

Hands-On Artificial Intelligence
for IoT

Expert machine learning and deep learning techniques for
developing smarter IoT systems

Amita Kapoor

BIRMINGHAM - MUMBAI

Hands-On Artificial Intelligence for IoT
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Nelson Morris
Content Development Editor: Karan Thakkar
Technical Editor: Adya Anand
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: January 2019

Production reference: 1310119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-606-7

www.packtpub.com

http://www.packtpub.com

To my friend and mentor Narotam Singh for being my gradient ascent in the dataset called life.
A part of my royalties will go to smilefoundation.org, a non-profit organization based in India

working on welfare projects on education, healthcare, livelihood, and the
empowerment of women in remote villages and slums across the different states of India.

– Amita Kapoor

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Amita Kapoor is an associate professor in the Department of Electronics, SRCASW,
University of Delhi, and has been actively teaching neural networks and artificial
intelligence for the last 20 years. She completed her master's in electronics in 1996 and her
PhD in 2011. During her PhD she was awarded the prestigious DAAD fellowship to pursue
part of her research at the Karlsruhe Institute of Technology, Karlsruhe, Germany. She was
awarded the Best Presentation Award at the Photonics 2008 international conference. She is
an active member of ACM, AAAI, IEEE, and INNS. She has co-authored two books. She has
more than 40 publications in international journals and conferences. Her present research
areas include machine learning, artificial intelligence, deep reinforcement learning, and
robotics.

I would like to thank Prof Ajit Jaokar, University of Oxford; his IoT course was the
inspiration behind this book. Special thanks to Erin LeDell, Chief Machine Learning
Scientist at H2O.ai for her thoughtful suggestions. I would also like to thank Armando
Fandango, Narotam Singh, Ruben Olivas, and Hector Velarde for their input.
I am grateful for the support of my colleagues and students. Last but not least, I would like
to thank the entire Packt team, with a special mention to Tushar Gupta, Karan Thakkar,
and Adya Anand for their continuous motivation.

About the reviewers
Hector Duran Lopez Velarde received a B.Che.E. from UPAEP and an MSc in automation
and artificial intelligence from Tecnologico de Monterrey ITESM, Mexico, in 2000. He has
worked as a controls and automation engineer for companies such as Honeywell and
General Electric, among others. He also has participated in several research projects as a
technical lead. His experience in software development, process simulation, artificial
intelligence, and industrial automation has led him to the current development of
complete IoT solutions in the automotive, textile, and pharmaceutical industries. He is
currently working on a research center of IoT.

Huge thanks to my wife, Yaz, and to my children, Ivana and Hector, for all their support and
love.

Ruben Oliva Ramos is a computer engineer from Tecnologico of León Institute, with a
master's degree in computer and electronics systems engineering with a networking
specialization from the University of Salle Bajio. He has more than 5 years' experience of
developing web apps to control and monitor devices connected to Arduino and Raspberry
Pi, using web frameworks and cloud services to build IoT applications. He has authored
Raspberry Pi 3 Home Automation Projects, Internet of Things Programming with JavaScript,
Advanced Analytics with R and Tableau, and SciPy Recipes for Packt.

I would like to thank my savior and lord, Jesus Christ for giving me strength and courage
to pursue this project, to my dearest wife, Mayte, our two lovely sons, Ruben and Dario, to
my dear father (Ruben), my dearest mom (Rosalia), my brother (Juan Tomas), and my
sister (Rosalia), whom I love. I’m very grateful to Packt Publishing for giving me the
opportunity to collaborate as an author and reviewer, to belong to this honest and
professional team.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Principles and Foundations of IoT and AI 6
What is IoT 101? 7

IoT reference model 9
IoT platforms 10
IoT verticals 11

Big data and IoT 13
Infusion of AI – data science in IoT 15

Cross-industry standard process for data mining 17
AI platforms and IoT platforms 18

Tools used in this book 20
TensorFlow 20
Keras 21
Datasets 22

The combined cycle power plant dataset 22
Wine quality dataset 23
Air quality data 24

Summary 25

Chapter 2: Data Access and Distributed Processing for IoT 26
TXT format 26

Using TXT files in Python 27
CSV format 28

Working with CSV files with the csv module 28
Working with CSV files with the pandas module 31
Working with CSV files with the NumPy module 33

XLSX format 34
Using OpenPyXl for XLSX files 34
Using pandas with XLSX files 35

Working with the JSON format 36
Using JSON files with the JSON module 36
JSON files with the pandas module 37

HDF5 format 38
Using HDF5 with PyTables 38
Using HDF5 with pandas 39
Using HDF5 with h5py 40

SQL data 42
The SQLite database engine 42
The MySQL database engine 44

Table of Contents

[ii]

NoSQL data 46
HDFS 47

Using hdfs3 with HDFS 48
Using PyArrow's filesystem interface for HDFS 49

Summary 49

Chapter 3: Machine Learning for IoT 50
ML and IoT 50
Learning paradigms 51
Prediction using linear regression 53

Electrical power output prediction using regression 54
Logistic regression for classification 57

Cross-entropy loss function 59
Classifying wine using logistic regressor 60

Classification using support vector machines 62
Maximum margin hyperplane 63
Kernel trick 65
Classifying wine using SVM 66

Naive Bayes 69
Gaussian Naive Bayes for wine quality 70

Decision trees 73
Decision trees in scikit 75
Decision trees in action 77

Ensemble learning 79
Voting classifier 80
Bagging and pasting 81

Improving your model – tips and tricks 82
Feature scaling to resolve uneven data scale 82
Overfitting 83

Regularization 83
Cross-validation 84

No Free Lunch theorem 84
Hyperparameter tuning and grid search 85

Summary 86

Chapter 4: Deep Learning for IoT 87
Deep learning 101 87

Deep learning—why now? 90
Artificial neuron 91
Modelling single neuron in TensorFlow 96

Multilayered perceptrons for regression and classification 102
The backpropagation algorithm 104
Energy output prediction using MLPs in TensorFlow 107
Wine quality classification using MLPs in TensorFlow 110

Convolutional neural networks 115

Table of Contents

[iii]

Different layers of CNN 115
The convolution layer 115
Pooling layer 118

Some popular CNN model 119
LeNet to recognize handwritten digits 120

Recurrent neural networks 126
Long short-term memory 130
Gated recurrent unit 134

Autoencoders 135
Denoising autoencoders 137
Variational autoencoders 137

Summary 137

Chapter 5: Genetic Algorithms for IoT 138
Optimization 138

Deterministic and analytic methods 140
Gradient descent method 141
Newton-Raphson method 143

Natural optimization methods 144
Simulated annealing 144
Particle Swarm Optimization 145
Genetic algorithms 146

Introduction to genetic algorithms 146
The genetic algorithm 149

Crossover 150
Mutation 151

Pros and cons 152
Advantages 152
Disadvantages 153

Coding genetic algorithms using Distributed Evolutionary
Algorithms in Python 153

Guess the word 154
Genetic algorithm for CNN architecture 159
Genetic algorithm for LSTM optimization 167

Summary 171

Chapter 6: Reinforcement Learning for IoT 172
Introduction 172

RL terminology 174
Deep reinforcement learning 177

Some successful applications 178
Simulated environments 179

OpenAI gym 180
Q-learning 183

Taxi drop-off using Q-tables 185
Q-Network 188

Taxi drop-off using Q-Network 188

Table of Contents

[iv]

DQN to play an Atari game 193
Double DQN 202
Dueling DQN 203

Policy gradients 204
Why policy gradients? 206
Pong using policy gradients 206
The actor-critic algorithm 212

Summary 213

Chapter 7: Generative Models for IoT 214
Introduction 215
Generating images using VAEs 216

VAEs in TensorFlow 218
GANs 224

Implementing a vanilla GAN in TensorFlow 227
Deep Convolutional GANs 232
Variants of GAN and its cool applications 238

Cycle GAN 239
Applications of GANs 242

Summary 243

Chapter 8: Distributed AI for IoT 244
Introduction 244

Spark components 245
Apache MLlib 247

Regression in MLlib 247
Classification in MLlib 252
Transfer learning using SparkDL 256

Introducing H2O.ai 262
H2O AutoML 262
Regression in H2O 263
Classification in H20 269

Summary 272

Chapter 9: Personal and Home IoT 273
Personal IoT 274

SuperShoes by MIT 275
Continuous glucose monitoring 276

Hypoglycemia prediction using CGM data 276
Heart monitor 280
Digital assistants 283

IoT and smart homes 284
Human activity recognition 285

HAR using wearable sensors 286
HAR from videos 292

Smart lighting 292

Table of Contents

[v]

Home surveillance 295
Summary 296

Chapter 10: AI for the Industrial IoT 297
Introduction to AI-powered industrial IoT 297

Some interesting use cases 299
Predictive maintenance using AI 300

Predictive maintenance using Long Short-Term Memory 301
Predictive maintenance advantages and disadvantages 314

Electrical load forecasting in industry 315
STLF using LSTM 316

Summary 319

Chapter 11: AI for Smart Cities IoT 320
Why do we need smart cities? 321
Components of a smart city 323

Smart traffic management 324
Smart parking 324
Smart waste management 325
Smart policing 326
Smart lighting 327
Smart governance 328

Adapting IoT for smart cities and the necessary steps 328
Cities with open data 330

Atlanta city Metropolitan Atlanta Rapid Transit Authority data 330
Chicago Array of Things data 332

Detecting crime using San Francisco crime data 332
Challenges and benefits 336
Summary 337

Chapter 12: Combining It All Together 338
Processing different types of data 338

Time series modeling 339
Preprocessing textual data 346
Data augmentation for images 348
Handling videos files 352
Audio files as input data 354

Computing in the cloud 358
AWS 358
Google Cloud Platform 358
Microsoft Azure 358

Summary 359

Other Books You May Enjoy 360

Index 363

Preface
The mission of this book is to enable the reader to build AI-enabled IoT applications. With
the surge in popularity of IoT devices, there are many applications that use data science
and analytics to utilize the terabyte of data generated. However, these applications do not
address the challenge of continually discovering patterns in IoT data. In this book, we cover
the various aspects of AI theory and implementation that the reader can utilize to make
their IoT solutions smarter by implementing AI techniques.

The reader starts by learning the basics of AI and IoT devices and how to read IoT data
from various sources and streams. Then we introduce various ways to implement AI with
examples in TensorFlow, scikit learn, and Keras. The topics covered include machine
learning, deep learning, genetic algorithms, reinforcement learning, and generative
adversarial networks. We also show the reader how to implement AI using distributed
technologies and on the cloud. Once the reader is familiar with AI techniques, then we
introduce various techniques for different kinds of data generated and consumed by IoT
devices, such as time series, images, audio, video, text, and speech.

After explaining various AI techniques on various kinds of IoT data, finally, we share some
case studies with the reader from the four major categories of IoT solutions: personal IoT,
home IoT, industrial IoT, and smart city IoT.

Who this book is for
The audience for this book is anyone who has a basic knowledge of developing IoT
applications and Python and wants to make their IoT applications smarter by applying AI
techniques. This audience may include the following people:

IoT practitioners who already know how to build IoT systems, but now they
want to implement AI to make their IoT solution smart.
Data science practitioners who have been building analytics with IoT platforms,
but now they want to transition from IoT analytics to IoT AI, thus making their
IoT solutions smarter.
Software engineers who want to develop AI-based solutions for smart IoT
devices.
Embedded system engineers looking to bring smartness and intelligence to their
products.

Preface

[2]

What this book covers
Chapter 1, Principles and Foundations of IoT and AI, introduces the basic concepts IoT, AI,
and data science. We end the chapter with an introduction to the tools and datasets we will
be using in the book.

Chapter 2, Data Access and Distributed Processing for IoT, covers various methods of
accessing data from various data sources, such as files, databases, distributed data stores,
and streaming data.

Chapter 3, Machine Learning for IoT, covers the various aspects of machine learning, such as
supervised, unsupervised, and reinforcement learning for IoT. The chapter ends with tips
and tricks to improve your models' performance.

Chapter 4, Deep Learning for IoT, explores the various aspects of deep learning, such as
MLP, CNN, RNN, and autoencoders for IoT. It also introduces various frameworks for
deep learning.

Chapter 5, Genetic Algorithms for IoT, discusses optimization and different evolutionary
techniques employed for optimization with an emphasis on genetic algorithms.

Chapter 6, Reinforcement Learning for IoT, introduces the concepts of reinforcement learning,
such as policy gradients and Q-networks. We cover how to implement deep Q networks
using TensorFlow and learn some cool real-world problems where reinforcement learning
can be applied.

Chapter 7, Generative Models for IoT, introduces the concepts of adversarial and generative
learning. We cover how to implement GAN, DCGAN, and CycleGAN using TensorFlow,
and also look at their real-life applications.

Chapter 8, Distributed AI for IoT, covers how to leverage machine learning in distributed
mode for IoT applications.

Chapter 9, Personal and Home and IoT, goes over some exciting personal and home
applications of IoT.

Chapter 10, AI for Industrial IoT, explains how to apply the concepts learned in this book to
two case studies with industrial IoT data.

Chapter 11, AI for Smart Cities IoT, explains how to apply the concepts learned in this book
to IoT data generated from smart cities.

Chapter 12, Combining It All Together, covers how to pre-process textual, image, video, and
audio data before feeding it to models. It also introduces time series data.

Preface

[3]

To get the most out of this book
To get the most out of this book, download the examples code from the GitHub repository
and practice with the Jupyter Notebooks provided.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT. We
also have other code bundles from our rich catalog of books and videos available at
https://github.com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here:
http://www.packtpub.com/sites/default/files/downloads/9781788836067_ColorImages

.pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/9781788836067_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788836067_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788836067_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781788836067_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This declares two placeholders with the names A and B; the arguments to
the tf.placeholder method specify that the placeholders are of the float32 datatype."

A block of code is set as follows:

Declare placeholders for the two matrices
A = tf.placeholder(tf.float32, None, name='A')
B = tf.placeholder(tf.float32, None, name='B')

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"At the bottom of the stack, we have the device layer, also called the perception layer."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

http://www.packtpub.com/submit-errata

Preface

[5]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com/
https://www.packtpub.com/

1
Principles and Foundations of

IoT and AI
Congratulations on purchasing this book; it suggests that you're keenly interested in
keeping yourself updated with the recent advancements in technology. This book deals
with the three big trends in the current business scenario, Internet of Things (IoT), big
data, and Artificial Intelligence (AI). The exponential growth of the number of devices
connected to the internet, and the exponential volume of data created by them, necessitate
the use of the analytical and predictive techniques of AI and deep learning (DL). This book
specifically targets the third component, the various analytical and predictive methods or
models available in the field of AI for the big data generated by IoT.

This chapter will briefly introduce you to these three trends and will expand on how they're
interdependent. The data generated by IoT devices is uploaded to the cloud, hence you'll
also be introduced to the various IoT cloud platforms and the data services they offer.

This chapter will cover the following points:

Knowing what's a thing is in IoT, what devices constitute things, what the
different IoT platforms are, and what an IoT vertical is
Knowing what big data is and understanding how the amount of data generated
by IoT lies in the range of big data
Understanding how and why AI can be useful for making sense of the
voluminous data generated by IoT
With the help of an illustration, understanding how IoT, big data, and AI
together can help us shape a better world
Learning about some of the tools needed to perform analysis

Principles and Foundations of IoT and AI Chapter 1

[7]

What is IoT 101?
The term IoT was coined by Kevin Ashton in 1999. At that time, most of the data fed to
computers was generated by humans; he proposed that the best way would be for
computers to take data directly, without any intervention from humans. And so he
proposed things such as RFID and sensors, which gather data, should be connected to the
network, and feed directly to the computer.

You can read the complete article where Ashton talks about what he
means by IoT here: http:/ / www. itrco. jp/ libraries/ RFIDjournal-
That%20Internet%20of%20Things%20Thing. pdf.

Today IoT (also called the internet of everything and sometimes, the fog network) refers to
a wide range of things such as sensors, actuators, and smartphones connected to the
internet. These things can be anything: a person with a wearable device (or even mobile
phone), an RFID-tagged animal, or even our day-to-day devices such as a refrigerator,
washing machine, or even a coffee machine. These things can be physical things—that is,
things that exist in the physical world and can be sensed, actuated, and connected—or of
the information world (a virtual thing)—that is, things that aren't tangibly present but exist
as information (data) and can be stored, processed, and accessed. These things necessarily
have the ability to communicate directly with the internet; optionally, they might have the
potentiality of sensing, actuation, data capture, data storage, and data processing.

The International Telecommunication Unit (ITU), a United Nations agency, defines IoT
as:

"a global infrastructure for the information society, enabling advanced services by
interconnecting (physical and virtual) things based on existing and evolving interoperable
information and communication technologies."

You can learn more at https:/ / www. itu. int/en/ ITU- T/gsi/ iot/ Pages/ default. aspx.

The wide expanse of ICT already provided us with communication at any time or any
place; the IoT added the new dimension of ANY THING communication:

http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
http://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
https://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx

Principles and Foundations of IoT and AI Chapter 1

[8]

 New dimension introduced in IoT (adapted from b-ITU-T Y.2060 report)

It's predicted that IoT as a technology will have a far-reaching impact on people and the
society we live in. To give you a glimpse of its far-reaching effects, consider the following
scenarios:

You, like me, live in a high rise building and are very fond of plants. With lots of
effort and care, you've made a small indoor garden of your own using potted
plants. Your boss asks you to go for a week-long trip, and you're worried your
plants won't survive for a week without water. The IoT solution is to add soil
moisture sensors to your plants, connect them to the internet, and add actuators
to remotely switch on or off the water supply and artificial sunlight. Now, you
can be anywhere in the world, but your plants won't die, and you can check the
individual plant's soil moisture condition and water it as needed.
You had a very tiring day at the office; you just want to go home and have
someone make you coffee, prepare your bed, and heat up water for a bath, but
sadly you're home alone. Not anymore; IoT can help. Your IoT-enabled home
assistant can prepare the right flavor coffee from the coffee machine, order your
smart water heater to switch on and maintain the water temperature exactly the
way you want, and ask your smart air conditioner to switch on and cool the
room.

Principles and Foundations of IoT and AI Chapter 1

[9]

The choices are limited only by your imagination. The two preceding scenarios correspond
to consumer IoT—the IoT with a focus on consumer-oriented applications. There also exists
a large scope of Industry IoT (IIoT) where manufacturers and industries optimize
processes and implement remote monitoring capabilities to increase productivity and
efficiency. In this book, you'll find the hands-on experience with both IoT applications.

IoT reference model
Just like the OSI reference model for the internet, IoT architecture is defined through six
layers: four horizontal layers and two vertical layers. The two vertical layers are
Management and Security and they're spread over all four horizontal layers, as seen in the
following diagram:

IoT layers

Principles and Foundations of IoT and AI Chapter 1

[10]

The Device Layer: At the bottom of the stack, we have the device layer, also called the
perception layer. This layer contains the physical things needed to sense or control the
physical world and acquire data (that is, by perceiving the physical world). Existing
hardware, such as sensors, RFID, and actuators, constitutes the perception layer.

The Network Layer: This layer provides the networking support and transfer of data over
either wired or wireless network. The layer securely transmits the information from the
devices in the device layer to the information processing system. Both transmission
Medium and Technology are part of the networking layer. Examples include 3G, UMTS,
ZigBee, Bluetooth, Wi-Fi, and so on.

The Service Layer: This layer is responsible for service management. It receives information
from the network layer, stores it into the database, processes that information, and can
make an automatic decision based on the results.

The Application Layer: This layer manages the applications dependent upon the
information processed in the service layer. There's a wide range of applications that can be
implemented by IoT: smart cities, smart farming, and smart homes, to name a few.

IoT platforms
Information from the network layer is often managed with the help of IoT platforms. Many
companies today provide IoT platform services, where they help not only with data but
also enable seamless integration with different hardware. Since they function as a mediator
between the hardware and application layer, IoT platforms are also referred to as IoT
middleware and are part of the service layer in the IoT reference stack. IoT platforms
provide the ability to connect and communicate with things from anywhere in the world. In
this book, we'll briefly cover some popular IoT platforms such as the Google Cloud
Platform, Azure IoT, Amazon AWS IoT, Predix, and H2O.

Principles and Foundations of IoT and AI Chapter 1

[11]

You can select which IoT platform is best for you based on the following criteria:

Scalability: Addition and deletion of new devices to the existing IoT network
should be possible
Ease of use: The system should be perfectly working and delivering all its
specifications with minimum intervention
Third party integration: Heterogeneous devices and protocols should be able to
inter-network with each other
Deployment options: It should be workable on a broad variety of hardware
devices and software platforms
Data security: The security of data and devices is ensured

IoT verticals
A vertical market is a market in which vendors offer goods and services specific to an
industry, trade, profession, or other groups of customers with specialized needs. IoT
enables the possibility of many such verticals, and some of the top IoT verticals are as
follows:

Smart building: Buildings with IoT technologies can help in not only reducing
the consumption of resources but also improving the satisfaction of the humans
living or working in them. The buildings have smart sensors that not only
monitor resource consumption but can also proactively detect residents' needs.
Data is collected via these smart devices and sensors to remotely monitor a
building, energy, security, landscaping, HVAC, lighting, and so on. The data is
then used to predict actions, which can be automated according to events and
hence efficiency can be optimized, saving time, resources, and cost.
Smart agriculture: IoT can enable local and commercial farming to be more
environmentally friendly, cost-effective, and production efficient. Sensors placed
through the farm can help in automating the process of irrigation. It's predicted
that smart agricultural practices will enable a manifold increase in productivity,
and hence food resources.

Principles and Foundations of IoT and AI Chapter 1

[12]

Smart city: A smart city can be a city with smart parking, a smart mass transit
system, and so on. A smart city has the capability to address traffic, public safety,
energy management, and more for both its government and citizens. By using
advanced IoT technologies, it can optimize the usage of the city infrastructure
and quality of life for its citizens.
Connected healthcare: IoT enables critical business and patient monitoring
decisions to be made remotely and in real time. Individuals carry medical sensors
to monitor body parameters such as heartbeat, body temperature, glucose level,
and so on. The wearable sensors, such as accelerometers and gyroscopes, can be
used to monitor a person's daily activity.

We'll be covering some of them as a case study in this book. The content of this book is
focused on information processing and the applications being implemented on IoT and so
we'll not be going into details of the devices, architecture, and protocols involved in IoT
reference stacks any further.

The interested reader can refer to the following references to know more
about the IoT architecture and different protocols:

Da Xu, Li, Wu He, and Shancang Li. Internet of things in
industries: A survey. IEEE Transactions on industrial informatics
10.4 (2014): 2233-2243.
Khan, Rafiullah, et al. Future internet: The internet of things
architecture, Possible Applications and Key Challenges. Frontiers of
Information Technology (FIT), 2012 10th International
Conference on. IEEE, 2012.
This website provides an overview of the protocols involved in
IoT:
 https:/ /www. postscapes. com/ internet- of-things-
protocols/ .

https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/
https://www.postscapes.com/internet-of-things-protocols/

Principles and Foundations of IoT and AI Chapter 1

[13]

Big data and IoT
IoT has connected things never previously connected to the internet, such as car engines,
resulting in the generation of a large amount of continuous data streams. The following
screenshot shows explorative data by IHS of the number of connected devices in billions in
future years. Their estimate shows that the number of IoT devices will reach 75.44 billion by
2025:

 Prediction about the growth of IoT devices by 2025

The full whitepaper, IoT platforms: enabling the Internet of Things, by IHS is
available as PDF at: https:/ /cdn. ihs.com/ www/ pdf/ enabling- IOT.pdf.

https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf

Principles and Foundations of IoT and AI Chapter 1

[14]

The reduction in sensor cost, efficient power consumption techniques, a large range of
connectivity (infrared, NFC, Bluetooth, Wi-Fi, and so on), and the availability of cloud
platforms that support IoT deployment and development are the major reasons for this
pervasion of IoT in our homes, personal lives, and industry. This has also motivated
companies to think about providing new services and developing new business models.
Some examples include the following:

Airbnb: It connects people so that they can rent out spare rooms and cottages to
one another, and it earns the commission.
Uber: It connects cab drivers with travelers. The location of the traveler is used to
assign them to the nearest driver.

The amount of data generated in the process is both voluminous and complex, necessitating
a big data. Big data approach and IoT are almost made for each other; the two work in
conjunction.

Things are continuously generating an enormous amount of data streams that provide their
statuses such as temperature, pollution level, geolocation, and proximity. The data
generated is in time series format and is autocorrelated. The task becomes challenging
because the data is dynamic in nature. Also, the data generated can be analyzed at the
edge (sensor or gateway) or cloud. Before sending the data to the cloud, some form of IoT
data transformation is performed. This may involve the following:

Temporal or spatial analysis
Summarizing the data at the edge
Aggregation of data
Correlating data in multiple IoT streams
Cleaning data
Filling in the missing values
Normalizing the data
Transforming it into different formats acceptable to the cloud

At the edge, complex event processing (CEP) is used to combine data from multiple
sources and infer events or patterns.

Principles and Foundations of IoT and AI Chapter 1

[15]

The data is analyzed using stream analytics, for example, applying analytical tools to the
stream of data, but developing the insights and rules used externally in an offline mode.
The model is built offline and then applied to the stream of data generated. The data may
be handled in different manners:

Atomic: Single data at a time is used
Micro batching: Group of data per batch
Windowing: Data within a timeframe per batch

 The stream analytics can be combined with the CEP to combine events over a time frame
and correlate patterns to detect special patterns (for example, anomaly or failure).

Infusion of AI – data science in IoT
A very popular phrase among data scientists and machine learning engineers is "AI is the
new electricity" said by Prof Andrew Ng in NIPS 2017, we can expand it as follows: If AI is
the new electricity, data is the new coal, and IoT the new coal-mine.

IoT generates an enormous amount of data; presently, 90% of the data generated isn't even
captured, and out of the 10% that is captured, most is time-dependent and loses its value
within milliseconds. Manually monitoring this data continuously is both cumbersome and
expensive. This necessitates a way to intelligently analyze and gain insight from this data;
the tools and models of AI provide us with a way to do exactly this with minimum human
intervention. The major focus of this book will be on understanding the various AI models
and techniques that can be applied to IoT data. We'll be using both machine learning (ML)
and DL algorithms. The following screenshot explains the relationship between Artificial
Intelligence, Machine Learning, and Deep Learning:

Principles and Foundations of IoT and AI Chapter 1

[16]

 AI, ML, and DL

By observing the behavior of multiple things, IoT (with the help of big data and AI) aims to
gain insight into the data and optimize underlying processes. This involves multiple
challenges:

Storing real-time generated events
Running analytical queries over stored events
Performing analytics using AI/ML/DL techniques over the data to gain insights
and make predictions

Principles and Foundations of IoT and AI Chapter 1

[17]

Cross-industry standard process for data mining
For IoT problems, the most used data management (DM) methodology is cross-industry
standard process for data mining (CRISP-DM) proposed by Chapman et al. It's a process
model that states the tasks that need to be carried out for successfully completing DM. It's a
vendor-independent methodology divided into these six different phases:

Business understanding1.
Data understanding2.
Data preparation3.
Modelling4.
Evaluation5.
Deployment6.

Following diagram shows the different stages:

 Different stages in CRISP-DM

As we can see, it's a continuous process model with data science and AI playing important
roles in steps 2–5.

The details about CRISP-DM and all its phases can be read in the
following:
Marbán, Óscar, Gonzalo Mariscal, and Javier Segovia. A data mining &
knowledge discovery process model. Data Mining and Knowledge Discovery in
Real Life Applications. InTech, 2009.

Principles and Foundations of IoT and AI Chapter 1

[18]

AI platforms and IoT platforms
A large number of cloud platforms with both AI and IoT capabilities are available today.
These platforms provide the capability to integrate the sensors and devices and perform
analytics on the cloud. There exist more than 30 cloud platforms in the global market, each
targeting different IoT verticals and services. The following screenshot lists the various
services that AI/IoT platforms support:

 Services that different AI/IoT platforms support

Principles and Foundations of IoT and AI Chapter 1

[19]

Let's briefly find out about some popular cloud platforms. In Chapter 12, Combining it all
together, we'll learn how to use the most popular ones. The following is a list of some of the
popular Cloud platforms:

IBM Watson IoT Platform: Hosted by IBM, the platform provides device
management; it uses the MQTT protocol to connect with IoT devices and
applications. It provides real-time scalable connectivity. The data can be stored
for a period and accessed in real time. IBM Watson also provides Bluemix
Platform-as-a-Service (PaaS) for analytics and visualizations. We can write code
to build and manage applications that interact with the data and connected
devices. It supports Python along with C#, Java, and Node.js.
Microsoft IoT-Azure IoT suite: It provides a collection of preconfigured
solutions built on Azure PaaS. It enables a reliable and secure bidirectional
communication between IoT devices and cloud. The preconfigured solutions
include data visualization, remote monitoring, and configuring rules and alarms
over live IoT telemetry. It also provides Azure Stream Analytics to process the
data in real time. The Azure Stream Analytics allows us to use Visual Studio. It
supports Python, Node.js, C, and Arduino, depending upon the IoT devices.
Google Cloud IoT: The Google Cloud IoT provides a fully managed service for
securely connecting and managing IoT devices. It supports both MQTT and
HTTP protocols. It also provides bidirectional communication between IoT
devices and the cloud. It provides support for Go, PHP, Ruby, JS, .NET, Java,
Objective-C, and Python. It also has BigQuery, which allows users to perform
data analytics and visualization.
Amazon AWS IoT: The Amazon AWS IoT allows IoT devices to communicate
via MQTT, HTTP, and WebSockets. It provides secure, bi-directional
communication between IoT devices and the cloud. It also has a rules engine that
can be used to integrate data with other AWS services and transform the data.
Rules can be defined that trigger the execution of user code in Java, Python, or
Node.js. AWS Lambda allows us to use our own custom trained models.

Principles and Foundations of IoT and AI Chapter 1

[20]

Tools used in this book
For the implementation of IoT-based services, we need to follow a bottom-up approach. For
each IoT vertical, we need to find the analytics and the data and, finally, implement it in
code.

Due to its availability in almost all AI and IoT platforms, Python will be used for coding in
this book. Along with Python, some helping libraries such as NumPy, pandas, SciPy, Keras,
and TensorFlow will be used to perform AI/ML analytics on the data. For visualization, we
will be using Matplotlib and Seaborn.

TensorFlow
TensorFlow is an open source software library developed by the Google Brain team; it has
functions and APIs for implementing deep neural networks. It works with Python, C++,
Java, R, and Go. It can be used to work on multiple platforms, CPU, GPU, mobile, and even
distributed. TensorFlow allows for model deployment and ease of use in production. The
optimizer in TensorFlow makes the task of training deep neural networks easier by
automatically calculating gradients and applying them to update weights and biases.

In TensorFlow, a program has two distinct components:

Computation graph is a network of nodes and edges. Here all of the data,
variables, placeholders, and the computations to be performed are defined.
TensorFlow supports three types of data objects: constants, variables, and
placeholders.
Execution graph actually computes the network using a Session object. Actual
calculations and transfer of information from one layer to another takes place in
the Session object.

Let's see the code to perform matrix multiplication in TensorFlow. The whole code can be
accessed from the GitHub repository (https:/ /github. com/ PacktPublishing/ Hands- On-
Artificial-Intelligence- for- IoT) filename, matrix_multiplication.ipynb:

import tensorflow as tf
import numpy as np

https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT

Principles and Foundations of IoT and AI Chapter 1

[21]

This part imports the TensorFlow module. Next, we define the computation graph. mat1
and mat2 are two matrices we need to multiply:

A random matrix of size [3,5]
mat1 = np.random.rand(3,5)
A random matrix of size [5,2]
mat2 = np.random.rand(5,2)

We declare two placeholders, A and B, so that we can pass their values at runtime. In the
computation graph, we declare all of the data and computation objects:

Declare placeholders for the two matrices
A = tf.placeholder(tf.float32, None, name='A')
B = tf.placeholder(tf.float32, None, name='B')

This declares two placeholders with the names A and B; the arguments to the
tf.placeholder method specify that the placeholders are of the float32 datatype. Since
the shape specified is None, we can feed it a tensor of any shape and an optional name for
the operation. Next, we define the operation to be performed using the matrix
multiplication method, tf.matmul:

C = tf.matmul(A,B)

The execution graph is declared as a Session object, which is fed the two matrices, mat1
and mat2, for the placeholders, A and B, respectively:

with tf.Session() as sess:
 result = sess.run(C, feed_dict={A: mat1, B:mat2})
 print(result)

Keras
Keras is a high-level API that runs on top of TensorFlow. It allows for fast and easy
prototyping. It supports both convolutional and recurrent neural networks, and even a
combination of the two. It can run on both CPUs and GPUs. The following code performs
matrix multiplication using Keras:

Import the libraries
import keras.backend as K
import numpy as np

Declare the data
A = np.random.rand(20,500)
B = np.random.rand(500,3000)

Principles and Foundations of IoT and AI Chapter 1

[22]

#Create Variable
x = K.variable(value=A)
y = K.variable(value=B)
z = K.dot(x,y)
print(K.eval(z))

Datasets
In the coming chapters, we'll be learning different DL models and ML methods. They all
work on data; while a large number of datasets are available to demonstrate how these
models work, in this book, we'll use datasets available freely through wireless sensors and
other IoT devices. The following are some of the datasets used in this book and their
sources.

The combined cycle power plant dataset
This dataset contains 9,568 data points collected from a combined cycle power plant
(CCPP) in a course of six years (2006-2011). CCPP uses two turbines to generate power, the
gas turbine and the steam turbine. There're three main components of the CCPP plant: gas
turbine, heat recovery system, and steam turbine. The dataset, available at UCI ML (http:/
/archive.ics.uci. edu/ ml/ datasets/ combined+cycle+power+plant), was collected by
Pinar Tufekci from Namik Kemal University and Heysem Kaya from Bogazici University.
The data consists of four features determining the average ambient variables. The averages
are taken from various sensors located around the plant that record ambient variables per
second. The aim is to predict the net hourly electrical energy output. The data is available in
both xls and ods formats.

The features in the dataset are as follows:

The Ambient Temperature (AT) is in the range 1.81°C and 37.11°C
The Ambient Pressure (AP) is in the range 992.89—1033.30 millibar
Relative Humidity (RH) is in the range 25.56% to 100.16%
Exhaust Vacuum (V) is in the range 25.36 to 81.56 cm Hg
Net hourly electrical energy output (PE) is in the range 420.26 to 495.76 MW

http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant

Principles and Foundations of IoT and AI Chapter 1

[23]

Further details about the data and the problem can be read from the
following:

Pınar Tüfekci, Prediction of full load electrical power output of a
baseload operated combined cycle power plant using machine learning
methods, International Journal of Electrical Power & Energy
Systems, Volume 60, September 2014, Pages 126-140, ISSN
0142-0615.
Heysem Kaya, Pınar Tüfekci, Sadık Fikret Gürgen: Local and
GlobalLearning Methods for Predicting Power of a Combined Gas &
Steam Turbine, Proceedings of the International Conference on
Emerging Trends in Computer and Electronics Engineering
ICETCEE 2012, pp. 13-18 (Mar. 2012, Dubai).

Wine quality dataset
Wineries around the world have to undergo wine certifications and quality assessments to
safeguard human health. The wine certification is performed with the help of
physicochemical analysis and sensory tests. With the advancement of technology, the
physicochemical analysis can be performed routinely via in-vitro equipment.

We use this dataset for classification examples in this book. The dataset can be downloaded
from the UCI-ML repository (https:/ / archive. ics. uci. edu/ml/ datasets/ Wine+Quality).
The wine quality dataset contains results of physicochemical tests on different samples of
red and white wine. Each sample was further rated by an expert wine taster for quality on a
scale of 0—10.

The dataset contains in total 4,898 instances; it has a total of 12 attributes. The 12 attributes
are as follows:

Fixed acidity
Volatile acidity
Citric acid
Residual sugar
Chlorides
Free sulfur dioxide
Total sulfur dioxide

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Principles and Foundations of IoT and AI Chapter 1

[24]

Density
pH
Sulfates
Alcohol
Quality

The dataset is available in the CSV format.

Details about the dataset can be read from this paper: Cortez, Paulo, et al.
Modeling wine preferences by data mining from physicochemical properties.
Decision Support Systems 47.4 (2009): 547-553 (https:/ /repositorium.
sdum. uminho. pt/ bitstream/ 1822/ 10029/ 1/wine5. pdf).

Air quality data
Air pollution poses a major environmental risk to human health. It's found that there exists
a correlation between improved air quality and amelioration of different health problems
such as respiratory infections, cardiovascular diseases, and lung cancer. The extensive
sensor networks throughout the world by Meteorological Organizations of the respective
country provide us with real-time air quality data. This data can be accessed through the
respective web APIs of these organizations.

In this book, we'll use the historical air quality data to train our network and predict the
mortality rate. The historical data for England is available freely at Kaggle (https:/ /www.
kaggle.com/c/predict- impact- of- air- quality- on-death- rates), and the air quality data
consists of daily means of ozone (O3), Nitrogen dioxide (NO2), particulate matter with a
diameter less than or equal to 10 micrometers (PM10) and PM25 (2.5 micrometers or less),
and temperature. The mortality rate (number of deaths per 100,000 people) for England
region is obtained by the data provided by the UK Office for National Statistics.

https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://repositorium.sdum.uminho.pt/bitstream/1822/10029/1/wine5.pdf
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates
https://www.kaggle.com/c/predict-impact-of-air-quality-on-death-rates

Principles and Foundations of IoT and AI Chapter 1

[25]

Summary
In this chapter, we learned about IoT, big data, and AI. This chapter introduced the
common terminologies used in IoT. We learned about the IoT architecture for data
management and data analysis. The enormous data generated by IoT devices necessitates
special ways to handle it.

We learned about how data science and AI can help in both analytics and prediction
generated by the many IoT devices. Various IoT platforms were briefly described in this
chapter, as were some popular IoT verticals. We also learned about special DL
libraries: TensorFlow and Keras. Finally, some of the datasets we'll be using throughout the
book were introduced.

The next chapter will cover how to access the datasets available in varied formats.

2
Data Access and Distributed

Processing for IoT
Data is everywhere: images, speech, text, weather information, the speed of your car, your
last EMI, changing stock prices. With the integration of Internet of Things (IoT) systems,
the amount of data produced has increased many-fold; an example is sensor readings,
which could be taken for room temperature, soil alkalinity, and more. This data is stored
and made available in various formats. In this chapter, we will learn how to read, save, and
process data in some popular formats. Specifically, you will do the following:

Access data in TXT format
Read and write csv-formatted data via the CSV, pandas, and NumPy modules
Access JSON data using JSON and pandas
Learn to work with the HDF5 format using PyTables, pandas, and h5py
Handle SQL databases using SQLite and MySQL
Handle NoSQL using MongoDB
Work with Hadoop's Distributed File System

TXT format
One of the simplest and common formats for storing data is the TXT format; many IoT
sensors log sensor readings with different timestamps in the simple .txt file format.
Python provides built-in functions for creating, reading, and writing into TXT files.

 We can access TXT files in Python itself without using any module; the data, in this case, is
of the string type, and you will need to transform it to other types to use it. Alternatively,
we can use NumPy or pandas.

Data Access and Distributed Processing for IoT Chapter 2

[27]

Using TXT files in Python
Python has built-in functions that read and write into TXT files. The complete functionality
is provided using four sets of functions: open(), read(), write(), and close(). As the
names suggest, they are used to open a file, read from a file, write into a file, and finally
close it. If you are dealing with string data (text), this is the best choice. In this section, we
will use Shakespeare plays in TXT form; the file can be downloaded from the MIT
site: https://ocw. mit. edu/ ans7870/ 6/ 6. 006/ s08/ lecturenotes/ files/ t8. shakespeare.
txt.

We define the following variables to access the data:

data_folder = '../../data/Shakespeare'
data_file = 'alllines.txt'

The first step here is to open the file:

f = open(data_file)

Next, we read the whole file; we can use the read function, which will read the whole file
as one single string:

contents = f.read()

This reads the whole file (consisting of 4,583,798 characters) into the contents
variable. Let's explore the contents of the contents variable; the following command will
print the first 1000 characters:

print(contents[:1000])

The preceding code will print the output as follows:

"ACT I"
"SCENE I. London. The palace."
"Enter KING HENRY, LORD JOHN OF LANCASTER, the EARL of WESTMORELAND, SIR
WALTER BLUNT, and others"
"So shaken as we are, so wan with care,"
"Find we a time for frighted peace to pant,"
"And breathe short-winded accents of new broils"
"To be commenced in strands afar remote."
"No more the thirsty entrance of this soil"
"will daub her lips with her own children's blood,"
"Nor more will trenching war channel her fields,"
"Nor bruise her flowerets with the armed hoofs"
"Of hostile paces: those opposed eyes,"
"Which, like the meteors of a troubled heaven,"

https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt
https://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/files/t8.shakespeare.txt

Data Access and Distributed Processing for IoT Chapter 2

[28]

"All of one nature, of one substance bred,"
"Did lately meet in the intestine shock"
"And furious close of civil butchery"
"will now, in mutual well-beseeming ranks,"
"March all one way and be no more opposed"
"Against acquaintance, kindred and allies:"
"The edge of war, like an ill-sheathed knife,"
"No more will cut his master. Therefore, friends,"
"As far as to the sepulchre of Christ,"
"Whose

If the TXT files contain numeric data, it is better to use NumPy; if data is mixed, pandas is
the best choice.

CSV format
Comma-separated value (CSV) files are the most popular formats for storing tabular data
generated by IoT systems. In a .csv file, the values of the records are stored in plain-text
rows, with each row containing the values of the fields separated by a separator. The
separator is a comma by default but can be configured to be any other character. In this
section, we will learn how to use data from CSV files with Python's csv, numpy, and
pandas modules. We will use the household_power_consumption data file. The file can
be downloaded from the following GitHub link: https:/ /github. com/ ahanse/
machlearning/blob/ master/ household_ power_ consumption. csv. To access the data files,
we define the following variables:

data_folder = '../../data/household_power_consumption'
data_file = 'household_power_consumption.csv'

Generally, to quickly read the data from CSV files, use the Python csv module; however, if
the data needs to be interpreted as a mix of date, and numeric data fields, it's better to use
the pandas package. If the data is only numeric, NumPy is the most appropriate package.

Working with CSV files with the csv module
In Python, the csv module provides classes and methods for reading and writing CSV files.
The csv.reader method creates a reader object from which rows can be read iteratively.
Each time a row is read from the file, the reader object returns a list of fields. For example,
the following code demonstrates reading the data file and printing rows:

import csv
import os

https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv
https://github.com/ahanse/machlearning/blob/master/household_power_consumption.csv

Data Access and Distributed Processing for IoT Chapter 2

[29]

with open(os.path.join(data_folder,data_file),newline='') as csvfile:
 csvreader = csv.reader(csvfile)
 for row in csvreader:
 print(row)

The rows are printed as a list of field values:

['date', 'time', 'global_active_power', 'global_reactive_power', 'voltage',
'global_intensity', 'sub_metering_1', 'sub_metering_2', 'sub_metering_3']
['0007-01-01', '00:00:00', '2.58', '0.136', '241.97', '10.6', '0', '0',
'0'] ['0007-01-01', '00:01:00', '2.552', '0.1', '241.75', '10.4', '0', '0',
'0'] ['0007-01-01', '00:02:00', '2.55', '0.1', '241.64', '10.4', '0', '0',
'0']

The csv.writer method returns an object that can be used to write rows to a file. As an
example, the following code writes the first 10 rows of the file to a temporary file and then
prints it:

read the file and write first ten rows
with open(os.path.join(data_folder, data_file), newline='') as csvfile, \
 open(os.path.join(data_folder, 'temp.csv'), 'w', newline='') as
tempfile:
 csvreader = csv.reader(csvfile)
 csvwriter = csv.writer(tempfile)
 for row, i in zip(csvreader, range(10)):
 csvwriter.writerow(row)
read and print the newly written file
with open(os.path.join(data_folder, 'temp.csv'), newline='') as tempfile:
 csvreader = csv.reader(tempfile)
 for row in csvreader:
 print(row)

The delimiter field and the quoting field characters are important attributes that you
can set while creating reader and writer objects.

By default, the delimiter field is , and the other delimiters are specified with the
delimiter argument to the reader or writer functions. For example, the following code
saves the file with | as delimiter:

 # read the file and write first ten rows with '|' delimiter
with open(os.path.join(data_folder, data_file), newline='') as csvfile, \
 open(os.path.join(data_folder, 'temp.csv'), 'w', newline='') as
tempfile:
 csvreader = csv.reader(csvfile)
 csvwriter = csv.writer(tempfile, delimiter='|')
 for row, i in zip(csvreader, range(10)):
 csvwriter.writerow(row)

Data Access and Distributed Processing for IoT Chapter 2

[30]

read and print the newly written file
with open(os.path.join(data_folder, 'temp.csv'), newline='') as tempfile:
 csvreader = csv.reader(tempfile, delimiter='|')
 for row in csvreader:
 print(row)

If you do not specify a delimiter character when the file is read, the rows will be read as
one field and printed as follows:

['0007-01-01|00:00:00|2.58|0.136|241.97|10.6|0|0|0']

quotechar specifies a character with which to surround fields. The quoting argument
specifies what kind of fields can be surrounded with quotechar. The quoting argument
can have one of the following values:

csv.QUOTE_ALL: All the fields are quoted
csv.QUOTE_MINIMAL: Only fields containing special characters are quoted
csv.QUOTE_NONNUMERIC: All non-numeric fields are quoted
csv.QUOTE_NONE: None of the fields are quoted

As an example, let's print the temp file first:

0007-01-01|00:00:00|2.58|0.136|241.97|10.6|0|0|0
0007-01-01|00:01:00|2.552|0.1|241.75|10.4|0|0|0
0007-01-01|00:02:00|2.55|0.1|241.64|10.4|0|0|0
0007-01-01|00:03:00|2.55|0.1|241.71|10.4|0|0|0
0007-01-01|00:04:00|2.554|0.1|241.98|10.4|0|0|0
0007-01-01|00:05:00|2.55|0.1|241.83|10.4|0|0|0
0007-01-01|00:06:00|2.534|0.096|241.07|10.4|0|0|0
0007-01-01|00:07:00|2.484|0|241.29|10.2|0|0|0
0007-01-01|00:08:00|2.468|0|241.23|10.2|0|0|0

Now let's save it with all fields quoted:

read the file and write first ten rows with '|' delimiter, all quoting
and * as a quote charachetr.
with open(os.path.join(data_folder, data_file), newline='') as csvfile, \
 open('temp.csv', 'w', newline='') as tempfile:
 csvreader = csv.reader(csvfile)
 csvwriter = csv.writer(tempfile, delimiter='|',
quotechar='*',quoting=csv.QUOTE_ALL)
 for row, i in zip(csvreader, range(10)):
 csvwriter.writerow(row)

Data Access and Distributed Processing for IoT Chapter 2

[31]

The file gets saved with the specified quote character:

0007-01-01|*00:00:00*|*2.58*|*0.136*|*241.97*|*10.6*|*0*|*0*|*0*
0007-01-01|*00:01:00*|*2.552*|*0.1*|*241.75*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:02:00*|*2.55*|*0.1*|*241.64*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:03:00*|*2.55*|*0.1*|*241.71*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:04:00*|*2.554*|*0.1*|*241.98*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:05:00*|*2.55*|*0.1*|*241.83*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:06:00*|*2.534*|*0.096*|*241.07*|*10.4*|*0*|*0*|*0*
0007-01-01|*00:07:00*|*2.484*|*0*|*241.29*|*10.2*|*0*|*0*|*0*
0007-01-01|*00:08:00*|*2.468*|*0*|*241.23*|*10.2*|*0*|*0*|*0*

Remember to read the file with the same arguments; otherwise, the * quote character will
be treated as part of the field values and printed as follows:

['*0007-01-01*', '*00:00:00*', '*2.58*', '*0.136*', '*241.97*', '*10.6*',
'*0*', '*0*', '*0*']

Using the correct arguments with the reader object prints the following:

['0007-01-01', '00:00:00', '2.58', '0.136', '241.97', '10.6', '0', '0',
'0']

Now let's see how we can read CSV files with pandas, another popular Python library.

Working with CSV files with the pandas module
In pandas, the read_csv() function returns a DataFrame after reading the CSV file:

df = pd.read_csv('temp.csv')
print(df)

The DataFrame is printed as follows:

 date time global_active_power global_reactive_power
voltage \
0 0007-01-01 00:00:00 2.580 0.136
241.97
1 0007-01-01 00:01:00 2.552 0.100
241.75
2 0007-01-01 00:02:00 2.550 0.100
241.64
3 0007-01-01 00:03:00 2.550 0.100
241.71
4 0007-01-01 00:04:00 2.554 0.100
241.98
5 0007-01-01 00:05:00 2.550 0.100

Data Access and Distributed Processing for IoT Chapter 2

[32]

241.83
6 0007-01-01 00:06:00 2.534 0.096
241.07
7 0007-01-01 00:07:00 2.484 0.000
241.29
8 0007-01-01 00:08:00 2.468 0.000
241.23

 global_intensity sub_metering_1 sub_metering_2 sub_metering_3
0 10.6 0 0 0
1 10.4 0 0 0
2 10.4 0 0 0
3 10.4 0 0 0
4 10.4 0 0 0
5 10.4 0 0 0
6 10.4 0 0 0
7 10.2 0 0 0
8 10.2 0 0 0

We see in the preceding output that pandas automatically interpreted the date and time
columns as their respective data types. The pandas DataFrame can be saved to a CSV file
with the to_csv() function:

df.to_csv('temp1.cvs')

pandas, when it comes to reading and writing CSV files, offers plenty of arguments. Some
of these are as follows, complete with how they're used:

header: Defines the row number to be used as a header, or none if the file does
not contain any headers.
sep: Defines the character that separates fields in rows. By default, the value of
sep is set to ,.
names: Defines column names for each column in the file.
usecols: Defines columns that need to be extracted from the CSV file. Columns
that are not mentioned in this argument are not read.
dtype: Defines the data types for columns in the DataFrame.

Many other available options are documented at the following
links: https:/ /pandas. pydata. org/ pandas- docs/ stable/ generated/
pandas. read_ csv. html and https:/ /pandas. pydata. org/ pandas- docs/
stable/ generated/ pandas. DataFrame. to_ csv. html.

Now let's see how to read data from CSV files with the NumPy module.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

Data Access and Distributed Processing for IoT Chapter 2

[33]

Working with CSV files with the NumPy module
The NumPy module provides two functions for reading values from CSV files:
np.loadtxt() and np.genfromtxt().

An example of np.loadtxt is as follows:

arr = np.loadtxt('temp.csv', skiprows=1, usecols=(2,3), delimiter=',')
arr

The preceding code reads columns 3 and 4 from the file that we created earlier, and saves
them in a 9 × 2 array as follows:

array([[2.58 , 0.136],
 [2.552, 0.1],
 [2.55 , 0.1],
 [2.55 , 0.1],
 [2.554, 0.1],
 [2.55 , 0.1],
 [2.534, 0.096],
 [2.484, 0.],
 [2.468, 0.]])

The np.loadtxt() function cannot handle CSV files with missing data. For instances
where data is missing, np.genfromtxt() can be used. Both of these functions offer many
more arguments; details can be found in the NumPy documentation. The preceding code
can be written using np.genfromtxt() as follows:

arr = np.genfromtxt('temp.csv', skip_header=1, usecols=(2,3),
delimiter=',')

NumPy arrays produced as a result of applying AI to IoT data can be saved with
np.savetxt(). For example, the array we loaded previously can be saved as follows:

np.savetxt('temp.csv', arr, delimiter=',')

The np.savetxt() function also accepts various other useful arguments, such as the
format for saved fields and headers. Check the NumPy documentation for more details on
this function.

CSV is the most popular data format on IoT platforms and devices. In this section, we
learned how to read CSV data using three different packages in Python. Let's learn about
XLSX, another popular format, in the next section.

Data Access and Distributed Processing for IoT Chapter 2

[34]

XLSX format
Excel, a component of the Microsoft Office pack, is one of the popular formats in which
data is stored and visualized. Since 2010, Office has supported the .xlsx format. We can
read XLSX files using the OpenPyXl and pandas functions.

Using OpenPyXl for XLSX files
OpenPyXl is a Python library for reading and writing Excel files. It is an open source
project. A new workbook is created using the following command:

wb = Workbook()

We can access the currently active sheet by using the following command:

ws = wb.active()

To change the sheet name, use the title command:

ws.title = "Demo Name"

A single row can be added to the sheet using the append method:

ws.append()

A new sheet can be created using the create_sheet() method. An individual cell in the
active sheet can be created using the column and row values:

Assigns the cell corresponding to
column A and row 10 a value of 5
ws.['A10'] = 5
#or
ws.cell(column=1, row=10, value=5)

A workbook can be saved using the save method. To load an existing workbook, we can
use the load_workbook method. The names of the different sheets in an Excel workbook
can be accessed using get_sheet_names().

Data Access and Distributed Processing for IoT Chapter 2

[35]

The following code creates an Excel workbook with three sheets and saves it; later, it loads
the sheet and accesses a cell. The code can be accessed from GitHub at
OpenPyXl_example.ipynb:

Creating and writing into xlsx file
from openpyxl import Workbook
from openpyxl.compat import range
from openpyxl.utils import get_column_letter
wb = Workbook()
dest_filename = 'empty_book.xlsx'
ws1 = wb.active
ws1.title = "range names"
for row in range(1, 40):
 ws1.append(range(0,100,5))
ws2 = wb.create_sheet(title="Pi")
ws2['F5'] = 2 * 3.14
ws2.cell(column=1, row=5, value= 3.14)
ws3 = wb.create_sheet(title="Data")
for row in range(1, 20):
 for col in range(1, 15):
 _ = ws3.cell(column=col, row=row, value="\
 {0}".format(get_column_letter(col)))
print(ws3['A10'].value)
wb.save(filename = dest_filename)

Reading from xlsx file
from openpyxl import load_workbook
wb = load_workbook(filename = 'empty_book.xlsx')
sheet_ranges = wb['range names']
print(wb.get_sheet_names())
print(sheet_ranges['D18'].value)

You can learn more about OpenPyXL from its documentation, available
at https:/ / openpyxl. readthedocs. io/ en/stable/ .

Using pandas with XLSX files
We can load existing .xlsx files with the help of pandas. The read_excel method is used
to read Excel files as a DataFrame. This method uses an argument, sheet_name, which is
used to specify the sheet we want to load. The sheet name can be specified either as a string
or number starting from 0. The to_excel method can be used to write into an Excel file.

https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/
https://openpyxl.readthedocs.io/en/stable/

Data Access and Distributed Processing for IoT Chapter 2

[36]

The following code reads an Excel file, manipulates it, and saves it. The code can be
accessed from GitHub at Pandas_xlsx_example.ipynb:

import pandas as pd
df = pd.read_excel("empty_book.xlsx", sheet_name=0)
df.describe()
result = df * 2
result.describe()
result.to_excel("empty_book_modified.xlsx")

Working with the JSON format
JavaScript Object Notation (JSON) is another popular data format in IoT systems. In this
section, we will learn how to read JSON data with Python's JSON, NumPy, and pandas
packages.

For this section, we will use the zips.json file, which contains US ZIP codes with city
codes, geolocation details, and state codes. The file has JSON objects recorded in the
following format:

{ "_id" : "01001", "city" : "AGAWAM", "loc" : [-72.622739, 42.070206],
"pop" : 15338, "state" : "MA" }

Using JSON files with the JSON module
To load and decode JSON data, use the json.load() or json.loads() functions. As an
example, the following code reads the first 10 lines from the zips.json file and prints
them nicely:

import os
import json
from pprint import pprint

with open(os.path.join(data_folder,data_file)) as json_file:
 for line,i in zip(json_file,range(10)):
 json_data = json.loads(line)
 pprint(json_data)

Data Access and Distributed Processing for IoT Chapter 2

[37]

The objects are printed as follows:

{'_id': '01001',
 'city': 'AGAWAM',
 'loc': [-72.622739, 42.070206],
 'pop': 15338,
 'state': 'MA'}

The json.loads() function takes string objects as input while the
json.load() function takes file objects as input. Both functions decode the JSON object
and load it in the json_data file as a Python dictionary object.

The json.dumps() function takes an object and produces a JSON string, and the
json.dump() function takes an object and writes the JSON string to the file. Thus, both
these function do the opposite of the json.loads() and json.load() functions.

JSON files with the pandas module
JSON strings or files can be read with the pandas.read_json() function, which returns a
DataFrame or series object. For example, the following code reads the zips.json file:

df = pd.read_json(os.path.join(data_folder,data_file), lines=True)
print(df)

We set lines=True because each line contains a separate object in JSON format. Without
this argument being set to True, pandas will raise ValueError. The DataFrame is printed
as follows:

 _id city loc pop
state
0 1001 AGAWAM [-72.622739, 42.070206] 15338
MA
1 1002 CUSHMAN [-72.51565, 42.377017] 36963
MA
...
...
29351 99929 WRANGELL [-132.352918, 56.433524] 2573
AK
29352 99950 KETCHIKAN [-133.18479, 55.942471] 422
AK

[29353 rows x 5 columns]

Data Access and Distributed Processing for IoT Chapter 2

[38]

To save the pandas DataFrame or series object to a JSON file or string, use the
Dataframe.to_json() function.

More information for both of these functions can be found at these
links: https:/ /pandas. pydata. org/ pandas- docs/ stable/ generated/
pandas. read_ json. html and https:/ /pandas. pydata. org/ pandas- docs/
stable/ generated/ pandas. DataFrame. to_ json. html.

While CSV and JSON remain the most popular data formats for IoT data, due to its large
size, it is often necessary to distribute data. There are two popular distributed mechanisms
for data storage and access: HDF5 and HDFS. Let's first learn about the HDF5 format.

HDF5 format
Hierarchical Data Format (HDF) is a specification put together by the HDF Group, a
consortium of academic and industry organizations (https:/ /support. hdfgroup. org/
HDF5/). In HDF5 files, data is organized into groups and datasets. A group is a collection of
groups or datasets. A dataset is a multidimensional homogeneous array.

In Python, PyTables and h5py are two major libraries for handling HDF5 files. Both these
libraries require HDF5 to be installed. For the parallel version of HDF5, a version of MPI is
also required to be installed. Installation of HDF5 and MPI is beyond the scope of this book.
Installation instructions for parallel HDF5 can be found at the following link: https:/ /
support.hdfgroup. org/ ftp/ HDF5/ current/ src/ unpacked/ release_ docs/ INSTALL_
parallel.

Using HDF5 with PyTables
Let's first create an HDF5 file from the numeric data we have in the temp.csv file with the
following steps:

Get the numeric data:1.

import numpy as np
arr = np.loadtxt('temp.csv', skiprows=1, usecols=(2,3),
delimiter=',')

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/HDF5/
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel
https://support.hdfgroup.org/ftp/HDF5/current/src/unpacked/release_docs/INSTALL_parallel

Data Access and Distributed Processing for IoT Chapter 2

[39]

Open the HDF5 file:2.

import tables
h5filename = 'pytable_demo.hdf5'
with tables.open_file(h5filename,mode='w') as h5file:

 Get the root node:3.

 root = h5file.root

Create a group with create_group() or a dataset with create_array(), and4.
repeat this until all the data is stored:

 h5file.create_array(root,'global_power',arr)

Close the file:5.

 h5file.close()

Let's read the file and print the dataset to make sure it is properly written:

with tables.open_file(h5filename,mode='r') as h5file:
 root = h5file.root
 for node in h5file.root:
 ds = node.read()
 print(type(ds),ds.shape)
 print(ds)

We get the NumPy array back.

Using HDF5 with pandas
We can also read and write HDF5 files with pandas. To read HDF5 files with pandas, they
must first be created with it. For example, let's use pandas to create a HDF5 file containing
global power values:

import pandas as pd
import numpy as np
arr = np.loadtxt('temp.csv', skiprows=1, usecols=(2,3), delimiter=',')
import pandas as pd
store=pd.HDFStore('hdfstore_demo.hdf5')
print(store)
store['global_power']=pd.DataFrame(arr)
store.close()

Data Access and Distributed Processing for IoT Chapter 2

[40]

Now let's read the HDF5 file that we created and print the array back:

import pandas as pd
store=pd.HDFStore('hdfstore_demo.hdf5')
print(store)
print(store['global_power'])
store.close()

The values of the DataFrame can be read in three different ways:

store['global_power']

store.get('global_power')

store.global_power

pandas also provides the high-level read_hdf() function and the to_hdf() DataFrame
method for reading and writing HDF5 files.

More documentation on HDF5 in pandas is available at the following link: http:/ /pandas.
pydata.org/pandas- docs/ stable/ io. html#io- hdf5.

Using HDF5 with h5py
The h5py module is the most popular way to handle HDF5 files in Python. A new or
existing HDF5 file can be opened with the h5py.File() function. After the file is open, its
groups can simply be accessed by subscripting the file object as if it was a dictionary object.
For example, the following code opens an HDF5 file with h5py and then prints the array
stored in the /global_power group:

import h5py
hdf5file = h5py.File('pytable_demo.hdf5')
ds=hdf5file['/global_power']
print(ds)
for i in range(len(ds)):
 print(arr[i])
hdf5file.close()

http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5

Data Access and Distributed Processing for IoT Chapter 2

[41]

The arr variable prints an HDF5 dataset type:

<HDF5 dataset "global_power": shape (9, 2), type "<f8">
[2.58 0.136]
[2.552 0.1]
[2.55 0.1]
[2.55 0.1]
[2.554 0.1]
[2.55 0.1]
[2.534 0.096]
[2.484 0.]
[2.468 0.]

For a new hdf5file, datasets and groups can be created by using
the hdf5file.create_dataset() function, returning the dataset object, and the
hdf5file.create_group() function, returning the folder object. The hdf5file file
object is also a folder object representing /, the root folder. Dataset objects support array
style slicing and dicing to set or read values from them. For example, the following code
creates an HDF5 file and stores one dataset:

import numpy as np
arr = np.loadtxt('temp.csv', skiprows=1, usecols=(2,3), delimiter=',')

import h5py
hdf5file = h5py.File('h5py_demo.hdf5')
dataset1 = hdf5file.create_dataset('global_power',data=arr)
hdf5file.close()

h5py provides an attrs proxy object with a dictionary-like interface to store and retrieve
metadata about the file, folders, and datasets. For example, the following code sets and then
prints the dataset and file attribute:

dataset1.attrs['owner']='City Corp.'
print(dataset1.attrs['owner'])

hdf5file.attrs['security_level']='public'
print(hdf5file.attrs['security_level'])

For more information about the h5py library, refer to the documentation at the following
link: http://docs. h5py. org/ en/ latest/ index. html.

So far, we have learned about different data formats. Often, large data is stored
commercially in databases, therefore we will explore how to access both SQL and NoSQL
databases next.

http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html
http://docs.h5py.org/en/latest/index.html

Data Access and Distributed Processing for IoT Chapter 2

[42]

SQL data
Most databases are organized using relational models. A relational database consists of one
or more related tables of information, and the relationship between information in different
tables is described using keys. Conventionally, these databases are managed using the
Database Management System (DBMS), software which interacts with end users, different
applications, and the database itself to capture and analyze data. Commercially available
DBMSes use Structured Query Language (SQL) to access and manipulate databases. We
can also use Python to access relational databases. In this section, we will explore SQLite
and MySQL, two very popular database engines that work with Python.

The SQLite database engine
According to the SQLite home page (https:/ /sqlite. org/ index. html), SQLite is a self-
contained, high-reliability, embedded, full-featured, public-domain SQL database engine.

SQLite is optimized for use in embedded applications. It is simple to use and quite fast. We
need to use the sqlite3 Python module to integrate SQLite with Python. The sqlite3
module is bundled with Python 3, so there is no need to install it.

We will use the data from the European Soccer Database (https:/ /github. com/
hugomathien/football- data- collection) for demonstrative purposes. We assume that
you already have a SQL server installed and started:

The first step after importing sqlite3 is to create a connection to the database1.
using the connect method:

import sqlite3
import pandas as pd
connection = sqlite3.connect('database.sqlite')
print("Database opened successfully")

https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://sqlite.org/index.html
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection
https://github.com/hugomathien/football-data-collection

Data Access and Distributed Processing for IoT Chapter 2

[43]

The European Soccer Database consists of eight tables. We can use read_sql to2.
read the database table or SQL query into the DataFrame. This prints a list of all
the tables in the database:

tables = pd.read_sql("SELECT * FROM sqlite_master WHERE
 type='table';", connection)
print(tables)

Let's read data from the Country table:3.

countries = pd.read_sql("SELECT * FROM Country;", connection)
countries.head()

Data Access and Distributed Processing for IoT Chapter 2

[44]

We can use SQL queries on tables. In the following example, we select players4.
whose height is greater than or equal to 180 and whose weight is greater than or
equal to 170:

selected_players = pd.read_sql_query("SELECT * FROM Player WHERE
 height >= 180 AND weight >= 170 ", connection)
print(selected_players)

Finally, do not forget to close the connection using the close method:5.

connection.close()

If you made any changes in the database, you will need to use the commit() method.

The MySQL database engine
Though we can use SQLite for large databases, MySQL is generally preferred. In addition
to being scalable for large databases, MySQL is also useful where data security is
paramount. Before using MySQL, you will need to install the Python MySQL connector.
There are many possible Python MySQL connectors such as, MySQLdb, PyMySQL, and
MySQL; we will use mysql-connector-python.

Data Access and Distributed Processing for IoT Chapter 2

[45]

In all three, after making a connection using the connect method, we define the cursor
element and use the execute method to run different SQL queries. To install MySQL, we
use the following:

pip install mysql-connector-python

Now that the Python MySQL connector is installed, we can start a connection1.
with the SQL server. Replace the host, user, and password configurations with
your SQL server configuration:

import mysql.connector
connection = mysql.connector.connect(host="127.0.0.1", # your host
 user="root", # username
 password="**********") # password

Let's check existing databases in the server and list them. To do this, we use the2.
cursor method:

mycursor = connection.cursor()
mycursor.execute("SHOW DATABASES")
for x in mycursor:
 print(x)

We can access one of the existing databases. Let's list the tables in one of the3.
databases:

connection = mysql.connector.connect(host="127.0.0.1", # your host
user="root", # username
password="**********" , #replace with your password
database = 'mysql')
mycursor = connection.cursor()
mycursor.execute("SHOW TABLES")
for x in mycursor:
 print(x)

Data Access and Distributed Processing for IoT Chapter 2

[46]

NoSQL data
The Not Only Structured Query Language (NoSQL) database is not a relational database;
instead, data can be stored in key-value, JSON, document, columnar, or graph formats.
They are frequently used in big data and real-time applications. We will learn here how to
access NoSQL data using MongoDB, and we assume you have the MongoDB server
configured properly and on:

We will need to establish a connection with the Mongo daemon using the1.
MongoClient object. The following code establishes the connection to the default
host, localhost , and port (27017). And it gives us access to the database:

from pymongo import MongoClient
client = MongoClient()
db = client.test

In this example, we try to load the cancer dataset available in scikit-learn to the2.
Mongo database. So, we first get the breast cancer dataset and convert it to a
pandas DataFrame:

from sklearn.datasets import load_breast_cancer
import pandas as pd

cancer = load_breast_cancer()
data = pd.DataFrame(cancer.data, columns=[cancer.feature_names])

data.head()

Next, we convert this into the JSON format, use the json.loads() function to3.
decode it, and insert the decoded data into the open database:

import json
data_in_json = data.to_json(orient='split')
rows = json.loads(data_in_json)
db.cancer_data.insert(rows)

Data Access and Distributed Processing for IoT Chapter 2

[47]

This will create a collection named cancer_data that contains the data. We can4.
query the document we just created, using the cursor object:

cursor = db['cancer_data'].find({})
df = pd.DataFrame(list(cursor))
print(df)

When it comes to distributed data on the IoT, Hadoop Distributed File System (HDFS) is
another popular method for providing distributed data storage and access in IoT systems.
In the next section, we study how to access and store data in HDFS.

HDFS
HDFS is a popular storage and access method for storing and retrieving data files for IoT
solutions. The HDFS format can hold large amounts of data in a reliable and scalable
manner. Its design is based on the Google File System (https:/ /ai. google/ research/
pubs/pub51). HDFS splits individual files into fixed-size blocks that are stored on machines
across the cluster. To ensure reliability, it replicates the file blocks and distributes them
across the cluster; by default, the replication factor is 3. HDFS has two main architecture
components:

The first, NodeName, stores the metadata for the entire filesystem, such as
filenames, their permissions, and the location of each block of each file.
The second, DataNode (one or more), is where file blocks are stored. It
performs Remote Procedure Calls (RPCs) using protobufs.

https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51
https://ai.google/research/pubs/pub51

Data Access and Distributed Processing for IoT Chapter 2

[48]

RPC is a protocol that one program can use to request a service from a
program located on another computer on a network without having to
know the network's details. A procedure call is also sometimes known as
a function call or a subroutine call.

There are many options for programmatically accessing HDFS in Python, such
as snakebite, pyarrow, hdfs3, pywebhdfs, hdfscli, and so on. In this section, we will
focus mainly on libraries that provide native RPC client interfaces and work with Python 3.

Snakebite is a pure Python module and CLI that allows you to access
HDFS from Python programs. At present, it only works with Python 2;
Python 3 is not supported. Moreover, it does not yet support write
operations, and so we are not including it in the book. However, if you are
interested in knowing more about this, you can refer to Spotify's
GitHub: https:/ /github. com/ spotify/ snakebite.

Using hdfs3 with HDFS
hdfs3 is a lightweight Python wrapper around the C/C++ libhdfs3 library. It allows us to
use HDFS natively from Python. To start, we first need to connect with the HDFS
NameNode; this is done using the HDFileSystem class:

from hdfs3 import HDFileSystem
hdfs = HDFileSystem(host = 'localhost', port=8020)

This automatically establishes a connection with the NameNode. Now, we can access a
directory listing using the following:

print(hdfs.ls('/tmp'))

This will list all the files and directories in the tmp folder. You can use functions such
as mkdir to make a directory and cp to copy a file from one location to another. To write
into a file, we open it first using the open method and use write:

with hdfs.open('/tmp/file1.txt','wb') as f:
 f.write(b'You are Awesome!')

https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite
https://github.com/spotify/snakebite

Data Access and Distributed Processing for IoT Chapter 2

[49]

Data can be read from the file:

with hdfs.open('/tmp/file1.txt') as f:
 print(f.read())

You can learn more about hdfs3 from its documentation: https:/ /media. readthedocs.
org/pdf/hdfs3/latest/ hdfs3. pdf.

Using PyArrow's filesystem interface for HDFS
PyArrow has a C++-based interface for HDFS. By default, it uses libhdfs, a JNI-based
interface, for the Java Hadoop client. Alternatively, we can also use libhdfs3, a C++
library for HDFS. We connect to the NameNode using hdfs.connect:

import pyarrow as pa
hdfs = pa.hdfs.connect(host='hostname', port=8020, driver='libhdfs')

If we change the driver to libhdfs3, we will be using the C++ library for HDFS from
Pivotal Labs. Once the connection to the NameNode is made, the filesystem is accessed
using the same methods as for hdfs3.

HDFS is preferred when the data is extremely large. It allows us to read and write data in
chunks; this is helpful for accessing and processing streaming data. A nice comparison of
the three native RPC client interfaces is presented in the following blog post: http:/ /
wesmckinney.com/ blog/ python- hdfs- interfaces/ .

Summary
This chapter dealt with many different data formats, and, in the process, many different
datasets. We started with the simplest TXT data and accessed the Shakespeare play data.
We learned how to read data from CSV files using the csv, numpy, and pandas modules.
We moved on to the JSON format; we used Python's JSON and pandas modules to access
JSON data. From data formats, we progressed to accessing databases and covered both SQL
and NoSQL databases. Next, we learned how to work with the Hadoop File System in
Python.

Accessing data is the first step. In the next chapter, we will learn about machine learning
tools that will help us to design, model, and make informed predictions on data.

https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
https://media.readthedocs.org/pdf/hdfs3/latest/hdfs3.pdf
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/
http://wesmckinney.com/blog/python-hdfs-interfaces/

3
Machine Learning for IoT

The term machine learning (ML) refers to computer programs that can automatically
detect meaningful patterns in data and improve with experience. Though it isn't a new
field, it's presently at the peak of its hype cycle. This chapter introduces the reader to
standard ML algorithms and their applications in the field of IoT.

After reading this chapter, you will know about the following:

What ML is and the role it plays in the IoT pipeline
Supervised and unsupervised learning paradigms
Regression and how to perform linear regression using TensorFlow and Keras
Popular ML classifiers and implementing them in TensorFlow and Keras
Decision trees, random forests, and techniques to perform boosting and how to
write code for them
Tips and tricks to improve the system performance and model limitations

ML and IoT
ML, a subset of artificial intelligence, aims to build computer programs with an ability to
automatically learn and improve from experience without being explicitly programmed. In
this age of big data, with data being generated at break-neck speed, it isn't humanly
possible to go through all of the data and understand it manually. According to an estimate
by Cisco, a leading company in the field of IT and networking, IoT will generate 400
zettabytes of data a year by 2018. This suggests that we need to look into automatic means
of understanding this enormous data, and this is where ML comes in.

The complete Cisco report, released on February 1, 2018, can be accessed
at https:/ / www. cisco. com/ c/en/ us/solutions/ collateral/ service-
provider/ global- cloud- index- gci/ white- paper- c11- 738085. html. It
forecasts data traffic and cloud service trends in light of the amalgamation
of IoT, robotics, AI, and telecommunication.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

Machine Learning for IoT Chapter 3

[51]

Every year, Gartner, a research and advisory firm, releases a graphical representation
providing a visual and conceptual presentation of the maturity of emerging technologies
through five phases.

You can find the image of Gartner Hype Cycle for Emerging Technologies in the year 2018
at https://www.gartner. com/ smarterwithgartner/ 5-trends- emerge- in-gartner- hype-
cycle-for-emerging- technologies- 2018/ .

We can see that both IoT platforms and ML are at the Peak of Inflated Expectations. What
does it mean? The Peak of Inflated Expectations is the stage in the lifetime of technology
when there's over enthusiasm about the technology. A large number of vendors and
startups invest in the technology present at the peak crest. A growing number of
business establishments explore how the new technology may fit within their business
strategies. In short, it's the time to jump in to the technology. You can hear investors joking
at venture fund events that if you just include machine learning in your pitch, you can add a zero
on to the end of your valuation.

So, fasten your seat belts and let's dive deeper into ML technology.

Learning paradigms
ML algorithms can be classified based on the method they use as follows:

Probabilistic versus non-probabilistic
Modeling versus optimization
Supervised versus unsupervised

In this book, we classify our ML algorithms as supervised versus unsupervised. The
distinction between these two depends on how the model learns and the type of data that's
provided to the model to learn:

Supervised learning: Let's say I give you a series and ask you to predict the next
element:

(1, 4, 9, 16, 25,...)

You guessed right: the next number will be 36, followed by 49 and so on. This is
supervised learning, also called learning by example; you weren't told that the
series represents the square of positive integers—you were able to guess it from
the five examples provided.

https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/
https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/

Machine Learning for IoT Chapter 3

[52]

In a similar manner, in supervised learning, the machine learns from example. It's
provided with a training data consisting of a set of pairs (X, Y) where X is the
input (it can be a single number or an input value with a large number of
features) and Y is the expected output for the given input. Once trained on the
example data, the model should be able to reach an accurate conclusion when
presented with a new data.

The supervised learning is used to predict, given set of inputs, either a real-valued
output (regression) or a discrete label (classification). We'll explore both
regression and classification algorithms in the coming sections.

Unsupervised learning: Let's say you're given with eight circular blocks of
different radii and colors, and you are asked to arrange or group them in an
order. What will you do?

Some may arrange them in increasing or decreasing order of radii, some may
group them according to color. There are so many ways, and for each one of us, it
will be dependent on what internal representation of the data we had while
grouping. This is unsupervised learning, and a majority of human learning lies in
this category.

In unsupervised learning, the model is just given the data (X) but isn't told
anything about it; the model learns by itself the underlying patterns and
relationships in the data. Unsupervised learning is normally used for clustering
and dimensionality reduction.

Though we use TensorFlow for most of the algorithms in this book, in this
chapter, due to the efficiently built scikit library for ML algorithms, we'll
use the functions and methods provided by scikit wherever they provide
more flexibility and features. The aim is to provide you, the reader, with
to use AI/ML techniques on the data generated by IoT, not to reinvent the
wheel.

Machine Learning for IoT Chapter 3

[53]

Prediction using linear regression
Aaron, a friend of mine, is a little sloppy with money and is never able to estimate how
much his monthly credit card bill will be. Can we do something to help him? Well, yes,
linear regression can help us to predict a monthly credit card bill if we have sufficient data.
Thanks to the digital economy, all of his monetary transactions for the last five years are
available online. We extracted his monthly expenditure on groceries, stationery, and travel
and his monthly income. Linear regression helped not only in predicting his monthly credit
card bill, it also gave an insight into which factor was most responsible for his spending.

This was just one example; linear regression can be used in many similar tasks. In this
section, we'll learn how we can perform linear regression on our data.

Linear regression is a supervised learning task. It's one of the most basic, simple, and
extensively used ML techniques for prediction. The goal of regression is to find a function
F(x, W), for a given input-output pair (x, y), so that y = F(x, W). In the (x, y) pair, x is the
independent variable and y the dependent variable, and both of them are continuous
variables. It helps us to find the relationship between the dependent variable y and the
independent variable(s) x.

The input x can be a single input variable or many input variables. When F(x, W) maps a
single input variable x, it's called simple linear regression; for multiple input variables, it's
called multiple linear regression.

The function F(x, W) is approximated using the following expression:

In this expression, d is the dimensions of x (number of independent variables), and W is the
weight associated with each component of x. To find the function F(x, W), we need to
determine the weights. The natural choice is to find the weights that reduce the squared
error, hence our objective function is as follows:

Machine Learning for IoT Chapter 3

[54]

In the preceding function, N is the total number of the input-output pair presented. To find
the weights, we differentiate the objective function with respect to weight and equate it to 0.
In matrix notation, we can write the solution for the column vector W = (W0, W1, W2, ..., Wd)

T

as follows:

On differentiating and simplifying, we get the following:

X is the input vector of size [N, d] and Y the output vector of size [N, 1]. The weights can be
found if (XTX)-1 exists, that's if all of the rows and columns of X are linearly independent. To
ensure this, the number of input-output samples (N) should be much greater than the
number of input features (d).

An important thing to remember is that Y, the dependent variable, isn't
linear with respect to the dependent variable X; instead, it's linear with
respect to the model parameter W, the weights. And so we can model
relationships such as exponential or even sinusoidal (between Y and X)
using linear regression. In this case, we generalize the problem to finding
weights W, so that y = F(g(x), W), where g(x) is a non-linear function of X.

Electrical power output prediction using
regression
Now that you've understood the basics of linear regression, let's use it to predict the
electrical power output of a combined cycle power plant. We described this dataset in
Chapter 1, Principles and Foundations of AI and IoT; here, we'll use TensorFlow and its
automatic gradient to find the solution. The dataset can be downloaded from the UCI ML
archive (http:// archive. ics. uci. edu/ ml/ datasets/ combined+cycle+power+plant). The
complete code is available on GitHub (https:/ / github. com/ PacktPublishing/ Hands- On-
Artificial-Intelligence- for- IoT) under the filename
ElectricalPowerOutputPredictionUsingRegression.ipynb.

http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
http://archive.ics.uci.edu/ml/datasets/combined+cycle+power+plant
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT
https://github.com/PacktPublishing/Hands-On-Artificial-Intelligence-for-IoT

Machine Learning for IoT Chapter 3

[55]

Let's understand the execution of code in the following steps:

We import tensorflow, numpy, pandas, matplotlib, and some useful1.
functions of scikit-learn:

Import the modules
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
%matplotlib inline # The data file is loaded and analyzed

The data file is loaded and analyzed:2.

filename = 'Folds5x2_pp.xlsx' # download the data file from UCI ML
repository
df = pd.read_excel(filename, sheet_name='Sheet1')
df.describe()

Since the data isn't normalized, before using it, we need to normalize it using the3.
MinMaxScaler of sklearn:

X, Y = df[['AT', 'V','AP','RH']], df['PE']
scaler = MinMaxScaler()
X_new = scaler.fit_transform(X)
target_scaler = MinMaxScaler()
Y_new = target_scaler.fit_transform(Y.values.reshape(-1,1))
X_train, X_test, Y_train, y_test = \
 train_test_split(X_new, Y_new, test_size=0.4, random_state=333)

Now, we define a class, LinearRegressor; this is the class where all of the real4.
work happens. The class initialization defines the computational graph and
initializes all of the Variables (weights and bias). The class has the function
method, which models the function y = F(X,W); the fit method performs the
auto gradient and updates the weights and bias, the predict method is used to
get the output y for a given input X, and the get_weights method returns the
learned weights and bias:

class LinearRegressor:
 def __init__(self,d, lr=0.001):
 # Placeholders for input-output training data
 self.X = tf.placeholder(tf.float32,\
 shape=[None,d], name='input')
 self.Y = tf.placeholder(tf.float32,\

Machine Learning for IoT Chapter 3

[56]

 name='output')
 # Variables for weight and bias
 self.b = tf.Variable(0.0, dtype=tf.float32)
 self.W = tf.Variable(tf.random_normal([d,1]),\
 dtype=tf.float32)

 # The Linear Regression Model
 self.F = self.function(self.X)

 # Loss function
 self.loss = tf.reduce_mean(tf.square(self.Y \
 - self.F, name='LSE'))
 # Gradient Descent with learning
 # rate of 0.05 to minimize loss
 optimizer = tf.train.GradientDescentOptimizer(lr)
 self.optimize = optimizer.minimize(self.loss)

 # Initializing Variables
 init_op = tf.global_variables_initializer()
 self.sess = tf.Session()
 self.sess.run(init_op)

 def function(self, X):
 return tf.matmul(X, self.W) + self.b

 def fit(self, X, Y,epochs=500):
 total = []
 for i in range(epochs):
 _, l = self.sess.run([self.optimize,self.loss],\
 feed_dict={self.X: X, self.Y: Y})
 total.append(l)
 if i%100==0:
 print('Epoch {0}/{1}: Loss {2}'.format(i,epochs,l))
 return total

 def predict(self, X):
 return self.sess.run(self.function(X), feed_dict={self.X:X})

 def get_weights(self):
 return self.sess.run([self.W, self.b])

 We use the previous class to create our linear regression model and train it:5.

N, d = X_train.shape
model = LinearRegressor(d)
loss = model.fit(X_train, Y_train, 20000) #Epochs = 20000

Machine Learning for IoT Chapter 3

[57]

Let's see the performance of our trained linear regressor. A plot of mean square error with
Epochs shows that the network tried to reach a minimum value of mean square error:

On the test dataset, we achieved an R2 value of 0.768 and mean square error of 0.011.

Logistic regression for classification
In the previous section, we learned how to predict. There's another common task in ML: the
task of classification. Separating dogs from cats and spam from not spam, or even
identifying the different objects in a room or scene—all of these are classification tasks.

Logistic regression is an old classification technique. It provides the probability of an event
taking place, given an input value. The events are represented as categorical dependent
variables, and the probability of a particular dependent variable being 1 is given using the
logit function:

Machine Learning for IoT Chapter 3

[58]

Before going into the details of how we can use logistic regression for classification, let's
examine the logit function (also called the sigmoid function because of its S-shaped curve).
The following diagram shows the logit function and its derivative varies with respect to the
input X, the Sigmoidal function (blue) and its derivative (orange):

A few important things to note from this diagram are the following:

The value of sigmoid (and hence Ypred) lies between (0, 1)
The derivative of the sigmoid is highest when WTX + b = 0.0 and the highest value
of the derivative is just 0.25 (the sigmoid at same place has a value 0.5)
The slope by which the sigmoid varies depends on the weights, and the position
where we'll have the peak of derivative depends on the bias

I would suggest you play around with the Sigmoid_function.ipynb program available
at this book's GitHub repository, to get a feel of how the sigmoid function changes as the
weight and bias changes.

Machine Learning for IoT Chapter 3

[59]

Cross-entropy loss function
Logistic regression aims to find weights W and bias b, so that each input vector, Xi, in the

input feature space is classified correctly to its class, yi. In other words, yi and should
have a similar distribution for the given xi. We first consider a binary classification problem;
in this case, the data point yi can have value 1 or 0. Since logistic regression is a supervised
learning algorithm, we give as input the training data pair (Xi, Yi) and let be the
probability that P(y=1|X=Xi); then, for p training data points, the total average loss is
defined as follows:

Hence, for every data pair, for Yi = 1, the first term will contribute to the loss term, with the
contribution changing from infinity to 0 as varies from 0 to 1, respectively.
Similarly, for Yi = 0, the second term will contribute to the loss term, with the contribution
changing from infinity to zero as varies from 1 to 0, respectively.

For multiclass classification, the loss term is generalized to the following:

In the preceding, K is the number of classes. An important thing to note is that, while for
binary classification the output Yi and Ypred were single values, for multiclass problems, both
Yi and Ypred are now vectors of K dimensions, with one component for each category.

Machine Learning for IoT Chapter 3

[60]

Classifying wine using logistic regressor
Let's now use what we've learned to classify wine quality. I can hear you thinking: What
wine quality? No way! Let's see how our logistic regressor fares as compared to professional
wine tasters. We'll be using the wine quality dataset (https:/ /archive. ics. uci. edu/ ml/
datasets/wine+quality); details about the dataset are given in Chapter 1, Principles and
Foundation of AI and IoT. The full code is in the file
named Wine_quality_using_logistic_regressor.ipynb at the GitHub repository.
Let's understand the code step by step:

The first step is loading all of the modules:1.

Import the modules
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
%matplotlib inline

We read the data; in the present code, we are analyzing only the red wine, so we2.
read data from the winequality-red.csv file. The file contains the data values
separated not by commas, but instead by semicolons, so we need to specify the
separator argument:

filename = 'winequality-red.csv' # Download the file from UCI ML
Repo
df = pd.read_csv(filename, sep=';')

We separate from the data file input features and target quality. In the file, the3.
target, wine quality is given on a scale from 0—10. Here, for simplicity, we divide
it into three classes, so if the initial quality is less than five, we make it the third
class (signifying bad); between five and eight, we consider it ok (second class);
and above eight, we consider it good (the first class). We also normalize the input
features and split the data into training and test datasets:

X, Y = df[columns[0:-1]], df[columns[-1]]
scaler = MinMaxScaler()
X_new = scaler.fit_transform(X)
Y.loc[(Y<3)]=3
Y.loc[(Y<6.5) & (Y>=3)] = 2
Y.loc[(Y>=6.5)] = 1
Y_new = pd.get_dummies(Y) # One hot encode

https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality

Machine Learning for IoT Chapter 3

[61]

X_train, X_test, Y_train, y_test = \
train_test_split(X_new, Y_new, test_size=0.4, random_state=333)

The main part of the code is the LogisticRegressor class; at first glance, you'll4.
think that it's similar to the LinearRegressor class we made earlier. The class is
defined in the Python file, LogisticRegressor.py. It is indeed, but there are a
few important differences: the Y output is replaced by Ypred, which instead of
having a single value, now is a three-dimensional categorical value, each
dimension specifying the probability of three categories. The weights here have
dimensions of d × n, where d is the number of input features and n the number of
output categories. The bias too now is three-dimensional. Another important
change is the change in the loss function:

class LogisticRegressor:
 def __init__(self, d, n, lr=0.001):
 # Place holders for input-output training data
 self.X = tf.placeholder(tf.float32,\
 shape=[None,d], name='input')
 self.Y = tf.placeholder(tf.float32,\
 name='output')
 # Variables for weight and bias
 self.b = tf.Variable(tf.zeros(n), dtype=tf.float32)
 self.W = tf.Variable(tf.random_normal([d,n]),\
 dtype=tf.float32)
 # The Logistic Regression Model
 h = tf.matmul(self.X, self.W) + self.b
 self.Ypred = tf.nn.sigmoid(h)
 # Loss function
 self.loss = cost = tf.reduce_mean(-
tf.reduce_sum(self.Y*tf.log(self.Ypred),\
 reduction_indices=1), name = 'cross-entropy-loss')
 # Gradient Descent with learning
 # rate of 0.05 to minimize loss
 optimizer = tf.train.GradientDescentOptimizer(lr)
 self.optimize = optimizer.minimize(self.loss)
 # Initializing Variables
 init_op = tf.global_variables_initializer()
 self.sess = tf.Session()
 self.sess.run(init_op)

 def fit(self, X, Y,epochs=500):
 total = []
 for i in range(epochs):
 _, l = self.sess.run([self.optimize,self.loss],\
 feed_dict={self.X: X, self.Y: Y})
 total.append(l)

Machine Learning for IoT Chapter 3

[62]

 if i%1000==0:
 print('Epoch {0}/{1}: Loss {2}'.format(i,epochs,l))
 return total

 def predict(self, X):
 return self.sess.run(self.Ypred, feed_dict={self.X:X})

 def get_weights(self):
 return self.sess.run([self.W, self.b])

Now we simply train our model and predict the output. The learned model gives5.
us an accuracy of ~85% on the test dataset. Pretty impressive!

Using ML, we can also identify what ingredients make wine good quality.
A company called IntelligentX recently started brewing beer based on
user feedback; it uses AI to get the recipe for the tastiest beer. You can
read about the work in this Forbes article: https:/ /www. forbes. com/
sites/ emmasandler/ 2016/ 07/ 07/you- can- now- drink- beer- brewed- by-
artificial- intelligence/ #21fd11cc74c3.

Classification using support vector
machines
Support Vector Machines (SVMs) is arguably the most used ML technique for
classification. The main idea behind SVM is that we find an optimal hyperplane with
maximum margin separating the two classes. If the data is linearly separable, the process of
finding the hyperplane is straightforward, but if it isn't linearly separable, then kernel trick
is used to make the data linearly separable in some transformed high-dimensional feature
space.

SVM is considered a non-parametric supervised learning algorithm. The main idea of SVM
is to find a maximal margin separator: a separating hyperplane that is farthest from the
training samples presented.

https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3
https://www.forbes.com/sites/emmasandler/2016/07/07/you-can-now-drink-beer-brewed-by-artificial-intelligence/#21fd11cc74c3

Machine Learning for IoT Chapter 3

[63]

Consider the following diagram; the red dots represent class 1 for which the output should
be 1, and the blue dots represent the class 2 for which the output should be -1. There can be
many lines which can separate the red dots from the blue ones; the diagram demonstrates
three such lines: A, B, and C respectively. Which of the three lines do you think will be the
best choice? Intuitively, the best choice is line B, because it's farthest from the examples of
both classes, and hence ensures the least error in classification:

In the following section, we'll learn the basic maths behind finding the maximal-separator
hyperplane. Though the maths here is mostly basic, if you don't like maths you can simply
skip to the implementation section where we use SVM to classify wine again! Cheers!

Maximum margin hyperplane
From our knowledge of linear algebra, we know that the equation of a plane is given by the
following:

In SVM, this plane should separate the positive classes (y= 1) from the negative classes
(y=-1), and there's an additional constrain: the distance (margin) of this hyperplane from the
closest positive and negative training vectors (Xpos and Xneg respectively) should be
maximum. Hence, the plane is called the maximum margin separator.

Machine Learning for IoT Chapter 3

[64]

The vectors Xpos and Xneg are called support vectors, and they play an
important role in defining the SVM model.

Mathematically, this means that the following is true:

And, so is this:

From these two equations, we get the following:

Dividing by the weight vector length into both sides, we get the following:

So we need to find a separator so that the margin between positive and negative support

vectors is maximum, that is: is maximum, while at the same time all the points are
classified correctly, such as the following:

Using a little maths, which we'll not go into in this book, the preceding condition can be
represented as finding an optimal solution to the following:

Machine Learning for IoT Chapter 3

[65]

Subject to the constraints that:

From the values of alpha, we can get weights W from α, the vector of coefficients, using the
following equation:

This is a standard quadratic programming optimization problem. Most ML libraries have
built-in functions to solve it, so you need not worry about how to do so.

For the reader interested in knowing more about SVMs and the math
behind it, the book The Nature of Statistical Learning Theory by Vladimir
Vapnik, published by Springer Science+Business Media, 2013, is an excellent
reference.

Kernel trick
The previous method works fine when the input feature space is linearly separable.
What should we do when it isn't? One simple way is to transform the data (X) into a higher
dimensional space where it's linearly separable and find a maximal margin hyperplane in
that high-dimensional space. Let's see how; our hyperplane in terms of α is as follows:

Let φ be the transform, then we can replace X by φ(X) and hence its dot product XT X(i) with
a function K(XT, X(i)) = φ(X)T φ(X(i)) called kernel. So we now just preprocess the data by
applying the transform φ and then find a linear separator in the transformed space as
before.

Machine Learning for IoT Chapter 3

[66]

The most commonly used kernel function is the Gaussian kernel, also called radial basis
function, defined as follows:

Classifying wine using SVM
We'll use the svm.SVC function provided by the scikit library for the task. The reason to do
so is that the TensorFlow library provides us, as of the time of writing, with only a linear
implementation of SVM, and it works only for binary classification. We can make our own
SVM using the maths we learned in previously in TensorFlow, and
SVM_TensorFlow.ipynb in the GitHub repository contains the implementation in
TensorFlow. The following code can be found in the Wine_quality_using_SVM.ipynb.

The SVC classifier of scikit is a support vector classifier. It can also handle
multiclass support using a one-versus-one scheme. Some of the optional
parameters of the method are as follows:

C: It's a parameter specifying the penalty term (default value is
1.0).

kernel: It specifies the kernel to be used (default is rbf). The
possible choices are linear, poly, rbf, sigmoid,
precomputed, and callable.

gamma: It specifies the kernel coefficient for rbf, poly, and
sigmoid and the default value (the default is auto).

random_state: It sets the seed of the pseudo-random number
generator to use when shuffling the data.

Machine Learning for IoT Chapter 3

[67]

Follow the given steps to create our SVM model:

Let's load all of the modules we'll need for the code. Note that we aren't1.
importing TensorFlow here and instead have imported certain modules from the
scikit library:

Import the modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.svm import SVC # The SVM Classifier from scikit
import seaborn as sns
%matplotlib inline

We read the data file, preprocess it, and separate it into test and training datasets.2.
This time, for simplicity, we're dividing into two classes, good and bad:

filename = 'winequality-red.csv' #Download the file from UCI ML
Repo
df = pd.read_csv(filename, sep=';')

#categorize wine quality in two levels
bins = (0,5.5,10)
categories = pd.cut(df['quality'], bins, labels = ['bad','good'])
df['quality'] = categories

#PreProcessing and splitting data to X and y
X = df.drop(['quality'], axis = 1)
scaler = MinMaxScaler()
X_new = scaler.fit_transform(X)
y = df['quality']
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, \
 test_size = 0.2, random_state = 323)

Machine Learning for IoT Chapter 3

[68]

Now we use the SVC classifier and train it on our training dataset with the fit3.
method:

classifier = SVC(kernel = 'rbf', random_state = 45)
classifier.fit(X_train, y_train)

Let's now predict the output for the test dataset:4.

y_pred = classifier.predict(X_test)

The model gave an accuracy of 67.5% and the confusion matrix is as follows:5.

print("Accuracy is {}".format(accuracy_score(y_test, y_pred)))
Gives a value ~ 67.5%
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm,annot=True,fmt='2.0f')

Machine Learning for IoT Chapter 3

[69]

The preceding code uses the binary classification; we can change the code to
work for more than two classes as well. For example, in the second step, we
can replace the code with the following:

bins = (0,3.5,5.5,10)
categories = pd.cut(df['quality'], bins, labels =
['bad','ok','good'])
df['quality'] = categories

Then we have three categories just as our previous logistic classifier, and the6.
accuracy is 65.9%. And the confusion matrix is as follows:

In the three-class case, the training data distribution is as follows:

good 855
ok 734
bad 10

Since the number of samples in the bad class (corresponding to 0 in the confusion matrix) is
only 10, the model isn't able to learn what parameters contribute to bad wine quality.
Hence, data should be uniformly distributed among all classes of the classifiers that we
explore in this chapter.

Naive Bayes
Naive Bayes is one of the simplest and fastest ML algorithms. This too belongs to the class
of supervised learning algorithms. It's based on the Bayes probability theorem. One
important assumption that we make in the case of the Naive Bayes classifier is that all of the
features of the input vector are independent and identically distributed (iid). The goal is
to learn a conditional probability model for each class Ck in the training dataset:

Machine Learning for IoT Chapter 3

[70]

Under the iid assumption, and using the Bayes theorem, this can be expressed in terms of
the joint probability distribution p(Ck, X):

We pick the class that maximizes this term Maximum A Posteriori (MAP):

There can be different Naive Bayes algorithms, depending upon the distribution of p(xi|Ck).
The common choices are Gaussian in the case of real-valued data, Bernoulli for binary data,
and MultiNomial when the data contains the frequency of a certain event (such as
document classification).

Let's now see whether we can classify the wine using Naive Bayes. For the sake of
simplicity and efficiency, we'll use the scikit built-in Naive Bayes distributions. Since the
features values we have in our data are continuous-valued—we'll assume that they have a
Gaussian distribution, and we'll use GaussianNB of scikit-learn.

Gaussian Naive Bayes for wine quality
The scikit-learn Naive Bayes module supports three Naive Bayes distributions. We can
choose either of them depending on our input feature data type. The three Naive Bayes
available in scikit-learn are as follows:

GaussianNB

MultinomialNB

BernoulliNB

The wine data, as we have already seen, is a continuous data type. Hence, it will be good if
we use Gaussian distribution for p(xi|Ck)—that is, the GaussianNB module, and so we'll
add from sklearn.naive_bayes import GaussianNB in the import cell of the
Notebook. You can read more details about the GaussianNB module from the is scikit-
learn link: http://scikit- learn. org/ stable/ modules/ generated/ sklearn. naive_ bayes.
GaussianNB.html#sklearn. naive_ bayes. GaussianNB.

http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB

Machine Learning for IoT Chapter 3

[71]

The first two steps will remain the same as in the SVM case. But now, instead of declaring
an SVM classifier, we'll declare a GaussianNB classifier and we'll use its fit method to
learn the training examples. The result from the learned model is obtained using the
predict method. So follow these steps:

Import the necessary modules. Note that now we're importing GaussianNB from1.
the scikit library:

Import the modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.naive_bayes import GaussianNB # The SVM Classifier
from scikit
import seaborn as sns
%matplotlib inline

Read the data file and preprocess it:2.

filename = 'winequality-red.csv' #Download the file from UCI ML
Repo
df = pd.read_csv(filename, sep=';')

#categorize wine quality in two levels
bins = (0,5.5,10)
categories = pd.cut(df['quality'], bins, labels = ['bad','good'])
df['quality'] = categories

#PreProcessing and splitting data to X and y
X = df.drop(['quality'], axis = 1)
scaler = MinMaxScaler()
X_new = scaler.fit_transform(X)
y = df['quality']
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, \
 test_size = 0.2, random_state = 323)

Machine Learning for IoT Chapter 3

[72]

Now we declare a Gaussian Naive Bayes, train it on the training dataset, and use3.
the trained model to predict the wine quality on the test dataset:

classifier = GaussianNB()
classifier.fit(X_train, y_train)
#Predicting the Test Set
y_pred = classifier.predict(X_test)

That's all, folks; our model is ready and kicking. The accuracy of this model is
71.25% for the binary classification case. In the following screenshot, you can a the
heatmap of the confusion matrix:

Before you conclude that Naive Bayes is best, let's be aware of some of its pitfalls:

Naive Bayes makes the prediction based on the frequency-based probability;
therefore, it's strongly dependent on the data we use for training.
Another issue is that we made the iid assumption about input feature space; this
isn't always true.

Machine Learning for IoT Chapter 3

[73]

Decision trees
In this section, you'll learn about another ML algorithm that's very popular and
fast—decision trees. In decision trees, we build a tree-like structure of decisions; we start
with the root, choose a feature and split into branches, and continue till we reach the leaves,
which represent the predicted class or value. The algorithm of decision trees involves two
main steps:

Decide which features to choose and what conditions to use for splitting
Know when to stop

Let's understand it with an example. Consider a sample of 40 students; we have three
variables: the gender (boy or girl; discrete), class (XI or XII; discrete), and height (5 to 6 feet;
continuous). Eighteen students prefer to go to the library in their spare time and rest prefer
to play. We can build a decision tree to predict who will be going to the library and who
will be going to the playground in their leisure time. To build the decision tree, we'll need
to separate the students who go to library/playground based on the highly significant input
variable among the three input variables. The following diagram gives the split based on
each input variable:

Machine Learning for IoT Chapter 3

[74]

We consider all of the features and choose the one that gives us the maximum information.
In the previous example, we can see that a split over the feature height generates the most
homogeneous groups, with the group Height > 5.5 ft containing 80% students who play
and 20% who go to the library in the leisure time and the group Height < 5.5 ft containing
13% students who play and 86% who go to the library in their spare time. Hence, we'll
make our first split on the feature height. We'll continue the split in this manner and finally
reach the decision (leaf node) telling us whether the student will play or go to the library in
their spare time. The following diagram shows the decision tree structure; the black circle is
the Root Node, the blue circles are the Decision Nodes, and the green circles are the Leaf
Nodes:

The decision trees belong to the family of greedy algorithms. To find the most
homogeneous split, we define our cost function so that it tries to maximize the same class
input values in a particular group. For regression, we generally use the mean square error
cost function:

Here, y and ypred represent the given and predicted output values for the input values (i); we
find the split that minimizes this loss.

Machine Learning for IoT Chapter 3

[75]

For classification, we use either the gini impurity or cross-entropy as the loss function:

In the preceding, ck defines the proportion of same class input values present in a particular
group.

Some good resources to learn more about decision trees are as follows:

L. Breiman, J. Friedman, R. Olshen, and C. Stone: Classification
and Regression Trees, Wadsworth, Belmont, CA, 1984
J.R. Quinlan: C4. 5: programs for ML, Morgan Kaufmann, 1993
T. Hastie, R. Tibshirani and J. Friedman: Elements of Statistical
Learning, Springer, 2009

Decision trees in scikit
The scikit library provides DecisionTreeRegressor and DecisionTreeClassifier
to implement regression and classification. Both can be imported from sklearn.tree.
DecisionTreeRegressor is defined as follows:

class sklearn.tree.DecisionTreeRegressor (criterion=’mse’, splitter=’best’,
max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
presort=False)

The different arguments are as follows:

criterion: It defines which loss function to use to determine the split. The
default value is mean square error (mse). The library supports the use
of friedman_mse and mean absolute error (mae) as loss functions.
splitter: We use this to decide whether to use the greedy strategy and go for
the best split (default) or we can use random splitter to choose the best
random split.

Machine Learning for IoT Chapter 3

[76]

max_depth: It defines the maximum depth of the tree.
min_samples_split: It defines the minimum number of samples required to
split an internal node. It can be integer or float (in this case it defines
the percentage of minimum samples needed for the split).

DecisionTreeClassifier is defined as follows:

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’,
max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
class_weight=None, presort=False)

The different arguments are as follows:

criterion: It tells which loss function to use to determine the split. The default
value for the classifier is the gini. The library supports the use of entropy as
loss functions.
splitter: We use this to decide how to choose the split (default value is the best
split) or we can use random splitter to choose the best random split.
max_depth: It defines the maximum depth of the tree. When the input feature
space is large, we use this to restrict the maximum depth and take care of
overfitting.
min_samples_split: It defines the minimum number of samples required to
split an internal node. It can be integer or float (in this case it tells the percentage
of minimum samples needed for the split).

We've listed only the commonly used preceding arguments; details
regarding the remaining parameters of the two can be read on the scikit-
learn website: http:/ /scikit- learn. org/stable/ modules/ generated/
sklearn. tree. DecisionTreeRegressor. html and http:/ / scikit- learn.
org/stable/ modules/ generated/ sklearn. tree.
DecisionTreeClassifier. html

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Machine Learning for IoT Chapter 3

[77]

Decision trees in action
We'll use a decision tree regressor to predict electrical power output first. The dataset and
its description have already been introduced in Chapter 1, Principles and Foundations of IoT
and AI. The code is available at the GitHub repository in the file
named ElectricalPowerOutputPredictionUsingDecisionTrees.ipynb:

Import the modules
import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
%matplotlib inline

Read the data
filename = 'Folds5x2_pp.xlsx' # The file can be downloaded from UCI ML repo
df = pd.read_excel(filename, sheet_name='Sheet1')
df.describe()

Preprocess the data and split in test/train
X, Y = df[['AT', 'V','AP','RH']], df['PE']
scaler = MinMaxScaler()
X_new = scaler.fit_transform(X)
target_scaler = MinMaxScaler()
Y_new = target_scaler.fit_transform(Y.values.reshape(-1,1))
X_train, X_test, Y_train, y_test = \
 train_test_split(X_new, Y_new, test_size=0.4, random_state=333)

Define the decision tree regressor
model = DecisionTreeRegressor(max_depth=3)
model.fit(X_train, Y_train)

Make the prediction over the test data
Y_pred = model.predict(np.float32(X_test))
print("R2 Score is {} and MSE {}".format(\
 r2_score(y_test, Y_pred),\
 mean_squared_error(y_test, Y_pred)))

We get an R-square value of 0.90 and mean square error of 0.0047 on the test data; it's a
significant improvement over the prediction results obtained using linear regressor (R-
square: 0.77;mse: 0.012).

Machine Learning for IoT Chapter 3

[78]

Let's also see the performance of decision trees in the classification task; we use it for the
wine quality classification as before. The code is available in the
Wine_quality_using_DecisionTrees.ipynb file in the GitHub repository:

Import the modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler, LabelEncoder
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
%matplotlib inline

Read the data
filename = 'winequality-red.csv' #Download the file from
https://archive.ics.uci.edu/ml/datasets/wine+quality df =
pd.read_csv(filename, sep=';')

categorize the data into three classes
bins = (0,3.5,5.5,10)
categories = pd.cut(df['quality'], bins, labels = ['bad','ok','good'])
df['quality'] = categories

Preprocessing and splitting data to X and y X = df.drop(['quality'], axis
= 1) scaler = MinMaxScaler() X_new = scaler.fit_transform(X) y =
df['quality'] from sklearn.preprocessing import LabelEncoder labelencoder_y
= LabelEncoder() y = labelencoder_y.fit_transform(y) X_train, X_test,
y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state =
323)

Define the decision tree classifier
classifier = DecisionTreeClassifier(max_depth=3)
classifier.fit(X_train, y_train)

Make the prediction over the test data
Y_pred = classifier.predict(np.float32(X_test))
print("Accuracy is {}".format(accuracy_score(y_test, y_pred)))

Machine Learning for IoT Chapter 3

[79]

The decision tree generates a classification accuracy of around 70%. We can see that, for
small data size, we can use both decision trees and Naive Bayes with almost equal success.
Decision trees suffer from overfitting, which can be taken care of by restricting the
maximum depth or setting a minimum number of training inputs. They, like Naive Bayes,
are unstable—a little variation in the data can result in a completely different tree; this can
be resolved by making use of bagging and boosting techniques. Last, but not least, since it's
a greedy algorithm, there's no guarantee that it returns a globally optimal solution.

Ensemble learning
In our daily life, when we have to make a decision, we take guidance not from one person,
but from many individuals whose wisdom we trust. The same can be applied in ML;
instead of depending upon one single model, we can use a group of models (ensemble) to
make a prediction or classification decision. This form of learning is called ensemble
learning.

Conventionally, ensemble learning is used as the last step in many ML projects. It works
best when the models are as independent of one another as possible. The following
diagram gives a graphical representation of ensemble learning:

The training of different models can take place either sequentially or in parallel. There are
various ways to implement ensemble learning: voting, bagging and pasting, and random
forest. Let's see what each of these techniques and how we can implement them.

Machine Learning for IoT Chapter 3

[80]

Voting classifier
The voting classifier follows the majority; it aggregates the prediction of all the classifiers
and chooses the class with maximum votes. For example, in the following screenshot, the
voting classifier will predict the input instance to belong to class 1:

scikit has the VotingClassifier class to implement this. Using ensemble learning on
wine quality classification, we reach an accuracy score of 74%, higher than any of the
models considered alone. The complete code is in the
Wine_quality_using_Ensemble_learning.ipynb file. The following is the main code
to perform ensemble learning using voting:

import the different classifiers
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import VotingClassifier

Declare each classifier
clf1 = SVC(random_state=22)
clf2 = DecisionTreeClassifier(random_state=23)
clf3 = GaussianNB()
X = np.array(X_train)

Machine Learning for IoT Chapter 3

[81]

y = np.array(y_train)

#Employ Ensemble learning
eclf = VotingClassifier(estimators=[
('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard')
eclf = eclf.fit(X, y)

Make prediction on test data
y_pred = eclf.predict(X_test)

Bagging and pasting
In voting, we used different algorithms for training on the same dataset. We can also
achieve ensemble learning by using different models with the same learning algorithm, but
we train them on different training data subsets. The training subset is sampled randomly.
The sampling can be done with replacement (bagging) or without replacement (pasting):

Bagging: In it, additional data for training is generated from the original dataset
using combinations with repetitions. This helps in decreasing the variance of
different models.
Pasting: Since pasting is without replacement, each subset of the training data
can be used at most once. It's more suitable if the original dataset is large.

The scikit library has a method for performing bagging and pasting; from
sklearn.ensemble, we can import BaggingClassifier and use it. The following code
estimates 500 decision tree classifiers, each with 1000 training samples using bagging (for
pasting, keep bootstrap=False):

from sklearn.ensemble import BaggingClassifier
bag_classifier = BaggingClassifier(
 DecisionTreeClassifier(), n_estimators=500, max_samples=1000,\
 bootstrap=True, n_jobs=-1)
bag_classifier.fit(X_train, y_train)
y_pred = bag_classifier.predict(X_test)

This results in an accuracy of 77% for wine quality classification. The last argument to
BaggingClassifier, n_jobs, defines how many CPU cores to use (that's the number of
jobs to run in parallel); when its value is set to -1, then it uses all of the available CPU
cores.

Machine Learning for IoT Chapter 3

[82]

An ensemble of only decision trees is called random forest. And so what
we've implemented previously is a random forest. We can directly
implement random forest in scikit using the RandomForestClassifier
class. The advantage of using the class is that it introduces extra
randomness while building the tree. While splitting, it searches for the
best feature to split among a random subset of features.

Improving your model – tips and tricks
In this chapter, we've learned a large number of ML algorithms, each with its own pros and
cons. In this section, we'll look into some common problems and ways to resolve them.

Feature scaling to resolve uneven data scale
The data that's collected normally doesn't have the same scale; for example, one feature
may be varying in the range 10–100 and another one may be only distributed in range 2–5.
This uneven data scale can have an adverse effect on learning. To resolve this, we use the
method of feature scaling (normalization). The choice of normalization has been found to
drastically affect the performance of certain algorithms. Two common normalization
methods (also called standardization in some books) are as follows:

Z-score normalization: In z-score normalization, each individual feature is scaled
so that it has the properties of a standard normal distribution, that is, a mean of 0
and variance of 1. If μ is the mean and σ the variance, we can compute Z-score
normalization by making the following linear transformation on each feature as
follows:

Min-max normalization: The min-max normalization rescales the input features
so that they lie in the range between 0 and 1. It results in reducing the standard
deviation in the data and hence suppresses the effect of outliers. To achieve min-
max normalization, we find the maximum and minimum value of the feature
(xmax and xmin respectively), and perform the following linear transformation:

Machine Learning for IoT Chapter 3

[83]

We can use the scikit library StandardScaler or MinMaxscaler methods to normalize
the data. In all of the examples in this chapter, we've used MinMaxScaler; you can try
changing it to StandardScalar and observe if the performance changes. In the next
chapter, we'll also learn how to perform these normalizations in TensorFlow.

Overfitting
Sometimes the model tries to overfit the training dataset; in doing so, it loses its ability to
generalize and hence performs badly on the validation dataset; this in turn will affect its
performance on unseen data values. There are two standard ways to take care of
overfitting: regularization and cross-validation.

Regularization
Regularization adds a term in the loss function to ensure that the cost increases as the
model increases the number of features. Hence, we force the model to stay simpler. If L(X,
Y) was the loss function earlier, we replace it with the following:

In the preceding, N can be L1 norm, L2 norm, or a combination of the two, and λ is the
regularization coefficient. Regularization helps in reducing the model variance, without
losing any important properties of the data distribution:

Lasso regularization: In this case, the N is L1 norm. It uses the modulus of weight
as the penalty term N:

Ridge regularization: In this case, the N is L2 norm, given by the following:

Machine Learning for IoT Chapter 3

[84]

Cross-validation
Using cross-validation can also help in reducing the problem of overfitting. In k-fold cross-
validation, data is divided into k-subsets, called folds. Then it trains and evaluates the
model k-times; each time, it picks one of the folds for validation and the rest for training the
model. We can perform the cross-validation when the data is less and training time is small.
scikit provides a cross_val_score method to implement the k-folds. Let classifier be
the model we want to cross-validate, then we can use the following code to perform cross-
validation on 10 folds:

from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = X_train,\
 y = y_train, cv = 10)
print("Accuracy Mean {} Accuracy Variance \
 {}".format(accuracies.mean(),accuracies.std()))

The result of this is an average mean and variance value. A good model should have a high
average and low variance.

No Free Lunch theorem
With so many models, one always wonders which one to use. Wolpert, in his famous paper
The Lack of A Priori Distinctions Between Learning, explored this issue and showed that if we
make no prior assumption about the input data, then there's no reason to prefer one model
over any other. This is known as the No Free Lunch theorem.

This means that there's no model hat can be a priori guaranteed to work better. The only
way we can ascertain which model is best is by evaluating them all. But, practically, it isn't
possible to evaluate all of the models and so, in practice, we make reasonable assumptions
about the data and evaluate a few relevant models.

Machine Learning for IoT Chapter 3

[85]

Hyperparameter tuning and grid search
Different models have different hyperparameters; for example, in linear regressor, the
learning rate was a hyperparameter; if we're using regularization, then the regularizing
parameter λ is a hyperparameter. What should be their value? While there's a rule of thumb
for some hyperparameters, most of the time we make either a guess or use grid search to
perform a sequential search for the best hyperparameters. In the following, we present the
code to perform hyperparameter search in the case of SVM using the scikit library; in the
next chapter, we'll see how we can use TensorFlow to perform hyperparameter tuning:

Grid search for best model and parameters
from sklearn.model_selection import GridSearchCV
#parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
classifier = SVC()
parameters = [{'C': [1, 10], 'kernel': ['linear']},
 {'C': [1, 10], 'kernel': ['rbf'],
 'gamma': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}]
 grid_search = GridSearchCV(estimator = classifier,
 param_grid = parameters,
 scoring = 'accuracy',
 cv = 10,)
grid_search.fit(X_train, y_train)
best_accuracy = grid_search.best_score_
best_parameters = grid_search.best_params_
#here is the best accuracy
best_accuracy

GridSearchCV will provide us with the hyperparameters that produce the best results for
the SVM classifier.

Machine Learning for IoT Chapter 3

[86]

Summary
The goal of this chapter was to provide you with intuitive understanding of different
standard ML algorithms so that you can make an informed choice. We covered the popular
ML algorithms used for classification and regression.We also learnt how supervised and
unsupervised learning are different from each other. Linear regression, logistic regression,
SVM, Naive Bayes, and decision trees were introduced along with the fundamental
principles involved in each. We used the regression methods to predict electrical power
production of a thermal station and classification methods to classify wine as good or bad.
Lastly, we covered the common problems with different ML algorithms and some tips and
tricks to solve them.

In the next chapter, we'll study different deep learning models and learn how to use them
to analyze our data and make predictions.

4
Deep Learning for IoT

In the last chapter, we learned about different machine learning (ML) algorithms. The
focus of this chapter is neural networks based on multiple layered models, also known as
deep learning models. They have become a buzzword in the last few years and an absolute
favorite of investors in the field of artificial-intelligence-based startups. Achieving above
human level accuracy in the task of object detection and defeating the world's Dan Nine Go
master are some of the feats possible by deep learning (DL). In this chapter and a few
subsequent chapters, we will learn about the different DL models and how to use DL on
our IoT generated data. In this chapter, we will start with a glimpse into the journey of DL,
and learn about four popular models, the multilayered perceptron (MLP), the
convolutional neural network (CNN), recurrent neural network (RNN), and
autoencoders. Specifically, you will learn about the following:

The history of DL and the factors responsible for its present success
Artificial neurons and how they can be connected to solve non-linear problems
The backpropagation algorithm and using it to train the MLP model
The different optimizers and activation functions available in TensorFlow
How the CNN works and the concept behind kernel, padding, and strides
Using CNN model for classification and recognition
RNNs and modified RNN and long short-term memory and gated recurrent
units
The architecture and functioning of autoencoders

Deep learning 101
The human mind has always intrigued philosophers, scientists, and engineers alike. The
desire to imitate and replicate the intelligence of the human brain by man has been written
about over many years; Galatea by Pygmalion of Cyprus in Greek mythology, Golem in
Jewish folklore, and Maya Sita in Hindu mythology are just a few examples. Robots with
Artificial Intelligence (AI) are a favorite of (science) fiction writers since time immemorial.

Deep Learning for IoT Chapter 4

[88]

AI, as we know today, was conceived parallel with the idea of computers. The seminal
paper, A Logical Calculus Of The Ideas Immanent In Nervous Activity, in the year 1943 by
McCulloch and Pitts proposed the first neural network model—the threshold devices that
could perform logical operations such as AND, OR, AND-NOT. In his pioneering
work, Computing Machinery and Intelligence, published in the year 1950, Alan Turing
proposed a Turing test; a test to identify whether a machine has intelligence or not.
Rosenblatt, in 1957, laid the base for networks that could learn from experience in his
report, The Perceptron—a perceiving and recognizing automaton. These ideas were far ahead of
their time; while the concepts looked theoretically possible, computational resources at that
time severely limited the performance you could get through these models that could do
logic and learn.

While these papers seem old and irrelevant, they are very much worth
reading and give great insight into the vision these initial thinkers had.
Following, are the links to these papers for interested readers:

A Logical Calculus Of The Ideas Immanent In Nervous Activity,
McCulloch and Pitts:
https://link.springer.com/article/10.1007%2FBF02478259

Computing Machinery and Intelligence, Alan Turing:
http://phil415.pbworks.com/f/TuringComputing.pdf

The Perceptron—a perceiving and recognizing automaton,
Rosenblatt: https:/ /blogs. umass. edu/brain- wars/ files/
2016/ 03/ rosenblatt- 1957. pdf

Another interesting paper one by Wang and Raj from Carnegie
Melon University, On the Origin of Deep Learning; the 72-page
paper covers in detail the history of DL, starting from the
McCulloch Pitts model to the latest attention models: https:/ /
arxiv. org/ pdf/ 1702. 07800. pdf.

https://link.springer.com/article/10.1007%2FBF02478259
http://phil415.pbworks.com/f/TuringComputing.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf
https://arxiv.org/pdf/1702.07800.pdf

Deep Learning for IoT Chapter 4

[89]

Two AI winters and a few successes later (with the breakthrough in 2012, when Alex
Krizhvesky, Ilya Sutskever, and Geoffrey Hinton's AlexNet entry in the annual ImageNet
challenge achieved an error rate of 16%), today we stand at a place where DL has
outperformed most of the existing AI techniques. The following screenshot from Google
Trends shows that, roughly around 2014, Deep Learning became popular and had been
growing since then:

Deep learning in Google Trends from 2004 to April 2018

Let's see the reasons behind this growing trend and analyze whether it's just hype or
whether there's more to it.

Deep Learning for IoT Chapter 4

[90]

Deep learning—why now?
Most of the core concepts in the field of DL were already in place by the 80s and 90s, and
therefore, the question arises why suddenly we see an increase in the applications of DL to
solve different problems from image classification and image inpainting, to self-driving
cars and speech generation. The major reason is twofold, outlined as follows:

Availability of large high-quality dataset: The internet resulted in the
generation of an enormous amount of datasets in terms of images, video, text,
and audio. While most of it's unlabeled, by the effort of many leading researchers
(for example, Fei Fei Li creating the ImageNet dataset), we finally have access to
large labeled datasets. If DL is a furnace lighting your imagination, data is the
fuel burning it. The greater the amount and variety of the data, the better the
performance of the model.
Availability of parallel computing using graphical processing units: In DL
models, there are mainly two mathematical matrix operations that play a crucial
role, namely, matrix multiplication and matrix addition. The possibility of
parallelizing these processes for all the neurons in a layer with the help of
graphical processing units (GPUs) made it possible to train the DL models in
reasonable time.

Once the interest in DL grew, people came up with further improvements, like better
optimizers for the gradient descent (the necessary algorithm used to calculate weight and
bias update in DL models), for example, Adam and RMSprop; new regularization
techniques such as dropout and batch normalization that help, not only in overfitting, but
can also reduce the training time, and last, but not the least, availability of DL libraries such
as TensorFlow, Theano, Torch, MxNet, and Keras, which made it easier to define and train
complex architectures.

According to Andrew Ng, founder of deeplearning.ai, despite plenty of hype and frantic
investment, we won't see another AI winter, because improvements in the computing
devices will keep the performance advances and breakthroughs coming for the foreseeable future,
Andrew Ng said this at EmTech Digital in 2016, and true to his prediction, we have seen
advancements in the processing hardware with Google's Tensor Processing Unit (TPUs),
Intel Movidius, and NVIDIA's latest GPUs. Moreover, there are cloud computing GPUs
that are available today at as low as 0.40 cents per hour, making it affordable for all.

You can read the complete article AI Winter Isn't Coming, published in
MIT Technology Review: https:/ / www.technologyreview. com/ s/
603062/ ai- winter- isnt- coming/ . Here Andrew Ng answers different
queries regarding the future of AI.

https://www.deeplearning.ai/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/
https://www.technologyreview.com/s/603062/ai-winter-isnt-coming/

Deep Learning for IoT Chapter 4

[91]

For DL, GPU processing power is a must; there are a large number of
companies offering cloud computing services for the same. But in case
you are starting in the field, you can use one of the following:

Google Colaboratory: It provides a browser-based, GPU
enabled Jupyter Notebook—like interface. It gives free access to
the GPU computing power for 12 continuous hours.
Kaggle: Kaggle too provides a Jupyter Notebook style interface
with GPU computing power for roughly six continuous hours
free of cost.

Artificial neuron
The fundamental component of all DL models is an artificial neuron. The artificial neuron is
inspired by the working of biological neurons. It consists of some inputs connected via
weights (also called synaptic connections), the weighted sum of all the inputs goes through
a processing function (called the activation function) and generates a non-linear output.

The following screenshot shows A biological Neuron and An Artificial Neuron:

A biological neuron and an artificial neuron

Deep Learning for IoT Chapter 4

[92]

If Xi is the ith input to the artificial neuron (j) connected via the synaptic connection wij, then,
the net input to the neuron, commonly called the activity of the neuron, can be defined as
the weighted sum of all its contains, and is given by the following:

In the preceding equation, N is the total number of inputs to the jth neuron, and θj is the
threshold of the jth neuron; the output of the neuron is then given by the following:

In the preceding, g is the activation function. The following point lists different activation
functions used in different DL models, along with their mathematical and graphical
representations:

Sigmoid:

Deep Learning for IoT Chapter 4

[93]

Hyperbolic Tangent: g(hj)= tanh(hj)

ReLU: g(hj)= max(0,hj)

Deep Learning for IoT Chapter 4

[94]

Softmax:

Leaky ReLU:

Deep Learning for IoT Chapter 4

[95]

ELU:

Threshold:

Deep Learning for IoT Chapter 4

[96]

Modelling single neuron in TensorFlow
Can we use this single neuron and make it learn? The answer is yes, the process of learning
involves adapting the weights such that a predefined loss function (L) reduces. If we
update the weights in the direction opposite to the gradient of the loss function with respect
to weights, it will ensure that loss function decreases with each update. This algorithm is
called the gradient descent algorithm, and is at the heart of all DL models. Mathematically,
if L is the loss function and η the learning rate, then the weight wij is updated and
represented as:

If we have to model the single artificial neuron, we need first to decide the following
parameters:

Learning rate parameter: Learning rate parameter determines how fast we
descent the gradient. Conventionally, it lies between 0 and 1. If learning rate is
too high, the network may either oscillate around the correct solution or
completely diverge from the solution. On the other hand, when learning rate is
too low, it will take a long time to converge to the solution finally.
Activation function: The activation function decides how the output of the
neuron varies with its activity. Since the weight update equation involves a
derivative of the loss function, which in turn will depend on the derivative of the
activation function, we prefer a continuous-differentiable function as the
activation function for the neuron. Initially, sigmoid and hyperbolic tangent were
used, but they suffered from slow convergence and vanishing gradients (the
gradient becoming zero, and hence, no learning, while the solution hasn't been
reached). In recent years, rectified linear units (ReLU) and its variants such as
leaky ReLU and ELU are preferred since they offer fast convergence and at the
same time, help in overcoming the vanishing gradient problem. In ReLU, we
sometimes have a problem of dead neurons, that is some neurons never fire
because their activity is always less than zero, and hence, they never learn. Both
leaky ReLU and ELU overcome the problem of dead neurons by ensuring a non-
zero neuron output, even when the activity is negative. The lists of the commonly
used activation functions, and their mathematical and graphical representations
is explained before this section. (You can play around with the
activation_functions.ipynb code , which uses TensorFlow defined
activation functions.)

Deep Learning for IoT Chapter 4

[97]

Loss function: Loss function is the parameter our network tries to minimize, and
so choosing the right loss function is crucial for the learning. As you will delve
deep into DL, you will find many cleverly defined loss functions. You will see
how, by properly defining loss functions, we can make our DL model create new
images, visualize dreams, or give a caption to an image, and much more.
Conventionally, depending on the type of task regression or classification, people
use mean square error (MSE) or categorical-cross entropy loss function. You
will learn these loss functions as we progress through the book.

Now that we know the basic elements needed to model an artificial neuron, let's start with
the coding. We will presume a regression task, and so we will use MSE loss function. If yj is
the output of our single neuron for the input vector X and is the output we desire for
output neuron j, then the MSE error is mathematically expressed as (mean of the square of
the error), shown as follows:

In the preceding, M is the total number of training sample (input-output pair).

Note that if you were to implement this artificial neuron without using TensorFlow (to be
specific without using any of the DL libraries mentioned earlier), then you will need to
calculate the gradient yourself, for example, you will write a function or a code that will
first compute the gradient of loss function, and then you will have to write a code to update
all of the weights and biases. For a single neuron with the MSE loss function, calculating
derivative is still straightforward, but as the complexity of the network increases,
calculating the gradient for the specific loss function, implementing it in code, and then
finally updating weights and biases can become a very cumbersome act.

TensorFlow makes this whole process easier by using automatic differentiation.
TensorFlow specifies all the operations in a TensorFlow graph; this allows it to use the
chain rule and go complicated in the graph assigning the gradients.

Deep Learning for IoT Chapter 4

[98]

And so, in TensorFlow we build the execution graph, and define our loss function, then it
calculates the gradient automatically, and it supports many different gradients, calculating
algorithms (optimizers), which we can conveniently use.

You can learn more about the concept of automatic differentiation through this link: http:/
/www.columbia.edu/ ~ahd2125/ post/ 2015/ 12/5/ .

Now with all this basic information, we build our single neuron in TensorFlow with the
following steps:

The first step, in every Python code, is always importing the modules one will1.
need in the rest of the program. We will import TensorFlow to build the single
artificial neuron. Numpy and pandas are there for any supporting mathematical
calculations and for reading the data files. Beside this, we are also importing
some useful functions (for normalization of data, splitting it into train, validation,
and shuffling the data) from scikit-learn, we have already used these functions in
the earlier chapters and know that normalization and shuffling is an important
step in any AI pipeline:

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
% matplotlib inline

As explained earlier, validation helps in knowing if the model has learned or it's
overfitting or underfitting

In TensorFlow, we first build a model graph and then execute it. This might,2.
when starting, seem complicated, but once you get the hang of it, it's very
convenient and allows us to optimize the code for production. So, let's first define
our single neuron graph. We define self.X and self.y as placeholders to pass
on the data to the graph, as shown in the following code:

class ArtificialNeuron:
 def __init__(self,N=2, act_func=tf.nn.sigmoid, learning_rate=
0.001):
 self.N = N # Number of inputs to the neuron
 self.act_fn = act_func

 # Build the graph for a single neuron
 self.X = tf.placeholder(tf.float32, name='X',

http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/
http://www.columbia.edu/~ahd2125/post/2015/12/5/

Deep Learning for IoT Chapter 4

[99]

shape=[None,N])
 self.y = tf.placeholder(tf.float32, name='Y')

The weights and biases are defined as variables so that the automatic3.
differentiation automatically updates them. TensorFlow provides a graphical
interface to support TensorBoard to see the graph structure, as well as different
parameters, and how they change during training. It's beneficial for debugging
and understanding how your model is behaving. In the following code, we,
therefore, add code lines to create histogram summaries for both weights and
biases:

self.W = tf.Variable(tf.random_normal([N,1], stddev=2, seed = 0),
name = "weights")
 self.bias = tf.Variable(0.0, dtype=tf.float32, name="bias")
 tf.summary.histogram("Weights",self.W)
 tf.summary.histogram("Bias", self.bias)

Next, we perform the mathematical operations, the matrix multiplication,4.
between input and weights, add the bias, and calculate the activity of the neuron
and its output, denoted by self.y_hat shown as follows:

activity = tf.matmul(self.X, self.W) + self.bias
self.y_hat = self.act_fn(activity)

We define the loss function that we want our model to minimize, and use the 5.
TensorFlow optimizer to minimize it, and update weights and biases using the
gradient descent optimizer, as shown in the following code:

error = self.y - self.y_hat

self.loss = tf.reduce_mean(tf.square(error))
self.opt =
tf.train.GradientDescentOptimizer(learning_rate=learning_rate).mini
mize(self.loss)

We complete the init function by defining a TensorFlow Session and initializing6.
all the variables. We also add code to ensure that TensorBoard writes all the
summaries at the specified place, shown as follows:

tf.summary.scalar("loss",self.loss)
init = tf.global_variables_initializer()

self.sess = tf.Session()
self.sess.run(init)

self.merge = tf.summary.merge_all()

Deep Learning for IoT Chapter 4

[100]

self.writer =
tf.summary.FileWriter("logs/",graph=tf.get_default_graph())

We define the train function where the graph we previously built is executed,7.
as shown in the following code:

def train(self, X, Y, X_val, Y_val, epochs=100):
epoch = 0
X, Y = shuffle(X,Y)
loss = []
loss_val = []
while epoch &lt; epochs:
 # Run the optimizer for the whole training set batch
wise (Stochastic Gradient Descent)
 merge, _, l =
self.sess.run([self.merge,self.opt,self.loss], feed_dict={self.X:
X, self.y: Y})
 l_val = self.sess.run(self.loss, feed_dict={self.X:
X_val, self.y: Y_val})

 loss.append(l)
 loss_val.append(l_val)
 self.writer.add_summary(merge, epoch)

 if epoch % 10 == 0:
 print("Epoch {}/{} training loss: {} Validation
loss {}".\
 format(epoch,epochs,l, l_val))

 epoch += 1
 return loss, loss_val

To make a prediction, we also include a predict method, as shown in the8.
following code:

 def predict(self, X):
 return self.sess.run(self.y_hat, feed_dict={self.X: X})

Next, like in the previous chapter, we read the data, normalize it using scikit-9.
learn functions, and split it into training and validation set, shown as follows:

filename = 'Folds5x2_pp.xlsx'
df = pd.read_excel(filename, sheet_name='Sheet1')
X, Y = df[['AT', 'V','AP','RH']], df['PE']
scaler = MinMaxScaler()
X_new = scaler.fit_transform(X)
target_scaler = MinMaxScaler()

Deep Learning for IoT Chapter 4

[101]

Y_new = target_scaler.fit_transform(Y.values.reshape(-1,1))
X_train, X_val, Y_train, y_val = \
 train_test_split(X_new, Y_new, test_size=0.4,
random_state=333)

We use the artificial neuron we created to make the energy output prediction.10.
Training Loss and Validation Loss are plotted as the artificial neuron
learns, as shown in the following:

_, d = X_train.shape
model = ArtificialNeuron(N=d)

loss, loss_val = model.train(X_train, Y_train, X_val, y_val, 30000)

plt.plot(loss, label="Taining Loss")
plt.plot(loss_val, label="Validation Loss")
plt.legend()
plt.xlabel("Epochs")
plt.ylabel("Mean Square Error")

Mean square error for training and validation data as the single artificial neuron learns to predict the energy output

The complete code with data reading, data normalization, training, and so on is given in the
single_neuron_tf.ipynb Jupyter Notebook.

Deep Learning for IoT Chapter 4

[102]

Multilayered perceptrons for regression and
classification
In the last section, you learned about a single artificial neuron and used it to predict the
energy output. If we compare it with the linear regression result of Chapter 3, Machine
Learning for IoT, we can see that though the single neuron did a good job, it was not as good
as linear regression. The single neuron architecture had an MSE value of 0.078 on the
validation dataset as compared 0.01 of linear regression. Can we make it better, with maybe
more epochs, or different learning rate, or perhaps more single neurons. Unfortunately not,
single neurons can solve only linearly separable problems, for example, they can provide a
solution only if there exists a straight line separating the classes/decision.

The network with a single layer of neurons is called simple perceptron. The
perceptron model was given by Rosenblatt in 1958 (http:/ /citeseerx. ist.
psu.edu/ viewdoc/ download? doi= 10. 1.1. 335.3398 amp;rep= rep1 amp;type=
pdf). The paper created lots of ripples in the scientific community and lots of
research was initiated in the field. It was first implemented in hardware for
the task of image recognition. Although perceptron seemed very promising
initially, the book Perceptrons by Marvin Minsky and Seymour Papert proved
that simple perceptron can solve only linearly separable problems (https:/ /
books. google. co. in/ books? hl= enamp;lr= amp;id= PLQ5DwAAQBAJ amp;oi= fnd
amp;pg= PR5 amp;dq=
Perceptrons:+An+Introduction+to+Computational+Geometry amp;ots=
zyEDwMrl_ _ amp;sig= DfDDbbj3es52hBJU9znCercxj3M#v= onepage amp;q=
Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry

amp;f= false).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false
https://books.google.co.in/books?hl=en&lr=&id=PLQ5DwAAQBAJ&oi=fnd&pg=PR5&dq=Perceptrons:+An+Introduction+to+Computational+Geometry&ots=zyEDwMrl__&sig=DfDDbbj3es52hBJU9znCercxj3M#v=onepage&q=Perceptrons%3A%20An%20Introduction%20to%20Computational%20Geometry&f=false

Deep Learning for IoT Chapter 4

[103]

So what do we do? We can use multiple layers of single neurons, in other words, use MLP.
Just as in real life, we solve a complex problem by breaking it into small problems, each
neuron in the first layer of the MLP breaks the problem into small linearly separable. Since
the information flows here in one direction from the input layer to the output layer via
hidden layers, this network is also called a feedforward network. In the following diagram,
we see how the XOR problem is solved using two neurons in the first layer, and a single
neuron in the Output Layer. The network breaks the non-linearly separable problem into
three linearly separable problems:

Deep Learning for IoT Chapter 4

[104]

Previous diagram can be explained as XOR solved using MLP with one hidden layer with
neurons and one neuron in the output layer. Red points represent zero and blue points
represent one. We can see that the hidden neurons separate the problem into two linearly
separable problems (AND and OR), the output neuron then implements another linearly
separable logic the AND-NOT logic, combining them together we are able to solve the
XOR, which is not linearly separable

The hidden neurons transform the problem into a form that output layer can use. The idea
of multiple layers of neurons was given by McCulloch and Pitts earlier, but while
Rosenblatt gave the learning algorithm for simple perceptrons, he had no way of training
multiple layered percetrons. The major difficulty was that, while for the output neurons we
know what should be the desired output and so can calculate the error, and hence, the loss
function and weight updates using gradient descent, there was no way to know the desired
output of hidden neurons. Hence, in the absence of any learning algorithm, MLPs were
never explored much. This changed in 1982 when Hinton proposed the backpropagation
algorithm (https:/ / www. researchgate. net/ profile/ Yann_ Lecun/ publication/ 2360531_
A_Theoretical_Framework_ for_ Back- Propagation/ links/ 0deec519dfa297eac1000000/ A-
Theoretical-Framework- for- Back- Propagation. pdf), which can be used to calculate the
error, and hence, the weight updates for the hidden neurons. They employed a neat and
straightforward mathematical trick of differentiation using the chain rule, and solved the
problem of passing the errors at the output layer back to the hidden neurons, and in turn,
boosted life back to neural networks. Today, backpropagation algorithm is at the heart of
almost all DL models.

The backpropagation algorithm
Let's first gain a little understanding of the technique behind the backpropagation
algorithm. If you remember from the previous section, the loss function at the output
neuron is as follows:

https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf
https://www.researchgate.net/profile/Yann_Lecun/publication/2360531_A_Theoretical_Framework_for_Back-Propagation/links/0deec519dfa297eac1000000/A-Theoretical-Framework-for-Back-Propagation.pdf

Deep Learning for IoT Chapter 4

[105]

You can see that it's unchanged, and so the weight connecting hidden neuron k to the
output neuron j would be given as follows:

Applying the chain rule of differentiation, this reduces to the following:

In the preceding equation, Ok is the output of the hidden neuron k. Now the weight update
connecting input neuron i to the hidden neuron k of hidden layer n can be written as the
following:

Again applying the chain rule, it reduces to the following:

Here, Oi is the output of the hidden neuron i in the n-1th hidden layer. Since we are using
TensorFlow, we need not bother with calculating these gradients, but still, it's a good idea
to know the expressions. From these expressions, you can see why it's important that the
activation function is differentiable. The weight updates depend heavily on the derivative
of the activation function, as well as the inputs to the neurons. Therefore, a smooth
derivative function like that in the case of ReLU and ELU result in faster convergence. If the
derivative becomes too large, we have the problem of exploding gradients, and if the
derivative becomes almost zero, we have the problem of vanishing gradients. In both cases,
the network does not learn optimally.

Deep Learning for IoT Chapter 4

[106]

Universal approximation theorem: in 1989 Hornik et al. and George Cybenko
independently proved the universal approximation theorem. The theorem, in
its simplest form, states that a large enough feedforward multilayered
perceptron, under mild assumptions on activation function, with a single
hidden layer, can approximate any Borel measurable function with any
degree of accuracy we desire.

In simpler words, it means that the neural network is a universal
approximator, and we can approximate any function, listed as follows:

We can do so using a single hidden layer feedforward network.

We can do so provided the network is large enough (that is add
more hidden neurons if needed).

Cybenko proved it for sigmoid activation function at the hidden
layer, and linear activation function at the output layer. Later,
Hornik et al showed that it's actually the property of MLPs and can
be proved for other activation functions too

The theorem gives a guarantee that MLP can solve any problem, but does not
give any measure on how large the network should be. Also, it does not
guarantee learning and convergence.

You can refer to the papers using the following links:

Hornik et al.: https:/ /www. sciencedirect. com/science/ article/
pii/ 0893608089900208

Cybenko: https:/ /pdfs. semanticscholar. org/05ce/
b32839c26c8d2cb38d5529cf7720a68c3fab. pdf

Now we can describe the steps involved in the backpropagation algorithm, listed as
follows:

Apply the input to the network1.
Propagate the input forward and calculate the output of the network2.
Calculate the loss at the output, and then using the preceding expressions,3.
calculate weight updates for output layer neuron

https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf
https://pdfs.semanticscholar.org/05ce/b32839c26c8d2cb38d5529cf7720a68c3fab.pdf

Deep Learning for IoT Chapter 4

[107]

Using the weighted errors at output layers, calculate the weight updates for4.
hidden layer
Update all the weights5.
Repeat the steps for other training examples6.

Energy output prediction using MLPs in
TensorFlow
Let's now see how good an MLP is for predicting energy output. This will be a regression
problem. We will be using a single hidden layer MLP and will predict the net hourly
electrical energy output from a combined cycle power plant. The description of the dataset
is provided in Chapter 1, Principles and foundations of IoT and AI.
Since it's a regression problem, our loss function remains the same as before. The complete
code implementing the MLP class is given as follows:

class MLP:
 def __init__(self,n_input=2,n_hidden=4, n_output=1,
act_func=[tf.nn.elu, tf.sigmoid], learning_rate= 0.001):
 self.n_input = n_input # Number of inputs to the neuron
 self.act_fn = act_func
 seed = 123

 self.X = tf.placeholder(tf.float32, name='X', shape=[None,n_input])
 self.y = tf.placeholder(tf.float32, name='Y')

 # Build the graph for a single neuron
 # Hidden layer
 self.W1 = tf.Variable(tf.random_normal([n_input,n_hidden],\
 stddev=2, seed = seed), name = "weights")
 self.b1 = tf.Variable(tf.random_normal([1, n_hidden], seed =
seed),\
 name="bias")
 tf.summary.histogram("Weights_Layer_1",self.W1)
 tf.summary.histogram("Bias_Layer_1", self.b1)

 # Output Layer
 self.W2 = tf.Variable(tf.random_normal([n_hidden,n_output],\
 stddev=2, seed = 0), name = "weights")
 self.b2 = tf.Variable(tf.random_normal([1, n_output], seed =
seed),\
 name="bias")
 tf.summary.histogram("Weights_Layer_2",self.W2)

Deep Learning for IoT Chapter 4

[108]

 tf.summary.histogram("Bias_Layer_2", self.b2)

 activity = tf.matmul(self.X, self.W1) + self.b1
 h1 = self.act_fn[0](activity)

 activity = tf.matmul(h1, self.W2) + self.b2
 self.y_hat = self.act_fn[1](activity)

 error = self.y - self.y_hat

 self.loss = tf.reduce_mean(tf.square(error))\
 + 0.6*tf.nn.l2_loss(self.W1)
 self.opt = tf.train.GradientDescentOptimizer(learning_rate\
 =learning_rate).minimize(self.loss)

 tf.summary.scalar("loss",self.loss)
 init = tf.global_variables_initializer()

 self.sess = tf.Session()
 self.sess.run(init)

 self.merge = tf.summary.merge_all()
 self.writer = tf.summary.FileWriter("logs/",\
 graph=tf.get_default_graph())

 def train(self, X, Y, X_val, Y_val, epochs=100):
 epoch = 0
 X, Y = shuffle(X,Y)
 loss = []
 loss_val = []
 while epoch &lt; epochs:
 # Run the optimizer for the training set
 merge, _, l = self.sess.run([self.merge,self.opt,self.loss],\
 feed_dict={self.X: X, self.y: Y})
 l_val = self.sess.run(self.loss, feed_dict=\
 {self.X: X_val, self.y: Y_val})

 loss.append(l)
 loss_val.append(l_val)
 self.writer.add_summary(merge, epoch)

 if epoch % 10 == 0:
 print("Epoch {}/{} training loss: {} Validation loss {}".\
 format(epoch,epochs,l, l_val))

Deep Learning for IoT Chapter 4

[109]

 epoch += 1
 return loss, loss_val

 def predict(self, X):
 return self.sess.run(self.y_hat, feed_dict={self.X: X})

Before using it, let's see the differences between previous code and the code we made
earlier for the single artificial neuron. Here the dimensions of weights of hidden layer is
#inputUnits × #hiddenUnits; the bias of the hidden layer will be equal to the number
of hidden units (#hiddenUnits). The output layer weights have the dimensions
#hiddenUnits × #outputUnits; the bias of output layer is of the dimension of the
number of units in the output layer (#outputUnits).

In defining the bias, we have used only the column dimensions, not row. This
is because TensorFlow like numpy broadcasts the matrices according to the
operation to be performed. And by not fixing the row dimensions of bias, we
are able to maintain the flexibility of the number of input training samples
(batch-size) we present to the network.

Following screenshot shows matrix multiplication and addition dimensions while
calculating activity:

The matrix multiplication and addition dimensions while calculating activity

Deep Learning for IoT Chapter 4

[110]

The second difference that you should note is in the definition of loss, we have added here
the l2 regularization term to reduce overfitting as discussed in Chapter 3, Machine Learning
for IoT, shown as follows:

self.loss = tf.reduce_mean(tf.square(error)) + 0.6*tf.nn.l2_loss(self.W1)

After reading the data from the csv file and separating it into training and validation like
before, we define the MLP class object with 4 neurons in the input layer, 15 neurons in the
hidden layer, and 1 neuron in the output layer:

_, d = X_train.shape
_, n = Y_train.shape
model = MLP(n_input=d, n_hidden=15, n_output=n)

In the following code we train the model on training dataset for 6000 epochs:

loss, loss_val = model.train(X_train, Y_train, X_val, y_val, 6000)

This trained network gives us an MSE of 0.016 and an R2 value of 0.67. Both are better than
what we obtained from a single neuron, and comparable to the ML methods we studied in
Chapter 3, Machine Learning for IoT. The complete code can be accessed in the file named
MLP_regresssion.ipynb.

You can play around with hyperparameters namely: the number of hidden
neurons, the activation functions, the learning rate, the optimizer, and the
regularization coefficient, and can obtain even better results.

Wine quality classification using MLPs in
TensorFlow
MLP can be used to do classification tasks as well. We can reuse the MLP class from the
previous section with minor modifications to perform the task of classification.

Deep Learning for IoT Chapter 4

[111]

We will need to make the following two major changes:

The target in the case of classification will be one-hot encoded
The loss function will now be categorical cross-entropy loss:
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=s
elf.y_hat, labels=self.y))

So let's now see the complete code, which is also available at GitHub in the file
MLP_classification. We will be classifying the red wine quality, to make it convenient,
we use only two wine classes:

We import the necessary modules namely: TensorFlow, Numpy, Matplotlib, and1.
certain functions from scikit-learn, as shown in the following code:

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
% matplotlib inline

We defined our MLP class, it's very similar to the MLP class you saw earlier, the2.
only difference is in the definition of the loss function:

class MLP:
 def __init__(self,n_input=2,n_hidden=4, n_output=1,
act_func=[tf.nn.relu, tf.nn.sigmoid], learning_rate= 0.001):
 self.n_input = n_input # Number of inputs to the neuron
 self.act_fn = act_func
 seed = 456

 self.X = tf.placeholder(tf.float32, name='X',
shape=[None,n_input])
 self.y = tf.placeholder(tf.float32, name='Y')

 # Build the graph for a single neuron
 # Hidden layer
 self.W1 = tf.Variable(tf.random_normal([n_input,n_hidden],\
 stddev=2, seed = seed), name = "weights")
 self.b1 = tf.Variable(tf.random_normal([1, n_hidden],\
 seed = seed), name="bias")
 tf.summary.histogram("Weights_Layer_1",self.W1)
 tf.summary.histogram("Bias_Layer_1", self.b1)

Deep Learning for IoT Chapter 4

[112]

 # Output Layer
 self.W2 =
tf.Variable(tf.random_normal([n_hidden,n_output],\
 stddev=2, seed = seed), name = "weights")
 self.b2 = tf.Variable(tf.random_normal([1, n_output],\
 seed = seed), name="bias")
 tf.summary.histogram("Weights_Layer_2",self.W2)
 tf.summary.histogram("Bias_Layer_2", self.b2)

 activity1 = tf.matmul(self.X, self.W1) + self.b1
 h1 = self.act_fn[0](activity1)

 activity2 = tf.matmul(h1, self.W2) + self.b2
 self.y_hat = self.act_fn[1](activity2)

 self.loss =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(\
 logits=self.y_hat, labels=self.y))
 self.opt = tf.train.AdamOptimizer(learning_rate=\
 learning_rate).minimize(self.loss)

 tf.summary.scalar("loss",self.loss)
 init = tf.global_variables_initializer()

 self.sess = tf.Session()
 self.sess.run(init)

 self.merge = tf.summary.merge_all()
 self.writer = tf.summary.FileWriter("logs/",\
 graph=tf.get_default_graph())

 def train(self, X, Y, X_val, Y_val, epochs=100):
 epoch = 0
 X, Y = shuffle(X,Y)
 loss = []
 loss_val = []
 while epoch &lt; epochs:
 # Run the optimizer for the training set
 merge, _, l =
self.sess.run([self.merge,self.opt,self.loss],\
 feed_dict={self.X: X, self.y: Y})
 l_val = self.sess.run(self.loss, feed_dict={self.X:
X_val, self.y: Y_val})

Deep Learning for IoT Chapter 4

[113]

 loss.append(l)
 loss_val.append(l_val)
 self.writer.add_summary(merge, epoch)

 if epoch % 10 == 0:
 print("Epoch {}/{} training loss: {} Validation
loss {}".\
 format(epoch,epochs,l, l_val))

 epoch += 1
 return loss, loss_val

 def predict(self, X):
 return self.sess.run(self.y_hat, feed_dict={self.X: X})

Next, we read the data, normalize it, and preprocess it so that wine quality is3.
one-hot encoded with two labels. We also divide the data into training and
validation set, shown as follows:

filename = 'winequality-red.csv'
#Download the file from
https://archive.ics.uci.edu/ml/datasets/wine+quality
df = pd.read_csv(filename, sep=';')
columns = df.columns.values
Preprocessing and Categorizing wine into two categories
X, Y = df[columns[0:-1]], df[columns[-1]]
scaler = MinMaxScaler()
X_new = scaler.fit_transform(X)
#Y.loc[(Y&lt;3.5)]=3
Y.loc[(Y&lt;5.5)] = 2
Y.loc[(Y&gt;=5.5)] = 1
Y_new = pd.get_dummies(Y) # One hot encode
X_train, X_val, Y_train, y_val = \
 train_test_split(X_new, Y_new, test_size=0.2, random_state=333)

We define an MLP object and train it, demonstrated in the following code:4.

_, d = X_train.shape
_, n = Y_train.shape
model = MLP(n_input=d, n_hidden=5, n_output=n)
loss, loss_val = model.train(X_train, Y_train, X_val, y_val, 10000)

Following, you can see the results of training, the cross-entropy loss decreases as5.
the network learns:

plt.plot(loss, label="Taining Loss")
plt.plot(loss_val, label="Validation Loss")

Deep Learning for IoT Chapter 4

[114]

plt.legend()
plt.xlabel("Epochs")
plt.ylabel("Cross Entropy Loss")

The trained network, when tested on the validation dataset, provides an accuracy6.
of 77.8%. The confusion_matrix on the validation set is shown as follows:

from sklearn.metrics import confusion_matrix, accuracy_score
import seaborn as sns
cm = confusion_matrix(np.argmax(np.array(y_val),1),
np.argmax(Y_pred,1))
sns.heatmap(cm,annot=True,fmt='2.0f')

Deep Learning for IoT Chapter 4

[115]

These results are again comparable to the results we obtained using ML algorithms. We can
make it even better by playing around with the hyperparameters.

Convolutional neural networks
MLPs were fun, but as you must have observed while playing with MLP codes in the
previous section, the time to learn increases as the complexity of input space increases;
moreover, the performance of MLPs is just second to the ML algorithms. Whatever you can
do with MLP, there's a high probability you can do it slightly better using ML algorithms
you learned in Chapter 3, Machine Learning for IoT. Precisely for this reason, despite
backpropagation algorithm being available in the 1980s, we observed the second AI winter
roughly from 1987 to 1993.

This all changed, and the neural networks stopped playing the second fiddle to ML
algorithms, in the 2010s with the development of deep neural networks. Today DL has
achieved human level or more than human level performance in varied tasks of computer
vision like recognizing traffic signals (http:/ /people. idsia. ch/~juergen/ cvpr2012. pdf),
faces (https:// www. cv- foundation. org/ openaccess/ content_ cvpr_ 2014/ papers/
Taigman_DeepFace_ Closing_ the_ 2014_ CVPR_ paper. pdf), handwritten digits, (https:/ /cs.
nyu.edu/~wanli/dropc/ dropc. pdf) and so on. The list is continuously growing.

CNN has been a major part of this success story. In this section, you will learn about CNN,
the maths behind CNN, and some of the popular CNN architectures.

Different layers of CNN
CNN consists of three main types of neuron layers: convolution layers, pooling layers, and
fully connected layers. Fully connected layers are nothing but layers of MLP, they are
always the last few layers of the CNN, and perform the final task of classification or
regression. Let's see how the convolution layer and max pooling layers work.

The convolution layer
This is the core building block of CNNs. It performs the mathematical operation similar to
convolution (cross-correlation to be precise) on its input, normally a 3D image. It's defined
by kernels (filters). The basic idea is that these filters stride through the entire image and
extract specific features from the image.

http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
http://people.idsia.ch/~juergen/cvpr2012.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf
https://cs.nyu.edu/~wanli/dropc/dropc.pdf

Deep Learning for IoT Chapter 4

[116]

Before going into further details, let's first see the convolution operation on a two-
dimensional matrix for simplicity. The following diagram shows the operation when one
pixel placed at position [2, 2] of a 5×5 2D image matrix is convolved with a 3×3 filter:

Convolution operation at a single pixel

The convolution operation involves placing the filter with the pixel at the center, then
performing element-wise multiplication between the filter elements and the pixel, along
with its neighbors. Finally, summing the product. Since convolution operation is performed
on a pixel, the filters are conventionally odd-sized like 5×5, 3×3, or 7×7, and so on. The size
of the filters specify how much neighboring area it's covering.

Deep Learning for IoT Chapter 4

[117]

The important parameters when designing the convolution layers are as follows:

The size of the filters (k×k).
The number of filters in the layer, also called channels. The input color image is
present in the three RGB channels. The number of channels are conventionally
increased in the higher layers. Resulting in deeper information in higher layers.
The number of pixels the filter strides (s) through the image. Conventionally, the
stride is of one pixel so that the filter covers the entire image starting from top-
left to bottom-right.
The padding to be used while convolving. Traditionally, there are two options,
either valid or same. In valid padding, there's no padding at all, and thus the size
of the convolved image is less than that of the original. In same, the padding of
zeros is done around the boundary pixels, so that the size of the convolved image
is the same as that of the original image. The following screenshot shows the
complete Convolved Image. The green square of size 3×3 is the result when
padding is valid, the complete 5×5 matrix on the right will be the result when
padding is the same:

Convolution operation applied on a 5×5 image

The green square on the right will be the result of valid padding. For the same padding, we
will get the complete 5×5 matrix shown on the right-hand side.

Deep Learning for IoT Chapter 4

[118]

Pooling layer
The convolution layer is followed conventionally by a pooling layer. The purpose of the
pooling layer is to progressively reduce the size of the representation, and thus, reduce the
number of parameters and computations in the network. Thus, it down samples the
information as it propagates through the network in feed forward manner.

Here again, we have a filter, traditionally people prefer a filter of size 2×2, and it moves
with a stride of two pixels in both directions. The pooling process replaces the four
elements under the 2×2 filter by either the maximum value of the four (Max Pooling) or the
average value of the four (Average Pooling). In the following diagram, you can see the
result of pooling operation on a 2D single channel slice of an image:

Max pooling and average pooling operation on a two-dimensional single depth slice of an image

Multiple convolution pooling layers are stacked together to form a deep CNN. As the
image propagates through the CNN, each convolutional layer extracts specific features. The
lower layers extract the gross feature like shape, curves, lines, and so on, while the higher
layers extract more abstract features like eyes, lips, and so on. The image, as it propagates
through the network, reduces in dimensions, but increases in depth. The output from the
last convolutional layer is flattened and passed to fully connected layers, as shown in the
following diagram:

Deep Learning for IoT Chapter 4

[119]

The basic architecture of a CNN network

The values of filter matrix are also called weights and they are shared by the whole image.
This sharing reduces the number of training parameters. The weights are learned by the
network using the backpropagation algorithm. Since we will be using the auto-
differentiation feature of TensorFlow, we are not calculating the exact expression for weight
update for convolution layers.

Some popular CNN model
The following is a list of some of the popular CNN models available:

LeNet: LeNet was the first successful CNN applied to recognize handwritten
digits. It was developed by Yann LeCun in the 1990s. You can know more about
LeNet architecture and its related publications at Yann LeCun's home page
(http:/ /yann. lecun. com/ exdb/ lenet/).
VGGNet: This was the runner-up in ILSVRC 2014, developed by Karen
Simonyan and Andrew Zisserman. Its first version contains 16 Convolution+FC
layers and was called VGG16, later they brought VGG19 with 19 layers. The
details about its performance and publications can be accessed from the
University of Oxford site (http:/ /www. robots. ox.ac. uk/~vgg/ research/ very_
deep/).

http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://yann.lecun.com/exdb/lenet/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/
http://www.robots.ox.ac.uk/~vgg/research/very_deep/

Deep Learning for IoT Chapter 4

[120]

ResNet: Developed by Kaiming He et al., ResNet was the winner of ILSVRC
2015. It made use of new feature called residual learning and batch
normalization. It's a very deep network with more than 100 layers. It's known
that adding more layers will improve the performance, but adding layers also
introduced the problem of vanishing gradients. ResNet solved this issue by
making use of identity shortcut connection, where the signal skips one or more
layers. You can read the original paper for more information (https:/ /arxiv.
org/abs/ 1512. 03385).
GoogleNet: This was the winning architecture of ILSVRC 2014. It has 22 layers,
and introduced the idea of inception layer. The basic idea is to cover a bigger
area, while at the same time, keep a fine resolution for small information on the
images. As a result instead of one size filters, at each layer, we have filter ranging
from 1×1 (for fine detailing) to 5×5. The result of all the filters are concatenated
and passed to next layer, the process is repeated in the next inception layer.

LeNet to recognize handwritten digits
In the chapters ahead, we will be using some of these popular CNNs and their variants to
solve image and video processing tasks. Right now, let's use the LeNet architecture
proposed by Yann LeCun to recognize handwritten digits. This architecture was used by
the US Postal Service to recognize handwritten ZIP codes on the letters they received
(http://yann.lecun. com/ exdb/ publis/ pdf/ jackel- 95. pdf).

LeNet consists of five layers with two convolutional max pool layers and three fully
connected layers. The network also uses dropout feature, that is while training, some of the
weights are turned off. This forces the other interconnections to compensate for them, and
hence helps in overcoming overfitting:

We import the necessary modules, shown as follows1.

Import Modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf
http://yann.lecun.com/exdb/publis/pdf/jackel-95.pdf

Deep Learning for IoT Chapter 4

[121]

Next, we create the class object LeNet, which will have the necessary CNN2.
architecture and modules to train and make the prediction. In the __init__
method, we define all the needed placeholders to hold input images and their
output labels. We also define the loss, since this is a classification problem, we
use cross-entropy loss, as shown in the following code:

Define your Architecture here
import tensorflow as tf
from tensorflow.contrib.layers import flatten
class my_LeNet:
 def __init__(self, d, n, mu = 0, sigma = 0.1, lr = 0.001):
 self.mu = mu
 self.sigma = sigma
 self.n = n
 # place holder for input image dimension 28 x 28
 self.x = tf.placeholder(tf.float32, (None, d, d, 1))
 self.y = tf.placeholder(tf.int32, (None,n))
 self.keep_prob = tf.placeholder(tf.float32) # probability
to keep units

 self.logits = self.model(self.x)
 # Define the loss function
 cross_entropy =
tf.nn.softmax_cross_entropy_with_logits(labels=self.y,\
 logits=self.logits)
 self.loss = tf.reduce_mean(cross_entropy)
 optimizer = tf.train.AdamOptimizer(learning_rate = lr)
 self.train = optimizer.minimize(self.loss)
 correct_prediction = tf.equal(tf.argmax(self.logits, 1),
tf.argmax(self.y, 1))
 self.accuracy = tf.reduce_mean(tf.cast(correct_prediction,
tf.float32))
 init = tf.global_variables_initializer()
 self.sess = tf.Session()
 self.sess.run(init)
 self.saver = tf.train.Saver()

Deep Learning for IoT Chapter 4

[122]

The model method is the one where the convolutional network architecture3.
graph is actually build. We use the TensorFlow tf.nn.conv2d function to build
the convolutional layers. The function takes an argument the filter matrix defined
as weights and computes the convolution between the input and the filter matrix.
We also use biases to give us a high degree of freedom. After the two convolution
layers, we flatten the output and pass it to the fully connected layers, shown as
follows:

def model(self,x):
 # Build Architecture
 keep_prob = 0.7
 # Layer 1: Convolutional. Filter 5x5 num_filters = 6
Input_depth =1
 conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 1, 6),
mean \
 = self.mu, stddev = self.sigma))
 conv1_b = tf.Variable(tf.zeros(6))
 conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1],
padding='VALID') + conv1_b
 conv1 = tf.nn.relu(conv1)

 # Max Pool 1
 self.conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1],\
 strides=[1, 2, 2, 1], padding='VALID')

 # Layer 2: Convolutional. Filter 5x5 num_filters = 16
Input_depth =6
 conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16),
\
 mean = self.mu, stddev = self.sigma))
 conv2_b = tf.Variable(tf.zeros(16))
 conv2 = tf.nn.conv2d(self.conv1, conv2_W, strides=[1, 1, 1,
1],\
 padding='VALID') + conv2_b
 conv2 = tf.nn.relu(conv2)

 # Max Pool 2.
 self.conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], \
 strides=[1, 2, 2, 1], padding='VALID')

 # Flatten.
 fc0 = flatten(self.conv2)
 print("x shape:",fc0.get_shape())

 # Layer 3: Fully Connected. Input = fc0.get_shape[-1]. Output =
120.

Deep Learning for IoT Chapter 4

[123]

 fc1_W = tf.Variable(tf.truncated_normal(shape=(256, 120), \
 mean = self.mu, stddev = self.sigma))
 fc1_b = tf.Variable(tf.zeros(120))
 fc1 = tf.matmul(fc0, fc1_W) + fc1_b
 fc1 = tf.nn.relu(fc1)

 # Dropout
 x = tf.nn.dropout(fc1, keep_prob)

 # Layer 4: Fully Connected. Input = 120. Output = 84.
 fc2_W = tf.Variable(tf.truncated_normal(shape=(120, 84), \
 mean = self.mu, stddev = self.sigma))
 fc2_b = tf.Variable(tf.zeros(84))
 fc2 = tf.matmul(x, fc2_W) + fc2_b
 fc2 = tf.nn.relu(fc2)

 # Dropout
 x = tf.nn.dropout(fc2, keep_prob)

 # Layer 6: Fully Connected. Input = 120. Output = n_classes.
 fc3_W = tf.Variable(tf.truncated_normal(shape=(84, self.n), \
 mean = self.mu, stddev = self.sigma))
 fc3_b = tf.Variable(tf.zeros(self.n))
 logits = tf.matmul(x, fc3_W) + fc3_b
 #logits = tf.nn.softmax(logits)
 return logits

The fit method performs the batch-wise training, and predict method4.
provides the output for given input, as shown in the following code:

def fit(self,X,Y,X_val,Y_val,epochs=10, batch_size=100):
 X_train, y_train = X, Y
 num_examples = len(X_train)
 l = []
 val_l = []
 max_val = 0
 for i in range(epochs):
 total = 0
 for offset in range(0, num_examples, batch_size): # Learn
Batch wise
 end = offset + batch_size
 batch_x, batch_y = X_train[offset:end],
y_train[offset:end]
 _, loss = self.sess.run([self.train,self.loss], \
 feed_dict={self.x: batch_x, self.y:
batch_y})
 total += loss
 l.append(total/num_examples)

Deep Learning for IoT Chapter 4

[124]

 accuracy_val = self.sess.run(self.accuracy, \
 feed_dict={self.x: X_val, self.y:
Y_val})
 accuracy = self.sess.run(self.accuracy,
feed_dict={self.x: X, self.y: Y})
 loss_val = self.sess.run(self.loss,
feed_dict={self.x:X_val,self.y:Y_val})
 val_l.append(loss_val)
 print("EPOCH {}/{} loss is {:.3f} training_accuracy
{:.3f} and \
 validation accuracy is {:.3f}".\
 format(i+1,epochs,total/num_examples,
accuracy, accuracy_val))
 # Saving the model with best validation accuracy
 if accuracy_val &gt; max_val:
 save_path = self.saver.save(self.sess,
"/tmp/lenet1.ckpt")
 print("Model saved in path: %s" % save_path)
 max_val = accuracy_val

 #Restore the best model
 self.saver.restore(self.sess, "/tmp/lenet1.ckpt")
 print("Restored model with highest validation accuracy")
 accuracy_val = self.sess.run(self.accuracy, feed_dict={self.x:
X_val, self.y: Y_val})
 accuracy = self.sess.run(self.accuracy, feed_dict={self.x: X,
self.y: Y})
 return l,val_l, accuracy, accuracy_val

def predict(self, X):
 return self.sess.run(self.logits,feed_dict={self.x:X})

We use the handwritten digits dataset and download it from Kaggle (https:/ /5.
www.kaggle. com/ c/ digit- recognizer/ data). The dataset is available in .csv
format. We load the .csv files and preprocess the data. The following are the
sample training diagrams:

def load_data():
 # Read the data and create train, validation and test dataset
 data = pd.read_csv('train.csv')
 # This ensures always 80% of data is training and
 # rest Validation unlike using np.random
 train = data.sample(frac=0.8, random_state=255)
 val = data.drop(train.index)
 test = pd.read_csv('test.csv')
 return train, val, test

https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data
https://www.kaggle.com/c/digit-recognizer/data

Deep Learning for IoT Chapter 4

[125]

def create_data(df):
 labels = df.loc[:]['label']
 y_one_hot = pd.get_dummies(labels).astype(np.uint8)
 y = y_one_hot.values # One Hot encode the labels
 x = df.iloc[:,1:].values
 x = x.astype(np.float)
 # Normalize data
 x = np.multiply(x, 1.0 / 255.0)
 x = x.reshape(-1, 28, 28, 1) # return each images as 96 x 96 x
1
 return x,y

train, val, test = load_data()
X_train, y_train = create_data(train)
X_val, y_val = create_data(val)
X_test = (test.iloc[:,:].values).astype(np.float)
X_test = np.multiply(X_test, 1.0 / 255.0)
X_test = X_test.reshape(-1, 28, 28, 1) # return each images as 96 x
96 x 1

Plot a subset of training data
x_train_subset = X_train[:12]

visualize subset of training data
fig = plt.figure(figsize=(20,2))
for i in range(0, len(x_train_subset)):
 ax = fig.add_subplot(1, 12, i+1)
 ax.imshow(x_train_subset[i].reshape(28,28), cmap='gray')
fig.suptitle('Subset of Original Training Images', fontsize=20)
plt.show()

Here we will be training the model:

n_train = len(X_train)
Number of validation examples
n_validation = len(X_val)

Number of testing examples.
n_test = len(X_test)

What's the shape of an handwritten digits?

Deep Learning for IoT Chapter 4

[126]

image_shape = X_train.shape[1:-1]

How many unique classes/labels there are in the dataset.
n_classes = y_train.shape[-1]
print("Number of training examples =", n_train)
print("Number of Validation examples =", n_validation)
print("Number of testing examples =", n_test)
print("Image data shape =", image_shape)
print("Number of classes =", n_classes)

The result
&gt;&gt;&gt; Number of training examples = 33600
&gt;&gt;&gt; Number of Validation examples = 8400
&gt;&gt;&gt; Number of testing examples = 28000
&gt;&gt;&gt; Image data shape = (28, 28)
&gt;&gt;&gt; Number of classes = 10

Define the data values
d = image_shape[0]
n = n_classes
from sklearn.utils import shuffle
X_train, y_train = shuffle(X_train,y_train)

We create the LeNet object and train it on the training data. The obtain is6.
99.658% on the training dataset and 98.607% on the validation dataset:

Create the Model
my_model = my_LeNet(d, n)

Train model here.
loss, val_loss, train_acc, val_acc = my_model.fit(X_train, y_train,
\
 X_val, y_val, epochs=50)

Impressive! You can predict the output for the test dataset and make a submission at
Kaggle.

Recurrent neural networks
The models that we have studied till now respond only present input. You present them an
input, and based on what they have learned, they give you a corresponding output. But this
is not the way we humans work. When you are reading a sentence, you do not interpret
each word individually, you take the previous words into account to conclude its semantic
meaning.

Deep Learning for IoT Chapter 4

[127]

RNNs are able to address this issue. They use the feedback loops, which preserves the
information. The feedback loop allows the information to be passed from the previous steps
to the present. The following diagram shows the basic architecture of an RNN and how the
feedback allows the passing of information from one step of the network to the next
(Unroll):

Recurrent neural network

In the preceding diagram, X represents the inputs. It's connected to the neurons in the
hidden layer by weights Whx, the output of the hidden layer, h, is fed back to the hidden
layer via weights Whh, and also contributes to the output, O, via weights Wyh. We can write
the mathematical relationships as the following:

Deep Learning for IoT Chapter 4

[128]

Where g is the activation function, bh and by are the biases of hidden and output neurons,
respectively. In the a preceding relation all X, h, and O are vectors; Whx, Whh, and Wyh are
matrices. The dimensions of the input X and the output O depends upon the dataset you
are working on, and the number of units in hidden layer h are decided by you; you will
find many papers where researchers have used 128 number of hidden units. The preceding
architecture shows only one hidden layer, but we can have as many hidden layers as we
want. RNNs have been applied in the field of natural language processing, they have also
been applied to analyze the time series data, like stock prices.

RNNs learn via an algorithm called as backpropagation through time (BPTT), it's a
modification of backpropagation algorithm that takes into account the time series nature of
data. Here, the loss is defined as the sum of all the loss functions at times t=1 to t=T
(number of time steps to be unrolled), for example:

Where L(t) is the loss at time t, we apply the chain rule of differentiation like before, and
derive the weight updates for weights Whx, Whh, and Wyh.

We are not deriving the expression for weight updates in this book, because
we will not be coding it. TensorFlow provides an implementation for RNN
and BPTT. But for the readers interested in going into the mathematical
details, following are some references:

On the difficulty of training Recurrent Neural Networks, Razvan
Pascanu, Tomas Mikolov, and Yoshua Bengio (https:/ /arxiv.
org/ pdf/ 1211. 5063. pdf)
Learning Long-Term Dependencies with Gradient Descent is Difficult,
Yoshua Bengio, Patrice Simard, and Paolo Frasconi
(www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf)
Also, it will be incomplete not to mention Colah's blog (http:/ /
colah. github. io/ posts/ 2015- 08-Understanding- LSTMs/) and
Andrej Karpathy's blog (http:/ /karpathy. github. io/ 2015/ 05/
21/ rnn- effectiveness/) for an excellent explanation of RNNs and
some of their cool applications

https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/1211.5063.pdf
http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Deep Learning for IoT Chapter 4

[129]

We present the RNN with one input each timestep and predict the corresponding output.
BPTT works by unrolling all input timesteps. The errors are calculated and accumulated for
each timestep, later the network is rolled back to update the weights. One of the
disadvantages of BPTT is that when the number of time steps increases, the computation
also increases. This makes the overall model computationally expensive. Moreover, due to
multiple gradient multiplications, the network is prone to the vanishing gradient problem.

To solve this issue, a modified version of BPTT, the truncated-BPTT is often used. In the
truncated-BPTT, the data is processed one timestep at a time and the BPTT weight update is
performed periodically for a fixed number of time steps.

We can enumerate the steps of the truncated-BPTT algorithm as follows:

Present the sequence of K1 time steps of input and output pairs to the network1.
Calculate and accumulate the errors across K2 time steps by unrolling the2.
network
Update the weights by rolling up the network3.

The performance of the algorithm depends on two hyperparameters K1 and K2. The number
of forwarding pass timesteps between updates is represented by K1, it affects how fast or
slow the training will be training and the frequency of the weight updates. K2 on the other
hand, represents the number of timesteps that apply to BPTT, it should be large enough to
capture the temporal structure of the input data.

Deep Learning for IoT Chapter 4

[130]

Long short-term memory
Hochreiter and Schmidhuber in 1997 proposed a modified RNN model, called the long
short-term memory (LSTM) as a solution to overcome the vanishing gradient problem. The
hidden layer in the RNNs is replaced by an LSTM cell.
The LSTM cell consists of three gates: forget gate, input gate, and the output gate. These
gates control the amount of long-term memory and the short-term memory generated and
retained by the cell. The gates all have the sigmoid function, which squashes the input
between 0 and 1. Following, we see how the outputs from various gates are calculated, in
case the expressions seem daunting to you, do not worry, we will be using the TensorFlow
tf.contrib.rnn.BasicLSTMCell and tf.contrib.rnn.static_rnn to implement the
LSTM cell, shown in the following diagram:

The basic LSTM cell, x is the input to the cell, h the short-term memory and c the long-term memory. The subscript refers to the time

At each time step, t, the LSTM cell takes three inputs: the input xt, the short-term memory
ht-1, and the long-term memory ct-1, and outputs the long-term memory ct at and short-term
memory ht. The subscript to x, h, and c refer to the timestep.

Deep Learning for IoT Chapter 4

[131]

The Forget Gate f(.) controls the amount of short-term memory, h, to be remembered for
further flow in the present time step. Mathematically we can represent Forget Gate f(.) as:

Where σ represents the sigmoid activation function, Wfx and Wfh are the weights controlling
the influence of input xt, short-term memory ht-1, and bf the bias of the forget gate.

The Input Gate i(.) controls the amount of input and working memory influencing the
output of the cell. We can express it as follows:

The Output Gate o(.) controls the amount of information that's used for updating the short-
term memory, and given by the following:

Beside these three gates, the LSTM cell also computes the candidate hidden state , which
along with the input and forget gate, is used to compute the amount of long term memory
ct:

The circle represents the element wise multiplication. The new value of the short-term
memory is then computed as the following:

Let's now see how we can implement LSTM in TensorFlow in the following steps:

We are using the following modules:1.

import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np

Deep Learning for IoT Chapter 4

[132]

We define a class LSTM where we construct the graph and define the LSTM layer2.
with the help of TensorFlow contrib. To take care of memory, we first clear the
default graph stack and reset the global default graph using
tf.reset_default_graph(). The input goes directly to the LSTM layer with
num_units number of hidden units. It's followed by a fully connected output
layer with the out_weights weights and out_bias bias. Create the
placeholders for input self.x and self.y label. The input is reshaped and fed
to the LSTM cell. To create the LSTM layer, we first define the LSTM cell with
num_units hidden units and forget bias set to 1.0. This adds the biases to the
forget gate in order to reduce the scale of forgetting in the beginning of the
training. Reshape the output from the LSTM layer and feed it to the fully
connected layer, shown as follows:

 class LSTM:
 def __init__(self, num_units, n_classes, n_input,\
 time_steps, learning_rate=0.001,):
 tf.reset_default_graph()
 self.steps = time_steps
 self.n = n_input
 # weights and biases of appropriate shape
 out_weights = tf.Variable(tf.random_normal([num_units,
n_classes]))
 out_bias = tf.Variable(tf.random_normal([n_classes]))
 # defining placeholders
 # input placeholder
 self.x = tf.placeholder("float", [None, self.steps,
self.n])
 # label placeholder
 self.y = tf.placeholder("float", [None, n_classes])
 # processing the input tensor from
[batch_size,steps,self.n] to
 # "steps" number of [batch_size,self.n] tensors
 input = tf.unstack(self.x, self.steps, 1)

 # defining the network
 lstm_layer = rnn.BasicLSTMCell(num_units, forget_bias=1)
 outputs, _ = rnn.static_rnn(lstm_layer, input,
dtype="float32")
 # converting last output of dimension
[batch_size,num_units] to
 # [batch_size,n_classes] by out_weight multiplication
 self.prediction = tf.matmul(outputs[-1], out_weights) +
out_bias

 # loss_function
 self.loss =

Deep Learning for IoT Chapter 4

[133]

tf.reduce_mean(tf.squared_difference(self.prediction, self.y))
 # optimization
 self.opt =
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.l
oss)

 # model evaluation
 correct_prediction = tf.equal(tf.argmax(self.prediction,
1), tf.argmax(self.y, 1))
 self._accuracy = tf.reduce_mean(tf.cast(correct_prediction,
tf.float32))

 init = tf.global_variables_initializer()
 gpu_options = tf.GPUOptions(allow_growth=True)

 self.sess =
tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
 self.sess.run(init)

We create the methods to train and predict, as shown in the following code:3.

def train(self, X, Y, epochs=100,batch_size=128):
 iter = 1
 #print(X.shape)
 X = X.reshape((len(X),self.steps,self.n))
 while iter &lt; epochs:
 for i in range(int(len(X)/batch_size)):
 batch_x, batch_y = X[i:i+batch_size,:],
Y[i:i+batch_size,:]
 #print(batch_x.shape)
 #batch_x = batch_x.reshape((batch_size, self.steps,
self.n))
 #print(batch_x.shape)
 self.sess.run(self.opt, feed_dict={self.x: batch_x,
self.y: batch_y})
 if iter % 10 == 0:
 acc = self.sess.run(self._accuracy,
feed_dict={self.x: X, self.y: Y})
 los = self.sess.run(self.loss, feed_dict={self.x:
X, self.y: Y})
 print("For iter ", iter)
 print("Accuracy ", acc)
 print("Loss ", los)
 print("__________________")
 iter = iter + 1

def predict(self,X):
 # predicting the output

Deep Learning for IoT Chapter 4

[134]

 test_data = X.reshape((-1, self.steps, self.n))
 out = self.sess.run(self.prediction,
feed_dict={self.x:test_data})
 return out

In the coming chapters, we will be using the RNN for handling time series production and
text processing.

Gated recurrent unit
Gated recurrent unit (GRU) is another modification of RNN. It has a simplified
architecture compared to LSTM and overcomes the vanishing gradient problem. It takes
only two inputs, the input xt at time t and memory ht-1 from time t-1. There are only two
gates, Update Gate and Reset Gate, shown in the following diagram:

The architecture of a basic GRU cell

Deep Learning for IoT Chapter 4

[135]

The update gate controls how much previous memory to keep, and the reset gate
determines how to combine the new input with previous memory. We can define the
complete GRU cell by the following four equations:

Both GRU and LSTM give a comparable performance, but GRU has fewer training
parameters.

Autoencoders
The models we have learned up to now were learning using supervised learning. In this
section, we will learn about autoencoders. They are feedforward, non-recurrent neural
network, and learn through unsupervised learning. They are the latest buzz, along with
generative adversarial networks, and we can find applications in image reconstruction,
clustering, machine translation, and much more. They were initially proposed in the 1980s
by Geoffrey E. Hinton and the PDP group (http:/ /www. cs. toronto. edu/ ~fritz/ absps/
clp.pdf).

The autoencoder basically consists of two cascaded neural networks—the first network acts
as an encoder; it takes the input x and encodes it using a transformation h to encoded signal
y, shown in the following equation:

The second neural network uses the encoded signal y as its input and performs another
transformation f to get a reconstructed signal r, shown as follows:

http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf
http://www.cs.toronto.edu/~fritz/absps/clp.pdf

Deep Learning for IoT Chapter 4

[136]

The loss function is the MSE with error e defined as the difference between the original
input x and the reconstructed signal r:

Basic architecture of an autoencoder

The preceding diagram shows an autoencoder with Encoder and Decoder highlighted
separately. Autoencoders may have weight sharing, that is, weights of decoder and encoder
are shared. This is done by simply making them a transpose of each other; this helps the
network learn faster as the number of training parameters is less. There are a large variety
of autoencoders for example: sparse autoencoders, denoising autoencoders, convolution
autoencoders, and variational autoencoders.

Deep Learning for IoT Chapter 4

[137]

Denoising autoencoders
A denoising autoencoder learns from a corrupted (noisy) input; we feed the encoder
network the noisy input and the reconstructed image from the decoder is compared with
the original denoised input. The idea is that this will help the network learn how to denoise
an input. The network does not just make a pixel-wise comparison, instead, in order to
denoise the image, the network is forced to learn the information of neighboring pixels as
well.

Once the autoencoder has learned the encoded features y, we can remove the decoder part
of the network and use only the encoder part to achieve dimensionality reduction. The
dimensionally reduced input can be fed to some other classification or regression model.

Variational autoencoders
Another very popular autoencoder is variational autoencoders (VAE). They are a mix of
the best of both worlds: DL and the Bayesian inference.

VAEs have an additional stochastic layer; this layer, after the encoder network, samples the
data using a Gaussian distribution, and the one after the decoder network samples the data
using Bernoulli's distribution.

VAEs can be used to generate images. VAEs allow one to set complex priors in the latent
and learn powerful latent representations. We will learn more about them in a later chapter.

Summary
In this chapter, we covered some basic and useful deep neural network models. We started
with a single neuron, saw its power and its limitations. The multilayered perceptron was
built for both regression and classification tasks. The backpropagation algorithm was
introduced. The chapter progressed to CNN, with an introduction to the convolution layers
and pooling layers. We learned about some of the successful CNN and used the first CNN
LeNet to perform handwritten digits recognition. From the feed forward MLPs and CNNs,
we moved forward to RNNs. LSTM and GRU networks were introduced. We made our
own LSTM network in TensorFlow and finally learned about autoencoders.

In the next chapter, we will start with a totally new type of AI model genetic algorithms.
Like neural networks, they too are inspired by nature. We will be using what we learned in
this chapter and the coming few chapters in the case studies we'll do in later chapters.

5
Genetic Algorithms for IoT

In the previous chapter, we looked at different deep learning-based algorithms; these
algorithms have shown their success in the fields of recognition, detection, reconstruction,
and even in the generation of vision, speech, and text data. While, at present, deep
learning (DL) is on top in terms of both application and employability, it has close
competition with evolutionary algorithms. The algorithms are inspired by the natural
process of evolution, the world's best optimizers. Yes, even we are the result of years of
genetic evolution. In this chapter, you will be introduced to the fascinating world of
evolutionary algorithms and learn about a specific type of evolutionary algorithm, genetic
algorithms, in more detail. In this chapter, you will learn about the following:

What is optimization
Different methods to solve an optimization problem
Understand the intuition behind genetic algorithms
The advantages of genetic algorithms
Understand and implement the processes of cross-over, mutation, and fitness
function selection
Use a genetic algorithm to find a lost password
Various uses of genetic algorithms in optimizing your models
The Distributed Evolutionary Algorithms in the Python genetic algorithm library

Optimization
Optimization is not a new word; we have used it earlier with respect to both machine
learning and DL algorithms, where we used the TensorFlow auto differentiator to find the
optimum model weights and biases using a form of gradient descent algorithm. In this
section, we will learn a little more about optimization, optimization problems, and different
techniques used to perform optimization.

Genetic Algorithms for IoT Chapter 5

[139]

In its most basic terms, optimization is the process of making something better. The idea is
to find the best solution, and obviously when we talk about the best solution, it means there
exists more than one solution. In optimization, we try to adjust our variable
parameters/processes/inputs so that we can find the minimum or maximum output.
Normally, the variables constitute the inputs, we have a function called
an objective function, loss function, or fitness function, and as output we expect the
cost/loss or fitness. The cost or loss should be minimized, and if we define fitness, then it
should be maximized. Here, we vary the inputs (variables) to achieve a desired (optimized)
output.

I hope you can appreciate that calling it loss/cost or fitness is just a matter
of choice, the function which calculates the cost and needs to be
minimized, if we just add a negative sign to it then we expect the
modified function to be maximized. As an example, minimizing 2 - x2 over
the interval -2 < x< 2 is the same as maximizing x2 - 2 over the same
interval.

Our daily lives are full of many such optimization tasks. What will be the best route to take
to the office? Which project should I do first? Preparing for an interview what topics to read
such that your success rate in the interview is maximized. The following diagram shows the
basic relationship between Input Variables, the Function to be optimized, and
the Output/Cost:

 Relationship between input, the function to be optimized, and the output

The aim is to minimize the cost, such that the constraints specified by the function are
satisfied by the input variables. The mathematical relationship between the cost function,
constraints, and input variables determines the complexity of the optimization problem.
One of the key issues is whether the cost function and constraints are convex or non-
convex. If the cost function and constraints are convex, we can be confident that there does
exist a feasible solution, and if we search in a sufficiently large domain, we will find one.
The following figure shows an example of a convex cost function:

Genetic Algorithms for IoT Chapter 5

[140]

 A convex cost function. The one on the left is the surface plot and the one on the right shows the contour plot of the same cost function. The darkest red point in the image
corresponds to the optimum solution point.

If, on other hand, the cost function or constraints are non-convex, the optimization problem
becomes harder and we cannot be sure that there does exist a solution, or that we can even
find one.

There are various methods to solve optimization problems in mathematics and computer
programming. Let's find out a little about each of them next.

Deterministic and analytic methods
When the objective function is smooth with a continuous second derivative, then we know
from the knowledge of calculus that at a local minimum the following are true:

The gradient of the objective function at minima x*, that is, f'(x*) = 0
The second derivative (Hessian H(x*) = ∇2f(x)) is positively definite

In such conditions, for some problems, it is possible to find the solution analytically by
determining the zeros of the gradient and verifying the positive definiteness of the Hessian
matrix at the zeros. So, in these cases, we can explore the search space iteratively for the
minima of the objective function. There are various search methods; let's see them.

Genetic Algorithms for IoT Chapter 5

[141]

Gradient descent method
We learned about gradient descent and how it works in earlier chapters, and we saw that
the search direction is the direction of the gradient descent, -∇f(x). It is also called
the Cauchy method because it was given by Cauchy, in 1847, and since then it has been
very popular. We start from an arbitrary point on the objective function surface and change
the variables (in earlier chapters, these were the weights and biases) along the direction of
the gradient. Mathematically, it is represented as follows:

Here αn is the step size (variation/learning rate) at iteration n. Gradient descent algorithms
have worked well in training DL models, but they have some severe drawbacks:

The performance of the optimizer used depends greatly on the learning rate and
other constants. If you change them even slightly, there is a big possibility
that the network may not converge. And it is because of this that sometimes
researchers call training a model an art, or alchemy.
Since these methods are based on derivatives, they do not work for discrete data.
We cannot reliably apply it when the objective function is non-convex, which is
the case in many DL networks (especially models using a non-linear activation
function). The presence of many hidden layers can result in many local minima,
and there is a strong possibility that the model gets stuck in a local minimum.
Here, you can see an example of the objective function with many local minima:

Genetic Algorithms for IoT Chapter 5

[142]

 A cost function with many local minima. The one on the left is the surface plot and the one on the right shows the contour plot of the same cost function. The dark red points in
the image correspond to minima.

There are many variants of the gradient descent method, and the most popular of them are
available in the TensorFlow optimizers, including the following:

Stochastic gradient optimizer
Adam optimizer
Adagrad optimizer
RMSProp optimizer

You can learn more about the different optimizers available in
TensorFlow from the TensorFlow documentation at https:/ /www.
tensorflow. org/ api_ guides/ python/ train.

A nice source is a blog (http:/ /ruder. io/ optimizing- gradient-
descent/ index. html#gradientdescentoptimizationalgorithms) by
Sebastian Ruder based on his arXiv paper at https:/ /arxiv. org/ abs/
1609. 04747.

https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
https://www.tensorflow.org/api_guides/python/train
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentoptimizationalgorithms
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747

Genetic Algorithms for IoT Chapter 5

[143]

Newton-Raphson method
This method is based on the second order Taylor series expansion of the objective
function, f(x), around the point x*:

Here, x* is the point about which the Taylor series is expanded, x is a point near x*, the
superscript T represents the transpose, and H is the Hessian matrix with elements given by
the following:

Taking the gradient of the Taylor series expansion and equating to 0, we get this:

Assuming the initial guess as x0, the next point xn+1 can be obtained from the previous
point xn using this:

The method uses both the first and the second partial derivatives of the objective function
to find the minima. At iteration k, it approximates the objective function by a quadratic
function around x(k) and moves toward its minima.

Since computing the Hessian matrix is computationally expensive and not normally
known, a large number of algorithms exist around approximating the Hessian; these
techniques are called quasi-Newton methods. They can be represented as follows:

Genetic Algorithms for IoT Chapter 5

[144]

αn is the step size (variation/learning rate) at iteration n, and An is the approximation to the
Hessian matrix at iteration n. We construct a sequence of approximations to the Hessian,
such that the following is true:

Two popular quasi-Newton methods are as follows:

Davidon-Fletcher-Powell algorithm
Broyden-Fletcher-Goldfarb-Shanno algorithm

When the approximation An to the Hessian is the identity matrix, the
Newton method becomes the gradient descent method.

The major disadvantage of the Newton method is that it is not scalable to problems with a
high-dimensional input feature space.

Natural optimization methods
Natural optimization methods are inspired by some natural processes, that is, a process,
existing in nature, that is remarkably successful at optimizing some natural phenomena.
These algorithms do not require taking objective function derivatives, and thus can be
employed even for discrete variables and non-continuous objective functions.

Simulated annealing
Simulated annealing is a stochastic method. It is inspired by the physical process of
annealing, in which a solid is first heated to a high enough temperature so that it melts, and
then the temperature is decreased slowly; this allows the particles of the solid to arrange
themselves in the lowest possible energy state and thus produce a highly structured lattice.

Genetic Algorithms for IoT Chapter 5

[145]

We start with some random values assigned to each variable; this represents the initial
state. At each step, we pick a variable (or group of variables) at random and then select a
random value. If, upon the assignment of that value to the variable, there is an
improvement in the objective function, the algorithm accepts the assignment, there is a new
current assignment, and the state of the system changes. Otherwise, it accepts the
assignment with some probability P, which depends on the temperature T and the
difference between the values of the objective function in the current state and the new
state. If the change is not accepted, the current state remains unchanged. The
probability P that we will change from state i to state j is as follows:

Here, T represents a variable analogous to temperature in the physical system. As the
temperature approaches 0, the simulated annealing algorithm reduces to the gradient
descent algorithm.

Particle Swarm Optimization
Particle Swarm Optimization (PSO) was developed by Edward and Kennedy in 1995. It is
based on the social behavior of animals, such as a flock of birds. You must have noticed in
the sky, birds fly in a V shape. Those who have studied bird behavior tell us that birds fly
like this when in search of food or a better location, with the one leading being nearest to
the desired source.

Now, when they fly, the leading bird does not remain the same; instead, it changes as they
move. The bird in the flock that sees the food sends a sound signal, and all other birds then
collect around that bird in a V fashion. This is a continuous repetitive process, and has
served birds well for millions of years.

PSO takes inspiration from this bird behavior and uses it to solve optimization problems. In
PSO, every single solution is a bird (called a particle) in the search space. Each particle has
a fitness value, which is evaluated by the fitness function to be optimized; they also have
velocities, which direct the flying of the particles. The particles fly through the problem
search space by following the current optimum particle.

The particles are moved around in the search space guided by two best fitness values, one
their own best known position in the search space (pbest: particle best), the other the entire
swarm's best known fitness value (gbest: global best). As improved positions are
discovered, they are used to guide the movements of the particles of the swarm. This
process is repeated and it is hoped that an optimum solution will eventually be discovered.

Genetic Algorithms for IoT Chapter 5

[146]

Genetic algorithms
When we look around the world and see different species, a question naturally arises: why
are these sets of features stable and not others; why should the majority of animals have
two legs or four legs, and why not three? Is it possible that the world that we see today is
the result of many iterations in a grand optimization algorithm?

Let's imagine there is a cost function that measures survivability, which should be
maximized. The characteristics of the organisms of the natural world fit into a topological
landscape. The level of survivability (measured through adaptation) represents the
elevation of the landscape. The highest points correspond to the most-fit conditions, and
the constraints are provided by the environment and through interaction between different
species.

Then, the process of evolution can be thought of as a grand optimization algorithm that
selects which characteristics produce a species of organism fit for survival. The peaks of the
landscape are populated by living organisms. Some peaks are broad and hold a wide range
of characteristics encompassing many organisms, while other peaks are very narrow and
allow only very specific characteristics.

We can extend this analogy to include valleys between the peaks separating different
species. And, we can think that humankind might be at the global maximum peak of this
landscape, since we have intelligence and the ability to alter the environment and ensure
better survivability, even in extreme environments.

Thus, the world with different life forms can be thought of as a big search space, with
different species as the result of many iterations of a grand optimization algorithm. This
idea forms the basis of genetic algorithms.

Since the main theme of this chapter is genetic algorithms, let's dive into them.

Introduction to genetic algorithms
According to the work of Charles Darwin, the famous biologist, the animal and plant
species that we see today have emerged due to millions of years of evolution. The process
of evolution is guided by the principle of survival of the fittest, selecting the organisms that
have a better chance of survivability. The plants and animals that we see today are the
results of millions of years of adaptation to the constraints imposed by the environment. At
any given time, a large number of varied organisms may coexist and compete for the same
environmental resources.

Genetic Algorithms for IoT Chapter 5

[147]

The organisms that are most capable of both acquiring the resources and procreation are
the ones whose descendants will have more chances of survival. Organisms that are less
capable, on the other hand, will tend to have few or no descendants. Over time, the entire
population will evolve, containing on average organisms that are more fit than the previous
generations.

What makes this possible? What decides that a person will be tall, and a plant will have a
particular shape of leaf? All this is encoded like a set of rules in the program on the
blueprint of life itself—genes. Every living organism on Earth has this set of rules and they
describe how that organism is designed (created). Genes reside in chromosomes. Each
being has a different number of chromosomes and they contain thousands of genes. For
example, we homo sapiens have 46 chromosomes and these chromosomes contain about
20,000 genes. Each gene represents a specific rule: a person will have blue eyes, will have
brown hair, will be a female, and so on. These genes pass from parents to offspring through
the process of reproduction.

There are two ways by which genes pass from parents to offspring:

Asexual reproduction: In this, the child is the duplicate copy of the parent. It
happens during a biological process called mitosis; lower organisms such as
bacteria and fungi reproduce via mitosis. Only one parent is needed in this:

 The process of mitosis: the chromosomes of the parent first double, and the cell divides into two

Genetic Algorithms for IoT Chapter 5

[148]

Sexual reproduction: This happens via a biological process called meiosis. In
this, two parents are involved initially; each parent cell undergoes a process of
crossover, where a part of one chromosome gets interchanged with a part of
another chromosome. This modifies the genetic sequence; the cells then divide
into two, but with only half the number of chromosomes each. The cells
containing half the number of chromosomes (haploid) from the two parents then
meet together to form a zygote, which later through mitosis and cell
differentiation results in the production of an offspring similar to, yet different
from, the parents:

 The process of meiosis: parents' cell chromosomes undergo crossover, a part of one chromosome overlaps and changes position with part of another chromosome. The cells then
divide into two, with each divided cell containing only one chromosome (haploids). The two haploids from two parents then meet together to complete the total number of

chromosomes.

Another interesting thing that happens in the natural process of selection and evolution is
the phenomenon of mutation. Here, the genes undergo a sudden change and generate a
completely new gene, which was not present in either parent. This phenomenon generates
further diversity.

Sexual reproduction through generations is supposed to bring about evolution and ensure
that organisms with the fittest characteristics have more descendants.

Genetic Algorithms for IoT Chapter 5

[149]

The genetic algorithm
Let's now learn how can we implement the genetic algorithm. This method was developed
by John Holland in 1975. It was shown that it can be used to solve an optimization problem
by his student Goldberg, who used genetic algorithms to control gas pipeline transmission.
Since then, genetic algorithms have remained popular, and have inspired various other
evolutionary programs.

To apply genetic algorithms to solving optimization problems using the computer, as the
first step we will need to encode the problem variables into genes. The genes can be a
string of real numbers or a binary bit string (series of 0s and 1's). This represents a potential
solution (individual) and many such solutions together form the population at time t. For
instance, consider a problem where we need to find two variables, a and b, such that the
two lie in the range (0, 255). For binary gene representation, these two variables can be
represented by a 16-bit chromosome, with the higher 8 bits representing gene a and
the lower 8 bits for b. The encoding will need to be later decoded to get the real values of
the variables a and b.

The second important requirement for genetic algorithms is defining a proper fitness
function, which calculates the fitness score of any potential solution (in the preceding
example, it should calculate the fitness value of the encoded chromosome). This is the
function that we want to optimize by finding the optimum set of parameters of the system
or the problem at hand. The fitness function is problem-dependent. For example, in the
natural process of evolution, the fitness function represents the organism's ability to operate
and to survive in its environment.

Once we have decided the encoding of the problem solution in genes and decided upon the
fitness function, the genetic algorithm will then follow these steps:

Population Initialization: We need to create an initial population, where all1.
chromosomes are (usually) randomly generated to yield an entire range of
possible solutions (the search space). Occasionally, the solutions may be seeded
in areas where optimal solutions are likely to be found. The population size
depends on the nature of the problem, but typically contains several hundred
potential solutions encoded into chromosomes.
Parent Selection: For each successive generation, based on the fitness function2.
(or randomly), we next select a certain proportion of the existing population. This
selected proportion of the population will then breed to form a new generation.
This is done by the method of tournament selection: a fixed number of
individuals are randomly selected (tournament size) and the individual with the
best fitness score is chosen as one of the parents.

Genetic Algorithms for IoT Chapter 5

[150]

Reproduction: We next generate the successive generation from those selected in3.
step 2, through genetic operators such as crossover and mutation. These genetic
operators ultimately result in a child (next generation) population of
chromosomes that is different from the initial generation but at the same time
shares many of the characteristics of its parents.
Evaluation: The offspring generated are then evaluated using the fitness4.
function, and they replace the least-fit individuals in the population to keep the
population size unchanged.
Termination: During the Evaluation step, if any of the offspring achieve the5.
objective fitness score or the maximum number of generations is reached, then
the genetic algorithm process is terminated. Otherwise, steps 2 to 4 are repeated
to produce the next generation.

Two operators that are important for the success of genetic algorithms are crossover and
mutation.

Crossover
To perform the crossover operation, we select a random position on the chromosome of two
parents, then the genetic information is swapped between them about this point, with a
probability Px. This results in two new offspring. When the crossover takes place over a
random point, it is called a one-point crossover (or Single Point Crossover):

One-point crossover: a random point is selected in the parent's chromosomes and the corresponding gene bits are swapped

Genetic Algorithms for IoT Chapter 5

[151]

We can also have more than one point where parents' genes are swapped; this is called
a Multi-Point Crossover:

 Multi-point crossover: there is more than one point where the genes of the parents are swapped. This is an example of a double-point crossover.

There exist a lot of crossovers people have tried, for example, uniform crossover, order-
based crossover, and cyclic crossover.

Mutation
While the crossover operation ensures variety and can help speed up the search, it does not
generate new solutions. This is the work of the mutation operator, which helps in
maintaining and introducing diversity in the population. The mutation operator is applied
to certain genes (bits) of the child chromosomes with a probability, Pm.

We can have a bit flip mutation; if we consider our earlier example, then in the 16-bit
chromosome, the bit flip mutation will cause a single bit to change its state (from 0 to 1 or
from 1 to 0).

Genetic Algorithms for IoT Chapter 5

[152]

There is a possibility that we set the gene to a random value for all possible values. This is
called random resetting.

The probability Pm plays an important role; if we assign a very low value to Pm it can lead to
genetic drift, but on the other hand, a high Pm may result in a loss of good solutions. We
choose a mutation probability such that the algorithm learns to sacrifice short-term fitness
in order to gain longer-term fitness.

Pros and cons
Genetic algorithms sound cool, right! Now, before we try and build a code around them,
let's point out certain advantages and disadvantages of genetic algorithms.

Advantages
Genetic algorithms offer some intriguing advantages and can produce results when the
tradition gradient-based approaches fail:

They can be used to optimize either continuous or discrete variables.
Unlike gradient descent, we do not require derivative information, which also
means that there is no need for the fitness function to be continuous and
differentiable.
It can simultaneously search from a wide sampling of the cost surface.
We can deal with a large number of variables without a significant increase in
computation time.
The generation of the population and calculating their fitness values can be
performed in parallel, and hence genetic algorithms are well suited for parallel
computers.
They can work even when the topological surface is extremely complex because
crossover and mutation operators help them in jumping out of a local minimum.
They can provide more than one optimum solution.
We can use them with numerically generated data, experimental data, or even
analytical functions. They specifically work well for large-scale optimization
problems.

Genetic Algorithms for IoT Chapter 5

[153]

Disadvantages
Despite the previously mentioned advantages, we still do not find genetic algorithms to be
a ubiquitous solution to all optimization problems. This is for the following reasons:

If the optimization function is a well-behaved convex function, then gradient-
based methods will give a faster convergence
The large population of solutions that helps genetic algorithms cover the search
space more extensively also results in slow convergence
Designing a fitness function can be a daunting task

Coding genetic algorithms using Distributed
Evolutionary Algorithms in Python
Now that we understand how genetic algorithms work, let's try solving some problems
with them. They have been used to solve NP-hard problems such as the traveling salesman
problem. To make the task of generating a population, performing the crossover, and
performing mutation operations easy, we will make use of Distributed Evolutionary
Algorithms in Python (DEAP). It supports multiprocessing and we can use it for other
evolutionary algorithms as well. You can download DEAP directly from PyPi using this:

pip install deap

It is compatible with Python 3.

To learn more about DEAP, you can refer to its GitHub repository (https:/ /github. com/
DEAP/deap) and its user's guide (http:/ / deap.readthedocs. io/en/ master/).

https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
https://github.com/DEAP/deap
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/
http://deap.readthedocs.io/en/master/

Genetic Algorithms for IoT Chapter 5

[154]

Guess the word
In this program, we use genetic algorithms to guess a word. The genetic algorithm will
know the number of letters in the word and will guess those letters until it finds the right
answer. We decide to represent the genes as a single alphanumeric character; strings of
these characters thus constitute a chromosome. And our fitness function is the sum of the
characters matching in the individual and the right word:

As the first step, we import the modules we will need. We1.
use the string module and the random module to generate random characters
from (a—z, A—Z, and 0—9). From the DEAP module, we use creator, base,
and tools:

import string
import random

from deap import base, creator, tools

In DEAP, we start with creating a class that inherits from2.
the deep.base module. We need to tell it whether we are going to have a
minimization or maximization of the function; this is done using the weights
parameter. A value of +1 means we are maximizing (for minimizing, we give the
value -1.0). The following code line will create a class, FitnessMax, that will
maximize the function:

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

We also define an Individual class, which will inherit the class list, and tell the3.
DEAP creator module to assign FitnessMax as its fitness attribute:

creator.create("Individual", list, fitness=creator.FitnessMax)

Now, with the Individual class defined, we use the toolbox of DEAP defined4.
in the base module. We will use it to create a population and define our gene
pool. All the objects that we will need from now onward—an individual, the
population, the functions, the operators, and the arguments—are stored in a
container called toolbox. We can add or remove content to/from
the toolbox container using the register() and unregister() methods:

toolbox = base.Toolbox()
Gene Pool
toolbox.register("attr_string", random.choice, \
 string.ascii_letters + string.digits)

Genetic Algorithms for IoT Chapter 5

[155]

Now that we have defined how the gene pool will be created, we create an5.
individual and then a population by repeatedly using the Individual class. We
will pass the class to the toolbox responsible for creating a N parameter , telling it
how many genes to produce:

#Number of characters in word
The word to be guessed
word = list('hello')
N = len(word)
Initialize population
toolbox.register("individual", tools.initRepeat, \
 creator.Individual, toolbox.attr_string, N)
toolbox.register("population",tools.initRepeat, list,\
 toolbox.individual)

We define the fitness function. Note the comma in the return statement. This is6.
because the fitness function in DEAP is returned as a tuple to allow multi-
objective fitness functions:

def evalWord(individual, word):
 return sum(individual[i] == word[i] for i in\
 range(len(individual))),

Add the fitness function to the container. Also, add the crossover operator,7.
mutation operator, and parent selector operator. You can see that, for this, we are
using the register function. In the first statement, we register the fitness function
that we have defined, along with the additional arguments it will take. The next
statement registers the crossover operation; it specifies that here we are using a
two-point crossover (cxTwoPoint). Next, we register the mutation operator; we
choose the mutShuffleIndexes option, which shuffles the attributes of the
input individual with a probability indpb=0.05. And finally, we define how the
parents are selected; here, we have defined the method of selection as
tournament selection with a tournament size of 3:

toolbox.register("evaluate", evalWord, word)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)

Genetic Algorithms for IoT Chapter 5

[156]

Now we have all the ingredients, so we will write down the code of the genetic8.
algorithm, which will perform the steps we mentioned earlier in a repetitive
manner:

def main():
 random.seed(64)
 # create an initial population of 300 individuals
 pop = toolbox.population(n=300)
 # CXPB is the crossover probability
 # MUTPB is the probability for mutating an individual
 CXPB, MUTPB = 0.5, 0.2

 print("Start of evolution")

 # Evaluate the entire population
 fitnesses = list(map(toolbox.evaluate, pop))
 for ind, fit in zip(pop, fitnesses):
 ind.fitness.values = fit

 print(" Evaluated %i individuals" % len(pop))

 # Extracting all the fitnesses of individuals in a list
 fits = [ind.fitness.values[0] for ind in pop]
 # Variable keeping track of the number of generations
 g = 0

 # Begin the evolution
 while max(fits) < 5 and g < 1000:
 # A new generation
 g += 1
 print("-- Generation %i --" % g)

 # Select the next generation individuals
 offspring = toolbox.select(pop, len(pop))
 # Clone the selected individuals
 offspring = list(map(toolbox.clone, offspring))

 # Apply crossover and mutation on the offspring
 for child1, child2 in zip(offspring[::2], offspring[1::2]):
 # cross two individuals with probability CXPB
 if random.random() < CXPB:
 toolbox.mate(child1, child2)
 # fitness values of the children
 # must be recalculated later
 del child1.fitness.values
 del child2.fitness.values
 for mutant in offspring:
 # mutate an individual with probability MUTPB

Genetic Algorithms for IoT Chapter 5

[157]

 if random.random() < MUTPB:
 toolbox.mutate(mutant)
 del mutant.fitness.values

 # Evaluate the individuals with an invalid fitness
 invalid_ind = [ind for ind in offspring if not
ind.fitness.valid]
 fitnesses = map(toolbox.evaluate, invalid_ind)
 for ind, fit in zip(invalid_ind, fitnesses):
 ind.fitness.values = fit

 print(" Evaluated %i individuals" % len(invalid_ind))

 # The population is entirely replaced by the offspring
 pop[:] = offspring

 # Gather all the fitnesses in one list and print the stats
 fits = [ind.fitness.values[0] for ind in pop]

 length = len(pop)
 mean = sum(fits) / length
 sum2 = sum(x*x for x in fits)
 std = abs(sum2 / length - mean**2)**0.5

 print(" Min %s" % min(fits))
 print(" Max %s" % max(fits))
 print(" Avg %s" % mean)
 print(" Std %s" % std)

 print("-- End of (successful) evolution --")

 best_ind = tools.selBest(pop, 1)[0]
 print("Best individual is %s, %s" % (''.join(best_ind),\
 best_ind.fitness.values))

Genetic Algorithms for IoT Chapter 5

[158]

Here, you can see the result of this genetic algorithm. In seven generations, we9.
reached the right word:

Genetic Algorithms for IoT Chapter 5

[159]

DEAP has options to select various crossover tools, different mutation
operators, and even how the tournament selection takes place. The
complete list of all evolutionary tools offered by DEAP and their
description is available at http:/ / deap. readthedocs. io/ en/master/ api/
tools. html.

Genetic algorithm for CNN architecture
In Chapter 4, Deep Learning for IoT, we learned about different DL models, such as MLP,
CNN, RNN, and so on. Now, we will see how we can use genetic algorithms with these DL
models. Genetic algorithms can be used to find the optimized weights and biases, and
people have tried them. But the most common use of genetic algorithms in DL models has
been to find optimum hyperparameters.

Here, we use genetic algorithms to find the optimum CNN architecture. The solution here
is based on the paper Genetic CNN by Lingxi Xie and Alan Yuille (https:/ /arxiv. org/ abs/
1703.01513). The first step will be finding the right representation of the problem. The
authors presented a binary string representation for the network architecture. The family of
the network is encoded into fixed-length binary strings. The network is composed
of S stages where the s-th stage s= 1, 2,....S, contains Ks nodes denoted by ,
here ks = 1, 2,..., Ks. The nodes in each stage are ordered and for proper representation they
allow only connections from a lower-numbered node to a higher-numbered node. Each
node represents a convolution layer operation, followed by batch normalization and ReLU
activation. Each bit of the bit string represents the presence or absence of the connection
between one convolution layer (node) and the other, the ordering of bits being as
follows: the first bit represents the connection between (vs,1, vs,2), the following two bits
represent the connection between (vs,1, vs,3) and (vs,2, vs,3), the following three bits will
be (vs,1, vs,3), (vs,1, vs,4), and (vs,2, vs,4), and so on.

To understand it better, let's consider a two-stage network (each stage will have the same
number of filters and filter size). Stage S1 let's say consists of four nodes (that is Ks = 4), thus
the total number of bits required to encode it is (4×3×½ =) 6. The number of convolutional
filters in stage 1 is 32; also we ensure that convolutional operation does not change the
spatial dimensions of the image (for example, padding is the same). The following diagram
shows the respective bit string encoded and corresponding convolution layer connections.
The connections in red are default connections and are not encoded in the bit string. The
first bit encodes the connection between (a1, a2), the next two bits encode the connection
between (a1, a3) and (a2, a3), and the last three bits encode the connection
between (a1, a4), (a2, a4), and (a3, a4):

http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
http://deap.readthedocs.io/en/master/api/tools.html#deap.tools.mutFlipBit
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513
https://arxiv.org/abs/1703.01513

Genetic Algorithms for IoT Chapter 5

[160]

Bit string encoded and corresponding convolution layer connections

Stage 1 takes a 32 × 32 × 3 input; all the convolution nodes in this stage have 32 filters. The
red connections are default connections not encoded in the bit string. The green connection
represents the connections according to the encoded bit string 1-00-111. The output of
stage 1 goes to the pooling layer and reduces by half in the spatial dimension.

Stage 2 has five nodes, and thus will need (5×4×½ =) 10 bits. It will take the input from
stage 1 with dimensions 16 × 16 × 32. Now, if we take the number of convolution filters in
stage 2 as 64, then after the pooling the output would be 8 × 8 × 64.

The code presented here is taken from https:/ /github. com/aqibsaeed/ Genetic- CNN. Since
we need to represent a graph structure, the network is built using directed acyclic
graph (DAG). To represent DAG, we define a class, DAG, in which we define methods for
adding a new node, deleting an existing node, adding an edge (connection) between two
nodes, and deleting an edge between two nodes. Besides these, the methods are defined to
find a node predecessor, the nodes it is connected to, and a list of leaves of the graph. The
complete code is in dag.py, which you can access from the GitHub link.

The main code is given in the Genetic_CNN.ipynb Jupyter Notebook. We use the DEAP
library to run the genetic algorithm, and TensorFlow to construct a CNN from the graph
constructed by the genetic algorithm. The fitness function is the accuracy. The code is built
to find the CNN that will give the highest accuracy on the MNIST dataset (the handwritten
digits, which we used in Chapter 4, Deep Learning for IoT; here, we access them directly
from the TensorFlow library):

The first step is to import the modules. Here, we will need DEAP and1.
TensorFlow, and we also will import the DAG class we created in dag.py and
the standard Numpy and Random modules:

import random
import numpy as np

https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN
https://github.com/aqibsaeed/Genetic-CNN

Genetic Algorithms for IoT Chapter 5

[161]

from deap import base, creator, tools, algorithms
from scipy.stats import bernoulli
from dag import DAG, DAGValidationError

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

We read the data directly from the TensorFlow examples library:2.

mnist = input_data.read_data_sets("mnist_data/", one_hot=True)
train_imgs = mnist.train.images
train_labels = mnist.train.labels
test_imgs = mnist.test.images
test_labels = mnist.test.labels

train_imgs = np.reshape(train_imgs,[-1,28,28,1])
test_imgs = np.reshape(test_imgs,[-1,28,28,1])

Now, we build the bit data structure that will hold the network information. The3.
network we are designing is a three-stage network, with three nodes in stage 1 (3
bits), four nodes in stage 2 (6 bits), and five nodes in stage 3 (10 bits). Thus, one
Individual will be represented by a binary string of 3 + 6 + 10 = 19 bits:

STAGES = np.array(["s1","s2","s3"]) # S
NUM_NODES = np.array([3,4,5]) # K

L = 0 # genome length
BITS_INDICES, l_bpi = np.empty((0,2),dtype = np.int32), 0 # to keep
track of bits for each stage S
for nn in NUM_NODES:
 t = nn * (nn - 1)
 BITS_INDICES = np.vstack([BITS_INDICES,[l_bpi, l_bpi + int(0.5
* t)]])
 l_bpi = int(0.5 * t)
 L += t
L = int(0.5 * L)

TRAINING_EPOCHS = 20
BATCH_SIZE = 20
TOTAL_BATCHES = train_imgs.shape[0] // BATCH_SIZE

Genetic Algorithms for IoT Chapter 5

[162]

Now comes the part where we build the graph according to the encoded bit4.
string. This will help build the population for the genetic algorithm. First, we
define the functions we will need to build a CNN (weight_variable: creates
the weight variable for a convolutional node; bias_variable: creates the bias
variable for a convolutional node; apply_convolution: the function that
performs the convolution operation; apply_pool: the function that will perform
the pooling operation after each stage; and finally the last fully connected layer
using the linear_layer function):

def weight_variable(weight_name, weight_shape):
 return tf.Variable(tf.truncated_normal(weight_shape, stddev =
0.1),name = ''.join(["weight_", weight_name]))

def bias_variable(bias_name,bias_shape):
 return tf.Variable(tf.constant(0.01, shape = bias_shape),name =
''.join(["bias_", bias_name]))

def linear_layer(x,n_hidden_units,layer_name):
 n_input = int(x.get_shape()[1])
 weights = weight_variable(layer_name,[n_input, n_hidden_units])
 biases = bias_variable(layer_name,[n_hidden_units])
 return tf.add(tf.matmul(x,weights),biases)

def
apply_convolution(x,kernel_height,kernel_width,num_channels,depth,l
ayer_name):
 weights = weight_variable(layer_name,[kernel_height,
kernel_width, num_channels, depth])
 biases = bias_variable(layer_name,[depth])
 return tf.nn.relu(tf.add(tf.nn.conv2d(x,
weights,[1,2,2,1],padding = "SAME"),biases))

def apply_pool(x,kernel_height,kernel_width,stride_size):
 return tf.nn.max_pool(x, ksize=[1, kernel_height, kernel_width,
1],
 strides=[1, 1, stride_size, 1], padding = "SAME")

Now, we can build the network based on the encoded bit string. So, we generate5.
the DAG using the generate_dag function:

def generate_dag(optimal_indvidual,stage_name,num_nodes):
 # create nodes for the graph
 nodes = np.empty((0), dtype = np.str)
 for n in range(1,(num_nodes + 1)):
 nodes = np.append(nodes,''.join([stage_name,"_",str(n)]))
 # initialize directed asyclic graph (DAG) and add nodes to it

Genetic Algorithms for IoT Chapter 5

[163]

 dag = DAG()
 for n in nodes:
 dag.add_node(n)

 # split best indvidual found via genetic algorithm to identify
vertices connections and connect them in DAG
 edges = np.split(optimal_indvidual,np.cumsum(range(num_nodes -
1)))[1:]
 v2 = 2
 for e in edges:
 v1 = 1
 for i in e:
 if i:
dag.add_edge(''.join([stage_name,"_",str(v1)]),''.join([stage_name,
"_",str(v2)]))
 v1 += 1
 v2 += 1

 # delete nodes not connected to anyother node from DAG
 for n in nodes:
 if len(dag.predecessors(n)) == 0 and len(dag.downstream(n))
== 0:
 dag.delete_node(n)
 nodes = np.delete(nodes, np.where(nodes == n)[0][0])
 return dag, nodes

The graph generated is used to build the TensorFlow graph6.
using the generate_tensorflow_graph function. This function makes use
of the add_node function to add a convolution layer,
and the sum_tensors function to combine the input of more than one
convolution layer:

def
generate_tensorflow_graph(individual,stages,num_nodes,bits_indices)
:
 activation_function_pattern = "/Relu:0"
 tf.reset_default_graph()
 X = tf.placeholder(tf.float32, shape = [None,28,28,1], name =
"X")
 Y = tf.placeholder(tf.float32,[None,10],name = "Y")
 d_node = X
 for stage_name,num_node,bpi in
zip(stages,num_nodes,bits_indices):
 indv = individual[bpi[0]:bpi[1]]

 add_node(''.join([stage_name,"_input"]),d_node.name)
 pooling_layer_name =

Genetic Algorithms for IoT Chapter 5

[164]

''.join([stage_name,"_input",activation_function_pattern])

 if not has_same_elements(indv):
 # ------------------- Temporary DAG to hold all
connections implied by genetic algorithm solution ------------- #

 # get DAG and nodes in the graph
 dag, nodes = generate_dag(indv,stage_name,num_node)
 # get nodes without any predecessor, these will be
connected to input node
 without_predecessors = dag.ind_nodes()
 # get nodes without any successor, these will be
connected to output node
 without_successors = dag.all_leaves()

 # ---
-- #

 # --------------------------- Initialize tensforflow
graph based on DAG ------------------------- #

 for wop in without_predecessors:
add_node(wop,''.join([stage_name,"_input",activation_function_patte
rn]))

 for n in nodes:
 predecessors = dag.predecessors(n)
 if len(predecessors) == 0:
 continue
 elif len(predecessors) > 1:
 first_predecessor = predecessors[0]
 for prd in range(1,len(predecessors)):
 t =
sum_tensors(first_predecessor,predecessors[prd],activation_function
_pattern)
 first_predecessor = t.name
 add_node(n,first_predecessor)
 elif predecessors:
add_node(n,''.join([predecessors[0],activation_function_pattern]))

 if len(without_successors) > 1:
 first_successor = without_successors[0]
 for suc in range(1,len(without_successors)):
 t =
sum_tensors(first_successor,without_successors[suc],activation_func
tion_pattern)
 first_successor = t.name
add_node(''.join([stage_name,"_output"]),first_successor)

Genetic Algorithms for IoT Chapter 5

[165]

 else:
add_node(''.join([stage_name,"_output"]),''.join([without_successor
s[0],activation_function_pattern]))

 pooling_layer_name =
''.join([stage_name,"_output",activation_function_pattern])
 # ---
------------------------------------- #

 d_node =
apply_pool(tf.get_default_graph().get_tensor_by_name(pooling_layer_
name),
 kernel_height = 16, kernel_width =
16,stride_size = 2)

 shape = d_node.get_shape().as_list()
 flat = tf.reshape(d_node, [-1, shape[1] * shape[2] * shape[3]])
 logits = linear_layer(flat,10,"logits")
 xentropy = tf.nn.softmax_cross_entropy_with_logits(logits =
logits, labels = Y)
 loss_function = tf.reduce_mean(xentropy)
 optimizer = tf.train.AdamOptimizer().minimize(loss_function)
 accuracy = tf.reduce_mean(tf.cast(
tf.equal(tf.argmax(tf.nn.softmax(logits),1), tf.argmax(Y,1)),
tf.float32))
 return X, Y, optimizer, loss_function, accuracy

Function to add nodes
def add_node(node_name, connector_node_name, h = 5, w = 5, nc = 1,
d = 1):
 with tf.name_scope(node_name) as scope:
 conv =
apply_convolution(tf.get_default_graph().get_tensor_by_name(connect
or_node_name),
 kernel_height = h, kernel_width = w,
num_channels = nc , depth = d,
 layer_name = ''.join(["conv_",node_name]))

def sum_tensors(tensor_a,tensor_b,activation_function_pattern):
 if not tensor_a.startswith("Add"):
 tensor_a = ''.join([tensor_a,activation_function_pattern])
 return
tf.add(tf.get_default_graph().get_tensor_by_name(tensor_a),
tf.get_default_graph().get_tensor_by_name(''.join([tensor_b,activat
ion_function_pattern])))

def has_same_elements(x):
 return len(set(x)) <= 1

Genetic Algorithms for IoT Chapter 5

[166]

The fitness function evaluates the accuracy of the generated CNN architecture:7.

def evaluateModel(individual):
 score = 0.0
 X, Y, optimizer, loss_function, accuracy =
generate_tensorflow_graph(individual,STAGES,NUM_NODES,BITS_INDICES)
 with tf.Session() as session:
 tf.global_variables_initializer().run()
 for epoch in range(TRAINING_EPOCHS):
 for b in range(TOTAL_BATCHES):
 offset = (epoch * BATCH_SIZE) %
(train_labels.shape[0] - BATCH_SIZE)
 batch_x = train_imgs[offset:(offset + BATCH_SIZE),
:, :, :]
 batch_y = train_labels[offset:(offset +
BATCH_SIZE), :]
 _, c = session.run([optimizer,
loss_function],feed_dict={X: batch_x, Y : batch_y})
 score = session.run(accuracy, feed_dict={X: test_imgs, Y:
test_labels})
 #print('Accuracy: ',score)
 return score,

So, now we are ready to implement the genetic algorithm: our fitness function8.
will be a max function (weights=(1.0,)), we initialize the binary string using
Bernoulli's distribution (bernoulli.rvs), the individuals are created of
length L= 19, and the population is generated with each population consisting
of 20 individuals. This time, we chose an ordered crossover, where a substring is
selected from the first parent and copied into the offspring in the same location;
the remaining positions are filled from the second parent, ensuring the nodes
in the sub-string are not repeated. We kept the same mutation operator as
before, mutShuffleIndexes; the tournament selection method is selRoulette,
which makes the selection using the roulette wheel selection method (we
choose k individuals and from them select the ones with the highest fitness). This
time, instead of coding the genetic algorithm, we make use of the DEAP
eaSimple algorithm, which is the basic genetic algorithm:

population_size = 20
num_generations = 3
creator.create("FitnessMax", base.Fitness, weights = (1.0,))
creator.create("Individual", list , fitness = creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("binary", bernoulli.rvs, 0.5)
toolbox.register("individual", tools.initRepeat,
creator.Individual, toolbox.binary, n = L)
toolbox.register("population", tools.initRepeat, list ,

Genetic Algorithms for IoT Chapter 5

[167]

toolbox.individual)
toolbox.register("mate", tools.cxOrdered)
toolbox.register("mutate", tools.mutShuffleIndexes, indpb = 0.8)
toolbox.register("select", tools.selRoulette)
toolbox.register("evaluate", evaluateModel)
popl = toolbox.population(n = population_size)

import time
t = time.time()
result = algorithms.eaSimple(popl, toolbox, cxpb = 0.4, mutpb =
0.05, ngen = num_generations, verbose = True)
t1 = time.time() - t
print(t1)

The algorithm will take some time; on i7 with NVIDIA 1070 GTX GPU it took9.
about 1.5 hours. The best three solutions are the following:

best_individuals = tools.selBest(popl, k = 3)
for bi in best_individuals:
 print(bi)

Genetic algorithm for LSTM optimization
In a genetic CNN, we use genetic algorithms to estimate the optimum CNN architecture; in
genetic RNN, we will now use a genetic algorithm to find the optimum hyperparameters
of the RNN, the window size, and the number of hidden units. We will find the parameters
that reduce the root-mean-square error (RMSE) of the model.

The hyperparameters window size and number of units are again encoded in a binary
string with 6 bits for window size and 4 bits for the number of units. Thus, the complete
encoded chromosome will be of 10 bits. The LSTM is implemented using Keras.

Genetic Algorithms for IoT Chapter 5

[168]

The code we implement is taken from https:/ /github. com/ aqibsaeed/ Genetic-
Algorithm-RNN:

The necessary modules are imported. This time, we are using Keras to1.
implement the LSTM model:

import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split as split

from keras.layers import LSTM, Input, Dense
from keras.models import Model

from deap import base, creator, tools, algorithms
from scipy.stats import bernoulli
from bitstring import BitArray

np.random.seed(1120)

The dataset we need for LSTM has to be time series data; we use the wind-power2.
forecasting data from Kaggle (https:/ /www. kaggle. com/ c/GEF2012- wind-
forecasting/ data):

data = pd.read_csv('train.csv')
data = np.reshape(np.array(data['wp1']),(len(data['wp1']),1))

train_data = data[0:17257]
test_data = data[17257:]

Define a function to prepare the dataset depending upon the3.
chosen window_size:

def prepare_dataset(data, window_size):
 X, Y = np.empty((0,window_size)), np.empty((0))
 for i in range(len(data)-window_size-1):
 X = np.vstack([X,data[i:(i + window_size),0]])
 Y = np.append(Y,data[i + window_size,0])
 X = np.reshape(X,(len(X),window_size,1))
 Y = np.reshape(Y,(len(Y),1))
 return X, Y

https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://github.com/aqibsaeed/Genetic-Algorithm-RNN
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data
https://www.kaggle.com/c/GEF2012-wind-forecasting/data

Genetic Algorithms for IoT Chapter 5

[169]

The train_evaluate function creates the LSTM network for a given individual4.
and returns its RMSE value (fitness function):

def train_evaluate(ga_individual_solution):
 # Decode genetic algorithm solution to integer for window_size
and num_units
 window_size_bits = BitArray(ga_individual_solution[0:6])
 num_units_bits = BitArray(ga_individual_solution[6:])
 window_size = window_size_bits.uint
 num_units = num_units_bits.uint
 print('\nWindow Size: ', window_size, ', Num of Units: ',
num_units)
 # Return fitness score of 100 if window_size or num_unit is
zero
 if window_size == 0 or num_units == 0:
 return 100,
 # Segment the train_data based on new window_size; split into
train and validation (80/20)
 X,Y = prepare_dataset(train_data,window_size)
 X_train, X_val, y_train, y_val = split(X, Y, test_size = 0.20,
random_state = 1120)
 # Train LSTM model and predict on validation set
 inputs = Input(shape=(window_size,1))
 x = LSTM(num_units, input_shape=(window_size,1))(inputs)
 predictions = Dense(1, activation='linear')(x)
 model = Model(inputs=inputs, outputs=predictions)
 model.compile(optimizer='adam',loss='mean_squared_error')
 model.fit(X_train, y_train, epochs=5,
batch_size=10,shuffle=True)
 y_pred = model.predict(X_val)
 # Calculate the RMSE score as fitness score for GA
 rmse = np.sqrt(mean_squared_error(y_val, y_pred))
 print('Validation RMSE: ', rmse,'\n')
 return rmse,

Next, we use DEAP tools to define Individual (again, since the chromosome is5.
represented by a binary encoded string (10 bits), we use Bernoulli's distribution),
create the population, use ordered crossover, use mutShuffleIndexes mutation,
and use the roulette wheel selection for selecting the parents:

population_size = 4
num_generations = 4
gene_length = 10

As we are trying to minimize the RMSE score, that's why using
-1.0.
In case, when you want to maximize accuracy for instance, use 1.0

Genetic Algorithms for IoT Chapter 5

[170]

creator.create('FitnessMax', base.Fitness, weights = (-1.0,))
creator.create('Individual', list , fitness = creator.FitnessMax)

toolbox = base.Toolbox()
toolbox.register('binary', bernoulli.rvs, 0.5)
toolbox.register('individual', tools.initRepeat,
creator.Individual, toolbox.binary, n = gene_length)
toolbox.register('population', tools.initRepeat, list ,
toolbox.individual)

toolbox.register('mate', tools.cxOrdered)
toolbox.register('mutate', tools.mutShuffleIndexes, indpb = 0.6)
toolbox.register('select', tools.selRoulette)
toolbox.register('evaluate', train_evaluate)

population = toolbox.population(n = population_size)
r = algorithms.eaSimple(population, toolbox, cxpb = 0.4, mutpb =
0.1, ngen = num_generations, verbose = False)

We get the best solution, as follows: 6.

best_individuals = tools.selBest(population,k = 1)
best_window_size = None
best_num_units = None

for bi in best_individuals:
 window_size_bits = BitArray(bi[0:6])
 num_units_bits = BitArray(bi[6:])
 best_window_size = window_size_bits.uint
 best_num_units = num_units_bits.uint
 print('\nWindow Size: ', best_window_size, ', Num of Units: ',
best_num_units)

And finally, we implement the best LSTM solution:7.

X_train,y_train = prepare_dataset(train_data,best_window_size)
X_test, y_test = prepare_dataset(test_data,best_window_size)

inputs = Input(shape=(best_window_size,1))
x = LSTM(best_num_units, input_shape=(best_window_size,1))(inputs)
predictions = Dense(1, activation='linear')(x)
model = Model(inputs = inputs, outputs = predictions)
model.compile(optimizer='adam',loss='mean_squared_error')
model.fit(X_train, y_train, epochs=5, batch_size=10,shuffle=True)
y_pred = model.predict(X_test)

rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print('Test RMSE: ', rmse)

Genetic Algorithms for IoT Chapter 5

[171]

Yay! Now, you have the best LSTM network for predicting wind power.

Summary
This chapter introduced an interesting nature-inspired algorithm family: genetic
algorithms. We covered various standard optimization algorithms, varying from
deterministic models, to gradient-based algorithms, to evolutionary algorithms. The
biological process of evolution through natural selection was covered. We then learned
how to convert our optimization problems into a form suitable for genetic algorithms.
Crossover and mutation, two very crucial operations in genetic algorithms, were explained.
While it is not possible to extensively cover all the crossover and mutation methods, we did
learn about the popular ones.

We applied what we learned on three very different optimization problems. We used it to
guess a word. The example was of a five-letter word; had we used simple brute force, it
would take a search of a 615 search space. We used genetic algorithms to optimize the CNN
architecture; again note that, with 19 possible bits, the search space is 219. Then, we used it
to find the optimum hyperparameters for an LSTM network.

In the next chapter, we will talk about another intriguing learning paradigm: reinforcement
learning. This is another natural learning paradigm, in the sense that in nature we normally
do not have supervised learning; rather, we learn through our interactions with the
environment. In the same manner, here the agent is not told anything except the rewards
and punishments it receives from the environment after its action.

6
Reinforcement Learning for IoT

Reinforcement learning (RL) is very different from both supervised and unsupervised
learning. It's the way most living beings learn—interacting with the environment. In this
chapter, we'll study different algorithms employed for RL. As you progress through the
chapter, you'll do the following:

Learn what RL is and how it's different from supervised learning and
unsupervised learning
Lear different elements of RL
Learn about some fascinating applications of RL in the real world
Understand the OpenAI interface for training RL agents
Learn about Q-learning and use it to train an RL agent
Learn about Deep Q-Networks and employ them to train an agent to play Atari
Learn about the policy gradient algorithm and use it to

Introduction
Have you ever observed infants and how they learn to turn over, sit up, crawl, and even
stand? Have you watched how baby birds learn to fly—the parents throw them out of the
nest, they flutter for some time, and they slowly learn to fly. All of this learning involves a
component of the following:

Trial and error: The baby tries different ways and is unsuccessful many times
before finally succeeding in doing it.
Goal-oriented: All of the efforts are toward reaching a particular goal. The goal
for the human baby can be to crawl, and for baby bird to fly.
Interaction with the environment: The only feedback that they get is from the
environment.

Reinforcement Learning for IoT Chapter 6

[173]

This YouTube video is a beautiful video of a child learning to crawl and
the stages in between https:/ / www.youtube. com/ watch? v=f3xWaOkXCSQ.

The human baby learning to crawl or baby bird learning to fly are both examples of RL in
nature.

RL (in Artificial Intelligence) can be defined as a computational approach to goal-
directed learning and decision-making, from interaction with the environment, under some
idealized conditions. Let's elaborate upon this since we'll be using various computer
algorithms to perform the learning—it's a computational approach. In all of the examples
that we'll consider, the agent (learner) has a specific goal, which it's trying to achieve—it's a
goal-directed approach. The agent in RL isn't given any explicit instructions, it learns only
from its interaction with the environment. This interaction with the environment, as shown
in the following diagram, is a cyclic process. The Agent can sense the state of the
Environment, and the Agent can perform specific well-defined actions on the
Environment; this causes two things: first, a change in the state of the environment, and
second, a reward is generated (under ideal conditions). This cycle continues:

 The interaction between agent and environment

https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ
https://www.youtube.com/watch?v=f3xWaOkXCSQ

Reinforcement Learning for IoT Chapter 6

[174]

Unlike supervised learning, the Agent isn't presented with any examples. The Agent
doesn't know what the correct action is. And unlike unsupervised learning, the agent goal
isn't to find some inherent structure in the input (the learning may find some structure, but
that isn't the goal); instead, its goal is to maximize the rewards (in the long run).

RL terminology
Before learning different algorithms, let's accustom ourselves to the RL terminology. For
illustration purposes, let's consider two examples: an agent finding a route in a maze and
an agent steering the wheel of a Self-Driving Car (SDC). The two are illustrated in the
following diagram:

Two example RL scenarios

Reinforcement Learning for IoT Chapter 6

[175]

Before going further, let's acquaint ourselves with common RL terms:

States s: The states can be thought of as a set of tokens (or representation) that
can define all of the possible states the environment can be in. The state can be
continuous or discrete. For example, in the case of an agent finding a path
through a maze, the state can be represented by a 4 × 4 array, with a 0
representing an empty block, 1 representing a block occupied by the agent, and X
the state that can't be occupied; the states here are discrete in nature. In the case
of an agent steering the wheel, the state is the view in front of the SDC. The
image contains continuous valued pixels.
Actions a(s): Actions are the set of all possible things that the agent can do in a
particular state. The set of possible actions, a, depends on the present state, s.
Actions may or may not result in the change of state. They can be discrete or
continuous. The agent in the maze can perform five discrete actions [up, down,
left, right, no change]. The SDC agent, on another hand, can rotate the steering
wheel in a continuous range of angles.
Reward r(s, a, s'): It's a scalar value returned by the environment when the agent
selects an action. It defines the goal; the agent gets a higher reward if the action
brings it near the goal, and a low (or even negative) reward otherwise. How we
define a reward is totally up to us—in the case of the maze, we can define the
reward as the Euclidean distance between the agent's current position and goal.
The SDC agent reward can be that the car is on the road (positive reward) or off
the road (negative reward).
Policy π(s): It defines a mapping between each state and the action to take in that
state. The policy can be deterministic—that is, for each state a well-defined
policy. Like for the maze agent, a policy can be that if the top block is empty,
move up. The policy can also be stochastic—that is, where an action is taken by
some probability. It can be implemented as a simple look-up table, or it can be a
function dependent on the present state. The policy is the core of the RL agent. In
this chapter, we'll learn about different algorithms that help the agent to learn the
policy.

Reinforcement Learning for IoT Chapter 6

[176]

Value function V(s): It defines the goodness of a state in the long run. It can be
thought of as the total amount of reward the agent can expect to accumulate over
the future, starting from the state s. You can think of it as long-term goodness as
opposed to the immediate goodness of rewards. What do you think is more
important, maximizing the reward or maximizing the value function? Yes, you
guessed right: just as in chess, we sometimes lose a pawn to win the game a few
steps later, and so the agent should try to maximize the value function. There are
two ways in which the value function is normally considered:

Value function Vπ(s): It's the goodness of state following the
policy π. Mathematically, at state s, it's the expected cumulative
reward from following the policy, π:

Value-state function (or Q-function) Qπ(s, a): It's the goodness of a state s, taking
action a, and thereafter following policy π. Mathematically, we can say that for a
state-action pair (s, a), it's the expected cumulative reward from taking action a in
state s and then following policy π:

γ is the discount factor, and its value determines how much importance we give
to the immediate rewards as compared to rewards received later on. A high value
of discount factor decides how far into the future an agent can see. An ideal
choice of γ in many successful RL algorithms has been a value of 0.97.

Model of the environment: It's an optional element. It mimics the behavior of the
environment, and it contains the physics of the environment; in other words, it
defines how the environment will behave. The model of the environment is
defined by the transition probability to the next state.

An RL problem is mathematically formulated as a Markov Decision
Process (MDP), and it follows the Markov property— that is, the current
state completely characterizes the state of the world.

Reinforcement Learning for IoT Chapter 6

[177]

Deep reinforcement learning
RL algorithms can be classified into two, based on what they iterate/approximate:

Value-based methods: In these methods, the algorithms take the action that
maximizes the value function. The agent here learns to predict how good a given
state or action would be. Hence, here, the aim is to find the optimal value. An
example of the value-based method is Q-learning. Consider, for example, our RL
agent in a maze: assuming that the value of each state is the negative of the
number of steps needed to reach from that box to the goal, then, at each time
step, the agent will choose the action that takes it to a state with optimal value, as
in the following diagram. So, starting from a value of -6, it'll move to -5, -4, -3, -2,
-1, and eventually reach the goal with the value 0:

 The maze world with the value of each box

Policy-based methods: In these methods, the algorithms predict the best policy
which maximizes the value function. The aim is to find the optimal policy. An
example of the policy-based method is policy gradients. Here, we approximate
the policy function, which allows us to map each state to the best corresponding
action.

Reinforcement Learning for IoT Chapter 6

[178]

We can use neural networks as a function approximator to get an approximate value of
either policy or value. When we use deep neural networks as a policy approximator or
value approximator, we call it deep reinforcement learning (DRL). DRL has, in the recent
past, given very successful results, hence, in this chapter, our will focus will be on DRL.

Some successful applications
In the last few years, RL has been successfully used in a variety of tasks, especially in game-
playing and robotics. Let's acquaint ourselves with some success stories of RL before
learning its algorithms:

AlphaGo Zero: Developed by Google's DeepMind team, the AlphaGo Zero
Mastering the game of Go without any human knowledge, starts from an absolutely
blank slate (tabula rasa). The AlphaGo Zero uses one neural network to
approximate both the move probabilities and value. This neural network takes as
input the raw board representation. It uses a Monte Carlo Tree search guided by
the neural network to select the moves. The reinforcement learning algorithm
incorporates look-ahead search inside the training loop. It was trained for 40
days using a 40-block residual CNN and, over the course of training, it played
about 29 million games (a big number!). The neural network was optimized on
Google Cloud using TensorFlow, with 64 GPU workers and 19 CPU parameter
servers. You can access the paper here: https:/ /www. nature. com/ articles/
nature24270.
AI-controlled sailplanes: Microsoft developed a controller system that can run
on many different autopilot hardware platforms such as Pixhawk and Raspberry
Pi 3. It can keep the sailplane in the air without using a motor, by autonomously
finding and catching rides on naturally occurring thermals. The controller helps
the sailplane to operate on its own; it detects and uses thermals to travel without
the aid of a motor or a person. They implemented it as a partially observable
MDP. They employ the Bayesian reinforcement learning and use the Monte Carlo
tree search to search for the best action. They've divided the whole system into
level planners—a high-level planer that makes a decision based on experience
and a low-level planner that uses Bayesian reinforcement learning to detect and
latch onto thermals in real time. You can see the sailplane in action at Microsoft
News: https:/ /news. microsoft. com/ features/ science- mimics- nature-
microsoft- researchers- test- ai-controlled- soaring- machine/ .

https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://www.nature.com/articles/nature24270
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/
https://news.microsoft.com/features/science-mimics-nature-microsoft-researchers-test-ai-controlled-soaring-machine/

Reinforcement Learning for IoT Chapter 6

[179]

Locomotion behavior: In the paper Emergence of Locomotion Behaviours in Rich
Environments (https:/ /arxiv. org/ pdf/ 1707. 02286. pdf), DeepMind researchers
provided the agents with rich and diverse environments. The environments
presented a spectrum of challenges at different levels of difficulty. The agent was
provided with difficulties in increasing order; this led the agent to learn
sophisticated locomotion skills without performing any reward engineering.

Simulated environments
Since RL involves trial and error, it makes sense to train our RL agent first in a simulated
environment. While a large number of applications exist that can be used for the creation of
an environment, some popular ones include the following:

OpenAI gym: It contains a collection of environments that we can use to train
our RL agents. In this chapter, we'll be using the OpenAI gym interface.
Unity ML-Agents SDK: It allows developers to transform games and
simulations created using the Unity editor into environments where intelligent
agents can be trained using DRL, evolutionary strategies, or other machine
learning methods through a simple-to-use Python API. It works with TensorFlow
and provides the ability to train intelligent agents for two-dimensional/three-
dimensional and VR/AR games. You can learn more about it here: https:/ /
github.com/ Unity- Technologies/ ml- agents.
Gazebo: In Gazebo, we can build three-dimensional worlds with physics-based
simulation. Gazebo along with Robot Operating System (ROS) and the OpenAI
gym interface is gym-gazebo and can be used to train RL agents. To know more
about this, you can refer to the whitepaper: http:/ /erlerobotics. com/
whitepaper/ robot_ gym. pdf.
Blender learning environment: It's a Python interface for the Blender game
engine, and it also works over OpenAI gym. It has it's base Blender. A free three-
dimensional modeling software with an integrated game engine, this provides an
easy-to-use, powerful set of tools for creating games. It provides an interface to
the Blender game engine, and the games themselves are designed in Blender. We
can then create the custom virtual environment to train an RL agent on a specific
problem (https:/ /github. com/ LouisFoucard/ gym- blender).

https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://arxiv.org/pdf/1707.02286.pdf
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
http://erlerobotics.com/whitepaper/robot_gym.pdf
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender
https://github.com/LouisFoucard/gym-blender

Reinforcement Learning for IoT Chapter 6

[180]

OpenAI gym
OpenAI gym is an open source toolkit to develop and compare RL algorithms. It contains a
variety of simulated environments that can be used to train agents and develop new RL
algorithms. To start, you'll first have to install gym. For Python 3.5+, you can install gym
using pip:

pip install gym

OpenAI gym supports various environments, from simple text-based to three-dimensional.
The environments supported in the latest version can be grouped as follows:

Algorithms: It contains environments that involve performing computations
such as addition. While we can easily perform the computations on a computer,
what makes these problems interesting as an RL problem is that the agent learns
these tasks purely by example.
Atari: This environment provides a wide variety of classical Atari/arcade games.
Box2D: It contains robotics tasks in two dimensions such as a car racing agent or
bipedal robot walk.
Classic control: This contains the classical control theory problems, such as
balancing a cart pole.
MuJoCo: This is proprietary (you can get a one-month free trial). It supports
various robot simulation tasks. The environment includes a physics engine,
hence, it's used for training robotic tasks.
Robotics: This environment too uses the physics engine of MuJoCo. It simulates
goal-based tasks for fetch and shadow-hand robots.
Toy text: It's a simple text-based environment—very good for beginners.

To get a complete list of environments under these groups, you can visit: https:/ / gym.
openai.com/envs/ #atari. The best part of the OpenAI interface is that all of the
environments can be accessed with the same minimum interface. To get a list of all
available environments in your installation, you can use the following code:

from gym import envs
print(envs.registry.all())

https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari
https://gym.openai.com/envs/#atari

Reinforcement Learning for IoT Chapter 6

[181]

This will provide a list of all installed environments along with their environment ID,
which is a string. It's also possible to add your own environment in the gym registry. To
create an environment, we use the make command with the environment name passed as a
string. For example, to create a game using the Pong environment, the string we need will
be Pong-v0. The make command creates the environment, and the reset command is used
to activate the environment. The reset command returns the environment in an initial
state. The state is represented as an array:

import gym
env = gym.make('Pong-v0')
obs = env.reset()
env.render()

The state space of Pong-v0 is given by an array of the size 210×160×3, which actually
represents the raw pixel values for the Pong game. On the other hand, if you create a
Go9×9-v0 environment, the state is defined by a 3×9×9 array. We can visualize the
environment using the render command. The following diagram shows the rendered
environment for the Pong-v0 and Go9x9-v0 environments at the initial state:.

 The rendered environments for Pong-v0 and Go9x9-v0

Reinforcement Learning for IoT Chapter 6

[182]

The render commands pop up a window. If you want to display the
environment inline, then you can use Matplotlib inline and change the
render command to plt.imshow(env.render(mode='rgb_array')).
This will show the environment inline in the Jupyter Notebook.

The environment contains the action_space variable, which determines the possible
actions in the environment. We can select a random action using the sample() function.
The selected action can affect the environment using the step function. The step function
performs the selected action on the environment; it returns the changed state, the reward, a
Boolean informing whether the game is over or not, and some information about the
environment that can be useful for debugging, but isn't used while working with RL
agents. The following code shows a game of Pong with the agent playing a random move.
We're storing the state at each time step in an array, frames, so that we can later see the
game:

frames = [] # array to store state space at each step
for _ in range(300):
 frames.append(env.render(mode='rgb_array'))
 obs,reward,done, _ = env.render(env.action_space.sample())
 if done:
 break

These frames can be displayed as a continuously playing GIF-style image in the Jupyter
Notebook with the help of the animation function in Matplotlib and IPython:

import matplotlib.animation as animation
from JSAnimation.Ipython_display import display_animation
from IPython.display import display

patch = plt.imshow(frames[0])
plt.axis('off')

def animate(i)
 patch.set_data(frames[i])

anim = animation.FuncAnimation(plt.gcf(), animate, \
 frames=len(frames), interval=100)

display(display_animation(anim, default_mode='loop')

Reinforcement Learning for IoT Chapter 6

[183]

Normally, to train an agent, we'll need a very large number of steps, and so it won't be
feasible to store the state space at each step. We can either choose to store after every 500th
(or any other number you wish) step in the preceding algorithm. Instead, we can use the
OpenAI gym wrapper to save the game as a video. To do so, we need to first import
wrappers, then create the environment, and finally use Monitor. By default, it will store the
video of 1, 8, 27, 64, and so on and then every 1,000th episode (episode numbers with perfect
cubes); each training, by default, is saved in one folder. The code to do it is as follows:

import gym
from gym import wrappers
env = gym.make('Pong-v0')
env = wrappers.Monitor(env, '/save-mov', force=True)
Follow it with the code above where env is rendered and agent
selects a random action

If you want to use the same folder in the next training, you can choose the force=True
option in the Monitor method call. In the end, we should close the environment using the
close function:

env.close()

The preceding codes are available in the OpenAI_practice.ipynb Jupyter Notebook in
the folder for Chapter 6, Reinforcement Learning for IoT, in GitHub.

Q-learning
In his doctoral thesis, Learning from delayed rewards, Watkins introduced the concept of Q-
learning in the year 1989. The goal of Q-learning is to learn an optimal action selection
policy. Given a specific state, s, and taking a specific action, a, Q-learning attempts to learn
the value of the state s. In its simplest version, Q-learning can be implemented with the help
of look-up tables. We maintain a table of values for every state (row) and action (column)
possible in the environment. The algorithm attempts to learn the value—that is, how good
it is to take a particular action in the given state.

We start by initializing all of the entries in the Q-table to 0; this ensures all states a uniform
(and hence equal chance) value. Later, we observe the rewards obtained by taking a
particular action and, based on the rewards, we update the Q-table. The update in Q-value
is performed dynamically with the help of the Bellman Equation, given by the following:

Reinforcement Learning for IoT Chapter 6

[184]

Here, α is the learning rate. This shows the basic Q-learning algorithm:

 Simple Q-learning algorithm

If you're interested, you can read the 240 pages Watkins doctoral thesis
here: http:/ / www. cs. rhul. ac.uk/ ~chrisw/ new_ thesis. pdf.

At the end of learning, we'll have a good Q-table, with optimal policy. An important
question here is: how do we choose the action at the second step? There are two
alternatives; first, we choose the action randomly. This allows our agent to explore all of the
possible actions with equal probability but, at the same time, ignoring the information it
has already learned. The second way is we choose the action for which the value is
maximum; initially, all of the actions have the same Q-value but, as the agent will learn,
some actions will get high value and others low value. In this case, the agent is exploiting
the knowledge it has already learned. So what's better: exploration or exploitation? This is
called the exploration-exploitation trade-off. A natural way to solve this problem is by
relying on what the agent has learned, but at the same time sometimes just explore. This is
achieved via the use of the epsilon greedy algorithm. The basic idea is that the agent
chooses the actions randomly with the probability, ε, and exploits the information learned
in previous episodes by a probability, (1-ε). The algorithm chooses the best option (greedy)
most of the time (1-ε) but sometimes (ε) it makes a random choice. Let's now try to
implement what we learned in a simple problem.

http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

Reinforcement Learning for IoT Chapter 6

[185]

Taxi drop-off using Q-tables
The simple Q-learning algorithm involves maintaining a table of the size m×n, where m is
the total number of states and n the total number of possible actions. Therefore, we choose a
problem from the toy-text group since their state space and action space is small. For
illustrative purposes, we choose the Taxi-v2 environment. The goal of our agent is to
choose the passenger at one location and drop them off at another. The agent receives +20
points for a successful drop-off and loses 1 point for every time step it takes. There's also a
10-point penalty for illegal pick-up and drop-off. The state space has walls shown by | and
four location marks, R, G, Y, and B respectively. The taxi is shown by box: the pick-up and
drop-off location can be either of these four location marks. The pick-up point is colored
blue, and the drop-off is colored purple. The Taxi-v2 environment has a state space of size
500 and action space of size 6, making a Q-table with 500×6=3000 entries:

 Taxi drop-off environment

In the taxi drop-off environment, the taxi is denoted by the yellow box. The location mark,
R, is the pick-up position, and G is the drop-off location:

We start by importing the necessary modules and creating our environment.1.
Since, here, we just need to make a look-up table, using TensorFlow won't be
necessary. As mentioned previously, the Taxi-v2 environment has 500 possible
states and 6 possible actions:

import gym
import numpy as np
env = gym.make('Taxi-v2')
obs = env.reset()
env.render()

Reinforcement Learning for IoT Chapter 6

[186]

We initialize the Q-table of the size (300×6) with all zeros, and define the2.
hyperparameters: γ, the discount factor, and α, the learning rate. We also set the
values for maximum episodes (one episode means one complete run from reset
to done=True) and maximum steps in an episode the agent will learn for:

m = env.observation_space.n # size of the state space
n = env.action_space.n # size of action space
print("The Q-table will have {} rows and {} columns, resulting in \
 total {} entries".format(m,n,m*n))

Intialize the Q-table and hyperparameters
Q = np.zeros([m,n])
gamma = 0.97
max_episode = 1000
max_steps = 100
alpha = 0.7
epsilon = 0.3

 Now, for each episode, we choose the action with the highest value, perform the3.
action, and update the Q-table based on the received rewards and future state
using the Bellman Equation:

for i in range(max_episode):
 # Start with new environment
 s = env.reset()
 done = False
 for _ in range(max_steps):
 # Choose an action based on epsilon greedy algorithm
 p = np.random.rand()
 if p > epsilon or (not np.any(Q[s,:])):
 a = env.action_space.sample() #explore
 else:
 a = np.argmax(Q[s,:]) # exploit
 s_new, r, done, _ = env.step(a)
 # Update Q-table
 Q[s,a] = (1-alpha)*Q[s,a] + alpha*(r +
gamma*np.max(Q[s_new,:]))
 #print(Q[s,a],r)
 s = s_new
 if done:
 break

Let's now see how the learned agent works:4.

s = env.reset()
done = False
env.render()

Reinforcement Learning for IoT Chapter 6

[187]

Test the learned Agent
for i in range(max_steps):
 a = np.argmax(Q[s,:])
 s, _, done, _ = env.step(a)
 env.render()
 if done:
 break

The following diagram shows the agent behavior in a particular example. The empty car is
shown as a yellow box, and the car with the passenger is shown by a green box. You can
see that, in the given case, the agent picks up and drops off the passenger in 11 steps, and
the desired location is marked (B) and the destination is marked (R):

Agent picking up and dropping off a passenger using the learned Q-table

Reinforcement Learning for IoT Chapter 6

[188]

Cool, right? The complete code is available in the Taxi_drop-off.ipynb file available at
GitHub.

Q-Network
The simple Q-learning algorithm involves maintaining a table of the size m×n, where m is
the total number of states and n the total number of possible actions. This means we can't
use it for large state space and action space. An alternative is to replace the table with a
neural network acting as a function approximator, approximating the Q-function for each
possible action. The weights of the neural network in this case store the Q-table information
(they match a given state with the corresponding action and its Q-value). When the neural
network that we use to approximate the Q-function is a deep neural network, we call it
a Deep Q-Network (DQN).

The neural network takes the state as its input and calculates the Q-value of all of the
possible actions.

Taxi drop-off using Q-Network
If we consider the preceding Taxi drop-off example, our neural network will consist of 500
input neurons (the state represented by 1×500 one-hot vector) and 6 output neurons, each
neuron representing the Q-value for the particular action for the given state. The neural
network will here approximate the Q-value for each action. Hence, the network should be
trained so that its approximated Q-value and the target Q-value are same. The target Q-
value as obtained from the Bellman Equation is as follows:

Reinforcement Learning for IoT Chapter 6

[189]

We train the neural network so that the square error of the difference between the target Q
and predicted Q is minimized—that is, the neural network minimizes the following loss
function:

The aim is to learn the unknown Qtarget function. The weights of QNetwork are updated
using backpropagation so that this loss is minimized. We make the neural
network, QNetwork, to approximate the Q-value. It's a very simple single-layer neural
network, with methods to provide action and their Q-values (get_action), train the
network (learnQ), and get the predicted Q-value (Qnew):

class QNetwork:
 def __init__(self,m,n,alpha):
 self.s = tf.placeholder(shape=[1,m], dtype=tf.float32)
 W = tf.Variable(tf.random_normal([m,n], stddev=2))
 bias = tf.Variable(tf.random_normal([1, n]))
 self.Q = tf.matmul(self.s,W) + bias
 self.a = tf.argmax(self.Q,1)

 self.Q_hat = tf.placeholder(shape=[1,n],dtype=tf.float32)
 loss = tf.reduce_sum(tf.square(self.Q_hat-self.Q))
 optimizer = tf.train.GradientDescentOptimizer(learning_rate=alpha)
 self.train = optimizer.minimize(loss)
 init = tf.global_variables_initializer()

 self.sess = tf.Session()
 self.sess.run(init)

 def get_action(self,s):
 return self.sess.run([self.a,self.Q], feed_dict={self.s:s})

 def learnQ(self,s,Q_hat):
 self.sess.run(self.train, feed_dict= {self.s:s, self.Q_hat:Q_hat})

 def Qnew(self,s):
 return self.sess.run(self.Q, feed_dict={self.s:s})

Reinforcement Learning for IoT Chapter 6

[190]

We now incorporate this neural network in our earlier code where we trained an RL agent
for the Taxi drop-off problem. We'll need to make some changes; first, the state returned by
the OpenAI step and reset function in this case is just the numeric identification of state, so
we need to convert it into a one-hot vector. Also, instead of a Q-table update, we'll now get
the new Q-predicted from QNetwork, find the target Q, and train the network so as to
minimize the loss. The code is as follows:

QNN = QNetwork(m,n, alpha)
rewards = []
for i in range(max_episode):
 # Start with new environment
 s = env.reset()
 S = np.identity(m)[s:s+1]
 done = False
 counter = 0
 rtot = 0
 for _ in range(max_steps):
 # Choose an action using epsilon greedy policy
 a, Q_hat = QNN.get_action(S)
 p = np.random.rand()
 if p > epsilon:
 a[0] = env.action_space.sample() #explore

 s_new, r, done, _ = env.step(a[0])
 rtot += r
 # Update Q-table
 S_new = np.identity(m)[s_new:s_new+1]
 Q_new = QNN.Qnew(S_new)
 maxQ = np.max(Q_new)
 Q_hat[0,a[0]] = r + gamma*maxQ
 QNN.learnQ(S,Q_hat)
 S = S_new
 #print(Q_hat[0,a[0]],r)
 if done:
 break
 rewards.append(rtot)
print ("Total reward per episode is: " + str(sum(rewards)/max_episode))

Reinforcement Learning for IoT Chapter 6

[191]

This should have done a good job but, as you can see, even after training for 1,000 episodes,
the network has a high negative reward, and if you check the performance of the network,
it appears to just take random steps. Yes, our network hasn't learned anything; the
performance is worse than Q-table. This can also be verified from the reward plot while
training—ideally, the rewards should increase as the agent learns, but nothing of the sort
happens here; the rewards increase and decrease like a random walk around the mean (the
complete code for this program is in the Taxi_drop-off_NN.ipynb file available at
GitHub):

 Total reward per episode obtained by the agent as it learns

What happened? Why is the neural network failing to learn, and can we make it better?

Consider the scenario when the taxi should go west to pick up and, randomly, the agent
chose west; the agent gets a reward and the network will learn that, in the present state
(represented by a one-hot vector), going west is favorable. Next, consider another state
similar to this one (correlated state space): the agent again makes the west move, but this
time it results in a negative reward, so now the agent will unlearn what it had learned
earlier. Hence, similar state-actions but divergent targets confuse the learning process. This
is called catastrophic forgetting. The problem arises here because consecutive states are
highly correlated and so, if the agent learns in sequence (as it does here), this extremely
correlated input state space won't let the agent learn.

Reinforcement Learning for IoT Chapter 6

[192]

Can we break the correlation between the input presented to the network? Yes, we can: we
can construct a replay buffer, where we first store each state, its corresponding action, and
the consecutive reward and resultant state (state, action, reward, new state). The actions, in
this case, are chosen completely randomly, thereby ensuring a wide range of actions and
resultant states. The replay buffer will finally consist of a large list of these tuples (S, A, R,
S'). Next, we present the network with these tuples randomly (instead of sequentially); this
randomness will break the correlation between consecutive input states. This is called
experience replay. It not only resolves the issues with correlation in input state space but
also allows us to learn from the same tuples more than once, recall rare occurrences, and in
general, make better use of the experience. In one way, you can say that, by using a replay
buffer, we've reduced the problem of the supervised learning (with the replay buffer as an
input-output dataset), where the random sampling of input ensures that the network is able
to generalize.

Another problem with our approach is that we're updating the target Q immediately. This
too can cause harmful correlations. Remember that, in Q-learning, we're trying to minimize
the difference between the Qtarget and the currently predicted Q. This difference is called a
temporal difference (TD) error (and hence Q-learning is a type of TD learning). At
present, we update our Qtarget immediately, hence there exists a correlation between the
target and the parameters we're changing (weights through Qpred). This is almost like
chasing a moving target and hence won't give a generalized direction. We can resolve the
issue by using fixed Q-targets—that is, use two networks, one for predicting Q and another
for target Q. Both are exactly the same in terms of architecture, with the predicting Q-
Network changing weights at each step, but the weight of the target Q-Network is updated
after some fixed learning steps. This provides a more stable learning environment.

Finally, we make one more small change: right now our epsilon has had a fixed value
throughout learning. But, in real life, this isn't so. Initially, when we know nothing, we
explore a lot but, as we become familiar, we tend to take the learned path. The same can be
done in our epsilon-greedy algorithm, by changing the value of epsilon as the network
learns through each episode, so that epsilon decreases with time.

Equipped with these tricks, let's now build a DQN to play an Atari game.

Reinforcement Learning for IoT Chapter 6

[193]

DQN to play an Atari game
The DQN we'll learn here is based on a DeepMind paper (https:/ /web. stanford. edu/
class/psych209/Readings/ MnihEtAlHassibis15NatureControlDeepRL. pdf). At the heart
of DQN is a deep convolutional neural network that takes as input the raw pixels of the
game environment (just like any human player would see), captured one screen at a time,
and as output, returns the value for each possible action. The action with the maximum
value is the chosen action:

The first step is to get all of the modules we'll need:1.

import gym
import sys
import random
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from datetime import datetime
from scipy.misc import imresize

We chose the Breakout game from the list of OpenAI Atari games—you can try2.
the code for other Atari games; the only change you may need to do would be in
the preprocessing step. The input space of Breakout—our input space—consists
of 210×160 pixels, with 128 possible colors for each pixel. It's an enormously large
input space. To reduce the complexity, we'll choose a region of interest in the
image, convert it into grayscale, and resize it to an image of the size 80×80. We
do this using the preprocess function:

def preprocess(img):
 img_temp = img[31:195] # Choose the important area of the image
 img_temp = img_temp.mean(axis=2) # Convert to Grayscale#
 # Downsample image using nearest neighbour interpolation
 img_temp = imresize(img_temp, size=(IM_SIZE, IM_SIZE),
interp='nearest')
 return img_temp

The following screenshot shows the environment before and after the
preprocessing:

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf
https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

Reinforcement Learning for IoT Chapter 6

[194]

 The original environment, size 210× 160 (colored image) and the processed environment, size 80×80 (grayscale)

As you can see from the preceding diagram, it isn't possible to tell whether the3.
ball is coming down or going up. To deal with this problem, we combine four
consecutive states (due to four unique actions) as one input. We define a
function, update_state, that appends the current environment observation to
the previous state array:

def update_state(state, obs):
 obs_small = preprocess(obs)
 return np.append(state[1:], np.expand_dims(obs_small, 0),
axis=0)

Reinforcement Learning for IoT Chapter 6

[195]

The function appends the processed new state in the sliced state, ensuring that the
final input to the network consists of four frames. In the following screenshot, you
can see the four consecutive frames. This is the input to our DQN:

The input to DQN four consecutive game-states (frames)

We create a DQN that we define in the class DQN; it consists of three4.
convolutional layers, the output of the last convolutional layer is flattened, and
it's then followed by two fully connected layers. The network, as in the previous
case, tries to minimize the difference between Qtarget and Qpredicted. In the code, we're
using the RMSProp optimizer, but you can play around with other optimizers:

def __init__(self, K, scope, save_path= 'models/atari.ckpt'):
 self.K = K
 self.scope = scope
 self.save_path = save_path
 with tf.variable_scope(scope):
 # inputs and targets
 self.X = tf.placeholder(tf.float32, shape=(None, 4,
IM_SIZE, IM_SIZE), name='X')
 # tensorflow convolution needs the order to be:
 # (num_samples, height, width, "color")
 # so we need to tranpose later
 self.Q_target = tf.placeholder(tf.float32, shape=(None,),
name='G')
 self.actions = tf.placeholder(tf.int32, shape=(None,),
name='actions')
 # calculate output and cost
 # convolutional layers
 Z = self.X / 255.0
 Z = tf.transpose(Z, [0, 2, 3, 1])
 cnn1 = tf.contrib.layers.conv2d(Z, 32, 8, 4,
activation_fn=tf.nn.relu)
 cnn2 = tf.contrib.layers.conv2d(cnn1, 64, 4, 2,
activation_fn=tf.nn.relu)
 cnn3 = tf.contrib.layers.conv2d(cnn2, 64, 3, 1,

Reinforcement Learning for IoT Chapter 6

[196]

activation_fn=tf.nn.relu)
 # fully connected layers
 fc0 = tf.contrib.layers.flatten(cnn3)
 fc1 = tf.contrib.layers.fully_connected(fc0, 512)
 # final output layer
 self.predict_op = tf.contrib.layers.fully_connected(fc1, K)
 Qpredicted = tf.reduce_sum(self.predict_op *
tf.one_hot(self.actions, K),
 reduction_indices=[1])
 self.cost = tf.reduce_mean(tf.square(self.Q_target -
Qpredicted))
 self.train_op = tf.train.RMSPropOptimizer(0.00025, 0.99,
0.0, 1e-6).minimize(self.cost)

The necessary methods that we require for this class are discussed in the
following steps:

We add a method to return the predicted Q-values:5.

def predict(self, states):
 return self.session.run(self.predict_op, feed_dict={self.X:
states})

We need a method to determine the action with maximum value. In this method,6.
we also implemented the epsilon-greedy policy, and the value of epsilon is
changed in the main code:

def sample_action(self, x, eps):
 """Implements epsilon greedy algorithm"""
 if np.random.random() < eps:
 return np.random.choice(self.K)
 else:
 return np.argmax(self.predict([x])[0])

We need a method to update the weights of the network so as to minimize the7.
loss. The function can be defined as follows:

 def update(self, states, actions, targets):
 c, _ = self.session.run(
 [self.cost, self.train_op],
 feed_dict={
 self.X: states,
 self.Q_target: targets,
 self.actions: actions
 })
 return c

Reinforcement Learning for IoT Chapter 6

[197]

Copy the model weights to the fixed Q-Network:8.

def copy_from(self, other):
 mine = [t for t in tf.trainable_variables() if
t.name.startswith(self.scope)]
 mine = sorted(mine, key=lambda v: v.name)
 theirs = [t for t in tf.trainable_variables() if
t.name.startswith(other.scope)]
 theirs = sorted(theirs, key=lambda v: v.name)
 ops = []
 for p, q in zip(mine, theirs):
 actual = self.session.run(q)
 op = p.assign(actual)
 ops.append(op)
 self.session.run(ops)

Besides these methods, we need some helper functions to save the learned9.
network, load the saved network, and set the TensorFlow session:

def load(self):
 self.saver = tf.train.Saver(tf.global_variables())
 load_was_success = True
 try:
 save_dir = '/'.join(self.save_path.split('/')[:-1])
 ckpt = tf.train.get_checkpoint_state(save_dir)
 load_path = ckpt.model_checkpoint_path
 self.saver.restore(self.session, load_path)
 except:
 print("no saved model to load. starting new session")
 load_was_success = False
 else:
 print("loaded model: {}".format(load_path))
 saver = tf.train.Saver(tf.global_variables())
 episode_number = int(load_path.split('-')[-1])

def save(self, n):
 self.saver.save(self.session, self.save_path, global_step=n)
 print("SAVED MODEL #{}".format(n))

def set_session(self, session):
 self.session = session
 self.session.run(tf.global_variables_initializer())
 self.saver = tf.train.Saver()

Reinforcement Learning for IoT Chapter 6

[198]

To implement the DQN algorithm, we use a learn function; it picks a random10.
sample from the experience replay buffer and updates the Q-Network, using
target Q from the target Q-Network:

def learn(model, target_model, experience_replay_buffer, gamma,
batch_size):
 # Sample experiences
 samples = random.sample(experience_replay_buffer, batch_size)
 states, actions, rewards, next_states, dones = map(np.array,
zip(*samples))
 # Calculate targets
 next_Qs = target_model.predict(next_states)
 next_Q = np.amax(next_Qs, axis=1)
 targets = rewards + np.invert(dones).astype(np.float32) *
gamma * next_Q
 # Update model
 loss = model.update(states, actions, targets)
 return loss

Well, all of the ingredients are ready, so let's now decide the hyperparameters for11.
our DQN and create our environment:

Some Global parameters
MAX_EXPERIENCES = 500000
MIN_EXPERIENCES = 50000
TARGET_UPDATE_PERIOD = 10000
IM_SIZE = 80
K = 4 # env.action_space.n

hyperparameters etc
gamma = 0.97
batch_sz = 64
num_episodes = 2700
total_t = 0
experience_replay_buffer = []
episode_rewards = np.zeros(num_episodes)
last_100_avgs = []
epsilon for Epsilon Greedy Algorithm
epsilon = 1.0
epsilon_min = 0.1
epsilon_change = (epsilon - epsilon_min) / 700000

Create Atari Environment
env = gym.envs.make("Breakout-v0")

Create original and target Networks
model = DQN(K=K, scope="model")
target_model = DQN(K=K, scope="target_model")

Reinforcement Learning for IoT Chapter 6

[199]

And finally, the following is the code that calls then fills the experience replay12.
buffer, plays the game step by step, and trains the model network at every step
and target_model after every four steps:

with tf.Session() as sess:
 model.set_session(sess)
 target_model.set_session(sess)
 sess.run(tf.global_variables_initializer())
 model.load()
 print("Filling experience replay buffer...")
 obs = env.reset()
 obs_small = preprocess(obs)
 state = np.stack([obs_small] * 4, axis=0)
 # Fill experience replay buffer
 for i in range(MIN_EXPERIENCES):
 action = np.random.randint(0,K)
 obs, reward, done, _ = env.step(action)
 next_state = update_state(state, obs)
 experience_replay_buffer.append((state, action, reward,
next_state, done))
 if done:
 obs = env.reset()
 obs_small = preprocess(obs)
 state = np.stack([obs_small] * 4, axis=0)
 else:
 state = next_state
 # Play a number of episodes and learn
 for i in range(num_episodes):
 t0 = datetime.now()
 # Reset the environment
 obs = env.reset()
 obs_small = preprocess(obs)
 state = np.stack([obs_small] * 4, axis=0)
 assert (state.shape == (4, 80, 80))
 loss = None
 total_time_training = 0
 num_steps_in_episode = 0
 episode_reward = 0
 done = False
 while not done:
 # Update target network
 if total_t % TARGET_UPDATE_PERIOD == 0:
 target_model.copy_from(model)
 print("Copied model parameters to target
network. total_t = %s, period = %s" % (total_t,
TARGET_UPDATE_PERIOD))
 # Take action
 action = model.sample_action(state, epsilon)

Reinforcement Learning for IoT Chapter 6

[200]

 obs, reward, done, _ = env.step(action)
 obs_small = preprocess(obs)
 next_state = np.append(state[1:],
np.expand_dims(obs_small, 0), axis=0)
 episode_reward += reward
 # Remove oldest experience if replay buffer is full
 if len(experience_replay_buffer) ==
MAX_EXPERIENCES:
 experience_replay_buffer.pop(0)
 # Save the recent experience
 experience_replay_buffer.append((state, action,
reward, next_state, done))

 # Train the model and keep measure of time
 t0_2 = datetime.now()
 loss = learn(model, target_model,
experience_replay_buffer, gamma, batch_sz)
 dt = datetime.now() - t0_2
 total_time_training += dt.total_seconds()
 num_steps_in_episode += 1
 state = next_state
 total_t += 1
 epsilon = max(epsilon - epsilon_change,
epsilon_min)
 duration = datetime.now() - t0
 episode_rewards[i] = episode_reward
 time_per_step = total_time_training /
num_steps_in_episode
 last_100_avg = episode_rewards[max(0, i - 100):i +
1].mean()
 last_100_avgs.append(last_100_avg)
 print("Episode:", i,"Duration:", duration, "Num
steps:", num_steps_in_episode, "Reward:", episode_reward, "Training
time per step:", "%.3f" % time_per_step, "Avg Reward (Last 100):",
"%.3f" % last_100_avg,"Epsilon:", "%.3f" % epsilon)
 if i % 50 == 0:
 model.save(i)
 sys.stdout.flush()

#Plots
plt.plot(last_100_avgs)
plt.xlabel('episodes')
plt.ylabel('Average Rewards')
plt.show()
env.close()

Reinforcement Learning for IoT Chapter 6

[201]

We can see that now the reward is increasing with episodes, with an average
reward of 20 by the end, though it can be higher, then we had only learned few
thousand episodes and even our replay buffer with a size between (50,00 to
5,000,000):

 Average rewards as the agent learn

Let's see how our agent plays, after learning for about 2,700 episodes:13.

env = gym.envs.make("Breakout-v0")
frames = []
with tf.Session() as sess:
 model.set_session(sess)
 target_model.set_session(sess)
 sess.run(tf.global_variables_initializer())
 model.load()
 obs = env.reset()
 obs_small = preprocess(obs)
 state = np.stack([obs_small] * 4, axis=0)
 done = False
 while not done:
 action = model.sample_action(state, epsilon)
 obs, reward, done, _ = env.step(action)
 frames.append(env.render(mode='rgb_array'))
 next_state = update_state(state, obs)
 state = next_state

Reinforcement Learning for IoT Chapter 6

[202]

You can see the video of the learned agent here: https:/ /www. youtube. com/watch? v=rPy-
3NodgCE.

Cool, right? Without telling it anything, it learned to play a decent game after only 2,700
episodes.

There are some things that can help you to train the agent better:

Since training takes a lot of time, unless you have a strong
computational resource, it's better to save the model and restart
the saved model.
In the code, we used Breakout-v0 and OpenAI gym, in this
case, repeats the same step in the environment for consecutive
(randomly chosen 1, 2, 3 or 4) frames. You can instead choose
BreakoutDeterministic-v4, the one used by the DeepMind
team; here, the steps are repeated for exactly four consecutive
frames. The agent hence sees and selects the action after every
fourth frame.

Double DQN
Now, recall that, we're using a max operator to both select an action and to evaluate an
action. This can result in overestimated values for an action that may not be an ideal one.
We can take care of this problem by decoupling the selection from evaluation. With Double
DQN, we have two Q-Networks with different weights; both learn by random experience,
but one is used to determine the action using the epsilon-greedy policy and the other to
determine its value (hence, calculating the target Q).

To make it clearer, let's first see the case of the DQN. The action with maximum Q-value is
selected; let W be the weight of the DQN, then what we're doing is as follows:

The superscript W tells the weights used to approximate the Q-value. In Double DQN, the
equation changes to the following:

https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE
https://www.youtube.com/watch?v=rPy-3NodgCE

Reinforcement Learning for IoT Chapter 6

[203]

Note the change: now the action is chosen using the Q-Network with the weights W, and
max Q-value is predicted using a Q-Network with weights W'. This reduces
the overestimation and helps us to train the agent quickly and more reliably. You can access
the Deep Reinforcement Learning with Double Q-Learning paper here: https:/ /www. aaai. org/
ocs/index.php/AAAI/ AAAI16/ paper/ download/ 12389/ 11847.

Dueling DQN
Dueling DQN decouples the Q-function into the value function and advantage function.
The value function is the same as discussed earlier ; it represents the value of the state
independent of action. The advantage function, on the other hand, provides a relative
measure of the utility (advantage/goodness) of action a in the state s:

In Dueling DQN, the same convolutional is used to extract features but, in later stages, it's
separated into two separate networks, one providing the value and another providing the
advantage. Later, the two stages are recombined using an aggregating layer to estimate the
Q-value. This ensures that the network produces separate estimates for the value function
and the advantage function. The intuition behind this decoupling of value and advantage is
that, for many states, it's unnecessary to estimate the value of each action choice. For
example, in the car race, if there's no car in front, then the action turn left or turn right is not
required and so there's no need to estimate the value of these actions on the given state.
 This allows it to learn which states are valuable, without having to determine the effect of
each action for each state.

At the aggregate layer, the value and advantage are combined such that it's possible to
recover both V and A uniquely from a given Q. This is achieved by enforcing that the
advantage function estimator has zero advantage at the chosen action:

https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847

Reinforcement Learning for IoT Chapter 6

[204]

Here, θ is the parameter of the common convolutional feature extractor, and α and β are the
parameters for the advantage and value estimator network. The Dueling DQN too was
proposed by Google's DeepMind team. You can read the complete paper at arXiv: https:/ /
arxiv.org/abs/1511. 06581. The authors found that changing the preceding max operator
with an average operator increases the stability of the network. The advantage, in this case,
changes only as fast as the mean. Hence, in their results, they used the aggregate layer
given by the following:

The following screenshot shows the basic architecture of a Dueling DQN:

 The basic architecture of Dueling DQN

Policy gradients
In the Q-learning-based methods, we generated a policy after estimating a value/Q-
function. In policy-based methods, such as the policy gradient, we approximate the policy
directly.

https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581

Reinforcement Learning for IoT Chapter 6

[205]

Continuing as earlier, here, we use a neural network to approximate the policy. In the
simplest form, the neural network learns a policy for selecting the actions that maximize the
rewards by adjusting its weights using steepest gradient ascent, hence the name policy
gradients.

In policy gradients, the policy is represented by a neural network whose input is a
representation of states and whose output is action selection probabilities. The weights of
this network are the policy parameters that we need to learn. The natural question arises:
how should we update the weights of this network? Since our goal is to maximize rewards,
it makes sense that our network tries to maximize the expected rewards per episode:

Here, we've taken a parametrized stochastic policy π—that is, the policy determines the
probability of choosing an action a given state s, and the neural network parameters are θ. R
represents the sum of all of the rewards in an episode. The network parameters are then
updated using gradient ascent:

Here, η is the learning rate. Using the policy gradient theorem, we get the following:

Hence, instead of maximizing the expected return, we can use loss function as log-loss
(expected action and predicted action as labels and logits respectively) and the discounted
reward as the weight to train the network. For more stability, it has been found that adding
a baseline helps in variance reduction. The most common form of the baseline is the sum of
the discounted rewards, resulting in the following:

Reinforcement Learning for IoT Chapter 6

[206]

The baseline b(st) is as follows:

Here, γ is the discount factor.

Why policy gradients?
Well, first of all, policy gradients, like other policy-based methods, directly estimate the
optimal policy, without any need to store additional data (experience replay buffer). Hence,
it's simple to implement. Secondly, we can train it to learn true stochastic policies. And
finally, it's well suited for continuous action-space.

Pong using policy gradients
Let's try to use policy gradients to play a game of Pong. The Andrej Karpathy blog post,
at http://karpathy. github. io/ 2016/ 05/ 31/rl/ inspires the implementation here. Recall
that, in Breakout, we used four-game frames stacked together as input so that the game
dynamics are known to the agent; here, we use the difference between two consecutive
game frames as the input to the network. Hence, our agent has information about the
present state and the previous state with it:

The first step, as always, is importing the modules necessary. We import1.
TensorFlow, Numpy, Matplotlib, and gym for the environment:

import numpy as np
import gym
import matplotlib.pyplot as plt
import tensorflow as tf
from gym import wrappers
%matplotlib inline

http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/
http://karpathy.github.io/2016/05/31/rl/

Reinforcement Learning for IoT Chapter 6

[207]

We build our neural network, the PolicyNetwork; it takes as input the state of2.
the game, and outputs the action selection probabilities. Here, we build a simple
two-layered perceptron, with no biases. weights are initialized randomly using
the Xavier initialization. The hidden layer uses the ReLU activation function,
and the output layer uses the softmax activation function. We use
the tf_discount_rewards method defined later to calculate the baseline. And
finally, we've used TensorFlow tf.losses.log_loss with calculated action
probabilities as predictions, and chosen one-hot action vector as labels and
discounted reward corrected by variance as weight:

class PolicyNetwork(object):
 def __init__(self, N_SIZE, h=200, gamma=0.99, eta=1e-3,
decay=0.99, save_path = 'models1/pong.ckpt'):
 self.gamma = gamma
 self.save_path = save_path
 # Placeholders for passing state....
 self.tf_x = tf.placeholder(dtype=tf.float32, shape=[None,
N_SIZE * N_SIZE], name="tf_x")
 self.tf_y = tf.placeholder(dtype=tf.float32, shape=[None,
n_actions], name="tf_y")
 self.tf_epr = tf.placeholder(dtype=tf.float32, shape=[None,
1], name="tf_epr")

 # Weights
 xavier_l1 = tf.truncated_normal_initializer(mean=0,
stddev=1. / N_SIZE, dtype=tf.float32)
 self.W1 = tf.get_variable("W1", [N_SIZE * N_SIZE, h],
initializer=xavier_l1)
 xavier_l2 = tf.truncated_normal_initializer(mean=0,
stddev=1. / np.sqrt(h), dtype=tf.float32)
 self.W2 = tf.get_variable("W2", [h, n_actions],
initializer=xavier_l2)

 #Build Computation
 # tf reward processing (need tf_discounted_epr for policy
gradient wizardry)
 tf_discounted_epr = self.tf_discount_rewards(self.tf_epr)
 tf_mean, tf_variance = tf.nn.moments(tf_discounted_epr,
[0], shift=None, name="reward_moments")
 tf_discounted_epr -= tf_mean
 tf_discounted_epr /= tf.sqrt(tf_variance + 1e-6)

 #Define Optimizer, compute and apply gradients
 self.tf_aprob = self.tf_policy_forward(self.tf_x)
 loss = tf.losses.log_loss(labels = self.tf_y,
 predictions = self.tf_aprob,

Reinforcement Learning for IoT Chapter 6

[208]

 weights = tf_discounted_epr)
 optimizer = tf.train.AdamOptimizer()
 self.train_op = optimizer.minimize(loss)

The class has methods to calculate the action probabilities (tf_policy_forward3.
and predict_UP), calculate the baseline using tf_discount_rewards, update
the weights of the network (update), and finally set the session (set_session),
then load and save the model:

def set_session(self, session):
 self.session = session
 self.session.run(tf.global_variables_initializer())
 self.saver = tf.train.Saver()

def tf_discount_rewards(self, tf_r): # tf_r ~ [game_steps,1]
 discount_f = lambda a, v: a * self.gamma + v;
 tf_r_reverse = tf.scan(discount_f, tf.reverse(tf_r, [0]))
 tf_discounted_r = tf.reverse(tf_r_reverse, [0])
 return tf_discounted_r

def tf_policy_forward(self, x): #x ~ [1,D]
 h = tf.matmul(x, self.W1)
 h = tf.nn.relu(h)
 logp = tf.matmul(h, self.W2)
 p = tf.nn.softmax(logp)
 return p

def update(self, feed):
 return self.session.run(self.train_op, feed)

def load(self):
 self.saver = tf.train.Saver(tf.global_variables())
 load_was_success = True
 try:
 save_dir = '/'.join(self.save_path.split('/')[:-1])
 ckpt = tf.train.get_checkpoint_state(save_dir)
 load_path = ckpt.model_checkpoint_path
 print(load_path)
 self.saver.restore(self.session, load_path)
 except:
 print("no saved model to load. starting new session")
 load_was_success = False
 else:
 print("loaded model: {}".format(load_path))

Reinforcement Learning for IoT Chapter 6

[209]

 saver = tf.train.Saver(tf.global_variables())
 episode_number = int(load_path.split('-')[-1])

def save(self):
 self.saver.save(self.session, self.save_path, global_step=n)
 print("SAVED MODEL #{}".format(n))

def predict_UP(self,x):
 feed = {self.tf_x: np.reshape(x, (1, -1))}
 aprob = self.session.run(self.tf_aprob, feed);
 return aprob

Now that PolicyNetwork is made, we make a preprocess function to the 4.
game state; we won't process the complete 210×160 state space—instead, we'll
reduce it to an 80×80 state space, in binary, and finally flatten it:

downsampling
def preprocess(I):
 """
 prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector
 """
 I = I[35:195] # crop
 I = I[::2,::2,0] # downsample by factor of 2
 I[I == 144] = 0 # erase background (background type 1)
 I[I == 109] = 0 # erase background (background type 2)
 I[I != 0] = 1 # everything else (paddles, ball) just set to 1
 return I.astype(np.float).ravel()

Let's define some variables that we'll require to hold state, labels, rewards, and5.
action space size. We initialize the game state and instantiate the policy network:

Create Game Environment
env_name = "Pong-v0"
env = gym.make(env_name)
env = wrappers.Monitor(env, '/tmp/pong', force=True)
n_actions = env.action_space.n # Number of possible actions
Initializing Game and State(t-1), action, reward, state(t)
states, rewards, labels = [], [], []
obs = env.reset()
prev_state = None

running_reward = None
running_rewards = []
reward_sum = 0
n = 0
done = False
n_size = 80

Reinforcement Learning for IoT Chapter 6

[210]

num_episodes = 2500

#Create Agent
agent = PolicyNetwork(n_size)

Now we start the policy gradient algorithm. For each episode, the agent first6.
plays the game, storing the states, rewards, and actions chosen. Once a game is
over, it uses all of the stored data to train itself (just like in supervised learning).
And it repeats this process for as many episodes as you want:

with tf.Session() as sess:
 agent.set_session(sess)
 sess.run(tf.global_variables_initializer())
 agent.load()
 # training loop
 done = False
 while not done and n< num_episodes:
 # Preprocess the observation
 cur_state = preprocess(obs)
 diff_state = cur_state - prev_state if prev_state isn't
None else np.zeros(n_size*n_size)
 prev_state = cur_state

 #Predict the action
 aprob = agent.predict_UP(diff_state) ; aprob = aprob[0,:]
 action = np.random.choice(n_actions, p=aprob)
 #print(action)
 label = np.zeros_like(aprob) ; label[action] = 1

 # Step the environment and get new measurements
 obs, reward, done, info = env.step(action)
 env.render()
 reward_sum += reward

 # record game history
 states.append(diff_state) ; labels.append(label) ;
rewards.append(reward)

 if done:
 # update running reward
 running_reward = reward_sum if running_reward is None
else running_reward * 0.99 + reward_sum * 0.01
 running_rewards.append(running_reward)
 #print(np.vstack(rs).shape)
 feed = {agent.tf_x: np.vstack(states), agent.tf_epr:
np.vstack(rewards), agent.tf_y: np.vstack(labels)}
 agent.update(feed)
 # print progress console

Reinforcement Learning for IoT Chapter 6

[211]

 if n % 10 == 0:
 print ('ep {}: reward: {}, mean reward:
{:3f}'.format(n, reward_sum, running_reward))
 else:
 print ('\tep {}: reward: {}'.format(n, reward_sum))

 # Start next episode and save model
 states, rewards, labels = [], [], []
 obs = env.reset()
 n += 1 # the Next Episode

 reward_sum = 0
 if n % 50 == 0:
 agent.save()
 done = False

plt.plot(running_rewards)
plt.xlabel('episodes')
plt.ylabel('Running Averge')
plt.show()
env.close()

After training for 7,500 episodes, it started winning some games. After 1,2007.
episodes the winning rate improved, and it was winning 50% of the time.
After 20,000 episodes, the agent was winning most games. The complete code
is available at GitHub in the Policy gradients.ipynb file. And you can
see the game played by the agent after learning for 20,000 episodes
here: https:/ / youtu. be/ hZo7kAco8is. Note that, this agent learned to
oscillate around its position; it also learned to pass the force created by its
movement to the ball and has learned that the other player can be beaten
only by attacking shots.

https://youtu.be/hZo7kAco8is
https://youtu.be/hZo7kAco8is
https://youtu.be/hZo7kAco8is
https://youtu.be/hZo7kAco8is
https://youtu.be/hZo7kAco8is
https://youtu.be/hZo7kAco8is
https://youtu.be/hZo7kAco8is
https://youtu.be/hZo7kAco8is
https://youtu.be/hZo7kAco8is

Reinforcement Learning for IoT Chapter 6

[212]

The actor-critic algorithm
In the policy gradient method, we introduced the baseline to reduce variance, but still, both
action and baseline (look closely: the variance is the expected sum of rewards, or in other
words, the goodness of the state or its value function) were changing simultaneously.
Wouldn't it be better to separate the policy evaluation from the value evaluation? That's the
idea behind the actor-critic method. It consists of two neural networks, one approximating
the policy, called the actor-network, and the other approximating the value, called the
critic-network. We alternate between a policy evaluation and a policy improvement step,
resulting in more stable learning. The critic uses the state and action values to estimate a
value function, which is then used to update the actor's policy network parameters so that
the overall performance improves. The following diagram shows the basic architecture of
the actor-critic network:

Actor-critic architecture

Reinforcement Learning for IoT Chapter 6

[213]

Summary
In this chapter, we learned about RL and how it's different from supervised and
unsupervised learning. The emphasis of this chapter was on DRL, where deep neural
networks are used to approximate the policy function or the value function or even both.
This chapter introduced OpenAI gym, a library that provides a large number of
environments to train RL agents. We learned about the value-based methods such as Q-
learning and used it to train an agent to pick up and drop passengers off in a taxi. We also
used a DQN to train an agent to play a Atari game . This chapter then moved on to policy-
based methods, specifically policy gradients. We covered the intuition behind
policy gradients and used the algorithm to train an RL agent to play Pong.

In the next chapter, we'll explore generative models and learn the secrets behind generative
adversarial networks.

7
Generative Models for IoT

Machine learning (ML) and Artificial Intelligence (AI) have touched almost all fields
related to man. Agriculture, music, health, defense—you won't find a single field where AI
hasn't left its mark. The enormous success of AI/ML, besides the presence of computational
powers, also depends on the generation of a significant amount of data. The majority of the
data generated is unlabeled, and hence understanding the inherent distribution of the data
is an important ML task. It's here that generative models come into the picture.

In the past few years, deep generative models have shown great success in understanding
data distribution and have been used in a variety of applications. Two of the most popular
generative models are Variational Autoencoders (VAEs) and Generative Adversarial
Networks (GANs).

In this chapter, we'll learn about both VAEs and GANs and use them to generate images.
After reading this chapter, you'll have covered the following:

Knowing the difference between generative networks and discriminative
networks
Learning about VAEs
Understanding the intuitive functioning of GANs
Implementing a vanilla GAN and using it to generate handwritten digits
Knowing the most popular variation of GAN, the Deep Convolutional GAN
Implementing the Deep Convolutional GAN in TensorFlow and using it to
generate faces
Knowing further modifications and applications of GANs

Generative Models for IoT Chapter 7

[215]

Introduction
Generative models are an exciting new branch of deep learning models that learn through
unsupervised learning. The main idea is to generate new samples having the same
distribution as the given training data; for example, a network trained on handwritten
digits can create new digits that aren't in the dataset but are similar to them. Formally, we
can say that if the training data follows the distribution Pdata(x), then the goal of generative
models is to estimate the probability density function Pmodel(x), which is similar to Pdata(x).

Generative models can be classified into two types:

Explicit generative models: Here, the probability density function Pmodel(x) is
explicitly defined and solved. The density function may be tractable as in the case
of PixelRNN/CNN, or an approximation of the density function as in the case of
VAE.
Implicit generative models: In these, the network learns to generate a sample
from Pmodel(x) without explicitly defining it. GANs are an example of this type of
generative model.

In this chapter, we'll explore VAE, an explicit generative model, and GAN, an implicit
generative model. Generative models can be instrumental in generating realistic samples,
and they can be used to perform super-resolution, colorization, and so on. With time series
data, we can even use them for simulation and planning. And last but not least, they can
also help us in understanding the latent representation of data.

Generative Models for IoT Chapter 7

[216]

Generating images using VAEs
From Chapter 4, Deep Learning for IOT, you should be familiar with autoencoders and their
functions. VAEs are a type of autoencoder; here, we retain the (trained) Decoder part,
which can be used by feeding random latent features z to generate data similar to the
training data. Now, if you remember, in autoencoders, the Encoder results in the
generation of low-dimensional features, z:

The architecture of autoencoders

The VAEs are concerned with finding the likelihood function p(x) from the latent features
z:

Generative Models for IoT Chapter 7

[217]

This is an intractable density function, and it isn't possible to directly optimize it; instead,
we obtain a lower bound by using a simple Gaussian prior p(z) and making both Encoder
and Decoder networks probabilistic:

 Architecture of a VAE

This allows us to define a tractable lower bound on the log likelihood, given by the
following:

In the preceding, θ represents the decoder network parameters and φ the encoder network
parameters. The network is trained by maximizing this lower bound:

Generative Models for IoT Chapter 7

[218]

The first term in the lower bound is responsible for the reconstruction of the input data, and
the second term for making the approximate posterior distribution close to prior. Once
trained, the encoder network works as a recognition or inference network, and the decoder
network acts as the generator.

You can refer to the detailed derivation in the paper titled Auto-Encoding
Variational Bayes by Diederik P Kingma and Max Welling, presented at
ICLR 2014 (https:/ /arxiv. org/abs/ 1312. 6114).

VAEs in TensorFlow
Let's now see VAE in action. In this example code, we'll be using the standard MNIST
dataset and train a VAE to generate handwritten digits. Since the MNIST dataset is simple,
the encoder and decoder network will consist of only fully connected layers; this will allow
us to concentrate on the VAE architecture. If you plan to generate complex images (such as
CIFAR-10), you'll need to modify the encoder and decoder network to convolution and
deconvolution networks:

The first step as in all previous cases is to import all of the necessary modules.1.
Here, we'll use the TensorFlow higher API, tf.contrib, to make the fully
connected layers. Note that this saves us from the hassle of declaring weights and
biases for each layer independently:

import numpy as np
import tensorflow as tf

import matplotlib.pyplot as plt
%matplotlib inline

from tensorflow.contrib.layers import fully_connected

We read the data. The MNIST dataset is available in TensorFlow tutorials, so2.
we'll take it directly from there:

Load MNIST data in a format suited for tensorflow.
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
n_samples = mnist.train.num_examples
n_input = mnist.train.images[0].shape[0]

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114

Generative Models for IoT Chapter 7

[219]

We define the VariationalAutoencoder class; this class is the core code. It3.
contains methods for defining the encoder and decoder network. The encoder
generates the mean and variance of the latent feature z as z_mu and z_sigma
respectively. Using these, a sample Z is taken. The latent feature z is then passed
to the decoder network to generate x_hat. The network minimizes the sum of
the reconstruction loss and latent loss using the Adam optimizer. The class also
defines methods for reconstruction, generation, transformation (to latent space),
and training a single step:

class VariationalAutoencoder(object):
 def __init__(self,n_input, n_z,
 learning_rate=0.001, batch_size=100):
 self.batch_size = batch_size
 self.n_input = n_input
 self.n_z = n_z

 # Place holder for the input
 self.x = tf.placeholder(tf.float32, shape = [None,
n_input])

 # Use Encoder Network to determine mean and
 # (log) variance of Gaussian distribution in the latent
space
 self.z_mean, self.z_log_sigma_sq = self._encoder_network()
 # Draw a sample z from Gaussian distribution
 eps = tf.random_normal((self.batch_size, n_z), 0, 1,
dtype=tf.float32)
 # z = mu + sigma*epsilon
 self.z =
tf.add(self.z_mean,tf.multiply(tf.sqrt(tf.exp(self.z_log_sigma_sq))
, eps))
 # Use Decoder network to determine mean of
 # Bernoulli distribution of reconstructed input
 self.x_hat = self._decoder_network()

 # Define loss function based variational upper-bound and
 # corresponding optimizer
 # define generation loss
 reconstruction_loss = \
 -tf.reduce_sum(self.x * tf.log(1e-10 + self.x_hat)
 + (1-self.x) * tf.log(1e-10 + 1 - self.x_hat), 1)
 self.reconstruction_loss =
tf.reduce_mean(reconstruction_loss)

 latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq

Generative Models for IoT Chapter 7

[220]

 - tf.square(self.z_mean)- tf.exp(self.z_log_sigma_sq),
1)
 self.latent_loss = tf.reduce_mean(latent_loss)
 self.cost = tf.reduce_mean(reconstruction_loss +
latent_loss)
 # average over batch
 # Define the optimizer
 self.optimizer =
tf.train.AdamOptimizer(learning_rate).minimize(self.cost)

 # Initializing the tensor flow variables
 init = tf.global_variables_initializer()
 # Launch the session
 self.sess = tf.InteractiveSession()
 self.sess.run(init)

 # Create encoder network
 def _encoder_network(self):
 # Generate probabilistic encoder (inference network), which
 # maps inputs onto a normal distribution in latent space.
 layer_1 =
fully_connected(self.x,500,activation_fn=tf.nn.softplus)
 layer_2 = fully_connected(layer_1, 500,
activation_fn=tf.nn.softplus)
 z_mean = fully_connected(layer_2,self.n_z,
activation_fn=None)
 z_log_sigma_sq = fully_connected(layer_2, self.n_z,
activation_fn=None)
 return (z_mean, z_log_sigma_sq)

 # Create decoder network
 def _decoder_network(self):
 # Generate probabilistic decoder (generator network), which
 # maps points in the latent space onto a Bernoulli
distribution in the data space.
 layer_1 =
fully_connected(self.z,500,activation_fn=tf.nn.softplus)
 layer_2 = fully_connected(layer_1, 500,
activation_fn=tf.nn.softplus)
 x_hat = fully_connected(layer_2, self.n_input,
activation_fn=tf.nn.sigmoid)

 return x_hat

Generative Models for IoT Chapter 7

[221]

 def single_step_train(self, X):
 _,cost,recon_loss,latent_loss =
self.sess.run([self.optimizer,
self.cost,self.reconstruction_loss,self.latent_loss],feed_dict={sel
f.x: X})
 return cost, recon_loss, latent_loss

 def transform(self, X):
 """Transform data by mapping it into the latent space."""
 # Note: This maps to mean of distribution, we could
alternatively
 # sample from Gaussian distribution
 return self.sess.run(self.z_mean, feed_dict={self.x: X})

 def generate(self, z_mu=None):
 """ Generate data by sampling from latent space.

 If z_mu isn't None, data for this point in latent space is
 generated. Otherwise, z_mu is drawn from prior in latent
 space.
 """
 if z_mu is None:
 z_mu = np.random.normal(size=n_z)
 # Note: This maps to mean of distribution, we could
alternatively
 # sample from Gaussian distribution
 return self.sess.run(self.x_hat,feed_dict={self.z: z_mu})

 def reconstruct(self, X):
 """ Use VAE to reconstruct given data. """
 return self.sess.run(self.x_hat, feed_dict={self.x: X})

With all ingredients in place, let's train our VAE. We do this with the help of4.
the train function:

def train(n_input,n_z, learning_rate=0.001,
 batch_size=100, training_epochs=10, display_step=5):
 vae = VariationalAutoencoder(n_input,n_z,
 learning_rate=learning_rate,
 batch_size=batch_size)
 # Training cycle
 for epoch in range(training_epochs):
 avg_cost, avg_r_loss, avg_l_loss = 0., 0., 0.
 total_batch = int(n_samples / batch_size)
 # Loop over all batches
 for i in range(total_batch):
 batch_xs, _ = mnist.train.next_batch(batch_size)
 # Fit training using batch data

Generative Models for IoT Chapter 7

[222]

 cost,r_loss, l_loss = vae.single_step_train(batch_xs)
 # Compute average loss
 avg_cost += cost / n_samples * batch_size
 avg_r_loss += r_loss / n_samples * batch_size
 avg_l_loss += l_loss / n_samples * batch_size
 # Display logs per epoch step
 if epoch % display_step == 0:
 print("Epoch: {:4d} cost={:.4f} Reconstruction loss =
{:.4f} Latent Loss =
{:.4f}".format(epoch,avg_cost,avg_r_loss,avg_l_loss))
 return vae

In the following screenshot, you can see the reconstructed digits (left) and5.
generated handwritten digits (right) for a VAE with the latent space of size 10:

Generative Models for IoT Chapter 7

[223]

As discussed earlier, the encoder network reduces the dimensions of the input6.
space. To make it clearer, we reduce the dimension of latent space to 2. In the
following, you can see that each label is separated in the two-dimensional z-
space:

The reconstructed and generated digits from a VAE with a latent space of the7.
dimension 2 are as follows:

Generative Models for IoT Chapter 7

[224]

The interesting thing to note from the preceding screenshot (right) is how changing the
values of the two-dimensional z results in different strokes and different numbers. The
complete code is on GitHub in Chapter 07, in the file
named VariationalAutoEncoders_MNIST.ipynb:

tf.contrib.layers.fully_connected(
 inputs,
 num_outputs,
 activation_fn=tf.nn.relu,
 normalizer_fn=None,
 normalizer_params=None,
 weights_initializer=intializers.xavier_intializer(),
 weights_regularizer= None,
 biases_initializer=tf.zeros_intializer(),
 biases_regularizer=None,
 reuse=None,
 variables_collections=None,
 outputs_collections=None,
 trainable=True,
 scope=None
)

The layers (contrib) is a higher level package included in TensorFlow. It
provides operations for building neural network layers, regularizers,
summaries, and so on. In the preceding code, we used
the tf.contrib.layers.fully_connected() operation , defined
in tensorflow/contrib/layers/python/layers/layers.py, which adds a
fully connected layer. By default, it creates weights representing a fully
connected interconnection matrix, initialized by default using the Xavier
initialization. It also creates biases initialized to zero. It provides an option
for choosing normalization and activation function as well.

GANs
GANs are implicit generative networks. During a session at Quora, Yann LeCun, Director
of AI Research at Facebook and Professor at NYU, described GANs as the most interesting
idea in the last 10 years in ML. At present, lots of research is happening in GANs. Major
AI/ML conferences conducted in the last few years have reported a majority of papers
related to GANs.

https://www.github.com/tensorflow/tensorflow/blob/r1.10/tensorflow/contrib/layers/python/layers/layers.py

Generative Models for IoT Chapter 7

[225]

GANs were proposed by Ian J. Goodfellow and Yoshua Bengio in the paper Generative
Adversarial Networks in the year 2014 (https:/ /arxiv. org/ abs/ 1406. 2661). They're
inspired by the two-player game scenario. Like the two players of the game, in GANs, two
networks—one called the discriminative network and the other the generative
network—compete with each other. The generative network tries to generate data similar
to the input data, and the discriminator network has to identify whether the data it's seeing
is real or fake (that is, generated by a generator). Every time the discriminator finds a
difference between the distribution of true input and fake data, the generator adjusts its
weights to reduce the difference. To summarize, the discriminative network tries to learn
the boundary between counterfeit and real data, and the generative network tries to learn
the distribution of training data. As the training ends, the generator learns to produce
images exactly like the input data distribution, and the discriminator can no longer
differentiate the two. The general architecture of a GAN is as follows:

Architecture of GANs

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661

Generative Models for IoT Chapter 7

[226]

Let's now delve deep into how GANs learn. Both the discriminator and generator take
turns to learn. The learning can be divided into two steps:

Here the Discriminator, D(x), learns. The Generator, G(z), is used to generate1.
Fake Images from random noise z (which follows some Prior distribution P(z)).
The Fake Images from the Generator and the Real Images from the training
dataset are both fed to the Discriminator and it performs supervised learning
trying to separate fake from real. If Pdata(x) is the training dataset distribution,
then the Discriminator Network tries to maximize its objective so that D(x) is
close to 1 when the input data is real, and close to 0 when the input data is fake.
This can be achieved by performing the gradient ascent on the following
objective function:

In the next step, the Generator Network learns. Its goal is to fool the2.
Discriminator Network into thinking that generated G(z) is real, that is, force
D(G(z)) close to 1. To achieve this, the Generator Network minimizes the
objective:

The two steps are repeated sequentially. Once the training ends, the discriminator is no
longer able to discriminate between real and fake data and the generator becomes a pro at
creating data very similar to the training data. Well, it's easier said than done: as you
experiment with GANs, you'll find that the training isn't very stable. It's an open research
issue, and many variants of GAN have been proposed to rectify the problem.

Generative Models for IoT Chapter 7

[227]

Implementing a vanilla GAN in TensorFlow
In this section, we'll write a TensorFlow code to implement a GAN, as we learned in the
previous section. We'll use simple MLP networks for both the discriminator and generator.
And for simplicity, we'll use the MNIST dataset:

As always, the first step is to add all of the necessary modules. Since we'll need to1.
access and train the generator and discriminator parameters alternatively, we'll
define our weights and biases in the present code for clarity. It's always better to
initialize weights using the Xavier initialization and biases to all zeros. So, we
also import from TensorFlow a method to perform Xavier initialization, from
tensorflow.contrib.layers import xavier_initializer:

import the necessaey modules
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
from tensorflow.contrib.layers import xavier_initializer
%matplotlib inline

Let's read the data and define hyperparameters:2.

Load data
from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets('MNIST_data', one_hot=True)

define hyperparameters
batch_size = 128
Z_dim = 100
im_size = 28
h_size=128
learning_rate_D = .0005
learning_rate_G = .0006

We define the training parameters for both generator and discriminator. We also3.
define the placeholders for input X and latent Z:

#Create Placeholder for input X and random noise Z
X = tf.placeholder(tf.float32, shape=[None, im_size*im_size])
Z = tf.placeholder(tf.float32, shape=[None, Z_dim])
initializer=xavier_initializer()

Define Discriminator and Generator training variables
#Discriminiator

Generative Models for IoT Chapter 7

[228]

D_W1 = tf.Variable(initializer([im_size*im_size, h_size]))
D_b1 = tf.Variable(tf.zeros(shape=[h_size]))

D_W2 = tf.Variable(initializer([h_size, 1]))
D_b2 = tf.Variable(tf.zeros(shape=[1]))

theta_D = [D_W1, D_W2, D_b1, D_b2]

#Generator
G_W1 = tf.Variable(initializer([Z_dim, h_size]))
G_b1 = tf.Variable(tf.zeros(shape=[h_size]))

G_W2 = tf.Variable(initializer([h_size, im_size*im_size]))
G_b2 = tf.Variable(tf.zeros(shape=[im_size*im_size]))

theta_G = [G_W1, G_W2, G_b1, G_b2]

Now that we have the placeholders and weights in place, we define functions for 4.
generating random noise from Z. Here, we're using a uniform distribution to
generate noise; people have also experimented with using Gaussian noise—to do
so, you just change the random function from uniform to normal:

def sample_Z(m, n):
 return np.random.uniform(-1., 1., size=[m, n])

We construct the discriminator and generator networks:5.

def generator(z):
 """ Two layer Generator Network Z=>128=>784 """
 G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
 G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
 G_prob = tf.nn.sigmoid(G_log_prob)
 return G_prob

def discriminator(x):
 """ Two layer Discriminator Network X=>128=>1 """
 D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
 D_logit = tf.matmul(D_h1, D_W2) + D_b2
 D_prob = tf.nn.sigmoid(D_logit)
 return D_prob, D_logit

Generative Models for IoT Chapter 7

[229]

We'll also need a helper function to plot the handwritten digits generated. The6.
following function plots 25 samples generated in a grid of 5×5:

def plot(samples):
 """function to plot generated samples"""
 fig = plt.figure(figsize=(10, 10))
 gs = gridspec.GridSpec(5, 5)
 gs.update(wspace=0.05, hspace=0.05)
 for i, sample in enumerate(samples):
 ax = plt.subplot(gs[i])
 plt.axis('off')
 ax.set_xticklabels([])
 ax.set_yticklabels([])
 ax.set_aspect('equal')
 plt.imshow(sample.reshape(28, 28), cmap='gray')
 return fig

Now, we define the TensorFlow operations to generate a sample from the7.
generator and a prediction from the discriminator for both fake and real input
data:

G_sample = generator(Z)
D_real, D_logit_real = discriminator(X)
D_fake, D_logit_fake = discriminator(G_sample)

Next, we define cross-entropy losses for the generator and discriminator8.
network, and alternatively, minimize them, keeping the other weight parameters
frozen:

D_loss_real =
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_log
it_real, labels=tf.ones_like(D_logit_real)))
D_loss_fake =
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_log
it_fake, labels=tf.zeros_like(D_logit_fake)))
D_loss = D_loss_real + D_loss_fake
G_loss =
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_log
it_fake, labels=tf.ones_like(D_logit_fake)))

D_solver =
tf.train.AdamOptimizer(learning_rate=learning_rate_D).minimize(D_lo
ss, var_list=theta_D)
G_solver =
tf.train.AdamOptimizer(learning_rate=learning_rate_G).minimize(G_lo
ss, var_list=theta_G)

Generative Models for IoT Chapter 7

[230]

Finally, let's perform the training within a TensorFlow session:9.

sess = tf.Session()
sess.run(tf.global_variables_initializer())
GLoss = []
DLoss = []
if not os.path.exists('out/'):
 os.makedirs('out/')

for it in range(100000):
 if it % 100 == 0:
 samples = sess.run(G_sample, feed_dict={Z: sample_Z(25,
Z_dim)})
 fig = plot(samples)
 plt.savefig('out/{}.png'.format(str(it).zfill(3)),
bbox_inches='tight')
 plt.close(fig)
 X_mb, _ = data.train.next_batch(batch_size)
 _, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X:
X_mb, Z: sample_Z(batch_size, Z_dim)})
 _, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Z:
sample_Z(batch_size, Z_dim)})
 GLoss.append(G_loss_curr)
 DLoss.append(D_loss_curr)
 if it % 100 == 0:
 print('Iter: {} D loss: {:.4} G_loss:
{:.4}'.format(it,D_loss_curr, G_loss_curr))

print('Done')

Generative Models for IoT Chapter 7

[231]

In the following screenshot, you can see how the loss for both the generative and10.
discriminatives network varies:

Loss for both generative and discriminatives network

Let's also see the handwritten digits generated at different epochs:11.

Handwritten digits

Generative Models for IoT Chapter 7

[232]

While the handwritten digits are good enough, we can see that a lot of improvements can
be made. Some approaches used by researchers to stabilize the performance are as follows:

Normalize the input images from (0,1) to (-1,1). And, instead of the sigmoid as
the activation function for the final output of the generator, use the tangent
hyperbolic activation function.
Instead of minimizing the generator loss minimum log 1-D, we can maximize
the loss maximum log D; this can be achieved in TensorFlow by simply flipping
the labels while training the generator, for example (convert real into fake and
fake into real).
Another approach is to store previously generated images and train the
discriminator by choosing randomly from them. (Yes, you guessed right—it's
similar to the experience replay buffer we learned in Chapter 6, Reinforcement
Learning for IoT.)
People have also experimented with updating the generator or discriminator
only if their loss is above a certain threshold.
Instead of the ReLU activation function for the hidden layers of the discriminator
and generator, use Leaky ReLU.

Deep Convolutional GANs
In 2016, Alec Radford et al. proposed a variation of the GAN called the Deep
Convolutional GAN (DCGAN). (The link to the full paper is: https:/ /arxiv. org/ abs/
1511.06434.) They replaced the MLP layers with convolutional layers. They also added
batch normalization in both the generator and discriminator networks. We'll implement
DCGAN here on a celebrity images dataset. You can download the ZIP
file, img_align_celeba.zip, from http:/ / mmlab. ie.cuhk. edu. hk/ projects/ CelebA.
html. We make use of the loader_celebA.py file we made in Chapter 2, Data Access and
Distributed Processing for IoT, to unzip and read the images:

We'll import statements for all of the modules we'll be requiring:1.

import loader
import os
from glob import glob
import numpy as np
from matplotlib import pyplot
import tensorflow as tf
%matplotlib inline

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Generative Models for IoT Chapter 7

[233]

We use loader_celebA.py to unzip img_align_celeba.zip. Since the2.
number of images is very high, we use the get_batches function defined in this
file to generate batches for training the network:

loader.download_celeb_a()

Let's explore the images
data_dir = os.getcwd()
test_images = loader.get_batch(glob(os.path.join(data_dir,
'celebA/*.jpg'))[:10], 56, 56)
pyplot.imshow(loader.plot_images(test_images))

In the following, you can see the dataset images:

We define the discriminator network. It consists of three convolutional layers3.
with 64, 128, and 256 filters respectively, each of size 5×5. The first two layers
use a stride of 2 and the third convolutional layer uses a stride of 1. All three
convolutional layers use leakyReLU as the activation function. Each
convolutional layer is also followed by a batch normalization layer. The result of
the third convolutional layer is flattened and passed to the last fully connected
(dense) layer with the sigmoid activation function:

def discriminator(images, reuse=False):
 """
 Create the discriminator network
 """
 alpha = 0.2

 with tf.variable_scope('discriminator', reuse=reuse):

Generative Models for IoT Chapter 7

[234]

 # using 4 layer network as in DCGAN Paper

 # First convolution layer
 conv1 = tf.layers.conv2d(images, 64, 5, 2, 'SAME')
 lrelu1 = tf.maximum(alpha * conv1, conv1)

 # Second convolution layer
 conv2 = tf.layers.conv2d(lrelu1, 128, 5, 2, 'SAME')
 batch_norm2 = tf.layers.batch_normalization(conv2,
training=True)
 lrelu2 = tf.maximum(alpha * batch_norm2, batch_norm2)
 # Third convolution layer
 conv3 = tf.layers.conv2d(lrelu2, 256, 5, 1, 'SAME')
 batch_norm3 = tf.layers.batch_normalization(conv3,
training=True)
 lrelu3 = tf.maximum(alpha * batch_norm3, batch_norm3)
 # Flatten layer
 flat = tf.reshape(lrelu3, (-1, 4*4*256))
 # Logits
 logits = tf.layers.dense(flat, 1)
 # Output
 out = tf.sigmoid(logits)
 return out, logits

The generator network is the reverse of the discriminator; the input to the4.
generator is first fed to a dense layer with 2×2×512 units. The output of the dense
layer is reshaped so that we can feed it to the convolution stack. We use
the tf.layers.conv2d_transpose() method to get the transposed
convolution output. The generator has three transposed convolutional layers. All
of the layers except the last convolutional layer have leakyReLU as the activation
function. The last transposed convolution layer uses the tangent hyperbolic
activation function so that output lies in the range (-1 to 1):

def generator(z, out_channel_dim, is_train=True):
 """
 Create the generator network
 """
 alpha = 0.2
 with tf.variable_scope('generator', reuse=False if
is_train==True else True):
 # First fully connected layer
 x_1 = tf.layers.dense(z, 2*2*512)
 # Reshape it to start the convolutional stack
 deconv_2 = tf.reshape(x_1, (-1, 2, 2, 512))
 batch_norm2 = tf.layers.batch_normalization(deconv_2,
training=is_train)
 lrelu2 = tf.maximum(alpha * batch_norm2, batch_norm2)

Generative Models for IoT Chapter 7

[235]

 # Deconv 1
 deconv3 = tf.layers.conv2d_transpose(lrelu2, 256, 5, 2,
padding='VALID')
 batch_norm3 = tf.layers.batch_normalization(deconv3,
training=is_train)
 lrelu3 = tf.maximum(alpha * batch_norm3, batch_norm3)
 # Deconv 2
 deconv4 = tf.layers.conv2d_transpose(lrelu3, 128, 5, 2,
padding='SAME')
 batch_norm4 = tf.layers.batch_normalization(deconv4,
training=is_train)
 lrelu4 = tf.maximum(alpha * batch_norm4, batch_norm4)
 # Output layer
 logits = tf.layers.conv2d_transpose(lrelu4,
out_channel_dim, 5, 2, padding='SAME')
 out = tf.tanh(logits)
 return out

We define functions to calculate the model loss; it defines both the generator and5.
discriminator loss and returns them:

def model_loss(input_real, input_z, out_channel_dim):
 """
 Get the loss for the discriminator and generator
 """
 label_smoothing = 0.9
 g_model = generator(input_z, out_channel_dim)
 d_model_real, d_logits_real = discriminator(input_real)
 d_model_fake, d_logits_fake = discriminator(g_model,
reuse=True)
 d_loss_real = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real,
labels=tf.ones_like(d_model_real) * label_smoothing))
 d_loss_fake = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.zeros_like(d_model_fake)))
 d_loss = d_loss_real + d_loss_fake
 g_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,
labels=tf.ones_like(d_model_fake) * label_smoothing))
 return d_loss, g_loss

Generative Models for IoT Chapter 7

[236]

We next need to define optimizers to make the discriminator and generator learn6.
sequentially. To achieve this, we make use of tf.trainable_variables() to
get a list of all training variables, and then first optimize only the discriminator
training variables, and then the generator training variables:

def model_opt(d_loss, g_loss, learning_rate, beta1):
 """
 Get optimization operations
 """
 t_vars = tf.trainable_variables()
 d_vars = [var for var in t_vars if
var.name.startswith('discriminator')]
 g_vars = [var for var in t_vars if
var.name.startswith('generator')]

 # Optimize
 with
tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS))
:
 d_train_opt = tf.train.AdamOptimizer(learning_rate,
beta1=beta1).minimize(d_loss, var_list=d_vars)
 g_train_opt = tf.train.AdamOptimizer(learning_rate,
beta1=beta1).minimize(g_loss, var_list=g_vars)

 return d_train_opt, g_train_opt

Now, we have all of the necessary ingredients to train the DCGAN. It's always7.
good to keep an eye how the generator has learned, so we define a helper
function to display the images generated by the generator network as it learns:

def generator_output(sess, n_images, input_z, out_channel_dim):
 """
 Show example output for the generator
 """
 z_dim = input_z.get_shape().as_list()[-1]
 example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

 samples = sess.run(
 generator(input_z, out_channel_dim, False),
 feed_dict={input_z: example_z})

 pyplot.imshow(loader.plot_images(samples))
 pyplot.show()

Generative Models for IoT Chapter 7

[237]

Finally, comes the training part. Here, we use the ops defined previously to train8.
the DCGAN, and the images are fed to the network in batches:

def train(epoch_count, batch_size, z_dim, learning_rate, beta1,
get_batches, data_shape, data_files):
 """
 Train the GAN
 """
 w, h, num_ch = data_shape[1], data_shape[2], data_shape[3]
 X = tf.placeholder(tf.float32, shape=(None, w, h, num_ch),
name='input_real')
 Z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
 #model_inputs(data_shape[1], data_shape[2], data_shape[3],
z_dim)
 D_loss, G_loss = model_loss(X, Z, data_shape[3])
 D_solve, G_solve = model_opt(D_loss, G_loss, learning_rate,
beta1)
 with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 train_loss_d = []
 train_loss_g = []
 for epoch_i in range(epoch_count):
 num_batch = 0
 lossD, lossG = 0,0
 for batch_images in get_batches(batch_size, data_shape,
data_files):
 # values range from -0.5 to 0.5 so we scale to
range -1, 1
 batch_images = batch_images * 2
 num_batch += 1
 batch_z = np.random.uniform(-1, 1,
size=(batch_size, z_dim))
 _,d_loss = sess.run([D_solve,D_loss], feed_dict={X:
batch_images, Z: batch_z})
 _,g_loss = sess.run([G_solve,G_loss], feed_dict={X:
batch_images, Z: batch_z})
 lossD += (d_loss/batch_size)
 lossG += (g_loss/batch_size)
 if num_batch % 500 == 0:
 # After every 500 batches
 print("Epoch {}/{} For Batch {} Discriminator
Loss: {:.4f} Generator Loss: {:.4f}".
 format(epoch_i+1, epochs, num_batch,
lossD/num_batch, lossG/num_batch))
 generator_output(sess, 9, Z, data_shape[3])
 train_loss_d.append(lossD/num_batch)
 train_loss_g.append(lossG/num_batch)
 return train_loss_d, train_loss_g

Generative Models for IoT Chapter 7

[238]

Let's now define the parameters of our data and train it:9.

Data Parameters
IMAGE_HEIGHT = 28
IMAGE_WIDTH = 28
data_files = glob(os.path.join(data_dir, 'celebA/*.jpg'))

#Hyper parameters
batch_size = 16
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5
epochs = 2
shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, 3
with tf.Graph().as_default():
 Loss_D, Loss_G = train(epochs, batch_size, z_dim,
learning_rate, beta1, loader.get_batches, shape, data_files)

After each batch, you can see that the generator output is improving:

 DCGAN generator output as learning progresses

Variants of GAN and its cool applications
In the last few years, a large number of variants of GANs have been proposed. You can
access the complete list of different variants of GAN from the GAN Zoo GitHub: https:/ /
github.com/hindupuravinash/ the- gan- zoo. In this section, we'll list some of the more
popular and successful variants.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo

Generative Models for IoT Chapter 7

[239]

Cycle GAN
At the beginning of the 2018, the Berkeley AI research lab published a paper entitled
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks (arXiv link:
https://arxiv.org/ pdf/ 1703. 10593. pdf). This paper is special not only because it
proposed a new architecture, CycleGAN, with improved stability, but also because they
demonstrated that such an architecture can be used for complex image transformations.
The following diagram shows the architecture of a cycle GAN; the two sections highlight
the Generator and Discriminators playing a role in calculating the two adversarial losses:

 The architecture of CycleGAN

https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf
https://arxiv.org/pdf/1703.10593.pdf

Generative Models for IoT Chapter 7

[240]

The CycleGAN consists of two GANs. They are trained on two different datasets, x∼Pdata(x)
and y∼Pdata(y). The generator is trained to perform the mappings, namely, GA: x→y and GB:
y→x respectively. Each discriminator is trained so that it can differentiate between the
image x and transformed image GB(y), hence resulting in the adversary loss functions for
the two transformations, defined as follows:

And, the second is as follows:

The generators of the two GANs are connected to each other in a cyclic fashion, so that if
the output of one is fed to another and the corresponding output fed back to the first one,
we get the same data. Let's make it clearer with an example; let's say the Generator A (GA)
is fed an image x, so the output is a transformation GA(x). This transformed image now is
fed to Generator B (GB) GB(GA(x))≈x and the result should be the initial image x. Similarly,
we shall have GA(GB(y)≈y. This is made possible by introducing a cyclic loss term:

Hence, the net objective function is as follows:

Generative Models for IoT Chapter 7

[241]

Here, λ controls the relative importance of the two objectives. They also retained previous
images in an experience buffer to train the discriminator. In the following screenshot, you
can see some of the results obtained from the CycleGANs as reported in the paper:

Results of CycleGAN (taken from the original paper)

Generative Models for IoT Chapter 7

[242]

The authors showed that CycleGANs can be used for the following:

Image transformation: Such as changing horses to zebra and vice versa
Enhancing the resolution: The CycleGAN, when trained by a dataset consisting
of low-resolution and super-resolution images, could perform super-resolution
when given with low-resolution images
Style transfer: Given an image, it can be transformed into different painting
styles

Applications of GANs
GANs are indeed interesting networks; besides the applications you've seen, GANs have
been explored in many other exciting applications. In the following, we list a few:

Music generation: MIDINet, a convolutional GAN, has been demonstrated to
generate melodies. You can refer to the paper here: https:/ /arxiv. org/ pdf/
1703.10847. pdf.
Medical anomaly detection: AnoGAN is a DCGAN shown by Thomas Schlegl et
al. to learn a manifold of normal anatomical variability. They were able to train
the network to label anomalies on optical coherence tomography images of the
retina. If the work interests you, you can see the related paper on arXiv
at https:/ /arxiv. org/ pdf/ 1703.05921. pdf.
Vector arithmetic on faces using GANs: In the joint research paper by Indico
Research and Facebook, they demonstrated that it's possible to use GANs and
perform image arithmetic. For example, Man with glasses—Man without glasses +
Woman without glasses = Woman with glasses. It's an interesting paper and you can
read more about it on Arxiv (https:/ / arxiv. org/ pdf/1511. 06434. pdf).
Text to image synthesis: GANs have been demonstrated to generate images of
birds and flowers from human-written textual descriptions. The model uses
DCGAN along with a hybrid character level convolutional recurrent network.
The details of the work are given in the paper, Generative Adversarial Text to Image
Synthesis. The link to the paper is https:/ /arxiv. org/ pdf/ 1605. 05396. pdf.

https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.10847.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1703.05921.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf
https://arxiv.org/pdf/1605.05396.pdf

Generative Models for IoT Chapter 7

[243]

Summary
This was an interesting chapter, and I hope you enjoyed reading it as much as I enjoyed
writing it. It's at present the hot topic of research. This chapter introduced generative
models and their classification, namely implicit generative models and explicit generative
models. The first generative model that was covered is VAEs; they're an explicit generative
model and try to estimate the lower bound on the density function. The VAEs were
implemented in TensorFlow and were used to generate handwritten digits.

This chapter then moved on to a more popular explicit generative model: GANs. The GAN
architecture, especially how the discriminator network and generative network compete
with each other, was explained. We implemented a GAN using TensorFlow for generating
handwritten digits. This chapter then moved on to the more successful variation of GAN:
the DCGAN. We implemented a DCGAN to generate celebrity images. This chapter also
covered the architecture details of CycleGAN, a recently proposed GAN, and some of its
cool applications.

With this chapter, we mark the end of part one of this book. Till now, we concentrated on
different ML and DL models, which we'll require to understand our data and use it for
prediction/classification, and other tasks. From the next chapter onward, we'll be talking
more about the data itself and how we can process the data in the present IoT-driven
environment.

In the next chapter, we'll move toward distributed processing, a necessity when dealing
with a large amount of data, and explore two platforms that offer distributed processing.

8
Distributed AI for IoT

The advances in distributed computing environments and an easy availability of internet
worldwide has resulted in the emergence of Distributed Artificial Intelligence (DAI). In
this chapter, we will learn about two frameworks, one by Apache the machine learning
library (MLlib), and another H2O.ai, both provide distributed and scalable machine
learning (ML) for large, streaming data. The chapter will start with an introduction to
Apache's Spark, the de facto distributed data processing system. This chapter will cover the
following topics:

Spark and its importance in distributed data processing
Understanding the Spark architecture
Learning about MLlib
Using MLlib in your deep learning pipeline
Delving deep into the H2O.ai platform

Introduction
IoT systems generate a lot of data; while in many cases it is possible to analyze the data at
leisure, for certain tasks such as security, fraud detection, and so on, this latency is not
acceptable. What we need in such a situation is a way to handle large data within a
specified time—the solution—DAI, many machines in the cluster processing the big data
(data parallelism) and/or training the deep learning models (model parallelism) in a
distributed manner. There are many ways to perform DAI, and most of the approaches are
built upon or around Apache Spark. Released in the year 2010 under the BSD licence,
Apache Spark today is the largest open source project in big data. It helps the user to create
a fast and general purpose cluster computing system.

Distributed AI for IoT Chapter 8

[245]

Spark runs on a Java virtual machine, making it possible to run it on any machine with Java
installed, be it a laptop or a cluster. It supports a variety of programming languages
including Python, Scala, and R. A large number of deep learning frameworks and APIs are
built around Spark and TensorFlow to make the task of DAI easier, for example,
TensorFlowOnSpark (TFoS), Spark MLlib, SparkDl, and Hydrogen Sparkling (a
combination of H2O.ai and Spark).

Spark components
Spark uses master-slave architecture, with one central coordinator (called the Spark driver)
and many distributed workers (called Spark executors). The driver process creates a
SparkContext object and divides the user application into smaller execution units (tasks).
These tasks are executed by the workers. The resources among the workers are managed by
a Cluster Manager. The following diagram shows the workings of Spark:

 Working of Spark

Let's now go through the different components of Spark. The following diagram shows the
basic components that constitute Spark:

Distributed AI for IoT Chapter 8

[246]

 Components that constitute Spark

Let's see, in brief, some of the components that we will be using in this chapter, as follows:

Resilient Distributed Datasets: Resilient Distributed Datasets (RDDs) are the
primary API in Spark. They represent an immutable, partitioned collection of
data that can be operated in parallel. The higher APIs DataFrames and DataSets
are built on top of RDDs.
Distributed Variables: Spark has two types of distributed variables: broadcast
variables and accumulators. They are used by user-defined functions.
Accumulators are used for aggregating the information from all the executors
into a shared result. The broadcast variables, alternatively, are the variables that
are shared throughout the cluster.
DataFrames: It is a distributed collection of data, very much like the pandas
DataFrame. They can read from various file formats and perform the
operation on the entire DataFrame using a single command. They are distributed
across the cluster.
Libraries: Spark has built-in libraries for MLlib, and for working with graphs
(GraphX). In this chapter, we will use MLlib and SparkDl that uses Spark
framework. We will learn how to apply them to make ML predictions.

Distributed AI for IoT Chapter 8

[247]

Spark is a big topic, and it is beyond the scope of this book to give further
details on Spark. We recommend the interested reader refer to the Spark
documentation: http:/ /spark. apache. org/ docs/ latest/ index. html.

Apache MLlib
Apache Spark MLlib provides a powerful computational environment for ML. It provides a
distributed architecture on a large-scale basis, allowing one to run ML models more quickly
and efficiently. That's not all; it is open source with a growing and active community
continuously working to improve and provide the latest features. It provides a scalable
implementation of the popular ML algorithms. It includes algorithms for the following:

Classification: Logistic regression, linear support vector machine, Naive Bayes
Regression: Generalized linear regression
Collaborative filtering: Alternating least square
Clustering: K-means
Decomposition: Singular value decomposition and principal component analysis

It has proved to be faster than Hadoop MapReduce. We can write applications in Java,
Scala, R, or Python. It can also be easily integrated with TensorFlow.

Regression in MLlib
Spark MLlib has built-in methods for regression. To be able to use the built-in methods of
Spark, you will have to install pyspark on your cluster (standalone or distributed cluster).
The installation can be done using the following:

pip install pyspark

The MLlib library has the following regression methods:

Linear regression: We already learned about linear regression in earlier chapters;
we can use this method using the LinearRegression class defined at
pyspark.ml.regression. By default, it uses minimized squared error with
regularization. It supports L1 and L2 regularization, and a combination of them.
Generalized linear regression: The Spark MLlib has a subset of exponential
family distributions like Gaussian, Poissons, and so on. The regression is
instantiated using the class GeneralizedLinearRegression.

http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html
http://spark.apache.org/docs/latest/index.html

Distributed AI for IoT Chapter 8

[248]

Decision tree regression: The DecisionTreeRegressor class can be used to
make a prediction using decision tree regression.
Random forest regression: One of the popular ML methods, they are defined in
the RandomForestRegressor class.
Gradient boosted tree regression: We can use an ensemble of decision trees
using the GBTRegressor class.

Besides, the MLlib also has support for survival regression and isotonic regression using
the AFTSurvivalRegression and IsotonicRegression classes.

With the help of these classes, we can build a ML model for regression (or classification as
you will see in next section) in as little as 10 lines of code. The basic steps are outlined as
follows:

Build a Spark session1.
Implement the data-loading pipeline: load the data file, specify the format, and2.
read it into Spark DataFrames
Identify the features to be used as input and as the target (optionally split dataset3.
in train/test)
Instantiate the desired class object4.
Use the fit() method with training dataset as an argument5.
Depending upon the regressor chosen, you can see the learned parameters and6.
evaluate the fitted model

Let's use linear regression for the Boston house price prediction dataset (https:/ /www. cs.
toronto.edu/~delve/ data/ boston/ bostonDetail. html), where we have the dataset in csv
format:

Import the necessary modules. We will be using LinearRegressor for defining1.
the linear regression class, RegressionEvaluator to evaluate the model after
training, VectorAssembler to combine features as one input vector, and
SparkSession to start the Spark session:

from pyspark.ml.regression import LinearRegression as LR
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.evaluation import RegressionEvaluator

from pyspark.sql import SparkSession

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Distributed AI for IoT Chapter 8

[249]

Next, start a Spark session using SparkSession class as follows:2.

spark = SparkSession.builder \
 .appName("Boston Price Prediction") \
 .config("spark.executor.memory", "70g") \
 .config("spark.driver.memory", "50g") \
 .config("spark.memory.offHeap.enabled",True) \
 .config("spark.memory.offHeap.size","16g") \
 .getOrCreate()

Let's now read the data; we first load the data from the given path, define the3.
format we want to use, and finally, read it into Spark DataFrames, as follows:

house_df = spark.read.format("csv"). \
 options(header="true", inferschema="true"). \
 load("boston/train.csv")

You can see the DataFrame now loaded in the memory, and its structure, shown4.
in the following screenshot:

Distributed AI for IoT Chapter 8

[250]

Like pandas DataFrames, Spark DataFrames can also be processed with a single5.
command. Let's gain a little more insight into our dataset as seen in the following
screenshot:

Distributed AI for IoT Chapter 8

[251]

Next, we define the features we want to use for training; to do this, we make use6.
of the VectorAssembler class. We define the columns from the
house_df DataFrame to be combined together as an input feature vector and
corresponding output prediction (similar to defining X_train, Y_train), and
then perform the corresponding transformation, as follows:

vectors = VectorAssembler(inputCols = ['crim', 'zn','indus','chas',
 'nox','rm','age','dis', 'rad', 'tax',
 'ptratio','black', 'lstat'],
 outputCol = 'features')
vhouse_df = vectors.transform(house_df)
vhouse_df = vhouse_df.select(['features', 'medv'])
vhouse_df.show(5)

The dataset is then split into train/test datasets, shown in the following code:7.

train_df, test_df = vhouse_df.randomSplit([0.7,0.3])

Now that we have our dataset ready, we instantiate the LinearRegression8.
class and fit it for the training dataset, as follows:

regressor = LR(featuresCol = 'features', labelCol='medv',\
 maxIter=20, regParam=0.3, elasticNetParam=0.8)
model = regressor.fit(train_df)

We can obtain the result coefficients of linear regression, as follows:9.

print("Coefficients:", model.coefficients)
print("Intercept:", model.intercept)

Distributed AI for IoT Chapter 8

[252]

The model provides an RMSE value of 4.73 and an r2 value of 0.71 on the10.
training dataset in 21 iterations:

modelSummary = model.summary
print("RMSE is {} and r2 is {}"\
 .format(modelSummary.rootMeanSquaredError,\
 modelSummary.r2))
print("Number of Iterations is ",modelSummary.totalIterations)

Next, we evaluate our model on the test dataset; we obtain an RMSE of 5.55 and11.
R2 value of 0.68:

model_evaluator = RegressionEvaluator(predictionCol="prediction",\
 labelCol="medv", metricName="r2")
print("R2 value on test dataset is: ",\
 model_evaluator.evaluate(model_predictions))
print("RMSE value is",
model.evaluate(test_df).rootMeanSquaredError)

Once the work is done, you should stop the Spark session using the stop() method. The
complete code is available in Chapter08/Boston_Price_MLlib.ipynb. The reason for a
low r2 value and high RMSE is that we have considered all the features in the training
dataset as an input feature vector, and many of them play no significant role in determining
the house price. Try reducing the features, keeping the ones that have a high correlation
with the price.

Classification in MLlib
MLlib also offers a wide range of classifiers; it provides both binomial and multinomial
logistic regressor. The decision tree classifier, random forest classifier, gradient-boosted tree
classifier, multilayered perceptron classifier, linear support vector machine classifier, and
Naive Bayes classifier are supported. Each of them is defined in its class; for details, refer to
https://spark.apache. org/ docs/ 2. 2. 0/ ml-classification- regression. html. The basic
steps remain the same as we learned in the case of regression; the only difference is now,
instead of RMSE or r2 metrics, the models are evaluated on accuracy.

https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes
https://spark.apache.org/docs/2.2.0/ml-classification-regression.html#naive-bayes

Distributed AI for IoT Chapter 8

[253]

This section will treat you to the wine quality classification problem implemented using
Spark MLlib logistic regression classifier:

 For this classification problem, we will use logistic regression available through1.
the LogisticRegressor class. The VectorAssembler, like in the previous
example, will be used to combine the input features as one vector. In the wine
quality dataset we have seen (Chapter 1, Principles and Foundations of IoT and AI),
the quality was an integer number given between 0–10, and we needed to
process it. Here, we will process using StringIndexer.

One of the great features of Spark is that we can define all the preprocessing steps
as a pipeline. This becomes very useful when there are a large number of
preprocessing steps. Here, we have only two preprocessing steps, but just to
showcase how pipelines are formed, we will make use of the Pipeline class. We
import all these modules as our first step and create a Spark session, shown in the
following code:

from pyspark.ml.classification import LogisticRegression as LR
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StringIndexer
from pyspark.ml import Pipeline

from pyspark.sql import SparkSession

spark = SparkSession.builder \
 .appName("Wine Quality Classifier") \
 .config("spark.executor.memory", "70g") \
 .config("spark.driver.memory", "50g") \
 .config("spark.memory.offHeap.enabled",True) \
 .config("spark.memory.offHeap.size","16g") \
 .getOrCreate()

We will load and read the winequality-red.csv data file, as follows:2.

wine_df = spark.read.format("csv"). \
 options(header="true",\
 inferschema="true",sep=';'). \
 load("winequality-red.csv")

Distributed AI for IoT Chapter 8

[254]

We process the quality label in the given dataset, and split it into three different3.
classes, and add it to the existing Spark DataFrame as a
new quality_new column, shown in the following code:

from pyspark.sql.functions import when
wine_df = wine_df.withColumn('quality_new',\
 when(wine_df['quality']< 5, 0).\
 otherwise(when(wine_df['quality']<8,1)\
 .otherwise(2)))

Though the modified quality, quality_new is an integer already, and we can4.
use it directly as our label. In this example, we have added StringIndexer to
convert it into numeric indices for the purpose of illustration. One can use
StringIndexer to convert string labels to numeric indices. We also use
VectorAssembler to combine the columns into one feature vector. The two
stages are combined together using Pipeline, as follows:

string_index = StringIndexer(inputCol='quality_new',\
 outputCol='quality'+'Index')
vectors = VectorAssembler(inputCols = \
 ['fixed acidity','volatile acidity',\
 'citric acid','residual sugar','chlorides',\
 'free sulfur dioxide', 'total sulfur dioxide', \
 'density','pH','sulphates', 'alcohol'],\
 outputCol = 'features')

stages = [vectors, string_index]

pipeline = Pipeline().setStages(stages)
pipelineModel = pipeline.fit(wine_df)
pl_data_df = pipelineModel.transform(wine_df)

The data obtained after the pipeline is then split into training and testing5.
datasets, shown in the following code:

train_df, test_df = pl_data_df.randomSplit([0.7,0.3])

Next, we instantiate the LogisticRegressor class and train it on the training6.
dataset using the fit method, as follows:

classifier= LR(featuresCol = 'features', \
 labelCol='qualityIndex',\
 maxIter=50)
model = classifier.fit(train_df)

Distributed AI for IoT Chapter 8

[255]

In the following screenshot, we can see the model parameters learned:7.

The accuracy of the model is 94.75%. We can also see other evaluation metrics8.
like precision and recall, F measure, true positive rate, and false positive rate
in the following code:

modelSummary = model.summary

accuracy = modelSummary.accuracy
fPR = modelSummary.weightedFalsePositiveRate
tPR = modelSummary.weightedTruePositiveRate
fMeasure = modelSummary.weightedFMeasure()
precision = modelSummary.weightedPrecision
recall = modelSummary.weightedRecall
print("Accuracy: {} False Positive Rate {} \
 True Positive Rate {} F {} Precision {} Recall {}"\
 .format(accuracy, fPR, tPR, fMeasure, precision, recall))

We can see that the performance of the wine quality classifier using MLlib is comparable to
our earlier approaches. The complete code is available in the GitHub repository under
Chapter08/Wine_Classification_MLlib.pynb.

Distributed AI for IoT Chapter 8

[256]

Transfer learning using SparkDL
The previous sections elaborated how you can use the Spark framework with its MLlib for
ML problems. In most complex tasks, however, deep learning models provide better
performance. Spark supports SparkDL, a higher-level API working over MLlib. It uses
TensorFlow at its backend, and it also requires TensorFrames, Keras, and TFoS modules.

In this section, we will make use of SparkDL for classifying images. This will allow you to
get acquainted with the Spark support for the images. For images, as we learned in Chapter
4, Deep Learning for IoT, Convolutional Neural Networks (CNNs) are the de facto choice. In
Chapter 4, Deep Learning for IoT, we built CNNs from scratch, and also learned about some
popular CNN architectures. A very interesting property of CNNs is that each convolutional
layer learns to identify different features from the image, which is they act as feature
extractors. The lower convolutional layers filter out basic shapes like lines and circles, while
higher layers filter more abstract shapes. This property can be used to employ a CNN
trained on one set of images to classify another set of similar domain images by just
changing the top fully connected layers. This technique is called transfer learning.
Depending upon the availability of new dataset images and similarity between the two
domains, transfer learning can significantly help in reducing the training time and need for
large datasets.

In the NIPS 2016 tutorial, Andrew Ng, one of the key figures in the AI
field, said that transfer learning will be the next driver for commercial success.
In the image domain, great success in transfer learning has been achieved
using CNNs trained in ImageNet data for classifying images on other
domains. A lot of research is being carried out in applying transfer
learning to other data domains. You can get a primer on Transfer Learning
from this blog post by Sebastian Ruder: http:/ / ruder. io/transfer-
learning/ .

We will employ InceptionV3, a CNN architecture proposed by Google (https:/ /arxiv.
org/pdf/1409.4842. pdf), trained on the ImageNet dataset (http:/ /www. image- net. org) to
identify vehicles on roads (at present we restrict ourselves to only buses and cars).

http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org

Distributed AI for IoT Chapter 8

[257]

Before we can start, ensure that the following modules are installed in your working
environment:

PySpark
TensorFlow
Keras
TFoS
TensorFrames
Wrapt
Pillow
pandas
Py4J
SparkDL
Kafka
Jieba

These can be installed using the pip install command on your standalone machine or
machines in the cluster.

Next you will learn how to use Spark and SparkDL for image classification. We have taken
screenshots of two different flowers, daisies and tulips, using Google image search; there
are 42 images of daisies and 65 images of tulips. In the following screenshot, you can see
the sample screenshots of the daisies:

Distributed AI for IoT Chapter 8

[258]

The following screenshot shows the sample images of tulips:

Our dataset is too small, and hence if we make a CNN from scratch, it will not be able to
give any useful performance. In cases like these, we can make use of transfer learning. The
SparkDL module provides an easy and convenient way to use pre-trained models with the
help of the class DeepImageFeaturizer. It supports the following CNN models (pre-
trained on the ImageNet dataset (http:/ / www. image- net. org):

InceptionV3
Xception
ResNet50
VGG16
VGG19

We will use Google's InceptionV3 as our base model. The complete code can be accessed
from the GitHub repository under Chapter08/Transfer_Learning_Sparkdl.ipynb:

In the first step, we will need to specify the environment for the SparkDL library.1.
It is an important step; without it, the kernel will not know from where the
SparkDL packages are to be loaded:

import os
SUBMIT_ARGS = "--packages databricks:spark-deep-learning:1.3.0-
spark2.4-s_2.11 pyspark-shell"
os.environ["PYSPARK_SUBMIT_ARGS"] = SUBMIT_ARGS

http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org
http://www.image-net.org

Distributed AI for IoT Chapter 8

[259]

Even when you install SparkDL using pip on some OSes, it is required
that you specify the OS environment or SparkDL.

Next, let's initiate a SparkSession, shown in the following code:2.

from pyspark.sql import SparkSession
spark = SparkSession.builder \
 .appName("ImageClassification") \
 .config("spark.executor.memory", "70g") \
 .config("spark.driver.memory", "50g") \
 .config("spark.memory.offHeap.enabled",True) \
 .config("spark.memory.offHeap.size","16g") \
 .getOrCreate()

 We import the necessary modules and read the data images. Along with reading3.
the image paths, we also assign the labels to each image in the Spark DataFrame,
as follows:

import pyspark.sql.functions as f
import sparkdl as dl
from pyspark.ml.image import ImageSchema
from sparkdl.image import imageIO
dftulips = ImageSchema.readImages('data/flower_photos/tulips').\
 withColumn('label', f.lit(0))
dfdaisy = ImageSchema.readImages('data/flower_photos/daisy').\
 withColumn('label', f.lit(1))

Next, you can see the top five rows of the two DataFrames. The first column4.
contains the path of each image, and the column shows its label (whether it
belongs to daisy (label 1) or it belongs to tulips (label 0)):

Distributed AI for IoT Chapter 8

[260]

We split the two image dataset into training and testing set (it is always a good5.
practice), using the randomSplit function. Conventionally, people choose a test-
train split of 60%—40%, 70%—30%, or 80%—20%. We have chosen a 70%—30%
split here. For the purpose of training, we then combine the training images of
both flowers in the trainDF DataFrame and test dataset images in the testDF
DataFrame, as follows:

trainDFdaisy, testDFdaisy = dfdaisy.randomSplit([0.70,0.30],\
 seed = 123)
trainDFtulips, testDFtulips = dftulips.randomSplit([0.70,0.30],\
 seed = 122)
trainDF = trainDFdaisy.unionAll(trainDFtulips)
testDF = testDFdaisy.unionAll(testDFtulips)

Distributed AI for IoT Chapter 8

[261]

Next, we build the pipeline with InceptionV3 as the feature extractor followed6.
by a logistic regressor classifier. We use the trainDF DataFrame to train the
model:

from pyspark.ml.classification import LogisticRegression
from pyspark.ml import Pipeline

vectorizer = dl.DeepImageFeaturizer(inputCol="image",\
 outputCol="features", modelName="InceptionV3")
logreg = LogisticRegression(maxIter=20, labelCol="label")
pipeline = Pipeline(stages=[vectorizer, logreg])
pipeline_model = pipeline.fit(trainDF)

Let's now evaluate our trained model on the test dataset. We can see that, on the7.
test dataset, we get an accuracy of 90.32% using the following code:

predictDF = pipeline_model.transform(testDF) #predict on test
dataset

from pyspark.ml.evaluation import MulticlassClassificationEvaluator
as MCE
scoring = predictDF.select("prediction", "label")
accuracy_score = MCE(metricName="accuracy")
rate = accuracy_score.evaluate(scoring)*100
print("accuracy: {}%" .format(round(rate,2)))

Here is the confusion matrix for the two classes:8.

In fewer than 20 lines of code, we were able to train the model and obtain a good 90.32%
accuracy. Remember, here the dataset used is raw; by increasing the dataset images, and
filtering out low-quality images, you can improve the performance of your model. You can
learn more about the deep learning library SparkDL from the official GitHub
repository: https:/ /github. com/ databricks/ spark- deep- learning.

https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning

Distributed AI for IoT Chapter 8

[262]

Introducing H2O.ai
H2O is a fast, scalable ML and deep learning framework developed by H2O.ai, released
under the open source Apache license. According to the company-provided details, more
than 9,000 organizations and 80,000+ data scientists use H2O for their ML/deep learning
needs. It uses in-memory compression, which allows it to handle a large amount of data in
memory, even with a small cluster of machines. It has an interface for R, Python, Java,
Scala, and JavaScript, and even has a built-in web interface. H2O can run in standalone
mode, and on Hadoop or Spark cluster.

H2O includes a large number of ML algorithms like generalized linear modeling, Naive
Bayes, random forest, gradient boosting, and deep learning algorithms. The best part of
H2O is that one can build thousands of models, compare the results, and even do
hyperparameter tuning with a few lines of codes. H2O also has better data preprocessing
tools.

H2O requires Java, so, ensure that Java is installed on your system. You can install H2O to
work in Python using PyPi, shown in the following code:

pip install h2o

H2O AutoML
One of the most exciting features of H2O is AutoML, the automatic ML. It is an attempt to
develop a user-friendly ML interface that can be used by non-experts. H2O AutoML
automates the process of training and tuning a large selection of candidate models. Its
interface is designed so that users just need to specify their dataset, input and output
features, and any constraints they want on the number of total models trained, or time
constraint. The rest of the work is done by AutoML itself; in the specified time constraint, it
identifies the best performing models, and provides a leaderboard. It has been observed
that, usually, the Stacked Ensemble model, the ensemble of all the previously trained
models, occupies the top position on the leaderboard. There is a large number of options
that advanced users can use; details of these options and their various features are available
at http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html.

To know more about H2O you can visit their website: http:/ /h2o. ai.

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://h2o.ai
http://h2o.ai
http://h2o.ai
http://h2o.ai
http://h2o.ai
http://h2o.ai
http://h2o.ai

Distributed AI for IoT Chapter 8

[263]

Regression in H2O
We will first show how regression can be done in H2O. We will use the same dataset as we
used earlier with MLlib, the Boston house prices, and predict the cost of the houses. The
complete code can be found at GitHub: Chapter08/boston_price_h2o.ipynb:

The necessary modules for the task are as follows:1.

import h2o
import time
import seaborn
import itertools
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from h2o.estimators.glm import H2OGeneralizedLinearEstimator as GLM
from h2o.estimators.gbm import H2OGradientBoostingEstimator as GBM
from h2o.estimators.random_forest import H2ORandomForestEstimator
as RF
%matplotlib inline

After importing the necessary modules, the first step is starting an h2o server.2.
We do this using the h2o.init() command. It checks for any existing h20
instances first, and if none are available, it will start one. There is also the
possibility of connecting to an existing cluster by specifying the IP address and
the port number as arguments to the init() function. In the following
screenshot, you can see the result of init() on the standalone system:

Distributed AI for IoT Chapter 8

[264]

Next, we read the data file using the h20 import_file function. It loads it into3.
an H2O DataFrame, which can be processed just as easily as the panda's
DataFrame. We can find the correlation among the different input features in
the h20 DataFrame very easily using the cor() method:

boston_df = h2o.import_file("../Chapter08/boston/train.csv",
destination_frame="boston_df")

plt.figure(figsize=(20,20))
corr = boston_df.cor()
corr = corr.as_data_frame()
corr.index = boston_df.columns
#print(corr)
sns.heatmap(corr, annot=True, cmap='YlGnBu',vmin=-1, vmax=1)
plt.title("Correlation Heatmap")

Distributed AI for IoT Chapter 8

[265]

The following is the output of correlation map among different features of the
Boston house price dataset:

Now, as usual, we split the dataset into training, validation, and test datasets.4.
Define the features to be used as input features (x):

train_df,valid_df,test_df = boston_df.split_frame(ratios=[0.6,
0.2],\
 seed=133)
features = boston_df.columns[:-1]

Distributed AI for IoT Chapter 8

[266]

Once this work is done, the process is very simple. We just instantiate the5.
regression model class available from the H2O library, and use train() with the
training and validation datasets as arguments. In the train function, we also
specify what are the input features (x) and the output features (y). In the present
case, we are taking all the features available to us as input features and the house
price medv as the output feature. We can see the features of the trained model by
just using a print statement. Next, you can see the model declaration for a
generalized linear regression model, and its result after training on both training
and validation datasets:

model_glm = GLM(model_id='boston_glm')
model_glm.train(training_frame= train_df,\
 validation_frame=valid_df, \
 y = 'medv', x=features)
print(model_glm)

Distributed AI for IoT Chapter 8

[267]

After training, the next step is checking the performance on the test dataset,6.
which can be easily done using the model_performance() function. We can
also pass it to any of the datasets: the train, validation, test, or some new similar
dataset:

test_glm = model_glm.model_performance(test_df)
print(test_glm)

If we want to use gradient boost estimator regression, or random forest7.
regression, we will instantiate the respective class object; the following steps will
remain the same. What will vary is the output parameters; in the case of gradient
boost estimator and random forest, we will also learn the relative importance of
the different input features:

#Gradient Boost Estimator
model_gbm = GBM(model_id='boston_gbm')
model_gbm.train(training_frame= train_df, \
 validation_frame=valid_df, \
 y = 'medv', x=features)

test_gbm = model_gbm.model_performance(test_df)

#Random Forest
model_rf = RF(model_id='boston_rf')
model_rf.train(training_frame= train_df,\
 validation_frame=valid_df, \
 y = 'medv', x=features)

test_rf = model_rf.model_performance(test_df)

Distributed AI for IoT Chapter 8

[268]

The most difficult part of machine and deep learning is choosing the right8.
hyperparameters. In H2O, the task becomes quite easy with the help of its
H2OGridSearch class. The following code snippet performs the grid search on
the hyperparameter depth for the gradient boost estimator defined previously:

from h2o.grid.grid_search import H2OGridSearch as Grid
hyper_params = {'max_depth':[2,4,6,8,10,12,14,16]}
grid = Grid(model_gbm, hyper_params, grid_id='depth_grid')
grid.train(training_frame= train_df,\
 validation_frame=valid_df,\
 y = 'medv', x=features)

The best part of H2O is using AutoML to find the best models automatically.9.
 Let's ask it to search for us among the 10 models, with the constraint on time
being 100 seconds. AutoML will, with these parameters, build 10 different
models, excluding the Stacked Ensembles. It will run, at the most, for 100 seconds
before training the final Stacked Ensemble models:

from h2o.automl import H2OAutoML as AutoML
aml = AutoML(max_models = 10, max_runtime_secs=100, seed=2)
aml.train(training_frame= train_df, \
 validation_frame=valid_df, \
 y = 'medv', x=features)

The leaderboard for our regression task is as follows:10.

Different models in the leaderboard can be accessed using their respective model_id. The
best model is accessed with the leader parameter. In our case, aml.leader represents the
best model, the Stacked Ensemble of all the models. We can save the best model using
the h2o.save_model function in either binary or MOJO format.

Distributed AI for IoT Chapter 8

[269]

Classification in H20
The same models can be used for classification in H2O, with only one change; we will need
to change the output features from numeric values to categorical values using the
asfactor() function. We will perform the classification on the quality of red wine, and
use our old red wine database (Chapter 3, Machine Learning for IoT). We will need to import
the same modules and initiate the H2O server. The full code is available at in
the Chapter08/wine_classification_h2o.ipynb file:

Here is the code to import the necessary modules and initiate the H2O server:1.

import h2o
import time
import seaborn
import itertools
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from h2o.estimators.glm import H2OGeneralizedLinearEstimator as GLM
from h2o.estimators.gbm import H2OGradientBoostingEstimator as GBM
from h2o.estimators.random_forest import H2ORandomForestEstimator
as RF

%matplotlib inline

h2o.init()

The next step is to read the data file. We modify the output feature first to2.
account for two classes (good wine and bad wine) and then convert it to a
categorical variable using the asfactor() function. This is an important step in
H2O; since we are using the same class objects for both regression and
classification, they require the output label to be numeric in the case of
regression, and categorical in the case of classification, as seen in the code block:

wine_df = h2o.import_file("../Chapter08/winequality-red.csv",\
 destination_frame="wine_df")
features = wine_df.columns[:-1]
print(features)
wine_df['quality'] = (wine_df['quality'] > 7).ifelse(1,0)
wine_df['quality'] = wine_df['quality'].asfactor()

Distributed AI for IoT Chapter 8

[270]

Next, split the data into training, validation, and testing datasets. We feed the3.
training and validation datasets to the generalized linear estimator, with one
change; we specify the family=binomial argument because here, we have only
two categorical classes, good wine or bad wine. If you have more than two
classes use family=multinomial. Remember, specifying the argument is
optional; H2O automatically detects the output feature:

train_df,valid_df,test_df = wine_df.split_frame(ratios=[0.6, 0.2],\
 seed=133)

model_glm = GLM(model_id='wine_glm', family = 'binomial')
model_glm.train(training_frame= train_df, \
 validation_frame=valid_df,\
 y = 'quality', x=features)
print(model_glm)

After being trained, you can see the model performance on all the performance4.
metrics: accuracy, precision, recall, F1 measure, and AUC, even the confusion
metrics. You can get them for all the three datasets (training, validation, and
testing). The following are the metrics obtained for the test dataset from the
generalized linear estimator:

Distributed AI for IoT Chapter 8

[271]

Without changing anything else in the previous code, we can perform hyper5.
tuning and use H2O's AutoML to get the better model:

from h2o.automl import H2OAutoML as AutoML
aml = AutoML(max_models = 10, max_runtime_secs=100, seed=2)
aml.train(training_frame= train_df, \
 validation_frame=valid_df, \
 y = 'quality', x=features)

We see that, for wine quality classification, the best model is XGBoost.

Distributed AI for IoT Chapter 8

[272]

Summary
With the ubiquitous status of IoT, the data being generated is growing at an exponential
rate. This data, mostly unstructured and available in vast quantities, is often referred to as
big data. A large number of frameworks and solutions have been proposed to deal with the
large set of data. One of the promising solutions is DAI, distributing the model or data
among the cluster of machines. We can use distributed TensorFlow, or TFoS frameworks to
perform distributed model training. In recent years, some easy-to-use open source solutions
have been proposed. Two of the most popular and successful solutions are Apache Spark's
MLlib and H2O.ai's H2O. In this chapter, we showed how to train ML models for both
regression and classification in MLlib and H2O. The Apache Spark MLlib supports
SparkDL, which provides excellent support for image classification and detection tasks. The
chapter used SparkDL to classify flower images using the pre-trained InceptionV3. The
H2O.ai's H2O, on the other hand, works well with numeric and tabular data. It provides an
interesting and useful AutoML feature, which allows even non-experts to tune and search
through a large number of ML/deep learning models, with very little details from the user.
The chapter covered an example of how to use AutoML for both regression and
classification tasks.

One can take the best advantage of these distributed platforms when working on a cluster
of machines. With computing and data shifting to the cloud at affordable rates, it makes
sense to shift the task of ML to the cloud. Thus follows the next chapter, where you will
learn about different cloud platforms, and how you can use them to analyze the data
generated by your IoT devices.

9
Personal and Home IoT

Now that you are fully equipped with machine learning (ML) and deep learning (DL)
knowledge, and have learned how to use it for big data, image tasks, text tasks, and time
series data, it is time to explore some real uses of the algorithms and the techniques that
you have learned. This chapter and the following two chapters will now concentrate on
some specific case studies. This chapter will focus on personal and home Internet of
Things (IoT) use cases. We will cover the following in this chapter:

Successful IoT applications
Wearables and their role in personal IoT
How to monitor heart using ML
What makes home smart home
Devices used in smart home
The application of Artificial Intelligence in predicting human activity recognition

Personal and Home IoT Chapter 9

[274]

Personal IoT
The personal IoT is dominated by the use of wearables, technological devices designed to
be worn on body, they are used in tandem with an app on a smartphone. The first wearable
available was the Pulsar Calculator watch made by Time Computer Inc, USA (at that time
known as Hamilton Watch Company). It was a standalone device not connected to the
internet. Soon, with the growth of the internet, wearables that can connect to the internet
became a fad. The wearables market is expected to jump from an estimate of 325 million in
2016 to over 830 million by 2020:

This graph shows the number of wearables worldwide from 2016–2021 (data source:
Statista). With so many devices connected online, continuously generating data, AI/ML
tools are a natural choice to analyze this data and make informed decisions. In this section,
you will learn about some successful personal IoT applications.

Personal and Home IoT Chapter 9

[275]

SuperShoes by MIT
Holding your mobile in one hand and navigating your way along the road with the help of
Google Maps, how often have you thought that it is cumbersome? How often have you
wished for magic slippers that will take you anywhere you want? SuperShoes by MIT
Media Lab (https:/ / www. media. mit. edu/ projects/ supershoes/ overview/) are almost like
those magic slippers; they allow the user to navigate through the sidewalks without any
need to check the smartphone screen.

SuperShoes have flexible insoles, embedded with vibrating motors under the toes. They
connect wirelessly to an app on the smartphone. The app not only allows the user to
interface with the SuperShoes, but it also stores likes/dislikes, hobbies, shops, foods, people,
interests, and so on in a cloud account. The vibrating motors generate tickles that
communicate with the user. Once the user enters a destination on the app, the shoes start
their work. If the left toe tickles then the user is supposed to take a left turn; if the right toe
tickles then the user has to take a right turn. When there is no tickle, then the user has to
continue straight. If both tickle repeatedly, the user has arrived at their destination.

Besides navigation, it can also recommend places of interest nearby; the user updates their
likes and dislikes on the cloud. Based on the likes and dislikes of the user, SuperShoe also
gives an indication (both toes tickle once) when the user is near a recommended place of
interest. Another interesting feature of SuperShoes is that it can give reminders as well; it
can remind you if you have a task on a location nearby.

The hardware required to make this shoe is very simple, it requires the following:

Three vibrotactile ticklers to tickle the toes
A capacitive pad to sense the walk
A microcontroller that takes the commands from the app, and accordingly,
controls the ticklers
A Bluetooth device to connect with the smartphone
Batteries to power the entire system

The magic is performed by the software coded into the app. You can learn more about the
SuperShoes at this website: http:/ /dhairyadand. com/works/ supershoes.

https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
https://www.media.mit.edu/projects/supershoes/overview/
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes
http://dhairyadand.com/works/supershoes

Personal and Home IoT Chapter 9

[276]

Continuous glucose monitoring
A major application of AI has been in IoT for healthcare, with one of the most successful
commercial applications being continuous monitoring of the body's glucose level. Abbott's
FreeStyle CGM, DexCom CGM, and Medtronic CGM are some of the commercially
available brands.

Continuous glucose monitoring (CGM) allows people suffering from diabetes to check
their body's glucose level in real time. It helps them in monitoring the readings over a
period of time, and the data can also be used to prediction of future glucose level, thus
helping them to deal with conditions like hypoglycemia.

In CGM, normally a sensor is placed either under the skin of the belly or adhered to the
back of your arm. The sensor sends the readings to a connected pager/smartphone app. The
app has additional AI-based algorithms that can inform the user of any clinically relevant
glucose patterns. The availability of this data not only helps the user to proactively manage
their glucose highs and lows, but additionally, it can also provide an insight into the impact
that meals, exercise, or illness may have on a person's glucose levels.

The sensors have a lifespan ranging from 7 to 14 days, normally this time is sufficient for a
medical practitioner to understand the person's lifestyle, and accordingly, suggest changes.

Hypoglycemia prediction using CGM data
Once a person has CGM data, it can be analyzed using AI/ML to gather more information
or to make a prediction about hypoglycemia. In this section, we see how we can use the
algorithms we had learned in the previous chapters to make a glucose-predictor system.

We will build our predictor based on the research paper Glucose Concentration can be
Predicted Ahead in Time From Continuous Glucose Monitoring sensor Time-Series by Sparacino
et al. (10.1109/TBME.2006.889774).

https://doi.org/10.1109/TBME.2006.889774

Personal and Home IoT Chapter 9

[277]

In the paper, the CGM time series glucose data is described by a times series model; the
paper considered two models, one a simple first order polynomial and second a first order
autoregressive model. The model parameters are fitted at each sampling time, ts, against the
past glucose data. Here, we will implement the simple first order polynomial using scikit
linear regressor that we learned about in Chapter 3, Machine Learning for IoT:

We import the modules pandas to read the csv file, NumpPy for data1.
processing, Matplolib for plotting, and scikit-learn for the linear regressor, as
follows:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
%matplotlib inline

Save the data obtained from your CGM in the data folder and read it. We require2.
two values, the glucose reading and its time. The data that we are using has these
available in two CSV files, ys.csv and ts.csv. The first one contains the
glucose value and the second one contains the corresponding time, as follows:

Read the data
ys = pd.read_csv('data/ys.csv')
ts = pd.read_csv('data/ts.csv')

According to the paper, we define two parameters of the predictive model ph,3.
the prediction horizon, and mu the forgetting factor. Please refer to the we
mentioned earlier paper for more details on these two parameters:

MODEL FIT AND PREDICTION

Parameters of the predictive model. ph is Prediction horizon, mu
is Forgetting factor.
ph = 10
mu = 0.98

We create the arrays to hold our predicted values, shown as follows:4.

n_s = len(ys)

Arrays to hold predicted values
tp_pred = np.zeros(n_s-1)
yp_pred = np.zeros(n_s-1)

Personal and Home IoT Chapter 9

[278]

We now read the CGM data simulating the real-time acquisition and predict the5.
glucose level ph minutes forward. All the past data is used to determine the
model parameters, however, each has a different contribution decided by the
individual weight assigned to it muk (to the sample taken k instants before the
actual sampling time):

At every iteration of the for loop a new sample from CGM is
acquired.
for i in range(2, n_s+1):
 ts_tmp = ts[0:i]
 ys_tmp = ys[0:i]
 ns = len(ys_tmp)

 # The mu**k assigns the weight to the previous samples.
 weights = np.ones(ns)*mu
 for k in range(ns):
 weights[k] = weights[k]**k
 weights = np.flip(weights, 0)
 # MODEL
 # Linear Regression.
 lm_tmp = LinearRegression()
 model_tmp = lm_tmp.fit(ts_tmp, ys_tmp, sample_weight=weights)
 # Coefficients of the linear model, y = mx + q
 m_tmp = model_tmp.coef_
 q_tmp = modeltmp.intercept

 # PREDICTION
 tp = ts.iloc[ns-1,0] + ph
 yp = m_tmp*tp + q_tmp

 tp_pred[i-2] = tp
 yp_pred[i-2] = yp

We can see that the prediction is lagging behind the actual. The normal glucose6.
level lies in the range 70 to 180. Below 70, the patient can suffer from
hypoglycemia and above 180 it can lead to hyperglycemia. Let us see the plot of
our predicted data:

PLOT
Hypoglycemia threshold vector.
t_tot = [l for l in range(int(ts.min()), int(tp_pred.max())+1)]
hypoglycemiaTH = 70*np.ones(len(t_tot))
#hyperglycemiaTH = 180*np.ones(len(t_tot))

fig, ax = plt.subplots(figsize=(10,10))
fig.suptitle('Glucose Level Prediction', fontsize=22,
fontweight='bold')

Personal and Home IoT Chapter 9

[279]

ax.set_title('mu = %g, ph=%g ' %(mu, ph))
ax.plot(tp_pred, yp_pred, label='Predicted Value')
ax.plot(ts.iloc[:,0], ys.iloc[:,0], label='CGM data')
ax.plot(t_tot, hypoglycemiaTH, label='Hypoglycemia threshold')
#ax.plot(t_tot, hyperglycemiaTH, label='Hyperglycemia threshold')
ax.set_xlabel('time (min)')
ax.set_ylabel('glucose (mg/dl)')
ax.legend()

Personal and Home IoT Chapter 9

[280]

The RMSE error will be 27 for the following code:7.

from sklearn.metrics import mean_squared_error as mse
print("RMSE is", mse(ys[1:],yp_pred))

The code is located at Chapter09/Hypoglycemia_Prediction.ipynb notebook. The
glucose-prediction system is available in many commercial products. You can make one
too, based on the model that we just made. You can also use an artificial neural network to
make a similar prediction with better results (refer to https:/ /www. ncbi. nlm. nih.gov/
pubmed/20082589).

Heart monitor
Another very useful personal application of AI in IoT is in the detection of heart disease. A
large number of wearables exist that can be used to monitor and record heart rate. The data
can be used to predict any harmful heart condition. Here, we will employ AI/ML tools to
predict cardiac arrhythmia, a group of conditions where the heart rate is irregular; it can be
either too fast (above 100 beats per minute) or too slow (below 60 beats per minute). The
data used is taken from the UCI Machine learning Repository dataset: https:/ / archive. ics.
uci.edu/ml/datasets/ heart+Disease. The dataset consists of 76 attributes, not all required
for prediction of the presence of disease; the dataset has a goal field associated with each
data row. It has five possible values 0–4, the value 0 indicates a healthy heart, any other
value means there is a disease. The problem can be broken into a binary classification
problems for better accuracy. The code is inspired from the GitHub link of Mohammed
Rashad, it is shared under the GNU GPL 3.0 license: https:/ /github. com/
MohammedRashad/Deep- Learning- and- Wearable- IoT-to- Monitor- and-Predict- Cardiac-
Arrhytmia. The complete code can be accessed from GitHub repository under
Chapter09/Heart_Disease_Prediction.ipynb file:

The first step as always is to import the necessary modules. Since we are now1.
classifying the patients as suffering from heart disease or not, we will need a
classifier. Here for simplicity, we use the SVC classifier. You can experiment with
the MLP classifier, shown as follows:

importing required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split

https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://www.ncbi.nlm.nih.gov/pubmed/20082589
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://archive.ics.uci.edu/ml/datasets/heart+Disease
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia
https://github.com/MohammedRashad/Deep-Learning-and-Wearable-IoT-to-Monitor-and-Predict-Cardiac-Arrhytmia

Personal and Home IoT Chapter 9

[281]

Next, read the dataset, preprocess the dataset to select the attributes you will be2.
considering. We chose 13 attributes from 76, and then we convert the target from
a multi-class value to binary class. Finally, the data is split into the train and test
dataset, as follows:

reading csv file and extracting class column to y.
dataset = pd.read_csv("data.csv")
dataset.fillna(dataset.mean(), inplace=True)

dataset_to_array = np.array(dataset)
label = dataset_to_array[:,57] # "Target" classes having 0 and 1
label = label.astype('int')
label[label>0] = 1 # When it is 0 heart is healthy, 1 otherwise

extracting 13 features
dataset = np.column_stack((
 dataset_to_array[:,4] , # pain location
 dataset_to_array[:,6] , # relieved after rest
 dataset_to_array[:,9] , # pain type
 dataset_to_array[:,11], # resting blood pressure
 dataset_to_array[:,33], # maximum heart rate achieve
 dataset_to_array[:,34], # resting heart rate
 dataset_to_array[:,35], # peak exercise blood pressure (first
of 2 parts)
 dataset_to_array[:,36], # peak exercise blood pressure (second
of 2 parts)
 dataset_to_array[:,38], # resting blood pressure
 dataset_to_array[:,39], # exercise induced angina (1 = yes; 0 =
no)
 dataset.age, # age
 dataset.sex , # sex
 dataset.hypertension # hyper tension
))

print ("The Dataset dimensions are : " , dataset.shape , "\n")

dividing data into train and test data
X_train, X_test, y_train, y_test = train_test_split(dataset, label,
random_state = 223)

Personal and Home IoT Chapter 9

[282]

Now, we define the model to be used. Here we are using a support vector3.
classifier, using the fit function to train the dataset:

model = SVC(kernel = 'linear').fit(X_train, y_train)

Let us see its performance on the test dataset:4.

model_predictions = model.predict(X_test)
model accuracy for X_test
accuracy = metrics.accuracy_score(y_test, model_predictions)
print ("Accuracy of the model is :" ,
 accuracy , "\nApproximately : ",
 round(accuracy*100) , "%\n")

You can see that it provides an accuracy of 74%, using MLP, we can increase it5.
further. But do remember to normalize all the input features before using the
MLP classifier. Following is the confusion matrix of our trained support vector
classifier on the test dataset:

#creating a confusion matrix
cm = confusion_matrix(y_test, model_predictions)

import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
%matplotlib inline
df_cm = pd.DataFrame(cm, index = [i for i in "01"],
columns = [i for i in "01"])
plt.figure(figsize = (10,7))
sn.heatmap(df_cm, annot=True)

Personal and Home IoT Chapter 9

[283]

The following output shows the confusion matrix for the test dataset:

You can train your model on the same dataset and use your trained model to predict heart
conditions for your friends, family, or clients.

Digital assistants
Digital assistants are one of the oldest conceived AI applications. Initial attempts at digital
assistants never really took off. But with the advent and mass spread of smartphones, today
we have a large number of digital assistants providing services such as dialing a phone
number, writing a text message, scheduling appointments, or even searching the internet
for you. You can ask them for recommendations for nearby restaurants and bars or any
other similar thing.

Personal and Home IoT Chapter 9

[284]

Some of the following are popular digital assistants:

Siri: Developed by Apple, it allows the user to send/make calls, add
appointments in the calendar, play music or video, and even send a text. Today,
a voice-activated interface is available on almost all Apple products.
Cortana: Created by Microsoft, it helps you to stay on schedule by reminding
you to do things based on time, place, or even people. You can ask Cortana to
order lunch for you or use any other app it partners with. It comes integrated
with Edge and invokes a voice-activated speaker featuring Cortana.
Alexa: Developed by Amazon, this is available with Amazon Echo smart
speakers. It can play music, make a to-do list, set alarms for you, play audio
books, and provide real-time information on stocks, weather, and more. It is also
capable of voice interaction.
Google Assistant: This is a voice-controlled smart assistant. It provides
continued conversation, that is you don't have to say Hey Google for any follow-
up requests, once you start talking, it listens for a response without needing the
triggering phrase. It can also recognize the voice profiles for different people and
can tailor its response according to the personal likes and dislikes of that person.
It is available not only on Android smartphones but also on Google Home.

In 2018, Google went even further, releasing Google Duplex, an assistant that can make
calls for you and book your appointments. It talks like a human, and also understands the
context when speaking.

IoT and smart homes
A close friend of mine was always worried about his ageing mother, she was left home
alone, while he, his wife, and kids were out. As her health started deteriorating, he asked
for a piece of advice. The solution was simple; he installed CCTV cameras in all the rooms,
interfaced with a mobile app. The cameras were connected to the internet, now, no matter
where he is, he can check-in home to ensure the well-being of his mother.

Personal and Home IoT Chapter 9

[285]

CCTV, smart lightning, smart speakers, and so on connected to the internet help automate a
lot of tasks at home, and what you get is a smart home. Most smart home systems at
present work through a voice command interface, where you can use a set of commands to
control the particular device. For example, in Amazon's Echo Dot, you can ask it to search
or play a particular song. You can ask Apple's Siri to use your phone to call a friend, all by
simple voice interface. Most of these devices are using AI/ML in some form, but home
automation can be further advanced by employing AI/ML. For example, in the case of my
friend, an AI system can be trained to identify activity from video, or to detect intrusion in
the home. The possibilities are infinite. With the right data and sufficient computing power,
you are limited only by your imagination.

In this section, we will see some existing home automation products, and see how we can
further use AI to augment the automation.

Human activity recognition
One of the most researched smart home application is human activity recognition (HAR).
There are many companies trying to develop apps that keep track of physical activity and
its corresponding calorie burn count. Health and fitness no doubt is big business. Besides
its application in fitness and health, HAR can also be useful in elder care or rehabilitation
centers. There have been many approaches to perform HAR, two of which as the follows:

Use cameras (or radar or similar devices) to record human activity and classify it
using a DL approach
The individuals use wearable sensors (similar to accelerometers in smartphones)
whose data is recorded and used to predict the activity

Both approaches have their pros and cons. We will go through them in further detail in the
following sections.

Personal and Home IoT Chapter 9

[286]

HAR using wearable sensors
A large number of vendors have wearable watches and bracelets with fitness trackers.
These watches and bracelets have GPS, accelerometer, gyroscope, heart rate sensor, and/or
ambient light sensors. Employing sensor fusion, they combine the output of these sensors
to make a prediction about the activity. Due to the temporal nature of the data, it is a
challenging time series classification task.

Fitbit (https://www. fitbit. com/ smarttrack), a premier company in the field of fitness
trackers, use a technology it calls SmartTrack, which recognizes activities with continuous
movement or light movement. It uses the intensity and patterns of the movement to classify
the activity. It classifies the activity in seven classes, as follows:

Walking
Running
Aerobic workout
Elliptical
Outdoor bike
Sports
Swimming

Apple Watch (https:/ / www. apple. com/ in/ apple- watch- series- 4/ workout/) offers tough
competition to Fitbit. Working on an iOSoperating system, it comes with fall detection,
along with many other health tracking features. By analyzing the wrist trajectory and
impact acceleration, it detects if the person is falling and can also initiate an emergency call.
The Apple watch, by default, classifies activities into three groups: walking, exercise, and
standing. The exercise (workouts) are further classified in another domain, such as indoor
run, outdoor run, skiing, snowboarding, yoga, and even hiking.

If you want to try making a similar app using your smartphone sensors, the first thing you
will need is data. Following, we present an implementation of HAR using random forest,
the code has been adapted from the GitHub link of Nilesh Patil, Data Scientist at the
University of Rochester: https:/ /github. com/ nilesh- patil/ human- activity-
recognition-smartphone- sensors.

https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.fitbit.com/smarttrack
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://www.apple.com/in/apple-watch-series-4/workout/
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors
https://github.com/nilesh-patil/human-activity-recognition-smartphone-sensors

Personal and Home IoT Chapter 9

[287]

The dataset is from the paper Davide Anguita, Alessandro Ghio, Luca Oneto,
Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human
Activity Recognition Using Smartphones. 21th European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning,
ESANN 2013. Bruges, Belgium 24-26 April 2013.
Available at the UCI ML website: https:/ / archive. ics. uci. edu/ ml/
datasets/ Human+Activity+Recognition+Using+Smartphones#.
For each record in the dataset contains:

Triaxial acceleration from the accelerometer (total acceleration)
and the estimated body acceleration
Triaxial angular velocity from the gyroscope
A 561-feature vector with time and frequency domain variables
Its activity label
An identifier of the subject who carried out the experiment

The data is classified into six categories:

Laying
Sitting
Standing
Walk
Walk-down
Walk-up

Here, we use random forest classifier of the scikit-learn to classify the data. The1.
necessary modules needed for the implementation are imported in the first step:

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier as rfc
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
%matplotlib inline

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones#

Personal and Home IoT Chapter 9

[288]

We read the data and divide it into train and test datasets, as follows:2.

data = pd.read_csv('data/samsung_data.txt',sep='|')
train = data.sample(frac=0.7,
 random_state=42)
test = data[~data.index.isin(train.index)]

X = train[train.columns[:-2]]
Y = train.activity

The data consists of 561 features however, not all are equally important. We can3.
choose the more important features by making a simple random forest classifier,
and choosing only the most important ones. In this implementation, it is done
using two steps. Initially, we get the list of important features and arrange them
in descending order of importance. Then the number and the features are found
by grid hypertuning. The results of hypertuning are shown in the curve. We can
see that after about 20 features, there is no significant improvement in out of bag
(OOB) accuracy using the following code:

randomState = 42
ntree = 25

model0 = rfc(n_estimators=ntree,
random_state=randomState,
n_jobs=4,
warm_start=True,
oob_score=True)
model0 = model0.fit(X, Y)

Arrange the features in ascending order
model_vars0 = pd.DataFrame(
 {'variable':X.columns,
 'importance':model0.feature_importances_})

model_vars0.sort_values(by='importance',
 ascending=False,
 inplace=True)

Build a feature vector with most important 25 features

n = 25
cols_model = [col for col in model_vars0.variable[:n].values]

Personal and Home IoT Chapter 9

[289]

We can also see the average importance of the top 25 features in the following4.
diagram:

Personal and Home IoT Chapter 9

[290]

In the same manner, we can hypertune the number of tree parameter. Here, we5.
restricted ourselves to four important features:

n_used = 4
cols_model = [col for col in model_vars0.variable[:n_used].values]\
 + [model_vars0.variable[6]]
X = train[cols_model]
Y = train.activity

ntree_determination = {}
for ntree in range(5,150,5):
 model = rfc(n_estimators=ntree,
 random_state=randomState,
 n_jobs=4,
 warm_start=False,
 oob_score=True)
model = model.fit(X, Y)
ntree_determination[ntree]=model.oob_score_

Thus, we can see that a random forest with about four important features and 506.
trees can give a good OOB accuracy. Hence our final model is as follows:

model2 = rfc(n_estimators=50,
 random_state=randomState,
 n_jobs=4,
 warm_start=False,
 oob_score=True)
model2 = model2.fit(X, Y)

Personal and Home IoT Chapter 9

[291]

This results in a test data accuracy of 94%. Following you can see the confusion7.
matrix for the test dataset:

test_actual = test.activity
test_pred = model2.predict(test[X.columns])
cm = confusion_matrix(test_actual,test_pred)
sns.heatmap(data=cm,
 fmt='.0f',
 annot=True,
 xticklabels=np.unique(test_actual),
 yticklabels=np.unique(test_actual))

The complete code, along with the data exploration, is available at the GitHub
repository, Chapter09/Human_activity_recognition_using_accelerometer.ipynb
. The advantage of using accelerometer data is that it is gathered from wearable devices,
and hence, requires no installation on the premises. Another advantage is that it is textual
data, hence, requires fewer computation resources than video data.

Personal and Home IoT Chapter 9

[292]

HAR from videos
Another way to detect human activity is through videos. In this case, we will have to use a
DL model such as CNN to get good results. A good dataset for classified videos is available
from Ivan Laptev and Barbara Caputo (http:/ /www. nada. kth.se/ cvap/ actions/). It
contains six types of action: walking, jogging, running, boxing, hand waving, and hand
clapping, in different scenarios. Each video has been recorded using a camera with 25 fps.
The spatial resolution is 160 × 120, and of an average length of four seconds. It has in total
599 videos with about 100 for each of the six categories.

One of the problems with video data is that it is computationally expensive, thus it will be
important to reduce the dataset, and a few ways of doing this are as follows:

Since color has no role in the activity, the images can be converted from three-
channel color images to two-dimensional grayscale images.
The video is of four seconds at 25 frames in one second, most of these frames
contain redundant data, so instead of (25 × 4 = 100) frames corresponding to one
data row, we can reduce the number of frames to say 5 frames per second
resulting in 20 frames. (It would be best if the total number of frames extracted
per video is fixed).
Reduce the spatial resolution of individual frames from 160 × 120.

Next, when it comes to modeling, we should be using three-dimensional convolutional
layers. So let us say if have taken only 20 frames per video, and reduced the size of each
frame to 128 × 128, then a single sample will be: 20 × 128 × 128 × 1, this corresponds to the
volume of 20 × 128 × 128 with a single channel.

Smart lighting
The first home automation application that comes to mind when talking about smart homes
is using smart light. Most of the smart lighting systems that exist at present offer an option
to control the switching on and off of the lights, as well as their intensity, using an app on
your smartphone or via the internet. Some also allow you to change the color/hue. Motion
detecting lights, which automatically switch on after detecting any motion, are part of
almost all households today:

http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/

Personal and Home IoT Chapter 9

[293]

Smart light for people with hearing impairments changes color based on the situation

Using AI, we can make these smart lights even smarter. In case of emergency, they can be
programmed to work in collaboration and guide you to the right exit. For people with
hearing impairments, the smart lights can be used instead of alarms, for example, a red
light when the fire alarm goes off, but an orange light when there's a burglar, and a
welcoming green when someone rings the door bell. With the help of services such as If
This Then That (IFTTT) you can set up smarter and more complex support systems.

Personal and Home IoT Chapter 9

[294]

The IFTTT provides a free service to control your devices. An action by
one device (or service) can trigger one or more other devices. It is very
simple to use, you just create an applet at the IFTTT website: https:/ /
ifttt. com, you select the device (point and click) or service you want to
use as a trigger, and link it with your IFTTT account. Next you select
(point and click) the service or the device you want should act when the
trigger is activated. The site contains thousands of pre-made applets to
make your job even easier.

Algorithm for a personalized smart light system

https://ifttt.com
https://ifttt.com
https://ifttt.com
https://ifttt.com
https://ifttt.com
https://ifttt.com

Personal and Home IoT Chapter 9

[295]

These are just some examples of what you can do with existing smart lights. But if you are
adventurous and are ready to interface new sensors with these smart lights, you can build a
personal light for yourself, one that changes its hue/intensity based on the mental activity of
the person. It gets dim when you feel sleepy, and is full intensity when you are working,
but when you are talking and spending time with friends, it simply provides a pleasant
hue. Sounds far-fetched? Not really, you can first use an AI algorithm that detects human
activity from video (or wearable fitness trackers) and classifies it into three classes: work,
leisure, and sleep, and then use its output to control the smart light hue/intensity.

Home surveillance
Home surveillance is a very useful and much-needed application. With single parents and
the elderly population on the rise, the need for security and surveillance, not just on the
outer premises, but inside homes, is also needed. Many companies are trying to provide in-
home surveillance using videos. One of the successful implementations is by a company
named DeepSight AILabs (http:/ /deepsightlabs. com), they have developed proprietary
software SuperSecure; a universally compatible retrofit solution that works with any CCTV
system, any camera, any resolution, and turns it into an AI-powered smart surveillance
solution to detect potential threats with high accuracy, and trigger instant alerts to save
lives and protect assets.

When you try your own implementation of home surveillance, the points we discussed in
the implementation of HAR using videos will be useful here as well.

Smart homes are still in their infancy, the major reason being that they involve a high cost
of ownership and the inflexibility of the interconnected devices. Normally, one particular
system is managed completely by one company. If for some reason the company is closed,
the consumer is left in the lurch. The solution would be to allow open source home
automation hardware and software. An interesting read on the challenges and
opportunities in the field of home automation is an article by Microsoft Research, Home
Automation in the Wild: Challenges and Opportunities (https:/ /www. microsoft. com/en- us/
research/publication/ home- automation- in-the- wild- challenges- and- opportunities/
).

http://deepsightlabs.com
http://deepsightlabs.com
http://deepsightlabs.com
http://deepsightlabs.com
http://deepsightlabs.com
http://deepsightlabs.com
http://deepsightlabs.com
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/
https://www.microsoft.com/en-us/research/publication/home-automation-in-the-wild-challenges-and-opportunities/

Personal and Home IoT Chapter 9

[296]

Summary
The focus of this chapter was personal and home AI-powered IoT solutions. The large-scale
use of smartphones has brought wearable sensors to every person's reach, resulting in a
plethora of personal apps. In this chapter, we explored and implemented some of the
successful personal and home AI-powered IoT solutions. We learned about SuperShoes by
MIT, shoes that can find their own path to the destination. We learned about CGM systems
and implemented code to predict hyperglycemia. This chapter also demonstrated how
personalized heart monitors can be implemented.

While smart homes are still in their infancy, the chapter explored some of the most popular
and useful smart home solutions. HAR, an application that exists at the boundary of smart
homes and personal IoT, was introduced. We wrote some code using scikit-learn to classify
the activity from data obtained using accelerometers. The chapter introduced some cool
smart lighting applications and talked about home surveillance using videos.

In the next chapter, we will look at some case studies where the data obtained from IoT
sensors is used to improve production and efficiency in industries.

10
AI for the Industrial IoT

Companies from a diverse background today are realizing the importance of Artificial
Intelligence (AI), and hence, are incorporating it into their ecosystems. This chapter focuses
on some of the successful AI-powered industrial IoT solutions. By the end of this chapter,
you will have covered the following:

How AI-powered IoT solutions are changing the industry
Different industries offering AI-enabled analysis for their data to increase
production, optimize logistics, and improve the customer experience
Preventive maintenance
Implementing a code to perform preventive maintenance based on aircraft
engine sensors data
Electrical load forecasting
Implementing a TensorFlow code to perform short-term load forecasting

Introduction to AI-powered industrial IoT
The convergence of IoT, robotics, big data, and machine learning (ML) is creating
enormous opportunities for industrial firms as well as significant challenges.

The availability of low-cost sensors, multiple cloud platforms, and powerful edge
infrastructure is making it easier and profitable for industries to adopt AI. This AI-powered
industrial IoT is transforming the way companies provide products and services or interact
with customers and partners.

AI for the Industrial IoT Chapter 10

[298]

One of the promising areas of the AI-powered industrial IoT is preventive maintenance.
Until now, industrial firms used to be reactive concerning maintenance, in the sense that
they will perform maintenance either as a part of a fixed schedule, such as every six
months, or only when some equipment stops functioning. For instance, a logistics company
may have biannual service checks of every vehicle in its fleet and replace certain parts or
entire vehicles on a set schedule. This reactive maintenance often wastes time and can be
expensive. Applying AI algorithms to predict anomalies and errors before they happen can
save a lot of time.

Another area where the AI-powered industrial IoT can achieve miracles is collaboration
among humans and robots. Robots are already part of the industrial IoT ecosystem;
working in assembly-lines and warehouses, they perform tasks that are especially repetitive
or dangerous for human workers. The semi-autonomous trucks, trains, and loaders that are
presently part of the mining industry are typically guided by pre-programmed routines,
fixed tracks, and/or remote human operators.

In many industry situations, the latency introduced by cloud computations may not be
acceptable, in such situations, the edge of computation infrastructure is needed.

To provide you with an idea of the spread and usage of AI-powered industrial IoT, the
following is a list of some of the hot AI-powered startups providing industrial IoT services
and solutions:

Uptake Technologies Inc: A Chicago based startup, co-founded in 2014 by Brad
Keywell, makes software to monitor and analyze real-time data generated by
industrial equipment and uses it to improve the performance and maintenance of
the machinery. It is planning to expand its horizon to heavy target industries
such as energy, railroads, oil and gas, mining, and wind power (https:/ /www.
uptake.com/).
C3.ai: A leading provider of big data, IoT, and AI applications, led by Thomas
Siebel, has been declared a leader in the IoT platform by Forrester Research 2018
industrial IoT Wave report. Founded in the year 2009, it has successfully
provided industries services in the field of energy management, network
efficiency, fraud detection, and inventory optimization (https:/ /c3. ai).
Alluvium: Founded in 2015 by Drew Conway, the author of Machine Learning for
Hackers, Alluvium uses ML and AI to help industrial companies achieve
operation stability and improve their production. Their flagship product, Primer,
helps companies identify the useful insights from the raw and distilled data from
the sensors, allowing them to predict operational faults before they
happen (https:/ /alluvium. io).

https://www.uptake.com/
https://www.uptake.com/
https://www.uptake.com/
https://www.uptake.com/
https://www.uptake.com/
https://www.uptake.com/
https://www.uptake.com/
https://www.uptake.com/
https://www.uptake.com/
https://c3.ai
https://c3.ai
https://c3.ai
https://c3.ai
https://c3.ai
https://c3.ai
https://c3.ai
https://alluvium.io
https://alluvium.io
https://alluvium.io
https://alluvium.io
https://alluvium.io
https://alluvium.io
https://alluvium.io

AI for the Industrial IoT Chapter 10

[299]

Arundo Analytics: Headed by Jakob Ramsøy, founded in the year 2015, Arundo
Analytics provides services to connect live data to ML and other analytical
models. They have products to scale deployed models, create and manage live
data pipelines (https:/ /www. arundo. com).
Canvass Analytics: It helps industries make critical business decisions using
predictive analytics based on real-time operational data. The Canvass AI
Platform distils the millions of data points generated by industrial machines,
sensors, and operations systems and identifies patterns and correlations within
the data to create new insights. Headed by Humera Malik, Canvass Analytics
was founded in 2016 (https:/ /www. canvass. io).

That is not the end software technology giants such as Amazon and Google are spending a
lot of funds and infrastructure in industrial IoT. Google is using predictive modeling to
reduce their data center cost, and PayPal is using ML to find fraudulent transactions.

Some interesting use cases
A large number of companies from diverse backgrounds are realizing the importance and
impact of incorporating data analysis and AI into their eco-systems. From increasing their
operations, supply chain, and maintenance efficiency to increasing employee productivity,
to creating new business models, products, and services, there is not a facet where AI has
not been explored. Following, we list some of the interesting use cases of AI-powered IoT in
industries:

Predictive maintenance: In predictive maintenance, AI algorithms are used to
predict future failures of equipment before the failure occurs. This allows the
company to perform maintenance, and hence, reduce the downtime. In the
successive section, we will go into more details of how preventive maintenance is
helpful for the industries and what are the various ways in which it can be done.
Asset tracking: Also called asset management, this is the method to keep track of
key physical assets. Keeping track of key assets, a company can optimize
logistics, maintain inventory levels, and detect any inefficiencies. Traditionally,
asset tracking was limited to adding RFID or barcodes to the assets, and hence,
keeping a tab on their location, however, with the AI algorithms at our perusal, it
is now possible to do more active asset tracking. For instance, a windmill power
station can sense the change in wind speed, its direction, and even the
temperature and use these parameters to align the individual windmill in the
best direction to maximize power generation.

https://www.arundo.com
https://www.arundo.com
https://www.arundo.com
https://www.arundo.com
https://www.arundo.com
https://www.arundo.com
https://www.arundo.com
https://www.arundo.com
https://www.arundo.com
https://www.canvass.io
https://www.canvass.io
https://www.canvass.io
https://www.canvass.io
https://www.canvass.io
https://www.canvass.io
https://www.canvass.io
https://www.canvass.io
https://www.canvass.io

AI for the Industrial IoT Chapter 10

[300]

Fleet management and maintenance: The transport industry had been using AI
for fleet management by optimizing routes for about a decade. The availability of
many low-cost sensors and the advancement of edge computing devices have
now made it possible for transport companies to collect and use the data received
from these sensors to not only optimize the logistics by better vehicle to vehicle
communication and preventive maintenance, but to accelerate safety. Installing
systems such as drowsiness detection, the risky behavior caused due to fatigue or
distraction can be detected, and the driver can be asked to take countermeasures.

Predictive maintenance using AI
Heavy machinery and equipment are the backbone of any industry and like all physical
objects, they deteriorate, age, and fail. Initially, companies used to perform reactive
maintenance, that is, maintenance was done once the equipment failure was reported. This
used to cause unplanned downtime. For any industry, an unscheduled, unplanned
downtime can cause significant resource crunch and drastically reduce efficiency,
production, and hence, profits. To deal with these problems, industries shifted to
preventive maintenance.

In preventive maintenance, regular scheduled routine checks are performed at
predetermined intervals. Preventive maintenance required keeping a record of equipment
and their scheduled maintenance. The third industrial revolution, where computers were
introduced into industries, made it easy to maintain and update these records. While
preventive maintenance saves the industry from most unplanned downtimes, it still isn't
the best alternative, since regular checks can be an unnecessary expenditure. The following
diagram outlines an example of the four industrial revolutions:

 Image shared under Creative Commons Attribution: (https://commons.wikimedia.org/wiki/File:Industry_4.0.png)

AI for the Industrial IoT Chapter 10

[301]

The current trend of automation and digitalization has lead to the fourth industrial
revolution, also called Industry 4.0. This has allowed companies to deploy machine-to-
machine (M2M) and machine-to-human (M2H) communication, along with AI-powered
analytical algorithms, enabling predictive maintenance, that predict the breakdown before
it occurs using past data. Predictive maintenance strategies have enormously eased the
maintenance and management of the company resources.

The main idea behind predictive maintenance is to predict when equipment breakdown
might occur based on condition-monitoring data. The sensors are used to monitor the
condition and performance of equipment during their normal operation, depending on the
equipment, different types of sensors may be used. Some of the common condition
monitoring parameters/sensor values are as follows:

Vibration sensors mainly used to detect misalignment, imbalance, mechanical
looseness, or wear on pumps and motors
Current/voltage sensors to measure the current and voltage supplied to an
electric motor
Ultrasound analysis to detect leakage in pipe systems or tanks, or mechanical
malfunctions of movable parts and faults in electrical equipment
Infrared thermography to identify temperature fluctuations
Sensors to detect liquid quality (for example in the case of wine sensors to detect
the presence of different elements in the wine)

To implement predictive maintenance, the most important thing is to identify the
conditions that need to be monitored. The sensors required to monitor these conditions are
then deployed. Finally, the data from the sensors is collected to build a model.

Predictive maintenance using Long Short-Term
Memory
For demonstrating predictive maintenance, we'll use the simulated data provided in Azure
ML (https://gallery. azure. ai/ Collection/ Predictive- Maintenance- Template- 3). The
dataset consists of the following three files:

Training data: It contains the aircraft engine run to failure data. The download
link for the data is http:/ / azuremlsamples. azureml. net/ templatedata/ PM_
train.txt.

https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
https://gallery.azure.ai/Collection/Predictive-Maintenance-Template-3
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt
http://azuremlsamples.azureml.net/templatedata/PM_train.txt

AI for the Industrial IoT Chapter 10

[302]

Testing data: It contains the aircraft engine operating data without failure events
recorded. The data can be loaded from the link: http:/ /azuremlsamples.
azureml. net/ templatedata/ PM_ test. txt.
Ground truth data: Here, the information about the true remaining cycles for
each engine in testing data is available. The link for the ground truth
data is http:/ / azuremlsamples. azureml. net/ templatedata/ PM_ truth. txt.

According to the data description provided at the data source, the training data
(train_FD001.txt) consists of multiple multivariate time series with cycle as the time
unit, together with 21 sensor readings for each cycle. Each time series can be assumed as
being generated from a different engine of the same type. Each engine is assumed to start
with different degrees of initial wear and manufacturing variation, and this information is
unknown to the user. In this simulated data, the engine is assumed to be operating
normally at the start of each time series. It starts to degrade at some point during the series
of the operating cycles. This degrades the progresses and grows in magnitude. When a
predefined threshold is reached, then the engine is considered unsafe for further operation.
In other words, the last cycle in each time series can be considered as the failure point of the
corresponding engine. Taking the sample training data as an example, the engine with
id=1 fails at cycle 192, and engine with id=2 fails at cycle 287.

The testing data (test_FD001.txt) has the same data schema as the training data. The
only difference is that the data does not indicate when the failure occurs (in other words,
the last time period does NOT represent the failure point). Taking the sample testing data,
the engine with id=1 runs from cycle 1 through cycle 31. It is not shown how many more
cycles this engine can last before it fails.

The ground truth data (RUL_FD001.txt) provides the number of remaining working cycles
for the engines in the testing data. Taking the sample ground truth data shown as an
example, the engine with id=1 in the testing data can run another 112 cycles before it fails.

http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_test.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt
http://azuremlsamples.azureml.net/templatedata/PM_truth.txt

AI for the Industrial IoT Chapter 10

[303]

Since this is a time series data, we will use Long Short-Term Memory (LSTM) to classify
weather the engine will fail in a certain time period or not. The code presented here is based
on the implementation provided at the GitHub link of Umberto Griffo: (https:/ / github.
com/umbertogriffo/ Predictive- Maintenance- using- LSTM):

The modules needed to implement predictive maintenance are imported in the1.
first step. We also set the seed for random calculations so that the result is
reproducible:

import keras
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os

Setting seed for reproducibility
np.random.seed(1234)
PYTHONHASHSEED = 0

from sklearn import preprocessing
from sklearn.metrics import confusion_matrix, recall_score,
precision_score
from keras.models import Sequential,load_model
from keras.layers import Dense, Dropout, LSTM

Let's read the data and assign column names, shown in the following code:2.

read training data - It is the aircraft engine run-to-failure
data.
train_df = pd.read_csv('PM_train.txt', sep=" ",
 header=None)
train_df.drop(train_df.columns[[26, 27]],
 axis=1,
 inplace=True)
train_df.columns = ['id', 'cycle', 'setting1',
 'setting2', 'setting3', 's1', 's2',
 's3', 's4', 's5', 's6', 's7', 's8',
 's9', 's10', 's11', 's12', 's13',
 's14', 's15', 's16', 's17', 's18',
 's19', 's20', 's21']

train_df = train_df.sort_values(['id','cycle'])

read test data - It is the aircraft engine operating data without
failure events recorded.
test_df = pd.read_csv('PM_test.txt',
 sep=" ", header=None)

https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM
https://github.com/umbertogriffo/Predictive-Maintenance-using-LSTM

AI for the Industrial IoT Chapter 10

[304]

test_df.drop(test_df.columns[[26, 27]],
 axis=1,
 inplace=True)
test_df.columns = ['id', 'cycle', 'setting1',
 'setting2', 'setting3', 's1', 's2', 's3',
 's4', 's5', 's6', 's7', 's8', 's9',
 's10', 's11', 's12', 's13', 's14',
 's15', 's16', 's17', 's18', 's19',
 's20', 's21']

read ground truth data - It contains the information of true
remaining cycles for each engine in the testing data.
truth_df = pd.read_csv('PM_truth.txt',
 sep=" ",
 header=None)
truth_df.drop(truth_df.columns[[1]],
 axis=1,
 inplace=True)

As the first step, we make a prediction whether the engine will fail in the time3.
period or not, hence our label will be 1 or 0, that is, this will be a binary
classification problem. To create the binary label, we preprocess the data and we
create a new label remaining useful life (RUL). We also create a binary label1
variable telling if a specific engine is going to fail within w1 cycles or not. And
finally, the data (non-sensor) is normalized, shown as follows:

Data Labeling - generate column RUL(Remaining Usefull Life or
Time to Failure)
rul = pd.DataFrame(train_df.groupby('id')
 ['cycle'].max()).reset_index()
rul.columns = ['id', 'max']
train_df = train_df.merge(rul,
 on=['id'],
 how='left')
train_df['RUL'] = train_df['max'] - train_df['cycle']
train_df.drop('max',
 axis=1,
 inplace=True)

Let us generate label columns for training data
we will only use "label1" for binary classification,
The question: is a specific engine going to fail within w1
cycles?
w1 = 30
w0 = 15
train_df['label1'] = np.where(train_df['RUL'] <= w1, 1, 0)

AI for the Industrial IoT Chapter 10

[305]

MinMax normalization (from 0 to 1)
train_df['cycle_norm'] = train_df['cycle']
cols_normalize = train_df.columns.difference
 (['id','cycle','RUL','label1'])
min_max_scaler = preprocessing.MinMaxScaler()
norm_train_df = pd.DataFrame(min_max_scaler.
 fit_transform(train_df[cols_normalize]),
 columns=cols_normalize,
 index=train_df.index)
join_df = train_df[train_df.columns.
 difference(cols_normalize)].
 join(norm_train_df)
train_df = join_df.reindex(columns = train_df.columns)

train_df.head()

Similar preprocessing is performed on the test dataset, with just one change—the4.
RUL value is obtained from the ground truth data:

MinMax normalization (from 0 to 1)
test_df['cycle_norm'] = test_df['cycle']
norm_test_df = pd.DataFrame(
 min_max_scaler.
 transform(test_df[cols_normalize]),
 columns=cols_normalize,
 index=test_df.index)
test_join_df = test_df[test_df.
 columns.difference(cols_normalize)].
 join(norm_test_df)
test_df = test_join_df.
 reindex(columns = test_df.columns)
test_df = test_df.reset_index(drop=True)

AI for the Industrial IoT Chapter 10

[306]

We use the ground truth dataset to generate labels for the test
data.
generate column max for test data
rul = pd.DataFrame(test_df.
 groupby('id')['cycle'].max()).
 reset_index()
rul.columns = ['id', 'max']
truth_df.columns = ['more']
truth_df['id'] = truth_df.index + 1
truth_df['max'] = rul['max'] + truth_df['more']
truth_df.drop('more',
 axis=1,
 inplace=True)

generate RUL for test data
test_df = test_df.merge(truth_df,
 on=['id'], how='left')
test_df['RUL'] = test_df['max'] - test_df['cycle']
test_df.drop('max',
 axis=1,
 inplace=True)

generate label columns w0 and w1 for test data
test_df['label1'] = np.where
 (test_df['RUL'] <= w1, 1, 0)
test_df.head()

Since we are using LSTM for time-series modeling, we create a function that will5.
generate the sequence to be fed to the LSTM as per the window size. We have
chosen the window size of 50. We will also need a function to generate the
corresponding label:

function to reshape features into
(samples, time steps, features)

AI for the Industrial IoT Chapter 10

[307]

def gen_sequence(id_df, seq_length, seq_cols):
 """ Only sequences that meet the window-length
 are considered, no padding is used. This
 means for testing we need to drop those which
 are below the window-length. An alternative
 would be to pad sequences so that
 we can use shorter ones """

 # for one id we put all the rows in a single matrix
 data_matrix = id_df[seq_cols].values
 num_elements = data_matrix.shape[0]
 # Iterate over two lists in parallel.
 # For example id1 have 192 rows and
 # sequence_length is equal to 50
 # so zip iterate over two following list of
 # numbers (0,112),(50,192)
 # 0 50 -> from row 0 to row 50
 # 1 51 -> from row 1 to row 51
 # 2 52 -> from row 2 to row 52
 # ...
 # 111 191 -> from row 111 to 191
 for start, stop in zip(range(0, num_elements-seq_length),
range(seq_length, num_elements)):
 yield data_matrix[start:stop, :]

def gen_labels(id_df, seq_length, label):
 # For one id we put all the labels in a
 # single matrix.
 # For example:
 # [[1]
 # [4]
 # [1]
 # [5]
 # [9]
 # ...
 # [200]]
 data_matrix = id_df[label].values
 num_elements = data_matrix.shape[0]
 # I have to remove the first seq_length labels
 # because for one id the first sequence of
 # seq_length size have as target
 # the last label (the previus ones are
 # discarded).
 # All the next id's sequences will have
 # associated step by step one label as target.
 return data_matrix[seq_length:num_elements, :]

AI for the Industrial IoT Chapter 10

[308]

Let's now generate the training sequence and corresponding label for our data,6.
shown in the following code:

pick a large window size of 50 cycles
sequence_length = 50

pick the feature columns
sensor_cols = ['s' + str(i) for i in range(1,22)]
sequence_cols = ['setting1', 'setting2',
 'setting3', 'cycle_norm']
sequence_cols.extend(sensor_cols)

generator for the sequences
seq_gen = (list(gen_sequence
 (train_df[train_df['id']==id],
 sequence_length, sequence_cols))
 for id in train_df['id'].unique())

generate sequences and convert to numpy array
seq_array = np.concatenate(list(seq_gen)).
 astype(np.float32)
print(seq_array.shape)

generate labels
label_gen = [gen_labels(train_df[train_df['id']==id],
 sequence_length, ['label1'])
 for id in train_df['id'].unique()]
label_array = np.concatenate(label_gen).
 astype(np.float32)
print(label_array.shape)

We now build an LSTM model with two LSTM layers and a fully connected7.
layer. The model is trained for binary classification, and therefore, it tries to
reduce the binary cross entropy loss. The Adam optimizer is used to update the
model parameters:

nb_features = seq_array.shape[2]
nb_out = label_array.shape[1]

model = Sequential()

model.add(LSTM(
 input_shape=(sequence_length, nb_features),
 units=100,
 return_sequences=True))
model.add(Dropout(0.2))

AI for the Industrial IoT Chapter 10

[309]

model.add(LSTM(
 units=50,
 return_sequences=False))
model.add(Dropout(0.2))

model.add(Dense(units=nb_out,
 activation='sigmoid'))
model.compile(loss='binary_crossentropy',
 optimizer='adam',
 metrics=['accuracy'])

print(model.summary())

We train the model, shown as follows:8.

history = model.fit(seq_array, label_array,
 epochs=100, batch_size=200,
 validation_split=0.05, verbose=2,
 callbacks = [keras.callbacks.
 EarlyStopping(monitor='val_loss',
 min_delta=0, patience=10,
 verbose=0, mode='min'),
 keras.callbacks.
 ModelCheckpoint
 (model_path,monitor='val_loss',
 save_best_only=True,
 mode='min', verbose=0)])

AI for the Industrial IoT Chapter 10

[310]

The trained model gives 98% accuracy on the test dataset and 98.9% accuracy on9.
the validation dataset. The precision value is 0.96, and there is a recall of 1.0
and an F1 score of 0.98. Not bad, right! The following diagram shows these
results of the train model:

AI for the Industrial IoT Chapter 10

[311]

We can use the same data to also predict the RUL of the aircraft engines, that is, predict the
engines time to failure. This will be a regression problem now we can use the LSTM model
to perform regression as well. The initial steps will be the same as before, but from the fifth
step onwards we will have changes. While the input data sequence generated will remain
the same as before, the target will no longer be the binary label, instead, we will use RUL as
the target for our regression model:

We create the target value using the same gen_labels() function. We also1.
create a validation set using the gen_sequence() function:

generate labels
label_gen = [gen_labels(train_df[train_df['id']==id],
 sequence_length, ['RUL'])
 for id in train_df['id'].unique()]
label_array = np.concatenate(label_gen).astype(np.float32)

val is a list of 192 - 50 = 142 bi-dimensional array
(50 rows x 25 columns)
val=list(gen_sequence(train_df[train_df['id']==1],
 sequence_length, sequence_cols))

Create an LSTM model. We are using r2 as the metrics during training, therefore,2.
we use the Keras custom metric feature and our own metrics function:

def r2_keras(y_true, y_pred):
 """Coefficient of Determination
 """
 SS_res = K.sum(K.square(y_true - y_pred))
 SS_tot = K.sum(K.square(y_true - K.mean(y_true)))
 return (1 - SS_res/(SS_tot + K.epsilon()))

Next, we build a deep network.
The first layer is an LSTM layer with 100 units followed by
another LSTM layer with 50 units.
Dropout is also applied after each LSTM layer to control
overfitting.
Final layer is a Dense output layer with single unit and linear
activation since this is a regression problem.
nb_features = seq_array.shape[2]
nb_out = label_array.shape[1]

model = Sequential()
model.add(LSTM(
 input_shape=(sequence_length, nb_features),
 units=100,
 return_sequences=True))

AI for the Industrial IoT Chapter 10

[312]

model.add(Dropout(0.2))
model.add(LSTM(
 units=50,
 return_sequences=False))
model.add(Dropout(0.2))
model.add(Dense(units=nb_out))
model.add(Activation("linear"))
model.compile(loss='mean_squared_error',
optimizer='rmsprop',metrics=['mae',r2_keras])

print(model.summary())

Train the model on the training dataset, shown as follows:3.

fit the network
history = model.fit(seq_array, label_array, epochs=100,
 batch_size=200, validation_split=0.05, verbose=2,
 callbacks = [keras.callbacks.EarlyStopping
 (monitor='val_loss', min_delta=0, patience=10,
 verbose=0, mode='min'),
 keras.callbacks.ModelCheckpoint
 (model_path,monitor='val_loss',
 save_best_only=True, mode='min',
 verbose=0)])

AI for the Industrial IoT Chapter 10

[313]

The trained model provides an r2 value of 0.80 on test dataset and 0.72 on the4.
validation dataset. We can improve our results by hypertuning the model
parameters. Following, you can see the loss of the model for train and validation
datasets during training:

AI for the Industrial IoT Chapter 10

[314]

To run this code, please ensure you have Tensorflow 1.4<, and Keras 2.1.2.
If you have a higher version of Keras, first uninstall it using pip
uninstall keras and then reinstall it using pip install
keras==2.1.2.

The complete code with both the binary classification and regression model are available at
the GitHub repository, Chapter10/Predictive_Maintenance_using_LSTM.ipynb. We
can also create a model to determine if the failure will occur in different time windows, for
example, fails in the window (1,w0) or fails in the window (w0+1, w1) days, and so on. This
will then be a multi-classification problem, and data will need to be preprocessed
accordingly. You can read more about this predictive maintenance template from Azure AI
Gallery: https://gallery. azure. ai/ Experiment/ Predictive- Maintenance- Step- 2A- of-
3-train-and-evaluate- regression- models- 2.

Predictive maintenance advantages and
disadvantages
According to a survey report by GE (https:/ /www. gemeasurement. com/ sites/ gemc. dev/
files/ge_the_impact_ of_ digital_ on_ unplanned_ downtime_ 0.pdf). The downtime
negatively affects the performance of the oil and gas industry. This is true, not only for the
oil and gas industry, but all industries. Hence, to reduce downtime, and increase efficiency,
it is important that predictive maintenance is adopted. However, the cost of establishing
predictive maintenance is quite high, but once a predictive maintenance system has been
properly established, it helps to provide several cost-effective benefits, such as the
following:

Minimized time is required for equipment maintenance
Minimum production time is lost due to maintenance
And finally, the spare parts cost is also minimized

Successful predictive maintenance can reshape the company as a whole in a positive way.

https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://gallery.azure.ai/Experiment/Predictive-Maintenance-Step-2A-of-3-train-and-evaluate-regression-models-2
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf
https://www.gemeasurement.com/sites/gemc.dev/files/ge_the_impact_of_digital_on_unplanned_downtime_0.pdf

AI for the Industrial IoT Chapter 10

[315]

Electrical load forecasting in industry
Electricity is presently the most important energy vector in both the domestic and
industrial sectors. Since, unlike fuels, it is hard and expensive to store electricity, there is a
need for a precise coupling between its generation and demand. Electrical energy load
forecasting, hence, is very vital. Depending upon the time range (forecasting horizon)
electrical load forecasting is classified into the following three categories:

Short-term load forecasting: The forecast is made for one hour to a few weeks
Medium-term load forecasting: The forecast duration spreads from a few weeks
to a few months
Long-term load forecasting: Here, the forecasting is done from a few months to
years

Depending upon the need and application one may have to plan either one or all of the
previous load forecasting categories. In recent years, a lot of research work has been done
in the area of short-term load forecasting (STLF). STLF can assist industries by providing
an accurate means to predict future load, which can help in precise planning, decrease in
operating cost, and thus, increase profit and provide a more reliable electrical supply. STLF
predicts the future energy demands based on historical data (acquired through smart
meters) and predicted whether conditions.

The load forecasting problem is a regression problem. It can be modeled as a time series
problem or as a static model. Modeling load forecasting as a time series data is the most
popular choice. With time series modeling, we can use the standard ML time series models
like ARIMA, or we can make use of deep learning models such as recurrent neural
networks and LSTM.

For a comprehensive review of various strategies and models used in the
electrical load forecasting, refer to this paper:
Fallah, S., Deo, R., Shojafar, M., Conti, M., and Shamshirband, S. (2018).
Computational Intelligence Approaches for Energy Load forecasting in Smart
Energy Management Grids: State of the Art, Future Challenges, and Research
Directions. Energies, 11(3), 596.

AI for the Industrial IoT Chapter 10

[316]

STLF using LSTM
Here, we present the code for performing a short-term load forecasting with the help of
LSTM. The data for training and testing is taken from the UCI ML website (https:/ /
archive.ics.uci. edu/ ml/ datasets/
Individual+household+electric+power+consumption#). The code for STLF has been
adapted from GitHub (https:/ / github. com/demmojo/ lstm- electric- load- forecast):

We import the necessary modules and set random seeds, shown as follows:1.

import time
from keras.layers import LSTM
from keras.layers import Activation, Dense, Dropout
from keras.models import Sequential, load_model
from numpy.random import seed

from tensorflow import set_random_seed
set_random_seed(2) # seed random numbers for Tensorflow backend
seed(1234) # seed random numbers for Keras
import numpy as np
import csv
import matplotlib.pyplot as plt

%matplotlib inline

Define utility functions for loading the data and converting it into a sequence2.
suited for LSTM input:

def load_data(dataset_path, sequence_length=60, prediction_steps=5,
ratio_of_data=1.0):
 # 2075259 is the total number of measurements
 # from Dec 2006 to Nov 2010
 max_values = ratio_of_data * 2075259

 # Load data from file
 with open(dataset_path) as file:
 data_file = csv.reader(file, delimiter=";")
 power_consumption = []
 number_of_values = 0
 for line in data_file:
 try:
 power_consumption.append(float(line[2]))
 number_of_values += 1
 except ValueError:
 pass

 # limit data to be considered by

https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption#
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast
https://github.com/demmojo/lstm-electric-load-forecast

AI for the Industrial IoT Chapter 10

[317]

 # model according to max_values
 if number_of_values >= max_values:
 break

 print('Loaded data from csv.')
 windowed_data = []
 # Format data into rolling window sequences
 # for e.g: index=0 => 123, index=1 => 234 etc.
 for index in range(len(power_consumption) - sequence_length):
 windowed_data.append(
 power_consumption[
 index: index + sequence_length])

 # shape (number of samples, sequence length)
 windowed_data = np.array(windowed_data)

 # Center data
 data_mean = windowed_data.mean()
 windowed_data -= data_mean
 print('Center data so mean is zero
 (subtract each data point by mean of value: ',
 data_mean, ')')
 print('Data : ', windowed_data.shape)

 # Split data into training and testing sets
 train_set_ratio = 0.9
 row = int(round(train_set_ratio * windowed_data.shape[0]))
 train = windowed_data[:row, :]

 # remove last prediction_steps from train set
 x_train = train[:, :-prediction_steps]
 # take last prediction_steps from train set
 y_train = train[:, -prediction_steps:]
 x_test = windowed_data[row:, :-prediction_steps]

 # take last prediction_steps from test set
 y_test = windowed_data[row:, -prediction_steps:]

 x_train = np.reshape(x_train,
 (x_train.shape[0], x_train.shape[1], 1))
 x_test = np.reshape(x_test,
 (x_test.shape[0], x_test.shape[1], 1))

 return [x_train, y_train, x_test, y_test, data_mean]

AI for the Industrial IoT Chapter 10

[318]

Build the LSTM model, the model we have built contains two LSTM and one3.
fully connected layer:

def build_model(prediction_steps):
 model = Sequential()
 layers = [1, 75, 100, prediction_steps]
 model.add(LSTM(layers[1],
 input_shape=(None, layers[0]),
 return_sequences=True)) # add first layer
 model.add(Dropout(0.2)) # add dropout for first layer
 model.add(LSTM(layers[2],
 return_sequences=False)) # add second layer
 model.add(Dropout(0.2)) # add dropout for second layer
 model.add(Dense(layers[3])) # add output layer
 model.add(Activation('linear')) # output layer
 start = time.time()
 model.compile(loss="mse", optimizer="rmsprop")
 print('Compilation Time : ', time.time() - start)
 return model

Train the model, as shown in the following code:4.

def run_lstm(model, sequence_length, prediction_steps):
 data = None
 global_start_time = time.time()
 epochs = 1
 ratio_of_data = 1 # ratio of data to use from 2+ million data
points
 path_to_dataset = 'data/household_power_consumption.txt'

 if data is None:
 print('Loading data... ')
 x_train, y_train, x_test, y_test, result_mean =
load_data(path_to_dataset, sequence_length,
prediction_steps, ratio_of_data)
 else:
 x_train, y_train, x_test, y_test = data

 print('\nData Loaded. Compiling...\n')
 model.fit(x_train, y_train, batch_size=128, epochs=epochs,
validation_split=0.05)
 predicted = model.predict(x_test)
 # predicted = np.reshape(predicted, (predicted.size,))
 model.save('LSTM_power_consumption_model.h5') # save LSTM model

 plot_predictions(result_mean, prediction_steps, predicted,
y_test, global_start_time)

AI for the Industrial IoT Chapter 10

[319]

 return None

sequence_length = 10 # number of past minutes of data for model to
consider
prediction_steps = 5 # number of future minutes of data for model
to predict
model = build_model(prediction_steps)
run_lstm(model, sequence_length, prediction_steps)

We can see from the following graph that our model is making good predictions:5.

The complete code is available at
GitHub: Chapter10/Electrical_load_Forecasting.ipynb.

Summary
In this chapter, we saw that AI-empowered IoT has had a significant impact on industries.
From manufacturing, logistics, agriculture, and mining to creating new products and
services, AI has touched every facet. We can hopefully assume that the AI-powered
industrial IoT will alter and disrupt current business processes and models for the better.

The next chapter will showcase how AI and the IoT can help to shape better cities.

11
AI for Smart Cities IoT

This chapter introduces the reader to smart cities. Case studies will be used to demonstrate
how the concepts learned in this book can be applied in developing various smart city
components. When reading this chapter, you'll learn about the following:

What's a smart city
The essential components of a smart city
Cities across the globe implementing smart solutions
The challenges in building smart cities
Writing a code to detect crime description from San Francisco crime data

AI for Smart Cities IoT Chapter 11

[321]

Why do we need smart cities?
According to UN data (https:/ / population. un. org/ wup/ DataQuery/), the world
population will reach 9.7 billion (9.7 × 109) by the end of 2050. It's presumed that almost
70% of that population will be an urban population with many cities having over 10 million
inhabitants. It's a significant number and, as the number grows, not only are we presented
with new opportunities, but we also face many unique challenges:

Predicted world population (data from UN)

The most difficult challenge is making resources and energy available to all of the
inhabitants and, at the same time, avoiding environment deterioration. At present, cities
consume 75% of the world's resources and energy and generate 80% of greenhouse gases;
while there's a trend towards green energy sources, we all understand that the earth's
resources, such as food and water, are limited. Another critical challenge is administration
and management; with the growing population, strategies will be needed to prevent
sanitation problems, mitigate traffic congestion, and thwart crime.

https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/
https://population.un.org/wup/DataQuery/

AI for Smart Cities IoT Chapter 11

[322]

Many of these problems can be tamed by the use of AI-enabled IoT. It's possible to use
technological advancement to facilitate a new experience for city inhabitants and make
their day-to-day living more comfortable and secure. This has given rise to the concept of
smart cities.

According to techopedia (https:/ / www. techopedia. com/ definition/ 31494/ smart- city), a
smart city is a city that utilizes information and communication technologies so that it
enhances the quality and performance of urban services (such as energy and
transportation) so that there's a reduction in resource consumption, wastage, and overall
costs. Deakin and AI Waer list four factors that contribute to the definition of a smart city:

Using a wide range of electronic and digital technologies in the city
infrastructure
Employing Information and Communication Technology (ICT) to transform
living and working environment
Embedding ICT in government systems
Implementing practices and policies that bring people and ICT together to
promote innovation and enhance the knowledge that they offer

Hence, a smart city would be a city that not only possesses ICT, but also employs
technology in a way that positively impacts the inhabitants.

The paper by Deakin and AI Waer defines a smart city and focuses on the
transition required:
Deakin, M., and Al Waer, H. (2011). From intelligent to smart cities.
Intelligent Buildings International, 3(3), 140-152.

Artificial Intelligence (AI), together with IoT, has the potential to address the key
challenges posed by excessive urban population; they can help with traffic management,
healthcare, energy crisis, and many other issues. IoT data and AI technology can improve
the lives of the citizens and businesses that inhabit a smart city.

https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city
https://www.techopedia.com/definition/31494/smart-city

AI for Smart Cities IoT Chapter 11

[323]

Components of a smart city
A smart city has lots of use cases for AI-powered IoT-enabled technology, from maintaining
a healthier environment to enhancing public transport and safety. In the following diagram,
you can see some the of use cases for a smart city:

Smart city components

In this section, we'll provide an overview of the most popular use cases—some of them
already implemented in smart cities across the world.

AI for Smart Cities IoT Chapter 11

[324]

Smart traffic management
AI and IoT can implement smart traffic solutions to ensure that inhabitants of a smart city
get from one point to another in the city as safely and efficiently as possible.

Los Angeles, one of the most congested cities in the world, has implemented a smart traffic
solution to control the flow of traffic. It has installed road-surface sensors and closed-circuit
television cameras that send real-time updates about the traffic flow to a central traffic
management system. The data feed from the sensors and cameras is analyzed, and it
notifies the users of congestion and traffic signal malfunctions. In July 2018, the city further
installed Advanced Transportation Controller (ATC) cabinets at each intersection. Enabled
with vehicle-to-infrastructure (V2I) communications and 5G connectivity, this allows them
to communicate with cars that have the traffic light information feature, such as Audi A4 or
Q7. You can learn more about the Los Angeles smart transportation system from their
website (https:/ /dpw. lacounty. gov/ TNL/ ITS/).

The launch of automated vehicles embedded with sensors can provide both the location
and speed of the vehicle; they can directly communicate with the smart traffic lights and
prevent congestion. Additionally, using historical data, future traffic could be predicted
and used to prevent any possible congestion.

Smart parking
Anyone living in a city must have felt the struggle of finding a parking spot, especially
during the holiday time. Smart parking can ease the struggle. With road surface sensors
embedded in the ground on parking spots, smart parking solutions can determine whether
the parking spots are free or occupied and create a real-time parking map.

The city of Adelaide installed a smart parking system in February 2018, they are also
launching a mobile app: Park Adelaide, which will provide the user with accurate and real-
time parking information. The app can provide users with the ability to locate, pay for, and
even extend the parking session remotely. It'll also give directions to available parking
bays, information about parking controls, and alerts when the parking session is about to
expire. The smart parking system of the city of Adelaide aims to also improve traffic flow,
reduce traffic congestion, and decrease carbon emissions. The details of the smart parking
system are available in the city of Adelaide website (https:/ /www. cityofadelaide. com.
au/city-business/ why- adelaide/ adelaide- smart- city/ smart- parking).

https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://dpw.lacounty.gov/TNL/ITS/
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking
https://www.cityofadelaide.com.au/city-business/why-adelaide/adelaide-smart-city/smart-parking

AI for Smart Cities IoT Chapter 11

[325]

The San Francisco Municipal Transportation Agency (SAFTA) implemented (http:/ /
sfpark.org), SFpark a smart parking system. They use wireless sensors to detect real-time
parking-space occupancy in metered spaces. Launched in the year 2013, SFpark has
reduced weekday greenhouse gas emissions by 25%, the traffic volume has gone down, and
drivers' search time has reduced by 50%. Another benefit reported by SAFTA is that, by
making it easier for people to pay for their parking, the loss due to broken parking meters
has reduced, and hence there's an increase in the parking-related revenue by about $1.9
million.

In London, the city of Westminster (https:/ /iotuk. org. uk/ smart- parking/
#1463069773359-c0d6f90f- 4dca) also established a smart parking system in the year 2014
in association with Machina Research (https:/ /machinaresearch. com/ login/ ?next= /
forecasts/usecase/). Earlier, drivers had to wait an average of 12 minutes, resulting in
congestion and pollution, but since the installation of the smart parking system, there's no
need to wait; drivers can find an available parking spot using the mobile. This hasn't only
reduced congestion and pollution, but has also increased revenue generation.

Smart waste management
Waste collection and its proper management and disposal is an essential city service. The
increase in the urban population necessitates that better smart methods for waste
management should be adopted. A smart city should holistically address its waste
management. Adopting AI for smart recycling and waste management can provide a
sustainable waste management system. In the year 2011, ZenRobotics (https:/ /
zenrobotics.com/), a Finnish company, demonstrated how using computer vision and
artificial intelligence (a robot) can be trained to sort and pick recycle materials from moving
conveyor belts. Since then, we have come a long way; many companies provide smart
waste management solutions and cities and buildings are adopting them. There's a growing
awareness among leaders and community builders of the potential benefits of the
deployment of smart city infrastructure.

Barcelona's waste management system (http:/ /ajuntament. barcelona. cat/
ecologiaurbana/en/ services/ the- city- works/ maintenance- of- public- areas/ waste-
management-and-cleaning- services/ household- waste- collection) is a good case study.
They had sensors and devices fitted on waste bins, which can send alert notifications to the
authorities that then dispatch the waste collection trucks as soon as they are about to be
filled. They maintain separate bins for paper, plastic, glass, and waste food items in every
locality. The Barcelona authorities have set up a network of containers connected with
underground vacuum pipes, which can suck up the trash and leave it in the processing
unit; this eliminates the need for trash trucks to collect the garbage.

http://sfpark.org
http://sfpark.org
http://sfpark.org
http://sfpark.org
http://sfpark.org
http://sfpark.org
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://iotuk.org.uk/smart-parking/#1463069773359-c0d6f90f-4dca
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://machinaresearch.com/login/?next=/forecasts/usecase/
https://zenrobotics.com/
https://zenrobotics.com/
https://zenrobotics.com/
https://zenrobotics.com/
https://zenrobotics.com/
https://zenrobotics.com/
https://zenrobotics.com/
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection
http://ajuntament.barcelona.cat/ecologiaurbana/en/services/the-city-works/maintenance-of-public-areas/waste-management-and-cleaning-services/household-waste-collection

AI for Smart Cities IoT Chapter 11

[326]

Another good case study is Denmark, waste management (https:/ /www. smartbin. com/
tdc-denmark-cisco- showcase- the- future- of-smart- city- waste- collection/), provided
by SmartBin. Collaborating with TDC, Denmark's largest telecom service and Cisco,
SmartBin has installed sensors to a range of the containers and these sensors are integrated
with the City Digital Platform. Additionally, lamp posts, and traffic lights also have been
installed with the sensors that send data to the control console at the town hall. The real-
time data obtained from these sensors help the cleaner services to plan their route for
garbage collection more efficiently; they only need to go where there's a need for emptying.

Ten solar-powered Bigbelly bins equipped with Wi-Fi units are installed in Sharjah, United
Arab Emirates; they plan to deploy several hundreds of these smart bins in the near future
to achieve sustainability goals.

Smart policing
Crime is unfortunately omnipresent. Every city has a police force trying to catch criminals
and reduce the crime rate. Smart cities also require policing: smart policing, where law
enforcement agencies employ evidence-based data-driven strategies that are effective,
efficient, and economical. The concept of smart policing emerged somewhere in 2009,
driven mainly due to limited budget constraints. The fundamental idea driving the smart
policing concept was given by Herman Goldstein (University of Wisconsin, 1979). He
argued that police shouldn't view criminal incidents as isolated events but, instead, as overt
systems of problems that have a history and a future.

In the US, the Bureau of Justice Assistance (BJA) has funded many Smart Policing
Initiatives (SPI) and according to its findings, these initiatives have resulted in significantly
reducing the violent crimes. The SPI focuses on police-research partnership, where the
research partner provides ongoing data collection and analysis, monitors the data,
participates in solution development, and assesses its impact. These initiatives have helped
police identify the following:

Hot-spots of crime
Prolific offenders

https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/
https://www.smartbin.com/tdc-denmark-cisco-showcase-the-future-of-smart-city-waste-collection/

AI for Smart Cities IoT Chapter 11

[327]

Singapore has also initiated its smart nation initiative. A network of cameras and sensors
have been installed on almost every corner of the city. They use the feed obtained from
them to identify where people are smoking in prohibited zones, or are loitering from a
high-rise housing. The cameras enable the authorities to monitor crowd density, cleanliness
of public places, and even track the exact movement of all registered vehicles. The camera
feed is fed into an online platform called Virtual Singapore, which provides
information about how the city is working on a real-time basis.

Smart lighting
Street lights are necessary, but they consume a lot of energy. Smart lighting systems can
help make street light energy efficient. Besides this, the lamp posts can also be fitted with
additional sensors, or serve as Wi-Fi network hotspots.

One such invention that can help install smart lighting in any city is CitySense (https:/ /
www.tvilight.com/ citysense/), an award-winning streetlight motion sensor; it has
integrated wireless lighting control. Designed for harsh external environments, CitySense
offers on-demand adaptive lighting. The lamps can adjust their brightness based on the
presence of pedestrians, cyclists or cars. It employs a real-time mesh network to
trigger neighboring lights, and creates a safe circle of light around a human occupant. It has
intelligent filters, which can filter out the interference caused by small animals or moving
trees. The system can automatically detect any lamp failures and trigger a maintenance call.
The Van Gogh Village in the Netherlands has employed CitySense for their smart street
lighting systems.

It's also worth mentioning Barcelona's lighting master plan initiative; it has reported a
significant reduction in streetlight power consumption. Around 2014, most of the city's
lampposts were fitted with LED lights and IoT powered sensors were installed in them. The
sensors automatically turn the lights dim when streets are empty and this has helped in
lowering energy consumption. Additionally, these lampposts also serve as Wi-Fi network
hotspots and are fitted with sensors to monitor air quality.

https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/
https://www.tvilight.com/citysense/

AI for Smart Cities IoT Chapter 11

[328]

Smart governance
The main purpose of smart cities is to make a comfortable and convenient life for its
inhabitants. Therefore, a smart city infrastructure is not complete without smart
governance. Smart governance means the intelligent use of information and
communication technology to improve decision making through better collaboration
among different stakeholders, including government, and citizens. Smart governance can
be seen as a basis to smart, open, and participatory government. This requires reshaping
the role of governments, citizens, and other social actors, as well as exploring the new
technologies to frame a new governance model, including new relationships, new
processes, and new government structures. Smart governance would be able to use data,
evidence, and other resources to improve decision making and would be able to deliver the
results that meet the needs of the citizens. This will enhance the decision-making process
and increase the quality of public services.

Adapting IoT for smart cities and the
necessary steps
Building a smart city is not a one-day business, neither is it the work of one person or
organization. It requires the collaboration of many strategic partners, leaders, and even
citizens. The dynamics of such a collaboration is beyond the scope of this book, but, since
the book is for AI enthusiasts and engineers, let's explore what the AI community can do,
what are the areas that provide us with a career or entrepreneurship opportunity. Any IoT
platform will necessarily require the following:

A network of smart things (sensors, cameras, actuators, and so on) for gathering
data
Field (cloud) gateways that can gather the data from low power IoT devices,
store it, and forward it securely to the cloud
Streaming data processor for aggregating numerous data streams and
distributing them to a data lake and control applications
A data lake for storing all the raw data, even the ones that seem of no value yet
A data warehouse that can clean and structure the collected data
Tools for analyzing and visualizing the data collected by sensors

AI for Smart Cities IoT Chapter 11

[329]

AI algorithms and techniques for automating city services based on long-term
data analysis and finding ways to improve the performance of control
applications
Control applications for sending commands to the IoT actuators
User applications for connecting smart things and citizens

Besides this, there will be issues regarding security and privacy, and the service provider
will have to ensure that these smart services do not pose any threat to citizens' wellbeing.
The services themselves should be easy to use and employ so that citizens can adopt them.

As you can see, this offers a range of job opportunities, specifically for AI engineers. The
IoT-generated data needs to be processed, and to benefit from it truly, we will need to go
beyond monitoring and basic analysis. The AI tools will be required to identify patterns
and hidden correlations in the sensor data. Analysis of historical sensor data using ML/AI
tools can help in identifying trends and create predictive models based on them. These
models can then be used by control applications that send commands to IoT devices'
actuators.

The process of building a smart city will be an iterative process, with more processing and
analysis added at each iteration. Consider the case of a smart traffic light, let's see how we
can iteratively improve it.

Compared to a traditional traffic light, our smart traffic light adapts its signal timings,
depending upon the traffic. We can use the historical traffic data to train a model to reveal
traffic patterns and adjust signal timings to maximize the average vehicle speed, and thus,
avoid congestions. Such isolated smart traffic lights are good, but not sufficient. Supposing
an area has congestion, then it'll be great if the drivers on the road are informed to avoid
that route. To do this now, we can add an additional processing system; it identifies the
congestion using the traffic light sensor data, and using the GPS from the vehicle or driver's
smartphone, informs the drivers near the region of congestion to avoid that route.

As the next step, the traffic lights can be added with more sensors, like sensors that can
monitor the air quality, and then train the model to ensure the alerts to be generated before
a critical air quality is reached.

AI for Smart Cities IoT Chapter 11

[330]

Cities with open data
In the last decade, many cities around the world have established open data portals. These
open data portals not only help citizens to stay informed, but are boon for AI coders, since
data drive AI. Let's look at a number of the interesting data portals and the data they
provide.

This article on Forbes lists the 90 US cities with open
data: https://www.forbes.com/sites/metabrown/2018/04/29/city-gov
ernments-making-public-data-easier-to-get-90-municipal-open-

data-portals/#4542e6f95a0d.

Atlanta city Metropolitan Atlanta Rapid Transit
Authority data
The Metropolitan Atlanta Rapid Transit Authority (MARTA) releases real-time public
transport data with an aim to provide the developers with an opportunity to develop
custom web and mobile applications. The MARTA platform provides the developers with
resources to access the data and use it to develop an application (https:/ / www.itsmarta.
com/app-developer- resources. aspx).

General Transit Feed Specification (GTFS) format is used to provide the data. GTFS is a
standard format for public transportation schedules and geographic information. It's
composed of a series of text files, each file models a particular aspect of transit information:
stops, routes, trips, and similar scheduled data.

MARTA also provides data through RESTful APIs. To access the API, you will need to
install MARTA-Python the Python library for accessing MARTA real-time API. The Python
library can be installed using pip:

pip install tox

https://www.forbes.com/sites/metabrown/2018/04/29/city-governments-making-public-data-easier-to-get-90-municipal-open-data-portals/#4542e6f95a0d
https://www.forbes.com/sites/metabrown/2018/04/29/city-governments-making-public-data-easier-to-get-90-municipal-open-data-portals/#4542e6f95a0d
https://www.forbes.com/sites/metabrown/2018/04/29/city-governments-making-public-data-easier-to-get-90-municipal-open-data-portals/#4542e6f95a0d
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx
https://www.itsmarta.com/app-developer-resources.aspx

AI for Smart Cities IoT Chapter 11

[331]

Before using the API, you will need to register and sign up for the API key (https:/ /www.
itsmarta.com/developer- reg- rtt. aspx). The API key would be stored in the
MARTA_API_KEY environment variable. To set the MARTA_API_KEY you can use the
following:

On Windows, use the following:

set MARTA_API_KEY=<your_api_key_here>

On Linux/MAC, use the following:

export MARTA_API_KEY=<your_api_key_here>

It provides two primary wrapper functions get_buses() and get_trains(), and both
functions take keyword arguments to filter the result:

from marta.api import get_buses, get_trains

To obtain list of all buses
all_buses = get_buses()

To obtain a list of buses by route
buses_route = get_buses(route=1)

To obtain list of all trains
trains = get_trains()

To obtain list of trains specified by line
trains_red = get_trains(line='red')

To obtain list of trains by station
trains_station = get_trains(station='Midtown Station')

To obtain list of trains by destination
trains_doraville = get_trains(station='Doraville')

To obtain list of trains by line, station, and destination
trains_all = get_trains(line='blue',
 station='Five Points Station',
 destination='Indian Creek')

The get_buses() and get_trains() functions return Bus and Train dictionary objects,
respectively.

https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx
https://www.itsmarta.com/developer-reg-rtt.aspx

AI for Smart Cities IoT Chapter 11

[332]

Chicago Array of Things data
Launched in the year 2016, Array of Things (AoT) project consists of installing a network
of sensor-boxes mounted on light posts. The sensors collect a host of real-time data on
environmental surroundings and urban activity. The data generated is available for
developers and enthusiasts via bulk download and also through APIs.

The sensors are deployed across several geographic areas, each deployment region is
named projects, with the largest deployment in Chicago, under the project
named Chicago.

The physical devices that are deployed are called nodes, each node is identified by its
unique serial number VSN. These nodes are connected together to comprise a network. The
nodes contain sensors, these sensors observe various facets of the environment, like
temperature, humidity, light intensity, and particulate matter. The information recorded by
sensors is called observations.

The observations have redundancy and are available in their raw form through the API.
There exist one-to many relationships between nodes and observations, sensors, and
observations. There are also many-to-many relationships between projects, nodes and
sensors. The complete data and details of the AoT project can be accessed from the Chicago
city open data portal: https:/ / data. cityofchicago. org/ .

Detecting crime using San Francisco crime data
The San Francisco city also has an open data portal (https:/ /datasf. org/ opendata/)
providing data from different departments online. In this section, we take the dataset
providing about 12 years (from January 2003 to May 2015) of crime reports from across all
of San Francisco's neighborhoods and train a model to predict the category of crime that
occurred. There are 39 discreet crime categories, thus it's a multi-class classification
problem.

https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://data.cityofchicago.org/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://datasf.org/opendata/

AI for Smart Cities IoT Chapter 11

[333]

We will use make use of Apache's PySpark and use its easy to use text processing features
for this dataset. So the first step will be to create a Spark session:

The first step is to import the necessary modules and create a Spark session:1.

from pyspark.ml.classification import LogisticRegression as LR
from pyspark.ml.feature import RegexTokenizer as RT
from pyspark.ml.feature import StopWordsRemover as SWR
from pyspark.ml.feature import CountVectorizer
from pyspark.ml.feature import OneHotEncoder, StringIndexer,
VectorAssembler
from pyspark.ml import Pipeline
from pyspark.sql.functions import col
from pyspark.sql import SparkSession

spark = SparkSession.builder \
 .appName("Crime Category Prediction") \
 .config("spark.executor.memory", "70g") \
 .config("spark.driver.memory", "50g") \
 .config("spark.memory.offHeap.enabled",True) \
 .config("spark.memory.offHeap.size","16g") \
 .getOrCreate()

We load the dataset available in a csv file: 2.

data = spark.read.format("csv"). \
 options(header="true", inferschema="true"). \
 load("sf_crime_dataset.csv")

data.columns

AI for Smart Cities IoT Chapter 11

[334]

The data contains nine columns: [Dates, Category, Descript,3.
DayOfWeek, PdDistrict, Resolution, Address, X, Y], we will need
only Category and Descript fields for training and testing dataset:

drop_data = ['Dates', 'DayOfWeek', 'PdDistrict', 'Resolution',
'Address', 'X', 'Y']
data = data.select([column for column in data.columns if column not
in drop_data])

data.show(5)

Now the dataset we have has textual data, so we will need to perform text4.
processing. The three important text processing steps are: tokenizing the data,
remove the stop words and vectorize the words into vectors. We will
use RegexTokenizer which will uses regex to tokenize the sentence into a list of
words, since punctuation or special characters do not add anything to the
meaning, we retain only the words containing alphanumeric content. There are
some words like the, which will be very commonly present in the text, but not
add any meaning to context. We can remove these words (also called stop
words) using the inbuilt StopWordsRemover class. We use standard stop words
["http","https","amp","rt","t","c","the"]. And finally using
the CountVectorizer, we convert the words to numeric vector (features). It's
these numeric features that will be used as input to train the model. The output
for our data is the Category column, but it's also textual with 36 distinct
categories, and so, we need to convert it to one hot encoded vector; the PySpark's
StringIndexer can be easily used for it. We add all these transformations into
our data Pipeline:

regular expression tokenizer
re_Tokenizer = RT(inputCol="Descript",
 outputCol="words", pattern="\\W")

AI for Smart Cities IoT Chapter 11

[335]

stop words
stop_words = ["http","https","amp","rt","t","c","the"]
stop_words_remover = SWR(inputCol="words",
 outputCol="filtered").setStopWords(stop_words)

bag of words count
count_vectors = CountVectorizer(inputCol="filtered",
 outputCol="features", vocabSize=10000, minDF=5)

#One hot encoding the label
label_string_Idx = StringIndexer(inputCol = "Category",
 outputCol = "label")

Create the pipeline
pipeline = Pipeline(stages=[re_Tokenizer, stop_words_remover,
 count_vectors, label_string_Idx])

Fit the pipeline to data.
pipeline_fit = pipeline.fit(data)
dataset = pipeline_fit.transform(data)

dataset.show(5)

Now, the data is ready, we split it into training and test dataset:5.

Split the data randomly into training and test data sets.
(trainingData, testData) = dataset.randomSplit([0.7, 0.3], seed =
100)
print("Training Dataset Size: " + str(trainingData.count()))
print("Test Dataset Size: " + str(testData.count()))

AI for Smart Cities IoT Chapter 11

[336]

Let's fit a simple logistic regression model for it. On the test dataset, it provides a6.
97% accuracy. Yahoo!:

Build the model
logistic_regrssor = LR(maxIter=20,
 regParam=0.3, elasticNetParam=0)
Train model with Training Data
model = logistic_regrssor.fit(trainingData)

Make predictions on Test Data
predictions = model.transform(testData)

evaluate the model on test data set
evaluator =
MulticlassClassificationEvaluator(predictionCol="prediction")
evaluator.evaluate(predictions)

The complete code is available in the GitHub
repository Chapter11/SF_crime_category_detection.ipynb Jupyter Notebook.

Challenges and benefits
AI is changing the way cities operate, deliver, and maintain public amenities, from lighting
and transportation to connectivity and health services. However, the adoption can be
obstructed by the selection of technology that doesn't efficiently work together or integrate
with other city services. Hence, it's important to think for retrofitted solutions.

Another important thing to take care of is collaboration. For cities to truly benefit from the
potential that smart cities offer, a change in mindset is required. The authorities should
plan longer and across multiple departments. Everyone—technologists, local governments,
businesses, environmentalists, and the general public—must work together to enable cities
to transform into a smart city, successfully.

Though budget can be a big issue, the results of the successful implementation of smart city
components across different cities of the world show that, by proper implementation, smart
cities are more economical. Smart city transition not only creates jobs, but can help save the
environment, reduce energy expenditure, and generate more revenue. The city of Barcelona
is a prime example of this; through the implementation of IoT systems, it created an
estimated 47,000 jobs, saved €42.5 million on water, and generated an extra €36.5 million a
year through smart parking. We can easily see that cities can benefit tremendously from the
technological advances that utilize AI-powered IoT solutions.

AI for Smart Cities IoT Chapter 11

[337]

Summary
AI-powered IoT solutions can help connect cities and manage multiple infrastructure, and
public services. This chapter covered diverse use cases of smart cities, from smart lighting
and road traffic to connected public transport, and waste management. From the successful
case studies, we also learned that smart cities can lead to reduced costs for energy,
optimized use of natural resources, safer cities, and a healthier environment. This chapter
listed some of the open city data portals and the information available there. We use the
tools learned in this book to categorize the data from the San Francisco crime reports done
in a period of 12 years. And finally, this chapter discussed some challenges and benefits in
the building of smart cities.

12
Combining It All Together

Now that we have understood and implemented different Artificial Intelligence
(AI)/machine learning (ML) algorithms, it is time to combine it all together, understand
which type of data is best suited for each, and, at the same time, understand the basic
preprocessing required for each type of data. By the end of this chapter, you will know the
following:

The different types of data that can be fed to your model
How to process time series data
Preprocessing of textual data
Different transforms that can be done on image data
How to handle video files
How to handle speech data
Cloud computing options

Processing different types of data
Data is available in all shapes, sizes, and forms: tweets, daily stock prices, per
minute heartbeat signals, photos from cameras, video obtained from CCTV, audio
recordings, and so on. Each of them contain information and when properly processed and
used with the right model, we can analyze the data and, obtain advanced information
about the underlying patterns. In this section, we will cover the basic preprocessing
required for each type of data before it can be fed to a model and the models that can be
used for it.

Combining It All Together Chapter 12

[339]

Time series modeling
Time underlies many interesting human behaviors, and hence, it is important that AI-
powered IoT systems know how to deal with time-dependent data. Time can be
represented either explicitly, for example, capturing data at regular intervals where the
time-stamp is also part of data, or implicitly, for example, in speech or written text. The
methods that allow us to capture inherent patterns in time-dependent data is called time
series modeling.

The data that is captured at regular intervals is a time series data, for example, stock price
data is a time series data. Let's take a look at Apple stock price data; this data can be
downloaded from the NASDAQ site (https:/ / www.nasdaq. com/ symbol/ aapl/ historical).
Alternatively, you can use the pandas_datareader module to directly download the data
by specifying the data source. To install pandas_datareader in your working
environment, use the following:

pip install pandas_datareader

The following code downloads the Apple Inc stock price from Yahoo Finance1.
from 1st January 2010 to 31st December 2015:

import datetime
from pandas_datareader import DataReader
%matplotlib inline

Apple = DataReader("AAPL", "yahoo",
 start=datetime.datetime(2010, 1, 1),
 end=datetime.datetime(2015,12,31))
Apple.head()

The downloaded DataFrame provides High, Low, Open, Close, Volume, and Adj2.
Close values for each working day:

https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical
https://www.nasdaq.com/symbol/aapl/historical

Combining It All Together Chapter 12

[340]

Let's now plot it, shown as follows:3.

close = Apple['Adj Close']
plt.figure(figsize= (10,10))
close.plot()
plt.ylabel("Apple stocj close price")
plt.show()

To be able to model time series data, we need to identify a few things: trend,
seasonality, and stationarity.

Combining It All Together Chapter 12

[341]

Trend means to find whether, on average, the measurements tend to decrease (or4.
increase) over time. The most common way to find a trend is by plotting a
moving average, shown as follows:

moving_average = close.rolling(window=20).mean()

plt.figure(figsize= (10,10))
close.plot(label='Adj Close')
moving_average.plot(label='Moving Average Window 20')
plt.legend(loc='best')
plt.show()

Combining It All Together Chapter 12

[342]

We can see, with a window of 20, the upward and downward trend. For time5.
series modeling, we should detrend the data. Detrending can be done by
subtracting the trend (moving average) from the original signal. Another popular
way is using the first order difference method, where you take the difference
between successive data points:

fod = close.diff()
plt.figure(figsize= (10,10))
fod.plot(label='First order difference')
fod.rolling(window=40).mean().\
 plot(label='Rolling Average')
plt.legend(loc='best')
plt.show()

Combining It All Together Chapter 12

[343]

Seasonality is the presence of a regularly repeating pattern of highs and lows6.
related to time (for example, sine series). The easiest way is to find
autocorrelation in the data. Once you find the seasonality, you can remove it by
differencing the data by a time lag corresponding to the season length:

Autocorrelation
plt.figure(figsize= (10,10))
fod.plot(label='First order difference')
fod.rolling(window=40).mean().\
 plot(label='Rolling Average')
fod.rolling(window=40).corr(fod.shift(5)).\
 plot(label='Auto correlation')
plt.legend(loc='best')
plt.show()

Combining It All Together Chapter 12

[344]

The last thing is to ensure whether the series is stationary, that is, the mean of the7.
series is no longer a function of time. Stationarity of data is essential for time
series modeling. We achieve stationarity by removing any trends or seasonality
present within the data. Once the data is stationary, we can use regression
models to model it.

Traditionally, time series data was modeled using auto-regressive and
moving average based models like ARMA and ARIMA. To learn more
about time series modeling, the interested reader can refer to these books:

Pandit, S. M., and Wu, S. M. (1983). Time Series and System
Analysis with Applications(Vol. 3). New York: Wiley.
Brockwell, P. J., Davis, R. A., and Calder, M. V. (2002).
Introduction to Time Series and Forecasting(Vol. 2). New York:
Springer.

The stationarity is an important property for any time series data, whether you are using
traditional time series modeling or deep learning models. This is so because, if a series has
stationarity (even if it is weak stationarity), then it means the data has same distribution
across time, and hence, can be estimated in time. If you are planning to use deep learning
models such as RNN or LSTM, then after confirming stationarity of the time series,
additionally, you need to normalize the data and use a sliding window transform to
convert the series in to input-output pairs on which regression can be done. This can be
very easily done using the scikit-learn library and NumPy:

Let's normalize the close DataFrame. Normalization ensures that data lies1.
between 0 and 1. Observe that the following plot is the same as the plot of
the close DataFrame in the preceding step 3 , however, the y-axis scale is now
different:

Normalization
from sklearn.preprocessing import MinMaxScaler
def normalize(data):
 x = data.values.reshape(-1,1)
 pre_process = MinMaxScaler()
 x_normalized = pre_process.fit_transform(x)
 return x_normalized

x_norm = normalize(close)

plt.figure(figsize= (10,10))
pd.DataFrame(x_norm, index = close.index).plot(label="Normalized
Stock prices")

Combining It All Together Chapter 12

[345]

plt.legend(loc='best')
plt.show()

We define a window_transform() function, which will convert the data series2.
into a sequence of input-output pairs. For example, you want to construct an
RNN that takes the previous five values as output and predicts the sixth value.
Then, you choose window_size = 5:

Create window from the normalized data
def window_transform(series, window_size):
 X = []
 y = []

 # Generate a sequence input/output pairs from series
 # x= <s1,s2,s3,s4,s5,... s_n> y = s_n+1 and so on
 for i in range(len(series) - window_size):
 X.append(series[i:i+window_size])
 y.append(series[i+window_size])

 # reshape each
 X = np.asarray(X)
 X.shape = (np.shape(X)[0:2])
 y = np.asarray(y)
 y.shape = (len(y),1)

 return X,y

window_size = 7
X,y = window_transform(x_norm,window_size = window_size)

Combining It All Together Chapter 12

[346]

Please refer to the GitHub
repository, Chapter-12/time_series_data_preprocessing.ipynb, for the complete
code of this section.

Preprocessing textual data
Language plays a very important role in our daily life. For us, reading a written text is very
natural, but what about computers? Can they read it? Can we make our deep learning
models generate new text based on the old pattern? For example, if I say, "Yesterday, I had
____ at Starbucks," most of us will be able to guess that the blank space is coffee, but can
our deep learning models do it? The answer is yes; we can train our deep learning models
to guess the next word (or character). However, deep learning models run on computers,
and computers understand only binary, only 0s and 1s. Hence, we need a way to process
out textual data so that it can be converted in to a form that is easy for the computer to
handle. Moreover, while cat or CAT or Cat have different ASCII representation, they mean
the same; it is easy for us to see, but for models to take them as the same, we need to
preprocess the textual data. This section will list the necessary preprocessing steps for the
textual data, and you will learn how to do it in Python:

For this section, we will consider a small text from my favorite science fiction1.
novel, Foundation, by Isaac Asimov. The text is in the foundation.txt file. The
first step is, we read in the text:

f = open('foundation.txt')
text = f.read()
print(text)

The next step in text processing is cleaning the data. We retain only that part of2.
the text that is relevant. In most cases, punctuation does not add any additional
meaning to the text, so we can safely remove it:

clean data
import re
remove Punctuation
text = re.sub(r"[^a-zA-Z0-9]", " ", text)
print(text)

Combining It All Together Chapter 12

[347]

After cleaning the data, we need to normalize the text. In text processing,3.
normalizing the text means converting all text in to the same case, lowercase or
uppercase. Conventionally, lowercase is preferred, so we convert the text in to
lowercase:

Normalize text
Convert to lowercase
text = text.lower()
print(text)

Once the text is normalized, the next step is tokenizing the text. We can tokenize4.
a text in word tokens or sentence tokens. To do this, you can use either the split
function or use the powerful NLTK module. If you do not have NLTK installed
in your system, you can do it using pip install nltk. In the following, we
use NLTK's word tokenizer to do the task:

import os
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize

Split text into words using NLTK
words_nltk = word_tokenize(text)
print(words_nltk)

Depending on the type of text you have and the work you are doing, you will5.
need to remove stop words. Stop words are words that are present in most text
samples, and hence, do not add any information to the context or meaning of the
text. For example, the, a, and an. You can declare your own stop words or use the
stop words provided by NLTK. Here, we remove stopwords of the english
language from our text:

from nltk.corpus import stopwords
nltk.download('stopwords')
#Remove stop words
words = [w for w in words \
 if w not in stopwords.words("english")]

Combining It All Together Chapter 12

[348]

Another thing that you can perform on the textual data is stemming and6.
lemmatization. These are used to convert the words into canonical form:

from nltk.stem.porter import PorterStemmer

Reduce words to their stems
stemmed = [PorterStemmer().stem(w) for w in words]
print(stemmed)

from nltk.stem.wordnet import WordNetLemmatizer

Reduce words to their root form
lemmed = [WordNetLemmatizer().lemmatize(w) for w in words]
print(lemmed)

You can access the notebook with this code at GitHub:
Chapter12/text_processing.ipynb.

Data augmentation for images
Python has OpenCV, which provides very good support for images. OpenCV can be
downloaded from both Conda channels and PyPi for installation. Once the image is read
using the OpenCV imread() function, the image is represented as an array. In case the
image is coloured, the channels are stored in BGR order. Each element of the array
represents the intensity of the corresponding pixel value (the values lie in the range 0 to
255).

Let's say you have trained a model to recognize a ball: you present it with a tennis ball, and
it recognizes it as a ball. The next image of the ball that we present is taken after zooming:
will our model still recognize it? A model is just as good as the dataset it has been trained
on, and so, if the model while training had seen rescaled images, it will be easy for it to
identify the zoomed ball as a ball. One way to ensure that such images are available in your
dataset is to implicitly include such variable images, however, since images are represented
as an array, we can perform mathematical transformations to rescale, flip, rotate, and even
change intensities. The process of performing these transformations on existing training
images to generate new images is called data augmentation. Another advantage of using
data augmentation is that you are able to increase the size of your training dataset (when
used with data generators, we can get infinite images).

Combining It All Together Chapter 12

[349]

Most deep learning libraries have standard APIs to perform data augmentation. In Keras
(https://keras.io/ preprocessing/ image/), there is ImageDataGenerator, and in
TensorFlow-TfLearn, we have ImageAugmentation. TensorFlow also has Ops to perform
image conversions and transformations (https:/ /www. tensorflow. org/ api_ guides/
python/image). Here we will see how we can use OpenCV's powerful library for data
augmentation and create our own data generator:

We import the necessary modules: OpenCV to read and process images, numpy1.
for matrix manipulations, Matplotlib to visualize images, shuffle from scikit-
learn for randomly shuffling the data, and Glob to find files within directories:

import cv2 # for image reading and processsing
import numpy as np
from glob import glob
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
%matplotlib inline

We read the necessary files. For this example, we downloaded some images of2.
the previous President of the United States, Barack Obama, from Google image
search:

img_files = np.array(glob("Obama/*"))

We create a function that can randomly introduce any of the following3.
distortions in the image: random rotation in the range 0–50 degrees, randomly
change the intensity, randomly shift the image horizontally and vertically by up
to 50 pixels, or randomly flip the image:

def distort_image(img, rot = 50, shift_px = 40):
 """
 Function to introduce random distortion: brightness, flip,
 rotation, and shift
 """
 rows, cols,_ = img.shape
 choice = np.random.randint(5)
 #print(choice)
 if choice == 0: # Randomly rotate 0-50 degreee
 rot *= np.random.random()
 M = cv2.getRotationMatrix2D((cols/2,rows/2), rot, 1)
 dst = cv2.warpAffine(img,M,(cols,rows))
 elif choice == 1: # Randomly change the intensity
 hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
 ratio = 1.0 + 0.4 * (np.random.rand() - 0.5)
 hsv[:, :, 2] = hsv[:, :, 2] * ratio
 dst = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)

https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image
https://www.tensorflow.org/api_guides/python/image

Combining It All Together Chapter 12

[350]

 elif choice == 2: # Randomly shift the image in horizontal and
vertical direction
 x_shift,y_shift = np.random.randint(-shift_px,shift_px,2)
 M = np.float32([[1,0,x_shift],[0,1,y_shift]])
 dst = cv2.warpAffine(img,M,(cols,rows))
 elif choice == 3: # Randomly flip the image
 dst = np.fliplr(img)
 else:
 dst = img

 return dst

In the following image, you can see the result of the preceding function on4.
randomly chosen images from our dataset:

Combining It All Together Chapter 12

[351]

And finally, you can create a data generator using Python yield to generate as5.
many images as you want:

data generator
def data_generator(samples, batch_size=32, validation_flag =
False):
 """
 Function to generate data after, it reads the image files,
 performs random distortions and finally
 returns a batch of training or validation data
 """
 num_samples = len(samples)
 while True: # Loop forever so the generator never terminates
 shuffle(samples)
 for offset in range(0, num_samples, batch_size):
 batch_samples = samples[offset:offset+batch_size]
 images = []

 for batch_sample in batch_samples:
 if validation_flag: # The validation data consists
only of center image and without distortions
 image = cv2.imread(batch_sample)
 images.append(image)
 continue
 else: # In training dataset we introduce
distortions to augment it and improve performance
 image = cv2.imread(batch_sample)
 # Randomly augment the training dataset to
reduce overfitting
 image = distort_image(image)
 images.append(image)

 # Convert the data into numpy arrays
 X_train = np.array(images)

 yield X_train

train_generator = data_generator(img_files, batch_size=32)

The Chapter12/data_augmentation.ipynb file contains the code for this section.

Combining It All Together Chapter 12

[352]

Handling videos files
Videos are nothing but a collection of still images (frames), therefore, if we can extract
images from the videos, we can apply our trusted CNN networks on the same. The only
necessary thing to do is convert the video in to a list of frames:

The first thing we import are the requisite modules. We will need OpenCV to1.
read the video and convert it in to frames. We will also need the math module for
basic mathematical operations and Matplotlib for visualizing the frames:

import cv2 # for capturing videos
import math # for mathematical operations
import matplotlib.pyplot as plt # for plotting the images
%matplotlib inline

We read the video file using the OpenCV function and get its frame rate by using2.
the property identifier, 5 (https:/ /docs. opencv. org/ 2. 4/modules/ highgui/
doc/reading_ and_ writing_ images_ and_ video. html#videocapture- get):

videoFile = "video.avi" # Video file with complete path
cap = cv2.VideoCapture(videoFile) # capturing the video from the
given path
frameRate = cap.get(5) #frame rate

We loop through all of the frames of the video one by one using the read()3.
function. Although we read only one frame at a time, we save only the first frame
in each second. This way, we can cover the whole video, and yet reduce the data
size:

count = 0
while(cap.isOpened()):
 frameId = cap.get(1) #current frame number
 ret, frame = cap.read()
 if (ret != True):
 break
 if (frameId % math.floor(frameRate) == 0):
 filename ="frame%d.jpg" % count
 count += 1
 cv2.imwrite(filename, frame)

cap.release()
print ("Finished!")

https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
https://docs.opencv.org/2.4/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get

Combining It All Together Chapter 12

[353]

Let's visualize the fifth frame that we saved:4.

img = plt.imread('frame5.jpg') # reading image using its name
plt.imshow(img)

The video file for this code was taken from the site maintained by Ivan Laptev and Barbara
Caputo (http://www. nada. kth. se/ cvap/ actions/). The code is available at
GitHub: Chapter12/Video_to_frames.ipynb.

One of the best papers that uses CNN for classifying videos is Large-scale
Video Classification with Convolutional Neural Networks by Andrej Karpathy
et al.. You can access here: https:/ / www.cv- foundation. org/ openaccess/
content_ cvpr_ 2014/ html/ Karpathy_ Large- scale_ Video_
Classification_ 2014_ CVPR_paper. html.

http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Karpathy_Large-scale_Video_Classification_2014_CVPR_paper.html

Combining It All Together Chapter 12

[354]

Audio files as input data
Another interesting data type is audio files. Models that convert speech in to text or classify
audio sounds take as input audio files. If you want to work with audio files, then you will
need the librosa module. There are many ways to treat an audio file; we can convert it
into a time series and use a recurrent network. Another way that has given good results is
to use them as one-dimensional or two-dimensional patterns, and train a CNN to classify
them. Some good papers that adopt this approach are as follows:

Hershey, S., Chaudhuri, S., Ellis, D. P., Gemmeke, J. F., Jansen, A., Moore, R. C.,
and Slaney, M. (2017, March). CNN architectures for large-scale audio classification.
In Acoustics, Speech, and Signal Processing (ICASSP), 2017 IEEE International
Conference on (pp. 131-135). IEEE.

Palaz, D., Magimai-Doss, M., and Collobert, R. (2015). Analysis of CNN-based
speech recognition system using raw speech as input. In Sixteenth Annual Conference
of the International Speech Communication Association.

Zhang, H., McLoughlin, I., and Song, Y. (2015, April). Robust sound event
recognition using convolutional neural networks. In Acoustics, Speech, and Signal
Processing (ICASSP), 2015 IEEE International Conference on (pp. 559-563). IEEE.

Costa, Y. M., Oliveira, L. S., and Silla Jr, C. N. (2017). An evaluation of convolutional
neural networks for music classification using spectrograms. Applied soft computing,
52, 28–38.

We will use the librosa module to read an audio file and convert it in to a one-
dimensional sound pattern and two-dimensional spectrogram. You can install librosa in
your Anaconda environment using the following:

pip install librosa

Here, we will import numpy, matplotlib, and librosa. We will take the1.
example audio file from the librosa datasets:

import librosa
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
Get the file path to the included audio example
filename = librosa.util.example_audio_file()

Combining It All Together Chapter 12

[355]

The librosa load function returns the audio data as time series represented as a2.
one-dimensional NumPy floating-point array. We can use them as time series or
even as a one-dimensional pattern for a CNN:

input_length=16000*4
def audio_norm(data):
 # Function to Normalize
 max_data = np.max(data)
 min_data = np.min(data)
 data = (data-min_data)/(max_data-min_data)
 return data

def load_audio_file(file_path,
 input_length=input_length):
 # Function to load an audio file and
 # return a 1D numpy array
 data, sr = librosa.load(file_path, sr=None)

 max_offset = abs(len(data)-input_length)
 offset = np.random.randint(max_offset)
 if len(data)>input_length:
 data = data[offset:(input_length+offset)]
 else:
 data = np.pad(data, (offset,
 input_size - len(data) - offset),
 "constant")

 data = audio_norm(data)
 return data

In the following, you can see the one-dimensional audio wave pattern after3.
normalization:

data_base = load_audio_file(filename)
fig = plt.figure(figsize=(14, 8))
plt.title('Raw wave ')
plt.ylabel('Amplitude')
plt.plot(np.linspace(0, 1, input_length), data_base)
plt.show()

Combining It All Together Chapter 12

[356]

librosa also has a melspectrogram function that we can use to form a mel4.
spectrogram, which can be used as a two-dimensional image for a CNN:

def preprocess_audio_mel_T(audio, sample_rate=16000,
 window_size=20, #log_specgram
 step_size=10, eps=1e-10):

 mel_spec = librosa.feature.melspectrogram(y=audio,
 sr=sample_rate, n_mels= 256)
 mel_db = (librosa.power_to_db(mel_spec,
 ref=np.max) + 40)/40
 return mel_db.T

def load_audio_file2(file_path,
 input_length=input_length):
 #Function to load the audio file
 data, sr = librosa.load(file_path, sr=None)

 max_offset = abs(len(data)-input_length)
 offset = np.random.randint(max_offset)
 if len(data)>input_length:
 data = data[offset:(input_length+offset)]
 else:

Combining It All Together Chapter 12

[357]

 data = np.pad(data, (offset,
 input_size - len(data) - offset),
 "constant")

 data = preprocess_audio_mel_T(data, sr)
 return data

Here is a mel spectrogram of the same audio signal:5.

data_base = load_audio_file2(filename)
print(data_base.shape)
fig = plt.figure(figsize=(14, 8))
plt.imshow(data_base)

You can find the code file for the example in the GitHub repository under
the Chapter12/audio_processing.ipynb file.

Combining It All Together Chapter 12

[358]

Computing in the cloud
Applying AI algorithms to IoT-generated data requires computing resources. With the
availability of a large number of cloud platforms offering service at competitive prices,
cloud computing offers a cost-effective solution. Out of the many cloud platforms available
today, we will talk about three main cloud platform providers that occupy the majority of
the market share: Amazon Web Service (AWS), Google Cloud Platform (GCP), and
Microsoft Azure.

AWS
Amazon offers almost every feature under the cloud, from a cloud database, to cloud
computing resources, to even cloud analytics. It even provides space to build a secure data
lake. Its IoT core allows users to connect devices to the cloud. It provides a single
dashboard that can be used to control the services you sign for. It charges per hour for its
services. It has been offering these services for almost 15 years. Amazon continuously
upgrades the service providing a better user experience. You can learn more about AWS
from its site: https:/ / aws. amazon. com/ .

It allows new users to make use of many of its services for free for one whole year.

Google Cloud Platform
Google Cloud Platform (https:/ /cloud. google. com/) also offers a myriad of services. It
offers cloud computing, data analytics, data storage, and even cloud AI products that
provide users with pre-trained models and service to generate their own tailored models.
The platform allows you to pay per minute. It offers enterprise-level secure services. The
Google Cloud console is the one place stop to access and control all of your GCP services.
GCP offers $300 credit for the first year, which allows you to access all of its services for
free.

Microsoft Azure
Microsoft Azure offers a wide variety of cloud services too. The best part of Microsoft
Cloud services (https:/ / azure. microsoft. com/ en-in/) is its ease of use; you can integrate
it easily with available Microsoft tools. It claims to be five times less expensive compared to
AWS. Like AWS and GCP, Azure also offers a one-year free trial worth $200 credits.

You can use these cloud services to develop, test, and deploy your applications.

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/
https://azure.microsoft.com/en-in/

Combining It All Together Chapter 12

[359]

Summary
This chapter focused on providing the reader with tools to handle different types of data
and how to prepare them for the deep learning models. We started with time series data.
This chapter next detailed how textual data needs to be preprocessed. This chapter showed
how to perform data augmentation, an important technique for image classification and
object detection. We next moved on to handling video; we show how to form image frames
from a video. Next, this chapter covered audio files; we formed a time series and mel
spectrogram from an audio file. Finally, we moved on to cloud platforms and discussed the
features and services provided by three major cloud service providers.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Artificial Intelligence with Python
Prateek Joshi

ISBN: 9781786464392

Realize different classification and regression techniques
Understand the concept of clustering and how to use it to automatically segment
data
See how to build an intelligent recommender system
Understand logic programming and how to use it
Build automatic speech recognition systems
Understand the basics of heuristic search and genetic programming
Develop games using Artificial Intelligence
Learn how reinforcement learning works
Discover how to build intelligent applications centered on images, text, and time
series data
See how to use deep learning algorithms and build applications based on it

https://www.packtpub.com/big-data-and-business-intelligence/artificial-intelligence-python

Other Books You May Enjoy

[361]

Artificial Intelligence By Example
Denis Rothman

ISBN: 9781788990547

Use adaptive thinking to solve real-life AI case studies
Rise beyond being a modern-day factory code worker
Acquire advanced AI, machine learning, and deep learning designing skills
Learn about cognitive NLP chatbots, quantum computing, and IoT and
blockchain technology
Understand future AI solutions and adapt quickly to them
Develop out-of-the-box thinking to face any challenge the market presents

https://www.packtpub.com/big-data-and-business-intelligence/artificial-intelligence-example

Other Books You May Enjoy

[362]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
activation function 91
actor-network 212
advanced transportation controller (ATC) 324
AI controlled sailplanes 178
AI platforms 18
AI-powered Industrial IoT
 about 297
 use cases 299
AI-powered Smart Surveillance Solution 295
AI-powered startups
 Alluvium 298
 Arundo Analytics 299
 C3.ai 298
 Canvass Analytics 299
 Uptake Technologies Inc 298
Air quality dataset 24
Alexa 284
Alluvium
 reference 298
AlphaGo Zero 178
Amazon AWS IoT 19
Amazon Web Service (AWS) 358
Apache MLlib
 about 247
 algorithms 247
Apple watch
 reference 286
Array of Things (AoT) 332
Artificial Intelligence (AI) 6, 87, 276
artificial neuron 91
Arundo Analytics
 reference 299
asset management 299
asset tracking 299
audio file

 as input data 354, 355, 357
autoencoders
 about 135
 denoising autoencoders 137
 variational autoencoders (VAE) 137

B
backpropagation algorithm 104, 105
backpropagation through time (BPTT) 128
bagging 81
batch normalization 120
Bellman Equation 183
Blender learning environment 179

C
C3.ai
 reference 298
Canvass Analytics
 reference 299
cardiac arrhythmia 280
catastrophic forgetting 191
Cauchy method 141
CGM data
 using, in hypoglycemia prediction 276, 277, 280
channels 117
cities, with open data
 about 330
 Atlanta city Metropolitan Atlanta Rapid Transit

Authority data 330
 Chicago Array of Things data 332
CitySense
 reference 327
classification, MLlib 252
classification
 in H2O 269, 271
 with support vector machines 62
cloud platform providers

[364]

 about 358
 Amazon Web Service (AWS) 358
 Google Cloud platform 358
 Microsoft Azure 358
cloud platforms
 Amazon AWS IoT 19
 Google Cloud IoT 19
 IBM Watson IoT Platform 19
 Microsoft IoT-Azure IoT suite 19
CNN models
 GoogleNet 120
 LeNet 119
 ResNet 120
 VGGNet 119
combined cycle power plant (CCPP) dataset
 about 22
 features 22
Comma-separated value (CSV) 28
complex event processing (CEP) 14
components, smart city
 smart governance 328
 smart lighting 327
 smart parking 324
 smart policing 326
 smart traffic management 324
 smart waste management 325
components, Spark
 DataFrames 246
 distributed variables 246
 libraries 246
 Resilient Distributed Datasets (RDDs) 246
components, TensorFlow
 computation graph 20
 execution graph 20
continuous glucose monitoring (CGM) 276
convex cost function
 example 139
convolution layers
 parameters 117
Convolutional neural networks (CNN)
 about 115
 convolution layer 116
 layers 115
 pooling layer 118
Cortana 284

critic-network 212
cross-entropy loss function 59
cross-industry standard process for data mining

(CRISP-DM) 17
cross-validation 84
crossover operation
 performing 150
CSV files
 using, with csv module 28, 29, 31
 using, with NumPy module 33
 using, with pandas module 31, 32
CycleGAN
 about 239
 architecture 240
 usage 242

D
data augmentation
 for images 348, 349, 351
data management (DM) 17
data
 processing 338
Database Management System (DBMS) 42
datasets
 about 38
 Air quality data 24
 combined cycle power plant (CCPP) 22
 Wine quality dataset 23
dead neurons 96
decision trees
 about 73, 74
 in scikit 75, 76
 working 77, 78, 79
Deep Convolutional GAN (DCGAN) 232, 233,

234, 236
deep learning
 about 89, 90
 artificial neuron 91
Deep Q-Network (DQN) 188
deep reinforcement learning 177
DeepSight AILabs
 reference 295
denoising autoencoders 137
deterministic and analytic methods, optimization
 gradient descent method 141

[365]

 Newton-Raphson method 143
digital assistants
 about 283
 Alexa 284
 Cortana 284
 Google Assistant 284
 Siri 284
directed acyclic graph (DAG) 160
discriminative network 225
Distributed Artificial Intelligence (DAI) 244
Distributed Evolutionary Algorithms in Python

(DEAP)
 about 153
 reference 153
 used, for coding genetic algorithms 153
Double DQN 202
DQN
 Atari game, playing 193, 194, 196, 198, 201
Duelling DQN 203, 204

E
electrical load forecasting
 in industry 315
ensemble learning
 about 79
 bagging 81
 pasting 81
 voting classifier 80
epsilon greedy algorithm 184
experience replay 192
explicit generative models 215
exploration-exploitation trade-off 184

F
feature scaling 82
feedforward network 103
Fitbit
 reference 286
fitness function 139, 149
fixed Q-targets 192
fleet management and maintenance 300
folds 84
Frontiers of Information Technology (FIT) 12
function call 47

G
GAN Zoo GitHub
 reference 238
Gated recurrent unit (GRU) 134, 135
Gaussian kernel 66
Gaussian Naive Bayes
 for wine quality 70, 71, 72
Gazebo 179
General Transit Feed Specification (GTFS) 330
Generative Adversarial Networks (GANs)
 about 224
 applications 242
 architecture 225
 learning steps 226
generative models
 about 215
 explicit generative models 215
 implicit generative models 215
generative network 225
genetic algorithms
 about 146
 advantages 152
 coding, Distributed Evolutionary Algorithms in

Python (DEAP) used 153
 crossover operation 150
 disadvantages 153
 for CNN architecture 159, 160, 162, 163, 166
 for LSTM optimization 167, 169, 170
 implementing 149
 mutation operator 151
 used, for guessing word 154, 155, 158
Google Assistant 284
Google Cloud IoT 19
Google Cloud platform
 reference 358
Google Colaboratory 90
Google File System
 reference 47
GoogleNet 120
gradient descent algorithm 96
gradient descent method
 about 141
 drawbacks 141
 types 142

[366]

graphical processing units (GPUs) 90
grid search 85
group 38

H
H2O AutoML
 about 262
 reference 262
H2O.ai 262
H2O
 about 262
 classification 269, 271
 reference 262
 regression 263, 264, 266, 267, 268
h5py
 about 38, 41
 HDF5, using with 40
 reference 41
Hadoop Distributed File System (HDFS)
 about 47
 DataNode 47
 hdfs3, using with 48
 NodeName 47
 PyArrow's filesystem interface, using for 49
Hamilton Watch Company 274
HDF5, in pandas
 reference 40
HDF5
 about 38
 reference 38
 using, with h5py 40
 using, with pandas 39, 40
 using, with PyTables 38, 39
hdfs3
 reference 49
 using, with HDFS 48
Hierarchical Data Format (HDF) 38
home surveillance 295
human activity recognition (HAR)
 about 285
 from videos 292
 with wearable sensors 286, 287, 289, 291
hyperparameter tuning 85
hypoglycemia prediction
 with CGM data 276, 277, 280

I
IBM Watson IoT Platform 19
If This Then That (IFTTT) 293
images
 generating, VAEs used 216, 217
implicit generative models 215
independent and identically distributed (iid) 69
Industry 4.0 301
Industry IoT (IIoT) 9
International Telecommunication Unit (ITU)
 reference 7
internet of everything 7
Internet of Things (IoT)
 about 6
 adopting, for smart city 328
 big data 13, 14
 data science 15, 16
 reference 7
 scenarios 8
IoT 101 7
IoT layers
 application layer 10
 device layer 10
 network layer 10
 service layer 10
IoT platforms
 about 10, 18
 selection criteria 11
IoT reference model 9
IoT verticals
 about 11
 connected healthcare 12
 smart agriculture 11
 smart building 11
 smart city 12
IoT, and smart homes
 about 284
 home surveillance 295
 human activity recognition (HAR) 285
 smart lighting 292, 295

J
JavaScript Object Notation (JSON) 36
JSON files

[367]

 using, with JSON module 36, 37
 using, with pandas module 37
JSON format
 working with 36

K
Kaggle 90
Keras 21
kernel 66

L
Lasso regularization 83
LeNet
 handwritten digits, recognizing 120, 122, 123
 reference 119
linear regression
 about 53
 electrical power output prediction 54, 55, 57
 using, for prediction 53
Locomotion behavior 179
logistic regression
 about 57
 cross-entropy loss function 59
 for classification 57
logistic regressor
 wine quality data, classifying 60, 61, 62
logit function 58
Long Short-Term Memory (LSTM) 303
long short-term memory (LSTM) 130, 131, 133
long-term load forecasting 315
loss function 139

M
machine learning (ML)
 about 50, 297
 IoT 51
 paradigms 51
machine-to-human (M2H) 301
machine-to-machine (M2M) 301
Markov Decision Process (MDP) 176
maximal margin separator 62
medium-term load forecasting 315
Metropolitan Atlanta Rapid Transit Authority

(MARTA) 330
Microsoft Azure 358

Microsoft Cloud services
 reference 358
Microsoft IoT-Azure IoT suite 19
min-max normalization 82
MLlib
 classification 252
 regression 247, 248, 249, 251, 252
Multi-Point Crossover 151
multilayered perceptrons
 for classification 102
 for regression 102
multiple linear regression 53
mutation operator 151
MySQL database engine 44, 45

N
Naive Bayes 69, 70
natural optimization methods
 about 144
 Particle Swarm Optimization (PSO) 145
 simulated annealing 144
natural optimization methodsatural optimization

methods
 genetic algorithms 146
Newton-Raphson method 143
No Free Lunch theory 84
nodes 332
normalization
 min-max normalization 82
 Z-score normalization 82
Not Only Structured Query Language (NoSQL)

database 46
NumPy module
 CSV files, using with 33

O
objective function 139
observations 332
one-point crossover 150
OpenAI gym
 about 179, 180, 182
 supported environments 180
OpenPyXl
 using, for XLSX files 34, 35
optimization

[368]

 about 138, 139
 deterministic and analytic methods 140
 natural optimization methods 144
 tasks 139
optimizers, TensorFlow
 reference 142
overfitting 83
overfitting, solutions
 cross-validation 84
 regularization 83

P
pandas module
 CSV files, using with 31, 32
 JSON files, using with 37
pandas
 HDF5, using with 39, 40
 using, with XLSX files 35
parameters, single artificial neuron
 activation function 96
 learning rate parameter 96
 loss function 97
Particle Swarm Optimization (PSO) 145
pasting 81
perception layer 10
personal IoT
 about 274
 continuous glucose monitoring (CGM) 276
 digital assistants 283
 heart monitor 280, 282
 SuperShoes by MIT 275
policy gradients
 about 204, 205
 actor-critic algorithm 212
 need for 206
 used, for playing game of Pong 206, 208, 209,

210

prediction
 with linear regression 53
predictive maintenance template, Azure AI Gallery
 reference 314
predictive maintenance
 about 299
 advantages 314
 disadvantages 314

 with AI 300, 301
 with Long Short-Term Memory 301, 303, 304,

305, 306, 309, 312, 314
preventive maintenance 298
protocols, IoT
 reference 12
PyArrow's filesystem interface
 using, for HDFS 49
PyTables
 about 38
 HDF5, using with 38, 39
Python
 TXT files, using 27

Q
Q-learning 183, 184
Q-Network
 about 188
 taxi drop-off 188, 190, 191
Q-tables
 taxi drop-off 185, 186
quasi-Newton methods 143

R
radial basis function 66
random forest 81
random resetting 152
rectified linear units (ReLU) 96
recurrent neural networks 128
 about 126
 Gated recurrent unit (GRU) 134, 135
 long short-term memory (LSTM) 130, 131, 133
regression, MLlib
 about 247, 248, 249, 251, 252
 decision tree regression 248
 generalized linear regression 247
 gradient boosted tree regression 248
 linear regression 247
 random forest regression 248
regression
 in H2O 263, 264, 265, 267, 268
regularization 83
reinforcement learning (RL)
 actions 175
 applications 178

[369]

 deep reinforcement learning 177
 environment model 176
 policy 175
 reward 175
 states 175
 terminologies 174
 value function 176
relational database 42
remaining useful life (RUL) 304
Remote Procedure Calls (RPCs) 47
replay buffer 192
residual learning 120
Resilient Distributed Datasets (RDDs) 246
ResNet 120
ridge regularization 83
RL algorithms
 policy-based methods 177
 value-based methods 177
Robot Operating System (ROS) 179
root-mean-square error (RMSE) 167

S
San Francisco Municipal Transportation Agency

(SAFTA) 325
scikit
 decision trees 75
seasonality 343
sensors 332
SFpark
 reference 325
short-term load forecasting (STLF)
 about 315
 with LSTM 316, 318, 319
sigmoid function 58
simple linear regression 53
simple perceptron 102
simulated annealing 144
simulated environments
 Blender learning environment 179
 Gazebo 179
 OpenAI gym 179, 180
 Unity ML-Agents SDK 179
single artificial neuron
 parameters 96
single neuron

 modelling, in TensorFlow 96, 99, 100
Single Point Crossover 150
Siri 284
smart city
 benefits 336
 challenges 336
 components 323
 crime, detecting with San Francisco crime data

332, 334
 IoT, adopting for 328
 need for 321
smart lighting 292
smart policing initiatives (SPI) 326
SmartTrack 286
Snakebite
 reference 48
Spark driver 245
Spark executors 245
Spark MLlib logistic regression classifier
 wine quality classification problem, implementing

253, 254, 255
Spark
 components 245
 reference 246
 working 245
SparkDL
 reference 261
 using, in transfer learning 256, 257, 258, 259,

260

SQL data 42
SQLite database engine
 about 42
 reference 42
 using 43
sqlite3 module 42
stationarity 344
stationary 344
Structured Query Language (SQL) 42
subroutine call 47
SuperShoes
 about 275
 reference 275
supervised learning 51
Support Vector Machines (SVMs)
 about 62

 kernel 65
 maximum margin hyperplane 63, 64, 65
 wine data, classifying 66, 68, 69
supported environments, OpenAI gym
 algorithms 180
 Atari 180
 Box2D 180
 Classic control 180
 MuJoCo 180
 robotics 180
 toy text 180
synaptic connections 91

T
taxi drop-off
 with Q-Network 188, 190, 191
 with Q-tables 185, 186
Temporal Difference (TD) error 192
Tensor Processing Unit (TPUs) 90
TensorFlow
 about 20
 components 20
 energy output prediction, with MLPs 107, 109,

110

 single neuron, modelling 96, 98, 99, 100
 vanilla GAN, implementing in 227, 228, 230,

232

 Variational Autoencoders (VAEs) 218, 221, 223,
224

 wine quality classification, with MLPs 110, 113,
114

TensorFlowOnSpark (TFoS) 245
textual data
 preprocessing 346, 348
time series modeling 339, 340, 341, 342, 343,

344

transfer learning
 about 256
 with SparkDL 256, 257, 258, 259, 260
trend 341
Turing test 88
TXT files
 using, in Python 27
TXT format 26

U
Unity ML-Agents SDK
 about 179
 reference 179
unsupervised learning 52
Uptake Technologies Inc
 reference 298
use cases, AI-powered Industrial IoT
 asset tracking 299
 fleet management and maintenance 300
 predictive maintenance 299

V
vanilla GAN
 implementing, in TensorFlow 227, 228, 230,

232

variational autoencoders (VAE) 137
Variational Autoencoders (VAEs)
 architecture 217
 images, generating 216, 217
 in TensorFlow 218, 219, 221, 223, 224
vehicle-to-infrastructure (V2I) 324
vertical market 11
VGG16 119
VGGNet
 reference 119
videos files
 handling 352
Virtual Singapore 327
voting classifier 80

W
weights 119
Wine quality dataset 23

X
XLSX files
 OpenPyXl, using for 34, 35
 pandas, using with 35
XLSX format 34

Z
Z-score normalization 82

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Principles and Foundations of IoT and AI
	What is IoT 101?
	IoT reference model
	IoT platforms
	IoT verticals

	Big data and IoT
	Infusion of AI – data science in IoT
	Cross-industry standard process for data mining
	AI platforms and IoT platforms

	Tools used in this book
	TensorFlow
	Keras
	Datasets
	The combined cycle power plant dataset
	Wine quality dataset
	Air quality data

	Summary

	Chapter 2: Data Access and Distributed Processing for IoT
	TXT format
	Using TXT files in Python

	CSV format
	Working with CSV files with the csv module
	Working with CSV files with the pandas module
	Working with CSV files with the NumPy module

	XLSX format
	Using OpenPyXl for XLSX files
	Using pandas with XLSX files

	Working with the JSON format
	Using JSON files with the JSON module
	JSON files with the pandas module

	HDF5 format
	Using HDF5 with PyTables
	Using HDF5 with pandas
	Using HDF5 with h5py

	SQL data
	The SQLite database engine
	The MySQL database engine

	NoSQL data
	HDFS
	Using hdfs3 with HDFS
	Using PyArrow's filesystem interface for HDFS

	Summary

	Chapter 3: Machine Learning for IoT
	ML and IoT
	Learning paradigms
	Prediction using linear regression
	Electrical power output prediction using regression

	Logistic regression for classification
	Cross-entropy loss function
	Classifying wine using logistic regressor

	Classification using support vector machines
	Maximum margin hyperplane
	Kernel trick
	Classifying wine using SVM

	Naive Bayes
	Gaussian Naive Bayes for wine quality

	Decision trees
	Decision trees in scikit
	Decision trees in action

	Ensemble learning
	Voting classifier
	Bagging and pasting

	Improving your model – tips and tricks
	Feature scaling to resolve uneven data scale
	Overfitting
	Regularization
	Cross-validation

	No Free Lunch theorem
	Hyperparameter tuning and grid search

	Summary

	Chapter 4: Deep Learning for IoT
	Deep learning 101
	Deep learning—why now?
	Artificial neuron
	Modelling single neuron in TensorFlow

	Multilayered perceptrons for regression and classification
	The backpropagation algorithm
	Energy output prediction using MLPs in TensorFlow
	Wine quality classification using MLPs in TensorFlow

	Convolutional neural networks
	Different layers of CNN
	The convolution layer
	Pooling layer

	Some popular CNN model
	LeNet to recognize handwritten digits

	Recurrent neural networks
	Long short-term memory
	Gated recurrent unit

	Autoencoders
	Denoising autoencoders
	Variational autoencoders

	Summary

	Chapter 5: Genetic Algorithms for IoT
	Optimization
	Deterministic and analytic methods
	Gradient descent method
	Newton-Raphson method

	Natural optimization methods
	Simulated annealing
	Particle Swarm Optimization
	Genetic algorithms

	Introduction to genetic algorithms
	The genetic algorithm
	Crossover
	Mutation

	Pros and cons
	Advantages
	Disadvantages

	Coding genetic algorithms using Distributed Evolutionary Algorithms in Python
	Guess the word
	Genetic algorithm for CNN architecture
	Genetic algorithm for LSTM optimization

	Summary

	Chapter 6: Reinforcement Learning for IoT
	Introduction
	RL terminology
	Deep reinforcement learning

	Some successful applications

	Simulated environments
	OpenAI gym

	Q-learning
	Taxi drop-off using Q-tables

	Q-Network
	Taxi drop-off using Q-Network
	DQN to play an Atari game
	Double DQN
	Dueling DQN

	Policy gradients
	Why policy gradients?
	Pong using policy gradients
	The actor-critic algorithm

	Summary

	Chapter 7: Generative Models for IoT
	Introduction
	Generating images using VAEs
	VAEs in TensorFlow

	GANs
	Implementing a vanilla GAN in TensorFlow
	Deep Convolutional GANs
	Variants of GAN and its cool applications
	Cycle GAN
	Applications of GANs

	Summary

	Chapter 8: Distributed AI for IoT
	Introduction
	Spark components

	Apache MLlib
	Regression in MLlib
	Classification in MLlib
	Transfer learning using SparkDL

	Introducing H2O.ai
	H2O AutoML
	Regression in H2O
	Classification in H20

	Summary

	Chapter 9: Personal and Home IoT
	Personal IoT
	SuperShoes by MIT
	Continuous glucose monitoring
	Hypoglycemia prediction using CGM data

	Heart monitor
	Digital assistants

	IoT and smart homes
	Human activity recognition
	HAR using wearable sensors
	HAR from videos

	Smart lighting
	Home surveillance

	Summary

	Chapter 10: AI for the Industrial IoT
	Introduction to AI-powered industrial IoT
	Some interesting use cases

	Predictive maintenance using AI
	Predictive maintenance using Long Short-Term Memory
	Predictive maintenance advantages and disadvantages

	Electrical load forecasting in industry
	STLF using LSTM

	Summary

	Chapter 11: AI for Smart Cities IoT
	Why do we need smart cities?
	Components of a smart city
	Smart traffic management
	Smart parking
	Smart waste management
	Smart policing
	Smart lighting
	Smart governance

	Adapting IoT for smart cities and the necessary steps
	Cities with open data
	Atlanta city Metropolitan Atlanta Rapid Transit Authority data
	Chicago Array of Things data

	Detecting crime using San Francisco crime data

	Challenges and benefits
	Summary

	Chapter 12: Combining It All Together
	Processing different types of data
	Time series modeling
	Preprocessing textual data
	Data augmentation for images
	Handling videos files
	Audio files as input data

	Computing in the cloud
	AWS
	Google Cloud Platform
	Microsoft Azure

	Summary

	Other Books You May Enjoy
	Index

