

Hands-On Deep Learning for
Games

Leverage the power of neural networks and reinforcement
learning to build intelligent games

Micheal Lanham

BIRMINGHAM - MUMBAI

Hands-On Deep Learning for Games
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Larissa Pinto
Content Development Editor: Pranay Fereira
Techincal Reviewer: Yosun Chang
Technical Editor: Sachin Sunilkumar
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Alishon Mendonsa
Production Coordinator: Shraddha Falebhai

First published: March 2019

Production reference: 1290319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-407-1

www.packtpub.com

http://www.packtpub.com

I would like to dedicate this book to my employers at Geo-Steering Solutions Inc., Neil Tice
and Barbara and Darrell Joy who have gone out of their way to assist my research in
helping me to finish this insurmountable book.

– Micheal Lanham

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Micheal Lanham is a proven software and tech innovator with 20 years of experience.
During that time, he has developed a broad range of software applications in areas
including games, graphics, web, desktop, engineering, artificial intelligence, GIS, and
machine learning applications for a variety of industries as an R&D developer. At the turn
of the millennium, Micheal began working with neural networks and evolutionary
algorithms in game development. He was later introduced to Unity and has been an avid
developer, consultant, manager, and author of multiple Unity games, graphic projects, and
books ever since.

This book would not be possible if it wasn't for the researchers and contributors. This book
has been built on top of, including the development of the ML-Agents toolkit by Unity
Technologies, with both Dr. Danny Lange and Dr. Arthur Juliani taking a leading role.
This book would also not be possible without the support of my family, friends, Rhonda
and my co-workers. I'd like to give a special thanks to those who attend my deep learning
tutorials and have given additional feedback.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Section 1: The Basics
Chapter 1: Deep Learning for Games 7

The past, present, and future of DL 8
The past 8
The present 9
The future 10

Neural networks – the foundation 11
Training a perceptron in Python 14

Multilayer perceptron in TF 17
TensorFlow Basics 22
Training neural networks with backpropagation 26

The Cost function 26
Partial differentiation and the chain rule 28

Building an autoencoder with Keras 32
Training the model 34
Examining the output 36

Exercises 37
Summary 38

Chapter 2: Convolutional and Recurrent Networks 39
Convolutional neural networks 40

Monitoring training with TensorBoard 42
Understanding convolution 44
Building a self-driving CNN 47

Spatial convolution and pooling 52
The need for Dropout 55

Memory and recurrent networks 56
Vanishing and exploding gradients rescued by LSTM 57

Playing Rock, Paper, Scissors with LSTMs 60
Exercises 63
Summary 65

Chapter 3: GAN for Games 66
Introducing GANs 67
Coding a GAN in Keras 69

Training a GAN 73
Optimizers 75

Table of Contents

[ii]

Wasserstein GAN 78
Generating textures with a GAN 81

Batch normalization 85
Leaky and other ReLUs 85

A GAN for creating music 87
Training the music GAN 90
Generating music via an alternative GAN 92

Exercises 93
Summary 94

Chapter 4: Building a Deep Learning Gaming Chatbot 95
Neural conversational agents 96

General conversational models 97
Sequence-to-sequence learning 98

Breaking down the code 100
Thought vectors 104

DeepPavlov 105
Building the chatbot server 107

Message hubs (RabbitMQ) 108
Managing RabbitMQ 110
Sending and receiving to/from the MQ 112
Writing the message queue chatbot 114

Running the chatbot in Unity 117
Installing AMQP for Unity 120

Exercises 122
Summary 123

Section 2: Section 2: Deep Reinforcement Learning
Chapter 5: Introducing DRL 125

Reinforcement learning 126
The multi-armed bandit 128
Contextual bandits 129

RL with the OpenAI Gym 131
A Q-Learning model 132

Markov decision process and the Bellman equation 132
Q-learning 134
Q-learning and exploration 137

First DRL with Deep Q-learning 138
RL experiments 142

Keras RL 143
Exercises 145
Summary 146

Chapter 6: Unity ML-Agents 147

Table of Contents

[iii]

Installing ML-Agents 148
Training an agent 150
What's in a brain? 154
Monitoring training with TensorBoard 158
Running an agent 163

Loading a trained brain 166
Exercises 168
Summary 169

Chapter 7: Agent and the Environment 170
Exploring the training environment 171

Training the agent visually 174
Reverting to the basics 177

Understanding state 178
Understanding visual state 182
Convolution and visual state 183

To pool or not to pool 185
Recurrent networks for remembering series 187

Tuning recurrent hyperparameters 189
Exercises 192
Summary 193

Chapter 8: Understanding PPO 194
Marathon RL 195
The partially observable Markov decision process 198
Actor-Critic and continuous action spaces 201

Expanding network architecture 204
Understanding TRPO and PPO 206

Generalized advantage estimate 211
Learning to tune PPO 212

Coding changes required for control projects 215
Multiple agent policy 219

Exercises 221
Summary 223

Chapter 9: Rewards and Reinforcement Learning 224
Rewards and reward functions 225

Building reward functions 227
Sparsity of rewards 228
Curriculum Learning 232
Understanding Backplay 235

Implementing Backplay through Curriculum Learning 237
Curiosity Learning 240

The Curiosity Intrinsic module in action 242
Trying ICM on Hallway/VisualHallway 244

Table of Contents

[iv]

Exercises 246
Summary 247

Chapter 10: Imitation and Transfer Learning 248
IL, or behavioral cloning 249
Online training 251
Offline training 253

Setting up for training 255
Feeding the agent 257

Transfer learning 259
Transferring a brain 262
Exploring TensorFlow checkpoints 264

Imitation Transfer Learning 269
Training multiple agents with one demonstration 271

Exercises 274
Summary 275

Chapter 11: Building Multi-Agent Environments 276
Adversarial and cooperative self-play 277

Training self-play environments 281
Adversarial self-play 285
Multi-brain play 288
Adding individuality with intrinsic rewards 291
Extrinsic rewards for individuality 294

Creating uniqueness with customized reward functions 297
Configuring the agents' personalities 301

Exercises 305
Summary 306

Section 3: Section 3: Building Games
Chapter 12: Debugging/Testing a Game with DRL 308

Introducing the game 309
Setting up ML-Agents 312

Introducing rewards to the game 315
Setting up TestingAcademy 318
Scripting the TestingAgent 321
Setting up the TestingAgent 323

Overriding the Unity input system 326
Building the TestingInput 328
Adding TestingInput to the scene 332
Overriding the game input 333
Configuring the required brains 334
Time for training 339

Testing through imitation 340

Table of Contents

[v]

Configuring the agent to use IL 342
Analyzing the testing process 343

Sending custom analytics 345
Exercises 348
Summary 349

Chapter 13: Obstacle Tower Challenge and Beyond 351
The Unity Obstacle Tower Challenge 352
Deep Learning for your game? 355
Building your game 357
More foundations of learning 358
Summary 360

Other Books You May Enjoy 361

Index 364

Preface
As we enter the 21st century, it is quickly becoming apparent that AI and machine learning
technologies will radically change the way we live our lives in the future. We now
experience AI daily, from conversational assistants to smart recommendations in a search
engine, and the average user/consumer now expects a smarter interface in anything they
do. This most certainly includes games, and is likely one of the reasons why you, as a game
developer, are considering reading this book.

This book will provide you, with a hands-on approach to building deep learning models for
simple encoding for the purpose of building self-driving algorithms, generating music, and
creating conversational bots, finishing with an in-depth discovery of deep reinforcement
learning (DRL). We will begin with the basics of reinforcement learning (RL) and progress
to combining DL and RL in order to create DRL. Then, we will take an in-depth look at
ways to optimize reinforcement learning to train agents in order to perform complex tasks,
from navigating hallways to playing soccer against zombies. Along the way, we will learn
the nuances of tuning hyperparameters through hands-on trial and error, as well as how to
use cutting-edge algorithms, including curiosity learning, Curriculum Learning, backplay,
and imitation learning, in order to optimize agent training.

Who this book is for
This book is for any game–or budding–game developer who is interested in using deep
learning in an aspect of their next game project. In order to be successful in learning this
material, you should have knowledge of the Python programming language and another C-
based language, such as C#, C, C++, or Java. In addition, a basic knowledge of calculus,
statistics, and probability will aid your digestion of the materials and facilitate your
learning, but this is not essential.

What this book covers
Chapter 1, Deep Learning for Games, covers the background of deep learning in games
before moving on to cover the basics by building a basic perceptron. From there, we will
learn the concepts of network layers and build a simple autoencoder.

Preface

[2]

Chapter 2, Convolutional and Recurrent Networks, explores advanced layers, known as
convolution and pooling, and how to apply them to building a self-driving deep network.
Then, we will look at the concept of learning sequences with recurrent layers in deep
networks.

Chapter 3, GAN for Games, outlines the concept of a GAN, a generative adversarial network
or an architectural pattern that pits two competing networks against one another. We will
then explore and use various GANs to generate a game texture and original music.

Chapter 4, Building a Deep Learning Gaming Chatbot, goes into further detail regarding
recurrent networks and develops a few forms of conversational chatbot. We will finish the
chapter by allowing the chatbot to be chatted with through Unity.

Chapter 5, Introduction DRL, begins with the basics of reinforcement learning before
moving on to cover multi-arm bandits and Q-Learning. We will then quickly move on to
integrating deep learning and will explore deep reinforcement learning using the Open AI
Gym environment.

Chapter 6, Unity ML-Agents, begins by exploring the ML-Agents toolkit, which is a
powerful deep reinforcement learning platform built on top of Unity. We will then learn
how to set up and train various demo scenarios provided with the toolkit.

Chapter 7, Agent and the Environment, explores how an input state captured from the
environment affects training. We will look at ways to improve these issues by building
different input state encoders for various visual environments.

Chapter 8, Understanding PPO, explains how learning to train agents requires some in-
depth background knowledge of the various algorithms used in DRL. In this chapter, we
will explore in depth the powerhouse of the ML-Agents toolkit, the proximal policy
optimization algorithm.

Chapter 9, Rewards and Reinforcement Learning, explains how rewards are foundational to
RL, exploring their importance and how to model their functions. We'll also explore the
sparsity of rewards and ways of overcoming these problems in RL with Curriculum
Learning and backplay.

Chapter 10, Imitation and Transfer Learning, explores further advanced methods, imitation
and transfer learning, as ways of overcoming the sparsity of rewards and other agent
training problems. We will then look at others ways of applying transfer learning i.

Chapter 11, Building Multi-Agent Environments, explores a number of scenarios that
incorporate multiple agents competing against or cooperating with each other.

Preface

[3]

Chapter 12, Debugging/Testing a Game with DRL, explains how to build a testing/debugging
framework with ML-Agents for use on your next game, which is one new aspect of DRL
that is less well covered.

Chapter 13, Obstacle Tower Challenge and Beyond, explores what is next for you. Are you
prepared to take on the Unity Obstacle Tower challenge and build your own game, or
perhaps you require further learning?

To get the most out of this book
Some knowledge of Python and some exposure to machine learning will be beneficial, as
will a knowledge of a C style language, such as C, C++, C#, or Java. Some understanding of
calculus, while not essential, will be helpful, as will an understanding of probability and
statistics.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Deep- Learning- for- Games. In case there's an update to
the code, it will be updated on the existing GitHub repository.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games
https://github.com/PacktPublishing/Hands-On-Deep-Learning-for-Games

Preface

[4]

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781788994071_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

html, body, #map {
 height: 100%;
 margin: 0;
 padding: 0
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788994071_ColorImages.pdf

Preface

[5]

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: The Basics

This section of the book covers the basic concepts of neural networks and deep learning.
We'll be looking at everything from the simplest autoencoder, generative adversarial
networks (GANs), and convolutional and recurrent neural networks, all the way to
building a working real-world chatbot. This section will give you the basic foundations for
building your neural network and deep learning knowledge.

We will include the following chapters in this section:

Chapter 1, Deep Learning for Games
Chapter 2, Convolutional and Recurrent Networks
Chapter 3, GAN for Games
Chapter 4, Building a Deep Learning Gaming Chatbot

1
Deep Learning for Games

Welcome to Hands-on Deep Learning for Games. This book is for anyone wanting an
extremely practical approach to the complexity of deep learning (DL) for games.
Importantly, the concepts discussed in this book aren't solely limited to games. Much of
what we'll learn here will easily carry over to other applications/simulations.

Reinforcement learning (RL), which will be a core element we talk about in later chapters,
is quickly becoming the dominant machine learning (ML) technology. It has been applied
to everything from server optimization to predicting customer activity for retail markets.
Our journey in this book will primarily be focused on game development, and our goal will
be to build a working adventure game. Keep in the back of your mind how the same
principles you discover in this book could be applied to other problems, such as
simulations, robotics, and lots more.

In this chapter, we are going to start from the very basics of neural networks and deep
learning. We will discuss the background of neural networks, working our way toward
building a neural network that can play a simple text game. Specifically, this chapter will
cover the following topics:

The past, present, and future of DL
Neural networks – the foundation
Multilayer perceptron in TensorFlow (TF)
Understanding TensorFlow
Training neural networks with backpropagation
Building an Autoencoder in Keras

This book assumes that you have a working knowledge of Python. You
should be able to set up and activate a virtual environment. Later chapters
will use Unity 3D, which is limited to Windows and macOS (apologies to
those hardcore Linux users).

Deep Learning for Games Chapter 1

[8]

You might be inclined to skip this chapter if you've already grasped deep learning.
Regardless, this chapter is well worth reading and will establish the terminology we use
throughout the book. At the very least, do the hands-on exercise—you will thank yourself
later!

The past, present, and future of DL
While the term deep learning was first associated with neural networks in 2000 by Igor
Aizenberg and colleagues, it has only become popular in the last 5 years. Prior to this, we
called this type of algorithm an artificial neural network (ANN). However, deep learning
refers to something broader than ANNs and includes many other areas of connected
machines. Therefore, to clarify, we will be discussing the ANN form of DL for much of the
remainder of this book. However, we will also discuss some other forms of DL that can be
used in games, in Chapter 5, Introducing DRL.

The past
The first form of a multilayer perceptron (MLP) network, or what we now call an ANN,
was introduced by Alexey Ivakhnenko in 1965. Ivakhnenko waited several years before
writing about the multilayer perceptron in 1971. The concept took a while to percolate and
it wasn't until the 1980s that more research began. This time, image classification and
speech recognition were attempted, and they failed, but progress was being made. It took
another 10 years, and in the late 90s, it became popular again. So much so that ANNs made
their way into some games, again, until better methods came along. Things quietened down
and another decade or so passed.

Then, in 2012, Andrew Ng and Jeff Dean used an ANN to recognize cats in videos, and the
interest in deep learning exploded. Their stride was one of several trivial (yet entertaining)
advancements which made people sit up and take notice of deep learning. Then, in 2015,
Google's DeepMind team built AlphaGo, and this time the whole world sat up. AlphaGo
was shown to solidly beat the best players in the world at the game of Go, and that changed
everything. Other techniques soon followed, Deep Reinforcement Learning (DRL) being
one, showing that human performance could be consistently beaten in areas where that was
previously not thought of as possible.

Deep Learning for Games Chapter 1

[9]

While teaching their students about neural networks, there is a humorous
and pertinent tale professors enjoy sharing: The US Army did early research
in the '80s using an ANN to recognize enemy tanks. The algorithm worked 100%
of the time, and the army organized a big demonstration to showcase its success.
Unfortunately, nothing worked at the demonstration, and every test
failed miserably. After going back and analyzing things, the army realized the
ANN wasn't recognizing enemy tanks at all. Instead, it had been trained on
images taken on a cloudy day, and all it was doing was recognizing the clouds.

The present
At present, at least at the time of writing, we are still in the midst of a deep learning
explosion with debris and chaos, and it is our job as developers to make sense of all this.
Neural networks are currently the basis for many DL technologies, several of which we will
cover in this book. Except, it seems that every day, new and more powerful techniques
emerge, and researchers scramble to make sense of them. Now, this rush of ideas can
actually stall a technology, as researchers spend more and more time trying to replicate
results. It is most certainly a cause for much of the earlier stalling that ANNs (deep
learning) previously suffered from. In fact, many skeptics in the industry are predicting yet
another hiccup. So, should you be worried, is reading this book worth it? The short answer
is yes. The long answer is probably not, this time things are very different and many deep
learning concepts are now generating revenue, which is a good thing. The fact that DL
technology is now a proven money-earner puts investors at ease and only encourages new
investment and growth. Exactly how much growth is yet to be seen, but the machine and
DL space is now ripe with opportunity and growth from all sectors.

So, is it still possible that the game industry will again turn its back on games? That is also
unlikely, generally because many of the more recent major advances, like reinforcement
learning, were built to play classic Atari games, and use games as the problem. This only
encourages more research into deep learning using games. Unity 3D, the game platform,
has made a major investment into reinforcement learning for playing games. In fact, Unity
is developing some of the most cutting-edge technology in reinforcement learning and we
will be working with this platform later. Unity does use C# for scripting but uses Python to
build and train deep learning models.

Deep Learning for Games Chapter 1

[10]

The future
Predicting the future of anything is extremely difficult, but if you watch carefully enough,
you may gain some insight into what, where, or how things will develop. Of course, having
a crystal ball or a well-trained neural network would certainly help, but a lot of what
becomes popular often hinges on the next great achievement. Without any ability to predict
that, what can we observe about the current trend in deep learning research and
commercial development? Well, the current trend is to use ML to generate DL; that is, a
machine essentially assembles itself a neural network that is addressed to solve a problem.
Google is currently investing considerable resources into building a technology called
AutoML, which generates a neural network inference model that can recognize
objects/activities in images, speech recognition, or handwriting recognition, and more.
Geoffery Hinton, who is often cited as the godfather of the ANN, has recently shown that
complex deep network systems can be decomposed into reusable layers. Essentially, you
can construct a network using layers extracted from various pre-trained models. This will
certainly evolve into more interesting tech and plays well into the DL search but also makes
way for the next phase in computing.

Now, programming code is going to become too tedious, difficult, and expensive at some
point. We can already see this with the explosion of offshore development, with companies
seeking the cheapest developers. It is now estimated that code costs an average of $10-$20
per line, yes, per line. So, at what point will the developer start building their code in the
form of an ANN or TensorFlow (TF) inference graph? Well, for most of this book, the DL
code we develop will be generated down to a TF inference graph; a brain, if you will. We
will then use these brains in the last chapter of the book to build intelligence in our
adventure game. The technique of building graph models is quickly becoming mainstream.
Many online ML apps now allow users to build models that can recognize things in images,
speech, and videos, all by just uploading training content and pressing a button. Does this
mean that apps could be developed this way in the future without any programming? The
answer is yes, and it is already happening.

Now that we have explored the past, present, and future of deep learning, we can start to
dig into more of the nomenclature and how neural networks actually work, in the next
section.

Deep Learning for Games Chapter 1

[11]

Neural networks – the foundation
The inspiration for neural networks or multilayer perceptrons is the human brain and
nervous system. At the heart of our nervous system is the neuron pictured above the
computer analog, which is a perceptron:

Example of human neuron beside a perceptron

The neurons in our brain collect input, do something, and then spit out a response much
like the computer analog, the perceptron. A perceptron takes a set of inputs, sums them all
up, and passes them through an activation function. That activation function determines
whether to send output, and at what level to send it when activated. Let's take a closer look
at the perceptron, as follows:

Perceptron

Deep Learning for Games Chapter 1

[12]

On the left-hand side of the preceding diagram, you can see the set of inputs getting
pushed in, plus a constant bias. We will get more into the bias later. Then the inputs are
multiplied by a set of individual weights and passed through an activation function. In
Python code, it is as simple as the one in Chapter_1_1.py:

inputs = [1,2]
weights = [1,1,1]

def perceptron_predict(inputs, weights):
 activation = weights[0]
 for i in range(len(inputs)-1):
 activation += weights[i] * input
 return 1.0 if activation >= 0.0 else 0.0

print(perceptron_predict(inputs,weights))

Note how the weights list has one more element than the inputs list; that is to account for
the bias (weights[0]). Other than that, you can see we just simply loop through the
inputs, multiplying them by the designated weight and adding the bias. Then the
activation is compared to 0.0, and if it is greater than 0, we output. In this very simple
example, we are just comparing the value to 0, which is essentially a simple step function.
We will spend some time later revisiting various activation functions over and over again;
consider this simple model an essential part of carrying out those functions.

What is the output from the preceding block of sample code? See whether
you can figure it out, or take the less challenging route and copy and paste
it into your favorite Python editor and run it. The code will run as is and
requires no special libraries.

In the previous code example, we are looking at one point of input data, [1,2], which is
hardly useful when it comes to DL. DL models typically require hundreds, thousands, or
even millions of data points or sets of input data to train and learn effectively. Fortunately,
with one perceptron, the amount of data we need is less than 10.

Deep Learning for Games Chapter 1

[13]

Let's expand on the preceding example and run a training set of 10 points through the
perceptron_predict function by opening up your preferred Python editor and following
these steps:

We will use Visual Studio code for most of the major coding sections later
in this book. By all means, use your preferred editor, but if you are
relatively new to Python, give the code a try. Code is available for
Windows, macOS, and Linux.

Enter the following block of code in your preferred Python editor or open1.
Chapter_1_2.py from the downloaded source code:

train =
[[1,2],[2,3],[1,1],[2,2],[3,3],[4,2],[2,5],[5,5],[4,1],[4,4]]
weights = [1,1,1]

def perceptron_predict(inputs, weights):
 activation = weights[0]
 for i in range(len(inputs)-1):
 activation += weights[i+1] * inputs[i]
 return 1.0 if activation >= 0.0 else 0.0

for inputs in train:
 print(perceptron_predict(inputs,weights))

This code just extends the earlier example we looked at. In this case, we are2.
testing multiple points of data defined in the train list. Then we just iterate
through each item in the list and print out the predicted value.
Run the code and observe the output. If you are unsure of how to run Python3.
code, be sure to take that course first before going any further.

You should see an output of repeating 1.0s, which essentially means all input values are
recognized as the same. This is not something that is very useful. The reason for this is that
we have not trained or adjusted the input weights to match a known output. What we need
to do is train the weights to recognize the data, and we will look at how to do that in the
next section.

Deep Learning for Games Chapter 1

[14]

Training a perceptron in Python
Perfect! We created a simple perceptron that takes input and spits out output but
doesn't really do anything. Our perceptron needs to have its weights trained in order to
actually do something. Fortunately, there is a well-defined method, known as gradient
descent, that we can use to adjust each of those weights. Open up your Python editor again
and update or enter the following code or open Chapter_1_3.py from the code download:

def perceptron_predict(inputs, weights):
 activation = weights[0]
 for i in range(len(inputs)-1):
 activation += weights[i + 1] * inputs[i]
 return 1.0 if activation >= 0.0 else 0.0

def train_weights(train, learning_rate, epochs):
 weights = [0.0 for i in range(len(train[0]))]
 for epoch in range(epochs):
 sum_error = 0.0
 for inputs in train:
 prediction = perceptron_predict(inputs, weights)
 error = inputs[-1] - prediction
 sum_error += error**2
 weights[0] = weights[0] + learning_rate * error
 for i in range(len(inputs)-1):
 weights[i + 1] = weights[i + 1] + learning_rate * error * inputs[i]
 print('>epoch=%d, learning_rate=%.3f, error=%.3f' % (epoch,
learning_rate, sum_error))
 return weights

train =
[[1.5,2.5,0],[2.5,3.5,0],[1.0,11.0,1],[2.3,2.3,1],[3.6,3.6,1],[4.2,2.4,0],[
2.4,5.4,0],[5.1,5.1,1],[4.3,1.3,0],[4.8,4.8,1]]

learning_rate = 0.1
epochs = 10
weights = train_weights(train, learning_rate, epochs)
print(weights)

The train_weights function is new and will be used to train the perceptron using
iterative error minimization and will be a basis for when we use gradient descent in more
complex networks. There is a lot going on here, so we will break it down piece by piece.
First, we initialize the weights list to a value of 0.0 with this line:

weights = [0.0 for i in range(len(train[0]))]

Deep Learning for Games Chapter 1

[15]

Then we start training each epoch in a for loop. An epoch is essentially one pass through
our training data. The reason we make multiple passes is to allow our weights to converge
at a global minimum and not a local one. During each epoch, the weights are trained using
the following equation:

Consider the following:

 = weight
 = the rate at which the perceptron learns

 = the labeled training value
 = the value returned from the perceptron

 = -

The bias is trained in a similar manner, but just recall it is weight. Note also how we are
labeling our data points now in the train list, with an end value of 0.0 or 1.0. A value of
0.0 means no match, while a value of 1.0 means perfect match, as shown in the following
code excerpt:

train =
[[1.5,2.5,0.0],[2.5,3.5,0.0],[1.0,11.0,1.0],[2.3,2.3,1.0],[3.6,3.6,1.0],[4.
2,2.4,0.0],[2.4,5.4,0.0],[5.1,5.1,1.0],[4.3,1.3,0.0],[4.8,4.8,1.0]]

This labeling of data is common in training neural networks and is called supervised
training. We will explore other unsupervised and semi-supervised training methods in
later chapters. If you run the preceding code, you will see the following output:

Example output from sample training run

Deep Learning for Games Chapter 1

[16]

Now, if you have some previous ML experience, you will immediately recognize the
training wobbling going on around some local minima, making our training unable to
converge. You will likely come across this type of wobble several more times in your DL
career, so it is helpful to understand how to fix it.

In this case, our issue is likely the choice of the activation function, which, as you may
recall, was just a simple step function. We can fix this by entering a new function, called a
Rectified Linear Unit (ReLU). An example of the step and ReLU functions, side by side,
are shown in the following diagram:

Comparison of step and ReLU activation functions

 In order to change the activation function, open up the previous code listing and follow
along:

Locate the following line of code:1.

return 1.0 if activation >= 0.0 else 0.0

Modify it, like so:2.

return 1.0 if activation * (activation>0) >= 0.0 else 0.0

That subtle difference in multiplying the activation function by itself if its value is3.
greater than 0 is the implementation of the ReLU function. Yes, it is that
deceptively easy.
Run the code and observe the change in output.4.

Deep Learning for Games Chapter 1

[17]

When you run the code, the values quickly converge and remain stable. This is a
tremendous improvement in our training and a cause of changing the activation function to
ReLU. The reason for this is that now our perceptron weights can more slowly converge to a
global maximum, whereas before they just wobbled around a local minimum by using the
step function. There are plenty of other activation functions we will test through the
course of this book. In the next section, we look at how things get much more complicated
when we start to combine our perceptrons into multiple layers.

Multilayer perceptron in TF
Thus far, we have been looking at a simple example of a single perceptron and how to train
it. This worked well for our small dataset, but as the number of inputs increases, the
complexity of our networks increases, and this cascades into the math as well. The
following diagram shows a multilayer perceptron, or what we commonly refer to as an
ANN:

Multilayer perceptron or ANN

In the diagram, we see a network with one input, one hidden, and one output layer. The
inputs are now shared across an input layer of neurons. The first layer of neurons processes
the inputs, and outputs the results to be processed by the hidden layer and so on, until they
finally reach the output layer.

Deep Learning for Games Chapter 1

[18]

Multilayer networks can get quite complex, and the code for these models is often
abstracted away by high-level interfaces such as Keras, PyTorch, and so on. These tools
work well for quickly exploring network architecture and understanding DL concepts.
However, when it comes to performance, which is key in games, it really requires the
models to be built in TensorFlow or an API that supports low-level math operations. In this
book, we will swap from Keras, a higher-level SDK, to TensorFlow and back for the
introductory DL chapters. This will allow you to see the differences and similarities
between working with either interface.

Unity ML-Agents was first prototyped with Keras but has since progressed to TensorFlow.
Most certainly, the team at Unity, as well as others, has done this for reasons of
performance and, to some extent, control. Working with TensorFlow is akin to writing your
own shaders. While it is quite difficult to write shaders and TF code, the ability to
customize your own rendering and now learning will make your game be unique, and it
will stand out.

There is a great TensorFlow example of a multilayer perceptron next for your reference,
listing Chapter_1_4.py. In order to run this code using TensorFlow, follow the next steps:

We won't cover the basics of TensorFlow until the next section. This is so
you can see TF in action first before we bore you with the details.

First, install TensorFlow using the following command from a Python 3.5/3.61.
window on Windows or macOS. You can also use an Anaconda Prompt, with
administrator rights:

pip install tensorflow
OR
conda install tensorflow //using Anaconda

Make sure you install TensorFlow suited to the default Python environment. We2.
will worry about creating more structured virtual environments later. If you are
not sure what a Python virtual environment is, step away from the book and take
a course in Python right away.

In this exercise, we are loading the MNIST handwritten digits database. If
you have read anything at all about ML and DL, you have most likely
seen or heard about this dataset already. If you haven't, just quickly
Google MNIST to get a sense of what these digits look like.

Deep Learning for Games Chapter 1

[19]

The following Python code is from the Chapter_1_4.py listing, with each3.
section explained in the following steps:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

We start by loading the mnist training set. The mnist dataset is a collection of 284.
x 28 pixel images showing hand-drawn representations of the digits 0-9, or what
we will refer to as 10 classes:

import tensorflow as tf
Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1
Network Parameters
n_hidden_1 = 256 # 1st layer number of neurons
n_hidden_2 = 256 # 2nd layer number of neurons
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)

Then we import the tensorflow library as tf. Next, we set a number of5.
parameters we will use later. Note how we are defining the inputs and hidden
parameters as well:

tf Graph input
X = tf.placeholder("float", [None, n_input])
Y = tf.placeholder("float", [None, n_classes])

Store layers weight & bias
weights = {
 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
 'b2': tf.Variable(tf.random_normal([n_hidden_2])),
 'out': tf.Variable(tf.random_normal([n_classes]))
}

Deep Learning for Games Chapter 1

[20]

Next, we set up a couple of TensorFlow placeholders with tf.placeholder, to6.
hold the number of inputs and classes as type 'float'. Then we create and
initialize variables using tf.Variable, first doing the weights and then the
biases. Inside the variable declaration, we initialize normally distributed data
into a 2D matrix or tensor with dimensions equal to n_input and n_hidden_1
using tf.random_normal, which fills a tensor with randomly distributed data:

Create model
def multilayer_perceptron(x):
 # Hidden fully connected layer with 256 neurons
 layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
 # Hidden fully connected layer with 256 neurons
 layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
 # Output fully connected layer with a neuron for each class
 out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
 return out_layer

Construct model
logits = multilayer_perceptron(X)

Then we create the model by multiplying the weights and biases for each layer7.
operation. What we are doing here is essentially converting our activation
equation into a matrix/tensor of equations. Now instead of doing a single pass,
we perform multiple passes in one operation using matrix/tensor multiplication.
This allows us to run multiple training images or sets of data at a time, which is a
technique we use to better generalize learning.

For each layer in our neural network, we use tf.add and tf.matmul to add
matrix multiplication operations to what we commonly call a TensorFlow
inference graph. You can see by the code we are creating that there are two
hidden layers and one output layer for our model:

Define loss and optimizer
loss_op =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit
s, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)

Deep Learning for Games Chapter 1

[21]

Next, we define a loss function and optimizer. loss_op is used to calculate the8.
total loss of the network. Then AdamOptimizer is what does the optimizing
according to the loss or cost function. We will explain these terms in detail
later, so don't worry if things are still fuzzy:

Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
 sess.run(init)
 # Training cycle
 for epoch in range(training_epochs):
 avg_cost = 0.
 total_batch = int(mnist.train.num_examples/batch_size)
 # Loop over all batches
 for i in range(total_batch):
 batch_x, batch_y = mnist.train.next_batch(batch_size)
 # Run optimization op (backprop) and cost op (to get loss
value)
 _, c = sess.run([train_op, loss_op], feed_dict={X: batch_x,Y:
batch_y})
 # Compute average loss
 avg_cost += c / total_batch

Then we initialize a new TensorFlow session by creating a new session and9.
running it. We use that epoch iterative training method again to loop over each
batch of images. Remember, an entire batch of images goes through the network
at the same time, not just one image. Then, we loop through each batch of images
in each epoch and optimize (backpropagate and train) the cost, or minimize the
cost if you will:

Display logs per epoch step
 if epoch % display_step == 0:
 print("Epoch:", '%04d' % (epoch+1),
"cost={:.9f}".format(avg_cost))
 print("Optimization Finished!")

Then we output the results of each epoch run, showing how the network is 10.
minimizing the error:

Test model
 pred = tf.nn.softmax(logits) # Apply softmax to logits
 correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))

Deep Learning for Games Chapter 1

[22]

Next, we actually run the prediction with the preceding code and determine the11.
percentage of correct values using the optimizer we selected before on the
logits model:

Calculate accuracy
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
 print("Accuracy:", accuracy.eval({X: mnist.test.images, Y:
mnist.test.labels}))

Finally, we calculate and output the accuracy of our model. If you run the12.
exercise, don't just go into how accurate the model is but think of ways the
accuracy could be improved.

There is plenty going on in the preceding reference example, and we will break it down
further in the next sections. Hopefully, you can see at this point how complex things can
get. This is why for most of the fundamental chapters in this book, we will teach the
concepts with Keras first. Keras is a powerful and simple framework that will help us build
complex networks in no time and makes it much simpler for us to teach and for you to
learn. We will also provide duplicate examples developed in TensorFlow and show some of
the key differences as we progress through the book.

In the next section, we explain the basic concepts of TensorFlow, what it is, and how we use
it.

TensorFlow Basics
TensorFlow (TF) is quickly becoming the technology that powers many DL applications.
There are other APIs, such as Theano, but it is the one that has gathered the greatest interest
and mostly applies to us. Overarching frameworks, such as Keras, offer the ability to
deploy TF or Theano models, for instance. This is great for prototyping and building a
quick proof of concept, but, as a game developer, you know that when it comes to games,
the dominant requirements are always performance and control. TF provides better
performance and more control than any higher-level framework such as Keras. In other
words, to be a serious DL developer, you likely need and want to learn TF.

Deep Learning for Games Chapter 1

[23]

TF, as its name suggests, is all about tensors. A tensor is a mathematical concept that
describes a set of data organized in n dimensions, where n could be 1, 2 x 2, 4 x 4 x 4, and so
on. A one-dimensional tensor would describe a single number, say , a 2 x 2 tensor

would be or what you may refer to as a matrix. A 3 x 3 x 3 tensor would describe a
cube shape. Essentially, any operation that you would apply on a matrix can be applied to a
tensor and everything in TF is a tensor. It is often helpful when you first start working with
tensors, as someone with a game development background, to think of them as a matrix or
vector.

Tensors are nothing more than multidimensional arrays, vectors, or matrices, and many
examples are shown in the following diagram:

Tensor in many forms (placeholder)

Deep Learning for Games Chapter 1

[24]

Let's go back and open up Chapter_1_4.py and follow the next steps in order to better
understand how the TF example runs:

First, examine the top section again and pay special attention to where the1.
placeholder and variable is declared; this is shown again in the following
snippet:

tf.placeholder("float", [None, n_input])
...
tf.Variable(tf.random_normal([n_input, n_hidden_1]))

The placeholder is used to define the input and output tensors. Variable sets2.
up a variable tensor that can be manipulated while the TF session or program
executes. In the case of the example, a helper method called random_normal
populates the hidden weights with a normally distributed dataset. There are
other helper methods such as this that can be used; check the docs for more info.
Next, we construct the logits model as a function called3.
multilayer_perceptron, as follows:

def multilayer_perceptron(x):
 layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
 layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
 out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
 return out_layer

logits = multilayer_perceptron(X)

Inside the function, we see the definition of three network layers, two input and4.
one output. Each layer is constructed by using the add or + function to add the
results of the matmul (x, weights['h1']) and the biases['b1']. Matmul
does a simple matrix multiplication of each weight times the input x. Think back
to our first example perceptron; this is the same as multiplying all our weights by
the input and then adding the bias. Note how the resultant tensors (layer_1,
layer_2) are used as inputs into the following layer.
Skip down to around line 50 and note how we grab references to the loss,5.
optimizer, and initialization functions:

loss_op =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logit
s, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
init = tf.global_variables_initializer()

Deep Learning for Games Chapter 1

[25]

It is important to understand that we are storing references to the functions and6.
not executing them just yet. The loss and optimizer functions have been covered
in some depth already, but also pay special attention to the
global_variables_initalizer() function. This function is where all the
variables are initialized, and we are required to run this function first.
Next, scroll down to the start of the session initialization and start, as follows:7.

with tf.Session() as sess:
 sess.run(init)

We construct Session in TF as a container of execution or what is called a graph.8.
This is a mathematical graph that describes nodes and connections, not that
unlike the networks we are simulating. Everything in TF needs to happen within
a session. Then we run the first function, (init), with run.
As we have already covered the training in some detail, the next element we will9.
look at is the next function, run, executed by the following code:

_, c = sess.run([train_op, loss_op], feed_dict={X: batch_x,Y:
batch_y})

A lot is going on in the run function. We input as a set the training and loss10.
functions train_op and loss_op using the current feed_dict dictionary as
input. The resultant output value, c, is equal to the total cost. Note that the input
function set is defined as train_op then loss_op. In this case, the order is
defined as train/loss, but it could be also reversed if you choose. You would
also need to reverse the output values as well, since the output order matches the
input order.

The rest of the code has already been defined in some detail, but it is important to
understand some of the key differences when building your models with TF. As you can
see, it is relatively easy for us to now build complex neural networks quickly. Yet, we are
still missing some critical knowledge that will be useful in constructing more complex
networks later. What we have been missing is the underlying math used to train a neural
network, which we will explore in the next section.

Deep Learning for Games Chapter 1

[26]

Training neural networks with
backpropagation
Calculating the activation of a neuron, the forward part, or what we call feed-forward
propagation, is quite straightforward to process. The complexity we encounter now is
training the errors back through the network. When we train the network now, we start at
the last output layer and determine the total error, just as we did with a single perceptron,
but now we need to sum up all errors across the output layer. Then we need to use this
value to backpropagate the error back through the network, updating each of the weights
based on their contribution to the total error. Understanding the contribution of a single
weight in a network with thousands or millions of weights could be quite complicated,
except thankfully for the help of differentiation and the chain rule. Before we get to the
complicated math, we first need to discuss the Cost function and how we calculate errors
in the next section.

While the math of backpropagation is complicated and may be
intimidating, at some point, you will want or need to understand it well.
However, for the purposes of this book, you can omit or just revisit this
section as needed. All the networks we develop in later chapters will
automatically handle backpropagation for us. Of course, you can't run
away from the math either; it is everywhere in deep learning.

The Cost function
A Cost function describes the average sum of errors for a batch in our entire network and
is often defined by this equation:

The input is defined as each weight and the output is the total average cost we encountered
over the processed batch. Think of this cost as the average sum of errors. Now, our goal
here is to minimize this function or the cost of errors to the lowest value possible. In the
previous couple of examples, we have seen a technique called gradient descent being used
to minimize this cost function. Gradient descent works by differentiating the Cost function
and determining the gradient with respect to each weight. Then, for each weight, or
dimension if you will, the algorithm alters the weight based on the calculated gradient that
minimizes the Cost function.

Deep Learning for Games Chapter 1

[27]

Before we get into the heavy math that explains the differentiation, let's see how gradient
descent works in two dimensions, with the following diagram:

Example of gradient descent finding a global minimum

In simpler terms, all that the algorithm is doing is just trying to find the minimum in slow
gradual steps. We use small steps in order to avoid overshooting the minimum, which as
you have seen earlier can happen (remember the wobble). That is where the term learning
rate also comes in, which determines how fast we want to train. The slower the training, the
more confident you will be in your results, but usually at a cost of time. The alternative is to
train quicker, using a higher learning rate, but, as you can see now, it may be easy to
overshoot any global minimum.

Gradient descent is the simplest form we will talk about, but keep in mind that there are
also several advanced variations of other optimization algorithms we will explore. In the TF
example, for instance, we used AdamOptimizer to minimize the Cost function, but there
are several other variations. For now, though, we will focus on how to calculate the
gradient of the Cost function and understand the basics of backpropagation with gradient
descent in the next section.

Deep Learning for Games Chapter 1

[28]

Partial differentiation and the chain rule
Before we get into the details of calculating each weight, let's review a little bit of calculus
and differentiation. If you recall your favorite math class, calculus, you can determine the
slope of change for any point on a function by differentiating. A calculus refresher is shown
in the following diagram:

A review of basic calculus equations

In the diagram, we have a nonlinear function, f, that describes the equation of the blue line.
We can determine the slope (rate of change) on any point by differentiating to f' and
solving. Recall that we can also determine the functions of local and global minimum or
maximum using this new function and as shown in the diagram. Simple differentiation
allows us to solve for one variable, but we need to solve for multiple weights, so we will
use partial derivatives or differentiating with respect to one variable.

Deep Learning for Games Chapter 1

[29]

As you may recall, partial differentiation allows us to derive for a single variable with
respect to the other variables, which we then treat as constants. Let's go back to our Cost
function and see how to differentiate that with respect to a single weight:

 is our cost function described by the following:1.

We can differentiate this function with respect to a single variable weight as2.
follows:

If we collect all of these partial derivatives together, we get the vector gradient3.
for our Cost function, , denoted by the following:

This gradient defines a vector direction that we want to negate and use to4.
minimize the Cost function. In the case of our previous example, there are over
13,000 components to this vector. These correspond to over 13,000 weights in the
network that we need to optimize. That is a lot of partial derivatives we need to
combine in order to calculate the gradient. Fortunately, the chain rule in calculus
can come to our rescue and greatly simplify the math. Recall that the chain rule is
defined by the following:

Deep Learning for Games Chapter 1

[30]

This now allows us to define the gradient for a single weight using the chain rule5.
as such:

Here, represents the input number and the neuron position. Note how we6.
now need to take the partial derivative of the activation function, a, for the given
neuron, and that is again summarized by the following:

The superscript notation denotes the current layer and denotes the
previous layer. denotes either the input or the output from the previous layer.

 denotes the activation function, recall that we previously used the Step and
ReLU functions for this role.

Then, we take the partial derivative of this function, like so:7.

For convenience, we define the following:

Deep Learning for Games Chapter 1

[31]

At this point, things may look a lot more complicated than they are. Try to8.
understand all the subtleties of the notation and remember all we are looking at
is essentially the partial derivative of the activation with respect to the Cost
function. All that the extra notation does is allow us to index the individual
weight, neuron, and layer. We can then express this as follows:

Again, all we are doing is defining the gradient () for the weight at the th9.
input, th neuron, and layer . Along with gradient descent, we need to
backpropagate the adjustment to the weights using the preceding base formula.
For the output layer (last layer), this now can be summarized as follows:

For an internal or a hidden layer, the equation comes out to this:10.

And with a few more substitutions and manipulations of the general equation,11.
we end up with this:

Here, f' denotes the derivative of the activation function.

The preceding equation allows us to run the network and backpropagate the errors back
through, using the following procedure:

You first calculate the activations and for each layer starting with the input1.
layer and propagate forward.

We then evaluate the term at the output layer using .2.

Deep Learning for Games Chapter 1

[32]

We do this by using the remainder to evaluate each layer using 3.

, starting with the output layer and propagating
backward.

Again, we are using the partial derivative to obtain the required4.
derivatives in each layer.

It may take you a few reads through this section in order to grasp all the concepts. What
can also be useful is to run the previous examples and watch the training, trying to imagine
how each of the weights is getting updated. We are by no means completely done here, and
there are a couple more steps—using automatic differentiation being one of them. Unless
you are developing your own low-level networks, just having a basic understanding of that
math should give you a better understanding of the needs in training a neural network. In
the next section, we get back to some more hands-on basics and put our new knowledge to
use by building a neural network agent.

Learning does not and likely should not all come from the same source. Be
sure to diversify your learning to other books, videos, and courses. You
will not only be more successful in learning but likely also understand
more in the process.

Building an autoencoder with Keras
While we have covered a lot of important ground we will need for understanding DL, what
we haven't done yet is build something that can really do anything. One of the first
problems we tackle when starting with DL is to build autoencoders to encode and reform
data. Working through this exercise allows us to confirm that what goes into a network can
also come back out of a network and essentially reassures us that an ANN is not a complete
black box. Building and working with autoencoders also allows us to tweak and test
various parameters in order to understand their function. Let's get started by opening up
the Chapter_1_5.py listing and following these steps:

We will go through the listing section by section. First, we input the base1.
layers Input and Dense, then Model, all from the tensorflow.keras module,
with the following imports:

from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model

Deep Learning for Games Chapter 1

[33]

Instead of single neurons, we define our DL model in Keras using layers or2.
neurons. The Input and Dense layers are the most common ones we use, but we
will see others as well. As their name suggests, Input layers deal with input,
while Dense layers are more or less your typical fully connected neuron layer,
which we have already looked at.

We are using the embedded version of Keras here. The original sample
was taken from the Keras blog and converted to TensorFlow.

Next, we set the number of encoding dimensions with the following line:3.

encoding_dim = 32

This is the number of dimensions we want to reduce our sample down to. In this4.
case, it is just 32, which is just around 24 times the compression for an image with
784 input dimensions. Remember, we get 784 input dimensions because our
input images are 28 x 28, and we flatten them to a vector of length 784, with each
pixel representing a single value or dimension. Next, we set up the Input layer
with the 784 input dimensions with the following:

input_img = Input(shape=(784,))

That line creates an Input layer with a shape of 784 inputs. Then we are going to5.
encode those 784 dimensions into our next Dense layer using the following line:

encoded = Dense(encoding_dim, activation='ReLU')(input_img)
encoder = Model(input_img, encoded)

The preceding code simply creates our fully connected hidden (Dense) layer of6.
32 (encoding_dim) neurons and builds the encoder. You can see that
the input_img, the Input layer, is used as input and our activation function
is ReLU. The next line constructs a Model using the Input layer (input_img) and
the Dense (encoded) layer. With two layers, we encode the image from 784
dimensions to 32.

Deep Learning for Games Chapter 1

[34]

Next, we need to decode the image using more layers with the following code:7.

decoded = Dense(784, activation='sigmoid')(encoded)
autoencoder = Model(input_img, decoded)
encoded_input = Input(shape=(encoding_dim,))

decoder_layer = autoencoder.layers[-1]
decoder = Model(encoded_input, decoder_layer(encoded_input))

autoencoder.compile(optimizer='adadelta',
loss='binary_crossentropy')

The next set of layers and model we build will be used to decode the images back8.
to 784 dimensions. The last line of code at the bottom is where we compile
the autoencoder model with an adadelta optimizer call, using a loss function
of binary_crossentropy. We will spend more time on the types of loss and
optimization parameters later, but for now just note that when we compile a
model, we are in essence just setting it up to do backpropagation and use an
optimization algorithm. Remember, all of this is automatically done for us, and
we don't have to deal with any of that nasty math.

That sets up the main parts of our models, the encoder, decoder, and full autoencoder
model, which we further compiled for later training. In the next section, we deal with
training the model and making predictions.

Training the model
Next, we need to train our model with a sample set of data. We will again be using the
MNIST set of handwritten digits; this is easy, free, and convenient. Get back into the code
listing and continue the exercise as follows:

Pick up where we left off and locate the following section of code:1.

from tensorflow.keras.datasets import mnist
import numpy as np
(x_train, _), (x_test, _) = mnist.load_data()

Deep Learning for Games Chapter 1

[35]

We start by importing the mnist library and numpy then loads the data into2.
x_train and x_test sets of data. As a general rule in data science and machine
learning, you typically want a training set for learning and then an evaluation set
for testing. These datasets are often generated by randomly splitting the data into
80 percent for training and 20 percent for testing.
Then we further define our training and testing inputs with the following code:3.

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = x_train.reshape((len(x_train),
np.prod(x_train.shape[1:])))
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
print(x_train.shape)
print(x_test.shape)

The first two lines are normalizing our input gray scale pixel color values and a4.
number from 0 to 255, by dividing by 255. This gives us a number from 0 to 1.
We generally want to try to normalize our inputs. Next, we reshape the training
and testing sets into an input Tensor.
With the models all built and compiled, it is time to start training. The next few5.
lines are where the network will learn how to encode and decode the images:

autoencoder.fit(x_train, x_train, epochs=50, batch_size=256,
 shuffle=True, validation_data=(x_test, x_test))

encoded_imgs = encoder.predict(x_test)
decoded_imgs = decoder.predict(encoded_imgs)

You can see in our code that we are setting up to fit the data using x_train as6.
input and output. We are using 50 epochs with a batch size of 256 images.
Feel free to play with these parameters on your own later to see what effect they
have on training. After that, the encoder and then the decoder models are used
to predict test images.

That completes the model and training setup we need for this model, or models if you will.
Remember, we are taking a 28 x 28 image, decompressing it to essentially 32 numbers, and
then rebuilding the image using a neural network. With our model complete and trained
this time, we want to review the output and we will do that in the next section.

Deep Learning for Games Chapter 1

[36]

Examining the output
Our final step this time around will be to see what is actually happening with the images.
We will finish this exercise by outputting a small sample of images in order to get our
success rate. Follow along in the next exercise in order to finish the code and run the
autoencoder:

Continuing from the last exercise, locate the following last section of code:1.

import matplotlib.pyplot as plt
n = 10 # how many digits we will display
plt.figure(figsize=(20, 4))
for i in range(n):
 # display original
 ax = plt.subplot(2, n, i + 1)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)

display reconstruction
 ax = plt.subplot(2, n, i + 1 + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

In this section of code, we are just outputting the input and resultant auto-2.
encoded images after all the training is done. This section of code starts with
importing mathplotlib for plotting, and then we loop through a number of
images to display the results. The rest of the code just outputs the images.
Run the Python code as you normally would, and this time expect the training to3.
take several minutes. After everything is done, you should see an image similar
to the following:

Example of raw input images compared to encoded and decoded output images

Deep Learning for Games Chapter 1

[37]

That completes our look into building a simple Keras model that can encode and then
decode images. This allows us to see how each small piece of a multilayer neural network is
written in Keras functions. In the final section, we invite you, the reader, to undertake some
additional exercises for further learning.

Exercises
Use these additional exercises to assist in your learning and test your knowledge further.

Answer the following questions:

Name three different activation functions. Remember, Google is your friend.1.
What is the purpose of a bias?2.
What would you expect to happen if you reduced the number of epochs in one of3.
the chapter samples? Did you try it?
What is the purpose of backpropagation?4.
Explain the purpose of the Cost function.5.
What happens when you increase or decrease the number of encoding6.
dimensions in the Keras autoencoder example?
What is the name of the layer type that we feed input into?7.
What happens when you increase or decrease the batch size?8.
What is the shape of the input Tensor for the Keras example? Hint: we already9.
have a print statement displaying this.
In the last exercise, how many MNIST samples do we train and test with?10.

As we progress in the book, the additional exercises will certainly become more difficult.
For now, though, take some time to answer the questions and test your knowledge.

Deep Learning for Games Chapter 1

[38]

Summary
In this chapter, we explored the foundations of DL from the basics of the simple single
perceptron to more complex multilayer perceptron models. We started with the past,
present, and future of DL and, from there, we built a basic reference implementation of a
single perceptron so that we could understand the raw simplicity of DL. Then we built on
our knowledge by adding more perceptrons into a multiple layer implementation using TF.
Using TF allowed us to see how a raw internal model is represented and trained with a
much more complex dataset, MNIST. Then we took a long journey through the math, and
although a lot of the complex math was abstracted away from us with Keras, we took an in-
depth look at how gradient descent and backpropagation work. Finally, we finished off the
chapter with another reference implementation from Keras that featured an autoencoder.
Auto encoding allows us to train a network with multiple purposes and extends our
understanding of how network architecture doesn't have to be linear.

For the next chapter, we will build on our current level of knowledge and discover
convolutional and recurrent neural networks. These extensions provide additional
capabilities to the base form of a neural network and have played a significant part in our
most recent DL advances.

For the next chapter, we will begin our journey into building components for games when
we look at another element considered foundational to DL—the GAN. GANs are like a
Swiss Army knife in DL and, as we will see in the next chapter, they offer us plenty of uses.

2
Convolutional and Recurrent

Networks
The human brain is often the main inspiration and comparison we make when building AI
and is something deep learning researchers often look to for inspiration or reassurance. By
studying the brain and its parts in more detail, we often discover neural sub-processes. An
example of a neural sub-process would be our visual cortex, the area or region of our brain
responsible for vision. We now understand that this area of our brain is wired differently
and responds differently to input. This just so happens to be analogous to analog what we
have found in our previous attempts at using neural networks to classify images. Now, the
human brain has many sub-processes all with specific mapped areas in the brain (sight,
hearing, smell, speech, taste, touch, and memory/temporal), but in this chapter, we will
look at how we model just sight and memory by using advanced forms of deep learning
called convolutional and recurrent networks. The two-core sub-processes of sight and
memory are used extensively by us for many tasks including gaming and form the focus of
research of many deep learners.

Researchers often look to the brain for inspiration, but the computer
models they build often don't entirely resemble their biological
counterpart. However, researchers have begun to identify almost perfect
analogs to neural networks inside our brains. One example of this is the
ReLU activation function. It was recently found that the excitement level
in our brains' neurons, when plotted, perfectly matched a ReLU graph.

In this chapter, we will explore, in some detail, convolutional and recurrent neural
networks. We will look at how they solve the problem of replicating accurate vision and
memory in deep learning. These two new network or layer types are a fairly recent
discovery but have been responsible in part for many advances in deep learning. This
chapter will cover the following topics:

Convolutional neural networks
Understanding convolution

Convolutional and Recurrent Networks Chapter 2

[40]

Building a self-driving CNN
Memory and recurrent networks
Playing rock, paper, scissors with LSTMs

Be sure you understand the fundamentals outlined in the previous chapter reasonably well
before proceeding. This includes running the code samples, which install this chapter's
required dependencies.

Convolutional neural networks
Sight is hands-down the most-used sub-process. You are using it right now! Of course, it
was something researchers attempted to mimic with neural networks early on, except that
nothing really worked well until the concept of convolution was applied and used to
classify images. The concept of convolution is the idea behind detecting, sometimes
grouping, and isolating common features in an image. For instance, if you cover up 3/4 of a
picture of a familiar object and show it to someone, they will almost certainly recognize the
image by recognizing just the partial features. Convolution works the same way, by
blowing up an image and then isolating the features for later recognition.

Convolution works by dissecting an image into its feature parts, which makes it easier to
train a network. Let's jump into a code sample that extends from where we left off in the
previous chapter but that now introduces convolution. Open up the Chapter_2_1.py
listing and follow these steps:

Take a look at the first couple of lines doing the import:1.

import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Conv2D,
MaxPooling2D, UpSampling2D
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K

In this example, we import new layer types: Conv2D, MaxPooling2D, and2.
UpSampling2D.
Then we set the Input and build up the encoded and decoded network sections3.
using the following code:

input_img = Input(shape=(28, 28, 1)) # adapt this if using
`channels_first` image data format

x = Conv2D(16, (3, 3), activation='relu',
padding='same')(input_img)

Convolutional and Recurrent Networks Chapter 2

[41]

x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)

x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid',
padding='same')(x)

The first thing to note is that we are now preserving the dimensions of the image,4.
in this case, 28 x 28 pixels wide and 1 layer or channel. This example uses an
image that is in grayscale, so there is only a single color channel. This is vastly
different from before, when we just unraveled the image into a single 784-
dimension vector.

The second thing to note is the use of the Conv2D layer or two-dimensional
convolutional layer and the following MaxPooling2D or UpSampling2D layers.
Pooling or sampling layers are used to gather or conversely unravel features.
Note how we use pooling or down-sampling layers after convolution when the
image is encoded and then up-sampling layers when decoding the image.

Next, we build and train the model with the following block of code:5.

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adadelta',
loss='binary_crossentropy')

from tensorflow.keras.datasets import mnist
import numpy as np

(x_train, _), (x_test, _) = mnist.load_data()

x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = np.reshape(x_train, (len(x_train), 28, 28, 1))
x_test = np.reshape(x_test, (len(x_test), 28, 28, 1))

from tensorflow.keras.callbacks import TensorBoard

autoencoder.fit(x_train, x_train,
 epochs=50,

Convolutional and Recurrent Networks Chapter 2

[42]

 batch_size=128,
 shuffle=True,
 validation_data=(x_test, x_test),
 callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

decoded_imgs = autoencoder.predict(x_test)

The training of the model in the preceding code mirrors what we did at the end6.
of the previous chapter, but note the selection of training and testing sets now.
We no longer squish the image but rather preserve its spatial properties as inputs
into the convolutional layer.
Finally, we output the results with the following code:7.

n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
 ax = plt.subplot(2, n, i)
 plt.imshow(x_test[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
 ax = plt.subplot(2, n, i + n)
 plt.imshow(decoded_imgs[i].reshape(28, 28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

Run the code, as you have before, and you'll immediately notice that it is about8.
100 times slower to train. This may or may not require you to wait, depending on
your machine; if it does, go get a beverage or three and perhaps a meal.

Training our simple sample now takes a large amount of time, which may be quite
noticeable on older hardware. In the next section, we look at how we can start to monitor
the training sessions, in great detail.

Monitoring training with TensorBoard
TensorBoard is essentially a mathematical graph or calculation engine that performs very
well at crunching numbers, hence our use of it in deep learning. The tool itself is still quite
immature, but there are some very useful features for monitoring training exercises.

Convolutional and Recurrent Networks Chapter 2

[43]

Follow these steps to start monitoring training on our sample:

You can monitor the training session by entering the following command into a1.
new Anaconda or command window from the same directory/folder that you are
running the sample from:

//first change directory to sample working folder
tensorboard --logdir=/tmp/autoencoder

This will launch a TensorBoard server, and you can view the output by2.
navigating your browser to the URL in italics, as shown in the window you are
running TensorBoard from. It will typically look something like the following:

TensorBoard 1.10.0 at http://DESKTOP-V2J9HRG:6006 (Press CTRL+C to
quit)
or use
http://0.0.0.0:6000

Note, the URL should use your machine name, but if that doesn't work, try the3.
second form. Be sure to allow ports 6000, and 6006 and/or the TensorBoard
application through your firewall if prompted.
When the sample is done running, you should see the following:4.

Auto-encoding digits using convolution

Go back and compare the results from this example and the last example from5.
Chapter 1, Deep Learning for Games. Note the improvement in performance.

Your immediate thought may be, "Is the increased training time we experienced worth the
effort?" After all, the decoded images look quite similar in the previous example, and it
trained much faster, except, remember we are training the network weights slowly by
adjusting each weight over each iteration, which we can then save as a model. That model
or brain can then be used to perform the same task again later, without training. Works
scarily enough! Keep this concept in mind as we work through this chapter. In Chapter 3,
GAN for Games, we will start saving and moving our brain models around.

Convolutional and Recurrent Networks Chapter 2

[44]

In the next section, we take a more in-depth look at how convolution works. Convolution
can be tricky to understand when you first encounter it, so take your time. It is important to
understand how it works, as we will use it extensively later.

Understanding convolution
Convolution is a way of extracting features from an image that may allow us to more easily
classify it based on known features. Before we get into convolution, let's first take a step
back and understand why networks, and our vision for that matter, need to isolate features
in an image. Take a look at the following; it's a sample image of a dog, called Sadie, with
various image filters applied:

Example of an image with different filters applied

The preceding shows four different versions with no filter, edge detection, pixelate, and
glowing edges filters applied. In all cases, though, you as a human can clearly recognize it
is a picture of a dog, regardless of the filter applied, except note that in the edge detection
case, we have eliminated the extra image data that is unnecessary to recognize a dog. By
using a filter, we can extract just the required features our NN needs to recognize a dog.
This is all a convolution filter does, and in some cases, one of those filters could be just a
simple edge detection.

Convolutional and Recurrent Networks Chapter 2

[45]

A convolution filter is a matrix or kernel of numbers that defines a single math operation.
The process starts by being multiplied by the upper-left corner pixel value, with the results
of the matrix operation summed and set as the output. The kernel is slid across the image in
a step size called a stride, and this operation is demonstrated:

Applying a convolution filter

In the preceding diagram, a stride of 1 is being used. The filter being applied in the
convolution operation is essentially an edge detection filter. If you look at the result of the
final operation, you can see the middle section is now filled with OS, greatly simplifying
any classification task. The less information our networks need to learn, the quicker they
will learn and with less data. Now, the interesting part of this is that the convolution learns
the filter, the numbers,or the weights it needs to apply in order to extract the relevant
features. This is not so obvious and may be confusing, so let's go over it again. Go back to
our previous example and look at how we define the first convolution layer:

x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)

In that line of code, we define the first convolution layer as having 16 output filters,
meaning our output from this layer is actually 16 filters. We then set the kernel size
to (3,3), which represents a 3x3 matrix , just as in our example. Note how we don't
specify the values of the various kernel filter weights, as that is after all what the network is
training to do.

Convolutional and Recurrent Networks Chapter 2

[46]

Let's see how this looks when everything is put together in the following diagram:

Full convolution operation

The output from the first step in convolution is the feature map. One feature map
represents a single convolution filter being applied and is generated by applying the
learned filter/kernel. In our example, the first layer produces 16 kernels, which in turn
produce 16 feature maps; remember that the value of 16 is for the number of filters.

After convolution, we then apply pooling or subsampling in order to collect or gather
features into sets. This subsampling further creates new concentrated feature maps that
highlight the image's important features we are training for. Take a look back at how we
defined the first pooling layer in our previous example:

x = MaxPooling2D((2, 2), padding='same')(x)

In the code, we are subsampling using a pool_size of (2,2). The size indicates the factor
by which to down-sample the image by width and height. So a 2 x 2 pool size will create
four feature maps at half the size in width and height. This results in a total of 64 feature
maps after our first layer of convolution and pooling. We get this by multiplying 16
(convolution feature maps) x 4 (pooling feature maps) = 64 feature maps. Consider how
many total feature maps we build in our simple example:

That is 65,536 feature maps of 4 x 4 images. This means we now train our network on 65,536
smaller images; for each image, we attempt to encode or classify. This is obviously the
cause for the increased training time, but also consider the amount of extra data we are now
using to classify our images. Now our network is learning how to identify parts or features
of our image, just as we humans identify objects.

Convolutional and Recurrent Networks Chapter 2

[47]

For instance, if you were just shown the nose of a dog, you could likely recognize that as a
dog. Consequently, our sample network now is identifying parts of the handwritten digits,
which as we know now, dramatically improves performance.

As we have seen, convolution works well for identifying images, but the process of pooling
can have disruptive consequences to preserving spatial relationships. Therefore, when it
comes to games or learning requiring some form of spatial understanding, we prefer to
limit pooling or eliminate altogether. Since it is important to understand when to use and
not to use pooling, we will cover that in more detail in the next section.

Building a self-driving CNN
Nvidia created a multi-layer CNN called PilotNet, in 2017, that was able to steer a vehicle
by just showing it a series of images or video. This was a compelling demonstration of the
power of neural networks, and in particular the power of convolution. A diagram showing
the neural architecture of PilotNet is shown here:

PilotNet neural architecture

Convolutional and Recurrent Networks Chapter 2

[48]

The diagram shows the input of the network moving up from the bottom where the results
of a single input image output to a single neuron represent the steering direction. Since this
is such a great example, several individuals have posted blog posts showing an example of
PilotNet, and some actually work. We will examine the code from one of these blog posts to
see how a similar architecture is constructed with Keras. Next is an image from the original
PilotNet blog, showing a few of the types of images our self-driving network will use to
train:

Example of PilotNet training images

The goal of training in this example is to output the degree to which the steering wheel
should be turned in order to keep the vehicle on the road. Open up the code listing
in Chapter_2_2.py and follow these steps:

We will now switch to using Keras for a few samples. While the1.
TensorFlow embedded version of Keras has served us well, there are a couple of
features we need that are only found in the full version. To install Keras and
other dependencies, open a shell or Anaconda window and run the following
commands:

pip install keras
pip install pickle
pip install matplotlib

Convolutional and Recurrent Networks Chapter 2

[49]

At the start of the code file (Chapter_2_2.py), we begin with some imports and2.
load the sample data using the following code:

import os
import urllib.request
import pickle
import matplotlib
import matplotlib.pyplot as plt

#downlaod driving data (450Mb)
data_url =
'https://s3.amazonaws.com/donkey_resources/indoor_lanes.pkl'
file_path, headers = urllib.request.urlretrieve(data_url)
print(file_path)

with open(file_path, 'rb') as f:
 X, Y = pickle.load(f)

This code just does some imports and then downloads the sample driving frames3.
from the author's source data. The original source of this blog was written in a
notebook by Roscoe's Notebooks and can be found at https:/ /wroscoe. github.
io/keras- lane- following- autopilot. html.
pickle is a decompression library that unpacks the data in datasets X and Y at
the bottom of the previous listing.
Then we shuffle the order of the frames around or essentially randomize the4.
data. We often randomize data this way to make our training stronger. By
randomizing the data order, the network needs to learn an absolute steering
value for an image, rather than a possible relative or incremental value. The
following code does this shuffle:

import numpy as np
def unison_shuffled_copies(X, Y):
 assert len(X) == len(Y)
 p = np.random.permutation(len(X))
 return X[p], Y[p]

shuffled_X, shuffled_Y = unison_shuffled_copies(X,Y)
len(shuffled_X)

All this code does is use numpy to randomly shuffle the image frames. Then it5.
prints out the length of the first shuffled set shuffled_X so we can confirm the
training data is not getting lost.

https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html
https://wroscoe.github.io/keras-lane-following-autopilot.html

Convolutional and Recurrent Networks Chapter 2

[50]

Next, we need to create a training and test set of data. The training set is used to6.
train the network (weights), and the test, or validation, set is used to confirm the
accuracy on new or raw data. As we have seen before, this is a common theme
when using supervised training or labeled data. We often break the data into 80%
training and 20% test. The following code is what does this:

test_cutoff = int(len(X) * .8) # 80% of data used for training
val_cutoff = test_cutoff + int(len(X) * .2) # 20% of data used for
validation and test data
train_X, train_Y = shuffled_X[:test_cutoff],
shuffled_Y[:test_cutoff]
val_X, val_Y = shuffled_X[test_cutoff:val_cutoff],
shuffled_Y[test_cutoff:val_cutoff]
test_X, test_Y = shuffled_X[val_cutoff:], shuffled_Y[val_cutoff:]

len(train_X) + len(val_X) + len(test_X)

After creating the training and test sets, we now want to augment or expand the7.
training data. In this particular case, the author augmented the data just by
flipping the original images and adding those to the dataset. There are many
other ways of augmenting data that we will discover in later chapters, but this
simple and effective method of flipping is something to add to your belt of
machine learning tools. The code to do this flip is shown here:

X_flipped = np.array([np.fliplr(i) for i in train_X])
Y_flipped = np.array([-i for i in train_Y])
train_X = np.concatenate([train_X, X_flipped])
train_Y = np.concatenate([train_Y, Y_flipped])
len(train_X)

Now comes the heavy lifting part. The data is prepped, and it is time to build the8.
model as shown in the code:

from keras.models import Model, load_model
from keras.layers import Input, Convolution2D, MaxPooling2D,
Activation, Dropout, Flatten, Dense

img_in = Input(shape=(120, 160, 3), name='img_in')
angle_in = Input(shape=(1,), name='angle_in')

x = Convolution2D(8, 3, 3)(img_in)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)

x = Convolution2D(16, 3, 3)(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)

Convolutional and Recurrent Networks Chapter 2

[51]

x = Convolution2D(32, 3, 3)(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)

merged = Flatten()(x)

x = Dense(256)(merged)
x = Activation('linear')(x)
x = Dropout(.2)(x)

angle_out = Dense(1, name='angle_out')(x)

model = Model(input=[img_in], output=[angle_out])
model.compile(optimizer='adam', loss='mean_squared_error')
model.summary()

The code to build the model at this point should be fairly self-explanatory. Take9.
note of the variation in the architecture and how the code is written from our
previous examples. Also note the two highlighted lines. The first one uses a new
layer type called Flatten. All this layer type does is flatten the 2 x 2 image into a
vector that is then input into a standard Dense hidden fully connected layer. The
second highlighted line introduces another new layer type called Dropout. This
layer type needs a bit more explanation and will be covered in more detail at the
end of this section.
Finally comes the training part, which this code sets up:10.

import os
from keras import callbacks

model_path = os.path.expanduser('~/best_autopilot.hdf5')

save_best = callbacks.ModelCheckpoint(model_path,
monitor='val_loss', verbose=1,
 save_best_only=True, mode='min')

early_stop = callbacks.EarlyStopping(monitor='val_loss',
min_delta=0, patience=5,
 verbose=0, mode='auto')

callbacks_list = [save_best, early_stop]

model.fit(train_X, train_Y, batch_size=64, epochs=4,
validation_data=(val_X, val_Y), callbacks=callbacks_list)

Convolutional and Recurrent Networks Chapter 2

[52]

This last piece of code sets up a set of callbacks to update and control the11.
training. We have already used callbacks to update the TensorBoard server with
logs. In this case, we use the callbacks to resave the model after every checkpoint
(epoch) and check for an early exit. Note the form in which we are saving the
model – an hdf5 file. This file format represents a hierarchical data structure.
Run the code as you have already been doing. This sample can take a while, so12.
again be patient. When you are done, there will be no output, but pay special
attention to the minimized loss value.

At this point in your deep learning career, you may be realizing that you
need much more patience or a better computer or perhaps a TensorFlow-
supported GPU. If you want to try the latter, feel free to download and
install the TensorFlow GPU library and the other required libraries for
your OS, as this will vary. Plenty of documentation can be found online.
After you have the GPU version of TensorFlow installed, Keras will
automatically try to use that. If you have a supported GPU, you should
notice a performance increase, and if not, then consider buying one.

While there is no output for this example, in order to keep it simple, try to appreciate what
is happening. After all, this could just as easily be set up as a driving game, where the
network drives the vehicle by just looking at screenshots. We have omitted the results from
the author's original blog post, but if you want to see how this performs further, go back
and check out the source link.

One thing the author did in his blog post was to use pooling layers, which, as we have seen,
is quite standard when working with convolution. However, when and how to use pooling
layers is a bit contentious right now and requires further detailed discussion, which is
provided in the next section.

Spatial convolution and pooling
Geoffrey Hinton and his team have recently strongly suggested that using pooling with
convolution removes spatial relationships in the image. Hinton instead suggests the use of
CapsNet, or Capsule Networks. Capsule Networks are a method of pooling that preserves
the spatial integrity of the data. Now, this may not be a problem in all cases. For
handwritten digits, spatial relationships don't matter that much. However, self-driving cars
or networks tasked with spatial tasks, a prime example of which is games, often don't
perform as well when using pooling. In fact, the team at Unity do not use pooling layers
after convolution; let's understand why.

https://wroscoe.github.io/keras-lane-following-autopilot.html

Convolutional and Recurrent Networks Chapter 2

[53]

Pooling or down-sampling is a way of augmenting data by collecting its common features
together. The problem with this is that any relationship in the data often gets lost entirely.
The following diagram demonstrates MaxPooling(2,2) over a convolution map:

 Max pooling at work

Even in the simple preceding diagram, you can quickly appreciate that pooling loses the
spatial relationship of the corner (upper-left, bottom-left, lower-right and upper-right) the
pooled value started in. Note that, after a couple layers of pooling, any sense of spatial
relation will be completely gone.

We can test the effect of removing pooling layers from the model and test this again by
following these steps:

Open the Chapter_2_3.py file and note how we commented out a couple of1.
pooling layers, or you can just delete the lines as well, like so:

x = Convolution2D(8, 3, 3)(img_in)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)

x = Convolution2D(16, 3, 3)(x)
x = Activation('relu')(x)
#x = MaxPooling2D(pool_size=(2, 2))(x)

x = Convolution2D(32, 3, 3)(x)
x = Activation('relu')(x)
#x = MaxPooling2D(pool_size=(2, 2))(x)

Convolutional and Recurrent Networks Chapter 2

[54]

Note how we didn't comment out (or delete) all the pooling layers and left one2.
in. In some cases, you may still want to leave a couple of pooling layers in,
perhaps to identify features that are not spatially important. For example, when
recognizing digits, space is less important with respect to the overall shape.
However, if we consider recognizing a face, then the distance between a person's
eyes, mouth, and so on, is what distinguishes a face from another face. However,
if you just wanted to identify a face, with eyes, mouth, and so on, then just
applying pooling could be quite acceptable.
Next, we also increase the dropout rate on our Dropout layer like so:3.

x = Dropout(.5)(x)

We will explore dropout in some detail in the next section. For now, though, just4.
realize that this change will have a more positive effect on our model.
Lastly, we bump up the number of epochs to 10 with the following code:5.

model.fit(train_X, train_Y, batch_size=64, epochs=10,
validation_data=(val_X, val_Y), callbacks=callbacks_list)

In our previous run, if you were watching the loss rate when training, you would6.
realize the last example more or less started to converge at four epochs. Since
dropping the pooling layers also reduces the training data, we need to also bump
up the number of epochs. Remember, pooling or down-sampling increases the
number of feature maps, and fewer maps means the network needs more
training runs. If you are not training on a GPU, this model will take a while, so be
patient.
Finally, run the example, again with those minor changes. One of the first things7.
you will notice is that the training time shoots up dramatically. Remember, this is
because our pooling layers do facilitate quicker training, but at a cost. This is one
of the reasons we allow for a single pooling layer.
When the sample is finished running, compare the results for the8.
Chapter_2_2.py sample we ran earlier. Did it do what you expected it to?

We only focus on this particular blog post because it is extremely well
presented and well written. The author obviously knew his stuff, but this
example just shows how important it is to understand the fundamentals
of these concepts in as much detail as you can handle. This is not such an
easy task with the flood of information, but this also reinforces the fact
that developing working deep learning models is not a trivial task, at least
not yet.

Convolutional and Recurrent Networks Chapter 2

[55]

Now that we understand the cost/penalty of pooling layers, we can move on to the next
section, where we jump back to understanding Dropout. It is an excellent tool you will use
over and over again.

The need for Dropout
Now, let's go back to our much-needed discussion about Dropout. We use dropout in deep
learning as a way of randomly cutting network connections between layers during each
iteration. An example showing an iteration of dropout being applied to three network
layers is shown in the following diagram:

Before and after dropout

The important thing to understand is that the same connections are not always cut. This is
done to allow the network to become less specialized and more generalized. Generalizing a
model is a common theme in deep learning, and we often do this so our models can learn a
broader set of problems, more quickly. Of course, there may be times where generalizing a
network limits a network's ability to learn.

If we go back to the previous sample now and look at the code, we see a Dropout layer
being used like so:

x = Dropout(.5)(x)

That simple line of code tells the network to drop out or disconnect 50% of the connections
randomly after every iteration. Dropout only works for fully connected layers (Input ->
Dense -> Dense) but is very useful as a way of improving performance or accuracy. This
may or may not account for some of the improved performance from the previous example.

In the next section, we will look at how deep learning mimics the memory sub-process or
temporal scent.

Convolutional and Recurrent Networks Chapter 2

[56]

Memory and recurrent networks
Memory is often associated with Recurrent Neural Network (RNN), but that is not entirely
an accurate association. An RNN is really only useful for storing a sequence of events or
what you may refer to as a temporal sense, a sense of time if you will. RNNs do this by
persisting state back onto itself in a recursive or recurrent loop. An example of how this
looks is shown here:

Unfolded recurrent neural network

What the diagram shows is the internal representation of a recurrent neuron that is set to
track a number of time steps or iterations where x represents the input at a time step and h
denotes the state. The network weights of W, U, and V remain the same for all time steps
and are trained using a technique called Backpropagation Through Time (BPTT). We
won't go into the math of BPTT and leave that up the reader to discover on their own, but
just realize that the network weights in a recurrent network use a cost gradient method to
optimize them.

A recurrent network allows a neural network to identify sequences of elements and predict
what elements typically come next. This has huge applications in predicting text, stocks,
and of course games. Pretty much any activity that can benefit from some grasp of time or
sequence of events will benefit from using RNN, except standard RNN, the type shown
previously, which fails to predict longer sequences due to a problem with gradients. We
will get further into this problem and the solution in the next section.

Convolutional and Recurrent Networks Chapter 2

[57]

Vanishing and exploding gradients rescued by
LSTM
The problem the RNN suffers from is either vanishing or exploding gradients. This
happens because, over time, the gradient we try to minimize or reduce becomes so small or
big that any additional training has no effect. This limits the usefulness of the RNN, but
fortunately this problem was corrected with Long Short-Term Memory (LSTM) blocks, as
shown in this diagram:

Example of an LSTM block

LSTM blocks overcome the vanishing gradient problem using a few techniques. Internally,
in the diagram where you see a x inside a circle, it denotes a gate controlled by an activation
function. In the diagram, the activation functions are σ and tanh. These activation functions
work much like a step or ReLU do, and we may use either function for activation in a
regular network layer. For the most part, we will treat an LSTM as a black box, and all you
need to remember is that LSTMs overcome the gradient problem of RNN and can
remember long-term sequences.

Convolutional and Recurrent Networks Chapter 2

[58]

Let's take a look at a working example to see how this comes together. Open up
Chapter_2_4.py and follow the these steps:

We begin as per usual by importing the various Keras pieces we need, as shown:1.

This example was pulled from https:/ /machinelearningmastery. com/
understanding- stateful- lstm- recurrent- neural- networks- python-
keras/ . This is a site hosted by Dr. Jason Brownlee, who has plenty more
excellent examples explaining the use of LSTM and recurrent networks.

import numpy
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.utils import np_utils

This time we are importing two new classes, Sequential and LSTM. Of course2.
we know what LSTM is for, but what about Sequential? Sequential is a form
of model that defines the layers in a sequence one after another. We were less
worried about this detail before, since our previous models were all sequential.
Next, we set the random seed to a known value. We do this so that our example3.
can replicate itself. You may have noticed in previous examples that not all runs
perform the same. In many cases, we want our training to be consistent, and
hence we set a known seed value by using this code:

numpy.random.seed(7)

It is important to realize that this just sets the numpy random seed value. Other4.
libraries may use different random number generators and require different seed
settings. We will try to identify these inconsistencies in the future when possible.
Next, we need to identify a sequence we will train to; in this case, we will just use5.
the alphabet as shown in this code:

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

char_to_int = dict((c, i) for i, c in enumerate(alphabet))
int_to_char = dict((i, c) for i, c in enumerate(alphabet))

seq_length = 1
dataX = []
dataY = []

for i in range(0, len(alphabet) - seq_length, 1):
 seq_in = alphabet[i:i + seq_length]
 seq_out = alphabet[i + seq_length]

https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/understanding-stateful-lstm-recurrent-neural-networks-python-keras/

Convolutional and Recurrent Networks Chapter 2

[59]

 dataX.append([char_to_int[char] for char in seq_in])
 dataY.append(char_to_int[seq_out])
 print(seq_in, '->', seq_out)

The preceding code builds our sequence of characters as integers and builds a6.
map of each character sequence. It builds a seq_in and seq_out showing the
forward and reverse positions. Since the length of a sequence is defined by
seq_length = 1, then we are only concerned about a letter of the alphabet and
the character that comes after it. You could, of course, do longer sequences.
With the sequence data built, it is time to shape the data and normalize it with7.
this code:

X = numpy.reshape(dataX, (len(dataX), seq_length, 1))
normalize
X = X / float(len(alphabet))
one hot encode the output variable
y = np_utils.to_categorical(dataY)

The first line in the preceding code reshapes the data into a tensor with a size8.
length of dataX, the number of steps or sequences, and the number of features to
identify. We then normalize the data. Normalizing the data comes in many
forms, but in this case we are normalizing values from 0 to 1. Then we one hot
encode the output for easier training.

One hot encoding is where we you set the value to 1 where you have data
or a response, and to zero everywhere else. In the example, our model
output is 26 neurons, which could also be represented by 26 zeros, one
zero for each neuron, like so:
00000000000000000000000000

Where each zero represents the matching character position in the
alphabet. If we wanted to denote a character A, we would output the one
hot encoded value as this:
10000000000000000000000000

Then we construct the model, using a slightly different form of code than we9.
have seen before and as shown here:

model = Sequential()
model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2])))
model.add(Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])
model.fit(X, y, epochs=500, batch_size=1, verbose=2)

Convolutional and Recurrent Networks Chapter 2

[60]

scores = model.evaluate(X, y, verbose=0)
print("Model Accuracy: %.2f%%" % (scores[1]*100))

The critical piece to the preceding code is the highlighted line that shows the10.
construction of the LSTM layer. We construct an LSTM layer by setting the number
of units, in this case 32, since our sequence is 26 characters long and we want our
units disable by 2. Then we set the input_shape to match the previous tensor, X,
that we created to hold our training data. In this case, we are just setting the
shape to match all the characters (26) and the sequence length, in this case 1.
Finally, we output the model with the following code:11.

for pattern in dataX:
 x = numpy.reshape(pattern, (1, len(pattern), 1))
 x = x / float(len(alphabet))
 prediction = model.predict(x, verbose=0)
 index = numpy.argmax(prediction)
 result = int_to_char[index]
 seq_in = [int_to_char[value] for value in pattern]
 print(seq_in, "->", result)

Run the code as you normally would and examine the output. You will notice12.
that the accuracy is around 80%. See whether you can improve the accuracy of
the model for predicting the next sequence in the alphabet.

This simple example demonstrated the basic use of an LSTM block for recognizing a simple
sequence. In the next section, we look at a more complex example: using LSTM to play
Rock, Paper, Scissors.

Playing Rock, Paper, Scissors with LSTMs
Remembering sequences of data have huge applications in many areas, not the least of
which includes gaming. Of course, producing a simple, clean example is another matter.
Fortunately, examples abound on the internet and Chapter_2_5.py shows an example of
using an LSTM to play Rock, Paper, Scissors.

Convolutional and Recurrent Networks Chapter 2

[61]

Open up that sample file and follow these steps:

This example was pulled from https:/ /github. com/ hjpulkki/ RPS, but
the code needed to be tweaked in several places to get it to work for us.

Let's start as we normally do with the imports. For this sample, be sure to have1.
Keras installed as we did for the last set of exercises:

import numpy as np
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, LSTM

Then, we set some constants as shown:2.

EPOCH_NP = 100
INPUT_SHAPE = (1, -1, 1)
OUTPUT_SHAPE = (1, -1, 3)
DATA_FILE = "data.txt"
MODEL_FILE = "RPS_model.h5"

Then, we build the model, this time with three LSTM layers, one for each element3.
in our sequence (rock, paper and scissors), like so:

def simple_model():
 new_model = Sequential()
 new_model.add(LSTM(output_dim=64, input_dim=1,
return_sequences=True, activation='sigmoid'))
 new_model.add(LSTM(output_dim=64, return_sequences=True,
activation='sigmoid'))
 new_model.add(LSTM(output_dim=64, return_sequences=True,
activation='sigmoid'))
 new_model.add(Dense(64, activation='relu'))
 new_model.add(Dense(64, activation='relu'))
 new_model.add(Dense(3, activation='softmax'))
 new_model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['accuracy', 'categorical_crossentropy'])
 return new_model

https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS
https://github.com/hjpulkki/RPS

Convolutional and Recurrent Networks Chapter 2

[62]

Then we create a function to extract our data from the data.txt file. This file4.
holds the sequences of training data using the following code:

def batch_generator(filename):
 with open('data.txt', 'r') as data_file:
 for line in data_file:
 data_vector = np.array(list(line[:-1]))
 input_data = data_vector[np.newaxis, :-1, np.newaxis]
 temp = np_utils.to_categorical(data_vector, num_classes=3)
 output_data = temp[np.newaxis, 1:]
 yield (input_data, output_data)

In this example, we are training each block of training through 100 epochs in the5.
same order as they are in the file. A better method would be to train each training
sequence in a random order.
Then we create the model:6.

Create model
np.random.seed(7)
model = simple_model()

Train the data using a loop, with each iteration pulling a batch from the7.
data.txt file:

for (input_data, output_data) in batch_generator('data.txt'):
 try:
 model.fit(input_data, output_data, epochs=100, batch_size=100)
 except:
 print("error")

Finally, we evaluate the results with a validation sequence as shown in this code:8.

print("evaluating")
validation =
'100101000110221110101002201101101101002201011012222210221011011101
011122110010101010101'
input_validation =
np.array(list(validation[:-1])).reshape(INPUT_SHAPE)
output_validation =
np_utils.to_categorical(np.array(list(validation[1:]))).reshape(OUT
PUT_SHAPE)
loss_and_metrics = model.evaluate(input_validation,
output_validation, batch_size=100)

print("\n Evaluation results")

for i in range(len(loss_and_metrics)):

Convolutional and Recurrent Networks Chapter 2

[63]

 print(model.metrics_names[i], loss_and_metrics[i])

input_test = np.array([0, 0, 0, 1, 1, 1, 2, 2,
2]).reshape(INPUT_SHAPE)
res = model.predict(input_test)
prediction = np.argmax(res[0], axis=1)
print(res, prediction)

model.save(MODEL_FILE)
del model

Run the sample as you normally would. Check the results at the end and note9.
how accurate the model gets at predicting the sequence.

Be sure to run through this simple example a few times and understand how the LSTM
layers are set up. Pay special attention to the parameters and how they are set.

That concludes our quick look at understanding how to use recurrent aka LSTM blocks for
recognizing and predicting sequences of data. We will of course use this versatile layer type
many more times throughout the course of this book.

In the final section of this chapter, we again showcase a number of exercises you are
encouraged to undertake for your own benefit.

Exercises
Complete the following exercises in your own time and to improve your own learning
experience. Improving your understanding of the material will make you a more successful
deep learner, and you will likely enjoy this book better as well:

In the Chapter_2_1.py example, change the Conv2D layers to use a different1.
filter size. Run the sample again, and see what effect this has on training
performance and accuracy.
Comment out or delete a couple of the MaxPooling layers and corresponding2.
UpSampling layers in the Chapter_2_1.py example. Remember, if you remove
a pooling layer between layers 2 and 3, you likewise need to remove the up-
sampling to remain consistent. Run the sample again, and see what effect this has
on training time, accuracy, and performance.
Alter the Conv2D layers in the Chapter_2_2.py example using a different filter3.
size. See what effect this has on training.

Convolutional and Recurrent Networks Chapter 2

[64]

Alter the Conv2D layers in the Chapter_2_2.py example by using a stride4.
value of 2. You may need to consult the Keras docs in order to do this. See what
effect this has on training.
Alter the MaxPooling layers in the Chapter_2_2.py example by altering the5.
pooling dimensions. See what effect this has on training.
 Remove all or comment out different MaxPooling layers used in the6.
Chapter_2_3.py example. What happens if all the pooling layers are
commented out? Do you need to increase the training epochs now?
Alter the use of Dropout in the various examples used throughout this chapter.7.
This includes adding dropout. Test the effects of using different levels of
dropout.
Modify the sample in Chapter_2_4.py so that the model produces better8.
accuracy. What do you need to do in order to improve training performance?
Modify the sample in Chapter_2_4.py to predict more than one character in the9.
sequence. If you need help, go back and review the original blog post for more
information.
What happens if you change the number of units that the three LSTM layers use10.
in the Chapter_2_5.py example? What if you increase the value to 128, 32, or
16? Try these values to understand the effect they have.

Feel free to expand on these exercises on your own. Try to write a new example on your
own as well, even if it is just a simple one. There really is no better way to learn to code
than to write your own.

Convolutional and Recurrent Networks Chapter 2

[65]

Summary
For this chapter and the last, we took a deep dive into the core elements of deep learning
and neural networks. While our review in the last couple chapters was not extensive, it
should give you a good base for continuing through the rest of the book. If you had
troubles with any of the material in the first two chapters, turn back now and spend more
time reviewing the previous material. It is important that you understand the basics of
neural network architecture and the use of various specialized layers, as we covered in this
chapter (CNN and RNN). Be sure you understand the basics of CNN and how to use it
effectively in picking features and what the trade—offs are when using pooling or sub
sampling. Also understand the concept of RNN and how and when to use LSTM blocks for
predicting or detecting temporal events. Convolutional layers and LSTM blocks are now
fundamental components of deep learning, and we will use them in several networks we
build going forward.

In the next chapter, we start to build out our sample game for this book and introduce
GANs, or generative adversarial networks. We will explore GANs and how they can be
used to generate game content.

3
GAN for Games

Thus far, in our deep learning exploration, we have trained all our networks using a
technique called supervised training. This training technique works well for when you
have taken the time to identify and label your data. All of our previous example exercises
used supervised training, because it is the simplest form of teaching. However, supervised
learning tends to be the most cumbersome and tedious method, largely because it requires
some amount of data labeling or identification before training. There have been attempts to
use this form of training for machine learning or deep learning in gaming and simulation,
but they have proven to be unsuccessful.

This is why, for most of this book, we will look at other forms of training, starting with a
form of unsupervised training called a generative adversarial network (GAN). GANs are
able to train themselves using, in essence, a two-player game. This makes them an ideal
next step in our learning and a perfect way to actually start generating content for games.

In this chapter, we explore GANs and their use in developing game content. Along the
way, we will learn more fundamentals of deep learning techniques. In this chapter, we will
cover the following content:

Introducing GANs
Coding a GAN in Keras
Wasserstein GAN
GAN for creating textures
Generating music with a GAN
Exercises

GANs are notoriously hard to train and build successfully. Therefore, it is recommended
you take your time with this chapter and go through the exercises a couple of times if you
need to. The techniques we learn to make effective GANs will provide you with a better
overall understanding of training networks and the many other options available. We also
still need to cover many fundamental concepts about training networks, so please work
through this chapter thoroughly.

GAN for Games Chapter 3

[67]

Introducing GANs
The concept of GANs is typically introduced using the analogy of a two-player game. In
this game, there is typically an art expert and an art forger. The goal of the art forger or
counterfeiter is to make a convincing-enough fake to fool the art expert and thus win the
game. An example of how this was first portrayed as a neural network is as follows:

GAN by Ian and others

In the preceding diagram, the Generator takes the place of the art forger, the one trying to
best the art expert, shown as the Discriminator. The Generator uses random noise as a
source to generate an image, with a goal that the image is convincing enough to fool the
Discriminator. The Discriminator is trained on both real and fake images, and all it does
is classify the image as real or fake. The Generator is then trained to build a convincing-
enough fake that will fool the Discriminator. While this concept seems simple enough as a
way of self-training a network, in the last few years, the implementation of this adversarial
technique has proven exceptional in many areas.

GANs were first developed by Ian Goodfellow and others at the University of Montreal in
2014. In only a few short years, this technique has exploded into many wide and varied
applications, from generating images and text to animating static images, all in a very short
time. The following is a short summary of some of the more impressive GAN
improvements/implementations currently turning heads in the deep learning community:

Deep convolutional GANs (DCGANs): These were the first major improvement
to the standard architecture we just covered. We will explore this as our first
form of GAN in the next section of this chapter.

GAN for Games Chapter 3

[68]

Adversarial Autoencoder GAN: This variation of an autoencoder uses the
adversarial GAN technique to isolate attributes or properties of your data. It has
interesting applications for determining latent relationships in data, such as
being able to tell the difference in style versus content for a set of handwritten
digits, for instance.
Auxiliary Classifier GAN: This is another enhanced GAN that relates to
conditioned or conditional GANs. It has been shown to synthesize higher-
resolution images and is certainly worth exploring more in gaming.
CycleGAN: This is a variation that is impressive in that it allows the translation
of style from one image to another. There are plenty of examples of this form of
GAN being used to style a picture as if Van Gogh painted it, to swapping
celebrity faces. If this chapter piques your interest in GANs and you want to
explore this form, check out this post: https:/ /hardikbansal. github. io/
CycleGANBlog/ .
Conditional GANS: These use a form of semi-supervised learning. This means
that the training data is labeled but with meta data or attributes. So, instead of
labeling a handwritten digit from the MNIST data set as a 9, you may instead
label the writing style (cursive or print). Then, this new form of conditioned
GAN can learn not only the digits, but also whether they are cursive or print.
This form of GAN has shown some interesting applications and it is one we will
explore further when we speak to specific applications in gaming.
DiscoGAN: This is yet another form of GAN showing fun results, from
swapping celebrity hairstyles to genders. This GAN extracts features or domains
and allows you to transfer them to other images or data spaces. This GAN has
numerous applications in gaming and is certainly worth exploring further for the
interested reader.
DualGAN: This uses dual GANs to train two generators against two
discriminators in order to transfer images or data to other styles. This would be
very useful as a way of restyling multiple assets and would work nicely for
generating different forms of art content for games.
Least squares GAN (LSGAN): This uses a different form of calculating loss and
has been shown to be more effective than the DCGAN.
pix2pixGAN: This is an extension to conditional GANs that allows it to transfer
or generate multiple features from one image to another. This allows for images
of the sketch of an object to return an actual 3D-rendered image of the same
object or vice versa. While this is a very powerful GAN, it still is very much
research-driven and may not be ready for use in games. Perhaps you will just
have to wait six months or a year.

https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/
https://hardikbansal.github.io/CycleGANBlog/

GAN for Games Chapter 3

[69]

InfoGANs: These types of GANs are, as of yet, used extensively to explore
features or information about the training data. They can be used to identify the
rotation of a digit in the MNIST dataset, for instance. Also, they are often used as
a way of identifying attributes for conditioned GAN training.
Stacked or SGAN: This is a form of GAN that breaks itself into layers where
each layer is a generator and discriminator battling it out. This makes the overall
GAN easier to train but also requires you to understand each stage or layer in
some detail. If you are just starting, this is not the GAN for you, but as you build
more complex networks, revisit this model again.
Wasserstein GANs: This is a state-of-the-art GAN, and it will also get attention
in its own section in this chapter. The calculation of loss is the improvement in
this form of GAN.
WassGANs: This uses the Wasserstein distance to determine loss, which
dramatically helps with model convergence.

We will explore further instances of specific GAN implementations as we work through
this chapter. Here, we will look at how to generate game textures and music with a GAN.
For now, though, let's move on to the next section and learn how to code a GAN in Keras.

Coding a GAN in Keras
Of course, the best way to learn is by doing, so let's jump in and start coding our first GAN.
In this example, we will be building the basic DCGAN and then modifying it later for our
purposes. Open up Chapter_3_2.py and follow these steps:

This code was originally pulled from https:/ /github. com/
eriklindernoren/ Keras- GAN, which is the best representation of GANs in
Keras anywhere, and is all thanks to Erik Linder-Norén. Great job, and
thanks for the hard work, Erik.

An alternate listing a vanilla GAN has been added as
Chapter_3_1.py for your learning pleasure.

We start by importing libraries:1.

from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation,
ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU

https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN

GAN for Games Chapter 3

[70]

from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import sys
import numpy as np

There are a few highlighted new types introduced in the preceding2.
code: Reshape, BatchNormalization, ZeroPadding2D, LeakyReLU, Model,
and Adam. We will explore each of these types in more detail next.
Most of our previous examples worked with basic scripts. We are now at a point3.
where we want types (classes) of our own built for further use later. That means
we now start by defining our class like so:

class DCGAN():

So, we create a new class (type) called DCGAN for our implementation of a deep4.
convolutional GAN.
Next, we would normally define our init function by Python convention.5.
However, for our purposes, let's first look at the generator function:

def build_generator(self):
 model = Sequential()
 model.add(Dense(128 * 7 * 7, activation="relu",
input_dim=self.latent_dim))
 model.add(Reshape((7, 7, 128)))
 model.add(UpSampling2D())
 model.add(Conv2D(128, kernel_size=3, padding="same"))
 model.add(BatchNormalization(momentum=0.8))
 model.add(Activation("relu"))
 model.add(UpSampling2D())
 model.add(Conv2D(64, kernel_size=3, padding="same"))
 model.add(BatchNormalization(momentum=0.8))
 model.add(Activation("relu"))
 model.add(Conv2D(self.channels, kernel_size=3, padding="same"))
 model.add(Activation("tanh"))
 model.summary()

 noise = Input(shape=(self.latent_dim,))
 img = model(noise)
 return Model(noise, img)

GAN for Games Chapter 3

[71]

The build_generator function builds the art-forger model, which means it6.
takes that sample set of noise and tries to convert it into an image the
discriminator will believe is real. In this form, it uses the principle of convolution
to make it more efficient, except, in this case, it generates a feature map of noise
that it then turns into a real image. Essentially, the generator is doing the
opposite of recognizing an image, but instead trying to generate an image based
on feature maps.
In the preceding block of code, note how the input starts with 128, 7x7 feature
maps of noise then uses a Reshape layer to turn it into the proper image layout
we want to create. It then up-samples (the reverse of pooling or down-sampling)
the feature map into 2x size (14 x 14), training another layer of convolution
followed by more up-sampling (2x to 28 x 28) until the correct image size (28x28
for the MNIST) is generated. We also see the use of a new layer type called
BatchNormalization, which we will cover in more detail shortly.
Next, we will build the build_discriminator function like so:7.

def build_discriminator(self):
 model = Sequential()
 model.add(Conv2D(32, kernel_size=3, strides=2,
input_shape=self.img_shape, padding="same"))
 model.add(LeakyReLU(alpha=0.2))
 model.add(Dropout(0.25))
 model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
 model.add(ZeroPadding2D(padding=((0,1),(0,1))))
 model.add(BatchNormalization(momentum=0.8))
 model.add(LeakyReLU(alpha=0.2))
 model.add(Dropout(0.25))
 model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
 model.add(BatchNormalization(momentum=0.8))
 model.add(LeakyReLU(alpha=0.2))
 model.add(Dropout(0.25))
 model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
 model.add(BatchNormalization(momentum=0.8))
 model.add(LeakyReLU(alpha=0.2))
 model.add(Dropout(0.25))
 model.add(Flatten())
 model.add(Dense(1, activation='sigmoid'))
 model.summary()

 img = Input(shape=self.img_shape)
 validity = model(img)
 return Model(img, validity)

GAN for Games Chapter 3

[72]

This time, the discriminator is testing the image inputs and determining whether8.
they are fake. It uses convolution to identify features, but in this example it uses
ZeroPadding2D to place a buffer of zeros around the images in order to help
identification. The opposite form of this layer would be Cropping2D, which
crops an image. Note how this model does not use down-sampling or pooling
with the convolution. We will explore the other new special layers LeakyReLU
and BatchNormalization in the coming sections. Note how we have not used
any pooling layers in our convolution. This is done to increase the spatial
dimensionality through the fractionally strided convolutions. See how inside the
convolution layers we are using an odd kernel and stride size.
We will now circle back and define the init function like so:9.

def __init__(self):
 self.img_rows = 28
 self.img_cols = 28
 self.channels = 1
 self.img_shape = (self.img_rows, self.img_cols, self.channels)
 self.latent_dim = 100
 optimizer = Adam(0.0002, 0.5)

 self.discriminator = self.build_discriminator()
 self.discriminator.compile(loss='binary_crossentropy',
 optimizer=optimizer, metrics=['accuracy'])

 self.generator = self.build_generator()
 z = Input(shape=(self.latent_dim,))
 img = self.generator(z)
 self.discriminator.trainable = False
 valid = self.discriminator(img)
 self.combined = Model(z, valid)
 self.combined.compile(loss='binary_crossentropy',
optimizer=optimizer)

This initialization code sets up the sizes for our input images (28 x 28 x 1, one10.
channel for grayscale). It then sets up an Adam optimizer, something else we will
review in another section on optimizers. After this, it builds the discriminator
and then the generator. Then it combines the two models or sub networks
(generator and discriminator) together. This allows the networks to work in
tandem and optimize training across an entire network. Again, this is a concept
we will look at more closely under optimizers.
Before we get too deep, take some time to run this example. This sample can take11.
an extensive amount of time to run, so return to the book after it starts and keep
it running.

GAN for Games Chapter 3

[73]

As the sample runs, you will be able to see the generated output get placed into a12.
folder called images within the same folder as your running Python file. Go
ahead and watch as every 50 epochs a new image is saved, which is shown in the
following diagram:

Example of output generated from a GAN

The preceding shows the results after 3,900 epochs or so. When you start training, it will
take a while to get results this good.

That covers the basics of setting up the models, except all the work that is in the training,
which we will cover in the next section.

Training a GAN
Training a GAN requires a fair bit more attention to detail and an understanding of more
advanced optimization techniques. We will walk through each section of this function in
detail in order to understand the intricacies of training. Let's open up Chapter_3_1.py
and look at the train function and follow these steps:

At the start of the train function, you will see the following code:1.

def train(self, epochs, batch_size=128, save_interval=50):
 (X_train, _), (_, _) = mnist.load_data()
 X_train = X_train / 127.5 - 1.
 X_train = np.expand_dims(X_train, axis=3)

 valid = np.ones((batch_size, 1))
 fake = np.zeros((batch_size, 1))

GAN for Games Chapter 3

[74]

The data is first loaded from the MNIST training set and then rescaled to the2.
range of -1 to 1. We do this in order to better center that data around 0 and to
accommodate our activation function, tanh. If you go back to the generator
function, you will see that the bottom activation is tanh.
Next, we build a for loop to iterate through the epochs like so:3.

for epoch in range(epochs):

Then we randomly select half of the real training images, using this code:4.

idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]

After that, we sample noise and generate a set of forged images with the5.
following code:

noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
gen_imgs = self.generator.predict(noise)

Now, half of the images are real and the other half are faked by our generator. 6.
Next, the discriminator is trained against the images generating a loss for7.
incorrectly predicted fakes and correctly identified real images as shown:

d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

Remember, this block of code is running across a set or batch. This is why we use8.
the numpy np.add function to add the d_loss_real, and d_loss_fake. numpy
is a library we will often use to work on sets or tensors of data.
Finally, we train the generator using the following code:9.

g_loss = self.combined.train_on_batch(noise, valid)

print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch,
d_loss[0], 100*d_loss[1], g_loss))

if epoch % save_interval == 0:
 self.save_imgs(epoch)

GAN for Games Chapter 3

[75]

Note how the g_loss is calculated based on training the combined model. As10.
you may recall, the combined model takes the input from real and fake images
and backpropagates the training back through the entire model. This allows us to
train both the generator and discriminator together as a combined model.
An example of how this looks is shown next, but just note that the image sizes
are a little different than ours:

Layer architecture diagram of DCGAN

Now that we have a better understanding of the architecture, we need to go back and
understand some details about the new layer types and the optimization of the combined
model. We will look at how we can optimize a joined model such as our GAN in the next
section.

Optimizers
An optimizer is really nothing more than another way to train the backpropagation of error
through a network. As we learned back in Chapter 1, Deep Learning for Games, the base
algorithm we use for backpropagation is the gradient descent and the more advanced
stochastic gradient descent (SGD).

SGD works by altering the evaluation of the gradient by randomly picking the batch order
during each training iteration. While SGD works well for most cases, it does not perform
well in a GAN, due to a problem known as the vanishing / exploding gradient, which
happens when trying to train multiple, but combined, networks. Remember, we are directly
feeding the results of our generator into the discriminator. Instead, we look to more
advanced optimizers. A graph showing the performance of the typical best optimizers is
shown in the following diagram:

GAN for Games Chapter 3

[76]

Performance comparison of various optimizers

All of the methods in the graph have their origin in SGD, but you can clearly see the winner
in this instance is Adam. There are cases where this is not the case, but the current favorite
optimizer is Adam. It is something we have used extensively before, as you may have
noticed, and you will likely continue using it in the future. However, let's take a look at
each of the optimizers in a little more detail, as follows:

SGD: This is one of the first models we looked at and it will often be our baseline
to train against.

GAN for Games Chapter 3

[77]

SGD with Nesterov: The problem SGD often faces is that wobble effect we saw
in network loss, in one of the earlier training examples. Remember, during
training, our network loss would fluctuate between two values, almost as if it
was a ball going up and down a hill. In essence, that is exactly what is
happening, but we can correct that by introducing a term we call momentum. An
example of the effect momentum has on training is shown in the following
diagram:

SGD with and without momentum

So, now, instead of just letting the ball blindly roll around, we control its
speed. We give it a push to get over some of those annoying bumps or
wobbles, and more efficiently get to the lowest point.

As you may recall from studying the math of backpropagation, we control
the gradient in SGD to train the network to minimize error or loss. By
introducing momentum, we try to control the gradient to be more efficient
by approximating what the values should be. The Nesterov technique, or it
may just be referred to as Momentum, uses an accelerated momentum term
to further optimize the gradient.

AdaGrad: This method optimizes the individual training parameters based on
the frequency of the updates, which makes it ideal for working with smaller
datasets. The other main benefit is that it allows you to not have to tune the
learning rate. However, a big weakness with this method is squared gradients
causing the learning rate to become so small that the network stops learning.
AdaDelta: This method is an extension to AdaGrad, which deals with the
squared gradients and vanishing learning rate. It does this by fixing the learning
rate window to a particular minimum.
RMSProp: Developed by Geoff Hinton, the grandfather of deep learning, this is a
technique to manage the vanishing learning rate problem in AdaGrad. As you
can see in the graph, it is on par with AdaDelta for the sample shown.

GAN for Games Chapter 3

[78]

Adaptive Moment Estimation (Adam): This is another technique that attempts
to control that gradient using a more controlled version of Momentum. It is often
described as Momentum plus RMSProp, since it combines the best of both
techniques.
AdaMax: This method is not shown on the performance graph but is worth
mentioning. It is an extension to Adam that generalizes each iteration of an
update applied to the momentum.
Nadam: This is another method not on the graph; it is a combination of Nesterov-
accelerated Momentum and Adam. The vanilla Adam just uses a Momentum
term that is not accelerated.
AMSGrad: This is a variation of Adam that works best when Adam is shown to
be unable to converge or wobble. This is caused by the algorithm failing to adapt
learning rates and is fixed by taking a maximum rather than an average of
previously squared gradients. The difference is subtle and tends to prefer smaller
datasets. Keep this option in the back of your mind as a possible future tool.

That completes our short overview of optimizers; be sure to refer to the exercises at the end
of the chapter for ways you can explore them further. In the next section, we build our own
GAN that can generate textures we can use in games.

Wasserstein GAN
As you can most certainly appreciate by now, GANs have wide and varied applications,
several of which apply very well to games. One such application is the generation of
textures or texture variations. We often want slight variations in textures to give our game
worlds a more convincing look. This is and can be done with shaders, but for performance
reasons, it is often best to create static assets.

Therefore, in this section, we will build a GAN project that allows us to generate textures or
height maps. You could also extend this concept using any of the other cool GANs we
briefly touched on earlier. We will be using a default implementation of the Wasserstein
GAN by Erik Linder-Norén and converting it for our purposes.

GAN for Games Chapter 3

[79]

One of the major hurdles you will face when first approaching deep learning problems is
shaping data to the form you need. In the original sample, Erik used the MNIST dataset,
but we will convert the sample to use the CIFAR100 dataset. The CIFAR100 dataset is a set
of color images classified by type, as follows:

CIFAR 100 dataset

For now, though, let's open up Chapter_3_wgan.py and follow these steps:

Open the Python file and review the code. Most of the code will look the same as1.
the DCGAN we already looked at. However, there are a few key differences we
want to look at, as follows:

def train(self, epochs, batch_size=128, sample_interval=50):
 (X_train, _), (_, _) = mnist.load_data()

 X_train = (X_train.astype(np.float32) - 127.5) / 127.5
 X_train = np.expand_dims(X_train, axis=3)

 valid = -np.ones((batch_size, 1))
 fake = np.ones((batch_size, 1))

 for epoch in range(epochs):
 for _ in range(self.n_critic):
 idx = np.random.randint(0, X_train.shape[0], batch_size)
 imgs = X_train[idx]
 noise = np.random.normal(0, 1, (batch_size, self.latent_dim))

GAN for Games Chapter 3

[80]

 gen_imgs = self.generator.predict(noise)

 d_loss_real = self.critic.train_on_batch(imgs, valid)
 d_loss_fake = self.critic.train_on_batch(gen_imgs, fake)
 d_loss = 0.5 * np.add(d_loss_fake, d_loss_real)
 for l in self.critic.layers:
 weights = l.get_weights()
 weights = [np.clip(w, -self.clip_value, self.clip_value)
for
 w in weights]
 l.set_weights(weights)

 g_loss = self.combined.train_on_batch(noise, valid)
 print ("%d [D loss: %f] [G loss: %f]" % (epoch, 1 - d_loss[0],
1
 - g_loss[0]))\

 if epoch % sample_interval == 0:
 self.sample_images(epoch)

The Wasserstein GAN uses a distance function in order to determine the cost or2.
loss for each training iteration. Along with this, this form of GAN uses multiple
critics rather than a single discriminator to determine cost or loss. Training
multiple critics together improves performance and handles the vanishing
gradient problem we often see plaguing GANs. An example of a different form
of GAN training is as follows:

Training performance across GAN implementations (https:/ /arxiv. org/ pdf/ 1701. 07875. pdf)

https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf
https://arxiv.org/pdf/1701.07875.pdf

GAN for Games Chapter 3

[81]

A WGAN overcomes the gradient problem by managing cost through a distance3.
function that determines the cost of moving, rather than a difference in error
values. A linear cost function could be as simple as the number of moves a
character needs to take in order to spell a word correctly. For example, the word
SOPT would have a cost of 2, since the T character needs to move two places to
spell STOP correctly. The word OTPS has a distance cost of 3 (S) + 1 (T) = 4 to
spell STOP correctly.
The Wasserstein distance function essentially determines the cost of transforming4.
one probability distribution to another. As you can imagine, the math to
understand this can be quite complex, so we will defer that to the more interested
reader.
Run the example. This sample can take a significant time to run, so be patient.5.
Also, this sample has been shown to have trouble training on some GPU
hardware. If you find this to be the case, just disable the use of GPU.
As the sample runs, open the images folder from the same folder as the Python6.
file and watch the training images generate.

Run the sample for as long as you feel the need to in order to understand how it works.
This sample can take several hours even on advanced hardware. When you are done, move
on to the next section, and we will see how to modify this sample for generating textures.

Generating textures with a GAN
One of the things so rarely covered in advanced deep learning books is the specifics of
shaping data to input into a network. Along with shaping data is the need to alter the
internals of a network to accommodate the new data. The final version of this example is
Chapter_3_3.py, but for this exercise, start with the Chapter_3_wgan.py file and follow
these steps:

We will start by changing the training set of data from MNIST to CIFAR by1.
swapping out the imports like so:

from keras.datasets import mnist #remove or leave
from keras.datasets import cifar100 #add

GAN for Games Chapter 3

[82]

At the start of the class, we will change the image size parameters from 28 x 282.
grayscale to 32 x 32 color like so:

class WGAN():
 def __init__(self):
 self.img_rows = 32
 self.img_cols = 32
 self.channels = 3

Now, move down to the train function and alter the code as follows:3.

#(X_train, _), (_, _) = mnist.load_data() or delete me
(X_train, y), (_, _) = cifar100.load_data(label_mode='fine')
Z_train = []
cnt = 0
for i in range(0,len(y)):
 if y[i] == 33: #forest images
 cnt = cnt + 1
 z = X_train[i]
 Z_train.append(z)
#X_train = (X_train.astype(np.float32) - 127.5) / 127.5 or delete
me
#X_train = np.expand_dims(X_train, axis=3)
Z_train = np.reshape(Z_train, [500, 32, 32, 3])
Z_train = (Z_train.astype(np.float32) - 127.5) / 127.5

#X_train = (X_train.astype(np.float32) - 127.5) / 127.5
#X_train = np.expand_dims(X_train, axis=3)

This code loads the images from the CIFAR100 dataset and sorts through them4.
by label. Labels are stored in the y variable, and the code loops through all the
downloaded images and isolates those to one specific set. In this case, we are
using the label 33, which corresponds to forest images. There are 100 categories
in the CIFAR100, and we are selecting one category that holds 500 images. Feel
free to try to generate other textures from other categories.
The rest of the code is fairly straightforward, except for the np.reshape call
where we reshape the data into a list of 500 images 32x32 pixels by three
channels. You may also want to note that we do not need to expand the axis to
three as we did before. This is because our image is already scaled to three
channels.

GAN for Games Chapter 3

[83]

We now need to go back to the generator and critic models and alter that code5.
slightly. First, we will change the generator like so:

def build_generator(self):
 model = Sequential()
 model.add(Dense(128 * 8 * 8, activation="relu",
input_dim=self.latent_dim))
 model.add(Reshape((8, 8, 128)))
 model.add(UpSampling2D())
 model.add(Conv2D(128, kernel_size=4, padding="same"))
 model.add(BatchNormalization(momentum=0.8))
 model.add(Activation("relu"))
 model.add(UpSampling2D())
 model.add(Conv2D(64, kernel_size=4, padding="same"))
 model.add(BatchNormalization(momentum=0.8))
 model.add(Activation("relu"))
 model.add(Conv2D(self.channels, kernel_size=4, padding="same"))
 model.add(Activation("tanh"))
 model.summary()
 noise = Input(shape=(self.latent_dim,))
 img = model(noise)
 return Model(noise, img)

The boldface code denotes the changes. All we are doing for this model is6.
converting the 7x7 original feature map to 8x8. Recall that the original full image
size is 28x28. Our convolution starts with a 7x7 feature map, doubled twice,
which equals 28x28. Since our new image size is 32x32, we need to convert our
network to start with 8x8 feature maps, which doubled twice equals 32x32, the
same size as the CIFAR100 images. Fortunately, we can leave the critic model as
it is.
Next, we add a new function to save samples of the original CIFAR images, and7.
this is shown here:

def save_images(self, imgs, epoch):
 r, c = 5, 5
 gen_imgs = 0.5 * imgs + 1
 fig, axs = plt.subplots(r, c)
 cnt = 0
 for i in range(r):
 for j in range(c):
 axs[i,j].imshow(gen_imgs[cnt, :,:,0],cmap='gray')
 axs[i,j].axis('off')
 cnt += 1

 fig.savefig("images/cifar_%d.png" % epoch)
 plt.close()

GAN for Games Chapter 3

[84]

The save_images function outputs a sampling of the original images and is8.
called by the following code in the train function:

idx = np.random.randint(0, Z_train.shape[0], batch_size)
imgs = Z_train[idx]
if epoch % sample_interval == 0:
 self.save_images(imgs, epoch)

The new code is in boldface and just outputs what a sampling of the originals9.
looks like, as follows:

Example of the original images

Run the sample and observe the output in the images folder again labeled10.
cifar, showing the result of training. Again, this sample can take some time to
run, so read on to the next section.

As the sample runs, you can observe how the GAN is training to match the images. The
benefit here is that you can generate various textures easily using a variety of techniques.
You can use these as textures or height maps in Unity or another game engine. Before we
finish up this section, let's jump into some normalization and other parameters.

GAN for Games Chapter 3

[85]

Batch normalization
Batch normalization, as its name suggests, normalizes the distribution of weights in a layer
around some mean of 0. This allows for the network to use a higher learning while still
avoiding a vanishing or exploding gradient problem. It is due to the weights being
normalized, which allows for fewer shifts or training wobble, as we have seen before.

By normalizing the weights in a layer, we allow for the network to use a higher learning
rate and thus train faster. Also, we can avoid or reduce the need to use DropOut. You will
see that we use the standard term, shown here, to normalize the layers:

model.add(BatchNormalization(momentum=0.8))

Recall from our discussions of optimizers that momentum controls how quickly or slowly
we want to decrease the training gradient. In this case, momentum refers to the amount of
change of the mean or center of the normalized distribution.

In the next section, we look at another special layer called LeakyReLU.

Leaky and other ReLUs
LeakyReLU adds an activation layer that allows for negative values to have a small slope,
rather than just 0, as in the case of the standard ReLU activation function. The standard
ReLU encourages sparsity in the network by only allowing neurons with positive activation
to fire. However, this also creates a dead neuron state, where parts of the network
essentially die off or become untrainable. To overcome this issue, we introduce a leaky
form of ReLU activation called LeakyReLU. An example of how this activation works is
shown here:

Example of a leaky and parametric ReLU

GAN for Games Chapter 3

[86]

Pictured in the preceding diagram is Parametric ReLU, which is similar to Leaky, but it
allows the network to train the parameter itself. This allows the network to adjust on its
own, but it will take longer to train.

The other ReLU variants you can use are summarized here:

Exponential Linear (ELU, SELU): These forms of ReLU activate as shown in the
diagram as follows:

ELU and SELU

Concatenated ReLU (CReLU): This joins the regular and leaky form together to
provide a new function that produces two output values. For positive values, it
generates [0,x], while for negative values, it returns [x,0]. One thing to note about
this layer is the doubling of output, since two values are generated per neuron.
ReLU-6: The value of 6 is arbitrary but allows for the network to train sparse
neurons. Sparsity is of value because it encourages the network to learn or build
stronger weights or bonds. The human brain has been shown to function in a
sparse state, with only a few activated neurons at a time. You will often hear the
myth that we only use 10% of our brain at a time at most. This may very well be
true, but the reasons for this are more mathematical than us being able to use our
entire brain. We do use our entire brain, just not all of it at the same time.
Stronger individual weights, encouraged by sparsity, allow for the network to
make better/stronger decisions. Fewer weights also encourage less overfitting or
memorization of data. This can often happen in deep networks with thousands of
neurons.

GAN for Games Chapter 3

[87]

Regularization is another technique we will often use to trim or reduce unneeded or
weights and create sparse networks. We will have a few opportunities to look at
regularization and sparsity later in the coming chapters.

In the next section, we use what we have learned to build a working music GAN that can
generate game music.

A GAN for creating music
In our final grand example of this chapter, we are going to look at generating music with
GANs for games. Music generation is not especially difficult, but it does allow us to see a
whole variation of a GAN that uses LSTM layers to identify sequences and patterns in
music. Then it attempts to build that music back from random noise to a passable sequence
of notes and melodies. This sample becomes ethereal when you listen to those generated
notes and realize the tune originates from a computer brain.

The origins of this sample are pulled from GitHub, https:/ / github. com/ megis7/ musegen,
and developed by Michalis Megisoglou. The reason we look at these code examples is so
that we can see the best of what others have produced and learn from those. In some cases,
these samples are close to the original, and others not so much. We did have to tweak a few
things. Michalis also produced a nice GitHub README on the code he built for his
implementation of museGAN, music generation with GAN. If you are interested in
building on this example further, be sure to check out the GitHub site as well. There are a
few implementations of museGAN available using various libraries; one of them is
TensorFlow.

We use Keras in this example in order to make this example easier to
understand. If you are serious about using TensorFlow, then be sure to
take a look at the TensorFlow version of museGAN as well.

This example trains the discriminator and generator separately, which means it needs to
have the discriminator trained first. For our first run, we will run this example with the
author's previously generated models, but we still need some setup; let's follow these steps:

We first need to install a couple of dependencies. Open an Anaconda or Python1.
window as an admin and run the following commands:

pip install music21
pip install h5py

https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen
https://github.com/megis7/musegen

GAN for Games Chapter 3

[88]

Music21 is a Python library for loading MIDI files. MIDI is a music interchange2.
format used to describe, as you might have guessed, music/notes. The original
models were trained on a collection of MIDI files that describe 300 chorales of
Bach's music. You can locate the project by navigating to the musegen folder and
running the script.
Navigate to the project folder and execute the script that runs the previously3.
trained models like so:

cd musegen
python musegen.py or python3 musegen.py

This will load the previously saved models and use those models to train the4.
generator and generate music. You could, of course, train this GAN on other
MIDI files of your choosing later as needed. There are plenty of free sources for
MIDI files from classical music, to TV theme music, games, and modern pop. We
use the author's original models in this example, but the possibilities are endless.
Loading the music files and training can take a really long time, as training5.
typically does. So, take this opportunity to look at the code. Open up the
musegen.py file located in the project folder. Take a look at around line 39, as
follows:

print('loading networks...')
dir_path = os.path.dirname(os.path.realpath(__file__))
generator = loadModelAndWeights(os.path.join(dir_path,
note_generator_dir, 'model.json'),
 os.path.join(dir_path,
note_generator_dir, 'weights-{:02d}.hdf5'.format(generator_epoch)))

This section of code loads the previously trained model from an hdf5 or6.
hierarchical data file. The preceding code sets up a number of variables that
define the notes to a vocabulary we will use to generate new notes.
Locate the notegenerator.py file located in the same project folder. Take a7.
look at the creation of the model code, as follows:

x_p = Input(shape=(sequence_length, pitch_dim,),
name='pitches_input')
h = LSTM(256, return_sequences=True, name='h_lstm_p_1')(x_p)
h = LSTM(512, return_sequences=True, name='h_lstm_p_2')(h)
h = LSTM(256, return_sequences=True, name='h_lstm_p_3')(h)

VAE for pitches
z_mean_p = TimeDistributed(Dense(latent_dim_p,
kernel_initializer='uniform'))(h)
z_log_var_p = TimeDistributed(Dense(latent_dim_p,

GAN for Games Chapter 3

[89]

kernel_initializer='uniform'))(h)

z_p = Lambda(sampling)([z_mean_p, z_log_var_p])
z_p = TimeDistributed(Dense(pitch_dim,
kernel_initializer='uniform', activation='softmax'))(z_p)

x_d = Input(shape=(sequence_length, duration_dim,),
name='durations_input')
h = LSTM(128, return_sequences=True)(x_d)
h = LSTM(256, return_sequences=True)(h)
h = LSTM(128, return_sequences=True)(h)

VAE for durations
z_mean_d = TimeDistributed(Dense(latent_dim_d,
kernel_initializer='uniform'))(h)
z_log_var_d = TimeDistributed(Dense(latent_dim_d,
kernel_initializer='uniform'))(h)

z_d = Lambda(sampling)([z_mean_d, z_log_var_d])
z_d = TimeDistributed(Dense(duration_dim,
kernel_initializer='uniform', activation='softmax'))(z_d)
conc = Concatenate(axis=-1)([z_p, z_d])
latent = TimeDistributed(Dense(pitch_dim + duration_dim,
kernel_initializer='uniform'))(conc)
latent = LSTM(256, return_sequences=False)(latent)

o_p = Dense(pitch_dim, activation='softmax', name='pitches_output',
kernel_initializer='uniform')(latent)
o_d = Dense(duration_dim, activation='softmax',
name='durations_output', kernel_initializer='uniform')(latent)

Note how we have changed from using Conv2D layers to LSTM layers, since we8.
have gone from image recognition to sequence or note pattern recognition. We
have also gone from using more straightforward layers to a complex time-
distributed architecture. Also, the author used a concept known as variational
auto encoding in order to determine the distribution of notes in a sequence. This
network is the most complex we have looked at so far, and there is a lot going on
here. Don't fret too much about this example, except to see how the code flows.
We will take a closer look at more of these type of advanced time- distributed
networks in Chapter 4, Building a Deep Learning Gaming Chatbot.
Let the sample run and generate some music samples into the samples/note-9.
generator folder. As we get into more complex problems, our training time will
go from hours to days for very complex problems or more. It is possible that you
could easily generate a network that you would not have the computing power
to train in a reasonable time.

GAN for Games Chapter 3

[90]

Open the folder and double-click on one of the sample files to listen to the10.
generated MIDI file. Remember, this music was just generated by a computer
brain.

There is a lot of code that we did not cover in this example. So, be sure to go back and go
through the musegen.py file to get a better understanding of the flow and types of layers
used to build the network generator. In the next section, we explore how to train this GAN.

Training the music GAN
Before we get into training this network, we will look at the overall architecture as depicted
in the author's original GitHub source:

Overview of museGAN network architecture

The networks are almost identical until you look closer and see the subtle differences in the
LSTM layers. Note how one set uses double the units as the other model.

GAN for Games Chapter 3

[91]

We can generate music models by running the following command at the Python or
Anaconda prompt:

python note-generator.py
or
python3 note-generator.py

This script loads the sample data and generates the models we use in the musegen.py file
later when we create original music. Open up the note-generator.py file with the main
parts shown here:

The code was modified from the original to make it more Windows-
compatible and cross-platform. Again, this is certainly not a criticism of
the author's excellent work.

def loadChorales():
 notes = []
 iterator = getChoralesIterator()

 # load notes of chorales
 for chorale in iterator[1:maxChorales]: # iterator is 1-based
 transpose_to_C_A(chorale.parts[0])
 notes = notes + parseToFlatArray(chorale.parts[0])
 notes.append((['end'], 0.0)) # mark the end of the piece
 return notes

This code uses the Music21 library to read the MIDI notes and other music forms from the
corpus of music you can use for your own testing. This training dataset is an excellent way
to generate other sources of music and is composed of the following: http:/ /web. mit. edu/
music21/doc/moduleReference/ moduleCorpus. html.

You can further modify this example by modifying the contents or adding additional
configuration options in the config.py file as shown:

latent dimension of VAE (used in pitch-generator)
latent_dim = 512

latent dimensions for pitches and durations (used in note-generator)
latent_dim_p = 512
latent_dim_d = 256

directory for saving the note embedding network model --- not used
anymore
note_embedding_dir = "models/note-embedding"

http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html
http://web.mit.edu/music21/doc/moduleReference/moduleCorpus.html

GAN for Games Chapter 3

[92]

directory for saving the generator network model
pitch_generator_dir = 'models/pitch-generator'

directory for saving the note generator network model
note_generator_dir = 'models/note-generator'

directory for saving generated music samples
output_dir = 'samples'

The previous sample is great for exploring the generation of music. A more practical and
potentially useful example will be introduced in the next section.

Generating music via an alternative GAN
Another example of music generation is also included in the Chapter_3 source folder,
called Classical-Piano-Composer, with the source located at https:/ /github. com/
Skuldur/Classical- Piano- Composer, developed by Sigurður Skúli. This example uses a full
set of Final Fantasy MIDI files as source inspiration for the music generation and is a great
practical example for generating your own music.

In order to run this sample, you need to run the lstm.py first using the following
command from the Classical-Piano-Composer project folder:

python lstm.py
or
python3 lstm.py

This sample can take a substantial time to train, so be sure to open the file and read through
what it does.

After the models are trained, you can run the generator by running the following:

python predict.py
or
python3 predict.py

This script loads the trained model and generates the music. It does this by encoding the
MIDI notes into network input in terms of sequences or sets of notes. What we are doing
here is breaking up the music files into short sequences, or a music snapshot if you will.
You can control the length of these sequences by adjusting the sequences_length
property in the code file.

https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer
https://github.com/Skuldur/Classical-Piano-Composer

GAN for Games Chapter 3

[93]

The great thing about this second example is the ability to download your own MIDI files
and put them in the appropriate input folder for training. It is also interesting to see how
both projects use a similar three-layer LSTM structure but vary quite widely in other forms
of execution.

If you want to learn more about audio or music development for games
and especially for Unity, check out the book Game Audio Development with
Unity 5.x, by Micheal Lanham. This book can show you many more
techniques for working with audio and music in games.

Both music samples can take some time to train and then generate music, but it is certainly
worth the effort to run through both examples and understand how they work. GANs have
innovated the way we think of training neural networks and what type of output they are
able to produce. As such, they certainly have a place in generating content for games.

Exercises
Take some time to reinforce your learning by undertaking the following exercises:

What type of GAN would you use to transfer styles on an image?1.
What type of GAN would you use to isolate or extract the style?2.
Modify the number of critics used in the Wasserstein GAN example and see the3.
effect it has on training.
Modify the first GAN, the DCGAN, to improve training performance using any4.
technique you learned in this chapter. How did you increase training
performance?
Modify the BatchNormalization momentum parameter and see what effect it has5.
on training.
Modify a few of the samples by changing the activation from LeakyReLU to6.
another advanced form of activation.
Modify the Wasserstein GAN example to use your own textures. There is a7.
sample data loader available in the downloaded code sample for the chapter.
Download one of the other reference GANs from https:/ /github. com/8.
eriklindernoren/ Keras- GAN and modify that to use your own dataset.
Alter the first music generation GAN to use a different corpus. 9.
Use your own MIDI files to train the second music generation GAN example. 10.
(BONUS) Which music GAN generated better music? Is it what you expected?11.

https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN

GAN for Games Chapter 3

[94]

You certainly don't have to work through all these exercises, but give a few a try. Putting
this knowledge to practice right away can substantially improve your understanding of the
material. Practice does make perfect, after all.

Summary
In this chapter, we looked at generative adversarial networks, or GANs, as a way to build
DNNs that can generate unique content based on copying or extracting features from other
content. This also allowed us to explore unsupervised training, a method of training that
requires no previous data classification or labeling. In the previous chapter, we used
supervised training. We started with looking at the many variations of GANs currently
making an impression in the DL community. Then we coded up a deep convolutional GAN
in Keras, followed by the state-of-the-art Wasserstein GAN. From there, we looked at how
to generate game textures or height maps using sample images. We finished the chapter off
by looking at two music-generating GANs that can generate original MIDI music from
sampled music.

For the final sample, we looked at music generation with GANs that relied heavily on
RNNs (LSTM). We will continue our exploration of RNNs when we look at how to build
DL chatbots for games.

4
Building a Deep Learning

Gaming Chatbot
Chatbots, or conversational agents, are an exploding trend in AI and are seen as the next
human interface with the computer. From Siri, Alexa, and Google Home, there has been an
explosion of commercial growth in this area, and you most likely already have interfaced
with a computer in this manner. Therefore, it only seems natural that we cover how to
build conversational agents for games. For our purposes, however, we are going to look at
the class of bots called neural conversational agents. Their name follows from the fact that
they are developed with neural networks. Now, chatbots don't have to just chat; we will
also look at other ways conversational bots can be used in gaming.

In this chapter, we learn how to build neural conversational agents and how to apply these
techniques to games. The following is a summary of the main topics we will cover:

Neural conversational agents
Sequence-to-sequence learning
DeepPavlov
Building the bot server
Running the bot in Unity
Exercises

We will now start building more practical real-world working examples of the projects.
While not all of your training is complete, it is time we started to build pieces you can use.
This means we will begin working with Unity in this chapter and things may start to get
complicated quickly. Just remember to take your time and, if you need to, go over the
material a few times. Again, the exercises at the end of the chapter are an excellent resource
for additional learning.

Building a Deep Learning Gaming Chatbot Chapter 4

[96]

In the next section, we explore the basics of neural conversational agents.

Neural conversational agents
The concept of communicating with a computer via natural language first became popular
as far back as Star Trek (1966 to 1969). In the series, we can often see Kirk, Scotty, and the
gang issuing commands to the computer. Since then, many attempts have been made to
build chatbots that can converse naturally with a human. During this often unsuccessful
journey over the years, several linguistic methods have been developed. These methods are
often grouped together and referred to as natural language processing, or NLP. Now, NLP
still is the foundation for most chatbots, including the deep learning variety we will get to
shortly.

We often group conversational agents by purpose or task. Currently, we categorize
chatbots into two main types:

Goal-oriented: These bots are the kind Kirk would use or the ones you likely
communicate with on a daily basis, and a good example is Siri or Alexa.
General conversationalist: These chatbots are designed to converse with people
regarding a wide range of topics, and a good example would be Microsoft Tay.
Unfortunately, the Tay bot was perhaps a little too impressionable and picked up
bad language, much like a two-year-old does.

Gaming is certainly no stranger to chatbots, and attempts have been made to use both
forms with varying success. While you may think goal-oriented bots make perfect sense, in
reality the vocal/text is too slow and tedious for most repetitive gaming tasks. Even simple
vocal commands (grunts or groans) are just too slow, at least currently. Therefore, we will
look at the often under utilized conversational chatbots and how they can be used in
gaming.

The following is a summary of the gaming tasks these bots could undertake:

Non-player characters (NPCs): This is an obvious first choice. NPCs are often
scripted and become repetitive. How about an NPC that can converse naturally
about a topic, perhaps revealing information when the right combination of
words or phrases are used? The possibilities are endless here, and some NLP is
already used in gaming for this matter.

Building a Deep Learning Gaming Chatbot Chapter 4

[97]

Player character: How about a game where you could converse with yourself?
Perhaps the character has amnesia and is trying to remember information or
learn a backstory.
Promotion/hints: Perhaps as a way to promote your game, you build a bot that
can hint at how to complete some difficult tasks or just as a way to talk about
your game.
MMO virtual character: What if, while you were away from your favorite MMO
game, your character stayed in the game, unable to do actions, but still able to
converse as you? This is the example we will look at in this chapter, and we will
get to the action part later, when we explore reinforcement learning.

There are likely dozens more uses that will evolve over time, but for now the preceding list
should give you some great ideas regarding how to use chatbots in gaming. In the next
section, we get into the background of what makes a conversationalist bot.

General conversational models
Conversational chatbots can be broken down further into two main forms: generative and
selective. The method we will look at is called generative. Generative models learn by
being fed a sequence of words and dialog in context/reply pairs. Internally, these models
use RNN (LSTM) layers to learn and predict those sequences back to the conversant. An
example of how this system works is as follows:

Example of the generative conversational model

Building a Deep Learning Gaming Chatbot Chapter 4

[98]

Note that each block in the diagram represents one LSTM cell. Each cell then remembers
the sequence that text was part of. What may not be clear from the preceding diagram is
that both sides of the conversation text were fed into the model before training. Thus, this
model is not unlike the GANs we covered in Chapter 3, GAN for Games. In the next section,
we will get into the details of setting up this type of model.

Sequence-to-sequence learning
In the previous section, we saw a high-level overview of our network model. In this section,
we want to look at a Keras implementation of a generative conversational model that uses
sequence-to-sequence learning. Before we get into the theory of this form of generative
model, let's get the sample running, since it can take a while. The sample we will explore is
the Keras reference sample for sequence-to-sequence machine translation. It is currently
configured to do English-to-French translation.

Open up the Chapter_4_1.py sample code listing and get it running using these steps:

Open up a shell or Anaconda window. Then run the following command:1.

python3 Chapter_4_1.py

This will run the sample, and it may take several hours to run. The sample can2.
also consume a substantial amount of memory and this may force memory
paging on lower memory systems. Paging memory to disk will take additional
time to train, especially if you are not running an SSD. If you find that you are
unable to complete training on this sample, reduce the number of epochs and/or
num_samples parameters as follows:

batch_size = 64 # Batch size for training.
epochs = 100 # Number of epochs to train for.
latent_dim = 256 # Latent dimensionality of the encoding space.
num_samples = 10000 # Number of samples to train on.

Decrease the epochs or num_samples parameters if you are unable to train on3.
the original values.

Building a Deep Learning Gaming Chatbot Chapter 4

[99]

After the sample has completed training, it will run through a test set of data. As4.
it does so, it will output the results and you can see how well it is translating
from English to French.
Open the fra-eng folder located in the chapter source code.5.

Open the fra.txt file and the top few lines are as follows:6.

Go. Va !
Hi. Salut !
Run! Cours !
Run! Courez !
Wow! Ça alors !
Fire! Au feu !
Help! À l'aide !
Jump. Saute.
Stop! Ça suffit !
Stop! Stop !
Stop! Arrête-toi !
Wait! Attends !
Wait! Attendez !
Go on. Poursuis.
Go on. Continuez.
Go on. Poursuivez.
Hello! Bonjour !
Hello! Salut !

Notice how the training text (English/French) is split on punctuation and spaces.7.
Also, note how the sequences vary in length. The sequences we input do not
have to match the length of the output, and vice versa.

The sample we just looked at uses sequence-to-sequence character encoding to translate
text from English to French. Typically, chat generation is done with word-to-word
encoding, but this sample uses a finer-grained character-to-character model. This has an
advantage in games because the language we attempt to generate may not always be
human. Keep in mind that while we are only generating translated text in this sample, the
text paired with an input could be any response you deem appropriate. In the next section,
we will break down the code and understand in some detail how this sample works.

Building a Deep Learning Gaming Chatbot Chapter 4

[100]

Breaking down the code
As we progress through the book, we will begin to only focus on important sections of
code, sections that help us understand a concept or how a method is implemented. This
will make it more important for you to open up the code and at least pursue it on your
own. In the next exercise, we take a look at the important sections of the sample code:

Open Chapter_4_1.py and scroll down to the comment Vectorize the data,1.
as follows:

Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with open(data_path, 'r', encoding='utf-8') as f:
 lines = f.read().split('\n')
for line in lines[: min(num_samples, len(lines) - 1)]:
 input_text, target_text = line.split('\t')
 # We use "tab" as the "start sequence" character
 # for the targets, and "\n" as "end sequence" character.
 target_text = '\t' + target_text + '\n'
 input_texts.append(input_text)
 target_texts.append(target_text)
 for char in input_text:
 if char not in input_characters:
 input_characters.add(char)
 for char in target_text:
 if char not in target_characters:
 target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))
num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])

print('Number of samples:', len(input_texts))
print('Number of unique input tokens:', num_encoder_tokens)
print('Number of unique output tokens:', num_decoder_tokens)
print('Max sequence length for inputs:', max_encoder_seq_length)
print('Max sequence length for outputs:', max_decoder_seq_length)

Building a Deep Learning Gaming Chatbot Chapter 4

[101]

This section of code inputs the training data and encodes it into the character2.
sequences it uses to vectorize. Note how the num_encoder_tokens and
num_decoder_tokens parameters being set here are dependent on the number
of characters in each set and not the number of samples. Finally, the maximum
length of the encoding and decoding sequences are set on the maximum length
of the encoded characters in both.
Next, we want to take a look at the vectorization of the input data. Vectorization3.
of the data reduces the number of characters for each response match and is also
the memory-intensive part, except, when we align this data, we want to keep the
responses or targets to be one step ahead of the original input. This subtle
difference allows our sequence-learning LSTM layers to predict the next patterns
in the sequence. A diagram of how this works follows:

Sequence-to-sequence model

In the diagram, we can see how the start of the text HELLO is being translated4.
one step behind the response phrase SALUT (hello in French). Pay attention to
how this works in the preceding code.

Building a Deep Learning Gaming Chatbot Chapter 4

[102]

We then build the layers that will map to our network model with the code as5.
follows:

Define an input sequence and process it.
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]

Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))
We set up our decoder to return full output sequences,
and to return internal states as well. We don't use the
return states in the training model, but we will use them in
inference.
decoder_lstm = LSTM(latent_dim, return_sequences=True,
return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
 initial_state=encoder_states)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)

Define the model that will turn
`encoder_input_data` & `decoder_input_data` into
`decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

Run training
model.compile(optimizer='rmsprop', loss='categorical_crossentropy')
model.fit([encoder_input_data, decoder_input_data],
decoder_target_data,
 batch_size=batch_size,
 epochs=epochs,
 validation_split=0.2)
Save model
model.save('s2s.h5')

Note how we are creating encoder and decoder inputs along with decoder6.
outputs. This code builds and trains the model and then saves it for later use in
inference. We use the term inference to mean that a model is inferring or
generating an answer or response to some input. A diagram of this sequence-to-
sequence model in layer architecture follows:

Building a Deep Learning Gaming Chatbot Chapter 4

[103]

Encoder/decoder inference model

This model is quite complex and there is a lot going on here. We have just7.
covered the first part of the model. Next, we need to cover the building of the
thought vector and generating the sampling models. The final code to do this
follows:

encoder_model = Model(encoder_inputs, encoder_states)

decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h,
decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_lstm(
 decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
 [decoder_inputs] + decoder_states_inputs,
 [decoder_outputs] + decoder_states)

Reverse-lookup token index to decode sequences back to
something readable.
reverse_input_char_index = dict(
 (i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
 (i, char) for char, i in target_token_index.items())

Building a Deep Learning Gaming Chatbot Chapter 4

[104]

Look over this code and see whether you can understand the structure. We are still missing
a critical piece of the puzzle and we will cover that in the next section.

Thought vectors
At the middle of the encoding and decoding text process is the generation of a thought
vector. The thought vector, popularized by the godfather himself, Dr. Geoffrey Hinton,
represents a vector that shows the context of one element in relation to many other
elements.

For instance, the word hello could have a high relational context to many words or phrases,
such as hi, how are you?, hey, goodbye, and so on. Likewise, words such as red, blue, fire, and
old would have a low context when associated with the word hello, at least in regular day-
to-day speech. The word or character contexts are based on the pairings we have in the
machine translation file. In this example, we are using the French translation pairings, but
the pairings could be anything.

This process takes place as part of the first encoding model into the thought vector or, in
this case, a vector of probabilities. The LSTM layer calculates the probability or context of
how the words/characters are related. You will often come across the following equation,
which describes this transformation:

Consider the following:

= output sequence
 = input sequence

= Vector representation

The represents the multiplication form of sigma () and is used to pool the probabilities
into the thought vector. This is a big simplification of the whole process, and the interested
reader is encouraged to Google more about sequence-to-sequence learning on their own.
For our purposes, the critical thing to remember is that each word/character has a
probability or context that relates it to another. Generating this thought vector can be time
consuming and memory-intensive, as you may have already noticed. Therefore, for our
purposes, we will look at a more comprehensive set of natural language tools in order to
create a neural conversational bot in the next section.

Building a Deep Learning Gaming Chatbot Chapter 4

[105]

DeepPavlov
DeepPavlov is a comprehensive open source framework for building chatbots and other
conversational agents for a variety of purposes and tasks. While this bot is designed for
more goal-oriented bots, it will suit us well, as it is full-featured and includes several
sequence-to-sequence model variations. Let's take a look at how to build a simple pattern
(sequence-to-sequence) recognition model in the following steps:

Up until now, we have kept our Python environment loose, but that has to1.
change. We now want to isolate our development environment so that we can
easily replicate it to other systems later. The best way to do this is working with
Python virtual environments. Create a new environment and then activate it with
the following commands at an Anaconda window:

#Anaconda virtual environment
conda create --name dlgames
#when prompted choose yes
activate dlgames

If you don't use Anaconda, the process is a bit more involved, as follows:2.

#Python virtual environment
pip install virtualenv
virutalenv dlgames

#on Mac
source dlgames/bin/activate

#on Windows
dlgames\Scripts\activate

Then we need to install DeepPavlov with the following command at a shell or an3.
Anaconda window:

pip install deeppavlov

 This framework will attempt to install several libraries and may disrupt any4.
existing Python environments. This is the other reason we are now using virtual
environments.

Building a Deep Learning Gaming Chatbot Chapter 4

[106]

For our purposes, we are just going to look at the basic Hello World sample5.
that is very simple to follow now that we have covered the background. We first
do our imports as per standard as follows:

from deeppavlov.skills.pattern_matching_skill import
PatternMatchingSkill
from deeppavlov.agents.default_agent.default_agent import
DefaultAgent
from deeppavlov.agents.processors.highest_confidence_selector
import HighestConfidenceSelector

Now, DeepPavlov is based on Keras, but as you can see, the types we are using6.
here wrap the functionality of a sequence-to-sequence pattern-matching model.
The PatternMatchingSkill represents the sequence-to-sequence model we
want to give our chatbot agent. Next, we import the DefaultAgent type, which
is just the basic agent. After that, we introduce a confidence selector called
HighestConfidenceSelector. Remember that the thought vector we generate
is a vector of probabilities. The HighestConfidenceSelector selector always
chooses the highest value relation or context that matches the corresponding
word.
Next, we generate three sets of patterns with corresponding responses, shown in7.
the following code:

hello = PatternMatchingSkill(responses=['Hello world!'],
patterns=["hi", "hello", "good day"])
bye = PatternMatchingSkill(['Goodbye world!', 'See you around'],
patterns=["bye", "ciao", "see you"])
fallback = PatternMatchingSkill(["I don't understand, sorry", 'I
can say "Hello world!"'])

Each PatternMatchingSkill represents a set of pattern/response-contextual8.
pairs. Note how there may be multiple responses and patterns for each. The
other great thing about this framework is the ability to interchange and add
skills. In this case, we are using just pattern matching, but there are plenty of
other skills the reader is encouraged to explore.
Finally, we build the agent and run it by simply printing the results with the final9.
bit of code:

HelloBot = DefaultAgent([hello, bye, fallback],
skills_selector=HighestConfidenceSelector())

print(HelloBot(['Hello!', 'Boo...', 'Bye.']))

Building a Deep Learning Gaming Chatbot Chapter 4

[107]

This last section of code creates a DefaultAgent with the three skills (hello,10.
bye, and fallback) using the HighestConfidenceSelector. Then it runs the
agent by feeding a set of three inputs nested inside the print statement.
Run the code as you normally would and look at the output. Is it what you11.
expected?

The simplicity of DeepPavlov makes it an excellent tool to build up various conversational
chatbots for your games or other purposes if you so choose. The framework itself is very
broad-featured and provides multiple natural language processing tools for a variety of
tasks, including goal-oriented chatbots. Whole books could and probably should be written
about Pavlov; if you have an interest in this, look more for NLP and DeepPavlov.

With our new tool in hand, we now need a platform in which to serve up our bots with
great conversational abilities. In the next section, we explore how to build a server for our
bot.

Building the chatbot server
Python is a great framework and it provides a number of great tools for game development.
However, we are going to focus on using Unity for our purposes. Unity is an excellent and
very user-friendly game engine that will make setting up complex examples in later
chapters a breeze. Don't worry if you don't know C#, the language of Unity, since we will
be manipulating the engine through Python in many cases. This means we want the ability
to run our Python code outside Unity and we want to do it on a server.

If you are developing your game in Python, using a server then becomes optional, except
that there are very compelling reasons to set up your AI bots as services or microservices.
Microservices are self-contained succinct applications or services that only interface
through some form of well-known communication protocol. AI Microservices or AI as a
Service (AIaaS) are quickly outpacing other forms of SaaS, and it will only be a matter of
time untill this same business model converts to gaming as well. In any case, for now, the
benefit we gain from creating our chatbot as a microservice is decoupling. Decoupling will
allow you to easily convert this bot to other platforms in the future.

Building a Deep Learning Gaming Chatbot Chapter 4

[108]

Microservices also introduce a new communication pattern into the mix. Typically, when a
client app connects to a server, the communication is direct and immediate. But what if
your connection is broken or the communication needs to be filtered, duplicated, or stored
for later analysis or reuse? Then using a direct communication protocol becomes burdened
by adding these additional functions, when it doesn't need to be. Instead, microservices
introduce the concept of a message hub. This is essentially a container or post office where
all the message traffic passes through. This allows for incredible flexibility and offlines the
need for our communication protocol to manage extra tasks. We will take a look at how to
install a very easy-to-use message hub in the next section.

Message hubs (RabbitMQ)
If you have never come across the concept of microservices or message hubs before, you
may be somewhat daunted by what is coming next. Don't be. Message hubs and
microservices are designed to make it easier to connect, route, and troubleshoot issues with
multiple services that need to talk to one another. As such, these systems are designed to be
easy to set up, and easier to use. Let's see how easy it is to set up an excellent message
queue platform called RabbitMQ in the next exercise:

Navigate your browser over to https:/ /www. rabbitmq. com/ #getstarted.1.
Download and install RabbitMQ for your platform. There is typically a2.
download button near the top of the page. You may be prompted to install
Erlang, as follows:

Erlang warning dialog

Erlang is a concurrent functional programming language and perfect for writing3.
messaging hubs. If you don't have it on your system, just download and install it,
again for your platform; next, restart the RabbitMQ installation.

https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted
https://www.rabbitmq.com/#getstarted

Building a Deep Learning Gaming Chatbot Chapter 4

[109]

For the most part, follow the installation choosing the defaults, except for the4.
installation path. Make sure to keep the installation path short and memorable,
as we will want to find it later. An example of setting the path in the installer for
Windows as follows:

Example of setting the installation path on Windows

RabbitMQ will install itself as a service on your platform. Depending on your5.
system, you may get a number of security prompts requesting firewall or admin
access. Just allow all these exceptions, as the hub needs full access. When the
installation completes, RabbitMQ should be running on your system. Be sure to
check the documentation for your platform if you have any concerns on the
configuration or setup. RabbitMQ is designed to use secure communication but
keeps itself fairly open for development. Please avoid installing the hub in a
production system, and expect to do some security configuration.

Building a Deep Learning Gaming Chatbot Chapter 4

[110]

Next, we want to activate the RabbitMQ management tool so that we can get a6.
good overview of how the hub works. Open up a Command Prompt and
navigate to the RabbitMQ installation server folder (the one marked server). Then
navigate to the sbin folder. When you are there, run the following command to
install the management plugin (Windows or macOS):

rabbitmq-plugins enable rabbitmq_management

An example of how this looks in a Windows Command Prompt follows:7.

Installing the RabbitMQ management plugin

That completes the installation of the hub on your system. In the next section, we will see
how to inspect the hub with the management interface.

Managing RabbitMQ
RabbitMQ is a full-featured message hub that is very powerful and flexible in what it can
do. There is a lot to RabbitMQ and it may be intimidating to some users less familiar with
networking. Fortunately, we only need to use a few pieces right now, and in the future we
will explore more functionality.

Building a Deep Learning Gaming Chatbot Chapter 4

[111]

For now, though, open up a browser and follow along these steps to explore the hub's
management interface:

Navigate your browser to http://localhost:15672/ and you should see a1.
login dialog.
Enter the username as guest and the password as guest. These are the default2.
credentials and should work unless you've configured it otherwise.
After you log in, you will see the RabbitMQ interface:3.

RabbitMQ management interface

There is a lot going on here, so for now just click around and explore the various4.
options. Avoid changing any settings, at least for now and until requested to do
so. RabbitMQ is very powerful, but we all know that with great power comes
great responsibility.

Building a Deep Learning Gaming Chatbot Chapter 4

[112]

Now, currently, your message queue is empty, so you won't see a lot of activity, but we will
soon resolve that in the next section, where we learn how to send and receive messages to
and from the queue.

Sending and receiving to/from the MQ
RabbitMQ uses a protocol called Advanced Message Queuing Protocol (AMQP) for
communication, which is a standard for all messaging middleware. This means that we can
effectively swap out RabbitMQ for a more robust system, such as Kafka, in the future. This
also means that, for the most part, all of the concepts we cover here will likely apply to
similar messaging systems.

The first thing we will do is put a message on the queue from a very simple Python client.
Open up the source file Chapter_4_3.py and follow these steps:

Open the source code file and take a look:1.

import pika

connection =
pika.BlockingConnection(pika.ConnectionParameters(host='localhost')
)
channel = connection.channel()
channel.queue_declare(queue='hello')
channel.basic_publish(exchange='',
 routing_key='hello',
 body='Hello World!')
print(" [x] Sent 'Hello World!'")
connection.close()

The code is taken from the RabbitMQ reference tutorial and shows how to2.
connect. It first connects to the hub and opens a queue called hello. A queue is
like a mailbox or stack of messages. A hub may have several different queues.
Then the code publishes a message to the hello queue with the body of Hello
World!.
Before we can run the sample, we first need to install Pika. Pika is an AMQP3.
connection library and can be installed with the following command:

pip install pika

Building a Deep Learning Gaming Chatbot Chapter 4

[113]

Then run the code file as you normally would and watch the output. It's not very4.
exciting, is it?
Go to the RabbitMQ management interface again5.
at http://localhost:15672/ and see that we now have a single message in
the hub, as follows:

RabbitMQ interface showing the addition of a message

The message we just sent will stay on the hub until we collect it later. This single6.
feature will allow us to run individual services and make sure they are
communicating correctly without having to worry about other consumers or
publishers.

For the purposes of RabbitMQ, we just wrote a publisher. In some cases, you many want a
service or app to just publish messages, while in others you may want them to consume
them. In the next exercise, Chapter_4_4_py, we will write a hub consumer or client:

Open the source file Chapter_4_4.py and look at the code:1.

import pika

connection =
pika.BlockingConnection(pika.ConnectionParameters(host='localhost')
)
channel = connection.channel()

channel.queue_declare(queue='hello')

def callback(ch, method, properties, body):

Building a Deep Learning Gaming Chatbot Chapter 4

[114]

 print(" [x] Received %r" % body)

channel.basic_consume(callback,
 queue='hello',
 no_ack=True)

print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

The preceding code is almost identical to the previous example, except that this2.
time it only consumes from the queue using an internal callback function to
receive the response. In this example, also note how the script blocks itself and
waits for the message. In most cases, the client will register a callback with the
queue in order to register an event. That event is triggered when a new message
enters the particular queue.
Run the code as you normally would and watch the first Hello World message3.
get pulled from the queue and output on the client window.
Keep the client running and run another instance of the Chapter_4_3.py4.
(publish) script and note how the client quickly consumes it and outputs it to the
window.

This completes the simple send and receive communication to/from the message hub. As
you can see, the code is fairly straightforward and the configuration works out of the box,
for the most part. If you do experience any issues with this setup, be sure to consult the
RabbitMQ tutorials, which are an additional excellent resource for extra help. In the next
section, we look at how to build the working chatbot server example.

Writing the message queue chatbot
The chatbot server we want to create is essentially a combination of the three previous
examples. Open up Chapter_4_5.py and follow the next exercise:

The complete server code as follows:1.

import pika
from deeppavlov.skills.pattern_matching_skill import
PatternMatchingSkill
from deeppavlov.agents.default_agent.default_agent import
DefaultAgent
from deeppavlov.agents.processors.highest_confidence_selector
import HighestConfidenceSelector

hello = PatternMatchingSkill(responses=['Hello world!'],

Building a Deep Learning Gaming Chatbot Chapter 4

[115]

patterns=["hi", "hello", "good day"])
bye = PatternMatchingSkill(['Goodbye world!', 'See you around'],
patterns=["bye", "chao", "see you"])
fallback = PatternMatchingSkill(["I don't understand, sorry", 'I
can say "Hello world!"'])

HelloBot = DefaultAgent([hello, bye, fallback],
skills_selector=HighestConfidenceSelector())

connection =
pika.BlockingConnection(pika.ConnectionParameters(host='localhost')
)
channelin = connection.channel()
channelin.exchange_declare(exchange='chat', exchange_type='direct',
durable=True)
channelin.queue_bind(exchange='chat', queue='chatin')

channelout = connection.channel()
channelout.exchange_declare(exchange='chat', durable=True)

def callback(ch, method, properties, body):
 global HelloBot, channelout
 response = HelloBot([str(body)])[0].encode()
 print(body,response)
 channelout.basic_publish(exchange='chat',
 routing_key='chatout',
 body=response)
 print(" [x] Sent response %r" % response)

channelin.basic_consume(callback,
 queue='chatin',
 no_ack=True)

print(' [*] Waiting for messages. To exit press CTRL+C')
channelin.start_consuming()

Building a Deep Learning Gaming Chatbot Chapter 4

[116]

We essentially have a complete working Hello World chatbot server in fewer2.
than 25 lines of code. Of course, the functionality is still limited, but by now you
can certainly understand how to add other pattern-matching skills to the bot.
The important thing to note here is that we are consuming from a queue called
chatin and publishing to a queue called chatout. These queues are now
wrapped in an exchange called chat. You can think of an exchange as a routing
service. Exchanges provide for additional functionality around queues, and the
great thing is that they are optional. For use, though, we want to use exchanges,
because they provide us with better global control of our services. There are four
types of exchanges used in RabbitMQ and they are summarized here:

Direct: Messages are sent directly to the queue marked in the message
transmission.
Fanout: Duplicate the message to all queues wrapped by the exchange.
This is great when you want to add logging or historical archiving.
Topic: This allows you to send messages to queues identified by
matching the message queue. For instance, you could send a message
to the queue chat and any queue wrapped in the same exchange
containing the word chat receives the message. The topic exchange
allows you to group like messages.
Headers: This works similar to the topic exchange but instead filters
based on the headers in the message itself. This is a great exchange to
use for dynamic routing of messages with the appropriate headers.

Run the Chapter_4_5.py server example and keep it running.3.
Next, open the Chapter_4_6.py file and look at the code shown:4.

import pika

connection =
pika.BlockingConnection(pika.ConnectionParameters(host='localhost')
)
channelin = connection.channel()

channelin.exchange_declare(exchange='chat')

chat = 'boo'

channelin.basic_publish(exchange='chat',
 routing_key='chatin',
 body=chat)
print(" [x] Sent '{0}'".format(chat))
connection.close()

Building a Deep Learning Gaming Chatbot Chapter 4

[117]

The preceding code is just a sample client we can use to test the chatbot server.5.
Note how the message variable chat is set to 'boo'. When you run the code,
check the output window of the chatbot server; this is the Chapter_4_5.py file
we ran earlier. You should see a response message logged in the window that is
appropriate to the chat message we just sent.

At this point, you could write a full chat client that could communicate with our chatbot in
Python. However, we want to connect our bot up to Unity and see how we can use our bot
as a microservice in the next section.

Running the chatbot in Unity
Unity is quickly becoming the standard game engine for learning to develop games, virtual
reality, and augmented reality applications. Now it is quickly becoming the standard
platform for developing AI and ML applications as well, partly due to the excellent
reinforcement learning platform the team at Unity has built. This Unity ML platform is a
key component in our desire to use the tool, since it currently is at the cutting edge of
advanced AI for games.

The AI team at Unity, led by Dr. Danny Lange and their senior developer
Dr. Arthur Juliani, have made numerous suggestions and contributions to
ideas for content in this book, both directly and indirectly. This, of course,
has had a huge impact on using Unity for major portions of this book.

Installing Unity is quite straightforward, but we want to make sure we get the installation
just right the first time. Therefore, follow these steps to install a version of Unity on your
system:

Navigate your browser to https:/ /store. unity. com/download and accept the1.
terms, and then download the Unity Download Assistant. This is the tool that
downloads and installs the pieces we need.

https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download
https://store.unity.com/download

Building a Deep Learning Gaming Chatbot Chapter 4

[118]

Run the Download Assistant and select the following minimum components to2.
install, as shown in the dialog as follows:

Selecting the installation components for Unity

Just be sure to install the latest version of Unity and select the components that3.
match your preferred OS, as shown in the preceding screenshot. You may, of
course, select other components at your discretion, but those are the minimum
you will need for this book.
Next, set the path to install Unity to a well-known folder. A good choice is to set4.
the folder name equal to the version. This allows you to have multiple versions
of Unity on the same system that you can easily find. The following screenshot
shows how you may do this on Windows:

Building a Deep Learning Gaming Chatbot Chapter 4

[119]

Setting the installation path to Unity

Those are the only critical parts to the installation and you can continue installing5.
the software using the defaults.
Launch the Unity editor after it installs and you will be prompted to log in. Unity6.
requires you to have an account, regardless of whether you are using the free
version. Go back to unity.com and just create an account. After you are done
setting up the account, go back in and log in to the editor.
After you log in, create a empty project called Chatbot and let the editor open to7.
a blank scene.

http://unity.com

Building a Deep Learning Gaming Chatbot Chapter 4

[120]

Unity is a full-featured game engine and may be intimidating if this is your first visit. There
are plenty of online tutorials and videos that can get you up to speed on the interface. We
will do our best to demonstrate concepts simply, but if you get lost, just take your time and
work through the exercise a few times.

With Unity installed, we now have to install the components or assets that will allow us to
easily connect to the chatbot server we just created. In the next section, we install the
AMQP asset for Unity.

Installing AMQP for Unity
RabbitMQ has an excellent resource for plenty of cross-platform libraries that allow you to
connect to the hub with ease. The library for C# does work well outside Unity but is
problematic to set up. Fortunately, the good folks at Cymantic Labs have built and open
sourced a version for Unity on GitHub. Let's see how to install this code in the next
exercise:

Download and unpack the code using git or as a ZIP file from https:/ /github.1.
com/CymaticLabs/ Unity3D. Amqp:

git clone https://github.com/CymaticLabs/Unity3D.Amqp.git

Switch to Unity from the menu, and select File | Open Project and navigate to2.
the Unity3D.Amqp\unity\CymaticLabs.UnityAmqp folder where you
installed the code. This will open the asset in its own project. Wait for the project
to load.
Open the Assets/CymanticLabs/Amqp/Scenes folder in the Project window3.
(typically at the bottom).
Double-click on the AmqpDemo scene to open it in the editor.4.
Press the Play button at the top of the editor to run the scene. After you run the5.
scene, you should see the following:

https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git
https://github.com/CymaticLabs/Unity3D.Amqp.git

Building a Deep Learning Gaming Chatbot Chapter 4

[121]

Setting the Amqp connection and sending a message

Press the Connect button to connect to the local RabbitMQ.6.
Next, under Subscriptions, set the exchange to chat, and the queue to chatout,7.
and click Subscribe. This will subscribe to the queue so we can see any return
message in the Unity console window.
Finally, under Publish, set the exchange to chat, and the queue to chatin, and8.
type a message such as hello. Click the Send button and you should see a
response from the bot in the console window.

That sets up our working chatbot. Of course, this is just the start of what is possible and the
reader is certainly encouraged to explore further, but keep in mind we will revisit this code
later and make use of it in a later section of the book.

That completes this chapter, and now you can take advantage of it for further learning in
the next section.

Building a Deep Learning Gaming Chatbot Chapter 4

[122]

Exercises
Use the following exercises to expand your learning and get more confident with the
material in this chapter:

Go back to the first exercise and load another set of translations. Train the bot on1.
those and see what responses are generated after training. There are plenty of
other language files available for training.
Set up your own conversational training file using the English/French translation2.
one as an example. Remember, the matching responses can be anything and not
just translated text.
Add additional pattern-matching skills to the DeepPavlov bot. Either the simple3.
test one and/or the chatbot server.
The DeepPavlov chatbot uses a highest-value selection criteria for selecting a4.
response. DeepPavlov does have a random selector as well. Change the response
selector on the chatbot to use random.
Change the exchange type in the example to use Fanout and create a log queue to5.
log messages.
Change the exchange type to Topic and see how you can group messages.6.
Warning: this will likely break the example; see whether you can fix it.
Write a RabbitMQ publisher in Python that publishes to one or more different7.
types of queues.
Create an entire set of conversation skills using the pattern-matching skill. Then,8.
see how well your bot converses with you.
Add additional skills of other types to the chatbot server. This may require some9.
additional homework on your part.
Write or run two chatbots over RabbitMQ and watch them converse with each10.
other.

Work through at least two or three of these exercises.

Building a Deep Learning Gaming Chatbot Chapter 4

[123]

Summary
In this chapter, we looked at building chatbots or neural conversational agents using neural
networks and deep learning. We first saw what makes a chatbot and the main forms in use
today: goal-oriented and conversational bots. Then we looked at how to build a basic
machine translation conversational chatbot that used sequence-to-sequence learning.

After getting a background in sequence learning, we looked at the open source tool
DeepPavlov. DeepPavlov is a powerful chat platform built on top of Keras and designed
for many forms of neural agent conversation and tasks. This made it ideal for us to use the
chatbot server as a base. Then we installed RabbitMQ, a microservices message hub
platform that will allow our bot and all manner of other services to talk together later on.

Finally, we installed Unity and then quickly installed the AMQP plugin asset and
connected to our chatbot server.

This completes our introductory section to deep learning, and, in the next section, we begin
to get more into game AI by diving into deep reinforcement learning.

2
Section 2: Deep Reinforcement

Learning
In this section, we will study deep reinforcement learning in detail, using various
frameworks and technologies to explore multiple interesting examples.

We will cover the following chapters in this section:

Chapter 5, Introducing DRL
Chapter 6, Unity ML-Agents
Chapter 7, Agent and the Environment
Chapter 8, Understanding PPO
Chapter 9, Rewards and Reinforcement Learning
Chapter 10, Imitation and Transfer Learning
Chapter 11, Building Multi-Agent Environments

5
Introducing DRL

Deep reinforcement learning (DRL) is currently taking the world by storm and is seen as
the "it" of machine learning technologies, the it goal of reaching some form of general AI.
Perhaps it is because DRL approaches the cusp of general AI or what we perceive as
general intelligence. It is also likely to be one of the main reasons you are reading this book.
Fortunately, this chapter, and the majority of the rest of the book, focuses deeply on
reinforcement learning (RL) and its many variations. In this chapter, we start learning the
basics of RL and how it can be adapted to deep learning (DL). We will explore the OpenAI
Gym environment, a great RL playground, and see how to use it with some simple DRL
techniques.

Keep in mind, this is a hands-on book, so we will be keeping technical
theory to a minimum, and instead we will explore plenty of working
examples. Some readers may feel lost without the theoretical background
and feel the need to explore the more theoretical side of RL on their own.

For other readers not familiar with the theoretical background of RL, we
will cover several core concepts, but this is the abridged version, so it is
recommended you seek theoretical knowledge from other sources when
you are ready.

In this chapter, we will start learning about DRL, a topic that will carry through to many
chapters. We will start with the basics and then look to explore some working examples
adapted to DL. Here is what we will cover in this chapter:

Reinforcement learning
The Q-learning model
Running the OpenAI gym
The first DRL with Deep Q-Network
RL experiments

Introducing DRL Chapter 5

[126]

For those of you who like to jump around books: yes, it is OK to start this book from this
chapter. However, you may need to go back to previous chapters in order to complete some
exercises. We will also assume that your Python environment is configured with
TensorFlow and Keras, but if you are unsure, check out the requirements.txt file in the
project folder.

All the projects in this book are built with Visual Studio 2017 (Python),
and it is the recommended editor for the examples in this book. If you use
VS 2017 with Python, you can easily manage the samples by opening the
chapter solution file. Of course, there are plenty of other excellent Python
editors and tools, so use what you are comfortable with.

Reinforcement learning
RL currently leads the pack in advances compared to other machine learning
methodologies. Note the use of the word methodology and not technology. RL is a
methodology or algorithm that applies a principle we can use with neural networks,
whereas, neural networks are a machine learning technology that can be applied to several
methodologies. Previously, we looked at other methodologies that blended with DL, but
we focused more on the actual implementation. However, RL introduces a new
methodology that requires us to understand more of the inner and outer workings before
we understand how to apply it.

RL was popularized by Richard Sutton, a Canadian, and current professor
at the University of Alberta. Sutton has also assisted in the development
of RL at Google's DeepMind, and is quite often regarded as the father of
RL.

At the heart of any machine learning system is the need for training. Often, the AI
agent/brain knows nothing, and then we feed it data through some automated process for it
to learn. As we have seen, the most common way of doing this is called supervised
training. This is when we first label our training data. We have also looked at
unsupervised training, where our Generative Adversarial Networks (GANs) were trained
by competing against each other. However, neither system replicated the type of learning
or training we see in Biology, and that is often referred to as rewards or RL: the type of
learning that lets you teach your dog to bark for a treat, fetch the paper, and use the
outdoors for nature's calling, a type of learning that lets an agent explore its own
environment and learn for itself. This is not unlike the type of learning a general AI would
be expected to use; after all, RL is likely similar to the system we use, or so we believe.

Introducing DRL Chapter 5

[127]

David Silver, a former student of Prof Sutton's and now head of
DeepMind, has an excellent video series on the theoretical background of
RL. The first five videos are quite interesting and recommended viewing,
but the later content gets quite deep and may not be for everyone. Here's
the link for the videos: https:/ /www. youtube. com/ watch? v= 2pWv7GOvuf0

RL defines its own type of training called by the same name. This form of reward-based
training is shown in the following diagram:

Reinforcement learning

The diagram shows an agent in an environment. That agent reads the state of the
environment and then decides and performs an action. This action may, or may not, give a
reward, and that reward could be good or bad. After each action and possible reward, the
agent collects the state of the environment again. The process repeats itself until the agent
reaches a terminal or end state. That is, until it reaches the goal; perhaps it dies or just gets
tired. It is important to note a couple of subtle things about the preceding diagram. First,
the agent doesn't always receive a reward, meaning rewards could be delayed, until some
future goal is reached. This is quite different from the other forms of learning we explored
earlier, which provided immediate feedback to our training networks. Rewards can be
good or bad, and it is often just as effective to negatively train agents this way, but less so
for humans.

Now, as you might expect with any powerful learning model, the mathematics can be quite
complex and certainly daunting to the newcomer. We won't go too far into the theoretical
details other than to describe some of the foundations of RL in the next section.

https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0
https://www.youtube.com/watch?v=2pWv7GOvuf0

Introducing DRL Chapter 5

[128]

The multi-armed bandit
The diagram we saw earlier describes the full RL problem as we will use for most of the
rest of this book. However, we often teach a simpler one-step variation of this problem
called the multi-armed bandit. The armed bandit is in reference to the Vegas slot machine
and nothing more nefarious. We use these simpler scenarios in order to explain the basics
of RL in the form of a one-step or one-state problem.

In the case of the multi-armed bandit, picture a fictional multi-armed Vegas slot machine
that awards different prizes based on which arm is pulled, but the prize for each arm is
always the same. The agent's goal in this scenario would be to figure out the correct arm to
pull every time. We could further model this in an equation such as the one shown here:

Consider the following equation:

 = vector of values (1,2,3,4)
 = action
 = alpha = learning rate
 = reward

This equation calculates the value (V), a vector, for each action the agent takes. Then, it
feeds back these values into itself, subtracted from the reward and multiplied by a learning
rate. This calculated value can be used to determine which arm to pull, but first the agent
needs to pull each arm at least once. Let's quickly model this in code, so as game/simulation
programmers, we can see how this works. Open the Chapter_5_1.py code and follow
these steps:

The code for this exercise is as follows:1.

alpha = .9
arms = [['bronze' , 1],['gold', 3], ['silver' , 2], ['bronze' , 1]]
v = [0,0,0,0]

for i in range(10):
 for a in range(len(arms)):
 print('pulling arm '+ arms[a][0])
 v[a] = v[a] + alpha * (arms[a][1]-v[a])

print(v)

Introducing DRL Chapter 5

[129]

This code creates the required setup variables, the arms (gold, silver, and2.
bronze), and the value vector v (all zeros). Then, the code loops through a
number of iterations (10) where each arm is pulled and the value, v, is calculated
and updated based on the equation. Note that the reward value is replaced by
the value of the arm pull, which is the term arms[a][1].
Run the example, and you will see the output generated showing the value for3.
each action, or in this case an arm pull.

As we saw, with a simple equation, we were able to model the multi-armed bandit problem
and arrive at a solution that will allow an agent to consistently pull the correct arm. This
sets the foundation for RL, and in the next section, we take the next step and look at
contextual bandits.

Contextual bandits
We can now elevate the single multi-armed bandit problem into a problem with multiple
multi-armed bandits, each with its own set of arms. Now our problem introduces context or
state into the equation. With each bandit defining its own context/state, now we evaluate
our equation in terms of quality and action. Our modified equation is shown here:

Consider the following equation:

 = table/matrix of values

 [1,2,3,4
 2,3,4,5
 4,2,1,4]

 = state
 = action
 = alpha = learning rate

 = reward

Introducing DRL Chapter 5

[130]

Let's open up Chapter_5_2.py and observe the following steps:

Open the code up, as follows, and follow the changes made from the previous1.
sample:

import random

alpha = .9
bandits = [[['bronze' , 1],['gold', 3], ['silver' , 2], ['bronze' ,
1]],
 [['bronze' , 1],['gold', 3], ['silver' , 2], ['bronze' ,
1]],
 [['bronze' , 1],['gold', 3], ['silver' , 2], ['bronze' ,
1]],
 [['bronze' , 1],['gold', 3], ['silver' , 2], ['bronze' ,
1]]]
q = [[0,0,0,0],
 [0,0,0,0],
 [0,0,0,0],
 [0,0,0,0]]

for i in range(10):
 for b in range(len(bandits)):
 arm = random.randint(0,3)
 print('pulling arm {0} on bandit {1}'.format(arm,b))
 q[b][arm] = q[b][arm] + alpha * (bandits[b][arm][1]-
q[b][arm])

print(q)

This code sets up a number of multi-armed bandits, each with its own set of2.
arms. It then iterates through a number of iterations, but this time as it loops, it
also loops through each bandit. During each loop, it picks a random arm to pull
and evaluates the quality.
Run the sample and look at the output of q. Note how, even after selecting3.
random arms, the equation again consistently selected the gold arm, the arm
with the highest reward, to pull.

Introducing DRL Chapter 5

[131]

Feel free to play around with this sample some more and look to the exercises for
additional inspiration. We will expand on the complexity of our RL problems when we
discuss Q-Learning. However, before we get to that section, we will take a quick diversion
and look at setting up the OpenAI Gym in order to conduct more RL experiments.

RL with the OpenAI Gym
RL has become so popular that there is now a race to just build tools that help build RL
algorithms. The two major competitors in this area right now are OpenAI Gym and Unity.
Unity has quickly become the RL racing machine we will explore extensively later. For
now, we will put our training wheels on and run OpenAI Gym to explore the fundamentals
of RL further.

We need to install the OpenAI Gym toolkit before we can continue, and installation may
vary greatly depending on your operating system. As such, we will focus on the Windows
installation instructions here, as it is likely other OS users will have less difficulty. Follow
the next steps to install OpenAI Gym on Windows:

Install a C++ compiler; if you have Visual Studio 2017 installed, you may already1.
have a recommended one. You can find other supported compilers here: https:/
/wiki.python. org/ moin/ WindowsCompilers.
Be sure to have Anaconda installed, and open an Anaconda command prompt2.
and run the following commands:

conda create -n gym
conda activate gym
conda install python=3.5 # reverts Python, for use with TensorFlow
later
pip install tensorflow
pip install keras
pip install gym

For our purposes, in the short term, we don't need to install any other Gym3.
modules. Gym has plenty of example environments, Atari games and MuJoCo
(robotics simulator) being some of the most fun to work with. We will take a look
at the Atari games module later in this chapter.

https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers
https://wiki.python.org/moin/WindowsCompilers

Introducing DRL Chapter 5

[132]

That should install the Gym environment for your system. Most of what we need will work
with minimal setup. If you decide to do more with Gym, then you will likely want to install
other modules; there are several. In the next section, we are going to test this new
environment as we learn about Q-Learning.

A Q-Learning model
RL is deeply entwined with several mathematical and dynamic programming concepts that
could fill a textbook, and indeed there are several. For our purposes, however, we just need
to understand the key concepts in order to build our DRL agents. Therefore, we will choose
not to get too burdened with the math, but there are a few key concepts that you will need
to understand to be successful. If you covered the math in the Chapter 1, Deep Learning for
Games, this section will be a breeze. For those that didn't, just take your time, but you can't
miss this one.

In order to understand the Q-Learning model, which is a form of RL, we need to go back to
the basics. In the next section, we talk about the importance of the Markov decision process
and the Bellman equation.

Markov decision process and the Bellman
equation
At the heart of RL is the Markov decision process (MDP). An MDP is often described as a
discrete time stochastic control process. In simpler terms, this just means it is a control
program that functions by time steps to determine the probability of actions, provided each
action leads to a reward. This process is already used for most automation control of
robotics, drones, networking, and of course RL. The classic way we picture this process is
shown in the following diagram:

Introducing DRL Chapter 5

[133]

The Markov decision process

Where represent an MDP as a tuple or vector , using the following variables:

 - being a finite set of states,
 - being a finite set of actions,
 - the probability that action in state at time will lead to state at time

,
 - is the immediate reward
 - gamma is a discount factor we apply in order to discount the significance or

provide significance to future rewards

The diagram works by picturing yourself as an agent in one of the states. You then
determine actions based on the probability, always taking a random action. As you move to
the next state, the action gives you a reward and you update the probability based on the
reward. Again, David Silver covers this piece very well in his lectures.

Introducing DRL Chapter 5

[134]

Now, the preceding process works, but another variation came along that provided for
better future reward evaluation, and that was done by introducing the Bellman Equation
and the concept of a policy/value iteration. Whereas before we had a value, , we now have
a policy () for a value called , and this yields us a new equation, shown here:

We won't cover much more about this equation other than to say to keep the concept of
quality iteration in mind. In the next section, we will see how we can reduce this equation
back to a quality indicator of each action and use that for Q-Learning.

Q-learning
With the introduction of quality iteration methods, the derivation of a finite state method
called Q-learning or quality learning was derived. Q uses the technique of quality iteration
for a given finite state problem to determine the best course of action for an agent. The
equation we saw in the previous section can now be represented as the following:

Consider the following equation:

 current state
 current action

 next action
 current reward
 learning rate (alpha)

 reward discount factor (gamma)

The Q value is now updated alliteratively, as the agent roams through its environment.
Nothing demonstrates these concepts better than an example. Open up Chapter_5_3.py
and follow these steps:

We start with the various imports and set them up as shown in the following1.
code:

from collections import deque
import numpy as np
import os

Introducing DRL Chapter 5

[135]

clear = lambda: os.system('cls') #linux/mac use 'clear'
import time
import gym
from gym import wrappers, logger

These imports just load the basic libraries we need for this example. Remember,2.
you will need to install Gym to run this sample.
Next, we set up a new environment; in this example, we use the basic3.
FrozenLake-v0 sample, a perfect example to test on Q-learning:

environment = 'FrozenLake-v0'
env = gym.make(environment)

Then we set up the AI environment (env) and a number of other parameters:4.

outdir = os.path.join('monitor','q-learning-
{0}'.format(environment))
env = wrappers.Monitor(env, directory=outdir, force=True)
env.seed(0)
env.is_slippery = False
q_table = np.zeros([env.observation_space.n, env.action_space.n])

#parameters
wins = 0
episodes = 40000
delay = 1

epsilon = .8
epsilon_min = .1
epsilon_decay = .001
gamma = .9
learning_rate = .1

In this section of the code, we set up a number of variables that we will get to5.
shortly. For this sample, we are using a wrapper tool to monitor the
environment, and this is useful for determining any potential training issues. The
other thing to note is the setup of the q_table array, defined by the environment
observation_space (state) and action_space (action); spaces define arrays
and not just vectors. In this particular example, the action_space is a vector,
but it could be a multi-dimensional array or tensor.

Introducing DRL Chapter 5

[136]

Pass over the next section of functions and skip to the end, where the training6.
iteration occurs and is shown in the following code:

for episode in range(episodes):
 state = env.reset()
 done = False
 while not done:
 action = act(env.action_space,state)
 next_state, reward, done, _ = env.step(action)
 clear()
 env.render()
 learn(state, action, reward, next_state)
 if done:
 if reward > 0:
 wins += 1
 time.sleep(3*delay)
 else:
 time.sleep(delay)

print("Goals/Holes: %d/%d" % (wins, episodes - wins))
env.close()

Most of the preceding code is relatively straightforward and should be easy to7.
follow. Look at how the env (environment) is using the action generated from
the act function; this is used to step or conduct an action on the agent. The
output of the step function is next_state, reward, and done, which we use to
determine the optimum Q policy by using the learn function.
Before we get into the action and learning functions, run the sample and watch8.
how the agent trains. It may take a while to train, so feel free to return to the
book.

The following is an example of the OpenAI Gym FrozenLake environment running our Q-
learning model:

FrozenLake Gym environment

Introducing DRL Chapter 5

[137]

As the sample runs, you will see a simple text output showing the environment. S
represents the start, G the goal, F a frozen section, and H a hole. The goal for the agent is to
find its way through the environment, without falling in a hole, and reach the goal. Pay
special attention to how the agent moves and finds it way around the environment. In the
next section, we unravel the learn and act functions and understand the importance of
exploration.

Q-learning and exploration
One problem we face with the policy iterative models such as Q-learning is the problem of
exploration versus exploitation. The Q-model equation assumes the use of maximum
quality to determine an action and we refer to this as exploitation (exploiting the model).
The problem with this is that it can often corner an agent into a solution that only looks for
the best short-term benefits. Instead, we need to allow the agent some flexibility to explore
the environment and learn on its own. We do this by introducing a dissolving exploration
factor into the training. Let's see how this looks by again opening up the Chapter_5_3.py
example:

Scroll down to the act and is_explore functions as shown:1.

def is_explore():
 global epsilon, epsilon_decay, epsilon_min
 epsilon = max(epsilon-epsilon_decay,epsilon_min)
 if np.random.rand() < epsilon:
 return True
 else:
 return False

def act(action_space, state):
 # 0 - left, 1 - Down, 2 - Right, 3 - Up
 global q_table
 if is_explore():
 return action_space.sample()
 else:
 return np.argmax(q_table[state])

Introducing DRL Chapter 5

[138]

Note that in the act function, it first tests whether the agent wants to or needs to2.
explore with is_explore(). In the is_explore function, we can see that the
global epsilon value is decayed over each iteration with epsilon_decay to a
global minimum value, epsilon_min. When the agent starts an episode, their
exploration epsilon is high, making them more probable to explore. Over time,
as the episode progresses, the epsilon decreases. We do in with the assumption
that over time the agent will need to explore less and less. This trade-off between
exploration and exploitation is quite important and something to understand
with respect to the size of the environment state. We will see this trade-off
explored more throughout this book.
Note that the agent uses an exploration function and just selects a random action.
Finally, we get to the learn function. This function is where the Q value is3.
calculated, as follows:

def learn(state, action, reward, next_state):
 # Q(s, a) += alpha * (reward + gamma * max_a' Q(s', a') - Q(s,
a))
 global q_table
 q_value = gamma * np.amax(q_table[next_state])
 q_value += reward
 q_value -= q_table[state, action]
 q_value *= learning_rate
 q_value += q_table[state, action]
 q_table[state, action] = q_value

Here, the equation is broken up and simplified, but this is the step that calculates4.
the value the agent will use when exploiting.

Keep the agent running until it finishes. We just completed the first full reinforcement
learning problem, albeit the one that had a finite state. In the next section, we greatly
expand our horizons and look at deep learning combined with reinforcement learning.

First DRL with Deep Q-learning
Now that we understand the reinforcement learning process in detail, we can look to adapt
our Q-learning model to work with deep learning. This, as you could likely guess, is the
culmination of our efforts and where the true power of RL shines. As we learned through
earlier chapters, deep learning is essentially a complex system of equations that can map
inputs through a non-linear function to generate a trained output.

Introducing DRL Chapter 5

[139]

A neural network is just another, simpler method of solving a non-linear equation. We will
look at how to use DNN to solve other equations later, but for now we will focus on using
it to solve the Q-learning equation we saw in the previous section.

We will use the CartPole training environment from the OpenAI Gym toolkit. This
environment is pretty much the standard used to learn Deep Q-learning (DQN).

Open up Chapter_5_4.py and follow the next steps to see how we convert our solver to
use deep learning:

As usual, we look at the imports and some initial starting parameters, as follows:1.

import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam

EPISODES = 1000

Next, we are going to create a class this time to contain the functionality of the2.
DQN agent. The __init__ function is as follows:

class DQNAgent:
 def __init__(self, state_size, action_size):
 self.state_size = state_size
 self.action_size = action_size
 self.memory = deque(maxlen=2000)
 self.gamma = 0.95 # discount rate
 self.epsilon = 1.0 # exploration rate
 self.epsilon_min = 0.01
 self.epsilon_decay = 0.995
 self.learning_rate = 0.001
 self.model = self._build_model()

Most of the parameters have already been covered, but note a new one called3.
memory, which is a deque collection that holds that last 2,000 steps. This allows
us to batch train our neural network in a sort of replay mode.

Introducing DRL Chapter 5

[140]

Next, we look at how the neural network model is built with the _build_model4.
function, as follows:

def _build_model(self):
 # Neural Net for Deep-Q learning Model
 model = Sequential()
 model.add(Dense(24, input_dim=self.state_size,
activation='relu'))
 model.add(Dense(24, activation='relu'))
 model.add(Dense(self.action_size, activation='linear'))
 model.compile(loss='mse',
 optimizer=Adam(lr=self.learning_rate))
 return model

This builds a fairly simple model, compared to others we have already seen, with5.
three dense layers outputting a value for each action. The input into this network
is the state.
Jump down to the bottom of the file and look at the training iteration loop,6.
shown as follows:

if __name__ == "__main__":
 env = gym.make('CartPole-v1')
 state_size = env.observation_space.shape[0]
 action_size = env.action_space.n
 agent = DQNAgent(state_size, action_size)
 # agent.load("./save/cartpole-dqn.h5")
 done = False
 batch_size = 32

 for e in range(EPISODES):
 state = env.reset()
 state = np.reshape(state, [1, state_size])
 for time in range(500):
 # env.render()
 action = agent.act(state)
 env.render()
 next_state, reward, done, _ = env.step(action)
 reward = reward if not done else -10
 next_state = np.reshape(next_state, [1, state_size])
 agent.remember(state, action, reward, next_state, done)
 state = next_state
 if done:
 print("episode: {}/{}, score: {}, e: {:.2}"
 .format(e, EPISODES, time, agent.epsilon))
 break
 if len(agent.memory) > batch_size:
 agent.replay(batch_size)

Introducing DRL Chapter 5

[141]

In this sample, our training takes place in a real-time render loop. The important7.
sections of the code are highlighted, showing the reshaping of the state and
calling the agent.remember function. The agent.replay function at the end is
where the network trains. The remember function is as follows:

def remember(self, state, action, reward, next_state, done):
 self.memory.append((state, action, reward, next_state, done))

This function just stores the state, action, reward, next_state, and done8.
parameters for the replay training. Scroll down more to the replay function, as
follows:

def replay(self, batch_size):
 minibatch = random.sample(self.memory, batch_size)
 for state, action, reward, next_state, done in minibatch:
 target = reward
 if not done:
 target = (reward+self.gamma*
 np.amax(self.model.predict(next_state)[0]))
 target_f = self.model.predict(state)
 target_f[0][action] = target
 self.model.fit(state, target_f, epochs=1, verbose=0)
 if self.epsilon > self.epsilon_min:
 self.epsilon *= self.epsilon_decay

The replay function is where the network training occurs. We first define a9.
minibatch, which is defined from a random sampling of previous experiences
grouped by batch_size. Then, we loop through the batches setting reward to
the target and if not done calculating a new target based on the model
prediction on the next_state. After that, we use the model.predict function
on the state to determine the final target. Finally, we use the model.fit
function to backpropagate the trained target back into the network.
As this section is important, let's reiterate. Note the line where the variable
target is calculated and set. These lines of code may look familiar, as they
match the Q value equation we saw earlier. This target value is the value that
should be predicted for the current action. This is the value that is
backpropagated back for the current action and set by the returned reward.

Introducing DRL Chapter 5

[142]

Run the sample and watch the agent train to balance the pole on the cart. The10.
following shows the environment as it is being trained:

CartPole OpenAI Gym environment

The example environment uses the typical first environment, CartPole, we use to learn to
build our first DRL model. In the next section, we will look at how to use the DQNAgent in
other scenarios and other models supplied through the Keras-RL API.

RL experiments
Reinforcement learning is quickly advancing, and the DQN model we just looked at has
quickly become outpaced by more advanced algorithms. There are several variations and
advancements in RL algorithms that could fill several chapters, but most of that material
would be considered academic. As such, we will instead look at some more practical
examples of the various RL models the Keras RL API provides.

The first simple example we can work with is changing our previous example to work with
a new gym environment. Open up Chapter_5_5.py and follow the next exercise:

Change the environment name in the following code:1.

if __name__ == "__main__":
 env = gym.make('MountainCar-v0')

Introducing DRL Chapter 5

[143]

In this case, we are going to use the MountainCar environment, as shown:2.

Example of MountainCar environment

Run the code as you normally would and see how the DQNAgent solves the hill-3.
climbing problem.

You can see how quickly we were able to switch environments and test the DQNAgent in
another environment. In the next section, we look at training Atari games with the various
RL algorithms that the Keras-RL API provides.

Keras RL
Keras provides a very useful RL API that wraps several variations such as DQN, DDQN,
SARSA, and so on. We won't get into the details of those various RL variations right now,
but we will cover the important parts later, as we get into more complex models. For now,
though, we are going to look at how you can quickly build a DRL model to play Atari
games. Open up Chapter_5_6.py and follow these steps:

We first need to install several dependencies with pip; open a command shell or1.
Anaconda window, and enter the following commands:

pip install Pillow
pip install keras-rl

pip install gym[atari] # on Linux or Mac
pip install --no-index -f
https://github.com/Kojoley/atari-py/releases atari_py # on Windows
thanks to Nikita Kniazev

Introducing DRL Chapter 5

[144]

This will install the Keras RL API, Pillow, an image framework, and the Atari2.
environment for gym.
Run the example code as you normally would. This sample does take script3.
arguments, but we don't need to use them here. An example of the rendered
Atari Breakout environment follows:

Atari Breakout environment

Unfortunately, you cannot see the game run as the agent plays, because all the action takes
place in the background, but let the agent run until it completes and saves the model.
Here's how we would run the sample:

You can rerun the sample using --mode test as an argument to let the agent1.
run over 10 episodes and see the results.
As the sample runs, look through the code and pay special attention to the2.
model, as follows:

model = Sequential()
if K.image_dim_ordering() == 'tf':
 # (width, height, channels)
 model.add(Permute((2, 3, 1), input_shape=input_shape))
elif K.image_dim_ordering() == 'th':
 # (channels, width, height)
 model.add(Permute((1, 2, 3), input_shape=input_shape))
else:
 raise RuntimeError('Unknown image_dim_ordering.')
model.add(Convolution2D(32, (8, 8), strides=(4, 4)))
model.add(Activation('relu'))

Introducing DRL Chapter 5

[145]

model.add(Convolution2D(64, (4, 4), strides=(2, 2)))
model.add(Activation('relu'))
model.add(Convolution2D(64, (3, 3), strides=(1, 1)))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
print(model.summary())

Note how our model is using Convolution, with pooling. This is because this3.
example reads each screen/frame of the game as input (state) and responds
accordingly. In this case, the model state is massive, and this demonstrates the
real power of DRL. In this case, we are still training to a state model, but in future
chapters, we will look at training a policy, rather than a model.

This was a simple introduction to RL, and we have omitted several details that can get lost
on newcomers. As we plan to cover several more chapters on RL, and in particular the
Proximal Policy Optimization (PPO) in more detail in Chapter 8, Understanding PPO,
don't fret too much about differences such as policy and model-based RL.

There is an excellent example of this same DQN in TensorFlow at this
GitHub link: https:/ /github. com/ floodsung/ DQN- Atari- Tensorflow.
The code may be a bit dated, but it is a simple and excellent example that
is worth taking a look at.

We won't look any further at the code, but the reader is certainly invited to. Now let's try
some exercises.

Exercises
As always, use the exercises in this section to get a better understanding of the material you
learn. Try to work through at least two or three exercises in this section:

Return to the example Chapter_5_1.py and change the alpha1.
(learning_rate) variable and see what effect this has on the values calculated.
Return to the example Chapter_5_2.py and alter the arm positions on the2.
various bandits.
Change the learning rate on the example Chapter_5_2.py and see what effect3.
this has on the Q results output.

https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow
https://github.com/floodsung/DQN-Atari-Tensorflow

Introducing DRL Chapter 5

[146]

Alter the gamma reward discount factor in the Chapter_5_3.py example, and4.
see what effect this has on agent training.
Change the exploration epsilon in the Chapter_5_3.py to different values and5.
rerun the sample. See what effect altering the various exploration parameters has
on training the agent.
Alter the various parameters (exploration, alpha, and gamma) in the6.
Chapter_5_4.py example and see what effect this has on training.
Alter the size of the memory in the Chapter_5_4.py example, either higher or7.
lower, and see what effect this has on training.
Try to use different Gym environments in the DQNAgent example from8.
Chapter_5_5.py. You can do a quick Google search to see the other possible
environments you can choose from.
The Chapter_5_6.py example currently uses a form-exploration policy called9.
LinearAnnealedPolicy; change the policy to use the BoltzmannQPolicy
policy as mentioned in the code comments.
Be sure to download and run other Keras-RL examples from https:/ /github.10.
com/keras- rl/ keras- rl. Again, you may have to install other Gym
environments to get them working.

There are plenty of other examples, videos, and other materials to study with respect to RL.
Learn as much as you can, as this material is extensive and complex and not something you
will pick up overnight.

Summary
RL is the machine learning technology currently dominating the interest of many
researchers. It is typically appealing to us, because it fits well with games and simulations.
In this chapter, we covered some of the foundations of RL by starting with the fundamental
introductory problems of the multi-armed and contextual bandits. Then, we quickly looked
at installing the OpenAI Gym RL toolkit. We then looked at Q-learning and how to
implement that in code and train it on an OpenAI Gym environment. Finally, we looked at
how we could conduct various other experiments with Gym by loading a couple of other
environments, including the Atari games simulator.

In the next chapter, we look at the quickly evolving a cutting-edge RL platform that Unity
is currently developing.

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl

6
Unity ML-Agents

 Unity has embraced machine learning, and deep reinforcement learning in particular, with
determination and vigor with the aim of producing a working seep reinforcement learning
(DRL) SDK for game and simulation developers. Fortunately, the team at Unity, led by
Danny Lange, has succeeded in developing a robust cutting-edge DRL engine capable of
impressive results. This engine is the top of the line and outclasses the DQN model we
introduced earlier in many ways. Unity uses a proximal policy optimization (PPO) model
as the basis for its DRL engine. This model is significantly more complex and may differ in
some ways, but, fortunately, this is at the start of many more chapters, and we will have
plenty of time to introduce the concepts as we go—this is a hands-on book, after all.

In this chapter, we introduce the Unity ML-Agents tools and SDK for building DRL agents
to play games and simulations. While this tool is both powerful and cutting-edge, it is also
easy to use and provides a few tools to help us learn concepts as we go. In this chapter, we
will cover the following topics:

Installing ML-Agents
Training an agent
What's in a brain?
Monitoring training with TensorBoard
Running an agent

Unity ML-Agents Chapter 6

[148]

We would like to thank the team members at Unity for their great work
on ML-Agents; here are the team members at the time of writing:

Danny Lange (https:/ /arxiv. org/ search/ cs?searchtype=
author query= Lange%2C+D)
Arthur Juliani (https:/ /arxiv. org/ search/ cs? searchtype=
author query= Juliani%2C+A)
Vincent-Pierre Berges (https:/ /arxiv. org/ search/ cs?
searchtype= author query= Berges%2C+V)
Esh Vckay (https:/ / arxiv. org/ search/ cs? searchtype= author
query= Vckay%2C+E)
Yuan Gao (https:/ / arxiv. org/ search/ cs? searchtype= author
query= Gao%2C+Y)
Hunter Henry (https:/ /arxiv. org/ search/ cs?searchtype=
author query= Henry%2C+H)
Marwan Mattar (https:/ /arxiv. org/ search/ cs? searchtype=
author query= Mattar%2C+M)
Adam Crespi (https:/ /arxiv. org/ search/ cs?searchtype=
author query= Crespi%2C+A)
Jonathan Harper (https:/ /arxiv. org/ search/ cs?searchtype=
author query= Harper%2C+J)

Be sure you have Unity installed as per the section in Chapter 4, Building a Deep Learning
Gaming Chatbot, before proceeding with this chapter.

Installing ML-Agents
In this section, we cover a high-level overview of the steps you will need to take in order to
successfully install the ML-Agents SDK. This material is still in beta and has already
changed significantly from version to version. As such, if you get stuck going through these
high-level steps, just go back to the most recent Unity docs; they are very well written.

https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Lange%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Juliani%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Berges%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Vckay%2C+E
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Gao%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Henry%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Mattar%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Crespi%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Harper%2C+J

Unity ML-Agents Chapter 6

[149]

Jump on your computer and follow these steps; there may be many sub steps, so expect this
to take a while:

Be sure you have Git installed on your computer; it works from the command1.
line. Git is a very popular source code management system, and there is a ton of
resources on how to install and use Git for your platform. After you have
installed Git, just be sure it works by test cloning a repository, any repository.
Open a command window or a regular shell. Windows users can open an2.
Anaconda window.
Change to a working folder where you want to place the new code, and enter the3.
following command (Windows users may want to use C:\ML-Agents):

git clone https://github.com/Unity-Technologies/ml-agents

This will clone the ml-agents repository onto your computer and create a new4.
folder with the same name. You may want to take the extra step of also adding
the version to the folder name. Unity, and pretty much the whole AI space, is in
continuous transition, at least at the moment. This means new and constant
changes are always happening. At the time of writing, we will clone to a folder
named ml-agents.6, like so:

git clone https://github.com/Unity-Technologies/ml-agents ml-
agents.6

The author of this book previously wrote a book on ML-Agents and had
to rewrite several chapters over the course of a short time in order to
accommodate the major changes. In fact, this chapter has had to be also
rewritten a few times to account for more major changes.

Create a new virtual environment for ml-agents and set it to 3.6, like so:5.

#Windows
conda create -n ml-agents python=3.6

#Mac
Use the documentation for your preferred environment

Activate the environment, again, using Anaconda:6.

activate ml-agents

Unity ML-Agents Chapter 6

[150]

Install TensorFlow. With Anaconda, we can do this by using the following:7.

pip install tensorflow==1.7.1

Install the Python packages. On Anaconda, enter the following:8.

cd ML-Agents #from root folder
cd ml-agents or cd ml-agents.6 #for example
cd ml-agents
pip install -e . or pip3 install -e .

This will install all the required packages for the Agents SDK and may take9.
several minutes. Be sure to leave this window open, as we will use it shortly.

This is the basic installation of TensorFlow and does not use a GPU.
Consult the Unity documentation in order to learn how to install the GPU
version. This may or may not have a dramatic impact on your training
performance, depending on the power of your GPU.

This should complete the setup of the Unity Python SDK for ML-Agents. In the next
section, we will learn how to set up and train one of the many example environments
provided by Unity.

Training an agent
For much of this book, we have spent our time looking at code and the inner depths of
deep learning (DL) and reinforcement learning (RL). With that knowledge established, we
can now jump in and look at examples where deep reinforcement learning (DRL) is put to
use. Fortunately, the new agent's toolkit provides several examples to demonstrate the
power of the engine. Open up Unity or the Unity Hub and follow these steps:

Click the Open project button at the top of the Project dialog.1.
Locate and open the UnitySDK project folder as shown in the following2.
screenshot:

Unity ML-Agents Chapter 6

[151]

Opening the UnitySDK project

Wait for the project to load and then open the Project window at the bottom of3.
the editor. If you are asked to update the project, just be sure to say yes or
continue. Thus far, all of the agent code has been designed to be backward
compatible.

Unity ML-Agents Chapter 6

[152]

Locate and open the GridWorld scene as shown in this screenshot:4.

Opening the GridWorld example scene

Select the GridAcademy object in the Hierarchy window. 5.

Unity ML-Agents Chapter 6

[153]

Then direct your attention to the Inspector window, and beside the Brains, click6.
the target icon to open the Brain selection dialog:

Inspecting the GridWorld example environment

Unity ML-Agents Chapter 6

[154]

Select the GridWorldPlayer brain. This brain is a player brain, meaning that a7.
player, you, can control the game. We will look at this brain concept more in the
next section.
Press the Play button at the top of the editor and watch the grid environment8.
form. Since the game is currently set to a player, you can use the WASD controls
to move the cube. The goal is much like the FrozenPond environment we built a
DQN for earlier. That is, you have to move the blue cube to the green + symbol
and avoid the red X.

Feel free to play the game as much as you like. Note how the game only runs for a certain
amount of time and is not turn-based. In the next section, we will learn how to run this
example with a DRL agent.

What's in a brain?
One of the brilliant aspects of the ML-Agents platform is the ability to switch from player
control to AI/agent control very quickly and seamlessly. In order to do this, Unity uses the
concept of a brain. A brain may be either player-controlled, a player brain, or agent-
controlled, a learning brain. The brilliant part is that you can build a game and test it, as a
player can then turn the game loose on an RL agent. This has the added benefit of making
any game written in Unity controllable by an AI with very little effort. In fact, this is such a
powerful workflow that we will spend an entire chapter, Chapter 12, Debugging/Testing a
Game with DRL, on testing and debugging your games with RL.

Training an RL agent with Unity is fairly straightforward to set up and run. Unity uses
Python externally to build the learning brain model. Using Python makes far more sense,
since as we have already seen, several DL libraries are built on top of it. Follow these steps
to train an agent for the GridWorld environment:

Select the GridAcademy again and switch the Brains from GridWorldPlayer to1.
GridWorldLearning as shown:

Unity ML-Agents Chapter 6

[155]

Switching the brain to use GridWorldLearning

Unity ML-Agents Chapter 6

[156]

Make sure to click the Control option at the end. This simple setting is what tells2.
the brain it may be controlled externally. Be sure to double-check that the option
is enabled.
Select the trueAgent object in the Hierarchy window, and then, in the Inspector3.
window, change the Brain property under the Grid Agent component to a
GridWorldLearning brain:

Setting the brain on the agent to GridWorldLearning

Unity ML-Agents Chapter 6

[157]

For this sample, we want to switch our Academy and Agent to use the same4.
brain, GridWorldLearning. In more advanced cases we will explore later, this is
not always the case. You could of course have a player and an agent brain
running in tandem, or many other configurations.
Be sure you have an Anaconda or Python window open and set to the ML-5.
Agents/ml-agents folder or your versioned ml-agents folder.
Run the following command in the Anaconda or Python window using the ml-6.
agents virtual environment:

mlagents-learn config/trainer_config.yaml --run-id=firstRun --train

This will start the Unity PPO trainer and run the agent example as configured. At7.
some point, the command window will prompt you to run the Unity editor with
the environment loaded.
Press Play in the Unity editor to run the GridWorld environment. Shortly after,8.
you should see the agent training with the results being output in the Python
script window:

Running the GridWorld environment in training mode

Unity ML-Agents Chapter 6

[158]

Note how the mlagents-learn script is the Python code that builds the RL9.
model to run the agent. As you can see from the output of the script, there are
several parameters, or what we refer to as hyper-parameters, that need to be
configured. Some of these parameters may sound familiar, and they should, but
several may be unclear. Fortunately, for the rest of this chapter and this book, we
will explore how to tune these parameters in some detail.
Let the agent train for several thousand iterations and note how quickly it learns.10.
The internal model here, called PPO, has been shown to be a very effective
learner at multiple forms of tasks and is very well suited for game development.
Depending on your hardware, the agent may learn to perfect this task in less
than an hour.

Keep the agent training, and we will look at more ways to inspect the agent's training
progress in the next section.

Monitoring training with TensorBoard
Training an agent with RL, or any DL model for that matter, while enjoyable, is not often a
simple task and requires some attention to detail. Fortunately, TensorFlow ships with a set
of graph tools called TensorBoard we can use to monitor training progress. Follow these
steps to run TensorBoard:

Open an Anaconda or Python window. Activate the ml-agents virtual1.
environment. Don't shut down the window running the trainer; we need to keep
that going.
Navigate to the ML-Agents/ml-agents folder and run the following command:2.

tensorboard --logdir=summaries

This will run TensorBoard with its own built-in web server. You can load the3.
page by using the URL that is shown after you run the previous command.
Enter the URL for TensorBoard as shown in the window, or use4.
localhost:6006 or machinename:6006 in your browser. After an hour or so,
you should see something similar to the following:

Unity ML-Agents Chapter 6

[159]

The TensorBoard graph window

Unity ML-Agents Chapter 6

[160]

In the preceding screenshot, you can see each of the various graphs denoting an5.
aspect of training. Understanding each of these graphs is important to
understanding how your agent is training, so we will break down the output
from each section:

Environment: This section shows how the agent is performing overall
in the environment. A closer look at each of the graphs is shown in the
following screenshot with their preferred trend:

Closer look at the Environment section plots

Cumulative Reward: This is the total reward the agent is maximizing.
You generally want to see this going up, but there are reasons why it
may fall. It is always best to maximize rewards in the range of 1 to -1. If
you see rewards outside this range on the graph, you also want to
correct this as well.
Episode Length: It usually is a better sign if this value decreases. After
all, shorter episodes mean more training. However, keep in mind that
the episode length could increase out of need, so this one can go either
way.
Lesson: This represents which lesson the agent is on and is intended for
Curriculum Learning. We will learn more about Curriculum Learning
in Chapter 9, Rewards and Reinforcement Learning.

Unity ML-Agents Chapter 6

[161]

Losses: This section shows graphs that represent the calculated loss or
cost of the policy and value. Of course, we haven't spent much time
explaining PPO and how it uses a policy, so, at this point, just
understand the preferred direction when training. A screenshot of this
section is shown next, again with arrows showing the optimum
preferences:

Losses and preferred training direction

Policy Loss: This determines how much the policy is changing over
time. The policy is the piece that decides the actions, and in general this
graph should be showing a downward trend, indicating that the policy
is getting better at making decisions.
Value Loss: This is the mean or average loss of the value function. It
essentially models how well the agent is predicting the value of its next
state. Initially, this value should increase, and then after the reward is
stabilized, it should decrease.

Unity ML-Agents Chapter 6

[162]

Policy: PPO uses the concept of a policy rather than a model to
determine the quality of actions. Again, we will spend more time on
this in Chapter 8, Understanding PPO, where we will uncover further
details about PPO. The next screenshot shows the policy graphs and
their preferred trend:

Policy graphs and preferred trends

Entropy: This represents how much the agent is exploring. You want
this value to decrease as the agent learns more about its surroundings
and needs to explore less.
Learning Rate: Currently, this value is set to decrease linearly over
time.
Value Estimate: This is the mean or average value visited by all states
of the agent. This value should increase in order to represent a growth
of the agent's knowledge and then stabilize.

These graphs are all designed to work with the implementation of the
PPO method Unity is based on. Don't worry too much about
understanding these new terms just yet. We will explore the foundations
of PPO in Chapter 7, Agent and the Environment.

Let the agent run to completion and keep TensorBoard running.6.
Go back to the Anaconda/Python window that was training the brain and run7.
this command:

mlagents-learn config/trainer_config.yaml --run-id=secondRun --
train

Unity ML-Agents Chapter 6

[163]

You will again be prompted to press Play in the editor; be sure to do so. Let the 8.
agent start the training and run for a few sessions. As you do so, monitor the
TensorBoard window and note how the secondRun is shown on the graphs. Feel
free to let this agent run to completion as well, but you can stop it now, if you
want to.

In previous versions of ML-Agents, you needed to build a Unity executable first as a game-
training environment and run that. The external Python brain would still run the same.
This method made it very difficult to debug any code issues or problems with your game.
All of these difficulties were corrected with the current method; however, we may need to
use the old executable method later for some custom training.

Now that we have seen how easy it is to set up and train an agent, we will go through the
next section to see how that agent can be run without an external Python brain and run
directly in Unity.

Running an agent
Using Python to train works well, but it is not something a real game would ever use.
Ideally, what we want to be able to do is build a TensorFlow graph and use it in Unity.
Fortunately, a library was constructed, called TensorFlowSharp, that allows .NET to
consume TensorFlow graphs. This allows us to build offline TFModels and later inject them
into our game. Unfortunately, we can only use trained models and not train in this manner,
at least not yet.

Let's see how this works by using the graph we just trained for the GridWorld environment
and use it as an internal brain in Unity. Follow the exercise in the next section to set up and
use an internal brain:

Download the TFSharp plugin from this link: https:/ / s3.amazonaws. com/1.
unity-ml- agents/ 0. 5/TFSharpPlugin. unitypackage.

If this link does not work, consult the Unity docs or the Asset Store for a
new one. The current version is described as experimental and subject to
change.

From the editor menu, select Assets | Import Package | Custom Package... 2.
Locate the asset package you just downloaded and use the import dialogs to load3.
the plugin into the project. If you need help with these basic Unity tasks, there is
plenty of help online that can guide you further.

https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage
https://s3.amazonaws.com/unity-ml-agents/0.5/TFSharpPlugin.unitypackage

Unity ML-Agents Chapter 6

[164]

From the menu, select Edit | Project Settings. This will open the Settings4.
window (new in 2018.3)
Locate under the Player options the Scripting Define Symbols and set the text to5.
ENABLE_TENSORFLOW and enable Allow Unsafe Code, as shown in this
screenshot:

Setting the ENABLE_TENSORFLOW flag

Unity ML-Agents Chapter 6

[165]

Locate the GridWorldAcademy object in the Hierarchy window and make sure6.
it is using the Brains | GridWorldLearning. Turn the Control option off under
the Brains section of the Grid Academy script.
Locate the GridWorldLearning brain in the7.
Assets/Examples/GridWorld/Brains folder and make sure the Model
parameter is set in the Inspector window, as shown in this screenshot:

Setting the model for the brain to use

Unity ML-Agents Chapter 6

[166]

The Model should already be set to the GridWorldLearning model. In this8.
example, we are using the TFModel that is shipped with the GridWorld
example. You could also easily use the model we had trained from the earlier
example by just importing it into the project and then setting it as the model.
Press Play to run the editor and watch the agent control the cube.9.

Right now, we are running the environment with the pre-trained Unity brain. In the next
section, we will look at how to use the brain we trained in the previous section.

Loading a trained brain
All of the Unity samples come with pre-trained brains you can use to explore the samples.
Of course, we want to be able to load our own TF graphs into Unity and run them. Follow
the next steps in order to load a trained graph:

Locate the ML-Agents/ml-agents/models/firstRun-0 folder. Inside this1.
folder, you should see a file named GridWorldLearning.bytes. Drag this file
into the Unity editor into the Project/Assets/ML-
Agents/Examples/GridWorld/TFModels folder, as shown:

Dragging the bytes graph into Unity

This will import the graph into the Unity project as a resource and rename it2.
GridWorldLearning 1. It does this because the default model already has the
same name.

Unity ML-Agents Chapter 6

[167]

Locate the GridWorldLearning from the brains folder and select it in3.
the Inspector windows and drag the new GridWorldLearning 1 model onto the
Model slot under the Brain Parameters:

Loading the Graph Model slot in the brain

Unity ML-Agents Chapter 6

[168]

We won't need to change any other parameters at this point, but pay special4.
attention to how the brain is configured. The defaults will work for now.
Press Play in the Unity editor and watch the agent run through the game5.
successfully.
How long you trained the agent for will really determine how well it plays the6.
game. If you let it complete the training, the agent should be equal to the already
trained Unity agent.

There are plenty of Unity samples that you can now run and explore on your own. Feel free
to train several of the examples on your own or as listed in the exercises in the next section.

Exercises
Use the exercises in this section to enhance and reinforce your learning. Attempt at least a
few of these exercises on your own, and remember this is really for your benefit:

Set up and run the 3DBall example environment to train a working agent. This1.
environment uses multiple games/agents to train.
Set the 3DBall example to let half of the games use an already trained brain and2.
the other to use training or external learning.
Train the PushBlock environment agents using external learning.3.
Train the VisualPushBlock environment. Note how this example uses a visual4.
camera to capture the environment state.
Run the Hallway scene as a player and then train the scene using an external5.
learning brain.
Run the VisualHallway scene as a player and then train the scene using an6.
external learning brain.
Run the WallJump scene and then run it under training conditions. This example7.
uses Curriculum Training, which we will look at further in Chapter 9, Rewards
and Reinforcement Learning.
Run the Pyramids scene and then set it up for training.8.
Run the VisualPyramids scene and set it up for training.9.
Run the Bouncer scene and set it up for training.10.

While you don't have to run all these exercises/examples, it can be helpful to familiarize
yourself with them. They can often be the basis for creating new environments, as we will
see in the next chapter.

Unity ML-Agents Chapter 6

[169]

Summary
As you have learned, the workflow for training RL and DRL agents in Unity is much more
integrated and seamless than in OpenAI Gym. We didn't have to write a line of code to
train an agent in a grid world environment, and the visuals are just plain better. For this
chapter, we started by installing the ML-Agents toolkit. Then we loaded up a GridWorld
environment and set it up to train with an RL agent. From there, we looked at TensorBoard
for monitoring agent training and progress. After we were done training, we first loaded up
a Unity pre-trained brain and ran that in the GridWorld environment. Then we used a
brain we just trained and imported that into Unity as an asset and then as the
GridWorldLearning brain's model.

In the next chapter, we will explore how to construct a new RL environment or game we
can use an agent to learn and play. This will allow us to peek under the covers further
about the various details we skimmed over in this chapter.

7
Agent and the Environment

Playing with and exploring experimental reinforcement learning environments is all well
and good, but, at the end of the day, most game developers want to develop their own
learning environment. To do that, we need to understand a lot more about training deep
reinforcement learning environments, and, in particular, how an agent receives and
processes input. Therefore, in this chapter, we will take a very close look at training one of
the more difficult sample environments in Unity. This will help us understand many of the
intricate details of how important input and state is to training an agent, and the many
features in the Unity ML-Agents toolkit that make it easy for us to explore multiple options.
This will be a critical chapter for anyone wanting to build their own environments and use
the ML-Agents in their game. So, if you need to work through this chapter a couple of times
to understand the details, please do so.

In this chapter, we are going to cover many details related to how agents process
input/state, and how you can adapt this to fit your agent training. Here is a summary of
what we will cover in this chapter:

Exploring the training environment
Understanding state
Understanding visual state
Convolution and visual state
Recurrent networks

Ensure that you have read, understood, and ran some of the sample exercises from the last
chapter, Chapter 6, Unity ML-Agents. It is essential that you have Unity and the ML-Agents
toolkit configured and running correctly before continuing.

Agent and the Environment Chapter 7

[171]

Exploring the training environment
One of the things that often pushes us to success, or pushes us to learn, is failure. As
humans, when we fail, one of two things happens: we try harder or we quit. Interestingly,
this is not unlike a negative reward in reinforcement learning. In RL, an agent that gets a
negative reward may quit exploring a path if it sees no future value, or that it predicts will
not give enough benefit. However, if the agent feels like more exploration is needed, or it
hasn't exhausted the path fully, it will push on and, often, this leads it to the right path.
Again, this is certainly not unlike us humans. Therefore, in this section, we are going to
train one of the more difficult example agents to push ourselves to learn how to fail and fix
training failures.

Unity is currently in the process of building a multi-level bench marking
tower environment that features multiple levels of difficulty. This will
allow DRL enthusiasts, practitioners, and researchers to test their
skills/models on baseline environments. The author has been told, on
reasonably good authority, that this environment should be completed by
early/mid 2019.

We will need to use many of the advanced features of the Unity ML-Agents toolkit
ultimately get this example working. This will require you to have a good understanding of
the first five chapters of this book. If you skipped those chapters to get here, please go back
and review them as needed. In many places in this chapter, helpful links have been
provided to previous relevant chapters.

The training sample environment we will focus on is the VisualHallway, not to be
confused with the standard Hallway example. The VisualHallway differs in that it uses the
camera as the complete input state into the model, while the other Unity examples we
previously looked at used some form of multi-aware sensor input, often allowing the agent
to see 90 to 360 degrees at all times, and be given other useful information. This is fine for
most games, and, in fact, many games still allow such cheats or intuition for NPC or
computer opponents as part of their AI. Putting these cheats in for a game's AI has been an
accepted practice for many years, but perhaps that will soon change.

Agent and the Environment Chapter 7

[172]

After all, good games are fun to play, and make sense to the player. Games of the not so
distant past could get away with giving the AI cheats. However, now, players are expecting
more, they want their AI to play by the same rules as them. The previous perception that
computer AI was hindered by technological limitations is gone, and now a game AI must
play by the same rules as the player, which makes our focus on getting the VisualHallway
sample working/training more compelling.

There is, of course, another added benefit to teaching an AI to play/learn like a player, and
that is the ability to transfer that capability to play in other environments using a concept
called transfer learning. We will explore transfer learning in Chapter 10, Imitation and
Transfer Learning, where we will learn how to adapt pretrained models/parameters and
apply them to other environments.

The VisualHallway/Hallway samples start by dropping the agent into a long room or
hallway at random. In the center of this space is a colored block, and at one end of the
hallway in each corner is a colored square covering the floor. The block is either red or gold
(orange/yellow) and is used to inform the agent of the target square that is the same color.
The goal is for the agent to move to the correct colored square. In the standard Hallway
example, the agent is given 360 degree sensor awareness. In the Visual Hallway example,
the agent is only shown a camera view of the room, exactly as the player version of the
game would see. This puts our agent on equal footing with a player.

Before we get to training, let's open up the example and play it as a player would, and see
how we do. Follow this exercise to open the VisualHallway sample:

Ensure you have a working installation of ML-Agents and can train a brain1.
externally in Python before continuing. Consult the previous chapter if you need
help.
Open the VisualHallway scene from the Assets | ML-2.
Agents | Examples | Hallway | Scenes folder in the Project window.

Agent and the Environment Chapter 7

[173]

Make sure that Agent | Hallway Agent | Brain is set to VisualHallwayPlayer,3.
as shown in the following screenshot:

Hallway Agent | Brain set to player

Agent and the Environment Chapter 7

[174]

Press Play in the editor to run the scene, and use the W, A, S, and D keys to4.
control the agent. Remember, the goal is to move to the square that is the same
color as the center square.
Play the game and move to both color squares to see what happens when a5.
reward is given, either negative or positive. The game screen will flash with
green or red when a reward square is entered.

This game environment is typical of a first person shooter, and perfect for training an agent
to play in first person as well. Training an agent to play as a human would be the goal of
many an AI practitioner, and one you may or may not strive to incorporate in your game.
As we will see, depending on the complexity of your game, this type of learning/training
may not even be a viable option. At this point, we should look at how to set up and train
the agent visually.

Training the agent visually
Fortunately, setting up the agent to train it visually is quite straightforward, especially if
you worked through the exercises in the last chapter. Open the Unity editor to the
VisualHallway scene, have a Python command or Anaconda window ready, and let's
begin:

In Unity, change Agent | Hallway Agent | Brain to VisualHallwayLearning, as1.
shown in the following screenshot:

Changing that the Brain to learning

Agent and the Environment Chapter 7

[175]

Click on the VisualHallwayLearning brain to locate it in the Project window.2.
Click on the VisualHallwayLearning brain to view its properties in the Inspector3.
window, and as shown in the following screen excerpt:

Confirming the properties are set correctly on the learning brain

Make sure that the Brain parameters are set to accept a single Visual4.
Observation at a resolution of 84 x 84 pixels, and are not using Gray scale. Gray
is simply the removal of the color channels, which makes the input one channel
instead of three. Recall our discussion of CNN layers in Chapter 2, Convolutional
and Recurrent Networks. Also, be sure that the Vector Observation | Space Size is
0, as shown in the preceding screenshot.
From the Menu, select File | Save and File | Save Project to save all your5.
changes.
Switch to your Python window or Anaconda prompt, make sure you are in the6.
ML-Agents/ml-agents directory, and run the following command:

mlagents-learn config/trainer_config.yaml --run-id=visualhallway --
train

Agent and the Environment Chapter 7

[176]

After the command runs, wait for the prompt to start the editor. Then, run the7.
editor when prompted and let the sample run to completion, or however long
you have the patience for.
After you run the sample to completion, you should see something like the8.
following:

Full training run to completion

Assuming you trained your agent to the end of the run that is, for 500 K iterations, then you
can confirm that the agent does, in fact, learn nothing. So, why would Unity put an
example like that in their samples? Well, you could argue that it was an intentional
challenge, or perhaps just an oversight on their part. Either way, we will take it as a
challenge to better understand reinforcement learning.

Agent and the Environment Chapter 7

[177]

Before we tackle this challenge, let's take a step back and reaffirm our understanding of this
environment by looking at the easier to train Hallway example in the next section.

Reverting to the basics
Often, when you get stuck on a problem, it helps to go back to the beginning and reaffirm
that your understanding of everything works as expected. Now, to be fair, we have yet to
explore the internals of ML-Agents and really understand DRL, so we never actually
started at the beginning, but, for the purposes of this example, we will take a step back and
look at the Hallway example in more detail. Jump back into the editor and follow this
exercise:

Open the Hallway sample scene in the editor. Remember, the scene is located in1.
the Assets | ML-Agents | Examples | Hallway | Scenes folder.
This example is configured to use several concurrent training environments. We2.
are able to train multiple concurrent training environments with the same brain,
because Proximal Policy Optimization (PPO), the RL algorithm powering this
agent, trains to a policy and not a model. We will cover the fundamentals of
policy and model-based learning when we get to the internals of PPO in Chapter
8, Understanding PPO, for RL. For our purposes and for simplicity, we will
disable these additional environments for now.
Press Shift and then select all the numbered HallwayArea (1-15) objects in the3.
Hierarchy.
With all the extra HallwayArea objects selected, disable them all by clicking the4.
Active checkbox, as shown in the following screenshot:

Disabling all the extra training hallways

Agent and the Environment Chapter 7

[178]

Open the remaining active HallwayArea in the Hierarchy window and select the5.
Agent.
Set the Brain agents to use the HallwayLearning brain. It may be set to use the6.
player brain by default.
Select the Academy object back in the Hierarchy window, and make sure the7.
Hallway Academy component has its brain set to Learning and that the Control
checkbox is enabled.
Open a Python or Anaconda window to the ML-Agents/ml-agents folder.8.
Make sure your ML-Agents virtual environment is active and run the following
command:

mlagents-learn config/trainer_config.yaml --run-id=hallway --train

Let the trainer start up and prompt you to click Play in the editor. Watch the9.
agent run and compare its performance to the VisualHallway example.

Generally, you will notice some amount of training activity from the agent before 50,000
iterations, but this may vary. By training activity, we mean the agent is responding with a
Mean Reward greater than -1.0 and a Standard Reward not equal to zero. Even if you let
the example run to completion, that is, 500,000 iterations again, it is unlikely that the
sample will train to a positive Mean Reward. We generally want our rewards to range from
-1.0 to +1.0, with some amount of variation to show learning activity. If you recall from the
VisualHallway example, the agent showed no learning activity for the duration of the
training. We could have extended the training iterations, but it is unlikely we would have
seen any stable training emerge. The reason for this has to do with the increased state space
and handling of rewards. We will expand our understanding of state and how it pertains to
RL in the next section.

Understanding state
The Hallway and VisualHallway examples are essentially the same game problem, but
provide a different perspective, or what we may refer to in reinforcement learning as
environment or game state. In the Hallway example, the agent learns by sensor input,
which is something we will look at shortly, while in the VisualHallway example, the agent
learns by a camera or player view. What will be helpful at this point is to understand how
each example handles state, and how we can modify it.

Agent and the Environment Chapter 7

[179]

In the following exercise, we will modify the Hallway input state and see the results:

Jump back into the Hallway scene with learning enabled as we left it at the end1.
of the last exercise.
We will need to modify a few lines of C# code, nothing very difficult, but it may2.
be useful to install Visual Studio (Community or another version) as this will be
our preferred editor. You can, of course, use any code editor you like as long as it
works with Unity.
Locate the Agent object in the Hierarchy window, and then, in the Inspector3.
window, click the Gear icon over the Hallway Agent component, as shown in the
following screenshot:

Opening the HallwayAgent.cs script

From the context menu, select the Edit Script option, as shown in the previous4.
screenshot. This will open the script in your code editor of choice.

Agent and the Environment Chapter 7

[180]

Locate the following section of C# code in your editor:5.

public override void CollectObservations()
{
 if (useVectorObs)
 {
 float rayDistance = 12f;
 float[] rayAngles = { 20f, 60f, 90f, 120f, 160f };
 string[] detectableObjects = { "orangeGoal", "redGoal",
"orangeBlock", "redBlock", "wall" };
 AddVectorObs(GetStepCount() / (float)agentParameters.maxStep);
 AddVectorObs(rayPer.Perceive(rayDistance, rayAngles,
detectableObjects, 0f, 0f));
 }
}

The CollectObservations method is where the agent collects its observations6.
or inputs its state. In the Hallway example, the agent has useVectorObs set to
true, meaning that it detects state by using the block of code that's internal to the
if statement. All this code does is cast a ray or line from the agent in angles of
20f, 60f, 120f, and 160f degrees at a distance defined by rayDistance and
detect objects defined in detectableObjects. The ray perception is done with a
helper component called rayPer of the RayPerception type, and it executes
rayPer.Percieve to collect the environment state it perceives. This, along with
the ratio of steps, is added to the vector observations or state the agent will input.
At this point, the state is 36 vectors in length. As of this version, this needs to be
constructed in code, but this will likely change in the future.
Alter the rayAngles line of code so that it matches the following:7.

float[] rayAngles = { 20f, 60f };

 This has the effect of narrowing the agent's vision or perception dramatically8.
from 180 to 60 degrees. Another way to think of it is reducing the input state.
After you finish the edit, save the file and return to Unity. Unity will recompile9.
the code when you return to the editor.

Agent and the Environment Chapter 7

[181]

Locate the HallwayLearning brain in the Assets | ML-Agents | Examples |10.
Hallway | Brains folder and change the Vector Observation | Space Size to 15,
as shown in the following screenshot:

Setting the Vector Observation Space Size

The reason we reduce this to 15 is that the input now consists of two angle11.
inputs, plus one steps input. Each angle input consists of five detectable objects,
plus two boundaries for seven total perceptions or inputs. Thus, two angles times
seven perceptions plus one for steps, equals 15. Previously, we had five angles
times seven perceptions plus one step, which equals 35.
Make sure that you save the project after modifying the Brain scriptable objects.12.
Run the example again in training and watch how the agent trains. Take some13.
time and pay attention to the actions the agent takes and how it learns. Be sure to
let this example run as long as you let the other Hallway sample run for,
hopefully to completion.

Were you surprised by the results? Yes, our agent with a smaller view of the world actually
trained quicker. This may seem completely counter-intuitive, but think about this in terms
of mathematics. A smaller input space or state means the agent has less paths to explore,
and so should train quicker. This is indeed what we saw in this example when we reduced
the input space by more than half. At this point, we definitely need to see what happens
when we reduce the visual state space in the VisualHallway example.

Agent and the Environment Chapter 7

[182]

Understanding visual state
RL is a very powerful algorithm, but can become very computationally complex when we
start to look at massive state inputs. To account for massive states, many powerful RL
algorithms use the concept of model-free or policy-based learning, something we will cover
in a later chapter. As we already know, Unity uses a policy-based algorithm that allows it to
learn any size of state space by generalizing to a policy. This allows us to easily input a state
space of 15 vectors in the example we just ran to something more massive, as in the
VisualHallway example.

Let's open up Unity to the VisualHallway example scene and look at how to reduce the
visual input space in the following exercise:

With the VisualHallway scene open, locate the HallwayLearningBrain in the1.
Assets | ML-Agents | Examples | Hallway | Brains folder and select it.
Modify the Brain Parameters | Visual Observation first camera observable to an2.
input of 32 x 32 Gray scale. An example of this is shown in the following
screenshot:

Setting up the visual observation space for the agent

Agent and the Environment Chapter 7

[183]

When Visual Observations are set on a brain, then every frame is captured from3.
the camera at the resolution selected. Previously, the captured image was 84 x 84
pixels large, by no means as large as the game screen in player mode, but still
significantly larger than 35 vector inputs. By reducing our image size and making
it gray, scale we reduced one input frame from 84 x 84 x 3 = 20,172 inputs to 32 x
32 x 1 =1,024. In turn, this greatly reduces our required model input space and
the complexity of the network that's needed to learn.
Save the project and the scene.4.
Run the VisualHallway in learning mode again using the following command:5.

mlagents-learn config/trainer_config.yaml --run-id=vh_reduced --
train

Notice how we are changing the --run-id parameter with every run. Recall6.
that, if we want to use TensorBoard, then each of our runs needs a unique name,
otherwise it just writes over previous runs.
Let the sample train for as long as you ran the earlier VisualHallway exercise, as7.
this will give you a good comparison of the change we made in state.

Are the results what you expected? Yeah, the agent still doesn't learn, even after reducing
the state. The reason for this is because the smaller visual state actually works against the
agent in this particular case. Not unlike the results, we would expect us humans to have
when trying to solve a task by looking through a pinhole. However, there is another way to
reduce visual state into feature sets using convolution. As you may recall, we covered
convolution and CNN in Chapter 2, Convolutional and Recurrent Networks, at some length.
In the next section, we will look at how we can reduce the visual state of our example by
adding convolutional layers.

Convolution and visual state
The visual state an agent uses in the ML-Agents toolkit is defined by a process that takes a
screenshot at a specific resolution and then feeds that into a convolutional network to train
some form of embedded state. In the following exercise, we will open up the ML-Agents
training code and enhance the convolution code for better input state:

Use a file browser to open the ML-Agents trainers folder located at ml-1.
agents.6\ml-agents\mlagents\trainers. Inside this folder, you will find
several Python files that are used to train the agents. The file we are interested in
is called models.py.

Agent and the Environment Chapter 7

[184]

Open the models.py file in your Python editor of choice. Visual Studio with the2.
Python data extensions is an excellent platform, and also provides the ability to
interactively debug code.
Scroll down in the file to locate the create_visual_observation_encoder3.
function, which looks as follows:

def create_visual_observation_encoder(self, image_input, h_size,
activation, num_layers, scope,reuse):
 #comments removed
 with tf.variable_scope(scope):
 conv1 = tf.layers.conv2d(image_input, 16, kernel_size=[8, 8],
strides=[4, 4],activation=tf.nn.elu, reuse=reuse, name="conv_1")
 conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4],
strides=[2, 2],activation=tf.nn.elu, reuse=reuse, name="conv_2")
 hidden = c_layers.flatten(conv2)

 with tf.variable_scope(scope + '/' + 'flat_encoding'):
 hidden_flat = self.create_vector_observation_encoder(hidden,
h_size, activation, num_layers, scope, reuse)
 return hidden_flat

The code is Python using TensorFlow, but you should be able to identify4.
the conv1 and conv2 convolution layers. Notice how the kernel and stride is
defined for layers and the missing pooling layers as well. Unity does not use
pooling in order to avoid loss of spatial relationships in data. However, as we
discussed earlier, this is not always so cut-and-dry, and really varies by the type
of visual features you are trying to identify.
Add the following lines of code after the two convolution layers and modify the5.
hidden layer setup, as follows:

conv1 = tf.layers.conv2d(image_input, 16, kernel_size=[8, 8],
strides=[4, 4], activation=tf.nn.elu, reuse=reuse, name="conv_1")
conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2,
2], activation=tf.nn.elu, reuse=reuse, name="conv_2")
conv3 = tf.layers.conv2d(image_input, 64, kernel_size=[2, 2],
strides=[2, 2], activation=tf.nn.elu, reuse=reuse, name="conv_3")

hidden = c_layers.flatten(conv3)

Agent and the Environment Chapter 7

[185]

This will have the effect of adding another layer of convolution to extract finer6.
details in the agents game view. As we saw in Chapter 2, Convolutional and
Recurrent Networks, adding extra layers of convolution will increase training time,
but does increase training performance – at least on image classifiers, anyway.
Jump back to your command or Anaconda window and run the sample in7.
learning mode with the following command:

mlagents-learn config/trainer_config.yaml --run-id=vh_conv1 --train

Observe the training and watch how the agent performs—be sure to watch the8.
agent's movements in the Game window as the sample runs. Is the agent doing
what you expected? Compare your results with the previous runs and notice the
differences.

One thing you will certainly notice is the agent becoming slightly more graceful and being
able to perform finer movements. While the training may take much longer overall, this
agent will be able to observe finer changes in the environment, and so will make finer
movements. You could, of course, swap the entire CNN architecture of ML-Agents to use
more well-defined architectures. However, be aware that most image classification
networks ignore spatial relevance that, as we will see in the next section, is very relevant to
game agents.

To pool or not to pool
As we discussed in Chapter 2, Convolutional and Recurrent Networks, ML-Agents does not
use any pooling in order to avoid any loss of spatial relationships in data. However, as we
saw in our self-driving vehicle example, a single pooling layer or two up at the higher
feature level extraction (convolutional layers) can in fact help. Although our example was
tested on a much more complex network, it will be helpful to see how this applies to a more
complex ML-Agents CNN embedding. Let's try this out, and apply a layer of pooling to the
last example by completing the following exercise:

Open the models.py file in your Python editor of choice. Visual Studio with1.
the Python data extensions is an excellent platform, and also provides the ability
to interactively debug code.
 Locate the following block of code, which is as we last left it in the previous2.
exercise:

conv1 = tf.layers.conv2d(image_input, 16, kernel_size=[8, 8],
strides=[4, 4], activation=tf.nn.elu, reuse=reuse, name="conv_1")
conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2,
2], activation=tf.nn.elu, reuse=reuse, name="conv_2")

Agent and the Environment Chapter 7

[186]

conv3 = tf.layers.conv2d(image_input, 64, kernel_size=[2, 2],
strides=[2, 2], activation=tf.nn.elu, reuse=reuse, name="conv_3")

hidden = c_layers.flatten(conv3)

We will now inject a layer of pooling by modifying the block of code, like so:3.

conv1 = tf.layers.conv2d(image_input, 16, kernel_size=[8, 8],
strides=[4, 4], activation=tf.nn.elu, reuse=reuse, name="conv_1")
#################### ADD POOLING
conv2 = tf.layers.conv2d(conv1, 32, kernel_size=[4, 4], strides=[2,
2], activation=tf.nn.elu, reuse=reuse, name="conv_2")
conv3 = tf.layers.conv2d(image_input, 64, kernel_size=[2, 2],
strides=[2, 2], activation=tf.nn.elu, reuse=reuse, name="conv_3")

hidden = c_layers.flatten(conv3)

This now sets up our previous sample to use a single layer of pooling. You can4.
think of this as extracting all the upper features, such as the sky, wall, or floor,
and pooling the results together. When you think about it, how much spatial
information does the agent need to know regarding one sky patch versus
another? All the agent really needs to know is that the sky is always up.
Open your command shell or Anaconda window and train the sample by5.
running the following code:

mlagents-learn config/trainer_config.yaml --run-id=vh_conv_wpool1 -
-train

As always, watch the performance of the agent and notice how the agent moves6.
as it trains. Watch the training until completion, or as much as you observed
others.

Now, depending on your machine or environment you may have noticed a substantial
improvement in training time, but actual performance suffered slightly. This means that
each training iteration executed much quicker, two to three times or more, but the agent
needs slightly more interactions. In this case, the agent will train quicker time-wise, but in
other environments, pooling at higher levels maybe more detrimental. When it comes
down to it, it will depend on the visuals of your environment, how well you want your
agent to perform, and, ultimately, your patience.

In the next section, we will look at another characteristic of state – memory, or sequencing.
We will look at how recurrent networks are used to capture the importance of
remembering sequences or event series.

Agent and the Environment Chapter 7

[187]

Recurrent networks for remembering series
The sample environments we have been running in this chapter use a form of recurrent
memory by default to remember past sequences of events. This recurrent memory is
constructed of Long Short-Term Memory (LSTM) layers that allow the agent to remember
beneficial sequences that may encourage some amount of future reward. Remember that
we extensively covered LSTM networks in Chapter 2, Convolutional and Recurrent Networks.
For example, an agent may see the same sequence of frames repeatedly, perhaps moving
toward the target goal, and then associate that sequence of states with an increased reward.
A diagram showing the original form of this network, taken from the paper Training an
Agent for FPS Doom Game using Visual Reinforcement Learning and VizDoom by Khan Aduil et
al., is as follows:

DQRN Architecture

The authors referred to the network architecture as DQRN, which stands for deep Q
recurrent network. It is perhaps strange they did not call it DQCRN, since the diagram
clearly shows the addition of convolution. While the ML-Agents implementation is slightly
different, the concept is very much the same. Either way, the addition of LSTM layers can
be a huge benefit to agent training, but, at this stage, we have yet to see the affect of not
being used in training.

Agent and the Environment Chapter 7

[188]

Therefore, in the following exercise, we will learn how to disable recurrent networks and
see what effect this has on training:

Open the standard Hallway example scene, the one without visual learning, from1.
the Assets/ML-Agents/Examples/Hallway/Scenes folder.
Open a command shell or Anaconda window and make sure your ML-Agent's2.
virtual Python environment is active.
Locate and open the trainer_config.xml file located in the ML-Agents/ml-3.
agents/config folder in a text or XML editor of your choice.
Locate the configuration block, as follows:4.

HallwayLearning:
 use_recurrent: true
 sequence_length: 64
 num_layers: 2
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 3
 buffer_size: 1024
 batch_size: 128
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

The named configuration block, called HallwayLearning, matches the name of5.
the brain we set up in the Academy within the scene. If you need to confirm this,
go ahead.
We generally refer to all these configuration parameters as hyperparameters, and6.
they can have a considerable effect on training, especially if set incorrectly. If you
scroll to the top of the file, you will notice a set of default parameters, followed
by exceptions for each of the named brains. Each section of brain parameters for
each brain override the default settings.
Disable the use_recurrent networks by modifying the code, as follows:7.

HallwayLearning:
 use_recurrent: false

Setting use_recurrent to false disables the use of recurrent encoding. We can8.
now see what effect this has on training.

Agent and the Environment Chapter 7

[189]

Save the configuration file.9.
Run the sample on learning as you normally would. You should be able to run a10.
training sample in your sleep by now.
As always, watch how the agent performs and be sure to pay attention to the11.
agent's movements as well.

As you can see, the agent performs considerably worse in this example, and it is obvious
that the use of recurrent networks to capture sequences of important moves made a big
difference. In fact, in most repetitive game environments, such as the Hallway and
VisualHallway, the addition of recurrent state works quite well. However, there will be
other environments that may not benefit, or may indeed suffer, from the use of state
sequencing. Environments that feature extensive exploration or new content may, in fact,
suffer. Since the agent may prefer shorter action sequences, this is limited by the amount of
memory that is configured for the agent. Try to keep that in mind when you develop a new
environment.

Now that we have a comparison for how our samples run without recurrent or LSTM
layers, we can test the sample again by tweaking some of the relevant recurrent
hyperparameters in the next section.

Tuning recurrent hyperparameters
As we learned in our discussion of recurrent networks, LSTM layers may receive variable
input, but we still need to define a maximum sequence length that we want the network to
remember. There are two critical hyperparameters we need to play with when using
recurrent networks. A description of these parameters, at the time of writing, and as listed
in the ML-Agents docs, is as follows:

 sequence_length: Corresponds to the length of the sequences of experience
that are passed through the network during training. This should be long enough
to capture whatever information your agent might need to remember over time.
For example, if your agent needs to remember the velocity of objects, then this
can be a small value. If your agent needs to remember a piece of information
that's given only once at the beginning of an episode, then this should be a larger
value:

Typical Range: 4 – 128

Agent and the Environment Chapter 7

[190]

memory_size: Corresponds to the size of the array of floating point numbers
that are used to store the hidden state of the recurrent neural network. This value
must be a multiple of four, and should scale with the amount of information you
expect the agent will need to remember to successfully complete the task:

Typical Range: 64 – 512

The description of the recurrent sequence_length and memory_size
hyperparameters was extracted directly from the Unity ML-Agents
documentation.

If we look at our VisualHallway example configuration in the trainer_config.yaml file,
we can see that the parameters are defined as follows:

VisualHallwayLearning:
 use_recurrent: true
 sequence_length: 64
 num_layers: 1
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 3
 buffer_size: 1024
 batch_size: 64
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

This effectively means that our agent will remember 64 frames or states of input using a
memory size of 256. The documentation is unclear as to how much memory a single input
takes, so we can only assume that the default visual convolutional encoding network, the
original two layer model, requires four per frame. We can assume that, by increasing our
convolutional encoding in the previous examples, the agent may have not been able to
remember every frame of state. Therefore, let's modify the configuration in the
VisualHallway example to account for that increase in memory, and see the effect it has in
the following exercise:

Open up the VisualHallway example to where we last left it in the previous1.
exercises, with or without pooling enabled. Just be sure to remember if you are or
are not using pooling, as this will make a difference to the required memory.

Agent and the Environment Chapter 7

[191]

Open the trainer_config.yaml file located in the ML-Agents/ml-2.
agents/config folder.
Modify the VisualHallwayLearning config section, as follows:3.

VisualHallwayLearning:
 use_recurrent: true
 sequence_length: 128
 num_layers: 1
 hidden_units: 128
 memory_size: 2048 without pooling, 1024 with pooling
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 3
 buffer_size: 1024
 batch_size: 64
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

We are increasing the agent's memory from 64 to 128 sequences, thus doubling4.
its memory. Then, we are increasing the memory to 2,048 when not using
pooling, and 1,024 when using pooling. Remember that pooling collects features
and reduces the number of feature maps that are produced at every step of
convolution.
Save the file after you finish editing it.5.
Open your command or Anaconda window and start training with the following6.
command:

mlagents-learn config/trainer_config.yaml --run-id=vh_recurrent --
train

When prompted, start the training session in the editor by pressing Play and7.
watch the action unfold.
Wait for the agent to train, like you did for the other examples we ran. You8.
should notice another increase in training performance, as well as the choice of
actions the agent makes, which should look better coordinated.

As we can see, a slight tweaking of hyperparameters allowed us to improve the
performance of the agent. Understanding the use of the many parameters that are used in
training will be critical to your success in building remarkable agents. In the next section,
we will look at further exercises you can use to improve your understanding and skill.

Agent and the Environment Chapter 7

[192]

Exercises
As always, try and complete a minimum of two to three of these exercises on your own,
and for your own benefit. While this is a hands-on book, it always helps to spend a little
more time applying your knowledge to new problems.

Complete the following exercises on your own:

Go through and explore the VisualPushBlock example. This example is quite1.
similar to the Hallway, and is a good analog to play with.
Modify the Hallway example's HallwayAgent script to use more scanning2.
angles, and thus more vector observations.
Modify the Hallway example to use a combined sensor sweep and visual3.
observation input. This will require you to modify the learning brain
configuration by adding a camera, and possibly updating some
hyperparameters.
Modify other visual observation environments to use some form of vector4.
observation. A good example to try this on is the VisualPushBlock example.
Modify the visual observation camera space to be larger or smaller than 84 x 845.
pixels, and to use, or not use, gray scaling. This is a good exercise to play with
when testing more complex or simpler CNN network architectures.
Modify the create_visual_observation_encoder convolutional encoding6.
function so that it can use different CNN architectures. These architectures may
be as simple or complex as you want.
Modify the create_visual_observation_encoder convolutional encoding7.
function to use different levels and amounts of pooling layers. Try and use
pooling after every convolutional layer to explore its effect on training.
Disable and enable recurrent networks on one or two of the other example's8.
environments and explore the effect this has.
Play with the sequence_length and memory_size parameters with recurrent9.
enabled to see the effect that different sequence lengths have on agent
performance. Be sure to increase the memory_size parameter if you increase the
sequence_length.
Consider adding additional vector or visual observations to the agent. After all,10.
an agent doesn't have to have only a single form of sensory input. An agent
could always detect the direction it is in, or perhaps it may have other forms of
sensory input, such as being able to listen. We will give an agent the ability to
listen in a later chapter, but try and implement this yourself.

Agent and the Environment Chapter 7

[193]

Remember, these exercises are provided for your benefit and enjoyment, so be sure to try at
least a couple.

Summary
In this chapter, we took a very close look at how the agents in ML-Agents perceive their
environment and process input. An agent's perception of the environment is completely in
control by the developer, and it is often a fine balance of how much or how little input/state
you want to give an agent. We played with many examples in this chapter and started by
taking an in-depth look at the Hallway sample and how an agent uses rays to perceive
objects in the environment. Then, we looked at how an agent can use visual observations,
not unlike us humans, as input or state that it may learn from. From this, we delved into the
CNN architecture that ML-Agents uses to encode the visual observations it provides to the
agent. We then learned how to modify this architecture by adding or removing convolution
or pooling layers. Finally, we looked at the role of memory, or how recurrent sequencing of
input state can be used to help with agent training. Recurrent networks allow an agent to
add more value to action sequences that provide a reward.

In the next chapter, we will take a closer look at RL and how agents use the PPO algorithm.
We will learn more about the foundations of RL along the way, as well as learn about the
importance of the many hyperparameters used in training.

8
Understanding PPO

We have avoided going too deep into the more advanced inner workings of the proximal
policy optimization (PPO) algorithm, even going so far as to avoid any policy-versus-
model discussion. If you recall, PPO is the reduced level (RL) method first developed at
OpenAI that powers ML-Agents, and is a policy-based algorithm. In this chapter, we
will look at the differences between policy-and model-based RL algorithms, as well as the
more advanced inner workings of the Unity implementation.

The following is a list of the main topics we will cover in this chapter:

Marathon reinforcement learning
The partially observable Markov decision process
Actor-Critic and continuous action spaces
Understanding TRPO and PPO
Tuning PPO with hyperparameters

The content in this chapter is at an advanced level, and assumes that you have covered
several previous chapters and exercises. For the purposes of this chapter, we will also
assume that you are is able to open and run a learning environment in Unity with ML-
Agents without difficulty.

Understanding PPO Chapter 8

[195]

Marathon RL
So far, our focus has been on discrete actions and episodic environments, where the agent
often learns to solve a puzzle or accomplish some task. The best examples of such
environments are GridWorld, and, of course, the Hallway/VisualHallway samples, where
the agent discretely chosses actions such as up, left, down, or right, and, using those
actions, has to navigate to some goal. While these are great environments to play with and
learn the basic concepts of RL, they can be quite tedious environments to learn from, since
results are not often automatic and require extensive exploration. However, in marathon
RL environments, the agent is always learning by receiving rewards in the form of control
feedback. In fact, this form of RL is analogus to control systems for robotics and
simulations. Since these environments are rich with rewards in the form of feedback, they
provide us with better immediate feedback when we alter/tune hyperparameters, which
will make these types of environments perfect for our own learning purposes.

Unity provides several examples of marathon RL environments, and at
the time of writing featured the Crawler, Reacher, Walker, and Humanoid
example environments, but these will likely be changed in the future.

Marathon environments are constructed differently, and we should probably understand
some of these differences before going any further. Open up the Unity editor and your
Python command window of choice, set up to run mlagents-learn, and complete the
following the exercise:

Open the CrawlerDynamicTarget example scene from the Assets/ML-1.
Agents/Examples/Crawler/Scenes folder. This example features an agent
with four movable limbs, each with two joints that can move as well. The goal is
for the agent to move toward some dynamic target that keeps changing.
Select the DynamicPlatform | Crawler object in the Hierarchy window and take2.
note of the Crawler Agent component and CrawlerDynamicLearning brain, as
shown in the following
screenshot:

Understanding PPO Chapter 8

[196]

Inspecting the Crawler agent and brain

Notice how the space size of the brain is 129 vector observations and 203.
continuous actions. A continuous action returns a value that determines the
degree to which a joint may rotate, thus allowing the agent to learn how to
coordinate these joint actions into movements that will allow it to crawl to a
goal.

Understanding PPO Chapter 8

[197]

Click the target icon beside the Crawler Agent component, and from the context4.
menu, select Edit Script.
After the script opens, scroll down and look for the CollectObservations5.
method:

public override void CollectObservations()
{
 jdController.GetCurrentJointForces();

 AddVectorObs(dirToTarget.normalized);
 AddVectorObs(body.transform.position.y);
 AddVectorObs(body.forward);
 AddVectorObs(body.up);
 foreach (var bodyPart in jdController.bodyPartsDict.Values)
 {
 CollectObservationBodyPart(bodyPart);
 }
}

Again, the code is in C#, but it should be fairly self-explanatory as to what inputs6.
the agent is perceiving. We can first see that the agent takes the direction to
target, its up and forward, as well as observations from each body part as input.
Select Academy in the scene and make sure the Brain configuration is set for7.
Control (learning).
From your previously prepared command window or Anaconda window, run8.
the mlagents-learn script as follows:

mlagents-learn config/trainer_config.yaml --run-id=crawler --train

Quite quickly after the training begins, you will see the agent making immediate9.
measurable progress.

This agent can impressively train very quickly, and will be incredibly useful for testing our
knowledge of how RL works in the coming sections. Feel free to look through and explore
this sample, but avoid tuning any parameters, as we will begin doing that in the next
section.

Understanding PPO Chapter 8

[198]

The partially observable Markov decision
process
Back in Chapter 5, Introducing DRL, we learned that a Markov Decision Process (MDP) is
used to define the state/model an agent uses to calculate an action/value from. In the case of
Q-learning, we have seen how a table or grid could be used to hold an entire MDP for an
environment such as the Frozen Pond or GridWorld. These types of RL are model-based,
meaning they completely model every state in the environment—every square in a grid
game, for instance. Except, in most complex games and environments, being able to map
physical or visual state becomes a partially observable problem, or what we may refer to as
a partially observable Markov decision process (POMDP).

A POMDP defines a process where an agent never has a complete view of its environment,
but instead learns to conduct actions based on a derived general policy. This is
demonstrated well in the Crawler example, because we can see the agent learning to move
using only limited information—the direction to target. The following table outlines the
definition of Markov models we generally use for RL:

No Yes

All states observable?
No Markov Chain MDP
Yes Hidden Markov Model POMDP

Since we provide our agent with control over its states in the form of actions, the Markov
models we study are the MDP and POMDP. Likewise, these processes will also be often
referred to as on or off model, while if an RL algorithm is completely aware of state, we call
it a model-based process. Conversely, a POMDP refers to an off-model process, or what we
will refer to as a policy-based method. Policy-based algorithms, provide better
generalization and have the ability to learn in environments with an unknown or infinite
number of observable states. Examples of partially observable states are environments such
as the Hallway, VisualHallway, and, of course, Crawler.

Markov models provide a foundation for many aspects of machine
learning, and you may encounter their use in more advanced deep
learning methods known as deep probabilistic programming. Deep PPL,
as it is referred to, is a combination or variational inference and deep
learning methods.

Understanding PPO Chapter 8

[199]

Model-free methods typically use an experienced buffer to store a set of experiences that it
will use later to learn a general policy from. This buffer is defined by a few
hyperparameters, called time_horizon, batch_size, and buffer_size. Definitions of
each of these parameters extracted from the ML-Agents documentation are given here:

time_horizon: This corresponds to how many steps of experience to collect per
agent before adding them to the experience buffer. When this limit is reached
before the end of an episode, a value estimate is used to predict the overall
expected reward from the agent's current state. As such, this parameter trades off
between a less biased, but higher variance estimate (long time horizon), and a
more biased, but less varied estimate (short time horizon). In cases where there
are frequent rewards within an episode, or episodes are prohibitively large, a
smaller number can be more ideal. This number should be large enough to
capture all the important behavior within a sequence of an agent's actions:

Typical range: 32 – 2,048

buffer_size: This corresponds to how many experiences (agent observations,
actions, and rewards obtained) should be collected before we update the model
or do any learning. This should be a multiple of batch_size. Typically, a larger
buffer_size parameter corresponds to more stable training updates.

Typical range: 2,048 – 4,09,600

batch_size: This is the number of experiences used for one iteration of a
gradient descent update. This should always be a fraction of
the buffer_size parameter. If you are using a continuous action space, this
value should be large (in the order of thousands). If you are using a discrete
action space, this value should be smaller (in order of tens).

Typical range (continuous): 512 – 5,120

Typical range (discrete): 32 – 512

We can see how these values are set by looking at the CrawlerDynamicLearning brain
configuration, and altering this to see the effect this has on training. Open up the editor and
a properly configured Python window to the CrawlerDynamicTarget scene and follow
this exercise:

Open the trainer_config.yaml file located in the ML-Agents/ml-1.
agents/config folder.

Understanding PPO Chapter 8

[200]

Scroll down to the CrawlerDynamicLearning brain configuration section:2.

CrawlerDynamicLearning:
 normalize: true
 num_epoch: 3
 time_horizon: 1000
 batch_size: 2024
 buffer_size: 20240
 gamma: 0.995
 max_steps: 1e6
 summary_freq: 3000
 num_layers: 3
 hidden_units: 512

Note the highlighted lines showing the time_horizon, batch_size, and3.
buffer_size parameters. If you recall from our earlier Hallway/VisualHallway
examples, the time_horizon parameter was only 32 or 64. Since those examples
used a discrete action space, we could set a much lower value for
time_horizon.
 Double all the parameter values, as shown in the following code excerpt:4.

time_horizon: 2000
batch_size: 4048
buffer_size: 40480

Essentially, what we are doing here is doubling the amount of experiences the5.
agent will use to build a policy of the environment around it. In essence, we are
giving the agent a larger snapshot of experiences to train against.
Run the agent in training as you have done so many times before.6.
Let the agent train for as long as you ran the previous base sample. This will give7.
you a good comparison in training performance.

One thing that will become immediately obvious is how much more stable the agent trains,
meaning the agent's mean reward will progress more steadily and jump around less. Recall
that we want to avoid training jumps, spikes, or wobbles, as this could indicate poor
convergence on the part of the network's optimization method. This means that more
gradual changes are generally better, and indicate good training performance. By doubling
time_horizon and associated parameters, we have doubled the amount of experiences the
agent used to learn from. This, in turn, had the effect of stabilizing the training, but it is
likely that you noticed the agent took longer to train to the same number of iterations.

Understanding PPO Chapter 8

[201]

Partially observable RL algorithms are classed as policy-based, model-free, or off-model,
and are a foundation for PPO. In the next section, we will look at the improvements in RL
that deal with the additional complexities of managing continuous action spaces better.

Actor-Critic and continuous action spaces
Another complexity we introduced when looking at marathon RL or control learning was
the introduction of continuous action spaces. Continuous action spaces represent a set of
infinite possible actions an agent could take. Where our agent could previously favor a
discrete action, yes or no, it now has to select some points within an infinite space of actions
as an action for each joint. This mapping from an infinite action space to an action is not
easy to solve—however, we do have neural networks at our disposal, and these provide us
with an excellent solution using an architecture not unlike the GANs we looked at in
Chapter 3, GAN for Games.

As we discovered in the chapter on GANs, we could propose a network architecture
composed of two competing networks. These competing networks would force each
network to learn by competing against each other for the best solution to mapping a
random space into a convincing forgery. A similar concept to a GAN can be applied in this
case as well, and is called the Actor-Critic model. A diagram of this model is as follows:

Actor-Critic architecture

Understanding PPO Chapter 8

[202]

What happens here is that the Actor selects an action from the policy given a state.
The state is first passed through a Critic, which values the best action given the current
state, provided some error. More simply put, the Critic criticizes each action based on the
current state, and then the Actor chooses the best action given the state.

This method of action selection was first explored in an algorithm called
dueling double Q networks (DDQN). It is now the basis for most
advanced RL algorithms.

Actor-Critic was essentially required to solve the continuous action space problem, but,
given its performance, this method has been incorporated into some advanced discrete
algorithms as well. ML-Agents uses an Actor-Critic model for continuous spaces, but does
not use one for discrete action spaces.

Using Actor-Critic requires, or works best with, additional layers and neurons in our
network, which is something we can configure in ML-Agents. The hyperparameter
definitions for these are pulled from the ML-Agents documents, and are as follows:

num_layers: This corresponds to how many hidden layers are present after the
observation input, or after the CNN encoding of the visual observation. For
simple problems, fewer layers are likely to train faster and more efficiently. More
layers may be necessary for more complex control problems:

Typical range: 1 – 3

hidden_units: These correspond to how many units are in each fully-connected
layer of the neural network. For simple problems where the correct action is a
straightforward combination of the observation inputs, this should be small. For
problems where the action is a very complex interaction between the observation
variables, this should be larger:

Typical range: 32 – 512

Understanding PPO Chapter 8

[203]

Let's open up a new ML-Agents marathon or control sample and see what effect modifying
these parameters has on training. Follow this exercise to understand the effect of adding
layers and neurons (units) to a control problem:

Open the Walker scene from the Assets/ML-1.
Agents/Examples/Walker/Scenes folder. This example features a walking
humanoid animation.
Locate and select the WalkerAgent object in the Hierarchy window, and then2.
look to the Inspector window and examine the Agent and Brain settings, as
shown in the following screenshot:

The WalkerAgent and WalkerLearning properties

Understanding PPO Chapter 8

[204]

Select WalkerAcademy in the Hierarchy window and make sure the Control3.
option is enabled for the Brains parameter.
Open the trainer_config.yaml file located in the ML-Agents/ml-4.
agents/config folder and scroll down to the WalkerLearning section as
follows:

WalkerLearning:
 normalize: true
 num_epoch: 3
 time_horizon: 1000
 batch_size: 2048
 buffer_size: 20480
 gamma: 0.995
 max_steps: 2e6
 summary_freq: 3000
 num_layers: 3
 hidden_units: 512

Notice how many layers and units this example is using. Is it more or fewer than5.
what we used for the discrete action problems?
Save everything and set the sample up for training.6.
Launch a training session from your Python console with the following7.
command:

mlagents-learn config/trainer_config.yaml --run-id=walker --train

This agent may take considerably longer to train, but try and wait for about8.
100,000 iterations in order to get a good sense of its training progress.

Now that we have a better understanding of Actor-Critic and how it is used in continuous
action spaces, we can move on to exploring what effect changing the network size has on
training these more complex networks in the next section.

Expanding network architecture
Actor-Critic architectures increase the complexity of the problem, and thus the complexity
and size of the networks needed to solve them. This is really no different than the case in
our earlier look at PilotNet, the multilayer CNN architecture that was used by Nvidia to
self-drive.

Understanding PPO Chapter 8

[205]

What we want to see is the immediate effect that increasing the size of our network has on a
complex example such as the Walker example. Open Unity to the Walker example and
complete the following exercise:

Open trainer_config.yaml from where it is normally located.1.
Modify the WalkerLearning configuration, as shown in the following code:2.

WalkerLearning:
 normalize: true
 num_epoch: 3
 time_horizon: 1000
 batch_size: 2048
 buffer_size: 20480
 gamma: 0.995
 max_steps: 2e6
 summary_freq: 3000
 num_layers: 1
 hidden_units: 128

Set num_layers: 1 and hidden_units: 128. These are typical values that we3.
would use for discrete action space problems. You can confirm this by looking at
another discrete sample, such as the VisualHallwayLearning configuration, as
follows:

VisualHallwayLearning:
 use_recurrent: false
 sequence_length: 64
 num_layers: 1
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 3
 buffer_size: 1024
 batch_size: 64
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

This sample uses the same settings as we just set our continuous action problem4.
to.
When you are done editing, save everything and get ready for training.5.
Launch a training session, with a new run-id parameter. Remember to get in the6.
practice of changing the run-id parameter with every run so that it is easier to
discern each run in TensorBoard.

Understanding PPO Chapter 8

[206]

As always, let the sample run for as long as you did the earlier unaltered run for7.
a good comparison.

One of the things you may immediately notice when running this sample is how stable the
training is. The second thing you may notice is that training stability increases, but
performance slightly decreases. Remember that a smaller network has less weights and will
generally be more stable and quicker to train. However, in this problem, while the training
is more stable on the network and promises to be faster, you may notice that training hits a
wall. The agent, now limited by network size, is able to optimize the smaller network faster,
but without the fine control we have seen before. In fact, this agent will never be as good as
the first unaltered run since it is now limited by a smaller network. This is another one of
those trade-offs you need to balance when building DRL agents for games/simulations.

In the next section, we take a further look at what we call advantage functions or those used
like in Actor-Critic, and will first explore TRPO, and, of course, PPO.

Understanding TRPO and PPO
There are many variations to the policy-and model-free algorithms that have become
popular for solving RL problems of optimizing predictions of future rewards. As we have
seen, many of these algorithms use an advantage function, such as Actor-Critic, where we
have two sides of the problem trying to converge to the optimum solution. In this case, the
advantage function is trying to find the maximum expected discounted rewards. TRPO and
PPO do this by using an optimization method called a Minorize-Maximization
(MM) algorithm. An example of how the MM algorithm solves a problem is shown in the
following diagram:

Using the MM algorithm

Understanding PPO Chapter 8

[207]

This diagram was extracted from a series of blogs by Jonathon Hui that elegantly describe
the MM algorithm along with the TRPO and PPO methods in much greater detail. See the
following link for the source: (https:/ / medium. com/ @jonathan_ hui/rl- proximal- policy-
optimization-ppo- explained- 77f014ec3f12).

Essentially, the MM algorithm finds the optimum pair function by interactively maximizing
and minimizing function parameters until it arrives at a converged solution. In the
diagram, the red line denotes the function we are looking to approximate, and the blue line
denotes the converging function. You can see the progression as the algorithm picks
min/max values that will find a solution.

The problem we encounter when using MM is that the function approximation can
sometimes fall off, or down into a valley. In order to understand this better, let's consider
this as solving the problem of climbing an uneven hill using a straight line. An example of
such a scenario is seen here:

Attempting to climb a hill using linear methods

https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12

Understanding PPO Chapter 8

[208]

You can see that using only linear paths to try and navigate this quite treacherous ridge
would, in fact, be dangerous. While the danger may not be as real, it is still a big problem
when using linear methods to solve MM, as it is if you were hiking up a steep ridge using
only a straight fixed path.

TRPO solves the problem of using linear methods by using a quadratic method, and by
limiting the amount of steps each iteration can take in a form of trust region. That is, the
algorithm makes sure that every position is positive and safe. If we consider our hill
climbing example again, we may consider TRPO as placing a path or region of trust, like in
the following photo:

A trust region path up the hill

In the preceding photo, the path is shown for example purposes only as a connected set of
circles or regions; the real trust path may or may not be closer to the actual peak or ridge.
Regardless, this has the effect of allowing the agent to learn at a more gradual and
progressive pace. With TRPO, the size of the trust region can be altered and made bigger or
smaller to coincide with our preferred policy convergence. The problem with TRPO is that
it is quite complex to implement since it requires the second-degree derivation of some
complex equations.

Understanding PPO Chapter 8

[209]

PPO addresses this issue by limiting or clipping the Kulbach-Leibler (KL) divergence
between two policies through each iteration. KL divergence measures the difference in
probability distributions and can be described through the following diagram:

Understanding KL divergence

In the preceding diagram, p(x) and q(x) each represent a different policy where the KL
divergence is measured. The algorithm then, in turn, uses this measure of divergence to
limit or clip the amount of policy change that may occur in an iteration. ML-Agents uses
two hyperparameters that allow you to control this amount of clipping applied to the
objective or function that determines the amount of policy change in an iteration. The
following are the definitions for the beta and epsilon parameters, as described in the Unity
documentation:

Beta: This corresponds to the strength of the entropy regularization, which
makes the policy more random. This ensures that agents properly explore the
action space during training. Increasing this will ensure that more random
actions are taken. This should be adjusted so that the entropy (measurable from
TensorBoard) slowly decreases alongside increases in reward. If entropy drops
too quickly, increase beta. If entropy drops too slowly, decrease beta:

 Typical range: 1e-4 – 1e-2
Epsilon: This corresponds to the acceptable threshold of divergence between the
old and new policies during gradient descent updating. Setting this value to be
small will result in more stable updates, but will also slow the training process:

 Typical range: 0.1 – 0.3

Understanding PPO Chapter 8

[210]

The key thing to remember about these parameters is that they control how quickly a policy
changes from one iteration to the next. If you notice an agent training somewhat erratically,
it may be beneficial to tune these parameters to smaller values. The default value for
epsilon is .2 and for beta is 1.0e-2, but, of course, we will want to explore how these values
may affect training, either in a positive or negative way. In the next exercise, we will
modify these policy change parameters and see what effect they have in training:

For this example, we will open up the CrawlerDynamic scene from the1.
Assets/ML-Agents/Examples/Crawler/Scenes folder.
Open the trainer_config.yaml file located in the ML-Agents/ml-2.
agents/config folder. Since we have already evaluated the performance of this
sample, there are a couple of ways we will revert the training configuration and
make some modification to the beta and epsilon parameters.
Scroll down to the CrawlerDynamicLearning configuration section and modify3.
it as follows:

CrawlerDynamicLearning:
 normalize: true
 num_epoch: 3
 time_horizon: 1000
 batch_size: 1024
 buffer_size: 20240
 gamma: 0.995
 max_steps: 1e6
 summary_freq: 3000
 num_layers: 3
 hidden_units: 512
 epsilon: .1
 beta: .1

We modified the epsilon and beta parameters to higher values, meaning that4.
the training will be less stable. If you recall, however, these marathon examples
generally train in a more stable manner.
Open up a properly configured Python console and run the following command5.
to launch training:

mlagents-learn config/trainer_config.yaml --run-id=crawler_policy -
-train

As usual, wait for a number of training sessions for a good comparison from one6.
example to the next.

Understanding PPO Chapter 8

[211]

What you may find unexpected is that the agent appears to start regressing, and in fact, it
is. This is happening because we made those trust regions too large (a large beta), and
while we allowed the rate of change to be lower (.1 epsilon), we can see the beta value is
more sensitive to training.

Keep in mind that the Unity ML-Agents implementation uses a number of cross-features in
tandem, which comprise a powerful RL framework. In the next section, we will take
another quick look at a late-comer optimization parameter that Unity has recently added.

Generalized advantage estimate
The area of RL is seeing explosive growth due to constant research that is pushing the
envelope on what is possible. With every little advancement comes additional
hyperparameters and small tweaks that can be applied to stabilize and/or improve training
performance. Unity has recently add a new parameter called lambda, and the definition
taken from the documentation is as follows:

lambda: This corresponds to the lambda parameter used when calculating the
Generalized Advantage Estimate (GAE) https:/ /arxiv. org/ abs/ 1506. 02438.
This can be thought of as how much the agent relies on its current value estimate
when calculating an updated value estimate. Low values correspond to more
reliance on the current value estimate (which can be high bias), and high values
correspond to more reliance on the actual rewards received in the environment
(which can be high variance). The parameter provides a trade-off between the
two, and the right value can lead to a more stable training process:

Typical range: 0.9 – 0.95

The GAE paper describes a function parameter called lambda that can be used to shape the
reward estimation function, and is best used for control or marathon RL tasks. We won't go
too far into details, and interested readers should certainly pull down the paper and review
it on their own. However, we will explore how altering this parameter can affect a control
sample such as the Walker scene in the next exercise:

Open the Unity editor to the Walker example scene.1.
Select the Academy object in the Hierarchy and confirm that the scene is still set2.
for training/learning. If it is, you won't have to do anything else. If the scene isn't
set up to learn, you know what to do.

https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438

Understanding PPO Chapter 8

[212]

Open the trainer_config.yaml file and modify WalkerLearning as follows:3.

WalkerLearning:
 normalize: true
 num_epoch: 3
 time_horizon: 1000
 batch_size: 2048
 buffer_size: 20480
 gamma: 0.995
 max_steps: 2e6
 summary_freq: 3000
 num_layers: 3
 hidden_units: 512
 lambd: .99

Notice how we are setting the lambd parameters and make sure4.
that num_layers and hidden_units are reset to the original values. In the
paper, the authors describe optimum values from .95 to .99, but this differs
from the Unity documentation.
Save the file when you are done editing.5.
Open up a Python console setup for training and run it with the following6.
command:

mlagents-learn config/trainer_config.yaml --run-id=walker_lambd --
train

Make sure that you let the sample run as long as you have previously to get a7.
good comparison.

One thing you will notice after a log of training is that the agent does indeed train almost
25% slower on this example. What this result tells us is that, by increasing lambda, we are
telling the agent to put more value on rewards. Now, this may seem counter-intuitive, but
in this sample or this type of environment, the agent is receiving constant small positive
rewards. This results in each reward getting skewed, which, as we can see, skews training
and impedes agent progress. It may be an interesting exercise for interested readers to try
and play with the lambda parameter in the Hallway environment, where the agent only
receives a single positive episode reward.

The RL advantage function or functions come in many forms, and are in place to address
many of the issues with off-model or policy-driven algorithms such as PPO. In the next
section, we round off the chapter by modifying and creating a new sample
control/marathon learning environment on our own.

Understanding PPO Chapter 8

[213]

Learning to tune PPO
In this section, we are going to learn to tune a modified/new control learning environment.
This will allow us to learn more about some inner workings of the Unity example, but will
also show you how to modify a new or modified sample on your own later. Let's begin by
opening up the Unity editor so we can complete the following exercise:

Open the Reacher scene, set it for learning, and run it in training. You should be1.
able to do this part in your sleep now. Let the agent train for a substantial
amount of time so you can establish a baseline, as always.
From the menu, select Assets/Import Package/Custom Package.2.
Locate Chapter_8_Assets.unitypackage from the Chapter08 folder of the
books downloaded to the source code.
Open up the Reacher_3_joint scene from the Assets/HoDLG/Scenes folder.3.
This is the modified scene, but we will go through its construction as well.
First, notice that there is only a single Reacher arm active, but now with three4.
joints, as shown in the following screenshot:

Inspecting the Agent game object

Notice how the arm now has three sections, with the new section called5.
Capsule(2) and identified as Pendulum C. The order of the joints is now out of
order, meaning Pendulum C is actually the middle pendulum and not the
bottom.
Select each of the Capsule objects and inspect their configuration and placement,6.
as summarized in the following screenshot:

Understanding PPO Chapter 8

[214]

Inspecting the Capsule objects

Be sure to note the Configurable Joint | Connected Body object for each of the7.
capsules as well. This property sets the body that the object will hinge or join to.
There are plenty of other properties on the Configurable Joint component that
would allow you to mimic this joint interaction in any form, perhaps even
biological. For example, you may want to make the joints in this arm to be more
human-like by only allowing certain angles of movement. Likewise, if you were
designing a robot with limited motion, then you could simulate that with this
joint component as well.
At this stage, we can set up and run the example. Open and set up for training a8.
Python console or Anaconda window.

Understanding PPO Chapter 8

[215]

Run the sample in training and observe the progress of the agent. Let the agent9.
run for enough iterations in order to compare training performance with the
baseline.

At this stage, we have our sample up and running and we are ready to start tuning new
parameters in to optimize training. However, before we do that, we will step back and take
a look at the C# code changes required to make the last sample possible. The next section
covers the C# code changes, and is optional for those developers not interested in the code.
If you plan to build your own control or marathon environments in Unity, you will need to
read the next section.

Coding changes required for control projects
As we already mentioned, this section is optional and is for those curious about getting into
the details of building their own control sample using Unity C#. It is also likely that, in the
future, no coding changes will be required to modify these types of samples, and that is the
other reason this section is optional.

Complete the following exercise to go through the coding changes needed to add a joint in
the Reacher control example:

Select the Agent object in the Hierarchy window and then, in the Inspector1.
window, note the Reacher Agent_3 component. This is the modified script that
we will be inspecting.
Click the target icon beside the Reach Agent_3 component, and from the context2.
menu, select Edit Script.
This will open the ReacherAgent_3.cs script in your C# code editor of choice.3.
The first thing to note under the declarations is the addition of new variables,4.
highlighted in bold as follows:

public GameObject pendulumA;
public GameObject pendulumB;
public GameObject pendulumC;
public GameObject hand;
public GameObject goal;
private ReacherAcademy myAcademy;
float goalDegree;
private Rigidbody rbA;
private Rigidbody rbB;
private Rigidbody rbC;
private float goalSpeed;
private float goalSize;

Understanding PPO Chapter 8

[216]

Two new variables, pendulumC and rbC, are added for holding the new joints5.
GameObject and RigidBody. Now, Rigidbody in Unity physics denotes an
object that can be moved or manipulated by the physics engine.
Unity is in the process of performing an upgrade to their physics engine that will
alter some of the teachings here. The current version of ML-Agents uses the old
physics system, so this example will as well.
The next thing of importance to note is the addition of additional agent6.
observations, as shown in the following CollectObservations method:

public override void CollectObservations()
 {
 AddVectorObs(pendulumA.transform.localPosition);
 AddVectorObs(pendulumA.transform.rotation);
 AddVectorObs(rbA.angularVelocity);
 AddVectorObs(rbA.velocity);

 AddVectorObs(pendulumB.transform.localPosition);
 AddVectorObs(pendulumB.transform.rotation);
 AddVectorObs(rbB.angularVelocity);
 AddVectorObs(rbB.velocity);

 AddVectorObs(pendulumC.transform.localPosition);
 AddVectorObs(pendulumC.transform.rotation);
 AddVectorObs(rbC.angularVelocity);
 AddVectorObs(rbC.velocity);

 AddVectorObs(goal.transform.localPosition);
 AddVectorObs(hand.transform.localPosition);
 AddVectorObs(goalSpeed);
 }

Understanding PPO Chapter 8

[217]

The section in bold is adding the new observations for pendulumC and rbC,7.
which total another 13 vectors. Recall that this means we also needed to switch
our brain from 33 vector observations to 46 observations, as shown in the
following screenshot:

Inspecting the update ReacherLearning_3 brain

Next, we will look to the AgentAction method; this is where the Python trainer8.
code calls the agent and tells it what movements it makes, and is as follows:

public override void AgentAction(float[] vectorAction, string
textAction)
 {
 goalDegree += goalSpeed;
 UpdateGoalPosition();

 var torqueX = Mathf.Clamp(vectorAction[0], -1f, 1f) * 150f;
 var torqueZ = Mathf.Clamp(vectorAction[1], -1f, 1f) * 150f;
 rbA.AddTorque(new Vector3(torqueX, 0f, torqueZ));

 torqueX = Mathf.Clamp(vectorAction[2], -1f, 1f) * 150f;
 torqueZ = Mathf.Clamp(vectorAction[3], -1f, 1f) * 150f;
 rbB.AddTorque(new Vector3(torqueX, 0f, torqueZ));

 torqueX = Mathf.Clamp(vectorAction[3], -1f, 1f) * 150f;
 torqueZ = Mathf.Clamp(vectorAction[4], -1f, 1f) * 150f;
 rbC.AddTorque(new Vector3(torqueX, 0f, torqueZ));
 }

Understanding PPO Chapter 8

[218]

In this method, we are extending the code to allow the agent to move the new9.
joint in the form of rigidbody rbC. Did you notice that the new learning brain
also added more action space?
Lastly, we look at the AgentReset method to see how the agent will reset itself10.
with the new limb, as follows:

public override void AgentReset()
 {
 pendulumA.transform.position = new Vector3(0f, -4f, 0f) +
transform.position;
 pendulumA.transform.rotation = Quaternion.Euler(180f, 0f,
0f);
 rbA.velocity = Vector3.zero;
 rbA.angularVelocity = Vector3.zero;

 pendulumB.transform.position = new Vector3(0f, -10f, 0f) +
transform.position;
 pendulumB.transform.rotation = Quaternion.Euler(180f, 0f,
0f);
 rbB.velocity = Vector3.zero;
 rbB.angularVelocity = Vector3.zero;

 pendulumC.transform.position = new Vector3(0f, -6f, 0f) +
transform.position;
 pendulumC.transform.rotation = Quaternion.Euler(180f, 0f,
0f);
 rbC.velocity = Vector3.zero;
 rbC.angularVelocity = Vector3.zero;

 goalDegree = Random.Range(0, 360);
 UpdateGoalPosition();

 goalSize = myAcademy.goalSize;
 goalSpeed = Random.Range(-1f, 1f) * myAcademy.goalSpeed;

 goal.transform.localScale = new Vector3(goalSize, goalSize,
goalSize);
 }

Understanding PPO Chapter 8

[219]

All this code does is reset the position of the arm to its original position and stop11.
all movement.

That covers the only required code changes for this example. Fortunately, only one script
needed to be modified. It is likely that in the future you won't have to modify these scripts
at all. In the next section, we will follow up by refining the sample's training by tuning extra
parameters and introducing another training optimization for policy learning methods.

Multiple agent policy
In this section, we are going to look at how policy or off-model based methods such as PPO
can be improved on by introducing multiple agents to train the same policy. The example
exercise you will use in this section will be completely up to you, and should be one that
you are familiar with and/or interested in. For our purposes, we will explore a sample that
we have looked at extensively—the Hallway/VisualHallway. If you have been following
most of the exercises in this book, you should be more than capable of adapting this
example. However, note that, for this exercise, we want to use a sample that is set up to use
multiple agents for training.

Previously, we avoided discussing the multiple agents; we avoided this aspect of training
before because it may complicate the discussion of on-model versus off-model. Now that
you understand the differences and reasons for using a policy-based method, you can
better appreciate that since our agents are using a policy-based method, we can
simultaneously train multiple agents against the same policy. However, this can have
repercussions for other training parameters and configuration, as you may well imagine.

Open up the Unity editor to the Hallway/VisualHallway example scene, or one of your
choosing, and complete the following exercise:

Open up a Python or Anaconda console window and get it ready to train.1.
Select and enable the HallwayArea, selecting areas (1) to (19) so they become2.
active and viewable in the scene.
Select the Agent object in each HallwayArea, and make sure that Hallway Agent3.
| Brain is set to HallwayLearning and not HallwayPlayer. This will turn on all
the additional training areas.
Depending on your previous experience, you may or may not want to modify the4.
sample back to the original. Recall that in an earlier exercise, we modified the
HallwayAgent script to only scan a smaller section of angles. This may also
require you to alter the brain parameters as well.
After you have the scene set up, save it and the project.5.

Understanding PPO Chapter 8

[220]

Run the scene in training using a unique run-id and wait for a number of6.
training iterations. This sample may train substantially slower, or even faster,
depending on your hardware.

Now that we have established a new baseline for the Hallway environment, we can now
determine what effect modifying some hyperparameters has on discrete action samples.
The two parameters we will revisit are the num_epochs (number of training epochs) and
batch_size (experiences per training epoch) parameters that we looked at earlier with the
continuous action (control) sample. In the documentation, we noted that a larger batch size
was preferred when training control agents.

Before we continue, let's open the trainer_config.yaml file and inspect the
HallwayLearning configuration section as follows:

HallwayLearning:
 use_recurrent: true
 sequence_length: 64
 num_layers: 2
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 3
 buffer_size: 1024
 batch_size: 128
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

In the Unity documentation, it specifically mentions only increasing the number of epochs
when increasing the batch size, and this is in order to account for additional training
experiences. We learned that control examples generally benefit from a larger batch size,
and, consequently, a larger epoch size. However, one last thing we want to determine is the
effect of altering the batch_size and num_epoch parameters in a discrete action example
with multiple agents feeding into and learning from the same policy.

For the purposes of this exercise, we are only going to modify batch_size and num_epoch
to values as follows:

Update the HallwayLearning or brain configuration you are using to use the1.
following parameters:

HallwayLearning:
 use_recurrent: true
 sequence_length: 64

Understanding PPO Chapter 8

[221]

 num_layers: 2
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 10
 buffer_size: 1024
 batch_size: 1000
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

We set num_epoch to 10 and batch_size to 1000. These settings are typical for2.
a control sample, as we have previously seen, but now we want to see the effect
in a discrete action example with multiple agents training the same policy.
Prepare the sample for training, and get the Python console ready and open.3.
Run the training session with the following command:4.

mlagents-learn config/trainer_config.yaml --run-id=hallway_e10b1000
--train

Notice how we have set run-id using a helper prefix to name the iteration. We5.
used e10 to represent that the num_epoch parameter is set to 10, and b1000
represents the batch_size value of 1000. This type of naming scheme can be
helpful, and is one we will continue using through this book.

As the agent trains, try and answer the following questions:

Does the agent train better or worse than you expected?
Why do you think that is?

It will be up to you to run the sample in order to learn the answer to those questions. In the
next section, we will look at helpful exercises you can do on your own to help your
understanding of these complex topics.

Exercises
Attempt one or two of the following exercises on your own:

Run the CrawlerStaticTarget example scene and compare its performance to the1.
dynamic sample.

Understanding PPO Chapter 8

[222]

Double the time_horizon, batch_size, and buffer_size brain2.
hyperparameters in one of the other control examples:

time_horizon: 2000
batch_size: 4048
buffer_size: 40480

Perform the same modification of time_horizon, batch_size, and3.
buffer_size on another control sample and observe the combined effect.
Modify the num_layers and hidden_units brain hyperparameters to values4.
we used in a control sample and apply them to a discrete action example, such as
the Hallway example, as shown in the following code. How did it affect training?

num_layers: 3
hidden_units: 512

Alter the num_layers and hidden_units hyperparameters on another5.
continuous or discrete action example and combine it with other parameter
modifications.
Modify the lambda lambd brain hyperparameter in a discrete action example to a6.
value of .99. Remember that this will have the effect of strengthening the
rewards:

lambd: .99

Create your own control creature with joints and limbs. A good place to start is7.
using the Crawler example and modifying that.
Modify one of the control samples by adding new limbs or joints. 8.
Modify the Walker control example to give the agent a weapon and a target. You9.
will have to combine elements of the Walker and Reacher examples.
Run the VisualHallwayLearning sample scene with altered num_epoch and10.
batch_size parameters. Are the results what you expected?

As we progress through the book, these exercises may become more and more tedious,
especially if you run them on an older and slower system. However, it is important to
understand how these parameters can alter an agent's training.

When speaking to deep learning and RL practitioners, they will often compare the subtlely
of training to the difference between being a good or great cook. A good cook may make
things taste good and serve a completely acceptable meal, but it takes a great cook, and
their attention to detail, to make you an exceptional meal that you will remember.

Understanding PPO Chapter 8

[223]

Summary
In this chapter, we dug in and learned more of the inner workings of RL by understanding
the differences between model-based versus off-model and/or policy-based algorithms. As
we learned, Unity ML-Agents uses the PPO algorithm, a powerful and flexible policy
learning model that works exceptionally well when training control, or what is sometimes
referred to as marathon RL. After learning more basics, we jumped into other RL
improvements in the form of Actor-Critic, or advantage training, and what options ML-
Agents supports. Next, we looked at the evolution of PPO and its predecessor, the TRPO
algorithm, how they work at a basic level, and how they affect training. This is where we
learned how to modify one of the control samples to create a new joint on the Reacher arm.
We finished the chapter by looking at how multi-agent policy training can be improved on,
again by tuning hyperparameters.

We have covered many aspects and details of RL and how agents train, but we have left the
most important part of training, rewards, to the next chapter. In the next chapter, we look
into rewards, reward functions, and how rewards can even be simulated.

9
Rewards and Reinforcement

Learning
Rewards are a fundamental aspect of reinforcement learning, and the concept is easy to
grasp. After all, we partly teach and train others—dogs and children, for instance—with
reinforcement through rewards. The concept of implementing rewards or a reward
function in a simulation can be somewhat difficult, and prone to a lot of trial and error. This
is the reason for waiting until a later and more advanced chapter to talk about rewards,
building reward functions, and reward assistance methods such as Curriculum Learning,
Backplay, Curiosity Learning, and Imitation Learning / Behavioral Cloning.

Here is a quick summary of the concepts we will cover in this chapter:

Rewards and reward functions
Sparsity of rewards
Curriculum Learning
Understanding Backplay
Curiosity Learning

While this is an advanced chapter, it is also an essential one and not something you want to
skip over. Likewise, many of the top-performing RL demos, such as AlphaStar from
DeepMind, use the advanced algorithms in this chapter to teach agents to do tasks that
were previously not thought possible.

Rewards and Reinforcement Learning Chapter 9

[225]

Rewards and reward functions
We often face this preconceived notion of rewards-based learning or training as comprising
of an action being completed, followed by a reward, be it good or bad. While this notion of
RL works completely fine for a single action-based task, such as the old multi-arm bandit
problem we looked at earlier, or teaching a dog a trick, recall that reinforcement learning is
really about an agent learning the value of actions by anticipating future rewards through a
series of actions. At each action step, when the agent is not exploring, the agent will
determine its next course of action based on what it perceives as having the best reward.
What is not always so clear is what those rewards should represent numerically, and to
what extent that matters. Therefore, it is often helpful to map out a simple set of reward
functions that describe the learning behavior we want our agent to train on.

Let's open up the Unity editor to the GridWorld example and learn how to create a set of
reward functions and mappings that describe that training, as follows:

Open up the GridWorld example from the Assets | ML-Agents | Examples |1.
GridWorld | Scenes folder.
Select the trueAgent object in the Hierarchy and then switch the agent's brain,2.
at Grid Agent | Brain, to GridWorldLearning.
Select the GridAcademy and set the Grid Academy | Brains | Control option to3.
enabled.
Select and disable the Main Camera in the scene. This will make the agent's4.
camera the primary camera, and the one we can view the scene with.
Open up and prepare a Python or Anaconda window for training. Check5.
previous chapters or the Unity documentation if you need to remember how to
do this.
Save the scene and project.6.
Launch the sample into training using the following command at the7.
Python/Anaconda window:

mlagents-learn config/trainer_config.yaml --run-id=gridworld --
train

One of the first things you will appreciate about this sample is how quickly it8.
trains. Remember that the primary reason the agent trains so quickly is because
the state space is so small; 5x5 in this example. An example of the simulation
running is shown in the following screenshot:

Rewards and Reinforcement Learning Chapter 9

[226]

GridWorld example running on 5x5 grid

Run the sample until completion. It does not take long to run, even on older9.
systems.

Notice how the agent quickly goes from a negative reward to a positive reward as it learns
to place the cube over the green +. However, did you notice that the agent starts training
from a negative mean reward? The agent starts with a zero reward value, so let's examine
where the negative reward is coming from. In the next section, we look at how to build the
reward functions by looking at the code.

Rewards and Reinforcement Learning Chapter 9

[227]

Building reward functions
Building reward functions can be quite simple, as this one will be, or extremely complex, as
you may well imagine. While this step is optional for training these examples, it is almost
mandatory when you go to build your own environments. It can also identify problems in
your training, and ways of enhancing or easing training as well.

Open up the Unity editor and follow this exercise to build these sample reward functions:

Select the trueAgent object in the Hierarchy window and then click the target1.
icon beside the Grid Agent component.
Select Edit Script from the Contact menu.2.
After the script opens in your editor, scroll down to the AgentAction method as3.
follows:

public override void AgentAction(float[] vectorAction, string
textAction)
{
 AddReward(-0.01f);
 int action = Mathf.FloorToInt(vectorAction[0]);

 ... // omitted for brevity

 Collider[] blockTest = Physics.OverlapBox(targetPos, new
Vector3(0.3f, 0.3f, 0.3f));
 if (blockTest.Where(col =>
col.gameObject.CompareTag("wall")).ToArray().Length == 0)
 {
 transform.position = targetPos;
 if (blockTest.Where(col =>
col.gameObject.CompareTag("goal")).ToArray().Length == 1)
 {
 Done();
 SetReward(1f);
 }
 if (blockTest.Where(col =>
col.gameObject.CompareTag("pit")).ToArray().Length == 1)
 {
 Done();
 SetReward(-1f);
 }
 }
}

Rewards and Reinforcement Learning Chapter 9

[228]

We want to focus on the highlighted lines, AddReward and SetReward:4.
AddReward(-.1f): This first line denotes a step reward. Every step
the agent takes will cost the agent a negative reward. This is the reason
we see the agent show negative rewards until it finds the positive
reward.
SetReward(1f): This the final positive reward the agent receives, and
it is set to the maximum value of 1. In these types of training scenarios,
we prefer to use a range of rewards from -1 to +1.
SetReward(-1f): This is the pit of death reward, and a final negative
reward.

Using each of the previous statements, we can map these to reward functions as5.
follows:

AddReward(-.1f) =
SetReward(1f) =
SetReward(-1f) =

One thing to notice here is that AddReward is an incremental reward, while6.
SetReward sets the final value. So, the agent only ever sees a positive reward by
reaching the final goal.

By mapping these reward functions, we can see that the only way an agent can learn a
positive reward is by finding its way to a goal. This is the reason the agent begins with a
negative reward, it essentially only first learns to avoid wasting time or moves until it
randomly encounters the goal. From there, the agent can quickly assign value to states
based on previous positive rewards received. The issue is that the agent first needs to
encounter a positive reward before we begin with the actual training. We discuss this
particular problem in the next section.

Sparsity of rewards
We call the situation where an agent does not get enough, or any, positive rewards, a
sparsity of rewards. The simplest way to show how a sparsity of rewards can happen is by
example, and fortunately, the GridWorld example can easily demonstrate this for us. Open
the editor to the GridWorld example and follow this exercise:

Open the GridWorld sample scene from where we left it in the last exercise. For1.
the purposes of this exercise, it is also helpful to have trained the original sample
to completion. GridWorld is one of those nice compact examples that train
quickly and is an excellent place to test basic concepts, or even hyperparameters.

Rewards and Reinforcement Learning Chapter 9

[229]

Select the GridAcademy and change the Grid Academy | Reset Parameters |2.
gridSize to 25, as shown in the following screen excerpt:

Setting the GridAcademy gridSize parameter

Save the scene and the project.3.
Launch the sample into training with the following command from your4.
Python/Anaconda window:

mlagents-learn config/trainer_config.yaml --run-id=grid25x25 --
train

Rewards and Reinforcement Learning Chapter 9

[230]

This will launch the sample and, assuming you still have the agentCam as the5.
main camera, you should see the following in the Game window:

The GridWorld with a grid size of 25x25

We have extended the game play space from a 5x5 grid to a 25x25 grid, making6.
the goal (+) symbol much more difficult for the agent to randomly find.
What you will quickly notice after a few reported iterations is how poorly the7.
agent is performing in some cases even, reporting less than a -1 mean reward.
What's more, the agent could continue training like this for a long time. In fact, it
is possible the agent could never discover a reward within 100, 200, 1,000, or
more iterations. Now, this may appear to be a problem of state, and, in some
ways, you may think of it that way. However, remember that the input state into
our agent is the same camera view, a state of 84x84 pixels image, and we have
not changed that. So, for the purposes of this example, think of state in the policy
RL algorithm as remaining fixed. Therefore, our best course of action in order to
fix the problem is to increase the rewards.

Rewards and Reinforcement Learning Chapter 9

[231]

Stop the training example from the Python/Anaconda window by typing Ctrl +8.
C. In order to be fair, we will increase the number of rewards for goals and
deaths equally.
Back in the editor, select the GridAcademy and increase the numObstacles and9.
numGoals on the Grid Academy | Reset Parameters component properties, as
shown in the following excerpt:

Updating the number of Obstacles and Goals

Rewards and Reinforcement Learning Chapter 9

[232]

Save the scene and the project.10.
Launch the training session with the following code:11.

mlagents-learn config/trainer_config.yaml --run-id=grid25x25x5 --train

This is to denote that we are running the sample with five times the number of12.
obstacles and goals.
Let the agent train for 25,000 iterations and notice the performance increase. Let13.
the agent train to completion and compare the results to our first run.

The problem of sparsity of rewards is generally encountered more
frequently in discrete action tasks, such as GridWorld/Hallway and so on.
because the reward function is often absolute. In continuous learning
tasks, the reward function is often more gradual and is typically
measured by some progress to a goal, and not just the goal itself.

By increasing the number of obstacles and goals—the negative and positive rewards—we
are able to train the agent much more quickly, although it is likely you will see very erratic
cycles of training, and the agent never truly gets as good as the original. In fact, the training
actually may diverge at some point later on. The reason for this is partly because of its
limited vision, and we have only partially corrected the sparse rewards problem. We can, of
course, fix the issue of sparse rewards in this example by simply increasing the number of
goals and obstacles. You can go back and try a value of 25 for the number of obstacles and
rewards and see much more stable, long-term results.

Of course, in many RL problems, an increasing number of rewards is not an option, and we
need to look at cleverer methods, as we will see in the next section. Fortunately, a number
of methods have arisen, in very brief time, looking to address the problem of sparse or
difficult rewards. Unity, being at the top, quickly jumped on and implemented a number of
methods, the first of which we will look at is called Curriculum Learning, which we will
discuss in the next section.

Curriculum Learning
Curriculum Learning allows for an agent to progressively learn a difficult task by stepping
up the reward function. While the reward remains absolute, the agent finds or achieves the
goal in a simpler manner, and so learns the purpose of the reward. Then, as the training
progresses and as the agent learns, the difficulty of receiving a reward increases, which, in
turn, forces the agent to learn.

Rewards and Reinforcement Learning Chapter 9

[233]

Unity, of course, has a few samples of this, and we will look at the WallJump example of
how a Curriculum Learning sample is set up in the following exercise:

Open the WallJump scene from the Assets | ML-Agents | Examples |1.
WallJump | Scenes folder.
Select the Academy object in the Hierarchy window.2.
Click both Control options on Wall Jump Academy | Brains | Control3.
parameter as shown in the following excerpt:

Setting the multiple brains to learning

Rewards and Reinforcement Learning Chapter 9

[234]

This sample uses multiple brains in order to better separate the learning by task.4.
In fact, all the brains will be trained in tandem.
Curriculum Learning uses a second configuration file to describe the curriculum5.
or steps of learning the agent will undergo.
Open the ML-Agents/ml-agents/config/curricul/wall-jump folder.6.
Open the SmallWallJumpLearning.json file in a text editor. The file is shown7.
for reference as follows:

 {
 "measure" : "progress",
 "thresholds" : [0.1, 0.3, 0.5],
 "min_lesson_length": 100,
 "signal_smoothing" : true,
 "parameters" :
 {
 "small_wall_height" : [1.5, 2.0, 2.5, 4.0]
 }
 }

This JSON file defines the configuration the SmallWallJumpLearning brain will8.
take as part of its curriculum or steps to learning. The definition for all these
parameters are well documented in the Unity documentation, but we will take a
look at parameters from the documentation as follows:

measure – What to measure learning progress, and advancement in
lessons by:

reward – Uses a measure received reward.
progress – Uses ratio of steps/max_steps.

thresholds (float array) – Points in value of measure where the
lesson should be increased.
min_lesson_length (int) – The minimum number of episodes that
should be completed before the lesson can change. If a measure is set
to reward, the average cumulative reward of the last
min_lesson_length episodes will be used to determine if the lesson
should change. Must be non-negative.

Rewards and Reinforcement Learning Chapter 9

[235]

What we can see by reading this file is that there are three lessons set by a9.
measure of progress defined by the number of episodes. The episode
boundaries are defined at .1 or 10%, .3 or 30%, and .5 or 50% of the total
episodes. With each lesson, we set parameters defined by boundaries, and in this
example the parameter is small_wall_height with a first lesson boundary of
1.5 to 2.0, a second lesson boundary of 2.0 to 2.5, and a third lesson at 2.5 to
4.0.
Open up a Python/Anaconda window and prepare it for training.10.
Launch the training session with the following command:11.

mlagents-learn config/trainer_config.yaml --
curriculum=config/curricula/wall-jump/ --run-id=wall-jump-
curriculum --train

The extra bit that is highlighted adds the folder to the secondary curriculum12.
configuration.
You will need to wait for at least half of the full training steps to run in order to13.
see all three levels of training.

This example introduced one technique we can use to solve the problem of sparse or
difficult to achieve rewards. In the next section, we look at a specialized form of
Curriculum Training called Backplay.

Understanding Backplay
In late 2018, Cinjon Resnick released an innovative paper, titled Backplay: Man muss immer
umkehren, (https:/ /arxiv. org/ abs/ 1807. 06919) that introduced a refined form of
Curriculum Learning called Backplay. The basic premise is that you start the agent more or
less at the goal, and then progressively move the agent back during training. This method
may not work for all situations, but we will use this method with Curriculum Training to
see how we can improve the VisualHallway example in the following exercise:

Open the VisualHallway scene from the Assets | ML-Agents | Examples |1.
Hallway | Scenes folder.
Make sure the scene is reset to the default starting point. If you need to, pull2.
down the source from ML-Agents again.
Set the scene for learning using the VisualHallwayLearning brain, and make3.
sure that the agent is just using the default visual observations of 84x84.

https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919
https://arxiv.org/abs/1807.06919

Rewards and Reinforcement Learning Chapter 9

[236]

Select the Academy object and in the Inspector window add a new Hallway4.
Academy | Reset Parameter called distance, as shown in the following excerpt:

Setting a new Reset Parameter on the Academy

You can use Reset Parameters for more than just Curriculum Learning, as they5.
can help you easily configure training parameters within the editor. The
parameter we are defining here is going to set the distance, the agent is away
from the back goal region. This sample is intended to show the concept of
Backplay, and in order to properly implement it we would need to move the
agent right in front of the proper goal—we will defer from doing this for now.
Select the VisualHallwayArea | Agent and open the Hallway Academy script in6.
your code editor of choice.

Rewards and Reinforcement Learning Chapter 9

[237]

Scroll down to the AgentReset method and adjust the top line to that shown as7.
follows:

public override void AgentReset()
{
 float agentOffset = academy.resetParameters["distance"];
 float blockOffset = 0f;
 // ... rest removed for brevity

This single line of code will adjust the starting offset of the agent to the now8.
preset Reset Parameters of the Academy. Likewise, as the Academy updates
those parameters during training, the agent will also see updated values.
Save the file and return to the editor. The editor will recompile your code9.
changes and let you know if everything is okay. A red error in the console will
typically mean you have a compiler error, likely caused by incorrect syntax.
Open a prepared Python/Anaconda window and run the training session with10.
the following command:

mlagents-learn config/trainer_config.yaml --run-id=vh_backplay --
train

This will run the session in regular mode, without Curriculum Learning, but it11.
will adjust the starting position of the agent to be closer to the goals. Let this
sample run and see how well the agent performs now that it starts so close to the
goals.

Let the training run for a while and observe the difference in training from the original. One
thing you will notice is that the agent can't help but run into the reward now, which is what
we are after. The next piece we need to implement is the Curriculum Learning part, where
we will move the agent back as it learns to find the reward in the next section.

Implementing Backplay through Curriculum
Learning
In the last section, we implemented the first part of Backplay, which is having the agent
start next to, or very close to the goal. The next part we need to accomplish is progressively
moving the agent back to its intended starting point using Curriculum Learning. Open up
the Unity editor to the VisualHallway scene again and follow these steps:

Open the ML-Agents/ml-agents/config folder with a file explorer or1.
command shell.

Rewards and Reinforcement Learning Chapter 9

[238]

Create a new folder called hallway and navigate to the new folder.2.
Open a text editor or create a new JSON text file called3.
VisualHallwayLearning.json in the new directory. JavaScript Object
Notation (JSON) is intended to describe objects in JavaScript, it has become a
standard for configuration settings as well.
Enter the following JSON text in the new file:4.

{
 "measure" : "rewards",
 "thresholds" : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7],
 "min_lesson_length": 100,
 "signal_smoothing" : true,
 "parameters" :
 {
 "distance" : [12, 8, 4, 2, -2, -4, -8, -12]
 }

This configuration file defines a curriculum that we will use to train an agent on5.
Backplay. The file defines a measure of rewards and thresholds that define
when the agent will advance to the next level of training. When a reward
threshold is hit for a minimum episode length of 100 steps, than the training will
advance to the next distance parameter. Notice how we define the distance
parameter with 12, representing a distance close to the goals, and then
decreasing. You could, of course, create a function that maps different range
values, but we will leave that up to you.
Save the file after you are done editing.6.
 Launch a training session from a Python/Anaconda window with the following7.
command:

mlagents-learn config/trainer_config.yaml --
curriculum=config/curricula/hallway/ --run-id=hallway-curriculum --
train

Rewards and Reinforcement Learning Chapter 9

[239]

After the training starts, notice how the curriculum is getting set in the8.
Python/Anaconda window, as shown in the following screenshot:

Watching the curriculum parameters getting set in training

Wait for the agent to train, and see how many levels of training it can accomplish9.
before the end of the session.

Now, one thing we need to come clean about is that this sample is more an innovative
example than a true example of Backplay. Actual Backplay is described as putting the agent
at the goal and working backward. In this example, we are putting the agent almost at the
goal and working backward. The difference is subtle, but, by now, hopefully you can
appreciate that, in terms of training, it could be significant.

Rewards and Reinforcement Learning Chapter 9

[240]

Curiosity Learning
Up until now, we have considered just the extrinsic or external rewards an agent may
receive in an environment. The Hallway example, for instance, gives a +1 external reward
when the agent reaches the goal, and a -1 external reward if it gets the wrong goal.
However, real animals like us can actually learn based on internal motivations, or by using
an internal reward function. A great example of this is a baby (a cat, a human, or whatever)
that has an obvious natural motivation to be curious through play. The curiosity of playing
provides the baby with an internal or intrinsic reward, but the actual act itself gives it a
negative external or extrinsic reward. After all, the baby is expending energy, a negative
external reward, yet it plays on and on in order to learn more general information about its
environment. This, in turn, allows it to explore more of the environment and ultimately
attain some very difficult goal, such as hunting, or going to work.

This form of internal or intrinsic reward modeling falls into a subclass of RL, called
Motivated Reinforcement Learning. As you may well imagine, this whole arc of learning
could have huge applications in gaming, from creating NPCs to more believable opponents
that actually get motivated by some personality trait or emotion. Imagine having a
computer opponent that can get angry, or even, compassionate? Of course, we are a long
way from getting there, but in the interim, Unity has added an intrinsic reward system in
order to model agent curiosity, and this is called Curiosity Learning.

Curiosity Learning (CL) was first developed by researchers at the University of California,
Berkley, in a paper called Curiosity-Driven Exploration by Self-Supervised Prediction,
which you can find at https:/ / pathak22. github. io/ noreward- rl/. The paper goes on to
describe a system of solving sparse rewards problems using forward and inverse neural
networks. They called the system an Intrinsic Curiosity Module (ICM), with the intent for
it to be used as a layer or module on top of other RL systems. This is exactly what Unity
did, and they have added this as a module to ML-Agents.

The Lead Researcher at Unity, Dr. Arthur Juliani, has an excellent blog
post on their implementation that can be found at https:/ / blogs.
unity3d. com/ 2018/ 06/ 26/ solving- sparse- reward- tasks- with-
curiosity/ .

https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://pathak22.github.io/noreward-rl/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/
https://blogs.unity3d.com/2018/06/26/solving-sparse-reward-tasks-with-curiosity/

Rewards and Reinforcement Learning Chapter 9

[241]

ICM works by using an inverse neural network that is trained using the current and next
observation of the agent. It uses an encoder to encode a prediction on what the action was
between the two states, current and next. Then, the forward network is trained on the
current observation and action in which it encodes to the next observation. The difference is
then taken between the real and predicted encodings from the inverse and forward models.
In this case, the bigger the difference, the bigger the surprise, and the more intrinsic the
rewards. A diagram extracted from Dr. Juliani's blog is shown as follows, describing how
this works:

Inner workings of the Curiosity Learning Module

The diagram shows the depiction of the two models and layers in blue, forward and
inverse, with the blue lines depicting network flow, the green box representing the intrinsic
model calculation, and the reward output in the form of the green dotted lines.

Well, that's enough theory, its time to see how this CL works in practice. Fortunately, Unity
has a very well developed environment that features this new module that is called
Pyramids. Let's open Unity and follow the next exercise to see this environment in action:

Open the Pyramid scene from the Assets | ML-Agents | Examples | Pyramids |1.
Scenes folder.

Rewards and Reinforcement Learning Chapter 9

[242]

Select the AreaPB(1) to AreaPB(15) in the Hierarchy window and then deactivate2.
these objects in the Inspector window.
Leave the scene in player mode. For the first time, we want you to play the scene3.
on your own and figure out the goal. Even if you read the blog or played the
scene, try again, but this time, think what reward functions would need to be in
place.

Press Play in the editor and start playing the game in Player mode. If you have4.
not played the game before or understand the premise, don't be surprised if it
takes you a while to solve the puzzle.

Now, for those of you that didn't read or play ahead, here is the premise. The scene starts
where the agent is randomly placed into an area of rooms with pyramids of stone in which
one has a switch. The goal of the agent is to activate the switch that then spawns a pyramid
of sand boxes with a large gold box on top. The switch turns from red to green after it is
activated. After the pyramid appears, the agent then needs to knock the pyramid over and
retrieve the gold box. It certainly is not the most complex of puzzles, but one that does
require a bit of exploration and curiosity.

Imagine if we tried to model this form of curiosity, or need to explore, with a set of reward
functions. We would need a reward function for activating the button, moving to rooms,
knocking over blocks, and, of course, getting the gold box. Then we would have to
determine the value of each of those objectives, perhaps using some form of Inverse
Reinforcement Learning (IRL). However, with Curiosity Learning, we can create the
reward function for just the end goal of getting the box (+1), and perhaps a small negative
step goal (.0001), then use intrinsic curiosity rewards to let the agent learn the remaining
steps. Quite a clever trick, and we will see how this works in the next section.

The Curiosity Intrinsic module in action
With our appreciation of the difficulty of the Pyramids task, we can move on to training the
agent with curiosity in the following exercise:

Open the Pyramids scene in the editor.1.
Select the AreaRB | Agent object in the Hierarchy window.2.
Switch the Pyramid Agent | Brain for the PyramidsLearning brain.3.
Select the Academy object in the Hierarchy window.4.

Rewards and Reinforcement Learning Chapter 9

[243]

Enable the Control option on the Academy | Pyramid Academy | Brains |5.
Control property, as shown in the following screenshot:

Setting the Academy to Control

Open a Python or Anaconda console and prepare it for training.6.
Open the trainer_config.yaml file located in the ML-Agents/ml-7.
agents/config folder.
Scroll down to the PyramidsLearning configuration section, as follows:8.

 PyramidsLearning:
 use_curiosity: true
 summary_freq: 2000
 curiosity_strength: 0.01
 curiosity_enc_size: 256
 time_horizon: 128
 batch_size: 128
 buffer_size: 2048
 hidden_units: 512
 num_layers: 2
 beta: 1.0e-2
 max_steps: 5.0e5
 num_epoch: 3

Rewards and Reinforcement Learning Chapter 9

[244]

There are three new configuration parameters highlighted in bold:9.
use_curiosity: Set this to true to use the module, but it is generally
false by default.
curiosity_strength: This is how strongly the agent values the
intrinsic reward of curiosity over the extrinsic ones.
curiosity_enc_size: This is the size of the encoded layer we
compress the network to. If you think back to autoencoders, you can
see the size of 256 is quite large, but also consider the size of the state
space or observation space you may be encoding.

Leave the parameters at the values they are set.

Launch the training session with the following command:10.

 mlagents-learn config/trainer_config.yaml --run-id=pyramids -
-train

While this training session may take a while, it can be entertaining to watch how the agent
explores. Even with the current settings, using only one training area, you may be able to
see the agent solve the puzzle on a few iterations.

Since ICM is a module, it can quickly be activated for any other example we want to see the
effects on, which is what we will do in the next section.

Trying ICM on Hallway/VisualHallway
Not unlike the agents we train, we learn quite well from trial and error. This is the reason
we practice, practice, and practice more of those very difficult tasks such as dancing,
singing, or playing an instrument. RL is no different and requires the practitioner to learn
the ins and outs training through the rigors of trial, error, and further exploration.
Therefore, in this next exercise, we are going to combine Backplay (Curriculum Learning)
and Curiosity Learning together into our old friend, the Hallway, and see what effect it has,
as follows:

Open the Hallway or VisualHallway scene (your preference) as we last left it,1.
with Curriculum Learning enabled and set to simulate Backplay.
Open the trainer_config.yaml configuration file location in the ML-2.
Agents/ml-agents/config folder.

Rewards and Reinforcement Learning Chapter 9

[245]

Scroll down to the HallwayLearning or VisualHallwayLearning brain3.
configuration parameters and add the following additional configuration lines:

HallwayLearning:
 use_curiosity: true
 curiosity_strength: 0.01
 curiosity_enc_size: 256
 use_recurrent: true
 sequence_length: 64
 num_layers: 2
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 10
 buffer_size: 1024
 batch_size: 1000
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

This will enable the curiosity module for this example. We use the same settings4.
for curiosity as we used for the last Pyrmarids example.
Make sure this sample is prepared for curriculum Backplay as we configured it5.
in that section. If you need to, go back and review that section and add the
capability to this example before continuing.

This may require you to create a new curricula file that uses the same
parameters as we did previously. Remember that the curricula file needs
to have the same name as the brain it is being used against.

Open a Python/Anaconda window prepared for training and start training with6.
the following command:

mlagents-learn config/trainer_config.yaml --
curriculum=config/curricula/hallway/ --run-id=hallway_bp_cl --train

Let the training run until completion, as the results can be interesting and show7.
some of the powerful possibilities of layering learning enhancements for extrinsic
and intrinsic rewards.

Rewards and Reinforcement Learning Chapter 9

[246]

This exercise showed how to run an agent with both Curriculum Learning simulating
Backplay, and Curiosity Learning adding an aspect of agent motivation to the learning. As
you may well imagine, intrinsic reward learning and the whole field of Motivated
Reinforcement Learning may lead to some interesting advances and enhancements to our
DRL.

In the next section, we will review a number of helpful exercises that should help you learn
more about these concepts.

Exercises
While your motivation may vary as to why you are reading this book, hopefully by now
you can appreciate the value of just doing things on your own. As always, we present these
exercises for your enjoyment and learning, and hope you have fun completing them:

Select another sample scene that uses discrete actions and write the reward1.
functions that go with it. Yes, that means you will need to open up and look at
the code.
Select a continuous action scene and try writing the reward functions for it.2.
While this one may be difficult, it is essential if you want to build your own
control training agent.
Add Curriculum Learning to one of the other discrete action samples we have3.
explored. Decide on how you can break the training into levels of difficulty and
create parameters for controlling the evolution of the training.
Add Curriculum Learning to a continuous action sample. This is more difficult,4.
and you likely want to perform exercise number two first.
Implement actual Backplay on the Hallway environment by placing the agent5.
starting at the goal and then, as the agent trains, move it back to the desired start
with Curriculum Learning.
Implement Backplay on another discrete action example you have run and see6.
the effect it has on training.
Implement Curiosity Learning on the VisualPyramids example and notice the7.
difference in training.
Implement Curiosity Learning on a continuous action example and notice the8.
effect it has on training. Is it what you expected?
 Disable Curiosity Learning on the Pyramids example and see what effect this9.
has on agent training.
Think of a way in which you could add Backplay to the VisualPyramids10.
example. You'll get bonus points if you actually build it.

Rewards and Reinforcement Learning Chapter 9

[247]

As you can see, the exercises are getting more demanding as we progress through the book.
Remember, even completing one or two of these exercises will make a difference in your
take-away knowledge.

Summary
In this chapter, we looked at a fundamental component of RL, and that is rewards. We
learned that, when building training environments, it was best that we defined a set of
reward functions our agent will live by. By understanding these equations, we get a better
sense of how frequent or sparse rewards can negatively affect training. We then looked at a
few methods, the first of which is called Curriculum Learning, that could be used to ease or
step the agent's extrinsic rewards. After that, we explored another technique, called
Backplay, that used a reverse play technique and Curriculum Training to enhance an
agent's training. Finally, we looked at internal or intrinsic rewards, and the concept of
Motivated Reinforcement Learning. We then learned that the first intrinsic reward system
developed into ML-Agents was to give an agent a motivation for curiosity. We looked at
how to use Curiosity Learning on a few examples, and even incorporated it with Backplay
via Curriculum Learning.

In the next chapter, we look to more reward helper solutions in the form of Imitation and
Transfer Learning, where we will learn how a human's gameplay experience can be
mapped to a form of learning called Imitation Learning or Behavioral Cloning.

10
Imitation and Transfer Learning

At the time of writing, a new AI called AlphaStar, a deep reinforcement learning (DRL)
agent, used imitation learning (IL) to beat a human opponent five-nil playing the real-time
strategy game StarCraft II. AlphaStar was the continuation of David Silver and Google
DeepMind's work to build a smarter and more intelligent AI. The specific techniques
AlphaStar used to win could fill a book, and IL and the use of learning to copy human play
is now of keen interest. Fortunately, Unity has already implemented IL in the form of
offline and online training scenarios. While we won't make it to the level of AlphaStar in
this chapter, we still will learn about the underlying technologies of IL and other forms of
transfer learning.

In this chapter, we will look at the implementation of IL in ML-Agents and then look to
other applications of transfer learning. We will cover the following topics in this chapter:

IL or behavioral cloning
Online training
Offline training
Transfer Learning
Imitation Transfer Learning

While AlphaStar performed a stunning tactical victory against a human
pro player in an RTS game, it has still come under scrutiny for the type of
play and actions it used. Many human players stated that the AI's tactical
abilities were clearly superior, but the overall strategy and planning were
abysmal. It should be interesting to see how Google DeepMind
approaches this criticism.

This will be an exciting chapter, and will provide you with plenty of training possibilities
for your future developments, which all starts in the next section.

Imitation and Transfer Learning Chapter 10

[249]

IL, or behavioral cloning
IL, or behavioral cloning, is the process by which observations and actions are captured
from a human, or perhaps another AI, and used as input into training an agent. The agent
essentially becomes guided by the human and learns by their actions and observations. A
set of learning observations can be received by real-time play (online) or be extracted from
saved games (offline). This provides the ability to capture play from multiple agents and
train them in tandem or individually. IL provides the ability to train or, in effect, program
agents for tasks you may find impossible to train for using regular RL, and because of this,
it will likely become a key RL technique that we use for most tasks in the near future.

It is hard to gauge the value something gives you until you see what things are like without
it. With that in mind, we will first start by looking at an example that uses no IL, but
certainly could benefit from it. Open up the Unity editor and follow this exercise:

Open up the Tennis scene from the Assets | ML-Agents | Examples | Tennis |1.
Scenes folder.
Select and disable the extra agent training areas, TennisArea(1) to2.
TennisArea(17).
Select AgentA and make sure Tennis Agent | Brain is set to TennisLearning.3.
We want each agent to be against the other agent in this example.
Select AgentB and make sure Tennis Agent | Brain is set to TennisLearning. 4.
In this example, for a brief instance, we are training multiple agents in the same
environment. We will cover more scenarios where agents play other agents as a
way of learning in Chapter 11, Building Multi-Agent Environments.
Select Academy and make sure that Tennis Academy | Brains is set to5.
TennisLearning and the Control option is enabled, as shown in the following
screenshot:

Imitation and Transfer Learning Chapter 10

[250]

Setting Control to enabled on Academy

Open a Python/Anaconda window and prepare it for training. We will launch6.
training with the following command:

mlagents-learn config/trainer_config.yaml --run-id=tennis --train

Watch the training for several thousand iterations, enough to convince yourself7.
the agents are not going to learn this task easily. When you are convinced, stop
the training and move on.

You can see by just looking at this first example that ordinary training and the other
advanced methods we looked at, such as Curriculum and Curiosity Learning, would be
difficult to implement, and in this case could be counterproductive. In the next section, we
look at how to run this example with IL in online training mode.

Imitation and Transfer Learning Chapter 10

[251]

Online training
Online Imitation Learning is where you teach the agent to learn the observations of a player
or another agent in real time. It also is one of the most fun and engaging ways to train
agents or bots. Let's jump in and set up the tennis environment for online Imitation
Learning in the next exercise:

Select the TennisArea | AgentA object and set Tennis Agent | Brain1.
to TennisPlayer. In this IL scenario, we have one brain acting as a teacher, the
player, and a second brain acting as the student, the learner.
Select the AgentB object and make sure Tennis Agent | Brain is set to2.
TennisLearning. This will be the student brain.
Open the online_bc_config.yaml file from the ML-Agents/ml-3.
agents/config folder. IL does not use the same configuration as PPO so the
parameters will have similar names but may not respond to what you have
become used to.
Scroll down in the file to the TennisLearning brain configuration as shown in4.
the following code snippet:

 TennisLearning:
 trainer: online_bc
 max_steps: 10000
 summary_freq: 1000
 brain_to_imitate: TennisPlayer
 batch_size: 16
 batches_per_epoch: 5
 num_layers: 4
 hidden_units: 64
 use_recurrent: false
 sequence_length: 16

Looking over the hyperparameters, we can see there are two new parameters of5.
interest. A summary of those parameters is as follows:

trainer: online_ or offline_bc—using online or offline Behavioral
Cloning. In this case, we are performing online.
brain_to_imitate: TennisPlayer—this sets the brain that the
learning brain should attempt to imitate.
We won't make any changes to the file at this point.

Open your prepared Python/Anaconda window and launch training with the6.
following command:

mlagents-learn config/online_bc_config.yaml --run-id=tennis_il --
train --slow

Imitation and Transfer Learning Chapter 10

[252]

After you press Play in the editor, you will be able to control the left paddle with7.
the W, A, S, D keys. Play the game, and you may be surprised at how quickly the
agent learns and can get quite good. The following is an example of the game
being played:

Playing and teaching the agent with IL

Keep playing the example until completion if you like. It can also be interesting8.
to switch players during a game, or even train the brain and use the trained
model to play against later. You do remember how to run a trained model, right?

Imitation and Transfer Learning Chapter 10

[253]

At some point while playing through the last exercise, you may have wondered why we
don't we train all RL agents this way. A good question, but as you can imagine, it depends.
While IL is very powerful, and quite a capable learner, it doesn't always do what we expect
it to do. Also, an IL agent is only going to learn the search space (observations) it is shown
and remain within those limitations. In the case of AlphaStar, IL was the main input for
training, but the team also mentioned that the AI did have plenty of time to self-play, which
likely accounted for many of its winning strategies. So, while IL is cool and powerful, it is
not the golden goose that will solve all our RL problems. However, you are likely to have a
new and greater appreciation for RL, and in particular IL, after this exercise. In the next
section, we explore using offline IL.

Offline training
Offline training is where a recorded gameplay file is generated from a player or agent
playing a game or performing a task, and is then fed back as training observations to help
an agent learn later on. While online learning certainly is more fun, and in some ways more
applicable to the Tennis scene or other multiplayer games, it is less practical. After all, you
generally need to play an agent in real time for several hours before an agent will become
good. Likewise, in online training scenarios, you are typically limited to single agent
training, whereas in offline training a demo playback can be fed to multiple agents for
better overall learning. This also allows us to perform interesting training scenarios, similar
to AlphaStar training, where we can teach an agent so that it can teach other agents.

We will learn more about multi-agent gameplay in Chapter 11, Building
Multi-Agent Environments.

For this next exercise, we are going to revisit our old friend the Hallway/VisualHallway
example. Again, we are doing this so we can compare our results to the previous sample
exercises we ran with this environment. Follow this exercise to set up a new offline training
session:

Clone and download the ML-Agents code to a new folder, perhaps choosing ml-1.
agents_b, ml-agents_c, or some other name. The reason we do this is to make
sure that we run these new exercises with a clean environment. Also, it can
sometimes help to go back to old environments and recall settings or
configuration that you may forget to update.
Launch Unity and open the UnitySDK project and the Hallway or2.
VisualHallway scene, your choice.

Imitation and Transfer Learning Chapter 10

[254]

The scene should be set to run in Player mode. Just confirm this. If you need to3.
change it, then do so.
Disable any additional agent training environments in the scene if others are4.
active.
Select HallwayArea | Agent in the Hierarchy window.5.
Click the Add Component button at the bottom of the Inspector window, type6.
demo, and select the Demonstration Recorder component as shown in the
following screenshot:

Adding a Demonstration Recorder

Imitation and Transfer Learning Chapter 10

[255]

Click Record on the new Demonstration Recorder component, as shown in the7.
preceding screenshot, check throughout. Also, fill in the Demonstration
Name property of the recording, which is also shown.
Save the scene and project.8.
Press Play and play the scene for a fair amount of time, more than a few minutes9.
but perhaps less than hours. Of course, how well you play will also determine
how well the agent learns. If you play poorly, so will the agent.
After you think enough time has passed, and you have played as well as you10.
could, stop the game.

After playing the game, you should see a new folder called Demonstrations created in the
Assets root folder in your Project window. Inside the folder will be your demonstration
recording. This is the recording we will feed the agent in the next section.

Setting up for training
Now that we have our demonstration recording, we can do more on the training part. This
time, however, we will play back our observation file to multiple agents in multiple
environments. Open the Hallway/VisualHallway sample scene and follow the next
exercise to set up for training:

Select and enable all the HallwayArea training environments HallwayArea(1) to1.
HallwayArea(15)
Select HallwayArea | Agent in the Hierarchy and then switch Hallway Agent |2.
Brain to HallwayLearning, as shown in the following screenshot:

Imitation and Transfer Learning Chapter 10

[256]

Setting the agent components

Also, select and disable the Demonstration Recording component as shown in3.
the preceding screen excerpt
Make sure all the agents in the scene are using HallwayLearning brains4.

Imitation and Transfer Learning Chapter 10

[257]

Select Academy in the Hierarchy and then enable the Hallway Academy |5.
Brains | Control option as shown in the following screenshot:

Enabling Academy to Control the Brains

Save the scene and project6.

Now that we have the scene configured for agent learning, we can move on to feeding the
agent in the next section.

Feeding the agent
When we performed online IL, we only fed one agent at a time in the tennis scene. This
time, however, we are going to train multiple agents from the same demonstration
recording in order to improve training performance.

Imitation and Transfer Learning Chapter 10

[258]

We have already set up for training, so let's start feeding the agent in the following exercise:

Open a Python/Anaconda window and set it up for training from the new ML-1.
Agents folder. You did reclone the source, right?
Open the offline_bc_config.yaml file from the ML-Agents/ml-2.
agents_b/config folder. The contents of the file are as follows for reference:

default:
 trainer: offline_bc
 batch_size: 64
 summary_freq: 1000
 max_steps: 5.0e4
 batches_per_epoch: 10
 use_recurrent: false
 hidden_units: 128
 learning_rate: 3.0e-4
 num_layers: 2
 sequence_length: 32
 memory_size: 256
 demo_path:
./UnitySDK/Assets/Demonstrations/<Your_Demo_File>.demo

HallwayLearning:
 trainer: offline_bc
 max_steps: 5.0e5
 num_epoch: 5
 batch_size: 64
 batches_per_epoch: 5
 num_layers: 2
 hidden_units: 128
 sequence_length: 16
 use_recurrent: true
 memory_size: 256
 sequence_length: 32
 demo_path: ./UnitySDK/Assets/Demonstrations/demo.demo

Change the last line of the HallwayLearning or VisualHallwayLearning3.
brain to the following:

HallwayLearning:
 trainer: offline_bc
 max_steps: 5.0e5
 num_epoch: 5
 batch_size: 64
 batches_per_epoch: 5
 num_layers: 2
 hidden_units: 128

Imitation and Transfer Learning Chapter 10

[259]

 sequence_length: 16
 use_recurrent: true
 memory_size: 256
 sequence_length: 32
 demo_path: ./UnitySDK/Assets/Demonstrations/AgentRecording.demo

Note that if you are using the VisualHallwayLearning brain, you will need to4.
also change the name in the preceding config script.
Save your changes when you are done editing.5.
Go back to your Python/Anaconda window and launch training with the6.
following command:

mlagents-learn config/offline_bc_config.yaml --run-id=hallway_il --
train

When prompted, press Play in the editor and watch the training unfold. You will7.
see the agent play using very similar moves to yourself, and if you played well,
the agent will quickly start learning and you should see some impressive
training, all thanks to IL.

RL can be thought of as the brute-force approach to learning, while the refinement of
Imitation Learning and training by observation will clearly dominate the future of agent
training. Of course, is it really any wonder? After all, we simple humans learn that way.

In the next section, we look at another exciting area of deep learning, transfer learning, and
how it applies to games and DRL.

Transfer learning
Imitation Learning, by definition, falls into a category of Transfer Learning (TL). We can
define Transfer Learning as the process by which an agent or DL network is trained by
transference of experiences from one to the other. This could be as simple as the
observation training we just performed, or as complex as swapping layers/layer weights in
an agent's brain, or just training an agent on a similar task.

Imitation and Transfer Learning Chapter 10

[260]

Intransfer learningwe need to make sure the experiences or previous weights we use are
generalized. Through the foundational chapters in this book (chapters 1-3), we learned the
value of generalization using techniques such as dropout and batch normalization. We
learned that these techniques are important for more general training; the form of training
that allows the agent/network better inference on test data. This is no different than if we
were to use an agent trained on one task to learn on another task. A more general agent
will, in effect, be able to transfer knowledge more readily than a specialist agent could, if at
all.

We can demonstrate this in a quick example starting with training the following simple
exercise:

Open up the VisualHallway scene in the Unity editor.1.
Disable any additional training areas.2.
Confirm that Academy is in Control of the Brain.3.
Select the VisualHallwayLearning brain from the Hallway/Brains folder and4.
set Vector Action | Branches Size | Branch 0 Size to 7, as shown in the
following screenshot:

Increasing the vector action space of the agent

Imitation and Transfer Learning Chapter 10

[261]

We increase the action space for the brain so that it is compatible with the5.
required action space for our transfer learning environment, which we will get to
later.
Save the scene and project.6.
Open a Python/Anaconda window that is prepared for training.7.
Launch a training session with the following code:8.

mlagents-learn config/trainer_config.yaml --run-id=vishall --train
--save-freq=10000

Here, we have introduced a new parameter that controls the frequency at which9.
model checkpoints are created. The default is currently set to 50,000, but we just
don't want to wait that long.
Run the agent in training in the editor for at least one model checkpoint save, as10.
shown in the following screen excerpt:

The ML-Agents trainer creating a checkpoint

Imitation and Transfer Learning Chapter 10

[262]

Checkpoints are a way of taking snapshots of a brain and saving them for later.11.
This allows you to go back and continue training where you left off.
Let the agent train to a checkpoint and then terminate training by pressing12.
Ctrl + C or command + C on Mac in the Python/Anaconda window.

When you have terminated training, it is time to try this saved brain on another learning
environment in the next section.

Transferring a brain
We now want to take the brain we have just been training and reuse it in a new, but similar,
environment. Since our agent uses visual observations, this makes our task easier, but you
could try and perform this example with other agents as well.

Let's open Unity and navigate to the VisualPushBlock example scene and follow this
exercise:

Select Academy and enable it for Control of the Brains.1.
Select the Agent and set it to use the VisualPushBlockLearning brain. You2.
should also confirm that this brain is configured in the same way as the
VisualHallwayLearning brain we just ran, meaning that the Visual Observation
and Vector Action spaces match.
Open the ML-Agents/ml-agents_b/models/vishall-0 folder in File Explorer3.
or another file explorer.
Change the name of the file and folder from VisualHallwayLearning to4.
VisualPushBlockLearning as shown in the following screenshot:

Changing the model path manually

By changing the name of the folder, we are essentially telling the model loading5.
system to restore our VisualHallway brain as VisualPushBlockBrain. The trick
here is making sure that both brains have all the same hyperparameters and
configuration settings.

Imitation and Transfer Learning Chapter 10

[263]

Speaking of hyperparameters, open the trainer_config.yaml file and make6.
sure that the VisualHallwayLearning and VisualPushBlockLearning
parameters are the same. The configuration for both is shown in the following
code snippet for reference:

VisualHallwayLearning:
 use_recurrent: true
 sequence_length: 64
 num_layers: 1
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 3
 buffer_size: 1024
 batch_size: 64
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

VisualPushBlockLearning:
 use_recurrent: true
 sequence_length: 64
 num_layers: 1
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 3
 buffer_size: 1024
 batch_size: 64
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

Save the configuration file when you are done editing.7.
Open your Python/Anaconda window and launch training with the following8.
code:

mlagents-learn config/trainer_config.yaml --run-id=vishall --train
--save-freq=10000 --load

Imitation and Transfer Learning Chapter 10

[264]

The previous code is not a misprint; it is the exact same command we used to run9.
the VisualHallway example, except with --load appended on the end. This
should launch the training and prompt you to run the editor.
Feel free to run the training for as long as you like, but keep in mind that we10.
barely trained the original agent.

Now, in this example, even if we had trained the agent to complete VisualHallway, this
likely would not have been very effective in transferring that knowledge to
VisualPushBlock. For the purposes of this example, we chose both since they are quite
similar, and transferring one trained brain to the other was less complicated. For your own
purposes, being able to transfer trained brains may be more about retraining agents on new
or modified levels, perhaps even allowing the agents to train on progressively more
difficult levels.

Depending on your version of ML-Agents, this example may or may not work so well. The
particular problem is the complexity of the model, number of hyperparameters, input
space, and reward system that we are running. Keeping all of these factors the same also
requires keen attention to detail. In the next section, we will take a short diversion to
explore how complex these models are.

Exploring TensorFlow checkpoints
TensorFlow is quickly becoming the underlying graph calculation engine that is powering
most deep learning infrastructure. While we haven't covered how these graph engines are
constructed in much detail, it can be helpful to review these TensorFlow models visually.
Not only can we start to appreciate the complexity of these systems better, but a good
visual is often worth a thousand words. Let's open up a web browser and follow the next
exercise:

Search for the phrase netron tensorflow in your browser with your favorite1.
search engine. Netron is an OpenSource TensorFlow model viewer that is perfect
for our needs.
Find a link to the GitHub page and on the page the links to download the binary2.
installers. Select the installer for your platform and click Download. This will
take you to another download page where you can select the file for download.
Use the installer for your platform to install the Netron application. On3.
Windows, this is as simple as downloading the exe installer and running it.

Imitation and Transfer Learning Chapter 10

[265]

Run the Netron application, and after it launches, you will see the following:4.

The Netron application

Click the Open Model... button in the middle of the window5.

Imitation and Transfer Learning Chapter 10

[266]

Use File Explorer to locate the ML-Agents/ml-6.
agents/models/vishall-0\VisualHallwayLearning folder, and locate the
raw_graph.def file as shown in the following screenshot:

Selecting the model graph definition to load

Imitation and Transfer Learning Chapter 10

[267]

After loading the graph, use the - button in the top-right to zoom the view as far7.
out as you can, similar to the following screenshot:

The TensorFlow graph model of our agent's brain

As the inset shows, this graph is beyond complex, and not something we would8.
be easily able to make sense of. However, it can be interesting to look through
and see how the model/graph is constructed.

Imitation and Transfer Learning Chapter 10

[268]

Scroll to the top of the graph and find a node called advantages, then select the9.
node and note the Graph and Inputs, model properties as shown in the
following screenshot:

Properties of the advantages graph model

Within the properties view of this model, you should be able to see some very10.
familiar terms and settings, such as visual_observation_0, for instance, which
shows the model input is a tensor of shape [84,84,3].

Imitation and Transfer Learning Chapter 10

[269]

When you are done, feel free to look over other models, and perhaps even explore with
other models even outside Unity. While this tool isn't quite capable of summarizing a
complex model like we have, it does show how powerful these types of tools are becoming.
What's more, if you can find your way around, you can even export variables for later
inspection or use.

Imitation Transfer Learning
One of the problems with Imitation Learning is that it often focuses the agent down a path
that limits its possible future moves. This isn't unlike you being shown the improper way to
perform a task and then doing it that way, perhaps without thinking, only to find out later
that there was a better way. Humanity, in fact, has been prone to this type of problem over
and over again throughout history. Perhaps you learned as a child that swimming right
after eating was dangerous, only to learn later in life through your own experimentation, or
just common knowledge, that that was just a myth, a myth that was taken as fact for a very
long time. Training an agent through observation is no different you limit the agent's
vision in many ways to a narrow focus that is limited by what it was taught. However,
there is a way to allow an agent to revert back to the partial brute-force or trial-and error
exploration in order to expand its training.

With ML-Agents we can combine IL with a form oftransfer learningin order to allow an
agent to learn first from observation, then by furthering its training by learning from the
once student. This form of IL chaining, if you will, allows you to train an agent to auto-train
multiple agents. Let's open up Unity to the TennisIL scene and follow the next exercise:

Select the TennisArea | Agent object and in the Inspector, disable the BC1.
Teacher Helper component, and then add a new Demonstration Recorder as
shown in the following screenshot:

Imitation and Transfer Learning Chapter 10

[270]

Checking that the BC Teacher is attached to the Agent

BC Teacher Helper is a recorder that works just like the Demonstration2.
Recorder. The BC recorder allows you to turn the recording on and off as the
agent runs, which is perfect for online training, but at the time of writing, the
component was not working.

Imitation and Transfer Learning Chapter 10

[271]

Make sure Academy is set to Control the TennisLearning brain.3.
Save the scene and project.4.
Open a Python/Anaconda window and launch training with the following5.
command:

mlagents-learn config/online_bc_config.yaml --run-id=tennis_il --
train --slow

Press Play when prompted to run the game in the editor. Control the blue paddle6.
with the W, A, S, D keys and play for a few seconds to warm up.
After you are warmed up, press the R key to begin recording a demo7.
observation. Play the game for several minutes and let the agent become capable.
After the agent is able to return the ball, stop the training session.

This will not only train the agent, which is fine, but it will also create a demo recording
playback we can use to further train the agents to learn how to play each other in a similar
way to how AlphaStar was trained. We will set up our tennis scene to now run in offline
training mode with multiple agents in the next section.

Training multiple agents with one demonstration
Now, with the recording of us playing tennis, we can use this to feed into the training of
multiple agents all feeding back into one policy. Open Unity to the tennis scene, the one
with the multiple environments, and follow the next exercise:

Type agent into the Filter bar at the top of the Hierarchy window as shown in1.
the following screenshot:

Imitation and Transfer Learning Chapter 10

[272]

Searching for all the agents in the scene

Select all the agent objects in the scene and bulk change their Brain to use2.
TennisLearning and not TennisPlayer.
Select Academy and make sure to enable it to control the brains.3.
Open the config/offline_bc_config.yaml file.4.

Imitation and Transfer Learning Chapter 10

[273]

Add the following new section for the TennisLearning brain at the bottom:5.

TennisLearning:
 trainer: offline_bc
 max_steps: 5.0e5
 num_epoch: 5
 batch_size: 64
 batches_per_epoch: 5
 num_layers: 2
 hidden_units: 128
 sequence_length: 16
 use_recurrent: true
 memory_size: 256
 sequence_length: 32
 demo_path: ./UnitySDK/Assets/Demonstrations/TennisAgent.demo

Save the scene and the project.6.
Open the Python/Anaconda window and run training with the following code:7.

mlagents-learn config/offline_bc_config.yaml --run-id=tennis_ma --
train

You may want to add the --slow switch in order to watch the training, but it8.
should not be required.
Let the agents train for some time and notice its improved progress. Even with a9.
short observation recording input, the agent becomes a capable player rather
quickly.

There are multiple ways to perform this type of IL andtransfer learningchaining that will
allow your agent some flexibility in training. You could even use the trained model's
checkpoint without IL and run the agents with transfer learning as we did earlier. The
possibilities are limitless, and it remains to be seen what will emerge as best practices.

In the next section, we'll provide some exercises that you can use for your own personal
learning.

Imitation and Transfer Learning Chapter 10

[274]

Exercises
The exercises at the end of this chapter could likely provide several hours of fun. Try and
only complete one or two exercises, as we still need to finish the book:

Set up and run the PyramidsIL scene to run online IL.1.
Set up and run the PushBlockIL scene to run online IL.2.
Set up and run the WallJump scene to run with online IL. This requires you to3.
modify the scene.
Set up and run the VisualPyramids scene to use offline recording. Record a4.
training session then train an agent.
Set up and run the VisualPushBlock scene to use offline recording. Use offline IL5.
to train the agent.
Set up the PushBlockIL scene to record an observation demo. Then use this6.
offline training to train multiple agents in the regular PushBlock scene.
Set up the PyramidsIL scene to record a demo recording. Then use this for offline7.
training to train multiple agents in the regular Pyramids scene.
Train an agent in the VisualHallway scene using any form of learning you like.8.
After training, modify the VisualHallway scene to use different materials on the
walls and floor. Changing materials on Unity objects is quite easy. Then, use the
technique of swapping model checkpoints as a way of transfer learning the
previously trained brain into a new environment.
Do exercise eight, but using the VisualPyramids scene. You could also add other9.
objects or blocks in this scene.
Do exercise eight, but using the VisualPushBlock scene. Try adding other blocks10.
or other objects that the agent may have to work around.

Just remember that, if you are attempting any of the Transfer Learning exercises, attention
to detail is important when matching the complex graphs. In the next section, we
summarize what we have covered in this chapter.

Imitation and Transfer Learning Chapter 10

[275]

Summary
In this chapter, we covered an emerging technique in RL called Imitation Learning or
Behavioral Cloning. This technique, as we learned, takes the captured observations of a
player playing a game and then uses those observations in an online or offline setting to
further train the agent. We further learned that IL is just a form of Transfer Learning. We
then covered a technique with ML-Agents that will allow you to transfer brains across
environments. Finally, we looked at how to chain IL andtransfer learningas a way of
stimulating the agent's training into developing new strategies on its own.

In the next chapter, we will further our understanding of DRL in games by looking at
multiple agent training scenarios.

11
Building Multi-Agent

Environments
With our single-agent experiences under our belt, we can move on to the more complex but
equally entertaining world of working in multi-agent environments, training multiple
agents to work in the same environment in a co-operative or competitive fashion. This also
opens up several new opportunities for training agents with adversarial self-play,
cooperative self-play, competitive self-play, and more. The possibilities become endless
here, and this may be the true holy grail of AI.

In this chapter, we are going to cover several aspects of multi-agent training environments
and the main section topics are highlighted here:

Adversarial and cooperative self-play
Competitive self-play
Multi-brain play
Adding individuality with intrinsic rewards
Extrinsic rewards for individuality

This chapter assumes you have covered the three previous chapters and completed some
exercises in each. In the next section, we begin to cover the various self-play scenarios.

Building Multi-Agent Environments Chapter 11

[277]

It is best to start this chapter with a new clone of the ML-Agents
repository. We do this as a way of cleaning up our environment and
making sure no errant configuration was unintentionally saved. If you
need help with this, then consult one of the earlier chapters.

Adversarial and cooperative self-play
The term self-play can, of course, mean many things to many people, but in this case, we
mean the brain is competing (adversarial) or cooperating with itself by manipulating
multiple agents. In the case of ML-Agents, this may mean having a single brain
manipulating multiple agents in the same environment. There is an excellent example of
this in ML-Agents, so open up Unity and follow the next exercise to get this scene ready for
multi-agent training:

Open the SoccerTwos scene from the Assets | ML-Agents | Examples | Soccer |1.
Scenes folder. The scene is set to run, by default, in player mode, but we need to
convert it back to learning mode.
Select and disable all the SoccerFieldTwos(1) to SoccerFieldTwos(7) areas. We2.
won't use those yet.
Select and expand the remaining active SoccerFieldTwos object. This will reveal3.
the play area with four agents, two marked RedStriker and BlueStriker and two
marked RedGoalie and BlueGoalie.
Inspect the agents and set each one's brain to StrikerLearning or GoalieLearning4.
as appropriate, as shown here:

Building Multi-Agent Environments Chapter 11

[278]

Setting the learning brains on the agents

Building Multi-Agent Environments Chapter 11

[279]

We have four agents in this environment being controlled by brains that are both5.
cooperating with and competing against each other. To be honest, this example is
brilliant and demonstrates incredibly well the whole concept of cooperative and
competitive self-play. If you are still struggling with some concepts, consider this
diagram, which shows how this is put together:

The SoccerTwos brain architecture

As we can see, we have two brains controlling four agents: two strikers and two6.
goalies. The striker's job is to score against the goalie, and, of course, the goalie's
job is to block goals.
Select the Academy and set the Soccer Academy | Brains | Control enabled for7.
both brains, as shown:

Building Multi-Agent Environments Chapter 11

[280]

Setting the Brains to control in the Academy

Building Multi-Agent Environments Chapter 11

[281]

Also, note the Striker, Goalie Reward, and Punish settings at the bottom of the8.
Soccer Academy component. It is important to also note the way the reward
functions for each brain. The following are the reward functions described
mathematically for this sample:

That means, when a goal is scored, each of the four agents gets a reward based9.
on its position and team. Thus, if red scored, the Red Striker would get a +1
reward, the Blue Striker a -0.1 reward, the Red Goalie a +0.1 reward, and the
poor Blue Goalie a -1 reward. Now, you may think this could cause overlap, but
remember that each agent's view of a state or an observation will be different.
Thus, the reward will be applied to the policy for that state or observation. In
essence, the agent is learning based on its current view of the environment,
which will change based on which agent is sending that observation.
Save the scene and project when you are done editing.10.

That sets up our scene for multi-agent training using two brains and four agents, using both
competitive and cooperative self-play. In the next section, we complete the external
configuration and start training the scene.

Training self-play environments
Training these types of self-play environments opens up further possibilities for not only
enhanced training possibilities but also for fun gaming environments. In some ways, these
types of training environments can be just as much fun to watch, as we will see at the end
of this chapter.

Building Multi-Agent Environments Chapter 11

[282]

For now, though, we are going to jump back and continue setting up the configuration we
need to train our SoccerTwos multi-agent environment in the next exercise:

Open the ML-Agents/ml-agents/config/trainer_config.yaml file and1.
inspect the StrikerLearning and GoalieLearning config sections, as shown:

StrikerLearning:
 max_steps: 5.0e5
 learning_rate: 1e-3
 batch_size: 128
 num_epoch: 3
 buffer_size: 2000
 beta: 1.0e-2
 hidden_units: 256
 summary_freq: 2000
 time_horizon: 128
 num_layers: 2
 normalize: false

GoalieLearning:
 max_steps: 5.0e5
 learning_rate: 1e-3
 batch_size: 320
 num_epoch: 3
 buffer_size: 2000
 beta: 1.0e-2
 hidden_units: 256
 summary_freq: 2000
 time_horizon: 128
 num_layers: 2
 normalize: false

The obvious thought is that the brains should have a similar configuration, and2.
you may start that way, yes. However, note that even in this example the
batch_size parameter is set differently for each brain.
Open a Python/Anaconda window and switch to your ML-Agents virtual3.
environment and then launch the following command from the ML-Agents/ml-
agents folder:

mlagents-learn config/trainer_config.yaml --run-id=soccer --train

Building Multi-Agent Environments Chapter 11

[283]

Press Play when prompted, and you should see the following training session4.
running:

The SoccerTwos scene running in training mode

As has been said, this can be a very entertaining sample to watch, and it trains5.
surprisingly quickly.

Building Multi-Agent Environments Chapter 11

[284]

Open up the Python/Anaconda console after some amount of training, and note6.
how you are getting stats on two brains now, StrikerLearning and
GoalieLearning, as shown in the following screenshot:

Console output showing stats from two brains

Note how StrikerLearning and GoalieLearning are returning opposite rewards7.
to each other. This means, in order for these agents to be trained, they must
balance their mean reward to 0 for both agents. As the agents train, you will
notice their rewards start to converge to 0, the optimum reward for this
example.
Let the sample run to completion. You can easily get lost watching these8.
environments, so you may not even notice the time go by.

Building Multi-Agent Environments Chapter 11

[285]

This example showed how we can harness the power of multi-agent training through self-
play to teach two brains how to both compete and cooperate at the same time. In the next
section, we look at multiple agents competing against one another in self-play.

Adversarial self-play
In the previous example, we saw an example of both cooperative and competitive self-play
where multiple agents functioned almost symbiotically. While this was a great example, it
still tied the functionality of one brain to another through their reward functions, hence our
observation of the agents being in an almost rewards-opposite scenario. Instead, we now
want to look at an environment that can train a brain with multiple agents using just
adversarial self-play. Of course, ML-Agents has such an environment, called Banana,
which comprises several agents that randomly wander the scene and collect bananas. The
agents also have a laser pointer, which allows them to disable an opposing agent for several
seconds if they are hit. This is the scene we will look at in the next exercise:

Open the Banana scene from the Assets | ML-Agents | Examples |1.
BananaCollectors | Scenes folder.
Select and disable the additional training areas RLArea(1) to RLArea(3).2.
Select the five agents (Agent, Agent(1), Agent(2), Agent(3), Agent(4)) in the3.
RLArea.
Swap the Banana Agent | Brain from BananaPlayer to BananaLearning.4.
Select the Academy and set the Banana Academy | Brains | Control property to5.
Enabled.
Select the Banana Agent component (Script) in the editor, and open it in your6.
code editor of choice. If you scroll down to the bottom, you can see the
OnCollisionEnter method as shown:

void OnCollisionEnter(Collision collision)
{
 if (collision.gameObject.CompareTag("banana"))
 {
 Satiate();
 collision.gameObject.GetComponent<BananaLogic>().OnEaten();
 AddReward(1f);
 bananas += 1;
 if (contribute)
 {
 myAcademy.totalScore += 1;
 }
 }

Building Multi-Agent Environments Chapter 11

[286]

 if (collision.gameObject.CompareTag("badBanana"))
 {
 Poison();
 collision.gameObject.GetComponent<BananaLogic>().OnEaten();

 AddReward(-1f);
 if (contribute)
 {
 myAcademy.totalScore -= 1;
 }
 }
}

Reading the preceding code, we can summarize our reward functions to the7.
following:

This simply means the agents only receive a reward for eating bananas.
Interestingly, there is no reward for disabling an opponent with a laser or by
being disabled.

Save the scene and the project.8.
Open a prepared Python/Anaconda console and start training with the following9.
command:

mlagents-learn config/trainer_config.yaml --run-id=banana --train

Building Multi-Agent Environments Chapter 11

[287]

Press Play in the editor when prompted, and watch the action unfold as shown10.
in the next screenshot:

The Banana Collector agents doing their work

Let the scene run for as long as you like. 11.

This scene is an excellent example of how agents learn to use a secondary game mechanic
that returns no rewards, but, like the laser, is still used to immobilize adversarial collectors
and obtain more bananas, all while only receiving rewards for eating only bananas. This
example shows some of the true power of RL and how it can be used to find secondary
strategies in order to solve problems. While this is a very entertaining aspect and fun to
watch in a game, consider the grander implications of this. RL has been shown to optimize
everything from networking to recommender systems using adversarial self-play, and it
will be interesting to see what this method of learning is capable of accomplishing in the
near future.

Building Multi-Agent Environments Chapter 11

[288]

Multi-brain play
One of the truly great things about the ML-Agents kit is the ability to add multiple agents
powered by multiple brains quickly. This in turns gives us the ability to build more
complex game environments or scenarios with fun agents/AI to play both with and against.
Let's see how easy it is to convert our soccer example to let the agents all use individual
brains:

Open up the editor to the SoccerTwos scene we looked at earlier.1.
Locate the Brains folder for the example at Assets | ML-Agents | Examples |2.
Soccer | Brains.
Click the Create menu in the upper right corner of the window and from the3.
Context menu, and select ML-Agents | Learning Brain:

Creating a new learning brain

Name the new brain RedStrikerLearning. Create three more new brains4.
named RedGoalieLearning, BlueGoalieLearning, and
BlueStrikerLearning in the same folder.

Building Multi-Agent Environments Chapter 11

[289]

Select RedStrikerLearning. Then select and drag the StrikerLearning brain and5.
drop it into the Copy Brain Parameters from slot:

Copying brain parameters from another brain

Do this for BlueStrikerLearning, copying parameters from StrikerLearning.6.
Then do the same for the RedGoalieLearning and BlueGoalieLearning, copying
parameters from GoalieLearning.
Select the RedAgent in the Hierarchy window and set the Agent Soccer | Brain7.
to RedStrikerLearning. Do this for each of the other agents, matching the color
with a position. BlueGoalie -> BlueGoalieLearning.
Select Academy and remove all the current Brains from the Soccer Academy |8.
Brains list. Then add all the new brains we just created back into the list using
the Add New button and set them to Control:

Building Multi-Agent Environments Chapter 11

[290]

Adding the new brains to Academy

Building Multi-Agent Environments Chapter 11

[291]

Save the scene and the project. Now, we just swapped the example from using9.
two concurrent brains in self-play mode to be individual agents on teams.
Open a Python/Anaconda window set up for training and launch with it the10.
following:

mlagents-learn config/trainer_config.yaml --run-id=soccer_mb --
train

Let the training run and note how the agents start off playing just as well as they11.
did previously. Take a look at the console output as well. You will see it now
reports for four agents, but the agents are still somewhat symbiotic, as the red
striker is opposite the blue goalie. However, they now train much more slowly,
due in part to each brain seeing only half the observations now. Remember that
we had both striker agents feeding to a single brain previously, and, as we
learned, this additional input of state can expedite training substantially.

At this point, we have four agents with four individual brains playing a game of soccer. Of
course, since the agents are still training symbiotically by sharing a reward function, we
can't really describe them as individuals. Except, as we know, individuals who play on
teams are often influenced by their own internal or intrinsic reward system. We will look at
how the application of intrinsic rewards can make this last exercise more interesting in the
next section.

Adding individuality with intrinsic rewards
As we learned in Chapter 9, Rewards and Reinforcement Learning, intrinsic reward systems
and the concept of agent motivation is currently implemented as just curiosity learning in
ML-Agents. This whole area of applying intrinsic rewards or motivation combined with RL
has wide applications to gaming and interpersonal applications such as servant agents.

In the next exercise, we are going to add intrinsic rewards to a couple of our agents and see
what effect this has on the game. Open up the scene from the previous exercise and follow
these steps:

Open up the ML-Agents/ml-agents/config/trainer_config.yaml file in a1.
text editor. We never did add any specialized configuration to our agents, but we
are going to rectify that now and add some extra configurations.

Building Multi-Agent Environments Chapter 11

[292]

Add the following four new brain configurations to the file:2.

BlueStrikerLearning:
 max_steps: 5.0e5
 learning_rate: 1e-3
 batch_size: 128
 num_epoch: 3
 buffer_size: 2000
 beta: 1.0e-2
 hidden_units: 256
 summary_freq: 2000
 time_horizon: 128
 num_layers: 2
 normalize: false

BlueGoalieLearning:
 use_curiosity: true
 summary_freq: 1000
 curiosity_strength: 0.01
 curiosity_enc_size: 256
 max_steps: 5.0e5
 learning_rate: 1e-3
 batch_size: 320
 num_epoch: 3
 buffer_size: 2000
 beta: 1.0e-2
 hidden_units: 256
 time_horizon: 128
 num_layers: 2
 normalize: false

RedStrikerLearning:
 use_curiosity: true
 summary_freq: 1000
 curiosity_strength: 0.01
 curiosity_enc_size: 256
 max_steps: 5.0e5
 learning_rate: 1e-3
 batch_size: 128
 num_epoch: 3
 buffer_size: 2000
 beta: 1.0e-2
 hidden_units: 256
 time_horizon: 128
 num_layers: 2
 normalize: false

RedGoalieLearning:

Building Multi-Agent Environments Chapter 11

[293]

 max_steps: 5.0e5
 learning_rate: 1e-3
 batch_size: 320
 num_epoch: 3
 buffer_size: 2000
 beta: 1.0e-2
 hidden_units: 256
 summary_freq: 2000
 time_horizon: 128
 num_layers: 2
 normalize: false

Note how we have also enabled use_curiosity: true on the3.
BlueGoalieLearning and RedStrikerLearning brains. You can copy and
paste most of this from the original GoalieLearning and StrikerLearning
brain configurations already in the file; just pay attention to the details.
Save the file when you are done editing.4.
Open your Python/Anaconda console and start training with the following5.
command:

mlagents-learn config/trainer_config.yaml --run-id=soccer_icl --
train

Let the agents train for a while, and you will notice that, while they do appear to6.
work more like individuals, their training ability is still subpar, while any
improvement we do see in training is likely the cause of giving a couple of agents
curiosity.

This ability to add individuality to an agent with intrinsic rewards or motivation will
certainly mature as DRL does for games and other potential applications and will hopefully
provide other intrinsic reward modules that may not be entirely focused on learning.
However, intrinsic rewards can really do much to encourage individuality, so in the next
section, we introduce extrinsic rewards to our modified example.

Another excellent application of transfer learning would be the ability to
add intrinsic reward modules after agents have been trained on general
tasks.

Building Multi-Agent Environments Chapter 11

[294]

Extrinsic rewards for individuality
We have looked extensively at external or extrinsic rewards for several chapters now and
how techniques can be used to optimize and encourage them for agents. Now, it may seem
like the easy way to go in order to modify an agent's behavior is by altering its extrinsic
rewards or in essence its reward functions. However, this can be prone to difficulties, and
this can often alter training performance for the worse, which is what we witnessed when
we added Curriculum Learning (CL) to a couple of agents in the previous section. Of
course, even if we make the training worse, we now have a number of techniques up our
sleeves such as Transfer Learning (TL), also known as Imitation Learning (IL);
Curiosity; and CL, to help us correct things.

In the next exercise, we are going to look to add further individuality to our agents by
adding additional extrinsic rewards. Open up the previous exercise example we were just
working on and follow along:

From the menu, select Window | Asset Store. This will take you to the Unity1.
Asset Store, which is an excellent resource for helper assets. While most of these
assets are paid, honestly, the price compared to comparable developer tools is
minimal, and there are several free and very excellent assets that you can start
using to enhance your training environments. The Asset Store is one of the best
and worst things about Unity, so if you do purchase assets, be sure to read the
reviews and forum posts. Any good asset will typically have its own forum if it is
developer-focused, artistic assets much less so.
In the search bar, enter toony tiny people and press the Enter key or click the2.
Search button. This will display the search results.

We would like to thank Polygon Blacksmith for their support in allowing
us to distribute their Toony Tiny People Demo asset with the book's
source. Also, their collection of character assets is very well done and
simple to use. The price is also at an excellent starting point for some of
the larger asset packages if you decide you want to build a full game or
enhanced demo.

Building Multi-Agent Environments Chapter 11

[295]

Select the result called Toony Tiny People Demo by Polygon Blacksmith and3.
select it. It will appear as shown in this screenshot:

The Toony Tiny People Demo asset from Polygon Blacksmith

Click the red Download button and, after the asset has downloaded, the button4.
will change to Import, as shown in the preceding screenshot. Click the Import
button to import the assets. When you are prompted by the Import dialog, make
sure everything is selected and click Import.

These types of low polygon or toon assets are perfect for making a simple
game or simulation more entertaining and fun to watch. It may not seem
like much, but you can spend a lot of time watching these training sims
run, and it helps if they look appealing.

Building Multi-Agent Environments Chapter 11

[296]

Select and expand all the agent objects in Hierarchy. This includes RedStriker,5.
BlueStriker, RedGoalie, and BlueGoalie.
Open the Assets | TooyTinyPeople | TT_demo | prefabs folder in the Project6.
window.
Select and drag the TT_demo_Female prefab from the preceding folder and drop7.
it into the RedStriker agent object in the Hierarchy window. Select the cube
object just beneath the agent and disable it in the inspector. Continue to do this
for the other agents according to the following list:

TT_demo_female -> RedStriker
TT_demo_male_A -> BlueStriker
TT_demo_police -> BlueGoalie
TT_demo_zombie -> RedGoalie

This is further demonstrated in this screenshot:

Setting the new agent bodies

Building Multi-Agent Environments Chapter 11

[297]

Make sure to also reset the new agent model's Transform Position and8.
Orientation to [0,0,0], as shown in the following screenshot:

Resetting the orientation and position of dragged prefabs

Save the scene and project. 9.

At this point, you can run the scene in training and watch the new agent models move
around, but there isn't much point. The agents will still act the same, so what we need to do
next is set additional extrinsic rewards based on some arbitrary personality, which we will
define in the next section.

Creating uniqueness with customized reward
functions
We managed to have some success in making our agents unique by adding intrinsic
rewards, although the results may have been not as unique as we would have liked. This
means we now want to look at modifying the agents' extrinsic rewards in the hopes of
making their behavior more unique and ultimately more entertaining for the game.

Building Multi-Agent Environments Chapter 11

[298]

The best way for us to start doing that is to look at the SoccerTwos reward functions we
described earlier; these are listed here, for reference:

What we want to do now is apply some individualistic modification to the rewards
function based on the current character. We will do this by simply chaining the functions
with a modification based on the character type, as shown:

 or
 or

 or
 or

All we are doing here with these reward functions is simply modifying the reward value by
some personality modification. For the girl, we give her a bonus of 1.25 x the rewards,
reflecting that she may be excited. The boy is less excited, so we modify his rewards by .95
times, which reduces them slightly. The policeman, who is always calm and in control,
remains constant with no rewards modifications. Finally, we introduce a bit of a wildcard,
the half-dead zombie. In order to characterize it as half-dead, we also decrease all of its
rewards by half as well.

You could, of course, modify these functions in any way you please, according to your
game mechanics, but it is important to note that the effect of the personality modification
you are applying could hinder training. Be sure to take a mental note of that as we get into
training this example as well.

A girl, a boy, a zombie, and a policeman enter the soccer field.

Now that we understand the new reward functions, we want to add to our example that it
is time to open Unity and code them. This example will require some slight modifications
to the C# files, but the code is quite simple and should be readily understood by any
programmer with experience of a C-based language.

Open up Unity to the scene we were modifying in the previous example, and follow the
next exercise:

Locate the RedStriker agent in the Hierarchy window and select it.1.

Building Multi-Agent Environments Chapter 11

[299]

From Inspector, click the gear icon beside the Agent Soccer component and,2.
from the Context menu, select Edit Script. This will open the script and solution
in your editor.
Add a new enum called PersonRole at the top of the file right after the3.
current enum AgentRole and as shown in the code:

public enum AgentRole
{
 striker,goalie
} //after this line
public enum PersonRole
{
 girl, boy, police, zombie
}

This creates a new role, for, in essence, the personality we want to apply to each4.
brain.
Add another new variable to the class, as shown:5.

public AgentRole agentRole; //after this line
public PersonRole playerRole;

That adds the new PersonRole to the agent. Now we want to also add the new6.
type to the setup by adding a single line to the InitializeAgent method,
shown here:

public override void InitializeAgent()
{
 base.InitializeAgent();
 agentRenderer = GetComponent<Renderer>();
 rayPer = GetComponent<RayPerception>();
 academy = FindObjectOfType<SoccerAcademy>();
 PlayerState playerState = new PlayerState();
 playerState.agentRB = GetComponent<Rigidbody>();
 agentRB = GetComponent<Rigidbody>();
 agentRB.maxAngularVelocity = 500;
 playerState.startingPos = transform.position;
 playerState.agentScript = this;
 area.playerStates.Add(playerState);
 playerIndex = area.playerStates.IndexOf(playerState);
 playerState.playerIndex = playerIndex;
 playerState.personRole = personRole; //add this line
}

Building Multi-Agent Environments Chapter 11

[300]

You should likely see an error now in the line. That is because we also need to7.
add the new personRole property to PlayerState. Open the PlayerState
class and add the property as shown:

[System.Serializable]
public class PlayerState
{
 public int playerIndex;
 public Rigidbody agentRB;
 public Vector3 startingPos;
 public AgentSoccer agentScript;
 public float ballPosReward;
 public string position;
 public AgentSoccer.PersonRole personRole { get; set; } //add me
}

You should now be in the SoccerFieldArea.cs file. Scroll to the8.
RewardOrPunishPlayer method and modify it as shown:

public void RewardOrPunishPlayer(PlayerState ps, float striker,
float goalie)
{
 if (ps.agentScript.agentRole == AgentSoccer.AgentRole.striker)
 {
 RewardOrPunishPerson(ps, striker); //new line
 }
 if (ps.agentScript.agentRole == AgentSoccer.AgentRole.goalie)
 {
 RewardOrPunishPerson(ps, striker); //new line
 }
 ps.agentScript.Done(); //all agents need to be reset
}

What we are doing here is injecting another reward9.
function, RewardOrPunishPerson, in order to add our extrinsic personality
rewards. Next, add a new RewardOrPunishPerson method, as shown:

private void RewardOrPunishPerson(PlayerState ps, float reward)
{
 switch (ps.personRole)
 {
 case AgentSoccer.PersonRole.boy:
 ps.agentScript.AddReward(reward * .95f);
 break;

 case AgentSoccer.PersonRole.girl:
 ps.agentScript.AddReward(reward*1.25f);

Building Multi-Agent Environments Chapter 11

[301]

 break;

 case AgentSoccer.PersonRole.police:
 ps.agentScript.AddReward(reward);
 break;

 case AgentSoccer.PersonRole.zombie:
 ps.agentScript.AddReward(reward * .5f);
 break;
 }
}

That code does exactly what our earlier customized reward functions do. When10.
you are done editing, save all your files and return to the Unity editor. If there
are any errors or compiler warnings, they will be shown in the console. If you
need to go back and fix any (red) error issues, do so.

As you can see, with very little code, we are able to add our extrinsic personality rewards.
You could, of course, enhance this system in any number of ways and even make it more
generic and parameter-driven. In the next section, we look to put all this together and get
our agents training individually.

Configuring the agents' personalities
With all the code set up, we can now continue back in the editor and set up the agents to
match the personality we want to apply to them. Open up the editor again, and follow the
next exercise to apply the personalities to the agents and start training:

Select RedStriker in Hierarchy and set the Agent Soccer | Person Role1.
parameter we just created to Girl, as shown:

Building Multi-Agent Environments Chapter 11

[302]

Setting the personalities on each of the agents

Building Multi-Agent Environments Chapter 11

[303]

Update all the agents with the relevant personality that matches the model we2.
assigned earlier: BlueStriker-> Boy, BlueGoalie -> Police, and RedGoalie ->
Zombie, as shown in the preceding screenshot.
Save the scene and project.3.
Now, at this point, if you wanted it to be more detailed, you may want to go back4.
and update each of the agent brain names to reflect their personalities, such
as GirlStrikerLearning or PoliceGoalieLearning, and you can omit the team
colors. Be sure to also add the new brain configuration settings to your
trainer_config.yaml file.
Open your Python/Anaconda training console and start training with the5.
following command:

mlagents-learn config/trainer_config.yaml --run-id=soccer_peeps --
train

Now, this can be very entertaining to watch, as you can see in the following6.
screenshot:

Watching individual personalities play soccer

Note how we kept the team color cubes active in order to show which team each7.
individual agent is on.

Building Multi-Agent Environments Chapter 11

[304]

Let the agents train for several thousand iterations and then open the console;8.
note how the agents now look less symbiotic. In our example, they are still paired
with each other, since we only applied a simple linear transformation to the
rewards. You could, of course, apply more complex functions that are non-linear
and not inversely related that describe some other motivation or personality for
your agents.
Finally, let's open up TensorBoard and look at a better comparison of our multi-9.
agent training. Open another Python/Anaconda console to the ML-Agents/ml-
agents folder you are currently working in and run the following command:

tensorboard --logdir=summaries

Use your browser to open the TensorBoard interface and examine the results. Be10.
sure to disable any extra results and just focus on the four brains in our current
training run. The three main plots we want to focus on are shown merged
together in this diagram:

TensorBoard Plots showing results of training four brains

Building Multi-Agent Environments Chapter 11

[305]

As you can see from the TensorBoard results, the agents are not training very well. We
could enhance that, of course, by adding additional training areas and feeding more
observations in order to train the policy. However, if you look at the Policy Loss plot, the
results show the agents' competition is causing minimal policy change, which is a bad thing
this early in training. If anything, the zombie agent appears to be the agent learning the best
from these results.

There are plenty of other ways you can, of course, modify your extrinsic reward function in
order to encourage some behavioral aspect in multi-agent training scenarios. Some of these
techniques work well and some not so well. We are still in the early days of developing this
tech and best practices still need to emerge.

In the next section, we look to further exercises you can work on in order to reinforce your
knowledge of all the material we covered in this chapter.

Exercises
As always, try at least one or two of the following exercises on your own for your own
enjoyment and learning:

Open the BananaCollectors example Banana scene and run it in training mode.1.
Modify the BananaCollectors | Banana scene so that it uses five separate2.
learning brains and then run it in training mode.
Modify the reward functions in the last SoccerTwos exercise to use exponential3.
or logarithmic functions.
Modify the reward function in the last SoccerTwos exercise to use non-inverse4.
related and non-linear functions. This way, the mean modifying the positive and
negative rewards is different for each personality.
Modify the SoccerTwos scene with different characters and personalities. Model5.
new rewards functions as well, and then train the agents.
Modify the BananaCollectors example Banana scene to use the same6.
personalities and custom reward functions as we did with the SoccerTwos
example.
Do exercise 3 with the BananaCollectors example.7.
Do exercise 4 with the BananaCollectors example.8.
Do exercise 5 with the BananaCollectors example.9.
Build a new multi-agent environment using one of the current samples as a10.
template or create your own. This last exercise could very likely turn into your
very own game.

Building Multi-Agent Environments Chapter 11

[306]

You may have noticed by now that as we progress through the book, the exercises become
more time-consuming and difficult. Please try for your own personal benefit to complete at
least a couple of the exercises.

Summary
In this chapter, we explored a world of possibilities with multi-agent training
environments. We first looked at how we could set up environments using self-play, where
a single brain may control multiple brains that both compete and cooperate with one
another. Then we looked at how we could add personality with intrinsic rewards in the
form of curiosity using the ML-Agents curiosity learning system. Next, we looked at how
extrinsic rewards could be used to model an agent's personality and influence training. We
did this by adding a free asset for style and then applied custom extrinsic rewards through
reward function chaining. Finally, we trained the environment and were entertained by the
results of the boy agent solidly thrashing the zombie; you will see this if you watch the
training to completion.

In the next chapter, we will look at another novel application of DRL for debugging and
testing already constructed games.

3
Section 3: Building Games

In this final section, we will explore the various ways that deep learning can be
implemented in games right now, and we'll also look to the future of deep learning in
games.

In this section, we will include the following chapters:

Chapter 12, Debugging/Testing a Game with DRL
Chapter 13, Obstacle Tower Challenge and Beyond

12
Debugging/Testing a Game

with DRL
While the ML-Agents framework provides powerful capabilities for building AI agents for
your games, it also provides automation for debugging and testing. The development of
any complex software needs to be tied to extensive product testing and review by talented
quality assurance teams. Testing every aspect, every possible combination, and every level
can be extremely time-consuming and expensive. Therefore, in this chapter, we will look at
using ML-Agents as an automated way to test a simple game. As we change or modify the
game, our automated testing system can inform us of any issues or possible changes that
may have broken the test. We can also take this further with ML-Agents, for instance, to
evaluate training performance.

The following is a brief summary of what we will cover in this chapter:

Introducing the game
Setting up ML-Agents
Overriding the Unity input system
Testing through imitation
Analyzing the testing process

In this chapter, we will assume that you have sound knowledge of the ML-Agents toolkit
and are somewhat familiar with the Unity game engine. You should also have a good grasp
of reward functions and the use of imitation learning with ML-Agents.

Debugging/Testing a Game with DRL Chapter 12

[309]

In the next section, we will start by downloading and importing the game; we will teach
ML-Agents to play in the following section. This should be considered an advanced
chapter, even for experienced users of Unity. Therefore, if you are relatively new to Unity
and/or C#, just take your time and slowly work through the exercises. By the end of this
chapter, if you have completed all the exercises, you should be on your way to being a
Unity pro.

Introducing the game
The game that we are going to look at is a demo sample asset that is free and is an excellent
example of a typical game. The game that we'll test will use discrete control mechanics and
a first-person perspective, like the games that we have looked at in the past. The technique
that we will show you here is how to map/hack into a game's controller so that it can be
powered by ML-Agents. Using this technique should allow you to attach ML-Agents to any
existing game, although different controllers, such as third-person or top-down, may
require a slightly altered approach.

If you consider yourself an experienced Unity user and have your own
project that uses an FPS system, then you should go ahead and try to
adapt this sample to your own game or example.

You will generally find a lack of good sample game projects for Unity, due to a somewhat
questionable technique called asset flipping. Essentially, some developers will take a
sample project and quickly skin it as their own game, and then resell it. This practice has
primarily been frowned upon in the Unity community, since it generally casts this excellent
game engine in a negative light. The quick games, meant only as samples, are often of very
poor quality and are unsupported, not to mention that these developers only use the free
license, which means that these poorly designed games are also shipped with Made with
Unity.

We want to illustrate how ML-Agents can be incorporated into a working game for testing,
debugging, and/or as an AI enhancement. Let's start by importing the base project and
setting up the game to run in the editor. Along the way, we may have to tweak a few things
in order to get things working, but that is our intent. Open up the Unity editor and follow
the exercises in the next section to set up the base game project:

Create a new project called HoDLG (or another name of your preference). Wait for1.
the empty project to load. Again, if you feel qualified, use your own project.
From the menu, select Window | Asset Store.2.

Debugging/Testing a Game with DRL Chapter 12

[310]

In the search pane, type ms vehicle system and hit Enter or click on the3.
Search button. We are going to look at a free asset called MS Vehicle System,
which has a fun little environment that we can play with. It is often difficult to
find free environments such as this (for the reasons mentioned earlier), but,
generally, well-made commercial (not free) asset packages will provide good
demo environments such as this one. Unity has a number of tutorial
environments as well, but they tend to become dated quickly, and they may not
always upgrade that easily.
Click on the MS Vehicle System card and wait for the asset page to load, as4.
shown in the following screenshot:

Selecting the asset package to download

Debugging/Testing a Game with DRL Chapter 12

[311]

Click on the Download button to download the asset, and then click5.
on Import to import the asset into the project. Follow the import dialogues to
import all of the assets into the project.
Locate the MainScene scene in the Assets | MSVehicleSystem (FreeVersion)6.
folder, and open it.
Press Play to run the scene in the editor, and use the controls to drive the vehicles7.
around. Notice how you can switch vehicles and camera controls. When you are
done testing (playing), stop the scene by pressing Play.
Type canvas in the Hierarchy filter field and just select all of the Canvas objects8.
in the scene, as shown in the following screenshot:

Disabling the Canvas UI in the scene

That will disable the UI in the scene; we won't need it for testing, and in this case,9.
it isn't important. If this were a real game, there might have been more colorful
visuals to denote scores, and you could always add those, of course.
Click on the X beside the filter input to clear it and return the scene to normal.10.
Play the scene again, and explore several areas. Look for an area that you think11.
may make a suitable goal; remember, don't make it too difficult initially. The
following is an example of a spot that might make an interesting goal; see
whether you can find the location:

Debugging/Testing a Game with DRL Chapter 12

[312]

Finding a good place for our goal

Even if you can't find the specific spot, locate an area that is difficult to get to. That way, the
agent will have to explore the level extensively in order to find the goal (or goals). In our
case, we will drop random goal squares on to the level and encourage the agent to look for
those. That way, we can also map out areas that get explored by how often it happens, and
then determine how to cover other areas for testing. Before we get to that, we will add ML-
Agents, in the next section.

Setting up ML-Agents
At the time of writing this book, ML-Agents is developed and shipped as a GitHub project.
It is likely that as the product matures, it will be shipped as its own asset package, but
currently, it is not.

Debugging/Testing a Game with DRL Chapter 12

[313]

Therefore, we first need to export ML-Agents as an asset package. Open up a new Unity
Editor session to an ML-Agents or Unity SDK project, and follow these steps:

Locate the ML-Agents folder in the Project window, and select it.1.
From the menu, select Assets | Export Package.2.
Be sure that all of the folder contents are highlighted, as shown in the3.
following Exporting package dialog excerpt:

Exporting ML-Agents as an asset package

Debugging/Testing a Game with DRL Chapter 12

[314]

Be sure to uncheck the Include dependencies checkbox, as shown in the4.
preceding excerpt. As long as you have the proper root folder selected, all of the
dependencies that we need should get packaged.
Click on the Export... button in the dialog, and then choose and save the asset file5.
to a location that you will easily be able to find later.
Open the Unity Editor to the project that we started in the last exercise.6.
From the menu, select Assets | Import Package | Custom Package. Locate the7.
package that we just exported and import it into the new test project.
Locate the project window and create a new folder called HoDLG in the Assets8.
root, and, then, inside that new folder, create new folders called Brains,
Prefabs, and Scripts, as shown in the following screenshot:

Creating new project folders

Creating these folders is the standard way of laying the foundation for a new9.
asset, example, or project. You can now close the old ML-Agents Unity SDK
project, as we no longer need it.

Now that we have ML-Agents imported and the foundations laid for our test game, we can
move on to adding the learning parts of ML-Agents for testing.

Debugging/Testing a Game with DRL Chapter 12

[315]

Introducing rewards to the game
The scene currently has no well-defined goal. There are plenty of open worlds and
exploration-style games where the goal is very loosely defined. For our purposes, however,
we only really want the agent to test-play the whole game level, and hopefully identify any
game flaws or perhaps strategies that we never foresaw. Of course, that doesn't mean that if
the car-driving agents became good, we could also use them as game opponents. The
bottom line is that our agent needs to learn, and it does that through rewards; therefore, we
need to make some reward functions.

Let's first define a reward function for our goal, as follows:

It's pretty simple; whenever the agent encounters a goal, they will score a reward of 1 .
Now, to avoid the agent taking too long, we will also introduce a standard step reward, as
follows:

This means that we apply a step reward of -1 divided by the maximum number of steps,
per agent action. This is quite standard (our Hallway agent used it, for instance), so there is
nothing new here. So, our reward functions will be quite simple, which is good.

In many cases, your game may have well-defined goals that you can use
to give rewards with. A driving game, for example, would have a clear
goal that we could map for our agent. In this case, in our open-world
game, it makes sense to add goals for the agent to locate. How you
implement your reward structure does matter, of course, but use what
makes sense for your situation.

With the reward functions defined, it is time to introduce the concept of a goal into our
game. We want to keep this system somewhat generic, so we will build a goal deployment
system into a new object called TestingAcademy. That way, you can take this academy
and drop it into any similar FPS or third-person controlled worlds, and it will work the
same.

Debugging/Testing a Game with DRL Chapter 12

[316]

First-person shooter (FPS) refers to a type of game, but also a type of
control/camera system. We are interested in the latter, since it is the
method by which we control our car.

Open the editor to the new combined project, and follow the next exercise to build the
TestingAcademy object:

Click in the Hierarchy window, and from the menu, select GameObject | Create1.
Empty. Name the new object TestingAcademy.
Locate and click inside the HoDLG | Scripts folder, and then open the Create2.
sub-menu in the Project window.
From the Create menu, select C# Script. Rename the script TestingAcademy.3.
Open the new TestingAcademy script and enter the following code:4.

using MLAgents;
using UnityEngine;

namespace Packt.HoDLG
{
 public class TestingAcademy : Academy
 {
 public GameObject goal;
 public int numGoals;
 public Vector3 goalSize;
 public Vector3 goalCenter;
 public TestingAgent[] agents;
 public GameObject[] goals;
 }
}

All of the code for this chapter's exercise is included in
the Chapter_12_Code.assetpackage included with the book's source
code.

Debugging/Testing a Game with DRL Chapter 12

[317]

This code defines our class and imports by using the required namespaces. Then,5.
we define our own namespace, Packt.HoDLG, and the class is extended
from Academy, an ML-Agents base class. Next comes the declaration of several
variables for defining the goal deployment cube. Think of this as a virtual cube in
space that will spawn the goals. The idea is to let physics do the rest and let the
goal just drop to the ground.

Namespaces are optional in Unity, but it is highly recommended to put
your code within a namespace in order to avoid most naming issues,
which can be a common problem if you are using many assets or if you
find yourself modifying existing assets, as we are doing here.

Next, we will define the standard Academy class setup6.
method, InitializeAcademy. This method is called automatically, and is
shown as follows:

public override void InitializeAcademy()
{
 agents = FindObjectsOfType<TestingAgent>();
 goals = new GameObject[numGoals];
}

This method is called as a part of the ML-Agents setup, and it essentially starts7.
the whole SDK. By adding the Academy (TestingAcademy), we will effectively
be enabling ML-Agents. Next, we will add the final method, called when the
academy is reset at the end of all of the agent episodes, as follows:

public override void AcademyReset()
{
 if (goalSize.magnitude > 0)
 {
 for(int i = 0; i < numGoals; i++)
 {
 if(goals[i] != null && goals[i].activeSelf)
 Destroy(goals[i]);
 }
 for(int i = 0; i < numGoals; i++)
 {
 var x = Random.Range(-goalSize.x / 2 + goalCenter.x,
goalSize.x / 2 + goalCenter.x);
 var y = Random.Range(-goalSize.y / 2 + goalCenter.y,
goalSize.y / 2 + goalCenter.y);
 var z = Random.Range(-goalSize.z / 2 + goalCenter.z,
goalSize.z / 2 + goalCenter.z);
 goals[i] = Instantiate(goal, new Vector3(x, y, z),

Debugging/Testing a Game with DRL Chapter 12

[318]

Quaternion.identity, transform);
 }
 }
}

This code just spawns the goals randomly within the virtual cube bounds. Before8.
it does this, however, it first clears the old goals by using the Destroy
method. Destroy removes an object from the game. Then, the code loops again
and creates new goals at random locations within the virtual cube. The line that
actually creates the goal in the game is highlighted and uses the Instantiate
method. Instantiate creates an object in the game at the specified location and
rotation.
Save the file and return to the editor. Don't worry about any compiler errors at9.
this time. If you are writing the code from scratch, you will be missing some
types, which we will define later.

With the new TestingAcademy script created, we can move on to adding the component
to the game object and setting up the academy in the next section.

Setting up TestingAcademy
With the TestingAcademy script created, it is time to add it to the game object via the
following steps:

Drag the new TestingAcademy script file from the Scripts folder and drop it on1.
to the TestingAcademy object in the Hierarchy window. This will add the
component to the object. We want to create a few other components before we
complete the academy.
Click in the Hierarchy window, and in the menu, select Game Object | 3D2.
Object | Cube. Rename the new object goal.

Debugging/Testing a Game with DRL Chapter 12

[319]

Select the object and change the Tag to goal. Then, swap its material by clicking3.
on the Target icon and selecting the v46, or another flashy material of your
choice, as shown in the following screenshot:

Swapping the goal object's materials

With the goal object selected from the menu, select Component | Physics |4.
Rigidbody. This will add a physics system component called a Rigidbody. By
adding the Rigidbody to the object, we allow it to be controlled by the physics
system.

Debugging/Testing a Game with DRL Chapter 12

[320]

Drag and drop the goal object into the HoDLG | Prefabs folder in the Project5.
window. This will turn the goal object into a Prefab. Prefabs are self-contained
objects that contain their own hierarchies. A prefab can contain an entire scene,
or just one object, as we have here.
Select and delete the goal object from the Hierarchy window. In the future, we6.
will programmatically instantiate the goal from the Academy by using its Prefab.
Click inside the HoDLG | Brains folder, and click to open the Create menu.7.
From the menu, select ML-Agents | LearningBrain. Name the new brain
TestingLearningBrain, and then create a new player brain called
TestingPlayerBrain. Don't worry about configuring the brains just yet.
Select the TestingAcademy object in the Hierarchy window, and then update the8.
values of the Testing Academy component, as shown in the following
screenshot:

Setting up TestingAcademy

Debugging/Testing a Game with DRL Chapter 12

[321]

Notice that we are setting up the following properties in the TestingAcademy9.
script:

Brains: TestingLearningBrain
Max Steps: 3000
Goal: Goal set by dragging the prefab from the folder
Num Goals: 3 (number of goals dropped from the box)
Goal Size: (50, 50, 50) (determines maximum bounds of the goal box)
Goal Center: (85, 110, -37) (the center point of the goal box)

You may be tempted to run the project at this point; you can if you have just downloaded
the code, but hold off until we define the TestingAgent in the next section.

Scripting the TestingAgent
Of course, our testing (or however far we want to take this simulation) won't do much
without an agent to interact with the environment and learn. In the next exercise, we will
define the script that describes the TestingAgent component:

Click inside the HoDLG | Scripts folder, and click on the Create button to open1.
the menu.
From the menu, select C# Script and name the script TestingAgent.2.
Open the script in your editor and start to script it with the following code:3.

using MLAgents;
using UnityEngine;

namespace Packt.HoDLG
{
 public class TestingAgent : Agent
 {
 public string[] axisAction;
 protected Vector3 resetPos;
 protected Quaternion resetRot;
 }
}

This starts our class; this time, it's extended from Agent, another base class.4.
Then, we define some base fields for setting variables and recording the agent's
start position and rotation.

Debugging/Testing a Game with DRL Chapter 12

[322]

Next, we move on to define the InitializeAgent method. This method is5.
called once, to set up the agent and make sure that the action lengths are the
same; we will get to that shortly. We remember the position/rotation from which
the agent started, so that we can restore it later. The code is as follows:

public override void InitializeAgent()
{
 base.InitializeAgent();
 if (axisAction.Length !=
brain.brainParameters.vectorActionSize[0])
 throw new MLAgents.UnityAgentsException("Axis actions must
match agent actions");

 resetPos = transform.position;
 resetRot = transform.rotation;
}

Next, we define an empty method called CollectObservations. This is6.
typically where the agent observes the environment; since we plan to use visual
observations, we can leave this empty. The code is as follows:

public override void CollectObservations(){ }

Next, we define another required method: AgentAction. This is the method7.
where we add the negative step reward and move the agent, as shown in the
following code snippet:

public override void AgentAction(float[] vectorAction, string
textAction)
{
 AddReward(-1f / agentParameters.maxStep);
 MoveAgent(vectorAction);
}

public void MoveAgent(float[] act)
{
 for(int i=0;i<act.Length;i++)
 {
 var val = Mathf.Clamp(act[i], -1f, 1f);
 TestingInput.Instance.setAxis(val,axisAction[i]);
 }
}

Debugging/Testing a Game with DRL Chapter 12

[323]

The code here is what deciphers the actions from the brain and injects them back8.
into a new class (which we will build shortly), called
TestingInput. TestingInput is a helper class that we will use to override the
input system of the game.
Save the script, and, again, ignore any compiler errors. Again, we have a new9.
dependency, TestingInput, that we will define shortly.

With the new script in hand, we can begin to set up the TestingAgent component in the
next section.

Setting up the TestingAgent
Now, the system that we are building here is fairly generic, and it's intended to be used in
multiple environments. Keep that in mind as we set things up, especially if some concepts
seem a bit abstract. Open up the editor, and let's add the TestingAgent script to an object:

Select Vehicle1, Vehicle3, Vehicle4, and Vehicle5 in the scene, and disable them.1.
We currently only want to give our agent the ability to drive, and not to switch
vehicles; therefore, we only need the default Vehicle2.
Select the TestingAgent script from the HoDLG | Scripts folder and drag it on to2.
the Vehicle2 object. This will add the TestingAgent component to our Vehicle2,
and will make it an agent (well, almost).
Open Vehicle2 | Cameras in the Hierarchy window and choose the view that3.
you want the agent to use. We will select Camera2 for this exercise, but the
options for each of the five cameras are shown in the following screenshot:

Debugging/Testing a Game with DRL Chapter 12

[324]

Selecting the visual observation camera to use as an input to the agent

The best options are either Camera1 or Camera5, as shown in the preceding4.
screenshot. Note that the cameras are ordered in reverse, with 1 starting at the far
right, not the left. Of course, that leaves plenty of opportunity to play with other
visual input in the future.

Debugging/Testing a Game with DRL Chapter 12

[325]

Select Vehicle2 and drag the selected TestingPlayerBrain and Camera1 into the5.
required slots, as shown in the following screenshot:

Setting up the TestingAgent component

You will also need to define additional properties, which are summarized as6.
follows:

Brain: TestingPlayerBrain.
Camera 1: Click on Add Camera to add a new camera, and then select
Camera1 from the Vehicle2 cameras.
Decision Frequency: 10 (this determines how often the agent makes
decisions; 10 is a good starting point for this game. It will vary, and
you will likely have to tune it to your needs)

Debugging/Testing a Game with DRL Chapter 12

[326]

Axis Action: 2:
Element 0: Vertical (denotes the axis we will be
overriding to allow the agent to control the game. We
will get more into axis descriptions shortly)
Element 1: Horizontal (same as the preceding)

Save the project and the scene, and, again, ignore any compiler errors.7.

That completes the set up of the TestingAgent; as you can see, there isn't a whole lot of
configuration or code required to get this running. In the future, you will likely see more
advanced ways of testing/debugging or building agents this way. For now, however, we
need to complete our example by injecting into the Unity input system, which we will do in
the next section.

Overriding the Unity input system
One of Unity's most compelling features is its ability to be cross-platform across any
system, and with that comes several helpful layers of abstraction that we can use to inject
our code into. However, the game in question needs to be following the Unity best practices
in order to make this injection easy. That isn't to say that we couldn't do it by overriding the
game's input system; it just wouldn't be as easy.

Before we get into describing how the injection works, let's take a step back and look at the
best practices for using the Unity input system. Over the years, the Unity input system has
evolved from a simple query that the device uses for inputs to the more cross-platform
system that it uses now. However, many developers, including Unity itself, still use input
methods that query a particular key code, for instance. The best practice is to define a set of
axes (input channels) that define the input for the game.

Debugging/Testing a Game with DRL Chapter 12

[327]

We can easily see how it is currently defined in the game by following this exercise:

From the editor menu, select Edit | Project Settings.1.
Select the Input tab and then expand Axes | Horizontal and Axes | Vertical, as2.
shown in the following screenshot:

Inspecting the Input Axes settings

Debugging/Testing a Game with DRL Chapter 12

[328]

The Vertical and Horizontal axes define the input that will be used to control the3.
game. By defining them in this tab, we can control the input across platforms by
querying the axes. Notice that the axis input allows us to define both the button
and joystick (touch) input. The output of a query to the input system
with getAxis returns a value from -1 to +1, or continuous output. This means
that we can take any discrete form of input, such as a keystroke, and immediately
convert it to a continuous value automatically. For example, if a user presses the
W key, the input system coverts that to a positive 1 value on the Vertical Axis,
and conversely, a press on the S key generates a negative 1 value, again on the
Vertical Axis. Likewise, the A and D keys control the Horizontal Axis.

As you have seen in a few chapters in this book, using the .6 version of
ML-Agents, the current discrete action solution is not nearly as good as
the continuous action. Therefore, it will be our preference going forward.

At this point, you may be wondering why we used discrete actions at all; that is a good
question. It remains to be seen how Unity will handle this dichotomy in the future. In the
next section, we will look at how to inject into the input system.

Building the TestingInput
We are going to use a pattern called a Singleton in order to implement a class that we can
access from anywhere in our code, much like the input class from Unity that is currently
used. Unity has the benefit of making the input completely static, but for our purposes, we
will use the well-defined scripting version. Open the editor and follow the next exercise to
build the TestingInput script and object:

Select the HoDLG | Scripts folder and open the Create menu.1.
From the Create menu, select C# Script. Name the new script Singleton. This2.
script is the standard pattern script from http:/ /wiki. unity3d. com/ index. php/
Singleton; the script is shown as follows:

using UnityEngine;

namespace Packt.HoDLG
{
 /// <summary>
 /// Inherit from this base class to create a singleton.
 /// e.g. public class MyClassName : Singleton<MyClassName> {}
 /// </summary>
 public class Singleton<T> : MonoBehaviour where T : MonoBehaviour

http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton
http://wiki.unity3d.com/index.php/Singleton

Debugging/Testing a Game with DRL Chapter 12

[329]

 {
 // Check to see if we're about to be destroyed.
 private static bool m_ShuttingDown = false;
 private static object m_Lock = new object();
 private static T m_Instance;
 /// <summary>
 /// Access singleton instance through this propriety.
 /// </summary>
 public static T Instance
 {
 get
 {
 if (m_ShuttingDown)
 {
 Debug.LogWarning("[Singleton] Instance '" + typeof(T) +
 "' already destroyed. Returning null.");
 return null;
 }
 lock (m_Lock)
 {
 if (m_Instance == null)
 {
 // Search for existing instance.
 m_Instance = (T)FindObjectOfType(typeof(T));
 // Create new instance if one doesn't already exist.
 if (m_Instance == null)
 {
 // Need to create a new GameObject to attach the
singleton to.
 var singletonObject = new GameObject();
 m_Instance = singletonObject.AddComponent<T>();
 singletonObject.name = typeof(T).ToString() + "
(Singleton)";
 // Make instance persistent.
 DontDestroyOnLoad(singletonObject);
 }
 }
 return m_Instance;
 }
 }
 }
 private void OnApplicationQuit()
 {
 m_ShuttingDown = true;
 }
 private void OnDestroy()
 {
 m_ShuttingDown = true;

Debugging/Testing a Game with DRL Chapter 12

[330]

 }
 }
}

Enter the preceding code, or just use the code downloaded from the book's3.
source. A singleton allows us to define one thread-safe instance of a specific class
that all of the objects can refer to. A typical static class will not be thread-safe,
and may cause corruption or memory issues.
Create a new script called TestingInput in the HoDLG | Scripts folder and4.
open it for editing.
We will start the class with the following code:5.

using System.Collections.Generic;
using System.Linq;
using UnityEngine;

namespace Packt.HoDLG
{
 public class TestingInput : Singleton<TestingInput>
 {
 public string[] axes;
 public bool isPlayer;
 }
}

Notice the highlighted line, and how we declare the class to extend from the type6.
Singleton that wraps the type TestingInput. This form of recursive typing,
which uses generics, is perfect for the singleton. Don't worry if this is a little
unclear; the only thing that you need to remember is that we can now access the
instance of this class from anywhere in our code. Notice that we mentioned an
instance and not a class, meaning that we can also persist the state within our
TestingInput class. The variables that we declare here, axes and isPlayer,
are either set in the editor or defined in the Start method, as follows:

void Start()
{
 axisValues = new Dictionary<string, float>();
 //reset the axes to zero
 foreach(var axis in axes)
 {
 axisValues.Add(axis, 0);
 }
}

Debugging/Testing a Game with DRL Chapter 12

[331]

Inside the Start method, we define a Dictionary to hold the axis and values7.
that we want this component to override. This allows us to control which input
we want to override. Then, we build the collection of name/value pairs.
Next, we will define a couple methods that will allow us to both mimic and set8.
the axis values of our input system. Unity has no direct way to set the value of an
axis. Currently, the Input system queries the hardware directly in order to read
the input state, and provides no way to override this for testing. While this is
a feature that has long been requested by the community, it remains to be seen
whether it will ever be implemented.
We then enter a setAxis and getAxis method, as follows:9.

public void setAxis(float value, string axisName)
{
 if (isPlayer == false && axes.Contains(axisName)) //don't if
player mode
 {
 axisValues[axisName] = value;
 }
}
public float getAxis(string axisName)
{
 if (isPlayer)
 {
 return Input.GetAxis(axisName);
 }
 else if(axes.Contains(axisName))
 {
 return axisValues[axisName];
 }
 else
 { return 0; }
}

That completes the script; if you have been adding the code as you go, save the10.
file and return to Unity. At this point, you should see no compiler errors, as all of
the required types should be present and accounted for.

That sets up the TestingInput script; now, we need to move on to the next section to add
it to the scene.

Debugging/Testing a Game with DRL Chapter 12

[332]

Adding TestingInput to the scene
Singletons can be called from anywhere and everywhere, and they actually don't need a
game object in the scene. However, by adding the object to the scene, we become more self-
aware of the required dependency, as it allows us to set required parameters for a
particular scene. Open the Unity editor and follow the next exercise to add the
TestingInput component to the scene:

Click in the Hierarchy window, and from the menu, select Game Object | Create1.
Empty. Rename the object TestingInput.
Drag the TestingInput script from the HoDLG | Scripts folder in the Project2.
window to the new TestingInput object in the Hierarchy window.
Select the TestingInput object, and then set the required Axes, as shown in the3.
following screenshot:

Setting the axes to override

We need to define two Axes that we want to override. In this case, we are only4.
overriding the Vertical (S and W) and Horizontal (A and D) keys. You could, of
course, override any axis that you wanted, but in this case, we are only
overriding two.
Save the project and the scene. 5.

At this point, you can't really run the project, since the actual input system isn't overriding
anything just yet. We complete that final injection in the next section.

Debugging/Testing a Game with DRL Chapter 12

[333]

Overriding the game input
At this point, we have a complete testing system in place; we just need to complete the last
parts of the injection. This bit of surgery can require a keen eye and a little digging through
code. Fortunately, there are some good, clear indicators that you can use to spot places for
injection. Open the editor and follow the next steps to complete the injection:

Select the Control object in the Hierarchy window.1.
Locate the MS Scene Controller Free component in the Inspector window and2.
use the Context menu to open the script in your code editor.
Locate the following block of code, around line 286 (about halfway in), as3.
follows:

case ControlTypeFree.windows:
 verticalInput = Input.GetAxis (_verticalInput);
 horizontalInput = Input.GetAxis (_horizontalInput);
 mouseXInput = Input.GetAxis (_mouseXInput);
 mouseYInput = Input.GetAxis (_mouseYInput);
 mouseScrollWheelInput = Input.GetAxis (_mouseScrollWheelInput);
 break;
}

This is where the game is querying the GetAxis method, in order to return the4.
values of the respective input axis. As we have discussed, we are only interested
in the vertical and horizontal axes for this example. You can, of course, override
other axes, as you see fit.
Modify the lines where the verticalInput and horizontalInput are being5.
set, as follows:

verticalInput = TestingInput.Instance.getAxis(_verticalInput);
horizontalInput = TestingInput.Instance.getAxis(_horizontalInput);

Notice that we call TestingInput.Instance, in order to access the singleton6.
instance of our class. This allows us to query that class for the current input
values. The TestingInput object can now be the source of truth (as far as this
class is concerned), with respect to the input.

Debugging/Testing a Game with DRL Chapter 12

[334]

Previously, we quickly went over the agent code that sets the input, but here it is7.
again for reference:

public void MoveAgent(float[] act)
{
 for(int i=0;i<act.Length;i++)
 {
 var val = Mathf.Clamp(act[i], -1f, 1f);
 TestingInput.Instance.setAxis(val,axisAction[i]);
 }
}

Notice the highlighted line in the TestingAgent MoveAgent method. This is8.
where we override the input by the agent and inject the values back into the
game.
Save the code and return to the editor. Make sure to fix any compiler issues now.9.

Unfortunately, we are still unable to run the scene, as we have one last configuration step to
tend to. In the next section, we will complete the configuration by setting up the brains.

Configuring the required brains
The last piece of the puzzle is to configure the brains that we quickly built earlier. ML-
Agents requires that the brains be configured with the required input and observation
space, in order to work correctly. We will set up the TestingPlayerBrain and
TestingLearningBrain in the next exercise:

Open the Unity editor and select TestingLearningBrain from the HoDLG |1.
Brains folder to open it in the Inspector.

Debugging/Testing a Game with DRL Chapter 12

[335]

Set the Brain parameters, as shown in the following screenshot:2.

Setting the parameters for the TestingPlayerBrain

Debugging/Testing a Game with DRL Chapter 12

[336]

There are several parameters to set; they are summarized as follows:3.
Visual Observations: 84 x 84 and no grayscale
Vector Action:

Space Type: Continuous
Space Size: 2
Action Descriptions:

Size: 2
Element 0: Vertical
Element 1: Horizontal

Axis Continuous Player Actions:
Size: 2
Vertical:

Axis: Vertical
Index: 0
Scale: 1

Horizontal:
Axis: Horizontal
Index: 1
Scale: 1

Debugging/Testing a Game with DRL Chapter 12

[337]

Select TestingLearningBrain and configure it the same, but for learning, as4.
shown in the following screenshot:

Configuring the TestingLearningBrain

The configuration for the learning brain is much simpler, but it is also still5.
required, even when running the sample in player mode (which, if you recall, it
is set up to do).
Save the scene and project. Finally, we have completed our required6.
configuration.
Press Play to run the scene and play the game in player mode. We are controlling7.
the game through the ML-Agents system. After a few seconds, you should see
some goals drop nearby.

Debugging/Testing a Game with DRL Chapter 12

[338]

Control the vehicle and drive into a goal, as shown in the following screenshot:8.

Driving into the goals

When you are done playing, stop the game.9.

Now that we are able to play the game through ML-Agents by using a configured player
brain, we will switch to a learning brain and let an agent take control in the next section.

Debugging/Testing a Game with DRL Chapter 12

[339]

Time for training
However we decide to use this platform, whether for training or testing, we now need to do
the last brain configuration step, in order to set any custom hyperparameters that we may
decide to use for training. Open a Python/Anaconda console and prepare it for training,
and then follow these steps:

Open the trainer_config.yaml file located in the ML-Agents/ml-1.
agents/config folder.
We will add a new configuration section to the config file, modeled after one of2.
the other visual environments. Add the new configuration, as follows:

TestingLearningBrain:
 use_recurrent: true
 sequence_length: 64
 num_layers: 1
 hidden_units: 128
 memory_size: 256
 beta: 1.0e-2
 gamma: 0.99
 num_epoch: 3
 buffer_size: 1024
 batch_size: 64
 max_steps: 5.0e5
 summary_freq: 1000
 time_horizon: 64

Notice that we added the word brain, in order to differentiate it from the other3.
brains. This brain is modeled after the VisualHallwayBrain that we spent
some time exploring previously. Keep in mind, however, that we are running a
continuous action problem now, and this can affect some parameters.
Save the file and return to the Unity editor.4.
Locate the TestingAcademy object, swap its Brains for a5.
TestingLearningBrain, and set it to Control, as you have done so many
times before.

Debugging/Testing a Game with DRL Chapter 12

[340]

Save the scene and project and return to the Python/Anaconda console.6.
Start a training/learning/testing session by running the following command:7.

mlagents-learn config/trainer_config.yaml --run-id=testing --train

Watch the training session and the agent play the game. The agent will run, and8.
depending on how long you train, it may become good at finding the goals.

At this point, you can let the agent go and just run through your level on its own, exploring.
However, what we want to do is control or nudge the testing agent to the right path by
using imitation learning, which we will discuss in the next section.

Testing through imitation
At this point in your learning, you have learned several strategies that we can apply to help
our testing agent learn and find the goals. We can use curiosity or curriculum learning
fairly easily, and we will leave that as an exercise for the reader. What we want is a way to
control some of the testing process, and we don't really want our agent to randomly test
everything (at least not at this stage). Sure, there are places where completely random
testing works well. (By the way, this random form of testing is called monkey testing,
because it resembles a monkey just mashing keys or input.) However, in a space such as
our game, exploring every possible combination could take a very long time. Therefore, the
best alternative is to capture player recordings and use them for our testing agent as a
source for imitation learning.

With everything set up and with our ability to now route the input events through ML-
Agents, we can capture player input in the form that an agent needs to learn from. Let's
open a backup Unity and set up the scene to capture player recordings, as follows:

Select the Vehicle2 object in the Hierarchy window. Recall that this is where1.
the TestingAgent script is attached.
Use the Add Component button at the bottom of the Inspector window to add a2.
Demonstration Recorder component to the agent.

Debugging/Testing a Game with DRL Chapter 12

[341]

Set the Demonstration Recorder to Record and the Demonstration Name to3.
Testing, and change the brain to TestingPlayerBrain, as shown in the following
screenshot:

Adding a Demonstration Recorder to the agent

Select the TestingAcademy object, and make sure to disable the Control option4.
on the Brain. We want the player to control the agent when recording.
Press Play and run the game. Use the WASD controls keys on your keyboard to5.
drive the vehicle over the goals. Play for a little while, in order to generate a
decent recording.
When you are done, check the Assets folder for a new folder called6.
Demonstrations that contains your Testing.demo recording file.

Now, with the player recording in play, we can set up and run the agent, using imitation
learning to test the level.

Debugging/Testing a Game with DRL Chapter 12

[342]

Configuring the agent to use IL
We have already run through the process of setting up and running an offline imitation
learning (IL) session, but let's review the process in the next exercise:

Open the Unity editor to the same project and locate the Vehicle2 object1.
containing the agent.
Switch the agent's brain from TestingPlayerBrain to TestingLearningBrain.2.
Select the TestingAcademy and enable the Control property on the Testing3.
Academy | Brains component property.
Save the scene and project.4.
Open the config/offline_bc_config.yaml file in a text or code editor.5.
Add the following section (a modified copy of HallwayLearning):6.

TestingLearningBrain:
 trainer: offline_bc
 max_steps: 5.0e5
 num_epoch: 5
 batch_size: 64
 batches_per_epoch: 5
 num_layers: 2
 hidden_units: 128
 sequence_length: 16
 use_recurrent: true
 memory_size: 256
 sequence_length: 32
 demo_path: ./UnitySDK/Assets/Demonstrations/Testing.demo

Save the file when you are done editing it.7.
Open a Python/Anaconda console that is ready for training, and enter the8.
following command:

mlagents-learn config/offline_bc_config.yaml --run-id=testing_il --
train

Note a couple of modifications, highlighted in bold. After the training starts,9.
watch the agent drive the car in the same manner that you trained it (or at least, it
will try to).
Let the agent play the game, and watch how well it performs and/or gets into10.
trouble.

Debugging/Testing a Game with DRL Chapter 12

[343]

This demo/game is quite stable and is not prone to any obvious issues, which makes testing
it for obvious issues difficult. However, hopefully, you can appreciate that if this type of
system is implemented very early in a game, even just for testing, it provides the ability to
quickly find bugs and other issues. Of course, currently, our only method to identify any
issues is to watch the agent play, which doesn't save us any time. What we need is a way to
track agent activity and determine whether (and when) the agent finds itself in trouble.
Fortunately, we can easily add this form of tracking by adding analytics, which we will
cover in the next section.

Analyzing the testing process
One of the key features that ML-Agents is currently missing is extra training analytics
(beyond what is provided by the console and TensorBoard). A key feature that could be
crucial (and which is not difficult to add) is training analytics. This could be implemented
with the Unity Analytics service that is free to try with all games. Since this isn't a current
feature in ML-Agents, it is one that we will add in the next exercise, by adding our own
training analytics system:

Open the Unity editor, and from the menu, select Window | General | Services.1.
This will open a new window called Services, usually over the top of the
Inspector window.
Click on the Analytics service in the newly opened Services window. You will2.
need to progress through a couple of screens, asking for your preferences and
acknowledgment, as shown in the following screenshot:

Debugging/Testing a Game with DRL Chapter 12

[344]

Setting up analytics for your project

Click on the button to enable Google Analytics. Then, select the Discover player3.
insights switch, and you will be prompted to press Play in your editor.
Press Play in the editor, and let the game run for only a few seconds.4.

Debugging/Testing a Game with DRL Chapter 12

[345]

Return to the Services window and the Analytics page, and at the top, you5.
should see a button called Go to Dashboard. Click on the button, as shown in the
following screenshot:

Exploring your data using the dashboard

This will open your default web browser to your project analytics page, and you6.
should see some events, such as appStart and appStop.

That completes the setup of the analytics service, and, as you have seen, it is quite easy.
However, as with everything, we need to customize some of the reporting data that we will
send to the analytics service. You will learn how to send your own custom analytics in the
next section.

Sending custom analytics
If you have used the analytics service previously, you may have your own best practices for
how to track your game usage; if so, feel free to use that. The method that we will present
here is intended as a start for how you can go about setting up and sending custom
analytics for training, or even for tracking player usage.

Debugging/Testing a Game with DRL Chapter 12

[346]

Let's begin by opening the Unity editor and following the next exercise:

Create a new C# script called TestingAnalytics in the HoDLG Scripts folder.1.
Open and edit the TestingAnalytics script in your editor, and enter the2.
following code:

using UnityEngine;

namespace Packt.HoDLG
{
 public class TestingAnalytics : Singleton<TestingAnalytics>
 {
 private TestingAcademy academy;
 private TestingAgent[] agents;
 private void Start()
 {
 academy = FindObjectOfType<TestingAcademy>();
 agents = FindObjectsOfType<TestingAgent>();
 }
 public string CurrentGameState
 {
 get
 {
 var state = string.Empty;
 foreach (var agent in agents)
 {
 foreach (var goal in academy.goals)
 {
 var distance = Vector3.Distance(goal.transform.position,
agent.transform.position);
 state += agent.name + " distance to goal " + distance + "/n";
 }
 }
 return state;
 }
 }
 }
}

All this code does is collect the current position of the goals and how close they3.
are to the agents. That is what we care about currently. Also, notice that we made
this a public property, so that it can be called like a method, and not just a field.
This will be important later on.
Save the file and return to the editor. Confirm that there are no compiler errors.4.

Debugging/Testing a Game with DRL Chapter 12

[347]

Create a new empty game object in the scene, and call it TestingAnalytics.5.
Drag the new TestingAnalytics script on to the object to set it as a scene
component. While the class is a singleton, we still want to add it as a dependency
in the scene (essentially, as a reminder). However, there is another trick that we
can also use to program prefabs.
Drag the TestingAnalytics object into the HoDLG | Prefabs folder. This will6.
make the object a prefab, which is now accessible by all of the other prefabs.
Double-click on the goal prefab located in the HoDLG | Prefabs folder to open7.
the object in its own mini editor.
Use the Add Component button to add an Analytics Event Tracker component8.
to the object and configure it, as shown in the following screenshot:

Setting up the Analytics Event Tracker

Debugging/Testing a Game with DRL Chapter 12

[348]

Configure the component as follows:9.
When: Lifecycle
Lifecycle Event: On Destroy
Send Event:

Name: Goal Destroyed Event
Parameters: 1/10:

Name: Status
Value: Dynamic
Object: TestingAnalytics (Prefab)
Method: CurrentGameState

Switch the scene back to the player mode by altering the Academy and Agent10.
configuration.
Save the scene and the project.11.
Run the scene by pressing Play, and drive over a goal. As you hit the goal, check12.
the Analytics dashboard and note how the event is tracked.

At this stage, the analytics only report when a goal is destroyed, and they report how close
each agent is to a goal. So, for one agent and three goals, they would report three distances
when a goal was destroyed by driving over it or when the object was reset. By following
these stats, you can generally view how each agent testing session is going overall, for
better or for worse. Of course, you can add any manner of analytics that you want; it is easy
to get carried away. Who knows; in the future, Unity may offer a self-testing platform
driven by ML-Agents that provides testing analytics.

We are coming to the end of another chapter, and, of course, we are approaching your
favorite section, Exercises.

Exercises
The exercises in this chapter are a mix of working with ML-Agents and building your own
testing analysis platform. As such, choose one or two exercises that make sense for you to
complete on your own from the following list:

Configure the TestingAgent to use a different camera for its visual observation1.
input.
Enable Curiosity Learning on the agent's brain.2.
Set up the TestingAgent to control a different vehicle.3.

Debugging/Testing a Game with DRL Chapter 12

[349]

Set up the TestingAgent to run on another vehicle and let ML-Agents control4.
both of the agents simultaneously.
Add additional tracking analytics custom events for the agents. Perhaps track the5.
distance that the agent travels versus its lifetime. This will provide a speed factor
that can also denote the agent's efficiency. An agent that hits a goal quicker will
have a better speed factor.
Enable online imitation learning by adding a second vehicle with a learning6.
agent. If you need to, go back and review the setup of the tennis scene.
Set up the Academy to use curriculum learning. Perhaps allow the virtual goal7.
deployment box to grow in size over training iterations (by 10%, or some other
factor). This will allow the goals to disperse farther and make it more difficult for
the agent to find.
Modify the visual observation input that the brains are using to 184 x 184, the8.
new standard, and see what effect this has on agent training.
Modify the visual observation convolutional encoding network, as we did in9.
Chapter 7, Agents and the Environment, to use more layers and/or different
filtering.
Apply this testing framework to your own game. Be sure to also add the10.
analytics, so that you can track training and player usage.

These exercises are more involved than those in the previous chapters, since this is a big
and important chapter. In the next section, we will review what you learned and covered in
this chapter.

Summary
Of all the chapters in this book, this may be the most useful if you are in the process of
developing your own game. Game testing is one of those things that requires so much time
and attention, it has to be up for some form of automation. While it makes sense for DRL to
work well in this area for almost any game, it remains to be seen whether that is one of the
niches for this new learning phenomena. One thing that's for sure, however, is that ML-
Agents is more than capable of working as a testing harness, and we are sure that it will
only get better over time.

Debugging/Testing a Game with DRL Chapter 12

[350]

In this chapter, we looked at building a generic testing platform, powered by ML-Agents,
that we can use to test any game automatically. We first looked at each of the components
that we needed to adapt, the academy and the agent, and how they could be generalized
for testing. Then, we looked at how we could inject into the Unity input system and use our
TestingAgent to override the game's input and learn how to control it on its own. After
that, we looked at how to better set up our testing by using offline IL and recording a demo
file that we could use to train the agent later. Finally, in order to see how well our testing
was doing, we added analytics and customized them to our needs.

The next chapter will be our final chapter and our last discussion of deep learning for
games; appropriately enough, we will look at what the future holds for ML-Agents and
DRL.

13
Obstacle Tower Challenge and

Beyond
In this chapter, our final one, we will take a look at the current and future state of deep
learning (DL) and deep reinforcement learning (DRL) for games. We take an honest and
candid look to see whether these technologies are ready for prime-time commercial games
or whether they are just novelties. Are we poised to see DRL agents beating human players
at every game imaginable a few years from now? While that remains to be seen, and things
are changing quickly, the question really is this: is DL ready for your game? It likely is a
question you are asking yourself at this very moment, and it is hopefully one we will
answer in this chapter.

This chapter will be a mix of hands-on exercises and general discussions with unfortunately
no exercises. Well, there is one big exercise, but we will get to that shortly. Here is what we
will cover in this chapter:

The Unity Obstacle Tower challenge
Deep Learning for your game?
Building your game
More foundations of learning

This chapter assumes you have covered numerous exercises in this book in order to
understand the context. We will refer to those sections in order to remind the reader, but
please don't jump to this chapter first.

Obstacle Tower Challenge and Beyond Chapter 13

[352]

The Unity Obstacle Tower Challenge
The Unity Obstacle Tower Challenge was introduced in February 2019 as a discrete visual
learning problem. As we have seen before, this is the holy grail of learning for games,
robotics, and other simulations. What makes it more interesting is this challenge was
introduced outside of ML-Agents and requires the challenger to write their own Python
code from scratch to control the game—something we have come close to learning how to
do in this book, but we omitted the technical details. Instead, we focused on the
fundamentals of tuning hyperparameters, understanding rewards, and the agent state. All
of these fundamentals will come in handy if you decide to tackle the tower challenge.

At the time this book was written, the ML-Agents version used for developing was 0.6. If
you have run all the exercises to completion, you will have noticed that all of the visual
learning environments using a discrete action space suffer from a vanishing or exploding
gradient problem. What you will see happen is the agent essentially learning nothing and
performing random actions; this often takes several hundred thousand iterations to see. But
we don't see this problem in environments with a smaller state space using vector
observations. In visual environments with a large input state, though, the problem can be
seen quite regularly. This means that, essentially, at the time of writing anyway, you would
not want to use the Unity code; it currently is a poor visual learner of discrete actions.

At the time of writing, the Unity Obstacle Tower Challenge has just started, and early
metrics are already being reported. The current leading algorithm from Google, DeepMind,
not surprisingly, is an algorithm called Rainbow. In short, Rainbow is the culmination of
many different DRL algorithms and techniques all combined to better learn the discrete
action visual-learning space that the tower so well defines.

Now that we have established that you likely want to write your own code, we will
understand the high-level critical pieces your agent needs to address. It likely would take
another book to explain how to do the coding and other technical aspects of that, so we will
instead talk about the overall challenges and the critical elements you need to address.
Also, the winners will more than likely need to use more probabilistic methods in order to
address the problem, and that is currently not covered very well anywhere.

Let's set up the challenge and get it running in the next exercise:

Download the Obstacle Tower Environment as a binary from https:/ /github.1.
com/Unity- Technologies/ obstacle- tower- env.
Follow the instructions and download the zip file for your environment as2.
directed. On most systems, this just requires downloading and unzipping the file
into a folder you will execute from later.
Unzip the file into a well-known folder.3.

https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env
https://github.com/Unity-Technologies/obstacle-tower-env

Obstacle Tower Challenge and Beyond Chapter 13

[353]

Launch the program by double-clicking on it (Windows) to enter the name in a4.
console. After you launch the challenge, you can actually play it as a human. Play
the game and see how many floors you can climb. An example of the running
challenge is shown in the following screenshot:

The Obstacle Tower Challenge in player mode

One of the first things you will learn as you progress through the game is that the game
starts out quite simply, but on the later floors, it gets quite difficult, even for a human.

Now, as we mentioned, solving this challenge is well beyond the scope of this book, but
hopefully you can now appreciate some of the complexities that currently stifle the field of
deep reinforcement learning. We have reviewed the major challenges that you will face
when undertaking this method in the following table:

Problem Chapter Current
Status Future

Visual
observation
state—you will
need to build a
complex
enough CNN
and possibly
recurrent
networks to
encode
enough details
in the visual
state.

Chapter

7, Agent and the
Environment

The current
Unity visual
encoder is far
from
acceptable.

Fortunately, there is plenty of work always being done
with CNN and recurrent networks for analysis of videos.
Remember, you don't just want to capture static images;
you also want to encode the sequence of the images.

Obstacle Tower Challenge and Beyond Chapter 13

[354]

DQN, DDQN,
or Rainbow

Chapter 5,
Introducing DRL

Rainbow is
currently the
best, and it is
available on
the GCP.

As we have seen in this book, PPO only performs well on
continuous action spaces. In order to tackle the discrete
action space, we look back to more fundamental methods
such as DQN or the newcomer Rainbow, which is the
summation of all base methods. We will also discuss
future ways in which further use of deep probabilistic
methods may be the answer.

Intrinsic
rewards

Chapter 9,
Rewards and
Reinforcement
Learning

The use of an
intrinsic
reward
system shows
promise for
exploration.

Being able to introduce intrinsic reward systems such as
Curiosity Learning allows the agent to explore new
environments based on some expectation of state. This
method will be essential for any algorithm that plans to
reach the higher levels of the tower.

Understanding
Chapter 6,
Unity ML-
Agents

Unity
provides an
excellent
sample
environment
to build and
test models
on.

You can easily build and test a similar environment in
Unity quite quickly and on your own. It is no wonder
Unity never released the raw Unity environment as a
project. This was more than likely because this would
have attracted many novices, thinking they could
overcome the problem with just training. Sometimes,
training is just not the answer.

Sparse
rewards

Chapter 9,
Rewards and
Reinforcement
Learning
Chapter 10,
Imitation and
Transfer
Learning

Could
implement
Curriculum or
Imitation
Learning.

We have already covered many examples of ways to
manage the sparse rewards problem. It will be interesting
to see how much the winners depend on one of these
methods, such as IL, to win.

Discrete
actions

Chapter

8, Understandin
g PPO

We learned
how PPO
allowed
continuous
action
problems to
learn, using
stochastic
methods.

As we alluded to before, it will likely take new work into
more deep probabilistic methods and techniques to work
around some of the current problems. This will likely
require the development of new techniques using new
algorithms, and how long that takes remains to be seen.

Each of the problems highlighted in the preceding table will likely need to be solved in part
or wholly in order to get an agent from floor 1 to 100 to complete the entire challenge. It
remains to be seen how this will play out for Unity, the winner, and DRL as a whole. In the
next section, we discuss the practical applications of DL and DRL, and how they can be
used for your game.

Obstacle Tower Challenge and Beyond Chapter 13

[355]

Deep Learning for your game?
It's likely the reason you picked this book up was to learn about DL and DLR for games in
the hope of landing your dream job or completing your dream game. In either case, we
come to a point where you decide whether this technology is worth including in your own
game and to what extent. The following is a list of ten questions you can use to determine
whether DL is right for your game:

Have you already made the decision and need to build the game with DL or1.
DRL?

Yes – 10 points
No – 0 points

Will your game benefit from some form of automation, either through testing or2.
managing repetitious player tasks?

Yes – 10 points
No – 0 points

Do you want to make training and AI or another similar activity part of the3.
game?

Yes – (-5) points. You may be better off using a more robust from of AI to
simulate the training. Training DRL takes too many iterations and samples to
be effective as an inline game-training tool, at least for now.
No – 0 points.

Do you want cutting-edge AI to feature in your game?4.
Yes – 10 points. There are certainly ways of layering AI technologies and
making a DRL solution work. When it comes to current AI, there really is no
better cutting-edge technology.
No – 0 points.

Do you have hours of time to train an AI?5.
Yes – 10 points
No – (-10) points

Have you read a good portion of this book and completed at least a few of the6.
exercises?

Yes – 10 points, +5 if you completed more than 50%
No – (-10) points; thanks for the honesty

Do you have a background or affinity for math?7.
Yes – 10 points
No – (-10) points

Obstacle Tower Challenge and Beyond Chapter 13

[356]

How many papers have you read on reinforcement learning at an academic8.
level?

10+ – 25 points
5–10 – 10 points
1–5 – 5 points
0 – 0 points

What is your completion timeline?9.
1–3 months – (-10) points
3–6 months – 0 points
6–12 months – 10 points
1–2+ years – 25 points

What is the size of your team?10.
Solo – (-10) points
2–5 – 0 points
6–10 – 10 points
11+ – 25 points

Answer all the questions and score your points to determine your full readiness score.
Consult the following to determine how ready you and/or your team are:

<0 points - How did you even make it this far into the book? You're not ready,
and it's best you just put this book down.
0-50 - You certainly show promise, but you are going to need some more help;
check out the following section on next steps and further areas of learning.
50-100 - You certainly are on your way to building the knowledge base and
implementing some fun DRL in games, but you may still need a little help. Check
the section on next steps and further areas of learning.
100+ - You are well beyond ready, and we appreciate you taking the time to read
this book. Perhaps take some of your own personal time and pass your own or
your team members' knowledge on to people you know.

Of course, there are no absolute rules to the results of the preceding test, and you may find
that you score quite low but then go on to make the next great AI game. How you approach
the results is up to you, and how you take your next steps is also entirely up to you.

In the next section, we look at the next steps you can take to learn more about DRL and
how to build better automation and AI in games.

Obstacle Tower Challenge and Beyond Chapter 13

[357]

Building your game
Now that you have decided to use deep learning and/or deep reinforcement learning for
your game, it is time to determine how you plan to implement various functionality in your
game. In order to do that, we are going to go through a table outlining the steps you need
to go through in order to build your game's AI agent:

Step Action Summary

Start
Determine at what level you want the AI in the game to operate,
from basic, perhaps for just testing and simple automation, to
advanced, where the AI will complete against the player.

Determine the level of
AI.

Resourcing
Determine the amount of resources. Basic AI or automation
could be handled within the team itself, whereas more complex
AI may require one or many experienced members of staff.

Team requirements.

Knowledge
Determine the level of knowledge the team possesses and what
will be required. It is a given that any team implementing new
AI will need to learn new skills.

Knowledge-gap
analysis.

Demonstration Always start by building a simple but workable proof of concept
that demonstrates all critical aspects of the system.

Demonstrate the team
can complete the basic
premise.

Implementation Build the actual system in a way that is simplistic and
maintainable. Keep all the things you know simple and clean. Build the system.

Testing
Test the system over and over again. It is critical that the system
is tested thoroughly, and of course what better way to do that
than with a DRL automated test system.

Test the system.

Fix

As anyone who has developed software for more than a few
weeks will tell you, the process is build, test, fix, and repeat. That
essentially is the software development process, so try not to add
too many other bells and whistles to distract from that.

Fixing the system.

Release

Releasing software to users/players is absolutely critical to a
successful game or software product of any kind. You will
always want to release early and often, which means your
players must be encouraged to test, and to provide feedback.

Let the bugs out.

Repeat The cycle is endless and will continue as long as your
product/game makes money. Support the system.

The preceding process is the basic premise and will work for most of your development
needs. In most cases, you may want to track individual work items such as features or bugs
on a work or task board. You may want to use a more defined process such as Scrum, but
often keeping things simple is your best course of action.

Obstacle Tower Challenge and Beyond Chapter 13

[358]

Scrum and other software development processes are great examples to learn from, but
unless you have formally trained staff, it's better to avoid trying to implement these
yourself. There are often subtle rules that need to be enforced in these processes for them to
work as they claim to. Even trained Scrum Masters may need to battle daily to enforce these
rules in many organizations, and in the end their value becomes more management-driven
than developer-focused. Use the previous table as a guide for the steps you take in building
your next game, and always remember that build, release, fix, and repeat is the key to good
software.

In the next section, we will look at other things you can use to expand your learning.

More foundations of learning
There is an ever-growing resource for learning about machine learning, DL, and of course
DLR. The list is becoming very large, and there are many materials to choose from. For that
reason, we will now summarize the areas we feel show the most promise for developing AI
and DL for games:

Basic Data Science Course: If you have never taken a basic fundamentals course
on data science, then you certainly should. The foundations of understanding the
qualities of data, statistics, probability, and variability are too numerous to
mention. Be sure to cover this foundation first.
Probabilistic Programming: This is a combination of various variational
inference methods by which to answer problems given a probability of events
with an answer of the probability that some event may occur. These types of
models and languages have been used to analyze financial information and risk
for years, but they are now coming to the forefront in ML technologies.
Deep Probabilistic Programming: This is the combination of variational
inference and DL models. Variational inference is the process by which you
answer a question with a probability given the input of possibly multiple
probabilities. So, instead of using a series of weights to train a network, we use a
series of probability distributions. This method has proven to be very effective
and has recently performed visual image classification tasks with a modified
probabilistic CNN model.

Obstacle Tower Challenge and Beyond Chapter 13

[359]

Visual state classification and encoding: A critical aspect to a DL system is the
development of CNN models to classify images. You will need to understand
this space very well in order to build the networks for your game environment.
Recall that different environments may require CNN models.
Memory: Memory can of course come in all forms, but the primary one of
interest is the recurrent neural network (RNN). Early on in this book, we looked
at the current standard recurrent network model we use called the long short-
term memory (LSTM) block. Even at the time of writing, there is a renewed
interest in the gated recurrent unit (GRU), a more complex recurrent network
that has been shown to handle the vanishing gradient problem better. There is
always an interest in cloud or other supported technologies and how they may
interact with new DL technologies.
DL as a Service: Companies such as Google, Amazon, Microsoft, OpenAI, and
others who claim to be all about openness are often far from it. In most cases, if
you want to incorporate these technologies into your game, you will need to
subscribe to their service—which of course has its own pluses and minuses. The
major problem is that if your game becomes popular and if you rely heavily on
the DL service, your profits will be tied to it. Fortunately, Unity has yet to take
this approach, but that does remain to be seen depending on how easily the
community solves the Obstacle Tower Challenge.
Math: In general, you will want to always advance your math skills whether you
plan to dig deep into building your own models or not. In the end, your gut
understanding of the math will provide you with the insights you need to
overcome these complex technologies.
Perseverance: Learn to fail, and then move on. This is critical and something
many new developers often get disgruntled with and then move on to something
easier, simpler, and less rewarding. Be happy when you fail, as failing is learning
to understand. If you never fail, you really never learn, so learn to fail.

A hard-coded list of learning resources would likely get out of date before this book is even
printed or released. Use the preceding list to generalize your learning and broaden your
basic machine learning and data science knowledge as well. First and foremost, DL is a data
science pursuit that serves respect to the data; never forget that as well.

In the next section for our final chapter, we will summarize this chapter and the book.

Obstacle Tower Challenge and Beyond Chapter 13

[360]

Summary
In this chapter, we took a short tour of many basic concepts involving your next steps in DL
and DRL; perhaps you will decide to pursue the Unity Obstacle Tower Challenge and
complete that or just use DRL in your own project. We looked at simple quizzes in order to
evaluate your potential for diving in and using DRL in a game. From there, we looked at
the next steps in development, and then finally we looked at other areas of learning may
want to focus on.

This book was an exercise in understanding how effective DL can be when applied to your
game project in the future. We explored many areas of basic DL principles early on and
looked at more specific network types such as CNN and LSTM. Then, we looked at how
these basics network forms could be applied to applications for driving and building a
chatbot. From there, we looked at the current king of machine learning algorithms,
reinforcement and deep reinforcement learning. We then looked at one of the current
leaders, Unity ML-Agents, and how to implement this technology, over several chapters
by looking at how simple environments are built to more complex multi-agent
environments. This also allowed us to explore different forms of intrinsic/extrinsic rewards
and learning systems, including curriculum, curiosity, imitation, and transfer learning.

Finally, before finishing this chapter, we completed a long exercise regarding using DRL for
automatic testing and debugging with the added option of using IL as a way of enhancing
testing.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Game Development without Coding
Lucas Bertolini

ISBN: 9781789538335

Understanding the Interface and kit flow.
Comprehend the virtual space and its rules.
Learning the behaviours and roles each component must have in order to make a
videogame.
Learn about videogame development
Creating a videogame without the need of learning any programming language
Create your own gameplay HUD to display player and Enemy information

https://www.packtpub.com/game-development/hands-game-development-without-coding

Other Books You May Enjoy

[362]

Unity 2018 Shaders and Effects Cookbook - Third Edition
John P. Doran, Alan Zucconi

ISBN: 9781788396233

Understand physically based rendering to fit the aesthetic of your game
Write shaders from scratch in ShaderLab and HLSL/Cg
Combine shader programming with interactive scripts to add life to your
materials
Design efficient shaders for mobile platforms without sacrificing their realism
Use state-of-the-art techniques, such as volumetric explosions and fur shading
Master the math and algorithms behind the most used lighting models
Understand how shader models have evolved and how you can create your own

https://www.packtpub.com/game-development/unity-2018-shaders-and-effects-cookbook-third-edition

Other Books You May Enjoy

[363]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Actor-Critic architecture
 about 201, 204
 expanding 204
Advanced Message Queuing Protocol (AMQP)

112

 installing, in Unity 120, 121
adversarial Autoencoder GAN 68
adversarial self-play
 about 277, 279, 281
 environments, training 281, 283, 285
 using 285, 287
agent
 configuration, for using IL 342
 executing 163, 166
 personalities, configuring 301, 303, 304, 305
 testing, through imitation learning 340, 341
 training 150, 153, 154
 training, for GridWorld environment 154, 157
AI as a Service (AIaaS) 107
AI Microservices 107
AlphaStar 248
Anaconda 43
Artificial Neural Network (ANN) 8
asset flipping 309
autoencoder
 building, with Keras 32, 34
 model, training 34
 output, examining 36, 37
AutoML 10
auxiliary Classifier GAN 68

B
Backplay
 about 235, 237
 implementing, through Curriculum Learning 237,

239

 reference 235
Backpropagation Through Time (BPTT) 56
backpropagation
 used, for training neural networks 26
batch normalization 85
Behavioral Cloning 249, 250
Bellman equation 132, 134
beta 209
brain
 about 154
 transferring 262, 264

C
calculus 28
Capsule Networks (CapsNet) 52
CartPole 139
chain rule 28, 29, 32
chatbot server
 building 107
 Message Hubs (RabbitMQ) 108, 110
 message queue chatbot, writing 114, 117
 RabbitMQ, managing 110
 receiving, from MQ 112, 114
 sending, to MQ 112
chatbots
 executing, in Unity 117, 120
 general conversationalist 96
 goal-oriented 96
Classical-Piano-Composer
 reference 92
 used, for generating music 92
conditional GANS 68
contextual bandits 129
continuous action spaces 204
convolution 44, 46
convolution state 183

[365]

convolutional neural networks
 about 40, 42
 TensorBoard, used for monitoring training 42
cooperative self-play
 about 277, 279
 environments, training 281, 284, 285
 using 281
Cost function 26, 27
Curiosity Intrinsic module
 using 242, 244
Curiosity Learning (CL)
 about 240, 242, 354
 reference 240
Curriculum Learning
 about 232, 234, 294
 Backplay, implementing through 237, 239
customized reward functions
 used, for creating uniqueness 297, 300, 301
CycleGAN
 reference 68

D
decoupling 107
deep convolutional GANs (DCGANs) 67
Deep Learning (DL)
 future 8, 10
 history 8
 present 9
 using, for game 355, 356
Deep Q-learning (DQN) 138
Deep Reinforcement Learning (DRL)
 about 125, 147, 150
 combining, with Deep Q-learning 139
DeepPavlov 105, 107
DiscoGAN 68
DualGAN 68
dueling double Q networks (DDQN) 202

E
epsilon 209
exchanges, RabbitMQ
 direct 116
 fanout 116
 headers 116
 topic 116

extrinsic rewards
 for individuality 294, 296, 297

F
feed-forward propagation 26
First-person shooter (FPS) 315

G
game
 about 309, 311, 312
 building 357, 358
 rewards, adding 315, 317
gaming tasks
 MMO Virtual character 97
 non-player characters (NPCs) 96
 player character 96
 promotion/Hints 97
general conversational models
 generative forms 97
 selective form 97
Generalized Advantage Estimate (GAE)
 about 211
 reference 211
generative adversarial network (GAN)
 about 67, 126
 coding, in Keras 69, 72
 music GAN, training 90
 music, generating via 92
 textures, generating 81, 84
 training 73, 75
 used, for creating music 87, 90
Git 149
gradient descent 14, 26

H
Hallway/VisualHallway
 ICM, trying 244
 trying 246
hyper-parameters 158

I
imitation learning (IL)
 about 249, 250, 294
 agent, testing through 340, 341

[366]

 setting up 342
Imitation Transfer Learning
 about 269, 271
 issue 269
 multiple agent, training with one demonstration

271, 273
InfoGANs 69
Intrinsic Curiosity Module (ICM) 240
intrinsic rewards
 used, for adding individuality 291, 293
Inverse Reinforcement Learning (IRL) 242

J
JavaScript Object Notation (JSON) 238

K
Keras RL 143, 145
Keras
 GAN, coding 69, 72
 used, for building autoencoder 32, 34

L
LeakyReLU 85
learning brain 154
learning rate 27
least squares GAN (LSGAN) 68
Long Short-Term Memory (LSTM)
 about 187
 Rock, Paper, Scissors game, playing 61, 63
LSTM rescued gradients
 exploding 57, 59, 60
 vanishing 57, 59, 60

M
Machine Learning (ML) 7
Marathon reinforcement learning 195
Markov Decision Process (MDP) 132, 198
message hub 108
MIDI 88
Minorize-Maximization (MM) algorithm 206
ML-Agents
 installing 148, 150
 setting up 312, 314
 TestingAcademy, setting up 318, 321

 TestingAgent, scripting 321
 TestingAgent, setting up 323, 326
MNIST handwritten digits database 18
momentum 77
monkey testing 340
multi-armed bandit 128
multi-brain play 288, 289, 291
Multilayer Perceptron (MLP) 8
multilayer perceptron
 in TF 17, 21
museGAN 87
music GAN
 training 90, 92

N
natural language processing (NLP) 96
Nesterov technique 77
neural conversational agents
 about 96
 general conversational models 97
neural networks
 about 11, 13
 training, with backpropagation 26

O
offline training
 about 253, 255
 agent, feeding 257, 259
 setting up 255, 257
online training 251, 253
OpenAI Gym
 RL, using with 131
optimizers
 about 75, 76, 77
 AdaDelta 77
 AdaGrad 77
 AdaMax 78
 Adaptive Moment Estimation (Adam) 78
 AMSGrad 78
 Nadam 78
 RMSProp 77

P
partial differentiation 28, 31, 32
Partially Observable Markov Decision Process

[367]

(POMDP) 198, 200
perceptron
 about 11
 training, in Python 14, 16
PilotNet 47
pix2pixGAN 68
player brain 154
Proximal Policy Optimization (PPO)
 about 145, 147, 158, 177, 194, 206, 208, 211
 multiple agent policy 219, 221
 required code changes, for controlling projects

215

 tuning 213, 215
Python
 perceptron, training 14, 17

Q
Q-Learning model
 about 132, 134, 137
 Bellman equation 132
 exploration, versus exploitation 137
 Markov Decision Process (MDP) 132

R
RabbitMQ
 managing 110
Rainbow 352
Rectified Linear Unit (ReLU)
 about 16, 86
 concatenated ReLU (CReLU) 86
 ReLU-6 86
recurrent hyperparameters
 tuning 189, 191
recurrent networks
 used, for remembering series 187, 189
Recurrent Neural Networks (RNN) 56
reduced level (RL) 194
Reinforcement Learning (RL)
 about 7
reinforcement learning (RL)
 about 97, 126
 contextual bandits 129
 experiments 142
 Keras RL 143
 multi-armed bandit 128

 using, with OpenAI Gym 131
resource, learning
 Basic Data Science Course 358
 Deep Probabilistic Programming 358
 DL as a Service 359
 math 359
 memory 359
 perseverance 359
 Probabilistic Programming 358
 visual state classification and encoding 359
reward functions
 building 227, 228
 creating 225, 226
rewards
 about 126, 225
 sparsity 228, 230, 232
Rock, Paper, Scissors game
 playing, with LSTMs 60, 63

S
self-driving CNN
 building 47, 48, 51
 dropout 55
 pooling 52
 spatial convolution 52, 54
sequence-to-sequence learning
 about 98, 99
 code, breaking down 100, 101, 102
 thought vector 104
servant agents 291
shaders 78
Stacked or SGAN 69
state 178, 181
static assets
 creating 78
stride 45
supervised training 126

T
temporal sense 56
TensorBoard
 about 158
 used, for monitoring training 43, 158, 161, 163
TensorFlow (TF)
 about 10, 22, 25

 checkpoints, exploring 264, 267, 269
 multilayer perceptron 17, 21
TensorFlow inference graph 20
testing process
 analyzing 343, 345
 custom analytics, sending 345, 347, 348
textures
 generating, with GAN 81, 84
TFSharp plugin
 reference 163
thought vector 104
trained brain
 loading 166, 168
training environment
 agent, training 174, 175
 basics, reverting to 177, 178
 exploring 171, 174
Transfer Learning (TL) 259, 262, 294
TRPO 206, 208, 210

U
Unity input system
 game input, overriding 333
 overriding 326, 328

 required brains, configuring 334, 336, 338
 TestingInput, adding to scene 332
 TestingInput, building 328, 330
 training 339, 340
Unity Obstacle Tower Challenge
 about 352, 354
 reference 352
Unity
 AMQP, installing 120, 121
 chatbot, running 117, 120
unsupervised training 126

V
vanishing/exploding gradient 75
variational auto encoding 89
visual state
 about 182, 183
 layer of pooling, applying 185
 layer of pooling, avoiding 185

W
WASD controls
 using 154
Wasserstein GAN 81
Wasserstein GAN (WassGAN) 69, 78

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: The Basics
	Chapter 1: Deep Learning for Games
	The past, present, and future of DL
	The past
	The present
	The future

	Neural networks – the foundation
	Training a perceptron in Python

	Multilayer perceptron in TF
	TensorFlow Basics
	Training neural networks with backpropagation
	The Cost function
	Partial differentiation and the chain rule

	Building an autoencoder with Keras
	Training the model
	Examining the output

	Exercises
	Summary

	Chapter 2: Convolutional and Recurrent Networks
	Convolutional neural networks
	Monitoring training with TensorBoard

	Understanding convolution
	Building a self-driving CNN
	Spatial convolution and pooling
	The need for Dropout

	Memory and recurrent networks
	Vanishing and exploding gradients rescued by LSTM

	Playing Rock, Paper, Scissors with LSTMs
	Exercises
	Summary

	Chapter 3: GAN for Games
	Introducing GANs
	Coding a GAN in Keras
	Training a GAN
	Optimizers

	Wasserstein GAN
	Generating textures with a GAN
	Batch normalization
	Leaky and other ReLUs

	A GAN for creating music
	Training the music GAN
	Generating music via an alternative GAN

	Exercises
	Summary

	Chapter 4: Building a Deep Learning Gaming Chatbot
	Neural conversational agents
	General conversational models

	Sequence-to-sequence learning
	Breaking down the code
	Thought vectors

	DeepPavlov
	Building the chatbot server
	Message hubs (RabbitMQ)
	Managing RabbitMQ
	Sending and receiving to/from the MQ
	Writing the message queue chatbot

	Running the chatbot in Unity
	Installing AMQP for Unity

	Exercises
	Summary

	Section 2: Deep Reinforcement Learning
	Chapter 5: Introducing DRL
	Reinforcement learning
	The multi-armed bandit
	Contextual bandits

	RL with the OpenAI Gym
	A Q-Learning model
	Markov decision process and the Bellman equation
	Q-learning
	Q-learning and exploration

	First DRL with Deep Q-learning
	RL experiments
	Keras RL

	Exercises
	Summary

	Chapter 6: Unity ML-Agents
	Installing ML-Agents
	Training an agent
	What's in a brain?
	Monitoring training with TensorBoard
	Running an agent
	Loading a trained brain

	Exercises
	Summary

	Chapter 7: Agent and the Environment
	Exploring the training environment
	Training the agent visually
	Reverting to the basics

	Understanding state
	Understanding visual state
	Convolution and visual state
	To pool or not to pool

	Recurrent networks for remembering series
	Tuning recurrent hyperparameters

	Exercises
	Summary

	Chapter 8: Understanding PPO
	Marathon RL
	The partially observable Markov decision process
	Actor-Critic and continuous action spaces
	Expanding network architecture

	Understanding TRPO and PPO
	Generalized advantage estimate

	Learning to tune PPO
	Coding changes required for control projects
	Multiple agent policy

	Exercises
	Summary

	Chapter 9: Rewards and Reinforcement Learning
	Rewards and reward functions
	Building reward functions

	Sparsity of rewards
	Curriculum Learning
	Understanding Backplay
	Implementing Backplay through Curriculum Learning

	Curiosity Learning
	The Curiosity Intrinsic module in action
	Trying ICM on Hallway/VisualHallway

	Exercises
	Summary

	Chapter 10: Imitation and Transfer Learning
	IL, or behavioral cloning
	Online training
	Offline training
	Setting up for training
	Feeding the agent

	Transfer learning
	Transferring a brain
	Exploring TensorFlow checkpoints

	Imitation Transfer Learning
	Training multiple agents with one demonstration

	Exercises
	Summary

	Chapter 11: Building Multi-Agent Environments
	Adversarial and cooperative self-play
	Training self-play environments

	Adversarial self-play
	Multi-brain play
	Adding individuality with intrinsic rewards
	Extrinsic rewards for individuality
	Creating uniqueness with customized reward functions
	Configuring the agents' personalities

	Exercises
	Summary

	Section 3: Building Games
	Chapter 12: Debugging/Testing a Game with DRL
	Introducing the game
	Setting up ML-Agents
	Introducing rewards to the game
	Setting up TestingAcademy
	Scripting the TestingAgent
	Setting up the TestingAgent

	Overriding the Unity input system
	Building the TestingInput
	Adding TestingInput to the scene
	Overriding the game input
	Configuring the required brains
	Time for training

	Testing through imitation
	Configuring the agent to use IL

	Analyzing the testing process
	Sending custom analytics

	Exercises
	Summary

	Chapter 13: Obstacle Tower Challenge and Beyond
	The Unity Obstacle Tower Challenge
	Deep Learning for your game?
	Building your game
	More foundations of learning
	Summary

	Other Books You May Enjoy
	Index

