

Deep Learning for Computer
Vision

Expert techniques to train advanced neural networks using
TensorFlow and Keras

Rajalingappaa Shanmugamani

BIRMINGHAM - MUMBAI

Deep Learning for Computer Vision
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Aman Singh
Content Development Editor: Varun Sony
Technical Editor: Dharmendra Yadav
Copy Editors: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Tania Dutta
Production Coordinator: Shantanu Zagade

First published: January 2018

Production reference: 1220118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78829-562-8

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Foreword
Deep learning is revolutionizing AI, and over the next several decades, it will change the
world radically. AI powered by deep learning will be on par in scale with the industrial
revolution. This, understandably, has created excitement and fear about the future. But the
reality is that just like the industrial revolution and machinery, deep learning will improve
industrial capacity and raise the standards of living dramatically for humankind. Rather
than replace jobs, it will create many more jobs of a higher stand. This is why this book is so
important and timely. Readers of this book will be introduced to deep learning for
computer vision, its power, and many applications. This book will give readers a grounding
in the fundamentals of an emerging industry that will grow exponentially over the next
decade.

Rajalingappaa Shanmugamani is a great researcher whom I have worked with previously
on several projects in computer vision. He was the lead engineer in designing and
delivering a complex computer vision and deep learning system for fashion search that was
deployed in the real world with great success. Among his strengths is his ability to take up
state-of-the-art research in complex problems and apply them to real-world situations. He
can also break down complex ideas and explain them in simple terms as is demonstrated in
this book. Raja is a very ambitious person with great work ethics, and in this book, he has
given a great overview of the current state of computer vision using deep learning, a task
not many can do in today's industry. This book is a great achievement by Raja and I’m sure
the reader will enjoy and benefit from it for many years to come.

Dr. Stephen Moore

Chief Technology Officer, EmotionReader, Singapore

Contributors

About the author
Rajalingappaa Shanmugamani is currently working as a Deep Learning Lead at SAP,
Singapore. Previously, he has worked and consulted at various startups for developing
computer vision products. He has a Masters from Indian Institute of Technology – Madras
where his thesis was based on applications of computer vision in the manufacturing
industry. He has published articles in peer-reviewed journals and conferences and applied
for few patents in the area of machine learning. In his spare time, he coaches programming
and machine learning to school students and engineers.

I thank my spouse Ezhil, family and friends for their immense support. I thank all the
teachers, colleagues, managers and mentors from whom I have learned a lot. I thank Jean
Ooi for creating the graphics for the book.

About the reviewers
Nishanth Koganti received B.Tech in Electrical Engineering from Indian Institute of
Technology Jodhpur, India in 2012, M.E and PhD in Information Science from
Nara Institute of Science and Technology, Japan in 2014, 2017 respectively. He is currently a
Postdoctoral researcher at the University of Tokyo, Japan. His research interests are
in assistive robotics, motor-skills learning, and machine learning. His graduate research was
on the development of a clothing assistance robot that helps elderly people to wear clothes.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started 6

Understanding deep learning 6
Perceptron 7
Activation functions 7

Sigmoid 8
The hyperbolic tangent function 9
The Rectified Linear Unit (ReLU) 10

Artificial neural network (ANN) 11
One-hot encoding 12
Softmax 12
Cross-entropy 12
Dropout 13
Batch normalization 13
L1 and L2 regularization 14

Training neural networks 14
Backpropagation 14
Gradient descent 15
Stochastic gradient descent 15

Playing with TensorFlow playground 16
Convolutional neural network 17

Kernel 17
Max pooling 18

Recurrent neural networks (RNN) 19
Long short-term memory (LSTM) 20

Deep learning for computer vision 21
Classification 21
Detection or localization and segmentation 22
Similarity learning 23
Image captioning 23
Generative models 24
Video analysis 25

Development environment setup 25
Hardware and Operating Systems - OS 26

General Purpose - Graphics Processing Unit (GP-GPU) 26
Computer Unified Device Architecture - CUDA 26
CUDA Deep Neural Network - CUDNN 28

Table of Contents

[ii]

Installing software packages 28
Python 28
Open Computer Vision - OpenCV 29
The TensorFlow library 30

Installing TensorFlow 30
TensorFlow example to print Hello, TensorFlow 30
TensorFlow example for adding two numbers 31
TensorBoard 32
The TensorFlow Serving tool 34

The Keras library 35
Summary 36

Chapter 2: Image Classification 37

Training the MNIST model in TensorFlow 37
The MNIST datasets 38
Loading the MNIST data 39
Building a perceptron 39

Defining placeholders for input data and targets 39
Defining the variables for a fully connected layer 40
Training the model with data 41

Building a multilayer convolutional network 42
Utilizing TensorBoard in deep learning 47

Training the MNIST model in Keras 51
Preparing the dataset 51
Building the model 52

Other popular image testing datasets 54
The CIFAR dataset 54
The Fashion-MNIST dataset 55
The ImageNet dataset and competition 57

The bigger deep learning models 57
The AlexNet model 58
The VGG-16 model 59
The Google Inception-V3 model 60
The Microsoft ResNet-50 model 63
The SqueezeNet model 63
Spatial transformer networks 65
The DenseNet model 65

Training a model for cats versus dogs 67
Preparing the data 67
Benchmarking with simple CNN 68
Augmenting the dataset 69

Augmentation techniques 70

Table of Contents

[iii]

Transfer learning or fine-tuning of a model 70
Training on bottleneck features 71

Fine-tuning several layers in deep learning 72
Developing real-world applications 74

Choosing the right model 75
Tackling the underfitting and overfitting scenarios 75
Gender and age detection from face 76
Fine-tuning apparel models 76
Brand safety 76

Summary 76

Chapter 3: Image Retrieval 77

Understanding visual features 78
Visualizing activation of deep learning models 79
Embedding visualization 80

Guided backpropagation 82
The DeepDream 85
Adversarial examples 89

Model inference 90
Exporting a model 90
Serving the trained model 92

Content-based image retrieval 94
Building the retrieval pipeline 95

Extracting bottleneck features for an image 96
Computing similarity between query image and target database 98

Efficient retrieval 98
Matching faster using approximate nearest neighbour 99

Advantages of ANNOY 100
Autoencoders of raw images 100

Denoising using autoencoders 102
Summary 106

Chapter 4: Object Detection 107

Detecting objects in an image 107
Exploring the datasets 108

ImageNet dataset 109
PASCAL VOC challenge 109
COCO object detection challenge 109
Evaluating datasets using metrics 110

Intersection over Union 110
The mean average precision 111

Table of Contents

[iv]

Localizing algorithms 112
Localizing objects using sliding windows 112

The scale-space concept 113
Training a fully connected layer as a convolution layer 113
Convolution implementation of sliding window 114

Thinking about localization as a regression problem 115
Applying regression to other problems 115
Combining regression with the sliding window 116

Detecting objects 118
Regions of the convolutional neural network (R-CNN) 118
Fast R-CNN 119
Faster R-CNN 120
Single shot multi-box detector 120

Object detection API 121
Installation and setup 121
Pre-trained models 123
Re-training object detection models 124

Data preparation for the Pet dataset 124
Object detection training pipeline 124
Training the model 125
Monitoring loss and accuracy using TensorBoard 126

Training a pedestrian detection for a self-driving car 126
The YOLO object detection algorithm 126
Summary 128

Chapter 5: Semantic Segmentation 129

Predicting pixels 129
Diagnosing medical images 131
Understanding the earth from satellite imagery 132
Enabling robots to see 132

Datasets 133
Algorithms for semantic segmentation 134

The Fully Convolutional Network 134
The SegNet architecture 135

Upsampling the layers by pooling 135
Sampling the layers by convolution 136
Skipping connections for better training 139

Dilated convolutions 140
DeepLab 141
RefiNet 142
PSPnet 144

Table of Contents

[v]

Large kernel matters 144
DeepLab v3 145

Ultra-nerve segmentation 146
Segmenting satellite images 151

Modeling FCN for segmentation 152
Segmenting instances 154
Summary 156

Chapter 6: Similarity Learning 157

Algorithms for similarity learning 157
Siamese networks 158

Contrastive loss 158
FaceNet 161

Triplet loss 162
The DeepNet model 163
DeepRank 164
Visual recommendation systems 166

Human face analysis 166
Face detection 167
Face landmarks and attributes 168

The Multi-Task Facial Landmark (MTFL) dataset 168
The Kaggle keypoint dataset 169
The Multi-Attribute Facial Landmark (MAFL) dataset 170
Learning the facial key points 171

Face recognition 173
The labeled faces in the wild (LFW) dataset 173
The YouTube faces dataset 174
The CelebFaces Attributes dataset (CelebA) 174
CASIA web face database 174
The VGGFace2 dataset 174
Computing the similarity between faces 175
Finding the optimum threshold 177

Face clustering 179
Summary 180

Chapter 7: Image Captioning 181

Understanding the problem and datasets 181
Understanding natural language processing for image captioning 182

Expressing words in vector form 182
Converting words to vectors 183
Training an embedding 184

Approaches for image captioning and related problems 186

Table of Contents

[vi]

Using a condition random field for linking image and text 186
Using RNN on CNN features to generate captions 187
Creating captions using image ranking 190
Retrieving captions from images and images from captions 191
Dense captioning 192
Using RNN for captioning 194
Using multimodal metric space 195
Using attention network for captioning 196
Knowing when to look 197

Implementing attention-based image captioning 199
Summary 201

Chapter 8: Generative Models 202

Applications of generative models 202
Artistic style transfer 203
Predicting the next frame in a video 204
Super-resolution of images 205
Interactive image generation 206
Image to image translation 207
Text to image generation 208
Inpainting 209
Blending 209
Transforming attributes 211
Creating training data 211
Creating new animation characters 212
3D models from photos 213

Neural artistic style transfer 213
Content loss 214
Style loss using the Gram matrix 219
Style transfer 222

Generative Adversarial Networks 225
Vanilla GAN 226
Conditional GAN 229
Adversarial loss 229
Image translation 230
InfoGAN 231
Drawbacks of GAN 231

Visual dialogue model 231
Algorithm for VDM 232

Table of Contents

[vii]

Generator 233
Discriminator 234

Summary 234

Chapter 9: Video Classification 235

Understanding and classifying videos 235
Exploring video classification datasets 236

UCF101 236
YouTube-8M 238
Other datasets 239

Splitting videos into frames 239
Approaches for classifying videos 240

Fusing parallel CNN for video classification 241
Classifying videos over long periods 243
Streaming two CNN's for action recognition 245
Using 3D convolution for temporal learning 247
Using trajectory for classification 248
Multi-modal fusion 249
Attending regions for classification 252

Extending image-based approaches to videos 254
Regressing the human pose 254

Tracking facial landmarks 255
Segmenting videos 255
Captioning videos 256
Generating videos 259

Summary 260

Chapter 10: Deployment 261

Performance of models 261
Quantizing the models 262
MobileNets 262

Deployment in the cloud 265
AWS 266
Google Cloud Platform 272

Deployment of models in devices 275
Jetson TX2 276
Android 277
iPhone 277

Summary 278

Other Books You May Enjoy 279

Index 282

Preface
Deep Learning for Computer Vision is a book intended for readers who want to learn deep-
learning-based computer vision techniques for various applications. This book will give the
reader tools and techniques to develop computer-vision-based products. There are plenty of
practical examples covered in the book to follow the theory.

Who this book is for
The reader wants to know how to apply deep learning to computer vision problems such as
classification, detection, retrieval, segmentation, generation, captioning, and video
classification. The reader also wants to understand how to achieve good accuracy under
various constraints such as less data, imbalanced classes, and noise. Then the reader also
wants to know how to deploy trained models on various platforms (AWS, Google Cloud,
Raspberry Pi, and mobile phones). After completing this book, the reader should be able to
develop code for problems of person detection, face recognition, product search, medical
image segmentation, image generation, image captioning, video classification, and so on.

What this book covers
Chapter 1, Getting Started, introduces the basics of deep learning and makes the readers
familiar with the vocabulary. The readers will install the software packages necessary to
follow the rest of the chapters.

Chapter 2, Image Classification, talks about the image classification problem, which is
labeling an image as a whole. The readers will learn about image classification techniques
and train a deep learning model for pet classification. They will also learn methods to
improve accuracy and dive deep into variously advanced architectures.

Chapter 3, Image Retrieval, covers deep features and image retrieval. The reader will learn
about various methods of obtaining model visualization, visual features, inference using
TensorFlow, and serving and using visual features for product retrieval.

Preface

[2]

Chapter 4, Object Detection, talks about detecting objects in images. The reader will learn
about various techniques of object detection and apply them for pedestrian detection. The
TensorFlow API for object detection will be utilized in this chapter.

Chapter 5, Semantic Segmentation, covers segmenting of images pixel-wise. The readers will
earn about segmentation techniques and train a model for segmentation of medical images.

Chapter 6, Similarity Learning, talks about similarity learning. The readers will learn about
similarity matching and how to train models for face recognition. A model to train facial
landmark is illustrated.

Chapter 7, Image Captioning, is about generating or selecting captions for images. The
readers will learn natural language processing techniques and how to generate captions for
images using those techniques.

Chapter 8, Generative Models, talks about generating synthetic images for various purposes.
The readers will learn what generative models are and use them for image generation
applications, such as style transfer, training data, and so on.

Chapter 9, Video Classification, covers computer vision techniques for video data. The
readers will understand the key differences between solving video versus image problems
and implement video classification techniques.

Chapter 10, Deployment, talks about the deployment steps for deep learning models. The
reader will learn how to deploy trained models and optimize for speed on various
platforms.

To get the most out of this book
The examples covered in this book can be run with Windows, Ubuntu, or Mac. All the
installation instructions are covered. Basic knowledge of Python and machine learning is
required. It's preferable that the reader has GPU hardware but it's not necessary.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Deep-Learning-for-Computer-Vision. We also
have other code bundles from our rich catalog of books and videos available at https:/ /
github.com/PacktPublishing/ . Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Note that the graph is written once with the summary_writer."

A block of code is set as follows:

merged_summary_operation = tf.summary.merge_all()
train_summary_writer = tf.summary.FileWriter('/tmp/train', session.graph)
test_summary_writer = tf.summary.FileWriter('/tmp/test')

http://www.packtpub.com/support
https://github.com/PacktPublishing/Deep-Learning-for-Computer-Vision
https://github.com/PacktPublishing/Deep-Learning-for-Computer-Vision
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Any command-line input or output is written as follows:

wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Once you are done, terminate the instance by clicking Actions|Instance State|Terminat."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[5]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Getting Started

Computer vision is the science of understanding or manipulating images and videos.
Computer vision has a lot of applications, including autonomous driving, industrial
inspection, and augmented reality. The use of deep learning for computer vision can be
categorized into multiple categories: classification, detection, segmentation, and generation,
both in images and videos. In this book, you will learn how to train deep learning models
for computer vision applications and deploy them on multiple platforms. We will use
TensorFlow, a popular python library for deep learning throughout this book for the
examples. In this chapter, we will cover the following topics:

The basics and vocabulary of deep learning
How deep learning meets computer vision?
Setting up the development environment that will be used for the examples
covered in this book
Getting a feel for TensorFlow, along with its powerful tools, such as TensorBoard
and TensorFlow Serving

Understanding deep learning
Computer vision as a field has a long history. With the emergence of deep learning,
computer vision has proven to be useful for various applications. Deep learning is a
collection of techniques from artificial neural network (ANN), which is a branch of
machine learning. ANNs are modelled on the human brain; there are nodes linked to each
other that pass information to each other. In the following sections, we will discuss in detail
how deep learning works by understanding the commonly used basic terms.

Getting Started Chapter 1

[7]

Perceptron
An artificial neuron or perceptron takes several inputs and performs a weighted summation
to produce an output. The weight of the perceptron is determined during the training
process and is based on the training data. The following is a diagram of the perceptron:

The inputs are weighted and summed as shown in the preceding image. The sum is then
passed through a unit step function, in this case, for a binary classification problem. A
perceptron can only learn simple functions by learning the weights from examples. The
process of learning the weights is called training. The training on a perceptron can be done
through gradient-based methods which are explained in a later section. The output of the
perceptron can be passed through an activation function or transfer function, which
will be explained in the next section.

Activation functions
The activation functions make neural nets nonlinear. An activation function decides
whether a perceptron should fire or not. During training activation, functions play an
important role in adjusting the gradients. An activation function such as sigmoid, shown
in the next section, attenuates the values with higher magnitudes. This nonlinear behaviour
of the activation function gives the deep nets to learn complex functions. Most of the
activation functions are continuous and differential functions, except rectified unit at 0.
A continuous function has small changes in output for every small change in input. A
differential function has a derivative existing at every point in the domain.

Getting Started Chapter 1

[8]

In order to train a neural network, the function has to be differentiable. Following are a few
activation functions.

Don't worry if you don't understand the terms like continuous and
differentiable in detail. It will become clearer over the chapters.

Sigmoid
Sigmoid can be considered a smoothened step function and hence differentiable. Sigmoid is
useful for converting any value to probabilities and can be used for binary classification.
The sigmoid maps input to a value in the range of 0 to 1, as shown in the following graph:

The change in Y values with respect to X is going to be small, and hence, there will be
vanishing gradients. After some learning, the change may be small. Another activation
function called tanh, explained in next section, is a scaled version of sigmoid and avoids
the problem of a vanishing gradient.

Getting Started Chapter 1

[9]

The hyperbolic tangent function
The hyperbolic tangent function, or tanh, is the scaled version of sigmoid. Like sigmoid, it
is smooth and differentiable. The tanh maps input to a value in the range of -1 to 1, as
shown in the following graph:

The gradients are more stable than sigmoid and hence have fewer vanishing gradient
problems. Both sigmoid and tanh fire all the time, making the ANN really heavy. The
Rectified Linear Unit (ReLU) activation function, explained in the next section, avoids this
pitfall by not firing at times.

Getting Started Chapter 1

[10]

The Rectified Linear Unit (ReLU)
ReLu can let big numbers pass through. This makes a few neurons stale and they don't fire.
This increases the sparsity, and hence, it is good. The ReLU maps input x to max (0, x), that
is, they map negative inputs to 0, and positive inputs are output without any change as
shown in the following graph:

Because ReLU doesn't fire all the time, it can be trained faster. Since the function is simple, it
is computationally the least expensive. Choosing the activation function is very
dependent on the application. Nevertheless, ReLU works well for a large range of problems.
In the next section, you will learn how to stack several perceptrons together that can learn
more complex functions than perceptron.

Getting Started Chapter 1

[11]

Artificial neural network (ANN)
ANN is a collection of perceptrons and activation functions. The perceptrons are
connected to form hidden layers or units. The hidden units form the nonlinear basis that
maps the input layers to output layers in a lower-dimensional space, which is also called
artificial neural networks. ANN is a map from input to output. The map is computed by
weighted addition of the inputs with biases. The values of weight and bias values along
with the architecture are called model.

The training process determines the values of these weights and biases. The model values
are initialized with random values during the beginning of the training. The error is
computed using a loss function by contrasting it with the ground truth. Based on the loss
computed, the weights are tuned at every step. The training is stopped when the error
cannot be further reduced. The training process learns the features during the training. The
features are a better representation than the raw images. The following is a diagram of an
artificial neural network, or multi-layer perceptron:

Several inputs of x are passed through a hidden layer of perceptrons and summed to the
output. The universal approximation theorem suggests that such a neural network can
approximate any function. The hidden layer can also be called a dense layer. Every layer
can have one of the activation functions described in the previous section. The number of
hidden layers and perceptrons can be chosen based on the problem. There are a few more
things that make this multilayer perceptron work for multi-class classification problems. A
multi-class classification problem tries to discriminate more than ten categories. We will
explore those terms in the following sections.

Getting Started Chapter 1

[12]

One-hot encoding
One-hot encoding is a way to represent the target variables or classes in case of a
classification problem. The target variables can be converted from the string labels to one-
hot encoded vectors. A one-hot vector is filled with 1 at the index of the target class but with
0 everywhere else. For example, if the target classes are cat and dog, they can be
represented by [1, 0] and [0, 1], respectively. For 1,000 classes, one-hot vectors will be of size
1,000 integers with all zeros but 1. It makes no assumptions about the similarity of target
variables. With the combination of one-hot encoding with softmax explained in the
following section, multi-class classification becomes possible in ANN.

Softmax
Softmax is a way of forcing the neural networks to output the sum of 1. Thereby, the output
values of the softmax function can be considered as part of a probability distribution. This
is useful in multi-class classification problems. Softmax is a kind of activation function
with the speciality of output summing to 1. It converts the outputs to probabilities by
dividing the output by summation of all the other values. The Euclidean distance can be
computed between softmax probabilities and one-hot encoding for optimization. But the
cross-entropy explained in the next section is a better cost function to optimize.

Cross-entropy
Cross-entropy compares the distance between the outputs of softmax and one-hot
encoding. Cross-entropy is a loss function for which error has to be minimized. Neural
networks estimate the probability of the given data to every class. The probability has to be
maximized to the correct target label. Cross-entropy is the summation of negative
logarithmic probabilities. Logarithmic value is used for numerical stability. Maximizing a
function is equivalent to minimizing the negative of the same function. In the next section,
we will see the following regularization methods to avoid the overfitting of ANN:

Dropout
Batch normalization
L1 and L2 normalization

Getting Started Chapter 1

[13]

Dropout
Dropout is an effective way of regularizing neural networks to avoid the overfitting of
ANN. During training, the dropout layer cripples the neural network by removing hidden
units stochastically as shown in the following image:

Note how the neurons are randomly trained. Dropout is also an efficient way of combining
several neural networks. For each training case, we randomly select a few hidden units so
that we end up with different architectures for each case. This is an extreme case of bagging
and model averaging. Dropout layer should not be used during the inference as it is not
necessary.

Batch normalization
Batch normalization, or batch-norm, increase the stability and performance of neural
network training. It normalizes the output from a layer with zero mean and a standard
deviation of 1. This reduces overfitting and makes the network train faster. It is very useful
in training complex neural networks.

Getting Started Chapter 1

[14]

L1 and L2 regularization
L1 penalizes the absolute value of the weight and tends to make the weights zero. L2
penalizes the squared value of the weight and tends to make the weight smaller during the
training. Both the regularizes assume that models with smaller weights are better.

Training neural networks
Training ANN is tricky as it contains several parameters to optimize. The procedure of
updating the weights is called backpropagation. The procedure to minimize the error is
called optimization. We will cover both of them in detail in the next sections.

Backpropagation
A backpropagation algorithm is commonly used for training artificial neural networks. The
weights are updated from backward based on the error calculated as shown in the
following image:

After calculating the error, gradient descent can be used to calculate the weight updating, as
explained in the next section.

Getting Started Chapter 1

[15]

Gradient descent
The gradient descent algorithm performs multidimensional optimization. The objective is to
reach the global maximum. Gradient descent is a popular optimization technique used in
many machine-learning models. It is used to improve or optimize the model prediction.
One implementation of gradient descent is called the stochastic gradient descent (SGD)
and is becoming more popular (explained in the next section) in neural networks.
Optimization involves calculating the error value and changing the weights to achieve that
minimal error. The direction of finding the minimum is the negative of the gradient of the
loss function. The gradient descent procedure is qualitatively shown in the following
figure:

The learning rate determines how big each step should be. Note that the ANN with
nonlinear activations will have local minima. SGD works better in practice for optimizing
non-convex cost functions.

Stochastic gradient descent
SGD is the same as gradient descent, except that it is used for only partial data to train
every time. The parameter is called mini-batch size. Theoretically, even one example can be
used for training. In practice, it is better to experiment with various numbers. In the next
section, we will discuss convolutional neural networks that work better on image data than
the standard ANN.

Getting Started Chapter 1

[16]

Visit https:/ /yihui. name/ animation/ example/ grad- desc/ to see a great
visualization of gradient descent on convex and non-convex surfaces.

Playing with TensorFlow playground
TensorFlow playground is an interactive visualization of neural networks. Visit http:/ /
playground.tensorflow. org/ , play by changing the parameters to see how the previously
mentioned terms work together. Here is a screenshot of the playground:

Dashboard in the TensorFlow playground

As shown previously, the reader can change learning rate, activation, regularization, hidden
units, and layers to see how it affects the training process. You can spend some time
adjusting the parameters to get the intuition of how neural networks for various kinds of
data.

https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
https://yihui.name/animation/example/grad-desc/
http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/
http://playground.tensorflow.org/

Getting Started Chapter 1

[17]

Convolutional neural network
Convolutional neural networks (CNN) are similar to the neural networks described in the
previous sections. CNNs have weights, biases, and outputs through a nonlinear activation.
Regular neural networks take inputs and the neurons fully connected to the next layers.
Neurons within the same layer don't share any connections. If we use regular neural
networks for images, they will be very large in size due to a huge number of neurons,
resulting in overfitting. We cannot use this for images, as images are large in size. Increase
the model size as it requires a huge number of neurons. An image can be considered a
volume with dimensions of height, width, and depth. Depth is the channel of an image,
which is red, blue, and green. The neurons of a CNN are arranged in a volumetric fashion
to take advantage of the volume. Each of the layers transforms the input volume to an
output volume as shown in the following image:

Convolution neural network filters encode by transformation. The learned filters detect
features or patterns in images. The deeper the layer, the more abstract the pattern is. Some
analyses have shown that these layers have the ability to detect edges, corners, and
patterns. The learnable parameters in CNN layers are less than the dense layer described in
the previous section.

Kernel
Kernel is the parameter convolution layer used to convolve the image. The convolution
operation is shown in the following figure:

Getting Started Chapter 1

[18]

The kernel has two parameters, called stride and size. The size can be any dimension of a
rectangle. Stride is the number of pixels moved every time. A stride of length 1 produces an
image of almost the same size, and a stride of length 2 produces half the size. Padding the
image will help in achieving the same size of the input.

Max pooling
Pooling layers are placed between convolution layers. Pooling layers reduce the size of the
image across layers by sampling. The sampling is done by selecting the maximum value in
a window. Average pooling averages over the window. Pooling also acts as a regularization
technique to avoid overfitting. Pooling is carried out on all the channels of features. Pooling
can also be performed with various strides.

Getting Started Chapter 1

[19]

The size of the window is a measure of the receptive field of CNN. The following figure
shows an example of max pooling:

CNN is the single most important component of any deep learning model for computer
vision. It won't be an exaggeration to state that it will be impossible for any computer to
have vision without a CNN. In the next sections, we will discuss a couple of advanced
layers that can be used for a few applications.

Visit https:/ /www. youtube. com/ watch? v=jajksuQW4mc for a great
visualization of a CNN and max-pooling operation.

Recurrent neural networks (RNN)
Recurrent neural networks (RNN) can model sequential information. They do not assume
that the data points are intensive. They perform the same task from the output of the
previous data of a series of sequence data. This can also be thought of as memory. RNN
cannot remember from longer sequences or time. It is unfolded during the training process,
as shown in the following image:

https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc
https://www.youtube.com/watch?v=jajksuQW4mc

Getting Started Chapter 1

[20]

As shown in the preceding figure, the step is unfolded and trained each time. During
backpropagation, the gradients can vanish over time. To overcome this problem, Long
short-term memory can be used to remember over a longer time period.

Long short-term memory (LSTM)
Long short-term memory (LSTM) can store information for longer periods of time, and
hence, it is efficient in capturing long-term efficiencies. The following figure illustrates how
an LSTM cell is designed:

Getting Started Chapter 1

[21]

LSTM has several gates: forget, input, and output. Forget gate maintains the information
previous state. The input gate updates the current state using the input. The output gate
decides the information be passed to the next state. The ability to forget and retain only the
important things enables LSTM to remember over a longer time period. You have learned
the deep learning vocabulary that will be used throughout the book. In the next section, we
will see how deep learning can be used in the context of computer vision.

Deep learning for computer vision
Computer vision enables the properties of human vision on a computer. A computer could
be in the form of a smartphone, drones, CCTV, MRI scanner, and so on, with various
sensors for perception. The sensor produces images in a digital form that has to be
interpreted by the computer. The basic building block of such interpretation or intelligence
is explained in the next section. The different problems that arise in computer vision can be
effectively solved using deep learning techniques.

Classification
Image classification is the task of labelling the whole image with an object or concept with
confidence. The applications include gender classification given an image of a person's face,
identifying the type of pet, tagging photos, and so on. The following is an output of such a
classification task:

Getting Started Chapter 1

[22]

The Chapter 2, Image Classification, covers in detail the methods that can be used for
classification tasks and in Chapter 3, Image Retrieval, we use the classification models for
visualization of deep learning models and retrieve similar images.

Detection or localization and segmentation
Detection or localization is a task that finds an object in an image and localizes the object
with a bounding box. This task has many applications, such as finding pedestrians and
signboards for self-driving vehicles. The following image is an illustration of detection:

Segmentation is the task of doing pixel-wise classification. This gives a fine separation of
objects. It is useful for processing medical images and satellite imagery. More examples and
explanations can be found in Chapter 4, Object Detection and Chapter 5, Image
Segmentation.

Getting Started Chapter 1

[23]

Similarity learning
Similarity learning is the process of learning how two images are similar. A score can be
computed between two images based on the semantic meaning as shown in the following
image:

There are several applications of this, from finding similar products to performing the facial
identification. Chapter 6, Similarity learning, deals with similarity learning techniques.

Image captioning
Image captioning is the task of describing the image with text as shown [below] here:

Reproduced with permission from Vinyals et al.

Getting Started Chapter 1

[24]

The Chapter 8, Image Captioning, goes into detail about image captioning. This is a unique
case where techniques of natural language processing (NLP) and computer vision have to
be combined.

Generative models
Generative models are very interesting as they generate images. The following is an
example of style transfer application where an image is generated with the content of that
image and style of other images:

Reproduced with permission from Gatys et al.

Getting Started Chapter 1

[25]

Images can be generated for other purposes such as new training examples, super-
resolution images, and so on. The Chapter 7, Generative Models, goes into detail of
generative models.

Video analysis
Video analysis processes a video as a whole, as opposed to images as in previous cases. It
has several applications, such as sports tracking, intrusion detection, and surveillance
cameras. Chapter 9, Video Classification, deals with video-specific applications. The new
dimension of temporal data gives rise to lots of interesting applications. In the next section,
we will see how to set up the development environment.

Development environment setup
In this section, we will set up the programming environment that will be useful for
following the examples in the rest of the book. Readers may have the following choices of
Operating Systems:

Development Operating Systems(OS) such as Mac, Ubuntu, or Windows
Deployment Operating Systems such as Mac, Windows, Android, iOs, or
Ubuntu installed in Cloud platform such as Amazon Web Services (AWS),
Google Cloud Platform (GCP), Azure, Tegra, Raspberry Pi

Irrespective of the platforms, all the code developed in this book should run without any
issues. In this chapter, we will cover the installation procedures for the development
environment. In Chapter 10, Deployment, we will cover installation for deployment in
various other environments, such as AWS, GCP, Azure, Tegra, and Raspberry Pi.

Getting Started Chapter 1

[26]

Hardware and Operating Systems - OS
For the development environment, you need to have a lot of computing power as training is
significantly computationally expensive. Mac users are rather limited to computing power.
Windows and Ubuntu users can beef up their development environment with more
processors and General Purpose - Graphics Processing Unit (GP-GPU), which will be
explained in the next section.

General Purpose - Graphics Processing Unit (GP-GPU)
GP-GPUs are special hardware that speeds up the training process of training deep learning
models. The GP-GPUs supplied by NVIDIA company are very popular for deep learning
training and deployment as it has well-matured software and community support. Readers
can set up a machine with such a GP-GPU for faster training. There are plenty of choices
available, and the reader can choose one based on budget. It is also important to choose the
RAM, CPU, and hard disk corresponding to the power of the GP-GPU. After the installation
of the hardware, the following drivers and libraries have to be installed. Readers who are
using Mac, or using Windows/Ubuntu without a GP-GPU, can skip the installation.

The following are the libraries that are required for setting up the environment:

Computer Unified Device Architecture (CUDA)
CUDA Deep Neural Network (CUDNN)

Computer Unified Device Architecture - CUDA
CUDA is the API layer provided by NVIDIA, using the parallel nature of the GPU. When
this is installed, drivers for the hardware are also installed. First, download the CUDA library
from the NVIDIA-portal: https:/ /developer. nvidia. com/ cuda- downloads.

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads

Getting Started Chapter 1

[27]

Go through the instructions on the page, download the driver, and follow the installation
instructions. Here is the screenshot of Ubuntu CUDA and the installation instructions:

These commands would have installed the cuda-drivers and the other CUDA APIs
required.

You can check whether the drivers are properly installed by typing
nvidia-smi in the command prompt.

Getting Started Chapter 1

[28]

CUDA Deep Neural Network - CUDNN
The CUDNN library provides primitives for deep learning algorithms. Since this package is
provided by NVIDIA, it is highly optimized for their hardware and runs faster. Several
standard routines for deep learning are provided in this package. These packages are used
by famous deep learning libraries such as tensorflow, caffe, and so on. In the next
section, instructions are provided for installing CUDNN. You can download CUDNN from the
NVIDIA portal at https:/ /developer. nvidia. com/ rdp/ cudnn- download.

User account is required (free signup).

Copy the relevant files to the CUDA folders, making them faster to run on GPUs. We will not
use CUDA and CUDNN libraries directly. Tensorflow uses these to work on GP-GPU with
optimized routines.

Installing software packages
There are several libraries required for trained deep learning models. We will install the
following libraries and see the reason for selecting the following packages over the
competing packages:

Python and other dependencies
OpenCV
TensorFlow
Keras

Python
Python is the de-facto choice for any data science application. It has the largest community
and support ecosystem of libraries. TensorFlow API for Python is the most complete, and
hence, Python is the natural language of choice. Python has two versions—Python2.x and
Python3.x. In this book, we will discuss Python3.x. There are several reasons for this choice:

Python 2.x development will be stopped by 2020, and hence, Python3.x is the
future of Python

https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download
https://developer.nvidia.com/rdp/cudnn-download

Getting Started Chapter 1

[29]

Python 3.x avoids many design flaws in the original implementation
Contrary to popular belief, Python3.x has as many supporting libraries for data
science as Python 2.x.

We will use Python version 3 throughout this book. Go to https:/ /www. python. org/
downloads/ and download version 3 according to the OS. Install Python by following the
steps given in the download link. After installing Python, pip3 has to be installed for easy
installation of Python packages. Then install the several Python packages by entering the
following command, so that you can install OpenCV and tensorflow later:

 sudo pip3 install numpy scipy scikit-learn pillow h5py

The description of the preceding installed packages is given as follows:

numpy is a highly-optimized numerical computation package. It has a powerful
N-dimensional package array object, and the matrix operations of numpy library
are highly optimized for speed. An image can be stored as a 3-dimensional numpy
object.
scipy has several routines for scientific and engineering calculations. We will
use some optimization packages later in the book.
scikit-learn is a machine-learning library from which we will use many
helper functions.
Ppillow is useful for image loading and basic operations.
H5py package is a Pythonic interface to the HDF5 binary data format. This is the
format to store models trained using Keras.

Open Computer Vision - OpenCV
The OpenCV is a famous computer vision library. There are several image processing
routines available in this library that can be of great use. Following is the step of installing
OpenCV in Ubuntu.

sudo apt-get install python-opencv

Similar steps can be found for other OSes at https:/ /opencv. org/ . It is cross-platform and
optimized for CPU-intensive applications. It has interfaces for several programming
languages and is supported by Windows, Ubuntu, and Mac.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/
https://opencv.org/

Getting Started Chapter 1

[30]

The TensorFlow library
The tensorflow is an open source library for the development and deployment of deep
learning models. TensorFlow uses computational graphs for data flow and numerical
computations. In other words, data, or tensor, flows through the graph, thus the name
tensorflow. The graph has nodes that enable any numerical computation and, hence, are
suitable for deep learning operations. It provides a single API for all kinds of platforms and
hardware. TensorFlow handles all the complexity of scaling and optimization at the
backend. It was originally developed for research at Google. It is the most famous deep
learning library, with a large community and comes with tools for visualization and
deployment in production.

Installing TensorFlow
Install tensorflow using pip3 for the CPU using the following command:

sudo pip3 install tensorflow

If you are using GPU hardware and have installed CUDA and CUDNN, install the GPU version
of the tensorflow with the following command:

sudo pip3 install tensorflow-gpu

Now the tensorflow is installed and ready for use. We will try out a couple of examples to
understand how TensorFlow works.

TensorFlow example to print Hello, TensorFlow
We will do an example using TensorFlow directly in the Python shell. In this example, we
will print Hello, TensorFlow using TensorFlow.

Invoke Python from your shell by typing the following in the command prompt:1.

 python3

Import the tensorflow library by entering the following command:2.

 >>> import tensorflow as tf

Getting Started Chapter 1

[31]

Next, define a constant with the string Hello, TensorFlow. This is different3.
from the usual Python assignment operations as the value is not yet initialized:

 >>> hello = tf.constant('Hello, TensorFlow!')

Create a session to initialize the computational graph, and give a name to the4.
session:

 >>> session = tf.Session()

The session can be run with the variable hello as the parameter.

Now the graph executes and returns that particular variable that is printed:5.

 >>> print(session.run(hello))

It should print the following:

Hello, TensorFlow!

Let us look at one more example to understand how the session and graph work.

Visit https:/ /github. com/ rajacheers/
DeepLearningForComputerVision to get the code for all the examples
presented in the book. The code will be organised according to chapters.
You can raise issues and get help in the repository.

TensorFlow example for adding two numbers
Here is another simple example of how TensorFlow is used to add two numbers.

Create a Python file and import tensorflow using the following code:1.

 import tensorflow as tf

The preceding import will be necessary for all the latter examples. It is assumed
that the reader has imported the library for all the examples. A placeholder can
be defined in the following manner. The placeholders are not loaded when
assigned. Here, a variable is defined as a placeholder with a type of float32. A
placeholder is an empty declaration and can take values when a session is run.

Now we define a placeholder as shown in the following code:2.

 x = tf.placeholder(tf.float32)
 y = tf.placeholder(tf.float32)

https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision
https://github.com/rajacheers/DeepLearningForComputerVision

Getting Started Chapter 1

[32]

Now the sum operation of the placeholders can be defined as a usual addition.3.
Here, the operation is not executed but just defined using the following code:

 z = x + y

The session can be created as shown in the previous example. The graph is ready4.
for executing the computations when defined as shown below:

 session = tf.Session()

Define the value of the placeholder in a dictionary format:5.

 values = {x: 5.0, y: 4.0}

Run the session with variable c and the values. The graph feeds the values to6.
appropriate placeholders and gets the value back for variable c:

 result = session.run([z], values)
 print(result)

This program should print [9.0] as the result of the addition.

It's understandable that this is not the best way to add two numbers. This example is to
understand how tensors and operations are defined in TensorFlow. Imagine how difficult it
will be to use a trillion numbers and add them. TensorFlow enables that scale with ease
with the same APIs. In the next section, we will see how to install and use TensorBoard and
TensorFlow serving.

TensorBoard
TensorBoard is a suite of visualization tools for training deep learning-based models with
TensorFlow. The following data can be visualized in TensorBoard:

Graphs: Computation graphs, device placements, and tensor details
Scalars: Metrics such as loss, accuracy over iterations
Images: Used to see the images with corresponding labels

Getting Started Chapter 1

[33]

Audio: Used to listen to audio from training or a generated one
Distribution: Used to see the distribution of some scalar
Histograms: Includes histogram of weights and biases
Projector: Helps visualize the data in 3-dimensional space
Text: Prints the training text data
Profile: Sees the hardware resources utilized for training

Tensorboard is installed along with TensorFlow. Go to the python3 prompt and type the
following command, similar to the previous example, to start using Tensorboard:

x = tf.placeholder(tf.float32, name='x')
y = tf.placeholder(tf.float32, name='y')
z = tf.add(x, y, name='sum')

Note that an argument name has been provided as an extra parameter to placeholders and
operations. These are names that can be seen when we visualize the graph. Now we can
write the graph to a specific folder with the following command in TensorBoard:

session = tf.Session()
summary_writer = tf.summary.FileWriter('/tmp/1', session.graph)

This command writes the graph to disk to a particular folder given in the argument. Now
Tensorboard can be invoked with the following command:

tensorboard --logdir=/tmp/1

Any directory can be passed as an argument for the logdir option where the files are
stored. Go to a browser and paste the following URL to start the visualization to access the
TensorBoard:

http://localhost:6006/

Getting Started Chapter 1

[34]

The browser should display something like this:

The TensorBoard visualization in the browser window

The graph of addition is displayed with the names given for the placeholders. When we
click on them, we can see all the particulars of the tensor for that operation on the right side.
Make yourself familiar with the tabs and options. There are several parts in this window.
We will learn about them in different chapters. TensorBoard is one the best distinguishing
tools in TensorFlow, which makes it better than any other deep learning framework.

The TensorFlow Serving tool
TensorFlow Serving is a tool in TensorFlow developed for deployment environments that
are flexible, providing high latency and throughput environments. Any deep learning
model trained with TensorFlow can be deployed with serving. Install the Serving by
running the following command:

sudo apt-get install tensorflow-model-server

Getting Started Chapter 1

[35]

Step-by-step instructions on how to use serving will be described in Chapter 3, Image
Retrieval. Note that the Serving is easy to install only in Ubuntu; for other OSes, please refer
to https://www.tensorflow. org/ serving/ setup. The following figure illustrates how
TensorFlow Serving and TensorFlow interact in production environments:

Many models can be produced by the training process, and Serving takes care of switching
them seamlessly without any downtime. TensorFlow Serving is not required for all the
following chapters, except for Chapter 3, Image Retrieval and Chapter 10, Deployment.

The Keras library
Keras is an open source library for deep learning written in Python. It provides an easy
interface to use TensorFlow as a backend. Keras can also be used with Theano, deep
learning 4j, or CNTK as its backend. Keras is designed for easy and fast experimentation by
focusing on friendliness, modularity, and extensibility. It is a self-contained framework and
runs seamlessly between CPU and GPU. Keras can be installed separately or used within
TensorFlow itself using the tf.keras API. In this book, we will use the tf.keras API. We
have seen the steps to install the required libraries for the development environment.
Having CUDA, CUDNN, OpenCV, TensorFlow, and Keras installed and running smoothly
is vital for the following chapters.

https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup
https://www.tensorflow.org/serving/setup

Getting Started Chapter 1

[36]

Summary
In this chapter, we have covered the basics of deep learning. The vocabulary introduced in
this chapter will be used throughout this book, hence, you can refer back to this chapter
often. The applications of computer vision are also shown with examples. Installations of all
the software packages for various platforms for the development environment were also
covered.

In the next chapter, we will discuss how to train classification models using both Keras and
TensorFlow on a dataset. We will look at how to improve the accuracy using a bigger model
and other techniques such as augmentation, and fine-tuning. Then, we will see several
advanced models proposed by several people around the world, achieving the best
accuracy in competitions.

2
Image Classification

Image classification is the task of classifying a whole image as a single label. For example,
an image classification task could label an image as a dog or a cat, given an image is either a
dog or a cat. In this chapter, we will see how to use TensorFlow to build such an image
classification model and also learn the techniques to improve the accuracy.

We will cover the following topics in this chapter:

Training the MNIST model in TensorFlow
Training the MNIST model in Keras
Other popular image testing datasets
The bigger deep learning models
Training a model for cats versus dogs
Developing real-world applications

Training the MNIST model in TensorFlow
In this section, we will learn about the Modified National Institute of Standards and
Technology (MNIST) database data and build a simple classification model. The objective
of this section is to learn the general framework for deep learning and use TensorFlow for
the same. First, we will build a perceptron or logistic regression model. Then, we will train a
CNN to achieve better accuracy. We will also see how TensorBoard helps visualize the
training process and understand the parameters.

Image Classification Chapter 2

[38]

The MNIST datasets
The MNIST data has handwritten digits from 0–9 with 60,000 images for training and 10,000
images for testing. This database is widely used to try algorithms with minimum
preprocessing. It's a good and compact database to learn machine learning algorithms. This
is the most famous database for image classification problems. A few examples are shown
here:

As can be seen in the preceding figure, there are 10 labels for these handwritten
characters. The images are normalized to the size of 28 image pixels by 28 image pixels,
converted to grey size, and centered to a fixed size. This is a small dataset on which an
algorithm can be quickly tested. In the next section, we will see how to load this dataset to
be used in TensorFlow.

Image Classification Chapter 2

[39]

Loading the MNIST data
Load the MNIST data directly from TensorFlow. Note that we specify one hot encoding as
an argument while loading the data. The label is stored as integers but should be loaded as
one-hot encoding in-order to train. It is assumed that the reader is running the code from an
editor with TensorFlow imported tf from this point onward. The following is the code
snippet to load MNIST_data:

from tensorflow.examples.tutorials.mnist import input_data
mnist_data = input_data.read_data_sets('MNIST_data', one_hot=True)

For the first run, the data will be downloaded and may take some time. From the second
run, the cached data will be utilized. In the next section, we will build a perceptron to
classify the digits.

Building a perceptron
A perceptron is a single-layer neural network. The concepts covered in this chapter, such as
a fully connected layer, activation function, Stochastic Gradient Descent, logits, one
hot encoding, softmax, and cross-entropy will be useful here. You will learn how to define
these components of neural networks in TensorFlow and use the network to train the MNIST
data.

Defining placeholders for input data and targets
A placeholder is a tensor where the data is passed. Placeholders aren't specific values but
will receive input during computation. The input size of the perceptron, number of classes,
batch size, and the total number of iterations or batches are first declared. x_input is the
input where the images will be fed later. y_input is the placeholder where the one-shot
labels or targets will be supplied as shown here:

input_size = 784
no_classes = 10
batch_size = 100
total_batches = 200

x_input = tf.placeholder(tf.float32, shape=[None, input_size])
y_input = tf.placeholder(tf.float32, shape=[None, no_classes])

Image Classification Chapter 2

[40]

The None in the shape argument indicates that it can be of any size as we have not yet
defined the batch size. The second argument is the size of the tensor for x_input and the
number of classes for y_input. Based on the type of placeholder, we have sent the data as
floats. Next, we can define the perceptron.

Defining the variables for a fully connected layer
Let's define a simple linear classifier or perceptron by explaining the variables such as
weights and bias. The values of these variables will be learned during computation.
These are also referred to as parameters of the model. The weight variables are initialized
with normal random distribution with the shape of input size and number of classes. The
input size is 784 here as the image is reshaped into a single vector. The number of classes is
10 which is equal to the number of digits in the dataset. The bias variable is also initialized
with random normal distribution with the size equal to the number of classes. The weights
and bias are defined as follows:

weights = tf.Variable(tf.random_normal([input_size, no_classes]))
bias = tf.Variable(tf.random_normal([no_classes]))

The initialization of the variables can be zeroes but a random normal distribution gives a
steady training. The inputs are then weighted and added with the bias to produce logits
as shown next:

logits = tf.matmul(x_input, weights) + bias

The logits produced by the perceptron has to be compared against one-hot labels
y_input. As learned in Chapter 1, Getting Started, it is better to use softmax coupled with
cross-entropy for comparing logits and one-hot labels.

The tf.nn.softmax_cross_entropy_with_logits API from TensorFlow does this for
us. The loss can be computed by averaging the cross-entropies. Then the cross-entropy is
fed through gradient descent optimization done
by tf.train.GradientDescentOptimizer. The optimizer takes the loss and minimizes it
with a learning rate of 0.5. The computation of softmax, cross-entropy, loss, optimization is
shown next:

softmax_cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
 labels=y_input, logits=logits)
loss_operation = tf.reduce_mean(softmax_cross_entropy)
optimiser = tf.train.GradientDescentOptimizer(
 learning_rate=0.5).minimize(loss_operation)

Image Classification Chapter 2

[41]

The softmax and cross-entropies are computed together from the tf.nn package, which has
several other useful methods. The tf.train has several optimizers, and here, we are using
the vanilla gradient descent. You can visit TensorFlow API documentation to understand
other optional parameters. Until now, the placeholders, variables, and operations are
defined and yet to be populated with tensors.

Read the list of optimizers available in TensorFlow at https:/ /www.
tensorflow. org/ api_ guides/ python/ train. The Adam optimizer is
particularly useful for computer vision applications. It generally converges
faster and we need not define a learning rate to start with. For a theoretical
summary of optimizers, visit http:/ /ruder. io/ optimizing- gradient-
descent.

Training the model with data
Now you have defined the model and training operation. The next step is to start training
the model with the data. During training, the gradients are calculated and the weights are
updated. The variables have not yet been initialized. Next, start the session and initialize the
variables using a global variable initializer:

session = tf.Session()
session.run(tf.global_variables_initializer())

The preceding two lines are required for most of the examples in this book. It is assumed
that the reader will use these two lines wherever required. Now the graph is ready to be fed
with data and start training. Over a loop, read the data in batches and train the model.
Training the model is carried out by running the session with the required tensors. The
optimizer has to be called in order for the graph to update the weights:

for batch_no in range(total_batches):
 mnist_batch = mnist_data.train.next_batch(batch_size)
 _, loss_value = session.run([optimiser, loss_operation], feed_dict={
 x_input: mnist_batch[0],
 y_input: mnist_batch[1]
 })
 print(loss_value)

https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent
http://ruder.io/optimizing-gradient-descent

Image Classification Chapter 2

[42]

The first argument of the run method can have an array for which the outputs of the values
are requested. We pass loss because printing loss tells us whether the model is getting
trained or not. The loss is expected to decrease as we are minimizing the loss. The feed dict
is a Python dictionary used to directly feed the input and target labels to the placeholders.
Once this loop ends, the loss should be generally lower than 0.46. Next, we can evaluate
how well the model worked by computing the accuracy, as shown here:

predictions = tf.argmax(logits, 1)
correct_predictions = tf.equal(predictions, tf.argmax(y_input, 1))
accuracy_operation = tf.reduce_mean(tf.cast(correct_predictions,
 tf.float32))
test_images, test_labels = mnist_data.test.images, mnist_data.test.labels
accuracy_value = session.run(accuracy_operation, feed_dict={
 x_input: test_images,
 y_input: test_labels
})
print('Accuracy : ', accuracy_value)
session.close()

The prediction should be the index of the maximum activation. It should be compared with
the ground truth on MNIST labels for correct predictions. The accuracy is calculated using
the average of correct predictions. The accuracy of the data can be evaluated by running the
session with test data as the feed dictionary. When the whole program is run, it should
finally produce an accuracy of around 90%. The definition of the model may seem too
explicit without simpler APIs for training and testing. This level of basic definition gives the
power of expressiveness for TensorFlow. In the next sections, we will see higher level APIs.
The accuracy obtained by the perceptron is not great, and in the next section, we will use a
deeper network with convolution layers to improve the accuracy.

Building a multilayer convolutional network
In this section, we will see how to create a multilayer convolutional network in TensorFlow
and watch how a deeper network improves classification accuracy. We will define the
layers with TensorFlow layers' APIs rather than defining them from scratch. The best
practice methods are engrained in those methods. The import of libraries, datasets, and
placeholders can be followed from the previous section. This time, we will use TensorBoard
for visualizing the training process. In order to visualize the statistics of the variables, the
values of variable statistics have to be added to tf.summary.

Image Classification Chapter 2

[43]

The summaries will be written to a folder that is interpretable to TensorBoard. Let's define a
function to write the summaries so that TensorBoard can be used to visualize them:

def add_variable_summary(tf_variable, summary_name):
 with tf.name_scope(summary_name + '_summary'):
 mean = tf.reduce_mean(tf_variable)
 tf.summary.scalar('Mean', mean)
 with tf.name_scope('standard_deviation'):
 standard_deviation = tf.sqrt(tf.reduce_mean(
 tf.square(tf_variable - mean)))
 tf.summary.scalar('StandardDeviation', standard_deviation)
 tf.summary.scalar('Maximum', tf.reduce_max(tf_variable))
 tf.summary.scalar('Minimum', tf.reduce_min(tf_variable))
 tf.summary.histogram('Histogram', tf_variable)

The variable summary function writes the summaries of a variable. There are five statistics
added to the summaries: mean, standard deviation, maximum, minimum and histogram.
Summaries can be either a scalar or a histogram. We will see how these values can be
visualized in TensorBoard when logged for several variables. Unlike the previous model,
we will resize the MNIST data into a square and use it like a two-dimensional image. The
following is the command to reshape the image into 28 image pixels by 28 image pixels:

x_input_reshape = tf.reshape(x_input, [-1, 28, 28, 1],
 name='input_reshape')

The dimension -1 denotes that the batch size can be any number. Note that there is an
argument called name that will be reflected in the TensorBoard graph for ease of
understanding. We will define a 2D convolution layer where the input, filters, kernels, and
activations are defined. This method can be called anywhere for further examples and is
useful when the activation function has to have Rectified Linear Unit (ReLU) activation.
The convolution function layer is defined as follows:

def convolution_layer(input_layer, filters, kernel_size=[3, 3],
 activation=tf.nn.relu):
 layer = tf.layers.conv2d(
 inputs=input_layer,
 filters=filters,
 kernel_size=kernel_size,
 activation=activation,
)
 add_variable_summary(layer, 'convolution')
 return layer

Image Classification Chapter 2

[44]

There are default parameters for kernel_size and activation. The summaries are added
to the layer within the function and the layer is returned. Whenever the function is
called, input_layer has to be passed as a parameter. This definition will make our other
code simple and small. In a very similar way, we will define a function for
the pooling_layer as follows:

def pooling_layer(input_layer, pool_size=[2, 2], strides=2):
 layer = tf.layers.max_pooling2d(
 inputs=input_layer,
 pool_size=pool_size,
 strides=strides
)
 add_variable_summary(layer, 'pooling')
 return layer

This layer has default parameters for pool_size and strides to be [2, 2] and 2
respectively. These parameters generally work well but can be changed when necessary.
The summaries are added for this layer too. We will next define a dense layer as follows:

def dense_layer(input_layer, units, activation=tf.nn.relu):
 layer = tf.layers.dense(
 inputs=input_layer,
 units=units,
 activation=activation
)
 add_variable_summary(layer, 'dense')
 return layer

The dense layer defined has default parameters for activation and variable summaries are
added as well. The pooling_layer takes the feature map from the convolution layer and
reduces it to half its size by skipping, using the pool size and strides. All these layers are
connected as a graph and are just defined. None of the values is initialized. Another
convolution layer can be added to transform the sampled features from the first
convolution layer to better features. After pooling, we may reshape the activations to a
linear fashion in order to be fed through dense layers:

convolution_layer_1 = convolution_layer(x_input_reshape, 64)
pooling_layer_1 = pooling_layer(convolution_layer_1)
convolution_layer_2 = convolution_layer(pooling_layer_1, 128)
pooling_layer_2 = pooling_layer(convolution_layer_2)
flattened_pool = tf.reshape(pooling_layer_2, [-1, 5 * 5 * 128],
 name='flattened_pool')
dense_layer_bottleneck = dense_layer(flattened_pool, 1024)

Image Classification Chapter 2

[45]

The only difference between the convolution layers is the filter size. It's important that the
dimensions change appropriately from layer to layer. Choosing the parameters for kernel
and stride are arbitrary and these numbers are chosen by experience. Two convolution
layers are defined, and this can be followed by a fully connected layer. A dense-layer API
can take any vector of a single dimension and map it to any number of hidden units, as in
this case is 1024. The hidden layer is followed by ReLU activation to make this a non-linear
computation. Variable summaries are added for this layer as well. This is followed by a
dropout layer with a rate of dropping out. Keeping this high will stop the network from
learning. The training mode can be set to True and False based on when we use this. We
will set this as True (default is False) for the training. We will have to change this while
the accuracy is calculated. Hence, a bool is kept for this, that will be fed during training:

dropout_bool = tf.placeholder(tf.bool)
dropout_layer = tf.layers.dropout(
 inputs=dense_layer_bottleneck,
 rate=0.4,
 training=dropout_bool
)

The dropout layer is fed again to a dense layer, which is called logits. Logits is the final
layer with activations leading to the number of classes. The activations will be spiked for a
particular class, which is the target class, and can be obtained for a maximum of those 10
activations:

logits = dense_layer(dropout_layer, no_classes)

The logits output is very similar to the model created in the previous section. Now the logits
can be passed through the softmax layer followed by the cross-entropy calculation as
before. Here, we have added a scope name to get a better visualization in TensorBoard as
follows:

with tf.name_scope('loss'):
 softmax_cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
 labels=y_input, logits=logits)
 loss_operation = tf.reduce_mean(softmax_cross_entropy, name='loss')
 tf.summary.scalar('loss', loss_operation)

This loss function can be optimized with tf.train APIs' methods. Here, we will use the
Adamoptimiser. The learning rate need not be defined and works well for most cases:

with tf.name_scope('optimiser'):
 optimiser = tf.train.AdamOptimizer().minimize(loss_operation)

Image Classification Chapter 2

[46]

The accuracy is calculated as before but name scopes are added for correct predictions and
accuracy calculation:

with tf.name_scope('accuracy'):
 with tf.name_scope('correct_prediction'):
 predictions = tf.argmax(logits, 1)
 correct_predictions = tf.equal(predictions, tf.argmax(y_input, 1))
 with tf.name_scope('accuracy'):
 accuracy_operation = tf.reduce_mean(
 tf.cast(correct_predictions, tf.float32))
tf.summary.scalar('accuracy', accuracy_operation)

A scalar summary for accuracy is also added. The next step is to start the session and
initialize the variables as in the previous section. The lines are not repeated here. The
summaries have to be merged, and the files for writing the training and testing summaries
have to be defined:

merged_summary_operation = tf.summary.merge_all()
train_summary_writer = tf.summary.FileWriter('/tmp/train', session.graph)
test_summary_writer = tf.summary.FileWriter('/tmp/test')

Note that the graph is written once with the summary_writer. The training is very similar
to before except that the accuracy calculations while training and the values are added to
the summaries. Next, the data can be loaded in batches and training can be started:

test_images, test_labels = mnist_data.test.images, mnist_data.test.labels

for batch_no in range(total_batches):
 mnist_batch = mnist_data.train.next_batch(batch_size)
 train_images, train_labels = mnist_batch[0], mnist_batch[1]
 _, merged_summary = session.run([optimiser, merged_summary_operation],
 feed_dict={
 x_input: train_images,
 y_input: train_labels,
 dropout_bool: True
 })
 train_summary_writer.add_summary(merged_summary, batch_no)
 if batch_no % 10 == 0:
 merged_summary, _ = session.run([merged_summary_operation,
 accuracy_operation], feed_dict={
 x_input: test_images,
 y_input: test_labels,
 dropout_bool: False
 })
 test_summary_writer.add_summary(merged_summary, batch_no)

Image Classification Chapter 2

[47]

Summaries are returned in every iteration for training data and are added to the writer. For
every tenth iteration, the test summaries are added. Note that the dropout is enabled only
during training and not during testing. We have completed the definition, and summaries
of the network and this can be run. To see the training process, we can go to TensorBoard as
described in Chapter 1, Getting Started.

Utilizing TensorBoard in deep learning
Once the TensorBoard is opened in the browser, go to the Graphs tab. The graph that we
have defined and been getting trained should be displayed. Right-clicking on the nodes, we
can choose the operations to be removed from the main graph. After some alignment, the
graph should look as follows:

Figure illustrating the graphs that were trained and defined in the previous instance

Image Classification Chapter 2

[48]

Notice how nicely all the layers that we have defined are displayed. This is very useful to
check the definition of the architecture. The direction of the graph is nicely visualized with
all the particulars. By clicking on each node, you can see the particulars of the node, such as
input and output tensor shapes, as shown here:

These values can be used to cross-check the definitions of the parameters of the layers.
Make yourself familiar with this page by noticing the legend in the bottom left, as follows:

The name scopes are grouped and individual components can be seen by clicking on the
plus sign on the nodes. The nodes are arranged by colors. Now we can move to the scalars
page. By moving around the page, you can spot the accuracy graphs, as shown in the
following figure:

Image Classification Chapter 2

[49]

The orange line is for training data and the blue line for testing data. They roughly follow
the same pattern. There are slightly lesser bright lines indicating the original values,
whereas the brighter ones are smoothed curves. The smoothing coefficient can be selected
in the UI. The accuracy of the test data has reached above 97%. The following is the figure
from the loss summary:

The loss was steadily decreasing for both training and testing data during the training
process, which is a good sign. The data of all the summaries will be refreshed during the
training process, and we can witness the increase in accuracy with a decrease in the loss to
achieve an excellent result of 97.38% test accuracy.

Image Classification Chapter 2

[50]

This helps you see whether the model is learning and moving toward better results. The
other summaries such as min, max, mean, and standard deviation are also useful. The
following are the graphs of a dense layer:

These summaries are useful to notice the change in weights. These distributions can also be
visualized as histograms, as follows:

Image Classification Chapter 2

[51]

These are the spreads of the weights of the logits. These are the beautiful visualizations
possible with TensorBoard and are extremely helpful in training. By making the model
deeper, we were able to witness a huge increase in accuracy. In the next section, we will see
how to train the same model with Keras APIs. Now you can see the power of TensorBoard
in inspecting the deep learning model and the training process.

Training the MNIST model in Keras
In this section, we will use the same model as defined in the previous section
using tf.keras APIs. It is better to learn both Keras and layers packages from TensorFlow
as they could be seen at several open source codes. The objective of the book is to make you
understand various offerings of TensorFlow so that you can build products on top of it.

"Code is read more often than it is written."

Bearing in mind the preceding quote, you are shown how to implement the same model
using various APIs. Open source code of any implementation of the latest algorithms will
be a mix of these APIs. Next, we will start with the Keras implementation.

Preparing the dataset
The MNIST data is available with Keras. First, import tensorflow. Then define a few
constants such as batch size, the classes, and the number of epochs. The batch size can be
selected based on the RAM available on your machine. The higher the batch size, the more
RAM required. The impact of the batch size on the accuracy is minimal. The number of
classes is equal to 10 here and will be different for different problems. The number of
epochs determines how many times the training has to go through the full dataset. If the
loss is reduced at the end of all epochs, it can be set to a high number. In a few cases,
training longer could give better accuracy. Let us now look at the steps to create the dataset:

Set the dimensions of the input images as well as follows: 1.

 batch_size = 128
 no_classes = 10
 epochs = 2
 image_height, image_width = 28, 28

Image Classification Chapter 2

[52]

Load the data from disk to memory using the Keras utilities:2.

 (x_train, y_train), (x_test, y_test) =
tf.keras.datasets.mnist.load_data()

Reshape the vector into an image format, and define the input dimension for the3.
convolution using the code given:

 x_train = x_train.reshape(x_train.shape[0], image_height,
image_width, 1)
 x_test = x_test.reshape(x_test.shape[0], image_height, image_width,
1)
 input_shape = (image_height, image_width, 1)

Convert the data type to float as follows:4.

 x_train = x_train.astype('float32')
 x_test = x_test.astype('float32')

Normalize the data by subtracting the mean of the data:5.

 x_train /= 255
 x_test /= 255

Convert the categorical labels to one-shot encoding:6.

 y_train = tf.keras.utils.to_categorical(y_train, no_classes)
 y_test = tf.keras.utils.to_categorical(y_test, no_classes)

This is very different from the TensorFlow way of writing the code. The data is loaded
already in memory and none of the concepts of Placeholders is present here.

Building the model
In this section, we will use a few convolution layers followed by fully connected layers for
training the preceding dataset. Construct a simple sequential model with two convolution
layers followed by pooling, dropout, and dense layers. A sequential model has the add
method to stack layers one above another. The first layer has 64 filters, and the second
layers have 128 filters. The kernel size is 3 for all the filters. Apply the max pooling after the
convolution layers. The output of the convolution layers is flattened connecting to a couple
of fully connected layers with dropout connections.

Image Classification Chapter 2

[53]

The last layer is connected to softmax as this is a multiclass classification problem. The
following code shows how to define the model:

def simple_cnn(input_shape):
 model = tf.keras.models.Sequential()
 model.add(tf.keras.layers.Conv2D(
 filters=64,
 kernel_size=(3, 3),
 activation='relu',
 input_shape=input_shape
))
 model.add(tf.keras.layers.Conv2D(
 filters=128,
 kernel_size=(3, 3),
 activation='relu'
))
 model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
 model.add(tf.keras.layers.Dropout(rate=0.3))
 model.add(tf.keras.layers.Flatten())
 model.add(tf.keras.layers.Dense(units=1024, activation='relu'))
 model.add(tf.keras.layers.Dropout(rate=0.3))
 model.add(tf.keras.layers.Dense(units=no_classes,
activation='softmax'))
 model.compile(loss=tf.keras.losses.categorical_crossentropy,
 optimizer=tf.keras.optimizers.Adam(),
 metrics=['accuracy'])
 return model
simple_cnn_model = simple_cnn(input_shape)

The model is just defined and has to be compiled. During compilation loss, optimizer and
metrics have to be defined. The loss will be cross-entropy, optimized by the Adam
algorithm, and we will report the accuracy as the metric. Using the loaded data, train and
evaluate the data. Load the training data with the training parameters and fit the model:

simple_cnn_model.fit(x_train, y_train, batch_size, epochs, (x_test,
y_test))
train_loss, train_accuracy = simple_cnn_model.evaluate(
 x_train, y_train, verbose=0)
print('Train data loss:', train_loss)
print('Train data accuracy:', train_accuracy)

Image Classification Chapter 2

[54]

A session is not created when Keras APIs are used. Then evaluate the test data as follows:

test_loss, test_accuracy = simple_cnn_model.evaluate(
 x_test, y_test, verbose=0)
print('Test data loss:', test_loss)
print('Test data accuracy:', test_accuracy)

The evaluation is also created without any explicit creation of the session. After finishing
the run, the result should look similar to the following:

Loss for train data: 0.0171295607952
Accuracy of train data: 0.995016666667
Loss for test data: 0.0282736890309
Accuracy of test data: 0.9902

This should give a better accuracy of 99% on the test data. Note that the training accuracy is
higher than the test data, and it's always a good practice to print both of them. The
difference in accuracy is due to the number of iterations. The accuracy is a bit more than the
previous model created in TensorFlow because of the difference in the dataset.

Other popular image testing datasets
The MNIST dataset is the most commonly used dataset for testing the algorithms. But there
are other datasets that are used to test image classification algorithms.

The CIFAR dataset
The Canadian Institute for Advanced Research (CIFAR)-10 dataset has 60,000 images with
50,000 images for training and 10,000 images for testing. The number of classes is 10. The
image dimension is 32 pixels by 32 pixels. The following are randomly selected images from
each of the class:

Image Classification Chapter 2

[55]

The images are tiny and just contain one object. The CIFAR-100 dataset contains the same
number of images but with 100 classes. Hence, there are only 600 images per class. Each
image comes with a super label and a fine label. This dataset is available at
tf.keras.datasets if you wish to experiment.

The Fashion-MNIST dataset
Fashion-MNIST is a dataset created as an alternative to the MNIST dataset. This dataset
created as MNIST is considered as too easy and this can be directly replaced with MNIST.

Image Classification Chapter 2

[56]

The following is randomly selected examples from the dataset after principal component
analysis (PCA) is performed:

The dataset size, number of labels and image size are similar to MNIST. More details can be
found at https://github. com/ zalandoresearch/ fashion- mnist. You can run the models
learned previously and check the accuracy.

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

Image Classification Chapter 2

[57]

The ImageNet dataset and competition
ImageNet is a computer vision dataset with 14,197,122 images, 21,841 Synsets indexed.
Synset is a node in WordNet hierarchy that in turn is a set of synonyms. There is a
competition held every year with 1,000 classes from this dataset. It has been the standard
benchmark for assessing the performance of image classification algorithms.

In 2013, a deep learning based computer vision model got the number one spot. From then,
only deep learning models have won the competition. The following is the top five error
rate over the years in the competition:

You can notice that the accuracy has been increasing over the years, as well as the depth of
the layers. Next, we will understand the models that are present in this graph.

Image Classification Chapter 2

[58]

The bigger deep learning models
We will go through several model definitions that have achieved state-of-the-art results in
the ImageNet competitions. We will look at them individually on the following topics.

The AlexNet model
AlexNet is the first publication that started a wide interest in deep learning for computer
vision. Krizhevsky et al. (https:/ / papers. nips. cc/ paper/ 4824- imagenet-
classification-with- deep- convolutional- neural- networks. pdf) proposed AlexNet and
it has been a pioneer and influential in this field. This model won the ImageNet 2013
challenge. The error rate was 15.4%, which was significantly better than the next. The model
was relatively a simple architecture with five convolution layers. The challenge was to
classify 1,000 categories of objects. The image and data had 15 million annotated images
with over 22,000 categories. Out of them, only a 1,000 categories are used for the
competition. AlexNet used ReLU as the activation function and found it was training
several times faster than other activation functions. The architecture of the model is shown
here:

Reproduced with permission from Krizhevsky et al.

The paper also used data augmentation techniques such as image translations, horizontal
flips, and random cropping. The dropout layer prevents overfitting. The model used vanilla
Stochastic Gradient Descent (SGD) for training. The parameters of SGD are chosen
carefully for training. The learning rate changes over a fixed set of training iterations. The
momentum and weight decay take fixed values for training. There is a concept called Local
Response Normalization (LRN) introduced in this paper. The LRN layers normalize every
pixel across the filters to avoid huge activation in a particular filter.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Image Classification Chapter 2

[59]

This layer is not used anymore as recent research suggests that there is not much
improvement because of LRN. AlexNet has 60 million parameters in total.

The VGG-16 model
The VGG model stands for the Visual Geometry Group from Oxford. The model was very
simple and had a greater depth than AlexNet. The paper had two models with 16 and 19
layers depth. All the CNN layers were using 3 by 3 filters with stride and a pad of size 1
and a max pooling size of 2 with stride 2. This resulted in a decrease in the number of
parameters. Though the size is decreasing because of max pooling, the number of filters is
increasing with layers. The architecture of the 16-layer deep model is as follows:

Image Classification Chapter 2

[60]

This model has 138 million parameters and is the largest of all the models described here.
But the uniformity of parameters is quite good. The characteristic is such that, as deep as the
network gets, the smaller the image is with an increased number of filters. One of the data
augmentation techniques used was scale jittering. Scale jittering is an augmentation
technique where a side with random size is considered to vary the scales.

The Google Inception-V3 model
Inception-V3 was proposed by Szegedy et al. (https:/ /arxiv. org/ pdf/ 1409. 4842. pdf)
and introduced the concept of inception that has a better way of generalization. This was
the architecture that won the ImageNet competition in 2014. It is geared towards efficiency
for speed and size. It has 12 times lesser parameters than AlexNet. Inception is the micro-
architecture on which a macro-architecture is built. Each hidden layer has a higher-level
representation of the image. At each layer, we have an option of using pooling or other
layers. Instead of using one type of kernel, inception uses several kernels. An average
pooling is followed by various size convolutions and then they are concatenated.

The kernel parameters can be learned based on the data. Using several kernels, the model
can detect small features as well as higher abstractions. The 1 x 1 convolution will reduce
the feature and, hence, computations. This takes less RAM during inference. The following
is the inception module in its simplest form where there are options of convolutions with
various kernel sizes and pooling:

https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf

Image Classification Chapter 2

[61]

Notice that operations are happening in parallel, as opposed to AlexNet or VGG. The
output volume is huge, and hence, 1 x 1 filters are introduced for dimensionality reduction.
When the reduced dimensions are added to the architecture it becomes as follows:

Image Classification Chapter 2

[62]

The whole architecture of the model is as follows with all the bells and whistles:

Figure illustrating the Google Inception V3 model architecture [Reproduced with permission from Szegedy et al.]

Image Classification Chapter 2

[63]

There are nine inception modules with a total of 100 layers and they achieve good
performance.

The Microsoft ResNet-50 model
ResNet was proposed by He et al. (https:/ /arxiv. org/pdf/ 1512. 03385. pdf) and won the
ImageNet competition in 2015. This method showed that deeper networks can be trained.
The deeper the network, the more saturated the accuracy becomes. It's not even due to
overfitting or due to the presence of a high number of parameters, but due to a reduction in
the training error. This is due to the inability to backpropagate the gradients. This can be
overcome by sending the gradients directly to the deeper layers with a residual block as
follows:

Every two layers are connected forming a residual block. You can see that the training is
passed between the layers. By this technique, the backpropagation can carry the error to
earlier layers.

The model definitions can be used from https:/ / github. com/
tensorflow/ tensorflow/ tree/ r1.4/ tensorflow/ python/ keras/ _impl/
keras/ applications. Every layer in the model is defined and pre-trained
weights on the ImageNet dataset are available.

The SqueezeNet model
The SqueezeNet model was introduced by Iandola et al. (https:/ /arxiv. org/ pdf/ 1602.
07360.pdf), to reduce the model size and the number of parameters.

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://github.com/tensorflow/tensorflow/tree/r1.4/tensorflow/python/keras/_impl/keras/applications
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf
https://arxiv.org/pdf/1602.07360.pdf

Image Classification Chapter 2

[64]

The network was made smaller by replacing 3 x 3 filters with 1 x 1 filters as shown here:

Reproduced with permission from Iandola et al.

The number of inputs of the 3 x 3 filters has also reduced downsampling of the layers when
happening at the higher level, providing large activation maps:

Reproduced with permission from Iandola et al.

Image Classification Chapter 2

[65]

Spatial transformer networks
The spatial transformer networks proposed by Jaderberg et al. (https:/ /arxiv. org/ pdf/
1506.02025.pdf) try to transform the image before passing to the CNN. This is different
from other networks because it tries to modify the image before convolution. This network
learns the parameters to transform the image. The parameters are learned for an affine
transformation. By applying an affine transformation, spatial invariance is achieved. In the
previous networks, spatial invariance was achieved by max-pooling layers. The placement
of spatial transformer networks is shown as follows:

Reproduced with permission from Jaderberg et al.

The DenseNet model
DenseNet is an extension of ResNet proposed by Huang et al. (https:/ /arxiv. org/ pdf/
1608.06993.pdf). In ResNet blocks, the previous layer is merged into the future layer by
summation. In DenseNet, the previous layer is merged into the future layer by
concatenation. DenseNet connects all the layers to the previous layers and the current layer
to the following layers.

https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1506.02025.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf

Image Classification Chapter 2

[66]

In the following diagram, it can be seen how the feature maps are supplied as input to the
other layers:

Reproduced with permission from Huang et al.

This way, it provides several advantages such as smoother gradients, feature
transformation and so on. This also reduces the number of parameters:

Reproduced with permission from Huang et al.

We have covered all the latest algorithms for the image classification task. Any of the
architectures can be used for an image classification task. In the next section, we will see
how to train a model to predict pets, using these advanced architectures and improve the
accuracy.

Image Classification Chapter 2

[67]

Training a model for cats versus dogs
In this section, we will prepare and train a model for predicting cats versus dogs and
understand some techniques which increase the accuracy. Most of the image classification
problems come into this paradigm. Techniques covered in this section, such as
augmentation and transfer learning, are useful for several problems.

Preparing the data
For the purpose of classification, we will download the data from kaggle and store in an
appropriate format. Sign up and log in to www.kaggle.com and go to https:/ / www.kaggle.
com/c/dogs-vs-cats/ data. Download the train.zip and test1.zip files from that page.
The train.zip file contains 25,000 images of pet data. We will use only a portion of the
data to train a model. Readers with more computing power, such as a Graphics Processing
Unit (GPU), can use more data than suggested. Run the following script to rearrange the
images and create the necessary folders:

import os
import shutil

work_dir = '' # give your correct directory
image_names = sorted(os.listdir(os.path.join(work_dir, 'train')))

def copy_files(prefix_str, range_start, range_end, target_dir):
 image_paths = [os.path.join(work_dir, 'train', prefix_str + '.' +
str(i) + '.jpg')
 for i in range(range_start, range_end)]
 dest_dir = os.path.join(work_dir, 'data', target_dir, prefix_str)
 os.makedirs(dest_dir)
 for image_path in image_paths:
 shutil.copy(image_path, dest_dir)

copy_files('dog', 0, 1000, 'train')
copy_files('cat', 0, 1000, 'train')
copy_files('dog', 1000, 1400, 'test')
copy_files('cat', 1000, 1400, 'test')

http://www.kaggle.com
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data
https://www.kaggle.com/c/dogs-vs-cats/data

Image Classification Chapter 2

[68]

For our experiments, we will use only 1,000 images of cats and dogs. So, copy images 0–999
from the downloaded folder to the newly created train folder under cats. Similarly, copy
1,000–1,400 to data/test/cat, 10–999 in train/dogs and 1,000–1,400 in data/test/dog
so that we have 1,000 training examples for each class and 400 validation examples for each
class.

Benchmarking with simple CNN
Let's run the previous simple_cnn model on this dataset and see how it performs. This
model's performance will be the basic benchmark against which we judge other techniques.
We will define a few variables for data loading and training, as shown here:

image_height, image_width = 150, 150
train_dir = os.path.join(work_dir, 'train')
test_dir = os.path.join(work_dir, 'test')
no_classes = 2
no_validation = 800
epochs = 2
batch_size = 200
no_train = 2000
no_test = 800
input_shape = (image_height, image_width, 3)
epoch_steps = no_train // batch_size
test_steps = no_test // batch_size

This constant is used for the techniques discussed in this section of training a model for
predicting cats and dogs. Here, we are using 2,800 images to train and test which is
reasonable for a personal computer's RAM. But this is not sustainable for bigger datasets.
It's better if we load only a batch of images at a time for training and testing. For this
purpose, a tf.keras has a class called ImageDataGenerator that reads images whenever
necessary. It is assumed that a simple_cnn model is imported from the previous section.
The following is an example of using a generator for loading the images:

generator_train =
tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255)
generator_test = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.
/ 255)

Image Classification Chapter 2

[69]

This definition also rescales the images when it is loaded. Next, we can read the images
from the directory using the flow_from_directory method as follows:

train_images = generator_train.flow_from_directory(
 train_dir,
 batch_size=batch_size,
 target_size=(image_width, image_height))

test_images = generator_test.flow_from_directory(
 test_dir,
 batch_size=batch_size,
 target_size=(image_width, image_height))

The directory to load the images, size of batches and target size for the images are passed as
an argument. This method performs the rescaling and passes the data in batches for fitting
the model. This generator can be directly used for fitting the model. The
method fit_generator of the model can be used as follows:

simple_cnn_model.fit_generator(
 train_images,
 steps_per_epoch=epoch_steps,
 epochs=epochs,
 validation_data=test_images,
 validation_steps=test_steps)

This model fits the data from the generator of training images. The number of epochs is
defined from training, and validation data is passed for getting the performance of the
model overtraining. This fit_generator enables parallel processing of data and model
training. The CPU performs the rescaling while the GPU can perform the model training.
This gives the high efficiency of computing resources. After 50 epochs, this model should
give an accuracy of 60%. Next, we will see how to augment the dataset to get an improved
performance.

Augmenting the dataset
Data augmentation gives ways to increase the size of the dataset. Data augmentation
introduces noise during training, producing robustness in the model to various inputs. This
technique is useful in scenarios when the dataset is small and can be combined and used
with other techniques. Next, we will see the different types of augmentation.

Image Classification Chapter 2

[70]

Augmentation techniques
There are various ways to augment the images as described as follows:

Flipping: The image is mirrored or flipped in a horizontal or vertical direction
Random Cropping: Random portions are cropped, hence the model can deal
with occlusions
Shearing: The images are deformed to affect the shape of the objects
Zooming: Zoomed portions of images are trained to deal with varying scales of
images
Rotation: The objects are rotated to deal with various degrees of change in objects
Whitening: The whitening is done by a Principal Component Analysis that
preserves only the important data
Normalization: Normalizes the pixels by standardizing the mean and variance
Channel shifting: The color channels are shifted to make the model robust to
color changes caused by various artifacts

All these techniques are implemented in ImageDataGenerator to increase the dataset
size. The following is a modified version of generator_train with some augmentation
techniques discussed previously:

generator_train = tf.keras.preprocessing.image.ImageDataGenerator(
 rescale=1. / 255,
 horizontal_flip=True,
 zoom_range=0.3,
 shear_range=0.3,)

Replacing the generator_train in the preceding code will increase the accuracy to 90%.
Change the parameters of augmentation and notice the changes. We will discuss a
technique called transfer learning in the following section, which helps in training bigger
models with fewer data.

Transfer learning or fine-tuning of a model
Transfer learning is the process of learning from a pre-trained model that was trained on a
larger dataset. Training a model with random initialization often takes time and energy to
get the result. Initializing the model with a pre-trained model gives faster convergence,
saving time and energy. These models that are pre-trained are often trained with carefully
chosen hyperparameters.

Image Classification Chapter 2

[71]

Either the several layers of the pre-trained model can be used without any modification, or
can be bit trained to adapt to the changes. In this section, we will learn how to fine-tune or
transfer learning for a model that was trained on the ImageNet dataset with millions of
classes.

Training on bottleneck features
The models that are covered in the previous sections are simple and hence, may yield less
accuracy. Complex models should be built from them. They cannot be built from scratch.
Hence, bottleneck features are extracted and the classifier is trained on them. Bottleneck
features are the features that are produced by complex architectures training several million
images. The images are done with a forward pass and the pre-final layer features are stored.
From these, a simple logistic classifier is trained for classification. Extract the bottleneck
layers as follows:

generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. /
255)

model = tf.keras.applications.VGG16(include_top=False)

train_images = generator.flow_from_directory(
 train_dir,
 batch_size=batch_size,
 target_size=(image_width, image_height),
 class_mode=None,
 shuffle=False
)
train_bottleneck_features = model.predict_generator(train_images,
epoch_steps)

test_images = generator.flow_from_directory(
 test_dir,
 batch_size=batch_size,
 target_size=(image_width, image_height),
 class_mode=None,
 shuffle=False
)

test_bottleneck_features = model.predict_generator(test_images, test_steps)

Image Classification Chapter 2

[72]

The VGG model is taken and used to predict the images. The labels are assigned as follows:

train_labels = np.array([0] * int(no_train / 2) + [1] * int(no_train / 2))
test_labels = np.array([0] * int(no_test / 2) + [1] * int(no_test / 2))

A sequential model with a couple of layers is built, compiled, and trained with the
bottleneck features and can be implemented using the code given as follows:

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=train_bottleneck_features.sha
pe[1:]))
model.add(tf.keras.layers.Dense(1024, activation='relu'))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Dense(1, activation='softmax'))
model.compile(loss=tf.keras.losses.categorical_crossentropy,
 optimizer=tf.keras.optimizers.Adam(),
 metrics=['accuracy'])

These bottleneck features are trained with the model using the code shown as follows:

model.fit(
 train_bottleneck_features,
 train_labels,
 batch_size=batch_size,
 epochs=epochs,
 validation_data=(test_bottleneck_features, test_labels))

This gives a different approach to training the model and is useful when the training data is
low. This is often a faster method to train a model. Only the final activations of the pre-
trained model are used to adapt to the new task. This idea can be extended to fine-tune
several layers as shown next:

Fine-tuning several layers in deep learning
A pre-trained model can be loaded and only a few layers can be trained. This approach
works better when the given problem is very different from the images that the model is
trained upon. Fine-tuning is a common practice in deep learning. This gives advantages
when the dataset is smaller. The optimization also can be obtained faster.

Image Classification Chapter 2

[73]

Training a deep network on a small dataset results in overfitting. This kind of overfitting
can also be avoided using the fine-tuning procedure. The model trained on a bigger dataset
should be also similar, as we are hoping that the activations and features are similar to the
smaller dataset. You can start with the stored weights path as show below:

top_model_weights_path = 'fc_model.h5'

Load the Visual Geometry Group (VGG) model and set the initial layers to be non-
trainable. The VGG model will be covered in detail in the following section. For now,
consider VGG as a big deep learning model that works well on image data. Replace the
fully connected layers with new trainable layers using the code given as follows:

model = tf.keras.applications.VGG16(include_top=False)

A small two-layer feedforward network can be built on top of the VGG model with usually
hidden units, activations, and dropout as follows:

model_fine_tune = tf.keras.models.Sequential()
model_fine_tune.add(tf.keras.layers.Flatten(input_shape=model.output_shape)
)
model_fine_tune.add(tf.keras.layers.Dense(256, activation='relu'))
model_fine_tune.add(tf.keras.layers.Dropout(0.5))
model_fine_tune.add(tf.keras.layers.Dense(no_classes,
activation='softmax'))

The top model has also to be loaded with weights that are already fully trained. The top
model can then be added to the convolutional base:

model_fine_tune.load_weights(top_model_weights_path)
model.add(model_fine_tune)

We can set the top 25 layers to be non-trainable up to the last convolution block so that their
weights will be not be updated. Only the rest of the layers will be updated:

for vgg_layer in model.layers[:25]:
 vgg_layer.trainable = False

Compile the model with the gradient descent optimizer at a slow learning rate with a
magnitude of order of 4:

model.compile(loss='binary_crossentropy',
 optimizer=tf.keras.optimizers.SGD(lr=1e-4, momentum=0.9),
 metrics=['accuracy'])

Image Classification Chapter 2

[74]

We can combine the augmentation techniques that were covered earlier with shear, zoom,
and flip. The generator can be added with flow from the directory with both the train and
validation datasets. Now the model can be fine-tuned combined with data augmentation.
This way of training gives a better accuracy than all the previous methods. The following is
a guide for transfer learning:

Data Size Similar Dataset Different Dataset

Smaller data Fine-tune the output layers Fine-tune the deeper layer

Bigger data Fine-tune the whole model Train from scratch

Depending on the data size, the number of layers to fine-tune can be determined. The less
data there is, the lesser the number of layers to fine-tune. We have seen how to improve the
accuracy of the model using transfer learning techniques.

Developing real-world applications
Recognizing cats and dogs is a cool problem but less likely a problem of importance. Real-
world applications of image classification used in products may be different. You may have
different data, targets, and so on. In this section, you will learn the tips and tricks to tackle
such different settings. The factors that should be considered when approaching a new
problem are as follows:

The number of targets. Is it a 10 class problem or 10,000 class problem?
How vast is the intra-class variance? For example, does the different type of cats
have to be identified under one class label?
How vast is the inter-class variance? For example, do the different cats have to be
identified?
How big is the data?
How balanced is the data?
Is there already a model that is trained with a lot of images?
What is the requisite for deployment inference time and model size? Is it 50
milliseconds on an iPhone or 10 milliseconds on Google Cloud Platform? How
much RAM can be consumed to store the model?

Try to answer these questions when approaching an image classification problem. Based on
the answers, you can design the training architecture and improve the accuracy as
described in the next section.

Image Classification Chapter 2

[75]

Choosing the right model
There are a lot of options for architectures. Based on the flexibility of deployment, you can
choose the model. Remember that convolution is smaller and slower, but dense layers are
bigger and faster. There is a trade-off between size, runtime, and accuracy. It is advisable to
test out all the architectures before the final decision. Some models may work better than
others, based on the application. You can reduce the input size to make the inference faster.
Architectures can be selected based on the metrics as described in the following section.

Tackling the underfitting and overfitting
scenarios
The model may be sometimes too big or too small for the problem. This could be classified
as underfitting or overfitting, respectively. Underfitting happens when the model is too
small and can be measured when training accuracy is less. Overfitting happens when the
model is too big and there is a large gap between training and testing accuracies.
Underfitting can be solved by the following methods:

Getting more data
Trying out a bigger model
If the data is small, try transfer learning techniques or do data augmentation

Overfitting can be solved by the following methods:

Regularizing using techniques such as dropout and batch normalization
Augmenting the dataset

Always watch out for loss. The loss should be decreasing over iterations. If the loss is not
decreasing, it signals that training has stopped. One solution is to try out a different
optimizer. Class imbalance can be dealt with by weighting the loss function. Always use
TensorBoard to watch the summaries. It is difficult to estimate how much data is needed.
This section is the best lesson on training any deep learning models. Next, we will cover
some application-specific guidance.

Image Classification Chapter 2

[76]

Gender and age detection from face
Applications may require gender and age detection from a face. The face image can
be obtained by face detectors. The cropped images of faces can be supplied as training data,
and the similar cropped face should be given for inference. Based on the required inference
time, OpenCV, or CNN face detectors can be selected. For training, Inception or ResNet can
be used. If the required inference time is much less because it is a video, it's better to use
three convolutions followed by two fully connected layers. Note that there is usually a huge
class imbalance in age datasets, hence using a different metric like precision and recall will
be helpful.

Fine-tuning apparel models
Fine-tuning of apparel models is a good choice. Having multiple softmax layers that classify
attributes will be useful here. The attributes could be a pattern, color, and so on.

Brand safety
Training bottleneck layers with Support Vector Machine (SVM) is a good option as the
images can be quite different among classes. This is typically used for content moderation
to help avoid images that are explicit. You have learned how to approach new problems in
image classification.

Summary
We have covered basic, yet useful models for training classification tasks. We saw a simple
model for an MNIST dataset with both Keras and TensorFlow APIs. We also saw how to
utilize TensorBoard for watching the training process. Then, we discussed state-of-the-art
architectures with some specific applications. Several ways to increase the accuracy such as
data augmentation, training on bottleneck layers, and fine-tuning a pre-trained model were
also covered. Tips and tricks to train models for new models were also presented.

In the next chapter, we will see how to visualize the deep learning models. We will also
deploy the trained models in this chapter for inference. We will also see how to use the
trained layers for the application of an image search through an application. Then, we will
understand the concept of autoencoders and use it for the dimensionality of features.

3
Image Retrieval

Deep learning can also be called representation learning because the features or
representations in the model are learned during training. The visual features generated
during the training process in the hidden layers can be used for computing a distance
metric. These models learn how to detect edges, patterns, and so on at various layers,
depending on the classification task. In this chapter, we will look at the following:

How to extract features from a model that was trained for classification
How to use TensorFlow Serving for faster inference in production systems
How to compute similarity between a query image and the set of targets using
those features
Using the classification model for ranking
How to increase the speed of the retrieval system
Looking at the architecture of the system as a whole
Learning a compact descriptor when the target images are too many, using
autoencoder
Training a denoising autoencoder

Image Retrieval Chapter 3

[78]

Understanding visual features
Deep learning models are often criticized for not being interpretable. A neural network-
based model is often considered to be like a black box because it's difficult for humans to
reason out the working of a deep learning model. The transformations of an image over
layers by deep learning models are non-linear due to activation functions, so cannot be
visualized easily. There are methods that have been developed to tackle the criticism of the
non-interpretability by visualizing the layers of the deep network. In this section, we will
look at the attempts to visualize the deep layers in an effort to understand how a model
works.

Visualization can be done using the activation and gradient of the model. The activation can
be visualized using the following techniques:

Nearest neighbour: A layer activation of an image can be taken and the nearest
images of that activation can be seen together.
Dimensionality reduction: The dimension of the activation can be reduced by
principal component analysis (PCA) or t-Distributed Stochastic Neighbor
Embedding (t-SNE) for visualizing in two or three dimensions. PCA reduces the
dimension by projecting the values in the direction of maximum variance. t-SNE
reduces the dimension by mapping the closest points to three dimensions. The
use of dimensionality reduction and its techniques are out of the scope of this
book. You are advised to refer to basic machine learning material to learn more
about dimensionality reduction.

Wikipedia is a good source for understanding dimensionality reduction
techniques. Here are a few links that you can refer to:

https:/ /en. wikipedia. org/wiki/ Dimensionality_ reduction

https:/ /en. wikipedia. org/wiki/ Principal_ component_
analysis

https:/ /en. wikipedia. org/wiki/ T- distributed_ stochastic_
neighbor_ embedding

https:/ /en. wikipedia. org/wiki/ Locality- sensitive_
hashing

https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
https://en.wikipedia.org/wiki/Locality-sensitive_hashing

Image Retrieval Chapter 3

[79]

Maximal patches: One neuron is activated and the corresponding patch with
maximum activation is captured.
Occlusion: The images are occluded (obstructed) at various positions and the
activation is shown as heat maps to understand what portions of the images are
important.

In the following sections, we will see how to implement the visualization of these features.

Visualizing activation of deep learning models
Any model architecture can be visualized with the filters of any layer. Only the initial layers
are comprehensible using the technique. The last layer is useful for the nearest neighbor
approach. The ImageNet dataset, when arranged with nearest neighbors, looks as follows:

Image Retrieval Chapter 3

[80]

Looking at this image, you can see that the same objects appear together. One of the
interesting things is that the animals such as the dog, monkey, and cheetah appear together
though they are not trained under one label. Nearest neighbour visualization of the images
is useful when objects are similar and hence, we can understand the model's
predictions. This last layer can also be visualized by dimensionality reduction techniques,
such as principal component analysis and t-SNE. We will see the implementation for
visualization using dimensionality reduction in the next section.

Embedding visualization
The embedding layer, which is the pre-final layer, can be visualized in two or three
dimensions using TensorBoard. The code snippets in this section are assumed to come after
the convolution neural network model trained in the image classification chapter. First, we
need a metadata file that is a tab separated file. Every line of the metadata file should have
the labels of the images that are going to be visualized. A new variable is required for
storing the embedding that is defined between session creation and initialization, as shown
in the following code:

no_embedding_data = 1000
embedding_variable = tf.Variable(tf.stack(
 mnist.test.images[:no_embedding_data], axis=0), trainable=False)

We will take MNIST test data and create a metadata file for visualization, as shown here:

metadata_path = '/tmp/train/metadata.tsv'

with open(metadata_path, 'w') as metadata_file:
 for i in range(no_embedding_data):
 metadata_file.write('{}\n'.format(
 np.nonzero(mnist.test.labels[::1])[1:][0][i]))

The embedding variable should be made non-trainable by setting the parameter as shown
in the preceding code. Next, the projector config has to be defined. It has to have
a tensor_name which is the embedding variable name, the path to the metadata file, and a
sprite image. A sprite image is one image with small images to denote the labels to be
visualized with the embeddings. Here is the code for the definition of the projection of the
embedding:

from tensorflow.contrib.tensorboard.plugins import projector
projector_config = projector.ProjectorConfig()
embedding_projection = projector_config.embeddings.add()
embedding_projection.tensor_name = embedding_variable.name
embedding_projection.metadata_path = metadata_path

Image Retrieval Chapter 3

[81]

embedding_projection.sprite.image_path = os.path.join(work_dir +
'/mnist_10k_sprite.png')
embedding_projection.sprite.single_image_dim.extend([28, 28])

The sprite image dimension has to be specified. Then the projector can be used to visualize
the embedding with the summary writer and the configuration, as shown in the following
code:

projector.visualize_embeddings(train_summary_writer, projector_config)
tf.train.Saver().save(session, '/tmp/train/model.ckpt', global_step=1)

Then the model is saved with the session. Then go to TensorBoard to see the following
visualization:

TensorBoard illustrating the output of the code

Image Retrieval Chapter 3

[82]

You have to select the T-SNE and color by buttons, as shown in the screenshot, to get
similar visualization. You can see how digits appear together. This visualization is very
useful for the inspection of data and the embedding's that are trained. This is yet another
powerful feature of TensorBoard. In the next section, we will implement guided
backpropagation for visualization.

Guided backpropagation
The visualization of features directly can be less informative. Hence, we use the training
procedure of backpropagation to activate the filters for better visualization. Since we pick
what neurons are to be activated for backpropagation, it is called guided backpropagation.
In this section, we will implement the guided backpropagation to visualize the features.

We will define the size and load the VGG model, as shown here:

image_width, image_height = 128, 128
vgg_model = tf.keras.applications.vgg16.VGG16(include_top=False)

The layers are made of a dictionary with layer names as keys, and the layer from the model
with weights as the key value for ease of access. Now we will take a first convolution layer
from the fifth block, block5_conv1 for computing the visualization. The input and output
are defined here:

input_image = vgg_model.input
vgg_layer_dict = dict([(vgg_layer.name, vgg_layer) for vgg_layer in
vgg_model.layers[1:]])
vgg_layer_output = vgg_layer_dict['block5_conv1'].output

We have to define the loss function. The loss function will maximize the activation of a
particular layer. This is a gradient ascent process rather than the usual gradient descent as
we are trying to maximize the loss function. For gradient ascent, it's important to smoothen
the gradient. So we smoothen the gradient in this case by normalizing the pixel gradients.
This loss function converges rather quickly.

The output of the image should be normalized to visualize it back, gradient ascent is used in
an optimization process to get the maxima of a function. Now we can start the gradient
ascent optimization by defining the evaluator and gradients, as shown next. Now the loss
function has to be defined and gradients have to be computed. The iterator computes the
loss and gradient values over iterations as shown:

filters = []
for filter_idx in range(20):

Image Retrieval Chapter 3

[83]

 loss = tf.keras.backend.mean(vgg_layer_output[:, :, :, filter_idx])
 gradients = tf.keras.backend.gradients(loss, input_image)[0]
 gradient_mean_square =
tf.keras.backend.mean(tf.keras.backend.square(gradients))
 gradients /= (tf.keras.backend.sqrt(gradient_mean_square) + 1e-5)
 evaluator = tf.keras.backend.function([input_image], [loss, gradients])

The input is a random grey image with some noise added to it. A random image is
generated and scaling is done, as shown here.

 gradient_ascent_step = 1.
 input_image_data = np.random.random((1, image_width, image_height, 3))
 input_image_data = (input_image_data - 0.5) * 20 + 128

The optimization of the loss function is started now, and for some filters, the loss values
may be 0 which should be ignored, as shown here:

 for i in range(20):
 loss_value, gradient_values = evaluator([input_image_data])
 input_image_data += gradient_values * gradient_ascent_step
 # print('Loss :', loss_value)
 if loss_value <= 0.:
 break

After this optimization, normalization is done with mean subtraction and adjusting the
standard deviation. Then, the filters can be scaled back and clipped to their gradient values,
as shown here:

 if loss_value > 0:
 filter = input_image_data[0]
 filter -= filter.mean()
 filter /= (filter.std() + 1e-5)
 filter *= 0.1
 filter += 0.5
 filter = np.clip(filter, 0, 1)
 filter *= 255
 filter = np.clip(filter, 0, 255).astype('uint8')
 filters.append((filter, loss_value))

Image Retrieval Chapter 3

[84]

These filters are randomly picked and are visualized here:

The code to stitch the images and produce an output as shown is available along with the
code bundles. The visualization becomes complicated over later layers because the
receptive field of the convents becomes bigger. Some filters look similar but only rotated.
The hierarchy of visualization can be clearly seen in this case as shown by Zeiler et al.
(https://arxiv.org/ pdf/ 1412. 6572. pdf). Direct visualization of different layers is shown
in the following image:

Reproduced with permission from Zeiler et al.

https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf

Image Retrieval Chapter 3

[85]

The first two layers look like edge and corner detectors. Gabor-like filters only appear in the
third layer. Gabor filters are linear and traditionally used for texture analysis. We have seen
the visualization of features directly and by guided backpropagation. Next, we will see how
to implement DeepDream for visualization.

The DeepDream
The neuron activations can be amplified at some layer in the network rather than
synthesizing the image. This concept of amplifying the original image to see the effect of
features is called DeepDream. The steps for creating the DeepDream are:

Take an image and pick a layer from CNN.1.
Take the activations at a particular layer.2.
Modify the gradient such that the gradient and activations are equal.3.
Compute the gradients of the image and backpropagate.4.
The image has to be jittered and normalized using regularization.5.
The pixel values should be clipped.6.
Multi-scale processing of the image is done for the effect of fractal.7.

Let's start by importing the relevant packages:

import os
import numpy as np
import PIL.Image
import urllib.request
from tensorflow.python.platform import gfile
import zipfile

The inception model is pre-trained on the Imagenet dataset and the model files provided
by Google. We can download that model and use it for this example. The ZIP archive of the
model files are downloaded and extracted in a folder, as shown here:

model_url =
'https://storage.googleapis.com/download.tensorflow.org/models/inception5h.
zip'

file_name = model_url.split('/')[-1]

file_path = os.path.join(work_dir, file_name)

if not os.path.exists(file_path):
 file_path, _ = urllib.request.urlretrieve(model_url, file_path)

Image Retrieval Chapter 3

[86]

zip_handle = zipfile.ZipFile(file_path, 'r')
zip_handle.extractall(work_dir)
zip_handle.close()

These commands should have created three new files in the working directory. This pre-
trained model can be loaded into the session, as shown here:

graph = tf.Graph()
session = tf.InteractiveSession(graph=graph)
model_path = os.path.join(work_dir, 'tensorflow_inception_graph.pb')
with gfile.FastGFile(model_path, 'rb') as f:
 graph_defnition = tf.GraphDef()
 graph_defnition.ParseFromString(f.read())

A session is started with the initialization of a graph. Then the graph definition of the model
downloaded is loaded into the memory. The ImageNet mean has to be subtracted from the
input as shown next, as a preprocessing step. The preprocessed image is then fed to the
graph as shown:

input_placeholder = tf.placeholder(np.float32, name='input')
imagenet_mean_value = 117.0
preprocessed_input = tf.expand_dims(input_placeholder-imagenet_mean_value,
0)
tf.import_graph_def(graph_defnition, {'input': preprocessed_input})

Now the session and graph are ready for inference. A resize_image function will be
required with bilinear interpolation. A resize function method can be added that resizes
the image with a TensorFlow session, as shown here:

def resize_image(image, size):
 resize_placeholder = tf.placeholder(tf.float32)
 resize_placeholder_expanded = tf.expand_dims(resize_placeholder, 0)
 resized_image = tf.image.resize_bilinear(resize_placeholder_expanded,
size)[0, :, :, :]
 return session.run(resized_image, feed_dict={resize_placeholder:
image})

An image from the working directory can be loaded into the memory and converted to float
value, as shown here:

image_name = 'mountain.jpg'
image = PIL.Image.open(image_name)
image = np.float32(image)

Image Retrieval Chapter 3

[87]

The image that is loaded is shown here, for your reference:

The number of octaves, size, and scale of the scale space are defined here:

no_octave = 4
scale = 1.4
window_size = 51

These values work well for the example shown here and hence, require tuning for other
images based on their size. A layer can be selected for dreaming and the average mean of
that layer will be the objective function, as shown here:

score = tf.reduce_mean(objective_fn)
gradients = tf.gradients(score, input_placeholder)[0]

The gradient of the images is computed for optimization. The octave images can be
computed by resizing the image to various scales and finding the difference, as shown:

octave_images = []
for i in range(no_octave - 1):
 image_height_width = image.shape[:2]
 scaled_image = resize_image(image,
np.int32(np.float32(image_height_width) / scale))

Image Retrieval Chapter 3

[88]

 image_difference = image - resize_image(scaled_image,
image_height_width)
 image = scaled_image
 octave_images.append(image_difference)

Now the optimization can be run using all the octave images. The window is slid across the
image, computing the gradients activation to create the dream, as shown here:

for octave_idx in range(no_octave):
 if octave_idx > 0:
 image_difference = octave_images[-octave_idx]
 image = resize_image(image, image_difference.shape[:2]) +
image_difference

 for i in range(10):
 image_heigth, image_width = image.shape[:2]
 sx, sy = np.random.randint(window_size, size=2)
 shifted_image = np.roll(np.roll(image, sx, 1), sy, 0)
 gradient_values = np.zeros_like(image)

 for y in range(0, max(image_heigth - window_size // 2,
window_size), window_size):
 for x in range(0, max(image_width - window_size // 2,
window_size), window_size):
 sub = shifted_image[y:y + window_size, x:x + window_size]
 gradient_windows = session.run(gradients,
{input_placeholder: sub})
 gradient_values[y:y + window_size, x:x + window_size] =
gradient_windows

 gradient_windows = np.roll(np.roll(gradient_values, -sx, 1), -sy,

0)
 image += gradient_windows * (1.5 / (np.abs(gradient_windows).mean()
+ 1e-7))

Now the optimization to create the DeepDream is completed and can be saved as shown, by
clipping the values:

image /= 255.0
image = np.uint8(np.clip(image, 0, 1) * 255)
PIL.Image.fromarray(image).save('dream_' + image_name, 'jpeg')

Image Retrieval Chapter 3

[89]

In this section, we have seen the procedure to create the DeepDream. The result is shown
here:

As we can see, dog slugs are activated everywhere. You can try various other layers and see
the results. These results can be used for artistic purposes. Similarly, other layers can be
activated to produce different artifacts. In the next section, we will see some adversarial
examples that can fool deep learning models.

Adversarial examples
The image classification algorithms have reached human-level accuracy on several datasets.
But they can be easily fooled by adversarial examples. Adversarial examples are synthetic
images that fool a model to produce the outcome that is needed. Take any image and
choose a random target class that is incorrect. This image can be modified with noise until
the network is fooled as show by Goodfellow et al. (https:/ / arxiv. org/ pdf/1412. 6572.
pdf). An example of an adversarial attack on the model is shown here:

Reproduced with permission from Goodfellow et al.

https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1412.6572.pdf

Image Retrieval Chapter 3

[90]

In this figure, an image is shown on the left with 58% confidence of a particular label. The
left image, when combined with noise which is shown in the middle, forms the image on
the right side. For a human, the image with noise stills looks the same. But the image with
noise is predicted with a different label with 97% confidence. High confidence is assigned to
a particular example, despite the image having a very different object. This is a problem
with deep learning models and hence, you should understand where this is applicable:

The adversarial example can even be generated without the access to the models.
You can train your own model, generate an adversarial example and can still fool
a different model.
This occurs rarely in practice but it becomes a true problem when someone tries
to fool a system for spamming or crashing.
All machine learning models are susceptible to this problem, not just deep
learning models.

You should understand the consequences of deploying a deep learning model on a safety
critical system, considering the adversarial examples. In the next section, we will see how to
utilize TensorFlow Serving to get a faster inference.

Model inference
Any new data can be passed to the model to get the results. This process of getting the
classification results or features from an image is termed as inference. Training and
inference usually happen on different computers and at different times. We will learn about
storing the model, running the inference, and using TensorFlow Serving as the server with
good latency and throughput.

Exporting a model
The model after training has to be exported and saved. The weights, biases, and the graph
are stored for inference. We will train an MNIST model and store it. Start with defining the
constants that are required, using the following code:

work_dir = '/tmp'
model_version = 9
training_iteration = 1000
input_size = 784
no_classes = 10
batch_size = 100
total_batches = 200

Image Retrieval Chapter 3

[91]

The model_version can be an integer to specify which model we want to export for
serving. The feature config is stored as a dictionary with placeholder names and their
corresponding datatype. The prediction classes and their labels should be mapped. The
identity placeholder can be used with the API:

tf_example = tf.parse_example(tf.placeholder(tf.string, name='tf_example'),
 {'x': tf.FixedLenFeature(shape=[784],
dtype=tf.float32), })
x_input = tf.identity(tf_example['x'], name='x')

A simple classifier can be defined with weights, biases, logits, and an optimizer, using the
following code:

y_input = tf.placeholder(tf.float32, shape=[None, no_classes])
weights = tf.Variable(tf.random_normal([input_size, no_classes]))
bias = tf.Variable(tf.random_normal([no_classes]))
logits = tf.matmul(x_input, weights) + bias
softmax_cross_entropy =
tf.nn.softmax_cross_entropy_with_logits(labels=y_input, logits=logits)
loss_operation = tf.reduce_mean(softmax_cross_entropy)
optimiser = tf.train.GradientDescentOptimizer(0.5).minimize(loss_operation)

Train the model as shown in the following code:

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
for batch_no in range(total_batches):
 mnist_batch = mnist.train.next_batch(batch_size)
 _, loss_value = session.run([optimiser, loss_operation], feed_dict={
 x_input: mnist_batch[0],
 y_input: mnist_batch[1]
 })
 print(loss_value)

Define the prediction signature, and export the model. Save the model to a persistent
storage so that it can be used for inference at a later point in time. This exports the data by
deserialization and stores it in a format that can be understood by different systems.
Multiple graphs with different variables and placeholders can be used for exporting. It also
supports signature_defs and assets. The signature_defs have the inputs and outputs
specified because input and output will be accessed from the external clients. Assets are
non-graph components that will be utilized for the inference, such as vocabulary and so on.

Image Retrieval Chapter 3

[92]

The classification signature uses access to the classification API of TensorFlow. An input is
compulsory and there are two optional outputs (prediction classes and prediction
probabilities), with at least one being compulsory. The prediction signature offers flexibility
with the number of inputs and outputs. Multiple outputs can be defined and explicitly
queried from the client side. The signature_def is shown here:

signature_def = (
 tf.saved_model.signature_def_utils.build_signature_def(
 inputs={'x': tf.saved_model.utils.build_tensor_info(x_input)},
 outputs={'y': tf.saved_model.utils.build_tensor_info(y_input)},
 method_name="tensorflow/serving/predict"))

Finally, add the metagraph and variables to the builder with the prediction signature:

model_path = os.path.join(work_dir, str(model_version))
saved_model_builder = tf.saved_model.builder.SavedModelBuilder(model_path)
saved_model_builder.add_meta_graph_and_variables(
 session, [tf.saved_model.tag_constants.SERVING],
 signature_def_map={
 'prediction': signature_def
 },
 legacy_init_op=tf.group(tf.tables_initializer(),
name='legacy_init_op'))
saved_model_builder.save()

The builder is saved and ready to be consumed by the server. The shown example is
applicable to any model and can be used for exporting. In the next section, we will serve
and query the exported model.

Serving the trained model
The model that is exported in the previous section can be served via TensorFlow Serving
using the following command:

tensorflow_model_server --port=9000 --model_name=mnist --
model_base_path=/tmp/mnist_model/

The model_base_path points to the directory of the exported model. The server can now
be tested with the client. Note that this is not an HTTP server, and hence, a client as shown
here, is needed instead of an HTTP client. Import the required libraries:

from grpc.beta import implementations
import numpy
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

Image Retrieval Chapter 3

[93]

from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2

Add the constants for concurrency, the number of tests, and working directory. A class is
defined for counting the results returned. A Remote Procedure Call (RPC) callback is
defined with a counter for counting the predictions, as shown here:

concurrency = 1
num_tests = 100
host = ''
port = 8000
work_dir = '/tmp'

def _create_rpc_callback():
 def _callback(result):
 response = numpy.array(
 result.result().outputs['y'].float_val)
 prediction = numpy.argmax(response)
 print(prediction)
 return _callback

Modify the host and port according to your requirements. The _callback method
defines the steps required when the response comes back from the server. In this case, the
maximum of the probabilities is computed. Run the inference by calling the server:

test_data_set = mnist.test
test_image = mnist.test.images[0]

predict_request = predict_pb2.PredictRequest()
predict_request.model_spec.name = 'mnist'
predict_request.model_spec.signature_name = 'prediction'

predict_channel = implementations.insecure_channel(host, int(port))
predict_stub =
prediction_service_pb2.beta_create_PredictionService_stub(predict_channel)

predict_request.inputs['x'].CopyFrom(
 tf.contrib.util.make_tensor_proto(test_image, shape=[1,
test_image.size]))
result = predict_stub.Predict.future(predict_request, 3.0)
result.add_done_callback(
 _create_rpc_callback())

Image Retrieval Chapter 3

[94]

Call the inference repeatedly to gauge the accuracy, latency, and throughput. The inference
error rate should be around 90%, and the concurrency should be great. The export and
client methods can be used together for any model to obtain the results and features from
the model. In the next section, we will build the retrieval pipeline.

Content-based image retrieval
The technique of Content-based Image Retrieval (CBIR) takes a query image as the input
and ranks images from a database of target images, producing the output. CBIR is an image
to image search engine with a specific goal. A database of target images is required for
retrieval. The target images with the minimum distance from the query image are
returned. We can use the image directly for similarity, but the problems are as follows:

The image is of huge dimensions
There is a lot of redundancy in pixels
A pixel doesn't carry the semantic information

So, we train a model for object classification and use the features from the model for
retrieval. Then we pass the query image and database of targets through the same model to
get the features. The models can also be called encoders as they encode the information
about the images for the particular task. Encoders should be able to capture global and local
features. We can use the models that we studied in the image classification chapter, trained
for a classification task. The searching of the image may take a lot of time, as a brute-force or
linear scan is slow. Hence, some methods for faster retrieval are required. Here are some
methods for faster matching:

Locality sensitive hashing (LSH): LSH projects the features to their subspace and
can give a candidate a list and do a fine-feature ranking later. This is also a
dimensionality reduction technique such as PCA and t-SNE which we covered
earlier in the chapter. This has feature buckets in lower dimensions.
Multi-index hashing: This method hashes the features and it is like pigeonhole
fitting making it faster. It uses hamming distance to make the computation faster.
Hamming distance is nothing but the number of location differences of the
numbers when expressed in binary.

Image Retrieval Chapter 3

[95]

These methods are faster, need lesser memory, with the trade-off being accuracy. These
methods also don't capture the semantic difference. The matches results can be re-ranked to
get better results based on the query. Re-ranking can improve the results by reordering the
returned target images. Re-ranking may use one of the following techniques:

Geometric verification: This method matches the geometries and target images
with only similar geometries returned.
Query expansion: This expands the list of target images and searches them
exhaustively.
Relevance feedback: This method gets the feedback from the use and returns the
results. Based on the user input, the re-ranking will be done.

These techniques are well developed for text and can be used for images. In this chapter, we
will focus on extracting features and use them for CBIR. In the next section, we will learn
how to do model inference.

Building the retrieval pipeline
The sequence of steps to get the best matches from target images for a query image is called
the retrieval pipeline. The retrieval pipeline has multiple steps or components. The features
of the image database have to be extracted offline and stored in a database. For every query
image, the feature has to be extracted and similarity has to be computed across all of the
target images. Then the images can be ranked for final output. The retrieval pipeline is
shown here:

Image Retrieval Chapter 3

[96]

The feature extraction step has to be fast, for which TensorFlow Serving can be used. You
can choose which features to use depending on the application. For example, initial layers
can be used when texture-based matching is required, later layers can be used when it has
to be matched at an object level. In the next section, we will see how to extract features from
a pre-trained inception model.

Extracting bottleneck features for an image
Bottleneck features are the values computed in the pre-classification layer. In this section,
we will see how to extract the bottleneck features from a pre-trained model using
TensorFlow. Let's start by importing the required libraries, using the following code:

import os
import urllib.request
from tensorflow.python.platform import gfile
import tarfile

Then, we need to download the pre-trained model with the graph definition and its
weights. TensorFlow has trained a model on the ImageNet dataset using inception
architecture and provided the model. We will download this model and unzip it into a local
folder, using the following code:

model_url =
'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.
tgz'
file_name = model_url.split('/')[-1]
file_path = os.path.join(work_dir, file_name)

if not os.path.exists(file_path):
 file_path, _ = urllib.request.urlretrieve(model_url, file_path)
tarfile.open(file_path, 'r:gz').extractall(work_dir)

This created a folder and downloaded the model, only when it does not exist. If the code is
executed repeatedly, the model won't be downloaded every time. The graph is stored in
a Protocol Buffers (protobuf) format in a file. This has to be read as a string and passed to
the tf.GraphDef() object to bring it into memory:

model_path = os.path.join(work_dir, 'classify_image_graph_def.pb')
with gfile.FastGFile(model_path, 'rb') as f:
 graph_defnition = tf.GraphDef()
 graph_defnition.ParseFromString(f.read())

Image Retrieval Chapter 3

[97]

In the inception model, the bottleneck layer is named pool_3/_reshape:0, and the layer is
of 2,048 dimensions. The input placeholder name is DecodeJpeg/contents:0, and the
resize tensor name is ResizeBilinear:0. We can import the graph definition using
tf.import_graph_def with the required return tensors for further operations:

bottleneck, image, resized_input = (
 tf.import_graph_def(
 graph_defnition,
 name='',
 return_elements=['pool_3/_reshape:0',
 'DecodeJpeg/contents:0',
 'ResizeBilinear:0'])
)

Take a query and target image and load it in the memory. The gfile function provides a
faster way to load the image into the memory.

query_image_path = os.path.join(work_dir, 'cat.1000.jpg')
query_image = gfile.FastGFile(query_image_path, 'rb').read()
target_image_path = os.path.join(work_dir, 'cat.1001.jpg')
target_image = gfile.FastGFile(target_image_path, 'rb').read()

Let us define a function that extracts the bottleneck feature from an image, using the
session and image:

def get_bottleneck_data(session, image_data):
 bottleneck_data = session.run(bottleneck, {image: image_data})
 bottleneck_data = np.squeeze(bottleneck_data)
 return bottleneck_data

Initiate the session, and pass the image to run the forward inference to get the bottleneck
values from the pre-trained model:

query_feature = get_bottleneck_data(session, query_image)
print(query_feature)
target_feature = get_bottleneck_data(session, target_image)
print(target_feature)

Running the above code should print as shown here:

[0.55705792 0.36785451 1.06618118 ..., 0.6011821 0.36407694
 0.0996572]
[0.30421323 0.0926369 0.26213276 ..., 0.72273785 0.30847171
 0.08719242]

Image Retrieval Chapter 3

[98]

This procedure of computing the features can be scaled for more target images. Using the
values, the similarity can be computed between the query image and target database as
described in the following section.

Computing similarity between query image and target
database
NumPy's linalg.norm is useful for computing the Euclidean distance. The similarity
between the query image and target database can be computed between the images by
calculating the Euclidean distances between the features as shown here:

dist = np.linalg.norm(np.asarray(query_feature) -
np.asarray(target_feature))
print(dist)

Running this command should print the following:

16.9965

This is the metric that can be used for similarity calculation. The smaller the Euclidean
distance between the query and the target image is, the more similar the images are. Hence,
computing the Euclidean distance is a measurement of similarity. Using the features for
computing the Euclidean distance is based on the assumption that the features are learned
during the training of the model. Scaling this computation for millions of images is not
efficient. In a production system, it is expected to return the results in milliseconds. In the
next section, we will see how to make this retrieval efficient.

Efficient retrieval
The retrieval can be slow because it's a brute-force method. Matching can be made faster
using approximate nearest neighbor. The curse of dimensionality also kicks in, as shown in
the following figure:

Image Retrieval Chapter 3

[99]

With every increasing dimension, complexity increases as the complexity from two
dimensions to three dimensions. The computation of the distance also becomes slower. To
make the distance search faster, we will discuss an approximate method in the next section.

Matching faster using approximate nearest neighbour
Approximate nearest neighbour oh yeah (ANNOY) is a method for faster nearest
neighbour search. ANNOY builds trees by random projections. The tree structure makes it
easier to find the closest matches. You can create an ANNOYIndex for faster retrieval as
shown here:

def create_annoy(target_features):
 t = AnnoyIndex(layer_dimension)
 for idx, target_feature in enumerate(target_features):
 t.add_item(idx, target_feature)
 t.build(10)
 t.save(os.path.join(work_dir, 'annoy.ann'))

create_annoy(target_features)

The dimension of the features is required for creating the index. Then the items are added to
the index and the tree is built. The bigger the number of trees, the more accurate the results
will be with a trade-off of time and space complexity. The index can be created and loaded
into the memory. The ANNOY can be queried as shown here:

annoy_index = AnnoyIndex(10)
annoy_index.load(os.path.join(work_dir, 'annoy.ann'))
matches = annoy_index.get_nns_by_vector(query_feature, 20)

Image Retrieval Chapter 3

[100]

The list of matches can be used to retrieve the image details. The index of the items will be
returned.

Visit https:/ /github. com/ spotify/ annoy for a complete implementation
of ANNOY and its benchmark comparison against other approximate
nearest neighbour algorithms, in terms of accuracy and speed.

Advantages of ANNOY
There are many reasons for using ANNOY. The main advantages are listed as follows:

Has a memory-mapped data structure, hence, less intensive on RAM. The same
file can be shared among multiple processes due to this.
Multiple distances such as Manhattan, Cosine, or Euclidean can be used for
computing the similarity between the query image and target database.

Autoencoders of raw images
An autoencoder is an unsupervised algorithm for generating efficient encodings. The input
layer and the target output is typically the same. The layers between decrease and increase
in the following fashion:

https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://github.com/spotify/annoy

Image Retrieval Chapter 3

[101]

The bottleneck layer is the middle layer with a reduced dimension. The left side of the
bottleneck layer is called encoder and the right side is called decoder. An encoder typically
reduces the dimension of the data and a decoder increases the dimensions. This
combination of encoder and decoder is called an autoencoder. The whole network is trained
with reconstruction error. Theoretically, the bottleneck layer can be stored and the original
data can be reconstructed by the decoder network. This reduces the dimensions and can be
programmed easily, as shown next. Define a convolution, deconvolution, and fully
connected layer, using the following code:

def fully_connected_layer(input_layer, units):
 return tf.layers.dense(
 input_layer,
 units=units,
 activation=tf.nn.relu
)

def convolution_layer(input_layer, filter_size):
 return tf.layers.conv2d(
 input_layer,
 filters=filter_size,
 kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
 kernel_size=3,
 strides=2
)

def deconvolution_layer(input_layer, filter_size, activation=tf.nn.relu):
 return tf.layers.conv2d_transpose(
 input_layer,
 filters=filter_size,
 kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d(),
 kernel_size=3,
 activation=activation,
 strides=2
)

Define the converging encoder with five layers of convolution, as shown in the following
code:

input_layer = tf.placeholder(tf.float32, [None, 128, 128, 3])
convolution_layer_1 = convolution_layer(input_layer, 1024)
convolution_layer_2 = convolution_layer(convolution_layer_1, 512)
convolution_layer_3 = convolution_layer(convolution_layer_2, 256)
convolution_layer_4 = convolution_layer(convolution_layer_3, 128)
convolution_layer_5 = convolution_layer(convolution_layer_4, 32)

Image Retrieval Chapter 3

[102]

Compute the bottleneck layer by flattening the fifth convolution layer. The bottleneck layer
is again reshaped back fit a convolution layer, as shown here:

convolution_layer_5_flattened = tf.layers.flatten(convolution_layer_5)
bottleneck_layer = fully_connected_layer(convolution_layer_5_flattened, 16)
c5_shape = convolution_layer_5.get_shape().as_list()
c5f_flat_shape = convolution_layer_5_flattened.get_shape().as_list()[1]
fully_connected = fully_connected_layer(bottleneck_layer, c5f_flat_shape)
fully_connected = tf.reshape(fully_connected,
 [-1, c5_shape[1], c5_shape[2], c5_shape[3]])

Compute the diverging or decoder part that can reconstruct the image, as shown in the
following code:

deconvolution_layer_1 = deconvolution_layer(fully_connected, 128)
deconvolution_layer_2 = deconvolution_layer(deconvolution_layer_1, 256)
deconvolution_layer_3 = deconvolution_layer(deconvolution_layer_2, 512)
deconvolution_layer_4 = deconvolution_layer(deconvolution_layer_3, 1024)
deconvolution_layer_5 = deconvolution_layer(deconvolution_layer_4, 3,
 activation=tf.nn.tanh)

This network is trained and it quickly converges. The bottleneck layer can be stored when
passed with image features. This helps in decreasing the size of the database, which can be
used for retrieval. Only the encoder part is needed for indexing the features. Autoencoder is
a lossy compression algorithm. It is different from other compression algorithms because it
learns the compression pattern from the data. Hence, an autoencoder model is specific to
the data. An autoencoder could be combined with t-SNE for a better visualization. The
bottleneck layers learned by the autoencoder might not be useful for other tasks. The size of
the bottleneck layer can be larger than previous layers. In such a case of diverging and
converging connections are sparse autoencoders. In the next section, we will learn another
application of autoencoders.

Denoising using autoencoders
Autoencoders can also be used for image denoising. Denoising is the process of removing
noise from the image. A denoising encoder can be trained in an unsupervised manner. The
noise can be introduced in a normal image and the autoencoder is trained against the
original images. Later, the full autoencoder can be used to produce noise-free images. In
this section, we will see step-by-step instructions to denoise MNIST images. Import the
required libraries and define the placeholders as shown:

x_input = tf.placeholder(tf.float32, shape=[None, input_size])
y_input = tf.placeholder(tf.float32, shape=[None, input_size])

Image Retrieval Chapter 3

[103]

Both x_input and y_input are of the same shape as they should be in an autoencoder.
Then, define a dense layer as shown here, with the default activation as the tanh activation
function. The method, add_variable_summary is imported from the image classification
chapter example. The definition of the dense layer is shown here:

def dense_layer(input_layer, units, activation=tf.nn.tanh):
 layer = tf.layers.dense(
 inputs=input_layer,
 units=units,
 activation=activation
)
 add_variable_summary(layer, 'dense')
 return layer

Next, the autoencoder layers can be defined. This autoencoder has only fully connected
layers. The encoder part has three layers of reducing dimensions. The decoder part has
three layers of increasing dimensions. Both the encoder and decoder are symmetrical as
shown here:

layer_1 = dense_layer(x_input, 500)
layer_2 = dense_layer(layer_1, 250)
layer_3 = dense_layer(layer_2, 50)
layer_4 = dense_layer(layer_3, 250)
layer_5 = dense_layer(layer_4, 500)
layer_6 = dense_layer(layer_5, 784)

The dimensions of the hidden layers are arbitrarily chosen. Next, the loss and optimiser
are defined. Here we use sigmoid instead of softmax as classification, as shown here:

with tf.name_scope('loss'):
 softmax_cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(
 labels=y_input, logits=layer_6)
 loss_operation = tf.reduce_mean(softmax_cross_entropy, name='loss')
 tf.summary.scalar('loss', loss_operation)

with tf.name_scope('optimiser'):
 optimiser = tf.train.AdamOptimizer().minimize(loss_operation)

TensorBoard offers another kind of summary called image, which is useful for visualizing
the images. We will take the input, layer_6 and reshape it to add it to the summary, as
shown here:

x_input_reshaped = tf.reshape(x_input, [-1, 28, 28, 1])
tf.summary.image("noisy_images", x_input_reshaped)

y_input_reshaped = tf.reshape(y_input, [-1, 28, 28, 1])

Image Retrieval Chapter 3

[104]

tf.summary.image("original_images", y_input_reshaped)

layer_6_reshaped = tf.reshape(layer_6, [-1, 28, 28, 1])
tf.summary.image("reconstructed_images", layer_6_reshaped)

The number of images is restricted to three by default and can be changed. This is to restrict
it from writing all the images to the summary folder. Next, all the summaries are merged
and the graph is added to the summary writer as shown:

merged_summary_operation = tf.summary.merge_all()
train_summary_writer = tf.summary.FileWriter('/tmp/train', session.graph)

A normal random noise can be added to the image and fed as the input tensors. After the
noise is added, the extra values are clipped. The target will be the original images
themselves. The addition of noise and training procedure is shown here:

for batch_no in range(total_batches):
 mnist_batch = mnist_data.train.next_batch(batch_size)
 train_images, _ = mnist_batch[0], mnist_batch[1]
 train_images_noise = train_images + 0.2 *
np.random.normal(size=train_images.shape)
 train_images_noise = np.clip(train_images_noise, 0., 1.)
 _, merged_summary = session.run([optimiser, merged_summary_operation],
 feed_dict={
 x_input: train_images_noise,
 y_input: train_images,
 })
 train_summary_writer.add_summary(merged_summary, batch_no)

When this training is started, the results can be seen in TensorBoard. The loss is shown here:

Tensorboard illustrating the output plot

Image Retrieval Chapter 3

[105]

The loss steadily decreases and will keep decreasing slowly over the iterations. This shows
how autoencoders converge quickly. Next, three digits are displayed from the original
images:

Here are the same images with noise added:

You will notice that there is significant noise and this is given as an input. Next, are the
reconstructed images of the same numbers with the denoising autoencoder:

You will notice that the denoising autoencoder has done a fantastic job of removing the
noise. You can run this on test images and can see the quality is maintained. For more
complex datasets, you can use the convolutional neural net for better results. This example
shows the power of deep learning of computer vision, given that this is trained in an
unsupervised manner.

Image Retrieval Chapter 3

[106]

Summary
In this chapter, you have learned how to extract features from an image and use them for
CBIR. You also learned how to use TensorFlow Serving to get the inference of image
features. We saw how to utilize approximate nearest neighbour or faster matching rather
than a linear scan. You understood how hashing may still improve the results. The idea of
autoencoders was introduced, and we saw how to train smaller feature vectors for search.
An example of image denoising using an autoencoder was also shown. We saw the
possibility of using a bit-based comparison that can scale this up to billions of images.

In the next chapter, we will see how to train models for object detection problems. We will
leverage open source models to get good accuracy and understand all the algorithms
behind them. At the end, we will use all the ideas to train a pedestrian detection model.

4
Object Detection

Object detection is the act of finding the location of an object in an image. In this chapter, we
will learn the techniques of object detection and implement pedestrian detection by
understanding the following topics:

Basics and the difference between localization and detection
Various datasets and their descriptions
Algorithms used for object localization and detection
TensorFlow API for object detection
Training new object detection models
Pedestrian detection on a moving car with YOLO algorithm

Detecting objects in an image
Object detection had an explosion concerning both applications and research in recent
years. Object detection is a problem of importance in computer vision. Similar to image
classification tasks, deeper networks have shown better performance in detection. At
present, the accuracy of these techniques is excellent. Hence it used in many applications.

Object Detection Chapter 4

[108]

Image classification labels the image as a whole. Finding the position of the object in
addition to labeling the object is called object localization. Typically, the position of the
object is defined by rectangular coordinates. Finding multiple objects in the image with
rectangular coordinates is called detection. Here is an example of object detection:

The image shows four objects with bounding boxes. We will learn algorithms that can
perform the task of finding the boxes. The applications are enormous in robot vision, such
as self-driving cars and industrial objects. We can summarize localization and detection
tasks to the following points:

Localization detects one object in an image within a label
Detection finds all the objects within the image along with the labels

The difference is the number of objects. In detection, there are a variable number of objects.
This small difference makes a big difference when designing the architectures for the deep
learning model concerning localization or detection. Next, we will see various datasets
available for the tasks.

Exploring the datasets
The datasets available for object localization and detection are many. In this section, we will
explore the datasets that are used by the research community to evaluate the algorithms.
There are datasets with a varying number of objects, ranging from 20 to 200 annotated in
these datasets, which makes object detection hard. Some datasets have too many objects in
one image compared to other datasets with just one object per image. Next, we will see the
datasets in detail.

Object Detection Chapter 4

[109]

ImageNet dataset
ImageNet has data for evaluating classification, localization, and detection tasks. The
Chapter 2, Image Classification, discussed classification datasets in detail. Similar to
classification data, there are 1,000 classes for localization tasks. The accuracy is calculated
based on the top five detections. There will be at least one bounding box in all the
images. There are 200 objects for detection problems with 470,000 images, with an average
of 1.1 objects per image.

PASCAL VOC challenge
The PASCAL VOC challenge ran from 2005 to 2012. This challenge was considered the
benchmark for object detection techniques. There are 20 classes in the dataset. The dataset
has 11,530 images for training and validations with 27,450 annotations for regions of
interest. The following are the twenty classes present in the dataset:

Person: Person
Animal: Bird, cat, cow, dog, horse, sheep
Vehicle: Airplane, bicycle, boat, bus, car, motorbike, train
Indoor: Bottle, chair, dining table, potted plant, sofa, tv/monitor

You can download the dataset from http:/ /host. robots. ox. ac. uk/pascal/ VOC/voc2012/
VOCtrainval_11-May- 2012. tar. There is an average of 2.4 objects per image.

COCO object detection challenge
The Common Objects in Context (COCO) dataset has 200,000 images with more than
500,000 object annotations in 80 categories. It is the most extensive publicly available object
detection database. The following image has the list of objects present in the dataset:

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

Object Detection Chapter 4

[110]

The average number of objects is 7.2 per image. These are the famous datasets for the object
detection challenge. Next, we will learn how to evaluate the algorithms against these
datasets.

Evaluating datasets using metrics
Metrics are essential for understanding in the context of a deep learning task. The metrics of
object detection and localization are peculiar because of human annotation. The human may
have annotated a box that is called ground-truth. The ground-truth need not be the absolute
truth. Moreover, the boxes can be a few pixels different from human to human. Hence it
becomes harder for the algorithm to detect the exact bounding box drawn by humans.
Intersection over Union (IoU) is used to evaluate the localization task. Mean Precision
Average (mAP) is used to evaluate the detection task. We will see the descriptions of the
metrics in the next sections.

Intersection over Union
The IoU is the ratio of the overlapping area of ground truth and predicted area to the total
area. Here is a visual explanation of the metric:

The two squares represent the bounding boxes of ground truth and predictions. The IoU is
calculated as a ratio of the area of overlap to the area of the union. Here is the script to
compute the IoU is given ground truth and prediction bounding boxes:

def calculate_iou(gt_bb, pred_bb):
 '''
 :param gt_bb: ground truth bounding box
 :param pred_bb: predicted bounding box
 '''
 gt_bb = tf.stack([
 gt_bb[:, :, :, :, 0] - gt_bb[:, :, :, :, 2] / 2.0,
 gt_bb[:, :, :, :, 1] - gt_bb[:, :, :, :, 3] / 2.0,
 gt_bb[:, :, :, :, 0] + gt_bb[:, :, :, :, 2] / 2.0,

Object Detection Chapter 4

[111]

 gt_bb[:, :, :, :, 1] + gt_bb[:, :, :, :, 3] / 2.0])
 gt_bb = tf.transpose(gt_bb, [1, 2, 3, 4, 0])
 pred_bb = tf.stack([
 pred_bb[:, :, :, :, 0] - pred_bb[:, :, :, :, 2] / 2.0,
 pred_bb[:, :, :, :, 1] - pred_bb[:, :, :, :, 3] / 2.0,
 pred_bb[:, :, :, :, 0] + pred_bb[:, :, :, :, 2] / 2.0,
 pred_bb[:, :, :, :, 1] + pred_bb[:, :, :, :, 3] / 2.0])
 pred_bb = tf.transpose(pred_bb, [1, 2, 3, 4, 0])
 area = tf.maximum(
 0.0,
 tf.minimum(gt_bb[:, :, :, :, 2:], pred_bb[:, :, :, :, 2:]) -
 tf.maximum(gt_bb[:, :, :, :, :2], pred_bb[:, :, :, :, :2]))
 intersection_area= area[:, :, :, :, 0] * area[:, :, :, :, 1]
 gt_bb_area = (gt_bb[:, :, :, :, 2] - gt_bb[:, :, :, :, 0]) * \
 (gt_bb[:, :, :, :, 3] - gt_bb[:, :, :, :, 1])
 pred_bb_area = (pred_bb[:, :, :, :, 2] - pred_bb[:, :, :, :, 0]) * \
 (pred_bb[:, :, :, :, 3] - pred_bb[:, :, :, :, 1])
 union_area = tf.maximum(gt_bb_area + pred_bb_area - intersection_area,
1e-10)
 iou = tf.clip_by_value(intersection_area / union_area, 0.0, 1.0)
 return iou

The ground truth and predicted bounding boxes are stacked together. Then the area is
calculated while handling the case of negative area. The negative area could occur when
bounding box coordinates are incorrect. The right side coordinates of the box many occur
left to the left coordinates. Since the structure of the bounding box is not preserved, the
negative area is bound to occur. The union and intersection areas are computed followed
by a final IoU calculation which is the ratio of the overlapping area of ground truth and
predicted area to the total area. The IoU calculation can be coupled with algorithms to train
localization problems.

The mean average precision
The mAP is used for evaluating detection algorithms. The mAP metric is the product of
precision and recall of the detected bounding boxes. The mAP value ranges from 0 to 100.
The higher the number, the better it is. The mAP can be computed by calculating average
precision (AP) separately for each class, then the average over the class. A detection is
considered a true positive only if the mAP is above 0.5. All detections from the test images
can be combined by drawing a draw precision/recall curve for each class. The final area
under the curve can be used for the comparison of algorithms. The mAP is a good measure
of the sensitivity of the network while not raising many false alarms. We have learned the
evaluating algorithms for the datasets. Next, we will look at algorithms for a localization
task.

Object Detection Chapter 4

[112]

Localizing algorithms
Localization algorithms are an extension of the materials learned in Chapter 2, Image
Classification and Chapter 3, Image Retrieval. In image classification, an image is passed
through several layers of a CNN (convolutional neural network). The final layer of CNN
outputs the probabilistic value, belonging to each of the labels. This can be extended to
localize the objects. We will see these ideas in the following sections.

Localizing objects using sliding windows
An intuitive way of localization is to predict several cropped portions of an image with an
object. The cropping of the images can be done by moving a window across the image and
predicting for every window. The method of moving a smaller window than the image and
cropping the image according to window size is called a sliding window. A prediction can
be made for every cropped window of the image which is called sliding window object
detection.

The prediction can be done by the deep learning model trained for image classification
problems with closely-cropped images. Close cropping means that only one object will be
found in the whole image. The movement of the window has to be uniform across the
image. Each portion of the image is passed through the model to find the classification.
There are two problems with this approach.

It can only find objects that are the same size as the window. The sliding window
will miss an object if the object size is bigger than the window size. To overcome
this, we will use the concept of scale space.
Another problem is that moving the window over pixels may lead to missing a
few objects. Moving the window over every pixel will result in a lot of extra
computation hence it will slow down the system. To avoid this, we will
incorporate a trick in the convolutional layers.

We will cover both these techniques in the next section.

Object Detection Chapter 4

[113]

The scale-space concept
The scale-space is the concept of using images that are of various sizes. An image is reduced
to smaller size, hence bigger objects can be detected with the same-sized window. An image
can be resized to some sizes with decreasing sizes. The resizing of images by removing
alternative pixels or interpolation may leave some artefacts. Hence the image is smoothened
and resized iteratively. The images that are obtained by smoothening and resizing are scale
space.

The window is slide on every single scale for the localization of objects. Running multiple
scales is equivalent to running the image with a bigger window. The computational
complexity of running on multiple scales is high. Localization can be sped up by moving
faster with a trade-off for accuracy. The complexity makes the solution not usable in
production. The idea of the sliding window could be made efficient with a fully
convolutional implementation of sliding windows.

Training a fully connected layer as a convolution layer
The problem with the sliding window is the computational complexity. The complexity is
because predictions are made for every window. Deep learning features have been
computed for every window for overlapping regions. This computation of features for
overlapping regions in cropped windows can be reduced. The solution is to use a fully
convolutional net which computes the feature only once. For understanding a fully
convolutional net, let's first see how to convert a fully connected layer to a
convolution_layer. The kernel is changed to the same size, with the same number of
filters as the number of neurons. It can be repeated for other layers too. Changing the kernel
size is an easier way to convert a fully connected layer to a convolution_layer:

convolution_layer_1 = convolution_layer(x_input_reshape, 64)
pooling_layer_1 = pooling_layer(convolution_layer_1)
convolution_layer_2 = convolution_layer(pooling_layer_1, 128)
pooling_layer_2 = pooling_layer(convolution_layer_2)
dense_layer_bottleneck = convolution_layer(pooling_layer_2, 1024, [5, 5])
logits = convolution_layer(dense_layer_bottleneck, no_classes, [1, 1])
logits = tf.reshape(logits, [-1, 10])

The dense layers are expressed as convolution layers. This idea is powerful and useful in
various scenarios. We will extend this idea to express sliding window as a full convolution
network.

Object Detection Chapter 4

[114]

Convolution implementation of sliding window
In this technique, instead of sliding, the final target is made into some targets required as
depth and a number of boxes as the window. Sermanet et al. (https:/ /arxiv. org/ pdf/
1312.6229.pdf) used fully convolution implementation to overcome this problem of the
sliding window. Here is an illustration of such convolution implementation, of the sliding
window:

Reproduced with permission from Sermanet et al.

In the upper part of the example, normal classification is represented as a fully
convolutional layer. In the lower part of the illustration, the same kernel is applied to a
bigger image producing 2x2 at the end instead of 1. The final layer denotes four of the
output of those bounding boxes. Having a volume for prediction improves efficiency, but
the boxes still have a problem with accurate positioning. So the sliding window is not
necessary, hence it solves the complexity. The aspect ratio is always changing and has to be
seen at multiple scales. The bounding boxes produced by the fully convolutional method
are not very accurate. The extra computations are done only for the extra region. As you can
imagine, the boxes are rather restricted to the number of boxes that are trained with. Next,
we will see a method to detect the bounding box positions more accurately.

https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf
https://arxiv.org/pdf/1312.6229.pdf

Object Detection Chapter 4

[115]

Thinking about localization as a regression
problem
One fundamental way to think about localization is modeling the problem as a regression
problem. The bounding box is four numbers and hence can be predicted in a direct manner
with a setting for regression. We will also need to predict the label, which is a classification
problem.

There are different parameterizations available to define the bounding boxes. There are four
numbers usually for the bounding box. One of the representations is the center of the
coordinates with the height and width of the bounding box. A pre-trained model can be
used by removing the fully connected layer and replacing it with a regression encoder. The
regression has to be regularized with the L2 loss which performs poorly with an outlier. The
L1 loss is better than L1. Swapping regression with a smoothened version of regularization
is better. Fine-tuning the model gives a good accuracy, whereas training the whole network
gives only a marginal performance improvement. It's a trade-off between training time and
accuracy. Next, we will see different applications of regression using convolutional
networks.

Applying regression to other problems
Regressing image coordinates is applicable to several other applications, such as pose
detection and fiducial point detection. Pose detection is the act of finding joint locations in
a human, as shown here:

Object Detection Chapter 4

[116]

In the preceding image, multiple locations such as head, neck, shoulders, ankles, and hands
were detected. This can be extended to all human parts. The regression we learned could be
used for this application. Here is an example of fiducial point detection:

Fiducial points are landmarks on the face with respect to the location of the eyes, nose, and
lips. Finding these landmarks are vital for face-based augmented reality applications. There
are some more landmarks available in the face and will be covered in detail in Chapter 6,
Similarity Learning, in the context of face recognition.

Combining regression with the sliding window
The classification score is computed for every window in the sliding window approach or
the fully convolutional approach to know what object is present in that window. Instead of
predicting the classification score for every window to detect an object, each window itself
can be predicted with a classification score. Combining all the ideas such as sliding
window, scale-space, full convolution, and regression give superior results than any
individual approach. The following are the top five localization error rates on the ImageNet
dataset achieved by various networks using the regression approach:

Object Detection Chapter 4

[117]

The preceding graph shows that the deeper the network, the better the results. For AlexNet,
localization methods were not described in the paper. The OverFeat used multi-scale
convolutional regression with box merging. VGG used localization but with fewer scales
and location. These gains are attributed to deep features. The ResNet uses a different
localization method and much deeper features.

 The regression encoder and classification encoder function independently. Hence there is a
possibility of predicting an incorrect label for a bounding box. This problem can be
overcome by attaching the regression encoder at different layers. This method could also be
used for multiple objects hence solving the object detection problem. Given an image, find
all instances in that. It's hard to treat detection as regression because the number of outputs
are variable. One image may have two objects and another may have three or more. In the
next section, we will see the algorithms dealing with detection problems more effectively.

Object Detection Chapter 4

[118]

Detecting objects
There are several variants of object detection algorithms. A few algorithms that come with
the object detection API are discussed here.

Regions of the convolutional neural network (R-
CNN)
The first work in this series was regions for CNNs proposed by Girshick et al.(https:/ /
arxiv.org/pdf/1311. 2524. pdf) . It proposes a few boxes and checks whether any of the
boxes correspond to the ground truth. Selective search was used for these region proposals.
Selective search proposes the regions by grouping the color/texture of windows of various
sizes. The selective search looks for blob-like structures. It starts with a pixel and produces a
blob at a higher scale. It produces around 2,000 region proposals. This region proposal is
less when compared to all the sliding windows possible.

The proposals are resized and passed through a standard CNN architecture such as
Alexnet/VGG/Inception/ResNet. The last layer of the CNN is trained with an SVM
identifying the object with a no-object class. The boxes are further improved by tightening
the boxes around the images. A linear regression model to predict a closer bounding box is
trained with object region proposals. The architecture of R-CNN is shown here:

Reproduced with permission from Girshick et al.

The encoder can be a pre-trained model of a standard deep learning model. The features are
computed for all the regions from the training data. The features are stored and then the
SVM is trained. Next, the bounding boxes are trained with the normalized coordinates.
There may be some proposals outside the image coordinates and hence it is normalized for
training and inference.

https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf
https://arxiv.org/pdf/1311.2524.pdf

Object Detection Chapter 4

[119]

The disadvantages of this method are:

Several proposals are formed by selective search and hence many inferences have
to be computed, usually around 2,000
There are three classifiers that have to be trained, which increases the number of
parameters
There is no end-to-end training

Fast R-CNN
The Fast R-CNN proposed by Girshick et al. (https:/ /arxiv. org/ pdf/ 1504. 08083.
pdf)method runs CNN inference only once and hence reduces computations. The output of
the CNN is used to propose the networks and select the bounding box. It introduced a
technique called Region of Interest pooling. The Region of Interest pooling takes the CNN
features and pools them together according to the regions. The features obtained after the
inference using CNN is pooled and regions are selected, as shown in the following image:

Reproduced with permission from Girshick et al.

This way, an end-to-end training is performed, avoiding multiple classifiers. Note that the
SVM is replaced by the softmax layer and the box regressor is replaced by bounding box
regressors. The disadvantage that still remains is the selective search, which takes some
time.

https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf
https://arxiv.org/pdf/1504.08083.pdf

Object Detection Chapter 4

[120]

Faster R-CNN
Faster R-CNN is proposed by Ren et al. (https:/ / arxiv. org/ pdf/1506. 01497. pdf). The
difference between Faster R-CNN and the Fast R-CNN method is that the Faster R-CNN
uses CNN features of architecture such as VGG and Inception for proposals instead of
selective search. The CNN features are further passed through the region proposal network.
A sliding window is passed through features with potential bounding boxes and scores as
the output, as well as a few aspect ratios that are intuitive, the model outputs bounding box
and score:

Reproduced with permission from Ren et al.

Faster R-CNN is faster than Fast R-CNN as it saves computation by computing the feature
only once.

Single shot multi-box detector
SSD (Single shot multi-box) is proposed by is the fastest of all the methods. This method
simultaneously predicts the object and finds the bounding box. During training, there might
be a lot of negatives and hence hard-negative mining the class imbalance. The output from
CNN has various sizes of features. These are passed to a 3x3 convolutional filter to predict
bounding box.

https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1506.01497.pdf

Object Detection Chapter 4

[121]

This step predicts the object and bounding box:

Reproduced with permission from Liu et al.

These are the algorithms available for object detection and we will learn how to implement
them in the following section.

Object detection API
Google released pre-trained models with various algorithms trained on the COCO dataset for
public use. The API is built on top of TensorFlow and intended for constructing, training,
and deploying object detection models. The APIs support both object detection and
localization tasks. The availability of pre-trained models enables the fine-tuning of new data
and hence making the training faster. These different models have trade-offs between speed
and accuracy.

Installation and setup
Install the Protocol Buffers (protobuf) compiler with the following commands. Create a
directory for protobuf and download the library directly:

mkdir protoc_3.3
cd protoc_3.3
wget https:// github. com/ google/ protobuf/ releases/ download/ v3.3. 0/protoc- 3.
3.0-linux-x86_ 64. zip

https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip

Object Detection Chapter 4

[122]

Change the permission of the folder and extract the contents, as shown here:

chmod 775 protoc-3.3.0-linux-x86_64.zip
unzip protoc-3.3.0-linux-x86_64.zip

Protocol Buffers (protobuf) is Google's language-neutral, platform-neutral, extensible
mechanism for serializing structured data. It serves the use of XML but is much simpler and
faster. The models are usually exported to this format in TensorFlow. One can define the
data structure once but can be read or written in a variety of languages. Then run the
following command to compile the protobufs. Move back to the working folder and clone
the repo from https:/ /github. com/ tensorflow/ models. git and move them to the
following folder:

git clone https://github.com/tensorflow/models.git

Now, move the model to the research folder, using the following code:

cd models/research/
~/protoc_3.3/bin/protoc object_detection/protos/*.proto --python_out=.

The TensorFlow object detection API uses protobufs for exporting model weights and the
training parameters. The TensorFlow, models, research, and slim directories should be
appended to PYTHONPATH by the following command:

export PYTHONPATH=.:./slim/

Adding to the python path with the preceding command works only one time. For the next,
this command has to be run again. The installation can be tested by running the following
code:

python object_detection/builders/model_builder_test.py

The output of this code is given here:

Ran 7 tests in 0.022s

OK

More information about the installation can be obtained from https:/ /
github. com/ tensorflow/ models/ blob/ master/ research/ object_
detection/ g3doc/ installation. md. Now the installation is complete and
tested.

https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models.git
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md

Object Detection Chapter 4

[123]

Pre-trained models
There are several models that are pre-trained and made available. All these models are
trained on the COCO dataset and can be used for detecting the objects that are available in
the COCO dataset such as humans and cars. These models are also useful for transfer
learning for a new task such as traffic sign detection. A table of pre-trained models is shown
here with relative speed and mAP on the COCO dataset. Various algorithms are trained with
different CNN and are depicted in the names:

Model name Speed COCO mAP

ssd_mobilenet_v1_coco fast 21

ssd_inception_v2_coco fast 24

rfcn_resnet101_coco medium 30

faster_rcnn_resnet101_coco medium 32

faster_rcnn_inception_resnet_v2_atrous_coco slow 37

Based on the requirement, you can choose from the model. Download the SSD model
trained on Mobilenet and extract it as shown here by going to the working directory:

mkdir Chapter04 && cd Chapter04
wget
http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coc
o_11_06_2017.tar.gz
tar -xzvf ssd_mobilenet_v1_coco_11_06_2017.tar.gz

There will be various files in the Chapter04 folder, which are listed here:

The is the proto-definition of the graph—graph.pbtxt
The weights of the graph frozen and can be used for
inference—frozen_inference_graph.pb

Checkpoint files
model.ckpt.data-00000-of-00001

model.ckpt.meta

model.ckpt.index

This model will be used in the next section for detection tasks.

Object Detection Chapter 4

[124]

Re-training object detection models
The same API lets us retrain a model for our custom dataset. Training of custom data
involves the preparation of a dataset, selecting the algorithm, and performing fine-tuning.
The whole pipeline can be passed as a parameter to the training script. The training data has
to be converted to TensorFlow records. TensorFlow records is a file format provided by
Google to make the reading of data faster than regular files. Now, we will go through the
steps of training.

Data preparation for the Pet dataset
The Oxford-IIIT Pet dataset is used for this example. Download the image and annotations
with these commands from the Chapter04 directory.

wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz

Extract the image and annotations as shown here:

tar -xvf images.tar.gz
tar -xvf annotations.tar.gz

Create the pet_tf record file to create the dataset in the tf records, as they are the required
input for the object detection trainer. The label_map for the Pet dataset can be found at
object_detection/data/pet_label_map.pbtxt. Move to the research folder and run
the following command:

python object_detection/create_pet_tf_record.py \
 --label_map_path=object_detection/data/pet_label_map.pbtxt \
 --data_dir=~/chapter4/. \
 --output_dir=~/chapter4/.

You can see two .record files in the research directory named pet_train.record and
pet_val.record.

Object detection training pipeline
The training protobuf has to be configured for training. The following five things are
important in this process:

The model configuration with the type of model
The train_config for standard training parameters

Object Detection Chapter 4

[125]

The eval_config for the metrics that have to be reported
The train_input_ config for the dataset
The eval_input_ config for the evaluation dataset

We will use the config file from https:/ / github. com/tensorflow/ models/ blob/ master/
research/object_ detection/ samples/ configs/ ssd_mobilenet_ v1_ pets. config.
Download it to the Chapter04 folder by running the following command. Open the
config file and edit the following lines:

fine_tune_checkpoint:
"~/Chapter04/ssd_mobilenet_v1_coco_11_06_2017/model.ckpt"

train_input_reader: {
 tf_record_input_reader {
 input_path: "~/Chapter04/pet_train.record"
 }
 label_map_path:
"~/model/research/object_detection/data/pet_label_map.pbtxt"
}

eval_input_reader: {
 tf_record_input_reader {
 input_path: "~/Chapter04/pet_val.record"
 }
 label_map_path:
"~/model/research/object_detection/data/pet_label_map.pbtxt"
}

Save the config file. There are various parameters in the file that affect the accuracy of the
model.

Training the model
Now the API, data and config files are ready for re-training. The training can be triggered
by the following command:

PYTHONPATH=.:./slim/. python object_detection/train.py \
 --logtostderr \
 --pipeline_config_path=~/chapter4/ssd_mobilenet_v1_pets.config \
 --train_dir=~/Chapter04

The training will start with a loss of around 140 and will keep decreasing. The training will
run forever and has to be killed manually by using the Ctrl + C command. The checkpoints
created during the training can be used for inference later.

https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config
https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_pets.config

Object Detection Chapter 4

[126]

Monitoring loss and accuracy using TensorBoard
The training loss and accuracy can be monitored using TensorBoard. Run the TensorBoard
using the following command:

tensorboard --logdir=/home/ubuntu/Chapter04

Both training and evaluation can be visualized in the TensorBoard.

Training a pedestrian detection for a self-driving
car
The dataset for training a pedestrian object detection can be found at http:/ /pascal.
inrialpes.fr/data/ human/ . The steps to detecting pedestrians can be found at https:/ /
github.com/diegocavalca/ machine- learning/ blob/ master/ supervisioned/ object.
detection_tensorflow/ simple. detection. ipynb. The dataset for training a Sign Detector
can be downloaded from http:/ /www. vision. ee.ethz. ch/ ~timofter/ traffic_ signs/
and http://btsd. ethz. ch/ shareddata/ . In the case of a self-driving car, there would be
four classes in an image for labeling: pedestrian, car, motorcycle, and background. The
background class has to be detected when none of the classes is present. An assumption in
training a deep learning classification model is that at least one of the objects will be present
in the image. By adding the background class, we are overcoming the problem. The neural
network can also produce a bounding box of the object from the label.

The YOLO object detection algorithm
A recent algorithm for object detection is You look only once (YOLO). The image is divided
into multiple grids. Each grid cell of the image runs the same algorithm. Let's start the
implementation by defining layers with initializers:

def pooling_layer(input_layer, pool_size=[2, 2], strides=2,
padding='valid'):
 layer = tf.layers.max_pooling2d(
 inputs=input_layer,
 pool_size=pool_size,
 strides=strides,
 padding=padding
)
 add_variable_summary(layer, 'pooling')
 return layer

http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
http://pascal.inrialpes.fr/data/human/
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
https://github.com/diegocavalca/machine-learning/blob/master/supervisioned/object.detection_tensorflow/simple.detection.ipynb
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://www.vision.ee.ethz.ch/~timofter/traffic_signs/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/
http://btsd.ethz.ch/shareddata/

Object Detection Chapter 4

[127]

def convolution_layer(input_layer, filters, kernel_size=[3, 3],
padding='valid',
 activation=tf.nn.leaky_relu):
 layer = tf.layers.conv2d(
 inputs=input_layer,
 filters=filters,
 kernel_size=kernel_size,
 activation=activation,
 padding=padding,
 weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
 weights_regularizer=tf.l2_regularizer(0.0005)
)
 add_variable_summary(layer, 'convolution')
 return layer

def dense_layer(input_layer, units, activation=tf.nn.leaky_relu):
 layer = tf.layers.dense(
 inputs=input_layer,
 units=units,
 activation=activation,
 weights_initializer=tf.truncated_normal_initializer(0.0, 0.01),
 weights_regularizer=tf.l2_regularizer(0.0005)
)
 add_variable_summary(layer, 'dense')
 return layer

It can be noticed that the activation layer is leaky_relu and the weights are initialized
with truncated normal distribution. These modified layers can be used for building the
model. The model is created as follows:

yolo = tf.pad(images, np.array([[0, 0], [3, 3], [3, 3], [0, 0]]),
name='pad_1')
yolo = convolution_layer(yolo, 64, 7, 2)
yolo = pooling_layer(yolo, [2, 2], 2, 'same')
yolo = convolution_layer(yolo, 192, 3)
yolo = pooling_layer(yolo, 2, 'same')
yolo = convolution_layer(yolo, 128, 1)
yolo = convolution_layer(yolo, 256, 3)
yolo = convolution_layer(yolo, 256, 1)
yolo = convolution_layer(yolo, 512, 3)
yolo = pooling_layer(yolo, 2, 'same')
yolo = convolution_layer(yolo, 256, 1)
yolo = convolution_layer(yolo, 512, 3)
yolo = convolution_layer(yolo, 256, 1)
yolo = convolution_layer(yolo, 512, 3)
yolo = convolution_layer(yolo, 256, 1)
yolo = convolution_layer(yolo, 512, 3)

Object Detection Chapter 4

[128]

yolo = convolution_layer(yolo, 256, 1)
yolo = convolution_layer(yolo, 512, 3)
yolo = convolution_layer(yolo, 512, 1)
yolo = convolution_layer(yolo, 1024, 3)
yolo = pooling_layer(yolo, 2)
yolo = convolution_layer(yolo, 512, 1)
yolo = convolution_layer(yolo, 1024, 3)
yolo = convolution_layer(yolo, 512, 1)
yolo = convolution_layer(yolo, 1024, 3)
yolo = convolution_layer(yolo, 1024, 3)
yolo = tf.pad(yolo, np.array([[0, 0], [1, 1], [1, 1], [0, 0]]))
yolo = convolution_layer(yolo, 1024, 3, 2)
yolo = convolution_layer(yolo, 1024, 3)
yolo = convolution_layer(yolo, 1024, 3)
yolo = tf.transpose(yolo, [0, 3, 1, 2])
yolo = tf.layers.flatten(yolo)
yolo = dense_layer(yolo, 512)
yolo = dense_layer(yolo, 4096)

dropout_bool = tf.placeholder(tf.bool)
yolo = tf.layers.dropout(
 inputs=yolo,
 rate=0.4,
 training=dropout_bool
)
yolo = dense_layer(yolo, output_size, None)

Several convolution layers are stacked, producing the YOLO network. This network
is utilized for creating the object detection algorithm for real-time detection.

Summary
In this chapter, we have learned the difference between object localization and detection
tasks. Several datasets and evaluation criteria were discussed. Various approaches to
localization problems and algorithms, such as variants of R-CNN and SSD models for
detection, were discussed. The implementation of detection in open-source repositories was
covered. We trained a model for pedestrian detection using the techniques. We also learned
about various trade-offs in training such models.

In the next chapter, we will learn about semantic segmentation algorithms. We will use the
knowledge to implement the segmentation algorithms for medical imaging and satellite
imagery problems.

5
Semantic Segmentation

In this chapter, we will learn about various semantic segmentation techniques and train
models for the same. Segmentation is a pixel-wise classification task. The ideas to solve
segmentation problem is an extension to object detection problems. Segmentation is highly
useful in applications such medical and satellite image understanding.

The following topics will be covered in the chapter:

Learning the difference between semantic segmentation and instance
segmentation
Segmentation datasets and metrics
Algorithms for semantic segmentation
Application of segmentation to medical and satellite images
Algorithms for instance segmentation

Predicting pixels
Image classification is the task of predicting labels or categories. Object detection is the task
of predicting a list of several deep learning-based algorithms with its corresponding
bounding box. The bounding box may have objects other than the detected object inside it.
In some applications, labeling every pixel to a label is important rather than bounding box
which may have multiple objects. Semantic segmentation is the task of predicting pixel-
wise labels.

Semantic Segmentation Chapter 5

[130]

Here is an example of an image and its corresponding semantic segmentation:

>

As shown in the image, an input image is predicted with labels for every pixel. The labels
could be the sky, tree, person, mountain, and bridge. Rather than assigning a label to the
whole image, labels are assigned to each pixel. Semantic segmentation labels pixels
independently. You will notice that every people is not distinguished. All the persons in the
image are labeled in the same way.

Semantic Segmentation Chapter 5

[131]

Here is an example where every instance of the same label is distinguished:

This task of segmenting every instance with a pixel-wise label is called instance
segmentation. Instance segmentation can be thought of as an extension of object detection
with pixel-level labels. The applications of semantic segmentation and instance
segmentation are enormous, and a few of the applications are provided in the next sections.

Diagnosing medical images
A medical image can be diagnosed with segmentation techniques. Modern medical imaging
techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT),
and Retinopathy create high-quality images. The images generated by such techniques can
be segmented into various regions to detect tumours from brain scans or spots from retina
scans. Some devices provide volumetric images which can also be analyzed by
segmentation. Segmenting the video for robot surgery enables the doctors to see the regions
carefully in robot-assisted surgeries. We will see how to segment medical images later in the
chapter.

Semantic Segmentation Chapter 5

[132]

Understanding the earth from satellite imagery
Satellite images have become abundant recently. The images captured by satellite provide a
high-resolution view of the total surface of the earth. By analyzing the satellite imagery, we
can understand several things about earth such as:

Measuring the rate of construction in a country related to economic growth
Measuring the oil tanks
Planning and organizing the traffic
Calculating the deforestation and its effects
Helping wildlife preservation by counting animals and tracking their movements
Discovering archaeological sites
Mapping the damaged regions due to a natural disaster

There are more applications possible with satellite imagery. For most of these problems
mentioned, the solution starts with the segmentation of satellite images. We will see how to
segment satellite images later in the chapter.

Enabling robots to see
Segmenting the scenes is crucial for robots to see and interact with the world around.
Industrial and home robots have to handle the objects. The handling becomes possible once
the vision to the robots is stridden according to the objects. There are a few more
applications worth mentioning:

Industrial inspection of tools for segmenting the defects
Color diagnostics of the fashion industry; an image can be segmented with
various fashion objects and use them for color parsing
Distinguish foreground from background to apply portrait effects

In the next section, we will learn a few public datasets for evaluating segmentation
algorithms.

Semantic Segmentation Chapter 5

[133]

Datasets
The PASCAL and COCO datasets that were mentioned in Chapter 4, Object Detection, can be
used for the segmentation task as well. The annotations are different as they are labelled
pixel-wise. New algorithms are usually benchmarked against the COCO dataset. COCO also
has stuff datasets such as grass, wall, and sky. The pixel accuracy property can be used as a
metric for evaluating algorithms.

Apart from those mentioned, there are several other datasets in the areas
of medical imaging and satellite imagery. The links to a few of them are
provided here for your reference:

http://www.cs.bu.edu/~betke/BiomedicalImageSegmentation

https://www.kaggle.com/c/intel-mobileodt-cervical-cance
r-screening/data

https://www.kaggle.com/c/diabetic-retinopathy-detection

https://grand-challenge.org/all_challenges

http://www.via.cornell.edu/databases

https:/ /www. kaggle. com/ c/dstl- satellite- imagery-
feature- detection

https://aws.amazon.com/public-datasets/spacenet

https://www.iarpa.gov/challenges/fmow.html

https://www.kaggle.com/c/planet-understanding-the-amazo
n-from-space

Creating training data for segmentation tasks is expensive. There are online tools available
for annotating your dataset. The LabelMe mobile application provided by MIT University
is good for annotating and can be downloaded from http:/ /labelme. csail. mit. edu/
Release3.0.

http://www.cs.bu.edu/~betke/BiomedicalImageSegmentation/
https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://grand-challenge.org/all_challenges/
http://www.via.cornell.edu/databases/
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://aws.amazon.com/public-datasets/spacenet/
https://www.iarpa.gov/challenges/fmow.html
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0
http://labelme.csail.mit.edu/Release3.0

Semantic Segmentation Chapter 5

[134]

Algorithms for semantic segmentation
There are several deep learning-based algorithms that were proposed to solve image
segmentation tasks. A sliding window approach can be applied at a pixel level for
segmentation. A sliding window approach takes an image and breaks the image into
smaller crops. Every crop of the image is classified for a label. This approach is expensive
and inefficient because it doesn't reuse the shared features between the overlapping
patches. In the following sections, we will discuss a few algorithms that can overcome this
problem.

The Fully Convolutional Network
The Fully Convolutional Network (FCN) introduced the idea of an end-to-end
convolutional network. Any standard CNN architecture can be used for FCN by removing
the fully connected layers, and the implementation of the same was shown in Chapter 4,
Object Detection. The fully connected layers are replaced by a convolution layer. The depth is
higher in the final layers and the size is smaller. Hence, 1D convolution can be performed to
reach the desired number of labels. But for segmentation, the spatial dimension has to be
preserved. Hence, the full convolution network is constructed without a max pooling, as
shown here:

The loss for this network is computed by averaging the cross-entropy loss of every pixel
and mini-batch. The final layer has a depth equal to the number of classes. FCN is similar to
object detection except that the spatial dimension is preserved. The output produced by the
architecture will be coarse as some pixels may be mispredicted. The computation is high
and in the next section, we will see how to address this issue.

Semantic Segmentation Chapter 5

[135]

The SegNet architecture
The SegNet has an encoder and decoder approach. The encode has various convolution
layers and decoder has various deconvolution layers. SegNet improved the coarse outputs
produced by FCN. Because of this, it is less intensive on memory. When the features are
reduced in dimensions, it is upsampled again to the image size by deconvolution, reversing
the convolution effects. Deconvolution learns the parameters for upsampling. The output of
such architecture will be coarse due to the loss of information in pooling layers.

Now, let's learn the few new concepts called upsampling, atrous convolution, and transpose
convolution that will help us in understanding this network better.

Upsampling the layers by pooling
In Chapter 1, Getting Started, we discussed max pooling. Max pooling is a sampling
strategy that picks the maximum value from a window. This could be reversed for
upsampling. Each value can be surrounded with zeros to upsample the layer, as shown
here:

Semantic Segmentation Chapter 5

[136]

The zeros are added at the same locations which are the numbers that are upsampled. Un-
pooling can be improved by remembering the locations of downsampling and using it for
upsampling, as shown here:

Index-wise, upsampling yields better results than appending zeros. This upsampling the
layers by pooling is not learned and works as it is. Next, we will see how we can upsample
and downsample with learnable parameters.

Sampling the layers by convolution
The layers can be upsampled or downsampled directly using convolution. The stride used
for convolution can be increased to cause downsampling as shown here:

Downsampling by convolution is called atrous convolution or dilated convolution or
strided convolution. Similarly, it can be reversed to upsample by learning a kernel as
shown here:

Semantic Segmentation Chapter 5

[137]

Upsampling directly using a convolution can be termed as transposed convolution. Some
other synonyms are deconvolution or fractionally strided convolution or up-convolution.
Now the process of upsampling is understood. Here is a code snippet that describes the
previous algorithm:

input_height = 360
input_width = 480
kernel = 3
filter_size = 64
pad = 1
pool_size = 2

After the input is taken, it follows the usual convolutional neural net with decreasing size,
which can be termed as an encoder. The following code can be used for defining the
encoder:

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Layer(input_shape=(3, input_height,
input_width)))

encoder
model.add(tf.keras.layers.ZeroPadding2D(padding=(pad, pad)))
model.add(tf.keras.layers.Conv2D(filter_size, kernel, kernel,
 border_mode='valid'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(pool_size, pool_size)))

model.add(tf.keras.layers.ZeroPadding2D(padding=(pad, pad)))
model.add(tf.keras.layers.Conv2D(128, kernel, kernel, border_mode='valid'))
model.add(tf.keras.layers.BatchNormalization())

Semantic Segmentation Chapter 5

[138]

model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(pool_size, pool_size)))

model.add(tf.keras.layers.ZeroPadding2D(padding=(pad, pad)))
model.add(tf.keras.layers.Conv2D(256, kernel, kernel, border_mode='valid'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(pool_size, pool_size)))

model.add(tf.keras.layers.ZeroPadding2D(padding=(pad, pad)))
model.add(tf.keras.layers.Conv2D(512, kernel, kernel, border_mode='valid'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.Activation('relu'))

The output of the encoder can be fed to the decoder with increasing size, using the
following code:

decoder
model.add(tf.keras.layers.ZeroPadding2D(padding=(pad, pad)))
model.add(tf.keras.layers.Conv2D(512, kernel, kernel, border_mode='valid'))
model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.UpSampling2D(size=(pool_size, pool_size)))
model.add(tf.keras.layers.ZeroPadding2D(padding=(pad, pad)))
model.add(tf.keras.layers.Conv2D(256, kernel, kernel, border_mode='valid'))
model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.UpSampling2D(size=(pool_size, pool_size)))
model.add(tf.keras.layers.ZeroPadding2D(padding=(pad, pad)))
model.add(tf.keras.layers.Conv2D(128, kernel, kernel, border_mode='valid'))
model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.UpSampling2D(size=(pool_size, pool_size)))
model.add(tf.keras.layers.ZeroPadding2D(padding=(pad, pad)))
model.add(tf.keras.layers.Conv2D(filter_size, kernel, kernel,
border_mode='valid'))
model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Conv2D(nClasses, 1, 1, border_mode='valid',))

The decoded image is of the same size as the input, and the whole model can be trained,
using the following code:

model.outputHeight = model.output_shape[-2]
model.outputWidth = model.output_shape[-1]

model.add(tf.keras.layers.Reshape((nClasses, model.output_shape[-2] *
model.output_shape[-1]),

Semantic Segmentation Chapter 5

[139]

 input_shape=(nClasses, model.output_shape[-2],
model.output_shape[-1])))

model.add(tf.keras.layers.Permute((2, 1)))
model.add(tf.keras.layers.Activation('softmax'))

model.compile(loss="categorical_crossentropy",
optimizer=tf.keras.optimizers.Adam, metrics=['accuracy'])

This way of encoding and decoding an image overcomes the shortcomings of FCN-based
models. Next, we will see a different concept with dilated convolutions.

Skipping connections for better training
The coarseness of segmentation output can be limited by skip architecture, and higher
resolutions can be obtained. Another alternative way is to scale up the last three layers and
average them as shown here:

Semantic Segmentation Chapter 5

[140]

This algorithm is utilized for an example of satellite imagery in a later section.

Dilated convolutions
The pixel-wise classification and image classification are structurally different. Hence,
pooling layers that decrease information will produce coarse segmentation. But remember,
pooling is essential for having a wider view and allows sampling. A new idea called dilated
convolution was introduced to solve this problem for less-lossy sampling while having a
wider view. The dilated convolution is essentially convolution by skipping every pixel in
the window as shown here:

The dilation distance varies from layer to layer. The output of such a segmentation result is
upscaled for a finer resolution. A separate network is trained for multi-scale aggregation.

Semantic Segmentation Chapter 5

[141]

DeepLab
DeepLab proposed by Chen et al. (https:/ /arxiv. org/ pdf/1606. 00915. pdf) performs
convolutions on multiple scales and uses the features from various scales to obtain a score
map. The score map is then interpolated and passed through a conditional random field
(CRF) for final segmentation. This scale processing of images can be either performed by
processing images of various sizes with its own CNN or parallel convolutions with varying
level of dilated convolutions.

Reproduced with permission from Chen et al.

https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf

Semantic Segmentation Chapter 5

[142]

RefiNet
Dilated convolutions need bigger input and hence, are memory intensive. This presents
computational problems when using high-resolution pictures. Reid et al. (https:/ /arxiv.
org/pdf/1611.06612. pdf) prosed a method called RefiNet to overcome this problem which
is shown below:

Reproduced with permission from Reid et al.

https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf
https://arxiv.org/pdf/1611.06612.pdf

Semantic Segmentation Chapter 5

[143]

RefiNet uses an encoder followed by a decoder. Encoder outputs of CNN. The decoder
concatenates the features of various sizes:

Reproduced with permission from Reid et al.

The concatenation is done upscaling the low dimensional feature.

Semantic Segmentation Chapter 5

[144]

PSPnet
Global content is utilized in PSPnet introduced by Zhoa et al.
(https://arxiv.org/pdf/1612.01105.pdf) by increasing the kernel size of pooling layers. The
pooling is carried in a pyramid fashion. The pyramid covers various portions and sizes of
the images simultaneously. There is a loss in-between the architecture which enables
moderate supervision.

Reproduced with permission from Zhao et al.

Large kernel matters
Peng et al. (https:/ / arxiv. org/ pdf/ 1703. 02719. pdf) showcased the importance of large
kernels. Large kernels have bigger receptive fields than small kernels. The computational
complexity of these large kernels can be used to overcome with an approximate smaller
kernel. There is a boundary refinement network at the end.

https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf
https://arxiv.org/pdf/1703.02719.pdf

Semantic Segmentation Chapter 5

[145]

Reproduced with permission from Peng et al.

DeepLab v3
Batch normalization is used in the paper proposed by Chen et al. (https:/ /arxiv. org/pdf/
1706.05587.pdf) to improve the performance. The multi-scale of the feature is encoded in a
cascaded fashion to improve the performance:

Reproduced with permission from Chen et al.

https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf
https://arxiv.org/pdf/1706.05587.pdf

Semantic Segmentation Chapter 5

[146]

Reproduced with permission from Chen et al.

We have seen several architectures improve the accuracy of image segmentation using deep
learning. Next, we will see an application in medical imaging.

Ultra-nerve segmentation
The Kaggler is an organization that conducts competitions on predictive modelling and
analytics. The Kagglers were once challenged to segment nerve structures from ultrasound
images of the neck. The data regarding the same can be downloaded from https:/ /www.
kaggle.com/c/ultrasound- nerve- segmentation. The UNET model proposed by
Ronneberger et al. (https:/ /arxiv. org/ pdf/1505. 04597. pdf) resembles an autoencoder
but with convolutions instead of a fully connected layer. There is an encoding part with the
convolution of decreasing dimensions and a decoder part with increasing dimensions as
shown here:

https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://www.kaggle.com/c/ultrasound-nerve-segmentation
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf

Semantic Segmentation Chapter 5

[147]

Figure illustrating the architecture of the UNET model [Reproduced with permission from Ronneberger et al.]

The convolutions of the similar sized encoder and decoder part are learning by skip
connections. The output of the model is a mask that ranges between 0 and 1. Let's start by
importing the functions, with the help of the following code:

import os
from skimage.transform import resize
from skimage.io import imsave
import numpy as np
from data import load_train_data, load_test_data

After all the imports, we will now define the sizes, using the following code:

image_height, image_width = 96, 96
smoothness = 1.0
work_dir = ''

Semantic Segmentation Chapter 5

[148]

Now we will define the dice_coefficient and its loss function. The dice_coefficient
is also the metric in this case:

def dice_coefficient(y1, y2):
 y1 = tf.flatten(y1)
 y2 = tf.flatten(y2)
 return (2. * tf.sum(y1 * y2) + smoothness) / (tf.sum(y1) + tf.sum(y2) +
smoothness)

def dice_coefficient_loss(y1, y2):
 return -dice_coefficient(y1, y2)

The UNET model can be defined as follows:

def preprocess(imgs):
 imgs_p = np.ndarray((imgs.shape[0], image_height, image_width),
dtype=np.uint8)
 for i in range(imgs.shape[0]):
 imgs_p[i] = resize(imgs[i], (image_width, image_height),
preserve_range=True)
 imgs_p = imgs_p[..., np.newaxis]
 return imgs_p

def covolution_layer(filters, kernel=(3,3), activation='relu',
input_shape=None):
 if input_shape is None:
 return tf.keras.layers.Conv2D(
 filters=filters,
 kernel=kernel,
 activation=activation)
 else:
 return tf.keras.layers.Conv2D(
 filters=filters,
 kernel=kernel,
 activation=activation,
 input_shape=input_shape)

def concatenated_de_convolution_layer(filters):
 return tf.keras.layers.concatenate([
 tf.keras.layers.Conv2DTranspose(
 filters=filters,
 kernel=(2, 2),
 strides=(2, 2),
 padding='same'

Semantic Segmentation Chapter 5

[149]

)],
 axis=3
)

All the layers are concatenated and used, as shown in the following code:

unet = tf.keras.models.Sequential()
inputs = tf.keras.layers.Input((image_height, image_width, 1))
input_shape = (image_height, image_width, 1)
unet.add(covolution_layer(32, input_shape=input_shape))
unet.add(covolution_layer(32))
unet.add(pooling_layer())

unet.add(covolution_layer(64))
unet.add(covolution_layer(64))
unet.add(pooling_layer())

unet.add(covolution_layer(128))
unet.add(covolution_layer(128))
unet.add(pooling_layer())

unet.add(covolution_layer(256))
unet.add(covolution_layer(256))
unet.add(pooling_layer())

unet.add(covolution_layer(512))
unet.add(covolution_layer(512))

The layers are concatenated, and deconvolution layers are used:

unet.add(concatenated_de_convolution_layer(256))
unet.add(covolution_layer(256))
unet.add(covolution_layer(256))

unet.add(concatenated_de_convolution_layer(128))
unet.add(covolution_layer(128))
unet.add(covolution_layer(128))

unet.add(concatenated_de_convolution_layer(64))
unet.add(covolution_layer(64))
unet.add(covolution_layer(64))

unet.add(concatenated_de_convolution_layer(32))
unet.add(covolution_layer(32))
unet.add(covolution_layer(32))

unet.add(covolution_layer(1, kernel=(1, 1), activation='sigmoid'))

Semantic Segmentation Chapter 5

[150]

unet.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-5),
 loss=dice_coefficient_loss,
 metrics=[dice_coefficient])

Next, the model can be trained with images, by making use of the following code:

x_train, y_train_mask = load_train_data()

x_train = preprocess(x_train)
y_train_mask = preprocess(y_train_mask)

x_train = x_train.astype('float32')
mean = np.mean(x_train)
std = np.std(x_train)

x_train -= mean
x_train /= std

y_train_mask = y_train_mask.astype('float32')
y_train_mask /= 255.

unet.fit(x_train, y_train_mask, batch_size=32, epochs=20, verbose=1,
shuffle=True,
 validation_split=0.2)

x_test, y_test_mask = load_test_data()
x_test = preprocess(x_test)

x_test = x_test.astype('float32')
x_test -= mean
x_test /= std

y_test_pred = unet.predict(x_test, verbose=1)

for image, image_id in zip(y_test_pred, y_test_mask):
 image = (image[:, :, 0] * 255.).astype(np.uint8)
 imsave(os.path.join(work_dir, str(image_id) + '.png'), image)

Semantic Segmentation Chapter 5

[151]

The image can be pre-processed and used. Now the training and testing of the images can
happen. When the model is trained, the segmentation produces good results, as shown
here:

We have trained a model that can segment medical images. This algorithm can be used in
several use cases. In the next section, we will see how to segment satellite images.

Segmenting satellite images
In this section, we will use a dataset provided by the International Society for
Photogrammetry and Remote Sensing (ISPRS). The dataset contains satellite images of
Potsdam, Germany with 5 cm resolution. These images come with an additional data of
infrared and height contours of the images. There are six labels associated with the images,
which are:

Building
Vegetation
Trees
Cabs
Clutter
Impervious

Semantic Segmentation Chapter 5

[152]

A total of 38 images are provided with 6,000 x 6,000 patches. Please go to the page, http:/ /
www2.isprs.org/commissions/ comm3/ wg4/ data- request- form2. html and fill in the form.
After that, select the following options on the form:

Post the form, an email will be sent to you, from which the data can be downloaded.

Modeling FCN for segmentation
Import the libraries and get the shape of the input. The number of labels is defined as 6:

from .resnet50 import ResNet50
nb_labels = 6

img_height, img_width, _ = input_shape
input_tensor = tf.keras.layers.Input(shape=input_shape)
weights = 'imagenet'

A ResNet model pre-trained on ImageNet will be used as the base model. The following
code can be used to define the base model using ResNet:

resnet50_model = ResNet50(
 include_top=False, weights='imagenet', input_tensor=input_tensor)

Now we will use the following code to take the final three layers from the ResNet:

final_32 = resnet50_model.get_layer('final_32').output
final_16 = resnet50_model.get_layer('final_16').output
final_x8 = resnet50_model.get_layer('final_x8').output

http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html
http://www2.isprs.org/commissions/comm3/wg4/data-request-form2.html

Semantic Segmentation Chapter 5

[153]

Each skip connection has to be compressed to match the channel that is equal to the number
of labels:

c32 = tf.keras.layers.Conv2D(nb_labels, (1, 1))(final_32)
c16 = tf.keras.layers.Conv2D(nb_labels, (1, 1))(final_16)
c8 = tf.keras.layers.Conv2D(nb_labels, (1, 1))(final_x8)

The output of the compressed skip connection can be resized using bilinear interpolation.
The interpolation can be implemented by using a Lambda layer that can compute
TensorFlow operation. The following code snippet can be used for interpolation using the
lambda layer:

def resize_bilinear(images):
 return tf.image.resize_bilinear(images, [img_height, img_width])

r32 = tf.keras.layers.Lambda(resize_bilinear)(c32)
r16 = tf.keras.layers.Lambda(resize_bilinear)(c16)
r8 = tf.keras.layers.Lambda(resize_bilinear)(c8)

The three layers we have defined can be merged by adding the three values, using the
following code:

m = tf.keras.layers.Add()([r32, r16, r8])

The probabilities of the model can be applied using softmax activation. The model is resized
before and after applying softmax:

x = tf.keras.ayers.Reshape((img_height * img_width, nb_labels))(m)
x = tf.keras.layers.Activation('img_height')(x)
x = tf.keras.layers.Reshape((img_height, img_width, nb_labels))(x)

fcn_model = tf.keras.models.Model(input=input_tensor, output=x)

Semantic Segmentation Chapter 5

[154]

A simple FCN layer has been defined and when trained, it gives the following result:

You can see that the prediction of the six labels is reasonable. Next, we will learn about
segmenting instances.

Segmenting instances
While analyzing an image, our interest will only be drawn to certain instances in the image.
So, it was compelled to segment these instances from the remainder of the image. This
process of separating the required information from the rest is widely known as
segmenting instances. During this process, the input image is first taken, then the
bounding box will be localized with the objects and at last, a pixel-wise mask will be
predicted for each of the class. For each of the objects, pixel-level accuracy is calculated.
There are several algorithms for segmenting instances. One of the recent algorithms is the
Mask RCNN algorithm proposed by He at al. (https:/ /arxiv. org/ pdf/ 1703. 06870. pdf).
The following figure portrays the architecture of Mask R-CNN:

Reproduced with permission from He et al.

https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf

Semantic Segmentation Chapter 5

[155]

The architecture looks similar to the R-CNN with an addition of segmentation. It is a multi-
stage network with end-to-end training. The region proposals are learned. The network is
split into two, one for detection and the other for a classification score. The results are
excellent, as shown here:

Figure illustrating the segmenting instances process, Note that the objects are detected accurately and are segmented accordingly Reproduced with permission from He et al.

The same network can also predict the poses of people. The two tasks of segmentation and
detection are processed in parallel.

Semantic Segmentation Chapter 5

[156]

Summary
In this chapter, we have learned about the various segmentation algorithms. We also saw
the datasets and metrics that are used for benchmarking. We applied the techniques learned
to segment satellite and medical images. In the end, we touched upon the Mask R-CNN
algorithm for instance segmentation.

In the next chapter, we will learn about similarity learning. Similarity learning models learn
a comparison mechanism between two images. It is useful for several applications such as
face recognition. We will learn several model architectures that can be used for similarity
learning.

6
Similarity Learning

In this chapter, we will learn about similarity learning and learn various loss functions used
in similarity learning. Similarity learning us useful when the dataset is small per class. We
will understand different datasets available for face analysis and build a model for face
recognition, landmark detection. We will cover the following topics in this chapter:

Different algorithms for similarity learning
Various loss functions used for similarity learning
A variety of scenarios in which such models can be used
The complete process of face recognition

Algorithms for similarity learning
Similarity learning is the process of training a metric to compute the similarity between
two entities. This could also be termed as metric learning, as the similarity is learned. A
metric could be Euclidean or cosine or some other custom distance function. Entities could
be any data such as an image, video, text or tables. To compute a metric, a vector
representation of the image is required. This representation can be the features computed
by a CNN as described in Chapter 3, Image Retrieval. The CNN that was learned for object
classification can be used as the vector to compute the metric. The feature vector obtained
for image classification would not be the best representation of the task at hand. In
similarity learning, we find out about CNNs that generate features trained for a similarity
learning task. Some applications of similarity learning are given here:

Face verification for biometrics to compare two faces
Visual search of real-world objects to find similar products online
Visual recommendation of products that are similar in some attributes

Similarity Learning Chapter 6

[158]

In this chapter, we will learn about face verification in detail. So let's start with the
algorithms that are available for similarity learning.

Siamese networks
A Siamese network, as the name suggests, is a neural network model where the network is
trained to distinguish between two inputs. A Siamese network can train a CNN to
produced an embedding by two encoders. Each encoder is fed with one of the images in
either a positive or a negative pair. A Siamese network requires less data than the other
deep learning algorithms. Siamese networks were originally introduced for comparing
signatures. A Siamese network is shown in the following image; the weights are shared
between the networks:

 The other use of Siamese networks is one-shot learning. One-shot learning is the technique
of learning with just one example. In this case, an image can be shown and it can tell
whether they are similar. For most of the similarity learning tasks, a pair of positive and
negative pairs are required to train. Such datasets can be formed with any dataset that is
available for classification tasks, assuming that they are Euclidean distances. The main
difference between these algorithms and algorithms in previous chapters is that these
encoders try to differentiate one from another.

Contrastive loss
Contrastive loss differentiates images by similarity. The feature or latent layer is compared
using a similarity metric and trained with the target for a similarity score. In the case of a
positive pair, the target would be 0, as both inputs are the same. For negative pairs, the
distance between the pair of latent is a maximum of 0 in the case of cosine distance or
regularised Euclidean distance. The loss can be defined by a contrastive_loss, which is
explained in the following code:

Similarity Learning Chapter 6

[159]

def contrastive_loss(model_1, model_2, label, margin=0.1):
 distance = tf.reduce_sum(tf.square(model_1 - model_2), 1)
 loss = label * tf.square(
 tf.maximum(0., margin - tf.sqrt(distance))) + (1 - label) *
distance
 loss = 0.5 * tf.reduce_mean(loss)
 return loss

Two model's distances are compared and loss is computed. Now, we will define and train a
Siamese network. For a Siamese network, we will need two models that are same. Next, let's
define a function for a simple CNN with a given input, with the help of the following code:

def get_model(input_):
 input_reshape = tf.reshape(input_, [-1, 28, 28, 1],
 name='input_reshape')
 convolution_layer_1 = convolution_layer(input_reshape, 64)
 pooling_layer_1 = pooling_layer(convolution_layer_1)
 convolution_layer_2 = convolution_layer(pooling_layer_1, 128)
 pooling_layer_2 = pooling_layer(convolution_layer_2)
 flattened_pool = tf.reshape(pooling_layer_2, [-1, 5 * 5 * 128],
 name='flattened_pool')
 dense_layer_bottleneck = dense_layer(flattened_pool, 1024)
 return dense_layer_bottleneck

The model defined will be used twice to define the encoders necessary for Siamese
networks. Next, placeholders for both the models are defined. For every pair, the similarity
of the inputs is also fed as input. The models defined are the same. The models can also be
defined so that the weights are shared. Two models for the left and right side are defined
here:

left_input = tf.placeholder(tf.float32, shape=[None, input_size])
right_input = tf.placeholder(tf.float32, shape=[None, input_size])
y_input = tf.placeholder(tf.float32, shape=[None, no_classes])
left_bottleneck = get_model(left_input)
right_bottleneck = get_model(right_input)

The bottleneck layers are taken from the models and are concatenated. This is crucial for
similarity learning problems. Any number of models can be created, and the final layers can
be concatenated, as shown here:

dense_layer_bottleneck = tf.concat([left_bottleneck, right_bottleneck], 1)

Next, a dropout layer is added with logits computed out of the concatenated layer. Then the
procedure is similar to any other network, as shown here:

dropout_bool = tf.placeholder(tf.bool)
dropout_layer = tf.layers.dropout(

Similarity Learning Chapter 6

[160]

 inputs=dense_layer_bottleneck,
 rate=0.4,
 training=dropout_bool
)
logits = dense_layer(dropout_layer, no_classes)

with tf.name_scope('loss'):
 softmax_cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
 labels=y_input, logits=logits)
 loss_operation = tf.reduce_mean(softmax_cross_entropy, name='loss')
 tf.summary.scalar('loss', loss_operation)

with tf.name_scope('optimiser'):
 optimiser = tf.train.AdamOptimizer().minimize(loss_operation)

with tf.name_scope('accuracy'):
 with tf.name_scope('correct_prediction'):
 predictions = tf.argmax(logits, 1)
 correct_predictions = tf.equal(predictions, tf.argmax(y_input, 1))
 with tf.name_scope('accuracy'):
 accuracy_operation = tf.reduce_mean(
 tf.cast(correct_predictions, tf.float32))
tf.summary.scalar('accuracy', accuracy_operation)

session = tf.Session()
session.run(tf.global_variables_initializer())

merged_summary_operation = tf.summary.merge_all()
train_summary_writer = tf.summary.FileWriter('/tmp/train', session.graph)
test_summary_writer = tf.summary.FileWriter('/tmp/test')

test_images, test_labels = mnist_data.test.images, mnist_data.test.labels

The data has to be fed separately for left and right models as shown:

for batch_no in range(total_batches):
 mnist_batch = mnist_data.train.next_batch(batch_size)
 train_images, train_labels = mnist_batch[0], mnist_batch[1]
 _, merged_summary = session.run([optimiser, merged_summary_operation],
 feed_dict={
 left_input: train_images,
 right_input: train_images,
 y_input: train_labels,
 dropout_bool: True
 })
 train_summary_writer.add_summary(merged_summary, batch_no)
 if batch_no % 10 == 0:
 merged_summary, _ = session.run([merged_summary_operation,

Similarity Learning Chapter 6

[161]

 accuracy_operation], feed_dict={
 left_input: test_images,
 right_input: test_images,
 y_input: test_labels,
 dropout_bool: False
 })
 test_summary_writer.add_summary(merged_summary, batch_no)

We have seen how to define a Siamese network. Two encoders are defined, and the latent
space is concatenated to form the loss of training. The left and right models are fed with
data separately. Next, we will see how similarity learning can be performed within a single
network.

FaceNet
The FaceNet model proposed by Schroff et al. (https:/ / arxiv. org/ pdf/1503. 03832. pdf)
solves the face verification problem. It learns one deep CNN, then transforms a face image
to an embedding. The embedding can be used to compare faces to see how similar they are
and can be used in the following three ways:

Face verification considers two faces and it is decides whether they are similar or
not. Face verification can be done by computing the distance metric.
Face recognition is a classification problem for labelling a face with a name. The
embedding vector can be used for training the final labels.
Face Clustering groups similar faces together like how photo applications cluster
photos of the same person together. A clustering algorithm such as K-means is
used to group faces.

The following image shows the FaceNet architecture:

Reproduced with permission from Schroff et al.

https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf
https://arxiv.org/pdf/1503.03832.pdf

Similarity Learning Chapter 6

[162]

FaceNet takes a batch of face images and trains them. In that batch, there will be a few
positive pairs. While computing the loss, the positive pairs and closest few negative pairs
are considered. Mining selective pairs enable smooth training. If all the negatives are
pushed away all the time, the training is not stable. Comparing three data points is called
triplet loss. The images are considered with a positive and negative match while computing
the loss. The negatives are pushed only by a certain margin. Triplet loss is explained in
detail here.

Triplet loss
The triplet loss learns the score vectors for the images. The score vectors of face descriptors
can be used to verify the faces in Euclidean space. The triplet loss is similar to metric
learning in the sense of learning a projection so that the inputs can be distinguished. These
projections or descriptors or score vectors are a compact representation, hence can be
considered as a dimensionality reduction technique. A triplet consists of an anchor, and
positive and negative faces. An anchor can be any face, and positive faces are the images of
the same person. The negative image may come from another person. It's obvious that there
will be a lot of negative faces for a given anchor. By selecting negatives that are currently
closer to the anchor, its harder for the encoder to distinguish the faces, thereby making it
learn better. This process is termed as hard negative mining. The closer negatives can be
obtained with a threshold in Euclidean space. The following image depicts the triplet loss
model:

Reproduced with permission from Schroff et al.

The loss computation in TensorFlow is shown here:

def triplet_loss(anchor_face, positive_face, negative_face, margin):
 def get_distance(x, y):
 return tf.reduce_sum(tf.square(tf.subtract(x, y)), 1)

 positive_distance = get_distance(anchor_face, positive_face)
 negative_distance = get_distance(anchor_face, negative_face)
 total_distance = tf.add(tf.subtract(positive_distance,
negative_distance), margin)
 return tf.reduce_mean(tf.maximum(total_distance, 0.0), 0)

Similarity Learning Chapter 6

[163]

The mining of the triplets is a difficult task. Every point has to be compared with others to
get the proper anchor and positive pairs. The mining of the triplets is shown here:

def mine_triplets(anchor, targets, negative_samples):
 distances = cdist(anchor, targets, 'cosine')
 distances = cdist(anchor, targets, 'cosine').tolist()
 QnQ_duplicated = [
 [target_index for target_index, dist in enumerate(QnQ_dist) if dist
== QnQ_dist[query_index]]
 for query_index, QnQ_dist in enumerate(distances)]
 for i, QnT_dist in enumerate(QnT_dists):
 for j in QnQ_duplicated[i]:
 QnT_dist.itemset(j, np.inf)

 QnT_dists_topk = QnT_dists.argsort(axis=1)[:, :negative_samples]
 top_k_index = np.array([np.insert(QnT_dist, 0, i) for i, QnT_dist in
enumerate(QnT_dists_topk)])
 return top_k_index

This could make the training slower on a GPU machine as the distance computation
happens in CPU. The FaceNet model is a state of the art method in training similarity
models for faces.

The DeepNet model
The DeepNet model is used for learning the embedding of faces for face verification tasks
such as FaceNet. This improves on the method of FaceNet discussed in the previous section.
It takes multiple crops of the same face and passes through several encoders to get a better
embedding. This has achieved a better accuracy than FaceNet but takes more time for
processing. The face crops are made in the same regions and passed through its respective
encoders. Then all the layers are concatenated for training against the triplet loss.

Similarity Learning Chapter 6

[164]

DeepRank
DeepRank proposed by Wang et al. (https:/ /users. eecs. northwestern. edu/ ~jwa368/
pdfs/deep_ranking. pdf) is used to rank images based on similarity. Images are passed
through different models as shown here:

Reproduced with permission from Wang et al.

https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf
https://users.eecs.northwestern.edu/~jwa368/pdfs/deep_ranking.pdf

Similarity Learning Chapter 6

[165]

The triplet loss is computed here as well and backpropagation is done more smoothly. Then
the image can be converted to a linear embedding for ranking purposes, as shown:

Reproduced with permission from Wang et al.

This algorithm is highly useful for ranking purposes.

Similarity Learning Chapter 6

[166]

Visual recommendation systems
Visual recommendation systems are excellent for getting recommendations for a given
image. Recommendation models provide images with similar properties. From the
following model proposed by Shankar et al. (https:/ /arxiv. org/ pdf/ 1703. 02344. pdf) you
can learn the embedding for images that are similar and it also provides recommendations:

Figure (a) Shows the deep ranking architecture and (b) Shows the VisNet architecture [Reproduced with permission from Shankar et al]

These are some of the algorithms that are used for similarity learning. In the next section,
we will see how to apply these techniques to faces.

Human face analysis
The human face can be analyzed in multiple ways using computer vision. There are several
factors that are to be considered for this, which are listed here:

Face detection: Finding the bounding box of location of faces
Facial landmark detection: Finding the spatial points of facial features such as
nose, mouth and so on

https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf
https://arxiv.org/pdf/1703.02344.pdf

Similarity Learning Chapter 6

[167]

Face alignment: Transforming the face into a frontal face for further analysis
Attribute recognition: Finding attributes such as gender, smiling and so on
Emotion analysis: Analysing the emotions of persons
Face verification: Finding whether two images belong to the same person
Face recognition: Finding an identity for the face
Face clustering: Grouping the faces of the same person together

Let's learn about the datasets and implementation of these tasks in detail, in the following
sections.

Face detection
Face detection is similar to the object detection, that we discussed in Chapter 4, Object
Detection. The locations of the faces have to be detected from the image. A dataset
called Face Detection Data Set and Benchmark (FDDB) can be downloaded from http:/ /
vis-www.cs.umass. edu/ fddb/ . It has 2,845 images with 5,171 faces. Another dataset called
wider face can be downloaded from http:/ /mmlab. ie. cuhk. edu. hk/projects/ WIDERFace/
proposed by Yang et al. It has 32,203 images with 393,703 faces. Here is a sample of images
from the wider face dataset:

Proposed by Yang et al. and reproduced from http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/intro.jpg

http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://vis-www.cs.umass.edu/fddb/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/
http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/

Similarity Learning Chapter 6

[168]

The dataset has a good variation of scale, pose, occlusion, expression, makeup, and
illumination. Another dataset called Multi-Attribute Labelled Faces (MALF) has 5,250
images with 11,931 faces. MALF can be accessed from the link http:/ /www. cbsr. ia.ac. cn/
faceevaluation/. The same techniques used in object detection can be applied for face
detection as well.

Face landmarks and attributes
Face landmarks are the spatial points in a human face. The spatial points correspond to
locations of various facial features such as eyes, eyebrows, nose, mouth, and chin. The
number of points may vary from 5 to 78 depending on the annotation. Face landmarks are
also referred to as fiducial-points, facial key points, or face pose. The face landmarks have
many applications as listed here:

Alignment of faces for better face verification or face recognition
To track faces in a video
Facial expressions or emotions can be measured
Helpful for diagnosis of medical conditions

Next, we will see some databases that have the annotation for fiducial points.

The Multi-Task Facial Landmark (MTFL) dataset
The MTFL dataset is proposed by Zhang et al. and is annotated with five facial landmarks
along with gender, smiling, glasses and head pose annotations. There are 12,995 faces
present in the database. MTFL can be downloaded from http:/ /mmlab. ie. cuhk. edu. hk/
projects/TCDCN/data/ MTFL. zip.

http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://www.cbsr.ia.ac.cn/faceevaluation/
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/data/MTFL.zip

Similarity Learning Chapter 6

[169]

Here is a sample of the images present in MTFL:

Proposed by Zhang et al. and reproduced from http://mmlab.ie.cuhk.edu.hk/projects/TCDCN/img/1.jpg

There are a lot of variations in the faces with respect to age, illumination, emotions and so
on. Head pose is the angle of face direction, denoted in degrees. Glasses, smiling, gender
attributes, and so on are annotated with binary labels.

The Kaggle keypoint dataset
The Kaggle keypoint dataset is annotated with 15 facial landmarks. There are 8,832 images
present in the dataset. It can be downloaded from the link https:/ / www.kaggle. com/ c/
facial-keypoints- detection/ data. The images are 96 pixels by 96 pixels in size.

https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data
https://www.kaggle.com/c/facial-keypoints-detection/data

Similarity Learning Chapter 6

[170]

The Multi-Attribute Facial Landmark (MAFL) dataset
The MAFL dataset proposed by Zhang et al. is annotated with 5 facial landmarks with 40
different facial attributes. There are 20,000 faces present in the database. MAFL can be
downloaded from https:/ /github. com/ zhzhanp/ TCDCN- face- alignment. Here is a sample
of the images present in MAFL:

Proposed by Liu et al. and reproduced from http://mmlab.ie.cuhk.edu.hk/projects/celeba/overview.png

The attributes of annotation include pointy-nose, bands, moustache, wavy hair, wearing a
hat and so on. These images are included in the CelebA dataset as well, which will be
discussed in detail later.

https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment
https://github.com/zhzhanp/TCDCN-face-alignment

Similarity Learning Chapter 6

[171]

Learning the facial key points
As discussed in the earlier topics, there are a few parameters that are to be defined while
calculating the key facial points. We will use the following code to define these parameters:

image_size = 40
no_landmark = 10
no_gender_classes = 2
no_smile_classes = 2
no_glasses_classes = 2
no_headpose_classes = 5
batch_size = 100
total_batches = 300

Next, allow a few placeholders for the various inputs.

image_input = tf.placeholder(tf.float32, shape=[None, image_size,
image_size])
landmark_input = tf.placeholder(tf.float32, shape=[None, no_landmark])
gender_input = tf.placeholder(tf.float32, shape=[None, no_gender_classes])
smile_input = tf.placeholder(tf.float32, shape=[None, no_smile_classes])
glasses_input = tf.placeholder(tf.float32, shape=[None,
no_glasses_classes])
headpose_input = tf.placeholder(tf.float32, shape=[None,
no_headpose_classes])

Next, construct the main model with four convolution layers, as shown in the following
code:

image_input_reshape = tf.reshape(image_input, [-1, image_size, image_size,
1],
 name='input_reshape')

convolution_layer_1 = convolution_layer(image_input_reshape, 16)
pooling_layer_1 = pooling_layer(convolution_layer_1)
convolution_layer_2 = convolution_layer(pooling_layer_1, 48)
pooling_layer_2 = pooling_layer(convolution_layer_2)
convolution_layer_3 = convolution_layer(pooling_layer_2, 64)
pooling_layer_3 = pooling_layer(convolution_layer_3)
convolution_layer_4 = convolution_layer(pooling_layer_3, 64)
flattened_pool = tf.reshape(convolution_layer_4, [-1, 5 * 5 * 64],
 name='flattened_pool')
dense_layer_bottleneck = dense_layer(flattened_pool, 1024)
dropout_bool = tf.placeholder(tf.bool)
dropout_layer = tf.layers.dropout(
 inputs=dense_layer_bottleneck,
 rate=0.4,

Similarity Learning Chapter 6

[172]

 training=dropout_bool
)

Next, we will create a branch of logits for all the different tasks, by making use of the
following code:

landmark_logits = dense_layer(dropout_layer, 10)
smile_logits = dense_layer(dropout_layer, 2)
glass_logits = dense_layer(dropout_layer, 2)
gender_logits = dense_layer(dropout_layer, 2)
headpose_logits = dense_layer(dropout_layer, 5)

The loss is computed individually for all the facial features, as shown in the following code:

landmark_loss = 0.5 * tf.reduce_mean(
 tf.square(landmark_input, landmark_logits))

gender_loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(
 labels=gender_input, logits=gender_logits))

smile_loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(
 labels=smile_input, logits=smile_logits))

glass_loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(
 labels=glasses_input, logits=glass_logits))

headpose_loss = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(
 labels=headpose_input, logits=headpose_logits))

loss_operation = landmark_loss + gender_loss + \
 smile_loss + glass_loss + headpose_loss

Now, we will initialize the optimizer and start the training, as shown in the following code:

optimiser = tf.train.AdamOptimizer().minimize(loss_operation)
session = tf.Session()
session.run(tf.initialize_all_variables())
fiducial_test_data = fiducial_data.test

for batch_no in range(total_batches):
 fiducial_data_batch = fiducial_data.train.next_batch(batch_size)
 loss, _landmark_loss, _ = session.run(
 [loss_operation, landmark_loss, optimiser],
 feed_dict={

Similarity Learning Chapter 6

[173]

 image_input: fiducial_data_batch.images,
 landmark_input: fiducial_data_batch.landmarks,
 gender_input: fiducial_data_batch.gender,
 smile_input: fiducial_data_batch.smile,
 glasses_input: fiducial_data_batch.glasses,
 headpose_input: fiducial_data_batch.pose,
 dropout_bool: True
 })
 if batch_no % 10 == 0:
 loss, _landmark_loss, _ = session.run(
 [loss_operation, landmark_loss],
 feed_dict={
 image_input: fiducial_test_data.images,
 landmark_input: fiducial_test_data.landmarks,
 gender_input: fiducial_test_data.gender,
 smile_input: fiducial_test_data.smile,
 glasses_input: fiducial_test_data.glasses,
 headpose_input: fiducial_test_data.pose,
 dropout_bool: False
 })

This process can be used to detect the facial features as well as landmarks.

Face recognition
The face recognition or facial recognition is the process of identifying a personage from a
digital image or a video. Let's learn about the datasets available for face recognition in the
next sections.

The labeled faces in the wild (LFW) dataset
The LFW dataset contains 13,233 faces with 5,749 unique people and is considered as the
standard dataset to evaluate face verification datasets. An accuracy metric can be used to
assess the algorithms. The dataset can be accessed in the link http:/ /vis- www.cs. umass.
edu/lfw/.

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/

Similarity Learning Chapter 6

[174]

The YouTube faces dataset
The YouTube faces dataset contains 3,425 video clips with 1,595 unique people. The videos
are collected from YouTube. The dataset has at least two videos per person. This dataset is
considered as a standard dataset for face verification in videos. The dataset can be accessed
in the link https:/ /www. cs. tau. ac. il/ ~wolf/ ytfaces/ .

The CelebFaces Attributes dataset (CelebA)
The CelebA dataset is annotated with identities of people along with 5 facial landmarks and
40 attributes. There are 10,177 unique people with 202,599 face images in the database. It is
one of the large datasets available for face verification, detection, landmark and attributes
recognition problems. The images have good variations of faces with diverse annotations.
The dataset can be accessed in the link http:/ /mmlab. ie. cuhk. edu. hk/projects/ CelebA.
html.

CASIA web face database
The CASIA dataset is annotated with 10,575 unique people with 494,414 images in total. The
dataset can be obtained from http:/ /www. cbsr.ia. ac.cn/ english/ CASIA- WebFace-
Database.html. This is the second largest public dataset available for face verification and
recognition problems.

The VGGFace2 dataset
The VGGFace2 dataset proposed by Cao et al. is annotated with 9,131 unique people with
3.31 million images. The dataset can be obtained from http:/ /www. robots. ox. ac.uk/ ~vgg/
data/vgg_face2/. The variation includes age, ethnicity, pose, profession, and illumination.
This is the largest dataset available for face verification.

https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
https://www.cs.tau.ac.il/~wolf/ytfaces/
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/
http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/

Similarity Learning Chapter 6

[175]

Here is a sample of the images present in the dataset:

Proposed by Cao et al. and reproduced from http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/web_page_img.png

The minimum, mean, and maximum number of images per unique person are 87, 362.6, and
843 respectively.

Computing the similarity between faces
The computing of face similarities is a multi-step problem. The faces have to be detected,
followed by finding the fiducial points. The faces can be aligned with the fiducial points.
The aligned face can be used for comparison. As I have mentioned earlier, face detection is
similar to object detection. So, in order to find the similarities between faces, we will first
import the required libraries and also the facenet library, with the help of the following
code:

from scipy import misc
import tensorflow as tf
import numpy as np
import os
import facenet
print facenet
from facenet import load_model, prewhiten
import align.detect_face

Similarity Learning Chapter 6

[176]

The images can be loaded and aligned as shown:

def load_and_align_data(image_paths, image_size=160, margin=44,
gpu_memory_fraction=1.0):
 minsize = 20
 threshold = [0.6, 0.7, 0.7]
 factor = 0.709

 print('Creating networks and loading parameters')
 with tf.Graph().as_default():
 gpu_options =
tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
 sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
log_device_placement=False))
 with sess.as_default():
 pnet, rnet, onet = align.detect_face.create_mtcnn(sess, None)

 nrof_samples = len(image_paths)
 img_list = [None] * nrof_samples
 for i in range(nrof_samples):
 img = misc.imread(os.path.expanduser(image_paths[i]), mode='RGB')
 img_size = np.asarray(img.shape)[0:2]
 bounding_boxes, _ = align.detect_face.detect_face(img, minsize,
pnet, rnet, onet, threshold, factor)
 det = np.squeeze(bounding_boxes[0, 0:4])
 bb = np.zeros(4, dtype=np.int32)
 bb[0] = np.maximum(det[0] - margin / 2, 0)
 bb[1] = np.maximum(det[1] - margin / 2, 0)
 bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
 bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
 cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
 aligned = misc.imresize(cropped, (image_size, image_size),
interp='bilinear')
 prewhitened = prewhiten(aligned)
 img_list[i] = prewhitened
 images = np.stack(img_list)
 return images

Similarity Learning Chapter 6

[177]

Now we will process the image paths to get the embeddings. The code for the same is given
here:

def get_face_embeddings(image_paths, model='/20170512-110547/'):
 images = load_and_align_data(image_paths)
 with tf.Graph().as_default():
 with tf.Session() as sess:
 load_model(model)
 images_placeholder =
tf.get_default_graph().get_tensor_by_name("input:0")
 embeddings =
tf.get_default_graph().get_tensor_by_name("embeddings:0")
 phase_train_placeholder =
tf.get_default_graph().get_tensor_by_name("phase_train:0")
 feed_dict = {images_placeholder: images,
phase_train_placeholder: False}
 emb = sess.run(embeddings, feed_dict=feed_dict)

 return emb

Now we will compute the distance between the embeddings using the following code:

def compute_distance(embedding_1, embedding_2):
 dist = np.sqrt(np.sum(np.square(np.subtract(embedding_1,
embedding_2))))
 return dist

This function will compute the Euclidean distance between the embeddings.

Finding the optimum threshold
Using the preceding functions, the accuracy of this system can be calculated. The following
code can be used for calculating the optimum threshold:

import sys
import argparse
import os
import re
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score

Similarity Learning Chapter 6

[178]

Now, the image paths are obtained from the folder, using the following code:

def get_image_paths(image_directory):
 image_names = sorted(os.listdir(image_directory))
 image_paths = [os.path.join(image_directory, image_name) for image_name
in image_names]
 return image_paths

The distances of the images are obtained when embeddings are passed, as shown in the
following code:

def get_labels_distances(image_paths, embeddings):
 target_labels, distances = [], []
 for image_path_1, embedding_1 in zip(image_paths, embeddings):
 for image_path_2, embedding_2 in zip(image_paths, embeddings):
 if (re.sub(r'\d+', '', image_path_1)).lower() ==
(re.sub(r'\d+', '', image_path_2)).lower():
 target_labels.append(1)
 else:
 target_labels.append(0)
 distances.append(compute_distance(embedding_1, embedding_2)) #
Replace distance metric here
 return target_labels, distances

The threshold is varied as shown in the following code and various metrics are printed
accordingly:

def print_metrics(target_labels, distances):
 accuracies = []
 for threshold in range(50, 150, 1):
 threshold = threshold/100.
 predicted_labels = [1 if dist <= threshold else 0 for dist in
distances]
 print("Threshold", threshold)
 print(classification_report(target_labels, predicted_labels,
target_names=['Different', 'Same']))
 accuracy = accuracy_score(target_labels, predicted_labels)
 print('Accuracy: ', accuracy)
 accuracies.append(accuracy)
 print(max(accuracies))

Similarity Learning Chapter 6

[179]

Now, the image paths are passed to the embeddings, with the help of the following code:

def main(args):
 image_paths = get_image_paths(args.image_directory)
 embeddings = get_face_embeddings(image_paths) # Replace your embedding
calculation here
 target_labels, distances = get_labels_distances(image_paths,
embeddings)
 print_metrics(target_labels, distances)

Finally, the directory of the images is passed as the main argument to these methods, as
shown in the following code:

if __name__ == '__main__':
 parser = argparse.ArgumentParser()
 parser.add_argument('image_directory', type=str, help='Directory
containing the images to be compared')
 parsed_arguments = parser.parse_args(sys.argv[1:])
 main(parsed_arguments)

In this example, we have taken a pre-trained model and used it to construct a face
verification method. ;

Face clustering
Face clustering is the process of grouping images of the same person together for albums.
The embeddings of faces can be extracted, and a clustering algorithm such as K-means can
be used to club the faces of the same person together. TensorFlow provides an API
called tf.contrib.learn.KmeansClustering for the K-means algorithm. The K-means
algorithm groups the data points together. With the help of this K-means algorithm, the
embeddings of an album can be extracted and the faces of individuals can be found
together, or in other words, clustered together.

Similarity Learning Chapter 6

[180]

Summary
In this chapter, we covered the basics of similarity learning. We studied algorithms such as
metric learning, Siamese networks, and FaceNet. We also covered loss functions such as
contrastive loss and triplet loss. Two different domains, ranking and recommendation, were
also covered. Finally, the step-by-step walkthrough of face identification was covered by
understanding several steps including detection, fiducial points detections, and similarity
scoring.

In the next chapter, we will understand Recurrent Neural Networks and their use in
Natural Language Processing problems. Later, we will use language models combined with
image models for the captioning of images. We will visit several algorithms for this problem
and see an implementation of two different types of data.

7
Image Captioning

In this chapter, we will deal with the problem of captioning images. This involves detecting
the objects and also coming up with a text caption for the image. Image captioning also can
be called Image to Text translation. Once thought a very tough problem, we have
reasonably good results on this now. For this chapter, a dataset of images with
corresponding captions is required. In this chapter, we will discuss the techniques and
applications of image captioning in detail.

We will cover the following topics in this chapter:

Understand the different datasets and metrics used to evaluate them
Understand some techniques used for natural language processing problems
Different words for vector models
Several algorithms for image captioning
Adverse results and scope for improvement

Understanding the problem and datasets
The process of automatically generating captions for images is a key deep learning task, as
it combines the two worlds of language and vision. The uniqueness of the problem makes it
one of the primary problems in computer vision. A deep learning model for image
captioning should be able to identify the objects present in the image and also generate text
in natural language expressing the relationship between the objects and actions. There are
few datasets for this problem. The most famous of the datasets is an extension of the COCO
dataset covered in object detection in Chapter 4, Object Detection.

Image Captioning Chapter 7

[182]

Understanding natural language processing
for image captioning
As natural language has to be generated from the image, getting familiar with natural
language processing (NLP) becomes important. The concept of NLP is a vast subject, and
hence we will limit our scope to topics that are relevant to image captioning. One form of
natural language is text. The text is a sequence of words or characters. The atomic element
of text is called token, which is a sequence of characters. A character is an atomic element of
text.

In order to process any natural language in the form of text, the text has to be preprocessed
by removing punctuation, brackets and so on. Then, the text has to be tokenized into words
by separating them into spaces. Then, the words have to be converted to vectors. Next, we
will see how this vector conversion can help.

Expressing words in vector form
Words expressed in vector form can help perform arithmetic operations on themselves. The
vector has to be compact, with less dimension. Synonyms should have similar vectors and
antonyms should have a different vector. Words can be converted to vectors so that
relations can be compared as shown here:

This vector arithmetic enables comparison in semantic space between different entities.
Next, we will see how to create a deep learning model that can convert words to a vector
representation.

Image Captioning Chapter 7

[183]

Converting words to vectors
The words can be converted to vectors by training a model on a large text corpus. The
model is trained such that given a word, the model can predict nearby words. The words
are first one-hot encoded followed by hidden layers before predicting the one-hot encoding
of nearby words. Training this way will create a compact representation of words. The
context of the word can be obtained in two ways, as shown here:

Skip-gram: Given a single word, try to predict few words that are close to
Continuous Bag Of Words (CBOW): Reverse of skip-gram by predicting a word
given a group of words

The following image illustrates these processes:

Image Captioning Chapter 7

[184]

Both methods show good results. The words are converted to vectors in an embedding
space. Next, we will see the details of training an embedding space.

Training an embedding
The embedding can be trained with a model the one shown here:

Image Captioning Chapter 7

[185]

As shown in the preceding image, the target word is predicted based on context or history.
The prediction is based on the Softmax classifier. The hidden layer learns the embedding as
a compact representation. Note that this is not a full deep learning model, but it still works
well. Here is a low dimensional visualization of the embedding:

Low dimensional visualization of the embedding using Softmax classifier

Image Captioning Chapter 7

[186]

This visualization is generated using TensorBoard. The words with similar semantic
meanings or different parts of speech appear together.

We have learned how to train a compact representation for text to be used for generation.
Next, we will see approaches for image captioning.

Approaches for image captioning and
related problems
Several approaches have been suggested for captioning images. Intuitively, the images are
converted to visual features and text is generated from the features. The text generated will
be in the form of word embedding. Some of the predominant approaches for generating text
involve LSTM and attention. Let's begin with an approach that uses an old way of
generating text.

Using a condition random field for linking image
and text
Kulkarni et al., in the paper http:/ /www. tamaraberg. com/papers/ generation_ cvpr11. pdf,
proposed a method of finding the objects and attributes from an image and using it to
generate text with a conditional random field (CRF). The CRF is traditionally used for a
structured prediction such as text generation. The flow of generating text is shown here:

Figure illustrating the process of text generation using CRF [Reproduced from Kulkarni et al.]

http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf
http://www.tamaraberg.com/papers/generation_cvpr11.pdf

Image Captioning Chapter 7

[187]

The use of CRF has limitations in generating text in a coherent manner with proper
placement of prepositions. The results are shown here:

Reproduced from Kulkarni et al.

The results have proper predictions of objects and attributes but fail at generating good
descriptions.

Using RNN on CNN features to generate captions
Vinyals et al., in the paper https:/ / arxiv. org/ pdf/ 1411. 4555. pdf, proposed an end to
end trainable deep learning for image captioning, which has CNN and RNN stacked back
to back. This is an end to end trainable model. The structure is shown here:

Reproduced from Vinyals et al. (2015)

https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf
https://arxiv.org/pdf/1411.4555.pdf

Image Captioning Chapter 7

[188]

This model could generate a sentence that is completed in natural language. The expanded
view of the CNN and LSTM is shown here:

Figure illustrating the CNN AND LSTM architecture [Reproduced from Vinyals et al.]

Image Captioning Chapter 7

[189]

This is an unrolled view of LSTM. A selective set of results is shown here:

Reproduced from Vinyals et al. (2015)

In this process, the CNN encodes the image into features from which an RNN generates a
sentence.

Image Captioning Chapter 7

[190]

Creating captions using image ranking
Ordonez et al., in the paper http:/ / papers. nips. cc/paper/ 4470- im2text- describing-
images-using-1-million- captioned- photographs. pdf, proposed a method to rank the
images followed by generating captions. The flow of this process is shown here:

Reproduced from Ordonez et al. (2015)

The high-level information extracted from the ranked images can be used to generate the
text. The following image shows that the more images that are available for ranking, the
better the results will be:

Reproduced from Ordonez et al. (2015)

http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf

Image Captioning Chapter 7

[191]

Retrieving captions from images and images
from captions
Chen et al., in the paper https:/ /www. cs. cmu.edu/ ~xinleic/ papers/ cvpr15_ rnn.pdf,
proposed a method to retrieve images from text and text from images. This is a bi-
directional mapping. The following image shows a person explaining an image in natural
language and another person visually thinking about it:

Reproduced from Chen et al. (2015)

Retrieving captions can be achieved by connecting encoders of image and text through a
latent space as shown here:

Reproduced from Chen et al. (2015)

https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf
https://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf

Image Captioning Chapter 7

[192]

The first model in the image is the full model used for training. Visual features can also be
used to generate sentences, or vice-versa, as shown in the image.

Dense captioning
Johnson et al., in the paper https:/ /www. cv- foundation. org/ openaccess/ content_ cvpr_
2016/papers/Johnson_ DenseCap_ Fully_ Convolutional_ CVPR_ 2016_ paper. pdf, proposed a
method for dense captioning. First, let's see some results, to understand the task:

Reproduced from Johnson et al.

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Johnson_DenseCap_Fully_Convolutional_CVPR_2016_paper.pdf

Image Captioning Chapter 7

[193]

As you can see, separate captions are generated for objects and actions in the image; hence
the name; dense captioning. Here is the architecture proposed by Johnson et al.:

Reproduced from Johnson et al.

The architecture is essentially a combination of Faster-RCNN and LSTM. The region is
generated producing the object detection results, and the visual features of the regions are
used to generate the captions.

Image Captioning Chapter 7

[194]

Using RNN for captioning
Donahue et al., in the paper https:/ /arxiv. org/ pdf/1411. 4389. pdf, proposed Long-term
recurrent convolutional architectures (LRCN) for the task of image captioning. The
architecture of this model is shown here:

Reproduced from Donahue et al.

Both the CNN and LSTM is shown in the figure share weights across time, which makes
this method scalable to arbitrarily long sequences.

https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf
https://arxiv.org/pdf/1411.4389.pdf

Image Captioning Chapter 7

[195]

Using multimodal metric space
Mao et al., in the paper https:/ /arxiv. org/ pdf/ 1412. 6632. pdf, proposed a method that
uses multimodal embedding space to generate the captions. The following figure illustrates
this approach:

Reproduced from Mao et al.

http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf
http://papers.nips.cc/paper/4470-im2text-describing-images-using-1-million-captioned-photographs.pdf

Image Captioning Chapter 7

[196]

Kiros et al., in the paper https:/ / arxiv. org/ pdf/ 1411. 2539. pdf, proposed another
multimodal approach to generate captions, which can embed both image and text into the
same multimodal space. The following figure illustrates this approach:

Reproduced from Kiros et al.

Both of the multimodal approaches give good results.

Using attention network for captioning
Xu et al., in the paper, https:/ / arxiv. org/ pdf/ 1502. 03044. pdf, proposed a method for
image captioning using an attention mechanism. The attention mechanism gives more
weight to certain regions of the image than others. Attention also enables visualization,
showing us where the model is focusing when it generates the next word. The proposed
model is shown here:

Reproduced from Xu et al.

https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1411.2539.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.03044.pdf

Image Captioning Chapter 7

[197]

First, CNN features are extracted from the image. Then, RNN with attention is applied to
the image from which the words are generated.

Knowing when to look
Lu et al. (https://arxiv. org/ pdf/ 1612. 01887. pdf) proposed a method with attention,
providing superior results. Know when to look at what region captured by attention gives
better results. The flow is shown here:

Reproduced from Lu et al.

https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf
https://arxiv.org/pdf/1612.01887.pdf

Image Captioning Chapter 7

[198]

The attention mechanism is shown here:

Reproduced from Lu et al.

The results, with regions that were paid attention to, are highlighted here:

Reproduced from Lu et al.

Image Captioning Chapter 7

[199]

The unrolling of attention while generating captions is visualized here:

Reproduced from Lu et al.

We have seen several approaches for generating captions. Next, we will see an
implementation.

Implementing attention-based image
captioning
Let's define a CNN from VGG and the LSTM model, using the following code:

vgg_model = tf.keras.applications.vgg16.VGG16(weights='imagenet',
 include_top=False,
 input_tensor=input_tensor,
 input_shape=input_shape)

word_embedding = tf.keras.layers.Embedding(
 vocabulary_size, embedding_dimension, input_length=sequence_length)
embbedding = word_embedding(previous_words)
embbedding = tf.keras.layers.Activation('relu')(embbedding)
embbedding = tf.keras.layers.Dropout(dropout_prob)(embbedding)

cnn_features_flattened = tf.keras.layers.Reshape((height * height,
shape))(cnn_features)
net = tf.keras.layers.GlobalAveragePooling1D()(cnn_features_flattened)

net = tf.keras.layers.Dense(embedding_dimension, activation='relu')(net)
net = tf.keras.layers.Dropout(dropout_prob)(net)
net = tf.keras.layers.RepeatVector(sequence_length)(net)
net = tf.keras.layers.concatenate()([net, embbedding])
net = tf.keras.layers.Dropout(dropout_prob)(net)

Image Captioning Chapter 7

[200]

Now, as we have defined the CNN, let's define the attention layer next, using the following
code:

h_out_linear = tf.keras.layers.Convolution1D(
 depth, 1, activation='tanh', border_mode='same')(h)
h_out_linear = tf.keras.layers.Dropout(
 dropout_prob)(h_out_linear)
h_out_embed = tf.keras.layers.Convolution1D(
 embedding_dimension, 1, border_mode='same')(h_out_linear)
z_h_embed = tf.keras.layers.TimeDistributed(
 tf.keras.layers.RepeatVector(num_vfeats))(h_out_embed)

Vi = tf.keras.layers.Convolution1D(
 depth, 1, border_mode='same', activation='relu')(V)

Vi = tf.keras.layers.Dropout(dropout_prob)(Vi)
Vi_emb = tf.keras.layers.Convolution1D(
 embedding_dimension, 1, border_mode='same', activation='relu')(Vi)

z_v_linear = tf.keras.layers.TimeDistributed(
 tf.keras.layers.RepeatVector(sequence_length))(Vi)
z_v_embed = tf.keras.layers.TimeDistributed(
 tf.keras.layers.RepeatVector(sequence_length))(Vi_emb)

z_v_linear = tf.keras.layers.Permute((2, 1, 3))(z_v_linear)
z_v_embed = tf.keras.layers.Permute((2, 1, 3))(z_v_embed)

fake_feat = tf.keras.layers.Convolution1D(
 depth, 1, activation='relu', border_mode='same')(s)
fake_feat = tf.keras.layers.Dropout(dropout_prob)(fake_feat)

fake_feat_embed = tf.keras.layers.Convolution1D(
 embedding_dimension, 1, border_mode='same')(fake_feat)
z_s_linear = tf.keras.layers.Reshape((sequence_length, 1,
depth))(fake_feat)
z_s_embed = tf.keras.layers.Reshape(
 (sequence_length, 1, embedding_dimension))(fake_feat_embed)

z_v_linear = tf.keras.layers.concatenate(axis=-2)([z_v_linear, z_s_linear])
z_v_embed = tf.keras.layers.concatenate(axis=-2)([z_v_embed, z_s_embed])

z = tf.keras.layers.Merge(mode='sum')([z_h_embed,z_v_embed])
z = tf.keras.layers.Dropout(dropout_prob)(z)
z = tf.keras.layers.TimeDistributed(
 tf.keras.layers.Activation('tanh'))(z)
attention= tf.keras.layers.TimeDistributed(
 tf.keras.layers.Convolution1D(1, 1, border_mode='same'))(z)

Image Captioning Chapter 7

[201]

attention = tf.keras.layers.Reshape((sequence_length,
num_vfeats))(attention)
attention = tf.keras.layers.TimeDistributed(
 tf.keras.layers.Activation('softmax'))(attention)
attention = tf.keras.layers.TimeDistributed(
 tf.keras.layers.RepeatVector(depth))(attention)
attention = tf.keras.layers.Permute((1,3,2))(attention)
w_Vi = tf.keras.layers.Add()([attention,z_v_linear])
sumpool = tf.keras.layers.Lambda(lambda x: K.sum(x, axis=-2),
 output_shape=(depth,))
c_vec = tf.keras.layers.TimeDistributed(sumpool)(w_Vi)
atten_out = tf.keras.layers.Merge(mode='sum')([h_out_linear,c_vec])
h = tf.keras.layers.TimeDistributed(
tf.keras.layers.Dense(embedding_dimension,activation='tanh'))(atten_out)
h = tf.keras.layers.Dropout(dropout_prob)(h)

predictions = tf.keras.layers.TimeDistributed(
 tf.keras.layers.Dense(vocabulary_size, activation='softmax'))(h)

With the help of the preceding code, we have defined a deep learning model that combines
the CNN features with RNN with the help of an attention mechanism. This is currently the
best method for generating captions.

Summary
In this chapter, we have understood the problems associated with image captions. We saw a
few techniques involving natural language processing and various word2vec models such
as GLOVE. We understood several algorithms such as CNN2RNN, metric learning, and
combined objective. Later, we implemented a model that combines CNN and LSTM.

In the next chapter, we will come to understand generative models. We will learn and
implement style algorithms from scratch and cover a few of the best models. We will also
cover the cool Generative Adversarial Networks (GAN) and its various applications.

8
Generative Models

Generative models have become an important application in computer vision. Unlike the
applications discussed in previous chapters that made predictions from images, generative
models can create an image for specific objectives. In this chapter, we will understand:

The applications of generative models
Algorithms for style transfer
Training a model for super-resolution of images
Implementation and training of generative models
Drawbacks of current models

By the end of the chapter, you will be able to implement some great applications for
transferring style and understand the possibilities, as well as difficulties, associated with
generative models.

Applications of generative models
Let's start this chapter with the possible applications of generative models. The applications
are enormous. We will see a few of these applications to understand the motivation and
possibilities.

Generative Models Chapter 8

[203]

Artistic style transfer
Artistic style transfer is the process of transferring the style of art to any image. For
example, an image can be created with the artistic style of an image and content of another
image. An example of one image combined with several different styles is shown here
illustrated by Gatys et al. (https:/ /www. cv-foundation. org/openaccess/ content_ cvpr_
2016/papers/Gatys_ Image_ Style_ Transfer_ CVPR_ 2016_ paper. pdf). The image A is the
photo on which the style is applied, and the results are shown in other images:

Reproduced from Gatys et al.

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_Style_Transfer_CVPR_2016_paper.pdf

Generative Models Chapter 8

[204]

This application has caught the public's attention, and there are several mobile apps in the
market providing this facility.

Predicting the next frame in a video
Predicting future frames from synthetic video sets is possible using generative models. In
the following image proposed by Lotter et al. (https:/ /arxiv. org/pdf/ 1511. 06380. pdf)
the images on the left side are the models from the previous frame, and on the right side,
there are two algorithms compared with respect to the ground truth:

Reproduced from Lotter et al.

The frames generated by the generative models will be realistic.

https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf
https://arxiv.org/pdf/1511.06380.pdf

Generative Models Chapter 8

[205]

Super-resolution of images
The super-resolution is the process of creating higher resolution images from a smaller
image. Traditionally, interpolations were used to create such bigger images. But
interpolation misses the high-frequency details by giving a smoothened effect. Generative
models that are trained for this specific purpose of super-resolution create images with
excellent details. The following is an example of such models as proposed by Ledig et al.
(https://arxiv.org/ pdf/ 1609. 04802. pdf). The left side is generated with 4x scaling and
looks indistinguishable from the original on the right:

Reproduced from Ledig et al.

Super-resolution is useful for rendering a low-resolution image on a high-quality display or
print. Another application could be a reconstruction of compressed images with good
quality.

https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf
https://arxiv.org/pdf/1609.04802.pdf

Generative Models Chapter 8

[206]

Interactive image generation
Generative models can be used to create images by interaction. A user can add edits and
the images can be generated, reflecting the edits as shown here as proposed by Zhu et al.
(https://arxiv.org/ pdf/ 1609. 03552v2. pdf):

Reproduced from Zhu et al.

As shown, the images are generated based on the shape and color of the edits. A green color
stroke at the bottom creates a grassland, a rectangle creates a skyscraper and so on. The
images will be generated and fine-tuned with further inputs from the user. The generated
image can also be used to retrieve the most similar real image that can be utilized.
Interactive image generation provides an entirely new way of searching images intuitively.

https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf
https://arxiv.org/pdf/1609.03552v2.pdf

Generative Models Chapter 8

[207]

Image to image translation
An image can be used to generate other images with specific objectives, and hence this
process is called an image to image translation. A few examples of such translations are
shown here with their corresponding criteria as propose by Isola et al. (https:/ /arxiv. org/
pdf/1611.07004.pdf):

Reproduced from Isola et al.

A drawing with a label can be converted to a realistic image for creative purposes. A black
and white image can be translated to a color image. Such translations are useful for photo
editing apps, coloring old movies, fashion design and so on.

https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf

Generative Models Chapter 8

[208]

Text to image generation
Images can be generated from text descriptions, and the steps for this are similar to the
image to image translation. Here are a few examples that are generated from a natural text
description shown by Reed at al. (https:/ /arxiv. org/ pdf/ 1605. 05396. pdf):

Reproduced from Reed et al.

Currently, this model works for only a few objects. Image generation from
a text is not yet realistic enough to be used in applications.

https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf

Generative Models Chapter 8

[209]

Inpainting
Inpainting is the process of filling a gap within the image, as shown here:

Source: https://www.flickr.com/photos/littleredelf/4756059924/

The image on the left is the normal image and the one on the right is the processed image.
As you can see from the image, the unwanted things are removed from the picture.
Inpainting is useful for removing unwanted objects from the image, and also for filling in
the space of scanned artwork.

Blending
Blending is the process of pasting a part of an image over another image smoothly, without
any artefacts. The image a shown here shows a case where one image is placed on another,
which gives a bad impression. The images b and c represent the conventional blending
techniques such as the modified Poisson method and a multi-spline method, respectively.

Generative Models Chapter 8

[210]

The final image, or the image d, shows the results of a generative method of blending which
gives a much better result than the other methods as shown by Wu et al. (https:/ /arxiv.
org/pdf/1703.07195. pdf):

Reproduced from Wu et al.

Blending is very useful in photo editing and for special effects in the
movie industry.

https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf
https://arxiv.org/pdf/1703.07195.pdf

Generative Models Chapter 8

[211]

Transforming attributes
The attributes of images can be changed using generative models. A person's face could be
modified to reflect different attributes such as gender, glasses, age, and so on, as shown
here by Lample et al. (https:/ /research. fb.com/ wp-content/ uploads/ 2017/ 11/ fader_
networks__conditional_ attribute_ based_ image_ generation_ by_ disentangling_ in_
latent_space.pdf):

Reproduced with Lample et al.

Changing the attributes can be used for creative applications as well as for fun, and can also
be used for generating more training data with variations.

Creating training data
Generative models can be used for generating training at a larger scale and can even be
used to refine the synthetic images created for training. Here are the synthetic images
created for traffic sign recognition, using generative models as shown by Wang et al.
(https://arxiv.org/ pdf/ 1707. 03124. pdf)

https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://research.fb.com/wp-content/uploads/2017/11/fader_networks__conditional_attribute_based_image_generation_by_disentangling_in_latent_space.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf
https://arxiv.org/pdf/1707.03124.pdf

Generative Models Chapter 8

[212]

Reproduced from Wang et al.

Using these images makes the classifications more accurate.

Creating new animation characters
Generative models can be used for creating new animation characters with various
conditions such as facial expressions, hairstyles, costumes, and so on, as shown by Jin et al.
(https://arxiv.org/ pdf/ 1708. 05509. pdf):

Reproduced from Jin et al.

https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf
https://arxiv.org/pdf/1708.05509.pdf

Generative Models Chapter 8

[213]

Creating new characters with different attributes could revolutionize the animation
industry.

3D models from photos
We can create 3D models from 2D images by using generative models, as shown by Wu et
al. (https://arxiv. org/ pdf/ 1610. 07584. pdf):

Reproduced from Wu et al.

Creating 3D models from images is useful for robotics, augmented reality and in animation
industries. We will learn the algorithms behind them in the following sections. In the next
section, we will implement neural artistic style transfer.

Neural artistic style transfer
The first application we will implement is the neural artistic style transfer. Here, we will
transfer the style of Van Gogh art onto an image. An image can be considered as a
combination of style and content. The artistic style transfer technique transforms an image
to look like a painting with a specific painting style. We will see how to code this idea up.
The loss function will compare the generated image with the content of the photo and
style of the painting. Hence, the optimization is carried out for the image pixel, rather than
for the weights of the network. Two values are calculated by comparing the content of the
photo with the generated image followed by the style of the painting and the generated
image.

https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf
https://arxiv.org/pdf/1610.07584.pdf

Generative Models Chapter 8

[214]

Content loss
Since pixels are not a good choice, we will use the CNN features of various layers, as they
are a better representation of the content. The initial layers as seen in Chapter 3, Image
Retrieval, have high-frequency such as edges, corners, and textures but the later layers
represent objects, and hence are better for content. The latter layer can compare the object to
object better than the pixel. But for this, we need to first import the required libraries, using
the following code:

import numpy as np
from PIL import Image
from scipy.optimize import fmin_l_bfgs_b
from scipy.misc import imsave
from vgg16_avg import VGG16_Avg
from keras import metrics
from keras.models import Model
from keras import backend as K

Now, let's load the required image, using the following command:

content_image = Image.open(work_dir + 'bird_orig.png')

We will use the following image for this instance:

Generative Models Chapter 8

[215]

As we are using the VGG architecture for extracting the features, the mean of all the
ImageNet images has to be subtracted from all the images, as shown in the following code:

imagenet_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32)

def subtract_imagenet_mean(image):
 return (image - imagenet_mean)[:, :, :, ::-1]

Note that the channels are different. The preprocess function takes the generated image
and subtracts the mean and then reverses the channel. The deprocess function reverses
that effect because of the preprocessing step, as shown in the following code:

def add_imagenet_mean(image, s):
 return np.clip(image.reshape(s)[:, :, :, ::-1] + imagenet_mean, 0, 255)

First, we will see how to create an image with the content from another image. This is a
process of creating an image from random noise. The content used here is the sum of the
activation in some layer. We will minimize the loss of the content between the random
noise and image, which is termed as the content loss. This loss is similar to pixel-wise loss
but applied on layer activations, hence will capture the content leaving out the noise. Any
CNN architecture can be used to do forward inference of content image and random noise.
The activations are taken and the mean squared error is calculated, comparing the
activations of these two outputs.

The pixel of the random image is updated while the CNN weights are frozen. We will
freeze the VGG network for this case. Now, the VGG model can be loaded. Generative
images are very sensitive to subsampling techniques such as max pooling. Getting back the
pixel values from max pooling is not possible. Hence, average pooling is a smoother
method than max pooling. The function to convert VGG model with average pooling is
used for loading the model, as shown here:

vgg_model = VGG16_Avg(include_top=False)

Note that the weights are the same for this model as the original, even though the pooling
type has been changed. The ResNet and Inception models are not suited for this because of
their inability to provide various abstractions. We will take the activations from the last
convolutional layer of the VGG model namely block_conv1, while the model was frozen.
This is the third last layer from the VGG, with a wide receptive field. The code for the same
is given here for your reference:

content_layer = vgg_model.get_layer('block5_conv1').output

Generative Models Chapter 8

[216]

Now, a new model is created with a truncated VGG, till the layer that was giving good
features. Hence, the image can be loaded now and can be used to carry out the forward
inference, to get the actually activated layers. A TensorFlow variable is created to capture
the activation, using the following code:

content_model = Model(vgg_model.input, content_layer)
content_image_array =
subtract_imagenet_mean(np.expand_dims(np.array(content_image), 0))
content_image_shape = content_image_array.shape
target = K.variable(content_model.predict(content_image_array))

Let's define an evaluator class to compute the loss and gradients of the image. The
following class returns the loss and gradient values at any point of the iteration:

class ConvexOptimiser(object):
 def __init__(self, cost_function, tensor_shape):
 self.cost_function = cost_function
 self.tensor_shape = tensor_shape
 self.gradient_values = None

 def loss(self, point):
 loss_value, self.gradient_values =
self.cost_function([point.reshape(self.tensor_shape)])
 return loss_value.astype(np.float64)

 def gradients(self, point):
 return self.gradient_values.flatten().astype(np.float64)

Loss function can be defined as the mean squared error between the values of activations at
specific convolutional layers. The loss will be computed between the layers of generated
image and the original content photo, as shown here:

mse_loss = metrics.mean_squared_error(content_layer, target)

The gradients of the loss can be computed by considering the input of the model, as shown:

grads = K.gradients(mse_loss, vgg_model.input)

The input to the function is the input of the model and the output will be the array of loss
and gradient values as shown:

cost_function = K.function([vgg_model.input], [mse_loss]+grads)

This function is deterministic to optimize, and hence SGD is not required:

optimiser = ConvexOptimiser(cost_function, content_image_shape)

Generative Models Chapter 8

[217]

This function can be optimized using a simple optimizer, as it is convex and hence is
deterministic. We can also save the image at every step of the iteration. We will define it in
such a way that the gradients are accessible, as we are using the scikit-learn's optimizer, for
the final optimization. Note that this loss function is convex and so, a simple optimizer is
good enough for the computation. The optimizer can be defined using the following code:

def optimise(optimiser, iterations, point, tensor_shape, file_name):
 for i in range(iterations):
 point, min_val, info = fmin_l_bfgs_b(optimiser.loss,
point.flatten(),
 fprime=optimiser.gradients, maxfun=20)
 point = np.clip(point, -127, 127)
 print('Loss:', min_val)
 imsave(work_dir + 'gen_'+file_name+'_{i}.png',
add_imagenet_mean(point.copy(), tensor_shape)[0])
 return point

The optimizer takes loss function, point, and gradients, and returns the updates. A
random image needs to be generated so that the content loss will be minimized, using the
following code:

def generate_rand_img(shape):
 return np.random.uniform(-2.5, 2.5, shape)/1
generated_image = generate_rand_img(content_image_shape)

Here is the random image that is created:

Generative Models Chapter 8

[218]

The optimization can be run for 10 iterations to see the results, as shown:

iterations = 10
generated_image = optimise(optimiser, iterations, generated_image,
content_image_shape, 'content')

If everything goes well, the loss should print as shown here, over the iterations:

Current loss value: 73.2010421753
Current loss value: 22.7840042114
Current loss value: 12.6585302353
Current loss value: 8.53817081451
Current loss value: 6.64649534225
Current loss value: 5.56395864487
Current loss value: 4.83072710037
Current loss value: 4.32800722122
Current loss value: 3.94804215431
Current loss value: 3.66387653351

Here is the image that is generated and now, it almost looks like a bird. The optimization
can be run for further iterations to have this done:

An optimizer took the image and updated the pixels so that the content is the same. Though
the results are worse, it can reproduce the image to a certain extent with the content. All the
images through iterations give a good intuition on how the image is generated. There is no
batching involved in this process. In the next section, we will see how to create an image in
the style of a painting.

Generative Models Chapter 8

[219]

Style loss using the Gram matrix
After creating an image that has the content of the original image, we will see how to create
an image with just the style. Style can be thought of as a mix of colour and texture of an
image. For that purpose, we will define style loss. First, we will load the image and convert
it to an array, as shown in the following code:

style_image = Image.open(work_dir + 'starry_night.png')
style_image = style_image.resize(np.divide(style_image.size,
3.5).astype('int32'))

Here is the style image we have loaded:

Now, we will preprocess this image by changing the channels, by using the following code:

style_image_array = subtract_imagenet_mean(np.expand_dims(style_image,
0)[:, :, :, :3])
style_image_shape = style_image_array.shape

For this purpose, we will consider several layers, like we have done in the following code:

model = VGG16_Avg(include_top=False, input_shape=shp[1:])
outputs = {l.name: l.output for l in model.layers}

Now, we will take multiple layers as an array output of the first four blocks, using the
following code:

layers = [outputs['block{}_conv1'.format(o)] for o in range(1,3)]

Generative Models Chapter 8

[220]

A new model is now created, that can output all those layers and assign the target variables,
using the following code:

layers_model = Model(model.input, layers)
targs = [K.variable(o) for o in layers_model.predict(style_arr)]

Style loss is calculated using the Gram matrix. The Gram matrix is the product of a matrix
and its transpose. The activation values are simply transposed and multiplied. This matrix
is then used for computing the error between the style and random images. The Gram
matrix loses the location information but will preserve the texture information. We will
define the Gram matrix using the following code:

def grammian_matrix(matrix):
 flattened_matrix = K.batch_flatten(K.permute_dimensions(matrix, (2, 0,
1)))
 matrix_transpose_dot = K.dot(flattened_matrix,
K.transpose(flattened_matrix))
 element_count = matrix.get_shape().num_elements()
 return matrix_transpose_dot / element_count

As you might be aware now, it is a measure of the correlation between the pair of columns.
The height and width dimensions are flattened out. This doesn't include any local pieces of
information, as the coordinate information is disregarded. Style loss computes the mean
squared error between the Gram matrix of the input image and the target, as shown in the
following code:

def style_mse_loss(x, y):
 return metrics.mse(grammian_matrix(x), grammian_matrix(y))

Now, let's compute the loss by summing up all the activations from the various layers,
using the following code:

style_loss = sum(style_mse_loss(l1[0], l2[0]) for l1, l2 in
zip(style_features, style_targets))
grads = K.gradients(style_loss, vgg_model.input)
style_fn = K.function([vgg_model.input], [style_loss]+grads)
optimiser = ConvexOptimiser(style_fn, style_image_shape)

We then solve it as the same way we did before, by creating a random image. But this time,
we will also apply a Gaussian filter, as shown in the following code:

generated_image = generate_rand_img(style_image_shape)

Generative Models Chapter 8

[221]

The random image generated will look like this:

The optimization can be run for 10 iterations to see the results, as shown below:

generated_image = optimise(optimiser, iterations, generated_image,
style_image_shape)

If everything goes well, the solver should print the loss values similar to the following:

Current loss value: 5462.45556641
Current loss value: 189.738555908
Current loss value: 82.4192581177
Current loss value: 55.6530838013
Current loss value: 37.215713501
Current loss value: 24.4533748627
Current loss value: 15.5914745331
Current loss value: 10.9425945282
Current loss value: 7.66888141632
Current loss value: 5.84042310715

Generative Models Chapter 8

[222]

Here is the image that is generated:

Here, from a random noise, we have created an image with a particular painting style
without any location information. In the next section, we will see how to combine both—the
content and style loss.

Style transfer
Now we know how to reconstruct an image, as well as how to construct an image that
captures the style of an original image. The obvious idea may be to just combine these two
approaches by weighting and adding the two loss functions, as shown in the following
code:

w,h = style.size
src = img_arr[:,:h,:w]

Generative Models Chapter 8

[223]

Like before, we're going to grab a sequence of layer outputs to compute the style loss.
However, we still only need one layer output to compute the content loss. How do we
know which layer to grab? As we discussed earlier, the lower the layer, the more exact the
content reconstruction will be. In merging content reconstruction with style, we might
expect that a looser reconstruction of the content will allow more room for the style to affect
(re: inspiration). Furthermore, a later layer ensures that the image looks like the same
subject, even if it doesn't have the same details. The following code is used for this process:

style_layers = [outputs['block{}_conv2'.format(o)] for o in range(1,6)]
content_name = 'block4_conv2'
content_layer = outputs[content_name]

Now, a separate model for style is created with required output layers, using the following
code:

style_model = Model(model.input, style_layers)
style_targs = [K.variable(o) for o in style_model.predict(style_arr)]

We will also create another model for the content with the content layer, using the
following code:

content_model = Model(model.input, content_layer)
content_targ = K.variable(content_model.predict(src))

Now, the merging of the two approaches is as simple as merging their respective loss
functions. Note that as opposed to our previous functions, this function is producing three
separate types of outputs:

One for the original image
One for the image whose style we're emulating
One for the random image whose pixels we are training

One way for us to tune how the reconstructions mix is by changing the factor on the content
loss, which we have here as 1/10. If we increase that denominator, the style will have a
larger effect on the image, and if it's too large, the original content of the image will be
obscured by an unstructured style. Likewise, if it is too small then the image will not have
enough style. We will use the following code for this process:

style_wgts = [0.05,0.2,0.2,0.25,0.3]

Generative Models Chapter 8

[224]

The loss function takes both style and content layers, as shown here:

loss = sum(style_loss(l1[0], l2[0])*w
 for l1,l2,w in zip(style_layers, style_targs, style_wgts))
loss += metrics.mse(content_layer, content_targ)/10
grads = K.gradients(loss, model.input)
transfer_fn = K.function([model.input], [loss]+grads)
evaluator = Evaluator(transfer_fn, shp)

We will run the solver for 10 iterations as before, using the following code:

iterations=10
x = rand_img(shp)
x = solve_image(evaluator, iterations, x)

The loss values should be printed as shown here:

Current loss value: 2557.953125
Current loss value: 732.533630371
Current loss value: 488.321166992
Current loss value: 385.827178955
Current loss value: 330.915924072
Current loss value: 293.238189697
Current loss value: 262.066864014
Current loss value: 239.34185791
Current loss value: 218.086700439
Current loss value: 203.045211792

These results are remarkable. Each one of them does a fantastic job of recreating the original
image in the style of the artist. The generated image will look like the following:

Generative Models Chapter 8

[225]

We will now conclude the style transfer section. This operation is really slow but can work
with any images. In the next section, we will see how to use a similar idea to create a super-
resolution network. There are several ways to make this better, such as:

Adding a Gaussian filter to a random image
Adding different weights to the layers
Different layers and weights can be used to content
Initialization of image rather than random image
Color can be preserved
Masks can be used for specifying what is required
Any sketch can be converted to painting
Drawing a sketch and creating the image

Any image can be converted to artistic style by training a CNN to output
such an image.

Generative Adversarial Networks
Generative Adversarial Networks (GAN) were invented by Ian Goodfellow, in 2014. It is
an unsupervised algorithm where two neural networks are trained as a discriminator and a
generator, simultaneously. The technique can generate an image from random noise and a
discriminator can evaluate whether is an original image. After further training, the
generator network can generate photo-realistic images. The generator network is typically a
deconvolutional neural network and the discriminator is a convolution neural network.

An excellent analogy to understand this is to think of the generator as someone who prints
fake money and the discriminator as a police officer who determines whether the money is
fake or not. The generator keeps improving the quality of the fake money based on the
feedback from the police till the police can't differentiate between the original and fake
money. Now, let's start with the implementation.

Generative Models Chapter 8

[226]

Vanilla GAN
The original GAN is called a vanilla GAN. Before we construct the model, let's define a few
layers that will be useful for the rest of the chapter. The following is the
convolutional_layers with leaky activations and regularization added:

def convolution_layer(input_layer,
 filters,
 kernel_size=[4, 4],
 activation=tf.nn.leaky_relu):
 layer = tf.layers.conv2d(
 inputs=input_layer,
 filters=filters,
 kernel_size=kernel_size,
 activation=activation,
 kernel_regularizer=tf.nn.l2_loss,
 bias_regularizer=tf.nn.l2_loss,
)
 add_variable_summary(layer, 'convolution')
 return layer

Next, we will define a transpose_convolution_layer that is the opposite of a
convolution_layer with regularization, using the following code:

def transpose_convolution_layer(input_layer,
 filters,
 kernel_size=[4, 4],
 activation=tf.nn.relu,
 strides=2):
 layer = tf.layers.conv2d_transpose(
 inputs=input_layer,
 filters=filters,
 kernel_size=kernel_size,
 activation=activation,
 strides=strides,
 kernel_regularizer=tf.nn.l2_loss,
 bias_regularizer=tf.nn.l2_loss,
)
 add_variable_summary(layer, 'convolution')
 return layer

Generative Models Chapter 8

[227]

Next, we will define a dense layer with non-linear activations, using the following code:

def dense_layer(input_layer,
 units,
 activation=tf.nn.relu):
 layer = tf.layers.dense(
 inputs=input_layer,
 units=units,
 activation=activation
)
 add_variable_summary(layer, 'dense')
 return layer

Now, we will define a generator that takes noise as an input and changes into an image. The
generator consists of a couple of fully connected layers followed by transpose convolution
layers to upsample the noise. Finally, a convolution layer is presented to make the noise as a
single channel. There are batch normalization layers between every layer for gradients to
flow smoothly. We will use the following code to define the generator:

def get_generator(input_noise, is_training=True):
 generator = dense_layer(input_noise, 1024)
 generator = tf.layers.batch_normalization(generator,
training=is_training)
 generator = dense_layer(generator, 7 * 7 * 256)
 generator = tf.layers.batch_normalization(generator,
training=is_training)
 generator = tf.reshape(generator, [-1, 7, 7, 256])
 generator = transpose_convolution_layer(generator, 64)
 generator = tf.layers.batch_normalization(generator,
training=is_training)
 generator = transpose_convolution_layer(generator, 32)
 generator = tf.layers.batch_normalization(generator,
training=is_training)
 generator = convolution_layer(generator, 3)
 generator = convolution_layer(generator, 1, activation=tf.nn.tanh)
 return generator

Generative Models Chapter 8

[228]

We will now define the discriminator part of the GAN that takes images and tries to
distinguish fake from real images. The discriminator is a regular convolutional net with a
few convolutional_layers followed by dense layers. Batch normalization layers are
present in-between the layers. We will use the following code to define the discriminator:

def get_discriminator(image, is_training=True):
 x_input_reshape = tf.reshape(image, [-1, 28, 28, 1],
 name='input_reshape')
 discriminator = convolution_layer(x_input_reshape, 64)
 discriminator = convolution_layer(discriminator, 128)
 discriminator = tf.layers.flatten(discriminator)
 discriminator = dense_layer(discriminator, 1024)
 discriminator = tf.layers.batch_normalization(discriminator,
training=is_training)
 discriminator = dense_layer(discriminator, 2)
 return discriminator

After the discriminator is created, we will create a noise vector that will be the input to the
generator, using the following code:

input_noise = tf.random_normal([batch_size, input_dimension])

The GAN model can be created with the tf.contrib.gan module in TensorFlow. It takes
the generator and discriminator methods along with their corresponding inputs, as shown
here:

gan = tf.contrib.gan.gan_model(
 get_generator,
 get_discriminator,
 real_images,
 input_noise)

Now, the training can be started with the gan_train method that takes the
gan_train_ops method with loss and optimizers for the generator and discriminator,
using the following code:

tf.contrib.gan.gan_train(
 tf.contrib.gan.gan_train_ops(
 gan,
 tf.contrib.gan.gan_loss(gan),
 tf.train.AdamOptimizer(0.001),
 tf.train.AdamOptimizer(0.0001)))

Generative Models Chapter 8

[229]

By running this, a GAN model is created that can output images from random vectors. The
generated images are unconstrained and can be from any label. In the next section, we will
use a conditional GAN to produce the output we want.

Conditional GAN
A conditional GAN generates images with a label that we want. For example, we can ask
the model to produce the digit 8 and the model will produce an 8. To enable this, the labels
are required along with noise to be trained with the model, as shown here:

gan = tf.contrib.gan.gan_model(
 get_generator,
 get_discriminator,
 real_images,
 (input_noise, labels))

The rest of the training is similar to that of the vanilla GAN. Next, we will use a GAN for
compressing the images.

Adversarial loss
An adversarial loss is a loss from the generator. This loss can be combined with a pixel-wise
loss between the fake and real images to form a combined adversarial loss. The GAN model
has to be supplied with real_images, to both the generator and discriminator, as shown
here:

gan = tf.contrib.gan.gan_model(
 get_autoencoder,
 get_discriminator,
 real_images,
 real_images)

The generator is an autoencoder. The implementation can be found in Chapter 3, Image
Retrieval. After this, we will define the losses, using the following code:

loss = tf.contrib.gan.gan_loss(
 gan, gradient_penalty=1.0)

l1_pixel_loss = tf.norm(gan.real_data - gan.generated_data, ord=1)

loss = tf.contrib.gan.losses.combine_adversarial_loss(
 loss, gan, l1_pixel_loss, weight_factor=1)

Generative Models Chapter 8

[230]

The gradient of the GAN loss is penalized. Then, the pixel-wise loss is computed and added
to the penalized loss. Training this model creates a powerful autoencoder, that can be used
for image compression.

Image translation
An image can be translated to another image, as we have already learned in the
application's section. The input images are given to the discriminator, whereas the target
images are given to the generator while creating the GAN model as shown here:

gan = tf.contrib.gan.gan_model(
 get_generator,
 get_discriminator,
 real_images,
 input_images)

The least square loss is used for training, in addition to the pixel-wise loss to train the
model. It can be calculated using the following code:

loss = tf.contrib.gan.gan_loss(
 gan,
 tf.contrib.gan.losses.least_squares_generator_loss,
 tf.contrib.gan.losses.least_squares_discriminator_loss)

l1_loss = tf.norm(gan.real_data - gan.generated_data, ord=1)

gan_loss = tf.contrib.gan.losses.combine_adversarial_loss(
 loss, gan, l1_loss, weight_factor=1)

Using this technique, an image can be translated to another image.

Generative Models Chapter 8

[231]

InfoGAN
InfoGAN can generate images of the required label without any explicit supervised
training. The infogan_model takes unstructured and structured input, as shown in the
following code:

info_gan = tf.contrib.gan.infogan_model(
 get_generator,
 get_discriminator,
 real_images,
 unstructured_input,
 structured_input)

loss = tf.contrib.gan.gan_loss(
 info_gan,
 gradient_penalty_weight=1,
 gradient_penalty_epsilon=1e-10,
 mutual_information_penalty_weight=1)

The loss is defined with a penalty as the training is unstable. Adding the penalty provides
more stability during the training.

Drawbacks of GAN
The GAN generated images have some drawbacks such as counting, perspective, and
global structures. This is currently being extensively researched to improve the models.

Visual dialogue model
The visual dialogue model (VDM) enables chat based on images. VDM applies
technologies from computer vision, Natural Language Processing (NLP) and chatbots. It
has found major applications such as explaining to blind people about images, to doctors
about medical scans, virtual companions and so on. Next, we will see the algorithm to solve
this challenge.

Generative Models Chapter 8

[232]

Algorithm for VDM
The algorithm discussed here is proposed by Lu et al (https:/ / research. fb. com/ wp-
content/uploads/ 2017/ 11/ camera_ ready_ nips2017. pdf). Lu et al proposed a GAN-based
VDM. The generator generates answers and the discriminator ranks those answers. The
following is a schematic representation of the process:

Architecture of the VDMs based on GAN techniques [Reproduced from Lu et al.]

The history of chat, the current question and image are fed as an input to the generator.
Next, we will see how the generator works.

https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)
https://research.fb.com/wp-content/uploads/2017/11/camera_ready_nips2017.pdf)

Generative Models Chapter 8

[233]

Generator
The generator has an encoder and decoder. The encoder takes an image, question, and
history as inputs. The encoder first attends to the history from LSTM and attends to the
output from the image. The flow is shown here:

Reproduced from Lu et al.

The entire history is available and LSTM attends to the history of the chat. The output is
attended by the image producing the embedding. The embedding generated by the encoder
is used by the decoder to create an answer. The decoder is made of RNN. The encoder and
decoder together form the generator producing the possible answers. Next, we will see how
the discriminator works.

Generative Models Chapter 8

[234]

Discriminator
The discriminator takes the generated sequences from the generator and ranks them. The
ranking is done with the embedding learned with an n-pair loss. The n-pair loss is similar to
triplet loss except that several pairs of positive and negatives are used for comparison. Here
are some of the results produced by the model.

Reproduced from Lu et al.

The results are reasonable and better than the results produced by a simple discriminator.

Summary
In this chapter, we have learned about generative models and the vast number of
applications. We implemented them to transfer style from one to another while preserving
the content. We saw the intuition behind GAN and trained models to do the same. In the
end, we learned about the visual dialogue system.

In the next chapter, we will learn about deep learning methods for video analysis. We will
see how to access video content through cameras, files, and so on. We will implement video
classification by applying classification on a frame level and on the video as a whole. Later,
we will see how to track objects in a video.

9
Video Classification

In this chapter, we will see how to train deep learning models for video data. We will start
classifying videos on a frame basis. Then, we will use the temporal information for better
accuracy. Later, we will extend the applications of images to videos, including pose
estimation, captioning, and generating videos.

We will cover the following topics in this chapter:

The datasets and the algorithms of video classification
Splitting a video into frames and classifying videos
Training a model for visual features on an individual frame level 0
Understanding 3D convolution and its use in videos
Incorporating motion vectors on video
Object tracking utilizing the temporal information
Applications such as human pose estimation and video captioning

Understanding and classifying videos
A video is nothing but a series of images. Video brings a new dimension to the image along
the temporal direction. The spatial features of the images and temporal features of the video
can be put together, providing a better outcome than just the image. The extra dimension
also results in a lot of space and hence increases the complexity of training and inference.
The computational demands are extremely high for processing a video. Video also changes
the architecture of deep learning models as we have to consider the temporal features.

Video Classification Chapter 9

[236]

Video classification is the task of labeling a video with a category. A category can be on the
frame level or for the whole video. There could be actions or tasks performed in the video.
Hence, a video classification may label the objects present in the video or label the actions
happening in the video. In the next section, we will see the available datasets for video
classification tasks.

Exploring video classification datasets
Video classification is the major problem that is studied with video data. Several videos are
taken and labelled with various objects or actions that are associated with the data. The
datasets vary according to size, quality, and the type of labels. Some even include multiple
labels for video. The videos are rather usually short in length. A long video may have
various actions performed and hence can be segmented temporally, before classifying the
cut video segments or snippets individually. Next, we will consider the details of some
specific datasets.

UCF101
The University of Central Florida (UCF101) is a dataset for action recognition. The videos
are collected on YouTube and consist of realistic actions. There are 101 action categories
available in this dataset. There is another dataset called UCF50 which has 50 categories.
There are 13,320 videos in this dataset across the actions. The videos have a diversified
variation of background, scale, pose, occlusion, and illumination conditions. The action
categories are grouped into 25, which share similar variations such as the background, pose,
scale, viewpoint, illumination and so on.

Video Classification Chapter 9

[237]

The actions and number of videos per action are shown here:

Source: http://crcv.ucf.edu/data/UCF101/Number%20of%20Videos%202.jpg

All 101 actions are grouped into five types of actions as follows: Human-object interaction,
Body motion, Human-human interaction, Playing musical instruments, and Sports. The
dataset and annotation can be downloaded from http:/ /crcv. ucf. edu/ data/ UCF101. php.

Next, we will learn about the YouTube-8M dataset.

http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php
http://crcv.ucf.edu/data/UCF101.php

Video Classification Chapter 9

[238]

YouTube-8M
The YouTube-8M dataset is for video classification problems. The dataset contains video
URLs with labels and visual features. Here are a few statistics about the dataset:

Number of video URLs: 7 million
Hours of video clips: 450,000
Number of class labels: 4,716
Average number of labels per video: 3.4

Here is the summary of the dataset, across various genres:

Source: https://research.google.com/youtube8m/vertical-videos.png

Video Classification Chapter 9

[239]

The preceding image can give a glimpse of the type of labels available in the dataset. The
video data is large and hence visual features are computed and provided with the dataset.
The dataset can be accessed through this link: https:/ / research. google. com/ youtube8m/ .

Other datasets
There are some more datasets available for video classification problems. Here are the
details of a few more datasets:

Sports-1M (Sports - 1 Million): Has 1,133,158 videos with 487 classes. The
annotations are done automatically. The dataset can be downloaded from: http:/
/cs.stanford. edu/ people/ karpathy/ deepvideo/ .
UCF-11 (University of Central Florida - 11 actions): Has 1,600 videos with 11
actions. The videos have 29.97 fps (frames per second). The dataset can be
downloaded along with UCF101.
HMDB-51 (Human Motion DataBase - 51 actions): Has 5,100 videos with 51
actions. The dataset link is: http:/ /serre- lab.clps. brown. edu/resource/ hmdb-
a-large- human- motion- database.
Hollywood2: Has 1,707 videos with 12 actions. The dataset link is: http:/ /www.
di.ens. fr/ ~laptev/ actions/ hollywood2.

We have seen the datasets available for video classification tasks, along with the description
and access links. Next, we will see how to load a video and split it into frames for further
processing.

Splitting videos into frames
A video can be converted to frames and saved in a directory for further usage. Splitting into
frames helps us save time by decompressing the video before the training process. First,
let's see a code snippet for converting video to frames:

import cv2
video_handle = cv2.VideoCapture(video_path)
frame_no = 0
while True:
 eof, frame = video_handle.read()
 if not eof:
 break
 cv2.imwrite("frame%d.jpg" % frame_no, frame)
 frame_no += 1

https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
https://research.google.com/youtube8m/.
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://cs.stanford.edu/people/karpathy/deepvideo/
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2
http://www.di.ens.fr/~laptev/actions/hollywood2

Video Classification Chapter 9

[240]

Using this snippet, all of the preceding datasets can be converted to
frames. Note that this will require a lot of hard disk space.

Approaches for classifying videos
Videos have to be classified for several applications. Since the video is a lot of data, training
and inference computations must also be accounted for. All video classification approaches
are inspired by image classification algorithms. The standard architectures such as VGG,
Inception, and so on are used for feature computation at a frame level and then processed
further. Concepts such as CNN, attention, and LSTM learned in previous chapters will be
useful here. Intuitively, the following approaches can be used for video classification:

Extract the frames and use the models learned in Chapter 2, Image Classification,
for classification on a frame basis.
Extract the image features learned in Chapter 3, Image Retrieval, and the features
can be used train an RNN as described in Chapter 7, Image Captioning.
Train a 3D convolution network on the whole video. 3D convolution is an
extension of 2D convolution; we will see the workings of 3D convolution in detail
in the following sections.
Use the optical flow of the video to further improve the accuracy. Optical flow is
the pattern of movement of objects, which we will see in detail in coming
sections.

We will see several algorithms that give good accuracy with various computational
complexities. The dataset can be prepared by converting it into frames and subsampling it
to the same length. Some preprocessing can help, such as subtracting the mean of the
Imagenet.

Video Classification Chapter 9

[241]

Fusing parallel CNN for video classification
Frame-wise, the prediction of a video may not yield good results due to the downsampling
of images, which loses fine details. Using a high-resolution CNN will increase the inference
time. Hence, Karpathy et al. (https:/ /static. googleusercontent. com/ media/ research.
google.com/en//pubs/ archive/ 42455. pdf) propose fusing two streams that are run in
parallel for video classification. There are two problems with doing frame-wise predictions,
namely:

Predictions may take a long time because of the larger CNN architecture
Independent predictions lose the information along the temporal dimension

The architecture can be simplified with fewer parameters with two smaller encoders
running in parallel. The video is passed simultaneously through two CNN encoders. One
encoder takes a low resolution and processes high resolution. The encoder has alternating
convolution, normalization, and pooling layers. The final layer of the two encoders is
connected through the fully connected layer. The other encoder is of the same size, but
takes only the central crop, as shown here:

Reproduced from Karpathy et al.

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42455.pdf

Video Classification Chapter 9

[242]

Parallel processing of frames makes the runtime faster by downsampling the video. The
CNN architecture is halved regarding the parameter while maintaining the same accuracy.
The two streams are called the fovea and context streams. The streams are shown in the
following code snippet:

high_resolution_input = tf.placeholder(tf.float32, shape=[None,
input_size])
low_resolution_input = tf.placeholder(tf.float32, shape=[None, input_size])
y_input = tf.placeholder(tf.float32, shape=[None, no_classes])
high_resolution_cnn = get_model(high_resolution_input)
low_resolution_cnn = get_model(low_resolution_input)
dense_layer_1 = tf.concat([high_resolution_cnn, low_resolution_cnn], 1)
dense_layer_bottleneck = dense_layer(dense_layer_1, 1024)
logits = dense_layer(dense_layer_bottleneck, no_classes)

The frames for processing across temporal dimensions are as shown in the following
diagram:

Reproduced from Karpathy et al.

Instead of going through fixed size clips, the video can be seen at different times. Three
ways of connecting the temporal information are presented in the preceding image. Late
fusion requires a longer time frame while early fusion sees a few frames together. Slow
fusion combines both late and early fusion to give good results. The model was trained on
the Sports1M dataset, which has 487 classes and achieved an accuracy of 50%. The same
model, when applied to UCF101, achieves an accuracy of 60%.

Video Classification Chapter 9

[243]

Classifying videos over long periods
The fusion method works well for short video snippets. Classifying longer videos is difficult
as a lot of frames have to be computed and remembered. Ng et al. (https:/ /www. cv-
foundation.org/openaccess/ content_ cvpr_ 2015/ papers/ Ng_ Beyond_ Short_ Snippets_
2015_CVPR_paper. pdf) proposed two methods for classifying longer videos:

The first approach is to pool the convolutional features temporally. Max-pooling
is used as a feature aggregation method.
The second approach has an LSTM connecting the convolutional features that
handle the variable length of the video.

Both approaches are shown in the following image:

Reproduced from Ng et al.

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Ng_Beyond_Short_Snippets_2015_CVPR_paper.pdf

Video Classification Chapter 9

[244]

The CNN features can be extracted and fed to a small LSTM network, as demonstrated in
the following code:

net = tf.keras.models.Sequential()
net.add(tf.keras.layers.LSTM(2048,
 return_sequences=False,
 input_shape=input_shape,
 dropout=0.5))
net.add(tf.keras.layers.Dense(512, activation='relu'))
net.add(tf.keras.layers.Dropout(0.5))
net.add(tf.keras.layers.Dense(no_classes, activation='softmax'))

Adding LSTM for feature pooling instead provides better performance. The features are
pooled in various ways, as shown in the following image:

Reproduced from Ng et al.

Video Classification Chapter 9

[245]

As shown in the diagram, the convolutional features can be aggregated in several different
ways. The pooling is done after the fully connected layer before it. This method achieved an
accuracy of 73.1% and 88.6% in the Sports1M dataset and UCF101 datasets respectively.
The LSTM approach is shown in the following image:

Reproduced from Ng et al.

The computations are high for this model because several LSTM's are used.

Streaming two CNN's for action recognition
The motion of objects in videos has very good information about the actions performed in
the video. The motion of objects can be quantified by optical flow. Simonyan and Zisserman
(http://papers.nips. cc/ paper/ 5353- two- stream- convolutional- networks- for-action-
recognition-in-videos. pdf) proposed a method for action recognition that uses two
streams from images and optical flow.

http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf
http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf

Video Classification Chapter 9

[246]

Optical flow measures the motion by quantifying the relative movement between the
observer and scene. A detailed lecture on optical flow can be found at https:/ /www.
youtube.com/watch? v=5VyLAH8BhF8. The optical flow can be obtained by running the
following command:

p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None,
**lk_params)

One stream takes an individual frame and predicts actions using a regular CNN. The other
stream takes multiple frames and computes the optical flow. The optical flow is passed
through a CNN for a prediction. Both the predictions are shown in the following image:

Reproduced from Simonyan and Zisserman

Both predictions can be combined with the final prediction.

https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8
https://www.youtube.com/watch?v=5VyLAH8BhF8

Video Classification Chapter 9

[247]

Using 3D convolution for temporal learning
A video can be classified with 3D convolution. 3D convolution operation takes a volume as
input and outputs the same, whereas a 2D convolution can take a 2D or volume output and
outputs a 2D image. The difference is shown as follows:

Reproduced from Tran et al.

The first two images belong to 2D convolution. The output is always an image. 3D
convolution, meanwhile, outputs a volume. The difference is a convolution operation in 3
directions with the kernel. Tran et al. (https:/ /www. cv-foundation. org/ openaccess/
content_iccv_2015/ papers/ Tran_ Learning_ Spatiotemporal_ Features_ ICCV_ 2015_ paper.
pdf) used 3D convolution for video classification. The 3D convolution model is shown as
follows:

Reproduced from Tran et al.

The following is a code snippet of the model using 3D convolution:

net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Conv3D(32,
 kernel_size=(3, 3, 3),
 input_shape=(input_shape)))
net.add(tf.keras.layers.Activation('relu'))
net.add(tf.keras.layers.Conv3D(32, (3, 3, 3)))
net.add(tf.keras.layers.Activation('softmax'))
net.add(tf.keras.layers.MaxPooling3D())
net.add(tf.keras.layers.Dropout(0.25))

net.add(tf.keras.layers.Conv3D(64, (3, 3, 3)))
net.add(tf.keras.layers.Activation('relu'))
net.add(tf.keras.layers.Conv3D(64, (3, 3, 3)))
net.add(tf.keras.layers.Activation('softmax'))
net.add(tf.keras.layers.MaxPool3D())

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.pdf

Video Classification Chapter 9

[248]

net.add(tf.keras.layers.Dropout(0.25))

net.add(tf.keras.layers.Flatten())
net.add(tf.keras.layers.Dense(512, activation='sigmoid'))
net.add(tf.keras.layers.Dropout(0.5))
net.add(tf.keras.layers.Dense(no_classes, activation='softmax'))
net.compile(loss=tf.keras.losses.categorical_crossentropy,
 optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])

3D convolution needs a lot of computing power. 3D convolution achieves
an accuracy of 90.2% on the Sports1M dataset.

Using trajectory for classification
Wang et al. (https:/ /www. cv- foundation. org/openaccess/ content_ cvpr_ 2015/ papers/
Wang_Action_Recognition_ With_ 2015_ CVPR_ paper. pdf) used the trajectory of parts of
bodies to classify the actions performed. This work combines handcrafted and deep learned
features for final predictions. The following is a representation of the classification:

Reproduced from Wang et al.

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Wang_Action_Recognition_With_2015_CVPR_paper.pdf

Video Classification Chapter 9

[249]

The handcrafted features are Fisher vector and the features are from CNN. The following
image demonstrates the extraction of the trajectories and features maps:

Reproduced from Wang et al.

Both the trajectories and features maps are combined temporally to form the final
predictions over the temporal snippet.

Multi-modal fusion
Yang et al. (http:/ /research. nvidia. com/ sites/ default/ files/ pubs/ 2016- 10_
Multilayer-and-Multimodal/ MM16. pdf) proposed a multi-modal fusion, with 4 models, for
video classification. The four models are 3D convolution features, 2D optical flow, 3D
optical flow, and 2D convolution features.

http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf
http://research.nvidia.com/sites/default/files/pubs/2016-10_Multilayer-and-Multimodal/MM16.pdf

Video Classification Chapter 9

[250]

The flow of data in this method is shown as follows:

Reproduced from Yang et al.

Now, let's learn about Convlet. A Convlet is the small convolutional output from a single
kernel. The learning of spatial weights in the convolution layer by convlet is shown in the
following image:

Video Classification Chapter 9

[251]

Reproduced from Yang et al.

A spatial weight indicates how discriminative or important a local spatial region is in a
convolutional layer. The following image is an illustration of fusing multi-layer
representation, done at various layers of convolutional and fully connected layers:

Reproduced from Yang et al.

Video Classification Chapter 9

[252]

The boosting mechanism is used to combine the predictions. Boosting is a mechanism that
can combine several model prediction into a final prediction.

Attending regions for classification
An attention mechanism can be used for classification. Attention mechanisms replicate the
human behaviour of focusing on regions for recognition activities. Attention mechanisms
give more weight to certain regions than others. The method of weight is learned from the
data while training. Attention mechanisms are mainly of two types, namely:

Soft attention: Deterministic in character, this can hence be learned by back-
propagation.
Hard attention: Stochastic in character, this needs complicated mechanisms to
learn. It is also expensive because of the requirement of sampling data.

Following is a visualization of soft attention:

Reproduced from Sharma et al.

Video Classification Chapter 9

[253]

The CNN features are computed and weighted according to the attention. The attention or
weights given to certain areas can be used for visualization. Sharma et al. (https:/ /arxiv.
org/pdf/1511.04119. pdf) used this idea to classify the videos. LSTM were used to take the
convolution features. The LSTM predicts the regions by using attention on following
frames, as shown in the following image:

Reproduced from Sharma et al.

Each stack of LSTM predicts location and labels. Every stack has three LSTM. The input to
the LSTM stack is a convolution feature cube and location. The location probabilities are the
attention weights. The use of attention gives an improvement in accuracy as well as a
method to visualize the predictions.

We have seen various approaches for video classification. Next, we will learn about other
applications in videos.

https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf
https://arxiv.org/pdf/1511.04119.pdf

Video Classification Chapter 9

[254]

Extending image-based approaches to
videos
Images can be used for pose estimation, style transfer, image generation, segmentation,
captioning, and so on. Similarly, these applications find a place in videos too. Using the
temporal information may improve the predictions from images and vice versa. In this
section, we will see how to extend these applications to videos.

Regressing the human pose
Human pose estimation is an important application of video data and can improve other
tasks such as action recognition. First, let's see a description of the datasets available for
pose estimation:

Poses in the wild dataset: Contains 30 videos annotated with the human pose.
The dataset link is: https:/ /lear. inrialpes. fr/ research/ posesinthewild/ .
The dataset is annotated with human upper body joints.
Frames Labeled In Cinema (FLIC): A human pose dataset obtained from 30
movies, available at: https:/ / bensapp. github. io/flic- dataset. html.

Pfister et al. (https:/ / www. cv- foundation. org/ openaccess/ content_ iccv_ 2015/ papers/
Pfister_Flowing_ ConvNets_ for_ ICCV_ 2015_ paper. pdf) proposed a method to predict the
human pose in videos. The following is the pipeline for regressing the human pose:

Reproduced from Pfister et al.

https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://lear.inrialpes.fr/research/posesinthewild/
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://bensapp.github.io/flic-dataset.html
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Pfister_Flowing_ConvNets_for_ICCV_2015_paper.pdf

Video Classification Chapter 9

[255]

The frames from the video are taken and passed through a convolutional network. The
layers are fused, and the pose heatmaps are obtained. The pose heatmaps are combined
with optical flow to get the warped heatmaps. The warped heatmaps across a timeframe are
pooled to produce the pooled heatmap, getting the final pose.

Tracking facial landmarks
Face analysis in videos requires face detection, landmark detection, pose estimation,
verification, and so on. Computing landmarks are especially crucial for capturing facial
animation, human-computer interaction, and human activity recognition. Instead of
computing over frames, it can be computed over video. Gu et al. (http:/ / research.
nvidia.com/sites/ default/ files/ pubs/ 2017-07_ Dynamic- Facial- Analysis/ rnnface.
pdf) proposed a method to use a joint estimation of detection and tracking of facial
landmarks in videos using RNN. The results outperform frame wise predictions and other
previous models. The landmarks are computed by CNN, and the temporal aspect is
encoded in an RNN. Synthetic data was used for training.

Segmenting videos
Videos can be segmented in a better way when temporal information is used. Gadde et al.
(https://ps.is. tuebingen. mpg. de/ uploads_ file/ attachment/ attachment/ 386/
gadde2017videocnns. pdf) proposed a method to combine temporal information by
warping. The following image demonstrates the solution, which segments two frames and
combines the warping:

Reproduced from Gadde et al.

http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
http://research.nvidia.com/sites/default/files/pubs/2017-07_Dynamic-Facial-Analysis/rnnface.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf
https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/386/gadde2017videocnns.pdf

Video Classification Chapter 9

[256]

The warping net is shown in the following image:

Reproduced from Gadde et al.

The optical flow is computed between two frames, which are combined with warping. The
warping module takes the optical flow, transforms it, and combines it with the warped
representations.

Captioning videos
The Chapter 7, Image Captioning, illustrated several ways to combine text and image.
Similarly, captions can be generated for videos, describing the context. Let's see a list of the
datasets available for captioning videos:

Microsoft Research - Video To Text (MSR-VTT) has 200,000 video clip and
sentence pairs. More details can be obtained from: https:/ /www. microsoft. com/
en-us/ research/ publication/ msr-vtt- a- large- video- description- dataset-
for-bridging- video- and- language/ .
MPII Movie Description Corpus (MPII-MD) can be obtained from: https:/ /
www.mpi- inf. mpg. de/ departments/ computer- vision- and-multimodal-
computing/ research/ vision- and-language/ mpii- movie- description- dataset.
It has 68,000 sentences with 94 movies.

https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.microsoft.com/en-us/research/publication/msr-vtt-a-large-video-description-dataset-for-bridging-video-and-language/
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/vision-and-language/mpii-movie-description-dataset

Video Classification Chapter 9

[257]

Montreal Video Annotation Dataset (M-VAD) can be obtained from: https:/ /
mila.quebec/ en/ publications/ public- datasets/ m-vad/ and has 49,000 clips.
YouTube2Text has 1,970 videos with 80,000 descriptions.

Yao et al. (https:// www. cv- foundation. org/openaccess/ content_ iccv_ 2015/ papers/ Yao_
Describing_Videos_ by_ ICCV_ 2015_ paper. pdf) proposed a method for captioning videos. A
3D convolutional network trained for action recognition is used to extract the local temporal
features. An attention mechanism is then used on the features to generate text using an
RNN. The process is shown here:

Reproduced from Yao et al.

Donahue et al. (https:/ /www. cv- foundation. org/ openaccess/ content_ cvpr_ 2015/
papers/Donahue_Long- Term_ Recurrent_ Convolutional_ 2015_ CVPR_ paper. pdf) proposed
another method for video captioning or description, which uses LSTM with convolution
features.

https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://mila.quebec/en/publications/public-datasets/m-vad/
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yao_Describing_Videos_by_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf

Video Classification Chapter 9

[258]

This is similar to the preceding approach, except that we use 2D convolution features over
here, as shown in the following image:

Reproduced from Donahue et al.

We have several ways to combine text with images, such as activity recognition, image
description, and video description techniques. The following image illustrates these
techniques:

Reproduced from Donahue et al.

Video Classification Chapter 9

[259]

Venugopalan et al. (https:/ /www. cv- foundation. org/ openaccess/ content_ iccv_ 2015/
papers/Venugopalan_ Sequence_ to_ Sequence_ ICCV_ 2015_ paper. pdf) proposed a method
for video captioning using an encoder-decoder approach. The following is a visualization of
the technique proposed by him:

Reproduced from Venugopalan et al.

The CNN can be computed on the frames or the optical flow of the images
for this method.

Generating videos
Videos can be generated using generative models, in an unsupervised manner. The future
frames can be predicted using the current frame. Ranzato et al. (https:/ / arxiv. org/ pdf/
1412.6604.pdf) proposed a method for generating videos, inspired by language models.
An RNN model is utilized to take a patch of the image and predict the next patch.

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Venugopalan_Sequence_to_Sequence_ICCV_2015_paper.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf
https://arxiv.org/pdf/1412.6604.pdf

Video Classification Chapter 9

[260]

Summary
In this chapter, we covered various topics related to video classification. We saw how to
split videos into frames and use the deep learning models that are in images for various
tasks. We covered a few algorithms that are specific to video, such as tracking objects. We
saw how to apply video-based solutions to various scenarios such as action recognition,
gesture recognition, security applications, and intrusion detection.

In the next chapter, we will learn how to deploy the trained models from the previous
chapter into production on various cloud and mobile platforms. We will see how different
hardware affects the performance regarding latency and throughput.

10
Deployment

In this chapter, we will learn how to deploy the trained model in the various platforms for
maximum throughput and minimum latency. We will understand performance on various
hardware such as a GPU and a CPU. We will follow the steps of deploying TensorFlow in
platforms such as Amazon Web Services, Google Cloud Platform, and mobile platforms
such as Android, iOS, and Tegra.

We will cover the following topics in this chapter:

Understanding the factors affecting the performance of the deep learning model
training and inference
Improving the performance through various methods
Seeing the benchmarks of various hardware and learning the steps to tweak them
for maximum performance
Using various cloud platforms for deployment
Using various mobile platforms for deployment

Performance of models
Performance is important for both the training and the deployment of deep learning
models. The training usually takes more time due to large data or big model architecture.
The resultant models may be a bigger size and hence problematic to use in mobile devices
where there is a constraint on RAM. More computing time results in more infrastructure
cost. The inference time is critical in video applications. Due to the previously mentioned
importance of performance, in this section, we will look at techniques to improve the
performance. Reducing the model complexity is an easy option but results in decreasing
accuracy. Here, we will focus on methods to improve the performance with an insignificant
drop in accuracy. In the next section, we will discuss the option of quantization.

Deployment Chapter 10

[262]

Quantizing the models
The weights of deep learning models have 32-bit float values. When the weights are
quantized to 8-bit, the decrease in accuracy is small and hence cannot be noticed in
deployment. The precision of weights on the results seems to have fewer effects on accuracy
performance of deep learning models. This idea is interesting about deep learning and
useful when the model size becomes critical. By replacing 32-bit float values with 8-bit
values, the model size can be significantly decreased and the inference speed can be
increased. There are plenty of options when implementing the quantization of models. The
weights can be stored in 8-bit but inference operations can be performed in 32-bit float
values. Every component of the architecture may behave differently for quantization size
and so, depending on the layer, 32 or 16 or 8-bit values can be chosen.

The quantization works due to a number of reasons. Generally, the deep learning models
are trained to tackle noise in the images and therefore can be considered as robust. The
inference calculations can have redundant information and that redundant information may
be removed due to the quantization.

The latest CPU and RAM hardware are tuned towards floating point calculation and so the
effect of quantization may be less visible in such hardware. This scenario is changing as
more and more hardware is introduced for this purpose. A significant difference in memory
and speed can be noticed in GPUs as they are now adapted to the lower precise floating
operations. There is other special hardware available for running less precise floating
operations.

MobileNets
Howard and others (https:/ /arxiv. org/ pdf/1704. 04861. pdf) introduced a new class of
models called MobileNets that can be used for mobile and embedded applications.
MobileNets can be used for different applications such as object detection, landmark
recognition, face attributes, fine-grain classification as shown here:

https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf

Deployment Chapter 10

[263]

Reproduced from Howard and others

MobileNets reduced the size and computation of models by replacing standard convolution
filters (a) with depthwise (b) and pointwise convolutions (c) as shown here:

Reproduced from Howard and others

Deployment Chapter 10

[264]

The batch normalization and activation layers are added to both depthwise and pointwise
convolutions as shown here:

Reproduced from Howard and others

There are two parameters affecting the choice of models:

The number of multiplication and additions: The trade-off between accuracy
and mult-adds is shown below:

Reproduced from Howard and others

Deployment Chapter 10

[265]

The number of parameters in the model: The trade-off is shown here:

Reproduced from Howard and others

MobileNets has shown that model computation and size can be reduced with a small
reduction in accuracy to be used on mobile and embedded devices. The exact trade-offs
between models and accuracies can be seen in the article by Howard and others.

Deployment in the cloud
The models have to be deployed in the cloud for several applications. We will look at major
cloud service providers for this purpose.

Deployment Chapter 10

[266]

AWS
The Amazon Web Services (AWS) extends support to the development and deployment of
TensorFlow-based models. Sign up for AWS at https:/ /aws. amazon. com/ and select one of
the Amazon Machine Images (AMI). AMIs are images of machines with all the required
software installed. You need not worry about installing the packages. AWS provides Deep
Learning AMI (DLAMI) for ease of training and deploying deep learning models. There
are several options to choose from. Here, we will use Conda as it comes with several
packages required for running TensorFlow. There are two options for Python: version 2 and
3. The following code will activate TensorFlow with Keras 2 on Python 3 on CUDA 8:

source activate tensorflow_p36

The following code will activate TensorFlow with Keras 2 on Python 2 on CUDA 8:

source activate tensorflow_p27

You can visit https:/ / aws. amazon. com/ tensorflow/ for more details and
tutorials.

A Virtual Machine (VM) can also be started by following the steps given here:

Go to aws.amazon.com and login using your Amazon account.1.
Choose Launch a virtual machine from the login page:2.

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/tensorflow/
https://aws.amazon.com/

Deployment Chapter 10

[267]

In the next window, choose the EC2 Instance by clicking on Get Started as3.
shown here:

Deployment Chapter 10

[268]

 Give a name to the EC2 Instance:4.

Select the type of Operating System:5.

Deployment Chapter 10

[269]

Select the instance type. The instance types indicated the type of configurations6.
with varying sizes of RAM and CPU. There are a couple of options to select from
GPU's as well. Choose the instance type and click 'Next' button:

Create a Privacy Enhanced Mail Security Certificate (PEM) file that will be used7.
for logging in as shown here:

Deployment Chapter 10

[270]

It will take some time to create the instance and at the end, a completed status8.
will be shown:

Next, click on the Proceed to EC2 console button:9.

Now the instance will be created; click on the Connect button as shown here:10.

Next, the instance has to be connected to a command prompt of the virtual11.
machine. The instructions required to connect are given in this step. You will
need the 'pem' file downloaded in the previous steps. Follow the instructions
displayed to connect to the system:

Deployment Chapter 10

[271]

Once you are done, terminate the instance by clicking Actions|Instance12.
State|Terminate:

Deployment Chapter 10

[272]

The installation and execution steps can be followed by Chapter 1, Getting Started.

Google Cloud Platform
Google Cloud Platform (GCP) is the cloud platform offered by Google and has similar
functionalities of AWS. A simple Virtual Machine can be utilized for training the models
like AWS, by following these steps:

Go to the Google Cloud Platform using cloud.google.com and log in to the1.
platform using your Gmail account.
Now proceed to the console by clicking the GO TO CONSOLE button:2.

After proceeding to the console, move to the VM creation page by clicking3.
Compute Engine|VM instances from the top-right hand side menu, as shown in
the following screenshot:

https://cloud.google.com/

Deployment Chapter 10

[273]

Then click on the CREATE INSTANCE button, in order to create the required4.
instance:

Deployment Chapter 10

[274]

 Next, the instance type can be selected with the configurations. Zone parameter5.
informs the region the instance will be deployed. By selecting the zone close to
the users, one can save latency time. The machine type can be customized with
required RAM and CPU's. GPU's also can be selected for faster training. Select the
size of the instance and click 'Create' button, as shown in the following
screenshot:

Deployment Chapter 10

[275]

It will take a few minutes to create the instance. Then click on the SSH drop-6.
down list for the instance and select 'Open in browser window' option, as shown
here to open the console in the browser:

Using the shell, you can install TensorFlow and can train or deploy models. There are a lot
of options available to choose from the configuration of virtual machines. Depending upon
the cost and time tradeoff, one can choose the configurations.

The GCP has a Cloud Machine Learning Engine that helps us while using TensorFlow.
There are three components of GCP that can be utilized together for architecting a training
and deployment infrastructure:

Cloud DataFlow for preprocessing the images1.
Cloud Machine Learning Engine for both training and deploying a model2.
Google Cloud Storage for storing training data, code and results3.

An excellent tutorial to build a customized image classification
model using the Cloud Machine Learning Engine can be found at https:/
/cloud. google. com/ ml- engine/ docs/ flowers- tutorial.

Deployment of models in devices
TensorFlow models can be deployed in mobile devices too. Mobile devices include
smartphones, drones, home robots and so on. Billions of smartphones can have applications
of computer vision which can use deep learning. One can take a photo and search, stream a
video with scenes tagged and so on. Deploying in mobile devices means that the deep
learning model is present on the device and inference happens on the device. Models
deployed on the device helps in privacy issues. In the following topics, we will discuss how
to deploy them across various mobile platforms.

https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial
https://cloud.google.com/ml-engine/docs/flowers-tutorial

Deployment Chapter 10

[276]

Jetson TX2
Jetson TX2 is an embedding device supplied by NVIDIA specifically efficient AI computing.
Jetson TX2 is lightweight, compact and hence suitable for deployment in drones, public
places and so on. It also ships preinstalled TensorRT which is a runtime for TensorFlow.
You can buy Jetson and flash install Ubuntu, CUDA, CUDNN before installing TensorFlow.
Clone https:// github. com/ jetsonhacks/ installTensorFlowTX2 and enter the following
commands at the command prompt.

First, install the prerequisites with the help of the following code:1.

 ./installPrerequisites.sh

Now, clone the TensorFlow using the following code:2.

 ./cloneTensorFlow.sh

Next, set the required environment variables using the following code:3.

 ./setTensorFlowEV.sh

Now we will build the TensorFlow using the following code:4.

 ./buildTensorFlow.sh

Now we will process the package into a wheel file using the following code:5.

 ./packageTensorFlow.sh

Now we will install the Tensorflow using the following code:6.

 pip install $HOME/tensorflow-1.0.1-cp27-cp27mu-linux_aarch64.whl

With the help of these steps, we can install TensorFlow in Jetson TX2.

https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2
https://github.com/jetsonhacks/installTensorFlowTX2

Deployment Chapter 10

[277]

Android
Any Android app can use TensorFlow and the details to build can be found in https:/ /
www.tensorflow.org/ mobile/ android_ build. The official example regarding this can be
found in https:// github. com/ tensorflow/ tensorflow/ tree/ master/ tensorflow/
examples/android. The steps for implementing Tensorflow in Android devices are as
follows assuming the reader has experience in Android programming:

Export the TensorFlow model to a .pb file using the steps covered in Chapter 3,1.
Image Retrieval.
Build .so and .jar files which are the binaries. 2.
Edit gradle files to enable loading of libraries. 3.
Load and run the Android app file4.

iPhone
Apple used CoreML framework to integrate machine learning in the applications of iPhone.
Apple provides a standard list of models that can be integrated directly into the application.
You can train a custom deep learning models using TensorFlow and use that in iPhone. In
order to deploy custom models, you have to covert the TensorFlow in CoreML framework
model. Google released https:/ /github. com/tf- coreml/ tf- coreml for converting
TensorFlow models into CoreML models. TFcoreML can be installed using the following
code:

pip install -U tfcoreml

The model can be exported using the following code:

import tfcoreml as tf_converter
tf_converter.convert(tf_model_path='tf_model_path.pb',
 mlmodel_path='mlmodel_path.mlmodel',
 output_feature_names=['softmax:0'],
 input_name_shape_dict={'input:0': [1, 227, 227, 3]})

The exported model can be used by iPhone for predictions.

https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://www.tensorflow.org/mobile/android_build
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml
https://github.com/tf-coreml/tf-coreml

Deployment Chapter 10

[278]

Summary
In this chapter, we have seen how to deploy the trained deep learning models on various
platforms and devices. We have covered the steps as well as guidelines on getting the best
performance for these platforms. We have seen the advantages of MobileNets for reducing
the inference time with a small trade-off of accuracy.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

>

TensorFlow 1.x Deep Learning Cookbook
Antonio Gulli, Amita Kapoor

ISBN: 978-1-78829-359-4

Install TensorFlow and use it for CPU and GPU operations
Implement DNNs and apply them to solve different AI-driven problems.
Leverage different data sets such as MNIST, CIFAR-10, and Youtube8m with
TensorFlow and learn how to access and use them in your code.
Use TensorBoard to understand neural network architectures, optimize the
learning process, and peek inside the neural network black box.
Use different regression techniques for prediction and classification problems
Build single and multilayer perceptrons in TensorFlow

https://www.packtpub.com/big-data-and-business-intelligence/tensorflow-1x-deep-learning-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/tensorflow-1x-deep-learning-cookbook

Other Books You May Enjoy

[280]

>

Deep Learning with Keras
Antonio Gulli, Sujit Pal

ISBN: 978-1-78712-842-2

Optimize step-by-step functions on a large neural network using the
Backpropagation Algorithm
Fine-tune a neural network to improve the quality of results
Use deep learning for image and audio processing
Use Recursive Neural Tensor Networks (RNTNs) to outperform standard word
embedding in special cases
Identify problems for which Recurrent Neural Network (RNN) solutions are
suitable
Explore the process required to implement Autoencoders
Evolve a deep neural network using reinforcement learning

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras
https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Other Books You May Enjoy

[281]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

3
3D convolution network 240
3D models
 creating, from photos 213

A
activation 215
activation functions
 about 7
 hyperbolic tangent function 9
 Rectified Linear Unit (ReLU) 10
 sigmoid 8
actually activated layers 216
adversarial examples 89
adversarial loss 229, 230
affine transformation 65
AlexNet model 58
algorithms
 localizing 112
 objects localizing, sliding windows used 112
 regression 115
Amazon Machine Images (AMI) 266
Amazon Web Services (AWS) 25, 266, 268, 271
Android 277
animation characters
 creating 212, 213
approximate nearest neighbor oh yeah (ANNOY)
 about 99
 advantages 100
artificial neural network (ANN)
 about 6, 11
 backpropagation 14
 batch normalization 13
 cross-entropy 12
 dropout 13
 gradient descent 15

 L1 regularization 14
 L2 regularization 14
 one-hot encoding 12
 softmax 12
 stochastic gradient descent (SGD) 15
 training 14
artistic style transfer 203, 204
atrous convolution 136
attention 240
attention mechanism
 about 196
 hard attention 252
 soft attention 252
attention network
 used, for captioning 196
attention-based image captioning
 implementing 199
attributes
 transforming 211
augmentation techniques
 about 70
 channel shifting 70
 flipping 70
 normalization 70
 random cropping 70
 rotation 70
 shearing 70
 whitening 70
 zooming 70
autoencoders
 used, for image denoising 102
average pooling 215
AWS provides Deep Learning AMI (DLAMI) 266

B
backpropagation 14

[283]

batch normalization 13
blending 209, 210
boosting 252
bottleneck features
 training 71, 72
bottleneck layer 101

C
Canadian Institute for Advanced Research

(CIFAR) 54
captions
 retrieving, from images 191
characters 182
CIFAR dataset 54, 55
Cloud Machine Learning Engine 275
cloud
 Amazon Web Services (AWS) 266, 268, 271
 deployment 265
 Google Cloud Platform (GCP) 275
CNN features 253
COCO object detection challenge 109
Common Objects in Context (COCO) 109
competition 57
Computed Tomography (CT) 131
Computer Unified Device Architecture (CUDA) 26
conditional GAN 229
conditional random field (CRF) 141
 about 186
 used, for linking image 186
 used, for linking text 186
connected layer
 training, as convolution layer 113
content loss 214, 215, 216, 217, 218
content-based image retrieval (CBIR)
 about 94
 autoencoders, used for image denoising 102
 efficient retrieval 98
 geometric verification 95
 Locality sensitive hashing (LSH) 94
 multi-index hashing 94
 query expansion 95
 relevance feedback 95
 retrieval pipeline, building 95
context streams 242
convolution implementation

 of sliding window 114
convolutional neural networks (CNN)
 about 17, 240
 kernel 17
 max pooling 18
cross-entropy 12
CUDA Deep Neural Network (CUDNN)
 about 28
 URL, for downloading 28
CUDA library
 URL, for downloading 27

D
data
 preparing 67, 68
datasets 133
 about 181, 239
 augmentation techniques 70
 augmenting 69
 COCO object detection challenge 109
 evaluating, metrics used 110
 exploring 108
 ImageNet dataset 109
 Intersection over Union (IoU) 110
 mean average precision 111
 PASCAL VOC challenge 109
decoder 101
deconvolution 137
deep learning models
 about 58
 AlexNet model 58
 DenseNet model 65, 66
 Google Inception-V3 model 60, 62, 63
 Microsoft ResNet-50 model 63
 MobileNets 262
 parameters 264
 performance 261
 quantising 262
 spatial transformer networks 65
 SqueezeNet model 63, 64
 VGG-16 model 59
deep learning
 about 6
 activation functions 7
 artificial neural network (ANN) 11

[284]

 artificial neural network (ANN), training 14
 classification 21
 convolutional neural networks (CNN) 17
 detection or localization 22
 for computer vision 21
 generative models 24
 image captioning 23
 long short-term memory (LSTM) 20
 perceptron 7
 recurrent neural networks (RNN) 19
 segmentation 22
 similarity learning 23
 TensorFlow playground, playing 16
 video analysis 25
DeepDream 85
DeepLab 141
DeepLab v3 145, 146
DeepNet model 163
DeepRank 164
dense captioning 193
DenseNet model 65, 66
deprocess function 215
development environment
 hardware 26
 operating systems 26
 setting up 25
 software packages, installing 28
Development Operating Systems(OS) 25
dilated convolution 136, 140
discriminator 228
dropout 13

E
efficient retrieval
 about 98
 approximate nearest neighbor, used for faster

matching 99
 raw images, autoencoders 100
embedding
 training 184
encoder 94, 101
Euclidean distance 98

F
face clustering 179
Face Detection Data Set and Benchmark (FDDB)

167

face landmarks
 facial key points, learning 171
 Kaggle keypoint dataset 169
 Multi-Attribute Facial Landmark (MAFL) dataset

170

 Multi-Task Facial Landmark (MTFL) dataset 168
face pose 168
face recognition
 about 173
 CASIA web face database 174
 CelebFaces Attributes dataset (CelebA) 174
 labeled faces, in LFW dataset 173
 optimum threshold, finding 177
 similarity between faces, computing 175
 VGGFace2 dataset 174
 YouTube faces dataset 174
FaceNet
 about 161
 face clustering 161
 face recognition 161
 face verification 161
 triplet loss 162
facial keypoints detection
 URL, for downloading 169
facial keypoints
 about 168
 learning 171
facial landmarks
 tracking 255
Fashion-MNIST dataset 56
 about 55
 reference link 56
Fast R-CNN 119, 120
FCN
 modeling, for segmentation 152, 153
fiducial point detection 115
fiducial points 168
fine-tuning 72
Fisher vector 249
fovea streams 242

[285]

fractionally strided convolution 137
frame
 predicting, in video 204
Fully Convolutional Network (FCN) 134

G
General Purpose - Graphics Processing Unit (GP-

GPU)
 about 26
 Computer Unified Device Architecture (CUDA)

26

 CUDA Deep Neural Network (CUDNN) 28
Generative Adversarial Networks (GAN)
 about 225
 adversarial loss 229, 230
 conditional GAN 229
 drawbacks 231
 image translation 230
 infoGAN 231
 vanilla GAN 226, 227, 228, 229
generative models
 3D models, creating from photos 213
 animation characters, creating 212, 213
 applications 202
 artistic style transfer 203, 204
 attributes, transforming 211
 blending 209, 210
 content loss 217, 218
 frame, predicting in video 204
 image to image translation 207
 images, super-resolution 205
 inpainting 209
 interactive image generation 206
 style loss, Gram matrix used 219, 220, 221, 222
 style transfer 222, 223, 224, 225
 text to image generation 208
 training data, creating 211
Google Cloud Platform (GCP) 25, 275
Google Inception-V3 model 60, 62, 63
gradient descent 15
Gram matrix 220
Graphics Processing Unit (GPU) 67
ground truth 110

H
hard negative mining 162
hardware 26
human face analysis
 about 166
 attributes 168
 face clustering 179
 face detection 167
 face landmarks 168
 face recognition 173
human pose
 facial landmarks, tracking 255
 Frames Labeled In Cinema (FLIC) 254
 poses, in wild dataset 254
 regressing 254, 255
hyperbolic tangent function 9

I
image captioning
 approaches 186
 attention network, used for captioning 196
 captions, retrieving from images 191
 conditional random field (CRF), used for linking

image 186
 conditional random field (CRF), used for linking

text 186
 dense captioning 192
 embedding, training 184
 image ranking, used for creating captions 190
 issues 186
 method 197
 multimodal metric space 195
 RNN, used for captioning 194
 RNN, used on CNN features to generate

captions 187
 words, converting to vectors 183
 words, expressing in vector form 182
image ranking
 used, for creating captions 190
image testing datasets
 about 54
 CIFAR dataset 54, 55
 competition 57
 Fashion-MNIST dataset 55, 56

[286]

 ImageNet dataset 57
image to image translation 207
image translation 230
image-based approaches
 extending, to video 254
 human pose, regressing 254, 255
 video, captioning 256, 257, 258, 259
 video, generating 259
 video, segmenting 255, 256
ImageNet dataset 57, 109
images captioning
 issues 181
 natural language processing 182
images
 retrieving, from captions 191
 super-resolution 205
Inception-V3 60
inference 90
infoGAN 231
inpainting 209
instance segmentation 131
interaction 206
International Society for Photogrammetry and

Remote Sensing (ISPRS) 151
Intersection over Union (IoU) 110
iPhone 277

J
Jetson TX2 276

K
Kaggle keypoint dataset 169
kaggle
 about 67
 URL 67
Keras library 35
Keras
 MNIST model, training 51
kernel 18

L
L1 regularization 14
large kernel matters 144
layers

 fine-tuning, in deep learning 72, 73, 74
Local Response Normalization (LRN) 58
long short-term memory (LSTM) 20, 188, 233
Long-term recurrent convolutional architectures

(LRCN) 194
LSTM 240

M
Magnetic Resonance Imaging (MRI) 131
Mask RCNN 154
max pooling 18, 215
mean average precision 111
Mean Precision Average (mAP) 110
Microsoft ResNet-50 model 63
MNIST data
 loading 39
MNIST datasets 38
MNIST model
 building 52, 53, 54
 dataset, preparing 51, 52
 training, in Keras 51
 training, in TensorFlow 37
MobileNets 262
model inference
 about 90
 exporting 90, 91, 92
 trained model, serving 92
model
 bottleneck features, training 71, 72
 data, preparing 67, 68
 dataset, augmenting 69
 fine-tuning 70, 71
 layers, fine-tuning in deep learning 73, 74
 layers, fine-tuning, in deep learning 72
 simple CNN, benchmarking 68, 69
 training 67
 transfer learning 70, 71
Modified National Institute of Standards and

Technology (MNIST) 37
modified Poisson method 209
Multi-Attribute Facial Landmark (MAFL) dataset

170

 URL, for downloading 170
Multi-Attribute Labelled Faces (MALF) 168
multi-modal fusion 250

[287]

multi-spline method 209
Multi-Task Facial Landmark (MTFL) dataset 168
multilayer convolutional network
 building 42, 43, 44, 45, 46, 47
 TensorBoard, utilizing in deep learning 47, 48,

49, 50, 51
multimodal embedding space 195
multimodal metric space 195

N
Natural Language Processing (NLP) 231
natural language processing (NLP) 24, 182
neural artistic style transfer
 about 213
 content loss 214, 215, 216
neural nets 7

O
object detection API
 about 121
 installing 121
 pedestrian detection, training for self-driving car

126

 pre-trained models 123
 re-training object detection models 124
 setting up 122
object localization 108
objects
 connected layer, training as convolution layer

113

 convolution implementation, of sliding window
114

 detecting 118
 detecting, in an image 107
 Fast R-CNN 119, 120
 localizing, sliding windows used 112
 Regions of the convolutional neural network (R-

CNN) 118
 scale-space concept 113
 Single shot multi-box detector 120
one-hot encoding 12
one-shot learning 158
Open Computer Vision (OpenCV)
 about 29
 URL 29

operating systems
 about 26
 General Purpose - Graphics Processing Unit (GP-

GPU) 26
optical flow 240
optimization 14

P
PASCAL VOC challenge
 about 109
 URL, for downloading 109
pedestrain detection
 training, for self-driving car 126
perceptron
 about 7
 building 39
 model, training with data 41, 42
 placeholders, defining for input data 39, 40
 placeholders, defining for targets 39, 40
 variables, defining for connected layer 40, 41
pip3 29
pixels
 medical images, diagnosing 131
 predicting 129, 130, 131
 robots, enabling 132
 satellite imagery 132
pose detection 115
preprocess function 215
principal component analysis (PCA) 56, 78
Protocol Buffers (protobuf) 121
PSPnet 144
Python 28

R
random noise 215
re-training object detection models
 about 124
 data preparation, for Pet dataset 124
 loss and accuracy monitoring, TensorBoard used

126

 model, training 125
 object detection training pipeline 124
real-world applications
 age detection, from face 76

[288]

 apparel models, fine-tuning 76
 brand safety 76
 developing 74
 gender detection, from face 76
 model, selecting 75
 scenarios, overfitting 75
 underfitting, tackling 75
Rectified Linear Unit (ReLU) 9, 10, 43
recurrent neural networks (RNN)
 about 19
 used, for captioning 194
 used, on CNN features to generate captions 187
RefiNet 142
Region of Interest pooling 119
Regions of the convolutional neural network (R-

CNN) 118
regression
 about 115
 applying 115
 combining, with sliding window 116
Remote Procedure Call (RPC) 93
ResNet 63
Retinopathy 131
retrieval pipeline
 about 95
 bottleneck features, extracting for an image 96
 building 95
 similarity, computing between query image and

target database 98

S
satellite images
 FCN, modeling for segmentation 152, 153, 154
 segmenting 151, 152
scale space 112
scale-space concept 113
segmenting instances 154, 155
SegNet 135
SegNet architecture
 about 135
 connections, skipping for training 139, 140
 layers, sampling by convolution 136, 137
 layers, upsampling by pooling 135, 136
Selective search 118
semantic segmentation

 about 129
 algorithms 134
 DeepLab 141
 DeepLab v3 145, 146
 dilated convolution 140
 Fully Convolutional Network (FCN) 134
 large kernel matters 144
 PSPnet 144
 RefiNet 142, 143
 SegNet architecture 135
Siamese network
 about 158
 contrastive loss 158
sigmoid 8
similarity learning
 about 157
 algorithms 157
 DeepNet model 163
 DeepRank 164
 FaceNet 161
 Siamese network 158
 visual recommendation systems 166
simple CNN
 benchmarking 68
Single shot multi-box detector 120
skip-gram 183
sliding window 112
softmax 12
Softmax classifier 185
software packages
 installing 28
 Keras library 35
 Open Computer Vision (OpenCV) 29
 Python 28
 TensorFlow library 30
spatial invariance 65
spatial transformer networks 65
SqueezeNet model 63, 64
stochastic gradient descent (SGD) 15
Stochastic Gradient Descent (SGD) 58, 216
strided convolution 136
style loss
 Gram matrix, used 219, 220, 221, 222
style transfer 222, 223, 224, 225
super-resolution 205

[289]

Support Vector Machine (SVM) 76

T
t-Distributed Stochastic Neighbor Embedding (t-

SNE) 78
TensorBoard
 utilizing, in deep learning 47, 48, 49, 50, 51
TensorFlow library
 about 30
 example, for adding two numbers 31
 example, to print Hello 30
 installing 30
 TensorBoard 32
 TensorFlow serving tool 34
TensorFlow models
 Android 277
 deployment, in mobile devices 275
 Jetson TX2 276
TensorFlow playground
 playing 16
 reference link 16
TensorFlow serving tool
 reference link 35
TensorFlow
 MNIST model, training 37
TensorFlowTX2
 URL, for installing 276
text 182
text to image generation 208
token 182
trained model
 serving 92
transposed convolution 137
triplet loss 162

U
UCF50 236
ultra-nerve segmentation 146, 147, 148, 151
University of Central Florida (UCF101) 236, 237
up-convolution 137

V
Van Gogh art 213
vanilla GAN 226, 227, 228, 229

vector form
 words, expressing 182
vectors
 words, converting 183
VGG-16 model 59
VGGFace2 dataset
 reference link 174
video
 3D convolution, used for temporal learning 247
 captioning 256, 257, 258, 259
 classification datasets, exploring 236
 classifying 235, 236, 243, 244, 245
 classifying, approaches 240
 CNNs, streaming for action recognition 245, 246
 datasets 239
 generating 259
 image-based approaches, extending 254
 Montreal Video Annotation Dataset (M-VAD) 257
 MPII Movie Description Corpus (MPII-MD) 256
 multi-modal fusion 249, 250, 252
 parallel CNN, fusing 241, 242
 regions, attending for classification 252, 253
 segmenting 255, 256
 splitting, into frames 239
 trajectory, used for classification 248, 249
 University of Central Florida (UCF101) 237
 YouTube-8M 238, 239
 YouTube2Text 257
videos
 Microsoft Research - Video To Text (MSR-VTT)

256

Virtual Machine (VM) 266
visual dialogue model (VDM)
 about 231
 algorithm 232
 discriminator 234
 generator 233
visual features
 about 78
 adversarial examples 89
 deep learning models, activation visualizing 79
 DeepDream 85
 dimensionality reduction 78
 maximal patches 79
 nearest neighbor 78

 occlusion 79
Visual Geometry Group (VGG) 59, 73
visualization
 embedding 80
 guided backpropagation 82

W
wider face 167

words
 converting, to vectors 183
 expressing, in vector form 182

Y
YOLO object detection algorithm 126
You look only once (YOLO) 126
YouTube-8M 238, 239

	Cover
	Copyright and Credits
	Packt Upsell
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Understanding deep learning
	Perceptron
	Activation functions
	Sigmoid
	The hyperbolic tangent function
	The Rectified Linear Unit (ReLU)

	Artificial neural network (ANN)
	One-hot encoding
	Softmax
	Cross-entropy
	Dropout
	Batch normalization
	L1 and L2 regularization

	Training neural networks
	Backpropagation
	Gradient descent
	Stochastic gradient descent

	Playing with TensorFlow playground
	Convolutional neural network
	Kernel
	Max pooling

	Recurrent neural networks (RNN)
	Long short-term memory (LSTM)

	Deep learning for computer vision
	Classification
	Detection or localization and segmentation
	Similarity learning
	Image captioning
	Generative models
	Video analysis

	Development environment setup
	Hardware and Operating Systems - OS
	General Purpose - Graphics Processing Unit (GP-GPU)
	Computer Unified Device Architecture - CUDA
	CUDA Deep Neural Network - CUDNN

	Installing software packages
	Python
	Open Computer Vision - OpenCV
	The TensorFlow library
	Installing TensorFlow
	TensorFlow example to print Hello, TensorFlow
	TensorFlow example for adding two numbers
	TensorBoard
	The TensorFlow Serving tool

	The Keras library

	Summary

	Chapter 2: Image Classification
	Training the MNIST model in TensorFlow
	The MNIST datasets
	Loading the MNIST data
	Building a perceptron
	Defining placeholders for input data and targets
	Defining the variables for a fully connected layer
	Training the model with data

	Building a multilayer convolutional network
	Utilizing TensorBoard in deep learning

	Training the MNIST model in Keras
	Preparing the dataset
	Building the model

	Other popular image testing datasets
	The CIFAR dataset
	The Fashion-MNIST dataset
	The ImageNet dataset and competition

	The bigger deep learning models
	The AlexNet model
	The VGG-16 model
	The Google Inception-V3 model
	The Microsoft ResNet-50 model
	The SqueezeNet model
	Spatial transformer networks
	The DenseNet model

	Training a model for cats versus dogs
	Preparing the data
	Benchmarking with simple CNN
	Augmenting the dataset
	Augmentation techniques

	Transfer learning or fine-tuning of a model
	Training on bottleneck features

	Fine-tuning several layers in deep learning

	Developing real-world applications
	Choosing the right model
	Tackling the underfitting and overfitting scenarios
	Gender and age detection from face
	Fine-tuning apparel models
	Brand safety

	Summary

	Chapter 3: Image Retrieval
	Understanding visual features
	Visualizing activation of deep learning models
	Embedding visualization
	Guided backpropagation

	The DeepDream
	Adversarial examples

	Model inference
	Exporting a model
	Serving the trained model

	Content-based image retrieval
	Building the retrieval pipeline
	Extracting bottleneck features for an image
	Computing similarity between query image and target database

	Efficient retrieval
	Matching faster using approximate nearest neighbour
	Advantages of ANNOY

	Autoencoders of raw images

	Denoising using autoencoders

	Summary

	Chapter 4: Object Detection
	Detecting objects in an image
	Exploring the datasets
	ImageNet dataset
	PASCAL VOC challenge
	COCO object detection challenge
	Evaluating datasets using metrics
	Intersection over Union
	The mean average precision

	Localizing algorithms
	Localizing objects using sliding windows
	The scale-space concept
	Training a fully connected layer as a convolution layer
	Convolution implementation of sliding window

	Thinking about localization as a regression problem
	Applying regression to other problems
	Combining regression with the sliding window

	Detecting objects
	Regions of the convolutional neural network (R-CNN)
	Fast R-CNN
	Faster R-CNN
	Single shot multi-box detector

	Object detection API
	Installation and setup
	Pre-trained models
	Re-training object detection models
	Data preparation for the Pet dataset
	Object detection training pipeline
	Training the model
	Monitoring loss and accuracy using TensorBoard

	Training a pedestrian detection for a self-driving car

	The YOLO object detection algorithm
	Summary

	Chapter 5: Semantic Segmentation
	Predicting pixels
	Diagnosing medical images
	Understanding the earth from satellite imagery
	Enabling robots to see

	Datasets
	Algorithms for semantic segmentation
	The Fully Convolutional Network
	The SegNet architecture
	Upsampling the layers by pooling
	Sampling the layers by convolution
	Skipping connections for better training

	Dilated convolutions
	DeepLab
	RefiNet
	PSPnet
	Large kernel matters
	DeepLab v3

	Ultra-nerve segmentation
	Segmenting satellite images
	Modeling FCN for segmentation

	Segmenting instances
	Summary

	Chapter 6: Similarity Learning
	Algorithms for similarity learning
	Siamese networks
	Contrastive loss

	FaceNet
	Triplet loss

	The DeepNet model
	DeepRank
	Visual recommendation systems

	Human face analysis
	Face detection
	Face landmarks and attributes
	The Multi-Task Facial Landmark (MTFL) dataset
	The Kaggle keypoint dataset
	The Multi-Attribute Facial Landmark (MAFL) dataset
	Learning the facial key points

	Face recognition
	The labeled faces in the wild (LFW) dataset
	The YouTube faces dataset
	The CelebFaces Attributes dataset (CelebA)
	CASIA web face database
	The VGGFace2 dataset
	Computing the similarity between faces
	Finding the optimum threshold

	Face clustering

	Summary

	Chapter 7: Image Captioning
	Understanding the problem and datasets
	Understanding natural language processing for image captioning
	Expressing words in vector form
	Converting words to vectors
	Training an embedding

	Approaches for image captioning and related problems
	Using a condition random field for linking image and text
	Using RNN on CNN features to generate captions
	Creating captions using image ranking
	Retrieving captions from images and images from captions
	Dense captioning
	Using RNN for captioning
	Using multimodal metric space
	Using attention network for captioning
	Knowing when to look

	Implementing attention-based image captioning
	Summary

	Chapter 8: Generative Models
	Applications of generative models
	Artistic style transfer
	Predicting the next frame in a video
	Super-resolution of images
	Interactive image generation
	Image to image translation
	Text to image generation
	Inpainting
	Blending
	Transforming attributes
	Creating training data
	Creating new animation characters
	3D models from photos

	Neural artistic style transfer
	Content loss
	Style loss using the Gram matrix
	Style transfer

	Generative Adversarial Networks
	Vanilla GAN
	Conditional GAN
	Adversarial loss
	Image translation
	InfoGAN
	Drawbacks of GAN

	Visual dialogue model
	Algorithm for VDM
	Generator
	Discriminator

	Summary

	Chapter 9: Video Classification
	Understanding and classifying videos
	Exploring video classification datasets
	UCF101
	YouTube-8M
	Other datasets

	Splitting videos into frames
	Approaches for classifying videos
	Fusing parallel CNN for video classification
	Classifying videos over long periods
	Streaming two CNN's for action recognition
	Using 3D convolution for temporal learning
	Using trajectory for classification
	Multi-modal fusion
	Attending regions for classification

	Extending image-based approaches to videos
	Regressing the human pose
	Tracking facial landmarks

	Segmenting videos
	Captioning videos
	Generating videos

	Summary

	Chapter 10: Deployment
	Performance of models
	Quantizing the models
	MobileNets

	Deployment in the cloud
	AWS
	Google Cloud Platform

	Deployment of models in devices
	Jetson TX2
	Android
	iPhone

	Summary

	Other Books You May Enjoy
	Index

