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Preface
The topic of this book is Reinforcement Learning—which is a subfield of Machine 
Learning—focusing on the general and challenging problem of learning optimal 
behavior in complex environment. The learning process is driven only by reward 
value and observations obtained from the environment. This model is very general 
and can be applied to many practical situations from playing games to optimizing 
complex manufacture processes.

Due to flexibility and generality, the field of Reinforcement Learning is developing 
very quickly and attracts lots of attention both from researchers trying to improve 
existing or create new methods, as well as from practitioners interested in solving 
their problems in the most efficient way.

This book was written as an attempt to fill the obvious lack of practical and 
structured information about Reinforcement Learning methods and approaches. 
On one hand, there are lots of research activity all around the world, new research 
papers are being published almost every day, and a large portion of Deep Learning 
conferences such as NIPS or ICLR is dedicated to RL methods. There are several 
large research groups focusing on RL methods application in Robotics, Medicine, 
multi-agent systems, and others. The information about the recent research is widely 
available, but is too specialized and abstract to be understandable without serious 
efforts. Even worse is the situation with the practical aspect of RL application, as 
it is not always obvious how to make a step from the abstract method described 
in the mathematical-heavy form in a research paper to a working implementation 
solving actual problem. This makes it hard for somebody interested in the field to 
get an intuitive understanding of methods and ideas behind papers and conference 
talks. There are some very good blog posts about various RL aspects illustrated 
with working examples, but the limited format of a blog post allows the author to 
describe only one or two methods without building a complete structured picture 
and showing how different methods are related to each other. This book is my 
attempt to address this issue.
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Another aspect of the book is its orientation to practice. Every method is 
implemented for various environments, from very trivial to quite complex. I've 
tried to make examples clean and easy to understand, which was made possible 
by the expressiveness and power of PyTorch. On the other hand, complexity and 
requirements of examples are oriented to RL hobbyists without access to very large 
computational resources, such as clusters of GPUs or very powerful workstations. 
This, I believe, will make the fun-filled and exciting RL domain accessible for a much 
wider audience than just research groups or large AI companies. However, it is still 
Deep Reinforcement Learning, so, having access to a GPU is highly recommended. 
Approximately, half of the examples in the book will benefit from running them on 
GPU. In addition to traditional medium-sized examples of environments used in 
RL, such as Atari games or continuous control problems, the book contains three 
chapters (8, 12, and 13) that contain larger projects, illustrating how RL methods 
could be applied to more complicated environments and tasks. These examples 
are still not full-sized real-life projects (otherwise they'll occupy a separate book 
on their own), but just larger problems illustrating how the RL paradigm can be 
applied to domains beyond well-established benchmarks.

Another thing to note about examples in the first three parts of the book is that 
I've tried to make examples self-contained and the source code was shown in full. 
Sometimes this led to repetition of code pieces (for example, training loop is very 
similar in most of the methods), but I believe that giving you the freedom to jump 
directly into the method you want to learn is more important than avoiding few 
repetitions. All examples in the book is available on Github: https://github.com/
PacktPublishing/Deep-Reinforcement-Learning-Hands-On, and you're welcome 
to fork them, experiment, and contribute.

Who this book is for
The main target audience are people who have some knowledge in Machine 
Learning, but interested to get a practical understanding of the Reinforcement 
Learning domain. A reader should be familiar with Python and the basics of deep 
learning and machine learning. Understanding of statistics and probability will be 
a plus, but is not absolutely essential for understanding most of the book's material.

What this book covers
Chapter 1, What is Reinforcement Learning?, contains introduction to RL ideas and 
main formal models.

Chapter 2, OpenAI Gym, introduces the reader to the practical aspect of RL, using 
open-source library gym.

https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
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Chapter 3, Deep Learning with PyTorch, gives a quick overview of the PyTorch library.

Chapter 4, The Cross-Entropy Method, introduces you to one of the simplest methods  
of RL to give you the feeling of RL methods and problems.

Chapter 5, Tabular Learning and the Bellman Equation, gives an introduction to the 
Value-based family of RL methods.

Chapter 6, Deep Q-Networks, describes DQN, the extension of basic Value-based 
methods, allowing to solve complicated environment.

Chapter 7, DQN Extensions, gives a detailed overview of modern extension to the 
DQN method, to improve its stability and convergence in complex environments.

Chapter 8, Stocks Trading Using RL, is the first practical project, applying the DQN 
method to stock trading.

Chapter 9, Policy Gradients – An Alternative, introduces another family of RL methods, 
based on policy learning.

Chapter 10, The Actor-Critic Method, describes one of the most widely used  
method in RL.

Chapter 11, Asynchronous Advantage Actor-Critic, extends Actor-Critic with parallel 
environment communication, to improve stability and convergence.

Chapter 12, Chatbots Training with RL, is the second project, showing how to apply 
RL methods to NLP problems.

Chapter 13, Web Navigation, is another long project, applying RL to web page 
navigation, using MiniWoB set of tasks.

Chapter 14, Continuous Action Space, describes the specifics of environments, using 
continuous action spaces and various methods.

Chapter 15, Trust Regions – TRPO, PPO, and ACKTR, is yet another chapter about 
continuous action spaces describing "Trust region" set of methods.

Chapter 16, Black-Box Optimization in RL, shows another set of methods that don't use 
gradients in explicit form.

Chapter 17, Beyond Model-Free – Imagination, introduces model-based approach to RL, 
using recent research results about imagination in RL.

Chapter 18, AlphaGo Zero, describes the AlphaGo Zero method applied to game 
Connect Four.
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To get the most out of this book
All chapters in the book describing RL methods have the same structure: in the 
beginning we discuss the motivation of the method, its theoretical foundation,  
and intuition behind it. Then, we follow several examples of the method applied  
to different environment with full source code. So, you can use the book in  
different ways:

1.	 To quickly become familiar with some method of methods you can read 
only introductory part of the relevant chapter or chapter's section.

2.	 To get deeper understanding of the way method is implemented you 
can read the code and the comments around.

3.	 To gain deep familiarity with the method (the best way to learn, I believe) 
you should try to reimplement the method and make it working, using 
provided source code as a reference point.

In any case, I hope the book will be useful for you!

Download the example code files
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files emailed directly 
to you.

You can download the code files by following these steps:

1.	 Log in or register at http://www.packtpub.com.
2.	 Select the SUPPORT tab.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box and follow the on-screen 

instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
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The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Deep-Reinforcement-Learning-Hands-On. We also have 
other code bundles from our rich catalog of books and videos available at  
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in 
this book. You can download it here: https://www.packtpub.com/sites/default/
files/downloads/DeepReinforcementLearningHandsOn_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter 
handles. For example; "The method get_observation() is supposed to return  
to the agent the current environment's observation."

A block of code is set as follows:

    def get_actions(self):
        return [0, 1]

When we wish to draw your attention to a particular part of a code block, 
the relevant lines or items are set in bold:

    def get_actions(self):
        return [0, 1]

Any command-line input or output is written as follows:

$ xvfb-run -s "-screen 0 640x480x24" python 04_cartpole_random_monitor.py

Bold: Indicates a new term, an important word, or words that you see on the screen, 
for example, in menus or dialog boxes, also appear in the text like this. For example: 
"In practice it's some piece of code, which implements some policy."

https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/DeepReinforcementLearningHandsOn_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/DeepReinforcementLearningHandsOn_ColorImages.pdf
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Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title 
in the subject of your message. If you have questions about any aspect of this book, 
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, 
mistakes do happen. If you have found a mistake in this book we would be grateful 
if you would report this to us. Please visit, http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and 
entering the details.

Piracy: If you come across any illegal copies of our works in any form on the 
Internet, we would be grateful if you would provide us with the location address  
or website name. Please contact us at copyright@packtpub.com with a link to  
the material.

If you are interested in becoming an author: If there is a topic that you have 
expertise in and you are interested in either writing or contributing to a book,  
please visit http://authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave 
a review on the site that you purchased it from? Potential readers can then see and 
use your unbiased opinion to make purchase decisions, we at Packt can understand 
what you think about our products, and our authors can see your feedback on their 
book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/
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What is Reinforcement 
Learning?

Reinforcement Learning is a subfield of machine learning which addresses 
the problem of automatic learning of optimal decisions over time. This is  
a general and common problem studied in many scientific and engineering fields.

In our changing world, even problems which look like static input-output problems 
become dynamic in a larger perspective. For example, consider that you're solving 
the simple supervised learning problem of pet image classification with two target 
classes—dog and cat. You've gathered the training dataset and implemented the 
classifier using your favorite deep learning toolkit, and after a while, the model 
that has converged demonstrates excellent performance. Good? Definitely! You've 
deployed it and left it running for a while. Then, after a vacation on some seaside 
resort, you discover that dog haircut fashions have changed, and a significant 
portion of your queries are now misclassified, so you need to update your training 
images and repeat the process again. Good? Definitely not!

The preceding example is intended to show that even simple Machine Learning 
(ML) problems have a hidden time dimension, which is frequently overlooked,  
but it might become an issue in a production system.

Reinforcement Learning (RL) is an approach that natively incorporates this extra 
dimension (which is usually time, but not necessarily) into learning equations, which 
puts it much close to the human perception of artificial intelligence. In this chapter, 
we will become familiar with the following:

•	 How RL is related to and differs from other ML disciplines: supervised 
and unsupervised learning

•	 What the main RL formalisms are and how they are related to each other
•	 Theoretical foundations of RL: the Markov decision processes
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Learning – supervised, unsupervised, 
and reinforcement
You may be familiar with the notion of supervised learning, which is the most 
studied and well-known machine learning problem. Its basic question is: how do you 
automatically build a function that maps some input into some output, when given a 
set of example pairs? It sounds simple in those terms, but the problem includes many 
tricky questions that computers have only recently started to deal with some success. 
There are lots of examples of supervised learning problems, including the following:

•	 Text classification: Is this email message spam or not?
•	 Image classification and object location: Does this image contain a picture 

of a cat, dog, or something else?
•	 Regression problems: Given the information from weather sensors, what 

will be the weather tomorrow?
•	 Sentiment analysis: What's the customer satisfaction level of this review?

These questions can look different, but they share the same idea: we have many 
examples of the input and desired output, and we want to learn how to generate 
the output for some future, currently unseen inputs. The name, supervised comes 
from the fact that we learn from the known answers, which were obtained from 
some supervisor who has provided us with those labeled examples.

At the other extreme, we have the so-called unsupervised learning, which assumes 
no supervision that has no known labels assigned to our data. The main objective is 
to learn some hidden structure of the dataset at hand. One common example of such 
an approach to learning is the clustering of data. This happens when our algorithm 
tries to combine data items into a set of clusters, which can reveal relationships  
in data.

Another unsupervised learning method that is becoming more and more popular is, 
Generative Adversarial Networks (GANs). When we have two competing neural 
networks, the first of them is trying to generate fake data to fool the second network, 
while the other is trying to discriminate artificially generated data from data sampled 
from our dataset. Over time, both of them are becoming more and more skillful in 
their tasks by capturing subtle specific patterns of your dataset.

RL is the third camp and lays somewhere in between full supervision and a complete 
lack of predefined labels. On the one hand, it uses many well-established methods 
of supervised learning such as deep neural networks for function approximation, 
stochastic gradient descent, and backpropagation, to learn data representation.  
On the other hand, it usually applies them in a different way.
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In the next two sections of the chapter, we'll have the chance to explore specific 
details of the RL approach including its assumptions and abstractions in its strict 
mathematical form. For now, to compare RL to supervised and unsupervised 
learning, we'll take a less formal, but more intuitive description.

Imagine you have an agent that needs to take actions in some environment. A robot 
mouse in a maze is a good example, but we can also imagine an automatic helicopter 
trying to make a roll, or a chess program learning how to beat a grandmaster. Let's 
go with the robot mouse for simplicity.

Figure 1: Robot mouse maze world

Its environment is a maze with food at some points and electricity at others. The robot 
mouse can take actions such as turn left/right and move forward. Finally, at every 
moment it can observe the full state of the maze to make a decision about the actions 
it may take. It is trying to find as much food as possible, while avoiding an electric 
shock whenever possible. These food and electricity signals stand as a reward given 
to the agent by the environment as additional feedback about the agent's actions. The 
reward is a very important concept in RL, and we'll talk about it later in the chapter. 
For now, it will be enough to understand that the final goal of the agent is to get as 
much total reward as possible. In our particular example, the mouse could suffer a bit 
of an electric shock to get to the place with plenty of food—this will be a better result 
for the mouse than just standing still and gaining nothing.

We don't want to hard-code knowledge about the environment and the best actions 
to take in every specific situation into the robot—it will take too much effort and 
may become useless even with a slight maze change. What we want to do is to 
have some magic set of methods that will allow our robot to learn on its own how 
to avoid electricity and gather as much food as possible.

Reinforcement Learning is exactly this magic toolbox, which plays differently from 
supervised and unsupervised learning methods. It doesn't work with predefined 
labels as supervised learning does. Nobody labels all the images the robot sees 
as good or bad or gives it the best direction to turn in.
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However, we're not completely blind as in an unsupervised learning setup—we 
have a reward system. Rewards can be positive from gathering the food, negative 
from electric shocks, or neutral when nothing special happens. By observing such 
a reward and relating it to the actions we've taken, our agent learns how to perform 
an action better, gather more food, and get fewer electric shocks.

Of course, RL generality and flexibility comes with a price. RL is considered to be 
a much more challenging area than supervised and unsupervised learning. Let's 
quickly discuss what makes Reinforcement Learning tricky.

The first thing to note is that observation in RL depends on an agent's behavior and 
to some extent, it is the result of their behavior. If your agent decides to do inefficient 
things, then the observations will tell you nothing about what they have done 
wrong and what should be done to improve the outcome (the agent will just get 
negative feedback all the time). If the agent is stubborn and keeps making mistakes, 
then the observations can make the false impression that there is no way to get 
a larger reward—life is suffering—which could be totally wrong. In machine learning 
terms, it can be rephrased as having non-i.i.d data. The abbreviation i.i.d stands 
for independent and identically distributed, a requirement for most supervised 
learning methods.

The second thing that complicates our agent's life is that they need to not only 
exploit the policy they have learned, but to actively explore the environment, 
because, who knows, maybe by doing things differently we can significantly 
improve the outcome we get. The problem is that too much exploration may also 
seriously decrease the reward (not to mention that the agent can actually forget what 
they have learned before), so, we need to find a balance between these two activities 
somehow. This exploration/exploitation dilemma is one of the open fundamental 
questions in RL.

People face this choice all the time: should I go to an already known place for dinner 
or try this new fancy restaurant? How frequently should you change jobs? Should 
you study a new field or keep working in your area? There are no universal answers 
to these questions.

The third complication factor lays in the fact that reward can be seriously delayed 
from actions. In cases of chess, it can be one single strong move in the middle of 
the game that has shifted the balance. During learning, we need to discover such 
casualties, which can be tricky to do over the flow of time and our actions.

However, despite all these obstacles and complications, RL has made huge 
improvements over recent years and is becoming more and more active as 
a field of research and practical application.

Interested? Let's get to the details and look at RL formalisms and play rules.
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RL formalisms and relations
Every scientific and engineering field has its own assumptions and limitations. In 
the previous section, we discussed supervised learning, in which such assumptions 
are the knowledge of input-output pairs. No labels for your data? Sorry, you need 
to figure out how to obtain labels or try to use some other theory. It doesn't make 
supervised learning good or bad, it just makes it inapplicable to your problem. It's 
important to know and understand those play rules for various methods, as it can 
save you tons of time in advance. However, we know there are many examples of 
practical and theoretical breakthroughs, when somebody tried to challenge the rules 
in a creative way. To do this you should first of all know the limitations.

Of course, such formalisms exist for RL, and now it is the right time to introduce 
them, as we'll spend the rest of the book analyzing them from various angles.  
You can see the following diagram showing two major RL entities: Agent  
and Environment and their communication channels: Actions, Reward,  
and Observations:

Figure 2: RL entities and their communications

Reward
The first thing to discuss is a notion of reward. In RL, it's just a scalar value we 
obtain periodically from the environment. It can be positive or negative, large or small, 
but it's just a number. The purpose of reward is to tell our agent how well they have 
behaved. We don't define how frequently the agent receives this reward; it can be 
every second or once in a lifetime, although it's common practice to receive a reward 
every fixed timestamp or every environment interaction, just for convenience. In the 
case of once-in-a-lifetime reward systems, all rewards except the last one will be zero.
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As I mentioned, the purpose of a reward is to give an agent feedback about its 
success, and it's an important central thing in RL. Basically, the term reinforcement 
comes from the fact that a reward obtained by an agent should reinforce its behavior 
in a positive or negative way. Reward is local, meaning, it reflects the success of the 
agent's recent activity, not all the successes achieved by the agent so far. Of course, 
getting a large reward for some action doesn't mean that a second later you won't 
face dramatic consequences from your previous decisions. It's like robbing a bank: 
it could look like a good idea until you think about the consequences.

What an agent is trying to achieve is the largest accumulated reward over its sequence 
of actions. To give you a more intuitive understanding of reward, let's list some 
concrete examples with their rewards:

•	 Financial trading: An amount of profit is a reward for a trader buying and 
selling stocks.

•	 Chess: Here, reward is obtained at the end of the game, as a win, lose, 
or draw. Of course, it's up to interpretation. For me, for example, having a 
draw in a match against a chess master would be a huge reward. In practice, 
we need to explicitly specify the exact reward value, but it could be a fairly 
complicated expression. For instance, in case of chess, the reward could be 
proportional to the opponent's strength.

•	 Dopamine system in a brain: There is a part in the brain (limbic system) that 
produces dopamine every time it needs to send a positive signal to the rest 
of the brain. Higher concentrations of dopamine lead to a sense of pleasure, 
which reinforces activities considered by this system as good. Unfortunately, 
the limbic system is ancient in terms of things it considers good: food, 
reproduction, and dominance, but this is a totally different story.

•	 Computer games: They usually give obvious feedback to the player, which is 
either the number of enemies killed or a score gathered. Note in this example 
that reward is already accumulated, so the RL reward for arcade games 
should be the derivative of the score, that is, +1 every time a new enemy 
is killed and 0 at all other time steps.

•	 Web navigation: There is a set of problems with high practical value, which 
is to be able to automatically extract information present on the web. Search 
engines are trying to solve this task in general, but sometimes, to get to the 
data you're looking for you need to fill some forms or navigate through series 
of links, or complete captchas, which can be difficult for search engines to do. 
There is an RL-based approach to those tasks, in which the reward is the 
information or the outcome you need to get.
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•	 Neural network architecture search: RL has been successfully applied to 
the domain of NN architecture optimization, where the aim is to get the best 
performance metric on some dataset by tweaking the number of layers or 
their parameters, adding extra bypass connections, or making other changes 
to the neural network architecture. The reward in this case is the performance 
(accuracy or another measure showing how accurate the NN predictions are).

•	 Dog training: If you have ever tried to train a dog, you know that you need 
to give it something tasty (but too not much) every time it does the thing 
you've asked. It's also common to punish your pet a bit (negative reward) 
when it doesn't follow your orders, although recent studies have shown 
this isn't as effective as positive rewards.

•	 School marks: We all have experience here! School marks are a reward 
system to give pupils feedback about their studying.

As you can see from the preceding examples, the notion of reward is a very general 
indication of the agent's performance, and it can be found or artificially injected into 
lots of practical problems around us.

The agent
An agent is somebody or something who/which interacts with the environment 
by executing certain actions, taking observations, and receiving eventual rewards 
for this. In most practical RL scenarios, it's our piece of software that is supposed 
to solve some problem in a more-or-less efficient way. For our initial set of six 
examples, the agents will be one of these:

•	 Financial trading: A trading system or a trader making decisions about  
order execution

•	 Chess: A player or a computer program
•	 Dopamine system: The brain itself, according to sensory data, decides if it 

was a good experience or bad
•	 Computer games: The player who enjoys the game or the computer program 

(Andrey Karpathy once stated in his tweet, "We were supposed to make AI do 
all the work and we play games but we do all the work and the AI is playing 
games!")

•	 Web navigation: The software that tells the browser which links to click on, 
where to move the mouse, or which text to enter
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•	 Neural network architecture search: The software that controls the concrete 
architecture of the neural network being evaluated

•	 Dog training: Your beloved pet
•	 School: Student/pupil

The environment
The environment is everything outside of an agent. In the most general sense, it's the 
rest of the universe, but this goes slightly overboard and exceeds the capacity of even 
tomorrow's computers, so we usually follow the general sense here.

The environment is external to an agent, and its communication with the 
environment is limited by rewards (obtained from the environment), actions 
(executed by the agent and given to the environment), and observations (some 
information besides the rewards that the agent receives from the environment). 
We discussed rewards already, so let's talk about actions and observations.

Actions
Actions are things that an agent can do in the environment. Actions can be moves 
allowed by the rules of play (if it's some game), or it can be doing homework 
(in the case of school). They can be simple such as move pawn one space forward, 
or complicated such as fill the tax form in for tomorrow morning.

In RL, we distinguish between two types of actions: discrete or continuous. Discrete 
actions form the finite set of mutually exclusive things an agent could do, such as 
move left or right. Continuous actions have some value attached to the action, such 
as a car's action steer the wheel having an angle and direction of steering. Different 
angles could lead to a different scenario a second later, so just saying steer the wheel 
is definitely not enough.

Observations
Observations of the environment is the second information channel for an agent, 
with the first being a reward. You may be wondering, why do we need a separate 
data source? The answer is convenience. Observations are pieces of information that 
the environment provides the agent with, which say what's going on around them. 
It may be relevant to the upcoming reward (such as seeing a bank notification saying, 
You have been paid) or not. Observations even can include reward information in some 
vague or obfuscated form, such as score numbers on a computer game's screen. Score 
numbers are just pixels, but potentially we can convert them into reward values; 
it's not a big deal with modern deep learning at hand. 
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On the other hand, reward shouldn't be seen as a secondary or unimportant thing: 
the reward is the main force that drives the agent's learning process. If the reward 
is made wrong, noisy, or just slightly off-course of the primary objective, then there 
is a chance that training will go in a wrong way.

It's also important to distinguish between an environment's state and observations. 
The state of an environment potentially includes every atom in the universe, 
which makes it impossible to measure everything about the environment. Even 
if we limit the environment's state to be small enough, most of the time it's either 
still not possible to get full information or our measurements will contain noise. This 
is completely fine though, and RL was created to support such cases natively. Once 
again, let's support our intuition with our set of examples to capture the difference:

•	 Financial trading: Here the environment is the whole financial market 
and everything that influences it. This is a huge list of things such as the 
latest news, economic and political conditions, weather, food supplies, 
and Twitter trends. Even your decision to stay home today can potentially 
indirectly influence the world financial system. However, our observations 
are limited to stock prices, news, and so on. We don't have access to most 
of the environment's state, which makes trading such a nontrivial thing.

•	 Chess: The environment here is your board plus your opponent, which 
includes their chess skills, mood, brain state, chosen tactics, and so on. 
Observation is what you see (your current chess position), but, I guess, 
at some levels of play mastery, the knowledge of psychology and ability 
to read an opponent's mood could increase your chances.

•	 Dopamine system: The environment here is your brain PLUS nervous 
system and organ's states PLUS the whole world you can perceive. 
Observations are the inner brain state and signals coming from your senses.

•	 Computer game: Here, the environment is your computer's state, including 
all memory and disk data. For networked games, you need to include other 
computers PLUS all internet infrastructure between them and your machine. 
Observations are a screen's pixels and sound, that's it. A screen's pixels 
is not a tiny amount of information (somebody calculated that the total 
number of possible moderate-size images 1024 × 768 is significantly larger 
than the number of atoms in our galaxy), but the whole environment state 
is definitely larger.

•	 Web navigation: The environment here is the internet, including all the 
network infrastructure between the computer our agent works and the web 
server, which is a really huge system that includes millions and millions of 
different components. Observation is normally the web page that is loaded 
at the current navigation step.
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•	 Neural network architecture search: In this example, the environment is fairly 
simple and includes the NN toolkit that performs the particular neural network 
evaluation and the dataset that is used to obtain the performance metric. In 
comparison to the internet, this looks like a tiny toy environment. Observations 
might be different and include some information about the testing, such as loss 
convergence dynamics or other metrics obtained from the evaluation step.

•	 Dog training: Here the environment is your dog (including its hardly 
observable inner reactions, mood, and life experiences) and everything 
around it, including other dogs and a cat hiding in a bush. Observations 
are signals from your senses and memory.

•	 School: The environment here is the school itself, the education system of the 
country, society, and the cultural legacy. Observations are the same as for the 
dog training: the student's senses and memory.

This is our mise en scène and we'll play around with it in the rest of the book. I think 
you've already noticed that the RL model is extremely flexible, general, and could be 
applied to a variety of scenarios. Let's look at how RL is related to other disciplines, 
before diving into the details of RL's model.

There are many other areas that contribute or relate to RL. The most significant 
are shown in the following diagram (taken from David Silver's RL course http://
www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html), which includes six 
large domains heavily overlapping each other on the methods and specific topics 
related to decision making (shown inside the inner gray circle). In the intersection 
of all those related, but still different scientific areas, sits RL, which is so general 
and flexible that it can take the best from these varying domains:

Figure 3: Various domains in RL

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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•	 Machine learning (ML): RL, being a subfield of ML, borrows lots of its 
machinery, tricks, and techniques from ML. Basically, the goal of RL is to 
learn how an agent should behave when it is given imperfect observational 
data.

•	 Engineering (especially optimal control): This helps in taking a sequence 
of optimal actions to get the best result.

•	 Neuroscience: We saw the dopamine system as our example, and it has been 
shown that the human brain acts closely to the RL model.

•	 Psychology: This studies behavior in various conditions, such as how people 
react and adapt, which is close to the RL topic.

•	 Economics: One of the important topics is how to maximize reward in terms 
of imperfect knowledge and the changing conditions of the real world.

•	 Mathematics: This works with idealized systems, and also devotes 
significant attention to finding and reaching the optimal conditions in 
the field of operations research.

Markov decision processes
In this part of the chapter, we'll  get familiar with the theoretical foundation of RL, 
which makes it possible to start moving toward the methods used to solve the RL 
problem. This section is important to understand the rest of the book and will ensure 
that you familiarize yourself with RL. First, we introduce you to the mathematical 
representation and notation of formalisms (reward, agent, actions, observations, 
and environment) we just discussed. Second, using this basis, we introduce you to 
the second-order notions of the RL language including state, episode, history, value, 
and gain, which will be used repeatedly to describe different methods later in the 
book. Finally, our description of Markov decision processes is built like a Russian 
matryoshka doll: we start from the simplest case of a Markov Process (MP) (also 
known as a Markov chain), then extend it with rewards, which will turn it into 
a Markov reward processes. Then we'll put this idea into one other extra envelope 
by adding actions, which will lead us to Markov Decision Processes (MDPs).

Markov processes and Markov decision processes are widely used in computer 
science and other engineering fields. So reading this chapter will be useful for you 
not only in RL contexts but also for a much wider range of topics.

If you're already familiar with MDPs, then you can quickly skim this chapter, 
paying attention only to the terminology definitions, as we'll use them later on.
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Markov process
Let's start with the simplest child of the Markov family: the Markov process, also 
known as a Markov chain. Imagine that you have some system in front of you that 
you can only observe. What you observe is called states, and the system can switch 
between states according to some laws of dynamics. Again, you cannot influence 
the system, but only watch the states changing.

All possible states for a system form a set called state space. In Markov processes, 
we require this set of states to be finite (but it can be extremely large to compensate 
this limitation). Your observations form a sequence of states or a chain (that's 
why Markov processes are also called Markov chains). For example, looking at the 
simplest model of the weather in some city, we can observe the current day as sunny 
or rainy, which is our state space. A sequence of observations over time forms a chain 
of states, such as [sunny, sunny, rainy, sunny, …], and is called history.

To call such a system a MP, it needs to fulfil the Markov property, which means that 
the future system dynamics from any state have to depend on this state only. The 
main point of the Markov property is to make every observable state self-contained 
to describe the future of the system. In other words, the Markov property requires 
the states of the system to be distinguishable from each other and unique. In this 
case, only one state is required to model the future dynamics of the system, not 
the whole history or, say, the last N states.

In the case of our toy weather example, the Markov property limits our model to 
represent only the cases when a sunny day can be followed by a rainy one, with 
the same probability, regardless of the amount of sunny days we've seen in the past. 
It's not a very realistic model, as from common sense we know that the chance of 
rain tomorrow depends not only on the current condition, but on a large number 
of other factors, such as the season, our latitude, and the presence of mountains 
and sea nearby. It was recently proven that even solar activity has a major influence 
on weather. So, our example is really naïve, but it's important to understand the 
limitations and make conscious decisions about them.

Of course, if we want to make our model more complex, we can always do this by 
extending our state space, which will allow us to capture more dependencies in 
the model at the cost of a larger state space. For example, if you want to capture 
separately the probability of rainy days during summer and winter, then you can 
include the season in your state. In this case, your state space will be [sunny+summer, 
sunny+winter, rainy+summer, rainy+winter] and so on.
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As your system model complies with the Markov property, you can capture 
transition probabilities with a transition matrix, which is a square matrix of the 
size N×N, where N is the number of states in our model. Every cell in a row i and 
a column j in the matrix contains the probability of the system to transition from 
the state i to state j.

For example, in our sunny/rainy example the transition matrix could be as follows:

sunny rainy
sunny 0.8 0.2
rainy 0.1 0.9

In this case, if we have a sunny day, then there is an 80% chance that the next 
day will be sunny and a 20% chance that the next day will be rainy. If we observe 
a rainy day, then there is a 10% probability that the weather will become better and 
a 90% probability of the next day being rainy.

So, that's it. The formal definition of Markov process is as follows:

•	 A set of states (S) that a system can be in
•	 A transition matrix (T), with transition probabilities, which defines the 

system dynamics

The useful visual representation of MP is a graph with nodes corresponding 
to system states and edges, labeled with probabilities representing a possible 
transition from state to state. If the probability of transition is 0, we don't draw 
an edge (there is no way to go from one state to another). This kind of representation 
is also widely used in finite state machine representation, which is studied in the 
automata theory. For our sunny/rainy weather model the graph is as shown here:

Figure 4: Sunny/Rainy weather model
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Again, now we're talking about observation only. There is no way for us  
to influence the weather, so we just observe and record our observations.

To give you a more complicated example, we'll consider another model of 
Office Worker (Dilbert, the main character in Scott Adams' famous cartoons,  
is a good example). His state space in our example has the following states:

•	 Home: He's not at the office
•	 Computer: He's working on his computer at the office
•	 Coffee: He's drinking coffee at the office
•	 Chatting: He's discussing something with colleagues at the office

The state transition graph looks like this:

Figure 5: State transition graph

We expect that his work day usually starts from the Home state and that he always 
starts his work day with Coffee, without exception (no Home → Computer edge 
and no Home → Chatting edge). The preceding diagram also shows that work 
days always end (that is, the going to the Home state) from the Computer state. 
The transition matrix for the preceding diagram is as follows:

Home Coffee Chat Computer
Home 60% 40% 0% 0%
Coffee 0% 10% 70% 20%
Chat 0% 20% 50% 30%
Computer 20% 20% 10% 50%

The transition probabilities could be placed directly on the state transition graph, 
as shown here:
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Figure 6: State transition graph with transition probabilities

In practice, we rarely have the luxury of knowing the exact transition matrix. A much 
more real-world situation is when we have only observations of our systems' states, 
which are also called episodes:

•	 home → coffee → coffee → chat → chat → coffee → computer → computer 
→ home

•	 computer → computer → chat → chat → coffee → computer → computer 
→ computer

•	 home → home → coffee → chat → computer → coffee → coffee

It's not complicated to estimate the transition matrix by our observation; we 
just count all the transitions from every state and normalize them to a sum of 1. 
The more observation data we have, the closer our estimation will be to the true 
underlying model.

It's also worth noting that the Markov property implies stationarity (that is, 
the underlying transition distribution for any state does not change over time). 
Nonstationarity means that there is some hidden factor that influences our system 
dynamics, and this factor is not included in observations. However, this contradicts 
the Markov property, which requires the underlying probability distribution to 
be the same for the same state regardless of the transition history. It's important 
to understand the difference between the actual transitions observed in an episode 
and the underlying distribution given in the transition matrix. Concrete episodes 
that we observe are randomly sampled from the distribution of the model, so they 
can differ from episode to episode. However, the probability of concrete transition 
to be sampled remains the same. If this is not the case, Markov chain formalism 
becomes nonapplicable.
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Now we can go further and extend the Markov process model to make it closer 
to our RL problems. Let's add rewards to the picture!

Markov reward process
To introduce rewards, we need to extend our Markov process model a bit. First, we 
need to add value to our transition from state to state. We already have probability, 
but probability is being used to capture the dynamics of the system, so now we have 
an extra scalar number without an extra burden.

Reward can be represented in various forms. The most general way is to have 
another square matrix similar to the transition matrix with rewards for transitioning 
from state i to state j residing in row i and column j. Rewards can be positive or 
negative, large or small—it's just a number. In some cases, this representation is 
redundant and can be simplified. For example, if the reward is given for reaching 
the state regardless of the previous state, we can keep only state → reward pairs, 
which is a more compact representation. However, this is applicable only if the 
reward value depends only on the target state, which is not always the case.

The second thing we're adding to the model is discount factor γ (gamma), a single 
number from 0 to 1 (inclusive). The meaning will be explained later, after we define 
the extra characteristics of our Markov reward process.

As you remember, we observe a chain of state transitions in a Markov process. This 
is still the case for a Markov reward process, but for every transition, we have our 
extra quantity—reward. So now, all our observations have a reward value attached 
to every transition of the system.

For every episode, we define return at the time t as this quantity:

Gt = Rt+1 + γRt+2 + . . . =

∞∑

k=0

γkRt+k+1

Let's try to understand what this means. For every time point, we calculate return 
as a sum of subsequent rewards, but more distant rewards are multiplied by the 
discount factor raised to the power of the number of steps we are away from the 
starting point at time t. The discount factor stands for the foresightedness of an 
agent. If gamma equals to 1, then return Gt just equals a sum of all subsequent 
rewards and corresponds to the agent with perfect visibility of any subsequent 
rewards. If gamma equals 0, our return Gt will be just immediate reward without 
any subsequent state and correspond to absolute short-sightedness. 
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These extreme values are not useful, and usually gamma is set to something in 
between, such as 0.9 or 0.99. In this case, we will look into future rewards, but  
not too far.

This gamma parameter is important in RL, and we'll meet it a lot in the subsequent 
chapters. For now, think about it as a measure of how far into the future we look 
to estimate the future return: the closer to 1, the more steps ahead of us we take 
into account.

This return quantity is not very useful in practice, as it was defined for every specific 
chain we observed from our Markov reward process, so it can vary widely even for 
the same state. However, if we go to the extremes and calculate the mathematical 
expectation of return for any state (by averaging large amount of chains), we'll get 
a much more useful quantity, called a value of state:

V (s) = E[G|St = s]

This interpretation is simple: for every state s, the value V(s) is the average 
(or expected) return we get by following the Markov reward process.

To show how this theoretical stuff is related to practice, let's extend our Dilbert 
process with rewards and turn it into a Dilbert Reward Process (DRP). Our 
reward values will be as follows:

•	 home → home: 1 (as it's good to be home)
•	 home → coffee: 1
•	 computer → computer: 5 (working hard is a good thing)
•	 computer → chat: -3 (it's not good to be distracted)
•	 chat → computer: 2
•	 computer → coffee: 1
•	 coffee → computer: 3
•	 coffee → coffee: 1
•	 coffee → chat: 2
•	 chat → coffee: 1
•	 chat → chat: -1 (long conversation becomes boring)
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A diagram with rewards is shown here:

Figure 7: State transition graph with transition probabilities (dark) and rewards (light)

Let's return to our gamma parameter and think about the values of states with 
different values of gamma. We will start with a simple case: gamma = 0. How  
do you calculate the values of states here?

To answer this question, let's fix our state to Chat. What could the subsequent 
transition be? The answer is: It depends on chance. According to our transition matrix 
for the Dilbert process, there is a 50% probability that the next state will be Chat 
again, 20% that it will be Coffee, and in 30% of cases, we return to the Computer 
state. When gamma = 0, our return is equal only to a value of the next immediate 
state. So, if we want to calculate the value of the Chat state, then we need to sum 
all transition values, and multiply it by their probabilities:

V(chat) = -1 * 0.5 + 2 * 0.3 + 1 * 0.2 = 0.3

V(coffee) = 2 * 0.7 + 1 * 0.1 + 3 * 0.2 = 2.1

V(home) = 1 * 0.6 + 1 * 0.4 = 1.0

V(computer) = 5 * 0.5 + (-3) * 0.1 + 1 * 0.2 + 2 * 0.2 = 2.8

So, Computer is the most valuable state to be in (if we care only about immediate 
reward), which is not surprising as Computer → Computer is frequent, has a large 
reward, and the ratio of interruptions is not too high.

Now a trickier question: what's the value when gamma = 1? Think about  
this carefully.
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The answer is: the value is infinite for all states. Our diagram doesn't contain sink 
states (states without outgoing transitions), and when our discount equals 1, we care 
about a potentially infinite amount of transitions in the future. As we've seen in the 
case of gamma = 0, all our values are positive in the short term, so the sum of the 
infinite amount of positive values will give us an infinite value, regardless of the 
starting state.

This infinite result shows us one of the reasons to introduce gamma into a Markov 
reward process, instead of just summing all future rewards. In most cases, the 
process can have an infinite (or large) amount of transitions. As it is not very 
practical to deal with infinite values, we would like to limit the horizon we calculate 
values for. Gamma with a value less than 1 provides such a limitation, and we'll 
discuss this later in chapters about the value iteration methods family. On the other 
hand, if you're dealing with finite-horizon environments (for example, the TicTacToe 
game which is limited by at most 9 steps), then it will be fine to use gamma = 1. As 
another example, there is an important class of environments with only one step 
called Multi-Armed Bandit MDP. This means that on every step you need to make a 
selection of one alternative action, which provides you with some reward and the 
episode ends.

As I already said about the Markov reward process definition, gamma is usually 
set to a value between 0 and 1 (commonly used values for gamma are 0.9 and 0.99); 
however, with such values it becomes almost impossible to calculate accurately 
the values by hand, even for MRPs as small as our Dilbert example, because it will 
require summing of hundreds of values. Computers are good at tedious tasks such 
as summing thousands of numbers, and there are several simple methods which 
can quickly calculate values for MRPs, given transition and reward matrices. We'll 
see and even implement one such method in Chapter 5, Tabular Learning and the 
Bellman Equation, when we'll start looking at Q-learning methods.

For now, let's put another layer of complexity around our Markov reward processes 
and introduce the final missing piece: actions.

Markov decision process
You may already have ideas about how to extend our MRP to include actions into 
the picture. First, we must add a set of actions (A), which has to be finite. This is our 
agent's action space.
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Then, we need to condition our transition matrix with action, which basically 
means our matrix needs an extra action dimension, which turns it into a cube. 
If you remember, in the case of MPs and MRPs, the transition matrix had a square 
form, with source state in rows and target state in columns. So, every row i contained 
a list of probabilities to jump to every state:

Figure 8: Transition matrix

Now the agent no longer passively observes state transitions, but can actively choose 
an action to take at every time. So, for every state, we don't have a list of numbers, 
but a matrix, where the depth dimension contains actions that the agent can take, and 
the other dimension is that the target state system will jump to after this action is 
performed by the agent. The following diagram shows our new transition table that 
became a cube with source state as the height dimension (indexed by i), target state 
as width (j), and action the agent can choose from is depth (k) of the transition table:

Figure 9: Transition probabilities for MDP

So, in general, by choosing an action, the agent can affect the probabilities of target 
states, which is a useful ability.

To give you an idea of why we need so many complications, let's imagine a small 
robot which lives in a 3 × 3 grid and can execute the actions turn left, turn right, and 
go forward. The state of the world is the robot's position plus orientation (up, down, 
left, and right), which gives us 3 × 3 × 4 = 36 states (the robot can be at any location 
in any orientation). 
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Also, imagine that the robot has imperfect motors (which is frequently the case in the 
real world), and when it executes turn left or turn right, there is a 90% chance that the 
desired turn happens, but sometimes, with 10% probability, the wheel slips and the 
robot's position stays the same. The same happens with go forward: in 90% of cases 
it works, but for the rest (10%) the robot stays at the same position.

In the following illustration, a small part of a transition diagram is shown, displaying 
the possible transitions from the state (1, 1, up), when the robot is in the center of the 
grid and facing up. If it tries to move forward, there is a 90% chance that it will end 
up in the state (0, 1, up), but there is a 10% probability that the wheels will slip and 
the target position will remain (1, 1, up).

To properly capture all these details about the environment and possible reactions 
on the agent's actions, the general MDP has a 3D transition matrix with dimensions 
(source state, action, and target state).

 

Figure 10: Grid world environment

Finally, to turn our MRP into an MDP, we need to add actions to our reward matrix 
in the same way we did with the transition matrix: our reward matrix will depend 
not only on state but also on action. In other words, it means that the reward the 
agent obtains now depends not only on the state it ends up in but also on the action 
that leads to this state. It's similar as when putting effort into something, you're 
usually gaining skills and knowledge, even if the result of your efforts wasn't too 
successful. So, the reward could be better if you're doing something, rather than 
not doing something, even if the final result is the same.

Now, with a formally defined MDP, we're finally ready to introduce the most 
important central thing for MDPs and RL: policy.
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The intuitive definition of policy is that it is some set of rules that controls the agent's 
behavior. Even for fairly simple environments, we can have a variety of policies. For 
example, in the preceding example with the robot in the grid world, the agent can 
have different policies, which will lead to different sets of visited states. For example, 
this robot can perform the following actions:

•	 Blindly move forward regardless of anything
•	 Try to go around obstacles by checking whether that previous forward  

action failed
•	 Funnily spin around to entertain its creator
•	 Choose an action randomly modelling a drunk robot in the grid world scenario, 

and so on …

You may remember that the main objective of the agent in RL is to gather as much 
return (which was defined as discounted cumulative reward) as possible. So, again, 
intuitively, different policies can give us different return, which makes it important 
to find a good policy. This is why the notion of policy is important, and it's the 
central thing we're looking for.

Formally, policy is defined as the probability distribution over actions for every 
possible state:

π(a|s) = P [At = a|St = s]

This is defined as probability, not as a concrete action, to introduce randomness 
into an agent's behavior. We'll talk later why this is important and useful. Finally, 
deterministic policy is a special case of probabilistics with needed action having 
1 as its probability.

Another useful notion is that if our policy is fixed and not changing, then our MDP 
becomes an MRP, as we can reduce transition and reward matrices with a policy's 
probabilities and get rid of action dimensions.

So, my congratulations on getting to this stage! This chapter was challenging, but 
it was important for subsequent practical material. After two more introductory 
chapters about OpenAI gym and deep learning, we can finally start tackling the 
question: how do I teach agents to solve practical tasks?
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Summary
In this chapter, we started our journey into the RL world by learning what makes 
RL special and how it relates to the supervised and unsupervised learning paradigm. 
We then learned about the basic RL formalisms and how they interact with each 
other, after which we defined Markov process, Markov reward process, and Markov 
decision process.

In the next chapter, we'll move away from the formal theory into the practice 
of RL. We'll cover the setup required, libraries, and write our first agent.
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OpenAI Gym
After talking so much about the theoretical concepts of RL, let's start doing 
something practical. In this chapter, we'll learn the basics of the OpenAI Gym  
API and write our first randomly behaving agent to make ourselves familiar  
with all the concepts.

The anatomy of the agent
As we saw in the previous chapter, there are several entities in RL's view of  
the world:

•	 Agent: A person or a thing that takes an active role. In practice, it's some 
piece of code, which implements some policy. Basically, this policy must 
decide what action is needed at every time step, given our observations.

•	 Environment: Some model of the world, which is external to the agent 
and has the responsibility of providing us with observations and giving 
us rewards. It changes its state based on our actions.

Let's show how both of them can be implemented in Python for a simplistic 
situation. We will define an environment that gives the agent random rewards for 
a limited number of steps, regardless of the agent's actions. This scenario is not very 
useful, but will allow us to focus on specific methods in both the environment and 
the agent classes. Let's start with the environment:

class Environment:
    def __init__(self):
        self.steps_left = 10
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In the preceding code, we allow the environment to initialize its internal state. 
In our case, the state is just a counter that limits the number of time steps the agent 
is allowed to take to interact with the environment:

    def get_observation(self):
        return [0.0, 0.0, 0.0]

The get_observation() method is supposed to return the current environment's 
observation to the agent. It is usually implemented as some function of the internal 
state of the environment. In our example, the observation vector is always zero, 
as the environment basically has no internal state:

    def get_actions(self):
        return [0, 1]

The get_actions() method allows the agent to query the set of actions it can 
execute. Normally, the set of actions that the agent can execute does not change 
over time, but some actions can become impossible in different states (for example, 
not every move is possible in any position of the TicTacToe game). In our simplistic 
example, there are only two actions that the agent can carry out, encoded with the 
integers 0 and 1:

    def is_done(self):
        return self.steps_left == 0

The preceding method signals the end of the episode to the agent. As we saw 
in Chapter 1, What is Reinforcement Learning?, the series of environment—the 
agent interactions is divided into a sequence of steps called episodes. Episodes 
can be finite, like in a game of chess, or infinite like the Voyager 2 mission (which 
is a famous space probe launched over 40 years ago that has travelled beyond our 
Solar System). To cover both scenarios, the environment provides us with a way to 
detect when an episode is over and there is no way to communicate with it anymore:

    def action(self, action):
        if self.is_done():
            raise Exception("Game is over")
        self.steps_left -= 1
        return random.random()

The action() method is the central piece in the environment's functionality. It does 
two things: handles the agent's action and returns the reward for this action. In our 
example, the reward is random and its action is discarded. Additionally, we update 
the count of steps and refuse to continue the episodes which are over.
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Now when looking at the agent's part, it is much simpler and includes only two 
methods: the constructor and the method that performs one step in the environment:

class Agent:
    def __init__(self):
        self.total_reward = 0.0

In the constructor, we initialize the counter that will keep the total reward 
accumulated by the agent during the episode:

    def step(self, env):
        current_obs = env.get_observation()
        actions = env.get_actions()
        reward = env.action(random.choice(actions))
        self.total_reward += reward

The step function accepts the environment instance as an argument and allows the 
agent to perform the following actions:

•	 Observe the environment
•	 Make a decision about the action to take based on the observations
•	 Submit the action to the environment
•	 Get the reward for the current step

For our example, the agent is dull and ignores observations obtained during 
the decision process about which action to take. Instead, every action is selected 
randomly. The final piece is the glue code, which creates both classes and runs 
one episode:

if __name__ == "__main__":
    env = Environment()
    agent = Agent()

    while not env.is_done():
        agent.step(env)

    print("Total reward got: %.4f" % agent.total_reward)

You can find the preceding code in this book's Git repository at https://github.
com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On in the 
Chapter02/01_agent_anatomy.py directory. It has no external dependencies and 
should work with any more-or-less modern Python version. By running it several 
times, you'll get different amounts of reward gathered by the agent.

https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
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The simplicity of the preceding code allows us to illustrate important basic concepts 
that come from the RL model. The environment could be an extremely complicated 
physics model, and an agent could easily be a large neural network implementing 
the latest RL algorithm, but the basic pattern stays the same: on every step, an agent 
takes some observations from the environment, does its calculations, and selects the 
action to issue. The result of this action is a reward and new observation.

You may wonder, if the pattern is the same, why do we need to write it from scratch? 
Perhaps it is already implemented by somebody and could be used as a library? 
Of course, such frameworks exist, but before we spend some time discussing them, 
let's prepare your development environment.

Hardware and software requirements
The examples in this book were implemented and tested using Python version 3.6. 
I assume that you're already familiar with the language and common concepts such 
as virtual environments, so I won't cover in detail how to install the package and 
how to do this in an isolated way. The external libraries we'll use in this book are 
open source software, including the following:

•	 NumPy: This is a library for scientific computing and implementing matrix 
operations and common functions.

•	 OpenCV Python bindings: This is a computer vision library, which provides 
many functions for image processing.

•	 Gym: This is a RL framework developed and maintained by OpenAI with 
various environments that can be communicated with, in a unified way.

•	 PyTorch: This is a flexible and expressive Deep Learning (DL) library. 
A short essential crash course on it will be given in the next chapter.

•	 Ptan (https://github.com/Shmuma/ptan): This is an open source extension 
to Gym created by the author to support the modern deep RL methods and 
building blocks. All used classes will be described in detail together with the 
source code.
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A significant portion of this book (parts two, three, and four) is focused on the 
modern deep RL methods that have been developed over the past few years. The 
word "deep" in this context means deep learning is heavily used and you may be 
aware that DL methods are computationally hungry. One modern GPU can be 10- 
to 100-times faster than even the fastest multiCPU systems. In practice, this means 
that the same code that takes one hour to train on a system with a GPU, could take 
from half a day to one week even on the fastest CPU system. It doesn't mean that 
you can't try the examples from this book without having access to a GPU, but it 
will take longer. To experiment with the code on your own (the most useful way 
to learn anything), it would be better get access to a machine with a GPU. This 
can be done in various ways:

•	 Buying a modern GPU suitable for CUDA
•	 Using cloud instances: Both Amazon AWS and Google Cloud can provide 

you with GPU-powered instances

The instructions on how to set up the system are beyond the scope of the book, but 
there are plenty of manuals available on the internet. In terms of OS, you should use 
Linux or macOS, as both PyTorch and most of Gym's environments don't support 
Windows (at least at the time of writing).

To give you the exact versions of the external dependencies that we'll use throughout 
the book, here is an output of the pip freeze command (it could be useful for the 
potential troubleshooting of examples in the book, as open source software and DL 
toolkits are evolving extremely quickly):

numpy==1.14.2

atari-py==0.1.1

gym==0.10.4

ptan==0.3

opencv-python==3.4.0.12

scipy==1.0.1

torch==0.4.0

torchvision==0.2.1

tensorboard-pytorch==0.7.1

tensorflow==1.7.0

tensorboard==1.7.0
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All the examples in the book were written and tested with PyTorch 0.4, which can 
be installed with the pip install pytorch==0.4.0 command.

Now, let's go to the details of the OpenAI Gym API, which are not complicated,  
but provide us with tons of environments, from trivial to challenging ones.

OpenAI Gym API
The Python library called Gym was developed and has been maintained by OpenAI 
(www.openai.com). The main goal of Gym is to provide a rich collection of 
environments for RL experiments using a unified interface. So, it's not surprising 
that the central class in the library is an environment, which is called Env. It 
exposes several methods and fields that provide the required information about an 
environment's capabilities. From high level, every environment provides you with 
these pieces of information and functionality:

•	 A set of actions that are allowed to be executed in an environment. Gym 
supports both discrete and continuous actions, as well as their combination.

•	 The shape and boundaries of the observations that an environment provides 
the agent with.

•	 A method called step to execute an action, which returns the current 
observation, reward, and indication that the episode is over.

•	 A method called reset to return the environment to its initial state and 
to obtain the first observation.

Let's talk about those components of the environment in detail.

Action space
As you may remember, the actions that an agent can execute can be discrete, 
continuous, or a combination of both. Discrete actions are a fixed set of things that an 
agent could do, for example, directions in a grid like left, right, up, or down. Another 
example is a push button, which could be either pressed or released. Both states are 
mutually exclusive, because a main characteristic of a discrete action space is that 
only one action from the action space is possible.

A continuous action has a value attached to it, for instance, a steering wheel, which 
can be turned at a specific angle, or an accelerator pedal, which can be pressed with 
different levels of force. A description of a continuous action includes the boundaries 
of the value that the action could have. In the case of a steering wheel, it could be 
from −720 degrees to 720 degrees. For an accelerator pedal, it's usually from 0 to 1.

http://www.openai.com
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Of course, we're not limited to a single action to perform, and the environment could 
have multiple actions, such as pushing multiple buttons simultaneously or steering 
the wheel and pressing two pedals (brake and accelerator). To support such cases, 
Gym defines a special container class that allows the nesting of several action spaces 
into one unified action.

Observation space
Observations are pieces of information that an environment provides the agent with, 
on every timestamp, besides the reward. Observations can be as simple as a bunch of 
numbers or as complex as several multidimensional tensors containing color images 
from several cameras. An observation can even be discrete, much like action spaces. 
An example of such a discrete observation space could be a light bulb, which could 
be in two states: on or off, given to us as a Boolean value.

So, you can see the similarity between actions and observations and how they have 
found their representation in Gym's classes. Let's look at a class diagram:

Figure 1: The hierarchy of the Space classes in Gym

The basic abstract class Space includes two methods relevant to us:

•	 sample(): This returns a random sample from the space
•	 contains(x): This checks if the argument x belongs to the space's domain

Both of these methods are abstract and reimplemented in the child classes  
Space class':

•	 The Discrete class represents a mutually-exclusive set of items, numbered 
from 0 to n−1. Its only field n is a count of the items it describes. For example, 
Discrete(n=4) can be used for an action space of four directions to move 
[left, right, up, or down].
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•	 The Box class represents an n-dimensional tensor of rational numbers with 
intervals [low, high]. For instance, an accelerator pedal with one single 
value between 0.0 and 1.0 could be encoded by Box(low=0.0, high=1.0, 
shape=(1,), dtype=np.float32) (the shape argument is assigned a tuple 
of length 1 with a single value of 1, which gives us a one-dimensional tensor 
with a single value). The dtype parameter specifies the space's value type 
and here we specify it as a NumPy 32-bit float. Another example of Box 
could be an Atari screen observation (we'll see lots of Atari environments 
later), which is an RGB image of size 210 × 160: Box(low=0, high=255, 
shape=(210, 160, 3), dtype=np.uint8). In this case, the shape 
argument is a tuple of three elements: the first dimension is the height of the 
image, the second is the width, and the third equals 3, which all correspond 
to three color planes for red, green, and blue, respectively. So, in total, every 
observation is a 3D tensor with 100,800 bytes.

•	 The final child of Space we want to mention here is a Tuple class, which 
allows us to combine several Space class instances together. This enables 
us to create action and observation spaces of any complexity that we want. 
For example, imagine we want to create an action space specification for a 
car. The car has several controls that could be changed at every timestamp, 
including the steering wheel angle, brake pedal position, and accelerator 
pedal position. These three controls could be specified by three float values 
in one single Box instance. Besides these essential controls, the car has 
extra discrete controls, like a turn signal (which could be "off," "right," or 
"left'"), horn ("on" or "off"), and others. To combine all this into one action 
space specification class, we can create Tuple(spaces=(Box(low=-1.0, 
high=1.0, shape=(3,), dtype=np.float32), Discrete(n=3), 
Discrete(n=2))). This flexibility is rarely used, for example, in this book 
we'll see only the Box and Discrete actions and observation spaces, but the 
Tuple class could be useful in some cases.

There are other Space subclasses defined in Gym, but the preceding three are 
the most useful ones we'll deal with. All subclasses implement the sample() 
and contains() methods. The sample() function performs a random sample 
corresponding to the Space class and parameters. This is mostly useful for action 
spaces, when we need to choose the random action. The contains() method 
verifies that the given arguments comply with Space parameters, and it is used in 
the internals of Gym to check an agent's actions for sanity. For example, Discrete.
sample() returns a random element from a discrete range, and Box.sample() will 
be a random tensor with proper dimensions and values lying inside the given range.
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Every environment has two members of type Space, called action_space and 
observation_space. This allows you to create generic code, which could work 
with any environment. Of course, dealing with pixels of the screen is different from 
handling discrete observations (as in the former case, you may want to preprocess 
images with convolutional layers or with other methods from the computer vision 
toolbox); so, most of the time, we will optimize our code for a particular environment 
or group of environments, but Gym doesn't prevent you from writing generic code.

The environment
The environment is represented in Gym by the Env class, which has the  
following members:

•	 action_space: This is the field of the Space class, providing a specification 
for allowed actions in the environment.

•	 observation_space: This field has the same Space class, but specifies the 
observations provided by the environment.

•	 reset(): This resets the environment to its initial state, returning the initial 
observation vector

•	 step(): This method allows the agent to give the action and returns the 
information about the outcome of the action: the next observation, local 
reward, and end-of-episode flag. This method is a bit complicated and 
we'll look at it in detail later in this section.

There are extra utility methods in the Env class, such as render(), which allows 
you to obtain the observation in a human-friendly form, but we won't use them. 
You can find the full list in Gym's documentation, but let's now focus on the core 
Env methods: reset() and step().

So far we've seen how our code can get information about an environment's 
actions and observations, so now it's time to get familiar with actioning itself. 
Communications with the environment are performed via two methods of the  
Env class: step and reset.

As reset is much simpler, we'll start with it. The reset() method has no 
arguments, and it instructs an environment to reset into its initial state and obtain 
the initial observation. Note that you have to call reset() after the creation of the 
environment. As you may remember from Chapter 1, What is Reinforcement Learning?, 
the agent's communication with the environment could have an end (like a "Game 
Over" screen). Such sessions are called episodes, and after the end of the episode, 
an agent needs to start over. The value returned by this method is the first 
observation of the environment.
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The step() method is the central piece in the environment's functionality,  
which does several things in one call, which are as follows:

1.	 Telling the environment which action we'll execute on the next step
2.	 Getting the new observation from the environment after this action
3.	 Getting the reward the agent gained with this step
4.	 Getting the indication that the episode is over

The first item (action) is passed as the only argument to this method, and the rest 
is returned by function. Precisely, it's a tuple (Python tuple, not the Tuple class we 
discussed in the previous section) of four elements (observation, reward, done, and 
extra_info). They have these types and meanings:

•	 observation: This is a NumPy vector or a matrix with observation data.
•	 reward: This is the float value of the reward.
•	 done: This is a Boolean indicator, which is True when the episode is over.
•	 extra_info: This could be anything environment-specific with extra 

information about the environment. The usual practice is to ignore this 
value in general RL methods (not taking into account the specific details 
of the particular environment).

So, you may have already got the idea of environment usage in an agent's code: in 
a loop, call the step() method with an action to perform until this method's done 
flag becomes True. Then we can call reset() to start over. There is only one piece 
missing: how we create Env objects in the first place.

Creation of the environment
Every environment has a unique name of the EnvironmentName-vN form, where N is 
the number used to distinguish between different versions of the same environment 
(when, for example, some bugs get fixed in an environment or some other major 
changes are performed). To create the environment, the Gym package provides the 
make(env_name) function with the only argument of the environment's name in the 
string form.

At the time of writing, Gym version 0.9.3 contains 777 environments with different 
names. Of course, all of those are not unique environments, as this list includes all 
versions of an environment. Additionally, the same environment can have different 
variations in the settings and observations spaces. For example, the Atari game 
Breakout has these environment names:

•	 Breakout-v0, Breakout-v4: The original breakout with a random initial 
position and direction of the ball
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•	 BreakoutDeterministic-v0, BreakoutDeterministic-v4: Breakout with 
the same initial placement and speed vector of the ball

•	 BreakoutNoFrameskip-v0, BreakoutNoFrameskip-v4: Breakout with every 
frame displayed to the agent

•	 Breakout-ram-v0, Breakout-ram-v4: Breakout with observation of full Atari 
emulation memory (128 bytes) instead of screen pixels.

•	 Breakout-ramDeterministic-v0, Breakout-ramDeterministic-v4
•	 Breakout-ramNoFrameskip-v0, Breakout-ramNoFrameskip-v4

In total, there are 12 environments for good old Breakout. In case you've never  
seen it before, here is a screenshot of its gameplay:

Figure 2: The gameplay of Breakout

Even after the removal of such duplicates, Gym 0.9.3 comes with an impressive  
list of 116 unique environments, which can be divided into several groups:

•	 Classic control problems: These are toy tasks that are used in optimal 
control theory and RL papers as benchmarks or demonstrations. They are 
usually simple, with a low-dimension observation and action spaces, but 
they are useful as quick checks when implementing algorithms. Think about 
them as the "MNIST for RL" (in case you haven't heard about MNIST, it is 
a handwriting digit recognition dataset from Yann LeCun).

•	 Atari 2600: These are games from the classic game platform from the 1970s. 
There are 63 unique games.
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•	 Algorithmic: These are problems that aim to perform small computation 
tasks, such as copying the observed sequence or adding numbers.

•	 Board games: These are the games of Go and Hex.
•	 Box2D: These are environments that use the Box2D physics simulator 

to learn walking or car control.
•	 MuJoCo: This is another physics simulator used for several continuous 

control problems.
•	 Parameter tuning: This is RL being used to optimize neural  

network parameters.
•	 Toy text: These are simple grid-world text environments.
•	 PyGame: These are several environments implemented using the  

PyGame engine.
•	 Doom: These are nine mini-games implemented on top of ViZdoom.

The full list of environments can be found at https://gym.openai.com/envs or on 
the wiki page in the project's GitHub repository. An even larger set of environments 
is available in the OpenAI Universe, which provides general connectors to virtual 
machines, while running Flash and native games, web browsers, and other real-
world applications. OpenAI Universe extends the Gym API, but follows the same 
design principles and paradigm. You can check it out at https://github.com/
openai/universe.

Enough theorization, let's now look at a Python session working with one of  
Gym's environments.

The CartPole session
$ python
Python 3.6.5 |Anaconda, Inc.| (default, Mar 29 2018, 18:21:58)
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import gym
>>> e = gym.make('CartPole-v0')
WARN: gym.spaces.Box autodetected dtype as <class 'numpy.float32'>. 
Please provide explicit dtype.

Here we will import the Gym package and create an environment called CartPole. 
This environment is from the "classic control" group and its gist is to control the 
platform with a stick attached by its bottom part (see the following figure). The 
trickiness is that this stick tends to fall right or left and you need to balance it by 
moving the platform to the right or left on every step. The warning message we see 
is not our fault, but a small inconsistency inside Gym, which doesn't affect the result.
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Figure 3: The CartPole environment

The observation of this environment is four float numbers containing information 
about the x coordinate of the stick's center of mass, its speed, its angle to the 
platform, and its angular speed. Of course, by applying some math and physics 
knowledge, it won't be complicated to convert these numbers into actions when 
we need to balance the stick, but our problem is much trickier: how do we learn to 
balance this system without knowing the exact meaning of the observed numbers 
and only by getting the reward? The reward in this environment is 1 given on every 
time step. The episode continues until the stick falls; so to get a more accumulated 
reward, we need to balance the platform in a way to avoid the stick falling.

This problem may look difficult, but in just two chapters we'll write the algorithm 
that will easily solve this CartPole in minutes, without any idea about what the 
observed numbers mean. We will do it only by trial-and-error and a bit of RL magic.

However, let's continue to play with our session:

>>> obs = e.reset()
>>> obs
array([-0.04937814, -0.0266909 , -0.03681807, -0.00468688])

Here we reset the environment and obtain the first observation (we always need 
to reset the newly created environment). As I've just said, the observation is four 
numbers, so let's check how we can know this in advance:

>>> e.action_space
Discrete(2)
>>> e.observation_space
Box(4,)
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The action_space field is of the Discrete type, so our actions will be just 0 or 
1, where 0 means pushing the platform to the left and 1 means to the right. The 
observation space is of Box(4,) which means a vector of size four with values  
inside the [−inf, inf] interval:

>>> e.step(0)
(array([-0.04991196, -0.22126602, -0.03691181,  0.27615592]), 1.0, 
False, {})

Here we pushed our platform to the left by executing the action 0 and got the tuple 
of four elements:

•	 A new observation that is a new vector of four numbers
•	 A reward of 1.0
•	 The done flag = False, which means that the episode is not over yet and 

we're more or less okay
•	 Extra information about the environment that is an empty dictionary

>>> e.action_space.sample()
0
>>> e.action_space.sample()
1
>>> e.observation_space.sample()
array([  2.06581792e+00,   6.99371255e+37,   3.76012475e-02,
        -5.19578481e+37])
>>> e.observation_space.sample()
array([4.6860966e-01, 1.4645028e+38, 8.6090848e-02,  
3.0545910e+37],
      dtype=float32)

Here we used the sample() method of the Space class on action_space and 
observation_space. This method returns a random sample from the underlying 
space, which in the case of our Discrete action space means a random number of 
0 or 1 and for the observation space is a random vector of four numbers. The random 
sample of the observation space may not look useful, and this is true, but the sample 
from the action space could be used when we're not sure how to perform an action. 
This feature is especially handy for us, as we don't know any RL methods yet, but 
still want to play around with the Gym environment. Now we know enough to 
implement our first random-behaving agent for CartPole, so let's do it.
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The random CartPole agent
Although the environment is much more complex than our first example in 
The anatomy of the agent section, the code of the agent is much shorter. This is 
the power of reusability, abstractions, and third-party libraries!

So, here is the code (you can find it in Chapter02/02_cartpole_random.py):

import gym

if __name__ == "__main__":
    env = gym.make("CartPole-v0")
    total_reward = 0.0
    total_steps = 0
    obs = env.reset()

Here, we create the environment and initialize the counter of steps and the reward 
accumulator. On the last line, we reset the environment to obtain the first observation 
(which we'll not use, as our agent is stochastic):

   while True:
        action = env.action_space.sample()
        obs, reward, done, _ = env.step(action)
        total_reward += reward
        total_steps += 1
        if done:
            break

   print("Episode done in %d steps, total reward %.2f" %  
(total_steps, total_reward))

In this loop, we sample a random action, then ask the environment to execute it and 
return to us the next observation(obs), the reward, and the done flag. If the episode 
is over, we stop the loop and show how many steps we've done and how much 
reward has been accumulated. If you start this example, you'll see something like 
this (not exactly, due to the agent's randomness):

rl_book_samples/Chapter02$ python 02_cartpole_random.py
WARN: gym.spaces.Box autodetected dtype as <class  
'numpy.float32'>. Please provide explicit dtype.
Episode done in 12 steps, total reward 12.00
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As with the interactive session, the warning is not related to our code, but to Gym's 
internals. On average, our random agent makes 12–15 steps before the pole falls 
and the episode ends. Most of the environments in Gym have a "reward boundary," 
which is the average reward that the agent should gain during 100 consecutive 
episodes to "solve" the environment. For CartPole, this boundary is 195, which means 
that on average, the agent must hold the stick during 195-time steps or longer. Using 
this perspective, our random agent's performance looks poor. However, don't be 
disappointed too early, because we are just at the beginning, and soon we will solve 
CartPole and many other much more interesting and challenging environments.

The extra Gym functionality – wrappers 
and monitors
What we discussed so far covers two-thirds of the Gym core API and the essential 
functions required to start writing agents. The rest of the API you can live without, 
but it will make your life easier and your code cleaner. So, let's look at a quick 
overview of the rest of the API.

Wrappers
Very frequently, you will want to extend the environment's functionality in some 
generic way. For example, an environment gives you some observations, but 
you want to accumulate them in some buffer and provide to the agent the N last 
observations, which is a common scenario for dynamic computer games, when 
one single frame is just not enough to get the full information about the game 
state. Another example is when you want to be able to crop or preprocess an 
image's pixels to make it more convenient for the agent to digest or if you want 
to normalize reward scores somehow. There are many such situations that have the 
same structure: you'd like to "wrap" the existing environment and add some extra 
logic doing something. Gym provides you with a convenient framework for these 
situations, called the Wrapper class. The class structure is shown in the following 
diagram.

The Wrapper class inherits the Env class. Its constructor accepts the only argument: 
the instance of the Env class to be "wrapped." To add extra functionality, you need 
to redefine the methods you want to extend such as step() or reset(). The only 
requirement is to call the original method of the superclass.
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Figure 4: The hierarchy of Wrapper classes in Gym

To handle more specific requirements, such as a Wrapper class that wants to process 
only observations from the environment or only actions, there are subclasses 
of Wrapper that allow filtering of only a specific portion of information.

They are as follows:

•	 ObservationWrapper: You need to redefine observation(obs) method 
of the parent. The obs argument is an observation from the wrapped 
environment, and this method should return the observation that will 
be given to the agent.

•	 RewardWrapper: This exposes the reward(rew) method, which could modify 
the reward value given to the agent.

•	 ActionWrapper: You need to override the action(act) method, which 
could tweak the action passed to the wrapped environment to the agent.

To make it slightly more practical, let's imagine a situation where we want to 
intervene in the stream of actions sent by the agent and, with a probability of 10%, 
replace the current action with a random one. It might look like an unwise thing 
to do, but this simple trick is one of the most practical and powerful methods to 
solving the "exploration/exploitation problem" I mentioned briefly in Chapter 1, 
What is Reinforcement Learning?. By issuing the random actions, we make our agent 
explore the environment and from time to time drift away from the beaten track of 
its policy. This is an easy thing to do, using the ActionWrapper class (full example, 
Chapter02/03_random_action_wrapper.py).

import gym
import random
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class RandomActionWrapper(gym.ActionWrapper):
    def __init__(self, env, epsilon=0.1):
        super(RandomActionWrapper, self).__init__(env)
        self.epsilon = epsilon

Here we initialize our wrapper by calling a parent's __init__ method and saving 
epsilon (a probability of a random action):

    def action(self, action):
        if random.random() < self.epsilon:
            print("Random!")
            return self.env.action_space.sample()
        return action

This is a method that we need to override from a parent's class to tweak the agent's 
actions. Every time we roll the die and with the probability of epsilon, we sample 
a random action from the action space and return it instead of the action the agent 
has sent to us. Note that using action_space and wrapper abstractions, we were 
able to write abstract code, which will work with any environment from the Gym. 
Additionally, we print the message every time we replace the action, just to verify 
that our wrapper is working. In the production code, of course, this won't be 
necessary:

if __name__ == "__main__":
    env = RandomActionWrapper(gym.make("CartPole-v0"))

Now it's time to apply our wrapper. We will create a normal CartPole environment 
and pass it to our wrapper constructor. From here on, we use our wrapper as 
a normal Env instance, instead of the original CartPole. As the Wrapper class 
inherits the Env class and exposes the same interface, we can nest our wrappers 
in any combination we want. This is a powerful, elegant, and generic solution:

    obs = env.reset()
    total_reward = 0.0

    while True:
        obs, reward, done, _ = env.step(0)
        total_reward += reward
        if done:
            break

    print("Reward got: %.2f" % total_reward)
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Here is almost the same code, except that every time we issue the same action: 0. Our 
agent is dull and always does the same thing. By running the code, you should see 
that the wrapper is indeed working:

rl_book_samples/Chapter02$ python 03_random_actionwrapper.py
WARN: gym.spaces.Box autodetected dtype as <class  
'numpy.float32'>. Please provide explicit dtype.
Random!
Random!
Random!
Random!
Reward got: 12.00

If you want, you can play with the epsilon parameter on the wrapper's creation and 
verify that randomness improves the agent's score on average. We should move on 
and look at another interesting gem hidden inside Gym: Monitor.

Monitor
Another class you should be aware of is Monitor. It is implemented like Wrapper 
and can write information about your agent's performance in a file with an optional 
video recording of your agent in action. Some time ago, it was possible to upload the 
result of the Monitor class' recording to the https://gym.openai.com website and 
see your agent's position in comparison to other people's results (see thee following 
screenshot), but, unfortunately, at the end of August 2017, OpenAI decided to shut 
down this upload functionality and froze all the results. There are several activities 
to implement an alternative to the original website, but they are not ready yet. I hope 
this situation will be resolved soon, but at the time of writing it's not possible to 
check your result against those of others.
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Just to give you an idea of how the Gym web interface looked, here is the CartPole 
environment leaderboard:

Figure 5: OpenAI Gym web interface with CartPole submissions

Every submission in the web interface had details about training dynamics. 
For example, the following is the author's solution for one of Doom's mini-games:
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Figure 6: Submission dynamics on the DoomDefendLine environment

Despite this, Monitor is still useful, as you can take a look at your agent's life inside 
the environment. So, here is how we add Monitor to our random CartPole agent, 
which is the only difference (the entire code is in Chapter02/04_cartpole_random_
monitor.py):

if __name__ == "__main__":
    env = gym.make("CartPole-v0")
    env = gym.wrappers.Monitor(env, "recording")

The second argument that we pass to Monitor is the name of the directory it will 
write the results to. This directory shouldn't exist, otherwise your program will fail 
with an exception (to overcome this, you could either remove the existing directory 
or pass the force=True argument to the Monitor class' constructor).

The Monitor class requires the FFmpeg utility to be present on the system, which 
is used to convert captured observations into an output video file. This utility must 
be available, otherwise Monitor will raise an exception. The easiest way to install 
FFmpeg is using your system's package manager, which is OS distribution-specific.

To start this example, one of these three extra prerequisites should be met:

•	 The code should be run in an X11 session with the OpenGL extension (GLX)
•	 The code should be started in an Xvfb virtual display
•	 You can use X11 forwarding in ssh connection
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The cause of this is video recording, which is done by taking screenshots of the 
window drawn by the environment. Some of the environment uses OpenGL to 
draw its picture, so the graphical mode with OpenGL needs to be present. This 
could be a problem for a virtual machine in the cloud, which physically doesn't 
have a monitor and graphical interface running. To overcome this, there is a special 
"virtual" graphical display, called Xvfb (X11 virtual framebuffer), which basically 
starts a virtual graphical display on the server and forces the program to draw inside 
it. This would be enough to make Monitor happily create the desired videos.

To start your program in the Xvbf environment, you need to have it installed on 
your machine (it usually requires installing the xvfb package) and run the special 
script, xvfb-run:

$ xvfb-run -s "-screen 0 640x480x24" python 04_cartpole_random_monitor.py

[2017-09-22 12:22:23,446] Making new env: CartPole-v0

[2017-09-22 12:22:23,451] Creating monitor directory recording

[2017-09-22 12:22:23,570] Starting new video recorder writing to 
recording/openaigym.video.0.31179.video000000.mp4

Episode done in 14 steps, total reward 14.00

[2017-09-22 12:22:26,290] Finished writing results. You can upload 
them to the scoreboard via gym.upload('recording')

As you may see from the preceding log, the video has been written successfully, 
so you can peek inside one of your agent's sections by playing it.

Another way to record your agent's actions is to use ssh X11 forwarding, which uses 
the ssh ability to tunnel X11 communications between the X11 client (Python code 
which wants to display some graphical information) and X11 server (software which 
knows how to display this information and has access to your physical display). 
In X11 architecture, the client and the server are separated and can work on different 
machines. To use this approach, you need the following:

1.	 An X11 server running on your local machine. Linux comes with X11 server 
as a standard component (all desktop environments are using X11). On a 
Windows machine, you can set up third-party X11 implementations such 
as open source VcXsrv (available in https://sourceforge.net/projects/
vcxsrv/).

2.	 The ability to log in to your remote machine via ssh, passing the –X 
command-line option: ssh –X servername. This enables X11 tunneling 
and allows all processes started in this session to use your local display for 
graphics output.

Then you can start a program that uses the Monitor class and it will display 
the agent's actions, capturing the images into a video file.
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Summary
My congratulations! You have started to learn the practical side of RL! In this 
chapter, we installed OpenAI Gym with tons of environments to play with, studied 
its basic API and created a randomly behaving agent. You also learned how to 
extend the functionality of existing environments in a modular way and got 
familiar with a way to record our agent's activity using the Monitor wrapper.

In the next chapter, we will do a quick DL recap using PyTorch, which is a favorite 
library among DL researchers. Stay tuned.
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Deep Learning with PyTorch
In the previous chapter, we became familiar with open source libraries, which 
provided us with a collection of RL environments. However, recent developments 
in RL, especially its combination with deep learning (DL), now make it possible to 
solve much more complex and challenging problems than before. This is partly due 
to the development of DL methods and tools.

This chapter is dedicated to one such tool, which makes it possible to implement 
complex DL models in just a bunch of lines of Python code. The chapter doesn't 
pretend to be a complete DL manual, as the field is very wide and dynamic. The 
goal is to make you familiar with the PyTorch library specifics and implementation 
details, assuming that you're already familiar with DL fundamentals.

Compatibility note: All of the examples in this chapter were updated for the 
latest PyTorch 0.4.0, which has a number of changes compared with the previous 
0.3.1 release. If you're using the old PyTorch, consider upgrading. Throughout 
this chapter, we will discuss the differences seen in the latest version.



Deep Learning with PyTorch

[ 50 ]

Tensors
A tensor is the fundamental building block of all DL toolkits. The name sounds cool 
and mystic, but the underlying idea is that a tensor is a multi-dimensional array. 
One single number is like a point, which is zero-dimensional, while a vector is one-
dimensional like a line segment, and a matrix is a two-dimensional object. Three-
dimensional number collections can be represented by a parallelepiped of numbers, 
but don't have a separate name in the same way as matrix. We can keep this term 
for collections of higher dimensions, which are named multi-dimensional matrices  
or tensors.

Figure 1: Going from a single number to an n-dimension tensor

Creation of tensors
If you're familiar with the NumPy library (and you should be), then you already 
know that its central purpose is the handling of multi-dimensional arrays in 
a generic way. In NumPy, such arrays aren't called tensors, but, in fact, they 
are tensors. Tensors are used very widely in scientific computations, as generic 
storage for data. For example, a color image could be encoded as a 3D tensor 
with dimensions of width, height, and color plane.

Apart from dimensions, a tensor is characterized by the type of its elements. There 
are eight types supported by PyTorch: three float types (16-bit, 32-bit, and 64-bit) 
and five integer types (8-bit signed, 8-bit unsigned, 16-bit, 32-bit, and 64-bit). Tensors 
of different types are represented by different classes, with the most commonly used 
being torch.FloatTensor (corresponding to a 32-bit float), torch.ByteTensor 
(an 8-bit unsigned integer), and torch.LongTensor (a 64-bit signed integer). The 
rest can be found in the documentation.

There are three ways to create a tensor in PyTorch:

1.	 By calling a constructor of the required type.
2.	 By converting a NumPy array or a Python list into a tensor. In this case, 

the type will be taken from the array's type.
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3.	 By asking PyTorch to create a tensor with specific data for you. For example, 
you can use the torch.zeros() function to create a tensor filled with 
zero values.

To give you examples of these methods, let's look at a simple session:

>>> import torch
>>> import numpy as np
>>> a = torch.FloatTensor(3, 2)
>>> a
tensor([[ 4.1521e+09,  4.5796e-41],
        [ 1.9949e-20,  3.0774e-41],
        [ 4.4842e-44,  0.0000e+00]])

Here, we imported both PyTorch and NumPy and created an uninitialized tensor of 
size 3 × 2. By default, PyTorch allocates memory for the tensor, but doesn't initialize 
it with anything. To clear the tensor's content, we need to use its operation:

>>> a.zero_()
tensor([[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]])

There are two types of operation for tensors: inplace and functional. Inplace 
operations have an underscore appended to their name and operate on the tensor's 
content. After this, the object itself is returned. The functional equivalent creates 
a copy of the tensor with the performed modification, leaving the original tensor 
untouched. Inplace operations are usually more efficient from a performance and 
memory point of view.

Another way to create a tensor by its constructor is to provide a Python iterable  
(for example, a list or tuple), which will be used as the contents of the newly  
created tensor:

>>> torch.FloatTensor([[1,2,3],[3,2,1]])
tensor([[ 1.,  2.,  3.],
        [ 3.,  2.,  1.]])

Here we are creating the same zero object using NumPy:

>>> n = np.zeros(shape=(3, 2))
>>> n
array([[ 0.,  0.],
       [ 0.,  0.],
       [ 0.,  0.]])
>>> b = torch.tensor(n)
>>> b
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tensor([[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]], dtype=torch.float64)

The torch.tensor method accepts the NumPy array as an argument and creates 
a tensor of appropriate shape from it. In the preceding example, we created a NumPy 
array initialized by zeros, which created a double (64-bit float) array by default. So, 
the resulting tensor has the DoubleTensor type (which is shown in the preceding 
example with the dtype value). Usually, in DL, double precision is not required 
and it adds an extra memory and performance overhead. The common practice is 
to use the 32-bit float type, or even the 16-bit float type, which is more than enough. 
To create such a tensor, you need to specify explicitly the type of NumPy array:

>>> n = np.zeros(shape=(3, 2), dtype=np.float32)
>>> torch.tensor(n)
tensor([[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]])

As an option, the type of the desired tensor could be provided to the torch.tensor 
function in the dtype argument. However, be careful, since this argument expects 
to get a PyTorch type specification, not the NumPy one. PyTorch types are kept in 
the torch package, for example, torch.float32, torch.uint8.

>>> n = np.zeros(shape=(3,2))
>>> torch.tensor(n, dtype=torch.float32)
tensor([[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]])

Compatibility note: The torch.tensor() method and explicit PyTorch type 
specification were added in the 0.4.0 release, and this is a step toward simplification 
of tensor creation. In previous versions, the torch.from_numpy() function was 
a recommended way to convert NumPy arrays, but it had issues with handling 
the combination of the Python list and NumPy arrays. This from_numpy() function 
is still present for backward compatibility, but it is deprecated in favor of the more 
flexible torch.tensor() method.
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Scalar tensors
Since the 0.4.0 release, PyTorch supports zero-dimensional tensors that correspond to 
scalar values (on the left of Figure 1). Such tensors can be a result of some operations, 
such as summing all values in a tensor. Earlier, such cases were handled by the 
creation of a one-dimension (vector) tensor with single dimension equal to one.  
This solution worked, but wasn't very simple, as extra indexation was needed to 
access the value.

Now zero-dimension tensors are natively supported and returned by the appropriate 
functions and can be created by the torch.tensor() function. To access the actual 
Python value of such a tensor, they have the special item() method:

>>> a = torch.tensor([1,2,3])
>>> a
tensor([ 1,  2,  3])
>>> s = a.sum()
>>> s
tensor(6)
>>> s.item()
6
>>> torch.tensor(1)
tensor(1)

Tensor operations
There are lots of operations that you can perform on tensors, and there are too 
many to list them all. Usually, it's enough to search in the PyTorch documentation at 
http://pytorch.org/docs/. Here we need to mention that besides the inplace and 
functional variants we already discussed (that is, with and without underscore, like 
zero() and zero_()), there are two places to look for operations: the torch package 
and the tensor class. In the first case, the function usually accepts the tensor as an 
argument. In the second, it operates on the called tensor.

Most of the time, tensor operations are trying to correspond to their NumPy 
equivalent, so if there is some not-very-specialized function in NumPy, then there 
is a good chance that PyTorch will also have it. Examples are torch.stack(), 
torch.transpose(), and torch.cat().

http://pytorch.org/docs/
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GPU tensors
PyTorch transparently supports CUDA GPUs, which means that all operations 
have two versions—CPU and GPU—which are automatically selected. The decision 
is made based on the type of tensors that you are operating on. Every tensor type 
that we mentioned is for CPU and has its GPU equivalent. The only difference 
is that GPU tensors reside in the torch.cuda package, instead of just torch. For 
example, torch.FloatTensor is a 32-bit float tensor which resides in CPU memory, 
but torch.cuda.FloatTensor is its GPU counterpart. To convert from CPU to 
GPU, there is a tensor method, to(device), which creates a copy of the tensor 
to a specified device (which could be CPU or GPU). If the tensor is already on the 
device, nothing happens and the original tensor will be returned. Device type can be 
specified in different ways. First of all, you can just pass a string name of the device, 
which is "cpu" for CPU memory or "cuda" for GPU. A GPU device could have an 
optional device index specified after the colon, for example, the second GPU card 
in the system could be addressed by "cuda:1" (index is zero-based).

Another slightly more efficient way to specify a device in the to() method is 
using the torch.device class, which accepts the device name and optional index. 
For accessing the device that your tensor is currently residing in, it has a device 
property.

>>> a = torch.FloatTensor([2,3])
>>> a
tensor([ 2.,  3.])
>>> ca = a.cuda(); ca
tensor([ 2.,  3.], device='cuda:0')

Here, we created a tensor on CPU, then copied it to GPU memory. Both copies could 
be used in computations and all GPU-specific machinery is transparent to the user:

>>> a + 1
tensor([ 3.,  4.])
>>> ca + 1
tensor([ 3.,  4.], device='cuda:0')
>>> ca.device
device(type='cuda', index=0)

Compatibility note: The to() method and torch.device class were introduced 
in 0.4.0. In previous versions, copying between CPU and GPU was performed by 
separate tensor methods, cpu() and cuda(), respectively, which required adding 
the extra lines of code to explicitly convert tensors into their CUDA versions. In the 
latest version, you can create a desired torch.device object in the beginning of 
the program and use to(device) on every tensor you're creating. The old methods, 
cpu() and cuda() in the tensor are still present, but deprecated.
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Gradients
Even with transparent GPU support, all of this dancing with tensors isn't worth 
bothering with, without one "killer feature": the automatic computation of gradients. 
This functionality was originally implemented in the Caffe toolkit and then became 
the de-facto standard in DL libraries. Computing gradients manually was extremely 
painful to implement and debug, even for the simplest neural network (NN). 
You had to calculate derivatives for all your functions, apply the chain rule, and 
then implement the result of the calculations, praying that everything was done 
right. This could be a very useful exercise for understanding the nuts and bolts 
of DL, but it's not something that you wanted to repeat over and over again by 
experimenting with different NN architectures.

Luckily, those days have gone now, much like programming your hardware using 
a soldering iron and vacuum tubes! Now defining an NN of hundreds of layers 
requires nothing more than assembling it from predefined building blocks or, in the 
extreme case of you doing something fancy, defining the transformation expression 
manually. All gradients will be carefully calculated for you, backpropagated, and 
applied to the network. To be able to achieve this, you need to define your network 
architecture in terms of the DL library used, which can be different in details, but 
in general, must be the same: you define the order in which your network will 
transform inputs to outputs.

Figure 2: Data and gradients flow through the neural network

What can make the fundamental difference is how your gradients will be calculated. 
There are two approaches:

1.	 Static graph: In this method, you need to define your calculations in advance 
and it won't be possible to change them later. The graph gets processed 
and optimized by the DL library before any computation can be made. This 
model is implemented in TensorFlow, Theano, and many other DL toolkits.
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2.	 Dynamic graph: You don't need to define your graph in advance exactly 
as it will be executed. You just execute operations that you want to use for 
data transformation on your actual data. During this, the library records 
the order of operations performed, and when you ask it to calculate 
gradients, it unrolls its history of operations, accumulating the gradients 
of network parameters. This method is also called notebook gradients 
and is implemented in PyTorch, Chainer, and some others.

Both methods have their strengths and weaknesses. For example, static graph is 
usually faster, as all computations can be moved to the GPU, minimizing the data 
transfer overhead. Additionally, in static graph, the library has much more freedom 
in optimizing the order that computations are performed in or even removing parts 
of the graph. On the other hand, dynamic graph has a higher computation overhead, 
but gives a developer much more freedom. For example, they can say, "For this 
piece of data, I can apply this network two times, and for this piece of data, I'll use 
a completely different model with gradients clipped by the batch mean." Another very 
appealing strength of the dynamic graph model is that it allows you to express your 
transformation more naturally, in a more "Pythonic" way. In the end, it's just a Python 
library with bunch of functions, so just call them and let the library do the magic.

Tensors and gradients
PyTorch tensors have a built-in gradient calculation and tracking machinery, so all 
you need to do is to convert the data into tensors and perform computations using 
the tensor's methods and functions provided by torch. Of course, if you need to 
access underlying low-level details, you always can, but most of the time, PyTorch 
does what you're expecting.

There are several attributes related to gradients that every tensor has:

•	 grad: A property which holds a tensor of the same shape containing 
computed gradients.

•	 is_leaf: True, if this tensor was constructed by the user and False, 
if the object is a result of function transformation.

•	 requires_grad: True if this tensor requires gradients to be calculated. 
This property is inherited from leaf tensors, which get this value from the 
tensor construction step (torch.zeros() or torch.tensor() and so on). By 
default, the constructor has requires_grad=False, so if you want gradients 
to be calculated for your tensor, then you need to explicitly say so.

To make all of this gradient-leaf machinery clearer, let's consider this session:

>>> v1 = torch.tensor([1.0, 1.0], requires_grad=True)
>>> v2 = torch.tensor([2.0, 2.0])
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In the preceding code, we created two tensors. The first requires gradients to be 
calculated and the second doesn't:

>>> v_sum = v1 + v2
>>> v_res = (v_sum*2).sum()
>>> v_res
tensor(12.)

So now we've added both vectors element-wise (which is vector [3, 3]), doubled 
every element, and summed them together. The result is a zero-dimension tensor 
with the value 12. Okay, so this is simple math so far. Now let's look at the 
underlying graph that our expressions created:

Figure 3: Graph representation of the expression

If we check the attributes of our tensors, then we find that v1 and v2 are the only 
leaf nodes and every variable except v2 requires gradients to be calculated:

>>> v1.is_leaf, v2.is_leaf
(True, True)
>>> v_sum.is_leaf, v_res.is_leaf
(False, False)
>>> v1.requires_grad
True
>>> v2.requires_grad
False
>>> v_sum.requires_grad
True
>>> v_res.requires_grad
True

Now, let's tell PyTorch to calculate the gradients of our graph:

>>> v_res.backward()
>>> v1.grad
tensor([ 2.,  2.])
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By calling the backward function, we asked PyTorch to calculate the numerical 
derivative of the v_res variable, with respect to any variable that our graph has. In 
other words, what influence do small changes to the v_res variable have on the rest 
of the graph? In our particular example, the value of 2 in v1's gradients means that by 
increasing every element of v1 by one, the resulting value of v_res will grow by two.

As mentioned, PyTorch calculates gradients only for leaf tensors with requires_
grad=True. Indeed, if we try to check the gradients of v2 we get nothing:

>>> v2.grad

The reason for that is efficiency in terms of computations and memory: in real 
life, our network can have millions of optimized parameters, with hundreds of 
intermediate operations performed on them. During gradient descent optimization, 
we're not interested in gradients of any intermediate matrix multiplication; the 
only thing we want to adjust in the model is gradients of loss with respect to model 
parameters (weights). Of course, if you want to calculate the gradients of input 
data (it could be useful if you want to generate some adversarial examples to fool 
the existing NN or adjust pretrained word embeddings), then you can easily do so, 
by passing requires_grad=True on tensor creation.

Basically, you now have everything needed to implement your own NN optimizer. 
The rest of this chapter is about extra convenient functions, which will provide 
you with higher-level building blocks of NN architectures, popular optimization 
algorithms and common loss functions. However, don't forget that you can easily 
reimplement all of these bells and whistles in any way that you like. This is why 
PyTorch is so popular among DL researchers: for its elegance and flexibility.

Compatibility note: Support of gradients calculation in tensors is one of the 
major changes in PyTorch 0.4.0. In previous versions, graph tracking and gradients 
accumulation were done in a separate, very thin class Variable, which worked 
as a wrapper around the tensor and automatically performed saving of the history 
of computations in order to be able to backpropagate. This class is still present in 
0.4.0, but it is deprecated and will go away soon, so new code should avoid using it. 
From my perspective, this change is great, as the Variable logic was really thin, but 
still required extra code and the developer's attention to wrap and unwrap tensors. 
Now gradients are a built-in tensor property, which makes the API much cleaner.
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NN building blocks
In the torch.nn package, you'll find tons of predefined classes providing you with 
the basic functionality blocks. All of them are designed with practice in mind (for 
example, they support minibatches, have sane default values, and the weights are 
properly initialized). All modules follow the convention of callable, which means 
that the instance of any class can act as a function when applied to its arguments. 
For example, the Linear class implements a feed-forward layer with optional bias:

>>> import torch.nn as nn
>>> l = nn.Linear(2, 5)
>>> v = torch.FloatTensor([1, 2])
>>> l(v)
tensor([ 0.1975,  0.1639,  1.1130, -0.2376, -0.7873])

Here, we created a randomly initialized feed-forward layer, with two inputs and 
five outputs, and applied it to our float tensor. All classes in the torch.nn packages 
inherit from the nn.Module base class, which you can use to implement your own 
higher-level NN blocks. We'll see how you can do this in the next section, but, for 
now, let's look at useful methods that all nn.Module children provide. They are  
as follows:

•	 parameters(): A function that returns iterator of all variables which require 
gradient computation (that is, module weights)

•	 zero_grad(): This function initializes all gradients of all parameters to zero
•	 to(device): This moves all module parameters to a given device (CPU or 

GPU)
•	 state_dict(): This returns the dictionary with all module parameters and is 

useful for model serialization
•	 load_state_dict(): This initializes the module with the state dictionary

The whole list of available classes can be found in the documentation at http://
pytorch.org/docs.

Now we should mention one very convenient class that allows you to combine 
other layers into the pipe: Sequential. The best way to demonstrate Sequential 
is through an example:

>>> s = nn.Sequential(
... nn.Linear(2, 5),
... nn.ReLU(),
... nn.Linear(5, 20),
... nn.ReLU(),
... nn.Linear(20, 10),

http://pytorch.org/docs
http://pytorch.org/docs
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... nn.Dropout(p=0.3),

... nn.Softmax(dim=1))
>>> s
Sequential (
  (0): Linear (2 -> 5)
  (1): ReLU ()
  (2): Linear (5 -> 20)
  (3): ReLU ()
  (4): Linear (20 -> 10)
  (5): Dropout (p = 0.3)
  (6): Softmax ()
)

Here, we defined a three-layer NN with softmax on output, applied along dimension 
1 (dimension 0 is batch samples), ReLU nonlinearities and dropout. Let's push 
something through it:

>>> s(torch.FloatTensor([[1,2]]))
tensor([[ 0.1410,  0.1380,  0.0591,  0.1091,  0.1395,  0.0635,   
0.0607,
          0.1033,  0.1397,  0.0460]])

So, our minibatch is one example successfully traversed through the network!

Custom layers
In the previous section, we briefly mentioned the nn.Module class as a base parent 
for all NN building blocks exposed by PyTorch. It's not only a unifying parent for 
the existing layers—it's much more than that. By subclassing the nn.Module class, 
you can create your own building blocks which can be stacked together, reused later, 
and integrated into the PyTorch framework flawlessly.

At its core, nn.Module provides quite rich functionality to its children:

•	 It tracks all submodules that the current module includes. For example, your 
building block can have two feed-forward layers used somehow to perform 
the block's transformation.

•	 It provides functions to deal with all parameters of the registered 
submodules. You can obtain a full list of the module's parameters 
(parameters() method), zero its gradients (zero_grads() method), move 
to CPU or GPU (to(device) method), serialize and deserialize the module 
(state_dict() and load_state_dict()), and even perform generic 
transformations using your own callable (apply() method).
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•	 It establishes the convention of module application to data. Every module 
needs to perform its data transformation in the forward() method by 
overriding it.

•	 There are some more functions, such as the ability to register a hook function 
to tweak module transformation or gradients flow, but it's more for advanced 
use cases.

These functionalities allow us to nest our submodels into higher-level models in 
a unified way, which is extremely useful when dealing with complexity. It could be 
a simple one-layer linear transformation or a 1001-layer ResNet monster, but if they 
follow the conventions of nn.Module, then both of them could be handled in the 
same way. This is very handy for code simplicity and reusability.

To make our life simpler, when following the preceding convention, PyTorch 
authors simplified the creation of modules by careful design and a good dose of 
Python magic. So, to create a custom module, we usually have to do only two things: 
register submodules and implement the forward() method. Let's look at how this 
can be done for our Sequential example from the previous section, but in a more 
generic and reusable way (full sample is Chapter03/01_modules.py):

class OurModule(nn.Module):
    def __init__(self, num_inputs, num_classes, dropout_prob=0.3):
        super(OurModule, self).__init__()
        self.pipe = nn.Sequential(
            nn.Linear(num_inputs, 5),
            nn.ReLU(),
            nn.Linear(5, 20),
            nn.ReLU(),
            nn.Linear(20, num_classes),
            nn.Dropout(p=dropout_prob),
            nn.Softmax()
        )

This is our module class that inherits nn.Module. In the constructor, we pass three 
parameters: the size of input, size of output, and optional dropout probability. The 
first thing we need to do is to call the parent's constructor to let it initialize itself. 
In the second step, we create an already familiar nn.Sequential with a bunch 
of layers and assign it to our class field named pipe. By assigning a Sequential 
instance to our field, we automatically register this module (nn.Sequential inherits 
from nn.Module as does everything in the nn package). To register, we don't need to 
call anything, we just assign our submodules to fields. After the constructor finishes, 
all those fields will be registered automatically (if you really want to, there is a 
function in nn.Module to register submodules):

    def forward(self, x):
        return self.pipe(x)
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Here, we override the forward function with our implementation of data 
transformation. As our module is a very simple wrapper around other layers, we 
just need to ask them to transform the data. Note that to apply a module to the data, 
you need to call the module as callable (that is, pretend that the module instance 
is a function and call it with the arguments) and not use the forward() function of 
the nn.Module class. This is because nn.Module overrides the __call__() method, 
which is being used when we treat an instance as callable. This method does some 
nn.Module magic stuff and calls your forward() method. If you call forward() 
directly, you'll intervene with the nn.Module duty, which can give you wrong results.

So, that's what we need to do to define our own module. Now, let's use it:

if __name__ == "__main__":
    net = OurModule(num_inputs=2, num_classes=3)
    v = torch.FloatTensor([[2, 3]])
    out = net(v)
    print(net)
    print(out)

We create our module, providing it with the desired number of inputs and outputs, 
then we create a tensor, wrapped into the Variable and ask our module to 
transform it, following the same convention of using it as callable. Then we print our 
network's structure (nn.Module overrides __str__() and __repr__()) to represent 
the inner structure in a nice way. The last thing we show is the result of the network's 
transformation.

The output of our code should look like this:

rl_book_samples/Chapter03$ python 01_modules.py 
OurModule(
  (pipe): Sequential(
    (0): Linear(in_features=2, out_features=5, bias=True)
    (1): ReLU()
    (2): Linear(in_features=5, out_features=20, bias=True)
    (3): ReLU()
    (4): Linear(in_features=20, out_features=3, bias=True)
    (5): Dropout(p=0.3)
    (6): Softmax()
  )
)
tensor([[ 0.3672,  0.3469,  0.2859]])



Chapter 3

[ 63 ]

Of course, everything that was said about the dynamic nature of PyTorch is still 
true. Your forward() method will get control for every batch of data, so if you 
want to do some complex transformations based on the data you need to process, 
like hierarchical softmax or a random choice of net to apply, then nothing can stop 
you from doing so. The count of arguments to your module is also not limited by 
one parameter. So, if you want, you can write a module with multiple required 
parameters and dozens of optional arguments, and it will be fine.

Now we need to get familiar with two important pieces of the PyTorch library, 
which will simplify our lives: loss functions and optimizers.

Final glue – loss functions and optimizers
The network which transforms input data into output is not enough to start training 
it. We need to define our learning objective, which is to have a function that accepts 
two arguments: the network's output and the desired output. Its responsibility is to 
return to us a single number: how close the network's prediction is from the desired 
result. This function is called the loss function, and its output is the loss value. 
Using the loss value, we calculate gradients of network parameters and adjust them 
to decrease this loss value, which pushes our model to better results in the future. 
Both of those pieces—the loss function and the method of tweaking a network's 
parameters by gradients—are so common and exist in so many forms that both 
of them form a significant part of the PyTorch library. Let's start with loss functions.

Loss functions
Loss functions reside in the nn package and are implemented as an nn.Module 
subclass. Usually, they accept two arguments: output from the network (prediction), 
and desired output (ground-truth data which is also called the label of the data 
sample). At the time of writing, PyTorch 0.4 contains 17 different loss functions.  
The most commonly used are:

•	 nn.MSELoss: The mean square error between arguments, which is the 
standard loss for regression problems

•	 nn.BCELoss and nn.BCEWithLogits: Binary cross-entropy loss. The first 
version expects a single probability value (usually it's the output of the 
Sigmoid layer), while the second version assumes raw scores as input and 
applies Sigmoid itself. The second way is usually more numerically stable 
and efficient. These losses (as their names suggest) are frequently used in 
binary classification problems.



Deep Learning with PyTorch

[ 64 ]

•	 nn.CrossEntropyLoss and nn.NLLLoss: Famous "maximum likelihood" 
criteria, which is used in multi-class classification problems. The first version 
expects raw scores for each class and applies LogSoftmax internally, while 
the second expects to have log probabilities as the input.

There are other loss functions available and you are always free to write your own 
Module subclass to compare output and target. Now let's look at the second piece 
of the optimization process.

Optimizers
The responsibility of the basic optimizer is to take gradients of model parameters and 
change these parameters, in order to decrease loss value. By decreasing loss value, 
we're pushing our model towards desired outputs, which can give us hope of better 
model performance in the future. "Change parameters" may sound simple, but there 
are lots of details here and the optimizer procedure is still a hot research topic. In the 
torch.optim package, PyTorch provides lots of popular optimizer implementations 
and the most widely known are as follows:

•	 SGD: A vanilla stochastic gradient descent algorithm with optional 
momentum extension

•	 RMSprop: An optimizer, proposed by G. Hinton
•	 Adagrad: An adaptive gradients optimizer

All optimizers expose the unified interface, which makes it easy to experiment with 
different optimization methods (sometimes the optimization method can really make 
a difference in convergence dynamics and final result). On construction, you need 
to pass an iterable of Variables, which will be modified during the optimization 
process. The usual practice is to pass the result of the params() call of the upper-level 
nn.Module instance, which will return an iterable of all leaf Variables with gradients.

Now, let's discuss the common blueprint of a training loop:

for batch_samples, batch_labels in iterate_batches(data,  
batch_size=32):                                                    # 1
    batch_samples_t = torch.tensor(batch_samples))                 # 2
    batch_labels_t = torch.tensor(batch_labels))                   # 3
    out_t = net(batch_samples_t)                                   # 4
    loss_t = loss_function(out_t, batch_labels_t)                  # 5
    loss_t.backward()                                              # 6
    optimizer.step()                                               # 7
    optimizer.zero_grad()                                          # 8
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Usually, you iterate over your data over and over again (one iteration over a full 
set of examples is called an epoch). Data is usually too large to fit into CPU or GPU 
memory at once, so it is split into batches of equal size. Every batch includes data 
samples and target labels, and both of them have to be tensors (lines 2 and 3). You 
pass data samples to your network (line 4) and feed its output and target labels to 
the loss function (line 5). The result of the loss function shows the "badness" of the 
network result relative to the target labels. As input to the network and the network's 
weights are tensors, all transformations of your network are nothing more than 
a graph of operations with intermediate tensor instances. The same is true for the 
loss function: its result is also a tensor of one single loss value. Every tensor in this 
computation graph remembers its parent, so to calculate gradients for the whole 
network, all you need to do is to call the backward() function on a loss function 
result (line 6).

The result of this call will be the unrolling of the graph of the performed 
computations and the calculating of gradients for every leaf tensor with require_
grad=True. Usually, such tensors are our model's parameters, such as weights and 
biases of feed-forward networks, and convolution filters. Every time a gradient is 
calculated, it is accumulated in the tensor.grad field, so one tensor can participate 
in a transformation multiple times and its gradients will be properly summed up 
together. For example, one single RNN (which stands for recurrent neural networks 
and we'll talk about them in Chapter 12, Chatbots Training with RL) cell could be 
applied to multiple input items.

After the loss.backward() call is finished, we have the gradients accumulated, and 
now it's time for the optimizer to do its job: it takes all gradients from the parameters 
we've passed to it on construction and applies them. All this is done with the method 
step() (line 7).

The last, but not least, piece of the training loop is our responsibility to zero gradients 
of parameters. It can be done by calling zero_grad() on our network, but, for our 
convenience, optimizer also exposes such a call, which does the same thing (line 8). 
Sometimes zero_grad() is placed at the beginning of the training loop, but it doesn't 
matter much.

The preceding scheme is a very flexible way to perform optimization and can fulfill 
the requirements even in sophisticated research. For example, you can have two 
optimizers tweaking the options of different models on the same data (and this 
is a real-life scenario from GAN training).

So, we are done with the essential functionality of PyTorch required to train NNs. 
This chapter ends with a practical medium-size example to demonstrate all the 
concepts we've learned, but before we go to it, we need to discuss one important 
topic which is essential for a NN practitioner: the monitoring of the learning process.
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Monitoring with TensorBoard
If you have ever tried to train a NN on your own, then you may know how painful 
and uncertain it can be. I'm not talking about following the existing tutorials and 
demos, when all hyperparameters are already tuned for you, but about taking some 
data and creating something from scratch. Even with modern DL high-level toolkits, 
where all best practices such as proper weights initialization and optimizers' betas, 
gammas, and other options are set to sane defaults, and tons of other stuff is hidden 
under the hood, there are still lots of decisions that you can make, hence lots of 
things could go wrong. As a result, your network almost never works from the first 
run and this is something that you should get used to.

Of course, with practice and experience, you'll develop a strong intuition about the 
possible causes of problems, but intuition needs input data about what's going on 
inside your network. So you need to be able to peek inside your training process 
somehow and observe its dynamics. Even small networks (such as tiny MNIST 
tutorial networks) could have hundreds of thousands of parameters with quite 
nonlinear training dynamics. DL practitioners have developed a list of things that 
you should observe during your training, which usually includes the following:

•	 Loss value, which normally consists of several components like base loss 
and regularization losses. You should monitor both total loss and individual 
components over time.

•	 Results of validation on training and test sets.
•	 Statistics about gradients and weights.
•	 Learning rates and other hyperparameters, if they are adjusted over time.

The list could be much longer and include domain-specific metrics, such as word 
embeddings' projections, audio samples, and images generated by GAN. You also 
may want to monitor values related to training speed, like how long an epoch takes, 
to see the effect of your optimizations or problems with hardware.

To make a long story short, you need a generic solution to track lots of values over 
time and represent them for analysis, preferably developed specially for DL (just 
imagine looking at such statistics in an Excel spreadsheet). Luckily, such tools exist.
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TensorBoard 101
In fact, at the time of writing, there are not many alternatives to choose from, especially 
open source and generic ones. From the first public version, TensorFlow included a 
special tool called TensorBoard, developed to solve the problem we are talking about: 
how to observe and analyze various NN characteristics over training. TensorBoard 
is a powerful, generic solution with a large community and it looks quite pretty:

Figure 4: The TensorBoard web interface

From the architecture point of view, TensorBoard is a Python web service which 
you can start on your computer, passing it the directory where your training process 
will save values to be analyzed. Then you point your browser to TensorBoard's port 
(usually 6006), and it shows you an interactive web interface with values updated in 
real-time. It's nice and convenient, especially when your training is performed on a 
remote machine somewhere in the cloud.

Originally, TensorBoard was deployed as a part of TensorFlow, but recently, it has 
been moved to a separate project (it's still being maintained by Google) and has its 
own package name. However, TensorBoard still uses the TensorFlow data format, 
so to be able to write training statistics from PyTorch optimization, you'll need both 
the tensorflow and tensorflow-tensorboard packages installed. As TensorFlow 
depends on TensorBoard, to install both, you need to run pip install tensorflow 
in your virtual environment.
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In theory, this is all you need to start monitoring your networks, as the tensorflow 
package provides you with classes to write the data that TensorBoard will be able 
to read. However, it's not very practical, as those classes are very low level. To 
overcome this, there are several third-party open-source libraries that provide 
a convenient high-level interface. One of my favorites, which is used in this book, 
is tensorboard-pytorch (https://github.com/lanpa/tensorboard-pytorch). 
It can be installed with pip install tensorboard-pytorch.

Plotting stuff
To give you an impression of how simple tensorboard-pytorch is, let's consider 
a small example that is not related to NNs, but is just about writing stuff into 
TensorBoard (the full example code is in Chapter03/02_tensorboard.py).

import math
from tensorboardX import SummaryWriter

if __name__ == "__main__":
    writer = SummaryWriter()

    funcs = {"sin": math.sin, "cos": math.cos, "tan": math.tan}

We import the required packages, create a writer of data, and define functions that 
we're going to visualize. By default, SummaryWriter will create a unique directory 
under the runs directory for every launch, to be able to compare different launches 
of training. Names of the new directory include the current date and time, and 
hostname. To override this, you can pass the log_dir argument to SummaryWriter. 
You also can add a suffix to the name of the directory by passing a comment option, 
for example to capture different experiments' semantics, such as dropout=0.3 or 
strong_regularisation

    for angle in range(-360, 360):
        angle_rad = angle * math.pi / 180
        for name, fun in funcs.items():
            val = fun(angle_rad)
            writer.add_scalar(name, val, angle)
    writer.close()

Here, we loop over angle ranges in degrees, convert them into radians, and calculate 
our functions' values. Every value is being added to the writer using the add_scalar 
function, which takes three arguments: the name of the parameter, its value, and the 
current iteration (which has to be an integer).

https://github.com/lanpa/tensorboard-pytorch
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The last thing we need to do after the loop is to close the writer. Note that the 
writer does a periodical flush (by default, every two minutes), so even in the 
case of a lengthy optimization process, you still will see your values.

The result of running this will be zero output on the console, but you will see a new 
directory created inside the runs directory with a single file. To look at the result, 
we need to start TensorBoard:

rl_book_samples/Chapter03$ tensorboard --logdir runs --host localhost
TensorBoard 0.1.7 at http://localhost:6006 (Press CTRL+C to  
quit)

Now you can open http://localhost:6006 in your browser to see something  
like this:

Figure 5: Plots produced by the example

The graphs are interactive, so you can hover over them with your mouse to see the 
actual values and select regions to zoom into details. To zoom out, double-click inside 
the graph. If you run your program several times, then you will see several items 
in the "runs" list on the left, which can be enabled and disabled in any combinations, 
allowing you to compare the dynamics of several optimizations. TensorBoard 
allows you to analyze not only scalar values but also images, audio, text data, and 
embeddings, and it can even show you the structure of your network. Refer to the 
documentation of tensorboard-pytorch and tensorboard for all those features.

Now it's time to unite everything you learned in this chapter and look at a real 
NN optimization problem using PyTorch.
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Example – GAN on Atari images
Almost every book about DL uses the MNIST dataset to show you the power of DL, 
which, over the years, has made this dataset extremely boring, like a fruit fly for 
genetic researchers. To break this tradition, and add a bit more fun to the book, I've 
tried to avoid well-beaten paths and illustrate PyTorch using something different. 
You may have heard about generative adversarial networks (GANs), which were 
invented and popularized by Ian Goodfellow. In this example, we'll train a GAN to 
generate screenshots of various Atari games.

The simplest GAN architecture is this: we have two networks and the first works 
as a "cheater" (it is also called generator), and the other is a "detective" (another 
name is discriminator). Both networks compete with each other: the generator 
tries to generate fake data, which will be hard for the discriminator to distinguish 
from your dataset, and the discriminator tries to detect the generated data samples. 
Over time, both networks improve their skills: the generator produces more and 
more realistic data samples, and the discriminator invents more sophisticated 
ways to distinguish the fake items. Practical usage of GANs includes image quality 
improvement, realistic image generation, and feature learning. In our example, 
practical usefulness is almost zero, but it will be a good example of how clean and 
short PyTorch code can be for quite complex models.

So, let's get started. The whole example code is in the file Chapter03/03_atari_
gan.py. Here we'll look at only significant pieces of code, without the import section 
and constants declaration:

class InputWrapper(gym.ObservationWrapper):
    def __init__(self, *args):
        super(InputWrapper, self).__init__(*args)
        assert isinstance(self.observation_space, gym.spaces.Box)
        old_space = self.observation_space
        self.observation_space =  
gym.spaces.Box(self.observation(old_space.low), 
self.observation(old_space.high), dtype=np.float32)

    def observation(self, observation):
        # resize image
        new_obs = cv2.resize(observation, (IMAGE_SIZE,  
IMAGE_SIZE))
        # transform (210, 160, 3) -> (3, 210, 160)
        new_obs = np.moveaxis(new_obs, 2, 0)
        return new_obs.astype(np.float32) / 255.0
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This class is a wrapper around a Gym game, which includes several transformations:

•	 Resize input image from 210 × 160 (standard Atari resolution) to a square 
size 64 × 64

•	 Move color plane of the image from the last position to the first, to meet the 
PyTorch convention of convolution layers that input a tensor with the shape 
of channels, height, and width

•	 Cast the image from bytes to float and rescale its values to a 0..1 range

Then we define two nn.Module classes: Discriminator and Generator. The first 
takes our scaled color image as input and, by applying five layers of convolutions, 
converts it into a single number, passed through a sigmoid nonlinearity. The output 
from Sigmoid is interpreted as the probability that Discriminator thinks our input 
image is from the real dataset.

Generator takes as input a vector of random numbers (latent vector) and using the 
"transposed convolution" operation (it is also known as deconvolution), converts 
this vector into a color image of the original resolution. We will not look at those 
classes here as they are lengthy and not very relevant to our example. You can find 
them in the complete example file.

Figure 6: A sample screenshot from three Atari games

As input, we'll use screenshots from several Atari games played simultaneously 
by a random agent. Figure 6 is an example of what the input data looks like and 
it is generated by the following function:

def iterate_batches(envs, batch_size=BATCH_SIZE):
    batch = [e.reset() for e in envs]
    env_gen = iter(lambda: random.choice(envs), None)

    while True:
        e = next(env_gen)
        obs, reward, is_done, _ = e.step(e.action_space.sample())
        if np.mean(obs) > 0.01:
            batch.append(obs)
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        if len(batch) == batch_size:
            yield torch.FloatTensor(batch)
            batch.clear()
        if is_done:
            e.reset()

This infinitely samples the environment from the provided array, issues random 
actions and remembers observations in the batch list. When the batch becomes of 
the required size, we convert it to a tensor and yield from the generator. The check 
for the nonzero mean of the observation is required due to a bug in one of the games 
to prevent the flickering of an image.

Now let's look at our main function, which prepares models and runs the training 
loop:

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False,  
action='store_true')
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    env_names = ('Breakout-v0', 'AirRaid-v0', 'Pong-v0')
    envs = [InputWrapper(gym.make(name)) for name in env_names]
    input_shape = envs[0].observation_space.shape

Here, we process the command-line arguments (which could be only one optional 
argument, --cuda, enabling GPU computation mode) and create our environment 
pool with a wrapper applied. This environment array will be passed to the iterate_
batches function to generate training data:

    Writer = SummaryWriter()
    net_discr = Discriminator(input_shape=input_shape).to(device)
    net_gener = Generator(output_shape=input_shape).to(device)

    objective = nn.BCELoss()
    gen_optimizer = optim.Adam(params=net_gener.parameters(),  
lr=LEARNING_RATE)
    dis_optimizer = optim.Adam(params=net_discr.parameters(),  
lr=LEARNING_RATE)

In this piece, we create our classes: a summary writer, both networks, a loss function, 
and two optimizers. Why two? It's because that's the way that GANs get trained: 
to train the discriminator, we need to show it both real and fake data samples 
with appropriate labels (1 for real, 0 for fake). During this pass, we update only 
the discriminator's parameters.
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After that, we pass both real and fake samples through the discriminator again, but 
this time the labels are 1s for all samples, and now we update only the generator's 
weights. The second pass teaches the generator how to fool the discriminator and 
confuse real samples with the generated ones:

    gen_losses = []
    dis_losses = []
    iter_no = 0

    true_labels_v = torch.ones(BATCH_SIZE, dtype=torch.float32,  
device=device)
    fake_labels_v = torch.zeros(BATCH_SIZE, dtype=torch.float32,  
device=device)

Here, we define arrays, which will be used to accumulate losses, iterator counters, 
and variables with the True and Fake labels.

    for batch_v in iterate_batches(envs):
        # generate extra fake samples, input is 4D: batch,  
filters, x, y
        gen_input_v = torch.FloatTensor(BATCH_SIZE,  
LATENT_VECTOR_SIZE, 1, 1).normal_(0, 1).to(device)
        batch_v = batch_v.to(device)
        gen_output_v = net_gener(gen_input_v)

At the beginning of the training loop, we generate a random vector and pass it to the 
Generator network.

        dis_optimizer.zero_grad()
        dis_output_true_v = net_discr(batch_v)
        dis_output_fake_v = net_discr(gen_output_v.detach())
        dis_loss = objective(dis_output_true_v, true_labels_v) +  
objective(dis_output_fake_v, fake_labels_v)
        dis_loss.backward()
        dis_optimizer.step()
        dis_losses.append(dis_loss.item())

At first, we train the discriminator by applying it two times: to the true data samples 
in our batch and to the generated ones. We need to call the detach() function on 
the generator's output to prevent gradients of this training pass from flowing into 
the generator (detach() is a method of tensor, which makes a copy of it without 
connection to the parent's operation).

        gen_optimizer.zero_grad()
        dis_output_v = net_discr(gen_output_v)
        gen_loss_v = objective(dis_output_v, true_labels_v)
        gen_loss_v.backward()
        gen_optimizer.step()
        gen_losses.append(gen_loss_v.item())
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Now it's the generator's training time. We pass the generator's output to the 
discriminator, but now we don't stop the gradients. Instead, we apply the objective 
function with True labels. It will push our generator in the direction where the 
samples that it generates make the discriminator confuse them with the real data.

That's all real training, and the next couple of lines report losses and feed image 
samples to TensorBoard:

        iter_no += 1
        if iter_no % REPORT_EVERY_ITER == 0:
            log.info("Iter %d: gen_loss=%.3e, dis_loss=%.3e", 
iter_no, np.mean(gen_losses), np.mean(dis_losses))
            writer.add_scalar("gen_loss", np.mean(gen_losses),  
iter_no)
            writer.add_scalar("dis_loss", np.mean(dis_losses),  
iter_no)
            gen_losses = []
            dis_losses = []
        if iter_no % SAVE_IMAGE_EVERY_ITER == 0:
            writer.add_image("fake",  
vutils.make_grid(gen_output_v.data[:64]), iter_no)
            writer.add_image("real",  
vutils.make_grid(batch_v.data[:64]), iter_no)

The training of this example is quite a lengthy process. On a GTX 1080 GPU, 
100 iterations take about 40 seconds. At the beginning, the generated images are 
completely random noise, but after 10k-20k iterations, the generator becomes more 
and more proficient at its job and the generated images become more and more 
similar to the real game screenshots.

My experiments gave the following images after 40k-50k of training iterations 
(several hours on a GPU):

Figure 7: Sample images produced by the generator network
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Summary
In this chapter, we saw a quick overview of PyTorch functionality and features.  
We talked about basic fundamental pieces such as tensor and gradients, saw how 
an NN can be made from the basic building blocks, and learned how to implement 
those blocks ourselves. We discussed loss functions and optimizers, as well as the 
monitoring of training dynamics. The goal of the chapter was to give a very quick 
introduction to PyTorch, which will be used later in the book.

For the next chapter, we're ready to start dealing with the main subject of this book: 
RL methods.





[ 77 ]

The Cross-Entropy Method
In this chapter, we will wrap up the part one of the book and get familiar with one 
of the RL methods—cross-entropy. Despite the fact that it is much less famous 
than other tools in the RL practitioner's toolbox, such as deep Q-network (DQN) 
or Advantage Actor-Critic, this method has its own strengths. The most important 
are as follows:

•	 Simplicity: The cross-entropy method is really simple, which makes it an 
intuitive method to follow. For example, its implementation on PyTorch 
is less than 100 lines of code.

•	 Good convergence: In simple environments that don't require complex, 
multistep policies to be learned and discovered and have short episodes with 
frequent rewards, cross-entropy usually works very well. Of course, lots of 
practical problems don't fall into this category, but sometimes they do. In 
such cases, cross-entropy (on its own or as a part of a larger system) can be 
the perfect fit.

In the following sections, we will start from the practical side of cross-entropy, and 
then look at how it works in two environments in Gym (the familiar CartPole and the 
"grid world" of FrozenLake). Then, at the end of the chapter, we will take a look at 
the theoretical background of the method. This section is optional and requires a bit 
more knowledge of probability and statistics, but if you want to understand why the 
method works then you can delve into it.
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Taxonomy of RL methods
The cross-entropy method falls into the model-free and policy-based category 
of methods. These notions are new, so let's spend some time exploring them. 
All methods in RL can be classified into various aspects:

•	 Model-free or model-based 
•	 Value-based or policy-based
•	 On-policy or off-policy

There are other ways that you can taxonomize RL methods, but for now we're 
interested in the preceding three. Let's define them, as your problem specifics 
can influence your decision on a particular method.

The term model-free means that the method doesn't build a model of the 
environment or reward; it just directly connects observations to actions (or values 
that are related to actions). In other words, the agent takes current observations 
and does some computations on them, and the result is the action that it should take. 
In contrast, model-based methods try to predict what the next observation and/
or reward will be. Based on this prediction, the agent is trying to choose the best 
possible action to take, very often making such predictions multiple times to look 
more and more steps into the future.

Both classes of methods have strong and weak sides, but usually pure model-based 
methods are used in deterministic environments, such as board games with strict 
rules. On the other hand, model-free methods are usually easier to train as it's hard 
to build good models of complex environments with rich observations. All of the 
methods described in this book are from the model-free category, as those methods 
have been the most active area of research for the past few years. Only recently 
have researchers started to mix the benefits from both worlds (for example, refer 
to DeepMind's papers on imagination in agents. This approach will be described 
in Chapter 17, Beyond Model-Free – Imagination).

By looking from an other angle, policy-based methods are directly approximating 
the policy of the agent, that is, what actions the agent should carry out at every step. 
Policy is usually represented by probability distribution over the available actions. In 
contrast, the method could be value-based. In this case, instead of the probability of 
actions, the agent calculates the value of every possible action and chooses the action 
with the best value. Both of those families of methods are equally popular and we'll 
discuss value-based methods in the next part of the book. Policy methods will be the 
topic of part three.
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The third important classification of methods is on-policy versus off-policy. 
We'll discuss this distinction more in parts two and three of the book, but for 
now, it will be enough to explain off-policy as the ability of the method to learn 
on old historical data (obtained by a previous version of the agent or recorded 
by human demonstration or just seen by the same agent several episodes ago).

So, our cross-entropy method is model-free, policy-based, and on-policy, 
which means the following:

•	 It doesn't build any model of the environment; it just says to the agent 
what to do at every step

•	 It approximates the policy of the agent
•	 It requires fresh data obtained from the environment

Practical cross-entropy
The cross-entropy method description is split into two unequal parts: practical 
and theoretical. The practical part is intuitive in its nature, while the theoretical 
explanation of why cross-entropy works, and what's happening is more 
sophisticated.

You may remember that the central, trickiest thing in RL is the agent, which is 
trying to accumulate as much total reward as possible by communicating with the 
environment. In practice, we follow a common ML approach and replace all of the 
complications of the agent with some kind of nonlinear trainable function, which 
maps the agent's input (observations from the environment) to some output. The 
details of the output that this function produces may depend on a particular method 
or a family of methods, as described in the previous section (such as value-based 
versus policy-based methods). As our cross-entropy method is policy-based, our 
nonlinear function (neural network) produces policy, which basically says for every 
observation which action the agent should take.

Figure 1: A high-level approach to RL
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In practice, policy is usually represented as probability distribution over actions, 
which makes it very similar to a classification problem, with the amount of classes 
being equal to amount of actions we can carry out. This abstraction makes our agent 
very simple: it needs to pass an observation from the environment to the network, 
get probability distribution over actions, and perform random sampling using 
probability distribution to get an action to carry out. This random sampling adds 
randomness to our agent, which is a good thing, as at the beginning of the training 
when our weights are random, the agent behaves randomly. After the agent gets an 
action to issue, it fires the action to the environment and obtains the next observation 
and reward for the last action. Then the loop continues.

During the agent's lifetime, its experience is present as episodes. Every episode is 
a sequence of observations that the agent has got from the environment, actions it 
has issued, and rewards for these actions. Imagine that our agent has played several 
such episodes. For every episode, we can calculate the total reward that the agent 
has claimed. It can be discounted or not discounted, but for simplicity, let's assume 
a discount factor of gamma = 1, which means just a sum of all local rewards for 
every episode. This total reward shows how good this episode was for the agent. 
Let's illustrate this with a diagram, which contains four episodes (note that different 
episodes have different values for Oi , ai , and ri ):

Figure 2: Sample episodes with their observations, actions, and rewards

Every cell represents the agent's step in the episode. Due to randomness in the 
environment and the way that the agent selects actions to take, some episodes will 
be better than others. The core of the cross-entropy method is to throw away bad 
episodes and train on better ones. So, the steps of the method are as follows:
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1.	 Play N number of episodes using our current model and environment.
2.	 Calculate the total reward for every episode and decide on a reward 

boundary. Usually, we use some percentile of all rewards, such as 
50th or 70th.

3.	 Throw away all episodes with a reward below the boundary.
4.	 Train on the remaining "elite" episodes using observations as the input 

and issued actions as the desired output.
5.	 Repeat from step 1 until we become satisfied with the result.

So, that's all about the cross-entropy method description. With the preceding 
procedure, our neural network learns how to repeat actions, which leads to a larger 
reward, constantly moving the boundary higher and higher. Despite the simplicity 
of this method, it works well in simple environments, it's easy to implement, and it's 
quite robust to hyperparameters changing, which makes it an ideal baseline method 
to try. Let's now apply it to our CartPole environment.

Cross-entropy on CartPole
The whole code for this example is in Chapter04/01_cartpole.py, but the 
following are the most important parts. Our model's core is a one-hidden-layer 
neural network, with ReLU and 128 hidden neurons (which is absolutely arbitrary). 
Other hyperparameters are also set almost randomly and aren't tuned, as the method 
is robust and converges very quickly.

HIDDEN_SIZE = 128
BATCH_SIZE = 16
PERCENTILE = 70

We define constants at the top of the file and they include the count of neurons in the 
hidden layer, the count of episodes we play on every iteration (16), and the percentile 
of episodes' total rewards that we use for elite episode filtering. We'll take the 70th 
percentile, which means that we'll leave the top 30% of episodes sorted by reward:

class Net(nn.Module):
    def __init__(self, obs_size, hidden_size, n_actions):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            nn.Linear(hidden_size, n_actions)
        )
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    def forward(self, x):
        return self.net(x)

There is nothing special about our network; it takes a single observation from 
the environment as an input vector and outputs a number for every action we can 
perform. The output from the network is a probability distribution over actions, so  
a straightforward way to proceed would be to include softmax nonlinearity after the 
last layer. However, in the preceding network we don't apply softmax to increase 
the numerical stability of the training process. Rather than calculating softmax 
(which uses exponentiation) and then calculating cross-entropy loss (which uses 
logarithm of probabilities), we'll use the PyTorch class, nn.CrossEntropyLoss, 
which combines both softmax and cross-entropy in a single, more numerically stable 
expression. CrossEntropyLoss requires raw, unnormalized values from the network 
(also called logits), and the downside of this is that we need to remember to apply 
softmax every time we need to get probabilities from our network's output.

Episode = namedtuple('Episode', field_names=['reward', 'steps'])
EpisodeStep = namedtuple('EpisodeStep', field_names=['observation', 
'action'])

Here we will define two helper classes that are named tuples from the collections 
package in the standard library:

•	 EpisodeStep: This will be used to represent one single step that our agent 
made in the episode, and it stores the observation from the environment and 
what action the agent completed. We'll use episode steps from elite episodes 
as training data.

•	 Episode: This is a single episode stored as total undiscounted reward and 
a collection of EpisodeStep.

Let's look at a function that generates batches with episodes:

def iterate_batches(env, net, batch_size):
    batch = []
    episode_reward = 0.0
    episode_steps = []
    obs = env.reset()
    sm = nn.Softmax(dim=1)
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The preceding function accepts the environment (the Env class instance from the 
Gym library), our neural network, and the count of episodes it should generate 
on every iteration. The batch variable will be used to accumulate our batch 
(which is a list of the Episode instances). We also declare a reward counter for 
the current episode and its list of steps (the EpisodeStep objects). Then we reset our 
environment to obtain the first observation and create a softmax layer, which will be 
used to convert the network's output to a probability distribution of actions. That's 
all about our preparations; so we're ready to start the environment loop:

    while True:
        obs_v = torch.FloatTensor([obs])
        act_probs_v = sm(net(obs_v))
        act_probs = act_probs_v.data.numpy()[0]

At every iteration, we convert our current observation to a PyTorch tensor and pass 
it to the network to obtain action probabilities. There are several things to note here:

•	 All nn.Module instances in PyTorch expect a batch of data items and the 
same is true for our network, so we convert our observation (which is a 
vector of four numbers in CartPole) into a tensor of size 1 × 4 (to achieve 
this we pass an observation in a single-element list).

•	 As we haven't used nonlinearity at the output of our network, it outputs 
raw action scores, which we need to feed through the softmax function.

•	 Both our network and the softmax layer return tensors which track gradients, 
so we need to unpack this by accessing the tensor.data field and then 
converting the tensor into a NumPy array. This array will have the same  
two-dimensional structure as the input, with the batch dimension on axis  
0, so we need to get the first batch element to obtain a one-dimensional 
vector of action probabilities:

        action = np.random.choice(len(act_probs),  
p=act_probs)
        next_obs, reward, is_done, _ = env.step(action)

Now that we have the probability distribution of actions, we can use this distribution 
to obtain the actual action for the current step by sampling this distribution using 
NumPy's function, random.choice(). After this, we will pass this action to the 
environment to get our next observation, our reward, and the indication of the 
episode ending:

        episode_reward += reward
        episode_steps.append(EpisodeStep(observation=obs,  
action=action))
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Reward is added to the current episode's total reward, and our list of episode  
steps is also extended with an (observation, action) pair. Note that we save the 
observation that was used to choose the action, but not the observation returned  
by the environment as a result of the action. These are the tiny but important details 
that you need to keep in mind.

        if is_done:
            batch.append(Episode(reward=episode_reward,  
steps=episode_steps))
            episode_reward = 0.0
            episode_steps = []
            next_obs = env.reset()
            if len(batch) == batch_size:
                yield batch
                batch = []

This is how we handle the situation when the current episode is over (in the case 
of CartPole, the episode ends when the stick has fallen down despite our efforts). We 
append the finalized episode to the batch, saving the total reward (as the episode has 
been completed and we've accumulated all reward) and steps we've taken. Then we 
reset our total reward accumulator and clean the list of steps. After that, we reset our 
environment to start over.

In case our batch has reached the desired count of episodes, we return it to the 
caller for processing, using yield. Our function is a generator, so every time 
the yield operator is executed, the control is transferred to the outer iteration 
loop and then continues after the yield line. If you're not familiar with Python's 
generator functions, refer to the Python documentation. After processing, we will 
clean up the batch:

        obs = next_obs

The last, but very important, step in our loop is to assign an observation obtained 
from the environment to our current observation variable. After that, everything 
repeats infinitely: we pass the observation to the net, sample the action to perform, 
ask the environment to process the action, and remember the result of this 
processing.

One very important fact to understand in this function logic is that the training of 
our network and the generation of our episodes are performed at the same time. They 
are not completely in parallel, but every time our loop accumulates enough episodes 
(16), it passes control to this function caller, which is supposed to train the network 
using the gradient descent. So, when yield is returned, the network will have 
different, slightly better (we hope) behavior.
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We don't need to explore proper synchronization, as our training and data gathering 
activities are performed at the same thread of execution, but you need to understand 
those constant jumps from network training to its utilization.

Okay, now we need to define yet another function and we'll be ready to switch to the 
training loop:

def filter_batch(batch, percentile):
    rewards = list(map(lambda s: s.reward, batch))
    reward_bound = np.percentile(rewards, percentile)
    reward_mean = float(np.mean(rewards))

This function is at the core of the cross-entropy method: from the given batch 
of episodes and percentile value, it calculates a boundary reward, which is used 
to filter elite episodes to train on. To obtain the boundary reward, we're using 
NumPy's percentile function, which from the list of values and the desired 
percentile, calculates the percentile's value. Then we will calculate mean reward, 
which is used only for monitoring.

    train_obs = []
    train_act = []
    for example in batch:
        if example.reward < reward_bound:
            continue
        train_obs.extend(map(lambda step: step.observation,  
example.steps))
        train_act.extend(map(lambda step: step.action,  
example.steps))

Next, we will filter off our episodes. For every episode in the batch, we will check 
that the episode has a higher total reward than our boundary and if it has, we will 
populate lists of observations and actions that we will train on.

    train_obs_v = torch.FloatTensor(train_obs)
    train_act_v = torch.LongTensor(train_act)
    return train_obs_v, train_act_v, reward_bound, reward_mean

As the final step of the function, we will convert our observations and actions 
from elite episodes into tensors, and return a tuple of four: observations, actions, 
the boundary of reward, and the mean reward. The last two values will be used 
only to write them into TensorBoard to check the performance of our agent.
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Now, the final chunk of code that glues everything together and mostly consists 
of the training loop is as follows:

if __name__ == "__main__":
    env = gym.make("CartPole-v0")
    # env = gym.wrappers.Monitor(env, directory="mon", force=True)
    obs_size = env.observation_space.shape[0]
    n_actions = env.action_space.n

    net = Net(obs_size, HIDDEN_SIZE, n_actions)
    objective = nn.CrossEntropyLoss()
    optimizer = optim.Adam(params=net.parameters(), lr=0.01)
    writer = SummaryWriter()

In the beginning, we will create all the required objects: the environment, our 
neural network, the objective function, the optimizer, and the summary writer for 
TensorBoard. The commented line creates a monitor to write videos of your agent's 
performance.

    for iter_no, batch in enumerate(iterate_batches(env, net,  
BATCH_SIZE)):
        obs_v, acts_v, reward_b, reward_m = filter_batch(batch,  
PERCENTILE)
        optimizer.zero_grad()
        action_scores_v = net(obs_v)
        loss_v = objective(action_scores_v, acts_v)
        loss_v.backward()
        optimizer.step()

In the training loop, we will iterate our batches (which are a list of Episode objects), 
then we perform filtering of the elite episodes using the filter_batch function. The 
result is variables of observations and taken actions, the reward boundary used for 
filtering and the mean reward. After that, we zero gradients of our network and pass 
observations to the network, obtaining its action scores. These scores are passed to 
the objective function, which calculates cross-entropy between the network output 
and the actions that the agent took. The idea of this is to reinforce our network 
to carry out those "elite" actions which have led to good rewards. Then, we will 
calculate gradients on the loss and ask the optimizer to adjust our network.

        print("%d: loss=%.3f, reward_mean=%.1f, reward_bound=%.1f" % (
            iter_no, loss_v.item(), reward_m, reward_b))
        writer.add_scalar("loss", loss_v.item(), iter_no)
        writer.add_scalar("reward_bound", reward_b, iter_no)
        writer.add_scalar("reward_mean", reward_m, iter_no)
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The rest of the loop is mostly the monitoring of progress. On the console, we show 
iteration number, loss, the mean reward of the batch, and the reward boundary. 
We also write the same values to TensorBoard, to get a nice chart of the agent's 
learning performance.

        if reward_m > 199:
            print("Solved!")
            break
    writer.close()

The last check in the loop is the comparison of the mean rewards of our batch 
episodes. When this becomes greater than 199, we stop our training. Why 199? In 
Gym, the CartPole environment is considered to be solved when the mean reward 
for last 100 episodes is greater than 195, but our method converges so quickly that 
100 episodes are usually what we need. The properly trained agent can balance the 
stick infinitely long (obtaining any amount of score), but the length of the episode in 
CartPole is limited to 200 steps (if you look at the environment variable of CartPole, 
you may notice the TimeLimit wrapper, which stops the episode after 200 steps). 
With all this in mind, we will stop training after the mean reward in the batch is 
greater than 199, which is a good indication that our agent knows how to balance 
the stick as a pro.

That's it. So let's start our first RL training!

rl_book_samples/Chapter04$ ./01_cartpole.py
[2017-10-04 12:44:39,319] Making new env: CartPole-v0
0: loss=0.701, reward_mean=18.0, reward_bound=21.0
1: loss=0.682, reward_mean=22.6, reward_bound=23.5
2: loss=0.688, reward_mean=23.6, reward_bound=25.5
3: loss=0.675, reward_mean=22.8, reward_bound=22.0
4: loss=0.658, reward_mean=31.9, reward_bound=34.0
.........
36: loss=0.527, reward_mean=135.9, reward_bound=168.5
37: loss=0.527, reward_mean=147.4, reward_bound=160.5
38: loss=0.528, reward_mean=179.8, reward_bound=200.0
39: loss=0.530, reward_mean=178.7, reward_bound=200.0
40: loss=0.532, reward_mean=192.1, reward_bound=200.0
41: loss=0.523, reward_mean=196.8, reward_bound=200.0
42: loss=0.540, reward_mean=200.0, reward_bound=200.0
Solved!
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It usually doesn't take the agent more than 50 batches to solve the environment. 
My experiments show something from 25 to 45 episodes, which is a really good 
learning performance (remember, we need to play only 16 episodes for every batch). 
TensorBoard shows our agent consistently making progress, pushing the upper 
boundary at almost every batch (there are some periods of rolling down, but most 
of the time it improves).

Figure 3: Loss, reward boundary, and reward during the training

To check our agent in action, you can enable Monitor by uncommenting the next line 
after the environment creation. After restarting (possibly with xvfb-run to provide 
a virtual X11 display), our program will create a mon directory with videos recorded 
at different training steps:

rl_book_samples/Chapter04$ xvfb-run -s "-screen 0 640x480x24" ./01_
cartpole.py
[2017-10-04 13:52:23,806] Making new env: CartPole-v0
[2017-10-04 13:52:23,814] Creating monitor directory mon
[2017-10-04 13:52:23,920] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000000.mp4
[2017-10-04 13:52:25,229] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000001.mp4
[2017-10-04 13:52:25,771] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000008.mp4
0: loss=0.682, reward_mean=18.9, reward_bound=20.5
[2017-10-04 13:52:26,297] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000027.mp4
1: loss=0.687, reward_mean=16.6, reward_bound=19.0
2: loss=0.677, reward_mean=21.1, reward_bound=21.0
[2017-10-04 13:52:26,964] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000064.mp4
3: loss=0.653, reward_mean=33.2, reward_bound=48.5
4: loss=0.642, reward_mean=37.4, reward_bound=42.5
.........
29: loss=0.561, reward_mean=111.6, reward_bound=122.0
30: loss=0.540, reward_mean=135.1, reward_bound=166.0
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[2017-10-04 13:52:40,176] Starting new video recorder writing to mon/
openaigym.video.0.4430.video000512.mp4
31: loss=0.546, reward_mean=147.5, reward_bound=179.5
32: loss=0.559, reward_mean=140.0, reward_bound=171.5
33: loss=0.558, reward_mean=160.4, reward_bound=200.0
34: loss=0.547, reward_mean=167.6, reward_bound=195.5
35: loss=0.550, reward_mean=179.5, reward_bound=200.0
36: loss=0.563, reward_mean=173.9, reward_bound=200.0
37: loss=0.542, reward_mean=162.9, reward_bound=200.0
38: loss=0.552, reward_mean=159.1, reward_bound=200.0
39: loss=0.548, reward_mean=189.6, reward_bound=200.0
40: loss=0.546, reward_mean=191.1, reward_bound=200.0
41: loss=0.548, reward_mean=199.1, reward_bound=200.0
Solved!

As you can see from the output, it turns a periodical recording of the agent's activity 
into separate video files, which can give you an idea of what your agent's sessions 
look like.

Figure 4: Visualization of the CartPole state

Let's now pause a bit and think about what's just happened. Our neural network has 
learned how to play the environment purely from observations and rewards, without 
any one word interpretation of observed values. The environment could easily be 
not a cart with a stick but, say, a warehouse model with product quantities as an 
observation and money earned as a reward. Our implementation doesn't depend on 
environment details. This is the beauty of the RL model, and in the next section, we'll 
look at how exactly the same method can be applied to a different environment from 
the Gym collection.
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Cross-entropy on FrozenLake
The next environment we'll try to solve using the cross-entropy method is 
FrozenLake. Its world is from the so-called "grid world" category, when your agent 
lives in a grid of size 4 × 4 and can move in four directions: up, down, left, and right. 
The agent always starts at a top-left position, and its goal is to reach the bottom-right 
cell of the grid. There are holes in the fixed cells of the grid and if you get into those 
holes, the episode ends and your reward is zero. If the agent reaches the destination 
cell, then it obtains the reward 1.0 and the episode ends.

To make life more complicated, the world is slippery (it's a frozen lake after all), 
so the agent's actions do not always turn out as expected: there is a 33% chance that 
it will slip to the right or to the left. You want the agent to move left, for example, but 
there is a 33% probability that it will indeed move left, a 33% chance that it will end 
up in the cell above, and a 33% chance that it will end up in the cell below. As we'll 
see at the end of the section, this makes progress difficult.

Figure 5: The FrozenLake environment

Let's look how this environment is represented in Gym:

>>> e = gym.make("FrozenLake-v0")

[2017-10-05 12:39:35,827] Making new env: FrozenLake-v0

>>> e.observation_space

Discrete(16)

>>> e.action_space

Discrete(4)

>>> e.reset()

0

>>> e.render()

SFFF
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Our observation space is discrete, which means that it's just a number from zero to 
15 inclusive. Obviously, this number is our current position in the grid. The action 
space is also discrete, but can be from zero to three. Our network from the CartPole 
example expects a vector of numbers. To get this, we can apply the traditional  
"one-hot encoding" of discrete inputs, which means that input to our network 
will have 16 float numbers and zero everywhere, except the index that we'll encode. 
To minimize changes in our code, we can use the ObservationWrapper class from 
Gym and implement our DiscreteOneHotWrapper class:

class DiscreteOneHotWrapper(gym.ObservationWrapper):
    def __init__(self, env):
        super(DiscreteOneHotWrapper, self).__init__(env)
        assert isinstance(env.observation_space,  
gym.spaces.Discrete)
        self.observation_space = gym.spaces.Box(0.0, 1.0,  
(env.observation_space.n, ), dtype=np.float32)

    def observation(self, observation):
        res = np.copy(self.observation_space.low)
        res[observation] = 1.0
        return res

With that wrapper applied to the environment, both the observation space and action 
space are 100% compatible with our CartPole solution (source code Chapter04/02_
frozenlake_naive.py). However, by launching it, we can see that this doesn't 
improve the score over time.

Figure 6: Lack of convergence of the original cross-entropy code in the FrozenLake environment

To understand what's going on, we need to look deeper at the reward structure of 
both environments. In CartPole, every step of the environment gives us the reward 
1.0, until the moment that the pole falls. So, the longer our agent balanced the pole, 
the more reward it obtained. Due to randomness in our agent's behavior, different 
episodes were of different lengths, which gave us a pretty normal distribution of the 
episodes' rewards. After choosing a reward boundary, we rejected less successful 
episodes and learned how to repeat better ones (by training on successful  
episodes' data). 
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This is shown in the following diagram:

Figure 7: Distribution of reward in the CartPole environment

In the FrozenLake environment, episodes and their reward look different. We get 
the reward of 1.0 only when we reach the goal, and this reward says nothing about 
how good each episode was. Was it quick and efficient or did we make four rounds 
on the lake before we randomly stepped into the final cell? We don't know, it's 
just 1.0 reward and that's it. The distribution of rewards for our episodes are also 
problematic. There are only two kinds of episodes possible, with zero reward (failed) 
and one reward (successful), and failed episodes will obviously dominate in the 
beginning of the training. So, our percentile selection of "elite" episodes is totally 
wrong and gives us bad examples to train on. This is the reason for our training 
failure.

Figure 8: Reward distribution of the FrozenLake environment

This example shows us the limitations of the cross-entropy method:

•	 For training, our episodes have to be finite and, preferably, short
•	 The total reward for the episodes should have enough variability to separate 

good episodes from bad ones
•	 There is no intermediate indication about whether the agent has succeeded 

or failed
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Later in the book, we'll become familiar with other methods, which address these 
limitations. For now, if you're curious about how FrozenLake can be solved using 
cross-entropy, here is a list of tweaks of the code that you need to make (the full 
example is in Chapter04/03_frozenlake_tweaked.py):

•	 Larger batches of played episodes: In CartPole, it was enough to have 
16 episodes on every iteration, but FrozenLake requires at least 100 just  
to get some successful episodes.

•	 Discount factor applied to reward: To make the total reward for the episode 
depend on episode length, and add variety in episodes, we can use a 
discounted total reward with the discount factor 0.9 or 0.95. In this case, the 
reward for shorter episodes will be higher than the reward for longer ones.

•	 Keeping "elite" episodes for a longer time: In the CartPole training, we 
sampled episodes from the environment, trained on the best ones, and threw 
them away. In FrozenLake, a successful episode is a much rarer animal, 
so we need to keep them for several iterations to train on them.

•	 Decrease learning rate: This will give our network time to average more 
training samples.

•	 Much longer training time: Due to the sparsity of successful episodes, and 
the random outcome of our actions, it's much harder for our network to get 
an idea of the best behavior to perform in any particular situation. To reach 
50% successful episodes, about 5k training iterations are required.

To incorporate all these into our code, we need to change the filter_batch function 
to calculate discounted reward and return "elite" episodes for us to keep:

def filter_batch(batch, percentile):
    disc_rewards = list(map(lambda s: s.reward * (GAMMA **  
len(s.steps)), batch))
    reward_bound = np.percentile(disc_rewards, percentile)
    train_obs = []
    train_act = []
    elite_batch = []
    for example, discounted_reward in zip(batch, disc_rewards):
        if discounted_reward > reward_bound:
            train_obs.extend(map(lambda step: step.observation,  
example.steps))
            train_act.extend(map(lambda step: step.action,  
example.steps))
            elite_batch.append(example)
    return elite_batch, train_obs, train_act, reward_bound
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Then, in the training loop, we will store previous "elite" episodes to pass them to the 
preceding function on the next training iteration.

full_batch = []
for iter_no, batch in enumerate(iterate_batches(env, net,  
BATCH_SIZE)):
    reward_mean = float(np.mean(list(map(lambda s: s.reward,  
batch))))
    full_batch, obs, acts, reward_bound = filter_batch(full_batch  
+ batch, PERCENTILE)
    if not full_batch:
        continue
    obs_v = torch.FloatTensor(obs)
    acts_v = torch.LongTensor(acts)
    full_batch = full_batch[-500:]

The rest of the code is the same, except that the learning rate decreased 10 times and 
the BATCH_SIZE was set to 100. After a period of patient waiting (the new version 
takes about one and a half hours to finish 10k iterations), we can see that the training 
of the model stopped improving around 55% of solved episodes. There are ways 
to address this (by applying entropy loss regularization, for example), but those 
techniques will be discussed in the upcoming chapters.

Figure 9: Convergence of FrozenLake with tweaked cross-entropy implementation

The final point to note here is the effect of "slipperiness" in the FrozenLake 
environment. Each of our actions with 33% probability is replaced with the 
90° rotated one (the "up" action, for instance, will succeed with 0.33 probability 
and with 0.33 chance that it will be replaced with the "left" action and 0.33 with 
the "right" action).
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The nonslippery version is in Chapter04/04_frozenlake_nonslippery.py, and 
the only difference is in the environment creation (we need to peek into the core 
of Gym to create the instance of the environment with tweaked arguments):

    env =  
gym.envs.toy_text.frozen_lake.FrozenLakeEnv(is_slippery=False)
    env = gym.wrappers.TimeLimit(env, max_episode_steps=100) 
    env = DiscreteOneHotWrapper(env)

The effect is dramatic! The nonslippery version of the environment can be solved 
in 120-140 batch iterations, which is 100 times faster than the noisy environment:

rl_book_samples/Chapter04$ ./04_frozenlake_nonslippery.py
0: loss=1.379, reward_mean=0.010, reward_bound=0.000, batch=1
1: loss=1.375, reward_mean=0.010, reward_bound=0.000, batch=2
2: loss=1.359, reward_mean=0.010, reward_bound=0.000, batch=3
3: loss=1.361, reward_mean=0.010, reward_bound=0.000, batch=4
4: loss=1.355, reward_mean=0.000, reward_bound=0.000, batch=4
5: loss=1.342, reward_mean=0.010, reward_bound=0.000, batch=5
6: loss=1.353, reward_mean=0.020, reward_bound=0.000, batch=7
7: loss=1.351, reward_mean=0.040, reward_bound=0.000, batch=11
......
124: loss=0.484, reward_mean=0.680, reward_bound=0.000, batch=68
125: loss=0.373, reward_mean=0.710, reward_bound=0.430, batch=114
126: loss=0.305, reward_mean=0.690, reward_bound=0.478, batch=133
128: loss=0.413, reward_mean=0.790, reward_bound=0.478, batch=73
129: loss=0.297, reward_mean=0.810, reward_bound=0.478, batch=108
Solved!

Figure 10: Convergence of the nonslippery version of FrozenLake
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Theoretical background of the  
cross-entropy method
This section is optional and included for readers who are interested in why the 
method works. If you wish, you can refer to the original paper on cross-entropy, 
which will be given at the end of the section.

The basis of the cross-entropy method lies in the importance sampling theorem, 
which states this:

Ex∼p(x)[H(x)] =

∫

x

p(x)H(x)dx =

∫

x

q(x)
p(x)

q(x)
H(x)dx = Ex∼q(x)[

p(x)

q(x)
H(x)]

In our RL case, H(x) is a reward value obtained by some policy x and p(x) is a 
distribution of all possible policies. We don't want to maximize our reward by 
searching all possible policies, instead we want to find a way to approximate p(x)H(x) 
by q(x), iteratively minimizing the distance between them. The distance between two 
probability distributions is calculated by Kullback-Leibler (KL) divergence which is 
as follows:

KL(p1(x)‖p2(x)) = Ex∼p1(x) log
p1(x)

p2(x)
= Ex∼p1(x)[log p1(x)]−Ex∼p1(x)[log p2(x)]

The first term in KL is called entropy and doesn't depend on that, so could be 
omitted during the minimization. The second term is called cross-entropy and  
is a very common optimization objective in DL.

Combining both formulas, we can get an iterative algorithm, which starts with 
q0(x) = p(x) and on every step improves. This is an approximation of p(x)H(x) 
with an update:

qi+1(x) = argmin
qi+1(x)

−Ex∼qi(x)
p(x)

qi(x)
H(x) log qi+1(x)

This is a generic cross-entropy method, which can be significantly simplified in our 
RL case. Firstly, we replace our H(x) with an indicator function, which is 1 when 
the reward for the episode is above the threshold and 0 if the reward is below. Our 
policy update will look like this:

πi+1(a|s) = argmin
πi+1

−Ez∼πi(a|s)[R(z) ≥ ψi] log πi+1(a|s)
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Strictly speaking, the preceding formula misses the normalization term, but it still 
works in practice without it. So, the method is quite clear: we sample episodes using 
our current policy (starting with some random initial policy) and minimize the 
negative log likelihood of the most successful samples and our policy.

There is a whole book dedicated to this method, written by Dirk P. Kroese. 
A shorter description can be found in the Cross-Entropy Method paper by Dirk 
P.Kroese (https://people.smp.uq.edu.au/DirkKroese/ps/eormsCE.pdf).

Summary
In this chapter, we became familiar with the first RL method cross-entropy, which 
is simple but quite powerful, despite its limitations. We applied it to a CartPole 
environment (with huge success) and to FrozenLake (with much more modest 
success). This chapter ends the introductory part of the book.

In the upcoming chapters, we will explore more complex, but more powerful tools 
of deep RL.

https://people.smp.uq.edu.au/DirkKroese/ps/eormsCE.pdf
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Tabular Learning and  
the Bellman Equation

In the previous chapter, we got acquainted with our first Reinforcement Learning 
(RL) method, cross-entropy, and saw its strengths and weaknesses. In this new part 
of the book, we'll look at another group of methods, called Q-learning, which have 
much more flexibility and power.

This chapter will establish the required background shared by those methods. We'll 
also revisit the FrozenLake environment and show how new concepts will fit with 
this environment and help us to address the issues of the environment's uncertainty.

Value, state, and optimality
You may remember our definition of the value of the state in Chapter 1, What is 
Reinforcement Learning?. This is a very important notion and the time has come to 
explore it further. This whole part of the book is built around the value and how to 
approximate it. We defined value as an expected total reward that is obtainable from 
the state. In a formal way, the value of the state is: V (s) = E[

∑∞
t=0 rtγ

t], where rt  is 
the local reward obtained at the step t of the episode.

The total reward could be discounted or not; it's up to us how to define it. Value is 
always calculated in the respect of some policy that our agent follows. To illustrate, 
let's consider a very simple environment with three states:

1.	 The agent's initial state.
2.	 The final state that the agent is in after executing action "left" from the 

initial state. The reward obtained from this is 1.
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3.	 The final state that the agent is in after action "down". The reward obtained 
from this is 2:

Figure 1: An example of an environment's states transition with rewards

The environment is always deterministic: every action succeeds and we always 
start from state 1. Once we reach either state 2 or state 3, the episode ends. Now, 
the question is, what's the value of state 1? This question is meaningless without 
information about our agent's behavior or, in other words, its policy. Even in such 
a simple environment, our agent can have an infinite amount of behaviors, each 
of which will have its own value for state 1. Consider this example:

•	 Agent always goes left
•	 Agent always goes down
•	 Agent goes left with a probability of 0.5 and down with a probability of 0.5
•	 Agent goes left in 10% of cases and in 90% of cases executes the 

"down" action

To demonstrate how the value is calculated, let's do it for all the preceding policies:
•	 The value of state 1 in the case of the "always left" agent is 1.0 (every time 

it goes left, it obtains 1 and the episode ends)
•	 For the "always down" agent, the value of state 1 is 2.0
•	 For the 50% left/50% down agent, the value will be 1.0*0.5 + 2.0*0.5 = 1.5
•	 In the last case, the value will be 1.0*0.1 + 2.0*0.9 = 1.9

Now, another question: what's the optimal policy for this agent? The goal of RL 
is to get as much total reward as possible. For this one-step environment, the total 
reward is equal to the value of state 1, which, obviously, is at the maximum at policy 
2 (always down).
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Unfortunately, such simple environments with an obvious optimal policy are not 
that interesting in practice. For interesting environments, the optimal policy is much 
harder to formulate and it's even harder to prove their optimality. However, don't 
worry, we're moving toward the point when we'll be able to make computers learn 
the optimal behavior on their own.

From the preceding example, you may have a false impression that we should 
always take the action with the highest reward. In general, it's not that simple. To 
demonstrate this, let's extend our preceding environment with yet another state that 
is reachable from state 3. State 3 is no longer a terminal state, but a transition to state 
4, with a bad reward of -20. Once we've chosen the "down" action in state 1, this bad 
reward is unavoidable, as from state 3 we have only one exit. So, it's a trap for the 
agent who has decided that "being greedy" is a good strategy.

Figure 2: The same environment, with an extra state added

With that addition, our values for state 1 will be calculated this way:
•	 "Always left" agent is the same: 1.0
•	 "Always down" agent gets: 2.0 + (-20) = -18
•	 "50%/50% agent": 0.5*1.0 + 0.5*(20 + (-20)) = -8.5
•	 "10%/90% agent": 0.1*1.0 + 0.9*(2.0 + (-20)) = -8

So, the best policy for this new environment is now policy number one: always go left.

We spent some time discussing naïve and trivial environments so that you realize 
the complexity of this optimality problem and can appreciate the results of Richard 
Bellman better. Richard was an American mathematician, who formulated and 
proved his famous "Bellman equation". We'll talk about it in the next section.



Tabular Learning and the Bellman Equation

[ 102 ]

The Bellman equation of optimality
To explain the Bellman equation, it's better to go a bit abstract. Don't be afraid, I'll 
provide the concrete examples later to support your intuition! Let's start with a 
deterministic case, when all our actions have a 100% guaranteed outcome. Imagine 
that our agent observes state s0  and has N available actions. Every action leads to 
another state, s1 . . . sN , with a respective reward, r1 . . . rN . Also assume that we know 
the values, Vi , of all states connected to the state s0 . What will be the best course 
of action that the agent can take in such a state?

Figure 3: An abstract environment with N states reachable from the initial state

If we choose the concrete action ai, and calculate the value given to this action, 
then the value will be V0(a = ai) = ri + Vi . So, to choose the best possible action, 
the agent needs to calculate the resulting values for every action and choose the 
maximum possible outcome. In other words: V0 = maxa∈1...N (ra + Va). If we're using 
discount factor γ , we need to multiply the value of the next state by gamma: 
V0 = maxa∈1...N (ra + γVa).

This may look very similar to our greedy example from the previous section, and, 
in fact, it is. However, there is one difference: when we act greedily, we do not only 
look at the immediate reward for the action, but at the immediate reward plus the 
long-term value of the state. Richard Bellman proved that with that extension, our 
behavior will get the best possible outcome. In other words, it will be optimal. So, the 
preceding equation is called the Bellman equation of value (for a deterministic case):
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It's not very complicated to extend this idea for a stochastic case, when our actions 
have the chance to end up in different states. What we need to do is to calculate 
the expected value for every action, instead of just taking the value of the next state. 
To illustrate this, let's consider one single action available from state s0 , with three 
possible outcomes.

Figure 4: An example of the transition from the state in a stochastic case

Here we have one action, which can lead to three different states with different 
probabilities: with probability p1  it can end up in state s1 , p2  in state s2 , and p3  in 
state s3  (p1 + p2 + p3 = 1, of course). Every target state has its own reward (r1 ,r2 , or 
r3). To calculate the expected value after issuing action 1, we need to sum all values, 
multiplied by their probabilities:

V0(a = 1) = p1(r1 + γV1) + p2(r2 + γV2) + p3(r3 + γV3) 
or more formally, 

V0(a) = Es∼S [rs,a + γVs] =
∑

s∈S

pa,0→s(rs,a + γVs)

By combining the Bellman equation, for a deterministic case, with a value for 
stochastic actions, we get the Bellman optimality equation for a general case:

V0 = max
a∈A

Es∼S [rs,a + γVs] = max
a∈A

∑

s∈S

pa,0→s(rs,a + γVs)

(Note that pa,i→j means the probability of action a, issued in state i, to end up  
in state j.)

The interpretation is still the same: the optimal value of the state is equal to the 
action, which gives us the maximum possible expected immediate reward, plus 
discounted long-term reward for the next state. You may also notice that this 
definition is recursive: the value of the state is defined via the values of immediate 
reachable states.
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This recursion may look like cheating: we define some value, pretending that 
we already know it. However, this is a very powerful and common technique in 
computer science and even in math in general (proof by induction is based on the 
same trick). This Bellman equation is a foundation not only in RL but also in much 
more general dynamic programming, which is a widely used method for solving 
practical optimization problems.

These values not only give us the best reward that we can obtain, but they basically 
give us the optimal policy to obtain that reward: if our agent knows the value for 
every state, then it automatically knows how to gather all this reward. Thanks to 
Bellman's optimality proof, at every state the agent ends up in, it needs to select 
the action with the maximum expected reward for the action, which is a sum of the 
immediate reward and the one-step discounted long-term reward. That's it. So, those 
values are really useful stuff to know. Before we get familiar with a practical way 
to calculate them, we need to introduce one more mathematical notation. It's not 
as fundamental as value, but we need it for our convenience.

Value of action
To make our life slightly easier, we can define different quantities in addition to the 
value of state Vs: value of action Qs,a . Basically, it equals the total reward we can get by 
executing action a in state s and can be defined via Vs . Being a much less fundamental 
entity than Vs , this quantity gave a name to the whole family of methods called 
"Q-learning", because it is slightly more convenient in practice. In these methods, 
our primary objective is to get values of Q for every pair of state and action.

Qs,a = Es′∼S [rs,a + γVs′ ] =
∑

s′∈S

pa,s→s′(rs,a + γVs′)

Q for this state s and action a equals the expected immediate reward and the 
discounted long-term reward of the destination state. We also can define Vs   
via  Qs,a :

Vs = max
a∈A

Qs,a

This just means that the value of some state equals to the value of the maximum 
action we can execute from this state. It may look very close to the value of state, 
but there is still a difference, which is important to understand. Finally, we can 
express Q(s, a) via itself, which will be used in the next chapter's topic of Q-learning: 

Q(s, a) = rs,a + γmax
a′∈A

Q(s′, a′) 
To give you a concrete example, let's consider an environment which is similar 
to FrozenLake, but has a much simpler structure: we have one initial state 
s0  surrounded by four target states, s1, s2, s3, s4 , with different rewards.
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Figure 5: A simplified grid-like environment

Every action is probabilistic in the same way as in FrozenLake: with a 33% chance 
that our action will be executed without modifications, but with a 33% chance we 
will slip to the left, relatively, of our target cell and a 33% chance we will slip to 
the right. For simplicity, we use discount factor gamma=1.

Figure 6: A transition diagram of the grid environment

Let's calculate the values of actions to begin with. Terminal states s1 . . . s4  have no 
outbound connections, so Q for those states is zero for all actions. Due to this, the 
values of the Terminal states are equal to their immediate reward (once we get there, 
our episode ends without any subsequent states): V1 = 1, V2 = 2, V3 = 3, V4 = 4.

The values of actions for state 0 are a bit more complicated. Let's start with 
the "up" action. Its value, according to the definition, is equal to the expected 
sum of the immediate reward plus long-term value for subsequent steps. We 
have no subsequent steps for any possible transition for the "up" action, so 
Q(s0, up) = 0.33 · V1 + 0.33 · V2 + 0.33 · V4 = 0.33 · 1 + 0.33 · 2 + 0.33 · 4 = 2.31 .



Tabular Learning and the Bellman Equation

[ 106 ]

Repeating this for the rest of s0  actions results in the following:

Q(s0, left) = 0.33 · V1 + 0.33 · V2 + 0.33 · V3 = 1.98

Q(s0, right) = 0.33 · V4 + 0.33 · V1 + 0.33 · V3 = 2.64

Q(s0, down) = 0.33 · V3 + 0.33 · V2 + 0.33 · V4 = 2.97

The final value for state s0  is the maximum of those actions' values, which is 2.97.

Q values are much more convenient in practice, as for the agent it's much simpler 
to make decisions about actions based on Q than based on V. In the case of Q, 
to choose the action based on the state, the agent just needs to calculate Q for all 
available actions, using the current state and choose the action with the largest 
value of Q. To do the same using values of states, the agent needs to know not only 
values, but also probabilities for transitions. In practice, we rarely know them in 
advance, so the agent needs to estimate transition probabilities for every action and 
state pair. Later in this chapter, we'll see this in practice by solving the FrozenLake 
environment both ways. However, to be able to do this, we have one important thing 
still missing: a general way to calculate those Vs and Qs.

The value iteration method
In the simplistic example we just saw, to calculate the values of states and actions, 
we have exploited the structure of the environment: we had no loops in transitions, 
so we could start from terminal states, calculate their values and then proceed to the 
central state. However, just one loop in the environment builds an obstacle in our 
approach. Let's consider such an environment with two states:

Figure 7: A sample environment with a loop in the transition diagram



Chapter 5

[ 107 ]

We start from state s1 , and the only action we can take leads us to state s2 . We get 
reward r=1,and the only transition from s2  is an action, which brings us back to the s1.  
So, the life of our agent is an infinite sequence of states [s1, s2, s1, s2, s1, s2, s1, s2, . . .].  
To deal with this infinity loop, we can use a discount factor γ = 0.9. Now, the question 
is, what are the values for both the states?

The answer is not very complicated, though. Every transition from s1  to s2  gives 
us a reward of 1 and every back transition gives us 2. So, our sequence of rewards 
will be [1, 2, 1, 2, 1, 2, 1, 2, ….]. As there is only one action available in every state, 
our agent has no choice, so we can omit the max operation in formulas (there is 
only one alternative). The value for every state will be equal to the infinite sum:

V (s1) = 1 + γ(2 + γ(1 + γ(2 + . . .))) =

∞∑

i=0

1γ2i + 2γ2i+1

V (s2) = 2 + γ(1 + γ(2 + γ(1 + . . .))) =

∞∑

i=0

2γ2i + 1γ2i+1

Strictly speaking, we cannot calculate the exact values for our states, but with γ = 0.9,  
the contribution of every transition quickly decreases over time. For example, after 
10 steps, γ10 = 0.910 = 0.349, but after 100 steps it becomes just 0.0000266. Due to 
this, we can stop after 50 iterations and still get quite a precise estimation.

>>> sum([0.9**(2*i) + 2*(0.9**(2*i+1)) for i in range(50)])

14.736450674121663

>>> sum([2*(0.9**(2*i)) + 0.9**(2*i+1) for i in range(50)])

15.262752483911719

The preceding example could be used to get a gist of a more general procedure, 
called the "value iteration algorithm" which allows us to numerically calculate the 
values of states and values of actions of MDPs with known transition probabilities 
and rewards. The procedure (for values of states) includes the following steps:

1.	 Initialize values of all states Vi  to some initial value (usually zero)
2.	 For every state s in the MDP, perform the Bellman update: 

Vs ← maxa
∑

s′ pa,s→s′(rs,a + γVs′)

3.	 Repeat step 2 for some large number of steps or until changes become 
too small
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In the case of action values (that is Q), only minor modifications to the preceding 
procedure are required:

1.	 Initialize all Qs,a  to zero
2.	 For every state s and every action a in this state, perform update: 

Qs,a ←
∑

s′ pa,s→s′(rs,a + γmaxa′ Qs′,a′)

3.	 Repeat step 2

Okay, so that's the theory. What about the practice? In practice, this method  
has several obvious limitations. First of all, our state space should be discrete  
and small enough to perform multiple iterations over all states. This is not an  
issue for FrozenLake-4x4 and even for FrozenLake-8x8 (it exists in Gym as a 
more challenging version), but for CartPole it's not totally clear what to do. Our 
observation for CartPole is four float values, which represent some physical 
characteristics of the system. Even a small difference in those values could have 
an influence on the state's value. A potential solution for that could be discretization 
of our observation's values, for example, we can split the observation space of 
the CartPole into bins and treat every bin as an individual discrete state in space. 
However, this will create lots of practical problems, such as how large bin intervals 
should be and how much data from the environment we'll need to estimate our 
values. We'll address this issue in subsequent chapters, when we get to the usage 
of neural networks in Q-learning.

The second practical problem arises from the fact that we rarely know the transition 
probability for the actions and rewards matrix. Remember what interface provides 
Gym to the agent's writer: we observe the state, decide on an action and only 
then do we get the next observation and reward for the transition. We don't 
know (without peeking into Gym's environment code) what the probability is 
to get into state s1 from state s0  by issuing action a0 . What we do have is just the 
history from the agent's interaction with the environment. However, in Bellman's 
update, we need both a reward for every transition and the probability of this 
transition. So, the obvious answer to this issue is to use our agent's experience as 
an estimation for both unknowns. Rewards could be used as they are. We just need 
to remember what reward we've got on transition from s0  to s1, using action a, but 
to estimate probabilities we need to maintain counters for every tuple (s0 ,s1,a0) and 
normalize them.

Okay, now let's look at how the value iteration method will work for FrozenLake.
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Value iteration in practice
The complete example is in Chapter05/01_frozenlake_v_learning.py. The 
central data structures in this example are as follows:

•	 Reward table: A dictionary with the composite key "source state" + "action" + 
"target state". The value is obtained from the immediate reward.

•	 Transitions table: A dictionary keeping counters of the experienced 
transitions. The key is the composite "state" + "action" and the value is 
another dictionary that maps the target state into a count of times that we've 
seen it. For example, if in state 0 we execute action 1 ten times, after three 
times it leads us to state 4 and after seven times to state 5. Entry with the key 
(0, 1) in this table will be a dict {4: 3, 5: 7}. We use this table to estimate 
the probabilities of our transitions.

•	 Value table: A dictionary that maps a state into the calculated value of 
this state.

The overall logic of our code is simple: in the loop, we play 100 random steps from 
the environment, populating the reward and transition tables. After those 100 steps, 
we perform a value iteration loop over all states, updating our value table. Then we 
play several full episodes to check our improvements using the updated value table. 
If the average reward for those test episodes is above the 0.8 boundary, then we stop 
training. During test episodes, we also update our reward and transition tables to 
use all data from the environment.

Okay, so let's come to the code. In the beginning, we import used packages and 
define constants:

import gym
import collections
from tensorboardX import SummaryWriter

ENV_NAME = "FrozenLake-v0"
GAMMA = 0.9
TEST_EPISODES = 20

Then we define the Agent class, which will keep our tables and contain functions 
we'll be using in the training loop:

class Agent:
    def __init__(self):
        self.env = gym.make(ENV_NAME)
        self.state = self.env.reset()
        self.rewards = collections.defaultdict(float)
        self.transits = collections.defaultdict(collections.Counter)
        self.values = collections.defaultdict(float)
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In the class constructor, we create the environment we'll be using for data samples, 
obtain our first observation, and define tables for rewards, transitions, and values.

    def play_n_random_steps(self, count):
        for _ in range(count):
            action = self.env.action_space.sample()
            new_state, reward, is_done, _ = self.env.step(action)
            self.rewards[(self.state, action, new_state)] = reward
            self.transits[(self.state, action)][new_state] += 1
            self.state = self.env.reset() if is_done else new_state

This function is used to gather random experience from the environment and update 
reward and transition tables. Note that we don't need to wait for the end of the 
episode to start learning; we just perform N steps and remember their outcomes. 
This is one of the differences between Value iteration and Cross-entropy, which 
can learn only on full episodes.

The next function calculates the value of the action from the state, using our 
transition, reward and values tables. We will use it for two purposes: to select the best 
action to perform from the state and to calculate the new value of the state on value 
iteration. Its logic is illustrated in the following diagram and we do the following:

1.	 We extract transition counters for the given state and action from the 
transition table. Counters in this table have a form of dict, with target states 
as key and a count of experienced transitions as value. We sum all counters 
to obtain the total count of times we've executed the action from the state. We 
will use this total value later to go from an individual counter to probability.

2.	 Then we iterate every target state that our action has landed on and calculate 
its contribution into the total action value using the Bellman equation. This 
contribution equals to immediate reward plus discounted value for the target 
state. We multiply this sum to the probability of this transition and add the 
result to the final action value.

Figure 8: The calculation of the state's value
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In our diagram, we have an illustration of a calculation of value for state s and 
action a. Imagine that during our experience, we have executed this action several 
times (c1+c2) and it ends up in one of two states, s1  or s2 . How many times we have 
switched to each of these states is stored in our transition table as dict {s1 : c1, s2 : c1+c2}.  
Then, the approximate value for the state and action Q(s, a) will be equal to the 
probability of every state, multiplied to the value of the state. From the Bellman 
equation, this equals to the sum of the immediate reward and the discounted  
long-term state value.

    def calc_action_value(self, state, action):
        target_counts = self.transits[(state, action)]
        total = sum(target_counts.values())
        action_value = 0.0
        for tgt_state, count in target_counts.items():
            reward = self.rewards[(state, action, tgt_state)]
            action_value += (count / total) * (reward + GAMMA *  
self.values[tgt_state])
        return action_value

The next function uses the function we just described to make a decision about 
the best action to take from the given state. It iterates over all possible actions in 
the environment and calculates value for every action. The action with the largest 
value wins and is returned as the action to take. This action selection process 
is deterministic, as the play_n_random_steps() function introduces enough 
exploration. So, our agent will behave greedily in regard to our value approximation.

    def select_action(self, state):
        best_action, best_value = None, None
        for action in range(self.env.action_space.n):
            action_value = self.calc_action_value(state, action)
            if best_value is None or best_value < action_value:
                best_value = action_value
                best_action = action
        return best_action

The play_episode function uses select_action to find the best action to take and 
plays one full episode using the provided environment. This function is used to 
play test episodes, during which we don't want to mess up with the current state 
of the main environment used to gather random data. So, we're using the second 
environment passed as an argument. The logic is very simple and should be already 
familiar to you: we just loop over states accumulating reward for one episode:

    def play_episode(self, env):
        total_reward = 0.0
        state = env.reset()
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        while True:
            action = self.select_action(state)
            new_state, reward, is_done, _ = env.step(action)
            self.rewards[(state, action, new_state)] = reward
            self.transits[(state, action)][new_state] += 1
            total_reward += reward
            if is_done:
                break
            state = new_state
        return total_reward

The final method of the Agent class is our value iteration implementation and it 
is surprisingly simple, thanks to the preceding functions. What we do is just loop 
over all states in the environment, then for every state we calculate the values for 
the states reachable from it, obtaining candidates for the value of the state. Then we 
update the value of our current state with the maximum value of the action available 
from the state:

    def value_iteration(self):
        for state in range(self.env.observation_space.n):
            state_values = [self.calc_action_value(state, action)
                            for action in range(self.env.action_
space.n)]
            self.values[state] = max(state_values)

That's all our agent's methods, and the final piece is a training loop and the 
monitoring of the code:

if __name__ == "__main__":
    test_env = gym.make(ENV_NAME)
    agent = Agent()
    writer = SummaryWriter(comment="-v-learning")

We create the environment we'll be using for testing, the Agent class instance and the 
summary writer for TensorBoard:

    iter_no = 0
    best_reward = 0.0
    while True:
        iter_no += 1
        agent.play_n_random_steps(100)
        agent.value_iteration()
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The two lines in the preceding code snippet are the key piece in the training loop. 
First, we perform 100 random steps to fill our reward and transition tables with 
fresh data and then we run value iteration over all states. The rest of the code plays 
test episodes using the value table as our policy, then writes data into TensorBoard, 
tracks the best average reward, and checks for the training loop stop condition.

        reward = 0.0
        for _ in range(TEST_EPISODES):
            reward += agent.play_episode(test_env)
        reward /= TEST_EPISODES
        writer.add_scalar("reward", reward, iter_no)
        if reward > best_reward:
            print("Best reward updated %.3f -> %.3f" %  
(best_reward, reward))
            best_reward = reward
        if reward > 0.80:
            print("Solved in %d iterations!" % iter_no)
            break
    writer.close()

Okay, let's run our program:

rl_book_samples/Chapter05$ ./01_frozenlake_v_learning.py

[2017-10-13 11:39:37,778] Making new env: FrozenLake-v0

[2017-10-13 11:39:37,988] Making new env: FrozenLake-v0

Best reward updated 0.000 -> 0.150

Best reward updated 0.150 -> 0.500

Best reward updated 0.500 -> 0.550

Best reward updated 0.550 -> 0.650

Best reward updated 0.650 -> 0.800

Best reward updated 0.800 -> 0.850

Solved in 36 iterations!

Our solution is stochastic, and my experiments usually required from 12 to 100 
iterations to reach a solution, but in all cases, it took less than a second to find a good 
policy that could solve the environment in 80% of runs. If you remember how many 
hours were required to achieve a 60% success ratio using Cross-entropy, then you 
can understand that this is a major improvement. There are several reasons for that.



Tabular Learning and the Bellman Equation

[ 114 ]

First of all, the stochastic outcome of our actions, plus the length of the episodes 
(6-10 steps on average), makes it hard for the Cross-entropy method to understand 
what was done right in the episode and which step was a mistake. The value 
iteration works with individual values of state (or action) and incorporates the 
probabilistic outcome of actions naturally, by estimating probability and calculating 
the expected value. So, it's much simpler for the value iteration and requires much 
less data from the environment (which is called sample efficiency in RL).

The second reason is the fact that the value iteration doesn't need full episodes to 
start learning. In an extreme case, we can start updating our values just from the 
single example. However, for FrozenLake, due to the reward structure (we get 
1 only after successfully reaching the target state), we still need to have at least 
one successful episode to start learning from a useful value table, which may be 
challenging to achieve in more complex environments. For example, you can try 
switching existing code to a larger version of FrozenLake, which has the name 
FrozenLake8x8-v0. The larger version of FrozenLake can take from 50 to 400 
iterations to solve, and, according to TensorBoard charts, most of the time it waits 
for the first successful episode, then very quickly reaches convergence. The following 
is a chart with two lines. Orange corresponds to the reward during the training 
of FrozenLake-v0 (4x4) and blue is the reward of FrozenLake8x8-v0.:

Figure 9: The convergence of FrozenLake 4x4 and 8x8

Now it's time to compare the code that learns the values of states, as we just 
discussed, to the code that learns the values of actions.

Q-learning for FrozenLake
The whole example is in the Chapter05/02_frozenlake_q_learning.py file, and 
the difference is really minor. The most obvious change is to our value table. In 
the previous example, we kept the value of the state, so the key in the dictionary 
was just a state. Now we need to store values of the Q-function, which has two 
parameters: state and action, so the key in the value table is now a composite.
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The second difference is in our calc_action_value function. We just don't need 
it anymore, as our action values are stored in the value table. Finally, the most 
important change in the code is in the agent's value_iteration method. Before, 
it was just a wrapper around the calc_action_value call, which did the job of 
Bellman approximation. Now, as this function has gone and was replaced by 
a value table, we need to do this approximation in the value_iteration method.

Let's look at the code. As it's almost the same, I'll jump directly to the most 
interesting value_iteration function:

    def value_iteration(self):
        for state in range(self.env.observation_space.n):
            for action in range(self.env.action_space.n):
                action_value = 0.0
                target_counts = self.transits[(state, action)]
                total = sum(target_counts.values())
                for tgt_state, count in target_counts.items():
                    reward = self.rewards[(state, action,  
tgt_state)]
                    best_action = self.select_action(tgt_state)
                    action_value += (count / total) * (reward +  
GAMMA * self.values[(tgt_state, best_action)])
                self.values[(state, action)] = action_value

The code is very similar to calc_action_value in the previous example and in fact 
it does almost the same thing. For the given state and action, it needs to calculate 
the value of this action using statistics about target states that we've reached with 
the action. To calculate this value, we use the Bellman equation and our counters, 
which allow us to approximate the probability of the target state. However, in 
Bellman's equation we have the value of the state and now we need to calculate it 
differently. Before, we had it stored in the value table (as we approximated the value 
of states), so we just took it from this table. We can't do this anymore, so we have to 
call the select_action method, which will choose for us the action with the largest 
Q-value, and then we take this Q-value as the value of the target state. Of course, we 
can implement another function which could calculate for us this value of state, but 
select_action does almost everything we need, so we will reuse it here.

There is another piece of this example that I'd like to emphasize here. Let's look 
at our select_action method:

    def select_action(self, state):
        best_action, best_value = None, None
        for action in range(self.env.action_space.n):
            action_value = self.values[(state, action)]
            if best_value is None or best_value < action_value:
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                best_value = action_value
                best_action = action
        return best_action

As I said, we don't have the calc_action_value method anymore, so, to select 
action, we just iterate over the actions and look up their values in our values table. 
It could look like a minor improvement, but if you think about the data that we used 
in calc_action_value, it may become obvious why the learning of the Q-function 
is much more popular in RL than the learning of the V-function.

Our calc_action_value function uses both information about reward and 
probabilities. It's not a huge problem for the value iteration method, which relies on 
this information during training. However, in the next chapter, we'll learn about the 
value iteration method extension, which doesn't require probability approximation, 
but just takes it from the environment samples. For such methods, this dependency 
on probability adds an extra burden for the agent. In the case of Q-learning, what 
the agent needs to make the decision is just Q-values.

I don't want to say that V-functions are completely useless, because they are an 
essential part of Actor-Critic method which we'll talk about in part three of this 
book. However, in the area of value learning, Q-functions is the definite favorite. 
With regard to convergence speed, both our versions are almost identical (but 
the Q-learning version requires four times more memory for the value table).

rl_book_samples/Chapter05$ ./02_frozenlake_q_learning.py

[2017-10-13 12:38:56,658] Making new env: FrozenLake-v0

[2017-10-13 12:38:56,863] Making new env: FrozenLake-v0

Best reward updated 0.000 -> 0.050

Best reward updated 0.050 -> 0.200

Best reward updated 0.200 -> 0.350

Best reward updated 0.350 -> 0.700

Best reward updated 0.700 -> 0.750

Best reward updated 0.750 -> 0.850

Solved in 22 iterations!



Chapter 5

[ 117 ]

Summary
My congratulations, you've made another step towards understanding modern, 
state-of-the-art RL methods! We learned about some very important concepts 
that are widely used in deep RL: the value of state, the value of actions, and the 
Bellman equation in various forms. We saw the value iteration method, which is 
a very important building block in the area of Q-learning. Finally, we got to know 
how value iteration can improve our FrozenLake solution.

In the next chapter, we'll learn about deep Q-networks, which started the deep 
RL revolution in 2013, by beating humans on lots of Atari 2600 games.
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Deep Q-Networks
In the previous chapter, we became familiar with the Bellman equation and the 
practical method of its application called Value iteration. This approach allowed us 
to significantly improve our speed and convergence in the FrozenLake environment, 
which is promising, but can we go further?

In this chapter, we'll try to apply the same theory to problems of much greater 
complexity: arcade games from the Atari 2600 platform, which are the de-facto 
benchmark of the RL research community. To deal with this new and more 
challenging goal, we'll talk about problems with the Value iteration method and 
introduce its variation, called Q-learning. In particular, we'll look at the application 
of Q-learning to so-called "grid world" environments, which is called tabular 
Q-learning, and then we'll discuss Q-learning in conjunction with neural networks. 
This combination has the name DQN. At the end of the chapter, we'll reimplement 
a DQN algorithm from the famous paper, Playing Atari with Deep Reinforcement 
Learning by V. Mnih and others,  published in 2013, which started a new era in RL 
development.

Real-life value iteration
The improvements we got in the FrozenLake environment by switching from  
Cross-Entropy to the Value iteration method are quite encouraging, so it's tempting 
to apply the value iteration method to more challenging problems. However, let's 
first look at the assumptions and limitations that our Value iteration method has.

We will start with a quick recap of the method. The Value iteration method on every 
step does a loop on all states, and for every state, it performs an update of its value 
with a Bellman approximation. The variation of the same method for Q-values 
(values for actions) is almost the same, but we approximate and store values for 
every state and action. So, what's wrong with this process?
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The first obvious problem is the count of environment states and our ability to 
iterate over them. In the Value iteration, we assume that we know all states in our 
environment in advance, can iterate over them and can store value approximation 
associated with the state. It's definitely true for the simple "grid world" environment 
of FrozenLake, but what about other tasks? First, let's try to understand how scalable 
the Value iteration approach is, or, in other words, how many states we can easily 
iterate over in every loop. Even a moderate-sized computer can keep several billion 
float values in memory (8.5 billion in 32 GB of RAM), so the memory required for 
value tables doesn't look like a huge constraint. Iteration over billions of states and 
actions will be more memory intensive, but not an insurmountable problem. 

Nowadays, we have multicore systems that are mostly idle. The real problem 
is the number of samples required to get good approximations for state transition 
dynamics. Imagine that you have some environment with, say, a billion states 
(this corresponds approximately to a FrozenLake of size 31600 × 31600). To calculate 
even a rough approximation for every state of this environment, we'll need hundreds 
of billions of transitions evenly distributed over our states, which is not practical.

To give you an example of an environment with a much larger number of potential 
states, let's consider the Atari 2600 game console again. This was very popular in the 
1980s and many arcade-style games were available for it. The Atari console is archaic 
by today's gaming standards, but its games give an excellent set of RL problems 
that humans can master fairly quickly, but still are challenging for computers. 
Not surprisingly, this platform (using an emulator, of course) is a very popular 
benchmark among RL researches.

Let's calculate the state space for the Atari platform. The resolution of the screen is  
210 x 160 pixels, and every pixel has one of 128 colors. So, every frame of the screen  
has 210 × 160 = 33600 pixels and the total amount of different screens possible is 12833600, 
which is slightly more than 1070802. If we decide to just enumerate all possible states 
of Atari once, it will take billions of billions of years even for the fastest supercomputer. 
Also, 99(.9)% of this job will be a waste of time, as most of the combinations will never 
be shown during even long gameplay, so we'll never have samples of those states. 
However, the value iteration method wants to iterate over them just in case.

Another problem with the value iteration approach is that it limits us to discrete 
action spaces. Indeed, both Q(s, a) and V(s) approximations assume that our actions 
are a mutually exclusive discrete set, which is not true for continuous control 
problems where actions can represent continuous variables, such as the angle of 
a steering wheel, the force on an actuator, or the temperature of a heater. This issue 
is much more challenging than the first, and we'll talk about it in the last part of 
the book, in chapters dedicated to continuous action space problems. For now, 
let's assume that we have a discrete count of actions and this count is not very 
large (orders of tens). How should we handle the state space size issue?
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Tabular Q-learning
First of all, do we really need to iterate over every state in the state space? We have 
an environment that can be used as a source of real-life samples of states. If some 
state in the state space is not shown to us by the environment, why should we care 
about its value? We can use states obtained from the environment to update values 
of states, which can save us lots of work.

This modification of the Value iteration method is known as Q-learning, as 
mentioned earlier, and for cases with explicit state-to-value mappings, has 
the following steps:

1.	 Start with an empty table, mapping states to values of actions.
2.	 By interacting with the environment, obtain the tuple s, a, r, s′ (state, action, 

reward, and the new state). In this step, we need to decide which action to 
take, and there is no single proper way to make this decision. We discussed 
this problem as exploration versus exploitation and will talk a lot about this.

3.	 Update the Q(s, a) value using the Bellman approximation: 
Qs,a ← r + γmaxa′∈A Qs′,a′

4.	 Repeat from step 2.

As in Value iteration, the end condition could be some threshold of the update or we 
can perform test episodes to estimate the expected reward from the policy. Another 
thing to note here is how to update the Q-values. As we take samples from the 
environment, it's generally a bad idea to just assign new values on top of existing 
values, as training can become unstable. What is usually done in practice is to update 
the Q(s, a) with approximations using a "blending" technique, which is just averaging 
between old and new values of Q using learning rate α with a value from  
0 to 1:

Qs,a ← (1− α)Qs,a + α(r + γmaxa′∈A Qs′,a′)

This allows values of Q to converge smoothly, even if our environment is noisy. 
The final version of the algorithm is here:

1.	 Start with an empty table for Q(s, a).
2.	 Obtain (s, a, r, s′) from the environment.
3.	 Make a Bellman update: 

Qs,a ← (1− α)Qs,a + α(r + γmaxa′∈A Qs′,a′).
4.	 Check convergence conditions. If not met, repeat from step 2.
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As mentioned earlier, this method is called tabular Q-learning, as we keep a table 
of states with their Q-values. Let's try it on our FrozenLake environment. The whole 
example code is in Chapter06/01_frozenlake_q_learning.py.

import gym
import collections
from tensorboardX import SummaryWriter

ENV_NAME = "FrozenLake-v0"
GAMMA = 0.9
ALPHA = 0.2
TEST_EPISODES = 20

class Agent:
    def __init__(self):
        self.env = gym.make(ENV_NAME)
        self.state = self.env.reset()
        self.values = collections.defaultdict(float)

In the beginning, we import packages and define constants. The new thing here 
is the value of α, which will be used as the learning rate in the value update. The 
initialization of our Agent class is simpler now, as we don't need to track the history 
of rewards and transition counters, just our value table. This will make our memory 
footprint smaller, which is not a big issue for FrozenLake, but can be critical for 
larger environments.

    def sample_env(self):
        action = self.env.action_space.sample()
        old_state = self.state
        new_state, reward, is_done, _ = self.env.step(action)
        self.state = self.env.reset() if is_done else new_state
        return (old_state, action, reward, new_state)

The preceding method is used to obtain the next transition from the environment. 
We sample a random action from the action space and return the tuple of the old 
state, action taken, reward obtained, and the new state. The tuple will be used in 
the training loop later.

    def best_value_and_action(self, state):
        best_value, best_action = None, None
        for action in range(self.env.action_space.n):
            action_value = self.values.get[(state, action)]
            if best_value is None or best_value < action_value:
                best_value = action_value
                best_action = action
        return best_value, best_action
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The next method receives the state of the environment and finds the best action to 
take from this state by taking the action with the largest value that we have in the 
table. If we don't have the value associated with the state and action pair, then we 
take it as zero. This method will be used two times: first, in the test method that plays 
one episode using our current values table (to evaluate our policy quality), and the 
second, in the method that performs the value update to get the value of the next 
state.

    def value_update(self, s, a, r, next_s):
        best_v, _ = self.best_value_and_action(next_s)
        new_val = r + GAMMA * best_v
        old_val = self.values[(s, a)]
        self.values[(s, a)] = old_val * (1-ALPHA) + new_val * ALPHA

Here we update our values table using one step from the environment. To do this, 
we're calculating the Bellman approximation for our state s and action a by summing 
the immediate reward with the discounted value of the next state. Then we obtain 
the previous value of the state and action pair, and blend these values together using 
the learning rate. The result is the new approximation for the value of state s and 
action a, which is stored in our table.

    def play_episode(self, env):
        total_reward = 0.0
        state = env.reset()
        while True:
            _, action = self.best_value_and_action(state)
            new_state, reward, is_done, _ = env.step(action)
            total_reward += reward
            if is_done:
                break
            state = new_state
        return total_reward

The last method in our Agent class plays one full episode using the provided test 
environment. The action on every step is taken using our current value table of 
Q-values. This method is used to evaluate our current policy to check the progress 
of learning. Note that this method doesn't alter our value table: it only uses it to find 
the best action to take.
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The rest of the example is the training loop, which is very similar to examples from 
the previous chapter: we create a test environment, agent, and summary writer, then 
in the loop, we do one step in the environment and perform a value update using 
the obtained data. Then we test our current policy by playing several test episodes. 
If a good reward is obtained, then we stop training.

if __name__ == "__main__":
    test_env = gym.make(ENV_NAME)
    agent = Agent()
    writer = SummaryWriter(comment="-q-learning")

    iter_no = 0
    best_reward = 0.0
    while True:
        iter_no += 1
        s, a, r, next_s = agent.sample_env()
        agent.value_update(s, a, r, next_s)

        reward = 0.0
        for _ in range(TEST_EPISODES):
            reward += agent.play_episode(test_env)
        reward /= TEST_EPISODES
        writer.add_scalar("reward", reward, iter_no)
        if reward > best_reward:
            print("Best reward updated %.3f -> %.3f" %  
(best_reward, reward))
            best_reward = reward
        if reward > 0.80:
            print("Solved in %d iterations!" % iter_no)
            break
    writer.close()

The result of the example is shown here:

rl_book_samples/Chapter06$ ./01_frozenlake_q_learning.py

[2017-10-20 14:21:23,459] Making new env: FrozenLake-v0

[2017-10-20 14:21:23,682] Making new env: FrozenLake-v0

Best reward updated 0.000 -> 0.200

Best reward updated 0.200 -> 0.250

Best reward updated 0.250 -> 0.350

Best reward updated 0.350 -> 0.400

Best reward updated 0.400 -> 0.500

Best reward updated 0.500 -> 0.750
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Best reward updated 0.750 -> 0.800

Best reward updated 0.800 -> 0.850

Solved in 1860 iterations!

You may have noticed that this version used more iterations to solve the problem 
compared to the value iteration method from the previous chapter. The reason 
for that is that we're no longer using the experience obtained during testing. 
(In Chapter05/02_frozenlake_q_iteration.py, periodical tests cause an update 
of Q-table statistics. Here we don't touch Q-values during the test, which cause more 
iterations before the environment gets solved.) Overall, the total amount of samples 
required from the environment is almost the same. The reward chart in TensorBoard 
also shows good training dynamics, which are very similar to the value iteration 
method.

Figure 1: Reward dynamics of FrozenLake 

Deep Q-learning
The Q-learning method that we've just seen solves the issue with iteration over the 
full set of states, but still can struggle with situations when the count of the observable 
set of states is very large. For example, Atari games can have a large variety of 
different screens, so if we decide to use raw pixels as individual states, we'll quickly 
realize that we have too many states to track and approximate values for.

In some environments, the count of different observable states could be almost 
infinite. For example, in CartPole the state given to us by the environment is four 
floating point numbers. The number of combinations of values is finite (they're 
represented as bits), but this number is extremely large. We could create some bins to 
discretize those values, but this often creates more problems than it solves: we would 
need to decide what ranges of parameters are important to distinguish as different 
states and what ranges could be clustered together.
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In the case of Atari, one single pixel change doesn't make much difference, so it's 
efficient to treat both images as a single state. However, we still need to distinguish 
some of the states. The following image shows two different situations in a game 
of Pong. We're playing against the AI opponent by controlling a paddle (our paddle 
is on the right and has a green color, whereas our opponent's is light brown and on 
the left). The objective of the game is to get the bounding ball past our opponent's 
paddle, while preventing it from getting past our paddle. The two situations can be 
considered to be completely different: in the right-hand situation, the ball is close to 
the opponent, so we can relax and watch. However, the situation on the left is more 
demanding: assuming that the ball is moving from left to right, which means that 
the ball is moving toward our side, so we need to move our paddle quickly to avoid 
losing a point. The situations below are just two from the 1070802  possible situations, 
but we want our agent to act on them differently.

Figure 2: The ambiguity of observations in Pong

As a solution to this problem, we can use a nonlinear representation that maps 
both state and action onto a value. In machine learning this is called a "regression 
problem." The concrete way to represent and train such a representation can 
vary, but, as you may have already guessed from this section's title, using a 
deep neural network is one of the most popular options, especially when dealing 
with observations represented as screen images. With this in mind, let's make 
modifications to the Q-learning algorithm:

1.	 Initialize Q(s, a) with some initial approximation
2.	 By interacting with the environment, obtain the tuple (s, a, r, s′)
3.	 Calculate loss: L = (Qs,a − r)2  if episode has ended or 

L = (Qs,a − (r + γmaxa′∈A Qs′,a′))2  otherwise
4.	 Update Q(s, a) using the stochastic gradient descent (SGD) algorithm, 

by minimizing the loss with respect to the model parameters
5.	 Repeat from step 2 until converged
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The preceding algorithm looks simple but, unfortunately, it won't work very well. 
Let's discuss what could go wrong.

Interaction with the environment
First of all, we need to interact with the environment somehow to receive data to 
train on. In simple environments, such as FrozenLake, we can act randomly, but 
is this the best strategy to use? Imagine the game of Pong. What's the probability 
of winning a single point by randomly moving the paddle? It's not zero but it's 
extremely small, which just means that we'll need to wait for a very long time for 
such a rare situation. As an alternative, we can use our Q function approximation 
as a source of behavior (as we did before in the value iteration method, when we 
remembered our experience during testing).

If our representation of Q is good, then the experience that we get from the 
environment will show the agent relevant data to train on. However, we're in trouble 
when our approximation is not perfect (at the beginning of the training, for example). 
In such a case, our agent can be stuck with bad actions for some states without 
ever trying to behave differently. This exploration versus exploitation dilemma was 
mentioned briefly in Chapter 1, What is Reinforcement Learning?. On the one hand, our 
agent needs to explore the environment to build a complete picture of transitions and 
action outcomes. On the other hand, we should use interaction with the environment 
efficiently: we shouldn't waste time by randomly trying actions we've already tried 
and have learned their outcomes. As you can see, random behavior is better at the 
beginning of the training when our Q approximation is bad, as it gives us more 
uniformly distributed information about the environment states. As our training 
progresses, random behavior becomes inefficient and we want to fall back to our 
Q approximation to decide how to act.

A method which performs such a mix of two extreme behaviors is known as an 
epsilon-greedy method, which just means switching between random and Q policy 
using the probability hyperparameter ε. By varying ε we can select the ratio of 
random actions. The usual practice is to start with ε = 1.0 (100% random actions) 
and slowly decrease it to some small value such as 5% or 2% of random actions. 
Using an epsilon-greedy method helps both to explore the environment in the 
beginning and to stick to good policy at the end of the training. There are other 
solutions to the "exploration versus exploitation" problem, and we'll discuss some 
of them in part three of the book. This problem is one of the fundamental open 
questions in RL and an active area of research, which is not even close to being 
resolved completely.
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SGD optimization
The core of our Q-learning procedure is borrowed from the supervised learning. 
Indeed, we are trying to approximate a complex, nonlinear function Q(s, a) with 
a neural network. To do this, we calculate targets for this function using the Bellman 
equation and then pretend that we have a supervised learning problem at hand. 
That's okay, but one of the fundamental requirements for SGD optimization is that 
the training data is independent and identically distributed (frequently abbreviated 
as i.i.d).

In our case, data that we're going to use for the SGD update doesn't fulfill these 
criteria:

1.	 Our samples are not independent. Even if we accumulate a large batch of 
data samples, they all will be very close to each other, as they belong to the 
same episode.

2.	 Distribution of our training data won't be identical to samples provided 
by the optimal policy that we want to learn. Data that we have is a result 
of some other policy (our current policy, random, or both in the case of  
ε-greedy), but we don't want to learn how to play randomly: we want 
an optimal policy with the best reward.

To deal with this nuisance, we usually need to use a large buffer of our past experience 
and sample training data from it, instead of using our latest experience. This method 
is called replay buffer. The simplest implementation is a buffer of fixed size, with new 
data added to the end of the buffer so that it pushes the oldest experience out of it. 
Replay buffer allows us to train on more-or-less independent data, but data will still 
be fresh enough to train on samples generated by our recent policy.

Correlation between steps
Another practical issue with the default training procedure is also related to the lack of 
i.i.d in our data, but in a slightly different manner. The Bellman equation provides us 
with the value of Q(s, a) via Q(s′, a′) (which has the name of bootstrapping). However, 
both states s and s′ have only one step between them. This makes them very similar 
and it's really hard for neural networks to distinguish between them. When we 
perform an update of our network's parameters, to make Q(s, a) closer to the desired 
result, we indirectly can alter the value produced for Q(s′, a′) and other states nearby. 
This can make our training really unstable, like chasing our own tail: when we update 
Q for state s, then on subsequent states we discover that Q(s′, a′) becomes worse, but 
attempts to update it can spoil our Q(s, a) approximation, and so on.
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To make training more stable, there is a trick, called target network, when we keep 
a copy of our network and use it for the Q(s′, a′) value in the Bellman equation. 
This network is synchronized with our main network only periodically, for example, 
once in N steps (where N is usually quite a large hyperparameter, such as 1k or 
10k training iterations).

The Markov property
Our RL methods use MDP formalism as their basis, which assumes that the 
environment obeys the Markov property: observation from the environment 
is all that we need to act optimally (in other words, our observations allow us 
to distinguish states from one another). As we've seen on the preceding Pong's 
screenshot, one single image from the Atari game is not enough to capture all 
important information (using only one image we have no idea about the speed and 
direction of objects, like the ball and our opponent's paddle). This obviously violates 
the Markov property and moves our single-frame Pong environment into the area 
of partially observable MDPs (POMDP). A POMDP is basically MDP without the 
Markov property and they are very important in practice. For example, for most card 
games where you don't see your opponents' cards, game observations are POMDPs, 
because current observation (your cards and cards on the table) could correspond 
to different cards in your opponents' hands.

We'll not discuss POMPDs in detail in this book, so, for now, we'll use a small 
technique to push our environment back into the MDP domain. The solution is 
maintaining several observations from the past and using them as a state. In the 
case of Atari games, we usually stack k subsequent frames together and use them 
as the observation at every state. This allows our agent to deduct the dynamics 
of the current state, for instance, to get the speed of the ball and its direction. The 
usual "classical" number of k for Atari is four. Of course, it's just a hack, as there can 
be longer dependencies in the environment, but for most of the games it works well.

The final form of DQN training
There are many more tips and tricks that researchers have discovered to make 
DQN training more stable and efficient, and we'll cover the best of them in the next 
chapter. However, ε-greedy, replay buffer, and target network form? the basis 
that allows DeepMind to successfully train a DQN on a set of 49 Atari games and 
demonstrate the efficiency of this approach applied to complicated environments.
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The original paper (without target network) was published at the end of 2013 
(Playing Atari with Deep Reinforcement Learning 1312.5602v1, Mnih and others.), and 
they used seven games for testing. Later, at the beginning of 2015, a revised version 
of the article, with 49 different games, was published in Nature (Human-Level Control 
Through Deep Reinforcement Learning doi:10.1038/nature14236, Mnih and others.)

The algorithm for DQN from the preceding papers has the following steps:

1.	 Initialize parameters for Q(s, a) and Q̂(s, a) with random weights, ε ← 1.0,  
and empty replay buffer

2.	 With probability ε, select a random action a, otherwise a = argmaxa Qs,a

3.	 Execute action a in an emulator and observe reward r and the next state s′
4.	 Store transition (s, a, r, s′) in the replay buffer
5.	 Sample a random minibatch of transitions from the replay buffer
6.	 For every transition in the buffer, calculate target y = r if the episode has 

ended at this step or y = r + γmaxa′∈A Q̂s′,a′  otherwise
7.	 Calculate loss: L = (Qs,a − y)2

8.	 Update Q(s, a) using the SGD algorithm by minimizing the loss in respect 
to model parameters

9.	 Every N steps copy weights from Q to ˆ
tQ

10.	 Repeat from step 2 until converged

Let's implement it now and try to beat some of the Atari games!

DQN on Pong
Before we jump into the code, some introduction is needed. Our examples are 
becoming increasingly challenging and complex, which is not surprising, as the 
complexity of problems we're trying to tackle is also growing. The examples are as 
simple and concise as possible, but some of the code may be difficult to understand 
at first.
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Another thing to note is performance. Our previous examples for FrozenLake, or 
CartPole, were not demanding from a performance perspective, as observations were 
small, neural network parameters were tiny, and shaving off extra milliseconds in the 
training loop wasn't important. However, from now on, that's not the case anymore. 
One single observation from the Atari environment is 100k values, which has to be 
rescaled, converted to floats, and stored in the replay buffer. One extra copy of this 
data array can cost you training speed, which is not seconds and minutes anymore, 
but could be hours even on the fastest GPU available. The neural network training 
loop could also be a bottleneck. Of course, RL models are not such huge monsters as 
state-of-the-art ImageNet models, but even the DQN model from 2015 has more than 
1.5M parameters, which is a lot for a GPU to crunch. So, to make a long story short: 
performance matters, especially when you're experimenting with hyperparameters 
and need to wait not for a single model to train, but for dozens of them.

PyTorch is quite expressive, so more-or-less efficient processing code could look 
much less cryptic than optimized TensorFlow graphs, but there is still lots of 
opportunity for doing things slowly and making mistakes. For example, a naive 
version of DQN loss computation, which loops over every batch sample, is about two 
times slower than a parallel version. However, a single extra copy of the data batch 
can make the speed of the same code 13 times slower, which is quite significant.

This example has been split into three modules due to its length, logical structure, 
and reusability. The modules are as follows:

•	 Chapter06/lib/wrappers.py: These are Atari environment wrappers 
mostly taken from the OpenAI Baselines project

•	 Chapter06/lib/dqn_model.py: This is the DQN neural net layer, with 
the same architecture as the DeepMind DQN from the Nature paper

•	 Chapter06/02_dqn_pong.py: This is the main module with the 
training loop, loss function calculation, and experience replay buffer
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Wrappers
Tackling Atari games with RL is quite demanding from a resource perspective. 
To make things faster, several transformations are applied to the Atari platform 
interaction, which are described in DeepMind's paper. Some of these transformations 
influence only performance, but some address Atari platform features that make 
learning long and unstable. Transformations are usually implemented as OpenAI 
Gym wrappers of various kinds. The full list is quite lengthy and there are several 
implementations of the same wrappers in various sources. My personal favorite is in 
the OpenAI repository called baselines, which is a set of RL methods and algorithms 
implemented in TensorFlow and applied to popular benchmarks, to establish the 
common ground for comparing methods. The repository is available from https://
github.com/openai/baselines, and wrappers are available in this file: https://
github.com/openai/baselines/blob/master/baselines/common/atari_
wrappers.py.

The full list of Atari transformations used by RL researchers includes:

•	 Converting individual lives in the game into separate episodes. In general, 
an episode contains all the steps from the beginning of the game until 
the "Game over" screen appears?, which can last for thousands of game 
steps (observations and actions). Usually, in arcade games, the player 
is given several lives, which provide several attempts in the game. This 
transformation splits a full episode into individual small episodes for every 
life that a player has. Not all games support this feature (for example, Pong 
doesn't), but for the supported environments, it usually helps to speed up 
convergence as our episodes become shorter.

•	 In the beginning of the game, performing a random amount (up to 30)  
of no-op actions. This should stabilize training, but there is no proper 
explanation why it is the case.

•	 Making an action decision every K steps, where K is usually 4 or 3. On 
intermediate frames, the chosen action is simply repeated. This allows 
training to speed up significantly, as processing every frame with a neural 
network is quite a demanding operation, but the difference between 
consequent frames is usually minor.

•	 Taking the maximum of every pixel in the last two frames and using it as an 
observation. Some Atari games have a flickering effect, which is due to the 
platform's limitation (Atari has a limited amount of sprites that can be shown 
on a single frame). For a human eye, such quick changes are not visible, but 
they can confuse neural networks.

https://github.com/openai/baselines
https://github.com/openai/baselines
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
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•	 Pressing FIRE in the beginning of the game. Some games (including Pong 
and Breakout) require a user to press the FIRE button to start the game. 
In theory, it's possible for a neural network to learn to press FIRE itself, 
but it will require much more episodes to be played. So, we press FIRE 
in the wrapper.

•	 Scaling every frame down from 210 × 160, with three color frames, into 
a single-color 84 × 84 image. Different approaches are possible. For example, 
the DeepMind paper describes this transformation as taking the Y-color 
channel from the YCbCr color space and then rescaling the full image to 
an 84 × 84 resolution. Some other researchers do grayscale transformation, 
cropping non-relevant parts of the image and then scaling down. In 
the Baselines repository (and in the following example code), the latter 
approach is used.

•	 Stacking several (usually four) subsequent frames together to give the 
network the information about the dynamics of the game's objects.

•	 Clipping the reward to −1, 0, and 1 values. The obtained score can vary 
wildly among the games. For example, in Pong you get a score of 1 for every 
ball that your opponent passes behind you. However, in some games, like 
KungFu, you get a reward of 100 for every enemy killed. This spread in 
reward values makes our loss have completely different scales between the 
games, which makes it harder to find common hyperparameters for a set of 
games. To fix this, reward just gets clipped to the range [−1...1].

•	 Converting observations from unsigned bytes to float32 values. The screen 
obtained from the emulator is encoded as a tensor of bytes with values from 
0 to 255, which is not the best representation for a neural network. So, we 
need to convert the image into floats and rescale the values to the range 
[0.0…1.0].

In our example on Pong, we don't need some of the above wrappers, such as 
converting lives into separate episodes and reward clipping, so those wrappers 
aren't included in the example code. However, you should be aware of them, just 
in case you decide to experiment with other games. Sometimes, when the DQN is not 
converging, the problem is not in the code but in the wrongly wrapped environment. 
I've spend several days debugging convergence issues caused by missing the FIRE 
button press at the beginning of a game!

Let's take a look at the implementation of individual wrappers from  
Chapter06/lib/wrappers.py:

import cv2
import gym
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import gym.spaces
import numpy as np
import collections

class FireResetEnv(gym.Wrapper):
    def __init__(self, env=None):
        super(FireResetEnv, self).__init__(env)
        assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
        assert len(env.unwrapped.get_action_meanings()) >= 3

    def step(self, action):
        return self.env.step.action()

    def reset(self):
        self.env.reset()
        obs, _, done, _ = self.env.step(1)
        if done:
            self.env.reset()
        obs, _, done, _ = self.env.step(2)
        if done:
            self.env.reset()
        return obs

The preceding wrapper presses the FIRE button in environments that require them 
for the game to start. In addition to pressing FIRE, this wrapper checks for several 
corner cases that are present in some games.

class MaxAndSkipEnv(gym.Wrapper):
    def __init__(self, env=None, skip=4):
        """Return only every 'skip'-th frame"""
        super(MaxAndSkipEnv, self).__init__(env)
        # most recent raw observations (for max pooling across  
time steps)
        self._obs_buffer = collections.deque(maxlen=2)
        self._skip = skip

    def step(self, action):
        total_reward = 0.0
        done = None
        for _ in range(self._skip):
            obs, reward, done, info = self.env.step(action)
            self._obs_buffer.append(obs)
            total_reward += reward
            if done:
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                break
        max_frame = np.max(np.stack(self._obs_buffer), axis=0)
        return max_frame, total_reward, done, info

    def _reset(self):        
        self._obs_buffer.clear()
        obs = self.env.reset()
        self._obs_buffer.append(obs)
        return obs

This wrapper combines the repetition of actions during K frames and pixels from 
two consecutive frames.

class ProcessFrame84(gym.ObservationWrapper):
    def __init__(self, env=None):
        super(ProcessFrame84, self).__init__(env)
        self.observation_space = gym.spaces.Box(low=0, high=255,  
shape=(84, 84, 1), dtype=np.uint8)

    def observation(self, obs):
        return ProcessFrame84.process(obs)

    @staticmethod
    def process(frame):
        if frame.size == 210 * 160 * 3:
            img = np.reshape(frame, [210, 160,  
3]).astype(np.float32)
        elif frame.size == 250 * 160 * 3:
            img = np.reshape(frame, [250, 160,  
3]).astype(np.float32)
        else:
            assert False, "Unknown resolution."
        img = img[:, :, 0] * 0.299 + img[:, :, 1] * 0.587 + img[:,  
:, 2] * 0.114
        resized_screen = cv2.resize(img, (84, 110),  
interpolation=cv2.INTER_AREA)
        x_t = resized_screen[18:102, :]
        x_t = np.reshape(x_t, [84, 84, 1])
        return x_t.astype(np.uint8)
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The goal of this wrapper is to convert input observations from the emulator, which 
normally has a resolution of 210 × 160 pixels with RGB color channels, to a grayscale 
84 × 84 image. It does this using a colorimetric grayscale conversion (which is closer 
to human color perception than a simple averaging of color channels), resizing the 
image and cropping the top and bottom parts of the result.

class BufferWrapper(gym.ObservationWrapper):
    def __init__(self, env, n_steps, dtype=np.float32):
        super(BufferWrapper, self).__init__(env)
        self.dtype = dtype
        old_space = env.observation_space
        self.observation_space =  
gym.spaces.Box(old_space.low.repeat(n_steps, axis=0),
        old_space.high.repeat(n_steps, axis=0), dtype=dtype)

    def reset(self):
        self.buffer = np.zeros_like(self.observation_space.low,  
dtype=self.dtype)
        return self.observation(self.env.reset())

    def observation(self, observation):
        self.buffer[:-1] = self.buffer[1:]
        self.buffer[-1] = observation
        return self.buffer

This class creates a stack of subsequent frames along the first dimension and returns 
them as an observation. The purpose is to give the network an idea about the 
dynamics of the objects, such as the speed and direction of the ball in Pong or how 
enemies are moving. This is very important information, which it is not possible 
to obtain from a single image.

class ImageToPyTorch(gym.ObservationWrapper):
    def __init__(self, env):
        super(ImageToPyTorch, self).__init__(env)
        old_shape = self.observation_space.shape
        self.observation_space = gym.spaces.Box(low=0.0, high=1.0,  
shape=(old_shape[-1], old_shape[0], old_shape[1]),  
dtype=np.float32)

    def observation(self, observation):
        return np.moveaxis(observation, 2, 0)

This simple wrapper changes the shape of the observation from HWC to the CHW 
format required by PyTorch. The input shape of the tensor has a color channel as the 
last dimension, but PyTorch's convolution layers assume the color channel to be the 
first dimension.
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class ScaledFloatFrame(gym.ObservationWrapper):
    def observation(self, obs):
        return np.array(obs).astype(np.float32) / 255.0

The final wrapper we have in the library converts observation data from bytes 
to floats and scales every pixel's value to the range [0.0...1.0].

def make_env(env_name):
    env = gym.make(env_name)
    env = MaxAndSkipEnv(env)
    env = FireResetEnv(env)
    env = ProcessFrame84(env)
    env = ImageToPyTorch(env)
    env = BufferWrapper(env, 4)
    return ScaledFloatFrame(env)

At the end of the file is a simple function that creates an environment by its name 
and applies all the required wrappers to it. That's it for wrappers, so let's look  
at our model.

DQN model
The model published in Nature has three convolution layers followed by two fully 
connected layers. All layers are separated by ReLU nonlinearities. The output 
of the model is Q-values for every action available in the environment, without 
nonlinearity applied (as Q-values can have any value). The approach to have all 
Q-values calculated with one pass through the network helps us to increase speed 
significantly in comparison to treating Q(s, a) literally and feeding observations and 
actions to the network to obtain the value of the action.

The code of the model is in Chapter06/lib/dqn_model.py:

import torch
import torch.nn as nn
import numpy as np

class DQN(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(DQN, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8,  
stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
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            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )

        conv_out_size = self._get_conv_out(input_shape)
        self.fc = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions)
        )

To be able to write our network in the generic way, it was implemented in two 
parts: convolution and sequential. PyTorch doesn't have a 'flatter' layer which could 
transform a 3D tensor into a 1D vector of numbers, required to feed convolution 
output to the fully connected layer. This problem is solved in the forward() 
function, where we can reshape our batch of 3D tensors into a batch of 1D vectors.

Another small problem is that we don't know the exact number of values in 
the output from the convolution layer produced with input of the given shape. 
However, we need to pass this number to the first fully connected layer constructor. 
One possible solution would be to hard-code this number, which is a function of 
input shape (for 84 × 84 input, the output from the convolution layer will have 3136 
values), but it's not the best way, as our code becomes less robust to input shape 
change. The better solution would be to have a simple function (_get_conv_out()) 
that accepts the input shape and applies the convolution layer to a fake tensor of 
such a shape. The result of the function will be equal to the number of parameters 
returned by this application. It will be fast, as this call will be done once on model 
creation but will allow us to have generic code:

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        conv_out = self.conv(x).view(x.size()[0], -1)
        return self.fc(conv_out)
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The final piece of the model is the forward() function, which accepts the 4D input 
tensor (the first dimension is batch size, the second is the color channel, which is our 
stack of subsequent frames, while the third and fourth are image dimensions). The 
application of transformations is done in two steps: first we apply the convolution layer 
to the input and then we obtain a 4D tensor on output. This result is flattened to have 
two dimensions: a batch size and all the parameters returned by the convolution for this 
batch entry as one long vector of numbers. This is done by the view() function of the 
tensors, which lets one single dimension be a -1 argument as a wildcard for the rest of the 
parameters. For example, if we have a tensor T of shape (2, 3, 4), which is a 3D tensor 
of 24 elements, we can reshape it into a 2D tensor with six rows and four columns using 
T.view(6, 4). This operation doesn't create a new memory object or move the data in 
memory, it just changes the higher-level shape of the tensor. The same result could be 
obtained by T.view(-1, 4) or T.view(6, -1), which is very convenient when your 
tensor has a batch size in the first dimension. Finally, we pass this flattened 2D tensor 
to our fully connected layers to obtain Q-values for every batch input.

Training
The third module contains the experience replay buffer, the agent, the loss function 
calculation, and the training loop itself. Before going into the code, something needs 
to be said about the training hyperparameters. DeepMind's Nature paper contained 
a table with all the details about hyperparameters used to train its model on all 
49 Atari games used for evaluation. DeepMind kept all those parameters the same 
for all games (but trained individual models for every game), and it was the team's 
intention to show that the method is robust enough to solve lots of games with 
varying complexity, action space, reward structure, and other details using one 
single model architecture and hyperparameters. However, our goal here is much 
more modest: we want to solve just the Pong game.

Pong is quite simple and straightforward in comparison to other games in the Atari 
test set, so the hyperparameters in the paper are overkill for our task. For example, 
to get the best result on all 49 games, DeepMind used a million-observations 
replay buffer, which requires approximately 20 GB of RAM to keep and lots of 
samples from the environment to populate. The epsilon decay schedule that was 
used is also not the best for a single Pong game. In the training, DeepMind linearly 
decayed epsilon from 1.0 to 0.1 during the first million frames obtained from the 
environment. However, my own experiments have shown that for Pong, it's enough 
to decay epsilon over the first 100k frames and then keep it stable. The replay buffer 
can also be much smaller: 10k transitions will be enough. In the following example, 
I've used my parameters. These differ from the parameters in the paper but allow 
us to solve Pong about ten times faster. On a GeForce GTX 1080 Ti, the following 
version converges to a mean score of 19.5 in one to two hours, but with DeepMind's 
hyperparameters it will require at least a day.
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This speed up, of course, is fine-tuning for one particular environment and can break 
convergence on other games. You're free to play with the options and other games 
from the Atari set.

from lib import wrappers
from lib import dqn_model

import argparse
import time
import numpy as np
import collections

import torch
import torch.nn as nn
import torch.optim as optim

from tensorboardX import SummaryWriter

First, we import required modules and define hyperparameters.

DEFAULT_ENV_NAME = "PongNoFrameskip-v4"
MEAN_REWARD_BOUND = 19.5

These two values set the default environment to train on and the reward boundary 
for the last 100 episodes to stop training. They are just defaults; you can redefine 
them using the command line.

GAMMA = 0.99
BATCH_SIZE = 32
REPLAY_SIZE = 10000
REPLAY_START_SIZE = 10000
LEARNING_RATE = 1e-4
SYNC_TARGET_FRAMES = 1000

These parameters define the following:

•	 Our gamma value used for Bellman approximation
•	 The batch size sampled from the replay buffer (BATCH_SIZE)
•	 The maximum capacity of the buffer (REPLAY_SIZE)
•	 The count of frames we wait for before starting training to populate the 

replay buffer (REPLAY_START_SIZE)
•	 The learning rate used in the Adam optimizer, which is used in this example
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•	 How frequently we sync model weights from the training model to the 
target model, which is used to get the value of the next state in the Bellman 
approximation.

EPSILON_DECAY_LAST_FRAME = 10**5
EPSILON_START = 1.0
EPSILON_FINAL = 0.02

The last batch of hyperparameters is related to the epsilon decay schedule. To achieve 
proper exploration, at early stages of training, we start with epsilon=1.0, which 
causes all actions to be selected randomly. Then, during first 100,000 frames, epsilon 
is linearly decayed to 0.02, which corresponds to the random action taken in 2% 
of steps. A similar scheme was used in the original DeepMind paper, but the duration 
of decay was 10 times longer (so, epsilon = 0.02 is reached after a million frames).

The next chunk of the code defines our experience replay buffer, the purpose of 
which is to keep the last transitions obtained from the environment (tuples of the 
observation, action, reward, done flag, and the next state). Each time we do a step in 
the environment, we push the transition into the buffer, keeping only a fixed number 
of steps, in our case 10k transitions. For training, we randomly sample the batch of 
transitions from the replay buffer, which allows us to break the correlation between 
subsequent steps in the environment.

Experience = collections.namedtuple('Experience',  
field_names=['state', 'action', 'reward', 'done', 'new_state'])

class ExperienceBuffer:
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)

    def __len__(self):
        return len(self.buffer)

    def append(self, experience):
        self.buffer.append(experience)

    def sample(self, batch_size):
        indices = np.random.choice(len(self.buffer), batch_size,  
replace=False)
        states, actions, rewards, dones, next_states =  
zip(*[self.buffer[idx] for idx in indices])
        return np.array(states), np.array(actions),  
np.array(rewards, dtype=np.float32), \
                np.array(dones, dtype=np.uint8),  
np.array(next_states)
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Most of the experience replay buffer code is quite straightforward: it basically 
exploits the capability of the deque class to maintain the given number of entries 
in the buffer. In the sample() method, we create a list of random indices and then 
repack the sampled entries into NumPy arrays for more convenient loss calculation.

The next class we need to have is an Agent, which interacts with the environment 
and saves the result of the interaction into the experience replay buffer that we've 
just seen:

class Agent:
    def __init__(self, env, exp_buffer):
        self.env = env
        self.exp_buffer = exp_buffer
        self._reset()

    def _reset(self):
        self.state = env.reset()
        self.total_reward = 0.0

During the agent's initialization, we need to store references to the environment 
and experience replay buffer, tracking the current observation and the total reward 
accumulated so far.

    def play_step(self, net, epsilon=0.0, device="cpu"):
        done_reward = None

        if np.random.random() < epsilon:
            action = env.action_space.sample()
        else:
            state_a = np.array([self.state], copy=False)
            state_v = torch.tensor(state_a).to(device)
            q_vals_v = net(state_v)
            _, act_v = torch.max(q_vals_v, dim=1)
            action = int(act_v.item())

The main method of the agent is to perform a step in the environment and store its 
result in the buffer. To do this, we need to select the action first. With the probability 
epsilon (passed as an argument) we take the random action, otherwise we use the 
past model to obtain the Q-values for all possible actions and choose the best.

        new_state, reward, is_done, _ = self.env.step(action)
        self.total_reward += reward
        new_state = new_state

        exp = Experience(self.state, action, reward, is_done,  
new_state)
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        self.exp_buffer.append(exp)
        self.state = new_state
        if is_done:
            done_reward = self.total_reward
            self._reset()
        return done_reward

As the action has been chosen, we pass it to the environment to get the next 
observation and reward, store the data in the experience buffer and the handle the 
end-of-episode situation. The result of the function is the total accumulated reward 
if we've reached the end of the episode with this step, or None if not.

Now it is time for the last function in the training module, which calculates the loss 
for the sampled batch. This function is written in a form to maximally exploit GPU 
parallelism by processing all batch samples with vector operations, which makes 
it harder to understand when compared with a naive loop over the batch. Yet this 
optimization pays off: the parallel version is more than two times faster than an 
explicit loop over the batch.

As a reminder, here is the loss expression we need to calculate: 
( )( )

2

, ,maxs a a A s aL Q r Qγ ′ ′ ′∈= − +  for steps which aren't at the end of the episode, or 
( )2,s aL Q r= −  for final steps.

def calc_loss(batch, net, tgt_net, device="cpu"):
    states, actions, rewards, dones, next_states = batch

In arguments, we pass our batch as a tuple of arrays (repacked by the sample() 
method in the experience buffer), our network that we're training and the target 
network, which is periodically synced with the trained one. The first model (passed 
as the argument net) is used to calculate gradients, while the second model in the 
tgt_net argument is used to calculate values for the next states and this calculation 
shouldn't affect gradients. To achieve this, we're using the detach() function of the 
PyTorch tensor to prevent gradients from flowing into the target network's graph. 
This function was described in Chapter 3, Deep Learning with PyTorch.

    states_v = torch.tensor(states).to(device)
    next_states_v = torch.tensor(next_states).to(device)
    actions_v = torch.tensor(actions).to(device)
    rewards_v = torch.tensor(rewards).to(device)
    done_mask = torch.ByteTensor(dones).to(device)
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The preceding code is simple and straightforward: we wrap individual NumPy 
arrays with batch data in PyTorch tensors and copy them to GPU if the CUDA 
device was specified in arguments.

    state_action_values = net(states_v).gather(1,  
actions_v.unsqueeze(-1)).squeeze(-1)

In the line above, we pass observations to the first model and extract the specific 
Q-values for the taken actions using the gather() tensor operation. The first 
argument to the gather() call is a dimension index that we want to perform 
gathering on (in our case it is equal to 1, which corresponds to actions). The second 
argument is a tensor of indices of elements to be chosen. Extra unsqueeze() and 
squeeze() calls are required to fulfill the requirements of the gather functions to 
the index argument and to get rid of extra dimensions that we created (the index 
should have the same number of dimensions as the data we're processing). In the 
following image, you can see an illustration of what gather does on the example 
case, with a batch of six entries and four actions.

Figure 3: Transformation of tensors during a DQN loss calculation

Keep in mind that the result of gather() applied to tensors is a differentiable 
operation, which will keep all gradients with respect to the final loss value.

    next_state_values = tgt_net(next_states_v).max(1)[0]

On in the above line, we apply the target network to our next state observations and 
calculate the maximum Q-value along the same action dimension 1. Function max() 
returns both maximum values and indices of those values (so it calculates both max 
and argmax), which is very convenient. However, in this case, we're interested only 
in values, so we take the first entry of the result.

    next_state_values[done_mask] = 0.0
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Here we make one simple, but very important, point: if transition in the batch is from 
the last step in the episode, then our value of the action doesn't have a discounted 
reward of the next state, as there is no next state to gather reward from. This may 
look minor, but this is very important in practice: without this, training will not 
converge.

    next_state_values = next_state_value.detach()

In this line, we detach the value from its computation graph to prevent gradients 
from flowing into the neural network used to calculate Q approximation for next 
states. This is important, as without this our backpropagation of the loss will start 
to affect both predictions for the current state and the next state. However, we don't 
want to touch predictions for the next state, as they're used in the Bellman equation 
to calculate reference Q-values. To block gradients from flowing into this branch of 
the graph, we're using the detach() method of the tensor, which returns the tensor 
without connection to its calculation history. In previous versions of PyTorch, we 
used a volatile attribute of the Variable class, which was obsoleted with the 0.4.0 
release. More information was provided in Chapter 3, Deep Learning with PyTorch.

    expected_state_action_values = next_state_values * GAMMA +  
rewards_v
    return nn.MSELoss()(state_action_values,  
expected_state_action_values)

Finally, we calculate the Bellman approximation value and the mean squared error loss. 
This ends our loss function calculation, and the rest of the code is our training loop.

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False,  
action="store_true", help="Enable cuda")
    parser.add_argument("--env", default=DEFAULT_ENV_NAME,
                        help="Name of the environment, default=" +  
DEFAULT_ENV_NAME)
    parser.add_argument("--reward", type=float,  
default=MEAN_REWARD_BOUND,
                        help="Mean reward boundary for stop of  
training, default=%.2f" % MEAN_REWARD_BOUND)
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

To begin with, we create a parser of command-line arguments. Our script allows 
us to enable CUDA and train on environments that are different from the default.

    env = wrappers.make_env(args.env)
    net = dqn_model.DQN(env.observation_space.shape,  
env.action_space.n).to(device)
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    tgt_net = dqn_model.DQN(env.observation_space.shape,  
env.action_space.n).to(device)

Here we create our environment with all required wrappers applied, the neural 
network we're going to train, and our target network with the same architecture. 
In the beginning, they'll be initialized with different random weights, but it doesn't 
matter much as we'll sync them every 1k frames, which roughly corresponds to one 
episode of Pong.

    writer = SummaryWriter(comment="-" + args.env)
    print(net)

    buffer = ExperienceBuffer(REPLAY_SIZE)
    agent = Agent(env, buffer)
    epsilon = EPSILON_START

Then we create our experience replay buffer of the required size and pass it to the 
agent. Epsilon is initially initialized to 1.0, but will be decreased every iteration.

    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
    total_rewards = []
    frame_idx = 0
    ts_frame = 0
    ts = time.time()
    best_mean_reward = None

The last things we do before the training loop are to create an optimizer, a buffer for 
full episode rewards, a counter of frames and several variables to track our speed, 
and the best mean reward reached. Every time our mean reward beats the record, 
we'll save the model in the file.

    while True:
        frame_idx += 1
        epsilon = max(EPSILON_FINAL, EPSILON_START - frame_idx /  
EPSILON_DECAY_LAST_FRAME)

At the beginning of the training loop, we count the number of iterations completed 
and decrease epsilon according to our schedule. Epsilon will drop linearly during the 
given number of frames (EPSILON_DECAY_LAST_FRAME=100k) and then will be kept 
on the same level of EPSILON_FINAL=0.02.

        reward = agent.play_step(net, epsilon, device=device)
        if reward is not None:
            total_rewards.append(reward)
            speed = (frame_idx - ts_frame) / (time.time() - ts)
            ts_frame = frame_idx
            ts = time.time()



Chapter 6

[ 147 ]

            mean_reward = np.mean(total_rewards[-100:])
            print("%d: done %d games, mean reward %.3f, eps %.2f,  
speed %.2f f/s" % (
                frame_idx, len(total_rewards), mean_reward,  
epsilon,
                speed
            ))
            writer.add_scalar("epsilon", epsilon, frame_idx)
            writer.add_scalar("speed", speed, frame_idx)
            writer.add_scalar("reward_100", mean_reward,  
frame_idx)
            writer.add_scalar("reward", reward, frame_idx)

In this block of code, we ask our agent to make a single step in the environment 
(using our current network and value for epsilon). This function returns a non-
None result only if this step is the final step in the episode. In that case, we report 
our progress. Specifically, we calculate and show, both in the console and in 
TensorBoard, these values:

•	 Speed as a count of frames processed per second
•	 Count of episodes played
•	 Mean reward for the last 100 episodes
•	 Current value for epsilon

            if best_mean_reward is None or best_mean_reward <  
mean_reward:
                torch.save(net.state_dict(), args.env + "- 
best.dat")
                if best_mean_reward is not None:
                    print("Best mean reward updated %.3f -> %.3f,  
model saved" % (best_mean_reward, mean_reward))
                best_mean_reward = mean_reward
            if mean_reward > args.reward:
                print("Solved in %d frames!" % frame_idx)
                break

Every time our mean reward for the last 100 episodes reaches a maximum, 
we report this and save the model parameters. If our mean reward exceeds the 
specified boundary, then we stop training. For Pong, the boundary is 19.5, which 
means winning more than 19 games from 21 possible games.

        if len(buffer) < REPLAY_START_SIZE:
            continue
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        if frame_idx % SYNC_TARGET_FRAMES == 0:
            tgt_net.load_state_dict(net.state_dict())

Here we check whether our buffer is large enough for training. In the beginning, 
we should wait for enough data to start, which in our case is 10k transitions. The 
next condition syncs parameters from our main network to the target net every 
SYNC_TARGET_FRAMES, which is 1k by default.

        optimizer.zero_grad()
        batch = buffer.sample(BATCH_SIZE)
        loss_t = calc_loss(batch, net, tgt_net, device=device)
        loss_t.backward()
        optimizer.step()

The last piece of the training loop is very simple, but requires the most time to 
execute: we zero gradients, sample data batches from the experience replay buffer, 
calculate loss, and perform the optimization step to minimize the loss.

Running and performance
This example is demanding on resources. On Pong, it requires about 400k frames 
to reach a mean reward of 17 (which means winning more than 80% of games). 
A similar number of frames will be required to get from 17 to 19.5, as our learning 
progress saturates and it's hard for the model to improve the score. So, on average, a 
million frames are needed to train it fully. On the GTX 1080 Ti, I have a speed of about 
150 frames per second, which is about two hours of training. On a CPU, the speed is 
much slower: about nine frames per second, which will take about a day and a half. 
Remember that this is for Pong, which is relatively easy to solve. Other games require 
hundreds of millions of frames and a 100 times larger experience replay buffer.

In the next chapter, we'll look at various approaches, found by researchers 
since 2015, which can help to increase both training speed and data efficiency. 
Nevertheless, for Atari you'll need resources and patience. The following image 
shows a TensorBoard screenshot with training dynamics:

Figure 4: Characteristics of the training process (the X axis is the iteration number)
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In the beginning of the training:

rl_book_samples/Chapter06$ ./02_dqn_pong.py --cuda
DQN (
  (conv): Sequential (
    (0): Conv2d(4, 32, kernel_size=(8, 8), stride=(4, 4))
    (1): ReLU ()
    (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
    (3): ReLU ()
    (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
    (5): ReLU ()
  )
  (fc): Sequential (
    (0): Linear (3136 -> 512)
    (1): ReLU ()
    (2): Linear (512 -> 6)
  )
)

1048: done 1 games, mean reward -19.000, eps 0.99, speed 83.45 f/s

1894: done 2 games, mean reward -20.000, eps 0.98, speed 913.37 f/s

2928: done 3 games, mean reward -20.000, eps 0.97, speed 932.16 f/s

3810: done 4 games, mean reward -20.250, eps 0.96, speed 923.60 f/s

4632: done 5 games, mean reward -20.400, eps 0.95, speed 921.52 f/s

5454: done 6 games, mean reward -20.500, eps 0.95, speed 918.04 f/s

6379: done 7 games, mean reward -20.429, eps 0.94, speed 906.64 f/s

7409: done 8 games, mean reward -20.500, eps 0.93, speed 903.51 f/s

8259: done 9 games, mean reward -20.556, eps 0.92, speed 905.94 f/s

9395: done 10 games, mean reward -20.500, eps 0.91, speed 898.05 f/s

10204: done 11 games, mean reward -20.545, eps 0.90, speed 374.76 f/s

10995: done 12 games, mean reward -20.583, eps 0.89, speed 160.55 f/s

11887: done 13 games, mean reward -20.538, eps 0.88, speed 160.44 f/s

12949: done 14 games, mean reward -20.571, eps 0.87, speed 160.67 f/s

Hundreds of games later, our DQN should start to figure out how to win one or two 
games out of 21. The speed has decreased due to epsilon drop: we need to use our 
model not only for training but also for the environment step.

101032: done 83 games, mean reward -19.506, eps 0.02, speed 143.06 f/s

103349: done 84 games, mean reward -19.488, eps 0.02, speed 142.99 f/s
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106444: done 85 games, mean reward -19.424, eps 0.02, speed 143.15 f/s

108359: done 86 games, mean reward -19.395, eps 0.02, speed 143.18 f/s

110499: done 87 games, mean reward -19.379, eps 0.02, speed 143.01 f/s

113011: done 88 games, mean reward -19.352, eps 0.02, speed 142.98 f/s

115404: done 89 games, mean reward -19.326, eps 0.02, speed 143.07 f/s

117821: done 90 games, mean reward -19.300, eps 0.02, speed 143.03 f/s

121060: done 91 games, mean reward -19.220, eps 0.02, speed 143.10 f/s

Finally, after many more games, it can finally dominate and beat the (not very 
sophisticated) built-in Pong AI opponent:

982059: done 520 games, mean reward 19.500, eps 0.02, speed 145.14 f/s

984268: done 521 games, mean reward 19.420, eps 0.02, speed 145.39 f/s

986078: done 522 games, mean reward 19.440, eps 0.02, speed 145.24 f/s

987717: done 523 games, mean reward 19.460, eps 0.02, speed 145.06 f/s

989356: done 524 games, mean reward 19.470, eps 0.02, speed 145.07 f/s

991063: done 525 games, mean reward 19.510, eps 0.02, speed 145.31 f/s

Best mean reward updated 19.500 -> 19.510, model saved

Solved in 991063 frames!

Your model in action
Just to make your waiting a bit more fun, our code saves the best model's weights.  
In the Chapter06/03_dqn_play.py file, we have a program which can load this 
model file and play one episode, displaying the model's dynamics.

The code is very simple, but seeing how several matrices, with a million parameters, 
play Pong with superhuman accuracy, by observing only the pixels, can be like magic.

import gym
import time
import argparse
import numpy as np
import torch
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from lib import wrappers
from lib import dqn_model

DEFAULT_ENV_NAME = "PongNoFrameskip-v4"
FPS = 25

In the beginning, we import the familiar PyTorch and Gym modules. The preceding 
FPS parameter specifies the approximate speed of the shown frames.

If __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-m", "—model", required=True, help="Model  
file to load")
    parser.add_argument("-e", "—env", default=DEFAULT_ENV_NAME,
                        help="Environment name to use, default=" +  
DEFAULT_ENV_NAME)
    parser.add_argument("-r", "—record", help="Directory to store  
video recording")
    args = parser.parse_args()

The script accepts the filename of the saved model and allows the specification 
of the Gym environment (of course, the model and environment have to match). 
Additionally, you can pass option -r with the name of a non existent directory, 
which will be used to save a video of your game (using the Monitor wrapper). 
By default, the script just shows frames, but if you want to upload your model's 
gameplay to YouTube, for example, -r could be handy.

    env = wrappers.make_env(args.env)
    if args.record:
        env = gym.wrappers.Monitor(env, args.record)
    net = dqn_model.DQN(env.observation_space.shape,  
env.action_space.n)
    net.load_state_dict(torch.load(args.model))

The preceding code should be clear without comments: we create the environment 
and our model, then we load weights from the file passed in the arguments.

    state = env.reset()
    total_reward = 0.0
    while True:
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        start_ts = time.time()
        env.render()
        state_v = torch.tensor(np.array([state], copy=False))
        q_vals = net(state_v).data.numpy()[0]
        action = np.argmax(q_vals)

This is almost an exact copy of Agent class' method play_step() from the training 
code, with the lack of epsilon-greedy action selection. We just pass our observation 
to the agent and select the action with maximum value. The only new thing here 
is the render() method in the environment, which is a standard way in Gym to 
display the current observation (you need to have a GUI for this).

        state, reward, done, _ = env.step(action)
        total_reward += reward
        if done:
            break
        delta = 1/FPS - (time.time() - start_ts)
        if delta > 0:
            time.sleep(delta)
    print("Total reward: %.2f" % total_reward)

The rest of the code is also simple. We pass the action to the environment, count 
the total reward, and stop our loop when the episode ends.

Things to try: If you're curious and want to experiment with this chapter's material 
on your own, then here is a short list of directions to explore. Be warned though: 
they can take lots of time and can cause you some moments of frustration during 
your experiments. However, these experiments are a very efficient way to really 
master the material from a practical point of view:

•	 Try to take some other games from the Atari set, such as Breakout or Atlantis 
or RiverRaid (my childhood favorite). This could require the tuning of 
hyperparameters.

•	 As an alternative to FrozenLake, there is another tabular environment, Taxi, 
which emulates a taxi driver who needs to pick up passengers and take them 
to a destination.

•	 Play with Pong hyperparameters. Is it possible to train faster? OpenAI claims 
that it can solve Pong in 30 minutes using the A3C method (which is a subject 
of part three of this book). Maybe it's possible with a DQN.

•	 Can you make the DQN training code faster? The OpenAI Baselines project 
has shown 350 frames per second using TensorFlow on GTX 1080 Ti. So, 
it looks like it's possible to optimize the PyTorch code.

•	 Can you get The Ultimate Pong Dominator model with a mean score of 21?  
It shouldn't be very hard: learning rate decay is the obvious method to try.
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Summary
In this chapter, we introduced lots of new and complex material. We became 
familiar with the limitations of value iteration in complex environments with large 
observation spaces and discussed how to overcome them with Q-learning. We 
checked the Q-learning algorithm on the FrozenLake environment and discussed 
the approximation of Q-values with neural networks and the extra complications 
that arise from this approximation. We covered several tricks for DQNs to improve 
their training stability and convergence, such as experience replay buffer, target 
networks, and frame stacking. Finally, we combined those extensions in to one 
single implementation of DQN that solves the Pong environment from the Atari  
games suite.

In the next chapter, we'll look at a set of tricks that researchers have found, since 
2015, to improve DQN convergence and quality, which (combined) can produce 
state-of-the-art results on most of the 54 Atari games. This set was published in 
2017 and we'll analyze and reimplement all of the tricks.
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DQN Extensions
In the previous chapter, we implemented the Deep Q-Network (DQN) model 
published by DeepMind in 2015. This paper had a significant effect on the 
Reinforcement Learning (RL) field by demonstrating that, despite common belief, 
it's possible to use nonlinear approximators in RL. This proof of concept stimulated 
large interest in the deep Q-learning field in particular and in deep RL in general.

Since then, many improvements have been proposed, along with tweaks to the 
basic architecture, which significantly improve convergence, stability and sample 
efficiency of the basic DQN invented by DeepMind. In this chapter, we'll take a 
deeper look at some of those ideas. Very conveniently, in October 2017, DeepMind 
published a paper called Rainbow: Combining Improvements in Deep Reinforcement 
Learning ([1] Hessel and others, 2017), which presented the seven most important 
improvements to DQN, some of which were invented in 2015, but some of which 
are very recent. In this paper, state-of-the-art results on the Atari Games suite were 
reached, just by combining all those seven methods together.

This chapter will go through all those methods. We will analyze the ideas behind 
them, alongside how they could be implemented and compared to the classic DQN 
performance. At the end, we'll check the combined system with all the methods.

The DQN extensions we'll become familiar with are as follows:

•	 N-steps DQN: How to improve convergence speed and stability  
with a simple unrolling of the Bellman equation and why it's not  
an ultimate solution

•	 Double DQN: How to deal with DQN overestimation of the values  
of actions

•	 Noisy networks: How to make exploration more efficient by adding noise 
to the network weights
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•	 Prioritized replay buffer: Why uniform sampling of our experience is not 
the best way to train

•	 Dueling DQN: How to improve convergence speed by making our 
network's architecture closer represent the problem we're solving

•	 Categorical DQN: How to go beyond the single expected value of action 
and work with full distributions

First, we should simplify our experiments a bit by incorporating higher-level 
libraries in our DQN code.

The PyTorch Agent Net library
In Chapter 6, Deep Q-Networks, we implemented a DQN from scratch, using 
only PyTorch, OpenAI Gym, and pytorch-tensorboard. It suited our needs 
to demonstrate how things work, but now we're going to extend the basic DQN 
with extra tweaks. Some tweaks are quite simple and trivial, but some will require 
a major code modification. To be able to focus only on the significant parts, it would 
be useful to have as small and concise version of a DQN as possible, preferably with 
reusable code pieces. This will be extremely helpful when you're experimenting 
with some methods published in papers or your own ideas. In that case, you don't 
need to reimplement the same functionality again and again, fighting with the 
inevitable bugs.

With this in mind, some time ago I started to implement my own toolkit for the 
deep RL domain. I called it PTAN, which stands for PyTorch Agent Net, as it was 
inspired by another open-source library called AgentNet (https://github.com/
yandexdataschool/AgentNet). The basic design principles I tried to follow in  
PTAN are as follows:

•	 Being as simple and clean as possible
•	 PyTorch-nativeness
•	 Containing small, reusable pieces of functionality
•	 Extensibility and flexibility

The library is available in GitHub: https://github.com/Shmuma/ptan. All the 
subsequent examples were implemented using version 0.3 of PTAN, which can 
be installed in your virtual environment by running the following:

pip install ptan==0.3

Let's look at the basic building blocks that PTAN provides.

https://github.com/yandexdataschool/AgentNet
https://github.com/yandexdataschool/AgentNet
https://github.com/Shmuma/ptan
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Agent
The agent entity provides a unified way of bridging observations from the 
environment and the actions that we want to execute. So far, we've seen only  
a simple, stateless DQN agent that uses a neural net to obtain actions' values  
from the current observation and behaves greedily on those values. We've used 
epsilon-greedy behavior to explore the environment, but this doesn't change the 
picture much.

In the RL field, this could be more complicated. For example, instead of predicting 
the values of the actions, our agent can predict probability distribution over actions. 
Such agents are called policy agents and we'll talk about those methods in part three 
of the book. The other requirement could be some kind of memory in the agent. For 
example, very often one observation (or even k last observation) is not enough to 
make a decision about the action and we want to keep some memory in the agent 
to capture the necessary information. There is a whole subdomain of RL which tries 
to address this complication with Partially-Observable Markov Decision Process 
(POMDP) formalism. We'll briefly touch on this case in the last part of the book.

To capture all those variants and make the code flexible, the agent in the PTAN is 
implemented as an extensible hierarchy of classes with the ptan.agent.BaseAgent 
abstract class at the top. From the high level, the agent needs to accept the batch 
of observation (in the form of a NumPy array) and return the batch of actions that 
the agent wants to take. The batch is used to make the processing more efficient, as 
processing several observations in one pass in GPU is frequently much faster than 
processing them individually. The abstract base class doesn't define the type of input 
and output, which makes it very flexible and easy to extend. For example, in the 
continuous domain, our actions won't any longer be indices of discrete actions,  
but float values.

The agent that corresponds to our current DQN requirements is ptan.agent.
DQNAgent, which uses the provided PyTorch nn.Module to convert a batch of 
observations into action values. To convert the network's output into actual actions 
to be taken, the DQNAgent class needs the second object to be passed on creation: 
action selector.

The purpose of action selector is to convert the output of the network (usually it's 
a vector of numbers) into some action. In a discrete action space case, the action will 
be one or several action indices to be taken. There are two action selectors in the 
PTAN that we'll need: ptan.actions.ArgmaxActionSelector and ptan.actions.
EpsilonGreedyActionSelector. As you may guess from the names, the first one 
(ArgmaxActionSelector) applies argmax to the provided values, which corresponds 
to greedy actions over Q-values. 
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The second action selector supports epsilon-greedy behavior, by having epsilon as 
a parameter and with this probability taking the random action instead of the greedy 
selection. To combine all this together, to create the agent for CartPole, with epsilon-
greedy action selection, we can write the following code:

import gym
import ptan
import numpy as np
import torch.nn as nn

env = gym.make("CartPole-v0")
net = nn.Sequential( 
    nn.Linear(env.observation_space.shape[0], 256), 
    nn.ReLU(), 
    nn.Linear(256, env.action_space.n) 
)

action_selector =  
ptan.actions.EpsilonGreedyActionSelector(epsilon=0.1) 
agent = ptan.agent.DQNAgent(net, action_selector)

Then, we can just pass the observation to the agent to ask it about the actions to take.

>>> obs = np.array([env.reset()], dtype=np.float32)
>>> agent(obs)
(array([0]), [None])

The first item in the resulting tuple is the batch of actions to take, while the second 
value is related to stateful agents and should be ignored. During the run, we can 
change the epsilon attribute in our action selector to change the random action 
probability during the training.

Agent's experience
The second important abstraction in PTAN is the so-called experience source. In our 
DQN example in the previous chapter, we worked with one-step experience pieces, 
which include four things:

•	 The observed state of the environment at some time step: st

•	 The action the agent has taken: at

•	 The reward the agent has obtained: rt

•	 The observation of the next state: st+1
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We used those values (st, at, rt, st+1) to update our Q approximation using the 
Bellman equation. However, for a general case, we can be interested in longer  
chains of experience, including more time steps of the agent's interaction with  
the environment.

Bellman's equation also could be unrolled to longer experience chains.

Q(st, at) = E[rt + γrt+1 + γ2rt+2 + . . .+ γk max
a

Q(st+k,a]

One of the methods to improve DQN stability and convergence, discussed in this 
chapter, does just this: by unrolling the Bellman's equation to k steps forward (when 
k is usually 2...5), we significantly improve the speed of our training convergence.

To support this situation in a generic way, in PTAN we have the  
ptan.experience.ExperienceSourceFirstLast class, which takes the 
environment and the agent and provides to us the stream of experience  
tuples: (st, at, Rt, st+k), where Rt = rtt+ γrt+1 + γ2rt+2 + . . .+ γk−1rt+k−1 .  
When k = 1, Rt is just the rt .

This class automatically handles end-of-episode situations, letting us know about 
them by setting the last tuple entry to None. In such cases, a reset of the environment 
is performed automatically. Class ExperienceSourceFirstLast exposes the iterator 
interface, generating on every iteration the tuple with experience. The example of 
this class is as follows:

>> exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=0.99, steps_count=1)
>> it = iter(exp_source)
>> next(it)
ExperienceFirstLast(state=array([ 0.03937284, -0.01242409,  
0.03980117,  0.02457287]), action=0, reward=1.0, last_state=array([ 
0.03912436, -0.20809355,  0.04029262,  0.32954308]))

Experience buffer
In case of a DQN, we rarely want to learn from the experience once we get 
it. We usually store it in some large buffer and perform a random sample from  
it to obtain the minibatch to train on. This scenario is supported by the  
ptan.experience.ExperienceReplayBuffer class, which is very similar to 
the implementation we've seen in the previous chapter. To construct it, we need 
to pass the experience source and size of the buffer. By calling the populate(n) 
method, we ask the buffer to pull n examples from the experience source and store 
them in the buffer. The sample(batch_size) method returns a random sample of 
the given size from the current buffer contents.
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Gym env wrappers
To avoid implementing (or copy-pasting) common Atari wrappers over  
and over again, I put them in the ptan.common.wrappers module. They  
are mostly the same (with minor PyTorch-specific modifications) as wrappers 
available in the OpenAI Baselines project: https://github.com/openai/
baselines. To wrap the Atari environment in one line, it's enough to call the  
ptan.common.wrappers.wrap_dqn(env) method. That's basically it! As I've said 
before, PTAN wasn't supposed to be the ultimate RL framework; it's just a collection  
of entities designed to be used together, but not to depend much on each other.

Basic DQN
By combining all the above, we can reimplement the same DQN agent in a much 
shorter, but still flexible, way, which will become handy later, when we'll start to 
modify and change various DQN parts to make the DQN better.

In the basic DQN implementation we have three modules:

•	 Chapter07/lib/dqn_model.py: The DQN neural network, which is the 
same as we've seen in the previous chapter

•	 Chapter07/lib/common.py: Common functions used in this chapter's 
examples, but too specialized to be moved to PTAN

•	 Chapter07/01_dqn_basic.py: The creation of all used pieces and the 
training loop

Let's start with the contents of lib/common.py. First of all, we have here 
hyperparameters for our Pong environment, that was introduced in the previous 
chapter. The hyperparameters are stored in the dict, with keys as the configuration 
name and values as a dict of parameters. This makes it easy to add another 
configuration set for more complicated Atari games.

HYPERPARAMS = {
    'pong': {
        'env_name':         "PongNoFrameskip-v4",
        'stop_reward':      18.0,
        'run_name':         'pong',
        'replay_size':      100000,
        'replay_initial':   10000,
        'target_net_sync':  1000,
        'epsilon_frames':   10**5,
        'epsilon_start':    1.0,
        'epsilon_final':    0.02,

https://github.com/openai/baselines
https://github.com/openai/baselines
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        'learning_rate':    0.0001,
        'gamma':            0.99,
        'batch_size':       32
    },
}

In addition, common.py has a function that takes the batch of transitions and packs 
it into the set of NumPy arrays. Every transition from ExperienceSourceFirstLast 
has a type of namedtuple with the following fields:

•	 state: Observation from the environment.
•	 action: Integer action taken by the agent.
•	 rewards: If we've created ExperienceSourceFirstLast with attribute 

steps_count=1, it's just the immediate reward. For larger step counts, 
it contains the discounted sum of rewards for this number of steps.

•	 last_state: If the transition corresponds to the final step in the 
environment, then this field is None, otherwise it contains the last 
observation in the experience chain.

The code of unpack_batch is as follows:

def unpack_batch(batch):
    states, actions, rewards, dones, last_states = [], [], [], [], []
    for exp in batch:
        state = np.array(exp.state, copy=False)
        states.append(state)
        actions.append(exp.action)
        rewards.append(exp.reward)
        dones.append(exp.last_state is None)
        if exp.last_state is None:
            last_states.append(state)
       # the result will be masked anyway
        else:
            last_states.append(np.array(exp.last_state, copy=False))
    return np.array(states, copy=False), np.array(actions), 
np.array(rewards, dtype=np.float32), \
           np.array(dones, dtype=np.uint8), np.array(last_states, 
copy=False)
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Note how we handle the final transitions in the batch. To avoid the special handling 
of such cases, for terminal transitions we store the initial state in the last_states 
array. To make our calculations of the Bellman update correct, we'll mask such batch 
entries during the loss calculation using the dones array. Another solution would 
be to calculate the value of last states only for non-terminal transitions, but it would 
make our loss function logic a bit more complicated.

The loss function is exactly the same as we had in the previous chapter. We calculate 
the values of actions taken from the first state, then calculate the values of the  
same actions using the Bellman equation. The resulting loss is a Mean Square  
Error between those two quantities:

def calc_loss_dqn(batch, net, tgt_net, gamma, device="cpu"):
    states, actions, rewards, dones, next_states = unpack_batch(batch)

    states_v = torch.tensor(states).to(device)
    next_states_v = torch.tensor(next_states).to(device)
    actions_v = torch.tensor(actions).to(device)
    rewards_v = torch.tensor(rewards).to(device)
    done_mask = torch.ByteTensor(dones).to(device)

    state_action_values = net(states_v).gather(1,  
actions_v.unsqueeze(-1)).squeeze(-1)
    next_state_values = tgt_net(next_states_v).max(1)[0]
    next_state_values[done_mask] = 0.0

    expected_state_action_values = next_state_values.detach() *  
gamma + rewards_v
    return nn.MSELoss()(state_action_values,  
expected_state_action_values)

Also, in common.py, we have two utility classes to help us to simplify the  
training loop:

class EpsilonTracker:
    def __init__(self, epsilon_greedy_selector, params):
        self.epsilon_greedy_selector = epsilon_greedy_selector
        self.epsilon_start = params['epsilon_start']
        self.epsilon_final = params['epsilon_final']
        self.epsilon_frames = params['epsilon_frames']
        self.frame(0)

    def frame(self, frame):
        self.epsilon_greedy_selector.epsilon = \
            max(self.epsilon_final, self.epsilon_start - frame /  
self.epsilon_frames)
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The EpsilonTracker class takes the instance of EpsilonGreedyActionSelector and 
our hyperparams for a specific configuration. Also, in its only method frame(), it 
updates the value of epsilon according to the standard DQN epsilon decay schedule: 
linearly decreasing it for the first epsilon_frames steps and then keeping it constant. 

The second class, RewardTracker, is supposed to be informed about the total 
reward at the end of every episode and track mean reward for the last episodes, 
report the current values in TensorBoard and console, and, finally, check that the 
game has been successfully solved. It also measures the speed in frames per second, 
which is useful to know, as performance is an important metric of the training.

class RewardTracker:
    def __init__(self, writer, stop_reward):
        self.writer = writer
        self.stop_reward = stop_reward

    def __enter__(self):
        self.ts = time.time()
        self.ts_frame = 0
        self.total_rewards = []
        return self

    def __exit__(self, *args):
        self.writer.close()

The class is implemented to be used as a context manager, automatically closing the 
TensorBoard writer on exit. The main logic is performed in the reward() method, 
which is being called every time an episode finishes. It's mostly the same code as the 
previous chapter training loop.

    def reward(self, reward, frame, epsilon=None):
        self.total_rewards.append(reward)
        speed = (frame - self.ts_frame) / (time.time() - self.ts)
        self.ts_frame = frame
        self.ts = time.time()
        mean_reward = np.mean(self.total_rewards[-100:])
        epsilon_str = "" if epsilon is None else ", eps %.2f" % 
epsilon
        print("%d: done %d games, mean reward %.3f, speed %.2f  
f/s%s" % (
            frame, len(self.total_rewards), mean_reward, speed, 
epsilon_str
        ))
        sys.stdout.flush()
        if epsilon is not None:
            self.writer.add_scalar("epsilon", epsilon, frame)
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        self.writer.add_scalar("speed", speed, frame)
        self.writer.add_scalar("reward_100", mean_reward, frame)
        self.writer.add_scalar("reward", reward, frame)
        if mean_reward > self.stop_reward:
            print("Solved in %d frames!" % frame)
            return True
        return False

That's it for common.py. It has another function, which is not relevant yet and will be 
used in later examples. Now, let's take a look at 01_dqn_basic.py, which contains 
only the creation of the needed classes and the training loop.

#!/usr/bin/env python3
import gym
import ptan
import argparse
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
from lib import dqn_model, common

First of all, we import the required modules.

if __name__ == "__main__":
    params = common.HYPERPARAMS['pong']
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False, action="store_true", 
help="Enable cuda")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    env = gym.make(params['env_name'])
    env = ptan.common.wrappers.wrap_dqn(env)

Then, we get our hyperparameters for the Pong game, parse the option for CUDA 
and create our environment. Next, we use DQN wrappers from PTAN, which 
applies the common set of preprocessing to the environment.

    writer = SummaryWriter(comment="-" + params['run_name'] + 
"-basic")
    net = dqn_model.DQN(env.observation_space.shape, env.action_
space.n).to(device)
    tgt_net = ptan.agent.TargetNet(net)
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Then we create a summary writer for TensorBoard and our DQN neural network 
(NN) using observations and actions' dimensionality. The ptan.agent.TargetNet 
class is an extremely simple wrapper around the network, which allows us to create 
a copy of our NN's weights and sync them periodically.

    selector = ptan.actions.EpsilonGreedyActionSelector(epsilon=params
['epsilon_start'])
    epsilon_tracker = common.EpsilonTracker(selector, params)
    agent = ptan.agent.DQNAgent(net, selector, device=device)

Here we create our agent, which needs a network to convert observations into the 
action values and an action selector to decide which action to take. For the action 
selector, we use epsilon-greedy policy with epsilon decayed according to our 
schedule defined by hyperparams.

    exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=params['gamma'], steps_count=1)
    buffer = ptan.experience.ExperienceReplayBuffer(exp_source, 
buffer_size=params['replay_size'])

The next element to define is our experience source, which is one-step 
ExperienceSourceFirstLast and experience replay buffer, which will store a fixed 
amount of transitions.

    optimizer = optim.Adam(net.parameters(), lr=params 
['learning_rate'])
    frame_idx = 0

The last step needed before the training loop is an optimizer and frame counter.

    with common.RewardTracker(writer, params['stop_reward']) as 
reward_tracker:
        while True:
            frame_idx += 1
            buffer.populate(1)
            epsilon_tracker.frame(frame_idx)

In the beginning of the training loop, we create the reward tracker, which will report 
mean reward for every episode completed, increment the frame counter and ask our 
experience replay buffer to pull one transition from the experience source. This call 
to buffer.populate(1) will start the following chain of actions inside the PTAN lib:

•	 ExperienceReplayBuffer will ask the experience source to get the  
next transition.

•	 The experience source will feed the current observation to the agent  
to obtain the action.
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•	 The agent will apply the NN to the observation to calculate Q-values,  
then ask the action selector to choose the action to take.

•	 The action selector (which is an epsilon-greedy selector) will generate the 
random number to check how to act: greedily or randomly. In both cases,  
it will decide which action to take.

•	 The action will be returned to the experience source, which will feed it 
into the environment to obtain the reward and the next observation. All this 
data (the current observation, action, reward, and next observation) will be 
returned to the buffer.

•	 The buffer will store the transition, pushing out old observations to keep its 
length constant.

All the above may look complicated, but, basically, it's the same process that we 
completed before, just wrapped in a different way.

            new_rewards = exp_source.pop_total_rewards()
            if new_rewards:
                if reward_tracker.reward(new_rewards[0], frame_idx, 
selector.epsilon):
                    break

The above piece of the training loop asks the experience source for the list of the 
finished episodes' rewards (the total undiscounted reward) and passes it to the 
reward tracker for reporting and checking that training has been done. As we 
performed only the single step before, it could be only one or zero completed 
episodes. If the reward tracker returns True, then it's an indication that the mean 
reward has reached the score boundary and we can stop our training.

            if len(buffer) < params['replay_initial']:
                continue

Here we check that the length of the buffer is large enough to start training. 
Otherwise, we just wait for more data to be gathered.

            optimizer.zero_grad()
            batch = buffer.sample(params['batch_size'])
            loss_v = common.calc_loss_dqn(batch, net, tgt_net.target_
model, gamma=params['gamma'], device=device)
            loss_v.backward()
            optimizer.step()

This piece performs a standard Stochastic Gradient Descent (SGD) update. We zero 
gradients, sample the minibatch from the experience replay buffer, and calculate loss 
using the function we've already seen.

            if frame_idx % params['target_net_sync'] == 0:
                tgt_net.sync()
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The last piece of the training loop performs a periodical sync between our main 
model (being trained) and the target network we used to calculate action values 
in the Bellman update.

Okay, let's train the model and check its convergence.

rl_book_samples/Chapter07$ ./01_dqn_basic.py --cuda
865: done 1 games, mean reward -20.000, eps 0.99, speed 364.42 f/s
2147: done 2 games, mean reward -20.500, eps 0.98, speed 493.27 f/s
3061: done 3 games, mean reward -20.333, eps 0.97, speed 493.09 f/s
3974: done 4 games, mean reward -20.500, eps 0.96, speed 492.45 f/s
4810: done 5 games, mean reward -20.600, eps 0.95, speed 490.46 f/s
5836: done 6 games, mean reward -20.500, eps 0.94, speed 495.29 f/s
6942: done 7 games, mean reward -20.571, eps 0.93, speed 491.58 f/s
7953: done 8 games, mean reward -20.500, eps 0.92, speed 491.78 f/s
9109: done 9 games, mean reward -20.444, eps 0.91, speed 492.71 f/s
...

Every line in the output is written at the end of the next episode, showing the 
current frame counter, amount of completed episodes, average reward for the last 
100 games, epsilon and computation speed. During the first 10k frames, speed is 
high, as we do no training, waiting for our replay buffer to be populated. For the 
basic DQN version, it usually takes about 1M frames to reach the mean reward of 17, 
so be patient. After the training, we can check the dynamics of the training process 
in TensorBoard, which shows charts for epsilon, raw reward values, average reward 
and speed.

Figure 1: The convergence of a basic DQN implementation
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N-step DQN
The first improvement that we'll implement and evaluate is quite an old one. It was 
first introduced in the paper by Richard Sutton ([2] Sutton, 1988). To get the idea, 
let's look at the Bellman update used in Q-learning once again.

Q(st, at) = rt + γmax
a

Q(st+1, at+1)

This equation is recursive, which means that we can express Q(st+1, at+1) in terms 
of itself, which gives us this result:

Q(st, at) = rt + γmax
a

[ra,t+1 + γmax
a′

Q(st+2, a
′)]

Value ra,t+1 means local reward at time t+1, after issuing action a. However, if we 
assume that our action a at the step t+1 was chosen optimally, or close to optimally, 
we can omit maxa and operation and obtain this:

Q(st, at) = rt + γrt+1 + γ2 max
a′

Q(st+2, a
′)

This value could be unrolled again and again any number of times. As you may 
guess, this unrolling can be easily applied to our DQN update by replacing one-step 
transition sampling with longer transition sequences of n-steps. To understand why 
this unrolling will help us to speed up training, let's consider the example illustrated 
below. Here we have a simple environment of four states, s1, s2, s3, s4, and the only 
action available at every state, except s4, which is a terminal state.

Figure 2: A transition diagram for a simple environment

So, what happens in a one-step case? We have three total updates possible  
(we don't use max, as there is only one action available):

1.	 Q(s1,a) ← r1 + γ Q(s2,a)
2.	 Q(s2,a) ← r2 + γ Q(s3,a)
3.	 Q(s3,a) ← r3
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Let's imagine that, at the beginning of the training, we complete the updates above 
in this order. The first two updates will be useless, as our current Q(s2,a) and Q(s3,a) 
are incorrect and contain initial random data. The only useful update will be update 
three, which correctly assigns reward r3 to the state s3, prior to the terminal state. 
Now let's complete the updates above over and over again. On the second iteration, 
the correct value will be assigned to the Q(s2,a), but the update of Q(s1,a) will still 
be noisy. Only on the third iteration will we get the valid values for all Q. So, even 
in a one-step case, it takes three steps to propagate the correct values to all the states.

Now let's consider a two-step case. This situation again has three updates:

1.	 Q(s1,a) ← r1 + γr2+γ2 Q(s3,a)
2.	 Q(s2,a) ← r2 + γr3

3.	 Q(s3,a) ← r3

In this case, on the first loop over the updates, the correct values will be assigned 
to both Q(s2,a) and Q(s3,a). On the second iteration, the value of Q(s1,a) will be also 
properly updated. So, multiple steps improve the propagation speed of values, 
which improves convergence. Okay, you may be thinking that if it's so helpful, let's 
unroll the Bellman equation, say, 100 steps ahead. Will it speed up our convergence 
100 times? Unfortunately, the answer is no.

Despite our expectations, our DQN will fail to converge at all. To understand 
why, let's again return to our unrolling process, especially where we dropped the 
maxa. Was it correct? Strictly speaking, no. We've omitted the max operation at the 
intermediate step, assuming that our action selection during experience gathering 
(or our policy) was optimal. What if it wasn't, for example, in the beginning of the 
training, when our agent acted randomly? In that case, our calculated value for 
Q(st,at) may be smaller than the optimal value of the state (as some steps we've 
taken randomly, but not following the most promising paths by maximizing 
the Q-value). The more steps that we unroll the Bellman equation on, the more 
incorrect our update could be.

Our large experience replay buffer will make the situation even worse, as it increases 
the chance of getting transitions obtained from the old bad policy (dictated by 
old bad approximations of Q). This will lead to a wrong update of the current 
Q approximation, so it can easily break our training progress. The above problem 
is a fundamental characteristic of RL methods, as was briefly mentioned in Chapter 4, 
The Cross-Entropy Method, when we talked about RL methods' taxonomy. There are 
two large classes: the off-policy and on-policy methods.



DQN Extensions

[ 170 ]

The first class of off-policy methods doesn't depend on "freshness of data". For 
example, a simple DQN is off-policy, which means that we can use very old data 
sampled from the environment several million steps ago, and this data will still be 
useful for learning. That's because we're just updating the value of the action Q(st,at) 
with immediate reward, plus discounted current approximation of the best action's 
value. Even if the action at was sampled randomly, it doesn't matter because for this 
particular action at, in the state st, our update will be correct. That's why in off-policy 
methods, we can use a very large experience buffer to make our data closer to being 
independent and identically distributed (i.i.d).

On the other hand, on-policy methods heavily depend on the training data to be 
sampled according to the current policy we're updating. That happens because  
on-policy methods are trying to improve the current policy indirectly (as in the 
n-step DQN above) or directly (the whole of part three of the book is devoted to  
such methods).

So, which class of methods is better? Well, it depends. Off-policy methods allow 
you to train on the previous large history of data or even on human demonstrations, 
but, usually, they are slower to converge. On-policy methods are usually faster, 
but require much more fresh data from the environment, which can be costly. Just 
imagine a self-driving car trained with the on-policy method. It will cost you lots  
of crashed cars before the system learns that walls and trees are things that it  
should avoid.

You may have a question: why are we talking about an n-step DQN if this 
"n-stepness" turns it into an on-policy method, which will make our large experience 
buffer useless? In practice, this is usually not black and white. You may still use 
an n-step DQN if it will help to speed up DQNs, but you need to be modest with 
the selection of n. Small values of two or three usually work well, because our 
trajectories in the experience buffer are not that different from one-step transitions. 
In such cases, convergence speed usually improves proportionally, but large values 
of n can break the training process. So, the number of steps should be tuned, but 
convergence speeding up usually makes it worth doing.

Implementation
As the ExperienceSourceFirstLast class already supports the multi-step  
Bellman unroll, our n-step version of a DQN is extremely simple. There are  
only two modifications that we need to make in the basic DQN to turn it into  
an n-step version:
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•	 Pass the count of steps that we want to unroll on 
ExperienceSourceFirstLast creation in the steps_count parameter.

•	 Pass the correct gamma to the calc_loss_dqn function. This modification is 
really easy to overlook, but it can be harmful to convergence. As our Bellman 
is now n-steps, the discount coefficient for the last state in the experience 
chain will no longer be just γ, but γn.

You can find the whole example in Chapter07/02_dqn_n_steps.py, but below are 
the modified lines:

    exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=params['gamma'], steps_count=args.n)

The args.n value is count of steps passed in command-line arguments, default is to 
use 2 steps.

    loss_v = common.calc_loss_dqn(batch, net, tgt_net.target_model,
                       gamma=params['gamma']**args.n, device=device)

The following are the charts for rewards and the mean 100 rewards for both a simple 
DQN (light line) and two-step DQN (dark line).

Figure 3: The convergence of a two-step DQN in comparison to a basic DQN
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As you may see in the diagram, the two-step DQN converges more than two-times 
faster than the simple DQN, which is a nice improvement. So, what about a larger n? 
Below is a chart showing a two-step (dark) versus three-step DQN (light):

Figure 4: A comparison of a two-step DQN and three-step DQN

So, there is no improvement when compared to two-steps. The optimization process 
is stochastic, so your results may differ slightly.

Double DQN
The next fruitful idea on how to improve a basic DQN came from DeepMind 
researchers in a paper titled Deep Reinforcement Learning with Double Q-Learning ([3] 
van Hasselt, Guez, and Silver, 2015). In the paper, the authors demonstrated that the 
basic DQN has a tendency to overestimate values for Q, which may be harmful 
to training performance and sometimes can lead to suboptimal policies. The root 
cause of this is the max operation in the Bellman equation, but the strict proof is too 
complicated to write down here. As a solution to this problem, the authors proposed 
modifying the Bellman update a bit.

In the basic DQN, our target value for Q looked like this:

Q(st, at) = rt + γmax
a

Q′(st+1, at+1)

Q(st+1, a) was Q-values calculated using our target network, so we update with the 
trained network every n steps. The authors of the paper proposed choosing actions 
for the next state using the trained network but taking values of Q from the target 
net. So, the new expression for target Q-values will look like this:

Q(st, at) = rt + γmax
a

Q′(st+1, argmax
a

Q(st+1, a))
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The authors proved that this simple tweak fixes overestimation completely and they 
called this new architecture double DQN.

Implementation
The core implementation is very simple. What we need to do is to slightly modify 
our loss function. Let's go a step further and compare action values produced by 
the basic DQN and double DQN. To do this, we store a random held-out set of 
states and periodically calculate the mean value of the best action for every state 
in the evaluation set.

The complete example is in Chapter07/03_dqn_double.py. Let's first take a look 
at the loss function.

def calc_loss(batch, net, tgt_net, gamma, device="cpu", double=True):
    states, actions, rewards, dones, next_states = common.unpack_
batch(batch)

The double extra argument turns on and off the double-DQN way of calculating 
actions to take.

    states_v = torch.tensor(states).to(device)
    next_states_v = torch.tensor(next_states).to(device)
    actions_v = torch.tensor(actions).to(device)
    rewards_v = torch.tensor(rewards).to(device)
    done_mask = torch.ByteTensor(dones).to(device)

The above section is the same as before.

    state_action_values = net(states_v).gather(1, actions_v.
unsqueeze(-1)).squeeze(-1)
    if double:
        next_state_actions = net(next_states_v).max(1)[1]
        next_state_values = tgt_net(next_states_v).gather 
(1, next_state_actions.unsqueeze(-1)).squeeze(-1)
    else:
        next_state_values = tgt_net(next_states_v).max(1)[0]



DQN Extensions

[ 174 ]

Here is the difference compared to the basic DQN loss function. If double DQN 
is enabled, we calculate the best action to take in the next state using our main 
trained network, but values corresponding to this action come from the target 
network. Of course, this part could be implemented in a faster way, by combining  
next_states_v with states_v and calling our main network only once, but it 
will make the code less clear.

    next_state_values[done_mask] = 0.0
    expected_state_action_values = next_state_values.detach() *  
gamma + rewards_v
    return nn.MSELoss()(state_action_values, expected_state_action_
values)

The rest of the function is the same: we mask completed episodes and compute 
Mean Squared Error (MSE) loss between Q-values predicted by the network and 
approximated Q-values. The last function that we consider calculates the values 
of our held-out state.

def calc_values_of_states(states, net, device="cpu"):
    mean_vals = []
    for batch in np.array_split(states, 64):
        states_v = torch.tensor(batch).to(device)
        action_values_v = net(states_v)
        best_action_values_v = action_values_v.max(1)[0]
        mean_vals.append(best_action_values_v.mean().item())
    return np.mean(mean_vals)

There is nothing too complicated here: we just split our held-out states array into 
equal chunks and pass every chunk to the network to obtain action values. From 
those values, we choose the action with the largest value and calculate the mean 
of such values. As our array with states is fixed for the whole training process, and 
this array is large enough (in the code we store 1000 states), we can compare the 
dynamics of this mean value in both DQN variants.

The rest of the 03_dqn_double.py file is the training loop of our model, which is 
mostly the same as before.

if __name__ == "__main__":
    params = common.HYPERPARAMS['pong']
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False, action="store_true", 
help="Enable cuda")
    parser.add_argument("--double", default=False, action= 
"store_true", help="Enable double DQN")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")
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The program now has an extra command line option to switch on and off double 
DQN extension, to be able to compare action values during the training (note that 
you need to explicitly provide the option to enable double DQN behavior).

    env = gym.make(params['env_name'])
    env = ptan.common.wrappers.wrap_dqn(env)

    writer = SummaryWriter(comment="-" + params['run_name'] + 
"-double=" + str(not args.no_double))
    net = dqn_model.DQN(env.observation_space.shape, env.action_
space.n).to(device)

    tgt_net = ptan.agent.TargetNet(net)
    selector = ptan.actions.EpsilonGreedyActionSelector(epsilon=params
['epsilon_start'])
    epsilon_tracker = common.EpsilonTracker(selector, params)
    agent = ptan.agent.DQNAgent(net, selector, device=device)

    exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=params['gamma'], steps_count=1)
    buffer = ptan.experience.ExperienceReplayBuffer(exp_source, 
buffer_size=params['replay_size'])
    optimizer = optim.Adam(net.parameters(), lr=params 
['learning_rate'])

    frame_idx = 0
    eval_states = None

The preceding code has no differences from the basic DQN variant. The  
eval_states variable will be populated with our held-out states after the 
initial replay buffer fill.

    with common.RewardTracker(writer, params['stop_reward']) as 
reward_tracker:
        while True:
            frame_idx += 1
            buffer.populate(1)
            epsilon_tracker.frame(frame_idx)

            new_rewards = exp_source.pop_total_rewards()
            if new_rewards:
                if reward_tracker.reward(new_rewards[0], frame_idx, 
selector.epsilon):
                    break
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            if len(buffer) < params['replay_initial']:
                continue

This part is also the same as before.

            if eval_states is None:
                eval_states = buffer.sample(STATES_TO_EVALUATE)
                eval_states = [np.array(transition.state, copy=False) 
for transition in eval_states]
                eval_states = np.array(eval_states, copy=False)

Here we perform the initial creation of our states to be evaluated during training. 
The STATES_TO_EVALUATE constant is defined in the beginning of the program and 
equals 1000, which is large enough to have a representative set of game states.

            optimizer.zero_grad()
            batch = buffer.sample(params['batch_size'])
            loss_v = calc_loss(batch, net, tgt_net.target_model, 
gamma=params['gamma'], device=device, double=args.double)
            loss_v.backward()
            optimizer.step()

            if frame_idx % params['target_net_sync'] == 0:
                tgt_net.sync()

This part also hasn't changed much, except for the flag that we're passing to the loss 
function, which enables or disables double DQN.

            if frame_idx % EVAL_EVERY_FRAME == 0:
                mean_val = calc_values_of_states(eval_states, net, 
device=device)
                writer.add_scalar("values_mean", mean_val, frame_idx)

Finally, for every 100 frames (defined in the EVAL_EVERY_FRAME constant), we 
calculate the mean value of our states and write it into TensorBoard.

Results
To train a double DQN, with extension enabled, pass the --double  
command-line argument:

rl_book_samples/Chapter07$ ./03_dqn_double.py --cuda --double

1041: done 1 games, mean reward -19.000, speed 272.36 f/s, eps 0.99

2056: done 2 games, mean reward -19.000, speed 396.04 f/s, eps 0.98

3098: done 3 games, mean reward -19.000, speed 462.68 f/s, eps 0.97

3918: done 4 games, mean reward -19.500, speed 569.58 f/s, eps 0.96
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4819: done 5 games, mean reward -19.600, speed 563.84 f/s, eps 0.95

5697: done 6 games, mean reward -19.833, speed 565.74 f/s, eps 0.94

6596: done 7 games, mean reward -20.000, speed 563.71 f/s, eps 0.93

...

To compare the action values for a basic DQN, train it again without the --double 
option. Training will take some time, depending on your computing power. On 
GTX 1080Ti, 1M frames take about two hours. The reward chart is shown below and 
reveals that despite the similar dynamics in the beginning of the training, the double 
DQN has reached convergence faster.

Figure 5: The comparison of double DQN (light) and basic DQN (dark)

At the same time, the chart with value shows that the classic DQN overestimates the 
values of the actions most of the time. At the end of training, the classic DQN is even 
required to decrease the value to reach the convergence.

Figure 6: The mean value of actions in double DQN (light) and basic DQN (dark)
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Noisy networks
The next improvement that we're going to check addresses another RL problem: 
exploration of the environment. The paper is called Noisy Networks for Exploration 
([4] Fortunato and others, 2017) and has a very simple idea for learning exploration 
characteristics during training, instead of having a separate schedule related  
to the exploration.

Classical DQN achieves exploration by choosing random actions with specially 
defined hyperparameter epsilon, which is slowly decreased over time from 1.0 (fully 
random actions) to some small ratio of 0.1 or 0.02. This process works well for simple 
environments with short episodes, without much non-stationarity during the game, 
but even in such simple cases, it requires tuning to make training processes efficient.

In the above-mentioned paper, the authors propose a quite simple solution, which, 
nevertheless, works well. They add a noise to the weights of fully-connected 
layers of the network and adjust the parameters of this noise during training using 
backpropagation. Of course, this method shouldn't be confused with 'the network 
decides where to explore more,' which is a much more complex approach that also 
has widespread support (for example, see articles about intrinsic motivation and 
count-based exploration methods [5] or [6]).

The authors propose two ways of adding the noise, both of which work according 
to their experiments, but have different computational overheads:

1.	 Independent Gaussian noise: For every weight in a fully-connected layer, 
we have a random value that we draw from the normal distribution. 
Parameters of the noise μ and σ are stored inside the layer and get trained 
using backpropagation, the same way that we train weights of the standard 
linear layer. The output of such a 'noisy layer' is calculated in the same way 
as in a linear layer.

2.	 Factorized Gaussian noise: To minimize the amount of random values to be 
sampled, the authors proposed keeping only two random vectors, one with 
the size of input and another with the size of the output of the layer. Then, 
a random matrix for the layer is created by calculating the outer product of  
the vectors.
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Implementation
In PyTorch, both methods could be easily implemented in a very straightforward 
way. What we need to do is to create our own nn.Linear layer equivalent 
with additional random values sampled every time forward() gets called. I've 
implemented both noisy layers and their implementations are in Chapter07/lib/
dqn_model.py, in classes NoisyLinear (for independent Gaussian noise) and 
NoisyFactorizedLinear (for factorized noise variant).

class NoisyLinear(nn.Linear):
    def __init__(self, in_features, out_features, sigma_init=0.017, 
bias=True):
        super(NoisyLinear, self).__init__(in_features, out_features, 
bias=bias)
        self.sigma_weight = nn.Parameter(torch.full((out_features, 
in_features), sigma_init))
        self.register_buffer("epsilon_weight", torch.zeros(out_
features, in_features))
        if bias:
            self.sigma_bias = nn.Parameter(torch.full((out_features,), 
sigma_init))
            self.register_buffer("epsilon_bias", torch.zeros(out_
features))
        self.reset_parameters()

In the constructor, we create a matrix for σ (values of μ will be stored in a matrix 
inherited from nn.Linear). To make sigmas trainable, we need to wrap the tensor 
in a nn.Parameter. The register_buffer method creates a tensor in the network 
which won't be updated during backpropagation, but will be handled by the 
nn.Module machinery (for example, it will be copied to GPU with the cuda() call). 
An extra parameter and buffer is created for the bias of the layer. The initial value for 
sigmas (0.017) was taken from the Noisy Networks article cited in the beginning of 
this section. At the end, we will call the reset_parameters() method, which was 
overridden from nn.Linear and is supposed to perform the initialization of  
the layer.

    def reset_parameters(self):
        std = math.sqrt(3 / self.in_features)
        self.weight.data.uniform_(-std, std)
        self.bias.data.uniform_(-std, std)
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In the reset_parameters method, we perform initialization of the nn.Linear 
weight and bias according to the recommendations in the article.

    def forward(self, input):
        self.epsilon_weight.normal_()
        bias = self.bias
        if bias is not None:
            self.epsilon_bias.normal_()
            bias = bias + self.sigma_bias * self.epsilon_bias
        return F.linear(input, self.weight + self.sigma_weight *  
self.epsilon_weight, bias)

In the forward method, we sample random noise in both weight and bias buffers, 
and perform linear transformation of the input data in the same way that nn.Linear 
does. The factorized Gaussian noise works in a similar way and I haven't found 
much difference in the results. So, I'll just put its code below for completeness. If 
you're curious, you can find the details and equations in the article [4].

class NoisyFactorizedLinear(nn.Linear):
    def __init__(self, in_features, out_features, sigma_zero=0.4, 
bias=True):
        super(NoisyFactorizedLinear, self).__init__(in_features,  
out_features, bias=bias)
        sigma_init = sigma_zero / math.sqrt(in_features)
        self.sigma_weight = nn.Parameter(torch.full((out_features, 
in_features), sigma_init))
        self.register_buffer("epsilon_input", torch.zeros 
(1, in_features))
        self.register_buffer("epsilon_output", torch.zeros 
(out_features, 1))
        if bias:
            self.sigma_bias = nn.Parameter(torch.full((out_features,), 
sigma_init))

    def forward(self, input):
        self.epsison_input.normal_()
        self.epsilon_output.normal_()

        func = lambda x: torch.sign(x) * torch.sqrt(torch.abs(x))
        eps_in = func(self.epsilon_input)
        eps_out = func(self.epsilon_output)

        bias = self.bias
        if bias is not None:
            bias = bias + self.sigma_bias * eps_out.t()
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        noise_v = torch.mul(eps_in, eps_out)
        return F.linear(input, self.weight + self.sigma_weight * 
noise_v, bias)

From the implementation point of view, that's it. What we now need to do, 
to turn classic DQN into a NoisyNet variant, is just replace nn.Linear (which 
are the two last layers in our DQN network) with the NoisyLinear layer (or 
NoisyFactorizedLinear if you wish). Of course, you have to remove all the code 
related to the epsilon-greedy strategy. To check the internal noise level during 
training, we can monitor the signal-to-noise ratio (SNR) of our noisy layers, which is 
a ratio of RMS(μ) / RMS(σ), where RMS is the root mean square of the corresponding 
weights. In our case, SNR shows how many times the stationary component of the 
noisy layer is larger than the injected noise.

Our training code for the NoisyNet sample is in Chapter07/04_dqn_noisy_net.py. 
Let's look at the part of the code which differs from the basic DQN version:

class NoisyDQN(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(NoisyDQN, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )

The beginning of the noisy version of the DQN is the same as before. The difference 
is in the rest of the network.

        conv_out_size = self._get_conv_out(input_shape)
        self.noisy_layers = [
            model.NoisyLinear(conv_out_size, 512),
            model.NoisyLinear(512, n_actions)
        ]
        self.fc = nn.Sequential(
            self.noisy_layers[0],
            nn.ReLU(),
            self.noisy_layers[1]
        )
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Noisy layers are created with the same shape as their linear counterparts. We put 
them into the list to be able to access them later.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        fx = x.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)
        return self.fc(conv_out)

Functions to get the shape of the convolution part and forward() are the same  
as before. One extra function we have in the class is the calculation of the SNR  
for noisy layers.

    def noisy_layers_sigma_snr(self):
        return [
            ((layer.weight ** 2).mean().sqrt() / (layer.sigma_weight 
** 2).mean().sqrt()).data.cpu().numpy()[0]
            for layer in self.noisy_layers
        ]

The training loop is also exactly the same as before, except for one extra piece: every 
500 frames we query SNR values for noisy layers from the network and write them 
in TensorBoard.

            if frame_idx % 500 == 0:
                snr_vals = net.noisy_layers_sigma_snr()
                for layer_idx, sigma_l2 in enumerate(snr_vals):
                    writer.add_scalar("sigma_snr_layer_%d" %  
                    (layer_idx+1),
                                      sigma_l2, frame_idx)

Results
After the training, TensorBoard charts show much better training dynamics.  
The model was able to reach the mean score of 18 in less than 600k frames seen.
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Figure 7: Noisy networks convergence

In comparison to the basic DQN, this is a major improvement (the dark line  
is a noisy DQN and light is a basic DQN). In the chart below, the first 1M  
frames are shown.

Figure 8: The noisy network (light) in comparison to the basic DQN (dark)
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After checking the SNR chart, you may notice that both layers have decreased the 
noise level very quickly. The first layer went from 1 to almost 1/2.5 ratio of noise. 
The second layer is even more interesting, as its noise level decreased from 1/3 in 
the beginning to 1/16, but after 250k frames, which is roughly the same time as 
when raw rewards climbed close to the 20 score, the level of the noise in the last 
layer started to increase back, pushing the agent to explore the environment more. 
This makes a lot of sense, as after reaching high score levels, the agent basically 
knows how to play at a good level, but still needs to 'polish' its actions to improve 
the results even more.

Figure 9: Noise-level changes during the training

Prioritized replay buffer
The next very useful idea on how to improve DQN training was proposed in 2015 
in the paper, Prioritized Experience Replay ([7] Schaul and others, 2015). This method 
tries to improve the efficiency of samples in the replay buffer by prioritizing those 
samples according to the training loss.

The basic DQN used the replay buffer to break the correlation between immediate 
transitions in our episodes. As we discussed in Chapter 6, Deep Q-Networks, the 
examples we experience during the episode will be highly correlated, as most of the 
time the environment is "smooth" and doesn't change much according to our actions. 
However, the SGD method assumes that the data we use for training has a i.i.d. 
property. To solve this problem, the classic DQN method used a large buffer of 
transitions, randomly sampled to get the next training batch.
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The authors of the paper questioned this uniform random sample policy and 
proved that by assigning priorities to buffer samples, according to training loss and 
sampling the buffer proportional to those priorities, we can significantly improve 
convergence and the policy quality of the DQN. This method can be seen as "train 
more on data that surprises you". The tricky point here is to keep the balance of 
training on an 'unusual' sample and training on the rest of the buffer. If we focus 
only on a small subset of the buffer, we can lose our i.i.d. property and simply 
overfit on this subset.

From the mathematical point of view, the priority of every sample in the buffer is 
calculated as P (i) =

pα
i∑

k pα
k

, where pi is the priority of the i-th sample in the buffer and 
α is the number that shows how much emphasis we give to the priority. If α = 0, our 
sampling will become uniform as in the classic DQN method. Larger values for α put 
more stress on samples with higher priority. So, it's another hyperparameter to tune 
and the starting value of α proposed by the paper is 0.6.

There are several options proposed in the paper for how to define the priority and 
the most popular is to make it proportional to the loss for this particular example 
in the Bellman update. New samples added to the buffer need to be assigned 
a maximum value of priority, to be sure that they'll be sampled soon.

By adjusting the priorities for the samples, we're introducing the bias in our data 
distribution (we sample some transitions much more frequently than others), which 
needs to be compensated for in order for SGD to work. To get this result, the authors 
of the study used sample weights, which needed to be multiplied to the individual 
sample loss. The value of weight for each sample is defined as wi = (N · P (i))−β , where 
β is another hyperparameter, which should be between 0 and 1. With β = 1, the bias 
introduced by the sampling is fully compensated, but the authors have shown that 
it's good for convergence to start with some β between 0 and 1 and slowly increase 
it to 1 during the training.

Implementation
To implement this method, we have to introduce several changes in our code. First 
of all, we need a new replay buffer that will track priorities, sample a batch according 
to them, calculate weights and let us update priorities after the loss has become 
known. The second change will be the loss function itself. Now we not only need to 
incorporate weights for every sample, but we need to pass loss values back to the 
replay buffer to adjust the priorities of sampled transitions.
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In the example file Chapter07/05_dqn_prio_replay.py, we have all those changes 
implemented. For the sake of simplicity, the new priority replay buffer class uses 
a very similar storage scheme as our previous replay buffer. Unfortunately, new 
requirements for prioritization makes it impossible to implement sampling in O(1) 
time to buffer size. If we're using simple lists, every time that we sample a new batch 
we need to process all the priorities, which makes our sampling O(N) to the buffer 
size. It's not a big deal if our buffer is small, such as 100k samples, but may become 
an issue for real-life large buffers of millions of transitions. There are other storage  
schemes that support efficient sampling in O(log N) time, for example, using the 
segment tree data structure. You can find such implementation in the OpenAI 
Baselines project, https://github.com/openai/baselines.

Let's look at our example of the priority replay buffer.

PRIO_REPLAY_ALPHA = 0.6
BETA_START = 0.4
BETA_FRAMES = 100000

In the beginning, we're defining the value for α for samples' prioritization and 
parameters for β change the schedule. Our beta will be changed from 0.4 to 1.0 
during first 100k frames.

class PrioReplayBuffer:
    def __init__(self, exp_source, buf_size, prob_alpha=0.6):
        self.exp_source_iter = iter(exp_source)
        self.prob_alpha = prob_alpha
        self.capacity = buf_size
        self.pos = 0
        self.buffer = []
        self.priorities = np.zeros((buf_size, ), dtype=np.float32)

The class for the priority replay buffer stores samples in a circular buffer (it allows us 
to keep a fixed amount of entries without reallocating the list) and NumPy array to 
keep priorities. We also store the iterator to the experience source object, to pull the 
samples from the environment.

    def __len__(self):
        return len(self.buffer)

    def populate(self, count):
        max_prio = self.priorities.max() if self.buffer else 1.0
        for _ in range(count):
            sample = next(self.exp_source_iter)
            if len(self.buffer) < self.capacity:

https://github.com/openai/baselines
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                self.buffer.append(sample)
            else:
                self.buffer[self.pos] = sample
            self.priorities[self.pos] = max_prio
            self.pos = (self.pos + 1) % self.capacity

The populate() method needs to pull the given amount of transitions from the 
ExperienceSource object and store them in the buffer. As our storage for the 
transitions is implemented as a circular buffer, we have two different situations 
with this buffer:

1.	 When our buffer hasn't reached the maximum capacity, we just need to 
append a new transition to the buffer.

2.	 If the buffer is already full, we need to overwrite the oldest transition, which 
is tracked by the pos class field, and adjust this position module's buffer size.

    def sample(self, batch_size, beta=0.4):
        if len(self.buffer) == self.capacity:
            prios = self.priorities
        else:
            prios = self.priorities[:self.pos]
        probs = prios ** self.prob_alpha
        probs /= probs.sum()

In the sample method, we need to convert priorities to probabilities using our α 
hyperparameter.

        indices = np.random.choice(len(self.buffer), batch_size, 
p=probs)
        samples = [self.buffer[idx] for idx in indices]

Then, using those probabilities, we sample our buffer to obtain a batch of samples.

        total = len(self.buffer)
        weights = (total * probs[indices]) ** (-beta)
        weights /= weights.max()
        return samples, indices, weights

As a last step, we calculate weights for samples in the batch and return three 
objects: batch, indices and weights. Indices for batch samples are required to update 
priorities for sampled items.

    def update_priorities(self, batch_indices, batch_priorities):
        for idx, prio in zip(batch_indices, batch_priorities):
            self.priorities[idx] = prio
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The last function of the priority replay buffer allows us to update new priorities for 
the processed batch. It's the responsibility of the caller to use this function with the 
calculated losses for the batch.

The next custom function we have in our example is the loss calculation. As the 
MSELoss class in PyTorch doesn't support weights (which is understandable, as 
MSE is loss used in regression problems, but weighting of the samples is commonly 
utilized in classification losses), we need to calculate the MSE and explicitly multiply 
the result on weight.

def calc_loss(batch, batch_weights, net, tgt_net, gamma, 
device="cpu"):
    states, actions, rewards, dones, next_states = common.unpack_
batch(batch)

    states_v = torch.tensor(states).to(device)
    next_states_v = torch.tensor(next_states).to(device)
    actions_v = torch.tensor(actions).to(device)
    rewards_v = torch.tensor(rewards).to(device)
    done_mask = torch.ByteTensor(dones).to(device)
    batch_weights_v = torch.tensor(batch_weights).to(device)

    state_action_values = net(states_v).gather(1, actions_v.
unsqueeze(-1)).squeeze(-1)
    next_state_values = tgt_net(next_states_v).max(1)[0]
    next_state_values[done_mask] = 0.0

The beginning of the function is exactly the same as before, except for the extra 
argument for samples' weights array, which need to be converted to a tensor and 
placed on the GPU.

    expected_state_action_values = next_state_values.detach() *  
gamma + rewards_v
    losses_v = batch_weights_v * (state_action_values - expected_
state_action_values) ** 2
    return losses_v.mean(), losses_v + 1e-5

In the last part of the loss calculation, we implement the same MSE loss but write 
our expression explicitly, rather than using the library. This allows us to take into 
account weights of samples and keep individual loss values for every sample. Those 
values will be passed to the priority replay buffer to update priorities. Small values 
are added to every loss to handle the situation of zero loss value, which will lead 
to zero priority of entry.
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Now, it's time for our training loop.

if __name__ == "__main__":
    params = common.HYPERPARAMS['pong']
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False, action="store_true", 
help="Enable cuda")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    env = gym.make(params['env_name'])
    env = ptan.common.wrappers.wrap_dqn(env)

    writer = SummaryWriter(comment="-" + params['run_name'] + "-prio-
replay")
    net = dqn_model.DQN(env.observation_space.shape, env.action_
space.n).to(device)
    tgt_net = ptan.agent.TargetNet(net)
    selector = ptan.actions.EpsilonGreedyActionSelector(epsilon=params
['epsilon_start'])
    epsilon_tracker = common.EpsilonTracker(selector, params)
    agent = ptan.agent.DQNAgent(net, selector, device=device)

    exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=params['gamma'], steps_count=1)
    buffer = PrioReplayBuffer(exp_source, params['replay_size'], PRIO_
REPLAY_ALPHA)
    optimizer = optim.Adam(net.parameters(), lr=params['learning_
rate'])

The initialization section should be very familiar, as we've created everything we 
need, and the only difference is the usage of PrioReplayBuffer instead of a simple 
replay buffer.

    frame_idx = 0
    beta = BETA_START

    with common.RewardTracker(writer, params['stop_reward']) as 
reward_tracker:
        while True:
            frame_idx += 1
            buffer.populate(1)
            epsilon_tracker.frame(frame_idx)
            beta = min(1.0, BETA_START + frame_idx * (1.0 - BETA_
START) / BETA_FRAMES)
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In the training loop, as before, we pull one transition from the experience source and 
update the epsilon according to the schedule. We use the similar schedule to linearly 
increase the beta hyperparameter for priority replay buffer weights' adjustment.

            new_rewards = exp_source.pop_total_rewards()
            if new_rewards:
                writer.add_scalar("beta", beta, frame_idx)
                if reward_tracker.reward(new_rewards[0], frame_idx, 
selector.epsilon):
                    break

            if len(buffer) < params['replay_initial']:
                continue

As before, we track the total reward for the completed episodes, now showing beta 
change over the time of training.

            optimizer.zero_grad()
            batch, batch_indices, batch_weights = buffer.
sample(params['batch_size'], beta)
            loss_v, sample_prios_v = calc_loss(batch, batch_weights, 
net, tgt_net.target_model, params['gamma'], device=device)
            loss_v.backward()
            optimizer.step()
            buffer.update_priorities(batch_indices, sample_prios_v.
data.cpu().numpy())

The call of the optimizer is different from the basic DQN version. First of all, our 
sample from the buffer now returns not a single batch, but three values: batch, 
indices of samples and their weights. We pass both batch and weights to the loss 
function, the result of which is two things: the first is the accumulated loss value 
that we need to backpropagate, and the second is a tensor with individual loss values 
for every sample in the batch. We backpropagate the accumulated loss and ask our 
priority replay buffer to update the samples' priorities.

Results
This example can be trained as usual. The following are the reward dynamics in 
comparison to the basic DQN.
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Figure 10: Prioritized replay buffer (upper) in comparison to basic DQN (lower)

As expected, prioritization in the replay buffer's samples shows better  
convergence dynamics.

Dueling DQN
This improvement to DQN was proposed in 2015, in the paper called Dueling 
Network Architectures for Deep Reinforcement Learning ([8] Wang et al., 2015). The core 
observation of this paper lies in the fact that the Q-values Q(s, a) our network is 
trying to approximate can be divided into quantities: the value of the state V(s) and 
the advantage of actions in this state A(s, a). We've seen quantity V(s) before, as it 
was the core of the value iteration method from Chapter 5, Tabular Learning and the 
Bellman Equation. It just equals to the discounted expected reward achievable from 
this state. The advantage A(s, a) is supposed to bridge the gap from A(s) to Q(s, a), as, 
by definition: Q(s, a) = V(s) + A(s, a). In other words, the advantage A(s, a) is just the 
delta, saying how much extra reward some particular action from the state brings us. 
Advantage could be positive or negative and, in general, can have any magnitude. 
For example, at some tipping point, the choice of one action over another can cost us 
lots of the total reward.
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The above paper's contribution was an explicit separation of the value and the 
advantage in the network's architecture, which brought better training stability, 
faster convergence and better results on the Atari benchmark. The architecture 
difference from the classic DQN network is shown on the picture below. The 
classic DQN network (top) takes features from the convolution layer and, using 
fully-connected layers, transforms them into a vector of Q-values, one for each 
action. On the other hand, dueling DQN (bottom) takes convolution features and 
processes them using two independent paths: one path is responsible for V(s) 
prediction, which is just a single number, and another path predicts individual 
advantage values, having the same dimension as Q-values in the classic case. After 
that, we add V(s) to every value of A(s, a) to obtain the Q(s, a), which is used and 
trained as normal.

Figure 11: A basic DQN (top) and dueling architecture (bottom)

The above changes in the architecture are not enough to make sure that the 
network will learn V(s) and A(s, a) as we want it to. Nothing prevents the network, 
for example, from predicting some state V(s) = 0, and A(s) = [1, 2, 3, 4], which is 
completely wrong, as the predicted V(s) is not the expected value of the state. We 
have yet another constraint to be set: we want the mean value of the advantage of 
any state to be zero. In that case, the correct prediction for the above example will 
be V(s) = 2.5 and A(s) = [-1.5, -0.5, 0.5, 1.5].
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This constraint could be enforced in various ways, for example, via the loss 
function, but in the Dueling paper, the authors proposed a very elegant solution by 
subtracting from the Q expression in the network the mean value of the advantage, 
which effectively pulls the mean for advantage to zero: Q(s, a) = V (s) +A(s, a)− 1

N

∑
k A(s, k). 

This keeps the changes needed to be made in the classic DQN very simple: to convert 
it to the double DQN you need to change only the network architecture, without 
affecting other pieces of the implementation.

Implementation
A complete example is available in Chapter07/06_dqn_dueling.py, so here I'll 
show only the network class.

class DuelingDQN(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(DuelingDQN, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )

The convolution layers are completely the same as before.

        conv_out_size = self._get_conv_out(input_shape)
        self.fc_adv = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions)
        )
        self.fc_val = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )
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Instead of defining a single path of fully connected layers, we create two different 
transformations: one for advantages and one for value prediction.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        fx = x.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)
        val = self.fc_val(conv_out)
        adv = self.fc_adv(conv_out)
        return val + adv - adv.mean()

The changes in the forward() function are also very simple, thanks to PyTorch's 
expressiveness: we calculate value and advantage for our batch of samples and 
add them together, subtracting the mean of advantage to obtain the final Q-values.

Results
After training a dueling DQN, we can compare it to the classic DQN convergence on 
our Pong benchmark, as shown here.

Figure 12: The convergence of a dueling architecture (light) in comparison to a basic DQN (dark)
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Categorical DQN
The last and the most complicated method in our DQN improvements toolbox is from 
the very recent paper published by DeepMind in June 2017 called A Distributional 
Perspective on Reinforcement Learning ([9] Bellemare, Dabney and Munos 2017).

In the paper, the authors questioned the fundamental piece of Q-learning: Q-values 
and tried to replace them with more generic Q-value probability distribution. Let's 
try to understand the idea. Both the Q-learning and value iteration methods are 
working with the values of actions or states represented as simple numbers and 
showing how much total reward we can achieve from state or action. However, is 
it practical to squeeze all future possible reward into one number? In complicated 
environments, the future could be stochastic, giving us different values with 
different probabilities. For example, imagine the commuter scenario when you 
regularly drive from home to work. Most of the time, the traffic isn't that heavy and 
it takes you around 30 minutes to reach your destination. It's not exactly 30 minutes, 
but on average it's 30. From time to time, something happens, like road repairs or 
an accident, and due to traffic jams it takes you three-times longer to get to work. 
The probability of your commute time can be represented as a distribution of the 
'commute time' random variable and is shown in the following chart.

Figure 13: The probability distribution of commute time
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Now imagine that you have an alternative way to get to work: train. It takes a bit 
longer, as you need to get from home to the train station and from the station to 
the office, but they're much more reliable. Say, for example, that the train commute 
time is 40 minutes on average with a small chance of train disruption, which adds 
20 minutes of extra time to the journey. The distribution of the train commute is 
shown in the following graph.

Figure 14: The probability distribution of train commute time

Imagine that now we want to make the decision on how to commute. If we know 
only the mean time for both car and train, a car looks more attractive, as on average 
it takes 35.43 minutes to travel, which is better than 40.54 minutes for the train. 
However, if we look at full distributions, we may decide to go by train, as even 
in the worst-case scenario it will be one hour of commuting versus one hour and 
30 minutes. Switching to statistical language, car distribution has much higher 
variance, so, in situations when you really have to be at the office in 60 minutes 
max, the train is better.

Exactly the same idea was proposed by the authors of the paper, Distributional 
Perspective On Reinforcement Learning [9]. Why do we limit ourselves trying to predict 
an average value for an action, when the underlying value may have a complicated 
underlying distribution? Maybe it will help us to work with distributions directly.
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The results presented in the paper show that, in fact, this idea could be helpful, but 
at the cost of introducing a more complicated method. I'm not going to put a strict 
mathematical definition here, but the overall idea is to predict the distribution of 
value for every action, similar to the distributions for our car/train example above. 
As a next step, the authors have shown that the Bellman equation can be generalized 
for a distribution case and it will have a form Z(x, a)

D
= R(x, a) + γZ(x′, a′), which 

is very similar to the familiar Bellman equation, but now Z(x, a), R(x, a) are the 
probability distributions and not numbers.

The resulting distribution can be used to train our network to give better predictions 
of value distribution for every action of the given state, exactly the same way as 
with Q-learning. The only difference will be in the loss function, which now has to 
be replaced to something suitable for distributions' comparison. There are several 
alternatives available, for example Kullback-Leibler (KL)-divergence (or cross-
entropy loss) used in classification problems or the Wasserstein metric. In the paper, 
the authors gave theoretical justification for the Wasserstein metric, but when they 
tried to apply it in practice, they faced limitations, so, in the end, the paper used KL-
divergence. The paper is very recent, so it's quite probable that improvements to the 
methods will follow.

Implementation
As mentioned, the method is quite complex, so it took me a while to implement 
it and make sure it was working. The complete code is in Chapter07/07_dqn_
distrib.py, which uses a function in lib/common.py that we haven't discussed 
before to perform distributions' projection. Before we start it, we need to say several 
words about the implementation logic.

The central part of the method is probability distribution, which we're 
approximating. There are lots of ways to represent the distribution, but the authors 
of the paper chose quite a generic parametric distribution that is basically a fixed 
amount of values placed regularly on a values range. The range of values should 
cover the range of possible accumulated discounted reward. In the paper, the 
authors did experiments with various amounts of atoms, but the best results were 
obtained with the range being split on N_ATOMS=51 intervals in the range of values 
from Vmin=-10 to Vmax=10.
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For every atom (we have 51 of them), our network predicts the probability that 
future discounted value will fall into this atom's range. The central part of the 
method is the code, which performs the contraction of distribution of the next  
state's best action using gamma, adds local reward to the distribution and projects 
the results back into our original atoms. The following is the function that does 
exactly this:

def distr_projection(next_distr, rewards, dones, Vmin, Vmax,  
n_atoms, gamma):
    batch_size = len(rewards)
    proj_distr = np.zeros((batch_size, n_atoms), dtype=np.float32)
    delta_z = (Vmax - Vmin) / (n_atoms - 1)

In the beginning, we allocate the array that will keep the result of the projection. 
This function expects the batch of distributions with a shape (batch_size, n_atoms), 
array of rewards, flags for completed episodes and our hyperparameters: Vmin,  
Vmax, n_atoms, and gamma. The delta_z variable is the width of every atom in  
our value range.

    for atom in range(n_atoms):
        tz_j = np.minimum(Vmax, np.maximum(Vmin, rewards +  
(Vmin + atom * delta_z) * gamma))

In the preceding code, we iterate over every atom in the original distribution that we 
have and calculate the place that this atom will be projected by the Bellman operator, 
taking into account our value bounds. For example, the very first atom, with index 
0, corresponds with value Vmin=-10, but for the sample with reward +1 will be 
projected into value -10 * 0.99 + 1 = -8.9. In other words, it will be shifted to the right 
(assume our gamma=0.99). If the value falls beyond our value range given by Vmin 
and Vmax, we clip it to the bounds.

        b_j = (tz_j - Vmin) / delta_z

In the next line, we calculate the atom numbers that our samples have projected. Of 
course, samples can be projected between the atoms. In such situations, we'll spread 
value in the original distribution at the source atom, between the two atoms that it 
falls between. This spreading should be carefully handled, as our target atom can 
land exactly at some atom's position. In that case, we just need to add the source 
distribution value to the target atom.

        l = np.floor(b_j).astype(np.int64)
        u = np.ceil(b_j).astype(np.int64)
        eq_mask = u == l
        proj_distr[eq_mask, l[eq_mask]] += next_distr[eq_mask, atom]
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The above code handles the situation when the projected atom lands exactly on the 
target atom. Otherwise, b_j won't be the integer value and variables l and u (which 
correspond to the indices of atoms below and above the projected point).

        ne_mask = u != l
        proj_distr[ne_mask, l[ne_mask]] += next_distr[ne_mask, atom] * 
(u - b_j)[ne_mask]
        proj_distr[ne_mask, u[ne_mask]] += next_distr[ne_mask, atom] * 
(b_j - l)[ne_mask]

When the projected point lands between atoms, we need to spread the probability 
of the source atom between atoms below and above. This is carried out by two lines 
in the above code and, of course, we need to properly handle the final transitions 
of episodes. In that case, our projection shouldn't take into account the next 
distribution and will just have a 1 probability corresponding to the reward obtained. 
However, we need, again, to take into account our atoms and properly distribute this 
probability if the reward value falls between the atoms. This case is handled by the 
code branch below, which zeroes resulting distribution for samples with the done 
flag set and then calculates the resulting projection.

    if dones.any():
        proj_distr[dones] = 0.0
        tz_j = np.minimum(Vmax, np.maximum(Vmin, rewards[dones]))
        b_j = (tz_j - Vmin) / delta_z
        l = np.floor(b_j).astype(np.int64)
        u = np.ceil(b_j).astype(np.int64)
        eq_mask = u == l
        eq_dones = dones.copy()
        eq_dones[dones] = eq_mask
        if eq_dones.any():
            proj_distr[eq_dones, l] = 1.0
        ne_mask = u != l
        ne_dones = dones.copy()
        ne_dones[dones] = ne_mask
        if ne_dones.any():
            proj_distr[ne_dones, l] = (u - b_j)[ne_mask]
            proj_distr[ne_dones, u] = (b_j - l)[ne_mask]
    return proj_distr
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To give you an illustration of what this function does, let's look at artificially-made 
distributions processed by this function. I've used them to debug the function and 
make sure that it works as intended. The code for these checks is in Chapter07/
adhoc/distr_test.py.

Figure 15: The sample of probability distribution transformation applied to normal distribution

The first illustration below corresponds to the normal distribution projected with 
gamma=0.9 and shifted to the right with reward=2. In the situation when we pass 
done=True with the same data, the result will be different. In such cases,  
source distribution will be ignored completely and the result will have  
only reward projected.
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Figure 16: The projection of distribution for the final step in the episode

Now let's look at the main source of the method in Chapter07/07_dqn_distrib.py.

SAVE_STATES_IMG = False
SAVE_TRANSITIONS_IMG = False

if SAVE_STATES_IMG or SAVE_TRANSITIONS_IMG:
    import matplotlib as mpl
    mpl.use("Agg")
    import matplotlib.pylab as plt

In the beginning, we switch matplotlib into "headless" mode, which is when it 
doesn't require display for plotting. The code has special debug mode flags, which 
enable the saving of probability distributions to simplify debugging and the 
visualization of the training process (they are disabled by default).

Vmax = 10
Vmin = -10
N_ATOMS = 51
DELTA_Z = (Vmax - Vmin) / (N_ATOMS - 1)
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Then we define our constants, which includes the range of value distribution Vmax, 
Vmin, number of atoms, and width of every atom.

STATES_TO_EVALUATE = 1000
EVAL_EVERY_FRAME = 100

The next two constants define how many states we keep in our held-out buffer 
to perform mean value calculation and how frequently this mean value will be 
updated. This is useful for evaluating the training progress because as our agent 
becomes better and better at the game, its Q-values grow.

SAVE_STATES_IMG = False
SAVE_TRANSITIONS_IMG = False

Those two flags enable the saving of distribution images, which is useful for 
debugging, but significantly slows down the training process. If the first flag is 
enabled every 10k frames, we save the predicted distributions for all actions for 
the first 200 states in our held-out buffer. Resulting images show how distributions 
of those states converge from uniform distribution in the beginning to something 
more realistic and Gaussian-like. The second flag enables the saving of projection 
distributions for batches with non-zero rewards or terminal episodes, which is really 
helpful for spotting bugs in distribution projection code and useful for visualizing 
the internals of the method.

class DistributionalDQN(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(DistributionalDQN, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )

        conv_out_size = self._get_conv_out(input_shape)
        self.fc = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions * N_ATOMS)
        )
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        self.register_buffer("supports", torch.arange 
(Vmin, Vmax+DELTA_Z, DELTA_Z))
        self.softmax = nn.Softmax(dim=1)

The major difference in the NN constructor is the output of the net. Now, it's not the 
tensor of size n_actions; it's a matrix of n_actions * n_atoms elements, containing 
probability distributions for every action. With batch dimension, the resulting output 
has three dimensions. We also register the torch tensor with our atom's values to be 
able to use it later.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        batch_size = x.size()[0]
        fx = x.float() / 256
        conv_out = self.conv(fx).view(batch_size, -1)
        fc_out = self.fc(conv_out)
        return fc_out.view(batch_size, -1, N_ATOMS)

The forward() function is mostly the same when compared to baseline DQN, except 
the final shape, which needs to be adjusted. However, forward() is not enough for 
our purposes. Besides raw distribution, we'll need both distributions and Q-values 
from the batch of states. To avoid multiple NN transformation, we'll define the 
function both(), which returns both raw distribution and Q-values. Q-values will 
be used to make decisions on actions. Of course, using distributions means that we 
can have different strategies for action selections, but greedy policy in regards to 
Q-values makes the method comparable to the standard DQN version.

    def both(self, x):
        cat_out = self(x)
        probs = self.apply_softmax(cat_out)
        weights = probs * self.supports
        res = weights.sum(dim=2)
        return cat_out, res

To obtain Q-values from the distribution, we just need to calculate the weighted sum 
of the normalized distribution and atom's values. The result will be the expected 
value from the distribution.

    def qvals(self, x):
        return self.both(x)[1]

    def apply_softmax(self, t):
        return self.softmax(t.view(-1, N_ATOMS)).view(t.size())
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The remaining two functions are simple utility functions. The first calculates only 
Q-values, while the second applies softmax to the output tensor, keeping the proper 
shape of the tensor.

def calc_loss(batch, net, tgt_net, gamma, device="cpu", save_
prefix=None):
    states, actions, rewards, dones, next_states = common.unpack_
batch(batch)
    batch_size = len(batch)

    states_v = torch.tensor(states).to(device)
    actions_v = torch.tensor(actions).to(device)
    next_states_v = torch.tensor(next_states).to(device)

The loss function for the categorical DQN (the authors also call it C51, by the number 
of atoms used) starts the same way as before: we unpack the batch and convert 
arrays to tensors.

    # next state distribution
    next_distr_v, next_qvals_v = tgt_net.both(next_states_v)
    next_actions = next_qvals_v.max(1)[1].data.cpu().numpy()
    next_distr = tgt_net.apply_softmax(next_distr_v).data.cpu().
numpy()

Later, we'll need both probability distributions and Q-values for the next states, 
so we use the both() call to the network, obtain the best actions to take in the next 
state, apply softmax to the distribution, and convert it to the array.

    next_best_distr = next_distr[range(batch_size), next_actions]
    dones = dones.astype(np.bool)
    proj_distr = common.distr_projection(next_best_distr, rewards, 
dones, Vmin, Vmax, N_ATOMS, gamma)

Then, we extract distributions of the best actions and perform their projection using 
the Bellman operator. The result of the projection will be target distribution about 
what we want our network output to look like.

    distr_v = net(states_v)
    state_action_values = distr_v[range(batch_size), actions_v.data]
    state_log_sm_v = F.log_softmax(state_action_values, dim=1)
    proj_distr_v = torch.tensor(proj_distr).to(device)
    loss_v = -state_log_sm_v * proj_distr_v
    return loss_v.sum(dim=1).mean()
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At the end of the function, we need to compute the output of the network and 
calculate KL-divergence between projected distribution and the network's output 
for the taken actions. KL-divergence shows how much two distributions differ and 
is defined DKL(P‖Q) = −

∑
i pi log qi  .

To calculate the logarithm of probability, we use the PyTorch function log_softmax, 
which performs both log and softmax in a numerical and stable way. The training 
loop is the same as before, with one exception in ptan.DQNAgent creation, which 
needs to use function qvals(), instead of the model itself.

    agent = ptan.agent.DQNAgent(lambda x: net.qvals(x), selector, 
device=device)

Results
The plot with the results are as follows, with the upper line corresponding to the 
basic DQN and lower line being from the C51 training.

Figure 17: Convergence of the categorical DQN (lower) in comparison to the basic DQN (upper)

As you can see, categorical DQN is the only method of convergence dynamic, which, 
in the beginning is worse than the classic DQN. However, there is one factor that 
protects this new method: Pong is too simple a game to draw conclusions. In the 
Categorical DQN paper, the authors reported state-of-the-art scores for more than 
half of the games from the Atari benchmark (Pong is not among them).
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It might be interesting to look into the dynamics of the probability distribution 
during the training. The code has two flags, SAVE_STATES_IMG and SAVE_
TRANSITIONS_IMG (disabled by default), which enable the saving of probability 
distribution images during training. For example, on the image below is shown 
probability distribution for all six actions for one state at the beginning of training 
(after 30k frames).

Figure 18: Probability distribution at the beginning of training

All the distributions are very wide (as the network hasn't converged yet) and the 
peak in the middle corresponds to the negative reward that the network expects 
to get from its actions. The same state after 500k frames of training is shown in the 
following figure:



Chapter 7

[ 207 ]

Figure 19: Probability distribution produced by the trained network

Now we can see that different actions have different distributions. The first action 
(which corresponds to the NOOP, that is do nothing action) has distribution shifted  
to the left, so doing nothing in this state usually leads to losing. The fifth action,  
which is RIGHTFIRE, has the mean value shifted to the right, so this action leads  
to a better score.

Combining everything
We've now seen all DQN improvements mentioned in the paper [1] Rainbow: 
Combining Improvements in Deep Reinforcement Learning. Let's combine all of them 
into one hybrid method. First of all, we need to define our network architecture 
and the three methods that have contributed to it:

•	 Categorical DQN: Our network will predict the value probability 
distribution of actions.

•	 Dueling DQN: Our network will have two separate paths for value of state 
distribution and advantage distribution. On the output, both paths will be 
summed together, providing the final value probability distributions for 
actions. To force advantage distribution to have a zero mean, we'll subtract 
distribution with mean advantage in every atom.
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•	 NoisyNet: Our linear layers in the value and advantage paths will be noisy 
variants of nn.Linear.

In addition to network architecture changes, we'll use prioritized replay buffer to 
keep environment transitions and sample them proportionally to KL-divergence. 
Finally, we'll unroll the Bellman equation to n-steps and use the double DQN action 
selection process to prevent the overestimation of values of states.

Implementation
The preceding list of modifications may look complicated, but, in fact, all of 
the methods fit with each other quite nicely. The complete example is in the 
Chapter07/08_dqn_rainbow.py file:

# n-step
REWARD_STEPS = 2

# priority replay
PRIO_REPLAY_ALPHA = 0.6
BETA_START = 0.4
BETA_FRAMES = 100000

# C51
Vmax = 10
Vmin = -10
N_ATOMS = 51
DELTA_Z = (Vmax - Vmin) / (N_ATOMS - 1)

As usual, we define hyperparameters for all methods that we'll use (imports are 
omitted to save space).

class RainbowDQN(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(RainbowDQN, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )
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        conv_out_size = self._get_conv_out(input_shape)
        self.fc_val = nn.Sequential(
            dqn_model.NoisyLinear(conv_out_size, 512),
            nn.ReLU(),
            dqn_model.NoisyLinear(512, N_ATOMS)
        )

        self.fc_adv = nn.Sequential(
            dqn_model.NoisyLinear(conv_out_size, 512),
            nn.ReLU(),
            dqn_model.NoisyLinear(512, n_actions * N_ATOMS)
        )

        self.register_buffer("supports", torch.arange(Vmin, 
Vmax+DELTA_Z, DELTA_Z))
        self.softmax = nn.Softmax(dim=1)

The constructor of our network shouldn't surprise you much, as we've seen it before. 
It combines dueling DQN, NoisyNet, and the categorical DQN into one architecture. 
A value network path predicts the distribution of values for the input state, thus 
giving us a single vector of N_ATOMS for every batch sample. The advantage path 
produces the distribution for every action that we have in the game.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        batch_size = x.size()[0]
        fx = x.float() / 256
        conv_out = self.conv(fx).view(batch_size, -1)
        val_out = self.fc_val(conv_out).view(batch_size, 1, N_ATOMS)
        adv_out = self.fc_adv(conv_out).view(batch_size, -1, N_ATOMS)
        adv_mean = adv_out.mean(dim=1, keepdim=True)
        return val_out + adv_out - adv_mean

The forward pass produces value distribution for actions, which are similar to 
Q-values in categorical DQN. By accurately reshaping the output from both the 
value and advantage paths, our return expression becomes very simple, thanks 
to PyTorch's broadcasting of tensors.
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The idea is to make all values that we want to add have the same count of 
dimensions. For example, the value path will be reshaped into (batch_size, 1,  
N_ATOMS), so the second dimension will be broadcasted to all actions in the 
advantage path. The baseline advantage that we need to subtract is obtained by 
calculating the mean advantage for every atom over all actions. The keepdim=True 
argument asks the mean() call to keep the second dimension, which produces the 
tensor of (batch_size, 1, N_ATOMS). So, baseline advantage will be broadcasted too.

    def both(self, x):
        cat_out = self(x)
        probs = self.apply_softmax(cat_out)
        weights = probs * self.supports 
        res = weights.sum(dim=2)
        return cat_out, res

    def qvals(self, x):
        return self.both(x)[1]

The preceding functions are used to be able to combine probability distributions into 
Q-values, without calling the network several times.

    def apply_softmax(self, t):
        return self.softmax(t.view(-1, N_ATOMS)).view(t.size())

The final function applies softmax to the output probability distribution.

def calc_loss(batch, batch_weights, net, tgt_net, gamma, 
device="cpu"):
    states, actions, rewards, dones, next_states = common.unpack_
batch(batch)
    batch_size = len(batch)

    states_v = torch.tensor(states).to(device)
    actions_v = torch.tensor(actions).to(device)
    next_states_v = torch.tensor(next_states).to(device)
    batch_weights_v = torch.tensor(batch_weights).to(device)

Our loss function accepts the same set of arguments as we've seen in prioritized 
replay buffer. In addition to batch array with training data, we pass weights for 
every sample.

    distr_v, qvals_v = net.both(torch.cat((states_v, next_states_v)))
    next_qvals_v = qvals_v[batch_size:]
    distr_v = distr_v[:batch_size]
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Here we use a small trick to speed up our calculations a bit. As the double DQN 
method requires us to use our main network to select actions but use the target 
network to obtain values (in our case, value distributions) for those actions, we 
need to pass to our main network both the current states and the next states. Earlier, 
we calculated the network output in two calls, which is not very efficient on GPU. 
Now, we concatenate both current states and next states into one tensor and obtain 
the result in one network pass, splitting the result later. We need to calculate both 
Q-values and raw values' distributions, as our action selection policy is still greedy: 
we choose the action with the largest Q-value.

    next_actions_v = next_qvals_v.max(1)[1]
    next_distr_v = tgt_net(next_states_v)
    next_best_distr_v = next_distr_v[range(batch_size), next_
actions_v.data]
    next_best_distr_v = tgt_net.apply_softmax(next_best_distr_v)
    next_best_distr = next_best_distr_v.data.cpu().numpy()

In the preceding lines, we decide on actions to take in the next state and obtain 
the distribution of those actions using our target network. So, the above net/
tgt_net shuffling implements the double DQN method. Then we apply softmax 
to distribution for those best actions and copy the data into CPU to perform the 
Bellman projection.

    dones = dones.astype(np.bool)
    proj_distr = common.distr_projection(next_best_distr, rewards, 
dones, Vmin, Vmax, N_ATOMS, gamma)

In the preceding code, we calculate the projected distribution using the Bellman 
equation. This result will be used as a target in our KL-divergence.

    state_action_values = distr_v[range(batch_size), actions_v.data]
    state_log_sm_v = F.log_softmax(state_action_values, dim=1)

Here we obtain the distributions for taken actions and apply log_softmax to 
calculate the loss.

    proj_distr_v = torch.tensor(proj_distr)
    loss_v = -state_log_sm_v * proj_distr_v
    loss_v = batch_weights_v * loss_v.sum(dim=1)
    return loss_v.mean(), loss_v + 1e-5
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In the last lines of the function, we calculate the KL-divergence loss, multiply it by 
weights and return two quantities: combined loss to be used in the optimizer step 
and individual loss values for batch, which will be used as priorities in the replay 
buffer. The rest of the module contains initialization and the training loop and 
should be familiar to you.

if __name__ == "__main__":
    params = common.HYPERPARAMS['pong']
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False, action="store_true", 
help="Enable cuda")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    env = gym.make(params['env_name'])
    env = ptan.common.wrappers.wrap_dqn(env)

    writer = SummaryWriter(comment="-" + params['run_name'] + 
"-rainbow")
    net = RainbowDQN(env.observation_space.shape, env.action_space.n).
to(device)
    tgt_net = ptan.agent.TargetNet(net)
    agent = ptan.agent.DQNAgent(lambda x: net.qvals(x), ptan.actions.
ArgmaxActionSelector(), device=device)

    exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=params['gamma'], steps_count=REWARD_STEPS)
    buffer = ptan.experience.PrioritizedReplayBuffer(exp_source, 
params['replay_size'], PRIO_REPLAY_ALPHA)
    optimizer = optim.Adam(net.parameters(), lr=params['learning_
rate'])

In the preceding code we create everything we need, including our custom network, 
experience source, prioritized replay buffer and optimizer.

    frame_idx = 0
    beta = BETA_START

    with common.RewardTracker(writer, params['stop_reward']) as 
reward_tracker:
        while True:
            frame_idx += 1
            buffer.populate(1)
            beta = min(1.0, BETA_START + frame_idx * (1.0 - BETA_
START) / BETA_FRAMES)
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            new_rewards = exp_source.pop_total_rewards()
            if new_rewards:
                if reward_tracker.reward(new_rewards[0], frame_idx):
                    break

            if len(buffer) < params['replay_initial']:
                continue

            optimizer.zero_grad()
            batch, batch_indices, batch_weights = buffer.
sample(params['batch_size'], beta)
            loss_v, sample_prios_v = calc_loss(batch, batch_
weights, net, tgt_net.target_model, params['gamma'] ** REWARD_STEPS, 
device=device)
            loss_v.backward()
            optimizer.step()
            buffer.update_priorities(batch_indices, sample_prios_v.
data.cpu().numpy())

            if frame_idx % params['target_net_sync'] == 0:
                tgt_net.sync()

Results
Training dynamics for the aggregated agent are shown here.

Figure 20: Convergence dynamics of the combined method (light) versus a basic DQN (dark)
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If you put all of our methods into perspective, on the Pong game the aggregated 
agent doesn't have the best training dynamics, for example dueling DQN or 
NoisyNets alone converge a bit faster. However, Pong is not very complicated 
and was chosen as a benchmark for this chapter due to its simplicity and fast 
convergence. As an extra exercise, you can check those methods on different 
games from the Atari suite.

In the lib/common.py module, you can find hyperparameters closer to the  
settings used by the researchers in their benchmarks, but keep in mind that  
reaching state-of-the-art results on a complex game can take 50-100M frames,  
which can be a week of training.

Summary
In this chapter, we walked through and implemented lots of DQN improvements 
discovered by researchers since the first DQN paper was published in 2015. This 
list is far from complete. First of all, for the list of methods, I've used the paper, 
[1] Rainbow: Combining Improvements in Deep Reinforcement Learning, which was 
published by DeepMind, so the list of methods is definitely biased to DeepMind 
papers. Secondly, RL is so active nowadays that new papers come out almost every 
day, which makes it very hard to keep up with, even if we limit ourselves to one 
kind of RL model such as a DQN. The goal of this chapter was to give you a practical 
view of different ideas that the field has developed. 

In the next chapter, we will apply our DQN knowledge to a real-life scenario 
of stocks trading.
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Stocks Trading Using RL
Rather than learning new methods to solve toy reinforcement learning (RL) 
problems in this chapter, we’ll try to utilize our deep Q-network (DQN) knowledge 
to deal with the much more practical problem of financial trading. I can’t promise 
that the code will make you super rich on the stock market or Forex, because the goal 
is much less ambitious: to demonstrate how to go beyond the Atari games and apply 
RL to a different practical domain.

In this chapter, we’ll implement our own OpenAI Gym environment, which 
simulates the stock market, and apply the DQN method that we’ve just learned 
in Chapters 6, Deep Q-Networks, and Chapter 7, DQN Extensions, to train the agent 
that will trade stocks to maximize the profit.

Trading
There are lots of financial instruments traded on markets every day: goods, stocks, 
and currencies. Even weather forecasts can be bought or sold using so-called 
“weather derivatives," which is just a consequence of the complexity of the modern 
world and financial markets. If your income depends on future weather conditions, 
like a business growing crops, then you might want to hedge the risks by buying 
weather derivatives. All these different items have a price which is changed 
over time. Trading is an activity of buying and selling financial instruments with 
different goals, like making profit (investment), gaining protection from future 
price movement (hedging) or just getting what you need (like buying steel for your 
manufacture or exchanging USD to JPY to pay a contract).

Since the first financial market was established, people have been trying to predict 
future price movements, as this promises lots of benefits, like “profit from nowhere” 
or protecting capital from sudden market movements. This problem is known to be 
complex and there are lots of financial consultants, investment funds, banks, and 
individual traders who are trying to predict the market and find the best moments 
to buy and sell to maximize profit.
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The question is: can we look at the problem from the RL angle? We have some 
observation of the market and we want to make a decision: buy, sell, or wait. If 
we buy before the price goes up, our profit will be positive, otherwise, we’ll get 
a negative reward. What we’re trying to do is to get as much profit as possible. 
The connections between market trading and RL are quite obvious.

Data
In our example, we’ll use the Russian stock market prices for the period of  
2015-2016, which is placed in Chapter08/data/ch08-small-quotes.tgz  
and has to be unpacked before model training.

Inside the archive, we have CSV files with M1 bars, which means that every row 
in the CSV corresponds to a single minute in time and price movement during this 
minute is captured with four prices: open, high, low, and close. Here, an open price 
is the price at the beginning of the minute, high is the maximum price during the 
interval, low is the minimum price, and the close price is the last price of the minute 
time interval. Every minute interval is called bar and allows us to have an idea of 
price movement within the interval. For example, in the YNDX_160101_161231.csv 
file (which is Yandex company stocks for 2016), we have 130k lines of this form:

<DATE>,<TIME>,<OPEN>,<HIGH>,<LOW>,<CLOSE>,<VOL>
20160104,100100,1148.9000000,1148.9000000,1148.9000000,1148.9000000,0
20160104,100200,1148.9000000,1148.9000000,1148.9000000,1148.9000000,50
20160104,100300,1149.0000000,1149.0000000,1149.0000000,1149.0000000,33
20160104,100400,1149.0000000,1149.0000000,1149.0000000,1149.0000000,4
20160104,100500,1153.0000000,1153.0000000,1153.0000000,1153.0000000,0
20160104,100600,1156.9000000,1157.9000000,1153.0000000,1153.0000000,43
20160104,100700,1150.6000000,1150.6000000,1150.4000000,1150.4000000,5
20160104,100800,1150.2000000,1150.2000000,1150.2000000,1150.2000000,4
...

The first two columns are the date and time for the minute, the next four columns are 
open, high, low, and close prices and the last value represents the amount of buy and 
sell orders performed during the bar. The exact interpretation of this number is stock 
and market-dependent, but usually, volumes give you an idea about how active the 
market was.

The typical way to represent those prices is called a candlestick chart, where every 
bar is shown as a candle. Part of Yandex’s quotes for one day in February 2016 is 
shown in the following chart. Every file in the archive contains the M1 data for 
one year and it will be used in this chapter’s example:
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Figure 1: Price data for Yandex in February 2016

Problem statements and key decisions
The finance domain is large and complex, so you can easily spend several years 
learning something new every day. In our example, we’ll just scratch the surface 
a bit with our RL tools and our problem will be formulated as simply as possible, 
using price as an observation. We will investigate whether it will be possible for 
our agent to learn when the best time is to buy one single share and then close the 
position to maximize the profit. The purpose of this example is to show how flexible 
the RL model can be and what the first steps are that you usually need to take to 
apply RL to a real-life use case.

As you already know, to formulate RL problems three things are needed: 
observation of the environment, possible actions, and a reward system. In previous 
chapters, all three were already given to us and the internal machinery of the 
environment was hidden. Now we’re in a different situation, so we need to decide 
ourselves what our agent will see and what set of actions it can take. The reward 
system is also not given as a strict set of rules, rather it is guided by our feelings 
and knowledge of the domain, but we still have lots of flexibility here.
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Flexibility, in this case, is good and bad at the same time. It’s good that we have the 
freedom to pass some information to the agent that we feel will be important to learn 
efficiently. For example, you can pass to the trading agent not only prices but also 
the information about news or important statistics to be published (which is known 
to influence financial markets a lot). The bad part is that this flexibility usually means 
that to find a good agent, you need to try lots of variants of data representation and 
it’s not always obvious which will work better. In our case, we’ll implement the 
basic trading agent in its simplest form. The observation will include the following 
information:

•	 N past bars, where each have open, high, low, and close prices
•	 An indication that the share was bought some time ago (it will be possible 

to have only one share at a time)
•	 Profit or loss we currently have from our current position (the share bought)

At every step, which will be after every minute’s bar, the agent can take one of the 
following actions:

•	 Do nothing: Skip the bar without taking actions
•	 Buy a share: If the agent has already got the share, nothing will be bought, 

otherwise we’ll pay the commission, which is usually some small percentage 
of the current price

•	 Close the position: If we’ve got no share previously bought, nothing will 
happen, otherwise we’ll pay the commission for the trade

The reward that the agent receives could be expressed in various ways. On the one 
hand, we can split the reward into multiple steps during our ownership of the share. 
In that case, the reward on every step will be equal to the last bar’s movement. On 
the other hand, the agent can receive reward only after the close action and receive 
full reward at once. At the first sight, both variants should have the same final result, 
but maybe with different convergence speed. However, in practice, the difference 
could be dramatic. We’ll implement both variants to have a chance to compare them.

One last decision to make is how to represent the prices in our environment 
observation. Ideally, we would like our agent to be independent on actual price 
values and take into account relative movement, such as “stock has grown 1% during 
the last bar” or “stock has lost 5%." This makes sense, as different stocks’ prices can 
vary, but they can have similar movement patterns. In finance, there exists a branch 
of analytics called “technical analysis," which studies such patterns to help to make 
predictions from them. We would like our system to be able to discover them (if they 
exist). To achieve this, we’ll convert every bar “open, high, low, and close” prices to 
three numbers showing high, low, and close prices represented as a percentage to the  
open price.
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This representation has its own drawbacks, as we’re potentially losing the 
information about key price levels. For example, it’s known that markets have 
a tendency to bounce from round price numbers (like $8000 per bitcoin) and 
levels which were turning points in the past. However, as already stated, we’re 
not implementing “Wall Street Killer” here, but playing with the data and checking 
the concept. The representation in the form of relative price movement will help 
the system to find repeating patterns in the price level (if they exist, of course), 
regardless of the absolute price position. Potentially, the neural network (NN) could 
learn this on its own (it’s just the mean price which needs to be subtracted from the 
absolute price values), but relative representation simplifies the NN’s task.

The trading environment
As we have lots of code that is supposed to work with OpenAI Gym, we’ll 
implement the trading functionality following Gym’s Env class API, which should 
be familiar to you. Our environment is implemented in the StocksEnv class in the 
Chapter08/lib/environ.py module. It uses several internal classes to keep its 
state and encode observations. Let’s first look at the public API class.

class Actions(enum.Enum):
    Skip = 0
    Buy = 1
    Close = 2

We encode all available actions as an enumerator’s fields. We support a very simple 
set of actions with only three options: do nothing, buy a single share, and close the 
existing position.

class StocksEnv(gym.Env):
    metadata = {‘render.modes’: [‘human’]}

This metadata field is required the for gym.Env compatibility. We don’t provide 
render functionality, so you can ignore this.

    @classmethod
    def from_dir(cls, data_dir, **kwargs):
        prices = {file: data.load_relative(file) for file in  
data.price_files(data_dir)}
        return StocksEnv(prices, **kwargs)
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Our environment class provides two ways to create its instance. The first way is to 
call the class method from_dir with data directory as the argument. In that case, it 
will load all quotes from CSV files in the directory and construct the environment. 
To deal with price data in our form, we have several helper functions in Chapter08/
lib/data.py. Another way is to construct the class instance directly. In that case, 
you should pass the prices dictionary which has to map the quote tag to the data.
Prices tuple. This object has five fields containing open, high, low, close, and 
volume time series in the NumPy array format. You can construct such objects 
using data.py library functions, like data.load_relative.

    def __init__(self, prices, bars_count=DEFAULT_BARS_COUNT,
                 commission=DEFAULT_COMMISSION_PERC,  
reset_on_close=True, state_1d=False,
                 random_ofs_on_reset=True, reward_on_close=False,  
volumes=False):

The constructor of the environment accepts lots of arguments to tweak the 
environment’s behavior and observation representation:

•	 prices: Contains one or more stock prices for one or more instruments as 
a dict, where keys are the instrument’s name and value is a container object 
data.Prices which holds price data arrays.

•	 bars_count: The count of bars that we pass in observation. By default, 
this is 10 bars.

•	 commission: The percentage of the stock price we have to pay to the broker 
on buying and selling the stock. By default, it’s 0.1%.

•	 reset_on_close: If this parameter is set to True, which it is by default, 
every time the agent asks us to close the existing position (in other words, 
sell a share), we stop the episode. Otherwise, the episode will continue until 
the end of our time series, which is one year of data.

•	 conv_1d: This boolean argument, switches between different representations 
of price data in the observation passed to the agent. If it is set to True, 
observations have a 2D shape, with different price components for 
subsequent bars organized in rows. For example, high prices (max price for 
the bar) are placed on the first row, low prices on the second and close prices 
on the third. This representation is suitable for doing 1D convolution on 
time series, where every row in the data has the same meaning as different 
color planes (red, green, or blue) in Atari 2D images. If we set this option 
to False, we have one single array of data with every bar’s components 
placed together. This organization is convenient for fully-connected network 
architecture. Both representations are illustrated in Figure 2.
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•	 random_ofs_on_reset: If the parameter is True (by default), on every 
reset of the environment, the random offset in time series will be chosen. 
Otherwise, we’ll start from the beginning of the data.

•	 reward_on_close: This Boolean parameter switches between two reward 
schemes discussed above. If it is set to True, the agent will receive reward 
only on the “close” action issue. Otherwise, we’ll give a small reward every 
bar, corresponding to price movement during that bar.

•	 volumes: This argument switches on volumes in observations and is disabled 
by default.

Figure 2: Different data representations for the NN

Now will continue looking on environment constructor:

        assert isinstance(prices, dict)
        self._prices = prices
        if state_1d:
            self._state = State1D(bars_count, commission,  
reset_on_close, reward_on_close=reward_on_close,
                                  volumes=volumes)
        else:
            self._state = State(bars_count, commission, reset_on_
close, reward_on_close=reward_on_close, 
volumes=volumes)
        self.action_space = gym.spaces.Discrete(n=len(Actions))
        self.observation_space = gym.spaces.Box(low=-np.inf,  
high=np.inf, shape=self._state.shape, dtype=np.float32)
        self.random_ofs_on_reset = random_ofs_on_reset
        self._seed()
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Most of the functionality of the StocksEnv class is implemented in two internal 
classes: State and State1D. They are responsible for observation preparation and 
our bought share state and reward. They are implementing a different representation 
of our data in the observations and we’ll take a look at their code later. In the 
constructor, we create the state object, action space, and observation space fields 
that are required by Gym.

    def reset(self):
        # make selection of the instrument and it’s offset. Then  
reset the state
        self._instrument =  
self.np_random.choice(list(self._prices.keys()))
        prices = self._prices[self._instrument]
        bars = self._state.bars_count
        if self.random_ofs_on_reset:
            offset = self.np_random.choice(prices.high.shape[0]- 
bars*10) + bars
        else:
            offset = bars
        self._state.reset(prices, offset)
        return self._state.encode()

This method defines the reset() functionality for our environment. According to 
the gym.Env semantics, we randomly switch the time series that we’ll work on and 
select the starting offset in this time series. The selected price and offset are passed 
to our internal state instance, which then asks for an initial observation, using its 
encode() function.

    def step(self, action_idx):
        action = Actions(action_idx)
        reward, done = self._state.step(action)
        obs = self._state.encode()
        info = {“instrument”: self._instrument, “offset”:  
self._state._offset}
        return obs, reward, done, info

This method has to handle the action chosen by the agent and return the next 
observation, reward, and done flag. All real functionality is implemented in 
our state classes, so this method is a very simple wrapper around the call to 
state methods.

    def render(self, mode=’human’, close=False):
        pass

    def close(self):
        pass
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The API for gym.Env allows you to define the render() method handler, which 
is supposed to render the current state in human or machine-readable format. 
Generally, this method is supposed to be used to peek inside the environment state 
and is useful for debugging or tracing the agent’s behavior. For example, the market 
environment could render current prices as a chart to visualize what the agent 
sees at that moment. Our environment doesn’t support rendering, so this method 
does nothing. Another method is close(), which gets called on the environment’s 
destruction to free the allocated resources.

    def seed(self, seed=None):
        self.np_random, seed1 = seeding.np_random(seed)
        seed2 = seeding.hash_seed(seed1 + 1) % 2 ** 31
        return [seed1, seed2]

This method is part of Gym’s magic related to Python random number generator 
problems. For example, when you create several environments at the same time, 
their random number generators could be initialized with the same seed (which is 
the current timestamp, by default). It’s not very relevant for our code (as we’re using 
only one environment instance for DQN), but will become useful in the next part of 
the book when we go to the Asynchronous Advantage Actor-Critic (A3C) method, 
which is supposed to use several environments concurrently.

Let’s now look at the internal environ.State class, which implements most of the 
environment’s functionality.

class State:
    def __init__(self, bars_count, commission_perc,  
reset_on_close, reward_on_close=True, volumes=True):
        assert isinstance(bars_count, int)
        assert bars_count > 0
        assert isinstance(commission_perc, float)
        assert commission_perc >= 0.0
        assert isinstance(reset_on_close, bool)
        assert isinstance(reward_on_close, bool)
        self.bars_count = bars_count
        self.commission_perc = commission_perc
        self.reset_on_close = reset_on_close
        self.reward_on_close = reward_on_close
        self.volumes = volumes

The constructor does nothing more than just checking and remembering the 
arguments in the object’s fields:

    def reset(self, prices, offset):
        assert isinstance(prices, data.Prices)
        assert offset >= self.bars_count-1
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        self.have_position = False
        self.open_price = 0.0
        self._prices = prices
        self._offset = offset

The reset() method is called every time that the environment is being asked to 
reset and has to save the passed prices data and starting offset. In the beginning, 
we don’t have any shares bought, so our state has have_position=False and  
open_price=0.0.

    @property
    def shape(self):
        # [h, l, c] * bars + position_flag + rel_profit (since  
open)
        if self.volumes:
            return (4 * self.bars_count + 1 + 1, )
        else:
            return (3 * self.bars_count + 1 + 1, )

This property returns the shape of the state representation in a NumPy array.  
The State class is encoded into a single vector, which includes prices with optional 
volumes and two numbers indicating the presence of a bought share and position 
profit.

    def encode(self):
        “””
        Convert current state into numpy array.
        “””
        res = np.ndarray(shape=self.shape, dtype=np.float32)
        shift = 0
        for bar_idx in range(-self.bars_count+1, 1):
            res[shift] = self._prices.high[self._offset + bar_idx]
            shift += 1
            res[shift] = self._prices.low[self._offset + bar_idx]
            shift += 1
            res[shift] = self._prices.close[self._offset +  
bar_idx]
            shift += 1
            if self.volumes:
                res[shift] = self._prices.volume[self._offset +  
bar_idx]
                shift += 1
        res[shift] = float(self.have_position)
        shift += 1
        if not self.have_position:
            res[shift] = 0.0
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        else:
            res[shift] = (self._cur_close() - self.open_price) /  
self.open_price
        return res

The above method encodes prices at the current offset into a NumPy array, 
which will be the observation of the agent.

    def _cur_close(self):
        open = self._prices.open[self._offset]
        rel_close = self._prices.close[self._offset]
        return open * (1.0 + rel_close)

This helper method calculates the current bar’s close price. Prices passed to the 
State class have the relative form in respect to open price: the high, low, and close 
components are relative ratios to the open price. This representation was already 
discussed when we talked about the training data and it will (probably) help our 
agent to learn price patterns that are independent of actual price value.

    def step(self, action):
        assert isinstance(action, Actions)
        reward = 0.0
        done = False
        close = self._cur_close()

This method is the most complicated piece of code in the State class, which 
is responsible for performing one step in our environment. On exit, it has to return 
the reward in a percentage and indication of the episode ending.

        if action == Actions.Buy and not self.have_position:
            self.have_position = True
            self.open_price = close
            reward -= self.commission_perc

If the agent has decided to buy a share, we change our state and pay the commission. 
In our state, we assume the instant order execution at the current bar’s close price, 
which is a simplification on our side, as, normally, order could be executed on 
a different price, which is called "price slippage".

        elif action == Actions.Close and self.have_position:
            reward -= self.commission_perc
            done |= self.reset_on_close
            if self.reward_on_close:
                reward += 100.0 * (close - self.open_price) /  
self.open_price
            self.have_position = False
            self.open_price = 0.0
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If we have a position and the agent asks us to close it, we pay commission again, 
change the done flag if we’re in reset_on_close mode, give a final reward for the 
whole position, and change our state.

        self._offset += 1
        prev_close = close
        close = self._cur_close()
        done |= self._offset >= self._prices.close.shape[0]-1

        if self.have_position and not self.reward_on_close:
            reward += 100.0 * (close - prev_close) / prev_close

        return reward, done

In the rest of the function, we modify the current offset and give the reward for the 
last bar movement. That’s it for the State class, so let’s look at State1D, which has the 
same behavior and just overrides the representation of the state passed to the agent.

class State1D(State):
    @property
    def shape(self):
        if self.volumes:
            return (6, self.bars_count)
        else:
            return (5, self.bars_count)

The shape of this representation is different, as our prices are encoded as a 2D matrix 
suitable for a 1D convolution operator.

    def encode(self):
        res = np.zeros(shape=self.shape, dtype=np.float32)
        ofs = self.bars_count-1
        res[0] = self._prices.high[self._offset- 
ofs:self._offset+1]
        res[1] = self._prices.low[self._offset-ofs:self._offset+1]
        res[2] = self._prices.close[self._offset- 
ofs:self._offset+1]
        if self.volumes:
            res[3] = self._prices.volume[self._offset- 
ofs:self._offset+1]
            dst = 4
        else:
            dst = 3
        if self.have_position:
            res[dst] = 1.0
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            res[dst+1] = (self._cur_close() - self.open_price) /  
self.open_price
        return res

The above method encodes the prices in our matrix, depending on the current 
offset, whether we need volumes or not and whether we have stock. That’s it 
for our trading environment. Compatibility with the Gym API allows us to plug 
it into familiar classes that we used to handle the Atari games. Let’s do that now.

Models
In this example, two architectures of DQN are used: a simple feed-forward network 
with three layers and a network with 1D convolution and a feature extractor, 
followed by two fully connected layers to output Q values. Both of them use the 
dueling architecture described in the previous chapter. Double DQN and two-step 
Bellman unrolling have also been used. The rest of the process is the same as in the 
classical DQN (from Chapter 6, Deep Q-Networks).

Both models are in Chapter08/lib/models.py and are very simple.

class SimpleFFDQN(nn.Module):
    def __init__(self, obs_len, actions_n):
        super(SimpleFFDQN, self).__init__()

        self.fc_val = nn.Sequential(
            nn.Linear(obs_len, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )

        self.fc_adv = nn.Sequential(
            nn.Linear(obs_len, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, actions_n)
        )

    def forward(self, x):
        val = self.fc_val(x)
        adv = self.fc_adv(x)
        return val + adv - adv.mean()
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The convolutional model has a common feature extraction layer with the 
1D convolution operations and two fully connected heads to output the value 
of the state and advantages for actions.

class DQNConv1D(nn.Module):
    def __init__(self, shape, actions_n):
        super(DQNConv1D, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv1d(shape[0], 128, 5),
            nn.ReLU(),
            nn.Conv1d(128, 128, 5),
            nn.ReLU(),
        )

        out_size = self._get_conv_out(shape)

        self.fc_val = nn.Sequential(
            nn.Linear(out_size, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )

        self.fc_adv = nn.Sequential(
            nn.Linear(out_size, 512),
            nn.ReLU(),
            nn.Linear(512, actions_n)
        )

    def _get_conv_out(self, shape):
        o = self.conv( torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        conv_out = self.conv(x).view(x.size()[0], -1)
        val = self.fc_val(conv_out)
        adv = self.fc_adv(conv_out)
        return val + adv - adv.mean()
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Training code
We have two very similar training modules in this example: one for the feed-forward 
model and one for 1D convolutions. For both of them, there is nothing new added to 
our examples from Chapter 7, DQN Extensions:

•	 They’re using epsilon-greedy action selection to perform exploration. 
The epsilon linearly decays over the first 1M steps from 1.0 to 0.1.

•	 A simple experience replay buffer of size 100k is being used, which is initially 
populated with 10k transitions.

•	 For every 1000 steps, we calculate the mean value for the fixed set of states 
to check the dynamics of the Q-values during the training.

•	 For every 100k steps, we perform validation: 100 episodes are played on the 
training data and on previously unseen quotes. Characteristics of orders are 
recorded in TensorBoard, such as the mean profit, the mean count of bars, and 
share held. This step allows us to check for overfitting conditions.

The training modules are in Chapter08/train_model.py (feed-forward model) and 
Chapter08/train_model_conv.py (with conv 1d features). Both versions accept the 
same command line options.

To start the training, you need to pass training data with the --data option, which 
could be an individual CSV file of the whole directory with files. By default, the 
training module uses Yandex quotes for 2016 (file data/YNDX_160101_161231.
csv). For the validation data, there is an option --valdata, which takes Yandex 2015 
quotes by default. Another required option will be -r, which is used to pass the 
name of the run. This name will be used in the TensorBoard run name and to create 
directories with saved models.

Results
Let’s now take a look at the results.

The feed-forward model
The convergence on Yandex data for one year requires about 10M training steps, 
which can take a while (GTX 1080Ti trains at a speed of 230-250 steps per second). 
During training, we have several charts in TensorBoard showing us what’s going on.
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The following are two charts, reward_100 and steps_100, with average reward 
(which is in percentages) and the average length of the episode for the last 
100 episodes, respectively:

Figure 3: The reward plot for the feed-forward version 

The charts show us two good things:

1.	 Our agent was able to figure out when to buy and sell the share to get 
positive reward (as we need to pay a commission of 0.1% on the open 
and close of the position, random actions will have -0.2% reward).

2.	 Over the training time, the length of the episode increased from seven 
bars to 25 and still continues to grow slowly, which means that the agent 
is holding the share longer and longer to increase the final profit.

Unfortunately, the preceding charts don’t mean that the same agent will be profitable 
in the future, as there is no guarantee that the dynamics of quotes will be the same 
again. To check our strategy, we performed validation runs every 100k training 
steps. The validation was performed on two datasets: our training data and the 
previously unseen data from the same stock, but for a different time period. The 
results of the validation can be seen in the following figure:

Figure 4: Test and validation dynamics during the training
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On the test charts, (which are obtained from using the training data) we can see 
the same positive dynamics as in the reward_100 and steps_100 charts: the reward 
is positive and growing over time and the length of the episode is also growing. 
However, the validation reward chart, which is a result from the unseen data, shows 
the opposite dynamics: our reward is decreasing over time. This can be explained by 
the fact that the agent overfits to the training data and starts to behave worse on the 
unseen quotes. There are some spikes above the zero reward, but most of the time, 
our agent is losing money on the validation dataset. As mentioned before, we’re not 
going to get this right overnight and the fact that the episode_reward_val line most 
of the time is above -0.2% (which is a broker commission in our environment), says 
that our agent is better than a random “buying and selling monkey”.

During the training, our code saves models for later experiments. It does this 
every time the mean Q-values on our held-out states set updates the maximum. 
There is a tool which loads the model, trades on prices you’ve provided to it with 
the command-line option and draws the plots with the profit change over time. 
The tool is called Chapter08/run_model.py and can be used as shown below:

$ ./run_model.py -d data/YNDX_160101_161231.csv -m saves/ff- 
YNDX16/mean_val-0.332.data -b 10 -n test

The options that the tool accepts are as follows:

•	 -d: This is the path to the quotes to use. On the preceding example, 
we apply the model to the data that it was trained on.

•	 -m: This is the path to the model file. By default, the training code saves 
it in saves dir.

•	 -b: This shows how many bars to pass to the model in the context. It has 
to match the count of bars used on training, which is 10 by default and 
can be changed in the training code.

•	 -n: This is the suffix to be prepended to the images produced.
•	 --commission: This allows you to redefine the broker’s commission, 

which has a default of 0.1%.
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At the end, the tool creates a chart of the total profit dynamics (in percentages). 
The following is the reward chart on Yandex 2016 quotes (used for training).

Figure 5: Trading profit on the 2016 Yandex training data
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The result looks amazing: more than 200% profit in a year. However, let’s look 
at what will happen with the 2015 data:

Figure 6: Trading profit on the 2015 Yandex validation data. 
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This result is much worse, as we’ve seen from the validation plots in TensorBoard. 
To check that our system is profitable with zero commission, we must rerun on the 
same data with the --commission 0.0 option.

Figure 7: Trading profit on validation with zero broker commission 

We have some bad days with drawdown, but the overall results are good: without 
commission our agent can be profitable. Of course, the commission is not the only 
issue. Our order simulation is very primitive and doesn’t take into account real-life 
situations such as price spread and a slip in order execution.
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The convolution model
The second model implemented in this example uses 1D convolution filters to extract 
features from the price data. This allows us to increase the number of bars in the 
context window that our agent sees on every step, without a significant increase in 
the network size. By default, the convolution model example uses 50 bars of context. 
The training code is in Chapter08/train_model_conv.py, and it accepts the same 
set of command-line parameters as the feed-forward version. On the following chart, 
there is a reward and count of steps for both the convolution (blue line) and feed-
forward (brown line) models:

Figure 8: A comparison of reward dynamics between the convolution and feed-forward versions

As you can see, the convolution version trains much faster and has achieved better 
rewards using the same amount of episode steps. However, from the validation 
plots we can see the same situation as before: the agent is able to earn money on 
the training data, but it is much less profitable on the validation dataset:

Figure 9: Validation data for both versions

Due to better fitting to the training data, the convolution agent behaves worse on the 
validation than the feed-forward agent. The reward charts created by run_model.py 
confirm that.
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Below is the total reward on the training data. We can see that we have more profit 
than that in the feed-forward version (300% versus 250%).

Figure 10: The profit of the convolution agent on the training data 

However, the validation dataset, with commission 0.1%, shows consistent losses:

Figure 11: The profit of the convolution agent on the validation data interval
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By disabling commission (as seen on the chart below) our convolution agent can earn 
some money, but less than that in the feed-forward version.

Figure 12: Profit on the validation data without broker commission

Things to try
As already mentioned, financial markets are large and complicated. The methods 
that we’ve tried are just the very beginning. Using RL to create a complete and 
profitable trading strategy is a large project, which can take several months 
of dedicated labor. However, there are things that we can try:

1.	 Our data representation is definitely not perfect. We don’t take into account 
significant price levels (support and resistance), round price values, and 
others. Incorporating them into the observation could be a challenging 
problem.

2.	 Market prices are usually analyzed at different timeframes. Low-level data 
like one-minute bars are noisy (as they include lots of small price movements 
caused by individual trades), and it is like looking at the market using 
a microscope. At larger scales, such as one-hour or one-day bars, you can 
see large, long trends in data movement, which could be extremely important 
for price prediction.
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3.	 More training data is needed. One year of data for one stock is just 130k bars, 
which is almost nothing to capture all market situations. Ideally, a real-life 
agent should be trained on a much larger dataset, such as the prices for 
hundreds of stocks for the past 10 years?

4.	 Experimenting with the network architecture. The convolution model has 
shown much faster convergence than the feed-forward model, but there 
are lots of things to optimize: the count of layers, kernel size, residual 
architecture, attention mechanism, and so on.

Summary
In this chapter, we saw a practical example of RL and implemented the trading  
agent and custom Gym environment. We tried two different architectures:  
a feed-forward network with price history on input and a 1D convolution 
network. Both architectures used the DQN method, with some extensions 
described in Chapter 7, DQN Extensions.

This is the last chapter in part two of the book. In part three, we’ll talk about 
a different family of RL methods: policy gradients.
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Policy Gradients – 
An Alternative

In this first chapter of part three of the book, we’ll consider an alternative way 
to handle Markov Decision Process (MDP) problems, which forms a full family 
of methods called Policy Gradients (PG). The chapter will present an overview 
of the methods, their motivation, and their strengths and weaknesses in comparison 
to the already familiar Q-learning. We will start with a simple PG method called 
REINFORCE and will try to apply it to our CartPole environment, comparing this 
with the Deep Q-Networks (DQN) approach.

Values and policy
Before we start talking about (PG), let’s refresh our minds with the common 
characteristics of the methods covered in part two of this book. The central topic 
in Q-learning is the value of the state or action + state pair. Value is defined as the 
discounted total reward that we can gather from this state or by issuing this particular 
action from the state. If we know the value, our decision on every step becomes 
simple and obvious: we just act greedily in terms of value, and that guarantees us 
good total reward at the end of the episode. So, the values of states (in the case of the 
Value Iteration method) or state + action (in the case of Q-learning) stand between us 
and the best reward. To obtain these values, we’ve used the Bellman equation, which 
expresses the value on the current step via the values on the next step.

In Chapter 1, What is Reinforcement Learning?, we defined the entity that tells us what 
to do in every state as policy. As in Q-learning methods, when values are dictating 
to us how to behave, they are actually defining our policy. Formally, this could be 
written as π(s) = argmaxa Q(s, a), which means that the result of our policy π  at 
every state s is the action with the largest Q.
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This policy-values connection was obvious, so we haven’t put emphasis on the policy 
as a separate entity and have spent most of our time talking about values and the 
way to approximate them correctly. Now it’s time to focus on this connection, as in 
part three of the book, we’ll forget about values and turn our attention to the policy.

Why policy?
There are several reasons why policy might be an interesting topic to explore.  
First of all, policy is what we’re looking for when we’re solving a Reinforcement 
Learning (RL) problem. When the agent obtains the observation and needs to 
make a decision about what to do next, we need policy, not the value of the state or 
particular action. We do care about the total reward, but at every state, we may have 
little interest in the exact value of the state.

Imagine this situation: you’re walking in the jungle and suddenly realize that there 
is a hungry tiger hiding in the bushes. You have several alternatives, such as run or 
hide or try to throw your backpack at him, but asking, "What's the exact value of the 
run action and is it larger than the value of the do nothing action?" is a bit silly. You 
don’t care much about the value, because you need to make the decision on what 
to do fast and that’s it. Our Q-learning approach tried to answer the policy question 
indirectly via approximating the values of the states and trying to choose the best 
alternative, but if we’re not interested in values, why do extra work?

Another reason why policies may be more attractive than values is due to the 
environments with lots of actions or, in the extreme, with a continuous action space. 
To be able to decide on the best action to take having Q(s, a), we need to solve a small 
optimization problem finding a, which maximizes Q(s, a). In the case of an Atari 
game with several discrete actions, this wasn’t a problem: we just approximated 
values of all actions and took the action with the largest Q. If our action is not a small 
discrete set, but has a scalar value attached to it, such as the steering wheel angle or 
the speed we want to run from the tiger, this optimization problem becomes hard, 
as Q is usually represented by a highly nonlinear neural network (NN), so finding 
the argument which maximizes the function’s values can be tricky. In such cases, 
it’s much more feasible to avoid values and work with the policy directly.

An extra vote in favor of policy learning is an environment with stochasticity. 
As we have seen in Chapter 7, DQN Extensions, in categorical DQN, our agent can 
benefit a lot from working with the distribution of Q-values, instead of expected 
mean values, as our network can more precisely capture underlying probability 
distribution. As we’ll see in the next section, policy is naturally represented as the 
probability of actions, which is a step in the same direction as the categorical DQN 
method.
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Policy representation
Now that we know the benefits of policy, we’re ready to give it a try. So how 
do we represent the policy? In the case of Q-values, they were parametrized by the 
NN that returns values of actions as scalars. If we want our network to parametrize 
the actions, we have several options. The first and the simplest way could be 
just returning the identifier of the action (in the case of a discrete set of actions). 
However, this is not the best way to deal with a discrete set. A much more common 
solution, which is heavily used in classification tasks, is to return the probability 
distribution of our actions. In other words, for N mutually exclusive actions, we 
return N numbers representing the probability to take each action in the given state 
(which we pass as an input to the network). This representation is shown in the 
diagram below.

Figure 1: Policy approximation with an NN for a discrete set of actions

Such representation of actions as probability has the additional advantage of 
smooth representation: if we change our network weights a bit, the output of the 
network will also change. In the case of discrete numbers output, even a small 
adjustment of the weights can lead to a jump to the different action. However, if 
our output is probability distribution, a small change of weights will usually lead 
to a small change in output distribution, such as slightly increasing the probability 
of one action versus the others. This is a very nice property to have, as gradient 
optimization methods are all about tweaking the parameters of a model a bit to 
improve the results. In math notation, policy is usually represented as π(s), so 
we’ll use this notation as well.
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Policy gradients
We defined our policy representation, but what we haven’t seen so far is how we’re 
going to change our network’s parameters to improve the policy. If you remember 
from Chapter 4, The Cross-Entropy Method, in the cross-entropy method, we solved 
a very similar problem: our network took observations as inputs and returned the 
probability distribution of the actions. In fact, cross-entropy is a younger brother 
of the methods we’ll discuss in this part of the book. To begin, we’ll get acquainted 
with the method called REINFORCE, which has only minor differences from  
cross-entropy, but first we need to look at some mathematical notation that  
we’ll use in this and the following chapters.

We define PG as L = −Q(s, a) log π(a|s). Of course, there is a strong proof of this, 
but it’s not that important. What interests us much more is the semantic of this 
expression.

PG defines the direction in which we need to change our network’s parameters 
to improve the policy in terms of the accumulated total reward. The scale of the 
gradient is proportional to the value of the action taken, which is Q(s, a) in the 
formula above and the gradient itself is equal to the gradient of log-probability of 
the action taken. Intuitively, this means that we’re trying to increase the probability 
of actions that have given us good total reward and decrease the probability of 
actions with bad final outcomes. Expectation E in the formula just means that we 
take several steps that we’ve made in the environment and average the gradient.

From a practical point of view, PG methods could be implemented as performing 
optimization of this loss function: L = −Q(s, a) log π(a|s). The minus sign is 
important, as loss function is minimized during the Stochastic Gradient Descent 
(SGD), but we want to maximize our policy gradient. You’ll see code examples 
of PG methods later in this and the following chapters.

The REINFORCE method
The formula of PG that we’ve just seen is used by most of the policy-based methods, 
but the details can vary. One very important point is how exactly gradient scales 
Q(s, a) are calculated. In the cross-entropy method from Chapter 4, The Cross-Entropy 
Method, we played several episodes, calculated the total reward for each of them, 
and trained on transitions from episodes with a better-than-average reward. 
This training procedure is the PG method with Q(s, a) = 1 for actions from good 
episodes (with large total reward) and Q(s, a) = 0 for actions from worse episodes.
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The cross-entropy method worked even with those simple assumptions, but the 
obvious improvement will be to use Q(s, a) for training instead of just 0 and 1. So 
why should it help? The answer is a more fine-grained separation of episodes. For 
example, transitions of the episode with the total reward = 10 should contribute to 
the gradient more than transitions from the episode with the reward = 1. The second 
reason to use Q(s, a) instead of just 0 or 1 constants is to increase probabilities of good 
actions in the beginning of the episode and decrease the actions closer to the end of 
episode. That’s exactly the idea of the method called REINFORCE. Its steps are as 
follows:

1.	 Initialize the network with random weights
2.	 Play N full episodes, saving their (s, a, r, s’) transitions
3.	 For every step t of every episode k, calculate the discounted total reward for 

subsequent steps Qk,t =
∑

i=0 γ
iri

4.	 Calculate the loss function for all transitions L = −
∑

k,t Qk,t log(π(sk,t, ak,t))

5.	 Perform SGD update of weights minimizing the loss
6.	 Repeat from step 2 until converged

The algorithm above is different from Q-learning in several important aspects:
•	 No explicit exploration is needed. In Q-learning, we used an epsilon-greedy 

strategy to explore the environment and prevent our agent from getting stuck 
with non-optimal policy. Now, with probabilities returned by the network, 
the exploration is performed automatically. In the beginning, the network is 
initialized with random weights and the network returns uniform probability 
distribution. This distribution corresponds to random agent behavior.

•	 No replay buffer is used. PG methods belong to the on-policy methods class, 
which means that we can’t train on data obtained from the old policy. This 
is both good and bad. The good part is that such methods usually converge 
faster. The bad side is they usually require much more interaction with the 
environment than off-policy methods such as DQN.

•	 No target network is needed. Here we use Q-values, but they’re obtained 
from our experience in the environment. In DQN, we used the target 
network to break the correlation in Q-values approximation, but we’re 
not approximating it anymore. Later, we’ll see that the target network 
trick still can be useful in PG methods.



Policy Gradients – An Alternative

[ 246 ]

The CartPole example
To see the method in action, let’s check the implementation of the REINFORCE 
method on the familiar CartPole environment. The full code of the example 
is in Chapter09/02_cartpole_reinforce.py.

GAMMA = 0.99
LEARNING_RATE = 0.01
EPISODES_TO_TRAIN = 4

In the beginning, we define hyperparameters (imports are omitted). The EPISODES_
TO_TRAIN value specifies how many complete episodes we’ll use for training.

class PGN(nn.Module):
    def __init__(self, input_size, n_actions):
        super(PGN, self).__init__()

        self.net = nn.Sequential(
            nn.Linear(input_size, 128),
            nn.ReLU(),
            nn.Linear(128, n_actions)
        )

    def forward(self, x):
        return self.net(x)

The network should also be familiar to you. Note that despite the fact our network 
returns probabilities, we’re not applying softmax nonlinearity to the output. The 
reason behind this is that we’ll use the PyTorch log_softmax function to calculate 
the logarithm of the softmax output at once. This way of calculation is much more 
numerically stable, but we need to remember that output from the network is not 
probability, but raw scores (usually called logits).

def calc_qvals(rewards):
    res = []
    sum_r = 0.0
    for r in reversed(rewards):
        sum_r *= GAMMA
        sum_r += r
        res.append(sum_r)
    return list(reversed(res))
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This function is a bit tricky. It accepts a list of rewards for the whole episode and 
needs to calculate the discounted total reward for every step. To do this efficiently, 
we calculate the reward from the end of the local reward list. Indeed, the last step  
of the episode will have the total reward equal to its local reward. The step before  
the last will have the total reward of t 1 tr rγ− +  (if t is an index of the last step).  
Our sum_r variable contains the total reward for the previous steps, so to get the 
total reward for the previous step, we need to multiply sum_r by gamma and sum  
the local reward.

if __name__ == “__main__”:
    env = gym.make(“CartPole-v0”)
    writer = SummaryWriter(comment=”-cartpole-reinforce”)

    net = PGN(env.observation_space.shape[0], env.action_space.n)
    print(net)

    agent = ptan.agent.PolicyAgent(net, preprocessor=ptan.agent.
float32_preprocessor,
                                   apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast 
(env, agent, gamma=GAMMA)

    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)

The preparation steps before the training loop also should be familiar to you. 
The only new element is the agent class from the ptan library. Here we are using 
ptan.agent.PolicyAgent, which needs to make a decision about actions for 
every observation. As our network now returns policy in the form of probabilities 
of the actions? to select the action to take, we need to obtain the probabilities from 
the network and then perform random sampling from this probability distribution.

When we worked with DQN, the output of the network was Q-values, so if some 
action had the value of 0.4 and another action 0.5, the second action was preferred 
100% of the time. In the case of probability distribution, if the first action has 
a probability of 0.4 and the second 0.5, our agent should take the first action with 
40% chance and the second with 50% chance. Of course, our network can decide 
to take the second action 100% of the time and in this case, it returns probability  
0 for the first action and probability 1 for the second action.
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This difference is important to understand, but the change in the implementation is 
not large. Our PolicyAgent internally calls the NumPy random.choice function with 
probabilities from the network. The argument apply_softmax argument instructs 
it to convert the network output to probabilities by calling softmax first. The third 
argument preprocessor is a way to get around the fact that the CartPole environment 
in Gym returns observation as float64 instead of float32 required by PyTorch.

    total_rewards = []
    done_episodes = 0

    batch_episodes = 0
    cur_rewards = []
    batch_states, batch_actions, batch_qvals = [], [], []

Before we can start the training loop, we need several variables. The first group of 
these is used for reporting and contains the total rewards for the episodes and the 
count of completed episodes. The second group is used to gather the training data. 
The cur_rewards list contains local rewards for the currently-played episode. 
As this episode reaches the end, we calculate the discounted total rewards from local 
rewards using the calc_qvals function and append them to the batch_qvals list. 
The batch_states and batch_actions lists contain states and actions that we’ve 
seen from the last training.

    for step_idx, exp in enumerate(exp_source):
        batch_states.append(exp.state)
        batch_actions.append(int(exp.action))
        cur_rewards.append(exp.reward)

        if exp.last_state is None:
            batch_qvals.extend(calc_qvals(cur_rewards))
            cur_rewards.clear()
            batch_episodes += 1

Above is the beginning of the training loop. Every experience that we get from 
the experience source contains state, action, local reward, and the next state. If the 
end of the episode has been reached, the next state will be None. For non-terminal 
experience entries, we just save state, action, and local reward in our lists. At the 
end of the episode, we convert the local rewards into Q-values and increment the 
episodes counter.

        new_rewards = exp_source.pop_total_rewards()
        if new_rewards:
            done_episodes += 1
            reward = new_rewards[0]
            total_rewards.append(reward)
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            mean_rewards = float(np.mean(total_rewards[-100:]))
            print(“%d: reward: %6.2f, mean_100: %6.2f, episodes: %d” % (
                step_idx, reward, mean_rewards, done_episodes))
            writer.add_scalar(“reward”, reward, step_idx)
            writer.add_scalar(“reward_100”, mean_rewards, 
 step_idx)
            writer.add_scalar(“episodes”, done_episodes, step_idx)
            if mean_rewards > 195:
                print(“Solved in %d steps and %d episodes!” %  
(step_idx, done_episodes))
                break

This part of the training loop is performed at the end of the episode and is 
responsible for the reporting of current progress and writing metrics to the 
TensorBoard.

        if batch_episodes < EPISODES_TO_TRAIN:
            continue

        optimizer.zero_grad()
        states_v = torch.FloatTensor(batch_states)
        batch_actions_t = torch.LongTensor(batch_actions)
        batch_qvals_v = torch.FloatTensor(batch_qvals)

When enough episodes have passed since the last training step, we perform 
optimization on the gathered examples. As a first step, we need to convert states, 
actions, and Q-values into appropriate PyTorch form.

        logits_v = net(states_v)
        log_prob_v = F.log_softmax(logits_v, dim=1)
        log_prob_actions_v = batch_qvals_v *  
log_prob_v[range(len(batch_states)), batch_actions_t]
        loss_v = -log_prob_actions_v.mean()

Then we calculate the loss from the steps. To do this, we ask our network to 
calculate states into logits and calculate logarithm + softmax of them. On the third 
line, we select log probabilities from the actions taken and scale them with Q-values. 
On the last line, we average those scaled values and do negation to obtain the loss 
to minimize. Once again, this minus sign is very important, as our PG needs to be 
maximized to improve the policy. As the optimizer in PyTorch does minimization 
in respect to the loss function, we need to negate the PG.

        loss_v.backward()
        optimizer.step()
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        batch_episodes = 0
        batch_states.clear()
        batch_actions.clear()
        batch_qvals.clear()

    writer.close()

The rest of the code is clear: we perform backpropagation to gather gradients in our 
variables and ask the optimizer to perform a SGD update. At the end of the training 
loop, we reset the episodes counter and clear our lists for fresh data to gather.

Results
For reference, I’ve implemented DQN on the CartPole environment with almost the 
same hyperparameters as our REINFORCE example above. It’s in Chapter09/01_
cartpole_dqn.py. Both examples don’t require any command-line arguments 
and should converge in less than a minute.

rl_book_samples/chapter09$ ./02_cartpole_reinforce.py
PGN (
  (net): Sequential (
    (0): Linear (4 -> 128)
    (1): ReLU ()
    (2): Linear (128 -> 2)
  )
)
63: reward:  62.00, mean_100:  62.00, episodes: 1
83: reward:  19.00, mean_100:  40.50, episodes: 2
99: reward:  15.00, mean_100:  32.00, episodes: 3
125: reward:  25.00, mean_100:  30.25, episodes: 4
154: reward:  28.00, mean_100:  29.80, episodes: 5
...
27676: reward: 200.00, mean_100: 193.58, episodes: 224
27877: reward: 200.00, mean_100: 194.07, episodes: 225
28078: reward: 200.00, mean_100: 194.07, episodes: 226
28279: reward: 200.00, mean_100: 194.53, episodes: 227
28480: reward: 200.00, mean_100: 195.09, episodes: 228
Solved in 28480 steps and 228 episodes!
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The convergence dynamics for both DQN and REINFORCE are shown below.

Figure 2: Convergence of DQN (orange) and REINFORCE (blue line)

As you can see, REINFORCE converges faster and requires less training steps 
and episodes to solve the CartPole environment. If you remember from Chapter 4, 
The Cross-Entropy Method, the cross-entropy method required about 40 batches of 
16 episodes each to solve the CartPole environment, which is 640 episodes in total. 
The REINFORCE method is able to do the same in less than 300 episodes, which  
is a nice improvement.

Policy-based versus value-based methods
Let’s now step back from the code we’ve just seen and talk about the differences that 
both the families of methods have:

•	 Policy methods are directly optimizing what we care about: our behavior. 
The value methods such as DQN are doing the same indirectly, learning 
the value first and providing to us policy based on this value.

•	 Policy methods are on-policy and require fresh samples from the 
environment. The value methods can benefit from old data, obtained 
from the old policy, human demonstration, and other sources.

•	 Policy methods are usually less sample-efficient, which means they require 
more interaction with the environment. The value methods can benefit from 
the large replay buffers. However, sample efficiency doesn’t mean that value 
methods are more computationally efficient and very often it’s the opposite. 
In the above example, during the training, we need to access our NN only 
once, to get the probabilities of actions. In DQN, we need to process two 
batch of states: one for the current state and another for the next state in 
the Bellman update.
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As you can see, there is no strong preference of one family versus another. In some 
situations, policy methods will be the more natural choice, like in continuous control 
problems or cases when access to the environment is cheap and fast. However, there 
are lots of situations when value methods will shine, for example, the recent state-
of-the-art results on Atari games achieved by DQN variants. Ideally, you should 
be familiar with both families equally and understand the strong and weak sides of 
both camps. In the next section, we’ll talk about, REINFORCE method’s limitations, 
ways to improve it, and how to apply the PG method to our favorite Pong game.

REINFORCE issues
In the previous section, we discussed the REINFORCE method, which is a natural 
extension of cross-entropy from Chapter 4, The Cross-Entropy Method. Unfortunately, 
both REINFORCE and cross-entropy still suffer from several problems, which make 
both of them limited to simple environments.

Full episodes are required
First of all, we still need to wait for the full episode to complete before we can start 
training. Even worse, both REINFORCE and cross-entropy behave better with more 
episodes used for training (just from the fact that more episodes mean more training 
data, which means more accurate PG). This situation is fine for short episodes in 
the CartPole, when in the beginning, we can barely handle the bar for more than 
10 steps, but in Pong, it is completely different: every episode can lasts hundreds 
or even thousands of frames. It’s equally bad from the training perspective, as our 
training batch becomes very large and from sample efficiency, when we need to 
communicate with the environment a lot just to perform a single training step.

The origin of the complete episodes requirement is to get as accurate a Q estimation 
as possible. When we talked about DQN, we saw that in practice, it’s fine to replace 
the exact value for a discounted reward with our estimation using the one-step 
Bellman equation Q(s, a) = ra + γV (s′). To estimate V(s), we’ve used our own 
Q-estimation, but in the case of PG, we don’t have V(s) or Q(s, a) anymore.
Q(s, a) = ra + γV (s′)

To overcome this, two approaches exist. On the one hand, we can ask our 
network to estimate V(s) and use this estimation to obtain Q. This approach will 
be discussed in the next chapter and is called Actor-Critic method, which is the most 
popular method from the PG family.
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On the other hand, we can do the Bellman equation unrolling N steps ahead, which 
will effectively exploit the fact that value contribution is decreasing when gamma 
is less than 1. Indeed, with gamma=0.9, value coefficient at the tenth step will be 
0.910=0.35. At step 50, this coefficient becomes 0.950=0.00515, which is a really small 
contribution to the total reward. In the case of gamma=0.99, the required count 
of steps becomes larger, but we still can do this.

High gradients variance
In the PG formula ∇J ≈ E[Q(s, a)∇ log π(a|s)], we have a gradient proportional to the 
discounted reward from the given state. However, the range of this reward is heavily 
environment-dependent. For example, in the CartPole environment we’re getting 
the reward of 1 for every timestamp we’re holding the pole vertically. If we can do 
this for five steps, we’ll get total (undiscounted) reward of 5. If our agent is smart 
and can hold the pole for, say, 100 steps, the total reward will be 100. The difference 
in value between those two scenarios is 20 times, which means that the scale 
between gradients of unsuccessful samples will be 20 times lower than that for more 
successful ones. Such a large difference can seriously affect our training dynamics, 
as one lucky episode will dominate in the final gradient.

In mathematical terms, our PGs have high variance and we need to do something 
about this in complex environments, otherwise, the training process can become 
unstable. The usual approach to handle this is subtracting a value called baseline 
from the Q. The possible choices of the baseline are as follows:

1.	 Some constant value, which normally is the mean of the discounted rewards
2.	 The moving average of the discounted rewards
3.	 Value of the state V(s)

Exploration
Even with the policy represented as probability distribution, there is a high chance 
that the agent will converge to some locally-optimal policy and stop exploring the 
environment. In DQN, we solved this using epsilon-greedy action selection: with 
probability epsilon, the agent took some random action instead of the action dictated 
by the current policy. We can use the same approach, of course, but PG allows us 
to follow a better path, called the entropy bonus.
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In the information theory, the entropy is a measure of uncertainty in some system. 
Being applied to agent policy, entropy shows how much the agent is uncertain 
about which action to take. In math notation, entropy of the policy is defined as: 
H(π) = −

∑
π(a|s) log π(a|s). The value of entropy is always greater than zero and 

has a single maximum when the policy is uniform. In other words, all actions have 
the same probability. Entropy becomes minimal when our policy has 1 for some 
action and 0 for all others, which means that the agent is absolutely sure what to do. 
To prevent our agent from being stuck in the local minimum, we are subtracting the 
entropy from the loss function, punishing the agent for being too certain about the 
action to take.

Correlation between samples
As we discussed in Chapter 6, Deep Q-Networks, training samples in one single 
episode are usually heavily correlated, which is bad for SGD training. In the 
case of DQN, we solved this issue by having a large replay buffer with 100k-1M 
observations that we sampled our training batch from. This solution is not applicable 
to the PG family anymore, due to the fact that those methods belong to the on-policy 
class. The implication is simple: using old samples generated by the old policy, we’ll 
get PG for that old policy, not for our current one.

The obvious, but, unfortunately wrong solution would be to reduce the replay buffer 
size. It might work in some simple cases, but in general, we need fresh training data 
generated by our current policy. To solve this, parallel environments are normally 
used. The idea is simple: instead of communicating with one environment, we use 
several and use their transitions as training data.

PG on CartPole
Nowadays, almost nobody uses the vanilla PG method, as the much more stable 
Actor-Critic method exists, which will be the topic of the two following chapters. 
However, I still want to show the PG implementation, as it establishes very 
important concepts and metrics to check for the PG method’s performance. So, 
we will start with a much simpler environment of CartPole, and in the next section, 
will check its performance on our favorite Pong environment. The complete code 
for the following example is available in Chapter09/04_cartpole_pg.py.

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 8
REWARD_STEPS = 10
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Besides already familiar hyperparameters, we have two new ones. Entropy beta 
value is the scale of the entropy bonus. The REWARD_STEPS value specifies how many 
steps ahead the Bellman equation is unrolled to estimate the discounted total reward 
of every transition.

class PGN(nn.Module):
    def __init__(self, input_size, n_actions):
        super(PGN, self).__init__()

        self.net = nn.Sequential(
            nn.Linear(input_size, 128),
            nn.ReLU(),
            nn.Linear(128, n_actions)
        )

    def forward(self, x):
        return self.net(x)

The network architecture is exactly the same as in the previous examples for 
CartPole: a two-layer network with 128 neurons in the hidden layer. The preparation 
code is also the same as before, except the experience source is asked to unroll the 
Bellman equation for 10 steps:

    exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, 
gamma=GAMMA, steps_count=REWARD_STEPS)

In the training loop, we maintain the sum of the discounted reward for every 
transition and use it to calculate the baseline for policy scale.

    for step_idx, exp in enumerate(exp_source):
        reward_sum += exp.reward
        baseline = reward_sum / (step_idx + 1)
        writer.add_scalar(“baseline”, baseline, step_idx)
        batch_states.append(exp.state)
        batch_actions.append(int(exp.action))
        batch_scales.append(exp.reward - baseline)

In the loss calculation, we use the same code as before to calculate the policy loss 
(which is the negated PG).

        optimizer.zero_grad()
        logits_v = net(states_v)
        log_prob_v = F.log_softmax(logits_v, dim=1)
        log_prob_actions_v = batch_scale_v * 
 log_prob_v[range(BATCH_SIZE), batch_actions_t]
        loss_policy_v = -log_prob_actions_v.mean()
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Then we add the entropy bonus to the loss by calculating the entropy of the batch 
and subtracting it from the loss. As entropy has a maximum for uniform probability 
distribution and we want to push the training towards this maximum, we need to 
subtract from the loss.

        prob_v = F.softmax(logits_v, dim=1)
        entropy_v = -(prob_v * log_prob_v).sum(dim=1).mean()
        entropy_loss_v = -ENTROPY_BETA * entropy_v
        loss_v = loss_policy_v + entropy_loss_v

        loss_v.backward()
        optimizer.step()

Then, we calculate the Kullback-Leibler (KL)-divergence between the new and 
the old policy. KL-divergence is an information theory measurement of how one 
probability distribution diverges from another expected probability distribution. 
In our example, it is being used to compare the policy returned by the model before 
and after the optimization step. High spikes in KL are usually a bad sign, showing 
that our policy was pushed too far from the previous policy, which is a bad idea 
most of the time (as our NN is a very nonlinear function in a high-dimension space, 
so large changes in the model weight could have a very strong influence on policy).

        new_logits_v = net(states_v)
        new_prob_v = F.softmax(new_logits_v, dim=1)
        kl_div_v = -((new_prob_v / prob_v).log() *  
prob_v).sum(dim=1).mean()
        writer.add_scalar(“kl”, kl_div_v.item(), step_idx)

Finally, we calculate the statistics about the gradients on this training step. It’s 
usually good practice to show the graph of maximum and L2-norm of gradients 
to get an idea about the training dynamics.

        grad_max = 0.0
        grad_means = 0.0
        grad_count = 0
        for p in net.parameters():
            grad_max = max(grad_max, p.grad.abs().max().item())
            grad_means += (p.grad ** 2).mean().sqrt().item()
            grad_count += 1
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At the end of the training loop, we dump all values we’d like to monitor,  
to the TensorBoard.

        writer.add_scalar(“baseline”, baseline, step_idx)
        writer.add_scalar(“entropy”, entropy_v.item(), step_idx)
        writer.add_scalar(“batch_scales”, np.mean(batch_scales), 
 step_idx)
        writer.add_scalar(“loss_entropy”, entropy_loss_v.item(), 
 step_idx)
        writer.add_scalar(“loss_policy”, loss_policy_v.item(), 
 step_idx)
        writer.add_scalar(“loss_total”, loss_v.item(), step_idx)
        writer.add_scalar(“grad_l2”, grad_means / grad_count, 
 step_idx)
        writer.add_scalar(“grad_max”, grad_max, step_idx)

        batch_states.clear()
        batch_actions.clear()
        batch_scales.clear()

Results
In this example, we plot lots of charts in TensorBoard. Let’s start with the familiar 
one: reward. As you can see below, the dynamics and performance are not very 
different from the REINFORCE method.

Figure 3: Reward dynamics for the PG method
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The next two charts are related to our baseline and scales of PG. We expect the 
baseline to converge to 1 + 0.99 + 0.992 + … + 0.999, which is approximately 9.56. 
Scales of PG should oscillate around zero. That’s exactly what we see in the 
following graph.

Figure 4: Baselines dynamics

The entropy is decreasing over time from 0.69 to 0.52. The starting value corresponds 
to the maximum entropy with two actions (which is, ( )1 12 log 0.692 2

∗− ≈ ). The fact that the 
entropy is decreasing during the training shows that our policy is moving from the 
uniform distribution to more deterministic actions.

Figure 5: Entropy dynamics during the training

The next group of plots is related to loss, which includes policy loss, entropy loss, 
and their sum. The entropy loss is scaled and a mirrored version of the entropy 
chart above. The policy loss shows the mean scale and direction of the PG computed 
on batch. Here we should check the relative size of both, to prevent entropy loss 
dominating too much.
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Figure 6: Loss dynamics

The final set of charts is the gradient’s max, L2 values, and KL. Our gradients look 
healthy during the whole training: they are not too large and not too small, without 
huge spikes. The KL charts also look normal, as there are some spikes, but they don’t 
exceed 1e-3.

Figure 7: Gradients and KL divergence

PG on Pong
As covered in the previous section, the vanilla PG method works well on a simple 
CartPole environment, but surprisingly badly on more complicated environments. 
Even in the relatively simple Atari game Pong, our DQN was able to completely 
solve it in 1M frames and showed positive reward dynamics in just 100k frames, 
whereas PG failed to converge. Due to the instability of PG training, it became 
very hard to find good hyperparameters, which is still very sensitive to initialization.

This doesn’t mean that the PGs are bad, because, as we’ll see in the next chapter, just 
one tweak of the network architecture to get the better baseline in the gradients will 
turn PG into one of the best methods (Asynchronous Advantage Actor-Critic (A3C) 
method). Of course, there is a good chance that my hyperparameters are completely 
wrong or the code has some hidden bugs or whatever. Regardless, unsuccessful 
results still have value, at least as a demonstration of bad convergence dynamics.  
The complete code of the example is in Chapter09/05_pong_pg.py.
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The three main differences from the previous example’s code are as follows:

•	 The baseline is estimated with a moving average for 1M past transitions, 
instead of all examples

•	 Several concurrent environments are used
•	 Gradients are clipped to improve training stability

To make moving average calculations faster, a deque-backed buffer was created.

class MeanBuffer:
    def __init__(self, capacity):
        self.capacity = capacity
        self.deque = collections.deque(maxlen=capacity)
        self.sum = 0.0

    def add(self, val):
        if len(self.deque) == self.capacity:
            self.sum -= self.deque[0]
        self.deque.append(val)
        self.sum += val

    def mean(self):
        if not self.deque:
            return 0.0
        return self.sum / len(self.deque)

The second difference in this example is working with multiple environments 
and this functionality is supported by the ptan library. The only action we have to 
take is to pass the array of Env objects to the ExperienceSource class. All the rest 
is done automatically. In the case of several environments, the experience source 
asks them for transitions in round-robin, providing us with less-correlated training 
samples. The last difference from the CartPole example is gradient clipping, which 
is performed using the PyTorch clip_grad_norm function from the torch.nn.utils 
package.

The hyperparameters for the best variant are the following:

GAMMA = 0.99
LEARNING_RATE = 0.0001
ENTROPY_BETA = 0.01
BATCH_SIZE = 128

REWARD_STEPS = 10
BASELINE_STEPS = 1000000
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GRAD_L2_CLIP = 0.1

ENV_COUNT = 32

Results
Okay, let’s look at one of the best runs of the example. The following are the reward 
charts and you can see that during the training, rewards were almost constant for 
a while, then some growth started, which was interrupted by flat regions of minimal 
reward -21.

Figure 8: Reward plots for Pong

On the entropy plot, we can see that those flat regions correspond to periods when 
entropy was zero, which means that our agent had 100% certainty in its actions. 
During this time interval, gradients were zero too, so it’s quite surprising that our 
training process was able to recover from those flat regions.

Figure 9: Another set of plots for Pong, using the PG method
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The chart with baseline mostly follows the reward and has the same patterns.

Figure 10: Baseline, scales, and standard deviation of scales

The KL plot has large spikes roughly at the moments to and from zero-entropy 
transitions, which shows that the policy suffered from heavy jumps in returning 
distributions.

Figure 11: KL divergence and losses during training

Summary
In this chapter, we saw an alternative way of solving RL problems: PG, which 
is different in many ways from the familiar DQN method. We explored the 
basic method called REINFORCE, which is a generalization of our first method 
in RL-domain cross entropy. This method is simple, but, being applied to the 
Pong environment, didn’t show good results. 

In the next chapter, we’ll consider ways to improve the stability of PG by combining 
both families of value-based and policy-based methods.
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The Actor-Critic Method
In Chapter 9, Policy Gradients – An Alternative, we started to investigate an alternative 
to the familiar value-based methods family, called policy-based. In particular, 
we focused on the method called REINFORCE and its modification that uses 
a discounted reward to obtain the gradient of the policy (which gives us the 
direction to improve the policy). Both methods worked well for a small CartPole 
problem, but for a more complicated Pong environment, the convergence dynamic 
was painfully slow.

In this chapter, we'll discuss one more extension to the vanilla Policy Gradient 
(PG) method, which magically improves the stability and convergence speed of 
the new method. Despite the modification being only minor, the new method has 
its own name, Actor-Critic, and it's one of the most powerful methods in deep 
Reinforcement Learning (RL). 

Variance reduction
In the previous chapter, we briefly mentioned that one of the ways to improve 
the stability of PG methods is to reduce the variance of the gradient. Now let's try 
to understand why this is important and what it means to reduce the variance. In 
statistics, variance is the expected square deviation of a random variable from the 
expected value of this variable.

Var[x] = E[(x− E[x])2]
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Variance shows us how far values are dispersed from the mean. When variance is 
high, the random variable can take values deviated widely from the mean. On the 
following plot, there is a normal (Gaussian) distribution with the same value of mean 
µ = 10, but with different values for the variance.

Figure 1: The effect of variance on Gaussian distribution

Now let's return to PG. It has already been stated in the previous chapter, that the 
method's idea is to increase the probability of good actions and decrease the chance 
of bad ones. In math notation, our PG was written as ∇J ≈ E[Q(s, a)∇ log π(a|s)].  
The scaling factor Q(s, a) specifies how much we want to increase or decrease the 
probability of the action taken in the particular state. In the REINFORCE method, 
we used the discounted total reward as the scaling of the gradient. As an attempt 
to increase REINFORCE stability, we subtracted the mean reward from the gradient 
scale.

To understand why this helped, let's consider the very simple scenario of an 
optimization step on which we have three actions with different total discounted 
rewards: Q1, Q2, and Q3. Now let's consider the policy gradient with regard to the 
relative values of those Qs.
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As the first example, let both Q1 and Q2 be equal to some small positive number and 
Q3 be a large negative number. So, actions at the first and second steps led to some 
small reward, but the third step was not very successful. The resulted combined 
gradient for all three steps will try to push our policy far from the action at step 
three and slightly toward the actions taken at step one and two, which is a totally 
reasonable thing to do.

Now let's imagine that our reward is always positive, only the value is different. 
This corresponds to adding some constant to all Q1, Q2, and Q3. In this case, Q1 and 
Q2 become large positive numbers and Q3 will have a small positive value. However, 
our policy update will become different! Next, we'll try hard to push our policy 
toward actions at the first and second step, and slightly push it towards an action at 
step three. So, strictly speaking, we're no longer trying to avoid the action taken for 
step three, despite the fact that the relative rewards are the same.

This dependency of our policy update on the constant added to the reward can slow 
down our training significantly, as we may require many more samples to average 
out the effect of such a shift in the PG. Even worse, as our total discounted reward 
changes over time, with the agent learning how to act better and better, our PG 
variance could also change. For example, in the Atari Pong environment, the average 
reward in the beginning is -21...-20, so all the actions look almost equally bad.

To overcome this, in the previous chapter, we subtracted the mean total reward from 
the Q-value and called this mean baseline. This trick normalized our PGs, as in the 
case of the average reward being -21, getting a reward of -20 looks like a win to the 
agent and it pushes its policy towards the taken actions.

CartPole variance
To check this theoretical conclusion in practice, let's plot the variance of the 
PG during the training for both the baseline version and the version without the 
baseline. The complete example is in Chapter10/01_cartpole_pg.py and most 
of the code is the same as in Chapter 9, Policy Gradients – An Alternative. Differences 
in this version are the following:

•	 It now accepts the command-line option --baseline, which enables 
the mean subtraction from the reward. By default, no baseline is used.

•	 On every training loop, we gather the gradients from the policy loss and 
use this data to calculate the variance.
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To gather only the gradients from the policy loss and exclude the gradients from 
the entropy bonus added for exploration, we need to calculate the gradients in two 
stages. Luckily, PyTorch allows this to be done easily. Below, only the relevant part 
of the training loop is included to illustrate the idea.

        optimizer.zero_grad()
        logits_v = net(states_v)
        log_prob_v = F.log_softmax(logits_v, dim=1)
        log_prob_actions_v = batch_scale_v *  
log_prob_v[range(BATCH_SIZE), batch_actions_t]
        loss_policy_v = -log_prob_actions_v.mean()

We calculate the policy loss as before, by calculating the log from the probabilities of 
taken actions and multiply it by policy scales (which are the total discounted reward, 
if we're not using the baseline or the total reward minus the baseline).

        loss_policy_v.backward(retain_graph=True)

On the next step, we ask PyTorch to backpropagate the policy loss, calculating the 
gradients and keeping them in our model's buffers. As we've previously performed 
optimizer.zero_grad(), those buffers will contain only the gradients from the 
policy loss. One tricky thing here is the retain_graph=True option when we 
called backward(). It instructs PyTorch to keep the graph structure of the variables. 
Normally, this is destroyed by the backward() call, but in our case, this is not 
what we want. In general, retaining the graph could be useful when we need to 
backpropagate loss multiple times before the call to the optimizer. It's not a very 
common situation, but sometimes becomes handy.

        grads = np.concatenate([p.grad.data.numpy().flatten()
                                for p in net.parameters()
                                if p.grad is not None])

Then, we iterate all parameters from our model (every parameter of our model is 
a tensor with gradients) and extract their grad field in a flattened NumPy array. 
This gives us one long array with all gradients from our model's variables. However, 
our parameter update should take into account not only policy gradient but also the 
gradient provided by our entropy bonus. To achieve this, we calculate the entropy 
loss and call backward() again. To be able to do this the second time, we need to 
pass retain_graph=True.

On the second backward() call, PyTorch will backpropagate our entropy loss and 
add the gradients to the internal gradients' buffers. So, what we now need to do 
is just ask our optimizer to perform the optimization step using those combined 
gradients.

        prob_v = F.softmax(logits_v, dim=1)
        entropy_v = -(prob_v * log_prob_v).sum(dim=1).mean()
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        entropy_loss_v = -ENTROPY_BETA * entropy_v
        entropy_loss_v.backward()
        optimizer.step()

Later, the only thing we need to do is to write statistics that we're interested in, 
into TensorBoard.

        writer.add_scalar("grad_l2",  
np.sqrt(np.mean(np.square(grads))), step_idx)
        writer.add_scalar("grad_max", np.max(np.abs(grads)),  
step_idx)
        writer.add_scalar("grad_var", np.var(grads), step_idx)

By running this example twice, once with the --baseline command - line option 
and once without it, we get a plot of variance of our PG. The following are the charts 
for the reward dynamics:

Figure 2: Convergence dynamics of the version with baseline (orange) and without (blue)

The following three charts show gradients' magnitude, maximum value, 
and variance:

Figure 3: Gradient l2, max, and variance for the baseline subtracted (orange) and the basic version (blue)
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As you can see, variance for the version with the baseline is two-to-three orders of 
magnitude lower than the version without one, which helps the system to converge 
faster.

Actor-critic
The next step in reducing the variance is making our baseline state-dependent 
(which, intuitively, is a good idea, as different states could have very different 
baselines). Indeed, to decide about the suitability of a particular action in some state, 
we're using the discounted total reward of the action. However, the total reward 
itself could be represented as a value of the state plus advantage of the action: Q(s, a) = 
V(s) + A(s, a). We've seen this in Chapter 7, DQN Extensions, when we discussed DQN 
modifications, particularly dueling DQN.

So, why can't we use V(s) as a baseline? In that case, the scale of our gradient will 
be just advantage A(s, a), showing how this taken action is better in respect to the 
average state's value. In fact, we can do this, and it is a very good idea for improving 
the PG method. The only problem here is: we don't know the value of the V(s) state 
to subtract it from the discounted total reward Q(s, a). To solve this, let's use another 
neural network, which will approximate V(s) for every observation. To train it, we 
can exploit the same training procedure we used in DQN methods: we'll carry 
out the Bellman step and then minimize the mean square error to improve V(s) 
approximation.

When we know the value for any state (or, at least, have some approximation of 
it), we can use it to calculate the PG and update our policy network to increase 
probabilities for actions with good advantage values and decrease the chance 
of actions with bad advantage. The policy network (which returns probability 
distribution of actions) is called the actor, as it tells us what to do. Another network 
is called critic, as it allows us to understand how good our actions were. Below 
is an illustration of the architecture.

Figure 4: The A2C architecture
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In practice, policy and value networks partially overlap, mostly due to the efficiency 
and convergence considerations. In this case, policy and value are implemented 
as different heads of the network, taking the output from the common body and 
transforming it into the probability distribution and a single number representing 
the value of the state. This helps both networks to share low-level features (such 
as convolution filters in the Atari agent), but combine them in a different way. 
This architecture is shown below.

Figure 5: A2C architecture with a shared network body

From a training point of view, we complete these steps:

1.	 Initialize network parameters θ with random values
2.	 Play N steps in the environment using the current policy πθ , saving state st, 

action at, reward rt
3.	 R = 0 if the end of the episode is reached or Vθ(st)

4.	 For i = t− 1 . . . tstart  (note that steps are processed backwards):
°° R ← ri + γR

°° Accumulate the PG ∂θπ ← ∂θπ +∇θ log πθ(ai|si)(R− Vθ(si))

°° Accumulate the value gradients ∂θv ← ∂θv +
∂(R−Vθ(si))

2

∂θv

5.	 Update network parameters using the accumulated gradients, moving in the 
direction of PG ∂θπ  and in the opposite direction of the value gradients ∂θv

6.	 Repeat from step 2 until convergence is reached

The preceding algorithm is an outline, similar to those which are usually printed in 
research papers. In practice, some considerations need to be taken:

•	 Entropy bonus is usually added to improve exploration. It's typically written 
as an entropy value added to the loss function:LH = β

∑
i πθ(si) log πθ(si). 

This function has a minimum when probability distribution is uniform, so by 
adding it to the loss function, we're pushing our agent away from being too 
certain about its actions.
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•	 Gradients accumulation is usually implemented as a loss function combining 
all three components: policy loss, value loss, and entropy loss. You should 
be careful with signs of these losses, as PGs? are showing you the direction 
of policy improvement, but both value and entropy losses should be 
minimized.

•	 To improve stability, it's worth using several environments, providing you 
with observations concurrently (when we have multiple environments and 
our training batch will be created from their observations). We'll look at 
several ways of doing this in the next chapter.

The preceding method is called Actor-Critic, or sometimes Advantage Actor-Critic, 
which is abbreviated as A2C for short. The version with several environments 
running in parallel is called Advantage Asynchronous Actor-Critic, which is also 
known as A3C. The A3C method will be the subject of the next chapter, but for 
now let's implement A2C.

A2C on Pong
In the previous chapter, we saw a (not very successful) attempt to solve our favorite 
Pong environment with PG. Let's try it again with the actor-critic method at hand.

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 128
NUM_ENVS = 50

REWARD_STEPS = 4
CLIP_GRAD = 0.1

We're starting, as usual, by defining hyperparameters (imports are omitted). These 
values are not tuned, as we'll do this in the next section of this chapter. We have one 
new value here: CLIP_GRAD. This hyperparameter is specifying the threshold for 
gradient clipping, which, basically, prevents our gradients at optimization stage from 
becoming too large and pushing our policy too far. Clipping is implemented using 
the PyTorch functionality, but the idea is very simple: if the L2 norm of the gradient 
is larger than this hyperparameter, then the gradient vector is clipped to this value.

The REWARD_STEPS hyperparameter determines how many steps ahead we'll take 
to approximate the total discounted reward for every action. In PG, we used around 
10 steps, but in A2C, we'll use our value approximation to get a state value for 
further steps, so it will be fine to decrease the number of steps.



Chapter 10

[ 271 ]

class AtariA2C(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(AtariA2C, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8,  
stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU()
        )

        conv_out_size = self._get_conv_out(input_shape)
        self.policy = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, n_actions)
        )

        self.value = nn.Sequential(
            nn.Linear(conv_out_size, 512),
            nn.ReLU(),
            nn.Linear(512, 1)
        )

Our network architecture has a shared convolution body and two heads: the first is 
returning the policy with probability distribution over our actions and the second 
head returns one single number, which will approximate the state's value. It might 
look similar to our dueling DQN architecture from Chapter 7, DQN Extensions, but 
our training procedure is different.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        fx = x.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)
        return self.policy(conv_out), self.value(conv_out)
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The forward pass through the network returns a tuple of two tensors: policy 
and value. Now we have a large and important function, which takes the 
batch of environment transitions and returns three tensors: batch of states, 
batch of actions taken, and batch of Q-values calculated using the formula 
Q(s, a) =

∑N−1
i=0 γiri + γNV (sN ). This Q-value will be used in two places: to calculate 

mean squared error (MSE) loss to improve the value approximation, in the same 
way as DQN, and to calculate the advantage of the action.

def unpack_batch(batch, net, device='cpu'):
    states = []
    actions = []
    rewards = []
    not_done_idx = []
    last_states = []
    for idx, exp in enumerate(batch):
        states.append(np.array(exp.state, copy=False))
        actions.append(int(exp.action))
        rewards.append(exp.reward)
        if exp.last_state is not None:
            not_done_idx.append(idx)
            last_states.append(np.array(exp.last_state,  
copy=False))

In the first loop, we just walk through our batch of transitions and copy their fields 
into the lists. Note that the reward value already contains the discounted reward 
for REWARD_STEPS ahead, as we use the ptan.ExperienceSourceFirstLast class. 
We also need to handle situations of episode ending and remember indices of batch 
entries for the non-terminal episodes.

    states_v = torch.FloatTensor(states).to(device)
    actions_t = torch.LongTensor(actions).to(device)

In the preceding code, we convert the gathered state and actions into a PyTorch 
tensor and copy them into GPU if needed. The rest of the function calculates 
Q-values, taking into account the terminal episodes.

    rewards_np = np.array(rewards, dtype=np.float32)
    if not_done_idx:
        last_states_v = torch.FloatTensor(last_states).to(device)
        last_vals_v = net(last_states_v)[1]
        last_vals_np = last_vals_v.data.cpu().numpy()[:, 0]
        rewards_np[not_done_idx] += GAMMA ** REWARD_STEPS *  
last_vals_np
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The preceding code prepares the variable with the last state in our transition chain 
and queries our network for V(s) approximation. Then, this approximation is added 
to the discounted reward, multiplied by gamma exponentiated in a number of steps.

    ref_vals_v = torch.FloatTensor(rewards_np).to(device)
    return states_v, actions_t, ref_vals_v

In the beginning of the function, we pack our Q-values into the appropriate form  
and return.

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False,  
action="store_true", help="Enable cuda")
    parser.add_argument("-n", "--name", required=True,  
help="Name of the run")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    make_env = lambda: ptan.common.wrappers.wrap_dqn(gym.make 
("PongNoFrameskip-v4"))
    envs = [make_env() for _ in range(NUM_ENVS)]
    writer = SummaryWriter(comment="-pong-a2c_" + args.name)

The preparation code for the training loop is the same as usual, except that 
we're now using the array of environments to gather experience, instead of 
one environment. 

    net = AtariA2C(envs[0].observation_space.shape,  
envs[0].action_space.n).to(device)
    print(net)

    agent = ptan.agent.PolicyAgent(lambda x: net(x)[0],  
apply_softmax=True, device=device)
    exp_source = ptan.experience.ExperienceSourceFirstLast(envs,  
agent, gamma=GAMMA, steps_count=REWARD_STEPS)

    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE, 
eps=1e-3)
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One very important detail here is passing the eps parameter to the optimizer. If 
you're familiar with the Adam algorithm, you may know that epsilon is a small 
number added to the denominator to prevent zero division situations. Normally, this 
value is set to some small number such as 1e-8 or 1e-10, but, in our case, these values 
turned out to be too small. I have no mathematically strict explanation for this, but 
with a default value of epsilon, the method does not converge at all. Very likely, the 
division to a small value of 1e-8 makes the gradients too large, which turns out to  
be fatal for training stability.

    batch = []

    with common.RewardTracker(writer, stop_reward=18) as tracker:
        with ptan.common.utils.TBMeanTracker(writer,  
batch_size=10) as tb_tracker:
            for step_idx, exp in enumerate(exp_source):
                batch.append(exp)

                # handle new rewards
                new_rewards = exp_source.pop_total_rewards()
                if new_rewards:
                    if tracker.reward(new_rewards[0], step_idx):
                        break

                if len(batch) < BATCH_SIZE:
                    continue

In the training loop, we're using two wrappers. The first is already familiar to 
you: common.RewardTracker, which computes the mean reward for the last 100 
episodes and tells us when this mean reward exceeds the desired threshold. Another 
wrapper, TBMeanTracker, is from the ptan library and is responsible for writing 
into TensorBoard the mean of the measured parameters for the last 10 steps. This is 
helpful when training can take millions of steps, so we don't want to write millions 
of points into TensorBoard, but rather write smoothed values every 10 steps. The 
next code chunk is responsible for our losses calculation, which is a core of the 
A2C method.

                states_v, actions_t, vals_ref_v =  
unpack_batch(batch, net, device=device)
                batch.clear()

                optimizer.zero_grad()
                logits_v, value_v = net(states_v)
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In the beginning, we unpack our batch using the function we described earlier 
and ask our network to return policy and values for this batch. Policy is returned in 
unnormalized form, so to convert it into probability distribution, we need to apply 
softmax to it. We postpone this step to use log_softmax, as it is more numerically 
stable.

                loss_value_v = F.mse_loss(value_v.squeeze(-1),  
vals_ref_v)

The value loss part is almost trivial: we just calculate the MSE between the value 
returned by our network and the approximation we performed using the Bellman 
equation unrolled four steps forward.

                log_prob_v = F.log_softmax(logits_v, dim=1)
                adv_v = vals_ref_v - value_v.detach()
                log_prob_actions_v = adv_v *  
log_prob_v[range(BATCH_SIZE), actions_t]
                loss_policy_v = -log_prob_actions_v.mean()

Here, we calculate the policy loss to obtain the PG. The first two steps are to obtain 
a log of our policy and calculate the advantage of actions, which is A(s, a) = Q(s, a) 
- V(s). The call to value_v.detach() is important, as we don't want to propagate 
the PG into our value approximation head. Then we take the log of probability for 
the actions taken and scale them with advantage. Our PG loss value will be equal 
to the negated mean of this scaled log of policy, as PG directs us toward policy 
improvement, but loss value is supposed to be minimized.

                prob_v = F.softmax(logits_v, dim=1)
                entropy_loss_v = ENTROPY_BETA * (prob_v *  
log_prob_v).sum(dim=1).mean()

The last piece of our loss function is entropy loss, which equals to the scaled 
entropy of our policy, taken with the opposite sign (entropy is calculated as 
H(π) = −

∑
π log π .

                loss_policy_v.backward(retain_graph=True)
                grads = np.concatenate([p.grad.data.cpu().numpy(). 
flatten()
                                        for p in net.parameters()
                                        if p.grad is not None])
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In the preceding code, we calculate and extract gradients of our policy, which will be 
used to track the maximum gradient, its variance and L2 norm.

                loss_v = entropy_loss_v + loss_value_v
                loss_v.backward()
                nn_utils.clip_grad_norm_(net.parameters(),  
CLIP_GRAD)
                optimizer.step()
                loss_v += loss_policy_v

As a final step of our training, we backpropagate the entropy loss an, the value loss, 
and clip gradients and ask our optimizer to update the network.

                tb_tracker.track("advantage", adv_v, step_idx)
                tb_tracker.track("values", value_v, step_idx)
                tb_tracker.track("batch_rewards", vals_ref_v,  
step_idx)
                tb_tracker.track("loss_entropy", entropy_loss_v,  
step_idx)
                tb_tracker.track("loss_policy", loss_policy_v,  
step_idx)
                tb_tracker.track("loss_value", loss_value_v, step_idx)
                tb_tracker.track("loss_total", loss_v, step_idx)
                tb_tracker.track("grad_l2", np.sqrt(np.mean 
(np.square(grads))), step_idx)
                tb_tracker.track("grad_max", np.max(np.abs(grads)), 
 step_idx)
                tb_tracker.track("grad_var", np.var(grads),  
step_idx)

At the end of the training loop, we track all values that we're going to monitor in 
the TensorBoard. There are plenty of them and we'll discuss them in the next section.

A2C on Pong results
To start the training, run 02_pong_a2c.py with the --cuda and -n options 
(which provides a name of the run for TensorBoard):

rl_book_samples/Chapter10$ ./02_pong_a2c.py --cuda -n t2
AtariA2C (
  (conv): Sequential (
    (0): Conv2d(4, 32, kernel_size=(8, 8), stride=(4, 4))
    (1): ReLU ()
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    (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
    (3): ReLU ()
    (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
    (5): ReLU ()
  )
  (policy): Sequential (
    (0): Linear (3136 -> 512)
    (1): ReLU ()
    (2): Linear (512 -> 6)
  )
  (value): Sequential (
    (0): Linear (3136 -> 512)
    (1): ReLU ()
    (2): Linear (512 -> 1)
  )
)
37799: done 1 games, mean reward -21.000, speed 722.89 f/s
39065: done 2 games, mean reward -21.000, speed 749.92 f/s
39076: done 3 games, mean reward -21.000, speed 755.26 f/s
...
 

As a word of warning: the training process is lengthy. With the original 
hyperparameters, it requires more than 8M frames to solve, which is approximately 
three hours on GPU. In the next section of the chapter, we'll tweak the parameters 
to improve the convergence speed, but, for now, it's three hours. To improve the 
situation even more, in the next chapter, we'll look at the distributed version, which 
performs the environment in a separate process, but first let's focus on our plots in 
TensorBoard.

First of all, the reward dynamics look much better than in the example from the 
previous chapter:

Figure 6: Convergence dynamics of the A2C method
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The first plot, batch_rewards, shows Q-values approximated using the Bellman 
equation and an overall positive dynamic in Q approximation. The next two plots 
are the total undiscounted reward and the same reward, but averaged for the 
last 100 episodes. This shows that our training process is improving more-or-less 
consistently over time.

Figure 7: Loss components during the training

The next four charts are related to our loss and include individual loss components 
and the total loss. Here we can see various things. First of all, our value loss is 
decreasing consistently, which shows that our V(s) approximation is improving 
during the training. The second observation we can share is that our entropy loss 
is growing, but it doesn't dominate in the total loss. This basically means that our 
agent becomes more confident in its actions, as policy becomes less uniform. The last 
thing to note here is that policy loss is decreasing most of the time and policy loss is 
correlated to the total loss, which is good, as we're interested in the PG first of all.

Figure 8: Advantage and gradients' metrics during the training

The last bunch of plots displays the advantage value and PG metrics. The advantage 
is a scale of our PGs and it equals to Q(s, a) - V(s). We expect it to oscillate around 
zero and the chart meets our expectations. The gradient charts demonstrate that our 
gradients are not too small and not too large. Variance is very small in the beginning 
of the training (for 1.5M of frames), but starts to grow later, which means that our 
policy is changing.
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Tuning hyperparameters
In the previous section, we had Pong solved in three hours of optimization 
and 9M frames. Now it's a good time to tweak our hyperparameters to speed 
up convergence. The golden rule here is to tweak one option at a time and make 
conclusions carefully, as the whole process is stochastic.

In this section, we'll start with the original hyperparameters and perform the 
following experiments:

•	 Increasing the learning rate
•	 Increasing the entropy beta
•	 Changing the count of environments that we're using to gather experience
•	 Tweaking the size of the batch

Strictly speaking, the experiments below weren't proper hyperparameter tuning, just 
an attempt to get a better understanding of how A2C convergence dynamics depend 
on the parameters. To find the best set of parameters, the full grid search or random 
sampling of values could give much better results, but will require much more time 
and resources to conduct.

Learning rate
Our starting learning rate (LR) is 0.001 and we can expect that a larger learning 
rate will lead to faster convergence. This turned out to be true in my tests, but only 
to a certain extent: convergence speed increased up to 0.003, but for larger values, 
the system didn't converge at all.

The performance results are as follows:

•	 LR=0.002: 4.8M frames, 1.5 hours
•	 LR=0.003: 3.6M frames, 1 hour
•	 LR=0.004: hasn't converged
•	 LR=0.005: hasn't converged
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The reward dynamics and the value loss are shown on the following charts.  
Larger values of LR led to lower value loss, which suggests that using two 
optimizers for policy and value heads (with different learning rates) might 
lead to more stable learning.

Figure 9: Experiments with different learning rates (faster convergence corresponds to large learning rates)

Entropy beta
I've tried two values for entropy loss scale: 0.02 and 0.03. The first value improved 
the speed, but the second made it worse again, so the optimal lies somewhere 
between them. The results were as follows:

•	 beta=0.02: 6.8M frames, 2 hours
•	 beta=0.03: 12M frames, 4 hours

Count of environments
It's not obvious what count of environments will work best, so I've tried 
several counts both lesser and greater than our initial value of 50. The results 
are contradictory, but it appears that with more environments, we get faster 
convergence:

•	 Envs=40: 8.6M frames, 3 hours
•	 Envs=30: 6.2M frames, 2 hours (looks like a lucky seed)
•	 Envs=20: 9.5M frames, 3 hours
•	 Envs=10: hasn't converged
•	 Envs=60: 11.6M frames, 4 hours (looks like an unlucky seed)
•	 Envs=70: 7.7M frames, 2.5 hours
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Batch size
The experiments with batch size produced an unexpected result: smaller batch 
size leads to faster convergence, but with a very small batch, the reward doesn't 
grow. This is logical from an RL point of view, as with smaller batches, we perform 
more frequent updates of the network and we require less observations, but this 
is counter-intuitive for deep learning, as a larger batch normally brings more 
i.i.d training data:

•	 Batch=64: 4.9M frames, 1.7 hours
•	 Batch=32: 3.8M frames, 1.5 hours
•	 Batch=16, doesn't converge

Summary
In this chapter, we saw one of the most widely used methods in deep RL: A2C, 
which wisely combines the PG update with value of the state approximation.  
We introduced the idea behind A2C by analyzing the effect of the baseline on 
the statistics and convergence of gradients. Then we checked the extension of the 
baseline idea: A2C, where a separate network head provides us with the baseline 
for the current state.

In the next chapter, we will look at ways to perform the same algorithm in  
a distributed way.
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Asynchronous Advantage 
Actor-Critic

This chapter is dedicated to the extension of the Actor-Critic (A2C) method that we 
discussed in detail in the previous chapter. The extension adds true asynchronous 
environment interaction. The full name is Asynchronous Advantage Actor-Critic, 
which is normally abbreviated to A3C. This method is one of the most widely used 
by RL practitioners. We will take a look at two approaches for adding asynchronous 
behavior to the basic A2C method.

Correlation and sample efficiency
One of the approaches to improving the stability of the Policy Gradient (PG) family 
of methods is to use multiple environments in parallel. The reason behind this is 
the fundamental problem we discussed in Chapter 6, Deep Q-Networks, when we 
talked about the correlation between samples, which breaks the independent and 
identically distributed (i.i.d) assumption, which is critical for Stochastic Gradient 
Descent (SGD) optimization. The negative consequence of such correlation is very 
high variance in gradients, which means that our training batch contains very similar 
examples, all of them pushing our network in the same direction. However, this 
may be totally the wrong direction in the global sense, as all those examples could 
be from one single lucky or unlucky episode.
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With our Deep Q-Network (DQN), we solved the issue by storing a large amount of 
previous states in the replay buffer and sampling our training batch from this buffer. If 
the buffer is large enough, the random sample from it is a much better representation 
of the states' distribution at large. Unfortunately, this solution won't work for PG 
methods, as most of them are on-policy, which means that we have to train on samples 
generated by our current policy, so, remembering old transitions is not possible anymore. 
You can try to do this, but the resulting PG will be for that old policy used to generate 
the samples, not for your current policy that you want to update.

For several years, this issue was in the focus of researchers and several ways to 
address it were proposed, but the problem is still far from being solved. The most 
commonly used solution is gathering transitions using several parallel environments, 
all of them exploiting the current policy. This breaks the correlation within one 
single episode, as we now train on several episodes obtained from different 
environments. At the same time, we are still using our current policy. The one very 
large disadvantage of this is sample inefficiency, as we basically throw away all 
experience that we've just got after one single training. It's very simple to compare 
DQN with PG approaches. For example, if, for DQN, we've used 1M samples of 
replay buffer and a training batch size of 32 samples for every new frame, every 
single transition will approximately be used 32 times before it is pushed from 
the experience replay. For the priority replay buffer, discussed in Chapter 7, DQN 
Extensions, this number could be much higher, as the sample probability is not 
uniform. In the case of PG, every single experience obtained from the environment 
could be used only once, as our method requires fresh data, so data efficiency of 
PG methods could be an order of magnitude lower than the value-based off-policy 
methods.

On the other hand, our A2C agent converged on Pong in 8M frames, which is just 
eight times more than 1M frames for basic DQN in Chapter 6, Deep Q-Networks, and 
Chapter 7, DQN Extensions. So, this shows us that PG methods are not completely 
useless; they're just different and have their own specificities that you need to 
take into account on method selection. If your environment is cheap in terms of 
the agent interaction (the environment is fast, has a low memory footprint, allows 
parallelization, and so on), PG methods could be a better choice. On the other hand, 
if the environment is expensive and obtaining a large amount of experience could 
slow down the training process, the value-based methods could be a smarter way 
to go.
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Adding an extra A to A2C
From the practical point of view, communicating with several parallel environments 
is simple and we've already done this in the previous chapter, but haven't stated 
it explicitly. In the A2C agent, we passed an array of Gym environments into the 
ExperienceSource class, which switched it into the round-robin data gathering 
mode: every time we asked for a transition from the experience source, the class 
uses the next environment from our array (of course, keeping the state for every 
environment). This simple approach is equivalent to parallel communication with 
environments, but with one single difference: communication is not parallel in the 
strict sense, but performed in a serial way. However, samples from our experience 
source are shuffled. This idea is shown in the following diagram:

Figure 1: Agent training from multiple environments in parallel

This method worked fine and helped us to get convergence in the A2C method, 
but it is still not perfect in terms of computing resource utilization. Even the 
modest workstation nowadays has several CPU cores, which could be used for 
computation, such as training and environment interaction. On the other hand, 
parallel programming is harder than the traditional paradigm, when you have 
a clear stream of execution. Luckily, Python is a very expressive and flexible 
language with lots of third-party libraries, which allows you to do parallel 
programming without much trouble. Another piece of good news is that PyTorch 
natively supports parallel programming in its torch.multiprocessing module. 
Parallel and distributed programming is a very wide topic, which is far beyond 
the scope of this book. Here we'll just scratch the surface of the large domain of 
parallelization, but there is much more to learn.
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With regard to actor-critic parallelization, two approaches exist:

1.	 Data parallelism: We can have several processes, each of them 
communicating with one or more environments and providing us with 
transitions (s, r, a, s'). All those samples are gathered together in one single 
training process, which calculates losses and performs an SGD update. Then, 
the updated neural network parameters need to be broadcasted to all other 
processes to use in future environment communications.

2.	 Gradients parallelism: As the goal of the training process is the calculation 
of gradients to update our network, we can have several processes 
calculating gradients on their own training samples. Then, these gradients 
can be summed together to perform the SGD update in one process. Of 
course, updated network weights also need to be propagated to all workers 
to keep data on-policy.

Both approaches are illustrated in diagrams below.

Figure 2: The first approach to Actor-Critic parallelism, based on distributed training samples being gathered
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Figure 3: The second approach to parallelism, gathering gradients for the model

The difference between the two methods might not look very significant from the 
diagrams, but you need to be aware of the computation cost. The heaviest operation 
in A3C optimization is the training process, which consists of loss calculation from 
data samples (forward pass) and calculation of gradients with respect to this loss. 
The SGD optimization step is quite lightweight, basically just adding the scaled 
gradients to the network's weights. By moving the computation of loss and gradients 
in the second approach from the central process, we eliminated the major potential 
bottleneck and made the whole process significantly more scalable.

In practice, the choice of the method mainly depends on your resources and 
your goals. If you have one single optimization problem and lots of distributed 
computation resources, such as a couple of dozen GPUs spread over several 
machines in the networks, then gradients parallelism is the best approach to speed 
up your training. However, in the case of one single GPU, both methods will show 
you similar performance, and the first approach is generally simpler to implement, 
as you don't need to mess with low-level gradient values. In this chapter, we'll 
implement both methods on our favorite Pong game to see the difference between 
the approaches and look at PyTorch multiprocessing capabilities.
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Multiprocessing in Python
Python includes the multiprocessing (most of the time abbreviated to just mp) 
module to support process-level parallelism and the required communication 
primitives. In our example, we'll use the two main classes from this module:

•	 mp.Queue: Concurrent multi-producer, multi-consumer FIFO queue with 
transparent serialization and deserialization of objects placed in the queue

•	 mp.Process: A piece of code that is run in the child process and methods 
to control it from the parent's process

PyTorch provides its own thin wrapper around the multiprocessing module, 
which adds the proper handling of tensors and variables on CUDA devices and 
shared memory. It provides exactly the same functionality as the multiprocessing 
module from the standard library, so all you need to do is to use import torch.
multiprocessing instead of import multiprocessing.

A3C – data parallelism
The first version of A3C parallelization that we'll check (which was outlined on 
Figure 2) has both one main process which carries out training and several children 
processes communicating with environments and gathering experience to train on. 
For simplicity and efficiency, the neural network (NN) weights broadcasting from 
the trainer process is not implemented. Instead of explicitly gathering and sending 
weights to children, the network is shared between all processes using PyTorch  
built-in capabilities, allowing us to use the same nn.Module instance with all its 
weights in different processes by calling the share_memory() method on NN 
creation. Under the hood, this method has zero overhead for CUDA (as GPU 
memory is shared among all host's processes) or shared memory IPC in the case 
of CPU computation. In both cases, the method improves performance, but limits 
our example for one single machine using one single GPU card for training and 
data gathering. It's not very limiting for our Pong example, but if you need larger 
scalability, the example should be extended with explicit sharing of network weights.

The complete code is in the Chapter11/01_a3c_data.py file and it uses the 
Chapter11/lib/common.py module with the following functionality pieces:

•	 class AtariA2C(nn.Module): This implements the Actor-Critic NN module
•	 class RewardTracker: This handles full episode undiscounted reward, 

writes it into TensorBoard, and checks for the game solved condition
•	 unpack_batch(batch, net, last_val_gamma): This function converts 

a batch of transitions (state, reward, action, and last_state) for n episode steps 
into data suitable for training
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We have already seen the code of those classes and functions in the previous 
chapters, so we won't repeat them here. Now let's check the code of the main 
modules, which includes the function for children subprocesses and the main 
training loop.

#!/usr/bin/env python3
import gym
import ptan
import numpy as np
import argparse
import collections
from tensorboardX import SummaryWriter

import torch.nn.utils as nn_utils
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp

from lib import common

In the beginning, we're importing the required modules. There is nothing new 
here except that we are importing the torch.multiprocessing library.

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 128

REWARD_STEPS = 4
CLIP_GRAD = 0.1

PROCESSES_COUNT = 4
NUM_ENVS = 15

ENV_NAME = "PongNoFrameskip-v4"
NAME = 'pong'
REWARD_BOUND = 18

In hyperparameters, we have two new values: 

•	 PROCESSES_COUNT specifies the number of children processes that will 
gather training data for us. This activity is mostly CPU-bound, as the 
heaviest operation here is Atari frames preprocessing, so this value 
is set equal to the amount of CPU cores on my machine.
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•	 NUM_ENVS is the number of environments every child process will use to 
gather data. This number multiplied by the number of processes is the 
total amount of parallel environments that we'll get our training data from.

def make_env():
    return ptan.common.wrappers.wrap_dqn(gym.make(ENV_NAME))

TotalReward = collections.namedtuple('TotalReward', field_
names='reward')

Before we get to the child process function, we need the environment construction 
function and a tiny wrapper that we'll use to send the total episode reward into the 
main training process.

def data_func(net, device, train_queue):
    envs = [make_env() for _ in range(NUM_ENVS)]
    agent = ptan.agent.PolicyAgent(lambda x: net(x)[0], 
      device=device, apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(envs, 
      agent, gamma=GAMMA, steps_count=REWARD_STEPS)

    for exp in exp_source:
        new_rewards = exp_source.pop_total_rewards()
        if new_rewards:
          train_queue.put(TotalReward
           (reward=np.mean(new_rewards)))
        train_queue.put(exp)

The preceding function is very simple but it is special, as it will be executed in the 
children process (we'll use the mp.Process class to launch those processes in the 
main code block). We pass it three arguments: our NN, the device to be used to 
perform computation (cpu or cuda string), and the queue we'll use to send data from 
the child process to our master process, which will perform training. The queue is 
used in the many-producers and one-consumer mode and can contain two different 
types of objects:

•	 TotalReward: This is a preceding object that we've defined, which has only 
one field reward, which is a float value of the total undiscounted reward for 
the completed episode.

•	 ptan.experience.ExperienceFirstLast: This is an object that wraps the 
first state in subsequence of REWARD_STEPS, action taken, the discounted 
reward for this subsequence, and the last state. This is our experience that 
we'll use for training.
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That's it about the children processes, so now let's check the starting code for the 
main process and the training loop.

if __name__ == "__main__":
    mp.set_start_method('spawn')
    parser = argparse.ArgumentParser()
    parser.add_argument("--cuda", default=False, 
      action="store_true", help="Enable cuda")
    parser.add_argument("-n", "--name", required=True, 
      help="Name of the run")
    args = parser.parse_args()
    device = "cuda" if args.cuda else "cpu"
    writer = SummaryWriter(comment="-a3c-data_" + NAME + "_" +  
args.name)

In the beginning, we take familiar steps, except for one single call to mp.set_start_
method, which instructs the multiprocessing module about the kind of parallelism 
we want to use. The native multiprocessing library in Python supports several ways 
to start subprocesses, but due to PyTorch multiprocessing limitations, spawn is the 
best option.

    env = make_env()
    net = common.AtariA2C(env.observation_space.shape, 
      env.action_space.n).to(device)
    net.share_memory()
    optimizer = optim.Adam(net.parameters(), 

      lr=LEARNING_RATE, eps=1e-3)

After that, we create our NN, move it to the CUDA device and ask it to share its 
weights. CUDA tensors are shared by default, but for CPU mode, a call to share_
memory is required.

    train_queue = mp.Queue(maxsize=PROCESSES_COUNT)
    data_proc_list = []
    for _ in range(PROCESSES_COUNT):
        data_proc = mp.Process(target=data_func, 
          args=(net, device, train_queue))
        data_proc.start()
        data_proc_list.append(data_proc)
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Then we have to start our children processes, but before that, we create the 
queue that will be used by them to deliver to us data. The argument to the queue 
constructor specifies the maximum queue capacity. All attempts to push a new 
item to the full queue will be blocked, which is very convenient for us to keep our 
data samples on-policy. After the queue creation, we start the required amount of 
processes using the mp.Process class and keep them for correct shutdown in a list. 
Right after the mp.Process.start() call, our data_func function will be executed 
by the child process.

    batch = []
    step_idx = 0

    try:
        with common.RewardTracker(writer, 
stop_reward=REWARD_BOUND) as tracker:
            with ptan.common.utils.TBMeanTracker(writer, 
batch_size=100) as tb_tracker:
                while True:
                    train_entry = train_queue.get()
                    if isinstance(train_entry, TotalReward):
                        if tracker.reward(train_entry.reward, 
step_idx):
                            break
                        continue

In the beginning of the training loop, we get the next entry from the queue 
and handle possible TotalReward objects, which we pass to the reward tracker.

                    step_idx += 1
                    batch.append(train_entry)
                    if len(batch) < BATCH_SIZE:
                        continue

As we can have only two types of objects in the queue (TotalReward and experience 
transitions), we need to check entry obtained from the queue only once. After 
the TotalReward entries are handled, we put experience objects into the batch 
accumulated until the required batch size.

                    states_v, actions_t, vals_ref_v = \
                        common.unpack_batch(batch, net,  
last_val_gamma=GAMMA**REWARD_STEPS, device=device)
                    batch.clear()
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As we get the required amount of experience samples, we convert them into training 
data using the unpack_bach function and clear the batch. One thing to note: as our 
experience samples represent four steps subsequences (as REWARD_STEPS is 4), we 
need to use a proper discount factor of γ 4 for the last V(s) reward term. The rest of the 
training loop is standard actor-critic loss calculation, which is performed in exactly 
the same way as in the previous chapter: we calculate the logits of the policy and 
value estimation using our current network and calculate policy, value, and entropy 
losses.

                    optimizer.zero_grad()
                    logits_v, value_v = net(states_v)

                    loss_value_v = F.mse_loss(value_v.squeeze(-1), 
                      vals_ref_v)

                    log_prob_v = F.log_softmax(logits_v, dim=1)
                    adv_v = vals_ref_v - value_v.detach()
                    log_prob_actions_v = adv_v * 
                      log_prob_v[range(BATCH_SIZE), actions_t]
                    loss_policy_v = -log_prob_actions_v.mean()

                    prob_v = F.softmax(logits_v, dim=1)
                    entropy_loss_v = ENTROPY_BETA * (prob_v * 
                      log_prob_v).sum(dim=1).mean()

                    loss_v = entropy_loss_v + loss_value_v + 
                      loss_policy_v
                    loss_v.backward()
                    nn_utils.clip_grad_norm_(net.parameters(), 
                      CLIP_GRAD)
                    optimizer.step()

As the last step, we pass the calculated tensors to the TensorBoard tracker class, 
which will perform the averaging and storing of the data that we want to monitor.

                    tb_tracker.track("advantage", adv_v, step_idx)
                    tb_tracker.track("values", value_v, step_idx)
                    tb_tracker.track("batch_rewards", vals_ref_v, 
                      step_idx)
                    tb_tracker.track("loss_entropy", 
                      entropy_loss_v, step_idx)
                    tb_tracker.track("loss_policy", loss_policy_v, 
                      step_idx)
                    tb_tracker.track("loss_value", loss_value_v, 
                      step_idx)
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                    tb_tracker.track("loss_total", loss_v, 
                      step_idx)
    finally:
        for p in data_proc_list:
            p.terminate()
            p.join()

In the last finally block, which can be executed due to an exception (Ctrl + C, 
for example) or game solved condition, we terminate the child processes and wait 
for them. This is required to make sure that there are no leftover processes.

Results
Start the example as usual, and after some delay, it should begin writing 
performance and the mean reward data. On GTX 1080Ti and 4-core machine, 
it shows the speed of about 1800 frames per second, which is a nice improvement 
on the 600 f/s we got in the previous chapter.

rl_book_samples/Chapter11$ ./01_a3c_data.py --cuda -n final
44830: done 1 games, mean reward -21.000, speed 1618.10 f/s
44856: done 2 games, mean reward -21.000, speed 2053.09 f/s
45037: done 3 games, mean reward -21.000, speed 2036.78 f/s
45351: done 4 games, mean reward -21.000, speed 1894.14 f/s
45562: done 5 games, mean reward -21.000, speed 2204.78 f/s
45573: done 6 games, mean reward -21.000, speed 629.41 f/s
...

In terms of convergence dynamics, the new version is similar to A2C with parallel 
environments and solves Pong in 7M-8M observations from the environment. 
However, those 8M frames are processed in slightly more than one hour, instead of 
waiting for three hours.

Figure 4: Convergence dynamics of the data parallel version of A3C on Pong
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A3C – gradients parallelism
The next approach that we will consider to parallelize A2C implementation will have 
several child processes, but instead of feeding training data to the central training 
loop, they will calculate the gradients using their local training data and send those 
gradients to the central master process. This process is responsible for combining 
those gradients together (which is basically just summing them) and performing 
an SGD update on the shared network.

The difference might look minor, but this approach is much more scalable, especially 
if you have several powerful nodes with multiple GPUs connected with the 
network. In this case, the central process in the data-parallel model quickly becomes 
a bottleneck, as the loss calculation and backpropagation are computationally 
demanding. Gradient parallelization allows for the spreading of the load on several 
GPUs, performing only a relatively simple operation of gradient combination in the 
central place.

The complete example is in the Chapter11/02_a3c_grad.py file and it uses 
the same Chapter11/lib/common.py file as in our previous example.

GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01

REWARD_STEPS = 4
CLIP_GRAD = 0.1

PROCESSES_COUNT = 4
NUM_ENVS = 15

GRAD_BATCH = 64
TRAIN_BATCH = 2
ENV_NAME = "PongNoFrameskip-v4"
NAME = 'pong'
REWARD_BOUND = 18
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As usual, we are defining the hyperparameters, which are mostly the same as in the 
previous example, except BATCH_SIZE is replaced by two parameters: GRAD_BATCH 
and TRAIN_BATCH. The value of GRAD_BATCH defines the size of the batch used by 
every child process to compute the loss and get the value of gradients. The second 
parameter, TRAIN_BATCH, specifies how many gradient batches from the child 
processes will be combined on every SGD iteration. Every entry produced by the 
child process has the same shape as our network parameters and we sum up TRAIN_
BATCH values of them together. So, for every optimization step, we use the TRAIN_
BATCH * GRAD_BATCH training samples. As the loss calculation and backpropagation 
are quite heavy operations, we use large GRAD_BATCH to make them more efficient. 
Due to this large batch, we should keep TRAIN_BATCH relatively low to keep our 
network update on-policy.

def make_env():
    return ptan.common.wrappers.wrap_dqn(gym.make(ENV_NAME))

def grads_func(proc_name, net, device, train_queue):
    envs = [make_env() for _ in range(NUM_ENVS)]

    agent = ptan.agent.PolicyAgent(lambda x: net(x)[0], 
      device=device, apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(envs, 
      agent, gamma=GAMMA, steps_count=REWARD_STEPS)

    batch = []
    frame_idx = 0
    writer = SummaryWriter(comment=proc_name)

The preceding is the function executed by the child process, which is much more 
complicated than in our data-parallel example. As a compensation, the training loop 
in the main process becomes almost trivial. On creation of the child process, we pass 
several arguments to the function:

•	 The name of the process, which is used to create the TensorBoard writer. 
In this example, every child process writes its own TensorBoard data set.

•	 The shared neural network.
•	 A device to perform computations (cpu or cuda string).
•	 The queue used to deliver the calculated gradients to the central process.
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Our child process function looks very similar to the main training loop in the data-
parallel version, which is not surprising, as the responsibilities of our child process 
increased. However, instead of asking the optimizer to update the network, we gather 
gradients and send them into the queue. The rest of the code is almost the same.

    with common.RewardTracker(writer, stop_reward=REWARD_BOUND) as 
tracker:
        with ptan.common.utils.TBMeanTracker(writer, 
batch_size=100) as tb_tracker:
            for exp in exp_source:
                frame_idx += 1
                new_rewards = exp_source.pop_total_rewards()
                if new_rewards and tracker.reward(new_rewards[0], 
frame_idx):
                    break

                batch.append(exp)
                if len(batch) < GRAD_BATCH:
                    continue

Up to this point, we've gathered the batch with transitions and handled the end of 
episode rewards.

                states_v, actions_t, vals_ref_v = \
                    common.unpack_batch(batch, net, 
last_val_gamma=GAMMA**REWARD_STEPS, device=device)
                batch.clear()

                net.zero_grad()
                logits_v, value_v = net(states_v)
                loss_value_v = F.mse_loss(value_v.squeeze(-1), 
vals_ref_v)

                log_prob_v = F.log_softmax(logits_v, dim=1)
                adv_v = vals_ref_v - value_v.detach()
                log_prob_actions_v = adv_v * 
log_prob_v[range(GRAD_BATCH), actions_t]
                loss_policy_v = -log_prob_actions_v.mean()

                prob_v = F.softmax(logits_v, dim=1)
                entropy_loss_v = ENTROPY_BETA * (prob_v * 
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log_prob_v).sum(dim=1).mean()

                loss_v = entropy_loss_v + loss_value_v + 
loss_policy_v
                loss_v.backward()

In the preceding section, we calculate the combined loss from the training data 
and perform backpropagation of the loss, which effectively stores gradients in 
the Tensor.grad field for every network parameter. This could be done without 
bothering with synchronization with other workers, as our network's parameters 
are shared, but the gradients are locally allocated by every process.

                tb_tracker.track("advantage", adv_v, frame_idx)
                tb_tracker.track("values", value_v, frame_idx)
                tb_tracker.track("batch_rewards", vals_ref_v, 
                  frame_idx)
                tb_tracker.track("loss_entropy", entropy_loss_v, 
                  frame_idx)
                tb_tracker.track("loss_policy", loss_policy_v, 
                  frame_idx)
                tb_tracker.track("loss_value", loss_value_v, 
                  frame_idx)
                tb_tracker.track("loss_total", loss_v, frame_idx)

In the preceding code, we're sending our intermediate values, that we're going 
to monitor during the training, to TensorBoard.

                nn_utils.clip_grad_norm(net.parameters(), 
                  CLIP_GRAD)
                grads = [param.grad.data.cpu().numpy() if 
                  param.grad is not None else None
                         for param in net.parameters()]
                train_queue.put(grads)

At the end of the loop, we need to clip the gradients and extract them from the 
network's parameters into a separate buffer (to prevent them from being corrupted 
by the next iteration of the loop).

    train_queue.put(None)

The last line in grads_func puts None into the queue, signaling that this child 
process has reached the game solved state and training should be stopped.

if __name__ == "__main__":
    mp.set_start_method('spawn')
    parser = argparse.ArgumentParser()
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    parser.add_argument("--cuda", default=False, 
      action="store_true", help="Enable cuda")
    parser.add_argument("-n", "--name", required=True, 
      help="Name of the run")
    args = parser.parse_args()
    device = "cuda" if args.cuda else "cpu"

    env = make_env()
    net = common.AtariA2C(env.observation_space.shape, 
      env.action_space.n).to(device)
    net.share_memory()

The main process starts with the creation of the network and sharing of its weights.

    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE, 
      eps=1e-3)

    train_queue = mp.Queue(maxsize=PROCESSES_COUNT)
    data_proc_list = []
    for proc_idx in range(PROCESSES_COUNT):
        proc_name = "-a3c-grad_" + NAME + "_" + args.name + "#%d" 
          % proc_idx
        data_proc = mp.Process(target=grads_func, args=(proc_name, 
          net, device, train_queue))
        data_proc.start()
        data_proc_list.append(data_proc)

Then, as before, we create the communication queue and spawn the required count 
of child processes.

    batch = []
    step_idx = 0
    grad_buffer = None

    try:
        while True:
            train_entry = train_queue.get()
            if train_entry is None:
                break
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The major difference between the data-parallel version of A3C lies in the training 
loop, which is much simpler here, as children processes have done all heavy 
calculations for us. In the beginning of the loop, we handle the situation when one of 
the processes has reached the required mean reward to stop the training. In this case, 
we just exit the loop.

            step_idx += 1

            if grad_buffer is None:
                grad_buffer = train_entry
            else:
                for tgt_grad, grad in zip(grad_buffer,train_entry):
                    tgt_grad += grad

To average the gradients from different children, we call the optimizer's step() 
function for every TRAIN_BATCH gradient obtained. For intermediate steps, we 
just sum up the corresponding gradients together.

            if step_idx % TRAIN_BATCH == 0:
                for param, grad in zip(net.parameters(),grad_buffer):
                    grad_v = torch.FloatTensor(grad).to(device)
                    param.grad = grad_v

                nn_utils.clip_grad_norm_(net.parameters(),CLIP_GRAD)
                optimizer.step()
                grad_buffer = None

When we have accumulated enough gradient pieces, we convert the sum of the 
gradients into the PyTorch FloatTensor and assign them to the grad field of the 
network parameters. After that, all we need to do is to call the optimizer's step() 
method to update the network parameters, using the accumulated gradients.

    finally:
        for p in data_proc_list:
            p.terminate()
            p.join()

On the exit from the training loop, we stop all children processes to make sure that 
we terminated them, even if Ctrl + C was pressed to stop the optimization. This 
is needed to prevent zombie processes from occupying GPU resources.
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Results
This example can be started the same way as before, and after a while, it should start 
displaying speed and mean reward; however, you need to be aware that displayed 
information is local for every child process, which means that speed, the count of 
games completed, and number of frames need to be multiplied by the amount of 
processes. My benchmarks have shown speed to be around 550-600 frames per 
second for every child, which gives 2200-2400 f/s in total.

rl_book_samples/Chapter11$ ./02_a3c_grad.py --cuda -n final
11278: done 1 games, mean reward -21.000, speed 520.23 f/s
11640: done 2 games, mean reward -21.000, speed 610.54 f/s
11773: done 3 games, mean reward -21.000, speed 485.09 f/s
11803: done 4 games, mean reward -21.000, speed 359.42 f/s
11765: done 1 games, mean reward -21.000, speed 519.08 f/s
11771: done 2 games, mean reward -21.000, speed 531.22 f/s
...

Convergence dynamics are also very similar to the previous version. The total 
number of observations is about 8M-10M, which requires one and a half hours 
to complete.

Figure 5: Convergence of gradient-based parallelization of A3C on Pong

Summary
In this chapter, we discussed why it is important for PG methods to gather 
training data from multiple environments, due to their on-policy nature. We 
also implemented two different approaches to A3C, in order to parallelize and 
stabilize the training process. Parallelization will rise once again in this book, 
when we discuss black-box methods (Chapter 16, Black-Box Optimization in RL). 
In the upcoming chapters, we'll take a look at practical problems that could 
be solved using PG methods, which will wrap up the PG part of the book.
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Chatbots Training with RL
In this chapter, we'll take a look at another practical application of Deep 
Reinforcement Learning (Deep RL), which has become popular over the Past 
two years: the training of natural language models with RL methods. It started 
with a paper called Recurrent Models of Visual Attention, published in 2014, and 
has been successfully applied to a wide variety of problems from the Natural 
Language Processing (NLP) domain.

To understand the method, we will begin with a brief introduction to the NLP basics, 
including Recurrent Neural Networks (RNNs), word embeddings, and the seq2seq 
model. Then we'll discuss similarities between the NLP and RL problems and take 
a look at original ideas on how to improve NLP seq2seq training using RL methods. 
The core of the chapter is a dialogue system trained on the movie dialogues dataset.

Chatbots overview
One of the many trending topics of 2017 was AI-driven chatbots. There are various 
opinions on the subject, ranging from completely useless stuff, to an absolutely brilliant 
idea, but one thing is hard to question: chatbots open up new ways for people to 
communicate with computers which are much more human-like and natural than 
the old-style interfaces that we are all used to.

At its core, a chatbot is a computer program that uses natural language to 
communicate with other parties (humans or other computer programs) in a form 
of dialogue. There could be lots of different forms of such a scenario, namely one 
chatbot talking to a user, or many bots talking to each other, and so on. For example, 
there might be a technical support bot that can answer free-text questions from 
users. However, usually chatbots share common properties of a dialogue interaction 
(the user asks a question, but the chatbot can ask clarifying questions to get the 
missing information) and a free form of natural language (which makes it different 
from phone menus, for example, when you have a fixed Press N to get to X category, 
or Enter your bank account number to check the balance option given to the user).
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Natural language understanding was a long-term science fiction concept. In 
films, you can just chat with your starship's computer to get useful and relevant 
information about the recent alien invasion, without pressing any button. This 
scenario was exploited by authors for decades, but in real life, such interactions 
with computers started to become a reality only recently. You still cannot talk to 
your starship, but you can at least switch on and off your toaster without pushing 
buttons, which is undoubtedly a major step forward!

The reason why it took computers so long to understand language is simply due  
to the complexity of language itself. Even in trivial scenarios, like saying, Toaster, 
switch on! you can imagine several ways to formulate your order and it's usually 
very hard to capture all those ways and corner cases in advance using normal 
computer-programming techniques. Unfortunately, traditional computer 
programming requires you to give computers exact, explicit instructions  
and one single corner case, or fuzziness in the input, could make your  
super-sophisticated code fail.

The recent advances in Machine Learning (ML) and Deep Learning (DL), with 
all its applications, is the first real step in the direction of breaking this strictness in 
computer programming by replacing it with a different idea: letting computers find 
patterns in data by themselves. This approach turned out to be quite successful in 
some domains and now everybody is very excited about the new methods and their 
potential applications. DL resurrection started in computer vision, then continued in 
the NLP domain and you definitely can expect more and more new, successful, and 
useful applications in the future.

So, returning to our chatbots, natural language complexity was the major blocker 
in practical applications. For a long time chatbots were mostly toy examples 
created by bored engineers for their entertainment. One of the oldest, and definitely 
the most popular example of such a system, is ELIZA, created in the 1960s (https://
en.wikipedia.org/wiki/ELIZA). Despite the fact that ELIZA was quite successful 
at mimicking a psychotherapist, it had zero understanding of the user's phrases and 
just included a small set of manually created patterns and typical replies given to the 
user's input. This approach was a major way forward in implementing such systems 
in a pre-DL era, when it was a common belief that we just needed to add more 
patterns capturing the real language corner cases and after some time, computers 
would be able to understand the human language. Unfortunately, this idea turned 
out to be impractical, as the number of rules and contradicting examples that 
humans need to handle is too large and complex to be created manually.

https://en.wikipedia.org/wiki/ELIZA
https://en.wikipedia.org/wiki/ELIZA
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The ML approach allows you to attack the complexity of the problem from 
a different direction. Instead of manually creating lots of rules to handle the 
user's input, you gather lots of training data and allow the ML algorithm to find 
the best way to solve the problem. This approach has its own specific details related 
to the NLP domain and we'll take a brief overview of them in the next section 
of the chapter. For now, what is much more important is that software developers 
discovered the ability to work with natural language in the same way that they 
work with other, much more computer-friendly formal things, such as document 
formats, network protocols or computer language grammars. This is still not trivial, 
requiring lots of work and sometimes you step into uncharted territory, but at least 
this approach works sometimes and doesn't require you to lock hundreds of linguists 
in one room for a decade to gather NLP rules!

From a chatbots perspective, they are still very new and experimental, but the 
overall idea is to allow computers to communicate with the user in the form of free-
text dialogue instead of more formal ways. For example, let's take internet shopping 
as a case study. When you want to buy something, you go to the internet store, such 
as Amazon or eBay, and look through categories or use the website search to find 
the product that you want. However, this scenario has several problems. First of all, 
large web stores could have millions of items falling into thousands of categories 
in a very nondeterministic way. A simple child's toy can belong to several categories, 
like puzzles, educational games, and 5-10 years old at the same time. On the other hand, 
if you don't know exactly what you want, or at least to which category it belongs 
to, you can easily spend hours browsing endless lists of similar items hoping that 
you'll find something that you're looking for. Search engines of websites solve this 
issue only partially, as you can get a meaningful amount of results only if you know 
some unique combination of words or the right brand name to search.

A different view on the problem would be a chatbot that can ask the user questions 
about his or her intentions, price range, and purpose to limit the search. Of course, 
this approach is not universal and shouldn't be seen as a 100% replacement for 
modern websites with search, catalogs, and other UI solutions developed over time, 
but it can provide a nice alternative in some use cases and serve some percentage 
of users better than old-style interaction methods.

Deep NLP basics
Hopefully, you're excited about chatbots and their potential applications, so let's 
now get to the boring details of NLP building blocks and standard approaches. 
As with almost everything in ML, deep NLP is experiencing hype and is evolving 
at a fast pace, so this section just scratches the surface and covers the most common 
and standard building blocks. For a more detailed description, Richard Socher's 
online course CS224d (http://cs224d.stanford.edu) is a really good starting point.

http://cs224d.stanford.edu
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Recurrent Neural Networks
NLP has its own specificities that make it different from computer vision or other 
domains. One such feature is the processing of variable-length objects. At various 
levels, NLP is dealing with objects that could have different lengths, for example, 
a word in a language could contain several characters. Sentences are formed from 
variable-length word sequences. Paragraphs or documents consist of varying 
amounts of sentences. Such variability is not NLP-specific and can arise in different 
domains, like in signal processing or video processing. Even standard computer 
vision problems could be seen as a sequence of some objects, like an image 
captioning problem when a Neural Network (NN) can focus on various amounts 
of regions of the same image to better describe the image.

One of the standard building blocks are RNNs. The idea of an RNN is a network 
with fixed input and output, which is being applied to the sequence of objects and 
can pass information along this sequence. This information is called hidden state 
and is normally just a vector of numbers of some size.

On the following diagram, we have an RNN with one input which is a vector of 
numbers, the output of which is another vector. What makes it different from a 
standard feed-forward or convolution network is two extra gates: one input and one 
output. Extra input feeds the hidden state from the previous item into the RNN unit 
and the extra output provides a transformed hidden state to the next sequence.

Figure 1: The structure of an RNN building block

This is supposed to solve our variable-length issue and, in fact, it does. As an RNN 
has two inputs, it could be applied to input sequences of any length, just by passing 
the hidden state produced by the previous entry to the next one. In Figure 2, an 
RNN is applied to the sentence this is a cat, producing the output for every word 
in the sequence. During the application, we have the same RNN applied to every 
input item, but by having the hidden state, it can now pass information along the 
sequence. This is similar to the convolution neural networks, when we have the same 
set of filters applied to various locations of the image, but the difference is that the 
convolution network cannot pass the hidden state.
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Figure 2: How an RNN is applied to a sentence

Despite the simplicity of this model, it adds an extra degree of freedom to the 
standard feed-forward NN model. The feed-forward networks are determined 
by their input and always produce the same output for some fixed input (in testing 
mode, of course, not during the training). An RNN's output depends not only on 
the input but on the hidden state, which could be changed by the network itself. 
So, the network could pass some information from the beginning of the sequence 
to the end and produce different output for the same input in different contexts. 
This context-dependency is very important in NLP, as in natural language, one 
single word could have a completely different meaning in different contexts 
and the meaning of a whole sentence could be changed by one single word.

Of course, such flexibility comes with its own cost. RNNs usually require more 
time to train and can produce some weird behavior, like loss oscillations or sudden 
amnesia during the training. However, the research community has already done 
a lot of work and is still working hard to make RNNs more practical and stable, so 
RNNs can be seen as a standard building block of the systems that need to process 
variable-length input. 

Embeddings
Another standard building block of modern DL-driven NLP is word embeddings, 
which is also called word2vec. The idea comes from the problem of representing 
our language sequences in NNs. Normally, NNs work with fixed-sized vectors of 
numbers, but in NLP we normally have words or characters as input to the model. 

One of the solutions would be one-hot encoding of our dictionary, when every 
word has its own position in the input vector and we set this number to 1 when we 
encounter this word in the input sequence. This is a standard approach in NNs when 
you have to deal with some not-very-large discrete set of items and want to represent 
them in a NN-friendly way. Unfortunately, one-hot encoding is not working very 
well for several reasons.
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First of all, our input set is usually not small. If we want to encode only the most 
commonly used English dictionary, it will contain at least several thousand words. 
The Oxford English dictionary has 170,000 commonly-used words and 50,000 
obsolete and rare words. This is only established vocabulary, not counting slang, 
new words, scientific terms, abbreviations, mistypes, jokes, Twitter memes, and 
so on. And this is only for the English language!

The second problem related to one-hot representation of words is the uneven 
frequency of vocabulary. There are relatively small sets of very frequent words, 
like a, cat, and so on, but a very large set of much more rarely-used words, like 
covfefe or bibliopole, and those rare words can occur only once or twice in a very 
large text corpus. So, our one-hot representation is very inefficient in terms of space.

Another issue with simple one-hot representation is not capturing a word's relations. 
For example, some words are synonyms and have the same meaning, but they 
will be represented by different vectors. Some words are used very frequently 
together, like united nations or fair trade, and this fact is also not captured in one-hot 
representation.

To overcome all this, we can use word embeddings, which map every word in 
some vocabulary into a dense, fixed-length vector of numbers. These numbers are 
not random but trained on a large corpus of text to capture the context of words. 
A detailed description of word embeddings is beyond the scope of this book, 
but this is a really powerful and widely-used NLP technique to represent words, 
characters and other objects in some sequence. For now, you can think about them 
as just mapping from words into number vectors and this mapping is convenient for 
the network to distinguish words from each other.

To obtain this mapping, two methods exist. First of all, you can download pre-
trained vectors for the language that you need. There are several sources of 
embeddings available, just search on Google glove pretrained vectors or word2vec 
pretrained (GloVE and word2vec are different methods used to train such vectors, 
which produce similar results).

Another way to obtain embeddings is to train them on your own dataset. To do 
this, you can either use special tools, such as fasttext, which is open-sourced by 
Facebook, or just initialize embeddings randomly and allow your model to adjust 
them during normal training.
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Encoder-Decoder
Another model widely used in NLP is called Encoder-Decoder and also seq2seq. 
It originally comes from machine translation, when your system needs to accept 
a sequence of words on the source language and produce another sequence on 
the target language. The idea behind seq2seq is to use an RNN to process an input 
sequence and encode this sequence into some fixed-length representation. This 
RNN is called an encoder. Then you feed the encoded vector into another RNN, 
called a decoder, which has to produce the resulting sequence in the target language. 
An example of this idea is shown as follows, where we are translating an English 
sentence into Russian:

Figure 3: Encoder-Decoder architecture in machine translation

This model (with lots of modern tweaks and extensions) is still a major workhorse 
of machine translation but is general enough to be applicable to a much wider set 
of domains, for example, audio processing, image annotation, video captioning and 
others. In our chatbot example, we'll use it to generate reply phrases when given the 
input sequence of words.

Training of seq2seq 
That's all very interesting, but how is it related to RL? The connection lies in 
the training process of the seq2seq model, but before we come to the modern 
RL approaches to the problem, we need to say a couple of words about the 
standard way of carrying out the training.
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Log-likelihood training
Imagine that we need to create a machine translation system from one language (say, 
French) into another language (English) using the seq2seq model. Let's assume that 
we have a good, large dataset of sample translations with French-English sentences 
that we're going to train our model on. How do we do this?

The encoding part is obvious: we just apply our encoder RNN to the first sentence 
in the training pair, which produces an encoded representation of the sentence. The 
obvious candidate for this representation will be the hidden state returned from the 
last RNN application. At encoding stage, we ignore the RNN's outputs, taking into 
account only the hidden state from the last RNN application. We also extend our 
sentence with the special token <END>, which signals to the encoder the end of the 
sentence. This process is shown in the following diagram:

Figure 4: The encoding step

To start decoding, we pass the encoded representation to the decoder's input hidden 
state and pass the token <BEG> as a signal to begin decoding. In this step, the decoder 
RNN has to return to us the first token of the translated sentence. However, in the 
beginning of training, when both the encoder and decoder RNNs are initialized with 
random weights, the decoder's output will be random and our goal will be to push it 
toward the correct translation using Stochastic Gradient Descent (SGD).

The traditional approach is to treat this problem as classification, when our decoder 
needs to return probability distribution over the tokens in the current position of the 
decoded sentence. Normally, this is done by transforming the decoder's output using 
the shallow feed-forward network and producing a vector, whose length is the size 
of our dictionary. Then we take this probability distribution and standard loss for 
classification problems: cross-entropy (also known as log-likelihood loss).
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That's clear with the first token in the decoded sequence, which should be produced 
by the <BEG> token given on the input, but what about the rest of the sequence? 
There are two options here. The first alternative is to feed tokens from the reference 
sentence. For example, if we have training pair Je ne mange pas six jours -> I haven't 
eaten for six days, we feed tokens (I, haven't, eaten...) to the decoder and then use 
cross-entropy loss between the RNN's output and the next token in the sentence. 
This training mode is called teacher forcing, and at every step we feed a token 
from the correct translation, asking the RNN to produce the correct next token. 
This process is shown in the following diagram:

Figure 5: How the encoded vector is decoded in the teacher-forcing mode

The loss expression for the preceding example will be calculated as follows:

L = xentropy(p1,"I") + xentropy(p2,"haven't") + xentropy(p3,"eaten") 
+ xentropy(p4,"for") + xentropy(p5,"six") + xentropy(p6,"days") + 
xentropy(p7,"<END>")

As both the decoder and encoder are differentiable NNs, we can just backpropagate 
the loss to push both of them towards the better classification of this example in the 
future, the same way that we train the image classifier, for example.

Unfortunately, the preceding procedure doesn't solve the seq2seq training problem 
completely and the issue is related to the way the model was used. During the 
training, we know both input and the desired output sequences, so we can feed the 
valid output sequence to the decoder, which is being asked only to produce the next 
token of the sequence. 
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After the model has been trained, we won't have a target sequence (as this sequence 
is supposed to be produced by the model). So, the simplest way to use the model 
will be to encode the input sequence using the encoder and then ask the decoder to 
generate one item of the output at a time, feeding the produced token into the input 
of the decoder. 

Figure 6: How decoding in the curriculum learning mode is performed

This passing of the previous result into the input might look natural, but there is 
a danger here. During the training, we haven't asked our decoder RNN to use its 
own output as input, so one single mistake during the generation may confuse 
the decoder and lead to the garbage output.

To overcome this, a second approach to seq2seq training exists, called curriculum 
learning. This method uses the same cross-entropy loss, but instead of passing the 
full target sequence as the decoder's input, we just ask the decoder to decode the 
sequence in the same way as we're going to use it after training. This process is 
illustrated on the preceding diagram. This adds robustness to the decoder, which 
gives a better result on the practical application of the model. As a downside, this 
mode may lead to very long training, as our decoder learns how to produce the 
desired output token-by-token. To compensate for this, in practice we usually 
train a model using both teacher and curriculum learning, just randomly choosing 
between those two for every batch.

Bilingual evaluation understudy (BLEU) score
Before we get into the main topic of this chapter (RL for seq2seq), we need to 
introduce the metric used to compare the quality of machine translation output 
commonly used in NLP problems. The metric, called BLEU, is one of the standard 
ways to compare the output sequence produced by the machine with some set of 
reference outputs. It allows multiple reference outputs to be used (one sentence 
could be translated in various ways) and at its core it calculates the ratio of unigrams, 
bigrams, and so on, shared between produced output and reference sentences. 
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Other alternatives exist, such as CIDEr and ROGUE. In this example, we will use 
BLEU implemented in the nltk Python library (the nltk.translate.bleu_score 
package).

RL in seq2seq
RL and text generation might look very different, but there are connections which 
could be used to improve the quality of the trained seq2seq models. The first thing 
to note is that our decoder outputs the probability distribution at every step, which 
is very similar to Policy Gradient (PG) models. From this perspective, our decoder 
could be seen as an agent trying to decide which token to produce at every step. 
There are several advantages of such interpretation of the decoding process.

First of all, by treating our decoding process as stochastic, we can automatically take 
into account multiple target sequences. For example, there are many possible replies 
to the hello! How are you? phrase, and all of them are correct. By optimizing the log-
likelihood objective, our model will try to learn some average of all those replies, 
but the average of the phrases I'm fine, thanks! and not very good will not necessarily 
be a meaningful phrase. By returning the probability distribution and sampling the 
next token from it, our agent potentially could learn how to produce all possible 
variants, instead of learning some averaged answer.

The second benefit is optimizing the objective that we care about. In log-likelihood 
training, we're minimizing the cross-entropy between the produced tokens and 
tokens from the reference, but in machine translation, and many other NLP 
problems, we don't really care about log-likelihood: we want to maximize the 
BLEU score of the produced sequence. Unfortunately, the BLEU score is not 
differentiable, so we can't backpropagate on it. However, PG methods such as 
REINFORCE (from Chapter 9, Policy Gradients – An Alternative) work even when 
the reward is not differentiable: we just push up the probabilities of successful 
episodes and decrease for worse ones.

The third advantage we can exploit is in the fact that our sequence generation 
process is defined by us and we know its internals. By introducing stochasticity into 
the process of decoding, we can repeat the decoding process several times, gathering 
different decoding scenarios from the single training sample. This can be beneficial 
when our training dataset is limited, which is almost always the case, unless you're 
a Google or Facebook employee.
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To understand how to switch our training from log-likelihood objective to an RL 
scenario, let's look at both from the mathematical point of view. Log-likelihood 
estimation means maximizing the sum 

∑N
i=1 log pmodel(yi|xi) by tweaking the model's 

parameter, which is exactly the same as minimization of Kullback–Leibler (KL)-
divergence between the data probability distribution and probability distribution 
parameterized by the model, which could be written as a maximization of 
Ex∼pdata

log pmodel(x).

On the other hand, the REINFORCE method has the objective to maximize 
Es∼data,a∼π(a|s) Q(s, a) log π(a|s). The connection is obvious and the difference 
between the two is just the scale before the logarithm and the way we're selecting 
actions (which are tokens in our dictionary).

In practice, REINFORCE for seq2seq training could be written as the  
following algorithm:

1.	 For every sample in the dataset, obtain the encoded representation E, using 
the encoder RNN

2.	 Initialize the current token with the special begin token: T = '<BEG>'
3.	 Initialize the output sequence with the empty sequence: Out = []
4.	 While T != '<END>'

°° Get the probability distribution of the tokens and the new 
hidden state, passing the current token and the hidden state:  
p, H = Decoder(T, E)

°° Sample output token Tout from the probability distribution
°° Remember the probability distribution p
°° Append Tout to the output sequence Out += Tout

°° Set the current token T ←Tout, E ← H

5.	 Calculate BLEU or another metric between Out and the reference sequences: 
Q = BLEU(Out, Outref))

6.	 Estimate the gradients ∇J =
∑

T Q∇ log p(T )

7.	 Update the model using SGD
8.	 Repeat until converged
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Self-critical sequence training
The described approach, despite its positive sides, has also several complications. 
First of all, it's almost useless to train from scratch. Even for simple dialogs, the 
output sequence usually has at least five or more words, each taken from the 
dictionary of several thousand words. The number of different phrases of size 
five, with a dictionary of 1000 words equals 51000, which is slightly less than 10700. 
So, the probability of obtaining the correct reply in the beginning of the training 
(when our weights for both encoder and decoder are random) is negligibly small. 
To overcome this, we can combine both log-likelihood and RL approaches and 
pretrain our model with the log-likelihood objective first (switching between 
teacher forcing and curriculum learning) and after the model gets to some level of 
quality, switch to the REINFORCE method to fine-tune the model. In general, this 
could be seen as a uniform approach to complex RL problems, when a large action 
space makes it infeasible to start with a randomly-behaving agent, as the chance of 
such an agent randomly reaching the goal is negligible. There are lots of research 
happening around the incorporation of externally generated samples into the RL 
training process and using log-likelihood pretraining on correct actions is one of 
the approaches.

Another issue with the vanilla REINFORCE method is the high variance of the 
gradients that we've discussed in the Chapter 10, The Actor-Critic Method. As you 
might remember, to solve the issue we used the Actor-Critic (A2C) method, which 
used the dedicated estimation of the state's value as a variance. We can apply the 
A2C method that way, of course, by extending our decoder with another head and 
returning BLEU score estimation given the decoded sequence, but there is a better 
approach. In the paper a Self-Critical Sequence Training for Image Captionings [1], 
published by S. Rennie and E. Marcherett and others in 2016, a better baseline was 
proposed.

To obtain the baseline, the authors of the paper used the decoder in argmax mode 
to generate a sequence, which then was used to calculate the similarity metric 
like BLEU or similar. Switching to argmax mode makes the decoder process fully 
deterministic and provides the baseline for the REINFORCE policy gradient in  
the formula:

∇J = E[(Q(s)− b(s))∇ log p(a|s)]

In the following section, we'll implement and train a simple chatbot from the  
movies dataset.
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The chatbot example
In the beginning of this chapter, we talked a bit about chatbots and NLP, so let's try 
to implement something simple using seq2seq and RL training. In total, there are two 
large groups of chatbots distinguished: entertainment human-mimicking and goal-
oriented chatbots. The first group is supposed to entertain a user giving human-like 
replies to a user's phrases, without fully understanding them. The latter category 
is much harder to implement and is supposed to solve a user's problem: provide 
information, change reservations or switch on and off your home toaster. Most of the 
latest efforts in the industry are focused on the goal-oriented group, but the problem 
is far from being fully solved yet. As this chapter is supposed to give a short example 
of the methods described, we'll focus on training an entertainment bot using an 
online dataset with phrases extracted from movies.

Despite the simplicity of this problem, this example is large in terms of code and 
the new concepts that we have, so whole code of the example is not included in the 
book. We'll focus only on the central modules responsible for model training and 
usage, but lots of functions will be covered as an overview.

The example structure
The complete example is in the rl_book_samples/Chapter12 folder and contains 
the following parts:

•	 data: A directory with the get_data.sh script to download and unpack the 
dataset that we'll use in the example. The dataset archive is 10 MB, contains 
structured dialogs extracted from various sources, and is known as the 
Cornell Movie-Dialogs Corpus, which is available here: https://www.
cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html.

•	 libbots: A directory with Python modules shared between various 
example's components. Those modules are described in the next chapter.

•	 tests: A directory with unit tests for library modules.
•	 The root folder contains two programs to train the model:  

train_crossent.py, which is used to train the model in the beginning  
and train_scst.py, which is used to fine-tune the pretrained model  
using the REINFORCE algorithm.

•	 A script to display various statistics and data from the dataset:  
cor_reader.py.

•	 A script to apply the trained model to the dataset, displaying quality metrics: 
data_test.py.

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
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•	 A script to use the model against a user-provided phrase: use_model.py.
•	 A bot for Telegram messenger, which uses the pretrained model: telegram_

bot.py.

We will start with the data-related parts of the example, then look at both training 
scripts, before finishing by covering the model usage.

Modules: cornell.py and data.py
Two library modules working with the dataset used to train the model are cornell.
py and data.py. Both are related to data processing and are used to transform the 
dataset into a form suitable for training but working on different layers.

The cornell.py file includes low-level functions to parse data in the Cornell  
Movie-Dialogs Corpus format and represents it in a form suitable for later 
processing. The main goal of the module is to load a list of dialogs from movies. As 
the dataset contains metadata about the movies, we can filter dialogs to be loaded by 
various criteria, but only a genre filter is implemented. In the list of dialogs returned, 
every dialog is represented as a list of phrases and every phrase is a list of lowercase 
words (which are called tokens). For example, a phrase could be ["hi", "!", 
"how", "are", "you", "?"].

The conversion of sentences to the list of tokens is called tokenization in NLP and 
even this step by itself can be a tricky process, as you need to handle punctuation, 
abbreviations, quotes, apostrophes, and other natural language specifics. Luckily, 
the nltk library includes several tokenizers, so going from a sentence to a list 
of tokens is just a matter of calling the appropriate function, which significantly 
simplifies our task. The main function in cornell.py used outside of it is the 
function load_dialogues(), which is supposed to load dialogue data with an 
optional genre filter.

The data.py module works on a higher level and doesn't include any dataset-
specific knowledge. It provides the following functionality, which is used almost 
everywhere in the example:

•	 Working with mappings from tokens in their integer IDs: saving and loading 
from the file (save_emb_dict() and load_emb_dict() functions), encoding 
the list of tokens into a list of IDs (encode_words()), decoding the list of 
integer IDs into tokens (decode_words()) and generating the dictionary 
mapping from the training data (phrase_pairs_dict())

•	 Working with the training data: iterating batches of given size  
(iterate_batches()) and splitting data into training/testing parts  
(split_train_test())
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•	 Loading dialogs data and converting it into phrase-reply pairs suitable 
for training: load_data() function

On data loading and dictionary creation, we also add special tokens with the  
pre-defined IDs:

•	 A token for unknown words #UNK, used for all out-of-dictionary tokens
•	 A token for the beginning of the sequence #BEG, prepended to all sequences
•	 A token for the end of the sequence #END

Besides the optional genre filter, which could be used to limit data size during 
experiments, several other filters are applied to the loaded data. The first filter limits 
the maximum number of tokens in training pairs. RNN training can be expensive 
in terms of the number of operations and memory usage, so I left only the training 
pairs with 20 tokens for the first and the second training entry. This also helps for 
convergence speed, as the variability of dialogs with short sentences is much less, 
so it's easier for our RNN to train on this data. This also has a downside of our model 
producing only short replies.

The second filter applied to the data is related to the dictionary. The amount of 
words in the dictionary has significant influence on the performance and GPU 
memory needed, as both our embedding matrix (keeping embeddings vectors for 
every dict token) and decoder output projection matrix (which converts the decoder 
RNN's output into the probability distribution) have dictionary size as one of the 
dimensions. So, by reducing the amount of words in our dictionary, we can reduce 
memory and improve the training speed. To get this during the data loading, we 
calculate the count of occurrences for every word in the dictionary and map all 
words which have met less than 10 times to an unknown token. Later, all the training 
pairs with an unknown token are removed from the training set.

BLEU score and utils.py
To calculate the BLEU score, the nltk library is used, but to make the BLEU 
calculation a bit more convenient, two wrapper functions are implemented: calc_
bleu(candidate_seq, reference_seq), which calculates the score when we have 
one candidate and one reference sequence and calc_bleu_many(candidate_seq, 
reference_sequences), which is used to get the score when we have several 
reference sequences to compare against our candidate. In the case of several 
candidates, the best BLEU score is calculated and returned.
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Also, to reflect the short phrases in our dataset, BLEU is calculated for unigrams 
and bigrams only. The following is the code of the utils.py module, which is 
responsible for BLEU calculations and an extra two functions used to tokenize 
the sentences and convert the list of tokens back into a string.

import string
from nltk.translate import bleu_score
from nltk.tokenize import TweetTokenizer

def calc_bleu_many(cand_seq, ref_sequences):
    sf = bleu_score.SmoothingFunction()
    return bleu_score.sentence_bleu(ref_sequences, cand_seq,
                                    smoothing_function=sf.method1,
                                    weights=(0.5, 0.5))

def calc_bleu(cand_seq, ref_seq):
    return calc_bleu_many(cand_seq, [ref_seq])

def tokenize(s):
    return TweetTokenizer(preserve_case=False).tokenize(s)

def untokenize(words):
    return "".join([" " + i if not i.startswith("'") and i not in 
string.punctuation else i for i in words]).strip()

Model
The functions related to the training process and the model itself are defined in the 
libbots/model.py file. It is important for understanding the training process, 
so the code with comments is shown as follows.

HIDDEN_STATE_SIZE = 512
EMBEDDING_DIM = 50

Two hyperparameters are defining the size of the hidden state used by both the 
encoder and decoder RNNs. In the PyTorch implementation of RNNs, this value 
defines three parameters at once:

•	 Dimension of the hidden state expected on the input and returned as 
the output of the RNN unit

•	 Dimension of the output returned from the RNN. Despite being the same 
dimension, the output of the RNN is different from the hidden state

•	 Internal count of neurons used for RNN transformation
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The second hyperparameter, EMBEDDING_DIM, defines the dimensionality of 
our embeddings, which is a set of vectors used to represent every token in our 
dictionary. For this example, we are not using the pre-trained embeddings like 
GLoVe or word2vec but will train them alongside the model. As our encoder 
and decoder are both accept tokens on the input, this dimensionality of embeddings 
also defines the size of the RNN's input.

class PhraseModel(nn.Module):
    def __init__(self, emb_size, dict_size, hid_size):
        super(PhraseModel, self).__init__()

        self.emb = nn.Embedding(num_embeddings=dict_size,  
embedding_dim=emb_size)
        self.encoder = nn.LSTM(input_size=emb_size,  
hidden_size=hid_size,
                               num_layers=1, batch_first=True)
        self.decoder = nn.LSTM(input_size=emb_size,  
hidden_size=hid_size,
                               num_layers=1, batch_first=True)
        self.output = nn.Sequential(
            nn.Linear(hid_size, dict_size)
        )

In the model's constructor, we create embedding, encoder, decoder and output 
projection components. As RNN implementation, LSTM is used. The batch_first 
argument specifies that the batch will be provided as the first dimension of the input 
tensor to the RNN. The projection layer is a linear transformation, which converts the 
output from the decoder into dictionary probability distribution.

The rest of the model is methods that are used to perform different transformations 
of the data using our seq2seq model. Strictly speaking, this class breaks PyTorch 
convention to override the forward method to apply the network to the data. This is 
intentional, to emphasize the fact that the seq2seq model is not possible to interpret 
as a single transformation of input data to output. In our example, we'll use the 
model in different ways, for example, processing the target sequence in teacher-
forcing mode or decoding the sequence one-by-one using argmax or performing one 
single decoding step. As base class nn.Module.forward method is just responsible 
for calling hooks (which we're not using in our example), it's fine to avoid forward 
method redefinition.

    def encode(self, x):
        _, hid = self.encoder(x)
        return hid
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The preceding method performs the simplest operation in our model: it encodes 
the input sequence and returns the hidden state from the last step of the encoder 
RNN. In PyTorch, all RNN classes return the tuple of two objects as a result. The 
first component of the tuple is output of the RNN for every application of the 
RNN and the second is the hidden state from the last item in the input sequence. 
We're not interested in the encoder's output, so we just return the hidden state.

    def get_encoded_item(self, encoded, index):
        # For RNN
        # return encoded[:, index:index+1]
        # For LSTM
        return encoded[0][:, index:index+1].contiguous(), \
               encoded[1][:, index:index+1].contiguous()

The preceding function is a utility method used to get access to the hidden state of 
the individual component of the input batch. It is required, because we're encoding 
the whole batch of sequences in one call (using the encode() method), but decoding 
is performed for every batch sequence individually. This method is used to extract 
the hidden state of index'th element of the batch. The details of this extraction are 
RNN-implementation dependent. LSTM, for example, has hidden state represented 
as a tuple of two tensors: the cell state and the hidden state. However, simple RNN 
implementation, like vanilla torch.nn.RNN class or the more complicated torch.
nn.GRU, both have hidden state as a single tensor. So, this knowledge is encapsulated 
in this method, which should be adjusted if you switch encoder and decoder 
underlying RNN type.

The rest of the methods are solely related to the decoding process in its  
different forms.

    def decode_teacher(self, hid, input_seq):
        # Method assumes batch of size=1
        out, _ = self.decoder(input_seq, hid)
        out = self.output(out.data)
        return out

The simplest and the most efficient way to perform decoding is teacher-forcing 
mode. In this mode, we simply apply the decoder RNN to the reference sequence 
(reply phrase of the training sample). In teacher-forcing mode, the input for every 
step is known in advance and the only dependency that the RNN has between steps 
is its hidden state, which allows us to perform RNN transformation very efficiently, 
without transferring data from and to the GPU and implemented in the underlying 
CuDNN library.



Chatbots Training with RL

[ 322 ]

This is not the case for other decoding methods, when the output of every decoder 
step defines the input for the next step. This connection between output and input 
is done in Python code, so decoding is performed step-by step, not necessarily 
transferring the data (as all our tensors are already in GPU memory), but the 
control is defined by Python code and not by the highly-optimized CuDNN library.

    def decode_one(self, hid, input_x):
        out, new_hid = self.decoder(input_x.unsqueeze(0), hid)
        out = self.output(out)
        return out.squeeze(dim=0), new_hid

The preceding method performs one single decoding step for one example. We 
pass the hidden state for the decoder (which is set to the encoded sequence at the 
first step) and input the tensor with the embeddings vector for the input token. Then, 
the result from the decoder is passed through the output projection to obtain the 
raw scores for every token in the dictionary. It's not a probability distribution, as we 
do not pass the output through the softmax function, just the raw scores (also called 
logits). The result of the function is those logits and the new hidden state returned by 
the decoder.

    def decode_chain_argmax(self, hid, begin_emb, seq_len, stop_at_
token=None):
        res_logits = []
        res_tokens = []
        cur_emb = begin_emb

The decode_chain_argmax() method performs decoding of an encoded sequence, 
using argmax as a transition from probability distribution to a token index produced. 
The function arguments are as follows:

•	 hid: The hidden state returned by the encoder for the input sequence.
•	 begin_emb: The embedding vector for the #BEG token used to start decoding.
•	 seq_len: The maximum length of the decoded sequence. The resulting 

sequence could be shorter if the decoder returns #END token, but never could 
be longer. It helps to stop decoding when the decoder starts to repeat itself 
infinitely, which might happen at the beginning of training.

•	 stop_at_token: Optional token ID (normally #END token) that stops the 
decoding process.
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This function is supposed to return two values: a tensor with resulting logits 
returned by the decoder on every step and the list of token IDs produced. The first 
value is used for training, as we need the output tensors to calculate the loss, while 
the second value is passed to the quality metric function, which is the BLEU score 
in this case.

        for _ in range(seq_len):
            out_logits, hid = self.decode_one(hid, cur_emb)
            out_token_v = torch.max(out_logits, dim=1)[1]
            out_token = out_token_v.data.cpu().numpy()[0]

            cur_emb = net.emb(out_token_v)

            res_logits.append(out_logits)
            res_tokens.append(out_token)
            if stop_at_token is not None and out_token ==  
stop_at_token:
                break
        return torch.cat(res_logits), res_tokens

At every decoding loop iteration, we apply the decoder RNN to one single token, 
passing the current hidden state for the decoder (in the beginning it equals to the 
encoded vector) and embedding vector for the current token. The output from the 
decoder RNN is a tuple with logits (unnormalized probabilities for every word in the 
dictionary) and the new hidden state. To go from logits to the decoded token ID, we 
use the argmax function as the name of the method. Then we obtain embeddings for 
the decoded token, save logits and token ID in the resulting lists and check for stop 
conditions.

    def decode_chain_sampling(self, hid, begin_emb, seq_len,  
stop_at_token=None):
        res_logits = []
        res_actions = []
        cur_emb = begin_emb

        for _ in range(seq_len):
            out_logits, hid = self.decode_one(hid, cur_emb)
            out_probs_v = F.softmax(out_logits, dim=1)
            out_probs = out_probs_v.data.cpu().numpy()[0]
            action = int(np.random.choice(out_probs.shape[0],  
p=out_probs))
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            action_v = torch.LongTensor([action]).to(action_v.device)
            cur_emb = net.emb(action_v)

            res_logits.append(out_logits)
            res_actions.append(action)
            if stop_at_token is not None and action == stop_at_token:
                break
        return torch.cat(res_logits), res_actions

The next and the last function to perform decoding of the sequence does almost the 
same as decode_chain_argmax(), but, instead of argmax, it performs the random 
sampling from the returned probability distribution. The rest of the logic is the same.

Besides the PhraseModel class, the model.py file contains several functions used to 
prepare the input to the model, which has to be in a tensor form for PyTorch RNN 
machinery to work properly.

def pack_batch_no_out(batch, embeddings, device="cpu"):
    assert isinstance(batch, list)
    # Sort descending (CuDNN requirements)
    batch.sort(key=lambda s: len(s[0]), reverse=True)
    input_idx, output_idx = zip(*batch)

This function packs the input batch (which is a list of (phrase, replay) tuples) into 
the form suitable for encoding and decode_chain_* functions. As the first step, we 
sort the batch by the first phrase's length in decreasing order. This is a requirement 
of the CuDNN library used by PyTorch as a CUDA backend.

    # create padded matrix of inputs
    lens = list(map(len, input_idx))
    input_mat = np.zeros((len(batch), lens[0]), dtype=np.int64)
    for idx, x in enumerate(input_idx):
        input_mat[idx, :len(x)] = x

Then we create a matrix with [batch, max_input_phrase] dimensions and copy our 
input phrases there. This form is called padded sequence, because our sequences 
of variable length are padded with zeros to the longest sequence.

    input_v = torch.tensor(input_mat).to(device)
    input_seq = rnn_utils.pack_padded_sequence(input_v, lens,  
batch_first=True)
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As the next step, we wrap this matrix into a PyTorch tensor and use a special 
function from the PyTorch RNN module to convert this matrix from the padded 
form into the so-called packed form. In the packed form, our sequences are stored 
column-wise (that is, in a transposed form), keeping the length of every column. 
For example, in the first row we have all first tokens from all sequences. In the 
second row, we have tokens from the second position for sequences longer than 1, 
and so on. This representation allows CuDNN to perform RNN processing very 
efficiently, handling our batch of sequences at once.

    # lookup embeddings
    r = embeddings(input_seq.data)
    emb_input_seq = rnn_utils.PackedSequence(r, input_seq.batch_sizes)
    return emb_input_seq, input_idx, output_idx

At the end of the function, we convert our data from the integer token IDs into 
embeddings, which could be done in one step, as our token IDs have already been 
packed into the tensor. Then we return the result tuple with three items: the packed 
sequence to be passed to the encoder and two lists of lists with the integer token IDs 
for the input and output sequences.

def pack_input(input_data, embeddings, device="cpu"):
    input_v = torch.LongTensor([input_data]).to(device)
    r = embeddings(input_v)
    return rnn_utils.pack_padded_sequence(r, [len(input_data)],  
batch_first=True)

The preceding function is used to convert the encoded phrase (as the list of token 
IDs) into the packed sequence suitable to pass to the RNN. 

def pack_batch(batch, embeddings, device="cpu"):
    emb_input_seq, input_idx, output_idx = pack_batch_no_out 
(batch, embeddings, device)
    output_seq_list = []
    for out in output_idx:
        output_seq_list.append(pack_input(out[:-1],  
embeddings, device))
    return emb_input_seq, output_seq_list, input_idx, output_idx

The next function uses the pack_batch_no_out() method, but, in addition, converts 
the output indices into the list of packed sequences to be used in the teacher-forcing 
mode of training. Those sequences have the #END token stripped.

def seq_bleu(model_out, ref_seq):
    model_seq = torch.max(model_out.data, dim=1)[1]
    model_seq = model_seq.cpu().numpy()
    return utils.calc_bleu(model_seq, ref_seq)
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Finally, the last function in model.py, which calculates the BLEU score from the 
tensor with logits, is produced by the decoder in teacher-forcing mode. Its logic 
is simple: it just calls argmax to obtain sequence indices and then uses the BLEU 
calculation function from the utils.py module.

Training: cross-entropy
To train the first approximation of the model, the cross-entropy method is used 
and implemented in train_crossent.py. During the training, we randomly 
switch between the teacher-forcing mode (when we give the target sequence on the 
decoder's input) and argmax chain decoding (when we decode the sequence one step 
at a time, choosing the token with the highest probability in the output distribution). 
The decision between those two training modes is taken randomly with the fixed 
probability of 50%. This allows for combining the characteristics of both methods: 
fast convergence from teacher forcing and stable decoding from curriculum learning.

SAVES_DIR = "saves"

BATCH_SIZE = 32
LEARNING_RATE = 1e-3
MAX_EPOCHES = 100

log = logging.getLogger("train")

TEACHER_PROB = 0.5

In the beginning, we define hyperparameters specific to the cross-entropy training 
step. The value of TEACHER_PROB defines the probability of teacher-forcing training 
being chosen randomly for every training sample.

def run_test(test_data, net, end_token, device="cpu"):
    bleu_sum = 0.0
    bleu_count = 0
    for p1, p2 in test_data:
        input_seq = model.pack_input(p1, net.emb, device)
        enc = net.encode(input_seq)
        _, tokens = net.decode_chain_argmax(enc, input_seq.data[0:1],
                                            seq_len=data.MAX_TOKENS,
                                            stop_at_token=end_token)
        bleu_sum += utils.calc_bleu(tokens, p2[1:])
        bleu_count += 1
    return bleu_sum / bleu_count
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The run_test method is called every epoch to calculate the mean BLEU score for the 
held-out test dataset, which is 5% of loaded data by default.

if __name__ == "__main__":
    logging.basicConfig(format="%(asctime)-15s %(levelname)s 
%(message)s", level=logging.INFO)
    parser = argparse.ArgumentParser()
    parser.add_argument("--data", required=True, help="Category to use 
for training. "
                                                      "Empty string to 
train on full dataset")
    parser.add_argument("--cuda", action='store_true', default=False,
                        help="Enable cuda")
    parser.add_argument("-n", "--name", required=True, help="Name of 
the run")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

    saves_path = os.path.join(SAVES_DIR, args.name)
    os.makedirs(saves_path, exist_ok=True)

The program allows specifying the genre of films that we want to train on and 
the name of the current training, which is used in a TensorBoard comment and  
as a name of the directory for the periodical model checkpoints.

    phrase_pairs, emb_dict = data.load_data(genre_filter=args.data)
    log.info("Obtained %d phrase pairs with %d uniq words",
             len(phrase_pairs), len(emb_dict))
    data.save_emb_dict(saves_path, emb_dict)
    end_token = emb_dict[data.END_TOKEN]
    train_data = data.encode_phrase_pairs(phrase_pairs, emb_dict)

When the arguments have been parsed, we load the dataset for the provided genre, 
save the embeddings dictionary (which is a mapping from the token's string to the 
integer ID of the token) and encode the phrase pairs. At this point, our data is a list 
of tuples with two entries and every entry is a list of token integer IDs.

    rand = np.random.RandomState(data.SHUFFLE_SEED)
    rand.shuffle(train_data)
    log.info("Training data converted, got %d samples", len 
(train_data))
    train_data, test_data = data.split_train_test(train_data)
    log.info("Train set has %d phrases, test %d", len(train_data), 
len(test_data))
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After the data has been loaded, we split it to train/test parts, then we shuffle  
the data using a fixed random seed (to be able to repeat the same shuffle at  
the RL training stage).

    net = model.PhraseModel(emb_size=model.EMBEDDING_DIM,  
dict_size=len(emb_dict),
                            hid_size=model.HIDDEN_STATE_SIZE).
to(device)
    log.info("Model: %s", net)
    writer = SummaryWriter(comment="-" + args.name)
    optimiser = optim.Adam(net.parameters(), lr=LEARNING_RATE)
    best_bleu = None

Then we create the model, passing it the dimensionality of the embeddings, 
size of the dictionary and the hidden size of the encoder and decoder.

    for epoch in range(MAX_EPOCHES):
        losses = []
        bleu_sum = 0.0
        bleu_count = 0
        for batch in data.iterate_batches(train_data, BATCH_SIZE):
            optimiser.zero_grad()
            input_seq, out_seq_list, _, out_idx = model.pack_
batch(batch, net.emb, device)
            enc = net.encode(input_seq)

Our training loop performs the fixed number of epochs and each of them is an 
iteration over the batches of pairs of the encoded phrases. For the every batch, 
we pack it using model.pack_batch(), which returns the packed input sequence, 
packed output sequence and two lists of input and output token indices of the batch. 
To get the encoded representation for every input sequence in the batch, we call net.
encode(), which just passes the input sequence through our encoder and returns the 
hidden state from the last RNN application. This hidden state has a shape of [batch_
size, model.HIDDEN_STATE_SIZE], which is [16, 512] by default.

            net_results = []
            net_targets = []
            for idx, out_seq in enumerate(out_seq_list):
                ref_indices = out_idx[idx][1:]
                enc_item = net.get_encoded_item(enc, idx)

Then, we decode every sequence in our batch individually. Maybe it is possible to 
parallelize this loop somehow, but it will make the example less readable. For every 
sequence in the batch, we get a reference sequence of token IDs (without training 
the #BEG token) and the encoded representation of the input sequence created by 
the encoder.
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                if random.random() < TEACHER_PROB:
                    r = net.decode_teacher(enc_item, out_seq)
                    bleu_sum += model.seq_bleu(r, ref_indices)
                else:
                    r, seq = net.decode_chain_argmax(enc_item,  
out_seq.data[0:1],
                                                     len(ref_indices))
                    bleu_sum += utils.calc_bleu(seq, ref_indices)

In the preceding code, we randomly decide which method of decoding to use: 
teacher-forcing or curriculum learning. They differ only in the model's method called 
and the way we compute the BLEU score. For the teacher-forcing mode, the decode_
teacher() method returns the tensor of logits of size [out_seq_len, dict_size], so, 
to calculate the BLEU score, we need to use the function from the model.py module. 
In the case of curriculum learning, implemented by the decode_chain_argmax() 
method, it returns both a logits tensor and list of token IDs of the output sequence. 
This allows us to calculate the BLEU score directly.

                net_results.append(r)
                net_targets.extend(ref_indices)
                bleu_count += 1

At the end of sequence processing, we append the resulting logits and reference 
indices to be used later on in the loss calculation.

            results_v = torch.cat(net_results)
            targets_v = torch.LongTensor(net_targets).to(device)
            loss_v = F.cross_entropy(results_v, targets_v)
            loss_v.backward()
            optimiser.step()
            losses.append(loss_v.item())

To calculate the cross-entropy loss, we convert the list of logits tensors into one single 
tensor and convert the list with reference token IDs into a PyTorch tensor, putting 
it in GPU memory. Then what we need to do is just calculate the cross-entropy loss, 
perform the backpropagation and ask the optimizer to adjust the model. This ends 
the processing of one single batch.

        bleu = bleu_sum / bleu_count
        bleu_test = run_test(test_data, net, end_token, device)
        log.info("Epoch %d: mean loss %.3f, mean BLEU %.3f,  
test BLEU %.3f",
                 epoch, np.mean(losses), bleu, bleu_test)
        writer.add_scalar("loss", np.mean(losses), epoch)
        writer.add_scalar("bleu", bleu, epoch)
        writer.add_scalar("bleu_test", bleu_test, epoch)
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When all the batches have been processed, we calculate the mean BLEU score from 
the training, run a test on the held-out dataset and report our metrics.

        if best_bleu is None or best_bleu < bleu_test:
            if best_bleu is not None:
                out_name = os.path.join(saves_path, "pre_
bleu_%.3f_%02d.dat" %
                                        (bleu_test, epoch))
                torch.save(net.state_dict(), out_name)
                log.info("Best BLEU updated %.3f", bleu_test)
            best_bleu = bleu_test

        if epoch % 10 == 0:
            out_name = os.path.join(saves_path, "epoch_%03d_%.3f_%.3f.
dat" %
                                    (epoch, bleu, bleu_test))
            torch.save(net.state_dict(), out_name)

To be able to fine-tune the model, we save the model's weights with the best test 
BLEU score seen so far. We also save the checkpoint file every 10 iterations.

Running the training
That's it for our training code. To start it you need to pass the name of the run in the 
command line and provide the genre filter. The complete dataset is quite large (617 
movies in total) and may require lots of time to train, even on GPU. For example, on 
GTX 1080Ti every epoch takes about 16 minutes, which is 18 hours for 100 epoches. 

By applying the genre filter, you can train on a subset of the movies, for example, 
the genre comedy includes 159 movies, bringing us 22k training phrase pairs, which 
is smaller than 150k phrase pairs from the complete dataset. The dictionary size 
with the comedy filter is also much smaller (4905 words versus 11131 words in the 
complete data). This decreases epoch time from 16 minutes to 3 minutes.

To make the training set even smaller, you can use the family genre, which has only 
16 movies with 3000 phrase pairs and 772 words. In this case, 100 epoches takes 
only 30 minutes. For example, here's how to start training for the comedy genre. 
This process writes checkpoints into directory saves/crossent-comedy, while 
TensorBoard metrics are written in the runs directory.
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rl_book_samples/Chapter12$ ./train_crossent.py --cuda --data comedy -n 
crossent-comedy
2018-01-15 12:35:35,072 INFO Loaded 159 movies with genre comedy
2018-01-15 12:35:35,073 INFO Read and tokenise phrases...
2018-01-15 12:35:39,785 INFO Loaded 93039 phrases
2018-01-15 12:35:40,057 INFO Loaded 24716 dialogues with 93039 
phrases, generating training pairs
2018-01-15 12:35:40,118 INFO Counting freq of words...
2018-01-15 12:35:40,469 INFO Data has 31774 uniq words, 4913 of them 
occur more than 10
2018-01-15 12:35:40,660 INFO Obtained 47644 phrase pairs with 4905 
uniq words
2018-01-15 12:35:40,992 INFO Training data converted, got 26491 
samples
2018-01-15 12:35:40,992 INFO Train set has 25166 phrases, test 1325
2018-01-15 12:35:43,320 INFO Model: PhraseModel (
  (emb): Embedding(4905, 50)
  (encoder): LSTM(50, 512, batch_first=True)
  (decoder): LSTM(50, 512, batch_first=True)
  (output): Sequential (
    (0): Linear (512 -> 4905)
  )
)
2018-01-15 12:39:17,656 INFO Epoch 0: mean loss 5.000, mean BLEU 
0.164, test BLEU 0.122
2018-01-15 12:42:49,997 INFO Epoch 1: mean loss 4.671, mean BLEU 
0.178, test BLEU 0.078
2018-01-15 12:46:23,016 INFO Epoch 2: mean loss 4.537, mean BLEU 
0.179, test BLEU 0.088

For the cross-entropy training, there are three metrics written into the TensorBoard: 
loss, train BLEU score and test BLEU score. Below are the plots for the comedy genre, 
which took six hours to train.

Figure 6: Cross-entropy training on the 'comedy' genre
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As you can see, the BLEU score for the training data is consistently growing, 
saturating around 0.83, but the BLEU score for the testing dataset stopped improving 
after the 25th epoch and is much less impressive than training data BLEU score. 
There are two reasons for this. First of all, our dataset is not large and representative 
enough for our training process to generalize reply phrases to get a good score on the 
test dataset. In the comedy genre, we have 25,166 training pairs and 1325 testing pairs, 
so there is a high chance for testing pairs to contain phrases which are totally new 
and not related to the training pairs. This happens due to the high variability of the 
dialogs that we have and we'll take a look at our data in the next section.

The second possible reason for the low test BLEU could be the fact that cross-entropy 
training doesn't take into account phrases with several possible replies. As we'll 
see in the next section, our data contains phrases with several alternatives as a 
reply. Cross-entropy tries to find such model's weights, which will produce output 
sequences matching the desired output, but if your desired output is random, there 
is not much that the model can do about that.

Another reason for the low test score could be lack of proper regularization in the 
model, which should help to prevent overfitting. This is left as an exercise for you 
to check the effect.

Checking the data
It's always a good idea to look at your dataset from various angles, like counting 
statistics, plotting various characteristics of data or just eyeballing your data to get 
a better understanding of your problem and potential issues. The tool cor_reader.
py supports the minimalistic functionality for data analysis. By running it with 
--show-genres option, you'll get all genres from the dataset with a number of 
movies in each, sorted by the count of movies in order of decreasing size. The  
top 10 of them are shown as follows:

rl_book_samples/Chapter12$ ./cor_reader.py --show-genres
Genres:
drama: 320
thriller: 269
action: 168
comedy: 162
crime: 147
romance: 132
sci-fi: 120
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adventure: 116
mystery: 102
horror: 99

The --show-dials option displays dialogs from the movies without any 
preprocessing, in the order they appear in the database. The number of dialogs is 
large, so it's worth passing the -g option to filter by genre. For example, let's look 
at two dialogs from the comedy movies.

rl_book_samples/Chapter12$ ./cor_reader.py -g comedy --show-dials | 
head -n 10
Dialog 0 with 4 phrases:
can we make this quick? roxanne korrine and andrew barrett are having 
an incredibly horrendous public break - up on the quad . again .
well , i thought we'd start with pronunciation , if that's okay with 
you .
not the hacking and gagging and spitting part . please .
okay ... then how ' bout we try out some french cuisine . saturday ? 
night ?

Dialog 1 with two phrases:
you're asking me out . that's so cute . what's your name again ?
forget it .

By passing the --show-train option, you can check the training pairs, grouped 
by the first phrase and sorted in descending order by the count of replies. This 
data already has the frequency of words (at least 10 occurrences) and phrase 
length (at most 20 tokens) filter applied. The following is a part of the output 
for the family genre.

rl_book_samples/Chapter12$ ./cor_reader.py -g family --show-train | 
head -n 20
Training pairs (558 total)
0: #BEG yes . #END
 : #BEG but you will not ... be safe ... #END
 : #BEG oh ... oh well then , one more won't matter . #END
 : #BEG vada you've gotta stop this , there's absolutely nothing wrong 
with you ! #END
 : #BEG good . #END
 : #BEG he's getting big . vada , come here and sit down for a minute 
. #END
 : #BEG who's that with your dad ? #END
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 : #BEG for this . #END
 : #BEG didn't i tell you ? i'm always right , you know , my dear ... 
aren't i ? #END
 : #BEG oh , i hope we got them in time . #END
 : #BEG oh - - now look at him ! this is terrible ! #END
1: #BEG no . #END
 : #BEG were they pretty ? #END
 : #BEG it's there . #END
 : #BEG why do you think she says that ? #END
 : #BEG come here , sit down . #END
 : #BEG what's wrong with your eyes ? #END
 : #BEG maybe we should , just to see what's the big deal . #END
 : #BEG why not ? #END

As you can see, even in a small subset of the data, there are phrases with multiple 
reply candidates. The last option, supported by cor_reader.py, is --show-dict-
freq, which counts the frequency of words and shows them sorted by the count 
of occurrences.

rl_book_samples/Chapter12$ ./cor_reader.py -g family --show-dict-freq 
| head -n 10
Frequency stats for 772 tokens in the dict
.: 1907
,: 1175
?: 1148
you: 840
!: 758
i: 653
-: 578
the: 506

a: 414

Testing the trained model
Okay, enough about the data, let's now play with our models. During the training, 
both training tools (train_crossent.py and train_scst.py) periodically save the 
model, which is done in two different situations: when the BLEU score on the test 
dataset updates the maximum and every 10 epoches. Both kinds of models have 
the same format (produced by the torch.save() method) and contain the model's 
weights. Except the weights, I save the token to integer ID mapping, which will be 
used by tools to preprocess the phrases.
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To experiment with models, two utils exists. The first one is data_test.py, which 
loads the model and applies it to all phrases from the given genre and reports the 
average BLEU score. Before the testing, phrase pairs are grouped by the first phrase. 
For example, following is the result for two models, trained on the comedy genre. 
The first one was trained by the cross-entropy method and the second one was  
fine-tuned by RL methods.

rl_book_samples/Chapter12$ ./data_test.py --data comedy -m saves/ 
xe-comedy/epoch_030_0.567_0.114.dat
2018-01-15 15:25:43,097 INFO Loaded 159 movies with genre comedy
2018-01-15 15:25:43,097 INFO Read and tokenise phrases...
2018-01-15 15:25:47,814 INFO Loaded 93039 phrases
2018-01-15 15:25:48,084 INFO Loaded 24716 dialogues with 93039 
phrases, generating training pairs
2018-01-15 15:25:48,144 INFO Counting freq of words...
2018-01-15 15:25:48,497 INFO Data has 31774 uniq words, 4913 of them 
occur more than 10
2018-01-15 15:25:48,688 INFO Obtained 47644 phrase pairs with 4905 
uniq words
2018-01-15 15:29:54,990 INFO Processed 22767 phrases, mean BLEU = 

0.5283

rl_book_samples/Chapter12$ ./data_test.py --data comedy -m saves/ 
sc-comedy-e40-no-skip/epoch_080_0.841_0.124.dat
2018-01-15 15:31:47,931 INFO Loaded 159 movies with genre comedy
2018-01-15 15:31:47,931 INFO Read and tokenise phrases...
2018-01-15 15:31:52,617 INFO Loaded 93039 phrases
2018-01-15 15:31:52,887 INFO Loaded 24716 dialogues with 93039 
phrases, generating training pairs
2018-01-15 15:31:52,947 INFO Counting freq of words...
2018-01-15 15:31:53,299 INFO Data has 31774 uniq words, 4913 of them 
occur more than 10
2018-01-15 15:31:53,492 INFO Obtained 47644 phrase pairs with 4905 
uniq words
2018-01-15 15:36:11,085 INFO Processed 22767 phrases, mean BLEU = 

0.8066

The second way to experiment with a model is the script use_model.py, which 
allows you to pass any string to the model and ask it to generate the reply.

rl_book_samples/Chapter12$ ./use_model.py -m saves/sc-comedy-e40- 
no-skip/epoch_080_0.841_0.124.dat -s 'how are you?'
very well. thank you.
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By passing a number to the --self option, you can ask the model to process its own 
reply as input, in other words to generate the dialogue.

rl_book_samples/Chapter12$ ./use_model.py -m saves/sc-comedy-e40-no-
skip/epoch_080_0.841_0.124.dat -s 'how are you?' --self 10
very well. thank you.
okay ... it's fine.
hey ...
shut up.
fair enough.
so?
so, i saw my draw.
what are you talking about?
just one.
i have a car.

By default, the generation is performed using argmax, so the model's output is 
always defined by the input tokens. It's not always what we want, so we can add 
randomness to the output by passing the --sample option. In that case, on every 
decoder step the next token will be sampled from returned probability distribution.

rl_book_samples/Chapter12$ ./use_model.py -m saves/sc-comedy-e40-no-
skip/epoch_080_0.841_0.124.dat -s 'how are you?' --self 2 --sample
very well.
very well.
rl_book_samples/Chapter12$ ./use_model.py -m saves/sc-comedy-e40-no-
skip/epoch_080_0.841_0.124.dat -s 'how are you?' --self 2 --sample
very well. thank you.
ok.

Training: SCST
As we've already discussed, RL training methods applied to the seq2seq problem 
can potentially improve the final model. The main reasons are:

•	 Better handling of multiple target sequences. For example, hi! could be 
replied with hi!, hello, not interested or something else. The RL point of  
view is to treat our decoder as a process of selecting actions when every 
action is a token to be generated, which fits better to the problem.

•	 Optimizing the BLEU score directly instead of cross-entropy loss. Using 
the BLEU score for the generated sequence as a gradient scale, we can push 
our model towards the successful sequences and decrease the probability 
of unsuccessful ones.
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•	 By repeating the decoding process, we can generate more episodes to train 
on, which will lead to better gradient estimation.

•	 Additionally, using the self-critical sequence training approach, we can get 
the baseline almost for free, without increasing the complexity of our model, 
which could improve the convergence even more

All this looks quite promising, so let's check it. RL training is implemented as 
a separate training step in the tool train_scst.py. It requires the model file 
saved by train_crossentropy.py to be passed in a command line.

SAVES_DIR = "saves"

BATCH_SIZE = 16
LEARNING_RATE = 1e-4
MAX_EPOCHES = 10000

As usual, we start with hyperparameters (imports were omitted). This training 
script has the same set of hyperparameters, the only difference is smaller batch size, 
as GPU memory requirements for SCST are higher and have a smaller learning rate.

log = logging.getLogger("train")

def run_test(test_data, net, end_token, device="cpu"):
    bleu_sum = 0.0
    bleu_count = 0
    for p1, p2 in test_data:
        input_seq = model.pack_input(p1, net.emb, device)
        enc = net.encode(input_seq)
        _, tokens = net.decode_chain_argmax(enc, input_seq.data[0:1], 
seq_len=data.MAX_TOKENS,
                                            stop_at_token=end_token)
        ref_indices = [
            indices[1:]
            for indices in p2
        ]
        bleu_sum += utils.calc_bleu_many(tokens, ref_indices)
        bleu_count += 1
    return bleu_sum / bleu_count
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Preceding is the function which is run every epoch to calculate the BLEU score on the 
test dataset. It is almost the same as in train_crossent.py, as the only difference 
is in test data, which is now grouped by the first phrase. So, the shape of the data is 
now [(first_phrase, [second_phrases])]. As before, we need to strip the #BEG token 
from every second phrase, but the BLEU score is now calculated by another function, 
which accepts several reference sequences and returns the best score from them.

if __name__ == "__main__":
    logging.basicConfig(format="%(asctime)-15s %(levelname)s 
%(message)s", level=logging.INFO)
    parser = argparse.ArgumentParser()
    parser.add_argument("--data", required=True, help="Category to use 
for training. Empty string to train on full dataset")
    parser.add_argument("--cuda", action='store_true', default=False, 
help="Enable cuda")
    parser.add_argument("-n", "--name", required=True, help="Name of 
the run")
    parser.add_argument("-l", "--load", required=True, help="Load 
model and continue in RL mode")
    parser.add_argument("--samples", type=int, default=4, help="Count 
of samples in prob mode")
    parser.add_argument("--disable-skip", default=False, 
action='store_true', help="Disable skipping of samples with high 
argmax BLEU")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

The tool now accepts three new command-line arguments: option -l is passed to 
provide the file name with the model to load, while option --samples is used to 
change the amount of decoding iterations performed for every train sample. Using 
more samples leads to more accurate PG estimation but increases GPU memory 
requirements. The last new option --disable-skip could be used to disable 
skipping of training samples with high BLEU score (by default the threshold is 0.99). 
This skipping functionality significantly increases the training speed, as we train 
only on training samples with bad sequences generated in argmax mode, but my 
experiments have shown that disabling this skipping leads to better model quality.

    saves_path = os.path.join(SAVES_DIR, args.name)
    os.makedirs(saves_path, exist_ok=True)

    phrase_pairs, emb_dict = data.load_data(genre_filter=args.data)
    log.info("Obtained %d phrase pairs with %d uniq words", 
len(phrase_pairs), len(emb_dict))
    data.save_emb_dict(saves_path, emb_dict)
    end_token = emb_dict[data.END_TOKEN]
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    train_data = data.encode_phrase_pairs(phrase_pairs, emb_dict)
    rand = np.random.RandomState(data.SHUFFLE_SEED)
    rand.shuffle(train_data)
    train_data, test_data = data.split_train_test(train_data)
    log.info("Training data converted, got %d samples", len 
(train_data))

Then, we load the training data the same way we did in cross-entropy training. 
The extra code is in the two lines below, which are used to group the training 
data by the first phrase. 

    train_data = data.group_train_data(train_data)
    test_data = data.group_train_data(test_data)
    log.info("Train set has %d phrases, test %d", len(train_data), 
len(test_data))

    rev_emb_dict = {idx: word for word, idx in emb_dict.items()}

    net = model.PhraseModel(emb_size=model.EMBEDDING_DIM, dict_
size=len(emb_dict), hid_size=model.HIDDEN_STATE_SIZE).to(device)
    log.info("Model: %s", net)

    writer = SummaryWriter(comment="-" + args.name)
    net.load_state_dict(torch.load(args.load))
    log.info("Model loaded from %s, continue training in RL mode...", 
args.load)

When the data is loaded, we create the model and load its weights from the 
given file.

    beg_token = torch.LongTensor([emb_dict[data.BEGIN_TOKEN]]).
to(device)

Before we start the training, we need a special tensor with ID of #BEG token.  
It will be used to look up the embeddings and pass the result to the decoder.

    with ptan.common.utils.TBMeanTracker(writer, batch_size=100) 
as tb_tracker:
        optimiser = optim.Adam(net.parameters(), lr=LEARNING_RATE, 
eps=1e-3)
        batch_idx = 0
        best_bleu = None
        for epoch in range(MAX_EPOCHES):
            random.shuffle(train_data)
            dial_shown = False
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            total_samples = 0
            skipped_samples = 0
            bleus_argmax = []
            bleus_sample = []

For every epoch, we count the total amount of samples and count the skipped 
samples (due to the high BLEU score). To track the BLEU change during the training, 
we keep arrays with the BLEU score of argmax-generated sequences and sequences 
generated by doing sampling.

            for batch in data.iterate_batches(train_data, BATCH_SIZE):
                batch_idx += 1
                optimiser.zero_grad()
                input_seq, input_batch, output_batch = model.pack_
batch_no_out(batch, net.emb, device)
                enc = net.encode(input_seq)

                net_policies = []
                net_actions = []
                net_advantages = []
                beg_embedding = net.emb(beg_token)

In the beginning of every batch, we pack the batch and encode all first sequences 
of the batch by calling net.encode(). Then we declare several lists, which will 
be populated during the individual decoding of batch entries.

                for idx, inp_idx in enumerate(input_batch):
                    total_samples += 1
                    ref_indices = [
                        indices[1:]
                        for indices in output_batch[idx]
                    ]
                    item_enc = net.get_encoded_item(enc, idx)

In the preceding loop, we start processing individual entries in a batch: strip the #BEG 
token from reference sequences and obtain an individual entry of encoded batch.

                    r_argmax, actions = net.decode_chain_argmax 
(item_enc, beg_embedding, data.MAX_TOKENS, stop_at_token=end_token)
                    argmax_bleu = utils.calc_bleu_many 
(actions, ref_indices)
                    bleus_argmax.append(argmax_bleu)
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As a next step, we decode the batch entry in argmax mode and calculate its BLEU 
score. This score will be used as a baseline in the REINFORCE PG estimation later.

                    if not args.disable_skip and argmax_bleu > 0.99:
                        skipped_samples += 1
                        continue

In case we have sample skipping enabled, and argmax BLEU is higher than 
the threshold (threshold of 0.99 means near to perfect match of the sequences), 
we stop with this batch entry and go to the next.

                    if not dial_shown:
                        log.info("Input: %s", utils.untokenize 
(data.decode_words(inp_idx, rev_emb_dict)))
                        ref_words = [utils.untokenize 
(data.decode_words(ref, rev_emb_dict)) for ref in ref_indices]
                        log.info("Refer: %s", " ~~|~~ ".join 
(ref_words))
                        log.info("Argmax: %s, bleu=%.4f",  
utils.untokenize(data.decode_words(actions, rev_emb_dict)),
                                 argmax_bleu)

The preceding code piece is executed once every epoch and provides a random 
sample of input sequence, reference sequences and the result of the decoder 
(sequence and BLEU score). It's useless for the training process, but provides 
us with information during the training.

Then we need to perform several rounds of decoding of the batch entry using the 
random sampling. By default, the count of such rounds is 4, but this is tunable using 
the command-line option.

                    for _ in range(args.samples):
                        r_sample, actions = net.decode_chain_
sampling(item_enc, beg_embedding,
                                                                      
data.MAX_TOKENS, stop_at_token=end_token)
                        sample_bleu = utils.calc_bleu_many 
(actions, ref_indices)

The sampling decoding call has the same set of arguments as for the argmax 
decoding, followed by the same call to the calc_bleu_many() function to obtain 
the BLEU score.

                        if not dial_shown:
                            log.info("Sample: %s, bleu=%.4f",  
utils.untokenize(data.decode_words(actions, rev_emb_dict)),
                                     sample_bleu)
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                        net_policies.append(r_sample)
                        net_actions.extend(actions)
                        net_advantages.extend([sample_bleu - argmax_
bleu] * len(actions))
                        bleus_sample.append(sample_bleu)

At the rest of the decoding loop, we show the decoded sequence if we need to and 
populate our lists. To get the advantage of the decoding round, we subtract the 
BLEU score obtained by the argmax method from the result of the random  
sampling decoding.

                    dial_shown = True

                if not net_policies:
                    continue

When we're done with a batch, we have several lists: the list with logits from every 
step of the decoder, the list of taken actions for those steps (which are, in fact, tokens 
chosen) and the list of advantages for every step.

                policies_v = torch.cat(net_policies)
                actions_t = torch.LongTensor(net_actions).to(device)
                adv_v = torch.FloatTensor(net_advantages).to(device)

The returned logits are already in GPU memory, so we can use the torch.cat() 
function to combine them into the single tensor. The other two lists need to be 
converted and copied on GPU.

                log_prob_v = F.log_softmax(policies_v, dim=1)
                log_prob_actions_v = adv_v * log_prob_v[range 
(len(net_actions)), actions_t]
                loss_policy_v = -log_prob_actions_v.mean()

                loss_v = loss_policy_v
                loss_v.backward()
                optimiser.step()

When everything is ready, we can calculate PG by applying log(softmax())  
and choose values from the chosen actions, scaled by their advantages.  
The negative mean of those scaled logarithms will be our loss that we  
ask the optimizer to minimize.

                tb_tracker.track("advantage", adv_v, batch_idx)
                tb_tracker.track("loss_policy", loss_policy_v,  
batch_idx)
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As the last steps in the batch processing loop, we send the advantage and the loss 
value to TensorBoard.

            bleu_test = run_test(test_data, net, end_token, device)
            bleu = np.mean(bleus_argmax)
            writer.add_scalar("bleu_test", bleu_test, batch_idx)
            writer.add_scalar("bleu_argmax", bleu, batch_idx)
            writer.add_scalar("bleu_sample", np.mean(bleus_sample), 
batch_idx)
            writer.add_scalar("skipped_samples", skipped_samples / 
total_samples, batch_idx)
            writer.add_scalar("epoch", batch_idx, epoch)
            log.info("Epoch %d, test BLEU: %.3f", epoch, bleu_test)

The preceding code is executed at the end of every epoch and calculates the BLEU 
score for the test dataset and reports it, together with the BLEU scores obtained 
during the training, to TensorBoard.

            if best_bleu is None or best_bleu < bleu_test:
                best_bleu = bleu_test
                log.info("Best bleu updated: %.4f", bleu_test)
                torch.save(net.state_dict(), os.path.join(saves_path, 
"bleu_%.3f_%02d.dat" % (bleu_test, epoch)))
            if epoch % 10 == 0:
                torch.save(net.state_dict(), os.path.join(saves_path, 
"epoch_%03d_%.3f_%.3f.dat" % (epoch, bleu, bleu_test)))

As before, we write a model checkpoint every time that the test BLEU score updates 
the maximum or every 10 epoches.

Running the SCST training
To run the training, you need the model saved by the cross-entropy training passed 
with the -l argument. The genre your model was trained on has to match the flag 
passed to SCST training.

rl_book_samples/Chapter12$ ./train_scst.py --cuda --data comedy -l 
saves/xe-comedy/epoch_040_0.720_0.111.dat -n sc-comedy-test
2018-01-16 11:09:40,942 INFO Loaded 159 movies with genre comedy
2018-01-16 11:09:40,942 INFO Read and tokenise phrases...
2018-01-16 11:09:45,640 INFO Loaded 93039 phrases
2018-01-16 11:09:45,913 INFO Loaded 24716 dialogues with 93039 
phrases, generating training pairs
2018-01-16 11:09:45,975 INFO Counting freq of words...
2018-01-16 11:09:46,327 INFO Data has 31774 uniq words, 4913 of them 
occur more than 10



Chatbots Training with RL

[ 344 ]

2018-01-16 11:09:46,519 INFO Obtained 47644 phrase pairs with 4905 
uniq words
2018-01-16 11:09:46,855 INFO Training data converted, got 25166 
samples
2018-01-16 11:09:46,957 INFO Train set has 21672 phrases, test 1253
2018-01-16 11:09:49,272 INFO Model: PhraseModel (
  (emb): Embedding(4905, 50)
  (encoder): LSTM(50, 512, batch_first=True)
  (decoder): LSTM(50, 512, batch_first=True)
  (output): Sequential (
    (0): Linear (512 -> 4905)
  )
)
2018-01-16 11:09:49,458 INFO Model loaded from saves/xe-comedy/
epoch_040_0.720_0.111.dat, continue training in RL mode...
2018-01-16 11:09:49,989 INFO Input: #BEG like i said, it's a business 
deal ... #END
2018-01-16 11:09:49,989 INFO Refer: damn, you are the real thing ... 
#END
2018-01-16 11:09:49,989 INFO Argmax: yeah ... #END, bleu=0.0781
2018-01-16 11:09:49,996 INFO Sample: yeah. #END, bleu=0.0175
2018-01-16 11:09:50,006 INFO Sample: yeah said ... #END, bleu=0.1170
2018-01-16 11:09:50,038 INFO Sample: yeah,! what about show show ...? 
... where? #END, bleu=0.0439
2018-01-16 11:09:50,048 INFO Sample: yeah white ... #END, bleu=0.1170

Results
From my experiments, RL fine-tuning is able to improve both the test BLEU score 
and the train BLEU score. For example, the following is the cross-entropy training 
on the comedy genre.

Figure 7: Cross-entropy training dynamics
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From those charts, you can see that the best test BLEU score was 0.124 and training 
BLEU stopped improving at 0.83. By fine-tuning the model, saved at epoch 40 (with 
train BLEU 0.72 and test BLEU 0.111), it was able to reach train BLEU of 0.88. From 
the dynamics of the train BLEU, it looks like it can grow further, but just requires 
more time. I wasn't patient enough, as even reaching this point took 200 epoches, 
which is more than one day. The charts are as follows:

Figure 8: SCST training

Separating training from the same model, but without skipping training samples 
with a high BLEU score from argmax decoding (with option --disable-skip), I was 
able to reach 0.127 BLEU on the test set, which is not very impressive, but as already 
explained, it's hard to get good generalization on such few dialog samples.

Figure 9: SCST without skipping samples

Telegram bot
As a final step, the Telegram chatbot using the trained model was implemented. 
To be able to run it you need to install the python-telegram-bot extra package 
into your virtual environment using pip install.

Another step you need to take to start the bot is to obtain the API token by 
registering the new bot. The complete process is described in the documentation 
https://core.telegram.org/bots#6-botfather. The resulting token is a string of 
the form 110201543:AAHdqTcvCH1vGWJxfSeofSAs0K5PALDsaw. The bot requires this 
string to be placed in a configuration file in ~/.config/rl_Chapter12_bot.ini and 
the structure of this file is shown in the telegram bot source code as follows.

https://core.telegram.org/bots#6-botfather
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The logic of the bot is not very different from the other two tools used to experiment 
with the model: it receives the phrase from the user and replies with the sequence 
generated by the decoder.

#!/usr/bin/env python3
# This module requires python-telegram-bot
import os
import sys
import logging
import configparser
import argparse

try:
    import telegram.ext
except ImportError:
    print("You need python-telegram-bot package installed to start the 
bot")
    sys.exit()

from libbots import data, model, utils

import torch

# Configuration file with the following contents
# [telegram]
# api=API_KEY
CONFIG_DEFAULT = "~/.config/rl_Chapter12_bot.ini"

log = logging.getLogger("telegram")

if __name__ == "__main__":
    logging.basicConfig(format="%(asctime)-15s %(levelname) 
s %(message)s", level=logging.INFO)
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", default=CONFIG_DEFAULT,
                        help="Configuration file for the bot, 
default=" + CONFIG_DEFAULT)
    parser.add_argument("-m", "--model", required=True, help= 
"Model to load")
    parser.add_argument("--sample", default=False, action='store_
true', help="Enable sampling mode")
    prog_args = parser.parse_args()
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The bot supports two modes of operations: argmax decoding, which is used by 
default and sample mode. In argmax, the bot's replies on the same phrase are 
always the same. When the sampling is enabled, during decoding we sample from 
the returned probability distribution on every step, which increases the variability 
of the bot's replies.

    conf = configparser.ConfigParser()
    if not conf.read(os.path.expanduser(prog_args.config)):
        log.error("Configuration file %s not found", prog_args.config)
        sys.exit()

    emb_dict = data.load_emb_dict(os.path.dirname(prog_args.model))
    log.info("Loaded embedded dict with %d entries", len(emb_dict))
    rev_emb_dict = {idx: word for word, idx in emb_dict.items()}
    end_token = emb_dict[data.END_TOKEN]

    net = model.PhraseModel(emb_size=model.EMBEDDING_DIM, dict_
size=len(emb_dict), hid_size=model.HIDDEN_STATE_SIZE)
    net.load_state_dict(torch.load(prog_args.model))

In the preceding code, we parse the configuration file to get the Telegram API token, 
load embeddings and initialize the model with weights. We don't need to load the 
dataset, as no training is needed.

    def bot_func(bot, update, args):
        text = " ".join(args)
        words = utils.tokenize(text)
        seq_1 = data.encode_words(words, emb_dict)
        input_seq = model.pack_input(seq_1, net.emb)
        enc = net.encode(input_seq)

This function is called by the python-telegram-bot library to notify it about the 
user sending a phrase to the bot. Here we obtain the phrase, tokenize it and convert 
to the form suitable for the model. Then, the encoder is used to obtain the initial 
hidden state for the decoder.

        if prog_args.sample:
            _, tokens = net.decode_chain_sampling(enc, input_seq.
data[0:1], seq_len=data.MAX_TOKENS, stop_at_token=end_token)
        else:
            _, tokens = net.decode_chain_argmax(enc, input_seq.
data[0:1], seq_len=data.MAX_TOKENS, stop_at_token=end_token)
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Next, we call one of the decoding methods, depending on the program command 
line arguments. The result that we get in both cases is the sequence of integer token 
IDs of the decoded sequence.

        if tokens[-1] == end_token:
            tokens = tokens[:-1]
        reply = data.decode_words(tokens, rev_emb_dict)
        if reply:
            reply_text = utils.untokenize(reply)
            bot.send_message(chat_id=update.message.chat_id, 
text=reply_text)

When we've got the decoded sequence, the only thing we need to do is to decode 
it back in text form using our dictionary and send the reply to the user.

    updater = telegram.ext.Updater(conf['telegram']['api'])
    updater.dispatcher.add_handler(telegram.ext.CommandHandler 
('bot', bot_func, pass_args=True))

    log.info("Bot initialized, started serving")
    updater.start_polling()
    updater.idle()

The last piece of code is python-telegram-bot machinery to register our bot 
function. To trigger it, you need to use the command/bot phrase in the telegram 
chat. The following is an example of one conversation generated by the trained model.

Figure 10: A generated conversation
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Summary
Despite its simplicity, and the toy-like example in this chapter, seq2seq is a very 
widely used model in NLP and other domains, so the alternative RL approach 
could potentially be applicable to a wide range of problems. In this chapter, we've 
just scratched the surface of deep NLP models and ideas, which goes well beyond 
the scope of this book. We covered the basics of NLP models, such as RNN and the 
seq2seq model and different ways that it could be trained.

In the next chapter, we'll take a look at another example of the application 
of RL methods in another domain: automating web navigation tasks.
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Web Navigation
This chapter takes a look at another practical application of Reinforcement Learning 
(RL): web navigation and browser automation. We'll discuss why web navigation is 
important and how it can be solved with an RL approach. Next, we will take a deep 
look at one very interesting, but a commonly overlooked and a bit of abandoned 
RL benchmark, which was implemented by OpenAI and called Mini World of Bits.

Web navigation
When the web was invented, it started as several text-only web pages 
interconnected by hyperlinks. If you're curious, here is the first web page home:  
http://info.cern.ch/, with text and links. The only thing you can do is to read 
and click on links to go between pages. Several years later, in 1995, IETF published 
HTML 2.0 specification and it had lots of extensions to the original version invented 
by Tim Berners-Lee. Among these extensions it included forms and form elements 
that allowed web page authors to add activity to their websites. Users could enter 
and change text, toggle checkboxes, select drop-down lists, and push buttons. The 
set of controls was similar to the minimalistic set of GUI application's controls. There 
was one single difference: all this happened inside the browser's window and both 
the data and UI controls that users interacted with were defined by the server's page, 
but not by the local application installed.

Fast-forward 22 years and now we have JavaScript, HTML5 canvas, and office 
applications working inside our browser. The boundary between the desktop and the 
web is so thin and blurry that you may not even know whether the app you're using 
is a HTML page or a native app. However, it is still the browser which understands 
HTML and talks HTTP to the outside world.

http://info.cern.ch/
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At its core, web navigation is defined as a process of a user interacting with the 
website or websites. The user can click on links, type text, or do any other actions to 
reach some goal, such as sending an email, finding out the exact years of the French 
Revolution or checking recent Facebook notifications. All this will be done using  
web navigation, so there is a question: can our program learn how to do the same?

Browser automation and RL
From another angle, the problem of automating website interaction was attacked for 
a long time in an attempt to solve the very practical tasks of website testing and web 
scraping. Website testing is needed when you have some complicated website that 
you (or other people) have developed and you want to ensure that it does what it is 
supposed to do. For example, if you have a login page that was redesigned and is 
ready to be deployed on a live website, then you may want to be sure that this new 
design does sane things in case a wrong password entered, the user clicks on I forgot 
my password and so on. A complex website could potentially include hundreds or 
thousands of use cases that should be tested on every release, so all such functions 
should be automated.

Web scraping solves the problem of extracting some data from websites at scale. For 
example, if you want to build a system that aggregates all prices for all pizza places 
in your town, you will potentially need to deal with hundreds of different websites, 
which could be problematic to build and maintain. Web scraping tools are trying 
to solve the problem of interacting with websites. Their functionality can vary from 
simple HTTP requests and subsequent HTML parsing, to full emulation of the user 
moving the mouse, clicking buttons, thinking, and so on.

The standard approach to browser automation normally allows you to control the 
real browser, such as Chrome, or FireFox, with your program, which can observe 
the web page data, like DOM tree and an object's location on the screen and issue 
the actions, like moving the mouse, pressing some keys, pushing the "Back" button 
or just executing some JavaScript code. The connections to the RL problem setup is 
obvious: our agent interacts with the web page and browser by issuing actions and 
observing some state. The reward is not that clear and intuitively should be task-
specific, like successfully filling some form or reaching the page with the desired 
information.
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Practical applications of a system that could learn browser tasks are related to the 
above-mentioned use cases. For example, in web testing for very large websites, it's 
very tedious to define the testing process using low-level browser actions like "move 
the mouse five pixels to the left, then press the left button." What you want to do is 
to give the system some demonstrations and let it generalize and repeat the shown 
actions in all similar situations or at least make it robust enough for UI redesign, 
button text change, and so on. Additionally, there are lots of cases when you don't 
know the problem in advance, for example when you want the system to explore 
the weak points of the website, like security vulnerabilities. In that case, the RL 
agent could try lots of weird actions very quickly, much faster than humans could. 
Of course, the action space for security testing is enormous, so random clicking 
won't be very competitive with experienced human testers. In that case, the RL-based 
system could, potentially, combine the prior knowledge and experience of humans 
but still keep the ability to explore and learn from this exploration.

Another potential domain that could benefit from RL browser automation is 
scraping and web data extraction in general. For example, you might want to 
extract some data from hundreds of thousands of different websites, like hotel 
websites, car renting agents, or other businesses around the world. Very often, 
before you get to the desired data, a form with parameters needs to be filled, 
which becomes a very nontrivial task given the different websites' design, layout, 
and natural language flexibility. With such a task at hand, an RL agent can save 
tons of time and effort by extracting the data reliably and at scale.

Mini World of Bits benchmark
Potential practical applications of browser automation with RL are attractive, but 
have one very serious drawback: they're too large to be used for research and the 
comparison of methods. In fact, the implementation of a full-sized web scraping 
system could take months of effort by a team and most of the issues will not be 
directly related to RL, like data gathering, browser engine communication, input 
and output representation and tons of other questions that the real production 
system development consists of.
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By solving all those issues, we can easily miss the forest by looking at the trees. 
That's why researchers love benchmark datasets, like MNIST, ImageNet, the Atari 
suite and lots of others. However, not every problem makes a good benchmark. 
On the one hand, it should be simple enough to allow quick experimentations and 
the comparison between methods. On the other hand, the benchmark has to be 
challenging and leave room for improvements. For example, Atari benchmarks 
consist of a wide variety of games, from very simple games, which could be solved 
in half an hour (like Pong) to quite complex games that haven't been properly solved 
yet (like Montezuma Revenge, which requires the complex planning of actions).

To the best of my knowledge, there is only one such a benchmark for the browser 
automation domain, which makes it even worse that this benchmark was 
undeservedly forgotten about by the RL community. As an attempt to fix this issue, 
we'll take a look at the benchmark in this chapter. Let's talk about its history first.

In December 2016, OpenAI published a dataset called Mini World of Bits 
(MiniWoB) that contains 80 browser-based tasks. These tasks are observed on a 
pixel level (strictly speaking, besides pixels, a text description of tasks is given to the 
agent) and are supposed to be communicated with the mouse and keyboard actions 
using the VNC (https://en.wikipedia.org/wiki/Virtual_Network_Computin) 
client. VNC is a standard remote-desktop protocol when the VNC server allows 
clients to connect and work with a server's GUI applications using the mouse and 
keyboard via the network. These 80 tasks vary a lot in terms of complexity and 
the actions required from the agent. Some tasks are very simple, even for RL, like 
"Click on the dialog's close button", or "Push the single button", but some require 
multiple steps, for example, "Open collapsed groups and click on the link with some 
text", or "Select a specific date using the date picker tool" (and this date is randomly 
generated every episode). Some of the tasks are simple for humans, but require 
character recognition, for example, "Mark checkboxes with this text" (and the text 
is generated randomly). Screenshots of some MiniWoB problems are shown in the 
following figure:

https://en.wikipedia.org/wiki/Virtual_Network_Computin
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Figure 1: MiniWoB environments

Unfortunately, despite the brilliant idea and challenging nature of MiniWoB, it was 
almost abandoned by OpenAI right after the initial release. As an attempt to right 
a wrong, in this chapter we'll take a closer look at this benchmark and learn how 
to write an agent solving some of the tasks. We will also discuss how to extract, 
preprocess, and incorporate human demonstrations into the training process and 
check their effect on the final performance of the agents. Before jumping into the 
RL part of the agent, we need to understand how MiniWoB works. To do this, 
we need to take a closer look at OpenAI Gym's extension called OpenAI Universe.
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OpenAI Universe
OpenAI Universe is available in OpenAI's GitHub repository https://github.
com/openai/universe and its core idea is to wrap general GUI applications into 
an RL environment using the same core classes provided by Gym. To achieve this, 
it uses the VNC protocol to connect with the VNC server running inside the docker 
container, exposing the mouse and keyboard actions to the RL agent and providing 
the GUI application image as an observation. The reward is provided by an external 
small "rewarder" daemon running inside the same container and giving the agent 
scalar reward value based on this rewarder judgement. It is possible to launch 
several containers locally, or over the network, to gather episodes data in parallel, 
in the same way that we started several Atari emulators to increase the convergence 
of the Actor-Critic (A2C) method in Chapter 11, Asynchronous Advantage Actor‑Critic. 
The architecture is illustrated in the following diagram:

Figure 2: OpenAI Universe architecture

This architecture allows quick integration of third-party applications into the RL 
framework, as you don't need to make any changes in the app itself, only package 
it as a docker container and write a relatively-small rewarder daemon, which uses 
a simple text protocol to communicate. On the other side, this approach is much 
more resource demanding, in comparison with, for example, Atari games, when 
the emulator is relatively lightweight and works completely inside the RL agent's 
process. The VNC approach requires a VNC server to be started side-by-side with 
the application and the rate of RL agent communication with the application is 
defined by the VNC server speed and network throughput (in the case of remote 
docker containers).

https://github.com/openai/universe
https://github.com/openai/universe
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Installation
To start using the OpenAI Universe, you need to install its Python package inside 
your environment. Please be careful with the version that you're installing. At the 
time of writing, the command pip install universe installs the old version 0.21.3, 
which requires the old Gym 0.7.2. To prevent a downgrade, you need to install the 
latest version 0.21.5 from GitHub using the command pip install git+https://
github.com/openai/universe. For convenience, I provided the environment.yml 
environment definition file for Anaconda, so, to quickly create the environment  
rl_book_ch13 with all requirements, just run the command conda env create 
-f Chapter13/environment.yml. After this command, you need to run the pip 
install command preceding to install OpenAI Universe from GitHub.

Another component, which is required by Universe, is Docker, which is a standard 
method running lightweight containers, available on most modern operating 
systems. To install it, refer to Docker's website https://www.docker.com. OpenAI 
Universe gives you the flexibility of where and how to start the containers, so your 
agent can connect to one or many remote machines with Docker installed. To  
check that docker is up and running, try command docker ps, which shows  
running containers.

Actions and observations
In contrast to Atari games, or other Gym environments that we've worked with so 
far, OpenAI Universe exposes a much more generic action space. Atari games used 
six-to-seven discrete actions, corresponding to the controller's buttons and joystick 
directions. CartPole's action space is even smaller, with just two actions available. 
VNC gives our agent much more flexibility in terms of what it can do. First of all, 
the full keyboard, with control keys and up/down state of every key is exposed. 
So, your agent can decide to press 10 buttons simultaneously and it will be totally 
fine from a VNC point of view. The second part of the action space is the mouse, 
when you can move the mouse to any coordinate and control the state of its buttons. 
This significantly increases the dimensionality of the action space that the agent 
needs to learn how to handle.

https://www.docker.com
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Besides the larger action space, the OpenAI Universe environment has slightly 
different environment semantics compared to the Gym environments. The difference 
is in two aspects. The first is the so-called vectorized representation of observations, 
actions, and reward. As you can see on Figure 2, one environment could be connected 
to several Docker containers running the same application and gathering parallel 
experience from them. Such parallel communication allows Policy Gradient (PG) 
methods to obtain more diverse training samples, but now we need to specify which 
exact application we need to send the action with the env.step() call. To solve this, 
OpenAI Universe environment's step() method requires not a single action, but 
a list of actions for every connected container. The return from this function is also 
vectorized and now consists of a tuple of lists: (observations, rewards, done_
flags, infos).

The second difference is dictated by the VNC protocol's asynchronous manner of 
observations and actions. In the Atari environment, every call to step() triggers 
the request to the emulator to move forward one clock tick (which is 1/25 of second), 
so our agent could block the emulator for a while and it would be completely 
transparent for the running game. With VNC, this is not the case. As the GUI 
application is running in parallel to our client, we cannot block it anymore. If our 
agent decides to think for a while, it can miss observations that happened during  
that time.

Another implication of this asynchronous nature of the observations is the situation 
when the container is not ready yet or in the middle of resetting. In that case, 
the specific observation can be None and those situations need to be handled by  
the agent.

Environment creation
To create the OpenAI Universe environment, you need, as before, to call gym.make() 
with the environment ID. For example, a very simple problem from the MiniWoB set 
is wob.mini.ClickDialog-v0, which requires you to close the dialog by clicking on 
the X button. However, before the environment can be used, you need to configure 
it: specifying where and how many Docker instances you want. There is a special 
method of the environment called configure(). This method needs to be called 
before any other methods of the environment and it accepts several arguments. 
The most important arguments are as follows:
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•	 remotes: A parameter, which could be a number or a string. If it's specified 
as a number, it gives the amount of local containers needed to be started for 
the environment. As a string, this parameter can specify the URL of already-
running containers that the environment needs to connect in the form of 
vnc://host1:port1+port2,host2:port1+port2. The first port is a VNC 
protocol port (5900 by default). The second port is a port of the rewarder 
daemon, which is by default 15900. Both ports could be redefined on the 
Docker container launch.

•	 fps: An argument giving the expected frames per second for the agent's 
observations.

•	 vnc_kwargs: An argument, which has to be a dict, with extra VNC protocol 
parameters, defining the compression level and the quality of the image 
to be transferred to the agent. Those parameters are very important for 
performance, especially for containers running in the cloud.

To illustrate this, let's consider a very simple program that starts one single 
container with the ClickDialog problem and obtains its first observation as 
an image. This example is available in Chapter13/adhoc/wob_create.py.

#!/usr/bin/env python3
import gym
import universe
import time

from PIL import Image

This example is very simple, so we need only a very small set of packages. 
The importing of the universe package is required despite it not being used, 
as with this import it registers its environments in Gym.

if __name__ == "__main__":
    env = gym.make("wob.mini.ClickDialog-v0")

    env.configure(remotes=1, fps=5, vnc_kwargs={
        'encoding': 'tight', 'compress_level': 0,
        'fine_quality_level': 100, 'subsample_level': 0
    })
    obs = env.reset()
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We create our environment and ask it to configure itself. The passed arguments 
specify only one local container will be started, five frames per second, and the VNC 
connection without image compression. This will mean that a large amount of traffic 
is passed between the VNC server and VNC client, which prevents compression 
artefacts from appearing in the image. This could be required for MiniWoB problems 
showing text using a relatively small font size.

    while obs[0] is None:
        a = env.action_space.sample()
        obs, reward, is_done, info = env.step([a])
        print("Env is still resetting...")
        time.sleep(1)

While our single observation is None (we expect only one observation in a returned 
list, as we've asked only for one remote container), we pass random actions to the 
environment, waiting for the image to appear:

    print(obs[0].keys())
    im = Image.fromarray(obs[0]['vision'])
    im.save("image.png")
    env.close()

When, finally, we have got the image from the server, we save it as a PNG file, 
as shown below. In MiniWoB problems, the image is not the only observation 
we get. In fact, observation from the environment is a dict with two entries: 
vision, containing a NumPy array with screen pixels and text, containing the 
text description of the problem. For some problems, only the image is required, 
but for some tasks from the MiniWoB suite, the text includes essential information 
for solving the problem, like which color area to click on or what dates need to be 
selected.

The following image was cropped, as the original resolution of the observation 
is 1024 x 768.
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Figure 3: Part of a MiniWoB observation image

MiniWoB stability
My experiments with the original MiniWoB Docker image, published by OpenAI, 
have shown one serious issue: sometimes the server-side Python script, which 
controls the browser inside the container, crashes. This leads to training problems, 
as our environment loses connection to the container and the training stops. The 
solution for this issue is a one-line change, but it is complicated by the fact that 
OpenAI doesn't support MiniWoB and doesn't accept the fixes, so, to resolve the 
issue, I had to apply the patch inside the container. There is another small patch 
related to human demonstration, which fixes the issue with recording files being 
overwritten between episodes. The patched image with both fixes was pushed 
into my Docker Hub repository and is available as the shmuma/miniwob:v2 label, 
so you can use it instead of the original quay.io/openai/universe.world-of-
bits:0.20.0 image. If you're curious, I've placed the patches and instructions 
on how to apply them in the code samples repository Chapter13/wob_fixes.
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Simple clicking approach
As the first demo, let's implement a simple Asynchronous Advantage Actor-Critic 
(A3C) agent, which decides where it should click on given the image observation. 
This approach can solve only a small subset of the full MiniWoB suite and we'll 
discuss restrictions of this approach later. For now, it will allow us to get a better 
understanding of the problem.

As with the previous chapter, due to size of the code, I won't put a complete source 
code here. We'll focus on the most important functions and give the rest as an 
overview. The complete source code is available in the GitHub repository https://
github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On.

Grid actions
When we talked about OpenAI Universe's architecture and organization, it 
was mentioned that the richness and flexibility of the action space creates lots 
of challenges for the RL agent. MiniWoB's active area inside the browser is just 
160x210 (exactly the same dimension that the Atari emulator has), but even with 
such a small area, our agent could be asked to move the mouse, perform clicks, 
drag objects, and so on. Just the mouse alone could be problematic to master, as, in 
the extreme case, there could be an almost infinite amount of different actions that 
the agent could perform, like pressing the mouse button at some point and dragging 
the mouse to a different location. In our example, we'll simplify our problem a lot 
by just considering clicks at some fixed grid points inside the active webpage area. 
The sketch of our action space is given as follows:

https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
https://github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On
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Figure 4: A grid action space

This approach is already implemented in the OpenAI Universe as an action wrapper 
universe.wrappers.experimental.action_space.SoftmaxClickMouse. It has all 
the defaults pre-set for MiniWoB environments, which is an 160x210 region shifted 
10 pixels to the right and 75 pixels down (to get rid of the browser's frames). The grid 
of actions is 10x10, which gives 256 final actions to choose from.

Besides the action preprocessor, we definitely need an observation preprocessor, 
as the input image from VNC environment is a 1024x768x3 tensor, but the active 
area of MiniWoB is just 210x160. There is no suitable cropper defined, so I've 
implemented it myself as a class lib.wob_vnc.MiniWoBCropper that is in the 
Chapter13/lib/wob_vnc.py library module. Its code is very simple and is shown 
as follows:

WIDTH = 160
HEIGHT = 210
X_OFS = 10
Y_OFS = 75
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class MiniWoBCropper(vectorized.ObservationWrapper):
    def __init__(self, env, keep_text=False):
        super(MiniWoBCropper, self).__init__(env)
        self.keep_text = keep_text

    def _observation(self, observation_n):
        res = []
        for obs in observation_n:
            if obs is None:
                res.append(obs)
                continue
            img = obs['vision'][Y_OFS:Y_OFS+HEIGHT, X_OFS:X_OFS+WIDTH, :]
            img = np.transpose(img, (2, 0, 1))
            if self.keep_text:
                text = " ".join(map(lambda d: d.get('instruction', 
''), obs.get('text', [{}])))
                res.append((img, text))
            else:
                res.append(img)
        return res

The optional keep_text argument in the constructor enables the mode to preserve 
the text description of the problem. We don't need it at the moment and our first 
version of the agent will always keep it disabled. In this mode, MiniWoBCropper 
returns the NumPy array with shape (3, 210, 160).

Example overview
With decisions about actions and observations made, our next steps are 
straightforward. We'll use the A3C method to train the agent, which should decide 
from the 160 x 210 observation which grid cell to click. Besides the policy, which is 
a probability distribution over 256 grid cells, our agent estimates the value of the 
state, which will be used as a baseline in PG estimation.

There are several modules in this example:

•	 Chapter13/lib/common.py: Methods shared among examples in this 
chapters, including the already-familiar RewardTracker and unpack_batch 
function

•	 Chapter13/lib/model_vnc.py: Includes a definition of the model, 
which will be shown in the next section
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•	 Chapter13/lib/wob_vnc.py: Includes MiniWoB-specific code, like the 
observation cropper, environment configuration method and other utility 
functions

•	 Chapter13/wob_click_train.py: The script used to train the model
•	 Chapter13/wob_click_play.py: The script loads the model weights 

and uses them against the single environment, recording observations 
and counting stats about the reward

Model
The model is very straightforward and uses the same patterns that we've seen 
in other A3C examples. I haven't spent much time optimizing and fine-tuning 
the architecture and hyperparameters, so it's likely that the final result could be 
improved significantly. Following is the model definition with two convolution 
layers, a single-layered policy and value heads.

class Model(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(Model, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 64, 5, stride=5),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, stride=2),
            nn.ReLU(),
        )

        conv_out_size = self._get_conv_out(input_shape)

        self.policy = nn.Sequential(
            nn.Linear(conv_out_size, n_actions),
        )

        self.value = nn.Sequential(
            nn.Linear(conv_out_size, 1),
        )

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))
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    def forward(self, x):
        fx = x.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)
        return self.policy(conv_out), self.value(conv_out)

Training code
The training script is in Chapter13/wob_click_train.py and also should be very 
familiar but contains several OpenAI Universe and MiniWoB-specific pieces, so I put 
it here. This script can work in two modes: with and without human demonstrations. 
Currently we're considering only training from scratch, but some code is related to 
demonstrations and should be ignored for now. We'll look at it in the appropriate 
section later.

#!/usr/bin/env python3
import os
import gym
import random
import universe
import argparse
import numpy as np
from tensorboardX import SummaryWriter

from lib import wob_vnc, model_vnc, common, vnc_demo

import ptan

import torch
import torch.nn.utils as nn_utils
import torch.nn.functional as F
import torch.optim as optim

There is not much to say about the used modules, except the new universe. It 
might look unused, but you still need to import it, as on import it registers new 
environments in Gym's repository, so they become available on the gym.make() call.

REMOTES_COUNT = 8
ENV_NAME = "wob.mini.ClickDialog-v0"

GAMMA = 0.99
REWARD_STEPS = 2
BATCH_SIZE = 16
LEARNING_RATE = 0.0001
ENTROPY_BETA = 0.001
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CLIP_GRAD = 0.05

DEMO_PROB = 0.5

SAVES_DIR = "saves"

The hyperparameters section is also mostly the same, except that a couple of 
hyperparameters are new. First of all, REMOTES_COUNT specifies the amount of 
Docker containers that we'll try to connect. By default, our training script assumes 
that those containers have already started on one single machine and we can connect 
to them on pre-defined ports (5900..5907 for VNC connection and 15900..15907 
for the rewarder daemon). We'll look at the details of starting containers in the next 
section.

The parameter ENV_NAME specifies the problem that we'll try to attack and it could 
be redefined with the command line arguments. The problem ClickDialog is very 
simple and gives the reward to the agent for clicking on the dialog's close button.

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-n", "--name", required=True, help="Name of 
the run")
    parser.add_argument("--cuda", default=False, action='store_true', 
help="CUDA mode")
    parser.add_argument("--port-ofs", type=int, default=0, 
help="Offset for container's ports, default=0")
    parser.add_argument("--env", default=ENV_NAME, help="Environment 
name to solve, default=" + ENV_NAME)
    parser.add_argument("--demo", help="Demo dir to load. Default=No 
demo")
    parser.add_argument("--host", default='localhost', help="Host with 
docker containers")
    args = parser.parse_args()
    device = torch.device("cuda" if args.cuda else "cpu")

We have quite a large amount of command-line options and using them you can 
tweak the training behavior. There is only one required option to pass the name 
of the run, which will be used for TensorBoard and directory to save the model's 
weights. The parameter --demo should be ignored for now, as it is related to human 
demonstrations.

    env_name = args.env
    if not env_name.startswith('wob.mini.'):
        env_name = "wob.mini." + env_name
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    name = env_name.split('.')[-1] + "_" + args.name
    writer = SummaryWriter(comment="-wob_click_" + name)
    saves_path = os.path.join(SAVES_DIR, name)
    os.makedirs(saves_path, exist_ok=True)

After arguments are parsed, we normalize the environment name (all MiniWoB 
environments start with the wob.mini. prefix, so we don't require it to be specified 
in the command line), start the TensorBoard writer and create the directory for  
the models.

    demo_samples = None
    if args.demo:
        demo_samples = vnc_demo.load_demo(args.demo, env_name)
        if not demo_samples:
            demo_samples = None
        else:
            print("Loaded %d demo samples, will use them during 
training" % len(demo_samples))

The preceding piece of code is related to demonstrations and should be ignored  
for now.

    env = gym.make(env_name)
    env = universe.wrappers.experimental.SoftmaxClickMouse(env)
    env = wob_vnc.MiniWoBCropper(env)
    wob_vnc.configure(env, wob_vnc.remotes_url(port_ofs=args.port_ofs, 
hostname=args.host, count=REMOTES_COUNT))

To prepare the environment, we ask Gym to create it, wrap it into the 
SoftmaxClickMouse wrapper described before and then apply our cropper. 
However, this environment is not ready to be used yet. To complete the initialization, 
we need to configure it using utility functions in the wob_vnc module. Their goal is 
to call the env.configure() method with arguments specifying VNC connection 
parameters, like image quality and compression level and the addresses of Docker 
containers that we want to connect. Those connection endpoints are specified in a 
URL of special form, generated by the function wob_vnc.remotes_url(). This URL 
has the form of vnc://host:port1+port2,host:port1+port2 and allows one 
single environment to communicate with any amount of Docker containers running 
on the multiple hosts.

    net = model_vnc.Model(input_shape=wob_vnc.WOB_SHAPE,  
n_actions=env.action_space.n).to(device)
    print(net)
    optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE, 
eps=1e-3)
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    agent = ptan.agent.PolicyAgent(lambda x: net(x)[0], device=device, 
apply_softmax=True)
    exp_source = ptan.experience.ExperienceSourceFirstLast(
        [env], agent, gamma=GAMMA, steps_count=REWARD_STEPS, 
vectorized=True)

Before the training can be started, we create the model, the agent and experience 
source from the PTAN library. The only new thing here is the argument 
vectorized=True, which tells the experience source that our environment 
is vectorized and returns multiple results in one call.

    best_reward = None
    with common.RewardTracker(writer) as tracker:
        with ptan.common.utils.TBMeanTracker(writer, batch_size=10)  
as tb_tracker:
            batch = []
            for step_idx, exp in enumerate(exp_source):
                rewards_steps = exp_source.pop_rewards_steps()
                if rewards_steps:
                    rewards, steps = zip(*rewards_steps)
                    tb_tracker.track("episode_steps", np.mean(steps), 
step_idx)

                    mean_reward = tracker.reward(np.mean(rewards), 
step_idx)
                    if mean_reward is not None:
                        if best_reward is None or mean_reward > best_
reward:
                            if best_reward is not None:
                                name = "best_%.3f_%d.dat" % (mean_
reward, step_idx)
                                fname = os.path.join(saves_path, name)
                                torch.save(net.state_dict(), fname)
                                print("Best reward updated: %.3f -> 
%.3f" % (best_reward, mean_reward))
                            best_reward = mean_reward
                batch.append(exp)
                if len(batch) < BATCH_SIZE:
                    continue
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In the beginning of the training loop, we ask our experience source for new 
experience objects and pack them into the batch. In the meantime, we track 
the average undiscounted reward and, if it updates the maximum, we save 
the model's weight.

                if demo_samples and random.random() < DEMO_PROB:
                    random.shuffle(demo_samples)
                    demo_batch = demo_samples[:BATCH_SIZE]
                    model_vnc.train_demo(net, optimizer, demo_batch, 
writer, step_idx,
                                         preprocessor=ptan.agent.
default_states_preprocessor,
                                         device=device)

The preceding piece of code is relevant to demonstrations and should be ignored  
for now.

                states_v, actions_t, vals_ref_v = \
                    common.unpack_batch(batch, net, last_val_
gamma=GAMMA ** REWARD_STEPS,
                                        device=device)
                batch.clear()

When the batch is complete, we unpack it into individual tensors and perform the 
A2C training procedure: calculate value loss to improve the value head estimation 
and calculate the PG using value as a baseline for advantage.

                optimizer.zero_grad()
                logits_v, value_v = net(states_v)

                loss_value_v = F.mse_loss(value_v, vals_ref_v)

                log_prob_v = F.log_softmax(logits_v, dim=1)
                adv_v = vals_ref_v - value_v.detach()
                log_prob_actions_v = adv_v * log_prob_v[range 
(BATCH_SIZE), actions_t]
                loss_policy_v = -log_prob_actions_v.mean()

                prob_v = F.softmax(logits_v, dim=1)
                entropy_loss_v = ENTROPY_BETA * (prob_v * log_prob_v).
sum(dim=1).mean()

To improve exploration, we add the entropy loss calculated as a scaled negative 
entropy of the policy.

                loss_v = loss_policy_v + entropy_loss_v + loss_value_v
                loss_v.backward()
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                nn_utils.clip_grad_norm(net.parameters(), CLIP_GRAD)
                optimizer.step()

                tb_tracker.track("advantage", adv_v, step_idx)
                tb_tracker.track("values", value_v, step_idx)
                tb_tracker.track("batch_rewards", vals_ref_v, step_
idx)
                tb_tracker.track("loss_entropy", entropy_loss_v, step_
idx)
                tb_tracker.track("loss_policy", loss_policy_v, step_
idx)
                tb_tracker.track("loss_value", loss_value_v, step_idx)
                tb_tracker.track("loss_total", loss_v, step_idx)

Then we track the key quantities with TensorBoard to be able to monitor them 
during the training.

Starting containers
Before the training can be started, you need to have docker containers with MiniWoB 
started. OpenAI Universe provides an option to start them automatically and to do 
this you need to pass the integer value to env.configure() call, for example, env.
configure(remotes=4) will start locally four Docker containers with MiniWoB.

Despite the simplicity of this start mode, it has several disadvantages:

•	 You have no control over the containers' location, so all containers will be 
started locally. This is not convenient when you want them to be started on a 
remote machine or multiple machines.

•	 By default, OpenAI Universe starts the container published in quay.io (at the 
time of writing, it's image quay.io/openai/universe.world-of-bits with 
version 0.20.0), which has a serious bug in the reward calculation. Due to 
this, your training process can crash from time to time, which is not good 
when training can take days. There is an option to env.configure(), called 
docker_image, which allows you to redefine the image used to start, but you 
need to hard-code the image into the code.

•	 The starting tuple of containers has an overhead, so your training has to wait 
before all the containers start.
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As an alternative, I find it much more flexible to start Docker containers in advance. 
In that case, you need to pass to env.configure() a URL pointing the environment 
to the hosts and ports that it has to be connected with. To start the container, you 
need to run the command docker run -d -p 5900:5900 -p 15900:15900 
--privileged --ipc host --cap-add SYS_ADMIN <CONTAINER_ID> <ARGS>. 
The meaning of the arguments are as follows:

1.	 -d: Starts the container in detach mode. To be able to see the container's logs, 
you can replace this option with -t. In that case, the container will be started 
interactively and could be stopped with Ctrl + C.

2.	 -p SRC_PORT:TGT_PORT: Forwards the src port from the container's host to 
the target port inside the container. This option allows you to start several 
MiniWoB containers on one machine. Every container starts the VNC server 
listening on port 5900 and rewarder daemon on port 15900. Argument 
-p 5900:5900 makes the VNC server available on port 5900 on the host 
machine (machine running the container). For the second container, you 
should pass -p 5901:5900, which makes it available on port 5901, instead 
of the occupied 5900. The same is true for rewarder: inside the container 
it listens on port 15900. By providing the –p option, you can forward 
connections from your host machine to the container's port.

3.	 --privileged: This option allows the container to access the host's devices. 
As for why MiniWoB gets started with this option, maybe there are some 
VNC server requirements.

4.	 --ipc host: Enables containers to share the IPC (interprocess 
communications) namespace with the host.

5.	 --cap-add SYS_ADMIN: Extends the container's capabilities to perform 
extended configuration of the host's settings.

6.	 <CONTAINER_ID>: Identifier of the container. Should be shmuma/
miniwob:v2 which is a patched version of the original quay.io/openai/
universe.world-of-bits:0.20.0. More details were given in the 
preceding section of MiniWoB stability. 

7.	 <ARGS>: You can pass extra arguments to the container to change its mode 
of operation. We'll need them later, for recording human demonstrations. 
For now, it can be empty.

That's it! Our training script expects eight containers to be running, sitting on 
ports 5900-5907 and 15900-15907. For example, to start them I use the following 
commands (also available as Chapter13/adhoc/start_docker.sh)
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docker run -d -p 5900:5900 -p 15900:15900 --privileged --ipc host --cap-
add SYS_ADMIN shmuma/miniwob:v2

docker run -d -p 5901:5900 -p 15901:15900 --privileged --ipc host --cap-
add SYS_ADMIN shmuma/miniwob:v2

docker run -d -p 5902:5900 -p 15902:15900 --privileged --ipc host --cap-
add SYS_ADMIN shmuma/miniwob:v2

docker run -d -p 5903:5900 -p 15903:15900 --privileged --ipc host --cap-
add SYS_ADMIN shmuma/miniwob:v2

docker run -d -p 5904:5900 -p 15904:15900 --privileged --ipc host --cap-
add SYS_ADMIN shmuma/miniwob:v2

docker run -d -p 5905:5900 -p 15905:15900 --privileged --ipc host --cap-
add SYS_ADMIN shmuma/miniwob:v2

docker run -d -p 5906:5900 -p 15906:15900 --privileged --ipc host --cap-
add SYS_ADMIN shmuma/miniwob:v2

docker run -d -p 5907:5900 -p 15907:15900 --privileged --ipc host --cap-
add SYS_ADMIN shmuma/miniwob:v2

All of them will be started in the background and could be seen with the docker  
ps command:

CONTAINER ID        IMAGE               COMMAND                  
CREATED             STATUS              PORTS                                              
NAMES

ecf5d17c5419        92756d1f08ac        "/app/universe-envs/w"   23 hours 
ago        Up 23 hours         0.0.0.0:5907->5900/tcp, 0.0.0.0:15907-
>15900/tcp   elegant_bohr

8aaaeeb28e11        92756d1f08ac        "/app/universe-envs/w"   23 hours 
ago        Up 23 hours         0.0.0.0:5906->5900/tcp, 0.0.0.0:15906-
>15900/tcp   tiny_shirley

e8028af83bb2        92756d1f08ac        "/app/universe-envs/w"   23 hours 
ago        Up 23 hours         0.0.0.0:5905->5900/tcp, 0.0.0.0:15905-
>15900/tcp   gloomy_chandrasekhar

9164b9dd4449        92756d1f08ac        "/app/universe-envs/w"   23 hours 
ago        Up 23 hours         0.0.0.0:5904->5900/tcp, 0.0.0.0:15904-
>15900/tcp   sad_minsky

bb6817065e82        92756d1f08ac        "/app/universe-envs/w"   23 hours 
ago        Up 23 hours         0.0.0.0:5903->5900/tcp, 0.0.0.0:15903-
>15900/tcp   sleepy_pasteur

5dfb6a4e784c        92756d1f08ac        "/app/universe-envs/w"   23 hours 
ago        Up 23 hours         0.0.0.0:5902->5900/tcp, 0.0.0.0:15902-
>15900/tcp   gloomy_thompson .
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bacb19a24647        92756d1f08ac        "/app/universe-envs/w"   23 hours 
ago        Up 23 hours         0.0.0.0:5901->5900/tcp, 0.0.0.0:15901-
>15900/tcp   goofy_dubinsky

34861292023d        92756d1f08ac        "/app/universe-envs/w"   23 hours 
ago        Up 23 hours         0.0.0.0:5900->5900/tcp, 0.0.0.0:15900-
>15900/tcp   backstabbing_lamport

Training process
When containers have started and are ready to be used, you can start training. 
In the beginning, it shows messages about connection status, but finally it should 
start reporting about the episodes' statistics.

rl_book_samples/Chapter13$ ./wob_click_train.py -n t2 --cuda

[2018-01-29 14:27:48,545] Making new env: wob.mini.ClickDialog-v0

[2018-01-29 14:27:48,547] Using SoftmaxClickMouse with action_region= 
(10, 125, 170, 285), noclick_regions=[]

[2018-01-29 14:27:48,547] SoftmaxClickMouse noclick regions removed  
0 of 256 actions

[2018-01-29 14:27:48,548] Writing logs to file: /tmp/universe-9018.log

[2018-01-29 14:27:48,548] Using the golang VNC implementation

[2018-01-29 14:27:48,548] Using VNCSession arguments: {'compress_level': 
0, 'subsample_level': 0, 'encoding': 'tight', 'start_timeout': 21,  
'fine_quality_level': 100}. (Customize by running "env.configure 
(vnc_kwargs={...})"

[2018-01-29 14:27:48,579] [0] Connecting to environment: vnc://
localhost:5900 password=openai.

If desired, you can manually connect to the container's VNC server, using a VNC 
client, such as TurboVNC. Most environments provide a convenient in-browser 
VNC client: http://localhost:15900/viewer/?password=openai

…

[2018-01-29 14:27:52,218] Throttle fell behind by 1.06s; lost 5.32 frames

[2018-01-29 14:27:52,955] [1:localhost:5901] Initial reset complete: 
episode_id=17803

37: done 1 games, mean reward 0.686, speed 11.77 f/s

52: done 2 games, mean reward 0.447, speed 28.29 f/s

72: done 3 games, mean reward -0.035, speed 33.24 f/s

98: done 4 games, mean reward -0.130, speed 25.92 f/s

125: done 5 games, mean reward -0.015, speed 33.64 f/s

146: done 6 games, mean reward 0.137, speed 26.18 f/s
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By default, the training process starts the ClickDialog-v0 environment, which 
should take 100k-200k to reach the mean reward 0.8-0.99. The convergence dynamics 
are shown in the following graph:

Figure 5: Convergence of the ClickDialog environment

The episode_steps chart shows the mean count of actions that the agent should carry 
out before the end of the episode. Ideally, for this problem, the count should be 1, 
as the only action that the agent needs to take is to click on dialog's close button. 
However, in fact, the agent sees seven-to-nine frames before the episode ends. This 
happens for two reasons: the cross on the dialog close button can appear with some 
delay and the browser inside the container adds a time gap before the agent clicks 
and the rewarder notices this. Anyway, in approximately 100k frames (which is 
about half an hour with eight containers), the training procedure converged to 
quite a good policy, which can close the dialog most of the time.

Checking the learned policy
To be able to peek inside the agent's activity, there is a tool which loads model 
weights from the file and runs several episodes, recording the screenshots with the 
agent's observations and actions selected. The tool is called Chapter13/wob_click_
play.py and it connects to the first container (port 5900 and 15900), running on the 
local machine and accepting the following arguments:

•	 -m: The filename with the model to be loaded.
•	 --save <IMG_PREFIX>: If specified it saves every observation in a separate 

file. The argument is the path prefix.
•	 --count: Sets the count of episodes to run.
•	 --env: Sets the environment name to be used, which by default is 

ClickDialog-v0.
•	 --verbose: Shows every step with reward, done and internal info.
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This is useful for examining (or even debugging) the agent's behavior for different 
states during training. For example, checking the best model trained on ClickDialog 
shows us this:

rl_book_samples/Chapter13$ ./wob_click_play.py -m saves/ClickDialog-v0_
t1/best_1.047_209563.dat --count 5

[2018-01-29 15:43:57,188] [0:localhost:5900] Sending reset for env_
id=wob.mini.ClickDialog-v0 fps=60 episode_id=0

[2018-01-29 15:44:01,223] [0:localhost:5900] Initial reset complete: 
episode_id=288

Round 0 done

Round 1 done

Round 2 done

Round 3 done

Round 4 done

Done 5 rounds, mean steps 6.40, mean reward 0.734

To check the agent's actions, you can pass --save option with the prefix of the 
images to be written. The actions that the agent performs are shown as a blue circle 
at the point of click on. The area on the right contains the technical information about 
the last reward and time left before timeout. For example, one of the saved images 
is shown as follows:

Figure 6: A screenshot of the agent in action
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Issues with simple clicking
Unfortunately, the demonstrated approach can only be used to solve relatively 
simple problems, like ClickDialog. If you try to use it for more complicated tasks, 
the convergence is unlikely. There could be multiple reasons for this. First of all, our 
agent is stateless, which basically means that it makes the decision about the action 
only from the observation, without taking into account its previous actions. You may 
remember in Chapter 1, What is Reinforcement Learning? that we discussed the Markov 
property of the Markov Decision Process (MDP) and that this Markov property 
allowed us to discard all previous history, keeping only the current observation. 
Even in relatively simple problems from MiniWoB, this Markov property could 
be violated. For example, there is a problem called ClickButtonSequence-v0 
(the screenshot is shown as follows), which requires our agent to first click on 
button ONE and then on button TWO. Even if our agent is lucky enough to 
randomly click in the required order, it won't be able to distinguish from the 
single image that button needs to be clicked next.

Figure 7: An example of the environment which the stateless agent could struggle to solve

Despite the simplicity of this problem, we cannot use our RL methods to solve 
it, because MDP formalism is not applicable anymore. Such problems are called 
Partially-Observable MDPs or POMDP and the usual approach for them is allowing 
the agent to keep some kind of state. The challenge here is to find the balance 
between keeping only minimal relevant information and overwhelming the 
agent with non-relevant information by adding everything into the observation.
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Another issue that we can face with our example is that the data required to solve 
the problem might not be available in the image or could just be in an inconvenient 
form. For example, there are two problems: ClickTab and ClickCheckboxes. In the 
first one, you need to click on one of three tabs, but every time the tab that needs 
to be clicked is randomly chosen. Which tab needs to be clicked on is shown in a 
description (provided with an in-text field of observation and shown on the top of 
the environment's page), but our agent sees only pixels, which makes it complicated 
to connect the tiny number on the top with the outcome of the random click result. 
The situation is even worse with the ClickCheckboxes problem, when several 
checkboxes with randomly-generated text needs to be clicked. One of the possible 
options to prevent overfitting to the problem will be to use some kind of OCR 
(optical character recognition) net to convert the image in the observation into  
text form.

Figure 8: An example of environments where text description is important to action properly

Yet another issue could be related just to the dimensionality of the action space that 
the agent needs to explore. Even for single-click problems, the amount of actions 
could be very large, so it takes a long time for the agent to discover how to behave. 
One of the possible solutions here is incorporating demonstrations into the training. 
For example, on the following image there is a problem called CountSides-v0. The 
goal there is to click on the button that corresponds to the count of sides of the shape 
shown.
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Figure 9: A screenshot of the CountSides environment

I've tried to train the agent from scratch and after a day of training, it has shown 
almost zero progress. However, after adding a couple of dozen examples of 
correct clicks, it successfully solved the problem in 15 minutes of training. Of course, 
maybe my hyperparameters were bad, but, still, the effect of the demonstrations 
is quite impressive. In the next example of this chapter, we'll take a look at how 
we can record and inject human demonstrations to improve the convergence.

Human demonstrations
The idea behind demonstrations is simple: to help our agent to discover the best way 
to solve the task, we show it some examples of actions that we think are required for 
the problem. Those examples could be not the best solution or 100% accurate, but 
they should be good enough to show the agent promising directions to explore. 

In fact, this is a very natural thing to do and all human learning is based on some 
prior examples given by a teacher in class, your parents or other people. Those 
examples could be in a written form (recipe books) or given as demonstrations that 
you need to repeat several times to get it right (dance classes). Such forms of training 
are much more effective than random search. Just imagine how complicated and 
lengthy it would be to learn how to clean your teeth by trial-and-error alone. Of 
course, there is a danger from learning how to follow the demonstrations, which 
could be wrong or not the most efficient way to solve the problem, but overall, 
it's much more effective than random search.
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All our previous examples used zero prior knowledge and started with random 
weights' initialization, which caused random actions to be performed at the 
beginning of the training. After some iterations, the agent discovered that some 
actions in some states give more promising results (via the Q-value or policy with 
higher advantage) and started to prefer those actions over the others. Finally, this 
process led to more or less optimal policy, which gave the agent high reward at 
the end. It worked well when our action space dimensionality was low and the 
environment's behavior wasn't very complex, but just doubling the actions' count 
caused at least twice the observations needed. In the case of our clicker agent, we 
have 256 different actions corresponding to 10x10 grids in the active area, which is 
128 times more actions than we had in the CartPole environment. It is not surprising 
that the training process becomes lengthy and may fail to converge at all.

This issue of dimensionality could be addressed in various ways, like smarter 
exploration methods, training with better sampling efficiency (one-shot training), 
incorporating prior knowledge (transfer learning) and other means. There is lots of 
research activity focused on making RL better and faster and we can be sure that lots 
of breakthroughs are ahead. In this section, we'll try the more traditional approach 
of incorporating the demonstration recorded by humans into the training process.

You might remember our discussion about on-policy and off-policy methods (which 
were discussed in Chapter 4, The Cross-Entropy Method and Chapter 7, DQN Extensions).  
This is very relevant to our human demonstrations, because, strictly speaking, we 
cannot use off-policy data (human observation-actions pairs) with the on-policy 
method (A3C in our case). That happens due to the nature of on-policy methods: 
they estimate the PG using the samples gathered from the current policy. If we just 
push human-recorded samples into the training process, the estimated gradient 
will be relevant for human policy, but not our current policy given by the Neural 
Network (NN). To solve this issue, we need to cheat a bit and look at our problem 
from the supervised learning angle. To be concrete, we'll use the log-likelihood 
objective to push our network towards taking actions from demonstrations.

Before we can go to the implementation details, we need to address a very important 
question: how do we obtain the demonstrations in the most convenient form?

Recording the demonstrations
There is no universal recipe for how to record the demonstration, as demonstration 
depends on the observation and action space details. However, from a higher 
perspective, we should save the information available for a human or another agent, 
whose actions we want to record, as well as actions taken by this agent. For example, 
if we want to obtain Atari game sessions played by somebody, we need to save the 
screen image, plus the button pressed on this screen.
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In our case of the OpenAI Universe environment, there is an elegant solution, based 
on VNC protocol and used as a universal transport. To save the demonstrations, 
we need to capture the screen sent by the server to the VNC client, as well as mouse 
and keyboard actions sent by the client to the server. MiniWoB provides built-in 
functionality for this based on VNC protocol proxy, which is illustrated on the 
following scheme:

Figure 10: Demonstrating recording architecture

By default, VNC proxy is not started on the container's start, as there is a separate 
demo mode. To start the container with proxy enabled, you need to pass the 
arguments demonstration -e ENV_NAME to the container. You also will need to 
pass the port forwarding options to make port 5899 (that VNC proxy is listening 
to) available from outside. The whole command line used to start the container in 
recording mode for env ClickTest2 is below (also available as Chapter13/adhoc/
start_docker_demo.sh):

docker run -e TURK_DB='' -p 5899:5899 --privileged --ipc host --cap-add 
SYS_ADMIN shmuma/miniwob:v2 demonstration -e wob.mini.ClickTest2-v0

The argument TURK_DB is required, which is probably related to Mechanical 
Turk used by OpenAI to gather human demonstrations for internal experiments. 
Unfortunately, OpenAI hasn't released those demonstrations, despite its promise 
to do so. So, the only way to get the demonstrations is to record them yourself.

Once the container is started, you can connect to it using any VNC client that you 
prefer. For all linux/windows/mac there are several alternatives available. You 
should connect to the host of your container, port 5899. The connection password is 
openai. After connection, you should see the browser window with an environment 
that you've specified on the container start. 
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Now you can start solving the problem, but don't forget that all your actions will 
be recorded and will be used later during the training. So, your actions should be 
efficient and not include any non-relevant actions, like clicking at the wrong place, 
and so on. Of course, you can always do an experiment checking the robustness of 
the training to such noisy demonstrations. Time given for solving the problem is also 
limited, as for most of the environments it's 10 seconds. On expiration, the problem 
will start over and you will be given the reward of -1. If you don't see the mouse 
pointer, you should enable Local mouse render mode in your VNC client. 

Once you've recorded some demonstrations, you can disconnect from the server 
and copy the recorded data. Remember that your recording will be preserved only 
while the container is alive. The recorded data is placed in /tmp/demo folder inside 
the container's filesystem, but you can see the files using docker exec command 
(following 80daf4b8f257 is an ID of a container started in demo mode): 

$ docker exec -t 80daf4b8f257 ls -laR /tmp/demo

/tmp/demo:

total 20

drwxr-xr-x  3 root   root    4096 Jan 30 17:06 .

drwxrwxrwt 19 root   root    4096 Jan 30 17:07 ..

drwxr-xr-x  2 root   root    4096 Jan 30 17:07 
1517332006-fprnte8qiy3af3-0

-rw-r--r--  1 nobody nogroup   20 Jan 30 17:09 env_id.txt

-rw-r--r--  1 root   root     531 Jan 30 17:09 rewards.demo

/tmp/demo/1517332006-fprnte8qiy3af3-0:

total 35132

drwxr-xr-x 2 root root     4096 Jan 30 17:07 .

drwxr-xr-x 3 root root     4096 Jan 30 17:06 ..

-rw-r--r-- 1 root root    51187 Jan 30 17:07 client.fbs

-rw-r--r-- 1 root root       20 Jan 30 17:07 env_id.txt

-rw-r--r-- 1 root root     5888 Jan 30 17:07 rewards.demo

-rw-r--r-- 1 root root 35900918 Jan 30 17:07 server.fbs
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One individual VNC session is saved inside the /tmp/demo folder in a separate 
subdir, so you can use the same container for several recording sessions. To copy  
the data, you can use the command docker cp command: 

docker cp 80daf4b8f257:/tmp/demo .

Once you've got the raw data files, you can use them for training, but first let's talk 
about the data format.

Recording format
For every client connection, VNC proxy records four files:

•	 env_id.txt: A text file with the ID of the environment used to record the 
demonstration. This is very convenient for filtering when you have several 
demonstrations data directories.

•	 rewards.demo: A JSON file with events recorded by the rewarder daemon. 
This includes timestamped events from the environment, like text description 
change, reward obtained and others.

•	 client.fbs: A binary format with events sent by the client to the VNC 
server. Inside it contains timestamps of raw VNC protocol messages 
(called Remote Framebuffer Protocol or RFP).

•	 server.fbs: A binary format with data sent by the VNC server to the client. 
It has the same format as client.fbs, but the set of messages is different.

The trickiest files here are client.fbs and server.fbs, as they are binary and 
the format has no convenient reader (at least I'm not aware of such a library). 
The protocol of VNC is standardized in RFC6143 called The Remote Framebuffer 
Protocol which is available on the IETF website https://tools.ietf.org/html/
rfc6143. This protocol defines the set of messages that the VNC client and server 
can exchange to provide a remote desktop to a user. The client can send the  
keyboard or mouse events and the server is responsible for sending the image of 
the desktop to allow the client to see an up-to-date view of the applications. To 
improve user experience over slow network links, the server optimizes the transfer 
by optionally compressing the image and sending only relevant (modified) parts 
of the GUI desktop.

https://tools.ietf.org/html/rfc6143
https://tools.ietf.org/html/rfc6143
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To make demo recordings usable for RL agent training, we need to convert this 
VNC format into a set of images and user events issued at the time of the image. 
To achieve this, I've implemented a small VNC protocol parser using KaiTai binary 
parser language (project website http://kaitai.io/), which provides a convenient 
way to parse complex binary file formats using a declarative Yaml-formatted 
language. If you're curious, the source files for the client and server messages  
are in the Chapter13/ksy directory.

Python code, related to the demo format, is placed in module Chapter13/lib/
vnc_demo.py which contains a high-level function loader for the demo directory and 
the set of lower-level methods used to interpret the internal binary format. The result 
returned by the loader function vnc_demo.load_demo() is the list of tuples. Every 
tuple contains a NumPy array with the observation used by the MiniWoB model 
and the index of the mouse action performed.

To check the demo data, there is a small utility Chapter13/ahdoc/demo_dump.
py, which loads the demo directory with client.fbs and server.fbs and dumps 
demo samples as image files. The example of the command line used to convert the 
demonstrations that I've recorded into images is shown as follows:

rl_book_samples/Chapter13$ ./adhoc/demo_dump.py -d data/demo-CountSides/ 
-e wob.mini.CountSides-v0 -o count

[2018-01-30 12:44:11,794] Making new env: wob.mini.CountSides-v0

[2018-01-30 12:44:11,796] Using SoftmaxClickMouse with action_region= 
(10, 125, 170, 285), noclick_regions=[]

[2018-01-30 12:44:11,797] SoftmaxClickMouse noclick regions removed  
0 of 256 actions

Loaded 64 demo samples

[2018-01-30 12:44:12,191] Making new env: wob.mini.CountSides-v0

[2018-01-30 12:44:12,192] Using SoftmaxClickMouse with action_region= 
(10, 125, 170, 285), noclick_regions=[]

[2018-01-30 12:44:12,192] SoftmaxClickMouse noclick regions removed  
0 of 256 actions

This command produced 64 image files with the prefix count.

http://kaitai.io/
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Figure 12: On every image the click point is shown as a blue circle

The binary data for this recording is available in Chapter13/demos/demo-
CountSides.tar.gz and you need to unpack it before usage. It also needs to be 
said that my implementation of the VNC protocol reading is experimental, works 
only with files produced by VNC proxy used in the MiniWoB image 0.20.0 and is 
not pretending to fully comply with VNC protocol RFC. Furthermore, the reading 
process is hard-coded for our action space transformation and doesn't produce 
examples of mouse movements, keys pressed and other events. If you think it 
should be extended for a more generic case, you're always welcome to contribute.
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Training using demonstrations
Now that we know how to record and load the demonstration data, we have only 
one question unanswered yet: how does our training process need to be modified 
to incorporate human demonstrations? The simplest solution, which nevertheless 
works surprisingly well, is to use the log-likelihood objective that we used in 
training our chatbot in Chapter 12, Chatbots Training with RL. To do so, we need to 
look at our A2C model as a classification problem producing the classification of 
input observation in its policy head. In its simplest form, the value head will be left 
untrained, but, in fact, it won't be hard to train it too: we know the rewards obtained 
during the demonstrations, so what is needed is calculating the discounted reward 
from every observation to the end of the episode. 

To check how it was implemented, let's return to the code pieces we skipped during 
the description of Chapter13/wob_click_train.py. First of all, we can pass the 
directory with demonstration data by passing the --demo <DIR> option in the 
command line. This will enable the branch below, where we load the demonstration 
samples from the directory specified. Function vnc_demo.load_demo() is smart 
enough to automatically load demonstrations from any level of subdirectories, 
so you just need to pass the directory where your demonstrations are placed.

    demo_samples = None
    if args.demo:
        demo_samples = vnc_demo.load_demo(args.demo, env_name)
        if not demo_samples:
            demo_samples = None
        else:
            print("Loaded %d demo samples, will use them during 
training" % len(demo_samples))

The second piece of code relevant to demonstration training is inside the training 
loop and is executed before any normal batch. The training from demonstrations is 
performed with some probability (by default it is 0.5) and is specified by the DEMO_
PROB hyperparameter.

              if demo_samples and random.random() < DEMO_PROB: 
                    random.shuffle(demo_samples) 
                    demo_batch = demo_samples[:BATCH_SIZE] 
                    model_vnc.train_demo(net, optimizer, demo_batch, 
writer, step_idx, 
                                         preprocessor=ptan.agent.
default_states_preprocessor, device=device)
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The logic is simple: with DEMO_PROB chance we sample BATCH_SIZE samples from 
our demonstration data and perform the round of training of our network in the 
batch. The actual training is performed by the model_vnc.train_demo() function, 
which is shown as follows:

def train_demo(net, optimizer, batch, writer, step_idx, preprocessor, 
device="cpu"):
    batch_obs, batch_act = zip(*batch)
    batch_v = preprocessor(batch_obs).to(device)
    optimizer.zero_grad()
    ref_actions_v = torch.LongTensor(batch_act).to(device)
    policy_v = net(batch_v)[0]
    loss_v = F.cross_entropy(policy_v, ref_actions_v)
    loss_v.backward()
    optimizer.step()
    writer.add_scalar("demo_loss", loss_v.data.cpu().numpy()[0],  
step_idx)

The training code is also very simple and straightforward. We split our batch 
on observation and actions list, preprocess the observations to convert them into 
a PyTorch tensor and place them on GPU, then we ask our A2C network to return 
the policy and calculate the cross-entropy loss between the result and desired 
actions. From an optimization point of view, we're pushing our network towards 
the actions taken in the demonstrations.

Results
To check the effect of demonstrations, I've performed two sets of training on the 
CountSides problem with the same hyperparameters: one was done without 
demonstrations, another used 64 demonstration clicks. The difference was dramatic. 
Training performed from scratch, reached the best mean reward of -0.64 after 12 hours 
of training and the training dynamics didn't show any improvement. The training 
dynamics are shown as follows:

Figure 12: Training dynamics on the CountSides environment
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With just 64 demonstration samples added, in just 45k frames the training was able 
to reach the mean reward of 1.75. High entropy loss shown as follows demonstrates 
that the agent became very sure about its actions.

Figure 13: Training on the same environment with human demonstrations

To put things in perspective, below are the same charts combined.

Figure 14: Comparison of training with (blue) and without (brown) demonstrations

TicTacToe problem
To check the effect of demonstrations on training, I've taken a more complex problem 
from MiniWoB, which is a TicTacToe game. I've recorded some demonstrations 
(available in Chapter13/demos/demo-TicTacToe.tgz), in total almost 200 actions, 
and some examples of them are as follows:

Figure 15: The TicTacToe environment with human actions
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After one hour of training, the agent was able to reach the mean reward of -0.05, 
which means that it can win from time to time and for the rest of the games the 
agent can come to a draw. The training dynamics are shown below. To improve 
the exploration, demo training probability was decreased from 0.5 to 0.01 after 
25k frames seen.

Figure 16: Training dynamics of the TicTacToe agent

Using wob_click_play.py, we can check the agent's actions step-by-step. For 
example, following are some games played by the best model with the mean 
reward of 0.187:

Figure 17: A game played by the agent

Figure 18: A second game played by the agent
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Figure 19: More games played by the agent

Adding text description
As the last example of this chapter, we'll add text description of the problem into 
observations of our model. We've already mentioned that some problems contain 
vital information given in a text description, like the index of tabs needed to be 
clicked or list of entries that the agent needs to check. The same information is shown 
on the top of the image observation, but pixels is not always the best representation 
of a simple text. 

To take this text into account, we need to extend our model's input from an image 
only to an image and text data. We have worked with text in the previous chapter, 
so a Recurrent Neural Network (RNN) is quite an obvious choice (maybe not 
the best for such a toy problem but it is flexible and scalable). We are not going 
to cover this example in detail but will just focus on the most important points of 
the implementation (the whole code is in Chapter13/wob_click_mm_train.py). 
In comparison to our clicker model, text extension doesn't add too much.
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First of all, we should ask the wrapper MiniWoBCropper to keep the text obtained 
from the observation. The complete source code of this class has already been 
shown earlier in this chapter. To keep the text, we should pass keep_text=True 
to the wrapper constructor, which makes this class return a tuple with a NumPy 
array and text string instead of just a NumPy array with the image.

Then, we need to prepare our model to be able to process such tuples, instead 
of a batch of NumPy arrays. This needs to be done in two places: in our agent 
(when we use the model to choose the action) and in the training code. To adapt 
the observation in a model-friendly way, we can use a special functionality of the 
PTAN library, called preprocessor. The core idea is very simple: preprocessor 
is a callable function which needs to convert the list of observations in a form that 
is ready to be passed to the model. By default, preprocessor converts the list of 
NumPy arrays into a PyTorch tensor and, optionally, copies it in GPU memory. 
However, sometimes more sophisticated transformations are required, like in our 
case, when we need to pack the images into the tensor, but text strings require 
special handling. In that case, you can redefine the default preprocessor and  
pass it into the ptan.Agent class. In theory, preprocessor functionality could  
be moved into the model itself, thanks to PyTorch flexibility, but default 
preprocessor simplifies our lives in cases when observations are just NumPy 
arrays. Following is the preprocessor class source code taken from the  
Chapter13/lib/model_vnc.py module.

class MultimodalPreprocessor:
    log = logging.getLogger("MulitmodalPreprocessor")

    def __init__(self, max_dict_size=MM_MAX_DICT_SIZE, device="cpu"):
        self.max_dict_size = max_dict_size
        self.token_to_id = {TOKEN_UNK: 0}
        self.next_id = 1
        self.tokenizer = TweetTokenizer(preserve_case=False)
        self.device = device

In the constructor, we create a mapping from token to identifier (which will 
be dynamically extended) and create the tokenizer from the nltk package.

    def __len__(self):
        return len(self.token_to_id)

    def __call__(self, batch):
        tokens_batch = []
        for img_obs, txt_obs in batch:
            tokens = self.tokenizer.tokenize(txt_obs)
            idx_obs = self.tokens_to_idx(tokens)
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            tokens_batch.append((img_obs, idx_obs))
        # sort batch decreasing to seq len
        tokens_batch.sort(key=lambda p: len(p[1]), reverse=True)
        img_batch, seq_batch = zip(*tokens_batch)
        lens = list(map(len, seq_batch))

The goal of our preprocessor is to convert a batch of (image, text) tuples into two 
objects: the first has to be a tensor with image data of shape (batch_size, 3, 210, 160) 
and the second has to contain the batch of tokens from text descriptions in the form 
of a packed sequence. The packed sequence is a PyTorch data structure suitable for 
efficient processing with RNN and we've discussed it in Chapter 12, Chatbots Training 
with RL.

As the first step of our transformation, we tokenize text strings into tokens and 
convert every token into the list of integer IDs. Then we sort our batch on decrease 
of tokens' count, which is a requirement of underlying CuDNN library for efficient 
RNN processing.

        img_v = torch.FloatTensor(img_batch).to(self.device)

In the preceding line, we convert observation images into the single tensor.

        seq_arr = np.zeros(shape=(len(seq_batch),  
max(len(seq_batch[0]), 1)), dtype=np.int64)
        for idx, seq in enumerate(seq_batch):
            seq_arr[idx, :len(seq)] = seq
            # Map empty sequences into single #UNK token
            if len(seq) == 0:
                lens[idx] = 1

To create the packed sequence class, first we need to create a padded sequence tensor, 
which is a matrix of (batch_size, len_of_longest_seq). We copy IDs of our sequences 
into this matrix.

        seq_v = torch.LongTensor(seq_arr).to(self.device)
        seq_p = rnn_utils.pack_padded_sequence(seq_v, lens, batch_
first=True)
        return img_v, seq_p

As a final step, we create the tensors from the NumPy matrix and convert them into 
packed form by using the PyTorch utility function. The result of the transformation 
is two objects: a tensor with images and a packed sequence with tokenized texts.

    def tokens_to_idx(self, tokens):
        res = []
        for token in tokens:
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            idx = self.token_to_id.get(token)
            if idx is None:
                if self.next_id == self.max_dict_size:
                    self.log.warning("Maximum size of dict reached, 
token '%s' converted to #UNK token", token)
                    idx = 0
                else:
                    idx = self.next_id
                    self.next_id += 1
                    self.token_to_id[token] = idx
            res.append(idx)
        return res

The preceding utility function has to convert the list of tokens into a list of IDs. 
The tricky thing is that we don't know in advance the size of dictionary from the text 
descriptions. One approach would be to work on character level and feed individual 
characters into the RNN, but it would cause too long sequences to be processed. 
The alternative solution is to hardcode some reasonable dictionary size, say 100 
tokens, and dynamically assign token IDs to tokens that we've never seen before. 
In this implementation, the latter approach is used, but it could be not applicable 
to MiniWoB problems which contain randomly-generated strings in the text 
description.

    def save(self, file_name):
        with open(file_name, 'wb') as fd:
            pickle.dump(self.token_to_id, fd)
            pickle.dump(self.max_dict_size, fd)
            pickle.dump(self.next_id, fd)

    @classmethod
    def load(cls, file_name):
        with open(file_name, "rb") as fd:
            token_to_id = pickle.load(fd)
            max_dict_size = pickle.load(fd)
            next_id = pickle.load(fd)

            res = MultimodalPreprocessor(max_dict_size)
            res.token_to_id = token_to_id
            res.next_id = next_id
            return res
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As our token-to-ID mapping is dynamically generated, our preprocessor has 
to provide a way to save and load this state in a file. The preceding two functions 
do that exactly. The next piece of the puzzle is the model class itself, which is an 
extension of our model used.

class ModelMultimodal(nn.Module):
    def __init__(self, input_shape, n_actions, max_dict_size=MM_MAX_
DICT_SIZE):
        super(ModelMultimodal, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 64, 5, stride=5),
            nn.ReLU(),
            nn.Conv2d(64, 64, 3, stride=2),
            nn.ReLU(),
        )

        conv_out_size = self._get_conv_out(input_shape)

        self.emb = nn.Embedding(max_dict_size, MM_EMBEDDINGS_DIM)
        self.rnn = nn.LSTM(MM_EMBEDDINGS_DIM, MM_HIDDEN_SIZE, batch_
first=True)

        self.policy = nn.Sequential(
            nn.Linear(conv_out_size + MM_HIDDEN_SIZE*2, n_actions),
        )

        self.value = nn.Sequential(
            nn.Linear(conv_out_size + MM_HIDDEN_SIZE*2, 1),
        )

The difference is in a new embedding layer, which converts integer token IDs 
into dense token vectors and LSTM RNN. The outputs from the convolution 
and RNN layers are concatenated and fed into the policy and value heads, 
so the dimensionality of their input is the image and text features combined.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))
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    def _concat_features(self, img_out, rnn_hidden):
        batch_size = img_out.size()[0]
        if isinstance(rnn_hidden, tuple):
            flat_h = list(map(lambda t: t.view(batch_size, -1),  
rnn_hidden))
            rnn_h = torch.cat(flat_h, dim=1)
        else:
            rnn_h = rnn_hidden.view(batch_size, -1)
        return torch.cat((img_out, rnn_h), dim=1)

The preceding function performs the concatenation of the image and RNN 
features into one single square tensor.

    def forward(self, x):
        x_img, x_text = x
        assert isinstance(x_text, rnn_utils.PackedSequence)

        # deal with text data
        emb_out = self.emb(x_text.data)
        emb_out_seq = rnn_utils.PackedSequence(emb_out, x_text.batch_
sizes)
        rnn_out, rnn_h = self.rnn(emb_out_seq)

        # extract image features
        fx = x_img.float() / 256
        conv_out = self.conv(fx).view(fx.size()[0], -1)

        feats = self._concat_features(conv_out, rnn_h)
        return self.policy(feats), self.value(feats)

In the forward function, we expect two objects prepared by the preprocessor: 
a tensor with input images and packed sequences of the batch. Images are processed 
with convolutions and text data is fed through the RNN, then both of the results are 
concatenated and policy and value results are calculated.

That's most of the new code. The training Python script wob_click_mm_train.
py is mostly the copy of wob_click_train.py, with just a tiny difference of 
preprocessor created. keep_text=True was passed to the MiniWoBCropper() 
constructor and other small modifications.
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Results
I ran several experiments on the environment ClickButton-v0, which has 
a goal to make a selection between several random buttons. Some of the recorded 
demonstrations are shown as follows:

Figure 20: Screenshots of the ClickButton environment demonstrations

Even with demonstrations, a model without text description was able to reach the 
mean reward of 0.4, which is not much better than randomly clicking on any button 
in the dialog.
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Figure 21: Convergence of the ClickButton agent without text description used during the training

However, the model enriched with features from the text description was able 
to perform much better and the best mean reward for 100 episodes was 0.7.

Figure 22: ClickButton environment training with text description

The reward dynamics of both models are quite noisy, which may signal that tuning 
hyperparameters and/or increasing the number of parallel environments could help.

Things to try
In this chapter, we've only just started playing with MiniWoB, by touching upon 
the six easiest environments from the full set of 80 problems, so there is plenty of 
uncharted territory ahead. If you want to practice, there are several items you can 
experiment with:

•	 Testing the robustness of demonstrations to noisy clicks.
•	 Implementing training of the value head of A2C based on  

demonstration data.
•	 Implementing more sophisticated mouse control, like Move mouse N pixels 

left/right/top/bottom.
•	 Using some pretrained OCR net (or train your own!) to extract text 

information from the observations.
•	 Taking other problems and trying to solve them. There are some quite  

tricky and fun problems, like sort items using drag-n-drop, or repeat the  
pattern using checkboxes.
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Summary
In this chapter, we saw  the practical application of RL methods for browser 
automation and used the MiniWoB benchmark from OpenAI. This chapter concludes 
part three of the book. The next part will be devoted to more complicated and recent 
methods related to continuous action spaces, non-gradient methods, and other more 
advanced methods of RL.
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Continuous Action Space
This chapter kicks off the advanced Reinforcement Learning (RL) part of the book 
by taking a look at the problems that we've only briefly mentioned before: working 
with environments when our action space is not discrete. In this chapter, we'll become 
familiar with the challenges that arise in such cases and learn how to solve them.

Why a continuous space?
All the examples that we've seen so far in the book had a discrete action space, 
so you might have the wrong impression that discrete actions dominate the field. 
This is a very biased view, of course, and just reflects the selection of domains that 
we picked our test problems from. Besides Atari games and simple, classical RL 
problems, there are lots of tasks requiring more than just making a selection from 
a small and discrete set of things to do.

To give you an example, just imagine a simple robot with only one controllable 
joint, which can be rotated in some range of degrees. Usually, to control a physical 
joint, you have to specify either the desired position or the force applied. In 
both cases, you need to make a decision about a continuous value. This value is 
fundamentally different from a discrete action space, as the set of values that you 
can make a decision on is potentially infinite. For instance, you can ask the joint to 
move to a 13.5° angle or 13.512° angle and the results could be different. Of course, 
there are always some physical limitations of the system, and you cannot specify 
the action with infinite precision, but the size of potential values could be very large.
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In fact, when you need to communicate with a physical world, a continuous action 
space is much more likely than having a discrete set of actions. For example, 
different kinds of robots control systems (such as a heating/cooling controller). 
The methods of RL could be applied to this domain, but there are some details  
that you need to take into consideration before using the Asynchronous 
Advantage Actor-Critic (A3C) or Deep Q-Network (DQN) methods.

In this chapter, we'll try to understand how to deal with this family of problems. This 
will act as a good starting point for you to begin learning about this very interesting 
and important domain of RL.

Action space
The fundamental and obvious difference with a continuous action space is its 
continuity. In contrast to a discrete action space, when the action is defined as 
a discrete mutually exclusive set of options to choose from, the continuous action 
has a value from some range. On every time step, the agent needs to select the 
concrete value for the action and pass it to the environment.

In Gym, a continuous action space is represented as the gym.spaces.Box class, 
which was described in Chapter 2, OpenAI Gym, when we talked about the 
observation space. You may remember that Box includes a set of values with 
a shape and bounds. For example, every observation from the Atari emulator was 
represented as Box(low=0, high=255, shape=(210, 160, 3)), which means 
100,800 values organized as a 3D tensor, with values from the 0..255 range.

For the action space, it's unlikely that you'll work with such large numbers of actions. 
For example, the robot that we'll use as a testing environment has eight continuous 
actions, which correspond to eight motors, two in every robot's leg. For this 
environment, the action space will be defined as Box(low=-1, high=1, shape= 
(8, )), which means eight values from the range -1..1 have to be selected at every 
timestamp to control the robot. In that case, the action passed to the env.step() 
at every step won't be an integer anymore: it will be a NumPy vector of some shape 
with individual action values. Of course, there could be more complicated cases 
when the action space is a combination of discrete and continuous actions, which 
may be represented with the gym.spaces.Tuple class.
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Environments
Most of the environments that include continuous action spaces are related to the 
physical world, so physics simulations are normally used. There are lots of software 
packages that can simulate physical processes, from very simple, open-source tools 
to complex, commercial packages that can simulate multiphysics processes (such 
as fluid, burning, and strength simulations). In the case of robotics, one of the most 
popular packages is MuJoCo, which stands for Multi-Joint Dynamics with Contact 
(www.mujoco.org). This is a physics engine in which you can define the components 
of the system, their interaction and properties. Then the simulator is responsible 
for solving the system by taking into account your intervention and finding the 
parameters (usually the location, velocities, and accelerations) of the components. 
This makes it ideal as a playground for RL environments, as you can define fairly 
complicated systems (such as multipede robots or robotic arms or humanoids) 
and then feed the observation into the RL agent, getting actions back.

Unfortunately, MuJoCo isn't free and requires a license to be used. There is a trial 
one-month license available on websites, but after the trial, a license will be required. 
For students, MuJoCo developers provide a free license, but for post-university 
RL enthusiasts, buying a license could be overkill. Luckily, there is an open-source 
alternative, called PyBullet, which provides similar functionality (maybe at a cost 
of lower speed or accuracy) for free.

PyBullet is available at https://github.com/bulletphysics/bullet3 and can be 
installed by running pip install pybullet inside your virtual environment. The 
following code (which is available in Chapter14/01_check_env.py) allows you to 
check that PyBullet works and looks at the action space and renders an image of the 
environment that we'll use as a guinea pig in this chapter.

#!/usr/bin/env python3
import gym
import pybullet_envs

ENV_ID = "MinitaurBulletEnv-v0"
RENDER = True

if __name__ == "__main__":
    spec = gym.envs.registry.spec(ENV_ID)
    spec._kwargs['render'] = RENDER
    env = gym.make(ENV_ID)

    print(env.observation_space)
    print(env.action_space, env.action_space.sample())

http://www.mujoco.org
https://github.com/bulletphysics/bullet3
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    print(env)
    print(env.reset())
    input("Press any key to exit\n")
    env.close()

After starting the utility above, it should open the GUI window with our four-legged 
robot that we'll train how to move.

Figure 1: The Minitaur environment in the PyBullet GUI

This environment provides you with 28 numbers as observation. They correspond 
to different physical parameters of the robot: velocity, position, and acceleration 
(you can check the source code of MinitaurBulletEnv-v0 for details). The action 
space is eight numbers, which define the parameters of the motors. There are two 
in every leg (one in every knee). The reward of this environment is the distance 
travelled by the robot minus the energy spent.
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rl_book_samples/Chapter14$ ./01_check_env.py
[2018-02-05 15:02:14,305] Making new env: MinitaurBulletEnv-v0
pybullet build time: Feb 2 2018 08:30:15
...
Observation space: Box(28,)
Action space: Box(8,)
<TimeLimit<MinitaurBulletEnv<MinitaurBulletEnv-v0>>>
[ 1.47892781e+00 1.47092442e+00 1.47486159e+00 1.46795948e+00
 1.48735227e+00 1.49067837e+00 1.48767487e+00 1.48856073e+00
 1.22760518e+00 1.23364264e+00 1.23980635e+00 1.23808274e+00
 1.23863620e+00 1.20957165e+00 1.22914063e+00 1.21966631e+00
 5.27463590e-01 5.87924378e-01 5.56949063e-01 6.10125678e-01
 4.58817873e-01 4.37388898e-01 4.57652322e-01 4.52128593e-01
 -3.00935339e-03 1.04264007e-03 -2.26649036e-04 9.99994903e-01]
Press any key to exit

The Actor-Critic (A2C) method
The first method that we'll apply to our walking robot problem is A2C, which we 
experimented with in part three of the book. This choice of method is quite obvious, 
as A2C is very easy to adapt to the continuous action domain. As a quick refresher, 
A2C's idea is to estimate the gradient of our policy as 

∇J = ∇θ log πθ(a|s)(R− Vθ(s)). The πθ  policy is supposed to provide to us the 
probability distribution of actions given the observed state. The quantity Vθ(s) 
is called a critic, equals to the value of the state and is trained using the Mean 
Square Error (MSE) between the critic return and the value estimated by the 
Bellman equation. To improve exploration, the entropy bonus LH = πθ(s) log πθ(s) 
is usually added to the loss.

Obviously, the value head of the actor-critic will be unchanged for continuous 
actions. The only thing that is affected is the representation of the policy. In the 
discrete cases that we've seen, we had only one action with several mutually 
exclusive discrete values. For such a case, the obvious representation of the policy 
was the probability distribution over all actions. In a continuous case, we usually 
have several actions, each of which can take a value from some range. With that in 
mind, the simplest policy representation will be just those values returned for every 
action. These values should not be confused with the value of the state V(s), which 
means how many rewards we can get from the state. To illustrate the difference, let's 
imagine a simple car steering case, when we can only turn the wheel. The action at 
every moment will be the wheel angle (action value), but the value of every state will 
be the potential discounted reward from the state, which is a totally different thing.
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Returning to our action representation options, if you remember from Chapter 9, 
Policy Gradients – An Alternative, the representation of an action as a concrete value 
has different disadvantages, mostly related to the exploration of the environment. 
A much better choice will be something stochastic. The simplest alternative will be 
the network returning parameters of the Gaussian distribution. For N actions, it 
will be two vectors of size N. The first is the mean values µ and the second vector 
will contain variances σ2 . In that case, our policy will be represented as a random 
N-dimensional vector of uncorrelated, normally distributed random variables and 
our network can make a selection about the mean and the variance of every variable.

By definition, the probability density function of the Gaussian distribution is 
f(x|µ, σ2) = 1√

2πσ2
e−

(x−µ)2

2σ2

. We could directly use this formula to get the probabilities, 
but to improve numerical stability, it is worth doing some math and simplifying the 
expression for log πθ(a|s).

The final result will be this: log πθ(a|s) = − (x−µ)2

2σ2 − log
√
2πσ2 .

The entropy of the Gaussian distribution could be obtained using the differential 
entropy definition and will be ln

√
2πeσ2 . Now we have everything we need to 

implement the A2C method. Let's do it.

Implementation
The complete source code is in Chapter14/02_train_a2c.py, Chapter14/lib/
model.py and Chapter14/lib/common.py. Most of the code will already be familiar 
to you, so the following includes only the parts that differ. Let's start with the model 
class defined in Chapter14/lib/model.py.

HID_SIZE = 128

class ModelA2C(nn.Module):
    def __init__(self, obs_size, act_size):
        super(ModelA2C, self).__init__()

        self.base = nn.Sequential(
            nn.Linear(obs_size, HID_SIZE),
            nn.ReLU(),
        )
        self.mu = nn.Sequential(
            nn.Linear(HID_SIZE, act_size),
            nn.Tanh(),
        )
        self.var = nn.Sequential(
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            nn.Linear(HID_SIZE, act_size),
            nn.Softplus(),
        )
        self.value = nn.Linear(HID_SIZE, 1)

As you can see, our network has three heads, instead of the normal two for a discrete 
variant of A2C. The first two heads return the mean value and the variance of the 
actions, while the last is the critic head returning the value of the state. The mean 
value returned has an activation function of a hyperbolic tangent, which is the 
squashed output to the range of -1..1. The variance is transformed with the softplus 
activation function, which is log (1 + e x) and has the shape of a smoothed ReLU function. 
This activation helps to make our variance positive. The value head, as usual, has no 
activation function applied.

    def forward(self, x):
        base_out = self.base(x)
        return self.mu(base_out), self.var(base_out),  
self.value(base_out)

The transformation is obvious: we apply the common layer first, then we calculate 
individual heads.

class AgentA2C(ptan.agent.BaseAgent):
    def __init__(self, net, device="cpu"):
        self.net = net
        self.device = device 

    def __call__(self, states, agent_states):
        states_v = ptan.agent.float32_preprocessor(states).to(device)
        mu_v, var_v, _ = self.net(states_v)
        mu = mu_v.data.cpu().numpy()
        sigma = torch.sqrt(var_v).data.cpu().numpy()
        actions = np.random.normal(mu, sigma)
        actions = np.clip(actions, -1, 1)
        return actions, agent_states

The next step will be to implement the ptan agent class, which is used to convert the 
observation into actions. In the discrete case, we've used the ptan.agent.DQNAgent 
and ptan.agent.PolicyAgent classes, but for our problem, we need to write our 
own, which is not complicated: you just need to write a class, derived from ptan.
agent.BaseAgent and override the __call__ method, which needs to convert 
observations into actions.
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In the preceding class, we get the mean and the variance from the network and 
sample the normal distribution using NumPy functions. To prevent the actions 
from going outside of the environment's -1..1 bounds, we use np.clip, which 
replaces all values less than -1 with -1 and values more than 1 with 1. The agent_
states argument is not used, but needs to be returned with the chosen actions, 
as our BaseAgent supports keeping the state of the agent (it will become handy 
in the next section, when we'll need to implement a random exploration using 
the Ornstein-Uhlenbeck (OU) process).

With the model and the agent at hand, we can now go to the training process, 
defined in Chapter14/02_train_a2c.py. It consists of the training loop and two 
functions. The first is used to perform periodical tests of our model on the separate 
testing environment. As during the testing, we don't need to do any exploration, 
we'll just use the mean value returned by the model directly, without any random 
sampling. The testing function is as follows:

def test_net(net, env, count=10, device="cpu"):
    rewards = 0.0
    steps = 0
    for _ in range(count):
        obs = env.reset()
        while True:
            obs_v = ptan.agent.float32_preprocessor([obs]).to(device)
            mu_v = net(obs_v)[0]
            action = mu_v.squeeze(dim=0).data.cpu().numpy()
            obs, reward, done, _ = env.step(action)
            rewards += reward
            steps += 1
            if done:
                break
    return rewards / count, steps / count

The second function defined in the training module implements the calculation of the 
logarithm of the taken actions given the policy. The formula for this was given above 
and the function is a straightforward implementation of it. The only tiny difference 
is in using the torch.clamp() function to prevent the division on zero when the 
returned variance is too small.

def calc_logprob(mu_v, var_v, actions_v):
    p1 = - ((mu_v - actions_v) ** 2) / (2*var_v.clamp(min=1e-3))
    p2 = - torch.log(torch.sqrt(2 * math.pi * var_v))
    return p1 + p2
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The training loop, as usual, creates the network and the agent, then instantiates 
the two-step experience source and optimizer. The hyperparameters used are given 
as follows and weren't tweaked much, so there is plenty of room for optimization.

ENV_ID = "MinitaurBulletEnv-v0"
GAMMA = 0.99
REWARD_STEPS = 2
BATCH_SIZE = 32
LEARNING_RATE = 5e-5
ENTROPY_BETA = 1e-4

TEST_ITERS = 1000

The code used to perform the optimization step on the collected batch is very similar 
to the A2C training that we implemented in Chapter 10, The Actor-Critic Method, and 
Chapter 11, Asynchronous Advantage Actor - Critic. The difference is only in using our 
calc_logprob function and a different expression for the entropy bonus.

                states_v, actions_v, vals_ref_v = \
                    common.unpack_batch_a2c(batch, net,  
last_val_gamma=GAMMA ** REWARD_STEPS, device=device)
                batch.clear()

                optimizer.zero_grad()
                mu_v, var_v, value_v = net(states_v)

                loss_value_v = F.mse_loss(value_v, vals_ref_v)

                adv_v = vals_ref_v.unsqueeze(dim=-1) -  
value_v.detach()
                log_prob_v = adv_v * calc_logprob(mu_v,  
var_v, actions_v)
                loss_policy_v = -log_prob_v.mean()
                entropy_loss_v = ENTROPY_BETA * (-(torch.log(2*math.
pi*var_v) + 1)/2).mean()

                loss_v = loss_policy_v + entropy_loss_v + loss_value_v
                loss_v.backward()
                optimizer.step()

Every TEST_ITERS frames, testing of the model is performed and in the case of the 
best reward obtained, the model weights are saved.
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Results
In comparison to other methods that we'll take a look at in this chapter, A2C shows 
the worst results, both in terms of the best reward and convergence speed. That's 
likely because of the single environment used to gather experience, which is a weak 
point of the PG methods. So, you may want to check the effect of several (eight or 
more) parallel environments on A2C.

To start the training, you need to pass the -n argument with the run name, which 
will be used in TensorBoard and a new directory to save the models. The --cuda 
option enables GPU usage, but due to the small dimensionality of the input and tiny 
network size, it gives only a marginal increase in speed. The sample output from the 
training is shown as follows:

Chapter14$ ./02_train_a2c.py -n test
pybullet build time: Feb 2 2018 08:26:19
ModelA2C (
  (base): Sequential (
    (0): Linear (28 -> 128)
    (1): ReLU ()
  )
  (mu): Sequential (
    (0): Linear (128 -> 8)
    (1): Tanh ()
  )
  (var): Sequential (
    (0): Linear (128 -> 8)
    (1): Softplus (beta=1, threshold=20)
  )
  (value): Linear (128 -> 1)
)
Test done is 20.32 sec, reward -0.786, steps 443
122: done 1 episodes, mean reward -0.473, speed 5.69 f/s
1123: done 2 episodes, mean reward -2.560, speed 27.54 f/s
1209: done 3 episodes, mean reward -1.838, speed 176.22 f/s
1388: done 4 episodes, mean reward -1.549, speed 137.63 f/s
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After 13M of frames (almost two days), the training process has reached the best 
score of 1.188, which is not very impressive. Some of the tracked parameters are 
shown in the following diagram:

Figure 2: Training of the A2C agent on the Minitaur environment

The episode_steps chart shows the average count of steps performed in the episode 
before the end. The time limit of the environment is 1000 steps, so everything below 
that indicates that the episode was stopped due to environment checks (for most of 
the environments, these are checking for self-damage, which stops the simulation). 
The test_reward and test_steps charts show the mean reward and number of steps 
obtained during the testing.

Using models and recording videos
As we've seen before, the physical simulator can render the state of the environment, 
which makes it possible to see how our trained model behaves. To do that for our 
A2C models, there is a utility, Chapter14/03_play_a2c.py. Its logic is the same 
as in the test_net function, so its code is not shown here. To start it, you need to 
pass the -m option with the model file and -r with a directory name, which will be 
created to save the video. To render the image, PyBullet requires OpenGL, so to be 
able to record the video on a headless server, you need to use Xvfb: xvfb-run -s 
"-screen 0 640x480x24 +extension GLX" ./03_play_a2c.py -m model.dat 
-r dest-dir. There is a script that does this in Chapter14/adhoc/record_a2c.sh. 
For example, the best model that I got from A2C training produced this:

Chapter14$ ./adhoc/record_a2c.sh res/a2c-t1-long/a2c-t1/
best_+1.188_203000.dat a2c-res/

pybullet build time: Feb 2 2018 08:26:19

In 738 steps we got 1.261 reward

In the directory specified, there will be a recorded movie with the agent's activity.
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Deterministic policy gradients 
The next method that we'll take a look at is called deterministic policy gradients, 
which is a variation of the A2C method, but has a very nice property of being off-
policy. The following is my very relaxed interpretation of the strict proofs. If you are 
interested in understanding the core of this method deeply, you may always refer to 
the article by David Silver and others called Deterministic Policy Gradient Algorithms, 
published in 2014 and the paper by Timothy P. Lillicrap and others called Continuous 
Control with Deep Reinforcement Learning, published in 2015.

The simplest way to illustrate the method is by comparison with the already 
familiar A2C. In this method, the actor estimates the stochastic policy, which 
returns the probability distribution over discrete actions or, as we've just seen 
in the previous section, the parameters of normal distribution. In both cases, our 
policy was stochastic, so, in other words, our action taken was sampled from this 
distribution. Deterministic policy gradients also belong to the A2C family, but the 
policy is deterministic, which means that it directly provides us with the action to take 
from the state. This makes it possible to apply the chain rule to the Q-value, and by 
maximizing the Q, the policy will be improved as well. To understand this, let's look 
at how the actor and critic are connected in a continuous action domain.

Let's start with an actor, as it is the simpler of the two. What we want from it is the 
action to take for every given state. In a continuous action domain, every action is 
a number, so the actor network will take the state as an input and return N values, 
one for every action. This mapping will be deterministic, as the same network always 
returns the same output if the input is the same (we're not going to use DropOut or 
something similar, just an ordinary feed-forward network).

Now let's look at the critic. The role of the critic is to estimate the Q-value, which 
is a discounted reward of the action taken in some state. However, our action is 
a vector of numbers, so our critic net now accepts two inputs: the state and the 
action. The output from the critic will be the single number, which corresponds 
to the Q-value. This architecture is different from the DQN, when our action space 
was discrete and, for efficiency, we returned values for all actions in one pass. This 
mapping is also deterministic.

So, what do we have? We have two functions, one is the actor, let's call it µ(s), which 
converts the state into the action and the other is the critic, by the state and the action 
giving us the Q-value: Q(s, a). We can substitute the actor function into the critic and 
get the expression with only one input parameter of our state: Q(s, µ(s)). In the end, 
Neural Networks (NNs) are just functions.
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Now the output of the critic gives us the approximation of the entity we're interested 
in maximizing in the first place: the discounted total reward. This value depends 
not only on the input state, but also on parameters of the θµ  actor and the θQ  critic 
networks. At every step of our optimization, we want to change the actor's weights 
to improve the total reward that we want to get. In mathematical terms, we want the 
gradient of our policy.

In his deterministic policy gradient theorem, David Silver has proved that stochastic 
policy gradient is equivalent to the deterministic policy gradient. In other words, to 
improve the policy, we just need to calculate the gradient of the Q(s, µ(s)) function. 
By applying the chain rule, we get the gradient: ∇aQ(s, a)∇θµµ(s).

Note that, despite both the A2C and Deep Deterministic Policy Gradients (DDPG) 
methods belonging to the A2C family, the way that critic is used is different. In 
A2C, we used the critic as a baseline for a reward from the experienced trajectories, 
so the critic is an optional piece (without it, we'll get the REINFORCE method) and 
is used to improve the stability. This happens as policy in A2C is stochastic, which 
builds a barrier in our backpropagation capabilities (we have no way to differentiate 
the random sampling step). In DDPG, the critic was used in a different way. As our 
policy is deterministic, we can now calculate the gradients from Q, obtained from 
the critic up to the actor's weights, so the whole system is differentiable and could be 
optimized end-to-end with Stochastic Gradient Descent (SGD). To update the critic 
network, we can use the Bellman equation to find the approximation of Q(s, a) and 
minimize the MSE objective.

All this may look a bit cryptic, but behind it stands quite a simple idea: the critic is 
updated as we did in A2C and the actor is updated in a way to maximize the critic's 
output. The beauty of this method is that it is off-policy, which means that we can 
now have a huge replay buffer and other tricks that we've used in DQN training. 
Nice, right?

Exploration
The price we have to pay for all this goodness is that our policy is now deterministic, 
so we have to explore the environment somehow. We can do this by adding noise 
to the actions returned by the actor before we pass them to the environment. There 
are several options here. The simplest method is just to add the random noise to 
the µ(s) + εN  actions. We'll use this way of exploration in the next method that we 
will consider in the chapter. A fancier approach to the exploration will be to use the 
above-mentioned stochastical model, which is very popular in the financial world 
and other domains dealing with stochastic processes: OU processes.
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This process models the velocity of the massive Brownian particle under the 
influence of the friction and is defined by this stochastic differential equation: 
∂xt = θ(µ− xt)∂t+ σ∂W , where θ, µ, σ  are parameters of the process and Wt  is 
the Wiener process. In a discrete-time case, the OU process could be written as 
x t +1 = x t + θ(µ − x  ) +σNt . This equation expresses the next value generated 
by the process via the previous value of the noise, adding normal noise N . In our 
exploration, we'll add the value of the OU process to the action returned by the actor.

Implementation
This example consists of three source files: Chapter14/lib/model.py contains the 
model and the ptan agent, while Chapter14/lib/common.py has a function used 
to unpack the batch, and Chapter14/04_train_ddpg.py has a start up code and 
the training loop. Here we'll show only the significant pieces of the code.

The model consists of two separate networks for the actor and critic and follows the 
architecture from the paper, Continuous Control with Deep Reinforcement Learning. The 
actor is extremely simple and is feed-forward with two hidden layers. The input is 
an observation vector, while the output is a vector with N values, one for each action. 
The output actions are transformed with hyperbolic tangent non-linearity to squeeze 
the values to the -1..1 range.

The critic is a bit unusual, as it includes two separate paths for observation and 
the actions, and those paths are concatenated together to be transformed into the 
critic output of one number. The following is a diagram with the structures of both 
networks:
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Figure 3: DDPG actor and critic networks

The code for both classes is simple and straightforward:

class DDPGActor(nn.Module):
    def __init__(self, obs_size, act_size):
        super(DDPGActor, self).__init__()

        self.net = nn.Sequential(
            nn.Linear(obs_size, 400), nn.ReLU(),
            nn.Linear(400, 300), nn.ReLU(),
            nn.Linear(300, act_size), nn.Tanh()
        )

    def forward(self, x):
        return self.net(x)

class DDPGCritic(nn.Module):
    def __init__(self, obs_size, act_size):
        super(DDPGCritic, self).__init__()
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        self.obs_net = nn.Sequential(
            nn.Linear(obs_size, 400),
            nn.ReLU(),
        )

        self.out_net = nn.Sequential(
            nn.Linear(400 + act_size, 300), nn.ReLU(),
            nn.Linear(300, 1)
        )

    def forward(self, x, a):
        obs = self.obs_net(x)
        return self.out_net(torch.cat([obs, a], dim=1))

The forward() function of the critic first transforms the observations with its 
small network, then concatenates the output and given actions to transform them 
into one single value of Q. To use the actor network with the ptan experience 
source, we need to define the agent class that has to transform the observations 
into the actions. This class is the most convenient place to put our OU exploration 
process, but to do this properly, we should use the functionality of ptan agents 
that we haven't used so far: optional statefulness. The idea is simple: our agent 
transforms the observations into the actions, but what if it needs to remember 
something between the observations? All our examples have been stateless so far, 
but sometimes this is not enough. The issue with OU is that we have to track the 
OU values between the observations. Another very useful use case for stateful 
agents is Partially-Observable Markov Decision Process (POMDP), which we 
briefly mentioned in Chapter 13, Web Navigation. The POMDP is an MDP when the 
state observed by the agent doesn't comply to the Markov property and doesn't 
include the full information to distinguish one state from the another. In that case, 
our agent needs to track the state along the trajectory to be able to take the action.

So, the code for the agent that implements the OU for exploration is as follows:

class AgentDDPG(ptan.agent.BaseAgent):
    def __init__(self, net, device="cpu", ou_enabled=True, ou_mu=0.0, 
ou_teta=0.15, ou_sigma=0.2, ou_epsilon=1.0):
        self.net = net
        self.device = device 
        self.ou_enabled = ou_enabled
        self.ou_mu = ou_mu
        self.ou_teta = ou_teta
        self.ou_sigma = ou_sigma
        self.ou_epsilon = ou_epsilon
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The constructor accepts lots of parameters, most of which are the default values 
of OU taken from the paper of Timothy P. Lillycrap and others, 2015.

    def initial_state(self):
        return None

This method is derived from the BaseAgent class and has to return the initial state 
of the agent when a new episode is started. As our initial state has to have the same 
dimension as actions (we want to have individual exploration trajectories for every 
action of the environment), we postpone the initialization of the state until the  
__call__ method, as follows:

    def __call__(self, states, agent_states):
        states_v = ptan.agent.float32_preprocessor(states). 
to(self.device)
        mu_v = self.net(states_v)
        actions = mu_v.data.cpu().numpy()

This method is the core of the agent and the purpose of it is to convert the 
observed state and internal agent state into the action. As the first step, we convert 
the observations into the appropriate form and ask the actor network to convert 
them into deterministic actions. The rest of the method is for adding the exploration 
noise by applying the OU process.

        if self.ou_enabled and self.ou_epsilon > 0:
            new_a_states = []
            for a_state, action in zip(agent_states, actions):
                if a_state is None:
                    a_state = np.zeros(shape=action.shape,  
dtype=np.float32)
                a_state += self.ou_teta * (self.ou_mu - a_state)
                a_state += self.ou_sigma *  
np.random.normal(size=action.shape)

In this loop, we iterate over the batch of observations and the list of the agent states 
from the previous call and update the OU process value, which is a straightforward 
implementation of the preceding formula.

                action += self.ou_epsilon * a_state
                new_a_states.append(a_state)

To finalize the loop, we add the noise from the OU process to our actions and save 
the noise value for the next step.

        else:
            new_a_states = agent_states

        actions = np.clip(actions, -1, 1)
        return actions, new_a_states
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Finally, we clip the actions to enforce them to fall into the -1..1 range, otherwise 
PyBullet will throw an exception. The final piece of the DDPG implementation is the 
training loop in the Chapter14/04_train_ddpg.py file. To improve the stability, we 
use the replay buffer with 100k transitions and target networks for both the actor and 
the critic. We discussed both in Chapter 6, Deep Q-Networks.

    act_net = model.DDPGActor(env.observation_space.shape[0],  
env.action_space.shape[0]).to(device)
    crt_net = model.DDPGCritic(env.observation_space.shape[0],  
env.action_space.shape[0]).to(device)
    tgt_act_net = ptan.agent.TargetNet(act_net)
    tgt_crt_net = ptan.agent.TargetNet(crt_net)
    agent = model.AgentDDPG(act_net, device=device)
    exp_source = ptan.experience.ExperienceSourceFirstLast 
(env, agent, gamma=GAMMA, steps_count=1)
    buffer = ptan.experience.ExperienceReplayBuffer 
(exp_source, buffer_size=REPLAY_SIZE)
    act_opt = optim.Adam(act_net.parameters(), lr=LEARNING_RATE)
    crt_opt = optim.Adam(crt_net.parameters(), lr=LEARNING_RATE)

We also use two different optimizers to simplify the way that we handle gradients 
for the actor and the critic training steps. The most interesting code is inside the 
training loop. On every iteration, we store the experience into the replay buffer 
and sample the training batch.

                batch = buffer.sample(BATCH_SIZE)
                states_v, actions_v, rewards_v, dones_mask,  
last_states_v = \
                    common.unpack_batch_ddpg(batch, device=device)

Then two separate training steps are performed. To train the critic, we need to 
calculate the target Q-value using the one-step Bellman equation, with the target 
critic network as the approximation of the next state.

                # train critic
                crt_opt.zero_grad()
                q_v = crt_net(states_v, actions_v)
                last_act_v = tgt_act_net.target_model(last_states_v)
                q_last_v = tgt_crt_net.target_model(last_states_v, 
last_act_v)
                q_last_v[dones_mask] = 0.0
                q_ref_v = rewards_v.unsqueeze(dim=-1)  
+ q_last_v * GAMMA

When we've got the reference, we can calculate the MSE loss and ask the critic's 
optimizer to tweak the critic weights. The whole process is similar to the training 
we've done for DQN, so nothing is really new here.

                critic_loss_v = F.mse_loss(q_v, q_ref_v.detach())
                critic_loss_v.backward()
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                crt_opt.step()
                tb_tracker.track("loss_critic", critic_loss_v,  
frame_idx)
                tb_tracker.track("critic_ref", q_ref_v.mean(),  
frame_idx)

On the actor training step, we need to update the actor's weights in a direction 
that will increase the critic's output. As both the actor and critic are represented 
as differentiable functions, what we need to do is just pass the actor's output 
to the critic and then minimize the negated value returned by the critic.

                # train actor
                act_opt.zero_grad()
                cur_actions_v = act_net(states_v)
                actor_loss_v = -crt_net(states_v, cur_actions_v)
                actor_loss_v = actor_loss_v.mean()

This negated output of the critic could be used as a loss to backpropagate it 
to the critic network and, finally, the actor. We don't want to touch the critic's 
weights, so it's important to ask only the actor's optimizer to do the optimization 
step. The weights of the critic will still keep the gradients from this call, but they 
will be discarded on the next optimization step.

                actor_loss_v.backward()
                act_opt.step()
                tb_tracker.track("loss_actor", actor_loss_v,  
frame_idx)

As the last step of the training loop, we perform the target nets update in an unusual 
way. Previously, we synced the weights from the optimized network into the target 
every n-steps. In continuous action problems, such syncing works worse than so-
called soft sync. The soft sync is carried out on every step, but only a small ratio of the 
optimized network's weights are added to the target network. This makes a smooth 
and slow transition from old weight to the new ones.

                tgt_act_net.alpha_sync(alpha=1 - 1e-3)
                tgt_crt_net.alpha_sync(alpha=1 - 1e-3)

Results
The code could be started the same way as the A2C example: you need to pass 
the run name and optional --cuda flag. My experiments have shown ~30% speed 
increase from GPU, so, if you're in a hurry, using CUDA may be a good idea, but 
the increase is not that dramatic, as we've seen in case of Atari games.
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After 5M observations, which took about a day, the DDPG algorithm was able to 
reach the mean reward of 3.943 on 10 test episodes, which is an improvement over 
the A2C result. The training dynamics are shown as follows.

Figure 4: DDPG training dynamics

The episode_steps value shows the mean length of the episodes that we used for 
training. The critic loss is an MSE loss and it should be low, but the actor loss, as you 
will remember, is the negated critic's output, so the smaller it is, the better reward 
that the actor can (potentially) achieve. From the preceding charts, the training 
is not very stable and noisy.

Figure 5: Reward and tests during the training of DDPG

The last three charts from the same run include the mean reward from the training 
episodes and the testing runs values. These charts are also quite noisy.

Recording videos
To check the trained agent in action, we can record video the same way as we 
recorded it for the A2C agent. For DDPG, there is a separate tool, Chapter14/05_
play_ddpg.py, which is almost the same as for the A2C method, but just uses 
different classes for the actor. The result from my model is as follows:

rl_book_samples/Chapter14$ adhoc/record_ddpg.sh saves/ddpg-t5-simpler-
critic/best_+3.933_2484000.dat res/play-ddpg
pybullet build time: Feb 2 2018 08:26:19
In 1000 steps we got 5.346 reward
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Distributional policy gradients
As the last method of this chapter, we'll take a look at the very recent paper by 
Gabriel Barth-Maron, Matthew W. Hoffman, and others, called Distributional Policy 
Gradients, published in 2018. At the time of writing, this paper hasn't been uploaded 
to ArXiV yet, as it was only submitted for a review for the conference ICLR 2018. 
It is available at https://openreview.net/forum?id=SyZipzbCb.

The full name of the method is Distributed Distributional Deep Deterministic 
Policy Gradients or D4PG for short. The authors proposed several improvements 
to the DDPG method we've just seen to improve stability, convergence, and sample 
efficiency. 

First of all, they adapted the distributional representation of the Q-value proposed 
in the paper by Mark G.Bellemare, called A Distributional Perspective on Reinforcement 
Learning, published in 2017. We discussed this approach in Chapter 7, DQN 
Extensions, when we talked about DQN improvements, so refer to it or to the 
original paper for details. The core idea is to replace a single Q-value from the critic 
with a probability distribution. The Bellman equation is replaced with the Bellman 
operator, which transforms this distributional representation in a similar way.

The second improvement was the usage of the n-step Bellman equation, unrolling 
to speed up the convergence. We also discussed this in detail in Chapter 7, DQN 
Extensions. Another improvement versus the original DDPG method was the usage 
of the prioritized replay buffer instead of the uniformly-sampled buffer. So, strictly 
speaking, the authors took relevant improvements from the paper by Matteo Hassel 
and others, called Rainbow: Combining Improvements in Deep Reinforcement Learning, 
published in 2017, and adapted it to the DDPG method. The result was impressive: 
this combination showed the state-of-the-art results on the set of continuous control 
problems. Let's try to reimplement the method and check it ourselves.

Architecture
The most notable change is the critic's output. Instead of returning the single 
Q-value for the given state and the action, it now returns N_ATOMS values, 
corresponding to the probabilities of values from the pre-defined range. In my 
code, I've used N_ATOMS=51 and the distribution range of Vmin=-10 and Vmax=10, 
so the critic returned 51 numbers, representing the probabilities of the discounted 
reward to fall into bins with bounds in [-10, -9.6, -9.2, …, 9.6, 10].

Another difference between D4PG and DDPG is the exploration. DDPG used the 
OU process for the exploration, but according to D4PG authors, they tried both 
OU and adding simple random noise to the actions, and the result was the same. 
So, they used a simpler approach for the exploration in the paper.

https://openreview.net/forum?id=SyZipzbCb
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The last significant difference in the code will be related to the training, as D4PG uses 
cross-entropy loss to calculate the difference between two probability distributions: 
returned by the critic and obtained as a result of the Bellman operator. To make both 
distributions aligned to the same supporting atoms, distribution projection is used 
in the same way as in the original paper by Bellemare, and others, 2017.

Implementation
The complete source is in Chapter14/06_train_d4pg.py, Chapter14/lib/model.
py and Chapter14/lib/common.py. As before, we start with the model class. The 
actor class has exactly the same architecture, so during the training class, DDPGActor 
was used. The critic has the same size and count of the hidden layers, but the output 
is not a single number, but N_ATOMS.

class D4PGCritic(nn.Module):
    def __init__(self, obs_size, act_size, n_atoms, v_min, v_max):
        super(D4PGCritic, self).__init__()

        self.obs_net = nn.Sequential(
            nn.Linear(obs_size, 400),
            nn.ReLU(),
        )

        self.out_net = nn.Sequential(
            nn.Linear(400 + act_size, 300),
            nn.ReLU(),
            nn.Linear(300, n_atoms)
        )

        delta = (v_max - v_min) / (n_atoms - 1)
        self.register_buffer("supports", torch.arange 
(v_min, v_max+delta, delta))

We also create a helper PyTorch buffer with reward supports, which will be used 
to get from the probability distribution to the single mean Q-value.

    def forward(self, x, a):
        obs = self.obs_net(x)
        return self.out_net(torch.cat([obs, a], dim=1))

    def distr_to_q(self, distr):
        weights = F.softmax(distr, dim=1) * self.supports
        res = weights.sum(dim=1)
        return res.unsqueeze(dim=-1)
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As you can see, softmax is not the part of the network, as we're going to use the more 
stable log_softmax() function during the training. Due to this, softmax() needs to 
be applied when we want to get actual probabilities. The agent class is much simpler 
for D4PG and has no state to track.

class AgentD4PG(ptan.agent.BaseAgent):
    def __init__(self, net, device="cpu", epsilon=0.3):
        self.net = net
        self.device = device 
        self.epsilon = epsilon

    def __call__(self, states, agent_states):
        states_v = ptan.agent.float32_preprocessor(states).to(device)
        mu_v = self.net(states_v)
        actions = mu_v.data.cpu().numpy()
        actions += self.epsilon * np.random.normal(size=actions.shape)
        actions = np.clip(actions, -1, 1)
        return actions, agent_states

For every state to be converted to actions, the agent applies the actor network and 
adds the Gaussian noise to the actions, scaled by the epsilon value. In the training 
code, we have the hyperparameters shown as follows. I've used a smaller replay 
buffer of 100k and it worked fine (in the D4PG article the authors used 1M transitions 
in the buffer). The buffer was pre-populated with 10k samples from the environment, 
then the training started.

ENV_ID = "MinitaurBulletEnv-v0"
GAMMA = 0.99
BATCH_SIZE = 64
LEARNING_RATE = 1e-4
REPLAY_SIZE = 100000
REPLAY_INITIAL = 10000
REWARD_STEPS = 5

TEST_ITERS = 1000

Vmax = 10
Vmin = -10
N_ATOMS = 51
DELTA_Z = (Vmax - Vmin) / (N_ATOMS - 1)
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For every training loop, we perform the same two steps as before: we train the critic 
and the actor. The difference is in the way that the loss for the critic is calculated.

                batch = buffer.sample(BATCH_SIZE)
                states_v, actions_v, rewards_v, dones_mask,  
last_states_v = \
                    common.unpack_batch_ddpg(batch, device=device)

                # train critic
                crt_opt.zero_grad()
                crt_distr_v = crt_net(states_v, actions_v)
                last_act_v = tgt_act_net.target_model(last_states_v)
                last_distr_v = F.softmax(tgt_crt_net.target_
model(last_states_v, last_act_v), dim=1)

As the first step in the critic training, we ask it to return the probability distribution 
for states and actions taken. This probability distribution will be used as an input in 
the cross-entropy loss calculation. To get the target probability distribution, we need 
to calculate the distribution from the last states in the batch and then perform the 
Bellman projection of the distribution.

                proj_distr_v = distr_projection(last_distr_v, 
rewards_v, dones_mask, gamma=GAMMA**REWARD_STEPS, device=device)

This projection function is a bit complicated and will be explained after the training 
loop code. For now, it calculates the transformation of the last_states probability 
distribution, which is shifted according to the immediate reward and scaled to 
respect the discount factor. The result is the target probability distribution that we 
want our network to return. As there are no general cross-entropy loss functions in 
PyTorch, we calculate it manually, by multiplying the logarithm of input probability 
by the target probabilities.

                prob_dist_v = -F.log_softmax(crt_distr_v, dim=1) * 
proj_distr_v
                critic_loss_v = prob_dist_v.sum(dim=1).mean()
                critic_loss_v.backward()
                crt_opt.step()

The actor training is much simpler and the only difference from the DDPG method 
is the usage of the distr_to_q() function to convert from probability distribution 
to the single mean Q-value using support atoms.

                # train actor
                act_opt.zero_grad()
                cur_actions_v = act_net(states_v)
                crt_distr_v = crt_net(states_v, cur_actions_v)
                actor_loss_v = -crt_net.distr_to_q(crt_distr_v)
                actor_loss_v = actor_loss_v.mean()
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                actor_loss_v.backward()
                act_opt.step()
                tb_tracker.track("loss_actor", actor_loss_v,  
frame_idx)

Now comes the most complicated piece of code in D4PG implementation: the 
projection of the probability using the Bellman operator. It was already explained in 
Chapter 7, DQN Extensions, but the function is tricky, so let's do it again. The overall 
goal of the function is to calculate the result of the Bellman operator and project 
the resulting probability distribution to the same support atoms as the original 
distribution. The Bellman operator has a form of Z(x, a)

D
= R(x, a) + γZ(x′, a′) 

and it is supposed to transform the probability distribution.

def distr_projection(next_distr_v, rewards_v, dones_mask_t,  
gamma, device="cpu"):
    next_distr = next_distr_v.data.cpu().numpy()
    rewards = rewards_v.data.cpu().numpy()
    dones_mask = dones_mask_t.cpu().numpy().astype(np.bool)
    batch_size = len(rewards)
    proj_distr = np.zeros((batch_size, N_ATOMS), dtype=np.float32)

In the beginning, we convert the provided tensors to NumPy arrays and create 
an empty array for the resulting projected distribution.

    for atom in range(N_ATOMS):
        tz_j = np.minimum(Vmax, np.maximum(Vmin, rewards +  
(Vmin + atom * DELTA_Z) * gamma))

In the loop, we iterate over our atoms and as the first step, calculate the place that 
this atom will be projected to by the Bellman operator, taking into account the value 
range Vmin...Vmax.

        b_j = (tz_j - Vmin) / DELTA_Z

The preceding line calculates the index of the atom that this projected value belongs 
to. Of course, the value may fall between the atoms, so in that case, we project the 
value proportionally to both atoms.

        l = np.floor(b_j).astype(np.int64)
        u = np.ceil(b_j).astype(np.int64)
        eq_mask = u == l
        proj_distr[eq_mask, l[eq_mask]] += next_distr[eq_mask, atom]
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The preceding code handles the rare case when the project value lands exactly on 
the atom. In that case, we just add the value to the atom. Of course, we work with 
a batch, so some of the samples might comply to this case, but some might not. 
That's why we need to calculate the mask and filter with it.

        ne_mask = u != l
        proj_distr[ne_mask, l[ne_mask]] += next_distr[ne_mask, atom] * 
(u - b_j)[ne_mask]
        proj_distr[ne_mask, u[ne_mask]] += next_distr[ne_mask, atom] * 
(b_j - l)[ne_mask]

As the final step of the loop, we need to process the case when the projected value 
is somewhere between two atoms. In that case, we calculate the proportion and 
distribute the projected value among two atoms.

    if dones_mask.any():
        proj_distr[dones_mask] = 0.0
        tz_j = np.minimum(Vmax, np.maximum(Vmin, rewards[dones_mask]))
        b_j = (tz_j - Vmin) / DELTA_Z

In this branch, we handle the situation when the episode is over and our projected 
distribution will contain only one stripe corresponding to the atom of the reward that 
we've obtained. Here we do the same actions as before, but our source distribution 
is just reward.

        l = np.floor(b_j).astype(np.int64)
        u = np.ceil(b_j).astype(np.int64)
        eq_mask = u == l
        eq_dones = dones_mask.copy()
        eq_dones[dones_mask] = eq_mask
        if eq_dones.any():
            proj_distr[eq_dones, l] = 1.0
        ne_mask = u != l
        ne_dones = dones_mask.copy()
        ne_dones[dones_mask] = ne_mask
        if ne_dones.any():
            proj_distr[ne_dones, l] = (u - b_j)[ne_mask]
            proj_distr[ne_dones, u] = (b_j - l)[ne_mask]

At the end of the function, we pack the distribution into the PyTorch tensor and 
return it.

    return torch.FloatTensor(proj_distr).to(device) 
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Results
The method D4PG has shown the best result in both convergence speed and the 
reward obtained. In just five hours of training and less than 1M observations, 
it was able to reach the mean test reward of 12.799, which we can guess is close 
to the maximum in the environment. On the charts below are the dynamics for 
2M observations.

Figure 6: DDPG steps and losses during the training

Figure 7: DDPG reward during the training and test

From the charts it can be seen that the agent found the best policy and stopped 
converging after 1M of frames. To record the video of the model activity, you can 
use the same Chapter14/05_play_ddpg.py utility, as the actor's architecture is 
exactly the same. The best video I've got from the trained model can be found here: 
https://youtu.be/BMt40odLfyk.

https://youtu.be/BMt40odLfyk
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Things to try
Here is a list of things you can do to improve your understanding of the topic:

1.	 In the D4PG code, I used a simple replay buffer, which was enough to 
get good an improvement over DDPG. You can try to switch the example 
to the prioritized replay buffer in the same way as we did in Chapter 7, 
DQN Extensions, and check the effect.

2.	 There are lots of interesting and challenging environments around. For 
example, you can start with other PyBullet environments, but there is 
also DeepMind Control Suite (there was a paper about it published at 
the beginning of 2018, comparing the A3C, DDPG, and D4PG methods), 
MuJoCo-based environments in Gym and lots of others.

3.	 You can request the trial license of MuJoCo and compare its stability, 
performance and resulting policy with PyBullet.

4.	 Play with the very challenging Learning how to run competition from  
NIPS-2017, where you are given a simulator of the human body and  
your agent needs to figure out how to move it around.

Summary
In this chapter, we quickly skimmed through a very interesting domain of 
continuous control, using RL methods and checked three different algorithms on 
one problem of a four-legged robot. In our training, we used an emulator, but there 
are real models of this robot made by the Ghost Robotics company (you can check 
out the cool video on YouTube: https://youtu.be/bnKOeMoibLg).

We applied three training methods to this environment: A2C, DDPG, and D4PG 
(which has shown the best results). In the next chapter, we'll continue exploring 
the continuous action domain and will check a different set of improvements:  
trust region.

https://youtu.be/bnKOeMoibLg
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Trust Regions – TRPO,  
PPO, and ACKTR

In this chapter, we'll take a look at the approaches used to improve the stability of 
the stochastic policy gradient method. Some attempts have been made to make the 
policy improvement more stable and we'll focus on three methods: Proximal Policy 
Optimization (PPO), Trust Region Policy Optimization (TRPO) and Actor-Critic 
(A2C) using Kronecker-Factored Trust Region (ACKTR).

To compare them to the A2C baseline, we'll use several environments from the 
roboschool library created by OpenAI. 

Introduction
The overall motivation of the methods that we'll take a look at is to improve the 
stability of the policy update during the training. Intuitively, there is a dilemma: 
on the one hand, we'd like to train as fast as we can, making large steps during 
the Stochastic Gradient Descent (SGD) update. On the other hand, a large update 
of the policy is usually a bad idea, as our policy is a very nonlinear thing, so a large 
update can ruin the policy we've just learned. Things can become even worse in 
the RL landscape, as making a bad update of the policy once won't be recovered 
by subsequent updates. Instead, the bad policy will bring us bad experience samples 
that we'll use on subsequent training steps, which could break our policy completely. 
Thus, we want to avoid making large updates by all means possible. One of the naive 
solutions would be to use a small learning rate to make baby steps during the SGD, 
but this would significantly slow down the convergence.

To break this vicious circle, several attempts have been made by researchers to estimate 
the effect that our policy update is going to have in terms of the future outcome. Of 
course, this is a very handwavy explanation, but it can help us to understand the idea, 
which could be helpful, as those methods are quite math-heavy (especially TRPO).
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Roboschool
To experiment with the methods in this chapter, we'll use roboschool, which uses 
PyBullet as a physics engine and has 13 environments of various complexity. 
PyBullet has similar environments, but at the time of writing it wasn't possible 
to create several instances of the same environment due to internal OpenGL issue. 
In this chapter, we'll get in touch with two problems: RoboschoolHalfCheetah-v1, 
which models a two-legged creature and RoboschoolAnt-v1, which has four legs. 
The state and action spaces of them are very similar to the Minitaur environment 
that we saw in the previous chapter: the state includes characteristics from joints and 
actions are activations of those joints. The goal for both is to move as far as possible, 
minimizing the energy spent.

Figure 1: Screenshots of two roboschool environments: RoboschoolHalfCheetah and RoboschoolAnt

To install roboschool, you need to follow the instructions on https://github.com/
openai/roboschool. This requires extra components to be installed in the system 
and a modified PyBullet to be built and used. After the installation of roboschool, 
you should be able to use import roboschool in your code to get access to the new 
environments.

Installation may not be very easy and smooth, and in my case exporting the  
PKG_CONFIG_PATH variable with the directory name python-3.6.pc was required. 
The full command was:

export PKG_CONFIG_PATH=/home/shmuma/anaconda3/envs/rl_book_samples-0.4.0/
lib/pkgconfig/

After this, the last step of roboschool installation went without issues.

https://github.com/openai/roboschool
https://github.com/openai/roboschool
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A2C baseline
To establish the baseline results, we'll use the A2C method, in a very similar way 
to the code in the previous chapter. The complete source is in files Chapter15/01_
train_a2c.py and Chapter15/lib/model.py. There are a few differences between 
this baseline and version we've used in the previous chapter. First of all, there are 
16 parallel environments used to gather the experience during the training. The 
second difference is the model structure and the way that we perform exploration. 
To illustrate them, let's look at the model and the agent classes.

Both the actor and critic are placed in the separate networks without sharing 
weights. They follow the approach used in the previous chapter, when our critic 
estimates the mean and the variance for the actions, but now, variance is not 
a separate head of the base network, but just a single parameter of the model. 
This parameter will be adjusted during the training by SGD, but it doesn't depend 
on the observation.

HID_SIZE = 64

class ModelActor(nn.Module):
    def __init__(self, obs_size, act_size):
        super(ModelActor, self).__init__()

        self.mu = nn.Sequential(
            nn.Linear(obs_size, HID_SIZE),
            nn.Tanh(),
            nn.Linear(HID_SIZE, HID_SIZE),
            nn.Tanh(),
            nn.Linear(HID_SIZE, act_size),
            nn.Tanh(),
        )
        self.logstd = nn.Parameter(torch.zeros(act_size))

    def forward(self, x):
        return self.mu(x)
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The actor network has two hidden layers of 64 neurons each with tanh nonlinearity. 
The variance is modeled as a separate network parameter and is interpreted as 
a logarithm of the standard deviation.

class ModelCritic(nn.Module):
    def __init__(self, obs_size):
        super(ModelCritic, self).__init__()

        self.value = nn.Sequential(
            nn.Linear(obs_size, HID_SIZE),
            nn.ReLU(),
            nn.Linear(HID_SIZE, HID_SIZE),
            nn.ReLU(),
            nn.Linear(HID_SIZE, 1),
        )

    def forward(self, x):
        return self.value(x)

The critic network also has two hidden layers of the same size with one single 
output value, which is the estimation of V(s), which is a discounted value of the state.

class AgentA2C(ptan.agent.BaseAgent):
    def __init__(self, net, device="cpu"):
        self.net = net
        self.device = device 

    def __call__(self, states, agent_states):
        states_v = ptan.agent.float32_preprocessor(states).to 
(self.device)

        mu_v = self.net(states_v)
        mu = mu_v.data.cpu().numpy()
        logstd = self.net.logstd.data.cpu().numpy()
        actions = mu + np.exp(logstd) * np.random.normal 
(size=logstd.shape)
        actions = np.clip(actions, -1, 1)
        return actions, agent_states

The agent which converts the state into the action also works by simply obtaining the 
predicted mean from the state and applying the noise with variance, dictated by the 
current value of the logstd parameter.
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Results
By default, the RoboschoolHalfCheetah-v1 environment is used, but to change 
it you can pass the -e argument with the desired environment ID. Following is 
the chart with smoothed total reward obtained from the training environments 
(plot reward_100), averaged test score (from 10 tests) and episode length during 
the training on the HalfCheetah environment.

Figure 2: A2C convergence on HalfCheetah

This problem has a local minimum of policy, with ~700 score reward, when the 
model stands still, keeping the balance for 1000 steps. To obtain a larger reward, 
it needs to find out that running forward can give a larger reward, which took 
it almost 6M observations. The total training time is 15 hours.

RoboschoolAnt-v1 is slower, due to a longer simulation process, so it's likely that yet 
another day of training will be able to improve the policy. However, the charts are 
enough to get the idea of convergence stability and performance.

Figure 3: A2C convergence on Ant
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Videos recording
As usual, there is a utility which can benchmark the trained model and record 
a video with the agent in action. It is in file Chapter15/02_play.py and can 
accept any model from the methods present in this chapter (as actor network  
is the same in all methods). You can also change the environment name using  
the -e command option.

Proximal Policy Optimization
Historically, this method came from the OpenAI team and was proposed long after 
TRPO (which is from 2015), but PPO is much simpler than TRPO, so we'll start from 
it. The paper in which it was proposed is by John Schulman et al and called Proximal 
Policy Optimization Algorithms, published in 2017 (arXiv:1707.06347).

The core improvement over the classical Asynchronous Advantage Actor-Critic 
(A3C) method is to change the expression used to estimate the PG. Instead of 
the gradient of logarithm probability of the action taken, the PPO method uses 
a different objective: the ratio between the new and the old policy scaled by the 
advantages.

In math form, the old A3C objective could be written as Jθ = Et[∇θ log πθ(at|st)At] . 
The new objective proposed by the PPO is Jθ = Et[

πθ(at|st)
πθold

(at|st)At]. The reason behind 
changing the objective is the same as for the cross-entropy method from Chapter 4, 
The Cross-Entropy Method: importance sampling. However, if we just start to blindly 
maximize this value, it may lead to a very large update to the policy weights. To 
limit the update, the clipped objective is used. If we write the ratio between the 
new and the old policy as rt(θ) = πθ(at|st)

πθold
(at|st)  the clipped objective could be written as 

Jclip
θ = Et[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)]. This objective limits the ratio between the 

old and the new policy to be in the interval [1− ε, 1 + ε], so by varying ε we can limit 
the size of the update.

Another difference from the A3C method is the way that we estimate the advantage. 
In the A3C paper, the advantage obtained from the finite-horizon estimation 
of T steps is in the form: At = −V (st) + rt + γrt+1 + . . .+ γT−t+1rT−1 + γT−tV (sT ). 
In the PPO paper, the authors used more general estimation in the 
form of, At = σt + (γλ)σt+1 + (γλ)2σt+2 + . . .+ (γλ)T−t+1σT−1 where 
σt = rt + γV (st+1)− V (st). The original A3C estimation is a special case of 
the proposed method with λ = 1.

The PPO method also uses a slightly different training procedure, when a long 
sequence of samples is obtained from the environment and then advantage is 
estimated for the whole sequence, before several epochs of training are performed.
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Implementation
The code of the sample is placed in two source code files: Chapter15/04_train_
ppo.py and Chapter15/lib/model.py. The actor, the critic and the agent classes 
are exactly the same as we had in the A2C baseline. The differences are in the 
training procedure and the way that we calculate advantages, but let's start 
with hyperparameters.

ENV_ID = "RoboschoolHalfCheetah-v1"
GAMMA = 0.99
GAE_LAMBDA = 0.95

The value of GAMMA is already familiar, but GAE_LAMBDA is the new constant which 
specifies the lambda factor in the advantage estimator. The value of 0.95 was used 
in the PPO paper.

TRAJECTORY_SIZE = 2049
LEARNING_RATE_ACTOR = 1e-4
LEARNING_RATE_CRITIC = 1e-3

The method assumes that a large amount of transitions will be obtained from the 
environment for every subiteration (as mentioned in the previous section about PPO, 
during training it does several epochs over the sampled training batch). We also use 
two different optimizers for the actor and the critic (as they have no shared weights).

PPO_EPS = 0.2
PPO_EPOCHES = 10
PPO_BATCH_SIZE = 64

For every batch of TRAJECTORY_SIZE samples we perform PPO_EPOCHES iterations 
of PPO objective, with minibatches of 64 samples. The value PPO_EPS specifies the 
clipping value for the ratio of the new and the old policy.

TEST_ITERS = 1000

For every 1k observations obtained from the environment, we perform a test of 
10 episodes to obtain the total reward and count of steps for the current policy. The 
function below takes the trajectory with steps and calculates advantages for the actor 
and reference values for the critic training. Our trajectory is not a single episode but 
can be several episodes concatenated together.

def calc_adv_ref(trajectory, net_crt, states_v, device="cpu"):
    values_v = net_crt(states_v)
    values = values_v.squeeze().data.cpu().numpy()
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As the first step, we ask the critic to convert states into values.

    last_gae = 0.0
    result_adv = []
    result_ref = []
    for val, next_val, (exp,) in zip(reversed(values[:-1]), 
reversed(values[1:]), reversed(trajectory[:-1])):

This loop joins the values obtained and experience points. For every trajectory step, 
we need the current value (obtained from the current state) and the value for the 
next subsequent step (to perform the estimation using the Bellman equation). We 
also traverse the trajectory in the reverse order, to be able to calculate more recent 
values of the advantage in one step.

        if exp.done:
            delta = exp.reward - val
            last_gae = delta
        else:
            delta = exp.reward + GAMMA * next_val - val
            last_gae = delta + GAMMA * GAE_LAMBDA * last_gae

On every step, our action depends on the done flag for this step. If this is a terminal 
step of the episode, we have no prior reward to take into account (remember, we're 
processing trajectory in the reverse order). So, our value of delta on this step is just 
immediate reward minus the value predicted for the step. If the current step is not 
terminal, the delta will be equal to the immediate reward plus the discounted value 
from the subsequent step, minus the value for the current step. In the classic A3C 
method, this delta was used as an advantage estimation, but here, the smoothed 
version is used, so the advantage estimation (tracked in the last_gae variable) 
is calculated as the sum of deltas with discount factor γλ.

        result_adv.append(last_gae)
        result_ref.append(last_gae + val)

The goal of the function is to calculate advantages and reference values for the critic, 
so we save them in lists.

    adv_v = torch.FloatTensor(list(reversed(result_adv))).to(device)
    ref_v = torch.FloatTensor(list(reversed(result_ref))).to(device)
    return adv_v, ref_v
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In the training loop, we gather the trajectory of the desired size using 
ExperienceSource(steps_count=1) class from the PTAN library. With such 
configuration, it provides us with individual steps from the environment in tuples 
(state, action, reward, done).

            trajectory.append(exp)
            if len(trajectory) < TRAJECTORY_SIZE:
                continue

            traj_states = [t[0].state for t in trajectory]
            traj_actions = [t[0].action for t in trajectory]
            traj_states_v = torch.FloatTensor(traj_states).to(device)
            traj_actions_v = torch.FloatTensor(traj_actions).
to(device)
            traj_adv_v, traj_ref_v = calc_adv_ref(trajectory,  
net_crt, device=device)

When we've got trajectory large enough for training (which is given by the 
TRAJECTORY_SIZE hyperparameter above), we convert states and taken actions into 
tensors and use the already-described function to obtain advantages and reference 
values. Despite the fact that our trajectory is quite long, the observations of our test 
environments are quite short, so it's fine to process our batch in one step. In the case 
of Atari frames, such a batch could cause a GPU memory error.

In the next step, we calculate the logarithm of probability of the actions taken. This 
value will be used as πθold  in the objective of PPO. Additionally, we normalize the 
advantage's mean and variance to improve the training stability.

            mu_v = net_act(traj_states_v)
            old_logprob_v = calc_logprob(mu_v, net_act.logstd,  
traj_actions_v)
            traj_adv_v = (traj_adv_v - torch.mean(traj_adv_v)) / 
torch.std(traj_adv_v)

Two subsequent lines drop the last entry from the trajectory, to reflect the fact that 
our advantages and reference values are one step shorter than the trajectory length 
(as we shifted values in the loop inside the calc_adv_ref function).

            trajectory = trajectory[:-1]
            old_logprob_v = old_logprob_v[:-1].detach()
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When all the preparations have been done, we perform several epoches of training 
on our trajectory. For every batch, we extract the portions from the corresponding 
arrays and do the critic and the actor training separately.

            for epoch in range(PPO_EPOCHES):
                for batch_ofs in range(0, len(trajectory), PPO_BATCH_
SIZE):
                    states_v = traj_states_v[batch_ofs:batch_ofs + 
PPO_BATCH_SIZE]
                    actions_v = traj_actions_v[batch_ofs:batch_ofs + 
PPO_BATCH_SIZE]
                    batch_adv_v = traj_adv_v[batch_ofs:batch_ofs + 
PPO_BATCH_SIZE].unsqueeze(-1)
                    batch_ref_v = traj_ref_v[batch_ofs:batch_ofs + 
PPO_BATCH_SIZE]
                    batch_old_logprob_v = old_logprob_v[batch_
ofs:batch_ofs + PPO_BATCH_SIZE]

To train the critic, all we need to do is to calculate the Mean Squared Error (MSE) 
loss with the reference values calculated beforehand.

                    opt_crt.zero_grad()
                    value_v = net_crt(states_v)
                    loss_value_v = F.mse_loss(value_v.squeeze(-1), 
batch_ref_v)
                    loss_value_v.backward()
                    opt_crt.step()

In the actor training, we minimize the negated clipped objective:

Et[min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At)], where rt(θ) =
πθ(at|st)

πθold
(at|st) . The lines following  

is a straightforward implementation of this formula.

                    opt_act.zero_grad()
                    mu_v = net_act(states_v)
                    logprob_pi_v = calc_logprob(mu_v, net_act.logstd, 
actions_v)
                    ratio_v = torch.exp(logprob_pi_v - batch_old_
logprob_v)
                    surr_obj_v = batch_adv_v * ratio_v
                    clipped_surr_v = batch_adv_v * torch.
clamp(ratio_v, 1.0 - PPO_EPS, 1.0 + PPO_EPS)
                    loss_policy_v = -torch.min(surr_obj_v, clipped_
surr_v).mean()
                    loss_policy_v.backward()
                    opt_act.step()
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Results
Trained on both our test environments, the PPO method has shown a major 
improvement over the A2C method. The following charts shows the training 
progress on the RoboschoolHalfCheetah-v1 environment, when the methods were 
able to reach a 1k score after just two hours of training and 1.3M observations, which 
is much better than A2C with 10M observations and 15 hours to get the same result. 
The peak reward that the agent was able to obtain after 10 hours of training was 
more than 2600 and it looks like it can do better, as just some tweaks like learning 
rate (LR) decay are required.

Figure 4: PPO convergence on HalfCheetah

On the RobochoolAnt-v1, the reward increase was also almost linear and during  
the 20 hours the max test reward was 1848, which is also an improvement over  
the A2C method.

Figure 5: PPO on the Ant environment
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Trust Region Policy Optimization
TRPO was proposed in 2015 by the Berkeley researchers in the paper by John 
Schulman et al called Trust Region Policy Optimization (arXiv:1502.05477). This 
paper was a step towards improving the stability and consistency of the stochastic 
policy gradient optimization and has shown good results on various control tasks.

Unfortunately, the paper and the method are quite math-heavy, so it can be 
hard to understand the details of the method. The same could be said about the 
implementation, which uses the conjugate gradients method to efficiently solve 
the constrained optimization problem.

As the first step, the TRPO method defines the discounted visitation frequencies 
of the state: ρπ(s) = P (s0 = s) + γP (s1 = s) + γ2P (s2 = s) + . . .. In this equation, 
P (si = s) equals to the sampled probability of state s to be met at position i 
of the sampled trajectories. Then, TRPO defines the optimization objective as 
Lπ(π̃) = η(π) +

∑
s ρπ(s)

∑
a π̃(a|s)Aπ(s, a) where η(π) = E[

∑∞
t=0 γ

tr(st)] is the expected 
discount reward of the policy and π̃ = argmaxa Aπ(s, a) defines the deterministic 
policy.

To address the issue with large policy updates, TRPO defines the additional 
constraint on the policy update, expressed as a maximum Kullback-Leibler (KL)-
divergence between the old and the new policies, which could be written  
as D̄

ρθold

KL (θold, θ) ≤ δ .

Implementation
Most of the TRPO implementations available on GitHub, or other open-source 
repositories, are very similar to each other, probably because all of them grew from 
the original John Schulman TRPO implementation here https://github.com/
joschu/modular_rl. My version of TRPO is also not very different and uses the 
core functions implementing the conjugate gradient method (used by TRPO to solve 
the constrained optimization problem) from this repository: https://github.com/
ikostrikov/pytorch-trpo.

The complete example is in Chapter15/03_train_trpo.py and Chapter15/lib/
trpo.py and the training loop is very similar to the PPO example: we sample 
the trajectory of transitions of the predefined length and calculate the advantage 
estimation using the smoothed formula given in the PPO section (historically, this 
estimator was proposed first in the TRPO paper). Next, we do one training step 
of the critic using MSE loss with the calculated reference value and one step of the 
TRPO update, which consists of finding the direction we should go by using the 
conjugate gradients method and doing a linear search along this direction to find 
a step which preserves the desired KL-divergence.

https://github.com/joschu/modular_rl
https://github.com/joschu/modular_rl
https://github.com/ikostrikov/pytorch-trpo
https://github.com/ikostrikov/pytorch-trpo
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Following is the piece of the training loop which carries out both those steps:

            # critic step
            opt_crt.zero_grad()
            value_v = net_crt(traj_states_v)
            loss_value_v = F.mse_loss(value_v.squeeze(-1), traj_ref_v)
            loss_value_v.backward()
            opt_crt.step()

To perform the TRPO step, we need to provide two functions: the first will calculate 
the loss of the current actor policy, which uses the same ratio as in PPO of the new 
and the old policies multiplied by the advantage estimation. The second function 
has to calculate KL-divergence between the old and the current policy.

            # actor step
            def get_loss():
                mu_v = net_act(traj_states_v)
                logprob_v = calc_logprob(mu_v, net_act.logstd, traj_
actions_v)
                action_loss_v = -traj_adv_v.unsqueeze(dim=-1) * torch.
exp(logprob_v - old_logprob_v)
                return action_loss_v.mean()

            def get_kl():
                mu_v = net_act(traj_states_v)
                logstd_v = net_act.logstd
                mu0_v = mu_v.detach()
                logstd0_v = logstd_v.detach()
                std_v = torch.exp(logstd_v)
                std0_v = std_v.detach()
                kl = logstd_v - logstd0_v + (std0_v ** 2 +  
((mu0_v - mu_v) ** 2) / (2.0 * std_v ** 2)) - 0.5
                return kl.sum(1, keepdim=True)

            trpo.trpo_step(net_act, get_loss, get_kl, TRPO_MAX_KL, 
TRPO_DAMPING, device=device)

In other words, the PPO method is the TRPO which uses the simple clipping of the 
policy ratio to limit the policy update, instead of the complicated conjugate gradients 
and line search.
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Results
From my experiments, TRPO has shown better results than the A2C baseline, but 
behaved worse than PPO. Very likely that is just due to untuned copy-pasted TRPO 
low-level machinery.

On the HalfCheetah test, TRPO was able to reach 1k reward after 5M observations 
and eight hours of training. In 13M observations it doubled the reward, which took 
it almost a day of working.

Figure 6: TRPO on the HalfCheetah environment

Training on the RoboschoolAnt-v1 was much less successful. After three hours and 
1.5M steps, the agent got a reward of 700, but then the training process diverged.

Figure 7: TRPO on the Ant environment

A2C using ACKTR
The third method that we'll compare uses a different approach to address SGD 
stability. In the paper by Yuhuai Wu and others called Scalable Trust-Region Method 
for Deep Reinforcement Learning Using Kronecker-Factored Approximation published 
in 2017 (arXiv:1708.05144), the authors combined the second-order optimization 
methods and trust region approach.
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The idea of the second-order methods is to improve the traditional SGD by taking 
the second-order derivatives of the optimized function (in other words, its curvature) 
to improve the convergence of the optimization process. To make things more 
complicated, working with the second derivatives usually requires you to build 
and invert a Hessian matrix, which can be prohibitively large, so the practical 
methods typically approximate it in some way. This area is currently very active 
in research, as developing robust, scalable optimization methods is very important 
for the whole machine learning domain.

One of the second-order methods is called Kronecker-factored approximation 
(usually abbreviated as KFAC) which was proposed by James Martens and Roger 
Grosse in their paper Optimizing Neural Networks with Kronecker-Factored Approximate 
Curvature, published in 2015. However, a detailed description of this method is well 
beyond the scope of this book.

Implementation
As the KFAC method is quite recent, there is no optimizer for implementing this 
method included in PyTorch. The only available PyTorch prototype is from Ilya 
Kostrikov and available here: https://github.com/ikostrikov/pytorch-a2c-
ppo-acktr. There is another version of KFAC for TensorFlow, which comes with 
OpenAI Baselines, but porting and testing it on PyTorch can be a hard thing to do.

For my experiments, I've taken the KFAC from the link above and adopted it 
to the existing code, which required replacing the optimizer and doing an extra 
backward() call to gather Fisher information. The critic was trained the same way 
as in A2C.

The complete example is in Chapter15/05_train_acktr.py and is not shown  
here, as it's basically the same as A2C. The only difference is that a different 
optimizer was used.

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
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Results
On the RoboschoolAnt-v1 environment, the ACKTR method has shown better results 
than A2C, but worse than PPO. Of course, those results have to be taken with a grain 
of salt, as I haven't done much hyperparameters tuning here (which is left to the 
reader as an exercise) and the results can depend on the actual environment, so 
normally it's good practice to try different methods on your task at hand.

Figure 8: ACKTR on HalfCheetah

On the HalfCheetah environment, ACKTR behaved much less stably and was able 
to reach only a reward of 1k.

Figure 9: ACKTR on Ant

Summary
In this chapter, we've checked three different methods aiming to improve the 
stability of the stochastic policy gradient and compared them to A2C implementation 
on two continuous control problems. With methods from the previous chapter 
(DDPG and D4PG), they create basic tools to work with a continuous control 
domain.

In the next chapter, we'll switch to a different set of RL methods that have been 
becoming popular recently: black-box or gradient-free methods.
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Black-Box Optimization in RL
In this chapter, we'll again change our perspective on Reinforcement Learning (RL) 
training and will switch to the so-called black-box optimizations, in particular the 
evolution strategies and genetic algorithms. These methods are at least a decade old, 
but recently several research studies were conducted, which showed the applicability 
of the methods to large-scale RL problems and their competitiveness with the value 
iteration and Policy Gradient (PG) methods.

Black-box methods
In the beginning, let's discuss the whole family of methods and how they differ 
from what we've seen so far. Black-box optimization methods are the general 
approach to the optimization problem, when you treat the objective that you're 
optimizing as a black box, without any assumption about the differentiability, 
value function, smoothness of the objective, and so on. The only requirement that 
those methods expose is the ability to calculate the fitness function, which should 
give us the measure of suitability of a particular instance of the optimized entity 
at hand.

One of the simplest examples of the method in this family is random search, 
which is when you randomly sample the thing you're looking for (in the case 
of RL it's the policy π(a|s)), then you check the fitness of this candidate, and if 
the result is good enough (according to some reward criteria), then you're done. 
Otherwise, you repeat the process again and again. Despite the simplicity and 
even naivety of this approach, especially in respect to the sophisticated methods 
that we've seen so far, this is a good example to illustrate the idea of the black-box 
methods. Furthermore, with some modifications, as we'll see shortly, this simple 
approach can be compared in terms of efficiency and the quality of the resulting 
policies to the Deep Q-Network (DQN) and PG methods.
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Black-box methods have several very appealing properties:

1.	 They are at least two times faster than gradient-based methods, as we 
don't need to perform the backpropagation step to obtain the gradients.

2.	 There are very few assumptions about the optimized objective and the 
policy, which is treated as a black box. Traditional methods struggle with 
situations when your reward function is non-smooth or the policy contains 
steps with random choice. All of this is not an issue for black-box methods, 
as they don't expect much from the black-box internals.

3.	 The methods can generally be parallelized very well. For example, the above-
mentioned random search can easily scale up to thousands of CPUs or GPUs 
working in parallel, without any dependency on each other. It's not the case 
for DQN or PG, when you need to accumulate gradients and propagate the 
current policy to all parallel workers, which decreases the parallelism.

The downside of the above is usually lower sample efficiency. In particular, the naive 
random search of the policy, parameterized with the Neural Network (NN) with 
half a million parameters, has very low probability to succeed. In this chapter, we'll 
discuss two approaches which were able to greatly improve the applicability of the 
black-box method in the domain of complex RL problems.

Evolution strategies
The subset of black-box optimization methods is called evolution strategies 
(ES) and has been inspired by the evolution process, where the most successful 
individuals have the highest influence on the overall direction of the search. There 
are many different methods that fall into this class and in this chapter, we'll consider 
the approach taken by OpenAI researchers Tim Salimans, Jonathan Ho, and others 
in their paper, Evolution Strategies as a Scalable Alternative to Reinforcement Learning [1], 
published in March 2017.

The underlying idea of ES methods is simple: on every iteration, we perform 
random perturbation of our current policy parameters and evaluate the resulting 
policy fitness function. Then we adjust the policy weights proportional to the 
relative fitness function value.
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The concrete method used in the paper above is called Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES) in which the perturbation performed 
is the random noise sampled from the zero-mean, identity variance normal 
distribution. Then we calculate the fitness function of the policy with weights equal 
to the weights of the original policy plus the scaled noise. Next, according to the 
obtained value, we adjust the original policy weights by adding the noise multiplied 
by the fitness function value, which moves our policy toward weights with a higher 
value of the fitness function. To improve the stability, the update of the weights 
is performed by averaging the batch of such steps with different random noise.

More formally, the method above could be expressed as this sequence of steps:

1.	 Initialize learning rate α, noise standard deviation σ , and initial policy 
parameters θ0 .

2.	 For t = 0, 1, 2, ... perform:

1.	 The sample batch of noise with a shape of the weights 
ε1, . . . , εn ∼ N (0, I).

2.	 Compute returns Fi = F (θt + σεi) for i = 1, . . . , n.
3.	 θt+1 ← θt + α 1

nσ

∑n
i=1 Fiεi  to update weights.

The algorithm above is the core of the method presented in the paper, but, as usual, 
in the RL domain, the core method is not enough to obtain good results, so the paper 
includes several tweaks to improve the method, although the core is the same. Let's 
implement and test it on our "fruit fly" environment: CartPole.

ES on CartPole
The complete example is in Chapter16/01_cartpole_es.py. In this example, we 
use the single environment to check the fitness of the perturbed network weights. 
Our fitness function will be the undiscounted total reward for the episode:

#!/usr/bin/env python3
import gym
import time
import numpy as np

import torch
import torch.nn as nn

from tensorboardX import SummaryWriter
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From the import statements, you can notice how self-contained our example is. 
We're not using PyTorch optimizers, as we do not perform backpropagation at all. 
In fact, we could avoid using PyTorch completely and work only with NumPy, as 
the only thing we use PyTorch for is to perform a forward pass and calculate the 
network's output.

MAX_BATCH_EPISODES = 100
MAX_BATCH_STEPS = 10000
NOISE_STD = 0.01
LEARNING_RATE = 0.001

The amount of hyperparameters is also small and includes the following values:

•	 MAX_BATCH_EPISODES and MAX_BATCH_STEPS: The limit of episodes and steps 
we use for training

•	 NOISE_STD: The standard deviation σ of the noise used for weight 
perturbation

•	 LEARNING_RATE: The coefficient used to adjust the weights on the training 
step

class Net(nn.Module):
    def __init__(self, obs_size, action_size):
        super(Net, self).__init__()
        self.net = nn.Sequential(
            nn.Linear(obs_size, 32),
            nn.ReLU(),
            nn.Linear(32, action_size),
            nn.Softmax(dim=1)
        )

    def forward(self, x):
        return self.net(x)

The model we're using is a simple one-hidden layer NN, which gives us the 
action to take from the observation. We use PyTorch NN machinery here only for 
convenience, as we need only the forward pass, but it could be replaced by a bunch 
of matrices multiplications and nonlinearities.

def evaluate(env, net):
    obs = env.reset()
    reward = 0.0
    steps = 0
    while True:
        obs_v = torch.FloatTensor([obs])
        act_prob = net(obs_v)
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        acts = act_prob.max(dim=1)[1]
        obs, r, done, _ = env.step(acts.data.numpy()[0])
        reward += r
        steps += 1
        if done:
            break
    return reward, steps

The function above plays a full episode using the given policy and returns the total 
reward and the number of steps. The reward will be used as a fitness value, while 
the count of steps is needed to limit the amount of time we spend on forming the 
batch. The action selection is performed deterministically by calculating argmax 
from the network output. In principle, we could do the random sampling from the 
distribution, but we've already performed the exploration by adding noise to the 
network parameters, so the deterministic action selection is fine here.

def sample_noise(net):
    pos = []
    neg = []
    for p in net.parameters():
        noise_t = torch.tensor(np.random.normal(size=p.data.size()).
astype(np.float32))
        pos.append(noise_t)
        neg.append(-noise_t)
    return pos, neg

In the sample_noise function, we create random noise with zero mean and unit 
variance equal to the shape of our network parameters. The function returns two 
sets of noise tensors: one with positive noise and another with the same random 
values taken with a negative sign. These two samples are later used in a batch as 
independent samples. This technique is known as mirrored sampling and is used 
to improve the stability of the convergence. In fact, without the negative noise, 
the convergence becomes very unstable.

def eval_with_noise(env, net, noise):
    old_params = net.state_dict()
    for p, p_n in zip(net.parameters(), noise):
        p.data += NOISE_STD * p_n
    r, s = evaluate(env, net)
    net.load_state_dict(old_params)
    return r, s
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The preceding function takes the noise array created by the function we've just seen 
and evaluates the network with noise added. To achieve this, we add the noise to 
the network's parameters and call the evaluate function to obtain the reward and 
number of steps taken. After this, we need to restore the network weights to their 
original state, which is completed by loading the state dictionary of the network.

The last and the central function of the method is train_step, which takes the 
batch with noise and respective rewards and calculates the update to the network 
parameters by applying the formula, θt+1 ← θt + α 1

nσ

∑n
i=1 Fiεi .

def train_step(net, batch_noise, batch_reward, writer, step_idx):
    norm_reward = np.array(batch_reward)
    norm_reward -= np.mean(norm_reward)
    s = np.std(norm_reward)
    if abs(s) > 1e-6:
        norm_reward /= s

In the beginning, we normalize rewards to have zero mean and unit variance, 
which improves the stability of the method.

    weighted_noise = None
    for noise, reward in zip(batch_noise, norm_reward):
        if weighted_noise is None:
            weighted_noise = [reward * p_n for p_n in noise]
        else:
            for w_n, p_n in zip(weighted_noise, noise):
                w_n += reward * p_n

Then we iterate every pair (noise, reward) in our batch and multiply the noise 
values with the normalized reward, summing together the respective noise for every 
parameter in our policy.

    m_updates = []
    for p, p_update in zip(net.parameters(), weighted_noise):
        update = p_update / (len(batch_reward) * NOISE_STD)
        p.data += LEARNING_RATE * update
        m_updates.append(torch.norm(update))
    writer.add_scalar("update_l2", np.mean(m_updates), step_idx)

As a final step, we use the accumulated scaled noise to adjust the network 
parameters. Technically, what we do here is a gradient ascent, but the gradient was 
not obtained from the backpropagation, but from the Monte-Carlo sampling method. 
This fact was also demonstrated in the above-mentioned paper [1], where the authors 
showed that CMA-ES is very similar to the PG method, differing in just the way that 
we get the gradients' estimation.
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if __name__ == "__main__":
    writer = SummaryWriter(comment="-cartpole-es")
    env = gym.make("CartPole-v0")

    net = Net(env.observation_space.shape[0], env.action_space.n)
    print(net)

The preparation before the training loop is simple: we create the environment and 
the network.

    step_idx = 0
    while True:
        t_start = time.time()
        batch_noise = []
        batch_reward = []
        batch_steps = 0
        for _ in range(MAX_BATCH_EPISODES):
            noise, neg_noise = sample_noise(net)
            batch_noise.append(noise)
            batch_noise.append(neg_noise)
            reward, steps = eval_with_noise(env, net, noise)
            batch_reward.append(reward)
            batch_steps += steps
            reward, steps = eval_with_noise(env, net, neg_noise)
            batch_reward.append(reward)
            batch_steps += steps
            if batch_steps > MAX_BATCH_STEPS:
                break

Every iteration of the training loop starts with batch creation, where we sample the 
noise and obtain rewards for both positive and negated noise. When we reach the 
limit of episodes in the batch, or the limit of the total steps, we stop gathering the 
data and do a training update.

        step_idx += 1
        m_reward = np.mean(batch_reward)
        if m_reward > 199:
            print("Solved in %d steps" % step_idx)
            break

        train_step(net, batch_noise, batch_reward, writer, step_idx)
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To perform the update of the network, we call the function that we've already seen. 
Its goal is to scale the noise according the total reward and then adjust the policy 
weights in the direction of the averaged noise.

        writer.add_scalar("reward_mean", m_reward, step_idx)
        writer.add_scalar("reward_std", np.std(batch_reward), step_idx)
        writer.add_scalar("reward_max", np.max(batch_reward), step_idx)
        writer.add_scalar("batch_episodes", len(batch_reward), step_idx)
        writer.add_scalar("batch_steps", batch_steps, step_idx)
        speed = batch_steps / (time.time() - t_start)
        writer.add_scalar("speed", speed, step_idx)
        print("%d: reward=%.2f, speed=%.2f f/s" % (step_idx,  
m_reward, speed))

The final steps in the training loop write metrics into TensorBoard and show the 
training progress on the console.

Results
Training can be started by just running the program without the arguments:

rl_book_samples/Chapter16$ ./01_cartpole_es.py
Net (
  (net): Sequential (
    (0): Linear (4 -> 32)
    (1): ReLU ()
    (2): Linear (32 -> 2)
    (3): Softmax ()
  )
)
1: reward=9.54, speed=6471.63 f/s
2: reward=9.93, speed=7308.94 f/s
3: reward=11.12, speed=7362.68 f/s
4: reward=18.34, speed=7116.69 f/s
...
20: reward=141.51, speed=8285.36 f/s
21: reward=136.32, speed=8397.67 f/s
22: reward=197.98, speed=8570.06 f/s
23: reward=198.13, speed=8402.74 f/s
Solved in 24 steps

From my experiments, it usually takes ES about 40-60 batches to solve CartPole. 
The convergence dynamics for the above run are shown on the following charts, 
with quite a steady result:
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Figure 1: Convergence of the ES method on the CartPole environment

ES on HalfCheetah
In the next example, we'll go beyond the simplest ES implementation and look at how 
this method can be parallelized efficiently using the shared seed strategy proposed by 
the paper [1]. To show this approach, we'll use the environment from the roboschool 
library that we already experimented with in Chapter 15, Trust Regions – TRPO, PPO, 
and ACKTR, HalfCheetah, which is a continuous action problem where a weird  
two-legged creature gains reward by running forward without injuring itself.

First, let's discuss the idea of shared seeds. The performance of the ES algorithm 
is mostly determined by the speed that we can gather our training batch, which 
consists of sampling the noise and checking the total reward of the perturbed noise. 
As our training batch items are independent, we can easily parallelize this step 
to a large number of workers sitting on remote machines (that's a bit similar to the 
example from Chapter 11, Asynchronous Advantage Actor-Critic when we gathered 
gradients from A3C workers). However, naive implementation of this parallelization 
will require a large amount of data to be transferred from the worker machine to the 
central master, which is supposed to combine the noise checked by the workers and 
perform the policy update. Most of this data is the noise vectors, the size of which 
is equal to the size of our policy parameters.

To avoid this overhead, quite an elegant solution was proposed by the paper's 
authors. As noise sampled on a worker is produced by a pseudo-random number 
generator, which allows us to set the random seed and reproduce the random 
sequence generated, the worker can transfer to the master only the seed that was 
used to generate the noise. Then, the master can generate the same noise vector again 
using the seed. Of course, the seed on every worker needs to be generated randomly, 
to still have random optimization process. This allows for dramatically decreasing 
the amount of data needed to be transferred from workers to the master, improving 
the scalability of the method. For example, the authors reported linear speed up in 
optimizations involving 1440 CPUs in the cloud.
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In our example, we'll check local parallelization using the same approach. The code 
is placed in Chapter16/02_cheetah_es.py. As the code significantly overlaps with 
the CartPole version, we'll focus here only on the differences.

We will begin with the worker, which is started as a separated process using the 
PyTorch multiprocessing wrapper. The worker's responsibilities are simple: for? 
every iteration it obtains the network parameters from the master process, then it 
performs the fixed amount of iterations where it samples the noise and evaluates 
the reward. The result with the random seed is sent to the master using the queue.

RewardsItem = collections.namedtuple('RewardsItem',  
field_names=['seed', 'pos_reward', 'neg_reward', 'steps'])

The namedtuple above is used by the worker to send the results of the perturbed 
policy evaluation, and it includes the random seed, reward obtained with the noise, 
reward obtained with the negated noise, and the total amount of steps we performed 
in both tests.

def worker_func(worker_id, params_queue, rewards_queue, device,  
noise_std):
    env = make_env()
    net = Net(env.observation_space.shape[0], env.action_space.
shape[0]).to(device
    net.eval()

    while True:
        params = params_queue.get()
        if params is None:
            break
        net.load_state_dict(params)

On every training iteration, the worker waits for the network parameters to be 
broadcasted from the master. The value of None means that the master wants to stop 
the worker.

        for _ in range(ITERS_PER_UPDATE):
            seed = np.random.randint(low=0, high=65535)
            np.random.seed(seed)
            noise, neg_noise = sample_noise(net, device=device)
            pos_reward, pos_steps = eval_with_noise(env, net, noise, 
noise_std, device=device)
            neg_reward, neg_steps = eval_with_noise(env, net,  
neg_noise, noise_std, device=device)
            rewards_queue.put(RewardsItem(seed=seed,  
pos_reward=pos_reward,
                                          neg_reward=neg_reward, 
steps=pos_steps+neg_steps))
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The rest is almost the same as the previous example, with the only difference being in 
the random seed generated and assigned before the noise generation. This will allow 
the master to regenerate the same noise only from the seed. Another difference lies in 
the function used by the master to perform the training step.

def train_step(optimizer, net, batch_noise, batch_reward, writer, 
step_idx, noise_std):
    weighted_noise = None
    norm_reward = compute_centered_ranks(np.array(batch_reward))

In the previous example, we normalized the batch of rewards by subtracting the 
mean and dividing by the standard deviation. According to the ES paper, better 
results could be obtained using ranks instead of actual rewards. As ES has no 
assumptions about the fitness function (which is a reward in our case), we can make 
any rearrangements in the reward that we want, which wasn't possible in the case 
of DQN, for example. Here, rank transformation of the array means replacing the 
array with indices of the sorted array. For example, array [0.1, 10, 0.5] will have 
rank array [0, 3, 2]. The compute_centered_ranks function takes the array with the 
total rewards of the batch, calculates the rank for every item in the array and then 
normalizes those ranks. For example, an input array of [21.0. 5.8. 7.0] will have ranks 
[2, 0, 1] and the final centered ranks will be [0.5, -0.5, 0.0].

    for noise, reward in zip(batch_noise, norm_reward):
        if weighted_noise is None:
            weighted_noise = [reward * p_n for p_n in noise]
        else:
            for w_n, p_n in zip(weighted_noise, noise):
                w_n += reward * p_n
    m_updates = []
    optimizer.zero_grad()
    for p, p_update in zip(net.parameters(), weighted_noise):
        update = p_update / (len(batch_reward) * noise_std)
        p.grad = -update
        m_updates.append(torch.norm(update))
    writer.add_scalar("update_l2", np.mean(m_updates), step_idx)
    optimizer.step()
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Another major difference in the training function is the usage of PyTorch 
optimizers. To understand why they are used and how it was possible without 
doing backpropagation, some explanations are required. First of all, in the ES 
paper it was shown that the optimization method used by the ES algorithm is very 
similar to gradient ascent on the fitness function, with the difference being how the 
gradient was calculated. The way the Stochastic Gradient Descent (SGD) method 
is usually applied, the gradient is obtained from the loss function by calculating the 
derivative of the network parameters with respect to the loss value. This imposes the 
limitation on the network and loss function to be differentiable, which is not always 
the case, for example, the rank transformation performed by the ES method is not 
differentiable. On the other hand, optimization performed by ES works differently. 
We randomly sample the neighborhood of our current parameters by adding the 
noise to them and calculating the fitness function. According to the fitness function 
change, we adjust the parameters, which pushes our parameters in the direction of 
a higher fitness function. The result of this is very similar to gradient-based methods, 
but the requirements imposed on our fitness function are much looser: the only 
requirement is our ability to calculate it.

However, if we're estimating some kind of gradient by randomly sampling the 
fitness function, we can use standard optimizers from PyTorch. Normally, optimizers 
adjust parameters of the network using gradients accumulated in the parameter's 
grad field. Those gradients are accumulated after the backpropagation step, but due 
to PyTorch's flexibility, the optimizer doesn't care about the source of the gradients. 
So, the only thing we need to do is to copy the estimated parameters' update in the 
grad field and ask the optimizer to update them. Note that the update is copied 
with a negative sign, as optimizers normally perform the gradient descent (as in 
a normal operation, we're minimizing the loss function), but in this case, we want to 
do the gradient ascent. It is very similar to the Actor-Critic method (A2C), when the 
estimated PG was taken with the negative sign, as it shows the direction to improve 
the policy.

The last chunk of different code is taken from the training loop performed by 
the master process. Its responsibility is to wait for data from worker processes, 
perform the training update of parameters, and broadcast the result to the workers. 
The communication between the master and workers is performed by two sets of 
queues. The first queue is per-worker and used by the master to send the current 
policy parameters to use. The second queue is shared by the workers and used 
to send the already mentioned RewardItem structure with the random seed and 
rewards:

    params_queues = [mp.Queue(maxsize=1) for _ in range 
(PROCESSES_COUNT)]
    rewards_queue = mp.Queue(maxsize=ITERS_PER_UPDATE)
    workers = []
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    for idx, params_queue in enumerate(params_queues):
        proc = mp.Process(target=worker_func, args=(idx, params_queue, 
rewards_queue, device, args.noise_std))
        proc.start()
        workers.append(proc)

    print("All started!")
    optimizer = optim.Adam(net.parameters(), lr=args.lr)

In the beginning of the master, we create all those queues, start worker processes, 
and the optimizer.

    for step_idx in range(args.iters):
        # broadcasting network params
        params = net.state_dict()
        for q in params_queues:
            q.put(params)

Every training iteration starts with network parameters being broadcast to the 
workers.

        t_start = time.time()
        batch_noise = []
        batch_reward = []
        results = 0
        batch_steps = 0
        batch_steps_data = []
        while True:
            while not rewards_queue.empty():
                reward = rewards_queue.get_nowait()
                np.random.seed(reward.seed)
                noise, neg_noise = sample_noise(net)
                batch_noise.append(noise)
                batch_reward.append(reward.pos_reward)
                batch_noise.append(neg_noise)
                batch_reward.append(reward.neg_reward)
                results += 1
                batch_steps += reward.steps
                batch_steps_data.append(reward.steps)

            if results == PROCESSES_COUNT * ITERS_PER_UPDATE:
                break
            time.sleep(0.01)
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Then, in the loop, the master waits for enough data to be obtained from the workers. 
Every time a new result arrives, we reproduce the noise using the random seed.

        train_step(optimizer, net, batch_noise, batch_reward, writer, 
step_idx, args.noise_std)

As the last step in the training loop, we call the function we've already seen, which 
calculates the update from the noise and rewards and calls the optimizer to adjust 
the weights.

Results
The code supports the optional --cuda flag, but, from my experiments, I get zero 
speeding up from the GPU, as the network is too shallow and the batch size is 
only one for every parameter's evaluation. This also suggests potential speed 
improvements by increasing the batch size that we use during the evaluation, which 
can be done using multiple environments in every worker and carefully working 
with noise data inside the network. Values shown for every iteration are mean 
reward obtained, speed of training (in observations per second) two timing values, 
showing how long (in seconds) it took to gather data and perform the training step, 
and then three values about the episode lengths: mean, min, and max number of 
steps during the episodes:

rl_book_samples/Chapter16$ ./02_cheetah_es.py
Net (
  (mu): Sequential (
    (0): Linear (26 -> 64)
    (1): Tanh ()
    (2): Linear (64 -> 64)
    (3): Tanh ()
    (4): Linear (64 -> 6)
    (5): Tanh ()
  )
)
All started!
0: reward=10.86, speed=1486.01 f/s, data_gather=0.903, train=0.008, 
steps_mean=45.10, min=32.00, max=133.00, steps_std=17.62
1: reward=11.39, speed=4648.11 f/s, data_gather=0.269, train=0.005, 
steps_mean=42.53, min=33.00, max=65.00, steps_std=8.15
2: reward=14.25, speed=4662.10 f/s, data_gather=0.270, train=0.006, 
steps_mean=42.90, min=36.00, max=59.00, steps_std=5.65
3: reward=14.33, speed=4901.02 f/s, data_gather=0.257, train=0.006, 
steps_mean=43.00, min=35.00, max=56.00, steps_std=5.01
4: reward=14.95, speed=4566.68 f/s, data_gather=0.281, train=0.005, 
steps_mean=43.60, min=37.00, max=54.00, steps_std=4.41
…
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The dynamics of the training show very quickly a policy improvement in the 
beginning (in just 100 updates, which is seven minutes of training, the agent was 
able to reach the score of 700-800), but afterwards, it got stuck and wasn't able 
to switch from keeping the balance (when Cheetah can reach up to 900-1000 total 
reward) to the running mode with much higher reward of 2.5k and more:

Figure 2: HalfCheetah convergence using the ES method

Genetic algorithms
Another class of black-box methods that has recently become a popular alternative 
to the value-based and PG methods is genetic algorithms or GA. It is a large family 
of optimization methods with more than two decades of history behind it and 
a simple core idea of generating the population of N individuals, each of which 
is evaluated with the fitness function. Every individual means some combination 
of model parameters. Then some subset of top performers is used to produce 
(which is called mutation) the next generation of the population. This process 
is repeated until we're satisfied with the performance of our population.

There are lots of different methods in the GA family, for example, how to 
complete the mutation of the individuals for the next generation or how to rank 
the performers. Here we'll consider the simple GA method with some extensions, 
published in the paper by Felipe Petroski Such, Vashisht Madhavan, and others, called 
Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for Training Deep 
Neural Networks for Reinforcement Learning [2].
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In this paper, the authors analyzed the simple GA method, which performs Gaussian 
noise perturbation of the parent's weights to perform mutation. On every iteration, 
the top-performer was copied without modification. In an algorithm form, the steps 
of a simple GA method can be written as follows:

1.	 Initialize mutation power σ , population size N, number of the selected 
individuals T, initial population P 0  with N randomly-initialized policies 
and their fitness F 0 = {F (P 0

i )|i = 1 . . . N}.
2.	 For generation g = 1 . . . G:

1.	 Sort generation P g−1  in the descending order of fitness function 
value F g−1 .

2.	 Copy elite P g
1 = P g−1

1 , F g
1 = F g−1

1 .
3.	 For individual i = 2 . . . N :

•	 k = randomly select parent from 1 . . . T .
•	 Sample ε ∼ N (0, I).
•	 Mutate parent 1g g

i kP P σε−= + .
•	 Get its fitness ( )g g

i iF F P= .

There have been several improvements to this basic method proposed in the paper, 
which we'll discuss later. For now, let's check the implementation of the core 
algorithm.

GA on CartPole
The source code is in Chapter16/03_cartpole_ga.py and it has lots in common 
with our ES example. The difference is in the lack of the gradient ascent code, 
which was replaced by the network mutation function as follows:

def mutate_parent(net):
    new_net = copy.deepcopy(net)
    for p in new_net.parameters():
        noise_t = torch.from_numpy(np.random.normal(size=p.data.
size()).astype(np.float32))
        p.data += NOISE_STD * noise_t
    return new_net
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The goal of the function is to create a mutated copy of the given policy by adding 
a random noise to all weights. The parent's weights are kept untouched, as a random 
selection of the parent is performed with replacement, so this network could be used 
again later.

NOISE_STD = 0.01
POPULATION_SIZE = 50
PARENTS_COUNT = 10

The count of hyperparameters is even smaller than with ES and includes the 
standard deviation of the noise added-on mutation, the population size, and 
the number of top performers used to produce the subsequent generation.

if __name__ == "__main__":
    writer = SummaryWriter(comment="-cartpole-ga")
    env = gym.make("CartPole-v0")

    gen_idx = 0
    nets = [
        Net(env.observation_space.shape[0], env.action_space.n)
        for _ in range(POPULATION_SIZE)
    ]
    population = [
        (net, evaluate(env, net))
        for net in nets
    ]

Before the training loop, we create the population of randomly initialized networks 
and obtain their fitness.

    while True:
        population.sort(key=lambda p: p[1], reverse=True)
        rewards = [p[1] for p in population[:PARENTS_COUNT]]
        reward_mean = np.mean(rewards)
        reward_max = np.max(rewards)
        reward_std = np.std(rewards)

        writer.add_scalar("reward_mean", reward_mean, gen_idx)
        writer.add_scalar("reward_std", reward_std, gen_idx)
        writer.add_scalar("reward_max", reward_max, gen_idx)
        print("%d: reward_mean=%.2f, reward_max=%.2f,  
reward_std=%.2f" % (
            gen_idx, reward_mean, reward_max, reward_std))
        if reward_mean > 199:
            print("Solved in %d steps" % gen_idx)
            break
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In the beginning of every generation, we sort the previous generation according 
to their fitness and record statistics about future parents.

        prev_population = population
        population = [population[0]]
        for _ in range(POPULATION_SIZE-1):
            parent_idx = np.random.randint(0, PARENTS_COUNT)
            parent = prev_population[parent_idx][0]
            net = mutate_parent(parent)
            fitness = evaluate(env, net)
            population.append((net, fitness))
        gen_idx += 1

In a separate loop, over new individuals to be generated, we randomly sample 
a parent, mutate it, and evaluate its fitness score.

Results
Despite the simplicity of the method, it works even better than ES, solving the 
CartPole environment in just several generations. In my experiments with the 
code above, it takes five to ten generations to solve the environment:

rl_book_samples/Chapter16$ ./03_cartpole_ga.py
0: reward_mean=20.60, reward_max=25.00, reward_std=2.76
1: reward_mean=44.40, reward_max=55.00, reward_std=6.70
2: reward_mean=73.30, reward_max=105.00, reward_std=16.66
3: reward_mean=100.40, reward_max=167.00, reward_std=30.75
4: reward_mean=140.20, reward_max=172.00, reward_std=21.99
5: reward_mean=137.50, reward_max=172.00, reward_std=14.63
6: reward_mean=157.70, reward_max=200.00, reward_std=22.07
7: reward_mean=198.20, reward_max=200.00, reward_std=4.24
8: reward_mean=200.00, reward_max=200.00, reward_std=0.00
Solved in 8 steps

Figure 3: GA convergence on CartPole
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GA tweaks
In the Deep Neuroevolution paper [2], the authors checked two tweaks to the basic 
GA algorithm. The first, with the name deep GA, aimed to increase the scalability of 
the implementation and the second, called novelty search, was an attempt to replace 
the reward objective with a different metric of the episode. In the following example, 
we'll implement the first improvement, while the second one is left as an optional 
exercise.

Deep GA
Being a gradient-free method, GA is potentially even more scalable than ES methods 
in terms of speed, with more CPUs involved in the optimization. However, the 
simple GA algorithm that we've seen has the similar bottleneck as ES methods: policy 
parameters have to be exchanged between the workers. In the above-mentioned 
paper, the authors proposed a trick similar to the shared seed approach but taken 
to an extreme. They called it deep GA, and at its core, the policy parameters are 
represented as a list of random seeds used to create this particular policy's weights.

In fact, the initial network's weights were generated randomly on the first 
population, so the first seed in the list defines this initialization. On every population, 
mutations are also fully specified by the random seed for every mutation. So, the 
only thing we need to be able to reconstruct the weights is the seeds themselves. 
In this approach, we need to reconstruct the weights on every worker, but usually 
this overhead is much less than the overhead of transferring full weights over the 
network.

Novelty search
Another modification to the basic GA method, also checked in the Deep 
Neuroevolution paper, was novelty search (NS), proposed by Lehman and Stanley 
in their paper, Abandoning Objectives: Evolution Through the Search for Novelty Alone, 
published in 2011 [3].

The idea of NS is in stopping following the reward being the primary objective 
driving the optimization process, replacing it with a different target and rewarding 
the agent for exploring the behavior that it has never checked before (that is, novel). 
According to their experiments on the maze navigation problem, with lots of traps 
for the agent, NS works much better than other, reward-driven approaches.
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To implement NS, we define the so-called behavior characteristic (BC) (π ), which 
describes the behavior of the policy and a distance between two BCs. Then, the 
k-nearest neighbor approach is used to check the novelty of the new policy and 
drive the GA according to this distance. In the Deep Neuroevolution paper, sufficient 
exploration by the agent was needed. The approach of NS significantly outperformed 
the ES, GA, and other, more traditional approaches to RL problems.

GA on Cheetah
In our final example in this chapter, we'll implement the parallelized deep GA on the 
HalfCheetah environment. The complete code is in Chapter16/04_cheetah_ga.py. 
The architecture is very close to the parallel ES version, with one master process 
and several workers. The goal of every worker is to evaluate the batch of networks 
and return the result to the master, which merges partial results into the complete 
population, ranks the individuals according to the obtained reward and generates 
the next population to be evaluated by the workers.

Every individual is encoded by a list of random seeds used to initialize the initial 
network weights and all subsequent mutations. This representation allows very 
compact encoding of the network, even when the number of parameters in the policy 
is not very large. For example, in our network with two hidden layers of 64 neurons, 
we have 6278 float values (the input is 26 values and the action is six floats). Every 
float occupies 4 bytes, which is the same size used by the random seed. So, the deep 
GA representation proposed by the paper will be smaller up to 6278 generations in 
the optimization.

In our example, we perform parallelization on local CPUs, so the amount of 
data transferred back and forth doesn't matter much, but if you have a couple 
of hundred cores to utilize, the representation might become a significant issue.

NOISE_STD = 0.01
POPULATION_SIZE = 2000
PARENTS_COUNT = 10
WORKERS_COUNT = 6
SEEDS_PER_WORKER = POPULATION_SIZE // WORKERS_COUNT
MAX_SEED = 2**32 - 1

The set of hyperparameters is the same as in the CartPole example, with 
the difference of a larger population size.

def mutate_net(net, seed, copy_net=True):
    new_net = copy.deepcopy(net) if copy_net else net
    np.random.seed(seed)
    for p in new_net.parameters():
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        noise_t = torch.from_numpy(np.random.normal(size=p.data.
size()).astype(np.float32))
        p.data += NOISE_STD * noise_t
    return new_net

There are two functions used to build the networks based on the seeds given. The 
first one performs one mutation on the already created policy network and it can 
perform mutation in place or by copying the target network based on arguments 
(copying is needed for the first generation).

def build_net(env, seeds):
    torch.manual_seed(seeds[0])
    net = Net(env.observation_space.shape[0], env.action_space.
shape[0])
    for seed in seeds[1:]:
        net = mutate_net(net, seed, copy_net=False)
    return net

The second function creates the network from scratch using the list of seeds. 
The first seed is passed to PyTorch, to influence the network initialization, 
and subsequent seeds are used to apply network mutations.

The worker function obtains the list of seeds to evaluate and outputs individual 
OutputItem tuples for every result obtained. The function maintains the cache of 
networks to minimize the amount of time spent recreating the parameters from the 
list of seeds. This cache is cleared for? every generation, as every new generation is 
created from the current generation winners, so there is only a tiny chance that old 
networks could be reused from the cache.

OutputItem = collections.namedtuple('OutputItem', field_
names=['seeds', 'reward', 'steps'])

def worker_func(input_queue, output_queue):
    env = gym.make("RoboschoolHalfCheetah-v1")
    cache = {}

    while True:
        parents = input_queue.get()
        if parents is None:
            break
        new_cache = {}
        for net_seeds in parents:
            if len(net_seeds) > 1:
                net = cache.get(net_seeds[:-1])
                if net is not None:
                    net = mutate_net(net, net_seeds[-1])
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                else:
                    net = build_net(env, net_seeds)
            else:
                net = build_net(env, net_seeds)
            new_cache[net_seeds] = net
            reward, steps = evaluate(env, net)
            output_queue.put(OutputItem(seeds=net_seeds, 
reward=reward, steps=steps))
        cache = new_cache

The code of the master process is also straightforward. For every generation, 
we send the current population's seeds to workers for evaluation and wait for 
the results. Then we sort the results and generate the next population based on the 
top performers. On the master's side, the mutation is just a seed number generated 
randomly and appended to the list of seeds of the parent.

        batch_steps = 0
        population = []
        while len(population) < SEEDS_PER_WORKER * WORKERS_COUNT:
            out_item = output_queue.get()
            population.append((out_item.seeds, out_item.reward))
            batch_steps += out_item.steps
        if elite is not None:
            population.append(elite)
        population.sort(key=lambda p: p[1], reverse=True)

        elite = population[0]
        for worker_queue in input_queues:
            seeds = []
            for _ in range(SEEDS_PER_WORKER):
                parent = np.random.randint(PARENTS_COUNT)
                next_seed = np.random.randint(MAX_SEED)
                seeds.append(tuple(list(population[parent][0]) + 
[next_seed]))
            worker_queue.put(seeds)

Results
To start the training, just launch the source code file. For every generation, it shows 
the result on the console:

rl_book_samples/Chapter16$ ./04_cheetah_ga.py
0: reward_mean=31.28, reward_max=34.37, reward_std=1.46,  
speed=5495.65 f/s
1: reward_mean=45.41, reward_max=54.74, reward_std=3.86,  
speed=6748.35 f/s
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2: reward_mean=60.74, reward_max=69.25, reward_std=5.33, speed=6749.70 
f/s
3: reward_mean=67.70, reward_max=84.29, reward_std=8.21, speed=6070.31 
f/s
4: reward_mean=69.85, reward_max=86.38, reward_std=9.37, speed=6612.48 
f/s
5: reward_mean=65.59, reward_max=86.38, reward_std=7.95, speed=6542.46 
f/s
6: reward_mean=77.29, reward_max=98.53, reward_std=11.13, 
speed=6949.59 f/s

The overall dynamics are similar to ES experiments on the same environment, with 
the same problems getting out of the local optima of 1010 reward. After four hours 
of training and 250 generations, the agent was able to learn how to stand perfectly 
but wasn't able to figure out that running could bring more reward. Possibly, the 
NS method could overcome this issue:

Figure 4: GA convergence on HalfCheetah

Summary
In this chapter, we saw two examples of black-box optimization methods: evolution 
strategies and genetic algorithms, which make less assumptions about the reward 
system, but nevertheless can provide competition for other analytical gradient 
methods. Their strength lies in good parallelization on a large amount of resources 
and the smaller amount of assumptions that they have on the reward function.

In the next chapter, we'll take a look at a different sphere of modern RL 
development: model-based methods.
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Beyond Model- 
Free – Imagination

In this chapter, we'll take a brief look at the model-based methods in Reinforcement 
Learning (RL) and reimplement the DeepMind model, which adds imagination to 
agents. Model-based methods allow us to decrease the amount of communications 
with the environment, by building a model of the environment and using it during 
the training.

Model-based versus model-free
In the Taxonomy of RL methods section in Chapter 4, The Cross-Entropy Method, we 
saw several different angles we can classify RL methods from. We distinguished 
three main aspects:

•	 Value-based and policy-based
•	 On-policy and off-policy
•	 Model-free and model-based

There were enough examples of methods on both sides of the first and the second 
categories, but all the methods we've seen so far were 100% model-free. This doesn't 
mean that model-free methods are more important or better than their model-based 
antagonists. Historically, due to their sample-efficiency, the model-based methods 
have been used in the robotics field and other industrial controls. That is happened 
due to the cost of the hardware and the physical limitations of samples that could 
be obtained from a real robot. Robots with a large amount of degrees of freedom are 
not widely accessible, so RL researchers are more focused on computer games and 
other environments where samples are relatively cheap. However, the ideas from 
robotics are infiltrating, so, who knows, maybe the model-based methods will enter 
the focus quite soon. For now, let's start from the beginning and understand where 
the difference lies.
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In the names of both classes, "model" means the model of the environment, which 
could have various forms, for example, providing us with a new state and reward 
from the current state and action. All the methods that we've seen so far put zero 
effort into predicting, understanding, or simulating the environment. What we were 
interested in was proper behavior (in terms of the final reward), specified directly 
(a policy) or indirectly (a value), given the observation. The source of observations 
and reward was the environment itself, which in some cases could be very slow and 
inefficient.

In a model-based approach, we're trying to learn the model of the environment 
to reduce this "real environment" dependency. If we have an accurate environment 
model, our agent can produce any number of trajectories that it needs, simply by 
using this model instead of executing the actions in the real world. To some degree, 
the common playground of RL research is also just models of the real world, for 
example, Mujoco or PyBullet are simulators of physics used to avoid building real 
robots with real actuators, sensors, and cameras to train our agents. The story is 
the same with Atari games or the TORCS car racing simulator: we use computer 
programs that model some processes, and these models can be executed quickly 
and cheaply. Even our CartPole example is an over-simplified approximation of 
the real cart with the stick attached (by the way, in PyBullet and Mujoco there are 
more realistic CartPole versions with 3D actions and more accurate simulation).

There are two motivations for using the model-based approach in respect to model-
free. The first and the most important one is sample-efficiency caused by less 
dependency on the real environment. Ideally, by having an accurate model, we can 
avoid touching the real world and use only the trained model. In real applications, 
it is almost never possible to have the precise model of the environment, but even 
an imperfect model can significantly reduce the number of samples needed. For 
example, in real life, you don't need an absolutely precise mental picture of some 
action (such as tying shoelaces or crossing the road), but this picture helps you 
in planning and predicting the outcome. The second reason for a model-based 
approach is the transferability of the environment model across the goals. If you 
have a good model for a robot manipulator, you can use it in a wide variety of goals, 
without retraining everything from scratch.

There are lots of details in this class of methods, but the goal of this chapter is to give 
you an overview and take a closer look at one particular research paper, which has tried 
to combine both the model-free and model-based approaches in a sophisticated way.
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Model imperfections
There is a serious issue with the model-based approach: when our model makes 
mistakes or is just inaccurate in some regimes of the environment, the policy 
learned from this model could be totally wrong in real-life situations. To deal 
with this, we have several options. The most obvious option is to "make the model 
better." Unfortunately, this can just mean that we'll need more observations from 
the environment, which is what we've tried to avoid. The more complicated and 
nonlinear the behavior that the environment has, the worse the situation will be 
for modelling it properly.

Several ways have been discovered to tackle this issue, for example, the local models 
family of methods, when we replace one large environment model with a small 
regime-based set of models and train them using trust-region tricks in the same 
way that Trust Region Policy Optimization (TRPO) does. Another interesting way 
of looking at environment models is to augment model-free policy with model-
based paths. In that case, we're not trying to build the best possible model of the 
environment, but just giving our agent extra information and letting it decide by 
itself whether the information will be useful during the training or not.

One of the first steps in that direction was carried out by DeepMind in their system, 
UNREAL, described in the paper by Max Jaderberg, Volodymyr Mnih, and others, 
called Reinforcement Learning with Unsupervised Auxiliary Tasks, published in 2016 
(arXiv:1611.05397) [1]. In this paper, the authors augmented the Asynchronous 
Advantage Actor-Critic (A3C) agent with extra tasks learned in an unsupervised 
way during the normal training. The main tests of the agent were performed in a 
partially observable first-person view maze navigation problem, when the agent 
needs to navigate the Doom-like maze obtaining the reward for gathering things 
or executing other actions. The novel approach of the paper was in artificially 
injecting extra auxiliary tasks not related to the usual RL methods' objectives 
of value or discounted reward. Those tasks were trained in an unsupervised 
way from observations and include the following:

•	 An immediate reward prediction: From the history of observations, 
the agent was asked to predict the immediate reward of the current step

•	 Pixel control: The agent was asked to communicate with the environment 
to maximize the change in its view

•	 Feature control: The agent was learning how to change specific features 
in its internal representation
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Those tasks were not directly related to the main agent's objective of maximizing 
the total reward, but they allowed the agent to get a better representation of low-
level features and allowed UNREAL to get better results. The first task of immediate 
reward prediction could be seen as a tiny environment model, aiming to predict the 
reward. I'm not going to cover the UNREAL architecture in detail, but recommend 
that you read the original paper.

The paper that we'll cover in detail in this chapter was also published by DeepMind 
researchers: Theophane Weber, Sebastien Racantiere, and others, called Imagination-
Augmented Agents for Deep Reinforcement Learning (arXiv:1707.06203) [2]. In the paper, 
the authors augmented the model-free path of the standard A3C agent with the 
so-called "imagination module," which provides extra help for the agent to make 
decisions about the actions.

Imagination-augmented agent
The overall idea of the new architecture called imagination-augmented agent 
(I2A) is to allow the agent to imagine future trajectories by the current observations 
and incorporate these imagined paths into its decision process. The high-level 
architecture is shown in the following diagram:

Figure 1: 12A architecture
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The agent consists of two different paths used to transform the input observation: 
model-free and imagination. Model-free is a standard set of convolution layers 
transforming the input image in high-level features. Another path is called 
imagination and consists of a set of trajectories "imagined" from the current 
observation. The trajectories are called rollouts and are produced for every available 
action in the environment. Every rollout consists of a fixed number of steps into 
the future and on every step a special model, called the Environment Model (EM), 
(but not to be confused with the expectation maximization method), produces the 
next observation and predicted immediate reward from the current observation 
and the action to be taken.

Every rollout for every action is produced by taking the current observation into the 
EM and then feeding the predicted observation to the EM again N times. On the first 
step of the rollout, we know the action (as this is the action for which the rollout is 
generated), but on the subsequent steps, the action is chosen using the small "rollout 
policy network," which is trained in conjunction to the main agent. The output 
from the rollout is N steps of imagined trajectory starting from the given action and 
continuing into the future according to the learned rollout policy. Every step of the 
rollout is imagined observation and predicted immediate reward. All the steps from 
the single rollout are passed to another network, called "rollout encoder," which 
encodes them into the fixed-size vector.

For every rollout, we get those vectors, concatenate them together, and feed them 
to the head of the agent, which produces the usual policy and value estimations for 
the A2C algorithm. As you can see, there are some moving parts here, so I've tried 
to visualize all of them in the following diagram for the case of two rollout steps and 
two actions in the environment. In the upcoming subsections, we will describe every 
network and steps performed by the method in detail.

Figure 2: Imagination path architecture
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The environment model
The goal of the environment model is to convert the current observation and 
the action into the next observation and the immediate reward. In the paper [2], 
the authors tested the I2A model on two environments: the Sokoban puzzle and 
MiniPacman arcade game. In both cases, the observations were pixels, so the 
environment model returned the pixels as well, plus the float value for the reward. 
To incorporate the action into the convolution layers, the action was one-hot encoded 
and broadcasted to match the observation pixels, one color plane per action. This 
transformation is illustrated in the following diagram:

Figure 3: The EM structure

There are several possible ways that this environment model could be trained.  
The authors discovered that the fastest convergence is obtained by pre-training 
the environment model using another, partially trained baseline agent as a source 
of environment samples.

The rollout policy
During the rollout steps, we need to make decisions about the action to be taken 
during our imagined trajectory. The action for the first step is set explicitly, as we 
produce individual rollout trajectory for every action we have, but the subsequent 
steps require somebody to make this decision. Ideally, we would like those actions 
to be similar to our agent's policy, but we cannot just ask our agent to produce 
the probabilities, as it will require rollouts to be created in the imagination path. 
To break this tie, a separate "rollout policy" network is trained to produce similar 
output to our main agent's policy. The rollout policy is a small network, with similar 
architecture to A3C, which is trained in parallel to the main I2A network using 
a cross-entropy loss between the rollout policy network output and the output of 
the main network. In the paper, this training process is called "policy distillation."
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The rollout encoder
The final component of the I2A model is the rollout encoder, which takes rollout 
steps (observation and reward pairs) as an input and produces the fixed-sized vector, 
which embeds the information about the rollout. In this network, every rollout step 
was preprocessed with a small convolution network to extract the features from 
the observation and these features were converted into a vector of fixed size by 
the LSTM network.

The outputs from every rollout were concatenated together with features from the 
model-free path and used to produce the policy and the value estimation in the same 
way as in the A2C method.

Paper results
As mentioned above, to check the effect of imagination in RL problems, the 
authors used two environments that require planning and taking decisions about 
the future: randomly generated Sokoban puzzles and the MiniPacman game. In both 
environments, the imagination architecture showed better results over the baseline 
A2C agent.

In the rest of this chapter, we'll apply the model to the Atari Breakout game and 
check the effect ourselves.

I2A on Atari Breakout
The code and training path of I2A is a bit complicated and includes lots of code 
and several steps. To understand it better, let's start with a brief overview. In this 
example, we'll implement the I2A architecture described in the paper, adopted to 
the Atari environments, and test it on the Breakout game. The overall goal is to check 
the training dynamics and the effect of imagination augmentation on the final policy.

Our example consists of three parts, which correspond to different steps in the training:

1.	 Baseline A2C agent in Chapter17/01_a2c.py. The resulting policy is used 
for obtaining observations of the environment model.

2.	 Environment model training in Chapter17/02_imag.py. It uses the model 
obtained on the previous step to train EM in an unsupervised way. The result 
is EM weights.
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3.	 The final I2A agent training in Chapter17/03_i2a.py. In this step, we use 
the EM from step 2 to train a full I2A agent, which combines the model-free 
and rollouts paths.

Due to size of the code, we are not going to describe the whole code here, rather 
focusing instead on the important parts.

The baseline A2C agent
The first step in the training has two goals: to establish the baseline, which will 
be used to evaluate the I2A agent and obtain the policy for the EM step. The EM 
is trained in an unsupervised way from the tuples (s, a, s', r) obtained from the 
environment. So, the final quality of the EM is heavily dependent on the data it has 
been trained on. The closer the observations to the data experienced by the agent 
during the real action, the better the final result will be.

The code is in Chapter17/01_a2c.py and Chapter17/lib/common.py and is the 
standard A2C algorithm we've already seen several times. To make the training 
data generation process reusable in I2A agent training, I haven't used PTAN library 
classes and reimplemented data generation from scratch, which is in the common.
iterate_batches() function and responsible for gathering observations from 
environments and calculating discounted rewards for the experienced trajectories. 
This agent also has all hyperparameters set very close to the OpenAI Baseline A2C 
implementation, which I've used during debugging and the implementation of 
the agent. The only difference is the initialization of the initial weights (I rely on 
standard PyTorch initialization of weights) and the learning rate decreased from  
7e-4 to 1e-4 to improve the stability of the training process.

For every 1000 batches of training, a test of the current policy was performed, which 
consisted of three full episodes and five lives each to be played by the agent. The 
mean reward and the number of steps were recorded and the model was saved 
every time that a new best training reward had been achieved. The configuration 
of the testing environment is different in two ways from environments used during 
the training: first of all, the test environment plays full episodes, instead of per-life 
episodes, so the final reward on the test episodes is higher than the reward during 
the training. The second difference is that the test environment uses unclipped 
reward to make the test numbers interpretable. Clipping is a standard way to 
improve the stability of Atari training, as in some games, the raw score could have 
large magnitude, which negatively influences the estimated advantage variance.
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Another difference from the classical Atari A2C agent is the number of frames 
given as an observation. Usually, four consequent frames are given, but from my 
experiments, I found out that the Breakout game has a very similar convergence 
on just two frames. Working with two frames is faster, so everywhere in this 
example the observation tensor has the dimensionality of (2, 84, 84).

To make trainings repeatable, the fixed random seed is used in the baseline agent. 
This is done by the common.set_seed, function which sets the random seed for 
NumPy, Torch (both CPU and CUDA) and every environment in the pool.

EM training
The EM is trained on data produced by the baseline agent and you can specify any 
weight file saved on the previous step. It does not necessarily have to be the best 
model, as it just needs to be "good enough" to produce relevant observations.

The EM definition is in Chapter17/lib/i2a.py, the EnvironmentModel class, 
and has an architecture that mostly follows the model present in the paper [2], 
for the Sokoban environment. The input to the model is an observation tensor 
accompanying the action to be taken, passed as integer value. The action is one-
hot encoded and broadcasted to the observation tensor dimensionality. Then 
both the broadcasted action and observation are concatenated along the "channels" 
dimension, giving the input tensor of (6, 84, 84), as Breakout has four actions.

This tensor is processed with two convolution layers of 4 × 4 and 3 × 3, then the 
residual layer is used when the output is processed by a 3 × 3 convolution, the result 
of which is added to the input. The resulting tensor has been fed into two paths: 
one is deconvolution, producing the output observation and another is a reward 
predicting path, consisting of two convolution layers and two fully connected layers.
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The EM has two outputs: immediate reward value, which is a single float, and next 
observation. To reduce the dimensionality of the observation, the difference with 
the last observation is predicted. So, the output is a tensor (1, 84, 84). Besides the 
decrease in the amount of values we need to predict, the difference has the benefit 
of being zero-centered and zero-valued for frames when nothing has changed, which 
will be dominating during the Breakout gameplay, when only a few pixels usually 
change from frame to frame (the ball, the paddle, and the brick being hit). The 
architecture and code for EM is shown in the below diagram:

Figure 4: EM architecture and its input preprocessing

EM_OUT_SHAPE = (1, ) + common.IMG_SHAPE[1:]

class EnvironmentModel(nn.Module):
    def __init__(self, input_shape, n_actions):
        super(EnvironmentModel, self).__init__()

        self.input_shape = input_shape
        self.n_actions = n_actions

        # input color planes will be equal to frames plus one-hot  
encoded actions
        n_planes = input_shape[0] + n_actions
        self.conv1 = nn.Sequential(
            nn.Conv2d(n_planes, 64, kernel_size=4, stride=4,  
padding=1),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU(),
        )
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        self.conv2 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.ReLU()
        )
        # output is one single frame with delta from the current  
frame
        self.deconv = nn.ConvTranspose2d(64, 1, kernel_size=4,  
stride=4, padding=0)

        self.reward_conv = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3),
            nn.MaxPool2d(2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3),
            nn.MaxPool2d(2),
            nn.ReLU()
        )

        rw_conv_out = self._get_reward_conv_out((n_planes, ) +  
input_shape[1:])
        self.reward_fc = nn.Sequential(
            nn.Linear(rw_conv_out, 128),
            nn.ReLU(),
            nn.Linear(128, 1)
        )

    def _get_reward_conv_out(self, shape):
        o = self.conv1(torch.zeros(1, *shape))
        o = self.reward_conv(o)
        return int(np.prod(o.size()))

    def forward(self, imgs, actions):
        batch_size = actions.size()[0]
        act_planes_v = torch.FloatTensor(batch_size,  
self.n_actions, *self.input_shape[1:]).zero_()
        act_planes_v = act_planes_v.to(actions.device)
        act_planes_v[range(batch_size), actions] = 1.0
        comb_input_v = torch.cat((imgs, act_planes_v), dim=1)
        c1_out = self.conv1(comb_input_v)
        c2_out = self.conv2(c1_out)
        c2_out += c1_out
        img_out = self.deconv(c2_out)
        rew_conv = self.reward_conv(c2_out).view(batch_size, -1)
        rew_out = self.reward_fc(rew_conv)
        return img_out, rew_out
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The training process of EM is simple and straightforward. The pool of 16 parallel 
environments is used to populate the batch of 64 samples. Every entry in a batch 
consists of the current observation, the next immediate observation, the action taken, 
and the immediate reward obtained. The final loss being optimized is a sum of the 
observation loss and the reward loss. The observation loss is the Mean Squared 
Error (MSE) loss between the predicted delta for the next observation and the real 
delta between the current and the next observation. The reward loss is again the MSE 
between rewards. To emphasize the importance of observation, the observation loss 
has a scale factor of 10.

The imagination agent
The final step in the training process is the I2A agent, which combines the model-free 
path with rollouts produced by the EM, trained on the previous step.

The I2A model
The agent is implemented in the I2A class in the Chapter17/lib/i2a.py module:

class I2A(nn.Module):
    def __init__(self, input_shape, n_actions, net_em, net_policy,  
rollout_steps):
        super(I2A, self).__init__()

The arguments of the constructor provide the shape of observations, the amount 
of actions in the environment, and the two networks used during rollout: EM and 
rollout policy and, finally, the count of steps to perform during rollouts. Both EM 
and rollout policy networks are stored in a special way to prevent their weights 
from being included in I2A network parameters.

        self.n_actions = n_actions
        self.rollout_steps = rollout_steps

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8,  
stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU(),
        )
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The preceding code specifies the model-free path, which produces the features from 
the observation. The architecture is a familiar Atari convolution.

        conv_out_size = self._get_conv_out(input_shape)
        fc_input = conv_out_size + ROLLOUT_HIDDEN * n_actions
        self.fc = nn.Sequential(
            nn.Linear(fc_input, 512),
            nn.ReLU()
        )
        self.policy = nn.Linear(512, n_actions)
        self.value = nn.Linear(512, 1)

The input of the layers that will produce the policy and the value of the agent 
is combined from the features obtained from the model-free path and encoded 
rollouts. Every rollout is represented with the ROLLOUT_HIDDEN constant (equals to 
256), which is a dimensionality of the LSTM layer inside the RolloutEncoder class.

        self.encoder = RolloutEncoder(EM_OUT_SHAPE)
        self.action_selector =  
ptan.actions.ProbabilityActionSelector()
        object.__setattr__(self, "net_em", net_em)
        object.__setattr__(self, "net_policy", net_policy)

The rest of the constructor creates the RolloutEncoder class (which will be 
described later in this section) and stores the EM and rollout policy networks. Both 
of these networks are not supposed to be trained together with the I2A agent, as 
the EM is not trained at all (it is pretrained on the previous step and remains fixed) 
and the rollout policy is trained with a separate policy distillation process. However, 
PyTorch 's Module class automatically registers and joins all fields assigned to the 
class. To prevent the EM and rollout policy networks from being merged into the 
I2A agent, we save their references via the __setattr__ call, which is a bit hacky, 
but does exactly what we need.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, x):
        fx = x.float() / 255
        enc_rollouts = self.rollouts_batch(fx)
        conv_out = self.conv(fx).view(fx.size()[0], -1)
        fc_in = torch.cat((conv_out, enc_rollouts), dim=1)
        fc_out = self.fc(fc_in)
        return self.policy(fc_out), self.value(fc_out)
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The forward() function looks simple, as most of the work here is inside the 
rollouts_batch() method. The next and last method of the I2A class is a bit more 
complicated. Originally, it was written to perform all rollouts sequentially, but 
that version was painfully slow. The new version of the code performs all rollouts 
at once, step-by-step, which increases the speed almost five times, but makes the 
code slightly more complicated:

    def rollouts_batch(self, batch):
        batch_size = batch.size()[0]
        batch_rest = batch.size()[1:]
        if batch_size == 1:
            obs_batch_v = batch.expand(batch_size *  
self.n_actions, *batch_rest)
        else:
            obs_batch_v = batch.unsqueeze(1)
            obs_batch_v = obs_batch_v.expand(batch_size,  
self.n_actions, *batch_rest)
            obs_batch_v = obs_batch_v.contiguous().view(-1,  

*batch_rest)

In the beginning of the function, we take the batch of observations and we want 
to perform n_actions rollouts for every observation of the batch. So, we need to 
expand the batch of observations, repeating every observation n_actions times. 
The most efficient way of doing this is to use the PyTorch expand() method, which 
can repeat any tensor with 1 dimensionality and repeat it along this dimension any 
amount of times. In case our batch consists of one single example, we just use this 
batch dimension, otherwise we need to inject the extra unit dimension right after 
the batch dimension and then expand along it. Regardless of this, the resulting 
dimensionality of the obs_batch_v tensor is (batch_size * n_actions,  
2, 84, 84).

        actions = np.tile(np.arange(0, self.n_actions,  
dtype=np.int64), batch_size)
        step_obs, step_rewards = [], []

After that, we need to prepare the array with the actions that we want EM to take for 
every observation. As we repeated every observation n_actions times, our actions 
array will also have the form [0, 1, 2, 3, 0, 1, 2, 3, ...] (Breakout has four 
actions in total). In the step_obs and step_rewards lists, we'll save observations 
and immediate rewards produced for every rollout step by the EM model. This 
data will be passed to RolloutEncoder to be embedded into fixed-vector form.
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        for step_idx in range(self.rollout_steps):
            actions_t = torch.tensor(actions).to(batch.device)
            obs_next_v, reward_v = self.net_em(obs_batch_v,  
actions_t)

Then we start the loop for every rollout step. For every step, we ask the EM network 
to predict the next observation (returned as delta to the current observation) and 
immediate reward. Subsequent steps will have actions selected using the rollout 
policy network.

            step_obs.append(obs_next_v.detach())
            step_rewards.append(reward_v.detach())
            # don't need actions for the last step
            if step_idx == self.rollout_steps-1:
                break

We store observation delta and immediate reward in lists for RolloutEncoder and 
stop the loop if we're at the final rollout step. The early stop is possible, as the rest of 
code in the loop is supposed to select the actions, but for the last step we don't need 
actions at all.

            # combine the delta from EM into new observation
            cur_plane_v = obs_batch_v[:, 1:2]
            new_plane_v = cur_plane_v + obs_next_v
            obs_batch_v = torch.cat((cur_plane_v, new_plane_v),  
dim=1)

To be able to use the rollout policy network, we need to create a normal observation 
tensor from the delta returned by the EM network. To do this, we take the last 
channel from the current observation, add the delta from EM to it, creating 
a predicted frame, and then combine them into the normal observation tensor 
of shape, (batch_size * n_actions, 2, 84, 84).

            # select actions
            logits_v, _ = self.net_policy(obs_batch_v)
            probs_v = F.softmax(logits_v, dim=1)
            probs = probs_v.data.cpu().numpy()
            actions = self.action_selector(probs)

In the rest of the loop, we use the created observations batch to select the actions 
using the rollout policy network and convert the returned probability distribution 
into the action indices. Then the loop continues to predict the next rollout step.

        step_obs_v = torch.stack(step_obs)
        step_rewards_v = torch.stack(step_rewards)
        flat_enc_v = self.encoder(step_obs_v, step_rewards_v)
        return flat_enc_v.view(batch_size, -1)
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When we are done with all the steps, two lists step_obs and step_rewards will 
contain tensors for every step. Using the torch.stack() function, we join them 
on the new dimension. The resulting tensors will have rollout steps as the first 
dimension and batch_size * n_actions as the second dimension. These two 
tensors are passed to RolloutEncoder, which produces an encoded vector for 
every entry in the second dimension. The output from the encoder is a tensor of 
(batch_size*n_actions, encoded_len) and we want to concatenate encodings 
for different actions of the same batch sample together. To do this, we just reshape 
the output tensor to have batch_size as the first dimension, so the output from 
the function will have a (batch_size, encoded_len*n_actions) shape.

The Rollout encoder
The RolloutEncoder class accepts two tensors: observations of (rollout_steps, 
batch_size, 1, 84, 84) and rewards of (rollout_steps, batch_size) and 
applies a Recurrent Neural Network (RNN) along the rollout steps to convert every 
batch series into the encoded vector. Before the RNN, we have a preprocessor which 
extracts features from the observation delta given by the EM, then the reward value 
is just appended to the features vector.

class RolloutEncoder(nn.Module):
    def __init__(self, input_shape, hidden_size=ROLLOUT_HIDDEN):
        super(RolloutEncoder, self).__init__()

        self.conv = nn.Sequential(
            nn.Conv2d(input_shape[0], 32, kernel_size=8,  
stride=4),
            nn.ReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1),
            nn.ReLU(),
        )

The observation preprocessor has the same Atari convolution layers, except that the 
input tensor has a single channel, which is a delta between consecutive observations, 
produced by the EM.

        conv_out_size = self._get_conv_out(input_shape)

        self.rnn = nn.LSTM(input_size=conv_out_size+1,  
hidden_size=hidden_size, batch_first=False)
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The RNN of the encoder is an LSTM layer. The batch_first=False argument is 
a bit redundant (as the default value for the argument is also False), but left here 
to remind us about the input tensor order, which is a (rollout_steps, batch_
size, conv_features+1), so the time dimension has zero index.

    def _get_conv_out(self, shape):
        o = self.conv(torch.zeros(1, *shape))
        return int(np.prod(o.size()))

    def forward(self, obs_v, reward_v):
        """
        Input is in (time, batch, *) order
        """
        n_time = obs_v.size()[0]
        n_batch = obs_v.size()[1]
        n_items = n_time * n_batch
        obs_flat_v = obs_v.view(n_items, *obs_v.size()[2:])
        conv_out = self.conv(obs_flat_v)
        conv_out = conv_out.view(n_time, n_batch, -1)
        rnn_in = torch.cat((conv_out, reward_v), dim=2)
        _, (rnn_hid, _) = self.rnn(rnn_in)
        return rnn_hid.view(-1)

The forward() function is obvious from the encoder architecture and first extracts 
the features from all rollout_steps*batch_size observations and then applies 
LSTM to the sequence. As an encoded vector of the rollout, we take the hidden 
state returned by the last step of the RNN.

Training of I2A
The training process has two steps: we train the I2A model in the usual A2C manner 
and we do a distillation of the rollout policy using a separate loss. The distillation 
training is needed to approximate the I2A behavior by a smaller policy used during 
rollout steps to select actions. The actions chosen in imagined trajectories should be 
similar to the actions that the agent will choose in real situations. However, during 
the rollouts, we cannot just use our main I2A model to make action selection, as 
the main I2A model will need to do rollouts again. To break this contradiction, 
distillation is used, which is a very simple cross-entropy loss between the policy of 
the main I2A model during the training and the policy returned by the rollout policy 
network. This training step has a separate optimizer responsible only for rollouts 
policy parameters.
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The piece of the training loop which is responsible for distillation is given below. 
Array mb_probs contains the probabilities of actions chosen by the I2A model for 
observations, obs_v.

            probs_v = torch.FloatTensor(mb_probs)).to(device)
            policy_opt.zero_grad()
            logits_v, _ = net_policy(obs_v)
            policy_loss_v = -F.log_softmax(logits_v, dim=1) *  
probs_v.view_as(logits_v)
            policy_loss_v = policy_loss_v.sum(dim=1).mean()
            policy_loss_v.backward()
            policy_opt.step()

Another step in the training that is supposed to train the I2A model is performed 
exactly the same way as we train the usual A2C, ignoring all the internals of 
the I2A model: the value loss is the MSE between the predicted and discounted 
reward approximated by the Bellman equation, while the Policy Gradient (PG) is 
approximated by the advantage multiplied by log-probability of the chosen action. 
This is nothing new.

Experiment results
In this section, we'll take a look at the results of our multi-step training process

The baseline agent
To train the agent, run Chapter17/01_a2c.py with the optional --cuda flag to 
enable GPU and required -n option with the experiment name used in TensorBoard 
and in a directory name to save models.

Chapter17$ ./01_a2c.py --cuda -n tt
AtariA2C (
  (conv): Sequential (
    (0): Conv2d(2, 32, kernel_size=(8, 8), stride=(4, 4))
    (1): ReLU ()
    (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
    (3): ReLU ()
    (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
    (5): ReLU ()
  )
  (fc): Sequential (
    (0): Linear (3136 -> 512)
    (1): ReLU ()
  )
  (policy): Linear (512 -> 4)
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  (value): Linear (512 -> 1)
)
4: done 13 episodes, mean_reward=0.00, best_reward=0.00,  
speed=99.96
9: done 11 episodes, mean_reward=0.00, best_reward=0.00,  
speed=133.25
10: done 1 episodes, mean_reward=1.00, best_reward=1.00,  
speed=136.62
13: done 9 episodes, mean_reward=0.00, best_reward=1.00,  
speed=153.99
…

In 500k training iterations, the A2C was able to reach the mean reward of 450 on test 
episodes with five lives and unclipped reward. The maximum test reward on three 
full episodes was 650.

Figure 5: Baseline convergence

Training EM weights
To train the EM, you need to specify the policy produced during the baseline agent 
training. In my experiments, I've taken the policy from the partially-trained agent 
to increase the potential diversity of the EM training data.

Chapter17$ ./02_imag.py --cuda -m  
res/best/01_a2c_clip/best_0342.333_119000.dat -n tt
EnvironmentModel (
  (conv1): Sequential (
    (0): Conv2d(6, 64, kernel_size=(4, 4), stride=(4, 4),  
padding=(1, 1))
    (1): ReLU ()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),  
padding=(1, 1))
    (3): ReLU ()
  )
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  (conv2): Sequential (
    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),  
padding=(1, 1))
    (1): ReLU ()
  )
  (deconv): ConvTranspose2d(64, 1, kernel_size=(4, 4), stride=(4, 4))
  (reward_conv): Sequential (
    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
    (1): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (2): ReLU ()
    (3): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
    (4): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))
    (5): ReLU ()
  )
  (reward_fc): Sequential (
    (0): Linear (576 -> 128)
    (1): ReLU ()
    (2): Linear (128 -> 1)
  )
)
Best loss updated: inf -> 1.7988e-02
Best loss updated: 1.7988e-02 -> 1.1621e-02
Best loss updated: 1.1621e-02 -> 9.8923e-03
Best loss updated: 9.8923e-03 -> 8.6424e-03
...

In 100k training iterations, the loss stopped decreasing and the EM model with the 
smallest loss could be used for final training of the I2A model.

Figure 6: EM training
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Training with the I2A model
The imagination path comes with significant computation cost, which is proportional 
to the amount of rollout steps performed. I've experimented with several values for 
this hyperparameter and for Breakout there is not much difference between five and 
three steps, but the speed is almost two-times faster.

Chapter17$ ./03_i2a.py --cuda --em res/best/02_env_larger- 
batch\=64/best_6.9029e-04_106904.dat -n tt
I2A (
  (conv): Sequential (
    (0): Conv2d(2, 32, kernel_size=(8, 8), stride=(4, 4))
    (1): ReLU ()
    (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
    (3): ReLU ()
    (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
    (5): ReLU ()
  )
  (fc): Sequential (
    (0): Linear (4160 -> 512)
    (1): ReLU ()
  )
  (policy): Linear (512 -> 4)
  (value): Linear (512 -> 1)
  (encoder): RolloutEncoder (
    (conv): Sequential (
      (0): Conv2d(1, 32, kernel_size=(8, 8), stride=(4, 4))
      (1): ReLU ()
      (2): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2))
      (3): ReLU ()
      (4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1))
      (5): ReLU ()
    )
    (rnn): LSTM(3137, 256)
  )
)
2: done 1 episodes, mean_reward=0.00, best_reward=0.00, speed=6.41 f/s
4: done 12 episodes, mean_reward=0.00, best_reward=0.00, speed=90.84 f/s
7: done 1 episodes, mean_reward=0.00, best_reward=0.00, speed=69.94 f/s
...
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In 200k training steps, I2A was able to reach the mean reward of 400 on test, which 
shows better dynamics than the baseline. The maximum test reward on three full 
episodes was 750, which is also better than the 650 obtained by the baseline.

Figure 7: 12A convergence (rewards and steps)

The chart with test reward for both I2A (blue) and baseline A2C (orange) is shown 
in the following diagram:

Figure 8: 12A compared with the baseline A2C

I also ran an experiment with a single step in the rollout and, surprisingly, the 
training dynamics between one step and three steps weren't much different, which 
may be a sign that in Breakout, the agent doesn't need to imagine the trajectory for 
too long to get the benefits from the EM. This is appealing, as with a single step we 
don't need rollout policy at all (as the first step is always performed on all actions) 
and an RNN is also not needed, which can significantly speed up the agent, pushing 
its performance close to the baseline A2C.
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Summary
In this chapter, we discussed the model-based approach to RL and implemented 
one of the recent research architectures from DeepMind, which augments the 
model of the environment into the model-free agents. This model tries to join both 
model-free and model-based paths into one, to allow the agent to decide which 
knowledge to use.

In the upcoming chapter (which will be the last in the book), we'll take a look at 
a recent DeepMind breakthrough in the area of full-information games: the AlphaGo 
Zero algorithm.
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AlphaGo Zero
In the last chapter of the book, we'll continue our discussion about the model-
based methods and check the cases when we have a model of the environment, 
but this environment is being used by two competing parties. This situation is very 
familiar in board games, where the rules of the game are fixed and the full position 
is observable, but we have an opponent who has a primary goal of preventing us 
from winning the game.

Recently, DeepMind proposed a very elegant approach to such problems, when 
no prior domain knowledge is required, but the agent improves its policy only 
via self-play. This method is called AlphaGo Zero, and it will be the main focus 
of the chapter, as we implement the method for playing the game, Connect4.

Board games
Most board games provide a setup that is different from an arcade scenario. The 
Atari game suite assumes that one player is making decisions in some environment 
with complex dynamics. By generalizing and learning from the outcome of their 
actions, the player improves their skills, increasing the final score.

In a board games setup, the rules of the game are usually quite simple and compact. 
What makes the game complicated is the amount of different positions on the 
board and the presence of an opponent with an unknown strategy, who tries to 
beat us in the game. The ability to observe the game state and explicit rules opens 
up the possibility to analyze the current position, which wasn't the case for Atari. 
The analysis means taking the current state of the game and evaluating all the 
possible moves that we can take, then choosing the best move as our action.
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The simplest approach to evaluation is to iterate over the possible actions and 
recursively evaluate the position after the action is taken. Eventually, this process 
will lead us to the final position, when no more moves are possible. By propagating 
the game result back, we can estimate the expected value of any action in any 
position. One possible variation of this method is called minimax, which is when 
we are trying to make the strongest move, but our opponent is trying to take the 
worst move for us, so we are iteratively minimizing and maximizing the final game 
objective of walking down the tree of game states (which will be described in  
detail later).

If the amount of different positions is small enough to be analyzed entirely, like in 
the TicTacToe game (which has only 138 terminal states), it's not a problem to walk 
down this game tree from any state that we have and figure out what's the best move 
to take.

Unfortunately, this brute-force approach doesn't work even for medium-complexity 
games, as the number of configurations grows exponentially. For example, in the 
game of draughts (also known as checkers), the total game tree has 5*1020 nodes, 
which is quite a challenge even for modern hardware. In the case of more complex 
games, like chess or Go, this number is much larger, so it's just not possible to 
analyze all the positions reachable from every state. To handle this, usually some 
kind of approximation is used, when we analyze the tree up to some depth. With 
a combination of careful search stop criteria, called tree pruning, and the smart 
predefined evaluation of positions, we can make a computer program that plays 
complex games at a fairly good level.

In late 2017, DeepMind published an article in the journal Nature, presenting the 
novel approach called AlphaGo Zero, which was able to achieve a superhuman level 
of play in complex games, like Go and chess, without any prior knowledge except the 
game rules. The agent was able to improve its policy by constantly playing against 
itself and reflecting on the outcomes. No large game databases, handmade features, 
or pretrained models were needed. Another nice property of the method is its 
simplicity and elegance.

In the example of this chapter, we'll try to understand and implement this  
approach for the game Connect4 (also known as four in a row or four in a line),  
to evaluate it ourselves.
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The AlphaGo Zero method

Overview
At a high level, the method consists of three components, all of which will be 
explained in detail later, so don't worry if something is not completely clear  
from this section:

•	 We traverse constantly the game tree, using the Monte-Carlo Tree Search 
(MCTS) algorithm, the core idea of which is to semi-randomly walk down 
the game states, expanding them and gathering statistics about the frequency 
of moves and underlying game outcomes. As the game tree is huge, both 
in terms of the depth and width, we're not trying to build the full tree, just 
randomly sampling the most promising paths of it (that's the source of the 
method's name).

•	 At every moment, we have a best player, which is the model used to generate 
the data via the self-play. Initially, this model has random weights, so it 
makes the moves randomly, like a four-year-old just learning how chess 
pieces move. However, over time, we'll replace this best player with 
better variations of it, which will generate more and more meaningful and 
sophisticated game scenarios. Self-play means that the same current best 
model is being used on both sides of the board. This might look not very 
useful, as having the same model play against itself has an approximately 
50% chance outcome, but that's actually what we need: samples of the games 
where our best model can demonstrate its best skills. The analogy is simple: 
it's usually not very interesting to watch the match between the outsider and 
the leader. The leader will win easily. What is much more fun and intriguing 
to see is when players of roughly equal level are competing. That's why the 
final in any championship attracts much more attention than the preceding 
matches: both teams or players in the final usually excel in the game, so they 
will need to play their best game to win.

•	 The third component in the method is the training process of the other 
apprenticeship model, which is being trained on the data gathered by the 
best model during the self-play. It could be compared to a kid sitting and 
constantly analyzing the chess parties played by two grown-ups. Periodically, 
we play several matches between this trained model and our current best 
model, and in case the trainee is able to beat the best model in a significant 
amount of games, we announce the trained model as the new best and the 
process continues.
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Despite the simplicity and even naivety of this, AlphaGo Zero was able to beat all 
the previous AlphaGo versions and became the best Go player in the world, without 
any prior knowledge except the game rules. After the paper called Mastering the 
Game of Go Without Human Knowledge [1] was published, DeepMind adapted the 
same method to fit chess and published the paper called Mastering Chess and Shogi by 
Self-Play with a General Reinforcement Learning Algorithm [2], where the model trained 
from scratch beat the Stockfish, which was the best chess program and took more 
than a decade of human experts to develop.

Now let's check all three components of the method in detail.

Monte-Carlo Tree Search
To understand what MCTS does, let's consider a simple subtree of the TicTacToe 
game, as shown in the following diagram. In the beginning, the game field is empty 
and the cross needs to choose where to move. There are nine different options  
for the first move, so our root state has nine different branches leading to the 
corresponding states.

Figure 1: The game tree of TicTacToe

The amount of possible actions at some particular game state is called the branching 
factor, showing the bushiness of the game tree. Of course, this is not constant and 
may vary, as some moves are not always doable. In the case of TicTacToe, the amount 
of available actions could vary from nine at the beginning of the game, to zero at the 
leaf nodes. The branching factor allows us to estimate how quickly the game tree 
grows, as every available action leads to another set of actions that could be taken. 
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For our example, after the cross has made their move, the nought has eight 
alternatives at every nine positions, which makes 9*8 total positions at the second 
level of the tree. The total amount of nodes in the tree can be up to 9! = 362880,  
but the actual number is less, as not all the games could be played to the  
maximum depth.

TicTacToe is tiny, but if we consider larger games, and think about the count of the 
first moves that the white could make at the beginning of a chess game (which is 20) 
or the number of spots that the white stone could be placed at in Go (361 in total for 
a 19 × 19 game field), the amount of game positions in the complete tree quickly 
becomes enormous, as with every new level, the amount of states gets multiplied 
by an average amount of actions that we can perform on the previous level.

To deal with this combinatorial explosion, random sampling comes into play. In 
general MCTS, we're performing many iterations of depth-first search, starting at the 
current game state and either selecting the actions randomly or with some strategy, 
which should include enough randomness in its decisions. Every search is continued 
until the end state of the game, then it is followed by updating the weights of the 
visited tree branches according to the game's outcome. This process is similar to 
the value iteration method, when we played the episodes and the final step of the 
episode influenced the value estimation of all the previous steps. This is a general 
MCTS and there are lots of variants of this method, related to expansion strategy, 
branch selection policy, and other details.

In AlphaGo Zero, a variant of the MCTS is used. For every edge (representing the 
move from some position), this set of statistics is being stored: a prior probability 
P(s, a) of the edge, a visit count N(s, a), and an action-value Q(s, a). Each search starts 
from the root state following the most promising actions, selected using the utility 
value U(s, a), proportional to Q(s, a) + P (s,a)

1+N(s,a) . Randomness is added to the selection 
process to ensure enough exploration of the game tree. Every search could end up 
with two outcomes: the end state of the game is reached or we've faced the state  
that hasn't been explored yet (in other words, has no statistics for values). In the 
latter case, the policy Neural Network (NN) is used to obtain the prior probabilities  
and the value of state estimation and the new tree node with N(s, a) = 0,  
P(s, a) = pnet (which is a probability of the move returned by the network) and  
Q(s, a) = 0 is created. Besides the prior probability of the actions, the network returns 
the estimation of the game's outcome (or value of the state) as seen from the current 
player.
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As we've obtained the value (by reaching the final game state or by expanding the 
node using the NN), the process called the backup of value is performed. During the 
process, we traverse the game path from bottom to the root and update statistics of 
every visited intermediate node, in particular, the visit count N(s, a) is incremented 
by one and Q(s, a) is updated to include the game outcome from the current state 
perspective. As two players are exchanging moves, the final game outcome is 
changing the sign in every backup step.

This search process is performed several times (in AlphaGo's case, one-to-two 
thousand searches are performed), gathering enough statistics about the action  
to use the N(s, a) counter as an action probability to be taken in the root node.

Self-play
In AlphaGo Zero, the NN is used to approximate the prior probabilities of the 
actions and evaluate the position, which is very similar to the Actor-Critic (A2C) 
two-headed setup. On the input of the network, we pass the current game position 
(augmented with several previous positions) and return two values. The policy head 
returns the probability distribution over the actions and the value head estimates the 
game outcome as seen from the player's perspective. This value is undiscounted, as 
moves in Go are deterministic. Of course, if you have stochasticity in the game, like 
in backgammon, some discounting should be used.

As has already been described, we're maintaining the current best network, which 
constantly self-plays to gather the training data for our apprentice network. Every 
step in each self-play game starts with several MCTS from the current position, to 
gather enough statistics about the game subtree, which are used to select the best 
action. The concrete selection depends on the move and our settings. For self-play 
games, which are supposed to produce enough variance in the training data, the first 
moves are selected in a stochastic way. However, after some amount of steps (which 
is a hyperparameter in the method), action selection becomes deterministic and we 
select the action with the largest visit counter N(s, a). In evaluation games (when 
we're checking the network being trained versus the current best model), all steps are 
deterministic and selected solely on the largest visit counter.

Once the self-play game has been finished and the final outcome has become known, 
every step of the game is added to the training dataset, which is a list of tuples 
(st, πt, rt), where st  is the game state, πt  is the action probabilities calculated from 
MCTS sampling, and rt  is the game's outcome from the perspective of the player  
at step t.
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Training and evaluation
The self-play process between two clones of the current best network provides us 
with the stream of the training data, consisting of states, action probabilities, and 
position values obtained from the self-play games. With this at hand, our training 
is simple: we sample minibatches from the replay buffer of training examples and 
minimize the Mean Squared Error (MSE) between the value head prediction and 
actual position value, as well as cross-entropy loss between predicted probabilities 
and sampled probabilities π .

As mentioned earlier, once in several training steps, the evaluation of the trained 
network is performed, which consists of playing several games between the current 
best and trained networks. Once the trained network become significantly better 
than the current best network, we copy the trained network into the best network 
and continue the process.

Connect4 bot
To see the method in action, let's implement AlphaGo Zero for Connect4. The game 
is for two players with fields 6 × 7. Players have disks of two different colors, which 
they drop in turn to any of the seven columns. Disks fall to the bottom, stacking 
vertically. The game objective is to be the first to form a horizontal, vertical or 
diagonal group of four disks of the same color. Two game situations are shown 
in the diagram. On the first, the red player has just won, while on the second, 
the blue player is going to form a group.

Figure 2: Two game positions in Connect4
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Despite the simplicity, this game has 4.5*1012 different game states, which is 
challenging for computers to solve with brute force. This example consists of several 
tools and library modules:

•	 Chapter18/lib/game.py: Low-level game representation, which contains 
functions to make moves, encode and decode the game state, and other 
game-related utilities.

•	 Chapter18/lib/mcts.py: MCTS implementation that allows GPU-
expansion of leaves and node backup. The central class here is also 
responsible for keeping the game node statistics, which are reused between 
the searches.

•	 Chapter18/lib/model.py: The NN and other model-related functions, such 
as the conversion between game states and model's input and the playing of 
a single game.

•	 Chapter18/train.py: The main training utility that glues everything 
together and produces the model checkpoints of the new best networks.

•	 Chapter18/play.py: The tool to organize the automated tournament 
between the model checkpoints. This accepts several model files and plays 
the given amount of games against each other to form a leaderboard

•	 Chapter18/telegram-bot.py: The bot for the Telegram chat platform 
that allows the user to play against any model file keeping the statistics. 
This bot was used for human verification of the example's results.

Game model
The whole approach is based on our ability to predict the outcome of our actions, 
so in other words we need to be able to get the resulting game state after we execute 
some particular game move. This is a much stronger requirement than we've had in 
Atari environments and Gym in general, where you cannot specify any current state 
that you want to act from. So, we need a model of the game that encapsulates the 
game's rules and dynamics. Luckily, most board games have a simple and compact 
set of rules, which makes the model implementation a straightforward task.

In our case, the full game state of Connect4 is represented by the state of the 6 × 7 
game field cells and the indicator of who is going to move. What is important for 
our example is to make the game state representation occupy as little memory as 
possible, but still allow it to work efficiently. The memory requirement is dictated by 
the necessity of storing large amounts of game states during the MCTS. As our game 
tree is huge, the more nodes we are able to keep during MCTS, the better our final 
approximation of move probabilities will be, so, potentially, we'd like to be able to 
keep millions, or maybe even billions of game states in the memory. 
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With this in hand, the compactness of the game state representation could have 
a huge impact on memory requirements and the performance of our training 
process. However, the game state representation has to be convenient to work 
with, for example, checking the board for a winning position, making a move 
and finding all the valid moves from some state.

To keep this balance, in Chapter18/lib/game.py, two representations of the game 
field were implemented. The first encoded form is very memory-efficient and takes 
only 63 bits to encode the full field, which makes it extremely fast and lightweight 
as it fits in a machine world on 64-bit architectures. Another decoded game field 
representation has the form of a list, with length seven, where every entry is a list 
of integers and keeps the disks in a particular column. This form takes much more 
memory, but is more convenient to work with.

I'm not going show the full code of Chapter18/lib/game.py, but if you need it, 
it's available in the repo. Here, let's just take a look at the list of the constants and 
functions that it provides:

GAME_ROWS = 6
GAME_COLS = 7
BITS_IN_LEN = 3
PLAYER_BLACK = 1
PLAYER_WHITE = 0
COUNT_TO_WIN = 4
INITIAL_STATE = encode_lists([[]] * GAME_COLS)

The first two constants in the preceding code define the dimensionality of the game 
field and are used everywhere in the code, so you can try to change them and 
experiment with a larger or smaller game. The BITS_IN_LEN value is used in state 
encoding functions and specifies how many bits are used to encode the height of the 
column (amount of disks present). In the 6 × 7 game, we could have up to six disks 
in every column, so three bits is enough to keep values from zero to seven. If you 
change the number of rows, you will need to adjust BITS_IN_LEN accordingly.

The PLAYER_BLACK and PLAYER_WHITE values define the values used in the decoded 
game representation and, finally, COUNT_TO_WIN sets the length of the group that 
needs to be formed to win the game. So, in theory, you can try to experiment with 
the code and train the agent for, say, five-in-a-row on a 20 × 40 field by just changing 
four numbers in game.py.
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The INITIAL_STATE value contains the encoded representation for an initial game 
state, which has GAME_COLS empty lists. The rest of the code is functions. Some of 
them are used internally, but some make an interface of the game used everywhere 
in the example. Let's list them quickly:

•	 encode_lists(state_lists): Converts from decoded to encoded 
representation of the game state. The argument has to be a list of GAME_COLS 
lists, with the contents of the column specified in the bottom-to-top order. 
In other words, to drop a new disk on the top of the stack, we just need to 
append it to the corresponding list. The result of the function is an integer 
with 63 bits representing the game state.

•	 decode_binary(state_int): Converts from the integer representation 
of the field back into the list form.

•	 possible_moves(state_int): Returns the list with indices of columns 
which could be moved from the given encoded game state. The columns 
are numbered from zero to six, left to right.

•	 move(state_int, col, player): The central function of the file, which 
provides game dynamics combined with a win/lose check. In arguments, it 
accepts the game state in the encoded form, the column to place the disk in 
and the index of the player which moves. The column index has to be valid 
(be present in the result of possible_moves(state_int)), otherwise the 
exception will be raised. The function returns a tuple with two elements: 
a new game state in the encoded form after the move has been performed 
and a Boolean indicating the move leading to the win of the player. As a 
player can win only after their move, a single Boolean is enough. Of course, 
there is a chance of getting a draw state (when nobody won, but there are no 
possible moves remaining). Such situations have to be checked by calling the 
possible_moves function after the move() function.

•	 render(state_int): Returns a list of strings, representing the field's state. 
This function is used in the Telegram bot to send the field state to the user.

Implementing MCTS
MCTS is implemented in Chapter18/lib/mcts.py and represented by a single class 
MCTS, which is responsible for performing a batch of MCTS search and keeping the 
statistics gathered during it. The code is not very large, but still has several tricky 
pieces, so let's check it in detail.

class MCTS:
    def __init__(self, c_puct=1.0):
        self.c_puct = c_puct
        # count of visits, state_int -> [N(s, a)]
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        self.visit_count = {}
        # total value of the state's action,
        # state_int -> [W(s, a)]
        self.value = {}
        # average value of actions, state_int -> [Q(s, a)]
        self.value_avg = {}
        # prior probability of actions, state_int -> [P(s,a)]
        self.probs = {}

The constructor has no arguments except the c_puct constant, which is used in the 
node selection process and mentioned in the original AlphaGo Zero paper [1] as 
could be tweaked to increase exploration, but I'm not redefining it anywhere and haven't 
experimented with it. The body of the constructor creates an empty container to keep 
statistics about the states. The key in all of those dicts is the encoded game state (an 
integer) and values are lists, keeping the various parameters of actions that we have. 
The comments above every container have the same notations of values as in the 
AlphaGo Zero paper.

    def clear(self):
        self.visit_count.clear()
        self.value.clear()
        self.value_avg.clear()
        self.probs.clear()

The preceding method clears the state without destroying the MCTS object, which 
happens when we switch the current best model to the new one and the gathered 
statistics become obsolete.

    def find_leaf(self, state_int, player):
        """
        Traverse the tree until the end of game or leaf node
        :param state_int: root node state
        :param player: player to move
        :return: tuple of (value, leaf_state,
        player, states, actions)
        1. value: None if leaf node, otherwise equals
        to the game outcome for the player at leaf
        2. leaf_state: state_int of the last state
        3. player: player at the leaf node
        4. states: list of states traversed
        5. actions: list of actions taken
        """
        states = []
        actions = []
        cur_state = state_int
        cur_player = player
        value = None
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This method is used during the search to perform one single traversal of the game 
tree, starting from the root node given by the state_int argument and keeping 
walking down until one of these two situations has been faced: we reach the final 
game state or a yet unexplored leaf has been found. During the search, we keep track 
of the visited states and the executed actions to be able to update the nodes' statistics 
later.

        while not self.is_leaf(cur_state):
            states.append(cur_state)

            counts = self.visit_count[cur_state]
            total_sqrt = m.sqrt(sum(counts))
            probs = self.probs[cur_state]
            values_avg = self.value_avg[cur_state]

Every iteration of the loop processes the game state that we're currently at. For this 
state, we extract the statistics that we need to make the decision about the action.

            if cur_state == state_int:
                noises = np.random.dirichlet([0.03] *  
                                             game.GAME_COLS)
                probs = [0.75 * prob + 0.25 * noise for prob,  
                         noise in zip(probs, noises)]
            score = [value + self.c_puct * prob * total_sqrt /  
                     (1 + count)
                     for value, prob, count in zip(values_avg,  
                                                   probs, counts)]

The decision about the action is taken based on the action utility, which is a sum 
between Q(s, a) and the prior probabilities scaled to the visit count. The root node 
of the search process has an extra noise added to the probabilities to improve the 
exploration of the search process. As we perform MCTS from different game states 
along the self-play trajectories, this extra noise ensures that we've tried different 
actions along the path.

            invalid_actions = set(range(game.GAME_COLS)) -  
                              set(game.possible_moves(cur_state))
            for invalid in invalid_actions:
                score[invalid] = -np.inf
            action = int(np.argmax(score))
            actions.append(action)
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As we have calculated the score for the actions, we need to mask out invalid actions 
for the state (for example, when the column is full, we cannot place another disk 
on the top). After that, the action with the maximum score is selected and recorded.

            cur_state, won = game.move(cur_state, action,  
                                       cur_player)
            if won:
                # if somebody won the game, the value of the final
                # state is -1 (as it is on opponent's turn)
                value = -1.0
            cur_player = 1-cur_player
            # check for the draw
            if value is None and len(game.possible_moves(cur_state)) 
== 0:
                value = 0.0

        return value, cur_state, cur_player, states, actions

To finish the loop, we ask our game engine to make the move, returning the new 
state and the indication of whether the player won the game. The final game states 
(win, lose, or draw) are never added to the MCTS statistics, so they will always be 
leaf nodes. The function returns the game's value for the leaf player (or None if the 
final state hasn't been reached), the current player at the leaf state, the list of states 
we've visited during the search, and the list of the actions taken.

    def is_leaf(self, state_int):
        return state_int not in self.probs

    def search_batch(self, count, batch_size, state_int, player,  
                     net, device="cpu"):
        for _ in range(count):
            self.search_minibatch(batch_size, state_int, player,  
                                  net, device)

The main entry point to the MCTS class is the search_batch() function, which 
performs several batches of searches. Every search consists of finding the leaf of the 
tree, optionally expanding the leaf and doing backup. The main bottleneck here is 
the expand operation, which requires the NN to be used to get the prior probabilities 
of the actions and the estimated game value. To make this expansion more efficient, 
we use minibatches, when we search for several leaves, but then perform expansion 
in one single NN execution. This approach has one disadvantage: as several MCTS 
searches are performed in one batch, we don't get the same outcome as the execution 
of them serially.
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Indeed, initially, when we have no nodes stored in the MCTS class, our first search 
expands the root node, the second will expand some of its child nodes, and so 
on. However, one single batch of searches can expand only one root node in 
the beginning. Of course, later, individual searches in the batch could follow 
the different game paths and expand more, but in the beginning, minibatch 
expansion is much less efficient in terms of exploration than sequential MCTS.

To compensate for this, I still use minibatches, but perform several of them.

    def search_minibatch(self, count, state_int, player, net,  
                         device="cpu"):
        backup_queue = []
        expand_states = []
        expand_players = []
        expand_queue = []
        planned = set()
        for _ in range(count):
            value, leaf_state, leaf_player, states, actions =  
            self.find_leaf(state_int, player)
            if value is not None:
                backup_queue.append((value, states, actions))
            else:
                if leaf_state not in planned:
                    planned.add(leaf_state)
                    leaf_state_lists =  
                    game.decode_binary(leaf_state)
                    expand_states.append(leaf_state_lists)
                    expand_players.append(leaf_player)
                    expand_queue.append((leaf_state, states,  
                                         actions))

In minibatch search, we first perform the leaf search starting from the same state. 
If the search has found a final game state (in that case, the returned value will not 
be equal to None), no expansion is required and we save the result for a backup 
operation. Otherwise, we store the leaf for later expansion.

        if expand_queue:
            batch_v = model.state_lists_to_batch(expand_states,  
                      expand_players, device)
            logits_v, values_v = net(batch_v)
            probs_v = F.softmax(logits_v, dim=1)
            values = values_v.data.cpu().numpy()[:, 0]
            probs = probs_v.data.cpu().numpy()
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To expand, we convert the states into the form required by the model (there is 
a special function in the model.py library) and ask our network to return prior 
probabilities and values for the batch of states. We'll use those probabilities  
to create nodes, and the values will be backed up on a final statistics update.

            # create the nodes
            for (leaf_state, states, actions), value, prob in  
                zip(expand_queue, values, probs):
                self.visit_count[leaf_state] = [0] *  
                                               game.GAME_COLS
                self.value[leaf_state] = [0.0] * game.GAME_COLS
                self.value_avg[leaf_state] = [0.0] *  
                                             game.GAME_COLS
                self.probs[leaf_state] = prob
                backup_queue.append((value, states, actions))

Node creation is just storing zeros for every action in the visit count and action 
values (total and average). In prior probabilities, we store values obtained from 
the network.

        for value, states, actions in backup_queue:
            # leaf state is not stored in states and 
            # actions, so the value of the leaf will be
            # the value of the opponent
            cur_value = -value
            for state_int, action in zip(states[::-1],  
                                         actions[::-1]):
                self.visit_count[state_int][action] += 1
                self.value[state_int][action] += cur_value
                self.value_avg[state_int][action] =  
                    self.value[state_int][action] /  
                    self.visit_count[state_int][action]
                cur_value = -cur_value

The backup operation is the core process in MCTS, which updates the statistics for 
a state visited during the search. The visit count of the taken actions is incremented, 
the total values are just summed, and the average values are normalized using 
visit counts. It's very important to properly track the value of the game during the 
backup, as we have two opponents, and at every turn, the value changes the sign 
(as a winning position for the current player is a losing game state for the opponent).

    def get_policy_value(self, state_int, tau=1):
        """
        Extract policy and action-values by the state
        :param state_int: state of the board
        :return: (probs, values)



AlphaGo Zero

[ 506 ]

        """
        counts = self.visit_count[state_int]
        if tau == 0:
            probs = [0.0] * game.GAME_COLS
            probs[np.argmax(counts)] = 1.0
        else:
            counts = [count ** (1.0 / tau) for count in counts]
            total = sum(counts)
            probs = [count / total for count in counts]
        values = self.value_avg[state_int]
        return probs, values

The final function in the class returns the probability of actions and the action  
values for the game state, using the statistics gathered during MCTS. There are  
two modes of probability calculation, specified by the τ  parameter. If it equals to 
zero, the selection becomes deterministic, as we select the most frequently visited  
action. In other cases, the distribution given by N(s,a)

1
τ

∑
k N(s,k)

1
τ

 is used, which, again, 
improves exploration.

Model
The NN used is a residual convolution net with six layers, which is a simplified 
version of the network used in the original AlphaGo Zero method. On the input, 
we pass the encoded game state, which consists of two 6 × 7 channels. The first has 
1.0 places with the current player's disks and the second channel has 1.0, where the 
opponent has their disks. This representation allows us to make the network player 
invariant and analyze the position from the perspective of the current player.

The network consists of the common body with residual convolution filters. The 
features produced by them are passed to the policy and the value heads, which are 
the combination of a convolution layer and a fully connected layer. The policy head 
returns the logits for every possible action (which are the column to drop the disk) 
and a single-value float. The details are available in the Chapter18/lib/model.py file.

Besides the model, this file contains two functions: the first, with the state_
lists_to_batch name, converts the batch of game states represented in lists into 
the model's input form. The second method has the play_game name and is very 
important for both the training and testing processes. Its purpose is to simulate the 
game between two NNs, performing MCTS and optionally storing the taken moves 
in a replay buffer.

def play_game(mcts_stores, replay_buffer, net1, net2,  
              steps_before_tau_0, mcts_searches, mcts_batch_size,
              net1_plays_first=None, device="cpu"):
    if mcts_stores is None:
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        mcts_stores = [mcts.MCTS(), mcts.MCTS()]
    elif isinstance(mcts_stores, mcts.MCTS):
        mcts_stores = [mcts_stores, mcts_stores]

The function accepts lots of parameters:

•	 The MCTS class instance, which could be a single instance or the list of two 
instances or None. We need to be flexible there to cover different usages 
of this function.

•	 An optional replay buffer.
•	 NNs to be used during the game.
•	 The amount of game steps needed to be taken before the τ  parameter 

used for the action probability calculation will be changed from 1 to 0.
•	 The amount of MCTS to perform.
•	 The MCTS batch size.
•	 Who plays first.

    state = game.INITIAL_STATE
    nets = [net1, net2]
    if net1_plays_first is None:
        cur_player = np.random.choice(2)
    else:
        cur_player = 0 if net1_plays_first else 1
    step = 0
    tau = 1 if steps_before_tau_0 > 0 else 0
    game_history = []

Before the game loop, we initialize the game state and make a selection of the first 
player. If there was no information given about who will make the first move, 
it is chosen randomly.

    result = None
    net1_result = None

    while result is None:
        mcts_stores[cur_player].search_batch(mcts_searches,  
                                             mcts_batch_size,  
                                             state, cur_player,  
                                             nets[cur_player],  
                                             device=device)
        probs, _ = mcts_stores[cur_player].get_policy_value(
                                                          state,  
                                                          tau=tau)
        game_history.append((state, cur_player, probs))
        action = np.random.choice(game.GAME_COLS, p=probs)
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At every turn, we perform MCTS to populate the statistics and then obtain the 
probability of actions, which will be sampled to get the action.

        state, won = game.move(state, action, cur_player)
        if won:
            result = 1
            net1_result = 1 if cur_player == 0 else -1
            break
        cur_player = 1-cur_player
        # check the draw case
        if len(game.possible_moves(state)) == 0:
            result = 0
            net1_result = 0
            break
        step += 1
        if step >= steps_before_tau_0:
            tau = 0

Then, the game state is updated using the function in the game engine module and 
the handling of end-of-game situations is performed.

    if replay_buffer is not None:
        for state, cur_player, probs in reversed(game_history):
            replay_buffer.append((state, cur_player, probs,  
                                  result))
            result = -result

    return net1_result, step

At the end of the function, we populate the replay buffer with probabilities for the 
action and the game result from the perspective of the current player. This data will 
be used to train the network.

Training
With all those functions in hand, the training process is a simple combination of 
them in the correct order. The training program is available in Chapter18/train.
py, and it has logic which has already been described: in the loop, our current best 
model constantly plays against itself, saving the steps in the replay buffer. Another 
network is being trained on this data, minimizing the cross entropy between the 
probabilities of actions sampled from MCTS and the result of the policy head. 
MSE between the value head predictions, about the game and the actual game 
result, is also added to the total loss.
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Periodically, the network being trained and the current best network play 
100 matches, and if the current network is able to win in more than 60% of them, 
the network's weights are synced. This process continues infinitely, hopefully, 
finding models that are more and more proficient in the game.

Testing and comparison
During the training process, the model's weights are saved every time the current 
best model is replaced with the trained model. As a result, we get multiple agents 
of various strength. In theory, the skills of the later models should be better than 
preceding ones, but we'd like to check it ourselves.

To do this, there is a tool, Chapter18/play.py, which takes several model files 
and plays a tournament when every model plays a specified number of rounds 
with all others. The result table, with the number of wins achieved by every model, 
will represent the relative model's strength.

Another way of checking the performance of resulting agents is by playing them 
against humans. This has been done by me, my kids (thanks Julia and Fedor!), 
and my friends, who played several matches against the selected models of various 
strength. This has been done using the bot written for Telegram messenger, which 
allows the user to select the model to play against and keeps the global score table 
for all plays. The bot is available in Chapter18/telegram-bot.py and has the same 
requirements and installation process as the bot from Chapter 12, Chatbots Training 
with RL (to get it up and running, you need a Telegram bot token to be created and 
placed in the config file).

Connect4 results
To make the training fast, the hyperparameters of the training process were 
intentionally chosen to be small. For example, at every step of the self-play process, 
only 10 MCTS were performed, each with a minibatch size of eight. This, in 
combination with efficient minibatch MCTS and the fast game engine, made training 
very fast. Basically, after just one hour of training and 2,500 games played in the 
self-play mode, the produced model was sophisticated enough to be enjoyable to 
play against. Of course, the level of its play was well below even a kid's level, but 
it showed some rudimentary strategies and made mistakes in only every other move, 
which was good progress.
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The training was left running for a day, which resulted in 55k games played by  
a best model and, in total, 102 best model rotations. The training dynamics are 
shown in the following charts:

Figure 3: Training convergence

The tournament verification was complicated by the number of different models, as 
several games needed to be played by each pair to estimate their strength. To handle 
this, all 102 models where separated in 10 groups (sorted by time), next 100 games 
were played between all pairs in each group, and then two favorites from each group 
were selected for a final round. The chart with the scores obtained by the systems in 
the final is shown here. The x axis is the model's index, while the y axis is the amount 
of wins that the system achieved:

Figure 4: Results of the tournament between the trained agents
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From the preceding chart, it is obvious that the system found the best strategy very 
early, but later, for some reason, degraded significantly. The system slowly started to 
recover, but the process was too slow. Probably, the hyperparameters (especially the 
amount of MCTS and size of the replay buffer) could be tuned to improve the result. 
Also, the fact that subsequent models have a worse gameplay might be a sign that 
more games are required during the evaluation of the trained network.

The top-10 final leaderboard is shown here:

1.	 best_008_02500.dat: w=223, l=157, d=0

2.	 best_005_01900.dat: w=214, l=166, d=0

3.	 best_072_40500.dat: w=205, l=174, d=1

4.	 best_097_52100.dat: w=203, l=177, d=0

5.	 best_077_42600.dat: w=202, l=178, d=0

6.	 best_022_12200.dat: w=196, l=184, d=0

7.	 best_053_31000.dat: w=193, l=187, d=0

8.	 best_065_36600.dat: w=192, l=188, d=0

9.	 best_103_55700.dat: w=192, l=188, d=0

10.	 best_017_09800.dat: w=189, l=191, d=0

Similar results were obtained from the human verification, when the best results 
were shown by the best_008_02500.dat model, which was able to win 50% of 
the played games.

Figure 5: The leaderboard of human verification; my daughter is dominating
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Summary
In this chapter, we implemented the AlphaGo Zero method, created by DeepMind 
to solve board games with perfect information. The primary point of this method 
is to allow agents to improve their strength via self-play, only without any prior 
knowledge from human games or other data sources.
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Book summary
My congratulations on reaching the end of the book! I hope that the book was 
useful and you enjoyed reading it as much as I enjoyed gathering material and 
writing all the chapters. As a final word, I'd like to wish you good luck in this 
exciting and dynamic area of RL. The domain is developing very rapidly, but 
with an understanding of the basics, it becomes much simpler for you to keep 
track of the new developments and research in this field.

There are lots of very interesting topics left uncovered, such as partially observable 
MDPs (where environment observations don't fulfill the Markov property) or recent 
approaches to exploration, such as the count-based methods. There is a lot of recent 
activity around multi-agent methods, where many agents need to learn how to 
coordinate to solve a common problem. We also haven't mentioned the memory-
based RL approach, where your agent can maintain some sort of a memory to keep 
its knowledge and experience. Lots of efforts are put into increasing the RL sample 
efficiency, which will ideally be close to human learning performance, which is 
still a far-reaching goal at the moment. Of course, it is not possible to cover the full 
domain in a small book, because new ideas appear almost every day. However, the 
goal of the book was to give you a practical foundation in the field, simplifying your 
own learning of the common methods.

Finally, I'd like to quote Volodymir Mnih's words from his talk, Recent Advances and 
Frontiers in Deep RL, on the Deep RL Bootcamp 2017: "The field of deep RL is very 
new and everything is still exciting. Literally, nothing is solved yet!"
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