap concept:

Generalized representation of a gap concept

Humans do not have a flow detection gap function for each thing they are observing.
Humans have one brain that contains physical memories or other datasets, but more
importantly, they have abstract datasets.

Every single of us billions of thinking bipeds have extremely efficient abstract datasets. The
meta-concept shown before means that through inferences, a human has a central meta-
concept with a dataset of memories that fit with it through experience.

https://cdp.packtpub.com/artificial_intelligence_by_example/wp-admin/post.php?post=159&action=edit#post_158
https://cdp.packtpub.com/artificial_intelligence_by_example/wp-admin/post.php?post=159&action=edit#post_162

Automated Planning and Scheduling Chapter 12

[282]

A meta-model uses these datasets. The dataset in the directory "dataset" contains the
beginning of a CRLMM system. The program will learn what a flow gap is and then apply to
what it sees by analyzing the context.

This goal of this dataset leads to a CLR-MM, as explained in the following sections in
which:

The abstract learned meta-concept is applied to a situation, in this case, a frame.
The CRLMM then determines whether it is a gap or no gap situation.
The CRLMM then makes a decision using a thinking optimizer based on a
decision weight orientated activation function. This means that it is more than a
mathematical squash. It's literally weighing the pros and cons of a decision-making
process.

 To apply this model in real life, the next step would be to spend the
necessary time to build a dataset from experience with thousands upon
thousands of frames. This would take months of painful work.

Modifying the hyperparameters
The training was done with the same CNN_STRATEGY_MODEL.py program described in
Chapter 9, Getting Your Neurons to Work, which was designed to be generalized for
subsequent chapters.

Once the dataset of the previous section has been installed, there are only two
hyperparameters to change in the following code snippet:

estep=5000 #5000 steps per epoch
...
ep=3 #epochs

This forces the program to train longer:

Three epochs: ep=3
5,000 steps per epoch: estep=5000

Automated Planning and Scheduling Chapter 12

[283]

As the code that follows shows, the hyperparameters have been modified; the program
runs and the new model is saved with its graph flow structure and weights:

serialize model to JSON
model_json = classifier.to_json()
with open(directory+"model/model.json", "w") as json_file:
 json_file.write(model_json)
serialize weights to HDF5
classifier.save_weights(directory+"model/model.h5")

The model has been trained to deal with a meta-concept. It now needs to go through a
prediction program to check the network.

Running a prediction program
The same CNN_CONCEPT_STRATEGY.py described in Chapter 11, Conceptual Representation
Learning, was used. However, some new features were added to make this prediction
testing phase comfortable to use and watch.

The model is loaded and compiled as described in Chapter 11, Conceptual Representation
Learning. The identify(target_name) function contains the same philosophy. However,
instead of showing the pre-processed image and having to click on it to close the window, a
matplotlib plt.close function was added, as in the following code:

 if(display==1):
 plt.imshow(original)
 plt.show(block=False)
 time.sleep(5)
 plt.close()

display is a variable that can be set to 0. In that case, no image will be displayed.
However, when developing convolutional networks, displaying images remains a practical
way of testing the program.

The image will be displayed for 5 seconds and automatically closed. To keep things
automatic, the four frames and two meta-concepts run in a loop as in the code that follows:

I=['1','2','3','4','5','6']
for im in range(6):
imgc=directory+'classify/img'+ I[im] + '.jpg'
print(imgc)
s=identify(imgc)
if (int(s)==0):
print('Classified in class A')
print(MS1)

Automated Planning and Scheduling Chapter 12

[284]

if (int(s)==1):
print('Classified in class B')
print(MS2)

The predictions come out as 0 with an MS1 message or 1 with an MS2 message. The
messages can be changed or come from a message dataset depending on the goal of the
program. The program will then display the classification, as follows:

#_SEARCH STRATEGY_
MS1='no gap'
MS2='gap'

The CRLMM has now learned to represent real-life memories and an inference of the
associated memories in a meta-concept.

Building the DQN-CRLMM
The full code of the DQN-CRLMM program is MDP_Graph.py. It is built on the knowledge
and programs of the previous chapters and previous sections of this chapter.

The DQN-CRLMM contains three components:

A CRLMM convolutional network that will analyze each frame it receives from
the webcam that is located right over the pieces of garment packs on the
conveyor belt coming from the cutting section.
An optimizer using a modified version of the Z(X) described before that plans
how the assembly stations will be loaded in real-time.
An MDP that will receive the input of the optimizer function and schedule the
work of the assembly stations. It also produces the modified Z(X) updated value
of the weights of each assembly station for the next frame.

In the physical world, the conveyor belt transports the garment packs, a picture (frame) is
taken every n seconds, and the DQN-CRL-MN runs. The output of the DQN-CRL-MN
sends instructions to the conveyor belt and directs the garment backs to the optimized load
of the assembly stations as explained before.

Since MPP_graph.py describes a continuous DQN-CRLMM process, there
is no beginning or end to the program. The components are independent
and are triggered by the input sent to them and they trigger others with
their output.

Automated Planning and Scheduling Chapter 12

[285]

Thus, components will be described in the processing order but not in the code-in-line
order. This is due to the fact that the functions defined by def + function() precede the
function calls to them. Code line numbers will thus be inserted in the description of the
code.

38: is the code line number. It is not in the actual code but only given in
the book to find the functions. The code is complete and you can view the
line numbers in an editor.

A circular process
Once the three main components of the system are explained later (CNN, MDP, optimizer);
the circular property of this DQN-CRLMM is a stream-like system that never starts nor ends.

There is no beginning and no end to the flow of functions in this virtually memoryless
system.

The conveyor belt's webcam provides a stream of frames, forcing the
system into circular stream-like behavior.

Implementing a CNN-CRLMM to detect gaps and
optimize
The CNN-CRLMM function was described in the Running a prediction program section and
in Chapter 11, Conceptual Representation Learning. The prediction function is part of the
MDP output analysis described later. The CRLMM function is called as shown in the
following code:

180: def CRLMM(Q,lr,e):

The first part of this function squashes the W vector described in the following section. The
second part of this function analyzes the input frame.

Automated Planning and Scheduling Chapter 12

[286]

Since no webcam is connected to the system at this point (that must be done during project
implementation), a random image (frame) choice is made. The following random code
simulates the random occurrences of real-life production:

status=random.randint(0,1)

In a real-life situation, random quantities will be going through the conveyor belt. Status
being determined, the CNN simulates adding a frozen frame from the video stream coming
from the webcam located right on the conveyor belt. It runs the identify (image) function
described before and returns a gap or no gap scenario for the optimizer (see the optimizer
section). The following code describes a gap identification process:

if(status==0):
 #Add frame from video stream (connect to webcam)
 s=identify(directory+'classify/img1.jpg',e)
if(status==1):
 #Add frame from video stream (connect to webcam)
 s=identify(directory+'classify/img2.jpg',e)
s1=int(s[0])
if (int(s1)==0):
 print('Classified in class A')
 print(MS1[scenario])
 print('Seeking...')
if (int(s1)==1):
 print('Classified in class B')
 print(MS2[scenario])
return s1

Once status has been detected, whether the load output of the cutting system is high or
low, a decision must be made. This will be done with the MDP.

Q-Learning – MDP
By adding an MDP Q-Learning decision function (see Chapter 1, Become an Adaptive
Thinker) in this CNN-CRLMM program, we are now entering the family of DQNs, such as
Google's DeepMind programs.

In this real-time system, there is no beginning, no end, and no real
memory beyond a few frames.

Automated Planning and Scheduling Chapter 12

[287]

The MDP.py MDP program has been incorporated into MDP_Graph.py. Thus, only the
changes made are described in this chapter.

MDP parameters come right after the import packages. Each vertex of the graph has its
own letter and its own location, as shown in the following code snippet:

 38:L=['A','B','C','D','E','F']

When the program runs, the following graph will be displayed with red (target vertices) for
this frame. It is then up to the MDP to choose, as described as follows:

Output (target vertices)

Notice that this is an undirected graph with vertices (the colored dots) and no edge (lines)
directions. The MDP will provide directions for each frame in this model.

Each vertex represents an assembly station in this model. Each assembly station has a high
workload or a low workload. The workload is rarely stabilized because products keep
flowing in and out as they are produced.

MDP inputs and outputs
The MDP process in this model uses a reward matrix as an input and produces a weight
vector.

The input is a neutral reward matrix
The MDP reward matrix (see Chapter 1, Become an Adaptive Thinker) is set to zero except for
the values representing the edges of the graph that can be physically accessed; these are set
to one, a small neutral value.

Automated Planning and Scheduling Chapter 12

[288]

As it is, the MDP cannot provide a satisfactory result beyond reproducing the structure of
this undirected graph. The reward matrix is now initialized and duplicated as shown in the
following code, starting from line 41; at line 43, R, the reward matrix is built, and at line
50, Ri, a duplicate of R is created:

41:# R is The Reward Matrix for each state built on the physical graph
Ri is a memory of this initial state: no rewards and undirected

43:R = ql.matrix([[0,0,0,0,1,0],
[0,0,0,1,0,1],
[0,0,0,1,0,0],
[0,1,1,0,1,0],
[1,0,0,1,0,0],
[0,1,0,0,0,0]])

50:Ri = ql.matrix([[0,0,0,0,1,0],
[0,0,0,1,0,1],
[0,0,0,1,0,0],
[0,1,1,0,1,0],
[1,0,0,1,0,0],
[0,1,0,0,0,0]])

Ri, on line 50, is a copy of the initial-state zero-reward matrix. R is reset to Ri at every new
frame. MDP trains the assembly location plan for each new frame in a memoryless,
undirected graph and unsupervised approach.
Q is the learning matrix in which rewards will be learned/stored, as shown in the code on
line 59:

59:Q = ql.matrix(ql.zeros([6,6]))

The standard output of the MDP function
The load of the assembly stations is not the exact quantities produced. They
are weights that are updated continuously during this continuous process as explained
further in the chapter.

At an initial state of the program, the initial weight of the vertices is set to 0 in the following
line of code (line 40):

40:W=[0,0,0,0,0,0]

Automated Planning and Scheduling Chapter 12

[289]

The weight vector (represented as an array) contains one value per assembly station
location or vertex.

An initial state is not a real beginning. It is like a pause button on a video. The initial state
can come from a holiday (no production), a maintenance day (no production), or a lack of
input orders (no production). The initial state is just a case when the weights are equal to 0
because there is nothing on the conveyor or assembly stations.

The weight vector is part 1 of the optimizer (see the following section). The MDP produces
an output matrix (see Chapter 1, Become an Adaptive Thinker) after having optimized the
undirected graph. The optimizer will have provided a target.

The program contains the same source code as in Chapter 1, Become an Adaptive
Thinker, with Bellman's equation from start line 117. The MDP produces its result (Chapter
1, Become an Adaptive Thinker) as shown in the following output:

[[0. 0. 0. 0. 105.352 0.]
[0. 0. 0. 130.44 0. 201.]
[0. 0. 0. 130.44 0. 0.]
[0. 161.8 105.352 0. 105.352 0.]
[85.2816 0. 0. 130.44 0. 0.]
[0. 0. 0. 0. 0. 250.]]
Normed Q :
[[0. 0. 0. 0. 42.1408 0.]
[0. 0. 0. 52.176 0. 80.4]
[0. 0. 0. 52.176 0. 0.]
[0. 64.72 42.1408 0. 42.1408 0.]
[34.11264 0. 0. 52.176 0. 0.]
[0. 0. 0. 0. 0. 100.]]

Bear in mind that this whole NDQ-CRLMM is not only based on the
undirected memoryless MDP function but also has no real beginning nor
end since it's a continuous and virtually memoryless process.

A graph interpretation of the MDP output matrix
After each run, the MDP matrix also produces a graph interpretation of the values of paths
between the vertices from point to point (letter to letter), and displays it in the following
output:

State of frame : 3 D
0 A E 161.8
1 B D 201.0
2 C D 201.0

https://cdp.packtpub.com/artificial_intelligence_by_example/wp-admin/post.php?post=159&action=edit#post_100
https://cdp.packtpub.com/artificial_intelligence_by_example/wp-admin/post.php?post=159&action=edit#post_100
https://cdp.packtpub.com/artificial_intelligence_by_example/wp-admin/post.php?post=159&action=edit#post_100
https://cdp.packtpub.com/artificial_intelligence_by_example/wp-admin/post.php?post=159&action=edit#post_100

Automated Planning and Scheduling Chapter 12

[290]

3 D D 250.0
4 E A 130.44
4 E D 201.0
5 F B 161.8

This way, if the values are taken from the highest to the lowest edges (lines and thus values
between two letters), it gives a visual idea of how the MDP function calculated its way
through the graph.

RL is the letter vector. It is empty after each frame. It will be filled by finding the values of
each edge. It will contain the letters of the vertices (nodes and dots) connected by the edges
(lines represented by the values).

RN is the value of the edges. The following code shows how to implement RL and RN and
update the weights of the locations in the weight vector (W):

187: #Graph structure
 RL=['','','','','','']
 RN=[0,0,0,0,0,0]
 print("State of frame :",lr,L[lr])
 for i in range(6):
 maxw=0
 for j in range(6):
 W[j]+=logistic_sigmoid(Q[i,j])
 if(Q[i,j]>maxw):
 RL[i]=L[j]
 RN[i]=Q[i,j]
 maxw=Q[i,j]
 print(i,L[i],RL[i],RN[i])

The logistic function in the preceding code is being updated while RL and RN are being
updated.

The optimizer
I have written a number of optimizers for fabric optimization in the apparel industry. In
this case, the optimizer will be used to regulate the flow of production.

The optimizer is not the CNN rmsprop optimizer used in the previous chapters:

88:loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])

Automated Planning and Scheduling Chapter 12

[291]

This optimizer is both an activation function and a regulator that was built from scratch.
This shows that you must sometimes invent the optimizer you need to generate a
profitable solution for your customer or company.

The optimizer as a regulator
The whole concept of this DQN-CRL-MNN of real-time production, applied to P3, is to
optimize Z over the load distribution of the assembly stations, as explained before. This
means reducing Z as much as possible through the following equation:

To achieve that optimization goal, Z needs to be taken apart and applied to strategic parts
of the code.

Implementing Z – squashing the MDP result matrix
The output of the MDP functions provides the following Q matrix:

Q :
[[0. 0. 0. 0. 321.8 0.]
 [0. 0. 0. 401. 0. 258.44]
 [0. 0. 0. 401. 0. 0.]
 [0. 0. 0. 500. 0. 0.]
 [258.44 0. 0. 401. 0. 0.]
 [0. 321.8 0. 0. 0. 0.]]

Each line represents a vertex in the graph: A, B, C, D, E, and F. Each value obtained needs to
be squashed in the following z(x) function:

The first step in the code that follows is to squash the weights provided by the MDP
process for each line (vertex) x with a logistic_sigmoid function:

119:#Logistic Sigmoid function to squash the weights
def logistic_sigmoid(w):
return 1 / (1 + math.exp(-w))

Automated Planning and Scheduling Chapter 12

[292]

The function is called by the transformation of the MDP Q output matrix into the weight
vector for each column of each line, as shown in the following code:

191: for i in range(6):
 maxw=0
 for j in range(6):
 W[j]+=logistic_sigmoid(Q[i,j])

At this point, each value of the MDP has lost any real-life value. It is a weight, just as in any
other network. The difference is that the whole system is controlled. In a real-life project,
keeping an eye on the calculations through reports is necessary for maintenance purposes.
Even an automatic system requires quality control.

The MDP matrix has now been flattened into a weight matrix, as shown in the following
output:

Vertice Weights [3.5, 3.5, 3.0, 5.0, 3.5, 3.5]

Each vertex (letter in the graph) now has a weight.

Implementing Z – squashing the vertex weights vector
Squashed W (vertex weights) grow after each frame analysis and each MDP run since W[j]+
is applied continuously and W is never set to zero.

The main reasons:

Once launched, the DQN-CRLMM is a continuous process, with no beginning
and no end as long as the conveyor belt is running
The conveyor belt is sending assembly (mostly sewing) work to the assembly
stations that take some time (t) to get the job (x) represented by tx in the Z
equation and the W vector in the program
So work is piling up on each vertex (A to F), which represents an assembly station

This is why the λ (lambda) variable in the Z equation is implemented as shown in the initial
equation early in the chapter, as follows:

Automated Planning and Scheduling Chapter 12

[293]

λ (lambda) is implemented for two reasons:

The sewing or assembly stations send their finished work to the next operation
on the production line, packaging for example. So every m minutes, their
workload goes down and so does the load feature weight.
Production managers are constantly working on learning curves on assembly
lines. When a new product arrives, it takes some time for the teams to adapt.
Their output is a bit slower than usual. However, well-trained teams bring the
learning period down regularly.

λ (lambda) combines both concepts in one variable. This might be enough for some projects.
If not, more work and variables need to be added.

In this model, λ (lambda) is activated by the following:

oif represents the frequency of a W vector λ update. In this example, oif is set to
10. This means that every 10 frames, oir will be applied.
oir represents the output rate for the two reasons described before. This variable
will squash the W vector by the % given. In this example, oir=0.2. That means
that only 20% of the weights will be retained. The rest has been finished.

The following code shows how to implement oif and oir:

314:input_output_frequency : output every n frames/ retained memory
oif=10
#input_output_rate p% (memory retained)
oir=0.2
fc=0 #frequencey counter : memory output
for e in range(episodes):
 print("episode:frame #",e)
 fc=fc+1
 #memory management : lambda output
 if(fc>=10):
 for fci in range(6):
 W[fci]=W[fci]*oir
 fc=0
 print("OUTPUT OPERATION - MEMORY UPDATED FOR ",L[fci]," ",oir,"%
retained")

Automated Planning and Scheduling Chapter 12

[294]

The W vector has been squashed again, as shown in this output:

OUTPUT OPERATION - MEMORY UPDATED FOR A 0.2 % retained
OUTPUT OPERATION - MEMORY UPDATED FOR B 0.2 % retained
OUTPUT OPERATION - MEMORY UPDATED FOR C 0.2 % retained
OUTPUT OPERATION - MEMORY UPDATED FOR D 0.2 % retained
OUTPUT OPERATION - MEMORY UPDATED FOR E 0.2 % retained
OUTPUT OPERATION - MEMORY UPDATED FOR F 0.2 % retained

Finding the main target for the MDP function
W, the weight vector, is updated after each frame with a short-term memory of n frames.
This means that in every n frames, it's memory is emptied of useless information.

The goal of the optimizer is to provide a target for the MDP function. On the first episode,
since it does not have any information, the optimizer selects a random state, as shown in
the following code excerpt:

#first episode is random
if(e==0):
lr=random.randint(0,5)

This means that a random assembly station will be chosen on the MPD graph, which
represents the six assembly sewing stations. Once this episode has been completed, the
system enters a circular real-time cycle (see next section).

The second episode has the W vector to rely upon.

It runs the crlmm (described before) CNN-CRLMM network to determine whether the
frame has a gap or no gap feature as shown in the following code:

383:crlmm=CRLMM(Q,lr,e)

The optimizer will use W to:

Choose the vertex (sewing station) with somewhat the smallest weight if the CNN
on the frame produces a result with no gap (probability is zero). Since there is
no gap that means that there are many pieces to sew. Thus, it is much better to
give the work to an assembly station that has a lower load than others.

Automated Planning and Scheduling Chapter 12

[295]

Choose the vertex (sewing station) with somewhat the highest weight if the CNN
on the frame produces a result with a gap (probability is one). Since there is a
gap, it means there are not that many pieces to sew. Thus it is much better to give
the work to an assembly station that already has a higher workload. It will
balance the loads and optimize the load distribution over all the stations.
Introduce a choice to find one target assembly station for the MDP function in
each of these cases. It will look for stations (vertices, letters, dots in the graph)
with the highest weight in one case and the lowest in another.
Add the somewhat concept referred to before. The system must remain relatively
free or it will keep choosing the same best sewing stations, depriving others of
work. Thus each possibility (gap or no gap) is limited to a random choice of
only three among the six locations for each weight class (higher or lower).

The optimizing function, shown in the following snippet, can prove extremely profitable on
real-life industrial production lines:

if(e>0):
 lr=0
 minw=10000000
 maxw=-1
#no G => Finding the largest gap (most loaded resource or a distance)
if(crlmm==0):
for wi in range(3):
op=random.randint(0,5)
if(W[op]<minw):
lr=op;minw=W[op]
#G => Finding the smallest gap (a least loaded resource or a distance)
if(crlmm==1):
for wi in range(3):
op=random.randint(0,5)
if(W[op]>maxw):
lr=op;maxw=W[op]

lr is the main location chosen for the MDP reinforcement learning function, as shown in
the following code:

 print("LR TARGET STATE MDP number and letter:",lr,L[lr])

Reinforcement learning has to run every time since it faces new frames in the continuous
process of the conveyor belt in the automated apparel system.

Automated Planning and Scheduling Chapter 12

[296]

Now the MDP reward matrix is reset to its initial state, as implemented in these lines of the
program:

#initial reward matrix set again
 for ei in range(6):
 for ej in range(6):
 Q[ei,ej]=0
 if(ei !=lr):
 R[ei,ej]=Ri[ei,ej]
 if(ei ==lr):
 R[ei,ej]=0 #to target, not from

The target location is initialized with a value that fits the gap or no gap philosophy of the
program. If there is no gap, the value is higher and so will be the weight (represented load
of the station) in the end. If there is a gap, the value is lower and so will be the weight for
that station, as shown in the following lines of code:

#no G
rew=100
#G
if(crlmm==1):
 rew=50
R[lr,lr]=rew
print("Initial Reward matrix withe vertice locations:",R)

Circular DQN-CRLMM – a stream-like system that
never starts nor ends
A linear stream of a conveyor line has been converted into a circular process. The DQN-
CRLMM solution:

Captures a frame of the output of the cutting section with a webcam and a CNN-
CRLMM
Analyses the load (histograms of each sewing section) with the CRLMM
Optimizes the sewing stations with an MDP

Automated Planning and Scheduling Chapter 12

[297]

The following graph represents the process:

Circular DQN-CRLMM

Let's explore these steps in more detail.

Automated Planning and Scheduling Chapter 12

[298]

Step X: When the following frame arrives, the CRL-CNN is activated:

CRL-CNN gets activated

The solution calls the CRLMM function, as shown in the following code:

383:crlmm=CRLMM(Q,lr,e)
 print("GAP =0 or GAP =1 status: ",crlmm)

The following code displays the status of the image: gap, no gap :

image dataset/classify/img1.jpg predict_probability: [[0.]] prediction: [[
0.]]
Classified in class A
productive
Seeking...
GAP =0 or GAP =1 status: 0

The following weights of each sewing station (vertices A to F) are taken into account:

 385:MDP_GRAPH(lr,e)
 print("Vertice Weights",W)

The program displays them in text form:

Vertice Weights [9.4, 11.100000000000001, 10.2, 12.0, 11.7, 10.0]

Automated Planning and Scheduling Chapter 12

[299]

The program also displays the following bar chart of the weights of each sewing station:

Bar chart of the weighs of each sewing station

STEP X+1 optimizer analyzes the weights to make a decision: Send small quantities to the
sewing stations that have a lot of work and large quantities to sewing stations that have less work to
do.

Γ (gamma) has now reached a point at which it understands that a gap is a comparison
between two states and an inference of a conceptual distance:

Overloading: Too much
Underloading: Not enough

Γ (gamma) now contains two abstract concepts:

Enough to too much
Not enough to lacking

The goal of the circular process is to keep the bars at an approximately
similar height—not an exact height, but also not a situation in which A
would have no work to do and E would be overloaded.

Automated Planning and Scheduling Chapter 12

[300]

 STEP X+2 the MDP, as described in this chapter, receives instructions to optimize a given
sewing station and spreads work out to its neighbors. This is often a production constraint:
one station sews the sleeves of a t-shirt. For example, the station nearby sews a pocket on
the t-shirt. The MDP spreads out the work starting with the target location, as shown in the
following graph:

MDP spreads out

The MDP sends its results directly to the conveyor belt, which automatically follows the
path instructions sent to it.

Then the MDP updates the weights, empties its reward matrix, and waits for a new one.
The system goes back to Step X.

As you might have noticed, no human operator is involved in this whole process at all. This
application is part of the IoT family of applications. Chapter 13, AI and The Internet of
Things (IoT), will take the application to the streets of our cities.

Automated Planning and Scheduling Chapter 12

[301]

Summary
Applying artificial intelligence to Amazon's real-time sales, production, and delivery forces
projects into reality.

Learning machine learning and deep learning with MNIST, CIFAR, and other ready-to-use
datasets with ready-to-use programs is a prerequisite to mastering artificial intelligence.
Learning mathematics is a must.

Building a few programs that can do various theoretical things cannot be avoided. But
managing a real project under corporate pressure will bring an AI expert up to another
level. The constraints of corporate specifications make machine learning projects exciting.
During those projects, experts learn valuable information on how AI solutions work and
can be improved.

This chapter described a DQN-CRLMM-CNN model with an optimizer and an MDP
function. The next chapter explores an application of this solution with an SVM applied to a
self-driving car situation in an IoT context.

Questions
A CNN can be trained to understand an abstract concept? (Yes | No)1.
Is it better to avoid concepts and only use real-life images? (Yes | No)2.
Planning and scheduling mean the same thing? (Yes | No)3.
Is Amazon's manufacturing patent a revolution? (Yes | No)4.
Learning how warehouses function is not useful. (Yes | No)5.
Online marketing does not require artificial intelligence. (Yes | No)6.

Further reading
More on Amazon's apparel manufacturing innovation:

https:// www. nytimes. com/ 2017/ 04/ 30/technology/ detailing- amazons-
custom-clothing- patent. htm

http://money. cnn. com/ 2018/ 01/03/ technology/ amazon- smart- mirror- patent/
index.html

https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
https://www.nytimes.com/2017/04/30/technology/detailing-amazons-custom-clothing-patent.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html
http://money.cnn.com/2018/01/03/technology/amazon-smart-mirror-patent/index.html

13
AI and the Internet of Things

(IoT)
Some say Internet of Things (IoT) will turn out to become the fourth Industrial Revolution.
I think we should wait a few years until the smoke clears and let historians figure out what
sort of revolution we went through.

In any case, connected objects have been changing our lives for 20+ years. In the past years,
we can safely say that IoT has become disruptive.

Artificial intelligence has just begun its long journey through the human intellect. New,
incredible innovations await us. Understand cutting-edge machine learning and deep
learning theory is only the beginning of your adventure. The knowledge you have acquired
should help you become an AI visionary. Take everything you see seriously and see how it
can fit in your projects.

Your mind must remain open to what may seem the strangest things to come. For example,
conceptual representation learning (see previous chapters) will bring new dimensions to a
machine's thinking mind.

This chapter takes the technology of the previous chapter and applies it to a self-driving car
working for the mayor's office in a city called Iotham City. The previous chapter used a
webcam and a program and sent instructions to the conveyor belt. It was in the family of
IoT. Let's add a support vector machine to the program and take it out on the streets of
Iotham City to see what happens.

The chapter is divided into three main sections: Iotham City's project, the configuration of
the model, and running the model.

AI and the Internet of Things (IoT) Chapter 13

[303]

The following topics will be covered in this chapter:

A self-driving solution
Introducing a safe route parameter in trip planners
Applying CNNs to parking lots
Applying SVMs to safety on a trip planning
Teaching an MDP to find the safest route (not necessarily the shortest way)

Technical requirements
Python 3.6x 64-bit from https:/ /www. python. org/ .

Packages and modules:

import numpy as ql
 from matplotlib.ticker import FuncFormatter
 import matplotlib.pyplot as plt
 from matplotlib.path import Path
 import matplotlib.patches as patches
 import random
 import math
 import time
 from keras.preprocessing.image import load_img
 from keras.preprocessing.image import img_to_array
 import keras
 from keras.preprocessing.image import ImageDataGenerator
 from keras.models import model_from_json
 from keras.models import load_model
 import scipy.misc
 from PIL import Image

GitHub, Chapter13:

CNN_CONCEPT_STRATEGY.py

CRL-MM-IoT_SVM.py

Check out the following video to see the code in action:

https://goo.gl/UQmAJb

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/UQmAJb
https://goo.gl/UQmAJb
https://goo.gl/UQmAJb
https://goo.gl/UQmAJb
https://goo.gl/UQmAJb
https://goo.gl/UQmAJb
https://goo.gl/UQmAJb
https://goo.gl/UQmAJb
https://goo.gl/UQmAJb

AI and the Internet of Things (IoT) Chapter 13

[304]

The Iotham City project
A few years from now, the mayor and the city council of Iotham have decided to
implement a self-driving, home-to-homeless-shelter service:

Families at homes have clothing and food they would like to give to others that
need them.
The self-driving car can be started at a distance and goes to homes and takes the
goods to the shelters.
The self-driving car does not need to have a base. It can park anywhere, go
anywhere, and refuel at service stations with automatic electric recharging.

Some IoT projects plan to put sensors on every parking space and send the information to
control centers. Iotham City finds that too expensive. Instead, the city council has decided
to use a more cost-effective solution. A webcam will be installed on all the possible parking
lots in the project's grid. This smart grid is for transporting products from homes to
shelters.

The model in this chapter can start at any point. This is circular, as described in the
previous chapter. Our scenario starts after the self-driving car has just delivered clothing to
a shelter. Now the self-driving vehicle has to find a parking lot to park in until its next
mission.

Setting up the DQN-CRLMM model
This section describes how to set up the previous chapter's model for this project and add a
few functions.

A DQN-CRLMM model contains a convolutional neural network (CNN) and a Markov
Decision Process (MDP) linked together by an optimizer.

A conceptual representation learning meta-model contains:

A CNN
An optimizer linking it to an MDP
An MDP function

This system will now be referred to as a CRLMM.

AI and the Internet of Things (IoT) Chapter 13

[305]

Training the CRLMM
In previous chapters, the CRLMM program CNN_STRATEGY_MODEL.py was trained to
identify Γ (gamma concept) in outputs on the conveyor belt of a food processing factory.
The end of the previous chapter brought Γ up to a higher abstraction level.

As long as a member of γ (gamma) of the Γ dataset is in an undetermined state, its
generalization encompasses ambivalent but similar concepts. Up to this chapter, these are
the concepts Γ has learned (conceptual representation learning).

Γ = { a gap, no gap, a load, no load, not enough load, enough load, too much load, a space on a lane
for a car, a distance between a high load of products and missing products on a conveyor belt,
weights on sewing stations...n}

The next step in the chapter is to train the CRLMM built in the previous chapters to
recognize a parking space in a parking lot and send a signal to the self-driving vehicle:

Γ will now see gaps as space
Γ will now perceive space as a distance (gap) between two objects
Γ will need a context to find out whether this space between two objects is a
positive or negative distance

The dataset
As in the previous chapters, the dataset directory of this chapter on GitHub contains:

The training set
The test set
The model trained by 01_CNN_STRATEGY_MODEL.py
The classify directory used by 01_CNN_STRATEGY_MODEL.py

As explained in the previous chapters, a full dataset would take weeks, if not months, to
prepare. They are projects in themselves.

For this example, Γ has evolved into space (gap detection between (distance)) cars to find a
parking space.

AI and the Internet of Things (IoT) Chapter 13

[306]

The following is a simulated frozen frame with no Γ-space taken by a webcam located on a
building, pointing down to a parking lot:

Simulated frozen frame

The following frame represents a small but sufficient parking space on the left of the screen.
I copied the pavement over it to free the Γ-space. It shows something like several available
parking spaces:

Sufficient parking space frame

Training and testing the model
The model was trained by using the same 01_CNN_STRATEGY_MODEL.py program as in
Chapter 9, Getting Your Neurons to Work.

Just be sure the directory in the header of the following program is pointing to /dataset,
which is scenario number 2:

A=['dataset_O/','dataset_traffic/','dataset/']
scenario=2 #reference to A
directory=A[scenario] #transfer learning parameter (choice of images)
print("directory",directory)

AI and the Internet of Things (IoT) Chapter 13

[307]

The model is stored in /dataset/model. To test the model, the CNN_STRATEGY_MODEL.py
improved in the previous chapter was used. Just change the messages and limit the frame
classification loop to 2 as shown in the following code snippet:

MS1='full'
MS2='space'
I=['1','2','3','4','5','6']
for im in range(2):

The following loaded image was already resized before applying the kernels of the CNN:

Resized image

Classifying the parking lots
Now that the CRLMM has been trained to distinguish a full parking lot from a parking lot
with available space, once an available parking lot has been found, an SVM takes over as an
intermediate step.

Adding an SVM function
The self-driving car has delivered its packages to the shelters. Now it has to find a parking
lot and park there. Instead of having a base like many other systems, this saves Iotham City
many useless trips.

AI and the Internet of Things (IoT) Chapter 13

[308]

Motivation – using an SVM to increase safety
levels
The support vector system adds a new function to itinerary calculations—safety.

Most systems such as Google Maps focus on:

Shortest trip
Fastest trip
Traffic

However, self-driving cars have to take extra precautions. In fact, many humans do not feel
secure on some roads. Iotham City has a good management policy. Safety will come first,
no matter what. Once a suitable parking lot has been found, the SVM has to avoid traffic.

The goal is to find a path through traffic even if the distance is longer. A p parameter allows
for a p% variance of the distance. For example, 10% allows a 10% longer distance and will
provide a safe passage, as shown in the following SVM result:

Traffic path

It is important to note that the data points are not the actual coordinates but a
representation in a higher dimension, as explained in the following section.

AI and the Internet of Things (IoT) Chapter 13

[309]

Definition of a support vector machine
A support vector machine (SVM) classifies data by transforming it into higher dimensions.
It will then classify data into two classes, for example.

In the following example, the SVM will be used to separate risky driving locations from
safer driving locations:

Traffic path

The example in the code is random (as in real-life traffic) but the model can be developed
much further.

Safety is the key to this model, so each driving location (road, crossing) possesses features
related to this goal:

Number of accidents at that location
Traffic at that location
Experience of driving through that location (near misses and no problems)

All of this data can be fed into an SVM program. The program will transform the data to
make it linearly separable (see Chapter 4, Become an Unconventional Innovator).

The blue dots on the left will be the good locations, and the brown ones on the left will
be the risky ones. To convert it back into GPS format, a function will just read the latitude
and longitude features of the data point.

AI and the Internet of Things (IoT) Chapter 13

[310]

For example, a blue dot on the left might be:

Location A
One accident in the past 10 years
Zero problems driving through that point in 1 year

A brown dot might be:

Location D (a few blocks from A)
Seventy-four accidents in 10 years
Fifteen problems driving through that point in 1 year

The blue dots and brown dots thus have nothing to do with the real location on the
preceding graph. The locations are labels. Their features have been separated as expected.

To send the data to a GPS guiding system, all that needs to be done is to
find the GPS coordinates of the locations that are part of the initial dataset.

Location A will be chosen, for example, instead of location D; so the program looks into the
dataset and finds its GPS location.

Let's put some words on the following SVM graph:

SVM graph

The space between the dotted vertical lines is the margin. It's somewhat like the
margin between two lines of a rugby or football team. When the players (data
points) are lined up, an invisible space or margin separates them.

AI and the Internet of Things (IoT) Chapter 13

[311]

The dots that touch those margins are critical because they are the ones that
decide where the margin will be in the first place. As the rugby or football
players line up in clusters, the SVM will calculate this (see the following Python
function). These special data points are called support points. They can also be
called support vectors.
The vertical line running in the middle of the margin is the decision line.
Since the dots are separated by a line, the dataset is linearly separable (see
Chapter 4, Become an Unconventional Innovator). This means that a line can be
drawn between the data points and can separate them into classes. In this case,
the system wants to obtain safe locations (blue dots) and avoid unsafe locations
(brown dots).

Python function
The sklearn packages provide the following svm function:

from sklearn import svm
from sklearn.datasets import make_blobs

The make_blobs function generates uniform data for this example in all directions. It is
thus an isotropic distribution (iso=equal, tropy=way) of random data. A blob contains
points of data.

scikit-learn contains a Gaussian factor for the generation function. A Gaussian kernel
applies standard deviations from a mean. Imagine you are playing in a sandbox and you
make a little hill. Then, with your hand, you cut the pile in two. The mean is where you cut
the sand pile; the standard deviation is shown by the slopes going down on both sides.

It might take days, and sometimes weeks, to put a good dataset together. But with scikit-
learn, you can do it in one line, as shown in the following code snippet:

323:#100 cars clusters(concentration of cars) represented
X, y = make_blobs(n_samples=100, centers=2, random_state=7)

This function offers many parameters. The ones used are as follows:

n_samples, which represents the number of points spread out between the
clusters. In this example, 100 already represents subclusters of car concentrations
in an area.

AI and the Internet of Things (IoT) Chapter 13

[312]

centers is the number of centers to generate data from. In this example, 2
represents areas close to the present location of the self-driving car and its future
destination.
random_state is the seed by the random number generator. It is where the
sequence of random numbers will start. This is because what we think is random
is pseudo-random, so it has some deterministic basis.

In this example, a linear kernel is used to fit the model, as shown in the following code:

325:# the model is directly fitted. The goal is a global estimate
clf = svm.SVC(kernel='linear', C=1000)
clf.fit(X, y)

scikit-learn's SVM contains a parameter penalty, which explains the C in svm.SVC. There
are many more options, but the key option is the kernel. A linear kernel will produce a
linear separation, as shown in the preceding screenshot.

An RBF kernel would produce a different result. The structure looks more regularized. As
shown in the following screenshot, an RBF kernel acts as an efficient structural regularizer:

Regularized structure path

Bear in mind that the SVM can be used for image recognition on the MNIST and CIFAR
datasets, for example. Artificial intelligence provides more than one way to solve a given
problem. It is up to you to choose the right tools by having a flexible trial-and-error
approach where necessary.

AI and the Internet of Things (IoT) Chapter 13

[313]

The plot lines start at line 300. The main line to take into account is the function that will
find and use the decision line (see preceding definition) and scatter the data points on both
sides of the margin. This is achieved by using the following decision_function:

Z = clf.decision_function(xy).reshape(XX.shape)

The result will be displayed as shown previously. The SVM is now a component of the
CRLMM in this self-driving car model.

Running the CRLMM
The self-driving car's mission is a circular (no beginning, no end) one like the CRLMM
described in the previous chapter:

If it is in a parking lot, it can be activated by a home or a shelter
If it is at a given home, it will go to a shelter
If at a shelter, it can go to a home or a parking space
If it needs recharging, this can be done at a recharging space (or more probably at
a parking space), which is already the case in some cities

At one point, the self-driving car has to go from a home to a parking space. This part of its
itinerary is the subject of the following sections.

Finding a parking space
CRL-MM-IoT_SVM.py uses a fine-tuned version of the MDP_Graph.py described in the
previous chapter.

A no-Γ (no gamma, no gap, no space) is not acceptable.

If the crlmm function, which classifies parking lot images into full or available space,
returns a 0, the program detects it and displays a message. The code samples contain the
line number of the following code excerpt:

389: if(crlmm==0):
 full = load_img("FULL.JPG")
 plt.subplot(111)

AI and the Internet of Things (IoT) Chapter 13

[314]

 plt.imshow(full)
 plt.title('PARKING LOT STATUS : This parking lot is full.'
+'\n'+'Another webcam is consulted',fontname='Arial',
fontsize=10)
 #plt.text(0.1,2, "The frame is the input of a trained CNN")
 plt.show(block=False)
 time.sleep(5)
 plt.close()
 print("This parking lot is full, searching...")

The program displays the following full sign and closes it after a few seconds:

Parking lot status

The program must find a parking space. It will thus try searches of good parking lots as
shown in line 388 of this code snippet:

388:for search in range(1000):
if(crlmm==0):

A thousand searches looks like a lot, but it isn't. Some cities already have parking spaces
near sidewalks with recharging stations.

Furthermore, looking for available parking spaces in a large city can be excruciating. More
often than not, it will not be suitable: there will be not enough available parking spaces to
be sure to find one in the time it will take to get there.

AI and the Internet of Things (IoT) Chapter 13

[315]

For this prototype, the number of optimal searches is limited to 2. Beyond that value, the
following CRLMM function is activated:

399:if(search>2):
 a=1
 crlmm=CRLMM(Q,lr,e,a)

After two fruitless searches, the program activates a, a flag for the crlmm function.

The crlmm function now contains a random search function, which simulates the choice of
a parking lot and provides a first-level status:

204: status=random.randint(0,10)
 if(status>5):
 status=1
 if(status<=5):
 status=0

The status represents a probabilistic estimate of the availability of the parking lot. The a
flag simulates a program yet to be added that will scan all the parking lots and run this
function to find an available space.

To present a prototype on a first meeting, you will always need enough to
convince, but if you go too far, the cost of doing this becomes a risk if your
idea is rejected.

So if a is activated, the system simulates a scan (to be developed) and forces the status to 1,
as shown in the following code snippet:

209:if(a>0 and status==0):
#add an available search function here that scans all the
#webcams of then network until it finds one that suits the model (not too
far parameter and available)
status=1

The program then continues and runs the convolutional neural network (CNN) trained to
identify an available parking lot (see the screenshot that follows), as explained in the
preceding configuration section.

AI and the Internet of Things (IoT) Chapter 13

[316]

Web came freezes a frame of parking lot

Now that a parking lot with available space has been found (the empty spaces on the top
left of the frame), the search function stops and the following break instruction is
activated:

402: if(crlmm==1):
a=0
break

Deciding how to get to the parking lot
The CRLMM program has found a suitable parking lot, as shown in the following code,
when crlmm==1:

 406:if(crlmm==1):
 available = load_img("AVAILABLE.JPG")
 plt.subplot(111)
 plt.imshow(available)
 plt.title('PARKING LOT STATUS : This parking lot has available space.'
+'\n'+'Now an SVM will suggest a safe route ',fontname='Arial',

AI and the Internet of Things (IoT) Chapter 13

[317]

fontsize=10)
 #plt.text(0.1,2, "The frame is the input of a trained CNN"
 plt.show(block=False)
 time.sleep(5)
 plt.close()
 print("This parking lot has available space...")

It displays this message and a sign:

Parking lot status

Support vector machine
The CRLMM now demands a safe route even if it means taking longer (time or distance).
For Iotham, safety comes first.

The program reaches the following SVM function:

415:print("This parking lot has available space...")
SAFE_SVM()

AI and the Internet of Things (IoT) Chapter 13

[318]

The SVM described in the configuration section provides a safe passage through traffic, as
shown in this screenshot of the result:

Traffic graph

For example, in this random case (traffic will be random most of the time), the blue dots on
the left represent sparser traffic and the brown dots represent areas with denser traffic.
Explained as follows, the weights of the statistics of past accidents and the car's experience
can be added to create a deeper vision of this safety model trip planner.

Suppose the self-driving car has to go to a point in the brown area. The SVM will:

Suggest an itinerary that goes through blue dot areas as much as possible and
then only in brown areas
Send the information to Google Maps

Many drivers feel unsafe on loaded freeways or in dense cities. Adding the safest route
function to mapping software would help.

The SVM brought the data points to a higher level (see the explanation in the configuration
section of the chapter).

The points represented in an SVM function are not the actual locations but
an abstract representation. The dividing line needs to go through a
function that will transform that information into a real location data
point.

AI and the Internet of Things (IoT) Chapter 13

[319]

Once the SVM boundaries have been converted into location data points, the itinerary or
trip graph is activated.

The itinerary graph
The prototype shows a simulation of an itinerary graph based on the SVM
recommendations and its weight vector through the following function call:

421:print("SAFE PASSAGE SUGGESTED")
MDP_GRAPH(lr,e)

The following graph displays the safest itinerary in red even if it takes longer (time or
distance):

Safest itinerary

For the purpose of the prototype, the SVM was not directly connected to the graph, which
would require costly hours. Instead, the following random.randint function was inserted,
which simulates the random availability of parking space anyway:

 417:for wi in range(6):
 op=random.randint(0,5)
 if(W[op]>maxw):
 lr=op;maxw=W[op]

Bear in mind that it would be useless to develop more for a prototype for the first
presentation to a prospect or manager.

AI and the Internet of Things (IoT) Chapter 13

[320]

This type of prototype is more powerful than a slide show because it proves your
legitimacy. Slideshows are static and don't prove your abilities on this particular subject. A
prototype will show your expertise. But do not overdo it unless you have a budget!

The weight vector
The weight vector is displayed. In this model, the weights represent the locations just like
in the previous chapter. However, in this chapter, the weights are a rating:

Each weight has a high safety rank when few accidents have occurred around
that area in the past n years. It is a safety rank. This ranking should be part of our
itinerary software. We should be informed.
Each weight will be customized by the self-driving car's experience. It is its own
driving record. Near misses because of its faulty software will bring the weight
down. Good track records will take the weights up. What seems easy for a
human might be difficult for software and vice versa.

The system now displays the weights used with an internal update program to be
developed if the prototype is accepted. The following code calls the function that manages
the weights of the safest routes for the self-driving vehicle and displays a histogram:

423: print("Vertice Weights",W)
MDP_CRL_graph(W,lr)

Histogram of weights used with an internal update program

AI and the Internet of Things (IoT) Chapter 13

[321]

Summary
This chapter, like the previous chapter, described a connected IoT process with no humans
involved. This trend will expand into every field in the years to come.

This also shows that knowing how to use a tool requires hard work, especially when
learning artificial intelligence. Imagining a solution for a given market requires more than
hard work. Creativity does not come with work. It develops by freeing your mind from any
form of constraint.

Once the solution has been imagined, then comes the fine line between developing too
much for a presentation and not showing enough. A CRLMM provides the kind of
framework that helps build a technical solution (CNN, MDP, SVM, and optimizers) while
keeping everyday concepts that others understand in mind.

For the first meeting with Iotham or any other city council members, a good slide show
with a working prototype, along with some past references, would be a good start. A
realistic approach would be to ask how far the prototype should be developed to have a
chance to be on the shortlist.

The next chapter will lead us deeper into the corporate world by applying artificial
intelligence to blockchains.

Questions
Driving quickly to a location is better than safety in any situation. (Yes | No)1.
Self-driving cars will never really replace human drivers. (Yes | No)2.
Will a self-driving fire truck with robots be able to put out a fire one day? (Yes |3.
No)
Do major cities need to invest in self-driving cars or avoid them? (Invest | Avoid)4.
Would you trust a self-driving bus to take children to school and back? (Yes |5.
No)
Would you be able to sleep in a self-driving car on a highway? (Yes | No)6.
Would you like to develop a self-driving program for a project for a city? (Yes |7.
No)

AI and the Internet of Things (IoT) Chapter 13

[322]

Further reading
For more information on self-driving cars:

https://www.mckinsey. com/ industries/ automotive- and-assembly/ our- insights/ self-
driving-car-technology- when- will- the- robots- hit- the- road

References
How to implement an SVM:

http://scikit-learn. org/ stable/ modules/ svm. html
http://scikit-learn. org/ stable/ auto_ examples/ svm/ plot_ separating_ hyperplane.
html#sphx-glr-auto- examples- svm- plot- separating- hyperplane- py

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py
http://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html#sphx-glr-auto-examples-svm-plot-separating-hyperplane-py

14
Optimizing Blockchains with AI

IBM was founded in 1911, making it the most experienced company today in its field.
Google, Amazon, and Microsoft also offer history-making machine learning platforms.
However, IBM offers machine learning platforms with its valuable 100+ years of experience.

Some of IBM's 100+ years in the computer and software market were bumpy. Some terrible
decisions cost the company a lot of problems across the world. IBM learned from those
mistakes and now offers robust solutions:

IBM Hyperledger for blockchain solutions (this chapter)
IBM Watson for artificial intelligence applications, including chatbots (see
Chapter 15, Cognitive NLP Chatbots, and Chapter 16, Improve the Emotional
Intelligence Deficiencies of Chatbots)

IBM quantum computing (see Chapter 17, Quantum Computers That Think)

This chapter offers an overview of what blockchains mean for companies around the world,
introduces naive Bayes, and explains where it could fit in a CRLMM.

Mining cryptocurrency represents one side of the use of blockchains. IBM advocates using
blockchains for corporate transactions and brings 100+ years of experience into the field.

The following topics will be covered in this chapter:

Using blockchains to mine bitcoins
Using blockchains for business transactions
How the blocks of a blockchain provide a unique dataset for artificial intelligence
Applying artificial intelligence to the blocks of a blockchain to predict and
suggest transactions
Naive Bayes
How to use naive Bayes on blocks of a blockchain to predict further transactions
and blocks

Optimizing Blockchains with AI Chapter 14

[324]

Technical requirements
Python 3.6x 64-bit from https:/ /www. python. org/ .

Package and modules:

import numpy as np
import pandas as pd
from sklearn.naive_bayes import GaussianNB

Programs from GitHub Chapter14:

naive_bayes_blockchains.py

Check out the following video to see the code in action:

https://goo.gl/kE3yNc

Blockchain technology background
Blockchain technology will transform transactions in every field.

For 1,000+ years, transactions have been mostly local bookkeeping systems. For the past 100
years, even though the computer age changed the way information was managed, things
did not change that much. Each company continued to keep its transactions to itself, only
sharing some information through tedious systems.

Blockchain makes a transaction block visible to the global network it has been generated
in.

The fundamental concepts to keep in mind are sharing and privacy control. The two ideas
seem to create a cognitive dissonance, something impossible to solve. Yet it has been
solved, and it will change the world.

When a block (a transaction of any kind) is generated, it is shared with the whole network.
Permissions to read the information within that block remain manageable and thus private
if the regulator of that block wants the information to stay private.

Whether the goal is to mine bitcoins through blocks or use blocks for transactions, artificial
intelligence will enhance this innovation shortly.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/kE3yNc
https://goo.gl/kE3yNc
https://goo.gl/kE3yNc
https://goo.gl/kE3yNc
https://goo.gl/kE3yNc
https://goo.gl/kE3yNc
https://goo.gl/kE3yNc
https://goo.gl/kE3yNc
https://goo.gl/kE3yNc

Optimizing Blockchains with AI Chapter 14

[325]

Mining bitcoins
Mining a bitcoin means creating a mathematical block for a valid transaction and adding
this block to the chain, the blockchain:

Blockchain = {block1,block2,the block just added...blockn}

The blockchain cannot go back in time. It is like a time-dating feature in life. On minute m,
you do something, on minute m+1 something else, on minute m+n something else, and so
on. You cannot travel back in time. What is done is done.

When a block is added to the bitcoin chain, there is no way of undoing the transaction.

The global network of bitcoin mining consists of nodes. With the appropriate software, you
leave a port open, allocate around 150+ GB of disk space, and generate new blocks. The
nodes communicate with each other, and the information is relayed to the other nodes
around the whole network.

For a node to be a miner, it must solve complex mathematical puzzles that are part of the
bitcoin program.

To solve the puzzle, the software must find a number that fits in a specific range when
combined with the data in the block being generated. The number is passed through a hash
function.

You can call the number a nonce and it's used only once. For example, an integer between 0
and 4,294,967,296 for a bitcoin must be generated.

The process is random. The software generates a number, passes it through the hash
function, and sends it out to the network. The first miner who produces a number in the
expected range informs the whole network that that particular block has been generated.
The rest of the network stops working on that block and moves on to another one.

The reward for the miner is naturally paid out in bitcoins. It represents a lot of money, but
it's hard to get, considering the competition in the network and the cost required (CPU,
electricity, disk space, and time) to produce correct results.

Keep an eye on quantum computers (see Chapter 17, Quantum Computers
That Think) because their exponential power could dramatically change
the mining market.

Optimizing Blockchains with AI Chapter 14

[326]

Using cryptocurrency
Be very careful with cryptocurrency. The concept sounds fascinating, but the result remains
currency. Currency can be volatile, and you can lose your life's savings in less than an hour
if a crash occurs.

Golden rule: If you cannot resist investing in cryptocurrencies, do not
invest more than you can afford to lose.

That being said, to use cryptocurrency, first set up a wallet to store your bitcoins, for
example. The wallet can be online, through a provider, or even offline.

Once that is done, you will be able to purchase bitcoins as you wish in hard cash, or using
credit cards, debit cards, and transfers.

Remember, you are buying these currencies like any other currency with all the potential,
but also all the risks, involved.

Using blockchains
IBM blockchain, based on Hyperledger Fabric, provides a way for companies around the
world to share a blockchain transaction network without worrying about mining or using
cryptocurrencies.

The system is based on the Linux Foundation project. Hyperledger is an open source
collaborative project hosted by the Linux Foundation.

At this level, Hyperledger uses blockchains to guarantee secure transactions without trying
to optimize the cryptocurrency aspect. The software generates blocks in a blockchain
network shared by all the parties involved, but they do not have to purchase
cryptocurrencies in the currency sense—only in the technological sense.

Optimizing Blockchains with AI Chapter 14

[327]

The following graph, used in previous chapters to illustrate the Markov Decision Process, is
applied to a blockchain.

Markov Decision Process graph

Each vertex represents a company that takes part in an IBM Hyperledger network set up
for those six companies, as described in the following table:

Company Activity Weight in a
CRLMM

A buys and sells clothing and also other products
in this network.

Provide goods to the network but
keep the stock levels down Stock levels

B buys and sells fabric and also other products in
this network.

Provide goods to the network but
keep the stock levels down Stock levels

C buys and sells buttons and also other products
in this network.

Provide goods to the network but
keep the stock levels down Stock levels

D buys and sells printed fabric and also other
products in this network.

Provide goods to the network but
keep the stock levels down Stock levels

E buys and sells accessories (belts,
bracelets) and also other products in this network.

Provide goods to the network but
keep the stock levels down Stock levels

F buys and sells packaging boxes and also other
products in this network.

Provide goods to the network but
keep the stock levels down Stock levels

Optimizing Blockchains with AI Chapter 14

[328]

With millions of commercial transactions per year with a huge amount of transportation
(truck, train, boat, air), it is impossible to manage this network effectively in the 21st
century without a solution like IBM Hyperledger.

With IBM Hyperledger, the companies have one online transaction ledger
with smart contracts (online) and real-time tracking.

The transactions are secure; they can be private or public among the members of the
network and they provide real-time optimization information for an artificial intelligence
solution.

Using blockchains in the A-F network
IBM Hyperledger provides artificial intelligence developers with a unique advantage over
any other dataset—a 100% reliable dataset updated in real time.

Creating a block
A block is formed with the method described for mining a bitcoin, except that this time
currency is not a goal. The goal is a secure transaction with a smart contract when
necessary. The following screenshot is a standard IBM interface that can be customized:

Standard IBM interface

Optimizing Blockchains with AI Chapter 14

[329]

You can see the individual and unique blocks that make up a blockchain. Each block in IBM
Hyperledger has a unique number. In this example, it is 111 with a zoom on block 103.

A block in the preceding A to F example can be the purchase of a product X with a contract.
The next block can be the transportation of that product to another location and any
transaction within the A-F blockchain network.

The information attached to that block is in the Hyperledger repository: company name,
address, phone number, transaction description, and any other type of data required by the
network of companies. Each block can be viewed by all or some depending on the
permission properties attached to it.

Exploring the blocks
Exploring the blocks provides an artificial intelligence program with a gold mine: a
limitless, real-life, and 100% reliable dataset.

The interesting part for AI optimization is the block information, as described in the
following screenshot. The present block was added to the chain along with the previous
block and the transaction code.

Optimizing Blockchains with AI Chapter 14

[330]

Notice that the block hash (see the preceding mining section) of a given block is linked to
the previous block hash and possesses a unique transaction code.

The CRLMM will use some of the critical information as features to optimize warehouse
storage and product availability in a real-time process.

To implement the CRLMM, an additional component is required: a naive Bayes learning
function. The naive Bayes learning function will learn the previous block to predict and
output the next blocks that should be inserted in the blockchain.

Using naive Bayes in a blockchain process
Naive Bayes is based on Bayes' theorem. Bayes' theorem applies conditional probability,
defined as follows:

P(A|B) is a posterior probability, the probability of A after having observed
some events (B). It is also a conditional probability: the likelihood of A
happening given B has already happened.
P(B|A) the probability of B given the prior observations A. It is also a conditional
probability: the likelihood of B happening given A has already happened.
P(A) is the probability of A prior to the observations.
P(B) is the probability of the predictions.

Naive Bayes, although based on Bayes' theorem, assumes that the features in a class
are independent of each other. In many cases, this makes predictions more practical to
implement. The statistical presence of features, related or not, will produce a prediction. As
long as the prediction remains sufficiently efficient, naive Bayes provides a good solution.

A naive Bayes example
Chapter 12, Automated Planning and Scheduling, described an apparel-manufacturing
process. The CRLMM program used there optimized the load of the sewing stations.

Optimizing Blockchains with AI Chapter 14

[331]

The load of a sewing station in an apparel industry is expressed in quantities, in stock keep
units (SKUs). An SKU, for example, can be product P: a pair of jeans of a given size.

Once the garment has been produced, it goes into storage. At that point, a block in a
blockchain can represent that transaction with two useful features for a machine learning
algorithm:

The day the garment was stored
The total quantity of that SKU-garment now in storage

Since the blockchain contains the storage blocks of all A, B, C, D, E, and F locations that are
part of the network, a machine learning program can access the data and make predictions.

The goal is to spread the stored quantities of the given product evenly over the six
locations, as represented in the following histogram:

Storage level of product distributed over six locations Histogram

Optimizing Blockchains with AI Chapter 14

[332]

This screenshot shows the storage level of product P distributed over six locations. Each
location in this blockchain network is a hub. A hub in supply chain management (SCM) is
often an intermediate storage warehouse. For example, to cover the area of these six
locations, the same product will be stored at each location. This way, local trucks can come
and pick the goods for delivery.

The goal is to have an available product P at point A when needed. The delivery time from
A to a location point a1 (a store or home) will only take a few hours. If A did not store P,
then the finer consumer would have to wait for the product to travel from C to A, for
example.

If the blockchain network is well organized, one location can specialize in producing
product P (best production costs) and evenly distribute the quantity stored in the six
locations, including itself.

This load optimization approach is the same as the CRLMM Chapter 12, Automated
Planning and Scheduling. Reusing a model in domain learning will generate profit and lower
costs. The more an AI solution can be applied to transfer, domain, and conceptual learning,
the more powerful it will become. It will learn more and solve an endless number of
problems.

The blockchain anticipation novelty
In former days, all the warehouses at those six locations (A to F) had to ensure the
minimum storage level for each location.

In a world of real-time producing and selling, distributors need to predict demand. The
system needs to be demand driven. Naive Bayes can solve that problem.

It will take the first two features into account:

DAY: The day the garment was stored
STOCK: The total quantity of that SKU-garment now in storage

Then it will add a novelty—the number of blocks related to product P.

A high number of blocks at a given date means that this product was in demand in general
(production, distribution). The more blocks there are, the more transactions there are. Also,
if the storage levels (STOCK feature) are diminishing, this is an indicator; it means storage
levels must be replenished. The DAY feature time-stamps the history of the product.

Optimizing Blockchains with AI Chapter 14

[333]

The block feature is named BLOCK. Since the blockchain is shared by all, a machine
learning program can access reliable global data in seconds. The dataset reliability provided
by blockchains constitutes a motivation in itself to optimize blocks.

The goal
This CRLMM is the same one as in Chapter 11, Conceptual Representation Learning. The
difference is that instead of analyzing a conveyor belt to make a decision, the system will
analyze the blocks of a blockchain.

The program will take the DAY, STOCK, and BLOCKS (number of) features for a given
product P and produce a result. The result predicts whether this product P will be in
demand or not. If the answer is yes or 1, the demand for this product requires anticipation.

Step 1 the dataset
The dataset contains raw data from prior events in a sequence, which makes it perfect for
prediction algorithms. This constitutes a unique opportunity to see the data of all
companies without having to build a database. The raw dataset will look like the following
list:

Raw dataset

This dataset contains the following:

Blocks of product P present in the blockchain on day x scanning the blockchain
back by 30 days. No means no significant amounts of blocks has been found. Yes
means a significant number of blocks have been found. If blocks have been
found, this means that there is a demand for this product somewhere along the

Optimizing Blockchains with AI Chapter 14

[334]

blockchain.
Some_blocks means that blocks have been found, but they are too sparse to be
taken into account without overfitting the prediction. However, yes will
contribute to the prediction as well as no.
No_blocks means there is no demand at all, sparse or not (Some_blocks),
numerous (blocks) or not. This means trouble for this product P.

The goal is to avoid predicting demand on sparse (Some_blocks) or absent (No_blocks)
products. This example is trying to predict a potential Yes for numerous blocks for this
product P. Only if Yes is predicted can the system trigger the automatic demand process
(see the Implementation section later in the chapter).

Step 2 frequency
Looking at the following frequency table provides additional information:

Frequency table

The Yes and No statuses of each feature (Blocks, Some_blocks, or No_blocks) for a given
product P for a given period (past 30 days) have been grouped by frequency.

The sum is on the bottom line for each no feature and yes feature. For example, Yes and
No_Blocks add up to 2.

Some additional information will prove useful for the final calculation:

The total number of samples = 10
The total number of yes samples = 8
The total number of no samples = 2

Optimizing Blockchains with AI Chapter 14

[335]

Step 3 likelihood
Now that the frequency table has been calculated, the following likelihood table is
produced using that data:

Likelihood table

The table contains the following statistics:

No = 2 = 20% = 0.2
Yes = 8 = 80%=0.8
Some blocks = 2 = 20%=0.2
No blocks = 3 = 30%=0.3
Blocks = 5 = 50%=0.5

Blocks represent an important proportion of the samples, which means that along with
some blocks, the demand looks good.

Step 4 naive Bayes equation
The goal now is to represent each variable of the Bayes' theorem in a naive Bayes equation
to obtain the probability of having demand for product P and trigger a purchase scenario
for the blockchain network. Bayes' theorem can be expressed as follows:

P(Yes|Blocks)=P(Blocks|Yes) * P(Yes)/P(Blocks)
P(Yes)=8/10 = 0.8
P(Blocks)=5/10 = 0.5
P(Blocks|Yes)=4/8 = 0.5
P(Yes|Blocks)=(0.5*0.8)/0.5 = 0.8

Optimizing Blockchains with AI Chapter 14

[336]

The demand looks acceptable. However, penalties must be added and other factors must be
considered as well (transportation availability through other block exploration processes).

This example and method show the concept of the naive Bayes approach. However, scikit-
learn has excellent scientific functions that make implementation easier.

Implementation
This section shows how to use an advanced version of naive Bayes and where to insert this
component in the CRLMM described in Chapter 11, Conceptual Representation Learning.

Gaussian naive Bayes
In implementation mode, a dataset with raw data from the blockchain will be used without
the feature interpretation function of naive Bayes in the following table:

DAY STOCK BLOCKS DEMAND

10 1455 78 1

11 1666 67 1

12 1254 57 1

14 1563 45 1

15 1674 89 1

10 1465 89 1

12 1646 76 1

15 1746 87 2

12 1435 78 2

Each line represents a block:

DAY: The day of the month scanned (dd/mm/yyyy can be used beyond a
prototype)
STOCK: The total inputs in a given location (A, B, or... F) found in the blocks and
totaled on that day
BLOCKS: The number of blocks containing product P for location A, for example

Optimizing Blockchains with AI Chapter 14

[337]

A high number of blocks in the BLOCK column and a low number of quantities in the
STOCK column mean that the demand is high.

DEMAND = 1. The proof of demand is a transaction block that contains a
purchase in the past. These transaction blocks provide vital information.

A low number of blocks in the BLOCK column and a high number of quantities in
the STOCK column mean that the demand is low.

DEMAND = 2. Proof that no transaction was found.

However, in some cases, DEMAND = 1 when the stock is high and the blocks are low.
That's why strict correlation is not so useful where naive Bayes just analyzes the statistics
and learns how to predict, ignoring the actual conditional probabilities.

The Python program
The Python naive_bayes_blockchains.py program uses a skearn class. Consider the
following snippet:

import numpy as np
import pandas as pd
from sklearn.naive_bayes import GaussianNB

It reads the dataset into the data structure. The following code reads data_BC.csv into df:

#Reading the data
df = pd.read_csv('data_BC.csv')
print("Blocks of the Blockchain")
print (df.head())

It prints the top of the file in the following output:

Blocks of the Blockchain
 DAY STOCK BLOCKS DEMAND
0 10 1455 78 1
1 11 1666 67 1
2 12 1254 57 1
3 14 1563 45 1
4 15 1674 89 1

Optimizing Blockchains with AI Chapter 14

[338]

It prepares the training set, using X to find and predict Y in the following code:

Prepare the training set
X = df.loc[:,'DAY':'BLOCKS']
Y = df.loc[:,'DEMAND']

It chooses the class and trains the following clfG model:

#Choose the class
clfG = GaussianNB()
Train the model
clfG.fit(X,Y)

The program then takes some blocks of the blockchain, makes predictions, and prints them
using the following clfG.predict function:

Predict with the model(return the class)
print("Blocks for the prediction of the A-F blockchain")
blocks=[[28,2345,12],
 [29,2034,50],
 [30,7789,4],
 [31,6789,4]]
print(blocks)
prediction = clfG.predict(blocks)I
for i in range(4):
 print("Block #",i+1," Gauss Naive Bayes
Prediction:",prediction[i])

The blocks are displayed and the following predictions are produced. 2 means no demand
for the moment; 1 will trigger a purchase block:

Blocks for the prediction of the A-F blockchain
[[14, 1345, 12], [29, 2034, 50], [30, 7789, 4], [31, 6789, 4]]
Block # 1 Gauss Naive Bayes Prediction: 1
Block # 2 Gauss Naive Bayes Prediction: 2
Block # 3 Gauss Naive Bayes Prediction: 2
Block # 4 Gauss Naive Bayes Prediction: 2

This is a replenishment program. It will mimic the demand. When no demand is found,
nothing happens; when a demand is found, it triggers a purchase block. Some chain stores
know the number of garments purchased on a given day (or week or another unit) and
automatically purchase that amount. Others have other purchasing rules. Finding business
rules is part of the consulting aspect of a project.

Optimizing Blockchains with AI Chapter 14

[339]

Implementing your ideas
Blocks in a blockchain provide sequences of unlimited data. Exploring the scikit-learn
classes for naive Bayes is an excellent way to start a gold mining adventure in the world of
blockchains.

Another way is to go back to the CRLMM MDP_Graph.py program used in Chapter 12,
Automated Planning and Scheduling, and replace the content of the following crlmm function
on line 383 with a Naive_Bayes:

383:crlmm=CRLMM(Q,lr,e)
print("GAP =0 or GAP =1 status: ",crlmm)
MDP_GRAPH(lr,e)
print("Vertice Weights",W)
MDP_CRL_graph(W,lr)

When crlmm is called instead of using a CNN, naive Bayes will provide the same type of
information. It will predict a Γ-gap in the storage level (literally a space to fill in the
warehouse) of the products in demand. You will have to modify the program a bit to have a
parameter for crlmm to make it run a CNN or the naive Bayes approach.

Once that is processed, the Markov decision function in the CRLMM will take over to
spread the load (products in demand) over the various locations in the blockchain network,
precisely like the production stations in Chapter 9, Getting Your Neurons to Work. This load
function can be found at line 377 in the following code:

377:for i in range(50000):
current_state = ql.random.randint(0, int(Q.shape[0]))
PossibleAction = possible_actions(current_state)
action = ActionChoice(PossibleAction)
reward(current_state,action,gamma)

The machine learning algorithms available on cloud platforms make blockchains a major
field to optimize.

Summary
The reliable sequence of blocks in a blockchain has opened the door to endless machine
learning algorithms. Naive Bayes appears to be a practical way to start optimizing the
blocks of a blockchain. It calculates correlations and makes predictions by learning the
independent features of a dataset, whether the relationship is conditional or not.

Optimizing Blockchains with AI Chapter 14

[340]

This freestyle prediction approach fits the open-minded spirit of blockchains that propagate
by the millions today with limitless resources.

IBM Hyperledger takes blockchain's "Frontierland" development to another level with the
Linux Foundation project. IBM also offers a cloud platform and services.

IBM, Microsoft, Amazon, and Google provide cloud platforms with an arsenal of disruptive
machine learning algorithms. This provides a smooth approach to your market or
department, along with the ability to set up a blockchain prototype online in a short time.
With this approach, you can enter some real prototype data in the model, export the data,
or use an API to read the block sequences. Then you will be able to apply machine learning
algorithms to these reliable datasets.

The limit is our imaginations.

The next chapter will first take us into another IBM innovation, IBM Watson, applied to
chatbots, and then beyond... into cognitive natural language processing (NLP).

Questions
Cryptocurrency is the only use of blockchains today. (Yes | No)1.
Mining blockchains can be lucrative. (Yes | No)2.
Blockchains for companies cannot be applied to sales. (Yes | No)3.
Smart contracts for blockchains are more accessible to write than standard offline4.
contracts. (Yes | No)
Once a block is in a blockchain network, everyone in the network can read the5.
content. (Yes | No)
A block in a blockchain guarantees that absolutely no fraud is possible. (Yes |6.
No)
There is only one way of applying Bayes' theorem. (Yes | No)7.
Training a naive Bayes dataset requires a standard function. (Yes | No)8.
Machine learning algorithms will not change the intrinsic nature of the corporate9.
business. (Yes | No)

Optimizing Blockchains with AI Chapter 14

[341]

Further reading
For more on scikit: http:/ / scikit- learn. org/ stable/

To explore IBM's Hyperledger solution: https:/ /www. ibm. com/blockchain/ hyperledger.
html

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html
https://www.ibm.com/blockchain/hyperledger.html

15
Cognitive NLP Chatbots

IBM Watson on IBM Cloud provides a set of tools to build a cognitive NLP chatbot. IBM
proposes a well-thought process to design a chatbot. Good architecture remains the key to a
chatbot's success.

To make a chatbot meet user demands, IBM Watson has many services libraries (speech to
text, text to speech, and much more).

The whole process can be customized with one's programs. This makes IBM Cloud an
excellent place to start creating chatbots. The TextBlob project offers another set of NLP
modules that provide some interesting ways of improving a chatbot.

This chapter starts by setting up an IBM Watson chatbot following IBM's standard
procedure and shows how to use IBM Watson to add one's cognitive chatbot functions. A
cognitive service in Python will be described to solve a case study. The problem to address
is that of a tourist on a bus that just broke down. He needs to communicate with a police
chatbot to get help. The solution uses a CNN, Google Translate, conceptual representation
learning (CRL) cognitive techniques, and sentiment analysis.

The following topics will be covered in this chapter:

IBM Watson's chatbot solution
Defining intents and entities
Defining a dialog flow
Adding scripts to the dialog flow
Customizing scripts for a chatbot
Using sentiment analysis to improve some dialogs
Using conceptual representation learning meta models (CRLMM) to enhance
some dialogs

Cognitive NLP Chatbots Chapter 15

[343]

Technical requirements
Python 3.6x 64-bit from https:/ /www. python. org/ .

Package and modules:

from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import matplotlib.pyplot as plt
import keras
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json
from keras.models import load_model
import numpy as np
import scipy.misc
from PIL import Image
import time
from textblob import TextBlob

Program: GitHub Chapter15/CRL-MM-Chabot.py.

Check out the following video to see the code in action:

https://goo.gl/R7qHk6

IBM Watson
IBM's Watson conversation service has many development tools for creating a chatbot with
compatible standard services (translations, digitized voice, voice recognition, and so on).
You can set up your own basic account in a few clicks.

To create a chatbot, you need three major objects: intents, entities, and a dialog flow. To
complete the dialog flow, there are additional features: conditions, context, and expressions
for example. Then services can be added such as digitalized voice, speech recognition, and
more.

This section describes how to build an interview chatbot named HobChat, a diet bot that
can interview users.

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/R7qHk6
https://goo.gl/R7qHk6
https://goo.gl/R7qHk6
https://goo.gl/R7qHk6
https://goo.gl/R7qHk6
https://goo.gl/R7qHk6
https://goo.gl/R7qHk6
https://goo.gl/R7qHk6
https://goo.gl/R7qHk6

Cognitive NLP Chatbots Chapter 15

[344]

Intents
An intent represents the initial subject of the conversation that the chatbot is initiating. The
user input needs to be classified just as images need to be in a CNN, for example.

Let's say HobChat needs two types of information from the user:

#whatkindof and #food

You'll notice a fundamental concept here. We are getting information from a person and
not the other way around. In many chatbots, the user asks a question to obtain an answer.
HobChat works the other way around. It's extracting information through interrogation
techniques.

Chatbots have different points of view:

Providing information for a user: tourism, online shopping, and other services
Obtaining information from a user: medical applications, dietitians, sports
trainers, and marketing
Providing and gathering information

In this case, Hobchat's intent is to learn about #whatkindof #food the user likes. HobChat is
prepared for the user to either answer or ask a question. To do that, we set up a list of
variations of #whatkindof in the system in the following intents interface:

Intents interface

Cognitive NLP Chatbots Chapter 15

[345]

The intent name #whatkindof will be detected if a similar phrase comes up:

#whatkindof={what kindof, what type of, what sort ...n}

The number of sentences depends on the final use of the application. One similar phrase
could suffice in some cases; in others, hundreds are required.

In this example, we can see that if HobChat asks What kind of food do you like? and if a user
answers What type of what?, then the chatbot will apply a function f to the utterance.

f(utterance) will provide the intent. f(What kind of what?), for example, would be parsed and
classified in the #whatkindof intent.

The same has to be done with #food, for example, as shown in the following screenshot:

Food intent

The #food intent subset is now ready to use:

food = {water, dessert, beverage, meat, dish, food}

Now that some intents have been created, it's time to test these subsets.

Testing the subsets
IBM Watson provides a dialog tool to test the chatbot throughout the creation process. The
dialog tool can be set up intuitively in a few steps, as described in the following dialog
section.

Cognitive NLP Chatbots Chapter 15

[346]

The test dialog will run an initial dialog in the following dialog testing interface:

Dialog testing interface

We can see that HobChat was activated to start a conversation called food interrogation.
HobChat classifies the chatbot subject in #food (blue in the screenshot) and starts the
interview by asking a sort of generic text blob question What kind of food do you like to
eat?.

This interview technology will also be beneficial for medical applications such as doctors
asking patients questions to classify types of pathologies.

The user answers, "What?"

"What?" is processed as f(utterance=f(what)= #whatkindof.

To pursue this conversation, the chatbot needs entities.

Entities
Now, we need to clarify Hobchat's #food intent. What exactly are we talking about? What
kind of food? To clarify our intent, we need entities that will describe our types of food in
the following interface:

Food intent interface

Cognitive NLP Chatbots Chapter 15

[347]

Our food type entity is #foodtypes={salad, meat, french fries}. We also need as many synonyms
for each member of the #foodtype group :

salad={iceberg lettuce, green stuff, iceberg, lettuce}

meat = {T-Bone, hamburger, cheeseburger}

french fries={potatoes, chips, greasy potatoes, greasy}

Now we can clarify our dialog with the food type entity in the following interface:

Food type entity interface

We've gone through the first part. Hobchat has asked the user, a person who visibly does
not like such questions, What kind of food do you like?

A surprise entity was added so that Hobchat can detect surprise (emotion) in the answer:

The user answers: Are you kidding me?

Real-life conversations involve emotional answers a chatbot must deal with.

Cognitive NLP Chatbots Chapter 15

[348]

The chatbot offers a calm response: We're just asking if you like green stuff or greasy stuff, that's
all to get this interview going. So what do you prefer, the green stuff or the greasy stuff?

To find out what's going to happen next, we have to set up the dialog flow.

Dialog flow
IBM Watson has an interface to configure the dialog flows shown previously.

To teach your chatbot how to conduct an interview using IBM Watson, or any other
solution, requires a lot of cognitive science work to represent the expertise of a given field.
Cognitive science involves linguistics, anthropology, psychology, philosophy, analyzing
intelligence, and more.

The next section shows how to use services to implement a cognitive approach to solving a
problem encountered by a chatbot.

First, a basic dialog flow must be configured. We are ready to create dialog scenarios for
Hobchat. An IBM Watson conversation provides an efficient, ready-to-use platform, as
shown in the following screenshot:

IBM Watson conversation flow chart

Cognitive NLP Chatbots Chapter 15

[349]

As you can see, it's a complex type of flowchart. You set up the dialog using your intents
and entities, with all the possible linguistic variations you can provide. Then you can create
an unlimited number of nodes in a combinatory tree.

You can add conditions, expressions, context, and also script as much as you want.

Scripting and building up the model
In the preceding dialog flow graph, you can enter scripts. For example, at then respond
with nodes, you can write your script as shown in the following script-editing interface:

Script-editing interface

In the preceding context script, on the top left, you can see then respond with. That means
you can script your subdialogs within the dialog flow. You can add a random function such
as selection_policy:random so that the system changes phrases every time.

Your intents and entities can also be enriched by importing data. I
recommend using big data map and retrieving techniques to boost the
power of the dialog. The dialog will come close to human dialogs.

Cognitive NLP Chatbots Chapter 15

[350]

IBM Watson entity features offer a vast number of entity feature add-ons, as the following
screenshot shows:

IBM Watson entity

The @Sys-person extracts names, the @sys-location system extracts place names
(country, state/province, city, town, and so on), @sys-time extracts the time, @sys-date
extracts the date, and @sys-currency extracts the currency and other features.

The quality of a chatbot will depend on:

Not adding too many features, but just those required in some cases
Adding all the necessary features when necessary, no matter how much time it
takes

Cognitive NLP Chatbots Chapter 15

[351]

Adding services to a chatbot
IBM's Watson Conversation Service allows you to add all the services you want to your
dialog flow, as shown in the following list:

Watson Conversation Services

IBM Watson provides a robust framework and a cloud service to build a solid, reliable
chatbot.

With IBM Watson services, your imagination will be your only limit.

You can also implement a service of your own, such as a cognitive service.

A cognitive chatbot service
You now have a chatbot running on IBM Watson or another platform. The architecture of
an efficient chatbot requires restricting the perimeter of the functions to a minimum and
getting it to work as quickly as possible.

With a solid foundation, the chatbot can now expand its limitless potential in the areas
required. Services such as these can be added to a personal assistant, for example.

Cognitive NLP Chatbots Chapter 15

[352]

The case study
A bus of English-speaking tourists is traveling through France. Somewhere in the
countryside, on a small road, the bus breaks down. A tourist will use a personal assistant
with inbuilt functions to communicate with a police chatbot.

Nobody speaks French. One of the tourists has a tablet and an internet connection. It also
has a personal assistant on it. It could be Google Assistant, Siri, Bixby, Alexa, Cortana, or
any other.

For our purpose, let's assume it's Google Assistant and say we built a backend with Google
Translate, with the API described in Chapter 8, Revolutions Designed for Some Corporations
and Disruptive Innovations for Small to Large Companies.

The tourist types or says as described in that chapter: The coach broke down. Google
Translate produces a sentence in French, confusing "coach" with a sports coach and not
translating it as "bus." As explained before, Google will no doubt correct this error, but
there are still thousands more to correct.

This is not a problem but a limitation that we, as a worldwide community of artificial
intelligence, must expand by sharing ideas.

A cognitive dataset
A cognitive NLP chatbot must provide cognition. Humans think in more than words.
Mostly humans combine words and images.

Furthermore, for a human, a chat generates mental images, sounds, odors, feelings,
sensations, and much more.

The scenario is expanded to images for this case study:

The tourist will chat with the police chatbot using the inbuilt functions of a
personal assistant.
The police bot will answer that it does not understand the statement. The
tourist's personal assistant will trigger off a deeper conversation level.
They will find a way to understand each other using images to solve the
problem.

In this section, CRL-MM-Chabot.py will be described in a chronological way, following the
sequence of the dialog.

Cognitive NLP Chatbots Chapter 15

[353]

The program starts with an explanation of the scenario and shows where this new cognitive
function could be inserted in Google_Translate_Customized.py (see Chapter 8,
Revolutions Designed for Some Corporations and Disruptive Innovations for Small to Large
Companies).

Cognitive natural language processing
Conceptual representation learning meta-model (CRLMM) means describing concepts in
words plus images, beyond using mathematical numerical vectors.

If you run CRL-MM-Chabot.py, the output comes as a detailed explanation of what the
program is doing while it is running, as shown in the following code block. You can also
view the video that comes with this chapter to get a feel of the program before running and
viewing the following output:

In chapter 8, the Google_Translate_Customized.py
program found an error in Google Translate.
Google Translate confused a sports coach with a vehicle-coach.
In the near future, Google will probably correct this example
but here are thousands of other confusions.
On line 48 of Google_Translate_Customized.py, a deeper_translate function
was added to correct such errors.
This was only possible because Google provides
the necessary tools for the AI community to help make progress.
The translation was corrected so that the word bus replaced coach
and Google translated the sentence correctly
This program extends polysemy deeper understanding to concepts:
words and images

This model can be added to
deep_translate in Google_Translate_Customized at line 114 or
deployed in a cognitive chabot as follows...
Press ENTER to continue

The tourist now enters a sentence in the personal assistant (text or voice) that Google
Translate does not understand (but it will in the near future), as displayed in the following
snippet:

PERSON IN A BUS THAT BROKE DOWN TEXTING THE POLICE
 A MESSAGE WITH A CHABOT TRANSLATOR:
 My sports coach broke down(the sentence is in French but came out that
way)

Cognitive NLP Chatbots Chapter 15

[354]

The police bot answers and a sentiment analysis function detects a negative feeling, as
shown in the following code snippet:

POLICE RECEIVING THE SMARTPHONE MESSAGE:
I dont understand what you mean.
The sentiment analysis estimation is: -0.3125

The following sentiment analysis function comes from TextBlob:

ext = "I dont understand what you mean."
obj = TextBlob(text)
sentiment = obj.sentiment.polarity
print (text,"\n"," The sentiment analysis estimation is: ",sentiment)

The sentiment has been analyzed through the polarity function. Negative values mean
negative feelings, positive feelings come out as positive values, and 0 is neutral. In this case
study, 0 will be OK.

The sentiment estimation for the policeman's sentence is -0.3, which is not good at all.

Our dialog flow (see the explanation in the first section of the chapter) does not wish to add
confusions to the present confusion. Since the sentiment is negative, instead of adding more
words that might or might not be correctly translated, an image is displayed. In this
example, a frown is displayed, as implemented in the following code:

if(sentiment<0):
print("IMAGE DISPLAYED: FROWN OR OTHER POLYSEMY")
imgc=directory+'cchat/notok.jpg'
imgcc = load_img(imgc, target_size=(64, 64))
plt.imshow(imgcc)
plt.show(block=False)
time.sleep(5)
plt.close()

The frown will appear and disappear automatically on the tablet or smartphone. The
following image is displayed by the program:

Output image

Cognitive NLP Chatbots Chapter 15

[355]

A /cchat (conceptual chat) directory was added to this CRLMM model. The CRLMM is
beginning to use words + images to form concepts to express itself.

Words are sometimes confusing, especially in foreign-language environments on global
social networks or personal assistants. Images will help clarify the conversation.

You can add a whole library of emoticons that will be activated by a
sentiment analysis function such as TextBlob.

Activating an image + word cognitive chat
To resolve their misunderstanding the tourist and the police bot both have an inbuilt
CRLMM function in their personal assistants and cloud chatbot platform.

On the policy side, a polysemy (several meanings to a word) function has automatically
been triggered by the sentiment analysis value. The Polysemy function is activated and
begins to clarify the situation, as shown in the following code:

This is sports coach.
Polysemy Activated
POLICE: Do you mean this coach?
Enter yes or no(show an icon also to avoid language):

The program has already loaded its trained image model and compiled it, and the
following prediction function is ready:

#___LOAD MODEL_____________
json_file = open(directory+'model/model.json', 'r')
loaded_model_json = json_file.read()
....
loaded_model=model_from_json(loaded_model_json)
#___________________ load weights into new model
loaded_model.load_weights(directory+"model/model.h5")
loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop',
metrics=['accuracy'])

The images were trained by the same program described in the previous chapters. The
training has been orientated towards defining images conceptually more than classifying
them. The prediction function is also the same as described in earlier chapters.

Cognitive NLP Chatbots Chapter 15

[356]

Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots, will
detail this conceptual training approach for image-word concepts.

The police bot displays what was understood by its system. Using more words will add
more confusion. This is why an image provides a clear message. The program will display
the following image:

Output image providing clear message

The system displays the following message:

POLICE: Do you mean this coach?
Enter yes or no(show an icon also to avoid language):

I recommend adding a yes or no icon.

The user will answer: no.

The conceptual (images + words) polysemy has been triggered by the mistake the system
made. Another image is displayed as follows, with a question:

Output image with question

The tourist may or may not understand the policeman's question. The question may or may
not be correctly translated. But providing a yes or no answer to an image simplifies the
communication problem.

The user answers yes (or clicks on a yes icon). The tourist + personal assistant bot and the
police bot are now beginning to understand each other.

Cognitive NLP Chatbots Chapter 15

[357]

Solving the problem
The chatbot has escalated into image + word chat mode. Confusing words have been
replaced by an image and a yes/no clarified communication function. The system now
thinks it understands. However, the bot has to make sure that it understands as shown in
the following screenshot of the program's dialog:

POLICE:I understand. Your bus broke down.
Bus+ brock down
Is this what you mean?
Enter yes or no:

It displays the following image of the situation (concept + words):

Output image (concept + words)

The tourist will recognize the bus and a sort of problem sign even if the words remain
unclear.

The user answers yes. The following snippet runs a sentiment analysis and displays an
image:

if(answer=="yes"):
 print("THE SYSTEM WRITES A SENTENCE:","\n")
 text = "Image to text: Yes that is correct"
 obj = TextBlob(text)
 sentiment = obj.sentiment.polarity
 print (text," : ",sentiment)
 if(sentiment>=0):
 imgc=directory+'cchat/ok.jpg'

The system produces a scenario sentence (see IBM Watson's dialog flow), the
sentiment.polarity produces a value and displays the following image.

Output image

Cognitive NLP Chatbots Chapter 15

[358]

The police bot and the tourist now understand each other.

The police bot produces an image and a text in case the message is confusing. The following
snippet shows the police reply with an image to clarify the message:

print("\n","POLICE : OK. We are already on our way.","\n","The bus
emergency sensor sent us a message 5 minutes ago.","\n","Thanks for
confirming","\n")
print("\n","POLICE : We will be there at 15:30")
imgc=directory+'cchat/ETA.jpg'
imgcc = load_img(imgc, target_size=(128, 200))

The image confirms or replaces the text. The police bot informs the tourist that the
estimated time of arrival is 15:30.

The police bot had received a sensor message from the bus. The bus had an inbuilt alerting
system. But the emphatic cognitive chatbot was glad to help, just like a real-life police
officer.

Implementation
Implementing a cognitive chatbot using CRLMM, as for any chatbot, needs to follow some
well-organized steps:

Identify the intents and entities
Create the dialog scenarios
Dialog controls—all that the user clicks and answers
Make an emoticon images repository
Make a conceptual images repository
Train and test the model with all sorts of scenarios; especially look out for the
ones that fail to improve the system

Summary
IBM Watson provides a complete set of tools on IBM Cloud to build a chatbot, add services
to it, and customize it with your own cognitive programs.

A good chatbot fits the need. Thinking the architecture through before starting
development avoids underfitting (not enough functionality) or overfitting (functions that
will not be used) of the model.

Cognitive NLP Chatbots Chapter 15

[359]

Determining the right intent (what is expected of the chatbot), determining the entities to
describe the intent (the subsets of phrases and words), and creating a proper dialog will
take quite some time.

If necessary, adding services and specially customized machine learning functions will
enhance the quality of the system. The use of CRLMM introduces concepts (images +
words) into chatbots, bringing them closer to how humans communicate.

NLP parses and learns words. CRL adds a higher dimension to those words with images.
These images clarify interpretation and mistranslation problems. To close the gap between
machines and humans, AI must bring emotional intelligence into chatbot dialogs.

The next chapter explores emotional intelligence through a Boltzmann machine (recently
used by Netflix) and principal component analysis applied to a CRLMM's image + word
(concept) approach.

Questions
Can a chatbot communicate like a human? (Yes | No)1.
Are chatbots necessarily artificial intelligence programs? (Yes | No)2.
Chatbots only need words to communicate. (Yes | No)3.
Do humans only chat with words? (Yes | No)4.
Humans only think in words and numbers. (Yes | No)5.
To build a cognitive chatbot, mental images are necessary. (Yes | No)6.
For a chatbot to function, a dialog flow needs to be planned. (Yes | No)7.
A chatbot possesses general artificial intelligence, so no prior development is8.
required. (Yes | No)
A chatbot translates fine without any function other than a translation API. (Yes |9.
No)
Chatbots can already chat like humans in most cases. (Yes | No)10.

Further reading
For more on IBM Cloud Watson: https:/ /www. ibm. com/ cloud/ ai

For more on TextBlob: http:/ /textblob. readthedocs. io/en/ dev/

https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/
http://textblob.readthedocs.io/en/dev/

16
Improve the Emotional

Intelligence Deficiencies of
Chatbots

Recent disruptive AI technology provides all the tools to eliminate emotional deficiencies in
artificial intelligence applications. Conceptual representation learning meta-models
(CRLMM) can convert mathematical outputs into somewhat human mind models.
Classical machine learning and deep learning programs mostly produce mathematical
outputs. In previous chapters, CRLMM models produced enhanced conceptual
representations, closing the gap between machine and human thinking.

The goal is clearly to build a mind, not an output, through several machine learning
techniques: an RBM, sentiment analysis, CRLMM, RNN, LSTM, Word2Vec, and PCA. For
each step, an application is available on a Windows or Linux platform, along with a video.

RBMs were presented in a Netflix competition for prediction purposes, namely to predict
user choices. The ultimate goal of this model is not to predict what a person will say or do
but to make an approximate mental clone of a human mind—to build thinking and feeling
machines.

Building a mind requires teamwork between several AI models. This chapter describes a
profiler solution that will build a profile of a person named X. A mental projection will be
shown, representing part of the profile to prepare for a deeper profile by unleashing the
power of quantum computing (see Chapter 17, Quantum Computers That Think).

Starting to build a mind is the beginning of what will be one of the major adventures of the
21st century.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[361]

The following topics will be covered in this chapter:

Restricted Boltzmann Machine (RBM)
CRLMM
Sentiment analysis
Recurrent neural networks (RNN) and Long Short-Term Memory (LSTM)
RNNs
Word2Vec (word to vector) embedding
Principal Component Analysis (PCA)
Jacobian matrix

Technical requirements
Python 3.6x 64-bit from https:/ /www. python. org/ .

Package and modules:

import numpy
from __future__ import print_function
import numpy as np
from textblob import TextBlob
from PIL import Image
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import matplotlib.pyplot as plt
import time
import scipy.misc
from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import model_from_json

import tensorflow as tf
from tensorflow.contrib import rnn
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import math
import os
import random
from tempfile import gettempdir

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[362]

import zipfile
import numpy as np
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.contrib.tensorboard.plugins import projector
import tensorflow as tf

Programs needed:

RBM.py

CNN_CONCEPT_STRATEGY.py

LSTM.py with its Tensorboard_reader.py
RNN.py

Embedding.py and its Tensorboard_reader.py

Check out the following video to see the code in action:

https://goo.gl/SKPUZA

Building a mind
The following method represents a starting point to build a mind in a machine.

It is based on a cognitive NLP chatbot I successfully delivered many years ago. It was
designed for language teaching and would teach a student, but more importantly, it
would learn who that student was by memorizing the chats and storing words, images,
and sounds. The bot would know more about the student after each session and ask
questions about past conversations.

A random memory sentence was produced among many, such as:

Oh, I remember you. You like.....

Then the profile dataset of the person was used to add:

Oh, I remember you. You like + football

The voice was digitized (and a bit bumpy because of intonation problems), but it scared one
of the first users enough to make the student stand up and go look to see if there was
somebody behind the computer playing a prank.

https://goo.gl/SKPUZA
https://goo.gl/SKPUZA
https://goo.gl/SKPUZA
https://goo.gl/SKPUZA
https://goo.gl/SKPUZA
https://goo.gl/SKPUZA
https://goo.gl/SKPUZA
https://goo.gl/SKPUZA
https://goo.gl/SKPUZA

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[363]

I had to build everything from scratch, which was excruciating but incredibly exhilarating.
This project was fun and very profitable for a while, but that was 25+ years ago! There was
no internet and no need to replace people. So that was it. I got some media attention but
had to move on.

I then used the CRLMM model I had been describing during the previous chapters to
introduce deep human concepts in an advanced planning and scheduling system; this is not
meant to be a real-time planning tool like the one described in Chapter 12, Automated
Planning and Scheduling.

This proves that building a mind is possible and will now happen. Maybe you can take
everything in this book and become the architect of a thinking machine, and sell it to a
corporation for deep decision-making purposes or as an advanced cognitive NLP chatbot.

Outer space, way above the sky, is the limit and might lead you to build the technology for
a smart rocket on its road to Mars. It's at the touch of your fingertips.

How to read this chapter
The goal is to show how to build a mind using several artificial intelligence techniques.
Each technique will be briefly explained and then applied. At this point in the book, you
know that all the network models encountered in machine learning contain inputs,
activation functions, and outputs going through layers (visible and hidden). The flow is
trained with an optimizer (loss function) and weights (with biases). There are many
combinations of these models.

Each section contains a Python program you can run, explore, and view through a video.
The video shows how a mind thinks in a 3D projection of thoughts and concepts. Image
embedding was used to represent concepts (conceptual representation learning). Then PCA
was applied.

The target scenario is for us to use machine learning tools and bots to gather data on a
person named X. In Chapter 17, Quantum Computers That Think, we will explore the mind
of X—the very beginning of its machine clone that can be used to make decisions, chat, or
simply dream and have fun.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[364]

The profiling scenario
The goal is to learn who X is and build a mind for X through a CRLMM approach added to
other techniques.

Building a machine mind requires using all the machine learning
techniques we can put together. It would take several months to produce
a thinking machine for decision-making or chatbot purposes.

This x step scenario will provide enough data to start building a mind:

An RBM that will not try to predict what a user will do but will profile person X
based on their Netflix ratings in an advanced approach
A sentiment analysis function to gather information through X's social networks
A CRLMM function to gather images and begin to fit them with the words as X
would do
Using an RNN to generate sentences X could say in a data augmentation
approach
Applying word embedding (word2vec) to the text to gather information on how
X perceives words, not their general statistical meaning
Representing some of X's professional environment words with word2vec in
TensorFlow projector with PCA, to obtain a personal mental representation of
how X sees the world (not the statistical representation)

The goal is not to classify X or predict what X would do, but to
understand X by representing X's mind.

Restricted Boltzmann Machines
RBMs are random and undirected graph models generally built with a visible and a hidden
layer. They were used in a Netflix competition to predict future user behaviors. The goal
here is not to predict what X will do but find out who X is and store the data in X's profile-
structured mind-dataset.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[365]

The input data represents the features to be trained to learn about person X. Each column
represents a feature of X's potential personality and tastes. The following code (and this
section) is in RBM.py:

F=["love","happiness","family","horizons","action","violence"]

Each of the following lines is a movie X watched containing those six features; for them, X
gave a five-star rating:

r = RBM(num_visible = 6, num_hidden = 2)
training_data = np.array([[1,1,0,0,1,1],
 [1,1,0,1,1,0],
 [1,1,1,0,0,1],
 [1,1,0,1,1,0],
 [1,1,0,0,1,0],
 [1,1,1,0,1,0]])

The goal of this RBM is to find out more about X's personality through the output of the
RBM.

The connections between visible and hidden
units
The RBM model used contains two layers:

A visible layer
A hidden layer

Many types of RBMs exist, but generally, they contain these properties:

There is no connection between the visible units
There is no connection between the hidden units

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[366]

The visible and hidden layers are connected by a weight matrix and a bias vector,
as shown in the following diagram:

The connections between visible and hidden units

The network contains six visible and two hidden units, producing a weight matrix of 2 x 6
values. Note that there are no connections between the visible or hidden units. The
following Python code initializes the model with the units:

self.num_hidden = num_hidden
self.num_visible = num_visible

The weight matrix is initialized with random weights between the following:

-sqrt(6./(num_hidden+visible)
+sqrt(6./(num_hidden+visible)

It is implemented with the following random states and values:

 np_rng = np.random.RandomState(1234)
 self.weights = np.asarray(np_rng.uniform(
 low=-0.1 * np.sqrt(6. / (num_hidden + num_visible)),
 high=0.1 * np.sqrt(6. / (num_hidden + num_visible)),
 size=(num_visible, num_hidden)))

The bias will now be inserted in the first row and the first column in the following code:

self.weights = np.insert(self.weights, 0, 0, axis = 0)
self.weights = np.insert(self.weights, 0, 0, axis = 1)

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[367]

The goal of this model will be to observe the behavior of the weights. Observing the
weights will determine how to interpret the result in this model based on calculations
between the visible and hidden units. The following output displays the weight values:

[[0.91393138 -0.06594172 -1.1465728]
[3.01088157 1.71400554 0.57620638]
[2.9878015 1.73764972 0.58420333]
[0.96733669 0.09742497 -3.26198615]
[-1.09339128 -1.21252634 2.19432393]
[0.19740106 0.30175338 2.59991769]
[0.99232358 -0.04781768 -3.00195143]]

The first row and column are the biases. Only the weights will be analyzed for the profiling
functions. The weights and biases are now in place.

Energy-based models
An RBM is an energy-based model (EBM). An EBM uses probabilistic distributions defined
by an energy function.

For a given x, E(x) or E(v,h) is one way of expressing the energy function of an RBM in a
simplified, conceptual line. It is:

This energy function drives the model and will be used to direct weight and bias
optimization:

The v (visible) and h (hidden) units are connected by W (the weights)
b is an offset of the units that acts as a bias

Then the energy will be measured with a probabilistic function p:

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[368]

Z is a partition function for making sure that the sum of the probabilities of each x input
does not exceed 1:

The partition function is the sum of all the individual probabilities of each x:

With each p(x) divided by Z (the sum of all the probabilities), we will reach 1. The whole
system is based on the energy between the visible and hidden units until the loss is
optimized, as shown in the following RBM.py code:

error = np.sum((data - neg_visible_probs) ** 2)
if self.debug_print:
print("Epoch %s: error is %s" % (epoch, error))

Gibbs random sampling
An RBM increases in efficiency when random variable sampling is applied during the
training process. Gibbs sampling generates a Markov chain of samples that takes the nearby
samples into account as well.

Random sampling makes the system more objective. Hidden units remain latent (this is a
two-layer system), which confers its dream property.

Running the epochs and analyzing the results
Once the RBM has optimized the weight-bias matrix for n epochs, the matrix will provide
the following information for the profiler system of person X:

[[0.91393138 -0.06594172 -1.1465728]
 [3.01088157 1.71400554 0.57620638]
 [2.9878015 1.73764972 0.58420333]
 [0.96733669 0.09742497 -3.26198615]
 [-1.09339128 -1.21252634 2.19432393]
 [0.19740106 0.30175338 2.59991769]
 [0.99232358 -0.04781768 -3.00195143]]

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[369]

When RBM.py reaches this point, it asks you if you want to profile X, as shown in the
following output:

Press ENTER if you agree to start learning about X

I strongly recommend that only bots access this type of data and that the
provider protects the data as much as possible. For users to accept these
models, they must first trust them.

If you accept, it will train the input and display the features added to X's profile.

The weights of the features have been trained for person X. The first line is the bias and
examines column 2 and 3. The following six lines are the weights of X's features:

Weights:
[[0.913269 -0.06843517 -1.13654324]
[3.00969897 1.70999493 0.58441134]
[2.98644016 1.73355337 0.59234319]
[0.953465 0.08329804 -3.26016158]
[-1.10051951 -1.2227973 2.21361701]
[0.20618461 0.30940653 2.59980058]
[0.98040128 -0.06023325 -3.00127746]]

The weights (in bold) are lines 2 to 6 and columns 2 to 3. The first line and first column are
the biases.

The weight matrix will provide a profile of X by summing the weight lines of the feature, as
shown in the following code:

for w in range(7):
 if(w>0):
 W=print(F[w-1],":",r.weights[w,1]+r.weights[w,2])

The features are now labeled, as displayed in this output:

love : 2.25265339223
happiness : 2.28398311347
family : -3.16621250031
horizons : 0.946830830963
action : 2.88757989766
violence : -3.05188501936

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[370]

A value>0 is positive, close to 0 slightly positive.
A value<0 is negative, close to 0 slightly negative.

We can see that beyond standard movie classifications, X likes horizons somewhat, does
not like violence, and likes action. X finds happiness and love important but not family at
this point.

The RBM has provided a personal profile of X—not a prediction but getting ready for a
suggestion through a chatbot or just building X's machine mind-dataset.

RBM.py will now begin sentiment analysis.

Sentiment analysis
RMB.py leaves the realm of RBMs and enters a tone analyzer phase using sentiment
analysis to parse X's social networks.

The following code triggers the bot to ask you once again whether you agree (the mind-
dataset-building bot) to parse X's social networks:

Press ENTER if you agree to learn more about X.
The AI program will now enter social networks
to scan X's social media profile.

First words(Tweets, posts, messages on Facebook and much more) will be
analyzed then images

Press ENTER if you agree to scan X's social networking...

Parsing the datasets
For this to work, a bot has read through X's data. A bot can use big data map and retrieve
functions that Google, Amazon, Facebook, LinkedIn, and other social networks have been
developing.

The sentiment analysis function is a TextBlob module. Entering the text and
text+.sentiment will return the following sentiment analysis:

myview=TextBlob("I hate movie 1. It was too violent ")
print(myview,":","\n",myview.sentiment,"\n")

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[371]

The output will contain two values:

Polarity

A value>0 is positive, close to 0 slightly positive.
A value<0 is negative, close to 0 slightly negative.

Subjectivity: The higher the value, the more X's subjectivity influences the result

For mind-dataset building purposes, a high level of subjectivity provides inside
information on X's feelings, which increases the quality of the dataset.

At the same time, the total dialog is loaded in a TextBlob for each sentence analyzed as
shown in the following code:

myview=TextBlob("I like autumn. It reminds me of some sad music")
print(myview,":","\n",myview.sentiment,"\n")
dialog=dialog+myview

myview contains the sentence to be analyzed. dialog contains the complete dialog. At the
end of the analysis, dialog is parsed for key noun phrases, as shown in this code:

#Parse noun phrases
print("Parse noun phrases to find potential key words:")
print(dialog.noun_phrases)

The result will produce sentiment analysis for each sentence and the noun phrases at the
end. The output provides useful information to add to X's mind-dataset. The following
sentences were scanned on X's social networks:

Press ENTER to Continue
A value>0 is positive, close to 0 slightly positive
A value<0 is negative, close to 0 slightly negative

I hate movie 1. It was too violent :
Sentiment(polarity=-0.8, subjectivity=0.95)

I like autumn. It reminds me of some sad music :
Sentiment(polarity=-0.5, subjectivity=1.0)

The love story was cool too. A bit mushy but cool :
Sentiment(polarity=0.39999999999999997, subjectivity=0.6333333333333333)

I would like to get out of here and see other horizons :
Sentiment(polarity=-0.125, subjectivity=0.375)

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[372]

Parse noun phrases to find potential key words:
['sad music', 'bit mushy']

RBM.py now asks you, the profiler bot, whether you want to complete X's profile with
images gathered on X's social network pages with the following authorization:

Press ENTER if you agree to complete X's profiling dataset with some images

Conceptual representation learning meta-
models
The CRLMM phase is there to find images that constitute a mental representation for X.

Humans mostly think in words+images and feel with words+images.
Sounds, sensations, and odors are critical as well. That parameter can also
be explored.

Profiling with images
Humans communicate widely through images, symbols, and pictures. They also have a
large number of mental image datasets—images that have been transformed and linked to
words.

The goal of the bot's conversation now is to confirm the profile of X and suggest a movie to
X, just for fun. An image was stored by X, and the name of a movie comes up called Lost?
with a dark picture. It is supposed to appeal to the emotions of somebody who yearns for
happiness and love and is curious to see whether something will be found.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[373]

The following picture illustrates the darkness of being lost, with a forest as a symbol and
light through the trees (hope?):

Darkness of being lost picture

Now the streaming website chatbot will detect that a viewer has been scrolling for over 5
minutes without making a choice, for example. It would like to make a suggestion.

The bot starts with a random choice of sentences in the following structured class and adds
keywords:

print("Hi, I am your personal assistant to find a movie you like")
print("I found a movie named Lost. The hero has to fight(action) through
life")
print("after losing a loved one (love) and is searching for
happiness(happiness) again...")..
Do you want to watch the movie?

X is curious about this movie. Will something be found? Happiness? Something else? X
answers, I sure do.

The program manages the following dialog sequence. If you use the program, enter I sure
do! when asked if you want to be person X:

mytext=input("Do you want to watch the movie? ")
#enter I sure do!
myview=TextBlob(mytext)
print(myview,":",myview.sentiment)

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[374]

It picks up I sure do and obtains the following sentiment analysis, which it will now add
to X's mind-dataset:

I sure do : Sentiment(polarity=0.5, subjectivity=0.8888888888888888)

Note that the goal here was first to profile X and build a mind-dataset of X's features, not
movie categories. Then only suggest a movie, not based on its category, but on more
intrinsic features.

The next phase will be to increase the size of the mind-dataset with an RNN.

RNN for data augmentation
An RNN models sequences, in this case, words. It analyzes anything in a sequence,
including images. To speed the mind-dataset process up, data augmentation can be applied
here exactly as it is to images in other models. In this case, an RNN will be applied to
words.

A first look at its graph data flow structure shows that an RNN is a neural network like the
others previously explored. The following graphs were obtained by first running LSTM.py
and then Tensorboard_reader.py:

Data flow structure

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[375]

The y inputs (test data) go to the loss function (Loss_train) . The x inputs (training data)
will be transformed through weights and biases into logits with a softmax function. A zoom
into the RNN area of the graph shows the following basic_lstm cell:

basic_lstm cell—RNN area of the graph

What makes an RNN special is to be found in the LSTM cell.

RNNs and LSTMs
An LSTM is an RNN that best shows how RNNs work.

An RNN contains functions that take the output of a layer and feed it back to the input in
sequences simulating time. This feedback process takes information in a sequence. For
example:

The->movie->was->interesting->but->I->didn't->like->It

An RNN will unroll a stack of words into a sequence and parse a window of words to the
right and to the left. For example, in this sentence, an RNN can start with interesting (bold)
and then read the words on the right and left (italics). These are some of the
hyperparameters of the RNN.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[376]

This sequence aspect opens the door to sequence prediction. Instead of recognizing a whole
pattern of data at the same time, it is recognizing the sequence of data, as in this example.

A network with no RNN will recognize the following vector as a week, a pattern just like
any other one:

An RNN will explore the same data in a sequence by unrolling streams of data.

Monday->Tuesday-Wednesday->Thursday->Friday->Saturday-Sunday

The main difference lies in the fact that once trained, the network will predict the following:
if Wednesday is the input, Thursday could be one of the outputs. This is shown in the next
section.

RNN, LSTM, and vanishing gradients
To simulate sequences and memory, an RNN and an LSTM will use backpropagation
algorithms.

An RNN often has problems of gradients when calculating them over deeper and deeper
layers in the network. Sometimes, it vanishes (too close to 0) due to the sequence property,
just like us when a memory sequence becomes too long.

The backpropagation (just like us in a sequence) becomes less efficient. The are many
backpropagation algorithms such as vanilla backpropagation, which is commonly used.
This algorithm performs efficient backpropagation because it updates the weights after
every training pattern.

One way to force the gradient not to vanish is to use a ReLU activation function,
f(x)=max(0,x), forcing values on the model so that it will not get stuck.

Another way is to use an LSTM cell containing a forget gate between the input and the
output cells, a bit like us when we get stuck in a memory sequence and we say "whatever"
and move on.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[377]

To explore this type of network deeper, LSTM.py runs on a MNIST
example. Tensorboard_reader.py will display the data flow graph
structure.

The LSTM cell will act as a memory gate with 0 and 1 values, for example. This cell will
forget some information to have a fresh view of the information it has unrolled into a
sequence.

The key idea of an RNN is that it unrolls information into sequences.

Prediction as data augmentation
RNN.py, a Vanilla RNN model, shows how person X's profile can be enhanced in three
steps.

Step1 – providing an input file
input.txt contains texts picked up in X's dialogues with the chatbot, social networks,
messaging, and more, as shown in the following output:

"The action movie was boring. The comedy was better. Next time, I'll watch
an action comedy with funny scenes...."

The ultimate goal is to automatically collect the largest file possible with thousands of
words to have a representative dataset.

Step 2 – running an RNN
The RNN, based on a vanilla algorithm, starts by reading the stream of characters. It first
opens input.txt, the reference text, as follows:

data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
print ('data has %d characters, %d unique.' % (data_size, vocab_size))
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { i:ch for i,ch in enumerate(chars) }

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[378]

The RNN has hidden layers connected to the visible input and a learning rate,
learning_rate, as shown in the following snippet:

graph structure
hidden_size = 100 # hidden layer size
learning_rate = 1e-1

Then the specific parameter of an RNN is added—the length of the sequence, to unroll:

seq_length = 25 # length of units to unroll

Next, the weights are initialized with random functions. The program then runs forward
passes to parse the elements of the sequence and backward to compute gradients.

Step 3 – producing data augmentation
The program will now generate text that can be added to X's text profile dataset. Data
augmentation by text generation will:

Help understand X's profile better
Be used in chatbot conversations when this technology improves

This approach takes time and resources, and the results are not always efficient. However,
research and development should continue by combining text generators with concept
representation learning and more.

An intermediate result at iteration 60200 provided the following output:

iteration 60200, loss: 0.145638

er autumn because the leaves are brown, yellow, orange, red and all sorts
of colors. Summer is too hot, winhes comeny lard, yellories rore. I like
some but not too much. Love is really something great

I like some but not too much contains some interesting emotional information: some
but not too much.

To explore this type of network deeper, consult rnn.py and the video of
this chapter.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[379]

Word embedding
The mind-dataset of X has begun to pile up a lot of data. It's time to introduce a word to
vector model to determine how X sees words.

Building a mind-dataset is not like a dictionary that provides a standard definition for
everybody. In this project, we want to target person X's personality.

This approach is about profiling X to understand how X perceives a word. For example, a
dictionary might depict the season spring as something flowery. But X does not like spring
as we have seen. X prefers autumn and its mild sadness.

So in X's dictionary, the definition of autumn is closer to satisfying than summer. This type
of bot takes personal views into account to build a personal profiled mind-dataset. On the
contrary, a standard dictionary would not suggest a preference between two seasons.

Word2vec will be used for customized phrases.

The Word2vec model
A vector space model (VSM) takes words and transforms them into a vector space. In this
continuous space, similar words are represented in points near each other. This vectorial
mapping process is called embedding.

Word2vec takes raw text, finds the words nearest to each other, and maps them into
vectors. The system will take words, build them into a dictionary, and then input indexes.

A skip-gram model is applied to the sequences with a skip window. In that skip window,
a number of words are taken into consideration on the left and the right. Then the model
skips, and it will reuse and input several times to produce a label as implemented in
embedding.py. The embedding size, skip window, and the number of skips are initialized
and described in the following snippet:

embedding_size = 128 # Dimension of the embedding vector.
skip_window = 1 # How many words to consider left and right.
num_skips = 2 # How many times to re-use an input to generate a label.

Once the whole process is over, the model will have produced a number of vector features
of the dataset with groups of nearest words to each other.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[380]

For our profile, Embedding.py analyzes a text written by X on artificial intelligence. These
are texts written after reading this book. We will know more about X in a workplace.

The following paragraphs describe the key functions of Embedding.py.
For more info, view the complete source code on GitHub.

Embedding.py starts by reading a file called concept.txt, which is in a ZIP file and
contains a text that X wrote after reading this book, as shown in the following code:

def read_data(filename):
 """Extract the first file enclosed in a zip file as a list of concepts."""
 with zipfile.ZipFile(filename) as f:
 data = tf.compat.as_str(f.read(f.namelist()[0])).split()
 return data

The words are stored as labels in the label filename labels.tsv, as shown in the following
code snippet:

file = open('log/labels.tsv', 'w+')
for i in range(maxvoc+1):
print(i,vocabulary[i])
file.write(str(i)+'\t' +vocabulary[i]+'\n')
file.close()

A dataset is built in real time in the following code:

def build_dataset(words, n_words):
 """Process raw inputs into a dataset."""
 count = [['UNK', -1]]
 count.extend(collections.Counter(words).most_common(n_words - 1))
 dictionary = dict()
...

UNK represents unknown words that are generally simply skipped.

Then, training batches are generated by the following generate_batch function:

def generate_batch(batch_size, num_skips, skip_window):
 global data_index
 assert batch_size % num_skips == 0
 assert num_skips <= 2 * skip_window
 batch = np.ndarray(shape=(batch_size), dtype=np.int32)
 labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
 span = 2 * skip_window + 1 # [skip_window target skip_window]
 buffer = collections.deque(maxlen=span)

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[381]

 if data_index + span > len(data):
 data_index = 0
 buffer.extend(data[data_index:data_index + span])
 data_index += span
 for i in range(batch_size // num_skips):
...

The skip-gram model has been prepared. A TensorFlow data flow graph will manage the
operations. First, come the following inputs:

embeddings = tf.Variable(tf.random_uniform([vocabulary_size,
embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)

Then the following weights and biases along with the loss function are implemented:

Construct the variables for the NCE loss
 nce_weights = tf.Variable(
 tf.truncated_normal([vocabulary_size, embedding_size],
 stddev=1.0 / math.sqrt(embedding_size)))
 nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
loss = tf.reduce_mean(
 tf.nn.nce_loss(weights=nce_weights,
 biases=nce_biases,
 labels=train_labels,
 inputs=embed,
 num_sampled=num_sampled,
 num_classes=vocabulary_size))

The word2vec count model will take the words and build a count matrix, thus converting
words into vectors so that the deep learning algorithm can process the data.

Given the concept.txt data file, a part of that matrix could look something like the
following table:

Transfer Learning Model Number

Transfer 15

Learning 10 5

Model

Number 1

The words have been transformed into numbers (vectors) so that a deep learning program
can process them and find the words nearest to each other.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[382]

The output represents the features of the word with properties expressed in numbers,
which in turn can be viewed as words through the stored labels (labels.tsv).

The output of the concept.txt input file shows the nearest words to each keyword. For
example, for such, the system displays the following output:

Nearest to such: "class, model, way, Adding, been, and, face, business,

It does not look so exciting at first glance. However, if more text is added and deeper
calculations are allowed, it will make progress.

To obtain a 3D view of the result with PCA (see next section), the information for
TensorBoard projector is initialized, as shown in the following snippet:

print('Initialized')
config = projector.ProjectorConfig()
summary_writer = tf.summary.FileWriter("log/")
embedding = config.embeddings.add()

TensorFlow Projector is now ready to be launched.

Principal component analysis
General dictionary or encyclopedia representations of words, images, and concepts satisfy
many needs. The probabilistic machine learning approach is applied very efficiently to
marketing by Facebook, Amazon, Google, Microsoft, IBM, and many other corporations.

Probabilistic machine learning training remains efficient when targeting apparels, food,
books, music, travel, cars, and other market consumer segments.

However, humans are not just consumers; they are human beings. When they contact
websites or call centers, standard answers or stereotyped emotional tone analysis
approaches can depend on one's nerves. When humans are in contact with doctors,
lawyers, and other professional services, a touch of humanity is necessary if major personal
crises occur.

The PCA phase is there to build a mental representation of X's profile either to
communicate with X or use X's mind as a powerful, mind-full chatbot or decision maker.

The input data for this PCA is the output of Embedding.py described in the previous
section. TensorFlow stored the model, data and labels in its log/ directory.

TensorBoard projector has an inbuilt PCA loader.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[383]

Intuitive explanation
PCA takes data and represents it at a higher level.

For example, imagine you are in your bedroom. You have some books, magazines, and
music (maybe on your smartphone) around the room. If you consider your room as a 3D
Cartesian coordinate system, the objects in your room are all in specific x, y, z coordinates.

For experimentation purposes, take your favorite objects and put them on your bed. Put the
objects you like the most near each other and your second choices a bit further away. If you
imagine your bed as a 2D Cartesian space, you have just made your objects change
dimensions.

They are not in their usual place anymore; they are on your bed and at specific coordinates
depending on your tastes.

That is the philosophy of PCA. If the number of data points in the dataset is very large, the
PCA of a mental dataset of one person will always be different from the PCA
representation of another person like DNA.

That is what CRLMM is about as applied to a person's mental
representation. Each person is different, and each person deserves a
customized chatbot or bot treatment.

Mathematical explanation
The mains steps for calculating PCA are important for understanding how to go from the
intuitive approach to how TensorBoard projector represents datasets using PCA.

Variance
Step 1: Calculate the mean of the array data1.

You can check this with the math.py, as shown in the following function:

data1 = [1, 2, 3, 4]
M1=statistics.mean(data1)
print("Mean data1",M1)

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[384]

The answer is 2.5. The mean is not the median (the middle value of an array).

Step 2: Calculate the mean of array data2.

The mean calculation is done with the following standard function:

data2 = [1, 2, 3, 5]
M2=statistics.mean(data2)
print("Mean data2",M2)

The answer is:

The bar above the X signifies that it is a mean.

Step 3: Calculate the variance using the following equation:

Now NumPy will calculate the variance with the absolute value of each x minus the mean,
sum them up, and divide the sum by n as shown in the following snippet.

#var = mean(abs(x - x.mean())**2).
print("Variance 1", np.var(data1))
print("Variance 2", np.var(data2))

Some variances are calculated with n-1 depending on the population of the dataset.

The result of the program for variances is as displayed in the following output:

Mean data1 2.5
Mean data2 2.75
Variance 1 1.25
Variance 2 2.1875

We can already see that data2 varies a lot more than data1. Do they fit together? Are their
variances close or not? Do they vary in the same way?

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[385]

Covariance
Our goal in this section is to find out whether two words, for example, will often be found
together or close to each other, taking the output of the embedding program into account.

Covariance will tell us whether these datasets vary together or not. The equation follows
the same philosophy as variance, but now both variances are joined to see whether they
belong together or not:

As with the variance, the denominator can be n-1 depending on your model. Also, in this
equation, the numerator is expanded to visualize the co-part of covariance, as implemented
in the following array in math.py:

x=np.array([[1, 2, 3, 4],
 [1, 2, 3, 5]])
print(np.cov(x))

NumPy's output is a covariance matrix a:

If you increase some of the values of the dataset, it will increase the value of the parts of the
matrix. If you decrease some of the values of the dataset, the elements of the covariance
matrix will decrease.

Looking at some of the elements of the matrix increase or decrease that way takes time and
observation. What if we could find one value or two values that would give us that
information?

Eigenvalues and eigenvectors
To make sense out of the covariance of the covariance matrix, the eigenvector will point to
the direction in which the covariances are going. The eigenvalues will express the
magnitude or importance of a given feature.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[386]

To sum it up, an eigenvector will provide the direction and the eigenvalue the importance
for the covariance matrix a. With those results, we will be able to represent the PCA with
TensorBoard projector in a multi-dimensional space.

Let w be an eigenvalue(s) of a. An eigenvalue(s) must satisfy the following equation:

There must exist a vector v for which dot(a,v) is the same as w*v:

NumPy will do the math through the following function:

from numpy import linalg as LA
print ("eigenvalues", np.linalg.eigvals(a))

The eigenvalues are (in ascending order) displayed in the following output:

Eigenvalues [0.03665681 4.54667652]

Now we need the eigenvectors to see in which direction these values should be applied.
NumPy provides a function to calculate both the eigenvalues and eigenvectors together.
That is because eigenvectors are calculated using the eigenvalues of a matrix as shown in
this code snippet:

from numpy import linalg as LA
w, v = LA.eigh(a)
print("eigenvalue(s)",w)
print("eigenvector(s)",v)

The output of the program is:

eigenvalue(s) [0.03665681 4.54667652]
eigenvector(s) [[-0.79911221 0.6011819]
[0.6011819 0.79911221]]

Eigenvalues come in a 1D array with the eigenvalues of a.

Eigenvectors come in a 2D square array with the corresponding (to each eigenvalue) in
columns.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[387]

Creating the feature vector
The remaining step is to sort the eigenvalues from the highest to the lowest value. The
highest eigenvalue will provide the principal component (most important). The eigenvector
that goes with it will be its feature vector. You can choose to ignore the lowest values or
features. In the dataset, there will be hundreds and often thousands of features to represent.
Now we have the feature vector:

Feature Vector=FV={eigenvector1,eigenvector2...n}

n means that there could be many more features to transform into a PCA feature vector.

Deriving the dataset
The last step is to transpose the feature vector and original dataset and multiply the row
feature vector by row data:

Data that will be displayed=row of feature vector * row of data

Summing it up
The highest value of eigenvalues is the principal component. The eigenvector will
determine in which direction the data points will be oriented when multiplied by that
vector.

TensorBoard Projector
TensorBoard projector loads the metadata from the output of the Embedding.py located in
the log directory. First, run Embedding.py. Then run Tensorboard.py. For this example,
click on Load data and load the labels.tsv file from the log directory generated by
Embedding.py.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[388]

Next, TensorBoard runs a PCA calculation (the option on the left in the TensorBoard
window) as explained previously. It then displays a 3D view, as shown in the following
screenshot:

PCA 3D view

You can now select words on the right-hand side of the window, move the projection
around in 3D, zoom, and explore the workplace mind of X.

Using Jacobian matrices
Using a matrix of partial derivatives is also possible. It shows the local trend of the data
being explored. A Jacobian matrix contains partial derivatives.

A Jacobian matrix that contains the partial derivatives of X's mind functions produced
between two periods of time can prove useful when minute trends need to be analyzed.
The philosophy remains the same as for measuring covariances. The goal is to see the
trends in the variables of X's mind.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[389]

Summary
Efficient machine learning programs produce good results but do not build a mind. To
produce complex AI solutions, no single technique (MDP, CNN, RNN, or any other) will
suffice. An efficient artificial intelligence solution to a complex problem will necessarily be
an innovative combination of various techniques. This chapter showed how to start
building one using an RBM, a tone analyzer (sentiment analysis), a CRLMM, an RNN, a
word2vec program, and PCA.

X's mind-dataset has been enriched with the beginning of an actual memory with word and
feeling associations as image and word associations. This brings X's mind-dataset profile
beyond dictionary definitions, predictive statistics, and linear dimensional personality
definitions.

Artificial intelligence will go beyond the present trend of mathematical probabilistic
approaches into the realms of our minds.

Great progress has been made by major corporations distributing machine learning cloud
platforms (Google, Amazon, IBM, Microsoft, and many more). CRLMM will become a
necessity to solve complex problems that mathematical probabilities cannot, such as
empathetic chatbots or deep thinking machines.

Much more work needs to be done during each phase described in this chapter to obtain a
powerful mind that resembles X's. Quantum computing possesses the tremendous power
and complexity to bring a thinking machine to another level.

Questions
RBMs are based on directed graphs. (Yes | No)1.
The hidden units of an RBM are generally connected to each other. (Yes | No)2.
Random sampling is not used in an RBM. (Yes | No)3.
Is there a method to prevent gradients from vanishing in an RNN? (Yes | No)4.
LSTM cells never forget. (Yes | No)5.

Improve the Emotional Intelligence Deficiencies of Chatbots Chapter 16

[390]

word2vec transforms words into indexes along with their labels. (Yes | No)6.
PCA transforms dates into higher dimensions. (Yes | No)7.
In a covariance matrix, the eigenvector shows the direction of the vector,8.
representing that matrix, and the eigenvalue shows the size of that vector. (Yes |
No)
It is impossible to represent a human mind in a machine. (Yes | No)9.
A machine cannot learn concepts, which is why classical applied mathematics is10.
enough to make efficient artificial intelligence programs for every field. (Yes |
No)

Further reading
Information on RNNs: https:/ / www.tensorflow. org/ tutorials/ recurrent

More on embedding: https:/ / www. tensorflow. org/ programmers_ guide/
embedding

https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/tutorials/recurrent
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding
https://www.tensorflow.org/programmers_guide/embedding

17
Quantum Computers That

Think
IBM has begun to build quantum computers for research and business purposes. In a few
years, quantum computing will become disruptive and will provide exponential computer
power.

This unique computer capacity in the history of humanity opens the doors to obtaining
results that would be impossible to reach with classical computers. Quantum computers in
themselves will not provide revolutionary algorithms. But quantum computer power will
take present-day algorithms beyond the limits of our imagination.

This chapter explains why quantum computers are superior to classical computers, what a
quantum bit is, how to use it, and how the Quantum Mind experiment can lead to a
quantum thinking machine. Quantum Mind is based on CRLMM, which I have been
successfully applying to many corporate sites. Quantum Mind is named MindX.

The following topics will be covered in this chapter:

Explaining why quantum computers are more powerful than other classical
computers
Defining what a quantum bit is
Bloch sphere
Quantum computing
PCA representation of a CRLMM
How to build a MindX, a thinking quantum computer

Quantum Computers That Think Chapter 17

[392]

How to read this chapter

Dive into X's mind through this video of this chapter, link in the next
section. A mind contains emotions, doubts, happiness, sadness, positive
thoughts, negative feelings, and more. Use the explanations on quantum
computing to imagine how powerful a personal mental representation
could become with CRLMM. Use the explanations on MindX
(representing a mind) to imagine how powerful and likable a chatbot or
any AI solution could be by combining quantum computing power with
personalized CRLMM models.

Technical requirements
You will need Python 3.6x 64-bit from https:/ /www. python. org/

Package and modules:

import os,cv2
import numpy as np
import matplotlib.pyplot as plt
import pickle
from PIL import Image
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector
tf.version

These programs will be used:

EMBEDDING_IMAGES.py with the data directory and
feature_vectors_400_samples.txt

Tensorboard_reader.py

Check out the following video to see the code in action:

https://goo.gl/qi4NCp

https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://www.python.org/
https://goo.gl/qi4NCp
https://goo.gl/qi4NCp
https://goo.gl/qi4NCp
https://goo.gl/qi4NCp
https://goo.gl/qi4NCp
https://goo.gl/qi4NCp
https://goo.gl/qi4NCp
https://goo.gl/qi4NCp
https://goo.gl/qi4NCp

Quantum Computers That Think Chapter 17

[393]

The rising power of quantum computers
To understand how to build MindX, a thinking quantum computer, this section describes:

Why quantum computers are faster
What a qubit is
How it is measured (its position)
How to create a quantum score (program) with quantum gates
How to run the quantum score and use its results for a cognitive NLP chatbot

The goal of this chapter is not to go into the details of quantum computing
but to teach you enough how to build a thinking quantum computer.

Quantum computer speed
A standard computer bit has a 0 or a 1 state. A classical computer will manage 0 or 1, as the
system chooses, but it remains limited to choosing 1 or (XOR) 0. It cannot manage both
states at the same time.

A quantum computer is not constrained by an XOR state. It is an AND state. It can manage
0 and 1 at the same time until it is measured. A quantum state is unknown until observed,
so a quantum program can use 0 and 1 at the same time. Once observed, the qubit will take
a value of 0 or 1 because of the physical instability of a quantum state.

Just observing a quantum state makes the state break down. In quantum
computing, this is called decoherence. It is not magic as some sci-fi hype
suggests. Qubits are unstable. When observed, the quantum state breaks
down.

This means quantum computing is memoryless once it is measured. Storage does not exist
in a quantum computer. The input is made by a classical computer and the output goes
back to a classical computer to be stored through the following process:

A Classical computer provides an input
A Quantum Computer processes the input and produces an output
A Classical computer interprets the output

Quantum Computers That Think Chapter 17

[394]

That being said, the computing power of a quantum computer fully justifies this
architectural constraint.

Until a qubit is observed, it can have a 0 or 1 state or a probability in between, such as 0.1,
0.7, or 0.9.

Observing the situation is called measuring the state. When measured, only 0 or (XOR) 1
will become the result.

Until the state is measured, a large number of probabilities are possible. If a qubit is added
to the system, we now have two qubits and four elementary combinations all at the same
time.

Unlike standard computer logic, all four of the states can be used to compute algorithms at
the same time in a parallel process. The volume of possible states of a given algorithm will
thus expand with the number of qubits involved. An estimation of the volume of states can
be made with the following number, in which q is the number of qubits:

2q

Looking at the tiny equation does not seem awesome at all. Now, let's see what it looks like
in a loop that runs up to 100 qubits:

import numpy as np
for q in range(101):
 v=(2**q)
 print("Size of nb to describe",q," qubits:","{:,}".format(v))

The program does not appear fearsome either. However, the following output is awesome:

Size of nb to describe 0 qubits: 1
Size of nb to describe 1 qubits: 2
Size of nb to describe 2 qubits: 4
Size of nb to describe 3 qubits: 8
Size of nb to describe 4 qubits: 16
Size of nb to describe 5 qubits: 32
Size of nb to describe 6 qubits: 64
...
Size of nb to describe 10 qubits: 1,024
...
Size of nb to describe 50 qubits: 1,125,899,906,842,624
...
Size of nb to describe 97 qubits: 158,456,325,028,528,675,187,087,900,672
Size of nb to describe 98 qubits: 316,912,650,057,057,350,374,175,801,344
Size of nb to describe 99 qubits: 633,825,300,114,114,700,748,351,602,688

Quantum Computers That Think Chapter 17

[395]

Size of nb to describe 100 qubits:
1,267,650,600,228,229,401,496,703,205,376

Presently, big data is often calculated in petabytes. A petabyte=1015 or about 250 bytes.

Facebook stores data for 2 billion-plus accounts. Imagine Facebook reaches 500 petabytes in
the near future. Let's see what 500 petabytes approximately add up to in the following
code:

print("Facebook in the near future:")
s=(2**50)*500
print("{:,}".format(v))

The output is quite surprising because it is about the size of data of a 100-qubit quantum
computer can compute in one run:

Facebook in the near future:
1,267,650,600,228,229,401,496,703,205,376

This means that a single quantum computer with 100 qubits can run a calculation of the
size of all data that 2,000,000,000+ Facebook accounts might represent in the near future.

The quantum computer will not actually contain that volume of data at all, but it shows
that it can produce a calculation with that volume of computation information.

More importantly, this also means that a single quantum computer can run a mind-dataset
of a single mind (see the next section) and calculate associations. This thinking process can
generate an exponential volume of connections.

A classical n-bit computer manages n-bits whereas a quantum computer will manage 2n bits
or 2q bits.

Compared to quantum computers 2q exponential power, soon classical computers will seem
like relics of the past for scientific calculations. Classical computers will still be in use. But
quantum computers will be the tools to explore the world beyond the present limits of
artificial intelligence.

Visualize all the AI solutions you saw in this book. They will already seem
to have some dust of the past on them once you get your hands on
quantum computing.

Quantum computers will beat any other computer in many fields in the years to come. In
one parallel computation, a quantum will do in one run what would take years for classical
computers to calculate.

Quantum Computers That Think Chapter 17

[396]

Now think about what a network of many quantum computers can do!

Often, we try to compare large volumes with the number of stars in the universe. And we
say, That's more than the number of stars in our universe. We must now look in the opposite
direction.

The lesson is clear: The future lies in nano models. Quantum computing represents both a
challenge and an opportunity.

Defining a qubit
A qubit, a quantum bit, has a physical counterpart. For example, a quantum state can be
encoded in oscillating currents with a superconductor loops. Google and IBM have
experimented with this approach. Another way is to encode a qubit in an ion trapped in an
electromagnetic field in a vacuum trap.

Photons, electrons, the state of light, and other technologies have emerged. Whatever the
approach, calculations with 50+ qubit quantum computers will outrun classical
supercomputers.

The competition is fierce because the market will rapidly become huge. Get ready now to
face the disruption that's coming!

Representing a qubit
The mathematical representation of a qubit is:

|0〉 for a 0 value
|1〉 for a 1 value
α|0〉 where alpha is a probability parameter
β|1〉 where beta is a probability parameter

These brackets are called bracket or bra-ket notation.

This linear representation is called superposition. In itself, it explains most of the power of
quantum computing.

Quantum Computers That Think Chapter 17

[397]

The superposition of 0 and 1 in a quantum state can thus be expressed as follows in kets
such as |1> and not bras such as in <1|:

The alpha and beta probabilities look like weights and the total probabilities of those
probable states of qubit must add up to 1. We use partition functions, softmax, and other
techniques to make sure to keep the sum of probabilities equal to 1. This is no surprise since
computers geek like us designed the way to program quantum computers. Translated into
mathematics, this means that the probabilities of α and β must add up to 1. In the case of
qubit probabilities, the values are squared, leading to the following constraint:

To describe the probable state of a qubit, we thus need three numbers: the
0 and 1 possible states and a number to determine the value of the
probabilities (the other is implicit since the total must add up to 1).

Since qubits interact in their respective states, an interaction is described as an
entanglement. An entanglement designates at least two interacting qubits. They cannot be
described without taking all the states of all the qubits into account.

This has been reproduced physically, which means that this entanglement seems strange
because their quantum entanglement (relation) can occur at a distance. One qubit can
influence a qubit that is physically far away.

Albert Einstein called entanglement "spooky action at a distance."

The position of a qubit
One of the main ways to represent the state of a qubit is a Bloch's sphere. It shows how a
qubit spins and can be used to describe qubit states. The following section refreshes some
properties of a circle.

Quantum Computers That Think Chapter 17

[398]

Radians, degrees, and rotations
The radius is the distance between the center of a circle and its circumference, as shown in
the following diagram:

Radius of a circle

The radius of a circle is half of the circle's diameter. The relation between the radius r and
the circumference C is (where π=3.14):

If the length of the radius is wrapped around the circumference of a circle, that arc forms a
radian, as shown in the following diagram:

A radian

The angle formed by a radian is equal to about 57.29° (degrees).

Quantum Computers That Think Chapter 17

[399]

The properties of the radian can be used for rotations:

3,14 x 57,29° = about 180°
thus π radians = 180

Rotations are often described by radians expressed in π, as displayed in the following table:

Degrees Radians

30° π/6

45° π/4

60° π/3

90° π/2

180° π

270° 3π/2

360° 2π

Bloch sphere
The radian table shown just now is a practical way to describe rotations. A Bloch sphere, as
shown in the following figure, provides a visual representation of the position and rotation
of a qubit:

Bloch sphere

Quantum Computers That Think Chapter 17

[400]

The North and South pole (polar coordinates) represent the basic states of a qubit:

A qubit can take any value on the sphere.

Composing a quantum score
Composing a quantum score consists of positioning gates on a stave (or circuit) and adding
a measurement. The input comes from a classical computer. After the measurement phase,
the output goes back to a classical computer. The reason is that quantum computers have
no memory and thus cannot store their intermediate states because of their instability.

This section uses Quirk, a very educative quantum circuit simulator, to present quantum
gates and a quantum composer.

Quantum gates with Quirk
The qubits are represented by the lines, and they start on the left, as shown in following
quantum gate programming interface:

Quantum gate programming interface

Quantum Computers That Think Chapter 17

[401]

The gates are logic gates that will transform the state of the qubits:

Not gate:

A not gate will transform a ket-zero |0〉 into a ket-one |1〉. It will transform a ket-one |1〉
into a ket-zero|0〉.

In circuit description, on is the ket-one state and off is the ket-zero state, as shown in the
following quantum score:

Circuit description of quantum score

You can see that:

A not gate symbol is a circle with a vertical and horizontal line inside it
The on status means that the state is |1〉
The Bloch Sphere representation is at π (starting from the top of the Bloch
sphere) as it should

H gate

An H gate, or Hadamard Gate will perform the following transformation:

Hadamard Gate transformation

Quantum Computers That Think Chapter 17

[402]

The following 50% chance will be displayed in a rectangle and the position on the Bloch
sphere as well:

50% chance in rectangle and Bloch sphere

The fundamental role of a gate is to turn the qubits on a Bloch sphere and produce a
probable condition if measured. There are many possible gates to be explored and used, as
shown in this design menu diagram:

Gates design menu

These gates are more than enough to build many algorithms.

A quantum computer score with Quirk
Building a quantum score (or circuit) with Quirk means the following:

Dragging and dropping gates that will make a qubit turn in a specific direction
and produce probable outcomes
Adding another qubit, doing the same, and so on
Being able to perform an intermediate measurement, although this is impossible
for a real physical quantum computer (the observations make the system
collapse)

Quantum Computers That Think Chapter 17

[403]

A score is represented as follows, for example:

Quantum computer score representation

There are two qubits with a gate on each line to start. Then the intermediate result is
shown, making the simulator very educational. Then two more gates are added. Finally, the
following measurement probe is added at the end:

Measurement probe

Once the measurement is made, the final result is displayed on the right of the
measurement symbols.

Quantum Computers That Think Chapter 17

[404]

A quantum computer score with IBM Q
IBM Q provides a cloud platform to run a real physical quantum computer.

Create a free account and access the IBM quantum computing composer. Just as with
Quirk, quantum gates are dragged on the following score, as shown in this diagram:

Quantum gates dragged

The score can be run on a simulator like Quirk or a real quantum computer, as shown in
this interface diagram:

Score interface

Click on Simulate which will runs a simulator.

Run launches a calculation on IBM's physical quantum computer. It is an
exhilarating experience! The future is at the tip of your fingers.

Quantum Computers That Think Chapter 17

[405]

The following output is interesting. It is a bit different from Quirk for the same score, but
the probabilities add up to 1 as expected:

Quantum computer score output

IBM also possesses a source code version (QASM) of the score, as shown in the following
code:

include "qelib1.inc";
qreg q[5];
creg c[5];
h q[0];
z q[1];
y q[0];
x q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

Quantum Computers That Think Chapter 17

[406]

This language is an Open Quantum Assembly Language. It can be written in an editor like
any other language on IBM Q's platform. A development kit can also be downloaded, and
the APIs are functional.

All of this being said, let's find out how quantum computing can boost an AI project. It is
now time to define the thinking quantum computer project.

A thinking quantum computer
A thinking quantum computer is not a reproduction of brain function but a representation
of the mind of a person. Neuroscientists are making progress on using machine learning to
understand the brain. But artificial intelligence mostly uses algorithms that simulate our
way of thinking, not our brain's functions.

The endeavor of the Quantum MindX experiment is to build a personal mind named
MindX, with memories of past events, conversations, chats, photographies, and more as
described in Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots.

This section describes how to build MindX, a thinking computer. It is not the project itself,
which would be beyond the scope of the book. I've been doing research on this subject for
many years. The power of quantum computation will no doubt boost research in this field.

All the diagram in this section are part of the datasets used by the programs
provided with the book (see Technical requirements section). You can also view
the video showing the program running.

Representing our mind's concepts
A conceptual representation learning meta model (CRLMM) can be implemented with a
quantum computer.

The input consists of encoding a state of mind of a PCA CRLMM representation. The
CRLMM representation is not a general dictionary or encyclopedia dataset but a mind-
dataset of actual personal data that is collected, classified, and transformed into a PCA 3D
view as described in Chapter 16, Improving the Emotional Intelligence of Chatbots.

Quantum Computers That Think Chapter 17

[407]

The following diagram is an extraction of some of the words and concepts that the mind of
person X picked up by reading this book:

Extraction of words

This person's mind added to other information gathered in Chapter 16, Improve the
Emotional Intelligence Deficiencies of Chatbots will now be in the mind of MindX.

A frame of MindX's PCA state will be submitted to a quantum computer. The quantum
computer will then think as humans do, by associating concepts, mental images, sounds,
sensations, feelings, and everything that makes up our mind. The result will be decoded
into coordinates of the PCA CRLMM representation of the machine's mind and will
produce a sentence.

The sequence is thus a classical computer input, a quantum computer calculation, and a
classical computer interpretation of the output.

The input and outputs can be as follows:

Connected to a chatbot
Used for CRLMM decision-making purposes as seen in previous chapters

Quantum Computers That Think Chapter 17

[408]

Expanding MindX's conceptual representations
MindX's mind dataset will grow continuously if implemented beyond this research
experiment. It will have sensors to process body temperature for emotion classification,
facial recognition for expression detection, body language detectors, and more. All of this
technology is already available.

EMBEDDING_IMAGES.py contains one of the first methods of enriching the mind-dataset of
MindX to obtain concepts. A version was presented in Chapter 16, Improve the Emotional
Intelligence Deficiencies of Chatbots. This version was built with a larger mind-dataset.

The following is a screenshot of the PCA TensorBoard Projector 3D representation of a
mind:

PCA TensorBoard Projector 3D representation of a mind

A sample dataset of concepts based on personal experience, and not general data, has been
created. Some samples were generated by CRLMM CNN classification (see previous
chapters); some were created for this sample. But all can be generated automatically using
the program in Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots.

Quantum Computers That Think Chapter 17

[409]

Concepts in the mind-dataset of MindX
For the quantum MindX experiment, some personal concepts of MindX have been created.

Positive thinking
To think, a mind must have memories and personal ideas. The following screenshot comes
from the sprite generated by EMBEDDING_IMAGES.py (see the following section). A sprite is
an image that contains thumbnails: small images of the dataset. Once loaded into
TensorBoard Projector with their features, they will be represented in a 3D mind projection
as displayed in this diagram:

3D mind projection

Quantum Computers That Think Chapter 17

[410]

As you can see, the following is true about MindX:

It has superposed words and images, associating them to form memories. A field
of flowers has become a field of love, forming a positive memory.
It has memorized parking space available, picked up in this book as something very
positive as well. A person who has been looking for a parking space for some
time in a big city feels blessed to have found an available space.
It has associated motivation with positive words and put the face of a colleague
on the concept.
It will continuously enrich the mind-dataset through everyday experience and
memories and store the decisions (good or bad) made.

Negative thinking
To think, a mind must accept negative thinking and have feelings. A positive feeling is felt
by contrast with a negative feeling. A positive thought is felt by contrast to a negative
feeling.

Empathy is based on the ability to feel both positive and negative feelings. Otherwise, the
mind is only half of a mind.

As you can see MindX does not pretend to be 100% perfect and positive; 100% efficiency
may be good for optimizing like a machine but it certainly does not exist in humans. MindX
has weaknesses and it knows this. This is what makes MindX a powerful thinking and
feeling entity.

Quantum Computers That Think Chapter 17

[411]

MindX is nearly human, so it can have negative thoughts. The following screenshot of the
PCA Tensorbard Projection of MindX shows negative feelings:

PCA Tensorbard Projection of MindX

MindX, as in the positive PCA area:

Has doubts.
Can think better with this very useful dimension (avoiding a mistake, being
careful, self-interrogation, or reconsidering an opinion on another person).
MindX will be more sensitive and sensible.
Has, on the left of doubts, cracks appearing close by in the gap area. Doubts
images are near the fields of love positive thoughts appear by contrast.
Associating different types of concepts is what makes a mind deep.

In MindX, as in humans, doubts are often not flaws but ways of
reconsidering a decision more deeply.

Quantum Computers That Think Chapter 17

[412]

Gaps
Gaps constitute a major concept in a mind's way of thinking—something missing, the
concept of insufficient, a gap between people, a gap in factory goals, and many more
concepts (see Chapter 11, Conceptual Representation Learning).

The following image is a TensorBoard screenshot of the gap features of MindX's
representation of its environment:

Gap features of MindX's representation

MindX has associated gaps with cracks, abstract holes in the sky, holes in rocks, "mind the
gap" messages in cities, and cracks in the earth.

Distances
MindX has acquired experience and dreams of distances.

Quantum Computers That Think Chapter 17

[413]

The following image is a TensorBoard screenshot of MindX's representation of distances:

MindX's representation of distance

MindX has memories of "freedom roads," and sea travel. It has associated horizons, hope, and
love to distances and travel. MindX has MDP graphs in mind and much more.

The embedding program
EMBEDDING_IMAGES.py has started the MindX Quantum experiment with four main
classes and 4,096 dimensions. This dataset can be automatically enhanced using the
solutions described in Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots.

The human brain has a maximum of around 100,000,000,000 neurons (100 billion), which is
a small number compared to what we saw a quantum computer could manage in one
calculation.

Quantum Computers That Think Chapter 17

[414]

Of course, human neurons combine and do a lot more than just being a mass of
neurons. But this means that expanding the mind-dataset of MindX beyond any human
being's capacity is possible today with the right parameters. MindX could be represented
by an endless number of separate PCA feature sets connected in the largest personal mind
that ever existed. The following code in Python starts by loading the four classes of data
described before:

img_data=[]
for dataset in data_dir_list:
img_list=os.listdir(data_path+'/'+ dataset)
print ('Loaded the images of dataset-'+'{}\n'.format(dataset))
for img in img_list:
input_img=cv2.imread(data_path + '/'+ dataset + '/'+ img)
input_img_resize = cv2.resize(input_img, (64,64))
img_data.append(input_img_resize)

A MindX project requires many more classes and subsets. You can certainly
enhance this project and build a powerful chatbot by assembling the
programs in this book and running a quantum score.

The following code describes how the feature vectors are now loaded. See Chapter
16, Improve the Emotional Intelligence Deficiencies of Chatbots, for details on how to produce
feature vectors in the PCA section:

feature_vectors = np.loadtxt('feature_vectors_400_samples.txt')
print ("feature_vector",feature_vectors)
print ("feature_vectors_shape:",feature_vectors.shape)
print ("num of images:",feature_vectors.shape[0])
print ("size of individual feature vector:",feature_vectors.shape[1])

The metadata files are written with the following few lines:

...
metadata_file.write('Class\tName\n')
k=100 # num of samples in each class
j=0
#for i in range(210):
metadata_file.write('%06d\t%s\n' % (i, names[y[i]]))
for i in range(num_of_samples):
c = names[y[i]]

Quantum Computers That Think Chapter 17

[415]

if i%k==0:
j=j+1
metadata_file.write('{}\t{}\n'.format(j,c))
#metadata_file.write('%06d\t%s\n' % (j, c))
metadata_file.close()
...
def images_to_sprite(data):
if len(data.shape) == 3:
data = np.tile(data[...,np.newaxis], (1,1,1,3))
data = data.astype(np.float32)
min = np.min(data.reshape...
...
data = data.reshape((n * data.shape[1], n * data.shape[3]) +
data.shape[4:])
data = (data * 255).astype(np.uint8)
return data
...

The sprite image is created. It contains small thumbnail images of the dataset for
TensorBoard Projector, displaying purposes as shown in the following code:

def images_to_sprite(data):
if len(data.shape) == 3:
data = np.tile(data[...,np.newaxis], (1,1,1,3))
data = data.astype(np.float32)
min = np.min(data.reshape...
...
data = data.reshape((n * data.shape[1], n * data.shape[3]) +
data.shape[4:])
data = (data * 255).astype(np.uint8)
return data
...

The metadata class labels are saved along with the necessary files for TensorBoard Projector
(see the source code).

Now Tensorboard_reader.py is launched, and TensorBoard Projector will show the
personal mind-dataset of MindX.

MindX is now ready to think with a quantum computer.

Quantum Computers That Think Chapter 17

[416]

The MindX experiment
The aim of the Quantum MindX experiment is to build a mind and let it think with the
power of a quantum computer. This section will show how to run a 16-qubit mind.

The size of numbers needed to describe a 16-qubit quantum simulation is 65,536.

The section first describes how to do the following:

Prepare the data
Create and run a quantum score
Use the output

Preparing the data
To prepare data for higher dimension calculations, I have been using a
concept encoding method for corporate projects for 30+ years to provide embedded data to
the algorithms I developed. This guarantees high-level abstraction to solve problems. It is a
very profitable way to implement transfer learning and domain learning. This way, you can
apply the same model to many different fields.

The method consists of embedding data with the methods described in this book. The goal
always remains the same—to transform the data points into higher dimensions to visualize
features.

For quantum computing, the method remains the same for the MindX experiment.

Transformation Functions – the situation function

The mind dataset that has been built in the past chapters through CRLMM has undergone
PCA (Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots) transformation.
Variances, covariances, covariance matrices, eigenvalues, eigenvectors, and then feature
vectors were applied to the data.

Now two functions need to be applied before creating and running a score: a situation
function and a quantum transformation function.

Quantum Computers That Think Chapter 17

[417]

The situation function consists of building a vector of features in PCA dimensions. In
Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots, the chatbot was able to
use person X's mind-dataset to suggest a movie. In this chapter, MindX now is that person.
This chatbot has a nascent personal mind, not a general mind that can recognize, classify,
and predict like a machine. MindX has a mind that is biased by its way of thinking like
humans. MindX has an exceptionally open mind to adapt to everyone, which gives it
empathy.

MindX can doubt. Thus it can learn better than dogmatic machines.

A situation function will create a situation matrix for a movie suggestion by the MindX bot
that will communicate with consumers. In a movie suggestion situation by the MindX bot,
for example, it could be something as follows for 16 qubits:

Qubit Concept Image Initial polarity

1 cities parking 0.146

2 darkness dark forest 0.5

3 nostalgia autumn leaves 0.5

4 worrying dark background 0.146

5 job sad face 0.5
…

15 consider movie "Lost" 0.38

16 decision to suggest"Lost" 0.0

MindX is not analyzing person X anymore. It has now loaded an empathy matrix from its
mind-dataset that contains the actual images of the dataset used in this chapter and
represented in PCA TensorBoard Projector. MindX loads its mind plus the mind of another
person.

Empathy colors your thoughts and feelings with the thoughts and feelings of
another person.

Quantum Computers That Think Chapter 17

[418]

The 16-qubit matrix shown just now contains four columns:

Qubit: The line for this qubit on the quantum composer
Concept: The concept loaded in MindX's situation dataset
Image: The actual image in the dataset
Initial polarity: The sentiment analysis of MindX's profile (see Chapter 16,
Improve the Emotional Intelligence Deficiencies of Chatbots)

The first lines (1 to 5) show that MindX has perceived the person X as a bit sad and
disappointed. The last two lines(15 and 16) show that MindX thinks that maybe the movie
Lost would please person X.

Before suggesting the movie named Lost, MindX needs to think about it. For the moment,
MindX seems reluctant to suggest the movie Lost.

This movie example is for explaining how to create a thinking, empathetic
chatbot. This approach can be applied to other commercial market
segments or any situation in which a chatbot is required to think beyond
preset answers.

Transformation functions – the quantum function
The situation function has produced a qubit line number with labels (concepts and images).
Each line also possesses a sentiment analysis polarity expressed in normalized values from
0 to 1 in probabilistic format. Negative is close to 0, positive close to 1, and the intermediate
values give a more detailed approximation. 0.4 to 0.6 is a turning point.

This first transformation into another dimension is the first step to initialize quantum
transformation function. The quantum transformation function consists in initializing the
first column of all 16 qubits with a quantum gate.

Just like datasets were transformed into principal component features, the polarity
transformation function enables the quantum transformation function to bring the dataset
into a quantum universe.

Quantum Computers That Think Chapter 17

[419]

The function will automatically find the quantum gates which represent the normalized
sentiment analysis polarity of the data points of the following situation matrix:

Initial polarity Quantum gate

0.146 X1/4

0.5 X1/2

0.5 X1/2

0.146 X1/4

0.5 X1/2

..

0.38 X1/8

0.0 Z1/8

The situation matrix and its concepts have now been transformed into a quantum
dimension, in which the data status can be traced throughout the creation of the quantum
score.

Creating and running the score
A thought process of MindX is described in a quantum score. There are two ways to build
this score :

Manually, just like a musician writing a music score. This requires thinking about
the previous logic gate and the effect of the next one, taking a decision process
into account. It is like writing any artificial intelligence program.
Automatically, by building a function that reads a rule base of MindX's way of
thinking and applies the quantum gates through that rule base.

In any case, it requires writing an algorithm. This algorithm is a decision-making algorithm
that takes emotions into account. Doubt, for example, is what keeps many humans from
making wrong decisions. Too much doubt, for example, will make a person back out from
that situation.

Here is the quantum transcription of such an algorithm that takes MindX's concepts into
account and represents how they interact. This requires very precise thinking and cognitive
science programming.

Quantum Computers That Think Chapter 17

[420]

The following is an experimental quantum score I built with Quirk:

Quantum score with Quirk

Once the quantum score has been run and the measurement made, the green rectangles on
the right provide the output.

Using the output
The output of the quantum score is now added as a column to the situation matrix. MindX
has now attained the right to be a cognitive NLP chatbot. MindX has proven its cognitive
abilities.

Quantum Computers That Think Chapter 17

[421]

Qubit Concept Image
Initial Normalized
Polarity expressed in
quantum gate form

Quantum output
directly interpreted as
sentiment analysis
polarity

1 cities parking 0.146 0.677

2 darkness dark forest 0.5 0.691

3 nostalgia autumn leaves 0.5 0.5

4 worrying dark background 0.146 0.48

5 job sad face 0.5 0.36
…

15 consider movie "Lost" 0.38 0.82

16 decision to suggest"Lost" 0.0 0.75

MindX has given a 65,536 quantum state description of its thoughts about suggesting a
given movie to person X. Lines 15 and 16 show that the normalized polarity value has risen
over 0.5 to a positive feeling about the movie.

The reasoning is that the first lines show that MindX feels person X's doubts about life at
that moment:

That person X will identify to the "Lost" concept
The movie has a happy ending (MindX knows that through the features of the
movie)
That person X's spirits will be most probably lifted after watching the movie

IBM Watson and scripts
With that output, the program can activate an IBM Watson movie-choice dialog created by
the company who wants to optimize marketing chatbots as shown in Chapter 15, Cognitive
NLP Chatbots.

The dialog in Chapter 16, Improve the Emotional Intelligence Deficiencies of Chatbots, between
MindX and person X could be enhanced to something such as this:

MindX: I've noticed you have been scrolling to find a movie on our website. Can
I help you?"
PersonX: Why not?
MindX: Well, feel some doubts myself about things right now.

Quantum Computers That Think Chapter 17

[422]

PersonX: What???
MindX: Oh, I forgot to introduce myself. I'm MindX a Quantum Mind program. I
can think and feel. I'm not just about statistics and predictions.
PersonX: Wow!
MindX: Anyway, I was saying that I have some doubts myself and a movie
called 'Lost' reflects my frame of mind. What do you think?
PersonX: "Why would a movie like that (lines 15 and 16 of the situation matrix)
be good for me?"
MindX: Mmmm. Let me think a minute... (the quantum score runs)
MindX: Ok. (the quantum score is over)
MindX: I thought about it. Ok. I feel doubts today also, but the movie is all about
people that are Lost and trying to find there way in life. I can't tell you more, but
it looks exciting!. Do you see what I mean?
PersonX: I sure do! But first, tell me more about you please!
MindX:the rest of the IBM Watson dialog + AI Scripts + Quantum thinking
scores...

Summary
Quantum computers have opened the door to scientific experiments that could never have
been carried out with classical computers. Within a few years, quantum computers will
have become mainstream, unavoidable, and a key asset for businesses and research labs.
The race has begun to conquer the market.

CRLMM applied to quantum computers could make MindX one of the most powerful
thinking minds on earth, human or machine.

With an unlimited mind-dataset and a 2q quantum computer starting at 250, a 50-qubit
machine, MindX could gain the thinking power and experience of a human who would
have lived 1,000 years. MindX's thinking power and an exponential amount of real-time
memory of past experiences, loaded through transformation functions, could help solve
many medical, logistic, and other decision-making problems.

Quantum thinking has just begun to change the perception of the world. Then, DNA-based
computers will appear with new perspectives. Conceptual AI models such as CRLMM will
no doubt be the starting point of the next generation of AI solutions. These CRLMM models
will be much more powerful because they will be gifted with empathy and complex minds.

Quantum Computers That Think Chapter 17

[423]

Artificial intelligence has only begun its long journey into our lives. Always
trust innovations. Never trust a solution that solves a problem without
opening the door to a universe of questions and ideas!

Questions
Beyond the hype, no quantum computer exists? (Yes | No)1.
A quantum computer can store data? (Yes | No)2.
The effect of quantum gates on qubits can be viewed with a Bloch sphere? (Yes |3.
No)
A mind that thinks with past experiences, images, words, and other bits of every4.
day like stored memory will find deeper solutions to problems that mathematics
alone cannot solve? (Yes | No)
A quantum computer will solve medical research problems that cannot be solved5.
today? (Yes | No)
A quantum computer can solve mathematical problems exponentially faster than6.
classical computers? (Yes | No)
Classical computers will soon disappear and smartphone processors also? (Yes |7.
No)
A quantum score cannot be written in source code format but only with a visual8.
interface? (Yes | No)
Quantum simulators can run as fast as quantum computers? (Yes | No)9.
Quantum computers produce intermediate results when they are running10.
calculations? (Yes | No)

Further reading
Explore IBM Q and discover how you can implement quantum scores:

https://www.research. ibm. com/ ibm- q/

Use Quirk, an intuitive quantum score designing tool:

http://algassert. com/ 2016/ 05/ 22/ quirk. html

https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html
http://algassert.com/2016/05/22/quirk.html

Answers to the Questions

Chapter 1 – Become an Adaptive Thinker
1. Is reinforcement learning memoryless? (Yes | No)

The answer is yes. Reinforcement learning is memoryless. The agent calculates the
next state without looking into the past. This is significantly different to humans.
Humans rely heavily on memory. A CPU-based reinforcement learning system finds
solutions without experience. Human intelligence merely proves that intelligence can
solve a problem. No more, no less. An adaptive thinker can then imagine new forms of
machine intelligence.

2. Does reinforcement learning use stochastic (random) functions? (Yes | No)

The answer is yes. In the particular Markov Decision Process model, the choices are
random. In just two questions, you can see that the Bellman equation is memoryless
and makes random decisions. No human reasons like that. Being an adaptive thinker
is a leap of faith. You will have to leave who you were behind and begin to think in
terms of equations.

3. Is the Markov Decision Process based on a rule base?

The answer is no. Human rule base experience is useless in this process. Furthermore,
the Markov Decision Process provides efficient alternatives to long consulting times
with future users that cannot clearly express their problem.

4. Is the Q function based on the Markov Decision Process? (Yes | No)

The answer is yes. The use of the expression "Q" appeared around the time the
Bellman equation, based on the Markov Decision Process, came into fashion. It is more
trendy to say you are using a Q function than to speak about Bellman, who put all of
this together in 1957. The truth is that Andrey Markov was Russian and applied this
method in 1913 using a dataset of 20,000 letters to predict future use of letters in a
novel. He then extended that to a dataset of 100,000 letters. This means that the theory
was there 100 years ago. Q fits our new world of impersonal and powerful CPUs.

Answers to the Questions

[425]

5. Is mathematics essential to artificial intelligence? (Yes | No)

The answer is yes. If you master the basics of linear algebra and probability, you will
be on top of all the technology that is coming. It is worth spending a few months on
the subject in the evening or taking a MOOC. Otherwise, you will depend on others to
explain things to you.

6. Can the Bellman-MDP process in this chapter apply to many problems? (Yes | No)

The answer is yes. You can use this for robotics, market analysis, IoT, linguistics, and
scores of other problems.

7. Is it impossible for a machine learning program to create another program by itself? (Yes
| No)

The answer is no. It is not impossible. It has already been done by Google with
AutoML. Do not be surprised. Now that you have become an adaptive thinker and
know that these systems rely on equations, not humans, you can easily understand
that mathematical systems are not that difficult to reproduce.

8. Is a consultant required to enter business rules in a reinforcement learning program? (Yes
| No)

The answer is no. It is only an option. Reinforcement learning in the MDP process is
memoryless and random. Consultants are there to manage, explain, and train in these
projects.

9. Is reinforcement learning supervised or unsupervised? (Supervised | Unsupervised)

The answer is unsupervised. The whole point is to learn from unlabeled data. If the
data is labeled, then we enter the world of supervised learning; that will be searching
for patterns and learning them. At this point, you can easily see you are at sea in an
adventure—a memoryless, random, and unlabeled world for you to discover.

10. Can Q Learning run without a reward matrix? (Yes | No)

The answer is no. A smart developer could always find a way around this, of course.
The system requires a starting point. You will see in the second chapter that it is quite
a task to find the right reward matrix in real-life projects.

Answers to the Questions

[426]

Chapter 2 – Think like a Machine
1. The concept of using an artificial neuron was discovered in 1990. (Yes | No)

The answer is no. Warren McCulloch and Walter Pitts invented the first neuron and
published a paper in 1943. Legend has it that at age 12 years in 1935, Walter Pitts, a
poor child living in a bad neighborhood, was chased by bullies and sought refuge in a
library. There he discovered Principia Mathematica by Bertrand Russell and Alfred
Whitehead. Anyway, not only did he find mistakes in the reasoning, but also he sent a
letter to Bertrand Russell! From then on, Walter was noted for his genius in
mathematics. With Waren McCulloch, another genius, they invented the first neuron.
It seems simple. But it's the result of sleepless nights. Just as the invention of the wheel
appears simple, nothing better has been found to this day. This concept of a the neuron
is the wheel of artificial intelligence.

2. Does a McCulloch-Pitts neuron require a threshold? (Yes | No)

The answer is yes. Adding up weights does not mean much if you do not have
something to measure the value. It took months of work for McCulloch and Pitt to put
this together. At first, time was in the equation, just like it is in our brain. But then, like
Joseph Fourier (1768-1830), they found cycles that repeated themselves—periods that
did not require much more than that neuron.

3. A logistic sigmoid activation function makes the sum of the weights larger. (Yes | No)

The answer is no. The whole point is to reduce the sums when necessary to have
comparable numbers to work with.

4. A McCulloch-Pitts neuron sums the weights of its inputs. (Yes | No)

The answer is yes. It's only when you sum the weights that they make sense.

5. A logistic sigmoid function is a log10 operation? (Yes | No)

The answer is no. The sigmoid function is based on Euler's number, e, a constant that is
equal to 2.71828. This number produces a natural logarithm. Leonhard Euler
(1707-1783) discovered this in the 18th century with a quill—no scientific calculator or
computer! Did you notice that the main mathematical functions used in artificial
intelligence run far back in history? This aspect of the hype around what we think we
have found now but has existed for decades, and sometimes centuries, will be dealt
with in the following chapters.

Answers to the Questions

[427]

6. A Logistic Softmax is not necessary if a logistic sigmoid function is applied to a vector.
(Yes | No)

The answer is no. Calculating the sum of several numbers of a vector and then
dividing each number by that sum gives a view of the proportions involved. It is a
precious tool to keep in mind.

7. A probability is a value between -1 and 1. (Yes | No)

The answer is no. Probabilities lie between 0 and 1.

Chapter 3 – Apply Machine Thinking to a
Human Problem
1. Can a human beat a chess engine? (Yes | No)

The answer is no. Today, the highest level chess tournaments are not between humans
but between chess engines. Each chess engine software editor prepares for these
competitions by making their algorithms faster and requiring less CPU. In fact today, a
top chess engine running on a smartphone can beat humans. In human-to-human
chess competitions, the level of chess has reached very high limits of complexity.
Humans now mostly train against machines.

2. Humans can estimate decisions better than machines with intuition when it comes to
large volumes of data. (Yes | No)

The answer is no. The sheer CPU power of an average machine or even a smartphone
can generate better results than humans with the proper algorithms.

3. Building a reinforcement learning program with a Q function is a feat in itself. Using the
results afterward is useless. (Yes | No)

The answer is no. While learning artificial intelligence, just verifying the results are
correct is enough. In real-life applications, the results are used in databases or as input
to other systems.

Answers to the Questions

[428]

4. Supervised learning Decision Tree functions can be used to verify that the result of the
unsupervised learning process will produce reliable, predictable results. (Yes | No)

The answer is yes. Decision Tree functions are not intelligent, but they are very
efficient in many cases. When large volumes are involved, Decision Tree functions can
be used to analyze the results of the machine learning process and contribute to a
prediction process.

5. The results of a reinforcement learning program can be used as input to a scheduling
system by providing priorities. (Yes | No)

The answer is yes. The output of reinforcement learning Q function can, in fact, be
injected as input into another Q function. Several results and be consolidated in phase
1 and become the reward matrix of a phase 2 reinforcement learning session.

6. Artificial intelligence software thinks like humans. (Yes | No)

The answer is yes and no. In early days, this was attempted with neuroscience-based
models. However, applying mathematical models is presently far more efficient.
Pretending otherwise at this point is hype. Who knows what will happen in future
research? But for the time being, deep learning, the main trend, is based on
mathematical functions.

Chapter 4 – Become an Unconventional
Innovator
1. Can the perceptron alone solve the XOR problem? (Yes | No)

The answer was no in 1969. A neural network, or some other mathematical process, is
necessary to solve this problem. For the record, this is a common problem for electric
circuits that function with "feedforward" electricity, and was solved long ago.

Answers to the Questions

[429]

2. Is the XOR function linearly separable? (Yes | No)

The answer is no if you use a single neuron and yes if you use a hidden layer with at
least two neurons. That is a major problem to address in deep learning. If you cannot
separate the features of a face, for example, in a picture, recognizing that face will
prove difficult. Imagine a picture with one half of the face in shadow and the other half
in bright sunlight. Since the eye and features of one half are in shadow, a poor deep
learning program might only capture half of the face, separating the face in the wrong
place with a poor edge detection function. Linear separability is thus a key aspect of
machine learning.

3. One of the main goals of layers in a neural network is classification. (Yes | No)

The answer is yes. Once the data is identifiable with a given neural network
architecture, predictions, and many other functions become possible. The key to deep
learning is to be able to transform data into pieces of information that will make sense.

4. Is deep learning the only way to classify data? (Yes | No)

The answer is no. You can classify data with an SQL query, artificial intelligence,
machine learning, and standard source code. Deep learning becomes vital when many
dimensions of classification are involved: first finding the edges of objects in a picture,
then forms, and then determining what the object represents. To do this with millions
of pictures is beyond the scope of standard programming or early AI and ML
programs.

5. A cost function shows the increase in the cost of neural network. (Yes | No)

The answer is no. A cost function determines how much the training costs you.
Running 100,000 epochs is more expensive than running 50,000 epochs. So at each
epoch, the cost of training (how far the system is from its goal) must be estimated.
Thus, a good cost function will decrease the cost of running a neural network.

6. Can simple arithmetic be enough to optimize a cost function? (Yes | No)

The answer is yes. As long as you know to what extent your cost function is increasing
or decreasing, anything that works is fine.

7. A feedforward network requires inputs, layers, and an output. (Yes | No)

The answer is yes. Without layers, there is no network.

Answers to the Questions

[430]

8. A feedforward network always requires training with backpropagation. (Yes | No)

The answer is often yes in changing environments.. Since the field is new, we tend to
think that once the training is done, the work is done. If the datasets are very stable in
a repetitive environment, such as recognizing the difference between various constant
products in a shop, warehouse or factory, then the neural network will do the
classification it is designed for. If new products are introduced, then training can be
initiated again.

9. In real-life applications, solutions are only found by respecting academic theory. (Yes |
No)

The answer is no. Without academic research, deep learning would not even exist.
Without universities, the ideas used would be so simple that they would never work
well. On the other hand, researchers need real-life feedback. If we find new ways of
doing things they recommended, we should publish them to help global research. It's a
two-way street.

Chapter 5 – Manage the Power of Machine
Learning and Deep Learning
1. TensorBoard is simply a nice displaying program. (Yes | No)

The answer is yes and no. Yes, TensorBoard is a friendly interface for visualizing a
dataflow graph. No, TensorBoard is not only nice but is also critical to designing the
architecture of a project even before the data feed aspect of the program is written. In
real-life projects, a good architecture shows that you can manage the power of ML/DL
programs.

2. Defining functions at the beginning of the source code is just like standard programs.
(Yes | No)

No. Seeing variables and arrays at the beginning of a TensorFlow program could lead
one to think that it is just a formality. However, these lines are in fact the real program,
the dataflow graph, the architecture.

3. TensorFlow is a library add-on to Python that provides some cool functions. (Yes | No)

The answer is no. It is a strategic tool for designing the dataflow graph of an
application.

Answers to the Questions

[431]

4. TensorBoard is not necessary to deploy machine learning and deep learning programs.
(Yes | No)

The answer is yes. TensorBoard refreshes every n seconds automatically (this can be
deactivated). When running large datasets during the training process, it is crucial to
see whether the cost function is going up or down. And even if it is going down,
converging to 0 or near 0, it is vital to see how fast the slope (gradient) is decreasing
(descent).

5. As long as we're technical experts, we don't have to worry about our environment. It will
adapt. (Yes | No)

The answer is no. Those days are over. Our environment decides whether our project
will survive or not. It is critical to developing not only code but also communication
skills to defend ongoing projects.

6. Presenting ML/DL projects doesn't change the architecture of a solution. (Yes | No)

The answer is no. If the presentation has been well defined and made to the right
people, the architecture can be tremendously improved by optimizing the datasets,
training phase, test phase, and expected results.

7. Managers don't need to understand the technical aspect of a solution as long as it works.
(Yes | No)

The answer is no. This is a myth. It works early in a project, or in a dream world where
projects never go wrong. But large projects always go wrong at some point because of
dataset problems, bugs, communication tensions, sick leave, vacations, budget
limitations, and scores of unexpected events. When that happens, communicating the
key points and reasons of every aspect of the problem becomes essential.

Chapter 6 – Don't Get Lost in Techniques,
Focus on Optimizing Your Solutions
1. Can a prototype be built with random data in corporate environments? (Yes | No)

The answer is yes and no. To start developing a prototype, using random data can
help make sure that the basic algorithm works as planned.

Answers to the Questions

[432]

However, once the prototype is advanced, it will be more reliable to use a well-
designed dataset. Then, once the training has been successfully accomplished, random
data can help again to see how your system behaves in all situations.

2. Do design matrices contain one example per matrix? (Yes | No)

The answer is no. A good design matrix contains one example in each row or each
column depending on the shape you want it to have. But be careful; a design matrix
that contains data that is too efficient might overfit. That means the learning algorithm
will be efficient with that data but not adapt to new data. On the other hand, if the
dataset contains too many errors, then the algorithm might underfit, meaning it won't
learn correctly. A good design matrix should contain reliable data, some imprecise
data, and some noise (some data that can influence the algorithm in unreliable ways).

3. Automatic Guided Vehicle will never be widespread. (Yes | No)

The answer is that AGVs will expand endlessly from now on: drones, cars, planes,
warehouse vehicles, industrial vehicles, and more. AGVs, added to artificial
intelligence and IoT, constitute the fourth industrial revolution.

4. Can k-means clustering be applied to drone traffic? (Yes | No)

The answer is yes. Seeing where traffic builds up will prevent drone jams (drones
circling and waiting).

5. Can k-means clustering be applied to forecasting? (Yes | No)

The answer is yes and will be explained in Chapter 10, Applying Biomimicking to
Artificial Intelligence; it'll be applied to all types of traffic.

6. Lloyd's algorithm is a two-step approach. (Yes | No)

Yes, Lloyd's algorithm first classifies each data point in the best cluster. Then, once that
is done, it calculates the geometric center or centroid of that center. When no data
point changes the cluster anymore, the algorithm has been trained.

7. Do hyperparameters control the behavior of the algorithm? (Yes | No)

The answer is yes. Hyperparameters determine the course of the computation: the
number of clusters, features, batch sizes, and more.

Answers to the Questions

[433]

8. Once a program works, the way it is presented does not matter. (Yes | No)

The answer is no. Without a clear presentation of the results, the whole training
process is confusing at best and useless at worst.

9. K-means is only a classification algorithm. It's not a prediction algorithm. (Yes | No)

The answer is no. K-means clustering can be used as a prediction algorithm as well.

Chapter 7 – When and How to Use Artificial
Intelligence
The questions will focus on the hyperparameters.

1. The number of k clusters is not that important. (Yes | No)

The answer is no. The number of clusters requires careful selection, possibly a trial-
and-error approach. Each project will lead to different clusters.

2. Mini-batches and batches contain the same amount of data. (Yes | No)

The answer is no. "Batch" generally refers to the dataset and "mini-batch" represents a
"subset" of data.

3. K-means can run without mini-batches. (Yes | No)

The answer is yes and no. If the volume of data remains small, then the training
epochs can run on the whole dataset. If the data volume exceeds a reasonable amount
of computer power (CPU or GPU), mini-batches must be created to optimize training
computation.

4. Must centroids be optimized for result acceptance? (Yes | No)

The answer is yes and no. Suppose you want to put a key in a keyhole. The keyhole
represents the centroid of your visual cluster. You must be precise. If you are simply
throwing a piece of paper in your garbage can, you do not need to aim at the perfect
center (centroid) of the cluster (marked by the rim of the garbage can) to attain that
goal. Centroid precision depends on what is asked of the algorithm.

Answers to the Questions

[434]

5. It does not take long to optimize hyperparameters. (Yes | No)

The answer is yes and no. If it's a simple project, it will not take long. If you are facing
a large dataset, it will take some time to find the optimal hyperparameters.

6. Can it sometimes take weeks to train a large dataset? (Yes | No)

The answer is yes. Media hype and hard work are two different worlds. Machine
learning and deep learning are are still tough projects to implement.

7. AWS SageMaker only offers a k-means algorithm. (Yes | No)

The answer is no. AWS Sagemaker offers a complete range of algorithms in the job
creation interface. You can also use your algorithms choosing Custom.

AWS Sagemaker algorithms

Answers to the Questions

[435]

Chapter 8 – Revolutions Designed for Some
Corporations and Disruptive Innovations for
Small to Large Companies
1. It is better to wait until you have a top-quality product before putting it on the market.
(Yes | No)

The answer is yes and no. In the early 21st century, Airbus was struggling to complete
the A380, the largest ever passenger airplane. Their engineers worked on hundreds of
improvements before transporting commercial passengers. We would not expect less!

In the case of Google Translate, it is a massive no. By putting Google Translate online
and providing an API, Google encouraged thousands of artificial intelligence
developers, linguists, consultants and users to provide feedback and improvements.
Furthermore, Google, once again, occupies a large share of the web market.

2. Considering the investment made, a new product should always be highly priced to
reach the top segment of the market. (Yes | No)

The answer is yes and no. When Ferrari puts a new car on the market, the price has to
be high for two reasons; the quality of the car and cost of production make it necessary
to do so to make the innovation profitable. Also, Ferrari avoids mass production to
keep its quality at high levels.

When Amazon Web Services put machine learning on the market with SageMaker, it
puts a "pay-as-you-go" policy in place, starting at a very low end of the market. The
product had and has limits. But Amazon now has tremendous feedback and
continuously improves the product.

3. Inventing a new solution will make it known in itself. (Yes | No)

You might be surprised to know that saving a camera picture by drawing it dates so
far back in history that nobody knows for sure when it was first used. Nobody knows
if it was invented or discovered. In any case, the first camera obscura was revolutionary.
It is now proven that famous painters used the technique. The picture was projected
on a paper or canvas. The "printer" was manual. The painter was the "printer."
However, cameras as we know only become disruptive in the 20th century.

Answers to the Questions

[436]

4. Artificial intelligence can solve most problems without using standard non-learning
algorithms. (Yes | No)

The answer is no. Artificial intelligence relies on cloud servers, architectures, standard
languages (C++, Java, Python, and others), and Apache servers. Even on a self-driving
car, the sensors installed require standard hard work to get them working and
interpreting information before AI comes in to solve some of the problems.

AI is like our brain. Without a body, it cannot function.

5 . Google Translate can translate all languages in a satisfactory way. (Yes | No)

After reading this chapter, you might be surprised to have a yes and no answer. If you
are using Google Translate to say "hello," "how are you," "thanks for the message," and
similar friendly phrases on your favorite social network or in an email, it is good
enough.

But when dealing with more detailed phrases and sentences, Google Translate
provides random satisfactory results. From a user's perspective, this is bad news. For a
developer, it is a goldmine!

6. If you are not creative, it is no use trying to innovate. (Yes | No)

The answer is a massive no. You certainly do not need to be either imaginative or
creative to innovate. Do not let anybody convince you of such nonsense. If you are
designing a solution and find a missing component, look for some alternative
components on the web, talk about it, and find people that can help. Then get it done
through teamwork. This works every time!

Even the great Bill Gates was smart enough to ask Tim Patterson for help to develop
MS-DOS, and he went on to become a billionaire.

7. If you are not a linguist, it is no use bothering trying to improve Google Translate. (Yes |
No)

The answer is no! Once again, never let somebody convince you of such nonsense.
Innovating is teamwork. If you like Google Translate and you understand this chapter
and have ideas, team up with a linguist around you or through a social network. The
world is yours to improve!

Answers to the Questions

[437]

8. Translation is too complicated to understand. (Yes | No)

No. The way some explain it is too complicated. If you speak a language, you are an
expert of translating your thoughts into words. With work, you can get into the
translation business.

9. Artificial intelligence has already reached its limits. (Yes | No)

Certainly not! We have just scratched the surface of both theory and applications.

Chapter 9 – Getting Your Neurons to Work
1. A convolutional neural network (CNN) can only process images. (Yes | No)

The answer is no. CNNs can process words, sounds, or video sequences, to classify
and predict.

2. A kernel is a preset matrix used for convolutions. (Yes | No)

The answer is yes and no. There are many preset matrices used to process images such
as the one used in edge_detection_Kernel.py in this chapter. However, in this
chapter, kernels were created randomly and then the network trained their weights to
fit the target images.

3. Does pooling have a pooling matrix or is it random?

A pooling matrix has a size that is an option when the pooling layer is added to the
model, such as a 2x2 pooling window.

4. The dataset always has to be large. (Yes | No)

No. A dataset does not have a standard size. It depends on the training model. If the
target images, for example, do not contain complex features, the dataset will be smaller
than a complex feature dataset. Furthermore, the ImageDataGenerator function will
expand the data by distorting it with the provided options.

5. Finding a dataset is not a problem with all the available image banks on the web. (Yes |
No)

The answer is yes and no. Yes because if the model remains a standard academic one,
then the available images (CIFAR, MNIST, or others) will suffice.

Answers to the Questions

[438]

No, because in real-life corporate situations, you will have to build your dataset and
add images containing noise. Noise requires more fine-tuning of the model to become
reliable and generalized.

6. Once a CNN is built, training it does not take much time. (Yes | No)

The answer is no. Whatever the model is, training will remain time-consuming if you
want it to be reliable. As seen in this chapter, a model requires a lot of options and
mathematical thinking.

7. A trained CNN model applies to only one type of image. (Yes | No)

Yes and no. There are three main types of overfitting:

Overfitting a model for a certain type of images with absolutely no consequence
of implementation. In this case, the model classifies and predicts enough to
satisfy the goals set.
Overfitting a model that creates implementation problems because it cannot
adapt to different images of the same time. The model will then go through more
training.
Overfitting a model that trains a certain type of image quite well but does not fit
similar types of images when needed.

Each situation has its constraints. As long as the model works, no general rules apply.
It is up to you to decide.

8. A quadratic loss function is not very efficient compared to cross-entropy function. (Yes |
No)

The answer is no. Each model has its constraints. Quadratic loss functions work fine on
some models and do not provide good results on others. This represents the main
problems of training a model. No general rules will help you. You have to use your
neurons or write a program that modifies the model automatically.

9. The performance of a deep learning CNN does not a represent a real issue with modern
CPUs and GPUs. (Yes | No)

The answer is yes and no. If the model runs quickly enough for your needs, then
performance will not limit the outcome of your project. However, in many cases, it
remains a problem. Reducing features to simply focus on the best ones is one of the
reasons that the layers bring the size to analyze down, layer by layer.

Answers to the Questions

[439]

Chapter 10 – Applying Biomimicking to AI
1. Deep learning and machine learning mean the same thing. (Yes | No)

No. When an AI program contains a network, especially a deep one (with several
layers), that is deep learning. Deep learning is a subset of machine learning.

When programs such as an Markov Decision Process (MDP) are used, that is machine
learning.

To sum it up, not all artificial intelligence programs have to learn. Machine learning is
a subset of artificial intelligence programs that learn but do not require networks.
Deep learning is a subset of machine learning that uses networks.

2. Deep learning networks mostly reproduce human brain functions. (Yes | No)

Yes in neuroscience research on the human brain. Computer models of the brain using
deep learning can provide interesting models.

Sometimes yes, when deep learning networks try to reproduce human vision for
image recognition applications.

No, when it comes many programs using statistics and probability for language
processing, for example.

3. Overfitting is unacceptable. (Yes | No)

Yes, when an application has been implemented and requires the ability to adapt
constantly to new data.

No, when an application has been implemented, and the same images are submitted to
the AI program.

No, when a prototype is first built and used as a proof of concept that the solution
appears interesting.

4. Transfer learning can save the cost of building another model. (Yes | No)

Yes. A reusable model can become quickly very profitable.

Answers to the Questions

[440]

5. Training a corporate model on MNIST is enough to implement it on a production line, for
example. (Yes | No)

Yes and no. Yes because if a model works on MNIST, it contains the proper functions
to learn. No, because if the goal of the project is not close to MNIST data, it will not
work. Experiment with MNIST in an image project that contains similar sorts of simple
images.

6. Exploring artificial intelligence beyond the cutting edge is not necessary. It is easier to
wait for the next ideas that are published. (Yes | No)

Yes, when a team does not have ideas but excels in implementation, for example.
GitHub can provide thousands of ideas, along with social networks, publications, and
more.

No, when a team is creative and wants to occupy the market with innovations.

7. Some researchers have reproduced all the physical and biological reasoning functions of
the human brain in robots. In fact, some robots have human brain clones in them. (Yes |
No)

No. Intelligent human-cloned robots only exist in fiction and social hype.

8. Artificial General Intelligence software, a program that can adapt to any human function
(natural language processing, image processing, and sound streams) better than a human,
already exists in some labs. (Yes | No)

No. This will take much more time if it ever succeeds. Corporations might rather be
satisfied with profits generated by narrow artificial intelligence that solves specific
problems.

9. Training deep learning networks has become a quick and easy task. (Yes | No)

No. Even if it appears fast and simple sometimes, it is mostly a tough task to build a
network from scratch and get it to work properly.

Answers to the Questions

[441]

Chapter 11 – Conceptual Representation
Learning
1. The curse of dimensionality leads to reducing dimensions and features in machine
learning algorithms. (Yes | No)

Yes. The volume of data and features makes it necessary to extract the main features of
an observed event (an image, sound, and words) to make sense of it.

Overfitting and underfitting apply to dimensionality reduction as well. Reducing the
features until the system works in a lab (overfitting) might lead to nowhere once the
application faces real-life data. Trying to use all the features might lead to underfitting
because the application solves no problem at all.

Regularization applies not just to data but to every aspect of a project.

2. Transfer learning determines the profitability of a project. (Yes | No)

Yes if an application of an AI model in itself was unprofitable the first time but could
generate profit if used for a similar type of learning. Reusing some functions would
generate profit, no doubt.

No, if the first application was extremely profitable but "overfitted" to meet the
specifications of a given project.

3. Reading model.h5 does not provide much information. (Yes | No)

No. Saving the weights of a TensorFlow model is vital during the training process to
control the values. Furthermore, trained models often use HDF files (.H5) to load the
trained weights. A Hierarchical Data Format (HDF) contains multidimensional arrays
of scientific data.

4. Numbers without meaning are enough to replace humans. (Yes | No)

Yes. In many cases, mathematics provides enough tools to replace humans for many
tasks (games, optimization algorithms, and image recognition).

No. Sometimes mathematics cannot solve problems that require concepts such as
many aspects of NLP.

Answers to the Questions

[442]

5. Chatbots prove that body language doesn't mean that much. (Yes | No)

Yes. In many applications, body language does not provide additional information. If
only a yes or no answer is required, body language will not add much to the
conversation.

No. If emotional intelligence is required to understand the tone of the user of a
chatbot, a webcam detecting body language could provide useful information.

6. Present-day ANNs provide enough theory to solve all AI requests. (Yes | No)

No. Artificial Neural Networks (ANN) cannot solve thousands of problems, for
example, translating poetry novels or recognizing images with forms that constantly
vary.

7. Chatbots can now replace humans in all situations. (Yes | No)

No. Concepts need to be added. The market provides all the necessary tools. It will
take some years to be able to speak effectively with chatbots.

8. Self-driving cars have been approved and do not need conceptual training. (Yes | No)

Yes, that could be true. Sensor, mathematics (linear algebra, probabilities) might
succeed within a few years.

No. Certain problems will require concepts (and more robotics) when emergency
situations that require creative solutions occur. If a self-driving car encounters a
wounded person lying on the road, what is the best approach? The choices are to call
for help, find another person if the help arrives too late, pick up the victim, drive them
to a hospital (robotics), and much more.

9. Industries can implement AI algorithms for all of their needs. (Yes | No)

Yes. All the tools are there to be used. If the right team decides to solve a problem with
AI and robotics, it can be done.

No. Some tools are missing, such as real-time management decision tools when faced
with unplanned events. If a system breaks down, humans can still adapt faster to find
alternative solutions to continue production.

Answers to the Questions

[443]

Chapter 12 – Automated Planning and
Scheduling
1 A CNN can be trained to understand an abstract concept. (Yes | No)

Yes. A CNN can classify images and make predictions. But CNNs can analyze any
type of object or representation. An image, for example, can be linked to a word or
phrase. The image thus becomes a message in itself.

2. It is better to avoid concepts and only use real-life images. (Yes | No)

No. Images provide many practical applications, but at some point, more is required to
solve planning problems for example.

Planning requires much more than this type of dataset.

3. Planning and scheduling mean the same thing. (Yes | No)

No. Planning describes the tasks that must be carried out. Scheduling adds a time
factor. Planning tells us what to do, and scheduling tells us when.

4. Amazon's manufacturing patent is a revolution. (Yes | No)

No. Manufacturing clothing has been mastered by factories around the world.

Yes. With such a worldwide distribution, Amazon has come very close to the end user.
The end user can choose a new garment and it will be manufactured directly on
demand. This connectivity will change the apparel manufacturing processes and force
its competitors to find new ways of making and selling garments.

5. Learning how warehouses function is not useful. (Yes | No)

No. False. Online shopping requires more and more warehouse space and processes.
The number of warehouses will now increase faster than shops. There are many
opportunities for artificial intelligence applications in warehouses.

6. Online marketing does not require artificial intelligence. (Yes | No)

No. On the contrary, artificial intelligence is used by applications for online marketing
every day, and this will continue for decades.

Answers to the Questions

[444]

Chapter 13 – AI and the Internet of Things
1. Driving quickly to a location is better than safety in any situation. (Yes | No)

Yes and No.

Self-driving cars face the same difficulties as human-driven cars: getting to a location
on time, respecting speed limits, or driving as safely as possible. Self-driving cars, like
humans, are constantly improving their driving abilities through experience.

Yes. Sometimes, a self-driving car will perform better on a highway with little traffic.

No. Sometimes, if the highways are dangerous (owing to weather conditions and
heavy traffic) a self-driving car should take a safer road defined by slow speed and
little to no traffic. This way, if difficulties occur, the self-driving car can slow down and
even stop more easily than on a highway.

2. Self-driving cars will never really replace human drivers. (Yes | No)

Nobody can answer that question. As self-driving cars build their abilities and
experience, they might well end up driving better than humans.

In very unpredictable situations, humans can go off the road to avoid another car and
back off a bit, for example. It will take more work to get a self-driving car to do that.

One thing is certain, though. If a human is driving all night and falls asleep, the self-
driving car will detect the head slumping movement, take over, and save lives. The
self-driving car can also save lives if the human has a medical problem while driving.

3. Will a self-driving fire truck with robots be able to put out a fire one day? (Yes | No)

Yes. Combining self-driving fire trucks with robots will certainly save many lives
when a fire department faces difficult fires to extinguish. Those saved lives include
firemen who risk their own lives. It might help firemen focus on helping people while
the robots do the tougher jobs. This robot-human team will no doubt save thousands
of lives in the future.

4. Do major cities need to invest in self-driving cars or avoid them? (Invest | Avoid)

Invest. With slow but safe self-driving cars, commuters could share public, free or very
cheap, electric self-driving cars instead of having to drive. It would be like having a
personal chauffeur.

Answers to the Questions

[445]

5. Would you trust a self-driving bus to take children to school and back? (Yes | No)

No. Not in the present state of self-driving cars.

Yes, when self-driving cars, buses, and trucks prove that they can outperform humans.
Self-driving vehicles will not make mistakes humans do: using smartphones while
driving, talking to passengers without looking at the road, and much more.

6. Would you be able to sleep in a self-driving car on a highway? (Yes | No)

Not in the present state of self-driving vehicle technology.

Yes, when reliability replaces doubts.

7. Would you like to develop a self-driving program for a project for a city? (Yes | No)

That one is for you to think about! You can also apply the technology to warehouses
for AGVs by contacting the companies or AGV manufacturers directly.

Chapter 14 – Optimizing Blockchains with AI
1. Cryptocurrency is the only use of blockchains today. (Yes | No)

No. IBM HyperLedger, for example, uses blockchains to organize secure transactions
in a supply chain environment.

2. Mining blockchains can be lucrative. (Yes | No)

Yes. But it is a risk, like any other mining operation. Some companies have huge
resources to mine cryptocurrency, meaning that they can beat smaller competitors to
creating a block.

3. Using blockchains for companies cannot be applied to sales. (Yes | No)

No. False. Blockchain cloud platforms provide smart contracts and a secure way of
managing transactions during a sales process.

4. Smart contracts for blockchains are more accessible to write than standard offline
contracts. (Yes | No)

Yes. If they are standard contracts, this speeds the transaction up.

No. If the transaction is complex and requires customization, a lawyer will have to
write the contract, which can then only be used on a blockchain cloud platform.

Answers to the Questions

[446]

5. Once a block is in a blockchain network, everyone in the network can read the content.
(Yes | No)

Yes if no privacy rule has been enforced.

No. IBM Hyperledger, for example, provides privacy functions.

6. A block in a blockchain guarantees that absolutely no fraud is possible. (Yes | No)

Yes. A block in a blockchain can never be changed again, avoiding fraud. Nobody can
tamper with the data.

No. If the transaction is illegal in the first place, then the block will be fraudulent as
well.

7. There is only one way of applying Bayes' theorem. (Yes | No)

No. There are many variations of Bayes Theorem. Using Naive Bayes, for example,
avoids the conditional probability constraint. But another approach could use
conditional probability.

8. Training a Naive Bayes dataset requires a standard function. (Yes | No)

No. Gaussian functions, for example, can be used to calculate Naive Bayes algorithms,
among others.

9. Machine learning algorithms will not change the intrinsic nature of the corporate
business. (Yes | No)

No. False. Machine learning will disrupt every area of businesses as algorithms spread
through the company, optimizing processes.

Chapter 15 – Cognitive NLP Chatbots
1. Can a chatbot communicate like a human? (Yes | No)

No. Communicating like a human means being human: having a body with body
language, sensations, odors, fear hormones, and much more.

Yes. In certain situations, if a quantum mind (Chapter 17, Quantum Computers That
Think) is built, a chatbot will produce near-human conversations.

Answers to the Questions

[447]

2. Are chatbots necessarily artificial intelligence programs? (Yes | No)

No. Many call centers use the "press 1, press 2...press n" method, which requires
careful organization but no artificial intelligence.

3. Chatbots only need words to communicate. (Yes | No)

Yes. Simple chatbots can communicate with words in a controlled situation.

No. When polysemy (several meanings for a same word or situation) is involved,
pictograms and more will add more efficient dimensions.

4. Do humans only chat with words? (Yes | No)

No. In fact, humans express with the tone of their voice, body language, or music, for
example.

5. Humans only think in words and numbers. (Yes | No)

No. Certainly not. Humans think in images, sounds, odors, and feelings.

6. To build a cognitive chatbot, mental images are necessary. (Yes | No)

No. In limited "press 1 or press 2 " situations, chatbots can perform well with limited
cognitive capacities.

Yes. To engage in a real conversation with a human, mental images are the key to
providing an empathetic exchange.

7. For a chatbot to function, a dialog flow needs to be planned. (Yes | No)

Yes. It will provide better results in a business environment.

No. If you want the chatbot to talk freely, you need to free it a bit. This still requires
planning of the dialog but it is more flexible.

8. A chatbot possesses general artificial intelligence, so no prior development is required.
(Yes | No)

No. This is presently impossible. Only narrow (specific to one or a few fields) artificial
intelligence exists in real life, contrary to science fiction movies and media hype.

Answers to the Questions

[448]

9. A chatbot translates fine without any function other than a translation API. (Yes | No)

No. See Chapter 8, Revolutions Designed for Some Corporations and Disruptive Innovations
for Small to Large Companies.

10. Chatbots can already chat like humans in most cases. (Yes | No)

No. Chapter 8, Revolutions Designed for Some Corporations and Disruptive Innovations for
Small to Large Companies, shows that interpreting a language will take quite some more
challenging work and contributions.

Chapter 16 – Improve the Emotional
Intelligence Deficiencies of Chatbots
1. Restricted Boltzmann Machines are based on directed graphs. (Yes | No)

No. RBM graphs are undirected, unsupervised, and memoryless, and the decision
making is based on random calculations.

2. The hidden units of an RBM are generally connected to each other. (Yes | No)

No. The hidden units of an RBM are not generally connected to each other.

3. Random sampling is not used in an RBM. (Yes | No)

No. False. Gibbs random sampling is frequently applied to RBMs.

4. Is there a method to prevent gradients from vanishing in an RNN? (Yes | No)

Yes. When the gradient gets "stuck" around 0, for example, a ReLU function can solve
this problem. It will force negative values to become 0 (or a fixed value in a leaky
ReLU), and the positive values will not change.

5. LSTM cells never forget. (Yes | No)

No. False. LSTM cells "forget" by skipping connections, adding connections from the
past to the present, and other techniques.

6. Word2vector transforms words into indexes along with their labels. (Yes | No)

Yes. Word2vector transforms words into numbers and also keeps track of their labels.

Answers to the Questions

[449]

7. Principal Component Analysis (PCA) transforms data into higher dimensions. (Yes | No)

Yes. The whole point of PCA is to transform data into higher dimensions to find the
principal component (highest eigenvalue of a covariance matrix), then the second
highest, and down to the lowest values.

8. In a covariance matrix, the eigenvector shows the direction of the vector representing that
matrix, and the eigenvalue shows the size of that vector. (Yes | No)

Yes. Eigenvalues indicate how important a feature is, and eigenvectors provide a
direction.

9. It is impossible to represent a human mind in a machine. (Yes | No)

No. It is possible.

Chapter 17, Quantum Computers That Think, shows how to build a machine mind. It
takes quite some work to include sensors, but the technology is there.

10. A machine cannot learn concepts, which is why classical applied mathematics is enough
to make efficient artificial intelligence programs for every field. (Yes | No)

No. Never believe that. Progress is being made and will never stop until mind-
machines become mainstream.

Chapter 17 – Quantum Computers That
Think
1. Beyond the hype, no quantum computer exists. (Yes | No)

No. False. You can already run a quantum computer on IBM Q's cloud platform.

https://www. research. ibm. com/ ibm- q/

The following screenshot is the result of a real IBM quantum computer calculation I
ran on a quantum score explained in the chapter:

https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/
https://www.research.ibm.com/ibm-q/

Answers to the Questions

[450]

IBM quantum computer calculation

2. A quantum computer can store data. (Yes | No)

No. Instability prevents any form of storage at this point.

Answers to the Questions

[451]

3. The effect of quantum gates on qubits can be viewed with a Bloch Sphere. (Yes | No)

Yes. A Bloch sphere will display the state of a qubit.

4. A mind that thinks with past experiences, images, words, and other bits of every day like
stored in memory will find deeper solutions to problems that mathematics alone cannot
solve. (Yes | No)

No. False. Many researchers believe that mathematics alone can solve all human
problems.

Yes. True. Mathematics alone cannot replace deep thinking. Even if computers have
incredible power and can beat human players at chess, for example, they still cannot
adapt to new situations without going through a design and training process.
Concepts need to be added and experienced (memory as well).

I bet that machine mind concepts will become progressively more mainstream to solve
deep thinking problems.

5. A quantum computer will solve medical research problems that cannot be solved today.
(Yes | No)

Yes. There is no doubt about that. The sheer computing power of a quantum computer
can provide exponential DNA sequencing programs for epigenetic research.

6. A quantum computer can solve mathematical problems exponentially faster than
classical computers. (Yes | No)

Yes. Classical computers function at 2 x n (number of bits) and quantum computers
run at 2n (n being the number of qubits)!

7. Classical computers and smartphone processors will soon disappear and smartphone
processors also. (Yes | No)

No. Quantum computers require such a large amount of space and physical stability
that this will not happen in the near future. Furthermore, classical computers and
smartphones can store data. Quantum computers cannot.

Answers to the Questions

[452]

8. A quantum score cannot be written in source code format but only with a visual
interface. (Yes | No)

No. False. IBM, for example, can swap the quantum from score to QASM interface or
display both, as shown here:

QASM interface

9. Quantum simulators can run as fast as quantum computers. (Yes | No)

Certainly not! A simulator just shows how a quantum score would behave on a real
quantum computer. Although the simulator can help build the score, a quantum
computer will run exponentially faster than the simulator.

10. Quantum computers produce intermediate results while they are running calculations.
(Yes | No)

No. This is not possible. The qubits are too unstable. Observing them makes the
system collapse. However, simulators such as Quirk come in handy. Since they are not
real, intermediate results can be displayed to design a quantum score.

Index

A
A-F network
 blockchains, using 328
accuracy values
 precision, measuring of network 228
activation function
 about 225
 displaying, through preactivation process 223
AGV virtual clusters
 as solution 126
Amazon Prime Wardrobe 270
Amazonization project 109
apparel conveyor belt processing 279
approval, of design matrix
 about 110
 dimension reduction 112
 format 110, 111
 volume, of training dataset 113
artificial intelligence (AI)
 about 151, 152
 as frontier 164
 avoiding 130
 based on mathematical theories 152
 inventions, versus innovations 154
 revolutionary, versus disruptive solutions 155
automatic guided vehicles (AGVs) 109
AWS
 about 136
 baseline model, preparing 136
 data management 141
 full sample training dataset, training 136
 random sample, training of training dataset 137

B
backpropagation
 vintage XOR solution, implementing in Python

74

biases 220
bitcoin
 minting 325
Bloch sphere 399
block
 creating 328, 329
 exploring 329
blockchain anticipation novelty
 about 332
 dataset 333
 frequency table 334
 likelihood table 335
 naive Bayes equation 335
blockchain process
 naive Bayes, using in 330
Blockchain technology
 background 324
blockchains
 about 264
 using 326
 using, in A-F network 328
buckets 141

C
central limit theorem 135
chatbot 265, 344
circle
 degrees 398
 properties 398
 radians 398
 rotations 399
circular DQN-CRLMM 296, 299, 300
classifier 38
cloud solutions
 AWS 136

[454]

CNN model
 applying 251
 profitable, making 252
 strategy, defining 251
CNN-CRLMM
 implementing, for gaps detection 285
cognitive chatbot service
 about 351
 case study 352
 image + word cognitive chat, activating 355
 implementation 358
 issue, solving 357
cognitive dataset 352
cognitive natural language processing 353, 354
computational neuroscience 216
conceptual representation learning meta-models

(CRLMM)
 about 372, 406
 blessing of dimensionality 264
 curse of dimensionality 263
 motivation 263
 profiling, with images 372
conditional probability 330
conditioning management 115
convolutional neural network (CNN) 153, 304
cost function 75, 76
covariance 385
CRLMM, applying to automated apparel

manufacturing process
 about 275
 apparel manufacturing process 275, 277
 CRLMM, training 277
 hyperparameters, modifying 282
 prediction program, running 283
 unit training dataset, generalizing 278
CRLMM
 dataset directory 305
 model, testing 307
 model, training 306
 parking lots, classifying 307
 parking space, finding 313, 314, 315
 running 313
 suitable parking lot, finding 316
 training 305
cross-entropy 231

cryptocurrency
 using 326

D
data flow graph, into source code
 about 91
 backpropagation 96
 cost function 94
 gradient descent 94
 hidden layer 92
 input data layer 91
 linear separability, checking 97
 loss function 94
 output layer 93
 session, running 96
data flow graph
 architecture, designing 98
 displaying, in TensorBoard 100
data management, AWS
 access, to output results 142
 buckets 141
 files, uploading 142
dataset optimization 109
datasets
 designing 30, 109
 designing, in natural language meetings 30
deep learning 216
DeepMind 28
design matrix
 approval 110
dimension reduction 112
domain learning
 about 253
 programs, using 253
 trained models 253
 training model program 254
DQN-CRLMM
 building 284
 circular process 285
 components 284
 MDP Q-Learning decision function 286
 setting up 304
dropout node
 features 226

[455]

E
eigenvalues 385
eigenvector 386
embedding 379
energy-based model (EBM) 367
entities 346

F
feed keyword 97
feedforward neural network
 building 68
 defining 68, 69
 vintage XOR solution, implementing in Python

73

FNN architecture
 building, with TensorFlow 89
FNN XOR solution
 applying, to case study 80, 82, 85
food conveyor belt processing 278
frontier
 exploring 167, 168

G
gap concept
 about 244
 jammed lanes 257
 loaded 254
 open lanes 259
 unloaded 256
gap conceptual dataset 259
gap dataset 259
gaps
 abstract notions 280
Gaussian naive Bayes
 about 336, 337
 Python program 337
generative adversarial networks
 about 260
 autoencoders 262
 conceptual representations 261
Gibbs random sampling 368
Google Translate
 about 156
 customized experiment 181

 header 157
 linguist's perspective 159
 linguistic assessment 160
Google
 translation service, implementing 158, 159
Google_Translate_Customized.py
 KNN compressed function, implementing 173,

177, 178, 180
gradient descent 76
grouping 80

H
Hadamard gate 401
hidden neuron 161
HobChat 344
hub 332
human biomimicking 214
Hyperledger 326

I
IBM Watson
 about 343
 dialog flow 348
 dialog tool 345
 entities 346
 intent 344
 model, building 350
 model, scripting 349
 services, adding to chatbot 351
intent 344
Iotham City project 304

J
Jacobian matrices
 using 388
jargon 161
job
 creating 144, 145
 running 146

K
k-means clustering solution
 data 114
 implementing 113

[456]

 vision 114
k-means clustering
 about 116, 117
 applying 131
 goal 119
 mathematical definition 118
k-nearest neighbor (KNN) algorithm 168, 169, 170
Keras model
 loading, after training 244
 loading, for optimizing training 244, 246, 247
 loading, for usage 247, 248, 250
KNN compressed function
 implementing, in

Google_Translate_Customized.py 173, 177,
178, 180

knn_polysemy.py program 171, 173

L
law of large numbers (LLN) 134
lexical field 160, 165
linear separability 66, 78, 79
linearly separable models 66
linguistic assessment, Google Translate
 jargon 161
 lexical field theory 160
Lloyd's algorithm 119
logistic activation functions 38
logistic classifier 39
logistic function 39
logistic sigmoid function 93

M
machine
 mind, building 362
Markov Decision Process (MDP) 152, 304
mathematical explanation, PCA
 covariance 385
 dataset, deriving 387
 eigenvalues 385
 eigenvectors 386
 feature vector creation 387
 variance 383, 384
McCulloch-Pitts neuron
 about 32, 34, 36

 using 31, 32
MDP function
 main target, finding 294
MDP output matrix
 graph interpretation 289
MDP process
 inputs 287
 outputs 288
mind
 building, in machine 362
MindX experiment
 about 416
 data preparation 416
 IBM Watson 421
 output, using 420
 quantum function 418
 score, creating 419
 score, running 419
 situation function 416, 418
MindX
 conceptual representations, expanding 408
 distances 413
 embedding program 413
 gaps 412
 negative thinking 410, 411
 positive thinking 409, 410
ML/DL model
 selecting 109
Monte Carlo estimator
 using 135

N
naive Bayes
 example 331
 ideas, implementing 339
 using, in blockchain process 330
natural language meetings
 datasets, designing in 30
natural language processing (NLP) 156
Neural Machine Translation (NMT) 174
neural networks 153
NP-hard
 hard 133
 non-deterministic 133
 polynomial 132

[457]

O
Open Quantum Assembly Language 406
optimal production rate (OPR) 242
optimizers
 about 290
 as regulator 291

P
parking lot, CRLMM program
 itinerary graph 319
 support vector machine 317, 318
 weight vector 320
Pert
 about 109
 results, analyzing 124
 results, presenting 124
Phrase-Based Machine Translation (PBMT) 173
plan 272
polysemy 166
posterior probability 330
preactivation 220
prediction, as data augmentation
 about 377
 data augmentation, providing 378
 input file, providing 377
 RNN, running 377
principal component analysis
 about 382
 intuitive explanation 383
 mathematical explanation 383
profit
 generating, with transfer learning 241
proof of concept (POC) approach 130
Python TensorFlow
 architecture 36
Python
 vintage XOR solution, implementing 73

Q
quantum computer score
 with IBM Q 404, 405
 with Quirk 402, 403
quantum computer
 about 393

 speed 393, 394, 395, 396
 thinking quantum computer 406
quantum gates
 with Quirk 400
quantum score
 composing 400
qubit
 defining 396
 position 397
 representing 396, 397

R
random sampling
 about 133
 applications 136
 central limit theorem 135
 LLN 134
real-time manufacturing process 271
real-time manufacturing revolution 271
Recurrent Neural Network (RNN)
 about 174
 for data augmentation 374
 LSTM 375
 vanishing gradients 376
 working 376
Restricted Boltzmann Machines (RBMs)
 about 364
 energy-based model (EBM) 367
 epochs, running 368
 Gibbs random sampling 368
 hidden layers 365
 results, analyzing 369
 visible layers 365
return on investment (ROI) 253
reward matrix 43

S
SageMaker notebook 143
scheduling 264, 272
self-driving cars 266
sentiment analysis
 about 370
 datasets, parsing 370
shuffling

 alternative, to random sampling 139
skip-gram model 379
sklearn
 hyperparameters 120
 k-means clustering algorithm 121
 result labels, defining 122
 results, displaying 122
 training dataset 120
softmax function 41, 42
stochastic gradient descent (SGD) 96
stock keeping unit (SKU) 80
subnets
 testing 345
Supply Chain Management (SCM) 270
support vector machine (SVM)
 defining 309
 Python function 311
 safety levels, increasing 308
 support vectors 311
SVM function
 adding 307
SVM graph
 margin 310
 support points 310

T
Tensor Processing Unit (TPU)
 used, for optimizing speed 234, 236
TensorBoard Projector 387
TensorBoard
 about 217
 architecture, designing of deep learning solutions

98

 architecture, designing of machine learning 98
 data flow graph, displaying 100
 input data 217
 inputs, managing of network 219
 using, in corporate environment 101, 102, 104

TensorFlow
 about 90, 214
 code, writing with data flow graph as architectural

roadmap 90
 FNN architecture, building 89
thinking quantum computer 406
transfer learning
 inductive abstraction 242
 inductive thinking 241
 motivation 241
 profit, generating with 241
 using 250
translation
 checking 163, 164

U
unit testing model 217
Usty 160

V
variance 383
vector space model (VSM) 379
vintage XOR solution
 implementing, in Python 73

W
weights 220
word embedding 379
Word2vec model 379, 381

X
XOR function 65
XOR limit
 of linear model 67
 of original perceptron 65
XOR problem
 solving, example 69, 70, 72

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Become an Adaptive Thinker
	Technical requirements
	How to be an adaptive thinker
	Addressing real-life issues before coding a solution
	Step 1 – MDP in natural language
	Step 2 – the mathematical representation of the Bellman equation and MDP
	From MDP to the Bellman equation

	Step 3 – implementing the solution in Python

	The lessons of reinforcement learning
	How to use the outputs
	Machine learning versus traditional applications

	Summary
	Questions
	Further reading

	Chapter 2: Think like a Machine
	Technical requirements
	Designing datasets – where the dream stops and the hard work begins
	Designing datasets in natural language meetings
	Using the McCulloch-Pitts neuron
	The McCulloch-Pitts neuron
	The architecture of Python TensorFlow

	Logistic activation functions and classifiers
	Overall architecture
	Logistic classifier
	Logistic function
	Softmax

	Summary
	Questions
	Further reading

	Chapter 3: Apply Machine Thinking to a Human Problem
	Technical requirements
	Determining what and how to measure
	Convergence
	Implicit convergence
	Numerical – controlled convergence

	Applying machine thinking to a human problem
	Evaluating a position in a chess game
	Applying the evaluation and convergence process to a business problem
	Using supervised learning to evaluate result quality

	Summary
	Questions
	Further reading

	Chapter 4: Become an Unconventional Innovator
	Technical requirements
	The XOR limit of the original perceptron
	XOR and linearly separable models
	Linearly separable models
	The XOR limit of a linear model, such as the original perceptron

	Building a feedforward neural network from scratch
	Step 1 – Defining a feedforward neural network
	Step 2 – how two children solve the XOR problem every day
	Implementing a vintage XOR solution in Python with an FNN and backpropagation
	A simplified version of a cost function and gradient descent
	Linear separability was achieved

	Applying the FNN XOR solution to a case study to optimize subsets of data
	Summary
	Questions
	Further reading

	Chapter 5: Manage the Power of Machine Learning and Deep Learning
	Technical requirements
	Building the architecture of an FNN with TensorFlow
	Writing code using the data flow graph as an architectural roadmap
	A data flow graph translated into source code
	The input data layer
	The hidden layer
	The output layer
	The cost or loss function
	Gradient descent and backpropagation
	Running the session
	Checking linear separability

	Using TensorBoard to design the architecture of your machine learning and deep learning solutions
	Designing the architecture of the data flow graph
	Displaying the data flow graph in TensorBoard
	The final source code with TensorFlow and TensorBoard

	Using TensorBoard in a corporate environment
	Using TensorBoard to explain the concept of classifying customer products to a CEO
	Will your views on the project survive this meeting?

	Summary
	Questions
	Further reading
	References

	Chapter 6: Don't Get Lost in Techniques – Focus on Optimizing Your Solutions
	Technical requirements
	Dataset optimization and control
	Designing a dataset and choosing an ML/DL model
	Approval of the design matrix
	Agreeing on the format of the design matrix
	Dimensionality reduction
	The volume of a training dataset

	Implementing a k-means clustering solution
	The vision
	The data
	Conditioning management

	The strategy

	The k-means clustering program
	The mathematical definition of k-means clustering
	Lloyd's algorithm

	The goal of k-means clustering in this case study
	The Python program
	1 – The training dataset
	2 – Hyperparameters
	3 – The k-means clustering algorithm
	4 – Defining the result labels
	5 – Displaying the results – data points and clusters
	Test dataset and prediction

	Analyzing and presenting the results
	AGV virtual clusters as a solution

	Summary
	Questions
	Further reading

	Chapter 7: When and How to Use Artificial Intelligence
	Technical requirements
	Checking whether AI can be avoided
	Data volume and applying k-means clustering
	Proving your point
	NP-hard – the meaning of P
	NP-hard – The meaning of non-deterministic
	The meaning of hard

	Random sampling
	The law of large numbers – LLN
	The central limit theorem
	Using a Monte Carlo estimator

	Random sampling applications

	Cloud solutions – AWS
	Preparing your baseline model
	Training the full sample training dataset
	Training a random sample of the training dataset
	Shuffling as an alternative to random sampling

	AWS – data management
	Buckets
	Uploading files
	Access to output results

	SageMaker notebook
	Creating a job
	Running a job
	Reading the results

	Recommended strategy

	Summary
	Questions
	Further reading

	Chapter 8: Revolutions Designed for Some Corporations and Disruptive Innovations for Small to Large Companies
	Technical requirements
	Is AI disruptive?
	What is new and what isn't in AI
	AI is based on mathematical theories that are not new
	Neural networks are not new
	Cloud server power, data volumes, and web sharing of the early 21st century started to make AI disruptive
	Public awareness contributed to making AI disruptive

	Inventions versus innovations
	Revolutionary versus disruptive solutions
	Where to start?

	Discover a world of opportunities with Google Translate
	Getting started
	The program
	The header
	Implementing Google's translation service

	Google Translate from a linguist's perspective
	Playing with the tool
	Linguistic assessment of Google Translate
	Lexical field theory
	Jargon
	Translating is not just translating but interpreting
	How to check a translation

	AI as a new frontier
	Lexical field and polysemy
	Exploring the frontier – the program
	k-nearest neighbor algorithm
	The KNN algorithm
	The knn_polysemy.py program
	Implementing the KNN compressed function in Google_Translate_Customized.py
	Conclusions on the Google Translate customized experiment

	The disruptive revolutionary loop

	Summary
	Questions
	Further reading

	Chapter 9: Getting Your Neurons to Work
	Technical requirements
	Defining a CNN
	Defining a CNN
	Initializing the CNN
	Adding a 2D convolution
	Kernel
	Intuitive approach
	Developers' approach
	Mathematical approach

	Shape
	ReLu

	Pooling
	Next convolution and pooling layer
	Flattening
	Dense layers
	Dense activation functions

	Training a CNN model
	The goal
	Compiling the model
	Loss function
	Quadratic loss function
	Binary cross-entropy

	Adam optimizer
	Metrics

	Training dataset
	Data augmentation
	Loading the data

	Testing dataset
	Data augmentation
	Loading the data

	Training with the classifier
	Saving the model
	Next steps

	Summary
	Questions
	Further reading and references

	Chapter 10: Applying Biomimicking to Artificial Intelligence
	Technical requirements
	Human biomimicking
	TensorFlow, an open source machine learning framework
	Does deep learning represent our brain or our mind?

	A TensorBoard representation of our mind
	Input data
	Layer 1 – managing the inputs to the network
	Weights, biases, and preactivation
	Displaying the details of the activation function through the preactivation process
	The activation function of Layer 1

	Dropout and Layer 2
	Layer 2
	Measuring the precision of prediction of a network through accuracy values
	Correct prediction
	accuracy

	Cross-entropy
	Training

	Optimizing speed with Google's Tensor Processing Unit

	Summary
	Questions
	Further reading

	Chapter 11: Conceptual Representation Learning
	Technical requirements
	Generate profit with transfer learning
	The motivation of transfer learning
	Inductive thinking
	Inductive abstraction
	The problem AI needs to solve

	The Γ gap concept
	Loading the Keras model after training
	Loading the model to optimize training
	Loading the model to use it
	Using transfer learning to be profitable or see a project stopped

	Defining the strategy
	Applying the model
	Making the model profitable by using it for another problem
	Where transfer learning ends and domain learning begins

	Domain learning
	How to use the programs
	The trained models used in this section
	The training model program

	GAP – loaded or unloaded
	GAP – jammed or open lanes
	The gap dataset
	Generalizing the Γ(gap conceptual dataset)
	Generative adversarial networks
	Generating conceptual representations
	The use of autoencoders

	The motivation of conceptual representation learning meta-models
	The curse of dimensionality
	The blessing of dimensionality
	Scheduling and blockchains
	Chatbots
	Self-driving cars

	Summary
	Questions
	Further reading

	Chapter 12: Automated Planning and Scheduling
	Technical requirements
	Planning and scheduling today and tomorrow
	A real-time manufacturing process
	Amazon must expand its services to face competition
	A real-time manufacturing revolution

	CRLMM applied to an automated apparel manufacturing process
	An apparel manufacturing process
	Training the CRLMM
	Generalizing the unit-training dataset
	Food conveyor belt processing – positive pγ and negative nγ gaps
	Apparel conveyor belt processing – undetermined gaps
	The beginning of an abstract notion of gaps

	Modifying the hyperparameters
	Running a prediction program

	Building the DQN-CRLMM
	A circular process
	Implementing a CNN-CRLMM to detect gaps and optimize
	Q-Learning – MDP
	MDP inputs and outputs
	The input is a neutral reward matrix
	The standard output of the MDP function
	A graph interpretation of the MDP output matrix

	The optimizer
	The optimizer as a regulator
	Implementing Z – squashing the MDP result matrix
	Implementing Z – squashing the vertex weights vector

	Finding the main target for the MDP function

	Circular DQN-CRLMM – a stream-like system that never starts nor ends

	Summary
	Questions
	Further reading

	Chapter 13: AI and the Internet of Things (IoT)
	Technical requirements
	The Iotham City project
	Setting up the DQN-CRLMM model
	Training the CRLMM
	The dataset
	Training and testing the model
	Classifying the parking lots

	Adding an SVM function
	Motivation – using an SVM to increase safety levels
	Definition of a support vector machine
	Python function

	Running the CRLMM
	Finding a parking space
	Deciding how to get to the parking lot
	Support vector machine
	The itinerary graph
	The weight vector

	Summary
	Questions
	Further reading
	References

	Chapter 14: Optimizing Blockchains with AI
	Technical requirements
	Blockchain technology background
	Mining bitcoins
	Using cryptocurrency
	Using blockchains
	Using blockchains in the A-F network
	Creating a block
	Exploring the blocks

	Using naive Bayes in a blockchain process
	A naive Bayes example
	The blockchain anticipation novelty
	The goal
	Step 1 the dataset
	Step 2 frequency
	Step 3 likelihood
	Step 4 naive Bayes equation

	Implementation
	Gaussian naive Bayes
	The Python program

	Implementing your ideas

	Summary
	Questions
	Further reading

	Chapter 15: Cognitive NLP Chatbots
	Technical requirements
	IBM Watson
	Intents
	Testing the subsets

	Entities
	Dialog flow
	Scripting and building up the model

	Adding services to a chatbot

	A cognitive chatbot service
	The case study
	A cognitive dataset
	Cognitive natural language processing

	Activating an image + word cognitive chat
	Solving the problem

	Implementation

	Summary
	Questions
	Further reading

	Chapter 16: Improve the Emotional Intelligence Deficiencies of Chatbots
	Technical requirements
	Building a mind
	How to read this chapter
	The profiling scenario

	Restricted Boltzmann Machines
	The connections between visible and hidden units
	Energy-based models
	Gibbs random sampling
	Running the epochs and analyzing the results

	Sentiment analysis
	Parsing the datasets

	Conceptual representation learning meta-models
	Profiling with images

	RNN for data augmentation
	RNNs and LSTMs
	RNN, LSTM, and vanishing gradients

	Prediction as data augmentation
	Step1 – providing an input file
	Step 2 – running an RNN
	Step 3 – producing data augmentation

	Word embedding
	The Word2vec model

	Principal component analysis
	Intuitive explanation
	Mathematical explanation
	Variance
	Covariance
	Eigenvalues and eigenvectors
	Creating the feature vector
	Deriving the dataset
	Summing it up

	TensorBoard Projector
	Using Jacobian matrices

	Summary
	Questions
	Further reading

	Chapter 17: Quantum Computers That Think
	Technical requirements
	The rising power of quantum computers
	Quantum computer speed
	Defining a qubit
	Representing a qubit

	The position of a qubit
	Radians, degrees, and rotations
	Bloch sphere

	Composing a quantum score
	Quantum gates with Quirk
	A quantum computer score with Quirk
	A quantum computer score with IBM Q

	A thinking quantum computer
	Representing our mind's concepts
	Expanding MindX's conceptual representations
	Concepts in the mind-dataset of MindX
	Positive thinking
	Negative thinking
	Gaps
	Distances

	The embedding program
	The MindX experiment
	Preparing the data
	Transformation Functions – the situation function
	Transformation functions – the quantum function
	Creating and running the score
	Using the output
	IBM Watson and scripts

	Summary
	Questions
	Further reading

	Answers to the Questions
	Chapter 1 – Become an Adaptive Thinker
	Chapter 2 – Think like a Machine
	Chapter 3 – Apply Machine Thinking to a Human Problem
	Chapter 4 – Become an Unconventional Innovator
	Chapter 5 – Manage the Power of Machine Learning and Deep Learning
	Chapter 6 – Don't Get Lost in Techniques, Focus on Optimizing Your Solutions
	Chapter 7 – When and How to Use Artificial Intelligence
	Chapter 8 – Revolutions Designed for Some Corporations and Disruptive Innovations for Small to Large Companies
	Chapter 9 – Getting Your Neurons to Work
	Chapter 10 – Applying Biomimicking to AI
	Chapter 11 – Conceptual Representation Learning
	Chapter 12 – Automated Planning and Scheduling
	Chapter 13 – AI and the Internet of Things
	Chapter 14 – Optimizing Blockchains with AI
	Chapter 15 – Cognitive NLP Chatbots
	Chapter 16 – Improve the Emotional Intelligence Deficiencies of Chatbots
	Chapter 17 – Quantum Computers That Think

	Index

