

Hands-On Reinforcement
Learning with Python

Master reinforcement and deep reinforcement learning using
OpenAI Gym and TensorFlow

Sudharsan Ravichandiran

BIRMINGHAM - MUMBAI

Hands-On Reinforcement Learning
with Python
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Namrata Patil
Content Development Editor: Amrita Noronha
Technical Editor: Jovita Alva
Copy Editor: Safis Editing
Project Coordinator: Shweta H Birwatkar
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Shantanu Zagade

First published: June 2018

Production reference: 1260618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-652-4

www.packtpub.com

http://www.packtpub.com

To my adorable parents, to my brother, Karthikeyan, and to my bestest friend, Nikhil Aditya.

– Sudharsan Ravichandiran

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Sudharsan Ravichandiran is a data scientist, researcher, artificial intelligence enthusiast,
and YouTuber (search for Sudharsan reinforcement learning). He completed his bachelors in
information technology at Anna University. His area of research focuses on practical
implementations of deep learning and reinforcement learning, which includes natural
language processing and computer vision. He used to be a freelance web developer and
designer and has designed award-winning websites. He is an open source contributor and
loves answering questions on Stack Overflow.

I would like to thank my amazing parents and my brother, Karthikeyan, for constantly
inspiring and motivating me throughout this journey. My big thanks and gratitude to my
bestest friend, Nikhil Aditya, who is literally the bestest, and to my editor, Amrita, and to
my Soeor. Without all their support, it would have been impossible to complete this book.

About the reviewers
Sujit Pal is a Technology Research Director at Elsevier Labs, an advanced technology group
within the Reed-Elsevier Group of companies. His areas of interests include semantic
search, natural language processing, machine learning, and deep learning. At Elsevier, he
has worked on several initiatives involving search quality measurement and improvement,
image classification and duplicate detection, and annotation and ontology development for
medical and scientific corpora. He has co-authored a book on deep learning with Antonio
Gulli and writes about technology on his blog, Salmon Run.

Suriyadeepan Ramamoorthy is an AI researcher and engineer from Puducherry, India. His
primary areas of research are natural language understanding and reasoning. He actively
blogs about deep learning.

At SAAMA technologies, he applies advanced deep learning techniques for biomedical text
analysis. He is a free software evangelist who is actively involved in community
development activities at FSFTN. His other interests include community networks, data
visualization and creative coding.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Reinforcement Learning 6
What is RL? 6
RL algorithm 8
How RL differs from other ML paradigms 9
Elements of RL 9

Agent 9
Policy function 10
Value function 10
Model 10

Agent environment interface 11
Types of RL environment 12

Deterministic environment 12
Stochastic environment 12
Fully observable environment 12
Partially observable environment 13
Discrete environment 13
Continuous environment 13
Episodic and non-episodic environment 13
Single and multi-agent environment 13

RL platforms 14
OpenAI Gym and Universe 14
DeepMind Lab 14
RL-Glue 14
Project Malmo 15
ViZDoom 15

Applications of RL 15
Education 15
Medicine and healthcare 15
Manufacturing 16
Inventory management 16
Finance 16
Natural Language Processing and Computer Vision 16

Summary 17
Questions 17
Further reading 17

Chapter 2: Getting Started with OpenAI and TensorFlow 18

Table of Contents

[ii]

Setting up your machine 18
Installing Anaconda 19
Installing Docker 20
Installing OpenAI Gym and Universe 21

Common error fixes 22
OpenAI Gym 23

Basic simulations 23
Training a robot to walk 26

OpenAI Universe 28
Building a video game bot 28

TensorFlow 32
Variables, constants, and placeholders 33

Variables 33
Constants 33
Placeholders 34

Computation graph 34
Sessions 35
TensorBoard 36

Adding scope 37
Summary 39
Questions 40
Further reading 40

Chapter 3: The Markov Decision Process and Dynamic Programming 41
The Markov chain and Markov process 41
Markov Decision Process 43

Rewards and returns 44
Episodic and continuous tasks 44
Discount factor 44
The policy function 45
State value function 46
State-action value function (Q function) 46

The Bellman equation and optimality 47
Deriving the Bellman equation for value and Q functions 48

Solving the Bellman equation 50
Dynamic programming 50

Value iteration 51
Policy iteration 54

Solving the frozen lake problem 57
Value iteration 59
Policy iteration 64

Summary 67
Questions 67
Further reading 68

Table of Contents

[iii]

Chapter 4: Gaming with Monte Carlo Methods 69
Monte Carlo methods 69

Estimating the value of pi using Monte Carlo 70
Monte Carlo prediction 73

First visit Monte Carlo 75
Every visit Monte Carlo 75
Let's play Blackjack with Monte Carlo 75

Monte Carlo control 83
Monte Carlo exploration starts 83
On-policy Monte Carlo control 85
Off-policy Monte Carlo control 88

Summary 89
Questions 90
Further reading 90

Chapter 5: Temporal Difference Learning 91
TD learning 91
TD prediction 92
TD control 94

Q learning 95
Solving the taxi problem using Q learning 100

SARSA 103
Solving the taxi problem using SARSA 107

The difference between Q learning and SARSA 110
Summary 111
Questions 111
Further reading 111

Chapter 6: Multi-Armed Bandit Problem 112
The MAB problem 112

The epsilon-greedy policy 114
The softmax exploration algorithm 116
The upper confidence bound algorithm 117
The Thompson sampling algorithm 120

Applications of MAB 122
Identifying the right advertisement banner using MAB 123
Contextual bandits 125
Summary 126
Questions 126
Further reading 127

Chapter 7: Deep Learning Fundamentals 128
Artificial neurons 129
ANNs 130

Input layer 131

Table of Contents

[iv]

Hidden layer 131
Output layer 131
Activation functions 132

Deep diving into ANN 134
Gradient descent 136

Neural networks in TensorFlow 141
RNN 145

Backpropagation through time 148
Long Short-Term Memory RNN 149

Generating song lyrics using LSTM RNN 151
Convolutional neural networks 155

Convolutional layer 156
Pooling layer 160
Fully connected layer 161
CNN architecture 161

Classifying fashion products using CNN 162
Summary 168
Questions 168
Further reading 168

Chapter 8: Atari Games with Deep Q Network 169
What is a Deep Q Network? 170
Architecture of DQN 171

Convolutional network 171
Experience replay 172
Target network 173
Clipping rewards 174
Understanding the algorithm 174

Building an agent to play Atari games 175
Double DQN 184
Prioritized experience replay 185
Dueling network architecture 186
Summary 188
Questions 188
Further reading 188

Chapter 9: Playing Doom with a Deep Recurrent Q Network 189
DRQN 190

Architecture of DRQN 191
Training an agent to play Doom 192

Basic Doom game 193
Doom with DRQN 194

DARQN 204
Architecture of DARQN 205

Table of Contents

[v]

Summary 206
Questions 206
Further reading 207

Chapter 10: The Asynchronous Advantage Actor Critic Network 208
The Asynchronous Advantage Actor Critic 209

The three As 209
The architecture of A3C 210
How A3C works 210

Driving up a mountain with A3C 212
Visualization in TensorBoard 220

Summary 223
Questions 224
Further reading 224

Chapter 11: Policy Gradients and Optimization 225
Policy gradient 226

Lunar Lander using policy gradients 226
Deep deterministic policy gradient 231

Swinging a pendulum 233
Trust Region Policy Optimization 240
Proximal Policy Optimization 245
Summary 247
Questions 248
Further reading 248

Chapter 12: Capstone Project – Car Racing Using DQN 249
Environment wrapper functions 250
Dueling network 252
Replay memory 255
Training the network 256
Car racing 262
Summary 265
Questions 266
Further reading 266

Chapter 13: Recent Advancements and Next Steps 267
Imagination augmented agents 267
Learning from human preference 271
Deep Q learning from demonstrations 273
Hindsight experience replay 274
Hierarchical reinforcement learning 275

MAXQ Value Function Decomposition 276
Inverse reinforcement learning 279

Table of Contents

[vi]

Summary 280
Questions 280
Further reading 281

Assessments 282

Other Books You May Enjoy 289

Index 292

Preface
Reinforcement learning is a self-evolving type of machine learning that takes us closer to
achieving true artificial intelligence. This easy-to-follow guide explains everything from
scratch using rich examples written in Python.

Who this book is for
This book is intended for machine learning developers and deep learning enthusiasts who
are interested in artificial intelligence and want to learn about reinforcement learning from
scratch. Read this book and become a reinforcement learning expert by implementing
practical examples at work or in projects. Having some knowledge of linear algebra,
calculus, and the Python programming language will help you understand the flow of the
book.

What this book covers
Chapter 1, Introduction to Reinforcement Learning, helps us understand what reinforcement
learning is and how it works. We will learn about various elements of reinforcement
learning, such as agents, environments, policies, and models, and we will see different
types of environments, platforms, and libraries used for reinforcement learning. Later in the
chapter, we will see some of the applications of reinforcement learning.

Chapter 2, Getting Started with OpenAI and TensorFlow, helps us set up our machine for
various reinforcement learning tasks. We will learn how to set up our machine by installing
Anaconda, Docker, OpenAI Gym, Universe, and TensorFlow. Then we will learn how to
simulate agents in OpenAI Gym, and we will see how to build a video game bot. We will
also learn the fundamentals of TensorFlow and see how to use TensorBoard for
visualizations.

Chapter 3, The Markov Decision Process and Dynamic Programming, starts by explaining what
a Markov chain and a Markov process is, and then we will see how reinforcement learning
problems can be modeled as Markov Decision Processes. We will also learn about several
fundamental concepts, such as value functions, Q functions, and the Bellman equation.
Then we will see what dynamic programming is and how to solve the frozen lake problem
using value and policy iteration.

Preface

[2]

Chapter 4, Gaming with Monte Carlo Methods, explains Monte Carlo methods and different
types of Monte Carlo prediction methods, such as first visit MC and every visit MC. We
will also learn how to use Monte Carlo methods to play blackjack. Then we will explore
different on-policy and off-policy Monte Carlo control methods.

Chapter 5, Temporal Difference Learning, covers temporal-difference (TD) learning, TD
prediction, and TD off-policy and on-policy control methods such as Q learning and
SARSA. We will also learn how to solve the taxi problem using Q learning and SARSA.

Chapter 6, Multi-Armed Bandit Problem, deals with one of the classic problems of
reinforcement learning, the multi-armed bandit (MAB) or k-armed bandit problem. We will
learn how to solve this problem using various exploration strategies, such as epsilon-
greedy, softmax exploration, UCB, and Thompson sampling. Later in the chapter, we will
see how to show the right ad banner to the user using MAB.

Chapter 7, Deep Learning Fundamentals, covers various fundamental concepts of deep
learning. First, we will learn what a neural network is, and then we will see different types
of neural network, such as RNN, LSTM, and CNN. We will learn by building several
applications that do tasks such as generating song lyrics and classifying fashion products.

Chapter 8, Atari Games with Deep Q Network, covers one of the most widely used deep
reinforcement learning algorithms, which is called the deep Q network (DQN). We will
learn about DQN by exploring its various components, and then we will see how to build
an agent to play Atari games using DQN. Then we will look at some of the upgrades to the
DQN architecture, such as double DQN and dueling DQN.

Chapter 9, Playing Doom with a Deep Recurrent Q Network, explains the deep recurrent Q
network (DRQN) and how it differs from a DQN. We will see how to build an agent to play
Doom using a DRQN. Later in the chapter, we will learn about the deep attention recurrent
Q network, which adds the attention mechanism to the DRQN architecture.

Chapter 10, The Asynchronous Advantage Actor Critic Network, explains how the
Asynchronous Advantage Actor Critic (A3C) network works. We will explore the A3C
architecture in detail, and then we will learn how to build an agent for driving up the
mountain using A3C.

Chapter 11, Policy Gradients and Optimization, covers how policy gradients help us find the
right policy without needing the Q function. We will also explore the deep deterministic
policy gradient method. Later in the chapter, we will see state of the art policy optimization
methods such as trust region policy optimization and proximal policy optimization.

Preface

[3]

Chapter 12, Capstone Project – Car Racing Using DQN, provides a step-by-step approach for
building an agent to win a car racing game using dueling DQN.

Chapter 13, Recent Advancements and Next Steps, provides information about various
advancements in reinforcement learning, such as imagination augmented agents, learning
from human preference, deep learning from demonstrations, and hindsight experience
replay, and then we will look at different types of reinforcement learning methods, such as
hierarchical reinforcement learning and inverse reinforcement learning.

To get the most out of this book
You need the following software for this book:

Anaconda
Python
Any web browser
Docker

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

The code bundle for the book is also hosted on GitHub at https:/ /github. com/
PacktPublishing/Hands- On- Reinforcement- Learning- with- Python. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http:/ /www. packtpub. com/sites/ default/ files/
downloads/HandsOnReinforcementLearningwithPython_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

policy_iteration():
 Initialize random policy
 for i in no_of_iterations:
 Q_value = value_function(random_policy)
 new_policy = Maximum state action pair from Q value

Any command-line input or output is written as follows:

bash Anaconda3-5.0.1-Linux-x86_64.sh

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this.

https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/Hands-On-Reinforcement-Learning-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/HandsOnReinforcementLearningwithPython_ColorImages.pdf

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction to Reinforcement

Learning
Reinforcement learning (RL) is a branch of machine learning where the learning occurs via
interacting with an environment. It is goal-oriented learning where the learner is not taught
what actions to take; instead, the learner learns from the consequence of its actions. It is
growing rapidly with a wide variety of algorithms and it is one of the most active areas of
research in artificial intelligence (AI).

In this chapter, you will learn about the following:

Fundamental concepts of RL
RL algorithm
Agent environment interface
Types of RL environments
RL platforms
Applications of RL

What is RL?
Consider that you are teaching the dog to catch a ball, but you cannot teach the dog
explicitly to catch a ball; instead, you will just throw a ball, and every time the dog catches
the ball, you will give it a cookie. If it fails to catch the ball, you will not give a cookie. The
dog will figure out what actions made it receive a cookie and will repeat those actions.

Introduction to Reinforcement Learning Chapter 1

[7]

Similarly, in a RL environment, you will not teach the agent what to do or how to do
instead, you will give a reward to the agent for each action it does. The reward may be
positive or negative. Then the agent will start performing actions which made it receive a
positive reward. Thus, it is a trial and error process. In the previous analogy, the dog
represents the agent. Giving a cookie to the dog upon catching the ball is a positive reward,
and not giving a cookie is a negative reward.

There might be delayed rewards. You may not get a reward at each step. A reward may be
given only after the completion of a task. In some cases, you get a reward at each step to
find out that whether you are making any mistakes.

Imagine you want to teach a robot to walk without getting stuck by hitting a mountain, but
you will not explicitly teach the robot not to go in the direction of the mountain:

Instead, if the robot hits and get stuck on the mountain, you will take away ten points so
that robot will understand that hitting the mountain will result in a negative reward and it
will not go in that direction again:

Introduction to Reinforcement Learning Chapter 1

[8]

You will give 20 points to the robot when it walks in the right direction without getting
stuck. So the robot will understand which is the right path and will try to maximize the
rewards by going in the right direction:

The RL agent can explore different actions which might provide a good reward or it
can exploit (use) the previous action which resulted in a good reward. If the RL agent
explores different actions, there is a great possibility that the agent will receive a poor
reward as all actions are not going to be the best one. If the RL agent exploits only the
known best action, there is also a great possibility of missing out on the best action, which
might provide a better reward. There is always a trade-off between exploration and
exploitation. We cannot perform both exploration and exploitation at the same time. We
will discuss the exploration-exploitation dilemma in detail in the upcoming chapters.

RL algorithm
The steps involved in typical RL algorithm are as follows:

First, the agent interacts with the environment by performing an action1.
The agent performs an action and moves from one state to another2.
And then the agent will receive a reward based on the action it performed3.
Based on the reward, the agent will understand whether the action was good or4.
bad
If the action was good, that is, if the agent received a positive reward, then the5.
agent will prefer performing that action or else the agent will try performing an
other action which results in a positive reward. So it is basically a trial and error
learning process

Introduction to Reinforcement Learning Chapter 1

[9]

How RL differs from other ML paradigms
In supervised learning, the machine (agent) learns from training data which has a labeled
set of input and output. The objective is that the model extrapolates and generalizes its
learning so that it can be well applied to the unseen data. There is an external supervisor
who has a complete knowledge base of the environment and supervises the agent to
complete a task.

Consider the dog analogy we just discussed; in supervised learning, to teach the dog to
catch a ball, we will teach it explicitly by specifying turn left, go right, move forward five
steps, catch the ball, and so on. But instead in RL we just throw a ball, and every time the
dog catches the ball, we give it a cookie (reward). So the dog will learn to catch the ball that
meant it received a cookie.

In unsupervised learning, we provide the model with training data which only has a set of
inputs; the model learns to determine the hidden pattern in the input. There is a common
misunderstanding that RL is a kind of unsupervised learning but it is not. In unsupervised
learning, the model learns the hidden structure whereas in RL the model learns by
maximizing the rewards. Say we want to suggest new movies to the user. Unsupervised
learning analyses the similar movies the person has viewed and suggests movies, whereas
RL constantly receives feedback from the user, understands his movie preferences, and
builds a knowledge base on top of it and suggests a new movie.

There is also another kind of learning called semi-supervised learning which is basically a
combination of supervised and unsupervised learning. It involves function estimation on
both the labeled and unlabeled data, whereas RL is essentially an interaction between the
agent and its environment. Thus, RL is completely different from all other machine learning
paradigms.

Elements of RL
The elements of RL are shown in the following sections.

Agent
Agents are the software programs that make intelligent decisions and they are basically
learners in RL. Agents take action by interacting with the environment and they receive
rewards based on their actions, for example, Super Mario navigating in a video game.

Introduction to Reinforcement Learning Chapter 1

[10]

Policy function
A policy defines the agent's behavior in an environment. The way in which the agent
decides which action to perform depends on the policy. Say you want to reach your office
from home; there will be different routes to reach your office, and some routes are
shortcuts, while some routes are long. These routes are called policies because they
represent the way in which we choose to perform an action to reach our goal. A policy is
often denoted by the symbol 𝛑. A policy can be in the form of a lookup table or a complex
search process.

Value function
A value function denotes how good it is for an agent to be in a particular state. It is
dependent on the policy and is often denoted by v(s). It is equal to the total expected
reward received by the agent starting from the initial state. There can be several value
functions; the optimal value function is the one that has the highest value for all the states
compared to other value functions. Similarly, an optimal policy is the one that has the
optimal value function.

Model
Model is the agent's representation of an environment. The learning can be of two
types—model-based learning and model-free learning. In model-based learning, the agent
exploits previously learned information to accomplish a task, whereas in model-free
learning, the agent simply relies on a trial-and-error experience for performing the right
action. Say you want to reach your office from home faster. In model-based learning, you
simply use a previously learned experience (map) to reach the office faster, whereas in
model-free learning you will not use a previous experience and will try all different routes
and choose the faster one.

Introduction to Reinforcement Learning Chapter 1

[11]

Agent environment interface
Agents are the software agents that perform actions, At, at a time, t, to move from one
state, St, to another state St+1. Based on actions, agents receive a numerical reward, R, from
the environment. Ultimately, RL is all about finding the optimal actions that will increase
the numerical reward:

Let us understand the concept of RL with a maze game:

The objective of a maze is to reach the destination without getting stuck on the obstacles.
Here's the workflow:

The agent is the one who travels through the maze, which is our software
program/ RL algorithm
The environment is the maze

Introduction to Reinforcement Learning Chapter 1

[12]

The state is the position in a maze that the agent currently resides in
An agent performs an action by moving from one state to another
An agent receives a positive reward when its action doesn't get stuck on any
obstacle and receives a negative reward when its action gets stuck on obstacles so
it cannot reach the destination
The goal is to clear the maze and reach the destination

Types of RL environment
Everything agents interact with is called an environment. The environment is the outside
world. It comprises everything outside the agent. There are different types of environment,
which are described in the next sections.

Deterministic environment
An environment is said to be deterministic when we know the outcome based on the
current state. For instance, in a chess game, we know the exact outcome of moving any
player.

Stochastic environment
An environment is said to be stochastic when we cannot determine the outcome based on
the current state. There will be a greater level of uncertainty. For example, we never know
what number will show up when throwing a dice.

Fully observable environment
When an agent can determine the state of the system at all times, it is called fully
observable. For example, in a chess game, the state of the system, that is, the position of all
the players on the chess board, is available the whole time so the player can make an
optimal decision.

Introduction to Reinforcement Learning Chapter 1

[13]

Partially observable environment
When an agent cannot determine the state of the system at all times, it is called partially
observable. For example, in a poker game, we have no idea about the cards the opponent
has.

Discrete environment
When there is only a finite state of actions available for moving from one state to another, it
is called a discrete environment. For example, in a chess game, we have only a finite set of
moves.

Continuous environment
When there is an infinite state of actions available for moving from one state to another, it is
called a continuous environment. For example, we have multiple routes available for
traveling from the source to the destination.

Episodic and non-episodic environment
The episodic environment is also called the non-sequential environment. In an episodic
environment, an agent's current action will not affect a future action, whereas in a non-
episodic environment, an agent's current action will affect a future action and is also called
the sequential environment. That is, the agent performs the independent tasks in the
episodic environment, whereas in the non-episodic environment all agents' actions are
related.

Single and multi-agent environment
As the names suggest, a single-agent environment has only a single agent and the multi-
agent environment has multiple agents. Multi-agent environments are extensively used
while performing complex tasks. There will be different agents acting in completely
different environments. Agents in a different environment will communicate with each
other. A multi-agent environment will be mostly stochastic as it has a greater level of
uncertainty.

Introduction to Reinforcement Learning Chapter 1

[14]

RL platforms
RL platforms are used for simulating, building, rendering, and experimenting with our RL
algorithms in an environment. There are many different RL platforms available, as
described in the next sections.

OpenAI Gym and Universe
OpenAI Gym is a toolkit for building, evaluating, and comparing RL algorithms. It is
compatible with algorithms written in any framework like TensorFlow, Theano, Keras, and
so on. It is simple and easy to comprehend. It makes no assumption about the structure of
our agent and provides an interface to all RL tasks.

OpenAI Universe is an extension to OpenAI Gym. It provides an ability to train and
evaluate agents on a wide range of simple to real-time complex environments. It has
unlimited access to many gaming environments. Using Universe, any program can be
turned into a Gym environment without access to program internals, source code, or APIs
as Universe works by launching the program automatically behind a virtual network
computing remote desktop.

DeepMind Lab
DeepMind Lab is another amazing platform for AI agent-based research. It provides a rich
simulated environment that acts as a lab for running several RL algorithms. It is highly
customizable and extendable. The visuals are very rich, science fiction-style, and realistic.

RL-Glue
RL-Glue provides an interface for connecting agents, environments, and programs together
even if they are written in different programming languages. It has the ability to share your
agents and environments with others for building on top of your work. Because of this
compatibility, reusability is greatly increased.

Introduction to Reinforcement Learning Chapter 1

[15]

Project Malmo
Project Malmo is the another AI experimentation platform from Microsoft which builds on
top of Minecraft. It provides good flexibility for customizing the environment. It is
integrated with a sophisticated environment. It also allows overclocking, which enables
programmers to play out scenarios faster than in standard Minecraft. However, Malmo
currently only provides Minecraft gaming environments, unlike Open AI Universe.

ViZDoom
ViZDoom, as the name suggests, is a doom-based AI platform. It provides support for
multi-agents and a competitive environment to test the agent. However, ViZDoom only
supports the Doom game environment. It provides off-screen rendering and single and
multiplayer support.

Applications of RL
With greater advancements and research, RL has rapidly evolved everyday applications in
several fields ranging from playing computer games to automating a car. Some of the RL
applications are listed in the following sections.

Education
Many online education platforms are using RL for providing personalized content for each
and every student. Some students may learn better from video content, some may learn
better by doing projects, and some may learn better from notes. RL is used to tune
educational content personalized for each student according to their learning style and that
can be changed dynamically according to the behavior of the user.

Medicine and healthcare
RL has endless applications in medicine and health care; some of them include
personalized medical treatment, diagnosis based on a medical image, obtaining treatment
strategies in clinical decision making, medical image segmentation, and so on.

Introduction to Reinforcement Learning Chapter 1

[16]

Manufacturing
In manufacturing, intelligent robots are used to place objects in the right position. If it fails
or succeeds in placing the object at the right position, it remembers the object and trains
itself to do this with greater accuracy. The use of intelligent agents will reduce labor costs
and result in better performance.

Inventory management
RL is extensively used in inventory management, which is a crucial business activity. Some
of these activities include supply chain management, demand forecasting, and handling
several warehouse operations (such as placing products in warehouses for managing space
efficiently). Google researchers in DeepMind have developed RL algorithms for efficiently
reducing the energy consumption in their own data center.

Finance
RL is widely used in financial portfolio management, which is the process of constant
redistribution of a fund into different financial products and also in predicting and trading
in commercial transactions markets. JP Morgan has successfully used RL to provide better
trade execution results for large orders.

Natural Language Processing and Computer
Vision
With the unified power of deep learning and RL, Deep Reinforcement Learning (DRL) has
been greatly evolving in the fields of Natural Language Processing (NLP) and Computer
Vision (CV). DRL has been used for text summarization, information extraction, machine
translation, and image recognition, providing greater accuracy than current systems.

Introduction to Reinforcement Learning Chapter 1

[17]

Summary
In this chapter, we have learned the basics of RL and also some key concepts. We learned
different elements of RL and different types of RL environments. We also covered the
various available RL platforms and also the applications of RL in various domains.

In the next chapter, Chapter 2, Getting Started with OpenAI and TensorFlow, we will learn the
basics of and how to install OpenAI and TensorFlow, followed by simulating environments
and teaching the agents to learn in the environment.

Questions
The question list is as follows:

What is reinforcement learning?1.
How does RL differ from other ML paradigms?2.
What are agents and how do agents learn?3.
What is the difference between a policy function and a value function?4.
What is the difference between model-based and model-free learning?5.
What are all the different types of environments in RL?6.
How does OpenAI Universe differ from other RL platforms?7.
What are some of the applications of RL?8.

Further reading
Overview of RL: https:/ / www. cs. ubc. ca/~murphyk/ Bayes/ pomdp. html.

https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
https://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html

2
Getting Started with OpenAI

and TensorFlow
OpenAI is a non-profit, open source artificial intelligence (AI) research company
founded by Elon Musk and Sam Altman that aims to build a general AI. They are
sponsored by top industry leaders and top-notch companies. OpenAI comes in two flavors,
Gym and Universe, using which we can simulate realistic environments, build
reinforcement learning (RL) algorithms, and test our agents in those environments.
TensorFlow is an open source machine learning library by Google that is extensively used
for numerical computation. We will use OpenAI and TensorFlow for building and
evaluating powerful RL algorithms in the upcoming chapters.

In this chapter, you will learn about the following:

Setting up your machine by installing Anaconda, Docker, OpenAI Gym, and
Universe and TensorFlow
Simulating an environment using OpenAI Gym and Universe
Training a robot to walk
Building a video game bot
Fundamentals of TensorFlow
Using TensorBoard

Setting up your machine
Installing OpenAI is not a straightforward task; there are a set of steps that have to be
correctly followed for setting the system up and running it. Now, let's see how to set up our
machine and install OpenAI Gym and Universe.

Getting Started with OpenAI and TensorFlow Chapter 2

[19]

Installing Anaconda
All the examples in the book use the Anaconda version of Python. Anaconda is an open
source distribution of Python. It is widely used for scientific computing and processing a
large volume of data. It provides an excellent package management environment. It
provides support for Windows, macOS, and Linux. Anaconda comes with Python installed
along with popular packages used for scientific computing such as NumPy, SciPy, and so
on.

To download Anaconda, visit https:/ /www.anaconda. com/ download/ , where you will see
an option for downloading Anaconda for different platforms.

If you are using Windows or Mac, you can directly download the graphical installer
according to your machine architecture and install using the graphical installer.

If you are using Linux, follow these steps:

Open your Terminal and type the following to download Anaconda:1.

wget
https://repo.continuum.io/archive/Anaconda3-5.0.1-Linux-x86_64.sh

Upon completion, we can install Anaconda via the following command:2.

bash Anaconda3-5.0.1-Linux-x86_64.sh

After successful installation of Anaconda, we need to create a new Anaconda environment
that is basically a virtual environment. What is the need for a virtual environment? Say you
are working on project A, which uses NumPy version 1.14, and project B, which uses
NumPy version 1.13. So, to work on project B you either downgrade NumPy or reinstall
Anaconda. In each project, we use different libraries with different versions which are not
applicable to other projects. Instead of downgrading or upgrading versions or reinstalling
Anaconda every time for a new project, we use a virtual environment. This creates an
isolated environment for the current project so that each project can have its own
dependencies and will not affect other projects. We will create such an environment using
the following command and name our environment universe:

conda create --name universe python=3.6 anaconda

We can activate our environment using the following command:

source activate universe

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/

Getting Started with OpenAI and TensorFlow Chapter 2

[20]

Installing Docker
After installing Anaconda, we need to install Docker. Docker makes it easy to deploy
applications to production. Say you built an application in your localhost that has
TensorFlow and some other libraries and you want to deploy your applications into a
server. You would need to install all those dependencies on the server. But with Docker, we
can pack our application with its dependencies, which is called a container, and we can
simply run our applications on the server without using any external dependency with our
packed Docker container. OpenAI has no support for Windows, so to install OpenAI in
Windows we need to use Docker. Also, the majority of OpenAI Universe's environment
needs Docker to simulate the environment. Now let's see how to install Docker.

To download Docker, go to https:/ /docs. docker. com/ where you will see an option called
Get Docker; if you select that, you will see options for different operating systems. If you
are using either Windows or Mac, you can download Docker and install it directly using
the graphical installer.

If you are using Linux, follow these steps:

Open your Terminal and type the following:

sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

Then type:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add
-

And then type:

sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

Finally, type:

sudo apt-get update
sudo apt-get install docker-ce

https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/
https://docs.docker.com/

Getting Started with OpenAI and TensorFlow Chapter 2

[21]

We need to be a member of the Docker user group to start using Docker. You can join the
Docker user group via the following command:

sudo adduser $(whoami) docker
newgrp docker
groups

We can test the Docker installation by running the built-in hello-world program:

sudo service docker start
sudo docker run hello-world

In order to avoid using sudo to use Docker every time, we can use the following command:

sudo groupadd docker
sudo usermod -aG docker $USER
sudo reboot

Installing OpenAI Gym and Universe
Now let's see how to install OpenAI Gym and Universe. Before that, we need to install
several dependencies. First, let's activate the conda environment we just created using the
following command:

source activate universe

Then we will install the following dependencies:

sudo apt-get update
sudo apt-get install golang libcupti-dev libjpeg-turbo8-dev make tmux htop
chromium-browser git cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev
python-opengl libboost-all-dev libsdl2-dev swig

conda install pip six libgcc swig
conda install opencv

Throughout this book, we will be using gym version 0.7.0 so you can install gym directly
using pip as:

pip install gym==0.7.0

Getting Started with OpenAI and TensorFlow Chapter 2

[22]

Or you can clone the gym repository and install the latest version by following command:

cd ~
git clone https://github.com/openai/gym.git
cd gym
pip install -e '.[all]'

The preceding commands will fetch the gym repository and install gym as a package, as
shown in the following screenshot:

Common error fixes
There is a good chance that you will encounter any of the following errors while installing
gym. If you get these errors, just run the following commands and try reinstalling:

Failed building wheel for pachi-py or Failed building wheel
for pachi-py atari-py:

sudo apt-get update
sudo apt-get install xvfb libav-tools xorg-dev libsdl2-dev swig
cmake

Failed building wheel for mujoco-py:

git clone https://github.com/openai/mujoco-py.git
cd mujoco-py
sudo apt-get update
sudo apt-get install libgl1-mesa-dev libgl1-mesa-glx libosmesa6-dev
python3-pip python3-numpy python3-scipy
pip3 install -r requirements.txt
sudo python3 setup.py install

Error: command 'gcc' failed with exit status 1:

sudo apt-get update
sudo apt-get install python-dev
sudo apt-get install libevent-dev

Getting Started with OpenAI and TensorFlow Chapter 2

[23]

Similarly, we can install OpenAI Universe by fetching the universe repository and
installing the universe as a package:

cd ~
git clone https://github.com/openai/universe.git
cd universe
pip install -e .

The installation is shown in the following screenshot:

As already said, Open AI Universe needs Docker, as the majority of Universe environments
run inside a Docker container.

So let's build a Docker image and name it universe:

docker build -t universe .

Once the Docker image is built, we run the following command, which starts a container
from the Docker image:

docker run --privileged --rm -it -p 12345:12345 -p 5900:5900 -e
DOCKER_NET_HOST=172.17.0.1 universe /bin/bash

OpenAI Gym
With OpenAI Gym, we can simulate a variety of environments and develop, evaluate, and
compare RL algorithms. Let's now understand how to use Gym.

Basic simulations
Let's see how to simulate a basic cart pole environment:

Getting Started with OpenAI and TensorFlow Chapter 2

[24]

First, let's import the library:1.

import gym

The next step is to create a simulation instance using the make function:2.

env = gym.make('CartPole-v0')

Then we should initialize the environment using the reset method:3.

env.reset()

Then we can loop for some time steps and render the environment at each step:4.

for _ in range(1000):
 env.render()
 env.step(env.action_space.sample())

The complete code is as follows:

import gym
env = gym.make('CartPole-v0')
env.reset()
for _ in range(1000):
 env.render()
 env.step(env.action_space.sample())

If you run the preceding program, you can see the output, which shows the cart pole
environment:

Getting Started with OpenAI and TensorFlow Chapter 2

[25]

OpenAI Gym provides a lot of simulation environments for training, evaluating, and
building our agents. We can check the available environments by either checking their
website or simply typing the following, which will list the available environments:

from gym import envs
print(envs.registry.all())

Since Gym provides different interesting environments, let's simulate a car racing
environment, shown as follows:

import gym
env = gym.make('CarRacing-v0')
env.reset()
for _ in range(1000):
 env.render()
 env.step(env.action_space.sample())

You will get the output as follows:

Getting Started with OpenAI and TensorFlow Chapter 2

[26]

Training a robot to walk
Now let's learn how to train a robot to walk using Gym along with some fundamentals.

The strategy is that X points will be given as a reward when the robot moves forward, and
if the robot fails to move then Y points will be reduced. So the robot will learn to walk in
the event of maximizing the reward.

First, we will import the library, then we will create a simulation instance by the make
function. Open AI Gym provides an environment called BipedalWalker-v2 for training
robotic agents in a simple terrain:

import gym
env = gym.make('BipedalWalker-v2')

Then, for each episode (agent-environment interaction between the initial and final state),
we will initialize the environment using the reset method:

for episode in range(100):
 observation = env.reset()

Then we will loop and render the environment:

for i in range(10000):
 env.render()

We sample random actions from the environment's action space. Every environment has an
action space which contains all possible valid actions:

action = env.action_space.sample()

For each action step, we will record observation, reward, done, and info:

observation, reward, done, info = env.step(action)

observation is the object representing an observation of the environment. For example,
the state of the robot in the terrain.

reward are the rewards gained by the previous action. For example, the reward gained by
a robot on successfully moving forward.

done is the Boolean; when it is true, it indicates that the episode has completed (that is, the
robot learned to walk or failed completely). Once the episode has completed, we can
initialize the environment for the next episode using env.reset().

info is the information that is useful for debugging.

Getting Started with OpenAI and TensorFlow Chapter 2

[27]

When done is true, we print the time steps taken for the episode and break the current
episode:

if done:
 print("{} timesteps taken for the Episode".format(i+1))
 break

The complete code is as follows:

import gym
env = gym.make('BipedalWalker-v2')
for i_episode in range(100):
 observation = env.reset()
 for t in range(10000):
 env.render()
 print(observation)
 action = env.action_space.sample()
 observation, reward, done, info = env.step(action)
 if done:
 print("{} timesteps taken for the episode".format(t+1))
 break

The output is shown in the following screenshot:

Getting Started with OpenAI and TensorFlow Chapter 2

[28]

OpenAI Universe
OpenAI Universe provides a wide range of realistic gaming environments. It is an
extension to OpenAI Gym. It provides the ability to train and evaluate agents on a wide
range of simple to real-time complex environments. It has unlimited access to many gaming
environments.

Building a video game bot
Let's learn how to build a video game bot which plays a car racing game. Our objective is
that the car has to move forward without getting stuck on any obstacles or hitting other
cars.

First, we import the necessary libraries:

import gym
import universe # register universe environment
import random

Then we simulate our car racing environment using the make function:

env = gym.make('flashgames.NeonRace-v0')
env.configure(remotes=1) #automatically creates a local docker container

Let's create the variables for moving the car:

Move left
left = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowLeft', True),
 ('KeyEvent', 'ArrowRight', False)]

#Move right
right = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowLeft', False),
 ('KeyEvent', 'ArrowRight', True)]

Move forward
forward = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowRight',
False),
 ('KeyEvent', 'ArrowLeft', False), ('KeyEvent', 'n', True)]

Getting Started with OpenAI and TensorFlow Chapter 2

[29]

We will initialize some other variables:

We use turn variable for deciding whether to turn or not
turn = 0

We store all the rewards in rewards list
rewards = []

#we will use buffer as some threshold
buffer_size = 100

#we will initially set action as forward, which just move the car forward
#without any turn
action = forward

Now, let's allow our game agent to play in an infinite loop that continuously performs an
action based on interaction with the environment:

while True:
 turn -= 1
Let us say initially we take no turn and move forward.
We will check value of turn, if it is less than 0
then there is no necessity for turning and we just move forward.
 if turn <= 0:
 action = forward
 turn = 0

Then we use env.step() to perform an action (moving forward for now) for a one-time
step:

 action_n = [action for ob in observation_n]
 observation_n, reward_n, done_n, info = env.step(action_n)

For each time step, we record the results in the observation_n, reward_n, done_n,
and info variables:

observation _n: State of the car
reward_n: Reward gained by the previous action, if the car successfully moves
forward without getting stuck on obstacles
done_n: It is a Boolean; it will be set to true if the game is over
info_n: Used for debugging purposes

Getting Started with OpenAI and TensorFlow Chapter 2

[30]

Obviously, an agent (car) cannot move forward throughout the game; it needs to take a
turn, avoid obstacles, and will also hit other vehicles. But it has to determine whether it
should take a turn and, if yes, then in which direction it should turn.

First, we will calculate the mean of the rewards we obtained so far; if it is 0 then it is clear
that we got stuck somewhere while moving forward and we need to take a turn. Then
again, which direction do we need to turn? Do you recollect the policy functions we
studied in Chapter 1, Introduction to Reinforcement Learning.

Referring to the same concept, we have two policies here: one is turning left and the other is
turning right. We will take a random policy here and calculate a reward and improve upon
that.

We will generate a random number and if it is less than 0.5, then we will take a right,
otherwise we will take a left. Later, we will update our rewards and, based on our rewards,
we will learn which direction is best:

if len(rewards) >= buffer_size:
 mean = sum(rewards)/len(rewards)

 if mean == 0:
 turn = 20
 if random.random() < 0.5:
 action = right
 else:
 action = left
 rewards = []

Then, for each episode (say the game is over), we reinitialize the environment (start the
game from the beginning) using the env.render():

 env.render()

The complete code is as follows:

import gym
import universe # register universe environment
import random

env = gym.make('flashgames.NeonRace-v0')
env.configure(remotes=1) # automatically creates a local docker container
observation_n = env.reset()

##Declare actions
#Move left
left = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowLeft', True),

Getting Started with OpenAI and TensorFlow Chapter 2

[31]

 ('KeyEvent', 'ArrowRight', False)]

#move right
right = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowLeft', False),
 ('KeyEvent', 'ArrowRight', True)]

Move forward
forward = [('KeyEvent', 'ArrowUp', True), ('KeyEvent', 'ArrowRight',
False),
 ('KeyEvent', 'ArrowLeft', False), ('KeyEvent', 'n', True)]

#Determine whether to turn or not
turn = 0
#store rewards in a list
rewards = []
#use buffer as a threshold
buffer_size = 100
#initial action as forward
action = forward

while True:
 turn -= 1
 if turn <= 0:
 action = forward
 turn = 0
 action_n = [action for ob in observation_n]
 observation_n, reward_n, done_n, info = env.step(action_n)
 rewards += [reward_n[0]]
 if len(rewards) >= buffer_size:
 mean = sum(rewards)/len(rewards)

 if mean == 0:
 turn = 20
 if random.random() < 0.5:
 action = right
 else:
 action = left
 rewards = []

 env.render()

Getting Started with OpenAI and TensorFlow Chapter 2

[32]

If you run the program, you can see how the car learns to move without getting stuck or
hitting other vehicles:

TensorFlow
TensorFlow is an open source software library from Google which is extensively used for
numerical computation. It is widely used for building deep learning models and is a subset
of machine learning. It uses data flow graphs that can be shared and executed on many
different platforms. Tensor is nothing but a multi-dimensional array, so when we say
TensorFlow, it is literally a flow of multi-dimensional arrays (tensors) in the computation
graph.

With Anaconda installed, installing TensorFlow becomes very simple. Irrespective of the
platform you are using, you can easily install TensorFlow by typing the following
command:

source activate universe
conda install -c conda-forge tensorflow

Getting Started with OpenAI and TensorFlow Chapter 2

[33]

Don't forget to activate the universe environment before installing
TensorFlow.

We can check whether the TensorFlow installation was successful by simply running the
following Hello World program:

import tensorflow as tf
hello = tf.constant("Hello World")
sess = tf.Session()
print(sess.run(hello))

Variables, constants, and placeholders
Variables, constants, and placeholders are the fundamental elements of TensorFlow.
However, there is always confusion between these three. Let's look at each element one by
one and learn the difference between them.

Variables
Variables are the containers used to store values. Variables will be used as input to several
other operations in the computational graph. We can create TensorFlow variables using
the tf.Variable() function. In the following example, we define a variable with values
from a random normal distribution and name it weights:

weights = tf.Variable(tf.random_normal([3, 2], stddev=0.1), name="weights")

However, after defining a variable, we need to explicitly create an initialization operation
using the tf.global_variables_initializer() method which will allocate resources
for the variable.

Constants
Constants, unlike variables, cannot have their values changed. Constants are immutable;
once they are assigned values they cannot be changed throughout. We can create constants
using the tf.constant() function:

x = tf.constant(13)

Getting Started with OpenAI and TensorFlow Chapter 2

[34]

Placeholders
Think of placeholders as variables where you only define the type and dimension but will
not assign the value. Placeholders are defined with no values. Values for the placeholders
will be fed at runtime. Placeholders have an optional argument called shape, which
specifies the dimensions of the data. If the shape is set to None then we can feed data of
any size at runtime. Placeholders can be defined using the tf.placeholder() function:

x = tf.placeholder("float", shape=None)

To put it in simple terms, we use tf.Variable to store the data and tf.placeholder for
feeding the external data.

Computation graph
Everything in TensorFlow will be represented as a computational graph that consists of
nodes and edges, where nodes are the mathematical operations, say addition,
multiplication and so on, and edges are the tensors. Having a computational graph is very
efficient in optimizing resources and it also promotes distributed computing.

Say we have node B, whose input is dependent on the output of node A; this type of
dependency is called direct dependency.

For example:

A = tf.multiply(8,5)
B = tf.multiply(A,1)

When node B doesn't depend on node A for its input it is called indirect dependency.

For example:

A = tf.multiply(8,5)
B = tf.multiply(4,3)

So if we can understand these dependencies, we can distribute the independent
computations in the available resources and reduce the computation time.

Whenever we import TensorFlow, a default graph will be created automatically and all
nodes we create will get associated with the default graph.

Getting Started with OpenAI and TensorFlow Chapter 2

[35]

Sessions
Computation graphs will only be defined; in order to execute the computation graph, we
use TensorFlow sessions:

sess = tf.Session()

We can create the session for our computation graph using the tf.Session() method,
which will allocate the memory for storing the current value of the variable. After creating
the session, we can execute our graph with the sess.run() method.

In order to run anything in TensorFlow, we need to start the TensorFlow session for an
instance; please refer to the code:

import tensorflow as tf
a = tf.multiply(2,3)
print(a)

It will print a TensorFlow object instead of 6. As already said, whenever we import
TensorFlow a default computation graph will automatically be created and all nodes a that
we created will get attached to the graph. In order to execute the graph, we need to
initialize a TensorFlow session as follows:

#Import tensorflow
import tensorflow as tf

#Initialize variables
a = tf.multiply(2,3)

#create tensorflow session for executing the session
with tf.Session() as sess:
 #run the session
 print(sess.run(a))

The preceding code will print 6.

Getting Started with OpenAI and TensorFlow Chapter 2

[36]

TensorBoard
TensorBoard is TensorFlow's visualization tool that can be used to visualize the
computational graph. It can also be used to plot various quantitative metrics and the results
of several intermediate calculations. Using TensorBoard, we can easily visualize complex
models, which will be useful for debugging and also sharing.

Now, let's build a basic computation graph and visualize that in TensorBoard.

First, let's import the library:

import tensorflow as tf

Next, we initialize the variables:

a = tf.constant(5)
b = tf.constant(4)
c = tf.multiply(a,b)
d = tf.constant(2)
e = tf.constant(3)
f = tf.multiply(d,e)
g = tf.add(c,f)

Now, we will create a TensorFlow session. We will write the results of our graph to a file
called event using tf.summary.FileWriter():

with tf.Session() as sess:
 writer = tf.summary.FileWriter("output", sess.graph)
 print(sess.run(g))
 writer.close()

In order to run the TensorBoard, go to your Terminal, locate the working directory, and
type tensorboard --logdir=output --port=6003.

Getting Started with OpenAI and TensorFlow Chapter 2

[37]

You can see the output as shown next:

Adding scope
Scoping is used to reduce complexity and helps us to better understand the model by
grouping the related nodes together. For instance, in the previous example, we can break
down our graph into two different groups called computation and result. If you look at the
previous example, you can see that nodes a to e perform the computation and node g
calculates the result. So we can group them separately using the scope for easy
understanding. Scoping can be created using the tf.name_scope() function.

Let's use the tf.name_scope() function using Computation:

with tf.name_scope("Computation"):
 a = tf.constant(5)
 b = tf.constant(4)
 c = tf.multiply(a,b)
 d = tf.constant(2)
 e = tf.constant(3)
 f = tf.multiply(d,e)

Getting Started with OpenAI and TensorFlow Chapter 2

[38]

Let's use the tf.name_scope() function using Result:

with tf.name_scope("Result"):
 g = tf.add(c,f)

Look at the Computation scope; we can further break down into separate parts for even
more understanding. We can create a scope as Part 1, which has nodes a to c, and a scope
as Part 2, which has nodes d to e, as part 1 and 2 are independent of each other:

with tf.name_scope("Computation"):
 with tf.name_scope("Part1"):
 a = tf.constant(5)
 b = tf.constant(4)
 c = tf.multiply(a,b)
 with tf.name_scope("Part2"):
 d = tf.constant(2)
 e = tf.constant(3)
 f = tf.multiply(d,e)

Scoping can be better understood by visualizing them in the TensorBoard. The complete
code is as follows:

import tensorflow as tf
with tf.name_scope("Computation"):
 with tf.name_scope("Part1"):
 a = tf.constant(5)
 b = tf.constant(4)
 c = tf.multiply(a,b)
 with tf.name_scope("Part2"):
 d = tf.constant(2)
 e = tf.constant(3)
 f = tf.multiply(d,e)

with tf.name_scope("Result"):
 g = tf.add(c,f)

with tf.Session() as sess:
 writer = tf.summary.FileWriter("output", sess.graph)
 print(sess.run(g))
 writer.close()

Getting Started with OpenAI and TensorFlow Chapter 2

[39]

If you look at the following diagram, you can easily understand how scope helps us to
reduce complexity in understanding by grouping the similar nodes together. Scoping is
widely used while working on a complex project to better understand the functionality and
dependencies of nodes:

Summary
In this chapter, we learned how to set up our machine by installing Anaconda, Docker,
OpenAI Gym, Universe, and TensorFlow. We also learned how to create simulations using
OpenAI and how to train agents to learn in an OpenAI environment. Then we came across
the fundamentals of TensorFlow followed by visualizing graphs in TensorBoard.

In the next chapter, Chapter 3, The Markov Decision Process and Dynamic Programming we
will learn about Markov Decision Process and dynamic programming and how to solve
frozen lake problem using value and policy iteration.

Getting Started with OpenAI and TensorFlow Chapter 2

[40]

Questions
The question list is as follows:

Why and how do we create a new environment in Anaconda?1.
What is the need for using Docker?2.
How do we simulate an environment in OpenAI Gym?3.
How do we check all available environments in OpenAI Gym?4.
Are OpenAI Gym and Universe the same? If not, what is the reason?5.
How are TensorFlow variables and placeholders different from each other?6.
What is a computational graph?7.
Why do we need sessions in TensorFlow?8.
What is the purpose of TensorBoard and how do we start it?9.

Further reading
You can further refer to these papers:

OpenAI blog: https:/ /blog. openai. com

OpenAI environments: https:/ /gym. openai. com/ envs/

TensorFlow official website: https:/ / www.tensorflow. org/

https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://blog.openai.com
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://gym.openai.com/envs/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/

3
The Markov Decision Process

and Dynamic Programming
The Markov Decision Process (MDP) provides a mathematical framework for solving the
reinforcement learning (RL) problem. Almost all RL problems can be modeled as MDP.
MDP is widely used for solving various optimization problems. In this chapter, we will
understand what MDP is and how can we use it to solve RL problems. We will also learn
about dynamic programming, which is a technique for solving complex problems in an
efficient way.

In this chapter, you will learn about the following topics:

The Markov chain and Markov process
The Markov Decision Process
Rewards and returns
The Bellman equation
Solving a Bellman equation using dynamic programming
Solving a frozen lake problem using value and policy iteration

The Markov chain and Markov process
Before going into MDP, let us understand the Markov chain and Markov process, which
form the foundation of MDP.

The Markov property states that the future depends only on the present and not on the
past. The Markov chain is a probabilistic model that solely depends on the current state to
predict the next state and not the previous states, that is, the future is conditionally
independent of the past. The Markov chain strictly follows the Markov property.

The Markov Decision Process and Dynamic Programming Chapter 3

[42]

For example, if we know that the current state is cloudy, we can predict that next state
could be rainy. We came to this conclusion that the next state could be rainy only by
considering the current state (cloudy) and not the past states, which might be sunny,
windy, and so on. However, the Markov property does not hold true for all processes. For
example, throwing a dice (the next state) has no dependency on the previous number,
whatever showed up on the dice (the current state).

Moving from one state to another is called transition and its probability is called
a transition probability. We can formulate the transition probabilities in the form of a table,
as shown next, and it is called a Markov table. It shows, given the current state, what the
probability of moving to the next state is:

Current state Next state Transition probability
Cloudy Rainy 0.6
Rainy Rainy 0.2
Sunny Cloudy 0.1
Rainy Sunny 0.1

We can also represent the Markov chain in the form a state diagram that shows the
transition probability:

The preceding state diagram shows the probability of moving from one state to another.
Still don't understand the Markov chain? Okay, let us talk.

Me: "What are you doing?"

You: "I'm reading about the Markov chain."

Me: "What is your plan after reading?"

You: "I'm going to sleep."

Me: "Are you sure you're going to sleep?"

The Markov Decision Process and Dynamic Programming Chapter 3

[43]

You: "Probably. I'll watch TV if I'm not sleepy."

Me: "Cool; this is also a Markov chain."

You: "Eh?"

We can formulate our conversation into a Markov chain and draw a state diagram as
follows:

The Markov chain lies in the core concept that the future depends only on the present and
not on the past. A stochastic process is called a Markov process if it follows the Markov
property.

Markov Decision Process
MDP is an extension of the Markov chain. It provides a mathematical framework for
modeling decision-making situations. Almost all Reinforcement Learning problems can be
modeled as MDP.

MDP is represented by five important elements:

A set of states the agent can actually be in.

A set of actions that can be performed by an agent, for moving from one state
to another.
A transition probability (), which is the probability of moving from one state

 to another state by performing some action .
A reward probability (), which is the probability of a reward acquired by the
agent for moving from one state to another state by performing some action

.
A discount factor (), which controls the importance of immediate and future
rewards. We will discuss this in detail in the upcoming sections.

The Markov Decision Process and Dynamic Programming Chapter 3

[44]

Rewards and returns
As we have learned, in an RL environment, an agent interacts with the environment by
performing an action and moves from one state to another. Based on the action it performs,
it receives a reward. A reward is nothing but a numerical value, say, +1 for a good action
and -1 for a bad action. How do we decide if an action is good or bad? In a maze game, a
good action is where the agent makes a move so that it doesn't hit a maze wall, whereas a
bad action is where the agent moves and hits the maze wall.

An agent tries to maximize the total amount of rewards (cumulative rewards) it receives
from the environment instead of immediate rewards. The total amount of rewards the
agent receives from the environment is called returns. So, we can formulate total amount of
rewards (returns) received by the agents as follows:

 is the reward received by the agent at a time step while performing an action
to move from one state to another. is the reward received by the agent at a time

step while performing an action to move from one state to another. Similarly, is the
reward received by the agent at a final time step while performing an action to move
from one state to another.

Episodic and continuous tasks
Episodic tasks are the tasks that have a terminal state (end). In RL, episodes are considered
agent-environment interactions from initial to final states.

For example, in a car racing video game, you start the game (initial state) and play the game
until it is over (final state). This is called an episode. Once the game is over, you start the
next episode by restarting the game, and you will begin from the initial state irrespective of
the position you were in the previous game. So, each episode is independent of the other.

In a continuous task, there is not a terminal state. Continuous tasks will never end. For
example, a personal assistance robot does not have a terminal state.

Discount factor
We have seen that an agent goal is to maximize the return. For an episodic task, we can
define our return as Rt= rt+1 + rt+2 + +rT, where T is the final state of the episode, and we try
to maximize the return Rt.

The Markov Decision Process and Dynamic Programming Chapter 3

[45]

Since we don't have any final state for a continuous task, we can define our return for
continuous tasks as Rt= rt+1 + rt+2+....,which sums up to infinity. But how can we maximize the
return if it never stops?

That's why we introduce the notion of a discount factor. We can redefine our return with a
discount factor , as follows:

 ---(1)

 ---(2)

The discount factor decides how much importance we give to the future rewards and
immediate rewards. The value of the discount factor lies within 0 to 1. A discount factor of
0 means that immediate rewards are more important, while a discount factor of 1 would
mean that future rewards are more important than immediate rewards.

A discount factor of 0 will never learn considering only the immediate rewards; similarly, a
discount factor of 1 will learn forever looking for the future reward, which may lead to
infinity. So the optimal value of the discount factor lies between 0.2 to 0.8.

We give importance to immediate rewards and future rewards depending on the use case.
In some cases, future rewards are more desirable than immediate rewards and vice versa.
In a chess game, the goal is to defeat the opponent's king. If we give importance to the
immediate reward, which is acquired by actions like our pawn defeating any opponent
player and so on, the agent will learn to perform this sub-goal instead of learning to reach
the actual goal. So, in this case, we give importance to future rewards, whereas in some
cases, we prefer immediate rewards over future rewards. (Say, would you prefer chocolates
if I gave you them today or 13 months later?)

The policy function
We have learned about the policy function in Chapter 1, Introduction to Reinforcement
Learning, which maps the states to actions. It is denoted by π.

The policy function can be represented as , indicating mapping from states to
actions. So, basically, a policy function says what action to perform in each state. Our
ultimate goal lies in finding the optimal policy which specifies the correct action to perform
in each state, which maximizes the reward.

The Markov Decision Process and Dynamic Programming Chapter 3

[46]

State value function
A state value function is also called simply a value function. It specifies how good it is for
an agent to be in a particular state with a policy π. A value function is often denoted by
V(s). It denotes the value of a state following a policy.

We can define a state value function as follows:

This specifies the expected return starting from state s according to policy π. We can
substitute the value of Rt in the value function from (2) as follows:

Note that the state value function depends on the policy and it varies depending on the
policy we choose.

We can view value functions in a table. Let us say we have two states and both of these
states follow the policy π. Based on the value of these two states, we can tell how good it is
for our agent to be in that state following a policy. The greater the value, the better the state
is:

State Value
State 1 0.3
State 2 0.9

Based on the preceding table, we can tell that it is good to be in state 2, as it has high value.
We will see how to estimate these values intuitively in the upcoming sections.

State-action value function (Q function)
 A state-action value function is also called the Q function. It specifies how good it is for an
agent to perform a particular action in a state with a policy π. The Q function is denoted by
Q(s). It denotes the value of taking an action in a state following a policy π.

We can define Q function as follows:

The Markov Decision Process and Dynamic Programming Chapter 3

[47]

This specifies the expected return starting from state s with the action a according to
policy π. We can substitute the value of Rt in the Q function from (2) as follows:

The difference between the value function and the Q function is that the value function
specifies the goodness of a state, while a Q function specifies the goodness of an action in a
state.

Like state value functions, Q functions can be viewed in a table. It is also called a Q table.
Let us say we have two states and two actions; our Q table looks like the following:

State Action Value
State 1 Action 1 0.03
State 1 Action 2 0.02
State 2 Action 1 0.5
State 2 Action 2 0.9

Thus, the Q table shows the value of all possible state action pairs. So, by looking at this
table, we can come to the conclusion that performing action 1 in state 1 and action 2 in state
2 is the better option as it has high value.

Whenever we say value function V(S) or Q function Q(S, a), it actually means the value
table and Q table, as shown previously.

The Bellman equation and optimality
The Bellman equation, named after Richard Bellman, American mathematician, helps us to
solve MDP. It is omnipresent in RL. When we say solve the MDP, it actually means finding
the optimal policies and value functions. There can be many different value functions
according to different policies. The optimal value function is the one which yields
maximum value compared to all the other value functions:

Similarly, the optimal policy is the one which results in an optimal value function.

The Markov Decision Process and Dynamic Programming Chapter 3

[48]

Since the optimal value function is the one that has a higher value compared to all
other value functions (that is, maximum return), it will be the maximum of the Q function.
So, the optimal value function can easily be computed by taking the maximum of the Q
function as follows:

 -- (3)

The Bellman equation for the value function can be represented as, (we will see how we
derived this equation in the next topic):

It indicates the recursive relation between a value of a state and its successor state and the
average over all possibilities.

Similarly, the Bellman equation for the Q function can be represented as follows:

 --- (4)

Substituting equation (4) in (3), we get:

The preceding equation is called a Bellman optimality equation. In the upcoming sections,
we will see how to find optimal policies by solving this equation.

Deriving the Bellman equation for value and Q
functions
Now let us see how to derive Bellman equations for value and Q functions.

You can skip this section if you are not interested in mathematics; however, the math will
be super intriguing.

First, we define, as a transition probability of moving from state to while
performing an action a:

The Markov Decision Process and Dynamic Programming Chapter 3

[49]

We define as a reward probability received by moving from state to while
performing an action a:

 from (2) ---(5)

We know that the value function can be represented as:

 from (1)

We can rewrite our value function by taking the first reward out:

 ---(6)

The expectations in the value function specifies the expected return if we are in the state s,
performing an action a with policy π.

So, we can rewrite our expectation explicitly by summing up all possible actions and
rewards as follows:

In the RHS, we will substitute from equation (5) as follows:

Similarly, in the LHS, we will substitute the value of rt+1 from equation (2) as follows:

The Markov Decision Process and Dynamic Programming Chapter 3

[50]

So, our final expectation equation becomes:

 ---(7)

Now we will substitute our expectation (7) in value function (6) as follows:

Instead of , we can substitute with equation (6), and our
final value function looks like the following:

In very similar fashion, we can derive a Bellman equation for the Q function; the final
equation is as follows:

Now that we have a Bellman equation for both the value and Q function, we will see how
to find the optimal policies.

Solving the Bellman equation
We can find the optimal policies by solving the Bellman optimality equation. To solve the
Bellman optimality equation, we use a special technique called dynamic programming.

Dynamic programming
Dynamic programming (DP) is a technique for solving complex problems. In DP, instead
of solving complex problems one at a time, we break the problem into simple sub-
problems, then for each sub-problem, we compute and store the solution. If the same sub-
problem occurs, we will not recompute, instead, we use the already computed solution.
Thus, DP helps in drastically minimizing the computation time. It has its applications in a
wide variety of fields including computer science, mathematics, bioinformatics, and so on.

The Markov Decision Process and Dynamic Programming Chapter 3

[51]

We solve a Bellman equation using two powerful algorithms:

Value iteration
Policy iteration

Value iteration
In value iteration, we start off with a random value function. Obviously, the random value
function might not be an optimal one, so we look for a new improved value function in
iterative fashion until we find the optimal value function. Once we find the optimal value
function, we can easily derive an optimal policy from it:

The Markov Decision Process and Dynamic Programming Chapter 3

[52]

The steps involved in the value iteration are as follows:

First, we initialize the random value function, that is, the random value for each1.
state.
Then we compute the Q function for all state action pairs of Q(s, a).2.
Then we update our value function with the max value from Q(s,a).3.
We repeat these steps until the change in the value function is very small.4.

Let us understand it intuitively by performing value iteration manually, step by step.

Consider the grid shown here. Let us say we are in state A and our goal is to reach state C
without visiting state B, and we have two actions, 0—left/right and 1—up/down:

Can you think of what will be the optimal policy here? The optimal policy here will be the
one that tells us to perform action 1 in the state A so that we can reach C without visiting B.
How can we find this optimal policy? Let us see that now:

 Initialize the random value function, that is, a random values for all the states. Let us
assign 0 to all the states:

Let's calculate the Q value for all state action pairs.

The Q value tells us the value of an action in each state. First, let us compute the Q value for
state A. Recall the equation of the Q function. For calculating, we need transition and
reward probabilities. Let us consider the transition and reward probability for state A as
follows:

The Markov Decision Process and Dynamic Programming Chapter 3

[53]

The Q function for the state A can be calculated as follows:

Q(s,a) = Transition probability * (Reward probability + gamma * value_of_next_state)

Here, gamma is the discount factor; we will consider it as 1.

Q value for state A and action 0:

Q(A,0) = (0.1 * (0+0)) + (0.4 * (-1.0+0)) + (0.3 * (1.0+0))

Q(A,0) = -0.1

Now we will compute the Q value for state A and action 1:

Q(A,1) = (0.3 * (0+0)) + (0.1 * (-2.0 + 0)) + (0.5 * (1.0 + 0))

Q(A,1) = 0.3

Now we will update this in the Q table as follows:

Update the value function as the max value from Q(s,a).

If you look at the preceding Q function, Q(A,1) has a higher value than Q(A,0) so we will
update the value of state A as Q(A,1):

Similarly, we compute the Q value for all state-action pairs and update the value function
of each state by taking the Q value that has the highest state action value. Our updated
value function looks like the following. This is the result of the first iteration:

The Markov Decision Process and Dynamic Programming Chapter 3

[54]

We repeat this steps for several iterations. That is, we repeat step 2 to step 3 (in each
iteration while calculating the Q value, we use the updated value function instead of the
same randomly initialized value function).

This is the result of the second iteration:

This is the result of the third iteration:

But when do we stop this? We will stop when the change in the value between each
iteration is small; if you look at iteration two and three, there is not much of a change in the
value function. Given this condition, we stop iterating and consider it an optimal value
function.

Okay, now that we have found the optimal value function, how can we derive the optimal
policy?

It is very simple. We compute the Q function with our final optimal value function. Let us
say our computed Q function looks like the following:

From this Q function, we pick up actions in each state that have maximal value. At state A,
we have a maximum value for action 1, which is our optimal policy. So if we perform
action 1 in state A we can reach C without visiting B.

Policy iteration
Unlike value iteration, in policy iteration we start with the random policy, then we find the
value function of that policy; if the value function is not optimal then we find the new
improved policy. We repeat this process until we find the optimal policy.

The Markov Decision Process and Dynamic Programming Chapter 3

[55]

There are two steps in policy iteration:

Policy evaluation: Evaluating the value function of a randomly estimated policy.1.
Policy improvement: Upon evaluating the value function, if it is not optimal, we2.
find a new improved policy:

The Markov Decision Process and Dynamic Programming Chapter 3

[56]

The steps involved in the policy iteration are as follows:

First, we initialize some random policy1.
Then we find the value function for that random policy and evaluate to check if it2.
is optimal which is called policy evaluation
If it is not optimal, we find a new improved policy, which is called policy3.
improvement
We repeat these steps until we find an optimal policy4.

Let us understand intuitively by performing policy iteration manually step by step.

Consider the same grid example we saw in the section Value iteration. Our goal is to find the
optimal policy:

Initialize a random policy function.1.

Let us initialize a random policy function by specifying random actions to each
state:

say A -> 0

 B -> 1

 C -> 0

Find the value function for the randomly initialized policy.2.

Now we have to find the value function using our randomly initialized policy. Let
us say our value function after computation looks like the following:

Now that we have a new value function according to our randomly initialized policy, let us
compute a new policy using our new value function. How do we do this? It is very similar
to what we did in Value iteration. We calculate Q value for our new value function and then
take actions for each state which has a maximum value as the new policy.

The Markov Decision Process and Dynamic Programming Chapter 3

[57]

Let us say the new policy results in:

A - > 0

B - > 1

C -> 1

We check our old policy, that is, the randomly initialized policy, and the new policy. If they
are same, then we have attained the convergence, that is, found the optimal policy. If not,
we will update our old policy (random policy) as a new policy and repeat from step 2.

Sound confusing? Look at the pseudo code:

policy_iteration():
 Initialize random policy
 for i in no_of_iterations:
 Q_value = value_function(random_policy)
 new_policy = Maximum state action pair from Q value
 if random_policy == new policy:
 break
 random_policy = new_policy
 return policy

Solving the frozen lake problem
If you haven't understood anything we have learned so far, don't worry, we will look at all
the concepts along with a frozen lake problem.

Imagine there is a frozen lake stretching from your home to your office; you have to walk
on the frozen lake to reach your office. But oops! There are holes in the frozen lake so you
have to be careful while walking on the frozen lake to avoid getting trapped in the holes:

The Markov Decision Process and Dynamic Programming Chapter 3

[58]

Look at the preceding diagram:

S is the starting position (home)
F is the frozen lake where you can walk
H are the holes, which you have to be so careful about
G is the goal (office)

Okay, now let us use our agent instead of you to find the correct way to reach the office.
The agent's goal is to find the optimal path to go from S to G without getting trapped at H.
How can an agent achieve this? We give +1 point as a reward to the agent if it correctly
walks on the frozen lake and 0 points if it falls into a hole, so the agent can determine which
is the right action. An agent will now try to find the optimal policy. Optimal policy implies
taking the correct path, which maximizes the agent's reward. If the agent is maximizing the
reward, apparently the agent is learning to skip the holes and reach the destination.

We can model our problem into MDP, which we studied earlier. MDP consists of the
following:

States: Set of states. Here we have 16 states (each little square box in the grid).
Actions: Set of all possible actions (left, right, up, down; these are all the four
possible actions our agent can take in our frozen lake environment).
Transition probabilities: The probability of moving from one state (F) to another
state (H) by performing an action a.
Rewards probabilities: This is the probability of receiving a reward
while moving from one state (F) to another state (H) by performing an action a.

Now our objective is to solve MDP. Solving the MDP implies finding the optimal policies.
We introduce three special functions now:

Policy function: Specifies what action to perform in each state
Value function: Specifies how good a state is
Q function: Specifies how good an action is in a particular state

When we say how good, what does that really mean? It implies how good it is to maximize
the rewards.

Then, we represent the value function and Q function using a special equation called a
Bellman Optimality equation. If we solve this equation, we can find the optimal policy.
Here, solving the equation means finding the right value function and policy. If we find the
right value function and policy, that will be our optimal path which yields maximum
rewards.

The Markov Decision Process and Dynamic Programming Chapter 3

[59]

We will use a special technique called dynamic programming to solve the Bellman
optimality equation. To apply DP, the model dynamics have to be known in advance,
which basically means the model environment's transition probabilities and reward
probabilities have to be known in advance. Since we know the model dynamics, we can use
DP here. We use two special DP algorithms to find the optimal policy:

Value iteration
Policy iteration

Value iteration
To put it in simple terms, in value iteration, we first initialize some random value to the
value function. There is a great probability that the random value we initialize is not going
to be optimal. So, we iterate over each state and find the new value function; we stop the
iteration until we find the optimal value function. Once we find the optimal value function,
we can easily extract the optimal policy from that.

Now we will see how to solve the frozen lake problem using value iteration.

First, we import necessary libraries:

import gym
import numpy as np

Then we make our frozen lake environment using OpenAI's Gym:

env = gym.make('FrozenLake-v0')

We will first explore the environments.

The number of states in the environment is 16 as we have a 4*4 grid:

print(env.observation_space.n)

The number of actions in the environment is four, which are up, down, left, and right:

print(env.observation_space.n)

Now we define a value_iteration() function which returns the optimal value function
(value table). We will first see the function step by step and then look at the whole function.

The Markov Decision Process and Dynamic Programming Chapter 3

[60]

First, we initialize the random value table which is 0 for all the states and numbers of
iterations:

value_table = np.zeros(env.observation_space.n)
no_of_iterations = 100000

Then, upon starting each iteration, we copy the value_table to updated_value_table:

 for i in range(no_of_iterations):
 updated_value_table = np.copy(value_table)

Now we calculate the Q table and pick up the maximum state-action pair which has the
highest value as the value table.

We will understand the code with the example we solved previously; we computed the Q
value for state A and action 1 in our previous example:

Q(A,1) = (0.3 * (0+0)) + (0.1 * (-1.0 + 0)) + (0.5 + (1.0 + 0))

Q(A,1) = 0.5

Instead of creating a Q table for each state, we create a list called Q_value, then for each
action in the state, we create a list called next_states_rewards, which store the Q_value
for the next transition state. Then we sum the next_state_rewards and append it to our
Q_value.

Look at the preceding example, where the state is A and the action is 1. (0.3 * (0+0)) is the
next state reward for the transition state A and (0.1 * (-1.0 + 0)) is the next state reward for
the transition state B. (0.5 + (1.0 + 0)) is the next state reward for the transition state C. We
sum all this as next_state_reward and append it to our Q_value, which would be 0.5.

As we calculate next_state_rewards for all actions of a state and append it to our Q
value, we pick up the maximum Q value and update it as a value of our state:

for state in range(env.observation_space.n):
 Q_value = []
 for action in range(env.action_space.n):
 next_states_rewards = []
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 next_states_rewards.append((trans_prob * (reward_prob + gamma *
updated_value_table[next_state])))
 Q_value.append(np.sum(next_states_rewards))

The Markov Decision Process and Dynamic Programming Chapter 3

[61]

 #Pick up the maximum Q value and update it as value of a state
 value_table[state] = max(Q_value)

Then, we will check whether we have reached the convergence, that is, the difference
between our value table and updated value table is very small. How do we know it is very
small? We define a variable called threshold and then we will see if the difference is less
than our threshold; if it is less, we break the loop and return the value function as the
optimal value function:

threshold = 1e-20
if (np.sum(np.fabs(updated_value_table - value_table)) <= threshold):
 print ('Value-iteration converged at iteration# %d.' %(i+1))
 break

Look at the complete function of value_iteration() for a better understanding:

def value_iteration(env, gamma = 1.0):
 value_table = np.zeros(env.observation_space.n)
 no_of_iterations = 100000
 threshold = 1e-20

 for i in range(no_of_iterations):
 updated_value_table = np.copy(value_table)

 for state in range(env.observation_space.n):
 Q_value = []

 for action in range(env.action_space.n):
 next_states_rewards = []

 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 next_states_rewards.append((trans_prob * (reward_prob +
gamma * updated_value_table[next_state])))

 Q_value.append(np.sum(next_states_rewards))
 value_table[state] = max(Q_value)
 if (np.sum(np.fabs(updated_value_table - value_table)) <=
threshold):
 print ('Value-iteration converged at iteration# %d.' %(i+1))
 break
 return value_table, Q_value

Thus, we can derive optimal_value_function using the value_iteration:

optimal_value_function = value_iteration(env=env,gamma=1.0)

The Markov Decision Process and Dynamic Programming Chapter 3

[62]

After finding optimal_value_function, how can we extract the optimal policy from the
optimal_value_function? We calculate the Q value using our optimal value action and
pick up the actions which have the highest Q value for each state as the optimal policy. We
do this via a function called extract_policy(); we will look at this step by step now.

First, we define the random policy; we define it as 0 for all the states:

policy = np.zeros(env.observation_space.n)

Then, for each state, we build a Q_table and for each action in that state we compute the Q
value and add it to our Q_table:

for state in range(env.observation_space.n):
 Q_table = np.zeros(env.action_space.n)
 for action in range(env.action_space.n):
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 Q_table[action] += (trans_prob * (reward_prob + gamma *
value_table[next_state]))

Then we pick up the policy for the state as the action that has the highest Q value:

policy[state] = np.argmax(Q_table)

Look at the complete function:

def extract_policy(value_table, gamma = 1.0):

 policy = np.zeros(env.observation_space.n)
 for state in range(env.observation_space.n):
 Q_table = np.zeros(env.action_space.n)
 for action in range(env.action_space.n):
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 Q_table[action] += (trans_prob * (reward_prob + gamma *
value_table[next_state]))
 policy[state] = np.argmax(Q_table)
 return policy

Thus, we can derive the optimal_policy as follows:

optimal_policy = extract_policy(optimal_value_function, gamma=1.0)

We will get an output as follows, which is the optimal_policy, the actions to be
performed in each state:

array([0., 3., 3., 3., 0., 0., 0., 0., 3., 1., 0., 0., 0., 2., 1., 0.])

The Markov Decision Process and Dynamic Programming Chapter 3

[63]

The complete program is given as follows:

import gym
import numpy as np
env = gym.make('FrozenLake-v0')

def value_iteration(env, gamma = 1.0):
 value_table = np.zeros(env.observation_space.n)
 no_of_iterations = 100000
 threshold = 1e-20
 for i in range(no_of_iterations):
 updated_value_table = np.copy(value_table)
 for state in range(env.observation_space.n):
 Q_value = []
 for action in range(env.action_space.n):
 next_states_rewards = []
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 next_states_rewards.append((trans_prob * (reward_prob +
gamma * updated_value_table[next_state])))
 Q_value.append(np.sum(next_states_rewards))
 value_table[state] = max(Q_value)
 if (np.sum(np.fabs(updated_value_table - value_table)) <=
threshold):
 print ('Value-iteration converged at iteration# %d.' %(i+1))
 break
 return value_table

def extract_policy(value_table, gamma = 1.0):
 policy = np.zeros(env.observation_space.n)
 for state in range(env.observation_space.n):
 Q_table = np.zeros(env.action_space.n)
 for action in range(env.action_space.n):
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 Q_table[action] += (trans_prob * (reward_prob + gamma *
value_table[next_state]))
 policy[state] = np.argmax(Q_table)
 return policy

optimal_value_function = value_iteration(env=env,gamma=1.0)
optimal_policy = extract_policy(optimal_value_function, gamma=1.0)

print(optimal_policy)

The Markov Decision Process and Dynamic Programming Chapter 3

[64]

Policy iteration
In policy iteration, first we initialize a random policy. Then we will evaluate the random
policies we initialized: are they good or not? But how can we evaluate the policies? We will
evaluate our randomly initialized policies by computing value functions for them. If they
are not good, then we find a new policy. We repeat this process until we find a good policy.

Now let us see how to solve the frozen lake problem using policy iteration.

Before looking at policy iteration, we will see how to compute a value function, given a
policy.

We initialize value_table as zero with the number of states:

value_table = np.zeros(env.nS)

Then, for each state, we get the action from the policy, and we compute the value function
according to that action and state as follows:

 updated_value_table = np.copy(value_table)
 for state in range(env.nS):
 action = policy[state]
 value_table[state] = sum([trans_prob * (reward_prob + gamma *
updated_value_table[next_state])
 for trans_prob, next_state, reward_prob, _ in
env.P[state][action]])

We break this when the difference between value_table and updated_value_table is
less than our threshold:

threshold = 1e-10
if (np.sum((np.fabs(updated_value_table - value_table))) <= threshold):
 break

Look at the following complete function:

def compute_value_function(policy, gamma=1.0):
 value_table = np.zeros(env.nS)
 threshold = 1e-10
 while True:
 updated_value_table = np.copy(value_table)
 for state in range(env.nS):
 action = policy[state]
 value_table[state] = sum([trans_prob * (reward_prob + gamma *
updated_value_table[next_state])
 for trans_prob, next_state, reward_prob, _ in
env.P[state][action]])

The Markov Decision Process and Dynamic Programming Chapter 3

[65]

 if (np.sum((np.fabs(updated_value_table - value_table))) <=
threshold):
 break
 return value_table

Now we will see how to perform policy iteration, step by step.

First, we initialize random_policy as zero NumPy array with shape as number of states:

 random_policy = np.zeros(env.observation_space.n)

Then, for each iteration, we calculate the new_value_function according to our random
policy:

new_value_function = compute_value_function(random_policy, gamma)

We will extract the policy using the calculated new_value_function. The
extract_policy function is the same as the one we used in value iteration:

 new_policy = extract_policy(new_value_function, gamma)

Then we check whether we have reached convergence, that is, whether we found the
optimal policy by comparing random_policy and the new policy. If they are the same, we
will break the iteration; otherwise we update random_policy with new_policy:

if (np.all(random_policy == new_policy)):
 print ('Policy-Iteration converged at step %d.' %(i+1))
 break
random_policy = new_policy

Look at the complete policy_iteration function:

def policy_iteration(env,gamma = 1.0):
 random_policy = np.zeros(env.observation_space.n)
 no_of_iterations = 200000
 gamma = 1.0
 for i in range(no_of_iterations):
 new_value_function = compute_value_function(random_policy, gamma)
 new_policy = extract_policy(new_value_function, gamma)
 if (np.all(random_policy == new_policy)):
 print ('Policy-Iteration converged at step %d.' %(i+1))
 break
 random_policy = new_policy
 return new_policy

The Markov Decision Process and Dynamic Programming Chapter 3

[66]

Thus, we can get optimal_policy using policy_iteration:

optimal_policy = policy_iteration(env, gamma = 1.0)

We will get some output, which is the optimal_policy, the actions to be performed in
each state:

array([0., 3., 3., 3., 0., 0., 0., 0., 3., 1., 0., 0., 0., 2., 1., 0.])

The complete program is given as follows:

import gym
import numpy as np

env = gym.make('FrozenLake-v0')

def compute_value_function(policy, gamma=1.0):
 value_table = np.zeros(env.nS)
 threshold = 1e-10
 while True:
 updated_value_table = np.copy(value_table)
 for state in range(env.nS):
 action = policy[state]
 value_table[state] = sum([trans_prob * (reward_prob + gamma *
updated_value_table[next_state])
 for trans_prob, next_state, reward_prob, _ in
env.P[state][action]])
 if (np.sum((np.fabs(updated_value_table - value_table))) <=
threshold):
 break
 return value_table

def extract_policy(value_table, gamma = 1.0):
 policy = np.zeros(env.observation_space.n)
 for state in range(env.observation_space.n):
 Q_table = np.zeros(env.action_space.n)
 for action in range(env.action_space.n):
 for next_sr in env.P[state][action]:
 trans_prob, next_state, reward_prob, _ = next_sr
 Q_table[action] += (trans_prob * (reward_prob + gamma *
value_table[next_state]))
 policy[state] = np.argmax(Q_table)
 return policy

def policy_iteration(env,gamma = 1.0):
 random_policy = np.zeros(env.observation_space.n)
 no_of_iterations = 200000

The Markov Decision Process and Dynamic Programming Chapter 3

[67]

 gamma = 1.0
 for i in range(no_of_iterations):
 new_value_function = compute_value_function(random_policy, gamma)
 new_policy = extract_policy(new_value_function, gamma)
 if (np.all(random_policy == new_policy)):
 print ('Policy-Iteration converged at step %d.' %(i+1))
 break
 random_policy = new_policy
 return new_policy

print (policy_iteration(env))

Thus, we can derive the optimal policy, which specifies what action to perform in each
state, using value and policy iteration to solve the frozen lake problem.

Summary
In this chapter, we learned what the Markov chain and Markov process are and how RL
problems are represented using MDP. We have also looked at the Bellman equation, and
we solved the Bellman equation to derive an optimal policy using DP. In the next chapter,
Chapter 4, Gaming with Monte Carlo Methods, we will look at the Monte Carlo tree search
and how to build intelligent games using it.

Questions
The question list is as follows:

What is the Markov property?1.
Why do we need the Markov Decision Process?2.
When do we prefer immediate rewards?3.
What is the use of the discount factor?4.
Why do we use the Bellman function?5.
How would you derive the Bellman equation for a Q function?6.
How are the value function and Q function related?7.
What is the difference between value iteration and policy iteration?8.

The Markov Decision Process and Dynamic Programming Chapter 3

[68]

Further reading
MDP Harvard lecture materials: http:/ / am121. seas. harvard. edu/site/ wp- content/
uploads/2011/03/ MarkovDecisionProcesses- HillierLieberman. pdf

http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf
http://am121.seas.harvard.edu/site/wp-content/uploads/2011/03/MarkovDecisionProcesses-HillierLieberman.pdf

4
Gaming with Monte Carlo

Methods
Monte Carlo is one of the most popular and most commonly used algorithms in various
fields ranging from physics and mechanics to computer science. The Monte Carlo algorithm
is used in reinforcement learning (RL) when the model of the environment is not known.
In the previous chapter, Chapter 3, Markov Decision Process and Dynamic Programming, we
looked at using dynamic programming (DP) to find an optimal policy where we know the
model dynamics, which is transition and reward probabilities. But how can we determine
the optimal policy when we don't know the model dynamics? In that case, we use the
Monte Carlo algorithm; it is extremely powerful for finding optimal policies when we don't
have knowledge of the environment.

In this chapter, you will learn about the following:

Monte Carlo methods
Monte Carlo prediction
Playing Blackjack with Monte Carlo
Model Carlo control
Monte Carlo exploration starts
On-policy Monte Carlo control
Off-policy Monte Carlo control

Monte Carlo methods
The Monte Carlo method finds approximate solutions through random sampling, that is, it
approximates the probability of an outcome by running multiple trails. It is a statistical
technique to find an approximate answer through sampling. Let's better understand Monte
Carlo intuitively with an example.

Gaming with Monte Carlo Methods Chapter 4

[70]

Fun fact: Monte Carlo is named after Stanislaw Ulam's uncle, who often
borrowed money from his relatives to gamble in a Monte Carlo casino.

Estimating the value of pi using Monte Carlo
Imagine a quadrant of a circle is placed inside a square, as shown next, and
we generate some random points inside the square. You can see that some of the points fall
inside the circle while others are outside the circle:

We can write:

We know that the area of a circle is πr2 and the area of a square is a2:

Let's consider that the radius of a circle is one half and the square's side is 1, so we can
substitute:

Now we get the following:

Gaming with Monte Carlo Methods Chapter 4

[71]

The steps to estimate π are very simple:

First, we generate some random points inside the square.1.
Then we can calculate the number of points that fall inside the circle by using the2.
equation .
Then we calculate the value of π by multiplying four to the division of the3.
number of points inside the circle to the number of points inside the square.
If we increase the number of samples (number of random points), the better we4.
can approximate

Let's see how to do this in Python step by step. First, we import necessary libraries:

import numpy as np
import math
import random
import matplotlib.pyplot as plt
%matplotlib inline

Now we initialize the square size and number of points inside the circle and square. We
also initialize the sample size, which denotes the number of random points to be generated.
We define arc, which is basically the circle quadrant:

square_size = 1
points_inside_circle = 0
points_inside_square = 0
sample_size = 1000
arc = np.linspace(0, np.pi/2, 100)

Then we define a function called generate_points(), which generates random points
inside the square:

def generate_points(size):
 x = random.random()*size
 y = random.random()*size
 return (x, y)

We define a function called is_in_circle(), which will check if the point we generated
falls within the circle:

def is_in_circle(point, size):
 return math.sqrt(point[0]**2 + point[1]**2) <= size

Gaming with Monte Carlo Methods Chapter 4

[72]

Then we define a function for calculating the π value:

def compute_pi(points_inside_circle, points_inside_square):
 return 4 * (points_inside_circle / points_inside_square)

Then for the number of samples, we generate some random points inside the square and
increment our points_inside_square variable, and then we will check if the points we
generated lie inside the circle. If yes, then we increment the points_inside_circle
variable:

plt.axes().set_aspect('equal')
plt.plot(1*np.cos(arc), 1*np.sin(arc))

for i in range(sample_size):
 point = generate_points(square_size)
 plt.plot(point[0], point[1], 'c.')
 points_inside_square += 1
 if is_in_circle(point, square_size):
 points_inside_circle += 1

Now we calculate the value of π using the compute_pi(), function which will print an
approximate value of π:

print("Approximate value of pi is {}"
.format(calculate_pi(points_inside_circle, points_inside_square)))

If you run the program, you will get the output shown as follows:

Approximate value of pi is 3.144

The complete program looks as follows:

import numpy as np
import math
import random
import matplotlib.pyplot as plt
%matplotlib inline

Gaming with Monte Carlo Methods Chapter 4

[73]

square_size = 1
points_inside_circle = 0
points_inside_square = 0
sample_size = 1000
arc = np.linspace(0, np.pi/2, 100)

def generate_points(size):
 x = random.random()*size
 y = random.random()*size
 return (x, y)

def is_in_circle(point, size):
 return math.sqrt(point[0]**2 + point[1]**2) <= size

def compute_pi(points_inside_circle, points_inside_square):
 return 4 * (points_inside_circle / points_inside_square)

plt.axes().set_aspect('equal')
plt.plot(1*np.cos(arc), 1*np.sin(arc))

for i in range(sample_size):
 point = generate_points(square_size)
 plt.plot(point[0], point[1], 'c.')
 points_inside_square += 1
 if is_in_circle(point, square_size):
 points_inside_circle += 1

print("Approximate value of pi is {}"
.format(calculate_pi(points_inside_circle, points_inside_square)))

Thus, the Monte Carlo method approximated the value of pi by using random sampling.
We estimated the value of pi using the random points (samples) generated inside the
square. The greater the sampling size, the better our approximation will be. Now we will
see how to use Monte Carlo methods in RL.

Monte Carlo prediction
In DP, we solve the Markov Decision Process (MDP) by using value iteration and policy
iteration. Both of these techniques require transition and reward probabilities to find the
optimal policy. But how can we solve MDP when we don't know the transition and reward
probabilities? In that case, we use the Monte Carlo method. The Monte Carlo method
requires only sample sequences of states, actions, and rewards. the Monte Carlo methods
are applied only to the episodic tasks. Since Monte Carlo doesn't require any model, it is
called the model-free learning algorithm.

Gaming with Monte Carlo Methods Chapter 4

[74]

The basic idea of the Monte Carlo method is very simple. Do you recall how we defined the
optimal value function and how we derived the optimal policy in the previous chapter,
Chapter 3, Markov Decision Process and Dynamic Programming?

A value function is basically the expected return from a state S with a policy π. Here,
instead of expected return, we use mean return.

Thus, in Monte Carlo prediction, we approximate the value function by
taking the mean return instead of the expected return.

Using Monte Carlo prediction, we can estimate the value function of any given policy. The
steps involved in the Monte Carlo prediction are very simple and are as follows:

First, we initialize a random value to our value function1.
Then we initialize an empty list called a return to store our returns2.
Then for each state in the episode, we calculate the return3.
Next, we append the return to our return list4.
Finally, we take the average of return as our value function5.

The following flowchart makes it more simple:

Gaming with Monte Carlo Methods Chapter 4

[75]

The Monte Carlo prediction algorithm is of two types:

First visit Monte Carlo
Every visit Monte Carlo

First visit Monte Carlo
As we have seen, in the Monte Carlo methods, we approximate the value function by
taking the average return. But in the first visit MC method, we average the return only the
first time the state is visited in an episode. For example, consider an agent is playing the
snakes and ladder games, there is a good chance the agent will return to the state if it is
bitten by a snake. When the agent revisits the state, we don't consider an average return.
We consider an average return only when the agent visits the state for the first time.

Every visit Monte Carlo
In every visit Monte Carlo, we average the return every time the state is visited in an
episode. Consider the same snakes and ladders game example: if the agent returns to the
same state after a snake bites it, we can think of this as an average return although the agent
is revisiting the state. In this case, we average return every time the agents visit the state.

Let's play Blackjack with Monte Carlo
Now let's better understand Monte Carlo with the Blackjack game. Blackjack, also called 21,
is a popular card game played in casinos. The goal of the game is to have a sum of all your
cards close to 21 and not exceeding 21. The value of cards J, K, and Q is 10. The value of ace
can be 1 or 11; this depends on player choice. The value of the rest of the cards (1 to 10) is
the same as the numbers they show.

The rules of the game are very simple:

The game can be played with one or many players and one dealer.
Each player competes only with the dealer and not another player.
Initially, a player is given two cards. Both of these cards are face up, that is,
visible to others.
A dealer is also given two cards. One card is face up and the other is face down.
That is, the dealer only shows one of his cards.

Gaming with Monte Carlo Methods Chapter 4

[76]

If the sum of a player's cards is 21 immediately after receiving two cards (say a
player has received a jack and ace which is 10+11 = 21), then it is called natural or
Blackjack and the player wins.
If the dealer's sum of cards is also 21 immediately after receiving two cards, then
it is called a draw as both of them have 21.
In each round, the player decides whether he needs another card or not to sum
the cards close to 21.
If a player needs a card, then it is called a hit.
If a player doesn't need a card, then it is called a stand.
If a player's sum of cards exceeds 21, then it is called bust; then the dealer will
win the game.

Let's better understand Blackjack by playing. I'll let you be the player and I am the dealer:

In the preceding diagram, we have one player and a dealer. Both of them are given two
cards. Both of the player's two cards are face up (visible) while the dealer has one card face
up (visible) and the other face down (invisible). In the first round, you have been given two
cards, say a jack and a number 7, which is (10 + 7 = 17), and I as the dealer will only show
you one card which is number 2. I have another card face down. Now you have to decide to
either hit (need another card) or stand (don't need another card). If you choose to hit and
receive number 3 you will get 10+7+3 = 20 which is close to 21 and you win:

Gaming with Monte Carlo Methods Chapter 4

[77]

But if you received a card, say number 7, then 10+7+7 = 24, which exceeds 21. Then it is
called bust and you lose the game. If you decide to stand with your initial cards, then you
have only 10 + 7 = 17. Then we will check the dealer's sum of cards. If it is greater than 17
and does not exceed 21 then the dealer wins, otherwise you win:

The rewards here are:

+1 if the player won the game
-1 if the player loses the game
0 if the game is a draw

The possible actions are:

Hit: If the player needs a card
Stand: If the player doesn't need a card

The player has to decide the value of an ace. If the player's sum of cards is 10 and the player
gets an ace after a hit, he can consider it as 11, and 10 + 11 = 21. But if the player's sum of
cards is 15 and the player gets an ace after a hit, if he considers it as 11 and 15+11 = 26, then
it's a bust. If the player has an ace we can call it a usable ace; the player can consider it as 11
without being bust. If the player is bust by considering the ace as 11, then it is called
a nonusable ace.

Now we will see how to implement Blackjack using the first visit Monte Carlo algorithm.

First, we will import our necessary libraries:

import gym
from matplotlib import pyplot
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from collections import defaultdict
from functools import partial

Gaming with Monte Carlo Methods Chapter 4

[78]

%matplotlib inline
plt.style.use('ggplot')

Now we will create the Blackjack environment using OpenAI's Gym:

env = gym.make('Blackjack-v0')

Then we define the policy function which takes the current state and checks if the score is
greater than or equal to 2o; if it is, we return 0 or else we return 1. That is, if the score is
greater than or equal to 20, we stand (0) or else we hit (1):

def sample_policy(observation):
 score, dealer_score, usable_ace = observation
 return 0 if score >= 20 else 1

Now we will see how to generate an episode. An episode is a single round of a game. We
will see it step by step and then look at the complete function.

We define states, actions, and rewards as a list and initiate the environment using
env.reset and store an observation variable:

states, actions, rewards = [], [], []
observation = env.reset()

Then, until we reach the terminal state, that is, till the end of the episode, we do the
following:

Append the observation to the states list:1.

states.append(observation)

Now, we create an action using our sample_policy function and append the2.
actions to an action list:

action = sample_policy(observation)
actions.append(action)

Then, for each step in the environment, we store the state, reward, and done3.
(which specifies whether we reached terminal state) and we append the rewards
to the reward list:

observation, reward, done, info = env.step(action)
rewards.append(reward)

Gaming with Monte Carlo Methods Chapter 4

[79]

If we reached the terminal state, then we break:4.

if done:
 break

The complete generate_episode function is as follows:5.

def generate_episode(policy, env):
 states, actions, rewards = [], [], []
 observation = env.reset()
 while True:
 states.append(observation)
 action = policy(observation)
 actions.append(action)
 observation, reward, done, info = env.step(action)
 rewards.append(reward)
 if done:
 break

 return states, actions, rewards

This is how we generate an episode. How can we play the game? For that, we need to know
the value of each state. Now we will see how to get the value of each state using the first
visit Monte Carlo method.

First, we initialize the empty value table as a dictionary for storing the values of each state:

value_table = defaultdict(float)

Then, for a certain number of episodes, we do the following:

First, we generate an episode and store the states and rewards; we initialize1.
returns as 0 which is the sum of rewards:

states, _, rewards = generate_episode(policy, env)
returns = 0

Then for each step, we store the rewards to a variable R and states to S, and we2.
calculate returns as a sum of rewards:

for t in range(len(states) - 1, -1, -1):
 R = rewards[t]
 S = states[t]
 returns += R

Gaming with Monte Carlo Methods Chapter 4

[80]

We now perform the first visit Monte Carlo; we check if the episode is being3.
visited for the visit time. If it is, we simply take the average of returns and assign
the value of the state as an average of returns:

if S not in states[:t]:
 N[S] += 1
 value_table[S] += (returns - V[S]) / N[S]

Look at the complete function for better understanding:4.

def first_visit_mc_prediction(policy, env, n_episodes):
 value_table = defaultdict(float)
 N = defaultdict(int)

 for _ in range(n_episodes):
 states, _, rewards = generate_episode(policy, env)
 returns = 0
 for t in range(len(states) - 1, -1, -1):
 R = rewards[t]
 S = states[t]
 returns += R
 if S not in states[:t]:
 N[S] += 1
 value_table[S] += (returns - V[S]) / N[S]
 return value_table

We can get the value of each state:5.

value = first_visit_mc_prediction(sample_policy, env,
n_episodes=500000)

Let's see the value of a few states:6.

print(value)
defaultdict(float,
 {(4, 1, False): -1.024292170184644,
 (4, 2, False): -1.8670191351012455,
 (4, 3, False): 2.211363314854649,
 (4, 4, False): 16.903201033000823,
 (4, 5, False): -5.786238030898542,
 (4, 6, False): -16.218211752577602,

Gaming with Monte Carlo Methods Chapter 4

[81]

We can also plot the value of the state to see how it is converged, as follows:

The complete code is given as follows:

import numpy
import gym
from matplotlib import pyplot
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from collections import defaultdict
from functools import partial
%matplotlib inline

plt.style.use('ggplot')

Blackjack Environment

env = gym.make('Blackjack-v0')

env.action_space, env.observation_space

def sample_policy(observation):
 score, dealer_score, usable_ace = observation
 return 0 if score >= 20 else 1

Gaming with Monte Carlo Methods Chapter 4

[82]

def generate_episode(policy, env):
 states, actions, rewards = [], [], []
 observation = env.reset()
 while True:
 states.append(observation)
 action = sample_policy(observation)
 actions.append(action)
 observation, reward, done, info = env.step(action)
 rewards.append(reward)
 if done:
 break

 return states, actions, rewards

def first_visit_mc_prediction(policy, env, n_episodes):
 value_table = defaultdict(float)
 N = defaultdict(int)

 for _ in range(n_episodes):
 states, _, rewards = generate_episode(policy, env)
 returns = 0
 for t in range(len(states) - 1, -1, -1):
 R = rewards[t]
 S = states[t]
 returns += R
 if S not in states[:t]:
 N[S] += 1
 value_table[S] += (returns - value_table[S]) / N[S]
 return value_table

def plot_blackjack(V, ax1, ax2):
 player_sum = numpy.arange(12, 21 + 1)
 dealer_show = numpy.arange(1, 10 + 1)
 usable_ace = numpy.array([False, True])

 state_values = numpy.zeros((len(player_sum),
 len(dealer_show),
 len(usable_ace)))

 for i, player in enumerate(player_sum):
 for j, dealer in enumerate(dealer_show):
 for k, ace in enumerate(usable_ace):
 state_values[i, j, k] = V[player, dealer, ace]

 X, Y = numpy.meshgrid(player_sum, dealer_show)

 ax1.plot_wireframe(X, Y, state_values[:, :, 0])

Gaming with Monte Carlo Methods Chapter 4

[83]

 ax2.plot_wireframe(X, Y, state_values[:, :, 1])
 for ax in ax1, ax2:
 ax.set_zlim(-1, 1)
 ax.set_ylabel('player sum')
 ax.set_xlabel('dealer showing')
 ax.set_zlabel('state-value')
fig, axes = pyplot.subplots(nrows=2, figsize=(5, 8),
subplot_kw={'projection': '3d'})
axes[0].set_title('value function without usable ace')
axes[1].set_title('value function with usable ace')
plot_blackjack(value, axes[0], axes[1])

Monte Carlo control
In Monte Carlo prediction, we have seen how to estimate the value function. In Monte
Carlo control, we will see how to optimize the value function, that is, how to make the
value function more accurate than the estimation. In the control methods, we follow a new
type of iteration called generalized policy iteration, where policy evaluation and policy
improvement interact with each other. It basically runs as a loop between policy evaluation
and improvement, that is, the policy is always improved with respect to the value function,
and the value function is always improved according to the policy. It keeps on doing this.
When there is no change, then we can say that the policy and value function have attained
convergence, that is, we found the optimal value function and optimal policy:

Now we will see a different Monte Carlo control algorithm as follows.

Monte Carlo exploration starts
Unlike DP methods, here we do not estimate state values. Instead, we focus on action
values. State values alone are sufficient when we know the model of the environment. As
we don't know about the model dynamics, it is not a good way to determine the state
values alone.

Gaming with Monte Carlo Methods Chapter 4

[84]

Estimating an action value is more intuitive than estimating a state value because state
values vary depending on the policy we choose. For example, in a Blackjack game, say we
are in a state where some of the cards are 20. What is the value of this state? It solely
depends on the policy. If we choose our policy as a hit, then it is not a good state to be in
and the value of this state is very low. However, if we choose our policy as a stand then it is
definitely a good state to be in. Thus, the value of the state depends on the policy we
choose. So it is more important to estimate the value of an action instead of the value of the
state.

How do we estimate the action values? Remember the Q function we learned in Chapter 3,
Markov Decision Process and Dynamic Programming? The Q function denoted as Q(s, a) is used
for determining how good an action is in a particular state. It basically specifies the state-
action pair.

But here the problem of exploration comes in. How can we know about the state-action
value if we haven't been in that state? If we don't explore all the states with all possible
actions, we might probably miss out the good rewards.

Say that in a Blackjack game, we are in a state where a sum of cards is 20. If we try only the
action hit we will get a negative reward, and we learn that it is not a good state to be in. But
if we try the stand action, we receive a positive reward and it is actually the best state to be
in. So every time we come to this particular state, we stand instead of hit. For us to know
which is the best action, we have to explore all possible actions in each state to find the
optimal value. How can we do this?

Let me introduce a new concept called Monte Carlo exploring starts, which implies that for
each episode we start with a random state as an initial state and perform an action. So, if we
have a large number of episodes, we could possibly cover all the states with all possible
actions. It is also called an MC-ES algorithm.

The MC-ES algorithm is very simple, as follows:

 We first initialize Q function and policy with some random values and also we
initialize a return to an empty list
Then we start the episode with our randomly initialized policy
Then we calculate the return for all the unique state-action pairs occurring in the
episode and append return to our return list
We calculate a return only for a unique state-action pair because the same state
action pair occurs in an episode multiple times and there is no point having
redundant information

Gaming with Monte Carlo Methods Chapter 4

[85]

Then we take an average of the returns in the return list and assign that value to
our Q function

Finally, we will select an optimal policy for a state, choosing an action that has
the maximum Q(s,a) for that state
We repeat this whole process forever or for a large number of episodes so that we
can cover all different states and action pairs

Here's a flowchart of this:

On-policy Monte Carlo control
In Monte Carlo exploration starts, we explore all state-action pairs and choose the one that
gives us the maximum value. But think of a situation where we have a large number of
states and actions. In that case, if we use the MC-ES algorithm, then it will take a lot of time
to explore all combinations of states and actions and to choose the best one. How do we get
over this? There are two different control algorithms. On policy and off policy. In on-policy
Monte Carlo control, we use the ε greedy policy. Let's understand what a greedy algorithm
is.

Gaming with Monte Carlo Methods Chapter 4

[86]

A greedy algorithm picks up the best choice available at that moment, although that choice
might not be optimal when you consider the overall problem. Consider you want to find
the smallest number from a list of numbers. Instead of finding the smallest number directly
from the list, you will divide the list into three sublists. Then you will find the smallest
number in each of the sublists (local optima). The smallest number you find in one sublist
might not be the smallest number when you consider the whole list (global optima).
However, if you are acting greedy then you will see the smallest number in only the current
sublist (at the moment) and consider it the smallest number.

The greedy policy denotes the optimal action within the actions explored. The optimal
action is the one which has the highest value.

Say we have explored some actions in the state 1, as shown in the Q table:

State Action Value
State 1 Action 0 0.5
State 1 Action 1 0.1
State 1 Action 2 0.8

If we are acting greedy, we would pick up the action that has maximal value out of all the
actions we explored. In the preceding case, we have action 2 which has high value, so we
pick up that action. But there might be other actions in the state 1 that we haven't explored
and might the highest value. So we have to look for the best action or exploit the action that
is best out of all explored actions. This is called an exploration-exploitation dilemma. Say
you listened to Ed Sheeran and you liked him very much, so you kept on listening to Ed
Sheeran only (exploiting) because you liked the music. But if you tried listening to other
artists you might like someone better than Ed Sheeran (exploration). This confusion as to
whether you have to listen to only Ed Sheeran (exploitation) or try listening to different
artists to see if you like them (exploration) is called an exploration-exploitation dilemma.

So to avoid this dilemma, we introduce a new policy called the epsilon-greedy policy. Here,
all actions are tried with a non-zero probability (epsilon). With a probability epsilon, we
explore different actions randomly and with a probability 1-epsilon we choose an action
that has maximum value, that is, we don't do any exploration. So instead of just exploiting
the best action all the time, with probability epsilon, we explore different actions randomly.
If the value of the epsilon is set to zero, then we will not do any exploration. It is simply the
greedy policy, and if the value of epsilon is set to one, then it will always do only
exploration. The value of the epsilon will decay over time as we don't want to explore
forever. So over time our policy exploits good actions:

Gaming with Monte Carlo Methods Chapter 4

[87]

Let us say we set the value of epsilon to 0.3. In the following code, we generate a random
value from the uniform distribution and if the value is less than epsilon value, that is, 0.3,
then we select a random action (in this way, we search for a different action). If the random
value from the uniform distribution is greater than 0.3, then we select the action that has the
best value. So, in this way, we explore actions that we haven't seen before with the
probability epsilon and select the best actions out of the explored actions with the
probability 1-epsilon:

def epsilon_greedy_policy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x:
q[(state,x)])

Let us imagine that we have explored further actions in the state 1 with the epsilon-greedy
policy (although not all of the actions pair) and our Q table looks as follows:

State Action Value
State 1 Action 0 0.5
State 1 Action 1 0.1
State 1 Action 2 0.8
State 1 Action 4 0.93

In state 1, action 4 has a higher value than the action 2 we found previously. So with the
epsilon-greedy policy, we look for different actions with the probability epsilon and exploit
the best action with the probability 1-epsilon.

The steps involved in the on-policy Monte Carlo method are very simple:

First, we initialize a random policy and a random Q function.1.
Then we initialize a list called return for storing the returns.2.
We generate an episode using the random policy π.3.
 We store the return of every state action pair occurring in the episode to the4.
return list.

Gaming with Monte Carlo Methods Chapter 4

[88]

Then we take an average of the returns in the return list and assign that value to5.
the Q function.
Now the probability of selecting an action a in the state s will be decided by6.
epsilon.
If the probability is 1-epsilon we pick up the action which has the maximal Q7.
value.
If the probability is epsilon, we explore for different actions.8.

Off-policy Monte Carlo control
Off-policy Monte Carlo is another interesting Monte Carlo control method. In this method,
we have two policies: one is a behavior policy and another is a target policy. In the off-
policy method, agents follow one policy but in the meantime, it tries to learn and improve a
different policy. The policy an agent follows is called a behavior policy and the policy an
agent tries to evaluate and improve is called a target policy. The behavior and target policy
are totally unrelated. The behavior policy explores all possible states and actions and that is
why a behavior policy is called a soft policy, whereas a target policy is said to be a greedy
policy (it selects the policy which has the maximal value).

Our goal is to estimate the Q function for the target policy π, but our agents behave using a
completely different policy called behavior policy . What can we do now? We can
estimate the value of by using the common episodes that took place in . How can we
estimate the common episodes between these two policies? We use a new technique called
importance sampling. It is a technique for estimating values from one distribution given
samples from another.

Importance sampling is of two types:

Ordinary importance sampling
Weighted importance sampling

In ordinary importance sampling, we basically take the ratio of returns obtained by the
behavior policy and target policy, whereas in weighted importance sampling we take the
weighted average and C is the cumulative sum of weights.

Let us just see this step by step:

First, we initialize Q(s,a) to random values and C(s,a) to 0 and weight w as 1.1.
Then we choose the target policy, which is a greedy policy. This means it will2.
pick up the policy which has a maximum value from the Q table.

Gaming with Monte Carlo Methods Chapter 4

[89]

We select our behavior policy. A behavior policy is not greedy and it can select3.
any state-action pair.
Then we begin our episode and perform an action a in the state s according to our4.
behavior policy and store the reward. We repeat this until the end of the episode.
Now, for each state in the episode, we do the following:5.

We will calculate return G. We know that the return is the sum of1.
discounted rewards: G = discount_ factor * G + reward.
Then we update C(s,a) as C(s,a) = C(s,a) + w.2.

We update Q(s,a): .3.

We update the value of w: .4.

Summary
In this chapter, we learned about how the Monte Carlo method works and how can we use
it to solve MDP when we don't know the model of the environment. We have looked at two
different methods: one is Monte Carlo prediction, which is used for estimating the value
function, and the other is Monte Carlo control, which is used for optimizing the value
function.

We looked at two different methods in Monte Carlo prediction: first visit Monte Carlo
prediction, where we average the return only the first time the state is visited in an episode,
and the every visit Monte Carlo method, where we average the return every time the state
is visited in an episode.

In terms of Monte Carlo control, we looked at different algorithms. We first encountered
MC-ES control, which is used to cover all state-action pairs. We looked at on-policy MC
control, which uses the epsilon-greedy policy, and off-policy MC control, which uses two
policies at a time.

In the next chapter, Chapter 5, Temporal Difference Learning we will look at a different
model-free learning algorithm.

Gaming with Monte Carlo Methods Chapter 4

[90]

Questions
The question list is as follows:

What is the Monte Carlo Method?1.
Estimate the value of the Golden Ratio using the Monte Carlo method.2.
What is the use of Monte Carlo prediction?3.
What is the difference between first visit MC and every visit MC?4.
Why do we estimate the state-action value?5.
What is the difference between on-policy MC control and off-policy MC control?6.
Write some Python code for playing a Blackjack game with on-policy MC7.
control.

Further reading
Please refer to the following links:

David Silver's model-free prediction
presentation: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_file
s/MC-TD.pdf

David Silver's model-free control
presentation: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_file
s/control.pdf

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MC-TD.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MC-TD.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/control.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/control.pdf

5
Temporal Difference Learning

In the previous chapter, Chapter 4, Gaming with Monte Carlo Methods, we learned about the
interesting Monte Carlo method, which is used for solving the Markov Decision Process
(MDP) when the model dynamics of the environment are not known in advance, unlike
dynamic programming. We looked at the Monte Carlo prediction method, which is used
for predicting value functions and control methods for further optimizing value functions.
But there are some pitfalls with the Monte Carlo method. It is applied only for episodic
tasks. If an episode is very long, then we have to wait a long time for computing value
functions. So, we will use another interesting algorithm called temporal-difference (TD)
learning, which is a model-free learning algorithm: it doesn't require the model dynamics to
be known in advance and it can be applied for non-episodic tasks as well.

In this chapter, you will learn about:

TD learning
Q learning
SARSA
Taxi scheduling using Q learning and SARSA
The difference between Q learning and SARSA

TD learning
The TD learning algorithm was introduced by Sutton in 1988. The algorithm takes the
benefits of both the Monte Carlo method and dynamic programming (DP) into account.
Like the Monte Carlo method, it doesn't require model dynamics, and like DP it doesn't
need to wait until the end of the episode to make an estimate of the value function. Instead,
it approximates the current estimate based on the previously learned estimate, which is also
called bootstrapping. If you see in Monte Carlo methods there is no bootstrapping, we
made an estimate only at the end of the episode but in TD methods we can bootstrap.

Temporal Difference Learning Chapter 5

[92]

TD prediction
Like we did in Monte Carlo prediction, in TD prediction we try to predict the state values.
In Monte Carlo prediction, we estimate the value function by simply taking the mean
return. But in TD learning, we update the value of a previous state by current state. How
can we do this? TD learning using something called a TD update rule for updating the
value of a state, as follows:

The value of a previous state = value of previous state + learning_rate (reward +
discount_factor(value of current state) - value of previous state)

What does this equation actually mean?

If you think of this equation intuitively, it is actually the difference between the actual
reward () and the expected reward () multiplied by the learning rate alpha.
What does the learning rate signify? The learning rate, also called step size, is useful for
convergence.

Did you notice? Since we take the difference between the actual and predicted value as
, it is actually an error. We can call it a TD error. Over several iterations, we

will try to minimize this error.

Let us understand TD prediction with the frozen lake example as we have seen in the
previous chapters. The frozen lake environment is shown next. First, we will initialize the
value function as 0, as in V(S) as 0 for all states, as shown in the following state-value
diagram:

Say we are in a starting state (s) (1,1) and we take an action right and move to the next state
(s') (1,2) and receive a reward (r) as -0.3. How can we update the value of the state using
this information?

Recall the TD update equation:

Temporal Difference Learning Chapter 5

[93]

Let us consider the learning rate (α) as 0.1 and the discount factor () as 0.5; we know that
the value of the state (1,1), as in v(s), is 0 and the value of the next state (1,2), as in V(s'), is
also 0. The reward (r) we obtained is -0.3. We substitute this in the TD rule as follows:

V(s) = 0 + 0.1 [-0.3 + 0.5 (0)-0]
v(s) = - 0.03

So, we update the value for the state (1,1) as -0.03 in the value table, as shown in the
following diagram:

Now that we are in the state (s) as (1,2), we take an action right and move to the next state
(s') (1,3) and receive a reward (r) -0.3. How do we update the value of the state (1, 2) now?

Like we did previously, we will substitute the values in the TD update equation as:

V(s) = 0 + 0.1 [-0.3 + 0.5(0)-0]

V(s) = -0.03

So, we got the value of the state (1,2) as -0.03 and we update that in the value table as
shown here:

Now we are in the state (s) (1,3); suppose we take an action left. We again go back to that
state (s') (1,2) and we receive a reward (r) -0.3. Here, the value of the state (1,3) is 0 and the
value of the next state (1,2) is -0.03 in the value table.

Temporal Difference Learning Chapter 5

[94]

Now we can update the value of state (1,3) as follows:

V(s) = 0 +0.1 [-0.3 + 0.5 (-0.03)-0)]

V(s) = 0.1[-0.315]

V(s) = -0.0315

So, we update the value of state (1,3) as -0.0315 in the value table, as shown here:

In a similar way, we update the value of all the states using the TD update rule. The steps
involved in the TD-prediction algorithm are as follows:

First, we initialize V(S) to 0 or some arbitrary values1.
Then we begin the episode and for every step in the episode, we perform an2.
action A in the state S and receive a reward R and move to the next state (s')
Now, we update the value of the previous state using the TD update rule 3.
We repeat steps 3 and 4 until we reach the terminal state4.

TD control
In TD prediction, we estimated the value function. In TD control, we optimize the value
function. For TD control, we use two kinds of control algorithm:

Off-policy learning algorithm: Q learning
On-policy learning algorithm: SARSA

Temporal Difference Learning Chapter 5

[95]

Q learning
We will now look into the very popular off-policy TD control algorithm called Q learning.
Q learning is a very simple and widely used TD algorithm. In control algorithms, we don't
care about state value; here, in Q learning, our concern is the state-action value pair—the
effect of performing an action A in the state S.

We will update the Q value based on the following equation:

The preceding equation is similar to the TD prediction update rule with a little difference.
We will see this in detail step by step. The steps involved in Q learning are as follows:

First, we initialize the Q function to some arbitrary values1.
We take an action from a state using epsilon-greedy policy () and move it2.
to the new state
We update the Q value of a previous state by following the update rule:3.

We repeat the steps 2 and 3 till we reach the terminal state4.

Now, we will understand the algorithm using different steps.

Consider the same frozen lake example. Let us say we are in a state (3,2) and have two
actions (left and right). Now let us refer to the figure and compare it with epsilon-greedy
policy:

Temporal Difference Learning Chapter 5

[96]

In Q Learning, we select an action using the epsilon-greedy policy. We either explore a new
action with the probability epsilon or we select the best action with a probability 1- epsilon.
Let us say we select a probability epsilon and explore a new action Down and we select
that action:

Now that we have performed a downward action in the sate (3,2) and reached a new state
(4,2) using the epsilon-greedy policy, how do we update the value of the previous state (3,2)
using our update rule? It is very simple. Look at the Q table shown as following:

Let us consider alpha as 0.1 and the discount factor as 1:

Q((3,2) down) = Q((3,2), down) + 0.1 (0.3 + 1 max [Q((4,2) action)]- Q((3,2), down)

We can say the value of a state (3,2) with a downward action, as in Q((3,2), down), is 0.8 in
the Q table.

Temporal Difference Learning Chapter 5

[97]

What is max Q ((4,2), action) for the state (4,2)? We have explored only three actions (up,
down, and right) so we will take the maximum value only based on these actions. (Here,
we will not perform epsilon greedy policy; we simply select the action that has the
maximum value.)

So, based on the previous Q table, we can substitute the values as:

Q((3,2), down) = 0.8 + 0.1 (0.3 + 1 max [0.3, 0.5, 0.8] - 0.8)

= 0.8 + 0.1 (0.3 + 1 (0.8) - 0.8)

= 0.83

So, we update the value of Q ((3,2), down) to 0.83.

Remember that while choosing what action to take, we perform the
epsilon-greedy policy: we either explore for new actions with a
probability epsilon or take an action which has a maximum value with a
probability 1-epsilon. While updating the Q value, we don't perform the
epsilon-greedy policy, we simply select the action that has a maximum
value.

Now that we are in a state (4,2), we have to perform an action. What action should we
perform? We decide that based on the epsilon-greedy policy, we either explore a new
action with a probability epsilon or select the best action with a probability 1-epsilon. Let us
say we select a probability 1-epsilon and select the best action. So, in the (4,2) the action right
has a maximum value. So we will select the right action:

Temporal Difference Learning Chapter 5

[98]

Now we are in a state (4,3) as we took a right action on the state (4,2). How do we update
the value of the previous state? Like so:

Q((4,2), right) = Q((4,2), right) + 0.1 (0.3 + 1 max [Q((4,3) action)]- Q((4,2), right)

If you look at the Q table that follows, for the state (4,3) we have explored only two actions
(up and down) so we will take a maximum value only based on these actions. (Here, we
will not perform an epsilon-greedy policy; we simply select the action which has maximum
value):

Q ((4,2), right) = Q((4,2),right) + 0.1 (0.3 + 1 max [(Q (4,3), up) , (Q(4,3),down)] - Q ((4,2), right)

Q ((4,2), right) = 0.8 + 0.1 (0.3 + 1 max [0.1,0.3] - 0.8)

= 0.8 + 0.1 (0.3 + 1(0.3) - 0.8)

 = 0.78

Look at the following Q table:

Now we update the value of the state Q((4,2), right) as 0.78.

So, this is how we get the state-action values in Q learning. To decide what action to take,
we use the epsilon-greedy policy and while updating the Q value we simply pick up the
maximum action; here's a flowchart:

Temporal Difference Learning Chapter 5

[99]

Temporal Difference Learning Chapter 5

[100]

Solving the taxi problem using Q learning
To demonstrate the problem let's say our agent is the driver. There are four locations and
the agent has to pick up a passenger at one location and drop them off at another. The
agent will receive +20 points as a reward for successful drop off and -1 point for every time
step it takes. The agent will also lose -10 points for illegal pickups and drops. So the goal of
our agent is to learn to pick up and drop off passengers at the correct location in a short
time without adding illegal passengers.

The environment is shown here, where the letters (R, G, Y, B) represent the different
locations and a tiny rectangle is the agent driving the taxi:

Let's look at the coding part:

import gym
import random

Now we make our environment using a gym:

env = gym.make("Taxi-v1")

What does this taxi environment look like? Like so:

env.render()

Okay, first let us initialize our learning rate alpha, epsilon value, and gamma:

alpha = 0.4
gamma = 0.999
epsilon = 0.017

Then we initialize a Q table; it has a dictionary that stores the state-action value pair as
(state, action):

q = {}
for s in range(env.observation_space.n):
 for a in range(env.action_space.n):
 q[(s,a)] = 0.0

Temporal Difference Learning Chapter 5

[101]

We will define the function for updating the Q table via our Q learning update rule; if you
look at the following function, you will see that we take the action that has a maximum
value for the state-action pair and store it in a qa variable. Then we update the Q value of
the previous state via our update rule, as in:

def update_q_table(prev_state, action, reward, nextstate, alpha, gamma):
 qa = max([q[(nextstate, a)] for a in range(env.action_space.n)])
 q[(prev_state,action)] += alpha * (reward + gamma * qa -
q[(prev_state,action)])

Then, we define a function for performing the epsilon-greedy policy where we pass the
state and epsilon value. We generate some random number in uniform distribution and if
the number is less than the epsilon, we explore a different action in the state, or else we
exploit the action that has a maximum q value:

def epsilon_greedy_policy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x:
q[(state,x)])

We will see how to perform Q learning, putting together all these functions:

For each episode
for i in range(8000):

 r = 0
 #first we initialize the environment

 prev_state = env.reset()
 while True:
 #In each state we select action by epsilon greedy policy
 action = epsilon_greedy_policy(prev_state, epsilon)
 #then we take the selected action and move to the next state
 nextstate, reward, done, _ = env.step(action)
 #and we update the q value using the update_q_table() function
 #which updates q table according to our update rule.

 update_q_table(prev_state, action, reward, nextstate, alpha, gamma)
 #then we update the previous state as next stat
 prev_state = nextstate

 #and store the rewards in r

Temporal Difference Learning Chapter 5

[102]

 r += reward
 #If done i.e if we reached the terminal state of the episode
 #if break the loop and start the next episode
 if done:
 break

 print("total reward: ", r)

env.close()

The complete code is given here:

import random
import gym

env = gym.make('Taxi-v1')

alpha = 0.4
gamma = 0.999
epsilon = 0.017

q = {}
for s in range(env.observation_space.n):
 for a in range(env.action_space.n):
 q[(s,a)] = 0

def update_q_table(prev_state, action, reward, nextstate, alpha, gamma):
 qa = max([q[(nextstate, a)] for a in range(env.action_space.n)])
 q[(prev_state,action)] += alpha * (reward + gamma * qa -
q[(prev_state,action)])

def epsilon_greedy_policy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x: q[(state,x)])

for i in range(8000):
 r = 0
 prev_state = env.reset()
 while True:
 env.render()
 # In each state, we select the action by epsilon-greedy policy
 action = epsilon_greedy_policy(prev_state, epsilon)
 # then we perform the action and move to the next state, and
 # receive the reward
 nextstate, reward, done, _ = env.step(action)

Temporal Difference Learning Chapter 5

[103]

 # Next we update the Q value using our update_q_table function
 # which updates the Q value by Q learning update rule
 update_q_table(prev_state, action, reward, nextstate, alpha, gamma)
 # Finally we update the previous state as next state
 prev_state = nextstate

 # Store all the rewards obtained
 r += reward

 #we will break the loop, if we are at the terminal
 #state of the episode
 if done:
 break

 print("total reward: ", r)

env.close()

SARSA
State-Action-Reward-State-Action (SARSA) is an on-policy TD control algorithm. Like we
did in Q learning, here we also focus on state-action value instead of a state-value pair. In
SARSA, we update the Q value based on the following update rule:

In the preceding equation, you may notice that there is no max Q(s',a'), like there was in Q
learning. Here it is simply Q(s',a'). We can understand this in detail by performing some
steps. The steps involved in SARSA are as follows:

First, we initialize the Q values to some arbitrary values1.
We select an action by the epsilon-greedy policy () and move from one state2.
to another
We update the Q value previous state by following the update rule3.

, where a' is the action selected by an
epsilon-greedy policy ()

Temporal Difference Learning Chapter 5

[104]

Now, we will understand the algorithm step by step. Let us consider the same frozen lake
example. Let us say we are in state (4,2). We decide the action based on the epsilon-greedy
policy. Let us say we use a probability 1- epsilon and select the best action, which is right:

Now we are in state (4,3) after performing an action right in state (4,2). How do we update
a value of the previous state (4,2)? Let us consider the alpha as 0.1, the reward as 0.3, and
discount factor 1:

Q((4,2), right) = Q((4,2),right) + 0.1 (0.3 + 1 Q((4,3), action)) - Q((4,2) , right)

How do we choose the value for Q (4,3), action)? Here, unlike in Q learning, we don't just
pick up max (Q(4,3), action). In SARSA, we use the epsilon-greedy policy.

Look at the Q table that follows. In state (4,3) we have explored two actions. Unlike Q
learning, we don't select the maximum action directly as down:

Temporal Difference Learning Chapter 5

[105]

We follow the epsilon-greedy policy here as well. We either explore with a probability
epsilon or exploit with a probability 1-epsilon. Let us say we select probability epsilon and
explore a new action. We explore a new action, right, and select that action:

Q ((4,2), right) = Q((4,2),right) + 0.1 (0.3 + 1 (Q (4,3), right) - Q ((4,2), right)

Q ((4,2), right) = 0.8 + 0.1 (0.3 + 1(0.9) - 0.8)

= 0.8 + 0.1 (0.3 + 1(0.9) - 0.8)

 = 0.84

So, this is how we get the state-action values in SARSA. We take the action using the
epsilon-greedy policy and also, while updating the Q value, we pick up the action using the
epsilon-greedy policy.

Temporal Difference Learning Chapter 5

[106]

The following diagram explains the SARSA algorithm:

Temporal Difference Learning Chapter 5

[107]

Solving the taxi problem using SARSA
Now we will solve the same taxi problem using SARSA:

import gym
import random
env = gym.make('Taxi-v1')

Also, we will initialize the learning rate, gamma, and epsilon. Q table has a dictionary:

alpha = 0.85
gamma = 0.90
epsilon = 0.8

Q = {}
for s in range(env.observation_space.n):
 for a in range(env.action_space.n):
 Q[(s,a)] = 0.0

As usual, we define an epsilon_greedy policy for exploration:

def epsilon_greedy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x:
Q[(state,x)])

Now, the actual SARSA algorithm comes in:

for i in range(4000):
 #We store cumulative reward of each episodes in r
 r = 0
 #Then for every iterations, we initialize the state,
 state = env.reset()
 #then we pick up the action using epsilon greedy policy
 action = epsilon_greedy(state,epsilon)
 while True:
 #Then we perform the action in the state and move the next state
 nextstate, reward, done, _ = env.step(action)
 #Then we pick up the next action using epsilon greedy policy
 nextaction = epsilon_greedy(nextstate,epsilon)
 #we calculate Q value of the previous state using our update rule
 Q[(state,action)] += alpha * (reward + gamma *
Q[(nextstate,nextaction)]-Q[(state,action)])

Temporal Difference Learning Chapter 5

[108]

 #finally we update our state and action with next action
 # and next state
 action = nextaction
 state = nextstate
 r += reward
 #we will break the loop, if we are at the terminal
 #state of the episode
 if done:
 break

env.close()

You can run the program and see how SARSA is finding the optimal path.

The full program is given here:

#Like we did in Q learning, we import necessary libraries and initialize
environment

import gym
import random
env = gym.make('Taxi-v1')

alpha = 0.85
gamma = 0.90
epsilon = 0.8

#Then we initialize Q table as dictionary for storing the state-action
values
Q = {}
for s in range(env.observation_space.n):
 for a in range(env.action_space.n):
 Q[(s,a)] = 0.0

#Now, we define a function called epsilon_greedy for performing action
#according epsilon greedy policy
def epsilon_greedy(state, epsilon):
 if random.uniform(0,1) < epsilon:
 return env.action_space.sample()
 else:
 return max(list(range(env.action_space.n)), key = lambda x:
Q[(state,x)])

Temporal Difference Learning Chapter 5

[109]

for i in range(4000):
 #We store cumulative reward of each episodes in
 r = 0
 #Then for every iterations, we initialize the state,
 state = env.reset()
 #then we pick up the action using epsilon greedy policy
 action = epsilon_greedy(state,epsilon)
 while True:
 #Then we perform the action in the state and move the next state
 nextstate, reward, done, _ = env.step(action)
 #Then we pick up the next action using epsilon greedy policy
 nextaction = epsilon_greedy(nextstate,epsilon)
 #we calculate Q value of the previous state using our update rule
 Q[(state,action)] += alpha * (reward + gamma *
Q[(nextstate,nextaction)]-Q[(state,action)])

 #finally we update our state and action with next action
 #and next state
 action = nextaction
 state = nextstate
 r += reward
 #we will break the loop, if we are at the terminal
 #state of the episode
 if done:
 break

env.close()

Temporal Difference Learning Chapter 5

[110]

The difference between Q learning and
SARSA
Q learning and SARSA will always be confusing for many folks. Let us break down the
differences between these two. Look at the flowchart here:

Temporal Difference Learning Chapter 5

[111]

Can you spot the difference? In Q learning, we take action using an epsilon-greedy policy
and, while updating the Q value, we simply pick up the maximum action. In SARSA, we
take the action using the epsilon-greedy policy and also, while updating the Q value, we
pick up the action using the epsilon-greedy policy.

Summary
In this chapter, we learned a different model-free learning algorithm that overcame the
limitations of the Monte Carlo methods. We saw both prediction and control methods. In
TD prediction, we updated the state-value of a state based on the next state. In terms of the
control methods, we saw two different algorithms: Q learning and SARSA.

Questions
The question list is as follows:

How does TD learning differ from the Monte Carlo method?1.
What exactly is a TD error?2.
What is the difference between TD prediction and control?3.
How to build an intelligent agent using Q learning?4.
What is the difference between Q learning and SARSA?5.

Further reading
Sutton's original TD
paper: https://pdfs.semanticscholar.org/9c06/865e912788a6a51470724e087853d72691
95.pdf

https://pdfs.semanticscholar.org/9c06/865e912788a6a51470724e087853d7269195.pdf
https://pdfs.semanticscholar.org/9c06/865e912788a6a51470724e087853d7269195.pdf

6
Multi-Armed Bandit Problem

In the previous chapters, we have learned about fundamental concepts of reinforcement
learning (RL) and several RL algorithms, as well as how RL problems can be modeled as
the Markov Decision Process (MDP). We have also seen different model-based and model-
free algorithms that are used to solve the MDP. In this chapter, we will see one of the
classical problems in RL called the multi-armed bandit (MAB) problem. We will see what
the MAB problem is and how to solve the problem with different algorithms followed by
how to identify the correct advertisement banner that will receive most of the clicks using
MAB. We will also learn about contextual bandit that is widely used for building
recommendation systems.

In the chapter, you will learn about the following:

The MAB problem
The epsilon-greedy algorithm
The softmax exploration algorithm
The upper confidence bound algorithm
The Thompson sampling algorithm
Applications of MAB
Identifying the right advertisement banner using MAB
Contextual bandits

The MAB problem
The MAB problem is one of the classical problems in RL. An MAB is actually a slot
machine, a gambling game played in a casino where you pull the arm (lever) and get a
payout (reward) based on a randomly generated probability distribution. A single slot
machine is called a one-armed bandit and, when there are multiple slot machines it is called
multi-armed bandits or k-armed bandits.

Multi-Armed Bandit Problem Chapter 6

[113]

MABs are shown as follows:

As each slot machine gives us the reward from its own probability distribution, our goal is
to find out which slot machine will give us the maximum cumulative reward over a
sequence of time. So, at each time step t, the agent performs an action at, that is, pulls an
arm from the slot machine and receives a reward rt, and the goal of our agent is to maximize
the cumulative reward.

We define the value of an arm Q(a) as average rewards received by pulling the arm:

So the optimal arm is the one that gives us the maximum cumulative reward, that is:

The goal of our agent is to find the optimal arm and also to minimize the regret, which can
be defined as the cost of knowing which of the k arms is optimal. Now, how do we find the
best arm? Should we explore all the arms or choose the arm that already gave us a
maximum cumulative reward? Here comes the exploration-exploitation dilemma. Now we
will see how to solve this dilemma using various exploration strategies as follows:

Epsilon-greedy policy
Softmax exploration
Upper confidence bound algorithm
Thomson sampling technique

Multi-Armed Bandit Problem Chapter 6

[114]

Before going ahead, let us install bandit environments in the OpenAI Gym; you can install
the bandit environment by typing the following command in your Terminal:

git clone https://github.com/JKCooper2/gym-bandits.git
cd gym-bandits
pip install -e .

After installing, let us import gym and gym_bandits:

import gym_bandits
import gym

Now we will initialize the environment; we use an MAB with ten arms:

env = gym.make("BanditTenArmedGaussian-v0")

 Our action space will be 10, as we have 10 arms:

env.action_space

The output is as follows:

10

The epsilon-greedy policy
We have already learned a lot about the epsilon-greedy policy. In the epsilon-greedy policy,
either we select the best arm with a probability 1-epsilon or we select the arms at random
with a probability epsilon:

https://www.google.com/url?q=https://github.com/JKCooper2/gym-bandits.git&sa=D&ust=1529836954889000&usg=AFQjCNFpMNcU8k-62v6Bb0UZSngaldPxeg
https://www.google.com/url?q=https://github.com/JKCooper2/gym-bandits.git&sa=D&ust=1529836954889000&usg=AFQjCNFpMNcU8k-62v6Bb0UZSngaldPxeg
https://www.google.com/url?q=https://github.com/JKCooper2/gym-bandits.git&sa=D&ust=1529836954889000&usg=AFQjCNFpMNcU8k-62v6Bb0UZSngaldPxeg
https://www.google.com/url?q=https://github.com/JKCooper2/gym-bandits.git&sa=D&ust=1529836954889000&usg=AFQjCNFpMNcU8k-62v6Bb0UZSngaldPxeg

Multi-Armed Bandit Problem Chapter 6

[115]

Now we will see how to select the best arm using the epsilon-greedy policy:

First, let us initialize all variables:1.

number of rounds (iterations)
num_rounds = 20000

Count of number of times an arm was pulled
count = np.zeros(10)

Sum of rewards of each arm
sum_rewards = np.zeros(10)

Q value which is the average reward
Q = np.zeros(10)

Now we define our epsilon_greedy function:2.

def epsilon_greedy(epsilon):
 rand = np.random.random()
 if rand < epsilon:
 action = env.action_space.sample()
 else:
 action = np.argmax(Q)
 return action

Start pulling the arm:3.

for i in range(num_rounds):
 # Select the arm using epsilon greedy
 arm = epsilon_greedy(0.5)
 # Get the reward
 observation, reward, done, info = env.step(arm)
 # update the count of that arm
 count[arm] += 1
 # Sum the rewards obtained from the arm
 sum_rewards[arm]+=reward
 # calculate Q value which is the average rewards of the arm
 Q[arm] = sum_rewards[arm]/count[arm]

print('The optimal arm is {}'.format(np.argmax(Q)))

The following is the output:

The optimal arm is 3

Multi-Armed Bandit Problem Chapter 6

[116]

The softmax exploration algorithm
Softmax exploration, also known as Boltzmann exploration, is another strategy used for
finding an optimal bandit. In the epsilon-greedy policy, we consider all of the non-best
arms equivalently, but in softmax exploration, we select an arm based on a probability from
the Boltzmann distribution. The probability of selecting an arm is given by:

 is called a temperature factor, which specifies how many random arms we can explore.
When is high, all arms will be explored equally, but when is low, high-rewarding arms
will be chosen. Look at the following steps:

First, initialize the variables:1.

number of rounds (iterations)
num_rounds = 20000

Count of number of times an arm was pulled
count = np.zeros(10)

Sum of rewards of each arm
sum_rewards = np.zeros(10)

Q value which is the average reward
Q = np.zeros(10)

Now we define the softmax function:2.

def softmax(tau):
 total = sum([math.exp(val/tau) for val in Q])
 probs = [math.exp(val/tau)/total for val in Q]
 threshold = random.random()
 cumulative_prob = 0.0
 for i in range(len(probs)):
 cumulative_prob += probs[i]
 if (cumulative_prob > threshold):
 return i
 return np.argmax(probs)

Multi-Armed Bandit Problem Chapter 6

[117]

Start pulling the arm:3.

for i in range(num_rounds):
 # Select the arm using softmax
 arm = softmax(0.5)
 # Get the reward
 observation, reward, done, info = env.step(arm)
 # update the count of that arm
 count[arm] += 1
 # Sum the rewards obtained from the arm
 sum_rewards[arm]+=reward
 # calculate Q value which is the average rewards of the arm
 Q[arm] = sum_rewards[arm]/count[arm]
print('The optimal arm is {}'.format(np.argmax(Q)))

The following is the output:

The optimal arm is 3

The upper confidence bound algorithm
With epsilon-greedy and softmax exploration, we explore random actions with a
probability; the random action is useful for exploring various arms, but it might also lead
us to try out actions that will not give us a good reward at all. We also don't want to miss
out arms that are actually good but give poor rewards in the initial rounds. So we use a
new algorithm called the upper confidence bound (UCB). It is based on the principle called
optimism in the face of uncertainty.

The UCB algorithm helps us in selecting the best arm based on a confidence interval. Okay,
what is a confidence interval? Let us say we have two arms. We pull both of these arms and
find that arm one gives us 0.3 rewards and arm two gives us 0.8 rewards. But with one
round of pulling the arms, we should not come to the conclusion that arm two will give us
the best reward. We have to try pulling the arms several times and take the mean value of
rewards obtained by each arm and select the arm whose mean is highest. But how can we
find the correct mean value for each of these arms? Here is where the confidence interval
comes into the picture. The confidence interval specifies the interval within which the mean
reward value of arms lies. If the confidence interval of arm one is [0.2, 0.9], it implies that
the mean value of arm one lies within this interval, 0.2 to 0.9. 0.2 is called the lower
confidence bound and 0.9 is called the UCB. The UCB selects a machine that has a high
UCB to explore.

Multi-Armed Bandit Problem Chapter 6

[118]

Let us say we have three slot machines and we have played each of the slot machines ten
times. The confidence intervals of these three slot machines are shown in the following
diagram:

We can see that slot machine 3 has a high UCB. But we should not come to the conclusion
that slot machine 3 will give us a good reward by just pulling ten times. Once we pull the
arms several times, our confidence interval will be accurate. So, over time, the confidence
interval becomes narrow and shrinks to an actual value, as shown in the next diagram. So
now, we can select slot machine 2, which has a high UCB:

The idea behind UCB is very simple:

Select the action (arm) that has a high sum of average reward and upper1.
confidence bound
Pull the arm and receive a reward2.
Update the arm's reward and confidence bound3.

Multi-Armed Bandit Problem Chapter 6

[119]

But how do we calculate UCB?

We can calculate UCB using the formula where N(a) is the number of times the arm
was pulled and t is the total number of rounds.

So, in UCB, we select an arm with the following formula:

First, initialize the variables:

number of rounds (iterations)
num_rounds = 20000

Count of number of times an arm was pulled
count = np.zeros(10)

Sum of rewards of each arm
sum_rewards = np.zeros(10)

Q value which is the average reward
Q = np.zeros(10)

Now, let us define our UCB function:

def UCB(iters):
 ucb = np.zeros(10)
 #explore all the arms
 if iters < 10:
 return i
 else:
 for arm in range(10):
 # calculate upper bound
 upper_bound = math.sqrt((2*math.log(sum(count))) / count[arm])
 # add upper bound to the Q value
 ucb[arm] = Q[arm] + upper_bound
 # return the arm which has maximum value
 return (np.argmax(ucb))

Multi-Armed Bandit Problem Chapter 6

[120]

Let us start pulling the arms:

for i in range(num_rounds):
 # Select the arm using UCB
 arm = UCB(i)
 # Get the reward
 observation, reward, done, info = env.step(arm)
 # update the count of that arm
 count[arm] += 1
 # Sum the rewards obtained from the arm
 sum_rewards[arm]+=reward
 # calculate Q value which is the average rewards of the arm
 Q[arm] = sum_rewards[arm]/count[arm]
print('The optimal arm is {}'.format(np.argmax(Q)))

The output is as follows:

The optimal arm is 1

The Thompson sampling algorithm
Thompson sampling (TS) is another popularly used algorithm to overcome the
exploration-exploitation dilemma. It is a probabilistic algorithm and is based on a prior
distribution. The strategy behind TS is very simple: first, we calculate prior on the mean
rewards for each of the k arms, that is, we take some n samples from each of the k arms and
calculate k distributions. These initial distributions will not be the same as the true
distribution, so we call it prior distribution:

Since we have Bernoulli rewards, we use beta distribution for calculating the prior. The
value of beta distribution [alpha, beta] lies within the interval [0,1]. Alpha represents the
number of times we receive the positive rewards and beta represents the number of times
we receive the negative rewards.

Multi-Armed Bandit Problem Chapter 6

[121]

Now we will see how TS helps us in selecting the best arm. The steps involved in TS are as
follows:

Sample a value from each of the k distributions and use this value as a prior1.
mean.
Select the arm that has the highest prior mean and observes the reward.2.
Use the observed reward to modify the prior distribution.3.

So, after several rounds, a prior distribution will start resembling the true distribution:

We shall better understand TS by implementing it in Python. First, let us initialize the
variables:

number of rounds (iterations)
num_rounds = 20000

Count of number of times an arm was pulled
count = np.zeros(10)

Sum of rewards of each arm
sum_rewards = np.zeros(10)

Q value which is the average reward
Q = np.zeros(10)

initialize alpha and beta values
alpha = np.ones(10)
beta = np.ones(10)

Multi-Armed Bandit Problem Chapter 6

[122]

Define our thompson_sampling function:

def thompson_sampling(alpha,beta):
 samples = [np.random.beta(alpha[i]+1,beta[i]+1) for i in range(10)]

 return np.argmax(samples)

Start playing with the bandits using TS:

for i in range(num_rounds):

 # Select the arm using thompson sampling
 arm = thompson_sampling(alpha,beta)

 # Get the reward
 observation, reward, done, info = env.step(arm)

 # update the count of that arm
 count[arm] += 1

 # Sum the rewards obtained from the arm
 sum_rewards[arm]+=reward

 # calculate Q value which is the average rewards of the arm
 Q[arm] = sum_rewards[arm]/count[arm]

 # If it is a positive reward increment alpha
 if reward >0:
 alpha[arm] += 1

 # If it is a negative reward increment beta
 else:
 beta[arm] += 1

print('The optimal arm is {}'.format(np.argmax(Q)))

The output is as follows:

The optimal arm is 3

Applications of MAB
So far, we have looked at the MAB problem and how we can solve it using various
exploration strategies. But bandits are not just used for playing slot machines; they have
many applications.

Multi-Armed Bandit Problem Chapter 6

[123]

Bandits are used as a replacement for AB testing. AB testing is one of the commonly used
classical methods of testing. Say you have two versions of the landing page of your website.
How do you know which version is liked by most of the users? You conduct an AB test to
understand which version is most liked by users.

In AB testing, we allocate a separate time for exploration and a separate time for
exploitation. That is, it has two different dedicated periods only for exploration and
exploitation alone. But the problem with this method is that this will incur a lot of regrets.
So, we can minimize the regret using various exploration strategies that we use to solve
MAB. Instead of performing complete exploration and exploitation separately with bandits,
we perform both exploration and exploitation simultaneously in an adaptive fashion.

Bandits are widely used for website optimization, maximizing conversion rate, online
advertisements, campaigning, and so on. Consider you are running a short-term campaign.
If you perform AB testing here, then you will spend almost all of your time on exploring
and exploitation alone, so in this case, using bandits would be very useful.

Identifying the right advertisement banner
using MAB
Let us say you are running a website and you have five different banners for the same ad,
and you want to know which banner attracts the user. We model this problem statement as
a bandit problem. Let us say these five banners are the five arms of the bandit and we
award one point if the user clicks the ad and award zero if the user does not click the ad.

In normal A/B testing, we will perform a complete exploration of all these five banners
before deciding which banner is the best. But that will cost us a lot of energy and time.
Instead, we will use a good exploration strategy for deciding which banner will give us the
most rewards (most clicks).

First, let us import the necessary libraries:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

Multi-Armed Bandit Problem Chapter 6

[124]

Let us simulate a dataset with 5 x 10,000 as the shape, where the column is the
Banner_type ad and the rows are either 0 or 1, that is, whether the ad has been clicked (1)
or not clicked (0) by the user respectively:

df = pd.DataFrame()
df['Banner_type_0'] = np.random.randint(0,2,100000)
df['Banner_type_1'] = np.random.randint(0,2,100000)
df['Banner_type_2'] = np.random.randint(0,2,100000)
df['Banner_type_3'] = np.random.randint(0,2,100000)
df['Banner_type_4'] = np.random.randint(0,2,100000)

Let us view a few rows of our data:

df.head()

num_banner = 5
no_of_iterations = 100000
banner_selected = []
count = np.zeros(num_banner)
Q = np.zeros(num_banner)
sum_rewards = np.zeros(num_banner)

Define an epsilon-greedy policy:

def epsilon_greedy(epsilon):
 random_value = np.random.random()
 choose_random = random_value < epsilon
 if choose_random:
 action = np.random.choice(num_banner)
 else:
 action = np.argmax(Q)

Multi-Armed Bandit Problem Chapter 6

[125]

 return action

for i in range(no_of_iterations):
 banner = epsilon_greedy(0.5)
 reward = df.values[i, banner]
 count[banner] += 1
 sum_rewards[banner]+=reward
 Q[banner] = sum_rewards[banner]/count[banner]
 banner_selected.append(banner)

We can plot the results and see which banner gives us the maximum number of clicks:

sns.distplot(banner_selected)

Contextual bandits
We just saw how bandits are used for recommending the correct ad banner to the user. But
the banner preference varies from user to user. User A likes banner type 1, but user B might
like banner type 3. So we have to personalize ad banners according to user behavior. How
can we do that? We introduce a new bandit type called contextual bandits.

Multi-Armed Bandit Problem Chapter 6

[126]

In a normal MABs problem, we perform the action and receive a reward. But with
contextual bandits, instead of just taking the actions alone, we take the environment state as
well. The state holds the context. Here, the state specifies the user behaviors, so we will take
actions (show ads) according to the state (user behavior) that will result in a maximum
reward (ad clicks). Thus, contextual bandits are widely used for personalizing content
according to the user's preference behavior. They are used to solve cold-start problems
faced in recommendation systems. Netflix uses contextual bandits for personalizing
artwork for TV shows according to user behavior.

Summary
In this chapter, we have learned about the MAB problem and how it can be applied to
different applications. We understood several methods to solve an explore-exploit
dilemma. First, we looked at the epsilon-greedy policy, where we explored with the
probability epsilon, and carried out exploration with the probability 1-epsilon. We looked
at the UCB algorithm, where we picked up the best action with the maximum upper bound
value, followed by the TS algorithm, where we picked up the best action via beta
distribution.

In the upcoming chapters, we will learn about deep learning and how deep learning is used
to solve RL problems.

Questions
The question list is as follows:

What is an MAB problem?1.
What is an explore-exploit dilemma?2.
What is the significance of epsilon in the epsilon-greedy policy?3.
How do we solve an explore-exploit dilemma?4.
What is a UCB algorithm?5.
How does Thompson sampling differ from the UCB algorithm?6.

Multi-Armed Bandit Problem Chapter 6

[127]

Further reading
You can also refer to these links:

Contextual bandits for personalization: https:/ / www.microsoft. com/ en- us/
research/ blog/ contextual- bandit- breakthrough- enables- deeper-
personalization/

How Netflix uses contextual bandits: https:/ / medium. com/ netflix- techblog/
artwork- personalization- c589f074ad76

Collaborative filtering using MAB: https:/ /arxiv. org/ pdf/ 1708. 03058. pdf

https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://www.microsoft.com/en-us/research/blog/contextual-bandit-breakthrough-enables-deeper-personalization/
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf
https://arxiv.org/pdf/1708.03058.pdf

7
Deep Learning Fundamentals

So far, we have learned about how reinforcement learning (RL) works. In the upcoming
chapters, we will learn about Deep reinforcement learning (DRL), which is a combination
of deep learning and RL. DRL is creating a lot of buzz around the RL community and is
making a serious impact on solving many RL tasks. To understand DRL, we need to have a
strong foundation in deep learning. Deep learning is actually a subset of machine learning
and it is all about neural networks. Deep learning has been around for a decade, but the
reason it is so popular right now is because of the computational advancements and
availability of a huge volume of data. With this huge volume of data, deep learning
algorithms will outperform all classic machine learning algorithms. Therefore, in this
chapter, we will learn about several deep learning algorithms like recurrent neural
network (RNN), Long Short-Term Memory (LSTM), and convolutional neural
network (CNN) algorithms with applications.

In this chapter, you will learn about the following:

Artificial neurons
Artificial neural networks (ANNs)
Building a neural network to classify handwritten digits
RNNs
LSTMs
Generating song lyrics using LSTMs
CNNs
Classifying fashion products using CNNs

Deep Learning Fundamentals Chapter 7

[129]

Artificial neurons
Before understanding ANN, first, let's understand what neurons are and how neurons in
our brain actually work. A neuron can be defined as the basic computational unit of the
human brain. Our brain contains approximately 100 billion neurons. Each and every
neuron is connected through synapses. Neurons receive input from the external
environment, sensory organs, or from the other neurons through a branchlike structure
called dendrites, as can be seen in the following diagram. These inputs are strengthened or
weakened, that is, they are weighted according to their importance and then they are
summed together in the soma (cell body). Then, from the cell body, these summed inputs
are processed and move through the axons and are sent to the other neurons. The basic
single biological neuron is shown in the following diagram:

Now, how do artificial neurons work? Let's suppose we have three inputs, x1, x2, and x3, to
predict output y. These inputs are multiplied by weights, w1, w2, and w3, and are summed
together, that is, x1.w1 + x2.w2 + x3.w3. But why are we multiplying these inputs with weights?
Because all of the inputs are not equally important in calculating the output y. Let's say
that x2 is more important in calculating the output compared to the other two inputs. Then,
we assign a high value to w2 rather than for the other two weights. So, upon multiplying
weights with inputs, x2 will have a higher value than the other two inputs. After
multiplying inputs with the weights, we sum them up and we add a value called bias b. So,
z = (x1.w1 + x2.w2 + x3.w3) + b, that is:

Deep Learning Fundamentals Chapter 7

[130]

Doesn't z look like the equation of linear regression? Isn't it just the equation of a straight
line? z = mx + b.

Where m is the weights (coefficients), x is the input, and b is the bias (intercept). Well, yes.
Then what is the difference between neurons and linear regression? In neurons, we
introduce non-linearity to the result, z, by applying a function f() called the activation or
transfer function. So, our output is y = f(z). A single artificial neuron is shown in the
following diagram:

In neurons, we take the input x, multiply the input by weights w, and add bias b before
applying the activation function f(z) to this result and predict the output y.

ANNs
Neurons are cool, right? But single neurons cannot perform complex tasks, which is why
our brain has billions of neurons, organized in layers, forming a network. Similarly,
artificial neurons are arranged in layers. Each and every layer will be connected in such a
way that information is passed from one layer to another. A typical ANN consists of the
following layers:

Input layer
Hidden layer
Output layer

Deep Learning Fundamentals Chapter 7

[131]

Each layer has a collection of neurons, and the neurons in one layer interact with all the
neurons in the other layers. However, neurons in the same layer will not interact with each
other. A typical ANN is shown in the following diagram:

Input layer
The input layer is where we feed input to the network. The number of neurons in the input
layer is the number of inputs we feed to the network. Each input will have some influence
on predicting the output and this will be multiplied by weights, while bias will be added
and passed to the next layer.

Hidden layer
Any layer between the input layer and the output layer is called a hidden layer. It processes
the input received from the input layer. The hidden layer is responsible for deriving
complex relationships between input and output. That is, the hidden layer identifies the
pattern in the dataset. There can be any number of hidden layers, however we have to
choose a number of hidden layers according to our problem. For a very simple problem, we
can just use one hidden layer, but while performing complex tasks like image recognition,
we use many hidden layers where each layer is responsible for extracting important
features of the image so that we can easily recognize the image. When we use many hidden
layers, the network is called a deep neural network.

Deep Learning Fundamentals Chapter 7

[132]

Output layer
After processing the input, the hidden layer sends its result to the output layer. As the
name suggests, the output layer emits the output. The number of neurons in the output
layer relates to the type of problem we want our network to solve. If it is a binary
classification, then the number of neurons in the output layer tells us which class the input
belongs to. If it is a multi-class classification say, with five classes, and if we want to get the
probability of each class being an output, then the number of neurons in the output layer is
five, each emitting the probability. If it is a regression problem, then we have one neuron in
the output layer.

Activation functions
Activation functions are used to introduce nonlinearity in neural networks. We apply the
activation function to the input which is multiplied by weights and added to the bias, that
is, f(z), where z = (input * weights) + bias. There are different types of activation functions as
follows:

Sigmoid function: The sigmoid function is one of the most commonly used
activation functions. It scales the value between 0 and 1. The sigmoid function

can be defined as . When we apply this function to z, the values
will be scaled in the range of 0 to 1. This is also called a logistic function. It is s-
shaped, as shown in the following diagram:

Deep Learning Fundamentals Chapter 7

[133]

Hyperbolic tangent function: Unlike the sigmoid function, the hyperbolic
tangent function scales the value between -1 and +1. The hyperbolic tangent

function can be defined as . When we apply this function to z, the
values will be scaled in the range of -1 to +1. It is also s-shaped but zero centered,
as shown in the following diagram:

ReLU function: ReLU is also known as a rectified linear unit. It is one of the most
widely used activation functions. The ReLU function can be defined as

, that is, f(z) is 0 when z is less than 0 and f(z) is equal to z when z is
greater than or equal to 0:

Softmax function: The softmax function is actually the generalization of the
sigmoid function. It is usually applied on the final layer of the network and while
performing multi-class classification tasks. It gives the probabilities of each class
being an output and thus the sum of softmax values will always equal to 1. It can

be defined as .

Deep Learning Fundamentals Chapter 7

[134]

Deep diving into ANN
We know that in artificial neurons, we multiply the input by weights, add bias to them and
apply an activation function to produce the output. Now, we will see how this happens in a
neural network setting where neurons are arranged in layers. The number of layers in a
network is equal to the number of hidden layers plus the number of output layers. We
don't take the input layer into account. Consider a two-layer neural network with one input
layer, one hidden layer, and one output layer, as shown in the following diagram:

Let's say we have two inputs, x1 and x2, and we have to predict the output y. Since we have
two inputs, the number of neurons in the input layer will be two. Now, these inputs will be
multiplied by weights and then we add bias and propagate the resultant value to the
hidden layer where the activation function will be applied. So, first we need to initialize the
weight matrix. In the real world, we don't know which input is really important and
needing to be weighted high to calculate the output. Therefore, we will randomly initialize
weights and a bias value. We can denote the weights and bias flowing between the input
layer to the hidden layer as wxh and bh, respectively. What about the dimensions of the
weight matrix? The dimensions of the weight matrix must be [number of neurons in the
current layer * number of neurons in the next layer]. Why is that? Because it is a basic matrix
multiplication rule. To multiply any two matrices, AB, the number of columns in matrix A
must be equal to the number of rows in matrix B. So, the dimension of weight matrix
wxh should be [number of neurons in the input layer * number of neurons in the hidden layer], that
is, 2 x 4:

Deep Learning Fundamentals Chapter 7

[135]

That is, z1 = (input * weights) + bias. Now, this is passed to the hidden layer. In the hidden
layer, we apply an activation function to z1. Let's consider the following sigmoid activation
function:

After applying the activation function, we again multiply result a1 by a new weight matrix
and add a new bias value which is flowing between the hidden layer and the output layer.
We can denote this weight matrix and bias as why and by, respectively. The dimension of this
weight matrix why will be [number of neurons in the hidden layer * number of neurons in the
output layer]. Since we have four neurons in the hidden layer and one neuron in the output
layer, the why matrix dimension will be 4 x 1. So, we multiply a1 by the weight matrix why and
add bias by and pass the result to next layer, which is the output layer:

Now, in the output layer, we apply a sigmoid function to z2, which will result in an output
value:

This whole process from the input layer to the output layer is known as forward
propagation shown as follows:

 def forwardProp():
 z1 = np.dot(x,wxh) + bh
 a1 = sigmoid(z1)
 z2 = np.dot(a1,why) + by
 yHat = sigmoid(z2)

Forward propagation is cool, isn't it? But how do we know whether the output generated
by the neural network is correct? We must define a new function called the cost function
(J), also known as the loss function, which tells us how well our neural network is
performing. There are many different cost functions. We will use the mean squared error as
a cost function, which can be defined as the mean of the squared difference between the
actual value and the predicted value :

Deep Learning Fundamentals Chapter 7

[136]

Our objective is to minimize the cost function so that our neural network predictions will be
better. How can we minimize the cost function? We can minimize the cost function by
changing some values in our forward propagation. What values can we change? Obviously,
we can't change input and output. We are now left with weights and bias values. We just
initialized weight matrices and biases randomly, so it's not going to be perfect. Now, we
will adjust these weight matrices (wxh and why) in such a way that our neural network gives
a good result. How do we adjust these weight matrices? Here comes a new technique called
gradient descent.

Gradient descent
As a result of forward propagation, we are in the output layer. So now, we will
backpropagate the network from the output layer to the input layer and update the weights
by calculating the gradient of the cost function with respect to the weights to minimize the
error. Sounds confusing, right? Let's begin with an analogy. Imagine you are on top of a
hill, as shown in the following diagram, and you want to reach the lowest point on the hill.
You will have to make a step downwards on the hill, which leads you to the lowest point
(that is, you descend from the hill towards the lowest point). There could be many regions
which look like the lowest points on the hill, but we have to reach the lowest point which is
actually the lowest of all. That is, you should not be stuck at a point believing it is the
lowest point when the global lowest point exists:

Deep Learning Fundamentals Chapter 7

[137]

Similarly, we can represent our cost function, as follows. It is a plot of cost against weights.
Our objective is to minimize the cost function. That is, we have to reach the lowest point
where the cost is the minimum. The point shows our initial weights (that is where we are
on the hill). If we move this point down, then we can reach the place where there is
minimal error, that is, the lowest point on the cost function (the lowest point on the hill):

How can we move this point (initial weight) downward? How do we descend and reach
the lowest point? We can move this point (initial weight) by calculating a gradient of the
cost function with respect to that point. Gradients are the derivatives which are actually the
slope of a tangent line, which is shown in the following diagram. So, by calculating the
gradient, we descend (move downwards) and reach the lowest point:

After calculating gradients, we update our old weights by our weight update rule:

Deep Learning Fundamentals Chapter 7

[138]

What is α? It is known as the learning rate. If the learning rate is small, then we take a small
step downward and our gradient descent can be slow. If the learning rate is large, then we
take a large step and our gradient descent will be fast, but we might fail to reach the global
minimum and become stuck at a local minimum. So, the learning rate should be chosen
optimally, illustrated as follows:

Now, let's look at this mathematically. We are going to look at a lot of interesting math
now, so put on your calculus hats and follow these steps. So, we have two weights, one is
wxh, which is hidden to input weights and the other is why, which is hidden to output
weights. We need to update these weights according to our weight update rule. For that,
first, we need to calculate the derivative of the cost function with respect to weights.

Since we are backpropagating, that is, going from the output layer to the input layer, our
first weight will be why. So, now we need to calculate the derivative of J with respect to why.

How do we calculate the derivative? Recall our cost function . We cannot
compute the derivative directly as there is no why term in J.

Recall the forward propagation equations given as follows:

First, we will calculate a partial derivative with respect to , and then from we will
calculate the partial derivative with respect to . From , we can directly calculate our
derivative . It is actually the chain rule.

Deep Learning Fundamentals Chapter 7

[139]

So, our equation becomes:

 ---- (1)

We will compute each of these terms:

Where is the derivative of our sigmoid activation function. We know that the sigmoid

function is , so the derivative of the sigmoid function will be .

We will substitute all of these in the first equation (1).

Now, we need to compute a derivative of J with respect to our next weight wxh. Similarly,
we cannot calculate the derivative of wxh directly from J as we don't have any wxh terms in J.
So, we need to use the chain rule; recall our forward propagation steps again:

Now, the gradient calculation for weight wxh becomes:

 --- (2)

Deep Learning Fundamentals Chapter 7

[140]

We will compute each of these terms:

Once we have calculated the gradients for both weights, we will update our previous
weights according to our weight update rule.

Now, let's do some coding. Look at the equations (1) and (2). We have and in both
equations, so we don't have to compute this again and again. We define this as delta3:

delta3 = np.multiply(-(y-yHat),sigmoidPrime(z2))

Now, we compute gradient for why as:

dJ_dWhy = np.dot(a1.T,delta3)

We compute gradient for wxh as:

delta2 = np.dot(delta3,Why.T)*sigmoidPrime(z1)
dJ_dWxh = np.dot(X.T,delta2)

We will update the weights according to our weight update rule as:

Wxh += -alpha * dJ_dWhy
Why += -alpha * dJ_dWxh

Deep Learning Fundamentals Chapter 7

[141]

The complete code for this backpropagation will be as follows:

 def backProp():

 delta3 = np.multiply(-(y-yHat),sigmoidPrime(z2))
 dJdW2 = np.dot(a1.T, delta3)
 delta2 = np.dot(delta3,Why.T)*sigmoidPrime(z1)
 dJdW1 = np.dot(X.T, delta2)
 Wxh += -alpha * dJdW1
 Why += -alpha * dJdW2

Before going ahead, let's familiarize ourselves with some of the frequently used
terminologies in neural networks:

Forward pass: Forward pass implies forward propagating from the input layer to
the output layer.
Backward pass: Backward pass implies backpropagating from the output layer
to the input layer.
Epoch: Epoch specifies the number of times the neural network sees our whole
training data. So, we can say one epoch is equal to one forward pass and one
backward pass for all training samples.
Batch size: The batch size specifies the number of training samples we use in one
forward pass and one backward pass.
No. of iterations: The number of iterations implies the number of passes where
one pass = one forward pass + one backward pass.

Say that we have 12,000 training samples and that our batch size is 6,000. It will take us two
iterations to complete one epoch. That is, in the first iteration, we pass the first 6,000
samples and perform a forward pass and a backward pass; in the second iteration, we pass
the next 6,000 samples and perform a forward pass and a backward pass. After two
iterations, our neural network will see the whole 12,000 training samples, which makes it
one epoch.

Neural networks in TensorFlow
Now, we will see how to build a basic neural network using TensorFlow, which predicts
handwritten digits. We will use the popular MNIST dataset which has a collection of
labeled handwritten images for training.

Deep Learning Fundamentals Chapter 7

[142]

First, we must import TensorFlow and load the dataset from
tensorflow.examples.tutorial.mnist:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

Now, we will see what we have in our data:

print("No of images in training set {}".format(mnist.train.images.shape))
print("No of labels in training set {}".format(mnist.train.labels.shape))

print("No of images in test set {}".format(mnist.test.images.shape))
print("No of labels in test set {}".format(mnist.test.labels.shape))

It will print the following:

No of images in training set (55000, 784)
No of labels in training set (55000, 10)
No of images in test set (10000, 784)
No of labels in test set (10000, 10)

We have 55000 images in the training set and each image is of size 784. We also have
10 labels which are actually 0 to 9. Similarly, we have 10000 images in the test set.

Now, we plot an input image to see what it looks like:

img1 = mnist.train.images[41].reshape(28,28)
plt.imshow(img1, cmap='Greys')

Let's start building our network. We will build the two-layer neural network with one input
layer, one hidden layer, and one output layer which predicts a handwritten digit.

Deep Learning Fundamentals Chapter 7

[143]

First, we define the placeholders for our input and output. As our input data shape is 784,
we can define the input placeholder as:

x = tf.placeholder(tf.float32, [None, 784])

What does None imply? None specifies the number of samples (batch size) passed, which
will be decided dynamically at runtime.

Since we have 10 classes as output, we can define the placeholder output as:

 y = tf.placeholder(tf.float32, [None, 10]

Next, we initialize our hyperparameters:

learning_rate = 0.1
epochs = 10
batch_size = 100

We then define the weight and biases between an input to the hidden layer as w_xh and
b_h, respectively. We initialize the weight matrix with values, randomly drawing from a
normal distribution with a standard deviation of 0.03:

w_xh = tf.Variable(tf.random_normal([784, 300], stddev=0.03), name='w_xh')
b_h = tf.Variable(tf.random_normal([300]), name='b_h')

Next, we define the weights and bias between our hidden layer to the output layer as w_hy
and b_y, respectively:

w_hy = tf.Variable(tf.random_normal([300, 10], stddev=0.03), name='w_hy')
b_y = tf.Variable(tf.random_normal([10]), name='b_y')

Let's perform the forward propagation now. Recall the steps we performed in forward
propagation:

z1 = tf.add(tf.matmul(x, w_xh), b_h)
a1 = tf.nn.relu(z1)
z2 = tf.add(tf.matmul(a1, w_hy), b_y)
yhat = tf.nn.softmax(z2)

We define our cost function as a cross-entropy loss. Cross-entropy loss is also known as log
loss and it can be defined as follows:

Deep Learning Fundamentals Chapter 7

[144]

Where is the actual value and is the predicted value:

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(yhat),
reduction_indices=[1]))

Our objective is to minimize the cost function. We can minimize the cost function by
propagating the network backward and perform a gradient descent. With TensorFlow, we
don't have to manually calculate the gradients; we can use TensorFlow's built-in gradient
descent optimizer function as follows:

optimiser =
tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cro
ss_entropy)

To evaluate our model, we will calculate the accuracy as follows:

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(yhat, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

As we know that TensorFlow runs by building the computation graph, whatever we have
written so far will actually only run if we start the TensorFlow session. So, let's do that.

First, initialize the TensorFlow variables:

init_op = tf.global_variables_initializer()

Now, start the TensorFlow session and start training the model:

with tf.Session() as sess:
 sess.run(init_op)
 total_batch = int(len(mnist.train.labels) / batch_size)
 for epoch in range(epochs):
 avg_cost = 0
 for i in range(total_batch):
 batch_x, batch_y =
mnist.train.next_batch(batch_size=batch_size)
 _, c = sess.run([optimiser, cross_entropy],
 feed_dict={x: batch_x, y: batch_y})
 avg_cost += c / total_batch
 print("Epoch:", (epoch + 1), "cost =""{:.3f}".format(avg_cost))
 print(sess.run(accuracy, feed_dict={x: mnist.test.images, y:
mnist.test.labels}))

Deep Learning Fundamentals Chapter 7

[145]

RNN
The birds are flying in the ____. If I ask you to predict the blank, you might predict sky.
How did you predict that the word sky would be a good fit to fill this blank? Because you
read the whole sentence and predicted sky would be the right word based on
understanding the context of the sentence. If we ask our normal neural network to predict
the right word for this blank, it will not predict the correct word. This is because a normal
neural network's output is based on only the current input. So, the input to the neural
network will be just the previous word, the. That is, in normal neural networks, each input
is independent of the others. So, it will not perform well in a case where we have to
remember the sequence of input to predict the next sequence.

How do we make our network remember the whole sentence to predict the next word
correctly? Here is where RNN comes into play. RNN predicts the output not only based on
the current input but also on the previous hidden state. You might be wondering why RNN
has to predict the output based on the current input and the previous hidden state and why
it can't just use the current input and the previous input instead of the current input and the
previous hidden state to predict the output. This is because the previous input will store
information about the previous word, while the previous hidden state captures information
about the whole sentence, that is, the previous hidden states stores the context. So, it is
useful to predict the output based on the current input and the previous hidden state
instead of just the current input and previous input.

RNN is a special type of neural network that is widely applied over sequential data. In
other words, it is applied over the data where ordering matters. In a nutshell, RNN has a
memory which holds previous information. It is widely applied over various Natural
Language Processing (NLP) tasks such as machine translation, sentiment analysis, and so
on. It is also applied over time series data such as stock market data. Still not clear what
RNN is exactly? Look at the following diagram showing the comparison of normal neural
networks and RNN:

Deep Learning Fundamentals Chapter 7

[146]

Did you notice how RNN differs from the normal neural networks we saw in the previous
topic? Yes. The difference is that there is a loop in the hidden states which implies how
previous hidden states are used to calculate the output.

Still confusing? Look at the following unrolled version of an RNN:

As you can see, the output y1 is predicted based on the current input x1, the current hidden
state h1, and also the previous hidden state h0. Similarly, look at how output y2 is computed.
It takes the current input x2 and the current hidden state h2 as well as the previous hidden
state h1. This is how RNN works; it takes the current input and previous hidden state to
predict the output. We can call these hidden states a memory as they hold information that
has been seen so far.

Deep Learning Fundamentals Chapter 7

[147]

Now, we will see a little bit of math:

In the preceding diagram:

U represents the input to the hidden state weight matrix
W represents the hidden to the hidden state weight matrix
V represents the hidden to the output state weight matrix

So, in the forward pass, we compute the following:

That is, hidden state at a time t = tanh([input to hidden weight matrix * input] + [hidden to hidden
weight matrix * previous hidden state at a time t-1]):

That is, output at a time t = Sigmoid (hidden to output weight matrix * hidden state at a time t).

We can also define our loss function as a cross-entropy loss, like so:

Deep Learning Fundamentals Chapter 7

[148]

In the preceding example, is the actual word at time t and is the predicted word at
time t. Since we take the whole sequence as a training sample, the total loss will be the sum
of loss at each time step.

Backpropagation through time
Now, how do we train RNNs? Just like we have trained our normal neural networks, we
can use backpropagation for training RNNs. But in RNNs, since there is a dependency on
all the time steps, gradients at each output will not depend only on the current time step
but also on the previous time step. We call this backpropagation through time (BPTT). It is
basically the same as backpropagation except that it is applied an RNN. To see how it
occurs in an RNN, let's consider the unrolled version of an RNN, as shown in the following
diagram:

In the preceding diagram, L1, L2, and L3 are the losses at each time step. Now, we need to
compute the gradients of this loss with respect to our weight matrices U, V, and W at each
time step. Like we previously calculated the total loss by summing up a loss at each time
step, we update the weight matrices with a sum of the gradients at each time step:

Deep Learning Fundamentals Chapter 7

[149]

However, we have a problem with this method. The gradient calculation involves
calculating the gradient with respect to the activation function. When we calculate the
gradient with respect to the sigmoid/tanh function, the gradient will become very
small. When we further backpropagate the network over many time steps and multiply the
gradients, the gradients will tend to get smaller and smaller. This is called a vanishing
gradient problem. So, what would happen because of this problem? Because of the
gradients vanishing over time, we cannot learn information about long-term dependencies,
that is, RNNs cannot retain information for a longer time in the memory.

The vanishing gradient occurs not only in RNNs but also in other deep networks where we
have many hidden layers when we use sigmoid/tanh functions. There is also a problem
called exploding gradients where the gradient values become greater than one, and when
we multiply these gradients, it will lead to a very big number.

One solution is to use ReLU as an activation function. However, we have a variant of the
RNN called LSTM, which can solve the vanishing gradient problem effectively. We will see
how it works in the upcoming section.

Long Short-Term Memory RNN
RNNs are pretty cool, right? But we have seen a problem in training the RNNs called the
vanishing gradient problem. Let's explore that a bit. The sky is __. An RNN can easily
predict the last word as blue based on the information it has seen. But an RNN cannot cover
long-term dependencies. What does that mean? Let's say Archie lived in China for 20 years.
He loves listening to good music. He is a very big comic fan. He is fluent in _. Now, you
would predict the blank as Chinese. How did you predict that? Because you understood
that Archie lived for 20 years in China, you thought he might be fluent in Chinese. But an
RNN cannot retain all of this information in memory to say that Archie is fluent in Chinese.
Due to the vanishing gradient problem, it cannot recollect/remember the information for a
long time in memory. How do we solve that?

Here comes LSTM to the rescue!!!!

LSTM is a variant of the RNN that resolves the vanishing gradient problem. LSTM retains
information in the memory as long as it is required. So basically, RNN cells are replaced
with LSTM. How does LSTM achieve this?

Deep Learning Fundamentals Chapter 7

[150]

A typical LSTM cell is shown in the following diagram:

LSTM cells are called memory and they are responsible for storing information. But how
long does the information have to be in the memory? When can we delete the old
information and update the cell with the new one? All of these decisions will be made by
three special gates as follows:

Forget gate
Input gate
Output gate

If you look at the LSTM cell, the top horizontal line Ct is called the cell state. It is where the
information flows. Information on the cell state will be constantly updated by LSTM gates.
Now, we will see the function of these gates:

Forget gate: The forget gate is responsible for deciding what information should
not be in the cell state. Look at the following statement:
Harry is a good singer. He lives in New York. Zayn is also a good singer.
As soon as we start talking about Zayn, the network will understand that the
subject has been changed from Harry to Zayn and the information about Harry is
no longer required. Now, the forget gate will remove/forget information about
Harry from the cell state.

Deep Learning Fundamentals Chapter 7

[151]

Input gate: The input gate is responsible for deciding what information should
be stored in the memory. Let's consider the same example:
Harry is a good singer. He lives in New York. Zayn is also a good singer.
So, after the forget gate removes information from the cell state, the input gate
decides what information has to be in the memory. Here, since the information
about Harry is removed from the cell state by the forget gate, the input gate
decides to update the cell state with the information about Zayn.

Output gate: The output gate is responsible for deciding what information
should be shown from the cell state at a time, t. Now, consider the following
sentence:
Zayn's debut album was a huge success. Congrats ____.
Here, congrats is an adjective which is used to describe a noun. The output layer
will predict Zayn (noun), to fill in the blank.

Generating song lyrics using LSTM RNN
Now, we will see how to use the LSTM network to generate Zayn Malik's song lyrics. The
dataset can be downloaded from here (https:/ /github. com/ sudharsan13296/ Hands- On-
Reinforcement-Learning- With- Python/ blob/ master/ 07.
%20Deep%20Learning%20Fundamentals/ data/ ZaynLyrics. txt) ,which has a collection of
Zayn's song lyrics.

First, we will import the necessary libraries:

import tensorflow as tf
import numpy as np

Now, we will read our file containing the song lyrics:

with open("Zayn_Lyrics.txt","r") as f:
 data=f.read()
 data=data.replace('\n','')
 data = data.lower()

Let's see what we have in our data:

data[:50]
"now i'm on the edge can't find my way it's inside "

Then, we store all the characters in the all_chars variable:

all_chars=list(set(data))

https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/07.%20Deep%20Learning%20Fundamentals/data/ZaynLyrics.txt)

Deep Learning Fundamentals Chapter 7

[152]

We store the number of unique characters in unique_chars:

unique_chars = len(all_chars)

We also store the total number of characters in total_chars:

total_chars =len(data)

Now, we will create a mapping between each character to their index. char_to_ix will
have a character to index mapping, while ix_to_char will have an index to character
mapping:

char_to_ix = { ch:i for i,ch in enumerate(all_chars) }
ix_to_char = { i:ch for i,ch in enumerate(all_chars) }

 That is, for example:

char_to_ix['e']
9

ix_to_char[9]
e

Next, we define a generate_batch function which will generate input and target values.
Target values are just the i times the shift of the input value.

For example: if input = [12,13,24] with a shift value of 1, the target will be [13,24]:

def generate_batch(seq_length,i):
 inputs = [char_to_ix[ch] for ch in data[i:i+seq_length]]
 targets = [char_to_ix[ch] for ch in data[i+1:i+seq_length+1]]
 inputs=np.array(inputs).reshape(seq_length,1)
 targets=np.array(targets).reshape(seq_length,1)
 return inputs,targets

We will define the sequence length, learning rate, and the number of nodes, which is the
number of neurons:

seq_length = 25
learning_rate = 0.1
num_nodes = 300

Let's build our LSTM RNN. TensorFlow provides us with a BasicLSTMCell() function for
building the LSTM cell and we need to specify the number of units in the LSTM cell and the
type of activation function we wish to use.

Deep Learning Fundamentals Chapter 7

[153]

So, we will create an LSTM cell and then build the RNN with that cell using the
tf.nn.dynamic_rnn() function, which will return the output and the state value:

def build_rnn(x):
 cell= tf.contrib.rnn.BasicLSTMCell(num_units=num_nodes,
activation=tf.nn.relu)
 outputs, states = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32)
 return outputs,states

Now, we will create a placeholder for our input X and the target Y:

X=tf.placeholder(tf.float32,[None,1])
Y=tf.placeholder(tf.float32,[None,1])

Convert the X and Y to int:

X=tf.cast(X,tf.int32)
Y=tf.cast(Y,tf.int32)

We will also create onehot representations for X and Y as follows:

X_onehot=tf.one_hot(X,unique_chars)
Y_onehot=tf.one_hot(Y,unique_chars)

Get the outputs and states from the RNN by calling the build_rnn function:

outputs,states=build_rnn(X_onehot)

Transpose the output:

outputs=tf.transpose(outputs,perm=[1,0,2])

 Initialize the weights and biases:

W=tf.Variable(tf.random_normal((num_nodes,unique_chars),stddev=0.001))
B=tf.Variable(tf.zeros((1,unique_chars)))

We will calculate our output by multiplying the output with weights and add bias:

Ys=tf.matmul(outputs[0],W)+B

 Next, perform softmax activation and get the probabilities:

prediction = tf.nn.softmax(Ys)

Deep Learning Fundamentals Chapter 7

[154]

 We will calculate the cross_entropy loss as:

cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels
=Y_onehot,logits=Ys))

Our objective is to minimize the loss, so we will backpropagate the network and perform
gradient descent:

optimiser =
tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cro
ss_entropy)

Now, we will define the helper function called predict, which results in the indices of the
next predicted character according to our RNN model:

def predict(seed,i):
 x=np.zeros((1,1))
 x[0][0]= seed
 indices=[]
 for t in range(i):
 p=sess.run(prediction,{X:x})
 index = np.random.choice(range(unique_chars), p=p.ravel())
 x[0][0]=index
 indices.append(index)
 return indices

We set our batch_size, number of batches, and number of epochs along with the shift
value for generating a batch:

batch_size=100
total_batch=int(total_chars//batch_size)
epochs=1000
shift=0

Finally, we will start the TensorFlow session and build the model:

init=tf.global_variables_initializer()

with tf.Session() as sess:
 sess.run(init)
 for epoch in range(epoch):
 print("Epoch {}:".format(epoch))
 if shift + batch_size+1 >= len(data):
 shift =0
 ## get the input and target for each batch by generate_batch
 #function which shifts the input by shift value
 ## and form target

Deep Learning Fundamentals Chapter 7

[155]

 for i in range(total_batch):
 inputs,targets=generate_batch(batch_size,shift)
 shift += batch_size
 # calculate loss
 if(i%100==0):
 loss=sess.run(cross_entropy,feed_dict={X:inputs,
Y:targets})
 # We get index of next predicted character by
 # the predict function
 index =predict(inputs[0],200)
 # pass the index to our ix_to_char dictionary and
 #get the char
 txt = ''.join(ix_to_char[ix] for ix in index)
 print('Iteration %i: '%(i))
 print ('\n %s \n' % (txt,))
 sess.run(optimiser,feed_dict={X:inputs,Y:targets})

We can see that the outputs are some random characters in the initial epoch, but as the
training steps increase, we get better results:

Epoch 0:
Iteration 0:

 wsadrpud,kpswkypeqawnlfyweudkgt,khdi nmgof' u vnvlmbis .
snsblp,podwjqehb,e;g-
'fyqjsyeg,byjgyotsrdf;;u,h.a;ik'sfc;dvtauofd.,q.;npsw'wjy-quw'quspfqw-
.
.
.
Epoch 113:
Iteration 0:
i wanna see you, yes, and she said yes!

Convolutional neural networks
CNN, also known as ConvNet, is a special type of neural network and it is extensively used
in Computer Vision. The application of a CNN ranges from enabling vision in self-driving
cars to the automatic tagging of friends in your Facebook pictures. CNNs make use of
spatial information to recognize the image. But how do they really work? How can the
neural networks recognize these images? Let's go through this step by step.

Deep Learning Fundamentals Chapter 7

[156]

A CNN typically consists of three major layers:

Convolutional layer
Pooling layer
Fully connected layer

Convolutional layer
When we feed an image as input, it will actually be converted to a matrix of pixel values.
These pixel values range from 0 to 255 and the dimensions of this matrix will be [image
height * image width * number of channels]. If the input image is 64 x 64 in size, then the pixel
matrix dimension would be 64 x 64 x 3, where the 3 refers to the channel number. A
grayscale image has 1 channel and color images have 3 channels (RGB). Look at the
following photograph. When this image is fed as an input, it will be converted into a matrix
of pixel values, which we will see in a moment. For better understanding, we will consider
the grayscale image since grayscale images have 1 channel and so we will get the 2D
matrix.

The input image is as follows:

Deep Learning Fundamentals Chapter 7

[157]

Now, let's see the matrix value in the following graphic:

So, this is how the image is represented by a matrix. What happens next? How does the
network identify the image from this pixel's values? Now, we introduce an operation called
convolution. It is used to extract important features from the image so that we can
understand what the image is all about. Let's say we have the image of a dog; what do you
think the features of this image are, which will help us to understand that this is an image
of a dog? We can say body structure, face, legs, tail, and so on. Convolution operations will
help the network to learn those features which characterize the dog. Now, we will see how
exactly the convolution operation is performed to extract features from the image.

As we know, every image is represented by a matrix. Let's suppose we have a pixel matrix
of the dog image, and let's call this matrix an input matrix. We will also consider another n
x n matrix called filter, as shown in the following diagram:

Now, this filter will slide over our input matrix by one pixel and will perform element-wise
multiplication, producing a single number. Confused? Look at the following diagram:

Deep Learning Fundamentals Chapter 7

[158]

That is, (13*0) + (8*1) + (18*0) + (5*1) + (3*1) + (1*1) + (1*0) + (9*0) + (0*1) = 17.

Similarly, we move our filter matrix over the input matrix by one pixel and perform
element-wise multiplication:

That is, (8*0) + (18*1) + (63*0) + (3*1) + (1*1) + (2*1) + (9*0) + (0*0) + (7*1) = 31.

The filter matrix will slide over the entire input matrix, perform element-
wise multiplication, and produce a new matrix called a feature map or activation map. This
operation is known as convolution as shown in the following diagram:

 The following output shows an actual and convolved image:

You can see that our filter has detected an edge in the actual image and produced a
convolved image. Similarly, different filters are used to extract different features from the
image.

Deep Learning Fundamentals Chapter 7

[159]

For example, if we use a filter matrix, say a sharpen filter , then our convolved
image will look as follows:

Thus, filters are responsible for extracting features from the actual image by performing a
convolutional operation. There will be more than one filter for extracting different features
of the image that produces the feature maps. The depth of the feature map is the number of
the filters we use. If we use 5 filters to extract features and produce 5 feature maps, then the
depth of the feature map is 5 shown as follows:

When we have many filters, our network will better understand the image by extracting
many features. While building our CNN, we don't have to specify the values for this filter
matrix. The optimal values for this filter will be learned during the training process.
However, we have to specify the number of filters and dimensions of the filters we want to
use.

We can slide over the input matrix by one pixel with the filter and performed convolution
operation. Not only can we slide by one pixel; we can also slide over an input matrix by any
number of pixels. The number of pixels we slide over the input matrix by in the filter matrix
is called strides.

Deep Learning Fundamentals Chapter 7

[160]

But what happens when the sliding window (filter matrix) reaches the border of the image?
In that case, we pad the input matrix with zero so that we can apply a filter on the image's
edges. Padding with zeros on the image is called same padding, or wide convolutional or
zero padding illustrated as follows:

Instead of padding them with zeros, we can also simply discard that region. This is known
as valid padding or narrow convolution illustrated as follows:

After performing the convolution operation, we apply the ReLU activation function to
introduce nonlinearity.

Pooling layer
After the convolution layer, we have the pooling layer. The pooling layer is used to reduce
the dimensions of the feature maps and keeps only necessary details so that the amount of
computation can be reduced. For example, to identify whether there is a dog in the image,
we don't want to understand at which location the dog is in the image, we just want the
features of the dog. So, the pooling layer reduces spatial dimensions by keeping only the
important features. There are different types of pooling operations. Max pooling is one of
the most commonly used pooling operations where we just take the maximum value from
the feature map within the window.

Deep Learning Fundamentals Chapter 7

[161]

Max pooling with a 2 x 2 filter and a stride of 2 is shown as follows:

In average pooling, we just take the average of elements in the feature map within the
window and in sum pooling, we take the sum of elements of a feature map in the window.

The pooling operation will not change the depth of the feature maps, it
will only affect the height and width.

Fully connected layer
We can have multiple convolutional layers followed by pooling layers. However, these
layers will only extract features from the input image and produce the activation maps.
How do we classify whether there is a dog in the image with the activation maps alone? We
have to introduce a new layer called a fully connected layer. It receives input as the
activation maps (which are now basically the features of the image) apply the activation
function and it produces the output. A fully connected layer is actually the normal neural
network where we have an input layer, hidden layer, and output layer. Here, instead of an
input layer, we use convolution and pooling layers, which together produce the activation
maps as an input.

CNN architecture
Now, let's just see how all of these layers are organized in the CNN architecture, as follows:

Deep Learning Fundamentals Chapter 7

[162]

First, the image is passed to the convolutional layer, where we apply the convolution
operation to extract features, and then feature maps are passed to the pooling layer where
the dimensions are reduced. We can add any number of convolution and pooling layers
depending on the use case. After this, we can add a neural network with one hidden layer
at the end, which is known as a fully connected layer, which classifies the image.

Classifying fashion products using CNN
We will now see how to use CNN for classifying fashion products.

First, we will import our required libraries as usual:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Now, we will read the data. The dataset is available in tensorflow.examples, so we can
directly extract the data as follows:

from tensorflow.examples.tutorials.mnist import input_data
fashion_mnist = input_data.read_data_sets('data/fashion/', one_hot=True)

We will check what we have in our data:

print("No of images in training set
{}".format(fashion_mnist.train.images.shape))
print("No of labels in training set
{}".format(fashion_mnist.train.labels.shape))

print("No of images in test set
{}".format(fashion_mnist.test.images.shape))
print("No of labels in test set
{}".format(fashion_mnist.test.labels.shape))

No of images in training set (55000, 784)

Deep Learning Fundamentals Chapter 7

[163]

No of labels in training set (55000, 10)
No of images in test set (10000, 784)
No of labels in test set (10000, 10)

So, we have 55000 data points in a training set and 10000 data points in a test set.
We also have 10 labels, which means we have 10 categories.

We have 10 categories of products and we will label all of them:

labels = {
0: 'T-shirt/top',
1: 'Trouser',
2: 'Pullover',
3: 'Dress',
4: 'Coat',
5: 'Sandal',
6: 'Shirt',
7: 'Sneaker',
8: 'Bag',
9: 'Ankle boot'
}

Now, we will look at some of our images:

img1 = fashion_mnist.train.images[41].reshape(28,28)
Get corresponding integer label from one-hot encoded data
label1 = np.where(fashion_mnist.train.labels[41] == 1)[0][0]
Plot sample
print("y = {} ({})".format(label1, labels[label1]))
plt.imshow(img1, cmap='Greys')

The output and visual are as follows:

y = 6 (Shirt)

Deep Learning Fundamentals Chapter 7

[164]

That's a pretty good shirt, isn't it? We will look at one more image:

img1 = fashion_mnist.train.images[19].reshape(28,28)
Get corresponding integer label from one-hot encoded data
label1 = np.where(fashion_mnist.train.labels[19] == 1)[0][0]
Plot sample
print("y = {} ({})".format(label1, labels[label1]))
plt.imshow(img1, cmap='Greys')

The output and visual are as follows:

y = 8 (Bag)

That's a good bag to hold!!

So now, we have to build a convolutional neural network that actually classifies all of these
images into their respective categories. We define the placeholders for input images and
output labels. As our input image is of size 784, we define a placeholder for input x as
follows:

x = tf.placeholder(tf.float32, [None, 784])

We need to reshape the input to the format [p,q,r,s], where q and r are the actual size of
an input image, which is 28 x 28, and s is the channel number. As we have only grayscale
images, the value of s is 1. p implies the number of training samples, that is, the batch size.
Since we don't know the batch size, we can set that as -1 and it will be dynamically
changed during training:

x_shaped = tf.reshape(x, [-1, 28, 28, 1])

Deep Learning Fundamentals Chapter 7

[165]

As we have 10 different labels, we define placeholders for the output as follows:

y = tf.placeholder(tf.float32, [None, 10])

Now, we need to define a function called conv2d which actually performs the
convolutional operation, that is, element-wise multiplication of the input matrix (x) by the
filter (w) with a stride of 1 and SAME padding.

We set strides = [1, 1, 1, 1]. The first and last values of strides are set to 1, which
implies we don't want to move between training samples and different channels. The
second and third values of strides are also set to 1, which implies that we move the filter by
1 pixel in both height and width direction:

def conv2d(x, w):
 return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')

We define a function called maxpool2d to perform the pooling operation. We perform max
pooling with a stride of 2 and SAME padding. ksize implies our pooling window shape:

def maxpool2d(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')

Next, we define weights and biases. We will build a convolutional network with two
convolutional layers followed by a fully connected layer and an output layer, so we will
define the weights for all of these layers. The weights are actually the filters in the
convolutional layers.

So, the weight matrix will be initialized as [filter_shape[0],filter_shape[1],
number_of_input_channel, filter_size].

We will use a 5 x 5 filter and we will set our filter size to 32. Since we use grayscale images,
our input channel number will 1. So, our weight matrix will be [5,5,1,32]:

w_c1 = tf.Variable(tf.random_normal([5,5,1,32]))

As the second convolutional layer takes the input from the first convolutional layer which
has 32 as its channel output, the number of input channels to the next layer becomes 32:

w_c2 = tf.Variable(tf.random_normal([5,5,32,64]))

Next, we initialize the biases:

b_c1 = tf.Variable(tf.random_normal([32]))
b_c2 = tf.Variable(tf.random_normal([64]))

Deep Learning Fundamentals Chapter 7

[166]

Now, we perform operations on the first convolution layer, that is, the convolution
operation on the input x with ReLU activations followed by a max pooling:

conv1 = tf.nn.relu(conv2d(x, w_c1) + b_c1)
conv1 = maxpool2d(conv1)

Now, the result of the first convolutional layer will be passed to the next convolutional
layer where we perform the convolutional operation on the result of a first convolutional
layer with ReLU activations, followed by max pooling:

conv2 = tf.nn.relu(conv2d(conv1, w_c2) + b_c2)
conv2 = maxpool2d(conv2)

After two convolution layers with convolution and pooling operations, our input image
will be downsampled from 28*28*1 to 7*7*1. We need to flatten this output before feeding it
to the fully connected layer. Then, the result of the second convolutional layer will be fed
into the fully connected layer and we multiply this with weights, add bias, and apply ReLU
activations:

x_flattened = tf.reshape(conv2, [-1, 7*7*64])
w_fc = tf.Variable(tf.random_normal([7*7*64,1024]))
b_fc = tf.Variable(tf.random_normal([1024]))
fc = tf.nn.relu(tf.matmul(x_flattened,w_fc)+ b_fc)

Now, we need to define the weights and bias for the output layer, which is [number of
neurons in the current layer, number of neurons layer in the next

layer]:

w_out = tf.Variable(tf.random_normal([1024, 10]))
b_out = tf.Variable(tf.random_normal([10]))

We can get the output by multiplying the result of a fully connected layer with the weight
matrix and add bias. We will get the probabilities of the output by using the softmax
activation function:

output = tf.matmul(fc, w_out)+ b_out
yhat = tf.nn.softmax(output)

Deep Learning Fundamentals Chapter 7

[167]

We can define our loss function as a cross-entropy loss. We will minimize our loss function
using a new type of optimizer called the Adam optimizer (https:/ /www. tensorflow. org/
api_docs/python/ tf/ train/ AdamOptimizer) instead of using the gradient descent
optimizer:

cross_entropy =
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output,
labels=y))optimiser =
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cross_entropy)

Next, we will calculate the accuracy as follows:

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(yhat, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

And define the hyperparameters:

epochs = 10
batch_size = 100

Now, we will start the TensorFlow session and build the model:

init_op = tf.global_variables_initializer()

with tf.Session() as sess:
 sess.run(init_op)
 total_batch = int(len(fashion_mnist.train.labels) / batch_size)
 # For each epoch
 for epoch in range(epochs):
 avg_cost = 0
 for i in range(total_batch):
 batch_x, batch_y =
fashion_mnist.train.next_batch(batch_size=batch_size)
 _, c = sess.run([optimiser, cross_entropy],
 feed_dict={x: batch_x, y: batch_y})
 avg_cost += c / total_batch
 print("Epoch:", (epoch + 1), "cost =""{:.3f}".format(avg_cost))
 print(sess.run(accuracy, feed_dict={x: mnist.test.images, y:
mnist.test.labels}))

https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer

Deep Learning Fundamentals Chapter 7

[168]

Summary
In this chapter, we learned how neural networks actually work followed by building a
neural network to classify handwritten digits using TensorFlow. We also saw different
types of neural networks such as an RNN, which can remember information in the
memory. Then, we saw the LSTM network, which is used to overcome the vanishing
gradient problem by keeping several gates to retain information in the memory as long as it
is required. We also saw another interesting neural network for recognizing images called
CNN. We saw how CNN use different layers to understand the image. Following this, we
learned how to build a CNN to recognize fashion products using TensorFlow.

In the next chapter, Chapter 8, Atari Games With Deep Q Network, we will see how neural
networks will actually help our RL agents to learn more efficiently.

Questions
The question list is as follows:

What is the difference between linear regression and neural networks?1.
What is the use of the activation function?2.
Why do we need to calculate the gradient in gradient descent?3.
What is the advantage of an RNN?4.
What are vanishing and exploding gradient problems?5.
What are gates in LSTM?6.
What is the use of the pooling layer?7.

Further reading
Deep learning is a vast topic. To explore more about deep learning and other related
algorithms check out the following very useful links:

More about CNNs is on this awesome Stanford course: https:/ /www. youtube.
com/watch? v= NfnWJUyUJYU list= PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC

Dive into RNNs with this awesome blog post: http:/ /www. wildml. com/ 2015/
09/recurrent- neural- networks- tutorial- part- 1-introduction- to-rnns/

https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

8
Atari Games with Deep Q

Network
Deep Q Network (DQN) is one of the very popular and widely used deep reinforcement
learning (DRL) algorithms. In fact, it created a lot of buzz around the reinforcement
learning (RL) community after its release. The algorithm was proposed by researchers at
Google's DeepMind and achieved human-level results when playing any Atari game by
just taking the game screen as input.

In this chapter, we will explore how DQN works and also learn how to build a DQN that
plays any Atari game by taking only the game screen as input. We will look at some of the
improvements made to DQN architecture, such as double DQN and dueling network
architecture.

In this chapter, you will learn about:

Deep Q Networks (DQNs)
Architecture of DQN
Building an agent to play Atari games
Double DQN
Prioritized experience replay

Atari Games with Deep Q Network Chapter 8

[170]

What is a Deep Q Network?
Before going ahead, first, let us just recap the Q function. What is a Q function? A Q
function, also called a state-action value function, specifies how good an action a is in the
state s. So, we store the value of all possible actions in each state in a table called a Q table
and we pick the action that has the maximum value in a state as the optimal action.
Remember how we learned this Q function? We used Q learning, which is an off-policy
temporal difference learning algorithm for estimating the Q function. We looked at this in
Chapter 5, Temporal Difference Learning.

So far, we have seen environments with a finite number of states with limited actions, and
we did an exhaustive search through all possible state-action pairs for finding the optimal
Q value. Think of an environment where we have a very large number of states and, in each
state, we have a lot of actions to try. It would be time-consuming to go through all the
actions in each state. A better approach would be to approximate the Q function with some
parameter as . We can use a neural network with weights to
approximate the Q value for all possible actions in each state. As we are using neural
networks to approximate the Q function, we can call it a Q network. Okay, but how do we
train the network and what will be our objective function? Recall our Q learning update
rule:

.

 is the target value and is the predicted value; we tried to minimize
this value by learning a right policy.

Similarly, in DQN, we can define the loss function as the squared difference between the
target and predicted value, and we will also try to minimize the loss by updating the
weights :

Where .

We update the weights and minimize the loss through gradient descent. In a nutshell, in
DQN, we use neural networks as function approximators for approximating a Q function,
and we minimize errors through gradient descent.

Atari Games with Deep Q Network Chapter 8

[171]

Architecture of DQN
Now that we have a basic understanding of DQN, we will go into detail about how DQN
works and the architecture of DQN for playing Atari games. We will look at each
component and then we will view the algorithm as a whole.

Convolutional network
The first layer of DQN is the convolutional network, and the input to the network will be a
raw frame of the game screen. So, we take a raw frame and pass that to the convolutional
layers to understand the game state. But the raw frames will have 210 x 160 pixels with a
128 color palette and it will clearly take a lot of computation and memory if we feed the
raw pixels directly. So, we downsample the pixel to 84 x 84 and convert the RGB values to
grayscale values and we feed this pre-processed game screen as the input to the
convolutional layers. The convolutional layer understands the game screen by identifying
the spatial relationship between different objects in the image. We use two convolutional
layers followed by a fully connected layer with ReLU as the activation function. Here, we
don't use a pooling layer.

A pooling layer is useful when we perform tasks such as object detection or classification,
where we don't consider the position of the object in the image and we just want to know
whether the desired object is in the image. For example, if we want to classify whether there
is a dog in an image, we only look at whether a dog is there in an image and we don't check
where the dog is. In that case, a pooling layer is used to classify the image irrespective of
the position of the dog. But for us to understand the game screen, the position is important
as it depicts the game status. For example, in a Pong game, we don't just want to classify if
there is a ball on the game screen. We want to know the position of the ball so that we can
make our next move. That's why we don't use a pooling layer in our architecture.

Okay, how can we compute the Q value? If we pass one game screen and one action as an
input to the DQN, it will give us the Q value. But it will require one complete forward pass,
as there will be many actions in a state. Also, there will be many states in a game with one
forward pass for each action, which will be computationally expensive. So, we simply pass
the game screen alone as an input and get the Q values for all possible actions in the state
by setting the number of units in the output layer to the number of actions in the game
state.

Atari Games with Deep Q Network Chapter 8

[172]

The architecture of DQN is shown in the following diagram, where we feed a game screen
and it provides the Q value for all actions in that game state:

To predict the Q values of the game state, we don't use only the current game screen; we
also consider the past four game screens. Why is that? Consider the Pac-Man game where
the goal of the Pac-Man is to move and eat all the dots. By just looking at the current game
screen, we cannot know in which direction Pac-Man is moving. But if we have past game
screens, we can understand in which direction Pac-Man is moving. We use the past four
game screens along with the current game screen as input.

Experience replay
We know that in RL environments, we make a transition from one state s to the next state s'
by performing some action a and receive a reward r. We save this transition information as

 in a buffer called a replay buffer or experience replay. These transitions are
called the agent's experience.

The key idea of experience replay is that we train our deep Q network with transitions
sampled from the replay buffer instead of training with the last transitions. Agent's
experiences are correlated one at a time, so selecting a random batch of training samples
from the replay buffer will reduce the correlation between the agent's experience and helps
the agent to learn better from a wide range of experiences.

Atari Games with Deep Q Network Chapter 8

[173]

Also, neural networks will overfit with correlated experience, so by selecting a random
batch of experiences from reply buffer we will reduce the overfitting. We can use uniform
sampling for sampling the experience. We can think of experience replay as a queue rather
than a list. A replay buffer will store only a fixed number of recent experiences, so when the
new information comes in, we delete the old:

Target network
In our loss function, we calculate the squared difference between a target and predicted
value:

We are using the same Q function for calculating the target value and the predicted value.
In the preceding equation, you can see the same weights are used for both target Q and
predicted Q. Since the same network is calculating the predicted value and target value,
there could be a lot of divergence between these two.

To avoid this problem, we use a separate network called a target network for calculating
the target value. So, our loss function becomes:

You may notice that the parameter of target Q is instead of . Our actual Q network,
which is used for predicting Q values, learns the correct weights of by using gradient
descent. The target network is frozen for several time steps and then the target network
weights are updated by copying the weights from the actual Q network. Freezing the target
network for a while and then updating its weights with the actual Q network weights
stabilizes the training.

Atari Games with Deep Q Network Chapter 8

[174]

Clipping rewards
How do we assign rewards? Reward assignment varies for each game. In some games, we
can assign rewards such as +1 for winning, -1 for loss, and 0 for nothing, but in some other
games, we have to assign rewards such as + 100 for doing an action and +50 for doing
another action. To avoid this problem, we clip all the rewards to -1 and +1.

Understanding the algorithm
Now, we will see how DQN works overall. The steps involved in DQN are as follows:

First, we preprocess and feed the game screen (state s) to our DQN, which will1.
return the Q values of all possible actions in the state.
Now we select an action using the epsilon-greedy policy: with the probability2.
epsilon, we select a random action a and with probability 1-epsilon, we select an
action that has a maximum Q value, such as .
After selecting the action a, we perform this action in a state s and move to a new3.
state s' and receive a reward. The next state, s', is the preprocessed image of the
next game screen.
We store this transition in our replay buffer as <s,a,r,s'>.4.
Next, we sample some random batches of transitions from the replay buffer and5.
calculate the loss.

We know that , as in the squared6.
difference between target Q and predicted Q.
We perform gradient descent with respect to our actual network parameters in7.
order to minimize this loss.
After every k steps, we copy our actual network weights to the target network8.
weights .
We repeat these steps for M number of episodes. 9.

Atari Games with Deep Q Network Chapter 8

[175]

Building an agent to play Atari games
Now we will see how to build an agent to play any Atari game. You can get the complete
code as a Jupyter notebook with the explanation here (https:/ /github. com/
sudharsan13296/Hands- On- Reinforcement- Learning- With- Python/ blob/ master/ 08.
%20Atari%20Games%20with%20DQN/ 8.
8%20Building%20an%20Agent%20to%20Play%20Atari%20Games. ipynb).

First, we import all the necessary libraries:

import numpy as np
import gym
import tensorflow as tf
from tensorflow.contrib.layers import flatten, conv2d, fully_connected
from collections import deque, Counter
import random
from datetime import datetime

We can use any of the Atari gaming environments given here: http:/ / gym.openai. com/
envs/#atari.

In this example, we use the Pac-Man game environment:

env = gym.make("MsPacman-v0")
n_outputs = env.action_space.n

The Pac-Man environment is shown here:

https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/08.%20Atari%20Games%20with%20DQN/8.8%20Building%20an%20Agent%20to%20Play%20Atari%20Games.ipynb
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari
http://gym.openai.com/envs/#atari

Atari Games with Deep Q Network Chapter 8

[176]

Now we define a preprocess_observation function for preprocessing our input game
screen. We reduce the image size and convert the image to grayscale:

color = np.array([210, 164, 74]).mean()

def preprocess_observation(obs):

 # Crop and resize the image
 img = obs[1:176:2, ::2]

 # Convert the image to greyscale
 img = img.mean(axis=2)

 # Improve image contrast
 img[img==color] = 0

 # Next we normalize the image from -1 to +1
 img = (img - 128) / 128 - 1

 return img.reshape(88,80,1)

Okay, now we define a q_network function for building our Q network. The input to our
Q network will be the game state X.

We build a Q network with three convolutional layers with the same padding, followed by
a fully connected layer:

tf.reset_default_graph()

def q_network(X, name_scope):
 # Initialize layers
 initializer = tf.contrib.layers.variance_scaling_initializer()

 with tf.variable_scope(name_scope) as scope:

 # initialize the convolutional layers
 layer_1 = conv2d(X, num_outputs=32, kernel_size=(8,8), stride=4,
padding='SAME', weights_initializer=initializer)
 tf.summary.histogram('layer_1',layer_1)
 layer_2 = conv2d(layer_1, num_outputs=64, kernel_size=(4,4),
stride=2, padding='SAME', weights_initializer=initializer)
 tf.summary.histogram('layer_2',layer_2)
 layer_3 = conv2d(layer_2, num_outputs=64, kernel_size=(3,3),
stride=1, padding='SAME', weights_initializer=initializer)
 tf.summary.histogram('layer_3',layer_3)
 # Flatten the result of layer_3 before feeding to the
 # fully connected layer

Atari Games with Deep Q Network Chapter 8

[177]

 flat = flatten(layer_3)

 fc = fully_connected(flat, num_outputs=128,
weights_initializer=initializer)
 tf.summary.histogram('fc',fc)
 output = fully_connected(fc, num_outputs=n_outputs,
activation_fn=None, weights_initializer=initializer)
 tf.summary.histogram('output',output)

 # Vars will store the parameters of the network such as weights
 vars = {v.name[len(scope.name):]: v for v in
tf.get_collection(key=tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope.name)}
 return vars, output

Next, we define an epsilon_greedy function for performing the epsilon-greedy policy. In
the epsilon-greedy policy, we either select the best action with the probability 1-epsilon or a
random action with the probability epsilon.

We use a decaying epsilon-greedy policy where the value of epsilon will be decaying over
time as we don't want to explore forever. So, over time, our policy will be exploiting only
good actions:

epsilon = 0.5
eps_min = 0.05
eps_max = 1.0
eps_decay_steps = 500000
def epsilon_greedy(action, step):
 p = np.random.random(1).squeeze()
 epsilon = max(eps_min, eps_max - (eps_max-eps_min) *
step/eps_decay_steps)
 if np.random.rand() < epsilon:
 return np.random.randint(n_outputs)
 else:
 return action

Now, we initialize our experience replay buffer of length 20000, which holds the
experience.

Atari Games with Deep Q Network Chapter 8

[178]

We store all the agent's experiences (state, action, rewards) in the experience replay buffer
and we sample this mini batch of experiences for training the network:

def sample_memories(batch_size):
 perm_batch = np.random.permutation(len(exp_buffer))[:batch_size]
 mem = np.array(exp_buffer)[perm_batch]
 return mem[:,0], mem[:,1], mem[:,2], mem[:,3], mem[:,4]

Next, we define all our hyperparameters:

num_episodes = 800
batch_size = 48
input_shape = (None, 88, 80, 1)
learning_rate = 0.001
X_shape = (None, 88, 80, 1)
discount_factor = 0.97

global_step = 0
copy_steps = 100
steps_train = 4
start_steps = 2000
logdir = 'logs'

Now we define the placeholder for our input, such as the game state:

X = tf.placeholder(tf.float32, shape=X_shape)

We define a boolean called in_training_mode to toggle the training:

in_training_mode = tf.placeholder(tf.bool)

We build our Q network, which takes the input X and generates Q values for all the actions
in the state:

mainQ, mainQ_outputs = q_network(X, 'mainQ')

Similarly, we build our target Q network:

targetQ, targetQ_outputs = q_network(X, 'targetQ')

Define the placeholder for our action values:

X_action = tf.placeholder(tf.int32, shape=(None,))
Q_action = tf.reduce_sum(targetQ_outputs * tf.one_hot(X_action, n_outputs),
axis=-1, keep_dims=True)

Atari Games with Deep Q Network Chapter 8

[179]

Copy the main Q network parameters to the target Q network:

copy_op = [tf.assign(main_name, targetQ[var_name]) for var_name, main_name
in mainQ.items()]
copy_target_to_main = tf.group(*copy_op)

Define a placeholder for our output, such as action:

y = tf.placeholder(tf.float32, shape=(None,1))

Now we calculate the loss, which is the difference between the actual value and predicted
value:

loss = tf.reduce_mean(tf.square(y - Q_action))

We use AdamOptimizer for minimizing the loss:

optimizer = tf.train.AdamOptimizer(learning_rate)
training_op = optimizer.minimize(loss)

Set up the log files for visualization in TensorBoard:

loss_summary = tf.summary.scalar('LOSS', loss)
merge_summary = tf.summary.merge_all()
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())

Next, we start the TensorFlow session and run the model:

init = tf.global_variables_initializer()
with tf.Session() as sess:
 init.run()
 # for each episode
 for i in range(num_episodes):
 done = False
 obs = env.reset()
 epoch = 0
 episodic_reward = 0
 actions_counter = Counter()
 episodic_loss = []

 # while the state is not the terminal state
 while not done:

 #env.render()
 # get the preprocessed game screen
 obs = preprocess_observation(obs)

 # feed the game screen and get the Q values for each action

Atari Games with Deep Q Network Chapter 8

[180]

 actions = mainQ_outputs.eval(feed_dict={X:[obs],
in_training_mode:False})

 # get the action
 action = np.argmax(actions, axis=-1)
 actions_counter[str(action)] += 1

 # select the action using epsilon greedy policy
 action = epsilon_greedy(action, global_step)
 # now perform the action and move to the next state,
 # next_obs, receive reward
 next_obs, reward, done, _ = env.step(action)

 # Store this transition as an experience in the replay buffer
 exp_buffer.append([obs, action,
preprocess_observation(next_obs), reward, done])
 # After certain steps, we train our Q network with samples from
the experience replay buffer
 if global_step % steps_train == 0 and global_step >
start_steps:
 # sample experience
 o_obs, o_act, o_next_obs, o_rew, o_done =
sample_memories(batch_size)

 # states
 o_obs = [x for x in o_obs]

 # next states
 o_next_obs = [x for x in o_next_obs]

 # next actions
 next_act = mainQ_outputs.eval(feed_dict={X:o_next_obs,
in_training_mode:False})

 # reward
 y_batch = o_rew + discount_factor * np.max(next_act,
axis=-1) * (1-o_done)

 # merge all summaries and write to the file
 mrg_summary = merge_summary.eval(feed_dict={X:o_obs,
y:np.expand_dims(y_batch, axis=-1), X_action:o_act,
in_training_mode:False})
 file_writer.add_summary(mrg_summary, global_step)

Atari Games with Deep Q Network Chapter 8

[181]

 # now we train the network and calculate loss
 train_loss, _ = sess.run([loss, training_op],
feed_dict={X:o_obs, y:np.expand_dims(y_batch, axis=-1), X_action:o_act,
in_training_mode:True})
 episodic_loss.append(train_loss)
 # after some interval we copy our main Q network weights to
target Q network
 if (global_step+1) % copy_steps == 0 and global_step >
start_steps:
 copy_target_to_main.run()
 obs = next_obs
 epoch += 1
 global_step += 1
 episodic_reward += reward
 print('Epoch', epoch, 'Reward', episodic_reward,)

You can see the output as follows:

Atari Games with Deep Q Network Chapter 8

[182]

We can see the computation graph of the DQN in TensorBoard as follows:

Atari Games with Deep Q Network Chapter 8

[183]

We can visualize the distribution of weights in both our main and target networks:

Atari Games with Deep Q Network Chapter 8

[184]

We can also see the loss:

Double DQN
Deep Q learning is pretty cool, right? It has generalized its learning to play any Atari game.
But the problem with DQN is that it tends to overestimate Q values. This is because of the
max operator in the Q learning equation. The max operator uses the same value for both
selecting and evaluating an action. What do I mean by that? Let's suppose we are in a state
s and we have five actions a1 to a5. Let's say a3 is the best action. When we estimate Q values
for all these actions in the state s, the estimated Q values will have some noise and differ
from the actual value. Due to this noise, action a2 will get a higher value than the optimal
action a3. Now, if we select the best action as the one that has maximum value, we will end
up selecting a suboptimal action a2 instead of optimal action a3.

Atari Games with Deep Q Network Chapter 8

[185]

We can solve this problem by having two separate Q functions, each learning
independently. One Q function is used to select an action and the other Q function is used
to evaluate an action. We can implement this by just tweaking the target function of DQN.
Recall the target function of DQN:

We can modify our target function as follows:

In the preceding equation, we have two Q functions each with different weights. So a Q
function with weights is used to select the action and the other Q function with weights

 is used to evaluate the action. We can also switch the roles of these two Q functions.

Prioritized experience replay
In DQN architecture, we use experience replay to remove correlations between the training
samples. However, uniformly sampling transitions from the replay memory is not an
optimal method. Instead, we can prioritize transitions and sample according to priority.
Prioritizing transitions helps the network to learn swiftly and effectively. How do we
prioritize the transitions? We prioritize the transitions that have a high TD error. We know
that a TD error specifies the difference between the estimated Q value and the actual Q
value. So, transitions with a high TD error are the transition we have to focus on and learn
from because those are the transitions that deviate from our estimation. Intuitively, let us
say you try to solve a set of problems, but you fail in solving two of these problems. You
then give priority to those two problems alone to focus on what went wrong and try to fix
that:

Atari Games with Deep Q Network Chapter 8

[186]

We use two types of prioritization—proportional prioritization and rank-based
prioritization.

In proportional prioritization, we define the priority as:

 is the priority of the transition i, is the TD error of transition i, and is simply some
positive constant value that makes sure that every transition has non-zero priority. When
is zero, adding makes the transition have a priority instead of zero priority. However, the
transition will have lower priority than the transitions whose is not zero. The
exponent denotes the amount of prioritization being used. When is zero, then it is simply
the uniform case.

Now, we can translate this priority into a probability using the following formula:

In rank-based prioritization, we define the priority as:

rank(i) specifies the location of the transition i in the replay buffer where the transitions are
sorted from high TD error to low TD error. After calculating the priority, we can convert

the priority into a probability using the same formula, .

Dueling network architecture
We know that the Q function specifies how good it is for an agent to perform an action a in
the state s and the value function specifies how good it is for an agent to be in a state s. Now
we introduce a new function called an advantage function which can be defined as the
difference between the value function and the advantage function. The advantage function
specifies how good it is for an agent to perform an action a compared to other actions.

Atari Games with Deep Q Network Chapter 8

[187]

Thus, the value function specifies the goodness of a state and the advantage function
specifies the goodness of an action. What would happen if we were to combine the value
function and advantage function? It would tell us how good it is for an agent to perform an
action a in a state s that is actually our Q function. So we can define our Q function as a sum
of a value function and an advantage function, as in .

Now we will see how the dueling network architecture works. The following diagram
shows the architecture of dueling DQN:

The architecture of dueling DQN is essentially the same as DQN, except that the fully
connected layer at the end is divided into two streams. One stream computes the value
function, and the other stream computes the advantage function. Finally, we combine these
two streams using the aggregate layer and get the Q function.

Why do we have to break our Q function computation into two streams? In many states, it
is not important to compute value estimates of all the actions, especially when we have a
large action space in a state; then most of the actions will not have any effect on the state.
Also, there could be many actions with redundant effects. In these cases, dueling DQN
estimates the Q values more precisely than the existing DQN architecture:

The first stream, as in value function stream, is useful when we have a large
number of actions in the state and when estimating a value of each action is not
really important
The second stream, as in advantage function stream, is useful when the network
has to decide which action is preferred over the other

The aggregator layer combines the value of these two streams and produces the Q function.
Thus, a dueling network is more effective and robust than the standard DQN architecture.

Atari Games with Deep Q Network Chapter 8

[188]

Summary
In this chapter, we have learned about one of the very popular deep reinforcement learning
algorithms called DQN. We saw how deep neural networks are used to approximate the Q
function. We also learned how to build an agent to play Atari games. Later, we looked at
several advancements to the DQN, such as double DQN, which is used to avoid
overestimating Q values. We then looked at prioritized experience replay, for prioritizing
the experience, and dueling network architecture, which breaks down the Q function
computation into two streams, called value stream and advantage stream.

In the next chapter, Chapter 9, Playing Doom with Deep Recurrent Q Network, we will look at
a really cool variant of DQNs called DRQN, which makes use of an RNN for approximating
a Q function.

Questions
The question list is as follows:

What is DQN?1.
What is the need for experience replay?2.
Why do we keep a separate target network?3.
Why is DQN overestimating?4.
How does double DQN avoid overestimating the Q value?5.
How are experiences prioritized in prioritized experience replay? 6.
What is the need for duel architecture?7.

Further reading
DQN paper: https:/ /storage. googleapis. com/deepmind- media/ dqn/
DQNNaturePaper. pdf

Double DQN paper: https:/ /arxiv. org/ pdf/ 1509. 06461. pdf

Dueling network architecture: https://arxiv.org/pdf/1511.06581.pdf

https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1509.06461.pdf
https://arxiv.org/pdf/1511.06581.pdf

9
Playing Doom with a Deep

Recurrent Q Network
In the last chapter, we saw how to build an agent using a Deep Q Network (DQN) in order
to play Atari games. We have taken advantage of neural networks for approximating the Q
function, used the convolutional neural network (CNN) to understand the input game
screen, and taken the past four game screens to better understand the current game state. In
this chapter, we will learn how to improve the performance of our DQN by taking
advantage of the recurrent neural network (RNN). We will also look at what is partially
observable with the Markov Decision Process (MDP) and how we can solve that using
a Deep Recurrent Q Network (DRQN). Following this, we will learn how to build an agent
to play the game Doom using a DRQN. Finally, we will see a variant of DRQN called Deep
Attention Recurrent Q Network (DARQN), which augments the attention mechanism to
the DRQN architecture.

In this chapter, you will learn the following topics:

DRQN
Partially observable MDP
The architecture of DRQN
How to build an agent to play the game Doom using a DRQN
DARQN

Playing Doom with a Deep Recurrent Q Network Chapter 9

[190]

DRQN
So, why do we need DRQN when our DQN performed at a human level at Atari games? To
answer this question, let us understand the problem of the partially observable Markov
Decision Process (POMDP). An environment is called a partially observable MDP when
we have a limited set of information available about the environment. So far, in the
previous chapters, we have seen a fully observable MDP where we know all possible
actions and states—although the agent might be unaware of transition and reward
probabilities, it had complete knowledge of the environment, for example, a frozen lake
environment, where we clearly know about all the states and actions of the environment;
we easily modeled that environment as a fully observable MDP. But most of the real-world
environments are only partially observable; we cannot see all the states. Consider the agent
learning to walk in the real-world environment; obviously, the agent will not have
complete knowledge of the environment, it will have no information outside its view. In
POMDP, states provide only partial information, but keeping the information about past
states in the memory might help the agent better understand the nature of the environment
and improve the policy. Thus, in POMDP, we need to retain the information about
previous states in order to take the optimal action.

To recollect what we learned in previous chapters, consider the game Pong, shown in the
following. By just looking at the current game screen, we can tell the position of the ball,
but we also need to know the direction in which the ball is moving and the velocity of the
ball, so that we can take the optimal action. Just looking at the current game screen,
however, does not give us the direction and velocity of the ball:

Playing Doom with a Deep Recurrent Q Network Chapter 9

[191]

To overcome this, instead of considering only the current game screen, we will take the
past four game screens to understand the direction and velocity of the ball. This is what we
have seen in DQN. We feed the past four game screens as the input to the convolutional
layer, along with the current game screen, and received the Q values for all possible actions
in the state. But, do you think using only the past four screens will help us in
understanding different environments? There will be some environments where we might
even require the past 100 game screens to better understand the current game state. But,
stacking the past n game screens will slow down our training process, and it will also
increase the size of our experience replay buffer.

So, we can take the advantage of the RNN here to understand and retain information about
the previous states as long as it is required. In Chapter 7, Deep Learning Fundamentals, we
learned how Long Short-Term Memory recurrent neural networks (LSTM RNN) are used
for text generation and how they understand the context of words by retaining, forgetting,
and updating the information as required. We will modify the DQN architecture by
augmenting with the LSTM layer to understand the previous information. In DQN
architecture, we replace the first post convolutional fully connected layer with the LSTM
RNN. In this way, we can also solve the problem of partial observability, as now our agent
has the ability to remember the past states and can improve the policy.

Architecture of DRQN
The architecture of DRQN is shown next. It is similar to DQN, but we replace the first post
convolutional fully connected layer with the LSTM RNN, shown as follows:

Playing Doom with a Deep Recurrent Q Network Chapter 9

[192]

Thus, we pass the game screen as an input to the convolutional layer. The convolutional
layer convolves the image and produces feature maps. The resulting feature map is then
passed to the LSTM layer. The LSTM layer has the memory for holding information. The
LSTM layer retains the information about important previous game states and updates its
memory over time steps as required. It outputs Q values after passing through a fully
connected layer. Therefore, unlike DQN, we don't estimate Q(st, at) directly. Instead, we
estimate Q(ht, at) where ht is the input returned by the network at the previous time step.
That is, ht = LSTM(ht-1, ot). As we are using RNN, we train our network by backpropagation
through time.

Wait. What about the experience replay buffer? In DQN, to avoid correlated experience, we
used an experience replay, which stores the game transition, and we used a random batch
of experience to train the network. In the case of DRQN, we store an entire episode in an
experience buffer and we randomly sample n steps from a random batch of episodes. So, in
this way, we can accommodate both randomization and also an experience that actually
follows another.

Training an agent to play Doom
Doom is a very popular first-person shooter game. The goal of the game is to kill monsters.
Doom is another example of a partially observable MDP as the agent's (player) view is
limited to 90 degrees. The agent has no idea about the rest of the environment. Now, we
will see how can we use DRQN to train our agent to play Doom.

Instead of OpenAI Gym, we will use the ViZDoom package to simulate the Doom
environment to train our agent. To learn more about the ViZDoom package, check out its
official website at http:/ /vizdoom. cs. put. edu.pl/ . We can install ViZDoom simply by
using the following command:

pip install vizdoom

ViZDoom provides a lot of Doom scenarios and those scenarios can be found in the
package folder vizdoom/scenarios.

http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/
http://vizdoom.cs.put.edu.pl/

Playing Doom with a Deep Recurrent Q Network Chapter 9

[193]

Basic Doom game
Before diving in, let us familiarize ourselves with a vizdoom environment by seeing a basic
example:

Let's load the necessary libraries:1.

from vizdoom import *
import random
import time

 Create an instance to the DoomGame:2.

game = DoomGame()

As we know ViZDoom provides a lot of Doom scenarios, let us load the basic3.
scenario:

game.load_config("basic.cfg")

The init() method initializes the game with the scenario:4.

game.init()

Now, let's define the one with hot encoded actions:5.

shoot = [0, 0, 1]
left = [1, 0, 0]
right = [0, 1, 0]
actions = [shoot, left, right]

Now, let us start playing the game:6.

no_of_episodes = 10

for i in range(no_of_episodes):
 # for each episode start the game
 game.new_episode()
 # loop until the episode is over
 while not game.is_episode_finished():
 # get the game state
 state = game.get_state()
 img = state.screen_buffer
 # get the game variables
 misc = state.game_variables

Playing Doom with a Deep Recurrent Q Network Chapter 9

[194]

 # perform some action randomly and receive reward
 reward = game.make_action(random.choice(actions))
 print(reward)
 # we will set some time before starting the next episode
 time.sleep(2)

Once you run the program, you can see the output as follows:

Doom with DRQN
Now, let us see how to make use of the DRQN algorithm to train our agent to play Doom.
We assign positive rewards for successfully killing the monsters and negative rewards for
losing life, suicide, and losing ammo (bullets). You can get the complete code as a Jupyter
notebook with the explanation at https:/ / github. com/ sudharsan13296/ Hands- On-
Reinforcement-Learning- With- Python/ blob/ master/ 09.
%20Playing%20Doom%20Game%20using%20DRQN/ 9. 5%20Doom%20Game%20Using%20DRQN. ipynb.
The credits for the code used in this section go to Luthanicus (https:/ / github. com/
Luthanicus/losaltoshackathon- drqn).

https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/09.%20Playing%20Doom%20Game%20using%20DRQN/9.5%20Doom%20Game%20Using%20DRQN.ipynb
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn
https://github.com/Luthanicus/losaltoshackathon-drqn

Playing Doom with a Deep Recurrent Q Network Chapter 9

[195]

First, let us import all the necessary libraries:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from vizdoom import *
import timeit
import math
import os
import sys

Now, let us define the get_input_shape function to compute the final shape of the input
image after it gets convolved after the convolutional layer:

def get_input_shape(Image,Filter,Stride):
 layer1 = math.ceil(((Image - Filter + 1) / Stride))
 o1 = math.ceil((layer1 / Stride))
 layer2 = math.ceil(((o1 - Filter + 1) / Stride))
 o2 = math.ceil((layer2 / Stride))
 layer3 = math.ceil(((o2 - Filter + 1) / Stride))
 o3 = math.ceil((layer3 / Stride))
 return int(o3)

We will now define the DRQN class, which implements the DRQN algorithm. Check the
comments that precede each line of code to understand it:

class DRQN():
 def __init__(self, input_shape, num_actions, initial_learning_rate):
 # first, we initialize all the hyperparameters

 self.tfcast_type = tf.float32
 # shape of our input, which would be (length, width, channels)
 self.input_shape = input_shape
 # number of actions in the environment
 self.num_actions = num_actions
 # learning rate for the neural network
 self.learning_rate = initial_learning_rate
 # now we will define the hyperparameters of the convolutional
neural network

 # filter size
 self.filter_size = 5
 # number of filters
 self.num_filters = [16, 32, 64]
 # stride size
 self.stride = 2
 # pool size

Playing Doom with a Deep Recurrent Q Network Chapter 9

[196]

 self.poolsize = 2
 # shape of our convolutional layer
 self.convolution_shape = get_input_shape(input_shape[0],
self.filter_size, self.stride) * get_input_shape(input_shape[1],
self.filter_size, self.stride) * self.num_filters[2]
 # now, we define the hyperparameters of our recurrent neural
network and the final feed forward layer
 # number of neurons
 self.cell_size = 100
 # number of hidden layers
 self.hidden_layer = 50
 # drop out probability
 self.dropout_probability = [0.3, 0.2]

 # hyperparameters for optimization
 self.loss_decay_rate = 0.96
 self.loss_decay_steps = 180

 # initialize all the variables for the CNN

 # we initialize the placeholder for input whose shape would be
(length, width, channel)
 self.input = tf.placeholder(shape = (self.input_shape[0],
self.input_shape[1], self.input_shape[2]), dtype = self.tfcast_type)
 # we will also initialize the shape of the target vector whose
shape is equal to the number of actions
 self.target_vector = tf.placeholder(shape = (self.num_actions, 1),
dtype = self.tfcast_type)

 # initialize feature maps for our corresponding 3 filters
 self.features1 = tf.Variable(initial_value =
np.random.rand(self.filter_size, self.filter_size, input_shape[2],
self.num_filters[0]),
 dtype = self.tfcast_type)
 self.features2 = tf.Variable(initial_value =
np.random.rand(self.filter_size, self.filter_size, self.num_filters[0],
self.num_filters[1]),
 dtype = self.tfcast_type)
 self.features3 = tf.Variable(initial_value =
np.random.rand(self.filter_size, self.filter_size, self.num_filters[1],
self.num_filters[2]),
 dtype = self.tfcast_type)

 # initialize variables for RNN
 # recall how RNN works from chapter 7
 self.h = tf.Variable(initial_value = np.zeros((1, self.cell_size)),
dtype = self.tfcast_type)
 # hidden to hidden weight matrix

Playing Doom with a Deep Recurrent Q Network Chapter 9

[197]

 self.rW = tf.Variable(initial_value = np.random.uniform(
 low = -np.sqrt(6. /
(self.convolution_shape + self.cell_size)),
 high = np.sqrt(6. /
(self.convolution_shape + self.cell_size)),
 size = (self.convolution_shape,
self.cell_size)),
 dtype = self.tfcast_type)
 # input to hidden weight matrix
 self.rU = tf.Variable(initial_value = np.random.uniform(
 low = -np.sqrt(6. / (2 *
self.cell_size)),
 high = np.sqrt(6. / (2 *
self.cell_size)),
 size = (self.cell_size,
self.cell_size)),
 dtype = self.tfcast_type)
 # hidden to output weight matrix
 self.rV = tf.Variable(initial_value = np.random.uniform(
 low = -np.sqrt(6. / (2 *
self.cell_size)),
 high = np.sqrt(6. / (2 *
self.cell_size)),
 size = (self.cell_size,
self.cell_size)),
 dtype = self.tfcast_type)
 # bias
 self.rb = tf.Variable(initial_value = np.zeros(self.cell_size),
dtype = self.tfcast_type)
 self.rc = tf.Variable(initial_value = np.zeros(self.cell_size),
dtype = self.tfcast_type)

 # initialize weights and bias of feed forward network
 # weights
 self.fW = tf.Variable(initial_value = np.random.uniform(
 low = -np.sqrt(6. /
(self.cell_size + self.num_actions)),
 high = np.sqrt(6. /
(self.cell_size + self.num_actions)),
 size = (self.cell_size,
self.num_actions)),
 dtype = self.tfcast_type)
 # bias
 self.fb = tf.Variable(initial_value = np.zeros(self.num_actions),
dtype = self.tfcast_type)

 # learning rate
 self.step_count = tf.Variable(initial_value = 0, dtype =

Playing Doom with a Deep Recurrent Q Network Chapter 9

[198]

self.tfcast_type)
 self.learning_rate = tf.train.exponential_decay(self.learning_rate,
 self.step_count,
 self.loss_decay_steps,
 self.loss_decay_steps,
 staircase = False)
 # now let us build the network

 # first convolutional layer
 self.conv1 = tf.nn.conv2d(input = tf.reshape(self.input, shape =
(1, self.input_shape[0], self.input_shape[1], self.input_shape[2])), filter
= self.features1, strides = [1, self.stride, self.stride, 1], padding =
"VALID")
 self.relu1 = tf.nn.relu(self.conv1)
 self.pool1 = tf.nn.max_pool(self.relu1, ksize = [1, self.poolsize,
self.poolsize, 1], strides = [1, self.stride, self.stride, 1], padding =
"SAME")

 # second convolutional layer
 self.conv2 = tf.nn.conv2d(input = self.pool1, filter =
self.features2, strides = [1, self.stride, self.stride, 1], padding =
"VALID")
 self.relu2 = tf.nn.relu(self.conv2)
 self.pool2 = tf.nn.max_pool(self.relu2, ksize = [1, self.poolsize,
self.poolsize, 1], strides = [1, self.stride, self.stride, 1], padding =
"SAME")

 # third convolutional layer
 self.conv3 = tf.nn.conv2d(input = self.pool2, filter =
self.features3, strides = [1, self.stride, self.stride, 1], padding =
"VALID")
 self.relu3 = tf.nn.relu(self.conv3)
 self.pool3 = tf.nn.max_pool(self.relu3, ksize = [1, self.poolsize,
self.poolsize, 1], strides = [1, self.stride, self.stride, 1], padding =
"SAME")

 # add dropout and reshape the input
 self.drop1 = tf.nn.dropout(self.pool3, self.dropout_probability[0])
 self.reshaped_input = tf.reshape(self.drop1, shape = [1, -1])

 # now we build the recurrent neural network, which takes the input
from the last layer of the convolutional network
 self.h = tf.tanh(tf.matmul(self.reshaped_input, self.rW) +
tf.matmul(self.h, self.rU) + self.rb)
 self.o = tf.nn.softmax(tf.matmul(self.h, self.rV) + self.rc)

 # add drop out to RNN

Playing Doom with a Deep Recurrent Q Network Chapter 9

[199]

 self.drop2 = tf.nn.dropout(self.o, self.dropout_probability[1])
 # we feed the result of RNN to the feed forward layer
 self.output = tf.reshape(tf.matmul(self.drop2, self.fW) + self.fb,
shape = [-1, 1])
 self.prediction = tf.argmax(self.output)

 # compute loss
 self.loss = tf.reduce_mean(tf.square(self.target_vector -
self.output))
 # we use Adam optimizer for minimizing the error
 self.optimizer = tf.train.AdamOptimizer(self.learning_rate)
 # compute gradients of the loss and update the gradients
 self.gradients = self.optimizer.compute_gradients(self.loss)
 self.update = self.optimizer.apply_gradients(self.gradients)

 self.parameters = (self.features1, self.features2, self.features3,
 self.rW, self.rU, self.rV, self.rb, self.rc,
 self.fW, self.fb)

Now we define the ExperienceReplay class to implement the experience replay buffer.
We store all the agent's experience, that is, state, action, and rewards in the experience
replay buffer, and we sample this minibatch of experience for training the network:

class ExperienceReplay():
 def __init__(self, buffer_size):
 # buffer for holding the transition
 self.buffer = []
 # size of the buffer
 self.buffer_size = buffer_size
 # we remove the old transition if the buffer size has reached it's
limit. Think off the buffer as a queue, when the new
 # one comes, the old one goes off
 def appendToBuffer(self, memory_tuplet):
 if len(self.buffer) > self.buffer_size:
 for i in range(len(self.buffer) - self.buffer_size):
 self.buffer.remove(self.buffer[0])
 self.buffer.append(memory_tuplet)
 # define a function called sample for sampling some random n number of
transitions
 def sample(self, n):
 memories = []
 for i in range(n):
 memory_index = np.random.randint(0, len(self.buffer))
 memories.append(self.buffer[memory_index])
 return memories

Playing Doom with a Deep Recurrent Q Network Chapter 9

[200]

Now, we define the train function for training our network:

def train(num_episodes, episode_length, learning_rate, scenario =
"deathmatch.cfg", map_path = 'map02', render = False):
 # discount parameter for Q-value computation
 discount_factor = .99
 # frequency for updating the experience in the buffer
 update_frequency = 5
 store_frequency = 50
 # for printing the output
 print_frequency = 1000

 # initialize variables for storing total rewards and total loss
 total_reward = 0
 total_loss = 0
 old_q_value = 0

 # initialize lists for storing the episodic rewards and losses
 rewards = []
 losses = []

 # okay, now let us get to the action!
 # first, we initialize our doomgame environment
 game = DoomGame()
 # specify the path where our scenario file is located
 game.set_doom_scenario_path(scenario)
 # specify the path of map file
 game.set_doom_map(map_path)

 # then we set screen resolution and screen format
 game.set_screen_resolution(ScreenResolution.RES_256X160)
 game.set_screen_format(ScreenFormat.RGB24)

 # we can add particles and effects we needed by simply setting them to
true or false
 game.set_render_hud(False)
 game.set_render_minimal_hud(False)
 game.set_render_crosshair(False)
 game.set_render_weapon(True)
 game.set_render_decals(False)
 game.set_render_particles(False)
 game.set_render_effects_sprites(False)
 game.set_render_messages(False)
 game.set_render_corpses(False)
 game.set_render_screen_flashes(True)

 # now we will specify buttons that should be available to the agent

Playing Doom with a Deep Recurrent Q Network Chapter 9

[201]

 game.add_available_button(Button.MOVE_LEFT)
 game.add_available_button(Button.MOVE_RIGHT)
 game.add_available_button(Button.TURN_LEFT)
 game.add_available_button(Button.TURN_RIGHT)
 game.add_available_button(Button.MOVE_FORWARD)
 game.add_available_button(Button.MOVE_BACKWARD)
 game.add_available_button(Button.ATTACK)
 # okay, now we will add one more button called delta. The preceding
button will only
 # work like keyboard keys and will have only boolean values.

 # so we use delta button, which emulates a mouse device which will have
positive and negative values
 # and it will be useful in environment for exploring
 game.add_available_button(Button.TURN_LEFT_RIGHT_DELTA, 90)
 game.add_available_button(Button.LOOK_UP_DOWN_DELTA, 90)

 # initialize an array for actions
 actions = np.zeros((game.get_available_buttons_size(),
game.get_available_buttons_size()))
 count = 0
 for i in actions:
 i[count] = 1
 count += 1
 actions = actions.astype(int).tolist()

 # then we add the game variables, ammo, health, and killcount
 game.add_available_game_variable(GameVariable.AMMO0)
 game.add_available_game_variable(GameVariable.HEALTH)
 game.add_available_game_variable(GameVariable.KILLCOUNT)

 # we set episode_timeout to terminate the episode after some time step
 # we also set episode_start_time which is useful for skipping initial
events
 game.set_episode_timeout(6 * episode_length)
 game.set_episode_start_time(10)
 game.set_window_visible(render)
 # we can also enable sound by setting set_sound_enable to true
 game.set_sound_enabled(False)

 # we set living reward to 0, which rewards the agent for each move it
does even though the move is not useful
 game.set_living_reward(0)

 # doom has different modes such as player, spectator, asynchronous
player, and asynchronous spectator
 # in spectator mode humans will play and agent will learn from it.

Playing Doom with a Deep Recurrent Q Network Chapter 9

[202]

 # in player mode, the agent actually plays the game, so we use player
mode.
 game.set_mode(Mode.PLAYER)

 # okay, So now we, initialize the game environment
 game.init()

 # now, let us create instance to our DRQN class and create our both
actor and target DRQN networks
 actionDRQN = DRQN((160, 256, 3), game.get_available_buttons_size() - 2,
learning_rate)
 targetDRQN = DRQN((160, 256, 3), game.get_available_buttons_size() - 2,
learning_rate)
 # we will also create an instance to the ExperienceReplay class with
the buffer size of 1000
 experiences = ExperienceReplay(1000)

 # for storing the models
 saver = tf.train.Saver({v.name: v for v in actionDRQN.parameters},
max_to_keep = 1)

 # now let us start the training process
 # we initialize variables for sampling and storing transitions from the
experience buffer
 sample = 5
 store = 50
 # start the tensorflow session
 with tf.Session() as sess:
 # initialize all tensorflow variables
 sess.run(tf.global_variables_initializer())
 for episode in range(num_episodes):
 # start the new episode
 game.new_episode()
 # play the episode till it reaches the episode length
 for frame in range(episode_length):
 # get the game state
 state = game.get_state()
 s = state.screen_buffer
 # select the action
 a = actionDRQN.prediction.eval(feed_dict =
{actionDRQN.input: s})[0]
 action = actions[a]
 # perform the action and store the reward
 reward = game.make_action(action)
 # update total reward
 total_reward += reward

 # if the episode is over then break

Playing Doom with a Deep Recurrent Q Network Chapter 9

[203]

 if game.is_episode_finished():
 break
 # store the transition to our experience buffer
 if (frame % store) == 0:
 experiences.appendToBuffer((s, action, reward))

 # sample experience from the experience buffer
 if (frame % sample) == 0:
 memory = experiences.sample(1)
 mem_frame = memory[0][0]
 mem_reward = memory[0][2]
 # now, train the network
 Q1 = actionDRQN.output.eval(feed_dict =
{actionDRQN.input: mem_frame})
 Q2 = targetDRQN.output.eval(feed_dict =
{targetDRQN.input: mem_frame})

 # set learning rate
 learning_rate = actionDRQN.learning_rate.eval()

 # calculate Q value
 Qtarget = old_q_value + learning_rate * (mem_reward +
discount_factor * Q2 - old_q_value)
 # update old Q value
 old_q_value = Qtarget

 # compute Loss
 loss = actionDRQN.loss.eval(feed_dict =
{actionDRQN.target_vector: Qtarget, actionDRQN.input: mem_frame})
 # update total loss
 total_loss += loss

 # update both networks
 actionDRQN.update.run(feed_dict =
{actionDRQN.target_vector: Qtarget, actionDRQN.input: mem_frame})
 targetDRQN.update.run(feed_dict =
{targetDRQN.target_vector: Qtarget, targetDRQN.input: mem_frame})

 rewards.append((episode, total_reward))
 losses.append((episode, total_loss))

 print("Episode %d - Reward = %.3f, Loss = %.3f." % (episode,
total_reward, total_loss))

 total_reward = 0
 total_loss = 0

Playing Doom with a Deep Recurrent Q Network Chapter 9

[204]

Let us train for 10000 episodes, where each episode has a length of 300:

train(num_episodes = 10000, episode_length = 300, learning_rate = 0.01,
render = True)

When you run the program, you can see the output shown as follows, and you can see how
our agent is learning through episodes:

DARQN
We have improved our DQN architecture by adding a recurrent layer, which captures
temporal dependency, and we called it DRQN. Do you think we can improve our DRQN
architecture further? Yes. We can further improve our DRQN architecture by adding the
attention layer on top of the convolutional layer. So, what is the function of the attention
layer? Attention implies the literal meaning of the word. Attention mechanisms are widely
used in image captioning, object detection, and so on. Consider the task of neural networks
captioning the image; to understand what is in the image, the network has to give attention
to the specific object in the image for generating the caption.

Playing Doom with a Deep Recurrent Q Network Chapter 9

[205]

Similarly, when we add the attention layer to our DRQN, we can select and pay attention to
small regions of the image, and ultimately this reduces the number of parameters in the
network and also reduces the training and testing time. Unlike DRQN, LSTM layers in
DARQN not only stored previous state information for taking the next optimal action; it
also stores information for deciding which region of an image to focus on next.

Architecture of DARQN
The architecture of DARQN is shown as follows:

It consists of three layers; convolutional, attention, and LSTM recurrent layers. The game
screen is fed as the image to the convolutional network. The convolutional network
processes the image and produces the feature maps. The feature maps then feed into the
attention layer. The attention layer transforms them into a vector and results in their linear
combination, called context vectors. The context vectors, along with previous hidden states,
are then passed to the LSTM layer. The LSTM layer gives two outputs; in one, it gives the Q
value for deciding what action to perform in a state, and in the other, it helps the attention
network decide what region of the image to focus on in the next time step so that better
context vectors can be generated.

Playing Doom with a Deep Recurrent Q Network Chapter 9

[206]

The attention is of two types:

Soft attention: We know that feature maps produced by the convolutional layer
are fed as an input to the attention layer, which then produces the context vector.
With soft attention, these context vectors are simply the weighted average of all
the output (feature maps) produced by the convolutional layer. Weights are
chosen according to the relative importance of the features.
Hard attention: With hard attention, we focus only on the particular location of
an image at a time step t according to some location selection policy π. This
policy is represented by a neural network whose weights are the policy
parameters and the output of the network is the location selection probability.
However, hard attentions are not much better than soft attentions.

Summary
In this chapter, we learned how DRQN is used to remember information about the
previous states and how it overcomes the problem of partially observable MDP. We have
seen how to train our agent to play the game Doom using a DRQN algorithm. We have also
learned about DARQN as an improvement to DRQN, which adds an attention layer on top
of the convolution layer. Following this, we saw the two types of attention mechanism;
namely, soft and hard attention.

In the next chapter, Chapter 10, Asynchronous Advantage Actor Critic Network, we will learn
about another interesting deep reinforcement learning algorithm called Asynchronous
Advantage Actor Critic network.

Questions
The question list is as follows:

What is the difference between DQN and DRQN?1.
What are the shortcomings of DQN?2.
How do we set up an experience replay in DQN?3.
What is the difference between DRQN and DARQN?4.
Why do we need DARQN?5.
What are the different types of attention mechanism?6.
Why do we set a living reward in Doom?7.

Playing Doom with a Deep Recurrent Q Network Chapter 9

[207]

Further reading
Consider the following to further your knowledge:

DRQN paper: https://arxiv.org/pdf/1507.06527.pdf
Playing the FPS game using DRQN: https:/ /arxiv. org/ pdf/ 1609. 05521. pdf

DARQN paper: https:/ /arxiv. org/ pdf/ 1512. 01693. pdf

https://arxiv.org/pdf/1507.06527.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1609.05521.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf
https://arxiv.org/pdf/1512.01693.pdf

10
The Asynchronous Advantage

Actor Critic Network
In the previous chapters, we have seen how cool a Deep Q Network (DQN) is and how it
succeeded in generalizing its learning to play a series of Atari games with a human level
performance. But the problem we faced is that it required a large amount of computation
power and training time. So, Google's DeepMind introduced a new algorithm called
the Asynchronous Advantage Actor Critic (A3C) algorithm, which dominates the other
deep reinforcement learning algorithms, as it requires less computation power and training
time. The main idea behind A3C is that it uses several agents for learning in parallel and
aggregates their overall experience. In this chapter, we will see how A3C networks work.
Following this, we will learn how to build an agent to drive up a mountain using A3C.

In this chapter, you will learn the following:

The Asynchronous Advantage Actor Critic Algorithm
The three As
The architecture of A3C
How A3C works
Driving up a mountain with A3C
Visualization in TensorBoard

The Asynchronous Advantage Actor Critic Network Chapter 10

[209]

The Asynchronous Advantage Actor Critic
The A3C network came as a storm and took over the DQN. Aside of the previously stated
advantages, it also yields good accuracy compared to other algorithms. It works well in
both continuous and discrete action spaces. It uses several agents, and each agent learns in
parallel with a different exploration policy in copies of the actual environment. Then, the
experience obtained from these agents is aggregated to the global agent. The global agent is
also called a master network or global network and other agents are also called the
workers. Now, we will see in detail how A3C works and how it differs from the DQN
algorithm.

The three As
Before diving in, what does A3C mean? What do the three As signify?

In A3C, the first A, Asynchronous, implies how it works. Instead of having a single agent
that tries to learn the optimal policy such as in DQN, here, we have multiple agents that
interact with the environment. Since we have multiple agents interacting to the
environment at the same time, we provide copies of the environment to every agent so that
each agent can interact with its own copy of the environment. So, all these multiple agents
are called worker agents and we have a separate agent called global network that all the
agents report to. The global network aggregates the learning.

The second A is Advantage; we have seen what an advantage function is while discussing
the dueling network architecture of DQN. The advantage function can be defined as the
difference between the Q function and the value function. We know that the Q function
specifies how good the action is in a state and the value function specifies how good the
state is. Now, think intuitively; what does the difference between these two imply? It tells
us how good it is for an agent to perform an action a in a state s compared to all other
actions.

The third A is Actor Critic; the architecture has two types of network, actor and critic. The
role of the actor is to learn a policy and the role of the critic is to evaluate how good the
policy learned by the actor is.

The Asynchronous Advantage Actor Critic Network Chapter 10

[210]

The architecture of A3C
Now, let's look at the architecture of A3C. Look at the following diagram:

We can understand how A3C works by just looking at the preceding diagram. As we
discussed, we can see there are multiple worker agents each interacting with its own copies
of the environment. A worker then learns policy and calculates the gradient of the policy
loss and updates the gradients to the global network. This global network is updated
simultaneously by every agent. One of the advantages of A3C is that, unlike DQN, we don't
use experience replay memory here. In fact, that it is one of the greatest advantages of an
A3C network. Since we have multiple agents interacting with the environment and
aggregating the information to the global network, there will be low to no correlation
between the experience. Experience replay needs a lot of memory holding all of the
experience. As A3C doesn't need that, our storage space and computation time will be
reduced.

The Asynchronous Advantage Actor Critic Network Chapter 10

[211]

How A3C works
First, the worker agent resets the global network, and then they start interacting with the
environment. Each worker follows a different exploration policy to learn an optimal policy.
Following this, they compute value and policy loss and then they calculate the gradient of
the loss and update the gradients to the global network. The cycle continues as the worker
agent starts resetting the global network and repeats the same process. Before looking at the
value and policy loss function, we will see how the advantage function is calculated. As we
know, advantage is the difference between the Q function and the value function:

Since we don't actually calculate the Q value directly in A3C, we make use of discounted
return as an estimate of the Q value. The discounted return R can be written as follows:

We replace the Q function with the discounted return R as follows:

Now, we can write our value loss as the squared difference between the discounted return
and the value of a state:

And the policy loss can be defined as follows:

Okay, what is that new term H(π)? It is the entropy term. It is used to ensure sufficient
exploration of policy. Entropy tells us the spread of action probabilities. When the entropy
value is high, every action's probability will be the same, so the agent will be unsure as to
which action to perform, and when the entropy value is lowered, one action will have a
higher probability than the others and the agent can pick up the action that has this high
probability. Thus, adding entropy to the loss function encourages the agent to explore
further and avoid getting stuck at the local optima.

The Asynchronous Advantage Actor Critic Network Chapter 10

[212]

Driving up a mountain with A3C
Let's understand A3C with a mountain car example. Our agent is the car and it is placed
between two mountains. The goal of our agent is to drive up the mountain on the right.
However, the car can't drive up the mountain in one pass; it has to drive up back and forth
to build the momentum. A high reward will be assigned if our agent spends less energy on
driving up. Credits for the code used in this section goes to Stefan Boschenriedter (https:/
/github.com/stefanbo92/ A3C- Continuous). The environment is shown as follows:

Okay, let's get to the coding! The complete code is available as the Jupyter notebook with
an explanation here (https:/ / github. com/sudharsan13296/ Hands- On- Reinforcement-
Learning-With-Python/ blob/ master/ 10.
%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/ 10.
5%20Drive%20up%20the%20Mountain%20Using%20A3C. ipynb).

First, let's import the necessary libraries:

import gym
import multiprocessing
import threading
import numpy as np
import os
import shutil
import matplotlib.pyplot as plt
import tensorflow as tf

https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/stefanbo92/A3C-Continuous
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/10.%20Aysnchronous%20Advantage%20Actor%20Critic%20Network/10.5%20Drive%20up%20the%20Mountain%20Using%20A3C.ipynb

The Asynchronous Advantage Actor Critic Network Chapter 10

[213]

Now, we will initialize all our parameters:

number of worker agents
no_of_workers = multiprocessing.cpu_count()

maximum number of steps per episode
no_of_ep_steps = 200

total number of episodes
no_of_episodes = 2000

global_net_scope = 'Global_Net'

sets how often the global network should be updated
update_global = 10

discount factor
gamma = 0.90

entropy factor
entropy_beta = 0.01

learning rate for actor
lr_a = 0.0001

learning rate for critic
lr_c = 0.001

boolean for rendering the environment
render=False

directory for storing logs
log_dir = 'logs'

Initialize our MountainCar environment:

env = gym.make('MountainCarContinuous-v0')
env.reset()

Get the number of states and actions, and also the action_bound:

no_of_states = env.observation_space.shape[0]
no_of_actions = env.action_space.shape[0]
action_bound = [env.action_space.low, env.action_space.high]

The Asynchronous Advantage Actor Critic Network Chapter 10

[214]

We will define our Actor Critic network in an ActorCritic class. As usual, we first
understand the code of every function in a class and see the final code as a whole at the
end. Comments are added to each line of code for better understanding. We will look into
the clean uncommented whole code at the end:

class ActorCritic(object):
 def __init__(self, scope, sess, globalAC=None):
 # first we initialize the session and RMS prop optimizer for both
 # our actor and critic networks
 self.sess=sess
 self.actor_optimizer = tf.train.RMSPropOptimizer(lr_a,
name='RMSPropA')
 self.critic_optimizer = tf.train.RMSPropOptimizer(lr_c,
name='RMSPropC')

 # now, if our network is global then,
 if scope == global_net_scope:
 with tf.variable_scope(scope):
 # initialize states and build actor and critic network
 self.s = tf.placeholder(tf.float32, [None, no_of_states],
'S')
 # get the parameters of actor and critic networks
 self.a_params, self.c_params = self._build_net(scope)[-2:]
 # if our network is local then,
 else:
 with tf.variable_scope(scope):
 # initialize state, action, and also target value
 # as v_target
 self.s = tf.placeholder(tf.float32, [None, no_of_states],
'S')
 self.a_his = tf.placeholder(tf.float32, [None,
no_of_actions], 'A')
 self.v_target = tf.placeholder(tf.float32, [None, 1],
'Vtarget')
 # since we are in continuous actions space,
 # we will calculate
 # mean and variance for choosing action
 mean, var, self.v, self.a_params, self.c_params =
self._build_net(scope)

 # then we calculate td error as the difference
 # between v_target - v
 td = tf.subtract(self.v_target, self.v, name='TD_error')

 # minimize the TD error
 with tf.name_scope('critic_loss'):
 self.critic_loss = tf.reduce_mean(tf.square(td))

The Asynchronous Advantage Actor Critic Network Chapter 10

[215]

 # update the mean and var value by multiplying mean
 # with the action bound and adding var with 1e-4

 with tf.name_scope('wrap_action'):
 mean, var = mean * action_bound[1], var + 1e-4
 # we can generate distribution using this updated
 # mean and var
 normal_dist = tf.contrib.distributions.Normal(mean, var)
 # now we shall calculate the actor loss.
 # Recall the loss function.
 with tf.name_scope('actor_loss'):
 # calculate first term of loss which is log(pi(s))
 log_prob = normal_dist.log_prob(self.a_his)
 exp_v = log_prob * td
 # calculate entropy from our action distribution
 # for ensuring exploration
 entropy = normal_dist.entropy()
 # we can define our final loss as
 self.exp_v = exp_v + entropy_beta * entropy
 # then, we try to minimize the loss
 self.actor_loss = tf.reduce_mean(-self.exp_v)
 # now, we choose an action by drawing from the
 # distribution and clipping it between action bounds,
 with tf.name_scope('choose_action'):
 self.A =
tf.clip_by_value(tf.squeeze(normal_dist.sample(1), axis=0),
action_bound[0], action_bound[1])
 # calculate gradients for both of our actor
 # and critic networks,
 with tf.name_scope('local_grad'):

 self.a_grads = tf.gradients(self.actor_loss,
self.a_params)
 self.c_grads = tf.gradients(self.critic_loss,
self.c_params)

 # now, we update our global network weights,
 with tf.name_scope('sync'):
 # pull the global network weights to the local networks
 with tf.name_scope('pull'):
 self.pull_a_params_op = [l_p.assign(g_p) for l_p, g_p
in zip(self.a_params, globalAC.a_params)]
 self.pull_c_params_op = [l_p.assign(g_p) for l_p, g_p
in zip(self.c_params, globalAC.c_params)]
 # push the local gradients to the global network
 with tf.name_scope('push'):
 self.update_a_op =
self.actor_optimizer.apply_gradients(zip(self.a_grads, globalAC.a_params))

The Asynchronous Advantage Actor Critic Network Chapter 10

[216]

 self.update_c_op =
self.critic_optimizer.apply_gradients(zip(self.c_grads, globalAC.c_params))

 # next, we define a function called _build_net for building
 # our actor and critic network
 def _build_net(self, scope):
 # initialize weights
 w_init = tf.random_normal_initializer(0., .1)
 with tf.variable_scope('actor'):
 l_a = tf.layers.dense(self.s, 200, tf.nn.relu6,
kernel_initializer=w_init, name='la')
 mean = tf.layers.dense(l_a, no_of_actions,
tf.nn.tanh,kernel_initializer=w_init, name='mean')
 var = tf.layers.dense(l_a, no_of_actions, tf.nn.softplus,
kernel_initializer=w_init, name='var')
 with tf.variable_scope('critic'):
 l_c = tf.layers.dense(self.s, 100, tf.nn.relu6,
kernel_initializer=w_init, name='lc')
 v = tf.layers.dense(l_c, 1, kernel_initializer=w_init,
name='v')
 a_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
scope=scope + '/actor')
 c_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
scope=scope + '/critic')
 return mean, var, v, a_params, c_params
 # update the local gradients to the global network
 def update_global(self, feed_dict):
 self.sess.run([self.update_a_op, self.update_c_op], feed_dict)
 # get the global parameters to the local networks
 def pull_global(self):
 self.sess.run([self.pull_a_params_op, self.pull_c_params_op])
 # select action
 def choose_action(self, s):
 s = s[np.newaxis, :]
 return self.sess.run(self.A, {self.s: s})[0]

Now, we will initialize the Worker class:

class Worker(object):
 def __init__(self, name, globalAC, sess):
 # initialize environment for each worker
 self.env = gym.make('MountainCarContinuous-v0').unwrapped
 self.name = name
 # create an ActorCritic agent for each worker
 self.AC = ActorCritic(name, sess, globalAC)
 self.sess=sess
 def work(self):

The Asynchronous Advantage Actor Critic Network Chapter 10

[217]

 global global_rewards, global_episodes
 total_step = 1

 # store state, action, reward
 buffer_s, buffer_a, buffer_r = [], [], []
 # loop if the coordinator is active and the global
 # episode is less than the maximum episode
 while not coord.should_stop() and global_episodes < no_of_episodes:
 # initialize the environment by resetting
 s = self.env.reset()
 # store the episodic reward
 ep_r = 0
 for ep_t in range(no_of_ep_steps):
 # Render the environment for only worker 1
 if self.name == 'W_0' and render:
 self.env.render()
 # choose the action based on the policy
 a = self.AC.choose_action(s)

 # perform the action (a), receive reward (r),
 # and move to the next state (s_)
 s_, r, done, info = self.env.step(a)
 # set done as true if we reached maximum step per episode
 done = True if ep_t == no_of_ep_steps - 1 else False
 ep_r += r
 # store the state, action, and rewards in the buffer
 buffer_s.append(s)
 buffer_a.append(a)
 # normalize the reward
 buffer_r.append((r+8)/8)
 # we update the global network after a particular time step
 if total_step % update_global == 0 or done:
 if done:
 v_s_ = 0
 else:
 v_s_ = self.sess.run(self.AC.v, {self.AC.s:
s_[np.newaxis, :]})[0, 0]
 # buffer for target v
 buffer_v_target = []
 for r in buffer_r[::-1]:
 v_s_ = r + gamma * v_s_
 buffer_v_target.append(v_s_)
 buffer_v_target.reverse()
 buffer_s, buffer_a, buffer_v_target =
np.vstack(buffer_s), np.vstack(buffer_a), np.vstack(buffer_v_target)
 feed_dict = {
 self.AC.s: buffer_s,
 self.AC.a_his: buffer_a,

The Asynchronous Advantage Actor Critic Network Chapter 10

[218]

 self.AC.v_target: buffer_v_target,
 }
 # update global network
 self.AC.update_global(feed_dict)
 buffer_s, buffer_a, buffer_r = [], [], []
 # get global parameters to local ActorCritic
 self.AC.pull_global()
 s = s_
 total_step += 1
 if done:
 if len(global_rewards) < 5:
 global_rewards.append(ep_r)
 else:
 global_rewards.append(ep_r)
 global_rewards[-1] =(np.mean(global_rewards[-5:]))
 global_episodes += 1
 break

Now, let's start the TensorFlow session and run our model:

create a list for string global rewards and episodes
global_rewards = []
global_episodes = 0

start tensorflow session
sess = tf.Session()

with tf.device("/cpu:0"):
create an instance to our ActorCritic Class
 global_ac = ActorCritic(global_net_scope,sess)
 workers = []
 # loop for each worker
 for i in range(no_of_workers):
 i_name = 'W_%i' % i
 workers.append(Worker(i_name, global_ac,sess))

coord = tf.train.Coordinator()
sess.run(tf.global_variables_initializer())

log everything so that we can visualize the graph in tensorboard

if os.path.exists(log_dir):
 shutil.rmtree(log_dir)

tf.summary.FileWriter(log_dir, sess.graph)

worker_threads = []

The Asynchronous Advantage Actor Critic Network Chapter 10

[219]

#start workers

for worker in workers:

 job = lambda: worker.work()
 t = threading.Thread(target=job)
 t.start()
 worker_threads.append(t)
coord.join(worker_threads)

The output is shown as follows. If you run the program, you can see how our agent is
learning to climb the mountain over several episodes:

The Asynchronous Advantage Actor Critic Network Chapter 10

[220]

Visualization in TensorBoard
Let's visualize our network in TensorBoard. To launch TensorBoard, open your Terminal
and type the following:

tensorboard --logdir=logs --port=6007 --host=127.0.0.1

This is our A3C network. We have one global network and four workers:

The Asynchronous Advantage Actor Critic Network Chapter 10

[221]

Let's expand our global network; you can see we have one actor and one critic:

The Asynchronous Advantage Actor Critic Network Chapter 10

[222]

Okay, what is really going on in workers? Let's expand our worker network. You can see
how the worker nodes are performing:

The Asynchronous Advantage Actor Critic Network Chapter 10

[223]

What about the sync node? What is that doing? The sync node pushes the local gradients
from the local to the global network and pulls gradients from the global to the local
network:

Summary
In this chapter, we learned how the A3C network works. In A3C, Asynchronous implies
multiple agents working independently by interacting with multiple copies of the
environment, Advantage implies the advantage function, which is the difference between
the Q function and the value function, and Actor Critic refers to the Actor Critic network,
where the actor network is responsible for generating a policy and the critic network
evaluates the policy generated by the actor network. We have seen how A3C works, and
saw how to solve a mountain car problem using the algorithm.

In the next chapter, Chapter 11, Policy Gradients and Optimization, we will see policy
gradient methods that directly optimize the policy without requiring the Q function.

The Asynchronous Advantage Actor Critic Network Chapter 10

[224]

Questions
The question list is as follows:

What is A3C?1.
What do the three As signify?2.
Name one advantage of A3N over DQN3.
What is the difference between global and worker nodes?4.
Why do we entropy to our loss function?5.
Explain the workings of A3C.6.

Further reading
You can also refer to these papers:

A3C paper: https:/ /arxiv. org/ pdf/1602. 01783. pdf

Vision enhanced A3C: http:/ /cs231n. stanford. edu/ reports/ 2017/ pdfs/ 617.
pdf

https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
https://arxiv.org/pdf/1602.01783.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/617.pdf

11
Policy Gradients and

Optimization
In the last three chapters, we have learned about various deep reinforcement learning
algorithms, such as Deep Q Network (DQN), Deep Recurrent Q Network (DRQN), and
the Asynchronous Advantage Actor Critic (A3C) network. In all the algorithms, our goal is
to find the correct policy so that we can maximize the rewards. We use the Q function to
find the optimal policy as the Q function tells us which action is the best action to perform
in a state. Do you think we can directly find the optimal policy without using Q function?
Yes. We can. In policy gradient methods, we can find the optimal policy without using the
Q function.

In this chapter, we will learn about policy gradients in detail. We will also look at different
types of policy gradient methods such as deep deterministic policy gradients followed by
state-of-the-art policy optimization methods such as trust region policy optimization and
proximal policy optimization.

In this chapter, you will learn the following:

Policy gradients
Lunar lander using policy gradients
Deep deterministic policy gradients
Swinging a pendulum using the deep deterministic policy gradient (DDPG)
Trust region policy optimization
Proximal policy optimization

Policy Gradients and Optimization Chapter 11

[226]

Policy gradient
The policy gradient is one of the amazing algorithms in reinforcement learning (RL) where
we directly optimize the policy parameterized by some parameter . So far, we have used
the Q function for finding the optimal policy. Now we will see how to find the optimal
policy without the Q function. First, let's define the policy function as , that is, the
probability of taking an action a given the state s. We parameterize the policy via a
parameter as , which allows us to determine the best action in a state.

The policy gradient method has several advantages, and it can handle the continuous
action space where we have an infinite number of actions and states. Say we are building a
self-driving car. A car should be driven without hitting any other vehicles. We get a
negative reward when the car hits a vehicle and a positive reward when the car does not hit
any other vehicle. We update our model parameters in such a way that we receive only a
positive reward so that our car will not hit any other vehicles. This is the basic idea of
policy gradient: we update the model parameter in a way that maximizes the reward. Let's
look at this in detail.

We use a neural network for finding the optimal policy and we call this network a policy
network. The input to the policy network will be the state and the output will be the
probability of each action in that state. Once we have this probability, we can sample an
action from this distribution and perform that action in the state. But the action we sampled
might not be the correct action to perform in the state. That's fine—we perform the action
and store the reward. Similarly, we perform actions in each state by sampling an action
from the distribution and we store the reward. Now, this becomes our training data. We
perform gradient descent and update gradients in a such a way that actions yielding high
reward in a state will have a high probability and actions yielding low reward will have a
low probability. What is the loss function? Here, we use softmax cross entropy loss and
then we multiply the loss by the reward value.

Lunar Lander using policy gradients
Say our agent is driving the space vehicle and the goal of our agent is to land correctly on
the landing pad. If our agent (lander) lands away from the landing pad, then it loses the
reward and the episode will get terminated if the agent crashes or comes to rest. Four
discrete actions available in the environment are do nothing, fire left orientation engine, fire
main engine, and fire right orientation engine.

Policy Gradients and Optimization Chapter 11

[227]

Now we will see how to train our agents to correctly land on the landing pad with policy
gradients. Credit for the code used in this section goes to Gabriel (https:/ /github. com/
gabrielgarza/openai- gym- policy- gradient):

First, we import the necessary libraries:

import tensorflow as tf
import numpy as np
from tensorflow.python.framework import ops
import gym
import numpy as np
import time

Then we define the PolicyGradient class, which implements the policy gradient
algorithm. Let's break down the class and see each function separately. You can look at the
whole program as a Jupyter notebook (https:/ / github. com/ sudharsan13296/ Hands- On-
Reinforcement-Learning- With- Python/ blob/ master/ 11.
%20Policy%20Gradients%20and%20Optimization/ 11.
2%20Lunar%20Lander%20Using%20Policy%20Gradients. ipynb):

class PolicyGradient:
 # first we define the __init__ method where we initialize all variables

https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/gabrielgarza/openai-gym-policy-gradient
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb
https://github.com/sudharsan13296/Hands-On-Reinforcement-Learning-With-Python/blob/master/11.%20Policy%20Gradients%20and%20Optimization/11.2%20Lunar%20Lander%20Using%20Policy%20Gradients.ipynb

Policy Gradients and Optimization Chapter 11

[228]

 def __init__(self, n_x,n_y,learning_rate=0.01, reward_decay=0.95):
 # number of states in the environment
 self.n_x = n_x
 # number of actions in the environment
 self.n_y = n_y
 # learning rate of the network
 self.lr = learning_rate
 # discount factor
 self.gamma = reward_decay
 # initialize the lists for storing observations,
 # actions and rewards
 self.episode_observations, self.episode_actions,
self.episode_rewards = [], [], []
 # we define a function called build_network for
 # building the neural network
 self.build_network()
 # stores the cost i.e loss
 self.cost_history = []
 # initialize tensorflow session
 self.sess = tf.Session()
 self.sess.run(tf.global_variables_initializer())

Next, we define a store_transition function which stores the transitions, that is, state,
action, and reward. We can use this information for training the network:

 def store_transition(self, s, a, r):
 self.episode_observations.append(s)
 self.episode_rewards.append(r)

 # store actions as list of arrays
 action = np.zeros(self.n_y)
 action[a] = 1
 self.episode_actions.append(action)

We define the choose_action function for choosing the action given the state:

 def choose_action(self, observation):

 # reshape observation to (num_features, 1)
 observation = observation[:, np.newaxis]

 # run forward propagation to get softmax probabilities
 prob_weights = self.sess.run(self.outputs_softmax, feed_dict =
{self.X: observation})

Policy Gradients and Optimization Chapter 11

[229]

 # select action using a biased sample this will return
 # the index of the action we have sampled
 action = np.random.choice(range(len(prob_weights.ravel())),
p=prob_weights.ravel())
 return action

We define the build_network function for building the neural network:

 def build_network(self):
 # placeholders for input x, and output y
 self.X = tf.placeholder(tf.float32, shape=(self.n_x, None),
name="X")
 self.Y = tf.placeholder(tf.float32, shape=(self.n_y, None),
name="Y")
 # placeholder for reward
 self.discounted_episode_rewards_norm = tf.placeholder(tf.float32,
[None,], name="actions_value")

 # we build 3 layer neural network with 2 hidden layers and
 # 1 output layer
 # number of neurons in the hidden layer
 units_layer_1 = 10
 units_layer_2 = 10
 # number of neurons in the output layer
 units_output_layer = self.n_y
 # now let us initialize weights and bias value using
 # tensorflow's tf.contrib.layers.xavier_initializer
 W1 = tf.get_variable("W1", [units_layer_1, self.n_x], initializer =
tf.contrib.layers.xavier_initializer(seed=1))
 b1 = tf.get_variable("b1", [units_layer_1, 1], initializer =
tf.contrib.layers.xavier_initializer(seed=1))
 W2 = tf.get_variable("W2", [units_layer_2, units_layer_1],
initializer = tf.contrib.layers.xavier_initializer(seed=1))
 b2 = tf.get_variable("b2", [units_layer_2, 1], initializer =
tf.contrib.layers.xavier_initializer(seed=1))
 W3 = tf.get_variable("W3", [self.n_y, units_layer_2], initializer =
tf.contrib.layers.xavier_initializer(seed=1))
 b3 = tf.get_variable("b3", [self.n_y, 1], initializer =
tf.contrib.layers.xavier_initializer(seed=1))

 # and then, we perform forward propagation

 Z1 = tf.add(tf.matmul(W1,self.X), b1)
 A1 = tf.nn.relu(Z1)
 Z2 = tf.add(tf.matmul(W2, A1), b2)
 A2 = tf.nn.relu(Z2)
 Z3 = tf.add(tf.matmul(W3, A2), b3)
 A3 = tf.nn.softmax(Z3)

Policy Gradients and Optimization Chapter 11

[230]

 # as we require, probabilities, we apply softmax activation
 # function in the output layer,
 logits = tf.transpose(Z3)
 labels = tf.transpose(self.Y)
 self.outputs_softmax = tf.nn.softmax(logits, name='A3')

 # next we define our loss function as cross entropy loss
 neg_log_prob =
tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)
 # reward guided loss
 loss = tf.reduce_mean(neg_log_prob *
self.discounted_episode_rewards_norm)

 # we use adam optimizer for minimizing the loss
 self.train_op = tf.train.AdamOptimizer(self.lr).minimize(loss)

Next, we define the discount_and_norm_rewards function which will result in the
discount and normalized reward:

 def discount_and_norm_rewards(self):
 discounted_episode_rewards = np.zeros_like(self.episode_rewards)
 cumulative = 0
 for t in reversed(range(len(self.episode_rewards))):
 cumulative = cumulative * self.gamma + self.episode_rewards[t]
 discounted_episode_rewards[t] = cumulative

 discounted_episode_rewards -= np.mean(discounted_episode_rewards)
 discounted_episode_rewards /= np.std(discounted_episode_rewards)
 return discounted_episode_rewards

Now we actually perform the learning:

 def learn(self):
 # discount and normalize episodic reward
 discounted_episode_rewards_norm = self.discount_and_norm_rewards()

 # train the network
 self.sess.run(self.train_op, feed_dict={
 self.X: np.vstack(self.episode_observations).T,
 self.Y: np.vstack(np.array(self.episode_actions)).T,
 self.discounted_episode_rewards_norm:
discounted_episode_rewards_norm,
 })

Policy Gradients and Optimization Chapter 11

[231]

 # reset the episodic data
 self.episode_observations, self.episode_actions,
self.episode_rewards = [], [], []

 return discounted_episode_rewards_norm

You can see the output as follows:

Deep deterministic policy gradient
In Chapter 8, Atari Games with Deep Q Network, we looked at how DQN works and we
applied DQNs to play Atari games. However, those are discrete environments where we
have a finite set of actions. Think of a continuous environment space like training a robot to
walk; in those environments it is not feasible to apply Q learning because finding a greedy
policy will require a lot of optimization at each and every step. Even if we make this
continuous environment discrete, we might lose important features and end up with a huge
set of action spaces. It is difficult to attain convergence when we have a huge action space.

Policy Gradients and Optimization Chapter 11

[232]

So we use a new architecture called Actor Critic with two networks—Actor and Critic. The
Actor Critic architecture combines the policy gradient and state action value functions. The
role of the Actor network is to determine the best actions in the state by tuning the
parameter , and the role of the Critic is to evaluate the action produced by the Actor. Critic
evaluates the Actor's action by computing the temporal difference error. That is, we
perform a policy gradient on an Actor network to select the actions and the Critic network
evaluates the action produced by the Actor network using the TD error. The Actor Critic
architecture is shown in the following diagram:

Similar to DQN, here we use an experience buffer, using which Actor and Critic networks
are trained by sampling a mini batch of experiences. We also use a separate target Actor
and Critic network for computing the loss.

For example, in a Pong game we will have different features of different scales such as
position, velocity, and so on. So we scale the features in a way that all the features will be in
the same scale. We use a method called batch normalization for scaling the features. It
normalizes all the features to have unit mean and variance. How do we explore new
actions? In a continuous environment, there will be n number of actions. To explore new
actions we add some noise N to the action produced by the Actor network. We generate
this noise using a process called the Ornstein-Uhlenbeck random process.

Now we will look at the DDPG algorithm in detail.

Let's say we have two networks: the Actor network and Critic network. We represent
the Actor network with which takes input as a state and results in the action where

 is the Actor network weights. We represent the Critic network as , which takes
an input as a state and action and returns the Q value where is the Critic network
weights.

Similarly, we define a target network for both the Actor network and Critic network as
 and respectively, where and are the weights of the target Actor

and Critic network.

Policy Gradients and Optimization Chapter 11

[233]

We update Actor network weights with policy gradients and the Critic network weight
with the gradients calculated from the TD error.

First, we select an action by adding the exploration noise N to the action produced by the
Actor network, such as . We perform this action in a state, s, receive a reward, r
and move to a new state, s'. We store this transition information in an experience replay
buffer.

After some iterations, we sample transitions from the replay buffer and train the network,
and then we calculate the target Q value . We compute
the TD error as:

Where M is the number of samples from the replay buffer that are used for training. We
update our Critic networks weights with gradients calculated from this loss L.

Similarly, we update our policy network weights using a policy gradient. Then we update
the weights of Actor and Critic network in the target network. We update the weights of
the target networks slowly, which promotes greater stability; it is called the soft
replacement:

Swinging a pendulum
We have a pendulum that starts in a random position, and the goal of our agent is to swing
the pendulum up so it stays upright. We will see how to use DDPG here. Credit for the
code used in this section goes to wshuail (https:/ /github. com/wangshuailong/
reinforcement_learning_ with_ Tensorflow/ tree/ master/ DDPG).

First, let's import the necessary libraries:

import tensorflow as tf
import numpy as np
import gym

https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG

Policy Gradients and Optimization Chapter 11

[234]

Next, we define the hyperparameters as follows:

number of steps in each episode
epsiode_steps = 500

learning rate for actor
lr_a = 0.001

learning rate for critic
lr_c = 0.002

discount factor
gamma = 0.9

soft replacement
alpha = 0.01

replay buffer size
memory = 10000

batch size for training
batch_size = 32
render = False

We will implement the DDPG algorithm in the DDPG class. We break down the class to see
each function. First, we initialize everything:

class DDPG(object):
 def __init__(self, no_of_actions, no_of_states, a_bound,):
 # initialize the memory with shape as no of actions, no of states
and our defined memory size
 self.memory = np.zeros((memory, no_of_states * 2 + no_of_actions +
1), dtype=np.float32)
 # initialize pointer to point to our experience buffer
 self.pointer = 0
 # initialize tensorflow session
 self.sess = tf.Session()
 # initialize the variance for OU process for exploring policies
 self.noise_variance = 3.0
 self.no_of_actions, self.no_of_states, self.a_bound =
no_of_actions, no_of_states, a_bound,
 # placeholder for current state, next state and rewards
 self.state = tf.placeholder(tf.float32, [None, no_of_states], 's')
 self.next_state = tf.placeholder(tf.float32, [None, no_of_states],
's_')
 self.reward = tf.placeholder(tf.float32, [None, 1], 'r')
 # build the actor network which has separate eval(primary)

Policy Gradients and Optimization Chapter 11

[235]

 # and target network
 with tf.variable_scope('Actor'):
 self.a = self.build_actor_network(self.state, scope='eval',
trainable=True)
 a_ = self.build_actor_network(self.next_state, scope='target',
trainable=False)
 # build the critic network which has separate eval(primary)
 # and target network
 with tf.variable_scope('Critic'):
 q = self.build_crtic_network(self.state, self.a, scope='eval',
trainable=True)
 q_ = self.build_crtic_network(self.next_state, a_,
scope='target', trainable=False)

 # initialize the network parameters
 self.ae_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Actor/eval')
 self.at_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Actor/target')
 self.ce_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Critic/eval')
 self.ct_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope='Critic/target')

 # update target value
 self.soft_replace = [[tf.assign(at, (1-alpha)*at+alpha*ae),
tf.assign(ct, (1-alpha)*ct+alpha*ce)]
 for at, ae, ct, ce in zip(self.at_params, self.ae_params,
self.ct_params, self.ce_params)]
 # compute target Q value, we know that Q(s,a) = reward + gamma *
 Q'(s',a')
 q_target = self.reward + gamma * q_
 # compute TD error i.e actual - predicted values
 td_error = tf.losses.mean_squared_error(labels=(self.reward + gamma
* q_), predictions=q)
 # train the critic network with adam optimizer
 self.ctrain = tf.train.AdamOptimizer(lr_c).minimize(td_error,
name="adam-ink", var_list = self.ce_params)
 # compute the loss in actor network
 a_loss = - tf.reduce_mean(q)
 # train the actor network with adam optimizer for
 # minimizing the loss
 self.atrain = tf.train.AdamOptimizer(lr_a).minimize(a_loss,
var_list=self.ae_params)

Policy Gradients and Optimization Chapter 11

[236]

 # initialize summary writer to visualize our network in tensorboard
 tf.summary.FileWriter("logs", self.sess.graph)
 # initialize all variables
 self.sess.run(tf.global_variables_initializer())

How do we select an action in DDPG? We select an action by adding noise to the action
space. We use the Ornstein-Uhlenbeck random process for generating noise:

 def choose_action(self, s):
 a = self.sess.run(self.a, {self.state: s[np.newaxis, :]})[0]
 a = np.clip(np.random.normal(a, self.noise_variance), -2, 2)
 return a

Then we define the learn function where the actual training happens. Here we select a
batch of states, actions, rewards, and the next state from the experience buffer. We
train Actor and Critic networks with that:

 def learn(self):
 # soft target replacement
 self.sess.run(self.soft_replace)

 indices = np.random.choice(memory, size=batch_size)
 batch_transition = self.memory[indices, :]
 batch_states = batch_transition[:, :self.no_of_states]
 batch_actions = batch_transition[:, self.no_of_states:
self.no_of_states + self.no_of_actions]
 batch_rewards = batch_transition[:, -self.no_of_states - 1: -
self.no_of_states]
 batch_next_state = batch_transition[:, -self.no_of_states:]

 self.sess.run(self.atrain, {self.state: batch_states})
 self.sess.run(self.ctrain, {self.state: batch_states, self.a:
batch_actions, self.reward: batch_rewards, self.next_state:
batch_next_state})

We define a store_transition function, that stores all the information in the buffer and
performs the learning:

 def store_transition(self, s, a, r, s_):
 trans = np.hstack((s,a,[r],s_))
 index = self.pointer % memory
 self.memory[index, :] = trans
 self.pointer += 1

 if self.pointer > memory:
 self.noise_variance *= 0.99995
 self.learn()

Policy Gradients and Optimization Chapter 11

[237]

We define the build_actor_network function for building our Actor network:

 def build_actor_network(self, s, scope, trainable):
 # Actor DPG
 with tf.variable_scope(scope):
 l1 = tf.layers.dense(s, 30, activation = tf.nn.tanh, name =
'l1', trainable = trainable)
 a = tf.layers.dense(l1, self.no_of_actions, activation =
tf.nn.tanh, name = 'a', trainable = trainable)
 return tf.multiply(a, self.a_bound, name = "scaled_a")

We define the build_ crtic_network function:

 def build_crtic_network(self, s, a, scope, trainable):
 # Critic Q-leaning
 with tf.variable_scope(scope):
 n_l1 = 30
 w1_s = tf.get_variable('w1_s', [self.no_of_states, n_l1],
trainable = trainable)
 w1_a = tf.get_variable('w1_a', [self.no_of_actions, n_l1],
trainable = trainable)
 b1 = tf.get_variable('b1', [1, n_l1], trainable = trainable)
 net = tf.nn.tanh(tf.matmul(s, w1_s) + tf.matmul(a, w1_a) + b1
)

 q = tf.layers.dense(net, 1, trainable = trainable)
 return q

Now, we initialize our gym environment using the make function:

env = gym.make("Pendulum-v0")
env = env.unwrapped
env.seed(1)

We get the number of states:

no_of_states = env.observation_space.shape[0]

We get the number of actions:

no_of_actions = env.action_space.shape[0]

Also, higher bound of the action:

a_bound = env.action_space.high

Policy Gradients and Optimization Chapter 11

[238]

Now, we create an object for our DDPG class:

ddpg = DDPG(no_of_actions, no_of_states, a_bound)

We initialize the list to store the total rewards:

total_reward = []

Set the number of episodes:

no_of_episodes = 300

Now, let's begin training:

for each episodes
for i in range(no_of_episodes):
 # initialize the environment
 s = env.reset()
 # episodic reward
 ep_reward = 0
 for j in range(epsiode_steps):
 env.render()

 # select action by adding noise through OU process
 a = ddpg.choose_action(s)
 # perform the action and move to the next state s
 s_, r, done, info = env.step(a)
 # store the the transition to our experience buffer
 # sample some minibatch of experience and train the network
 ddpg.store_transition(s, a, r, s_)
 # update current state as next state
 s = s_
 # add episodic rewards
 ep_reward += r
 if j == epsiode_steps-1:
 # store the total rewards
 total_reward.append(ep_reward)
 # print rewards obtained per each episode
 print('Episode:', i, ' Reward: %i' % int(ep_reward))
 break

Policy Gradients and Optimization Chapter 11

[239]

You will see the output as follows:

We can see the computation graph in TensorBoard:

Policy Gradients and Optimization Chapter 11

[240]

Trust Region Policy Optimization
Before understanding Trust Region Policy Optimization (TRPO), we need to understand
constrained policy optimization. We know that in RL agents learn by trial and error to
maximize the reward. To find the best policy, our agents will explore all different actions
and choose the one that gives a good reward. While exploring different actions there is a
very good chance that our agents will explore bad actions as well. But the biggest challenge
is when we allow our agents to learn in the real world and when the reward functions are
not properly designed. For example, consider an agent learning to walk without hitting any
obstacles. The agent will receive a negative reward if it gets hit by any obstacle and a
positive reward for not getting hit by any obstacle. To figure out the best policy, the agent
explores different actions. The agent also takes action, such as hitting an obstacle to check
whether it gives a good reward. But that is not safe for our agent; it is particularly unsafe
when an agent is learning in a real-world environment. So we introduce constraint-based
learning. We set a threshold and if the probability of hitting the obstacle is less than this
threshold, then we consider our agent safe, or else we consider our agent unsafe. A
constraint is added to make sure that our agent is in a safe region.

In TRPO, we iteratively improve the policy and we impose a constraint such that
the Kullback–Leibler (KL) divergence between an old policy and a new policy is to be less
than some constant . This constraint is called the trust region constraint.

So what is KL divergence? KL divergence tells us how two probability distributions are
different from each other. Since our policies are probability distribution over actions, KL
divergence tells us how far a new policy is from the old policy. Why do we have to keep the
distance between the old policy and new policy less than some constant ? Because we
don't want our new policy to drift apart from the old policy. So we impose a constraint to
keep the new policy near to the old policy. Again, why do we have to stay near the old
policy? When the new policy is far away from the old policy, then it will affect our agent's
learning performance and also lead to a completely different learning behavior. In a
nutshell, in TRPO, we take a step toward the direction that improves our policy, that is,
maximizes the reward, but we should also be sure that the trust region constraint is
satisfied. It uses conjugate gradient descent (http:/ /www. idi. ntnu. no/~elster/ tdt24/
tdt24-f09/cg.pdf) to optimize the network parameter while satisfying the
constraint. The algorithm guarantees monotonic policy improvement and has also achieved
excellent results in various continuous environments.

Now we will see how TRPO works mathematically; you can skip this section if you are not
interested in math.

http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf
http://www.idi.ntnu.no/~elster/tdt24/tdt24-f09/cg.pdf

Policy Gradients and Optimization Chapter 11

[241]

Get ready for some cool math.

Let 's specify the total expected discounted reward , as follows:

Now let's consider the new policy as ; it can be defined as the expected return of policy
 in terms of advantages over our old policy , as follows:

Okay, why are we using the advantages of the old policy? Because we are measuring how
good the new policy is with respect to the average performance of the old policy . We
can rewrite the preceding equation with a sum over states instead of timesteps as follows:

 is the discounted visitation frequencies, that is:

Policy Gradients and Optimization Chapter 11

[242]

If you see the preceding equation there is a complex dependency of on
and so it is difficult to optimize the equation. So we will introduce the local approximation

 to as follows:

 uses the visitation frequency rather than , that is, we ignore the changes in state
visitation frequency due to the change in policy. To put it in simple terms, we assume that
the state visitation frequency is not different for both the new and old policy. When we are
calculating the gradient of , which will also improve with respect to some parameter
we can't be sure how much big of a step to take.

Kakade and Langford proposed a new policy update method called conservative policy
iteration, shown as follows:

 ---- (1)

 is the new policy. is the old policy.

, that is, , is the policy which maximizes .

Kakade and Langford derived the following equation from (1) as follows:

 ---- (2)

C is the penalty coefficient and it is equal to , and denotes the KL
divergence between the old policy and the new policy.

If we look at the preceding equation (2) closely, we notice that our expected long-term
reward increases monotonically as long as the right-hand side is maximized.

Let's define this right-hand side term as , as follows:

 ---- (3)

Policy Gradients and Optimization Chapter 11

[243]

Substituting equation (3) in (2), we get:

 ---- (4)

Since we know that the KL divergence between the two same policies will be 0, we can
write:

 ----(5)

Combining equations (4) and (5), we can write:

In the preceding equation, we can understand that maximizing Mi guarantees the
maximization of our expected reward. So now our goal is to maximize Mi which in turn
maximizes our expected reward. Since we use parameterized policies, we replace with
 in our previous equation and we use to represent a policy that we want to improve, as
shown next:

But having a penalty coefficient C in the preceding equation will cause the step size to be
very small, which in turn slows down the updates. So, we impose a constraint on the KL
divergence's old policy and new policy, which is the trust region constraint, and it will help
us to find the optimal step size:

Now, the problem is KL divergence is imposed on every point in the state space and it is
really not feasible to solve when we have a high dimensional state space. So we use a
heuristic approximation which takes the average KL divergence as:

Policy Gradients and Optimization Chapter 11

[244]

So now, we can rewrite our preceding objective function with the average KL divergence
constraint as:

Expanding the value of L, we get the following:

In the preceding equation, we replace sum over states as expectation
 and we replace sum over actions by importance sampling estimator as:

Then, we substitute advantage target values with Q values .

So, our final objective function will become:

Optimizing the preceding mentioned objective function, which has a constraint, is called
constrained optimization. Our constraint is to keep the average KL divergence between the
old policy and new policy less than We use conjugate gradient descent for optimizing
the preceding function.

Policy Gradients and Optimization Chapter 11

[245]

Proximal Policy Optimization
Now we will look at another policy optimization algorithm called Proximal Policy
Optimization (PPO). It acts as an improvement to TRPO and has become the default RL
algorithm of choice in solving many complex RL problems due to its performance. It was
proposed by researchers at OpenAI for overcoming the shortcomings of TRPO. Recall the
surrogate objective function of TRPO. It is a constraint optimization problem where we
impose a constraint—that average KL divergence between the old and new policy should
be less than . But the problem with TRPO is that it requires a lot of computing power for
computing conjugate gradients to perform constrained optimization.

So, PPO modifies the objective function of TRPO by changing the constraint to a penalty
term so that we don't want to perform conjugate gradient. Now let's see how PPO works.

We define as a probability ratio between new and old policy. So, we can write our
objective function as:

LCPI denotes the conservative policy iteration. But maximizing L would lead to a large policy
update without constraint. So, we redefine our objective function by adding the penalty
term which penalizes a large policy update. Now the objective function becomes:

We have just added a new term, , to the actual equation. What does
this mean? It actually clips the value of between the interval , that is, if the
value of causes the objective function to increase, heavily clipping the value between an
interval will reduce its effects.

Policy Gradients and Optimization Chapter 11

[246]

We clip the probability ratio either at or based on two cases:

Case 1:

When the advantage is positive, which means that the corresponding action
should be preferred over the average of all other actions. We will increase the
value of for that action, so it will have a greater chance of being selected. As
we are performing a clipping value of , will not exceed greater than :

Case 2:

When the value of the advantage is negative, this means that the action has no
significance and it should not be adopted. So, in this case, we will reduce the
value of for that action so that it will have a lower chance of being selected.
Similarly, as we are performing clipping, a value of will not decrease to less
than :

Policy Gradients and Optimization Chapter 11

[247]

When we are using neural network architectures, we must define the loss function which
includes the value function error for our objective function. We will also add entropy loss to
ensure enough exploration, as we did in A3C. So our final objective function becomes:

c1 and c2 are the coefficients, is the squared error loss between the actual and target

value function, that is, , and S is the entropy bonus.

Summary
We started off with policy gradient methods which directly optimized the policy without
requiring the Q function. We learned about policy gradients by solving a Lunar Lander
game, and we looked at DDPG, which has the benefits of both policy gradients and Q
functions.

Then we looked at policy optimization algorithms such as TRPO, which ensure monotonic
policy improvements by enforcing a constraint on KL divergence between the old and new
policy is not greater than .

We also looked at proximal policy optimization, which changed the constraint to a
penalty by penalizing the large policy update. In the next chapter, Chapter 12, Capstone
Project – Car Racing Using DQN, we will see how to build an agent to win a car racing
game.

Policy Gradients and Optimization Chapter 11

[248]

Questions
The question list is as follows:

What are policy gradients?1.
Why are policy gradients effective?2.
What is the use of the Actor Critic network in DDPG?3.
What is the constraint optimization problem?4.
What is the trust region?5.
How does PPO overcome the drawbacks of TRPO?6.

Further reading
You can further refer to the following papers:

DDPG paper: https:/ /arxiv. org/ pdf/1509. 02971. pdf

TRPO paper: https://arxiv.org/pdf/1502.05477.pdf
PPO paper: https://arxiv.org/pdf/1707.06347.pdf

https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://github.com/wangshuailong/reinforcement_learning_with_Tensorflow/tree/master/DDPG
https://arxiv.org/pdf/1502.05477.pdf
https://arxiv.org/pdf/1707.06347.pdf

12
Capstone Project – Car Racing

Using DQN
In the last few chapters, we have learned how Deep Q learning works by approximating the
q function with a neural network. Following this, we have seen various improvements to
Deep Q Network (DQN) such as Double Q learning, dueling network architectures, and
the Deep Recurrent Q Network. We have seen how DQN makes use of a replay buffer to
store the agent's experience and trains the network with the mini-batch of samples from the
buffer. We have also implemented DQNs for playing Atari games and a Deep Recurrent Q
Network (DRQN) for playing the Doom game. In this chapter, let's get into the detailed
implementation of a dueling DQN, which is essentially the same as a regular DQN, except
the final fully connected layer will be broken down into two streams, namely a value
stream and an advantage stream, and these two streams will be clubbed together to
compute the Q function. We will see how to train an agent for winning the car racing game
with a dueling DQN.

In this chapter, you will learn how to implement the following:

Environment wrapper functions
A dueling network
Replay buffer
Training the network
Car racing

Capstone Project – Car Racing Using DQN Chapter 12

[250]

Environment wrapper functions
The credit for the code used in this chapter goes to Giacomo Spigler's GitHub
repository (https:/ / github. com/ spiglerg/ DQN_ DDQN_ Dueling_ and_ DDPG_
Tensorflow). Throughout this chapter, the code is explained at each and every line. For a
complete structured code, check the above GitHub repository.

First, we import all the necessary libraries:

import numpy as np
import tensorflow as tf
import gym
from gym.spaces import Box
from scipy.misc import imresize
import random
import cv2
import time
import logging
import os
import sys

We define the EnvWrapper class and define some of the environment wrapper functions:

class EnvWrapper:

 We define the __init__ method and initialize variables:

 def __init__(self, env_name, debug=False):

Initialize the gym environment:

 self.env = gym.make(env_name)

Get the action_space:

 self.action_space = self.env.action_space

Get the observation_space:

 self.observation_space = Box(low=0, high=255, shape=(84, 84, 4))

https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow
https://github.com/spiglerg/DQN_DDQN_Dueling_and_DDPG_Tensorflow

Capstone Project – Car Racing Using DQN Chapter 12

[251]

Initialize frame_num for storing the frame count:

 self.frame_num = 0

Initialize monitor for recording the game screen:

 self.monitor = self.env.monitor

Initialize frames:

 self.frames = np.zeros((84, 84, 4), dtype=np.uint8)

Initialize a Boolean called debug, which, when set to true displays the last few frames:

 self.debug = debug

 if self.debug:
 cv2.startWindowThread()
 cv2.namedWindow("Game")

Next, we define a function called step, which takes the current state as input and returns
the preprocessed next state's frame:

 def step(self, a):
 ob, reward, done, xx = self.env.step(a)
 return self.process_frame(ob), reward, done, xx

We define a function called reset for resetting the environment; after resetting, it will
return the preprocessed game screen:

 def reset(self):
 self.frame_num = 0
 return self.process_frame(self.env.reset())

 Next, we define another function for rendering the environment:

 def render(self):
 return self.env.render()

Now, we define the process_frame function for preprocessing the frame:

 def process_frame(self, frame):

 # convert the image to gray
 state_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

 # change the size

Capstone Project – Car Racing Using DQN Chapter 12

[252]

 state_resized = cv2.resize(state_gray,(84,110))
 #resize
 gray_final = state_resized[16:100,:]

 if self.frame_num == 0:
 self.frames[:, :, 0] = gray_final
 self.frames[:, :, 1] = gray_final
 self.frames[:, :, 2] = gray_final
 self.frames[:, :, 3] = gray_final

 else:
 self.frames[:, :, 3] = self.frames[:, :, 2]
 self.frames[:, :, 2] = self.frames[:, :, 1]
 self.frames[:, :, 1] = self.frames[:, :, 0]
 self.frames[:, :, 0] = gray_final

 # Next we increment the frame_num counter

 self.frame_num += 1

 if self.debug:
 cv2.imshow('Game', gray_final)

 return self.frames.copy()

After preprocessing, our game screen looks like the following screenshot:

Capstone Project – Car Racing Using DQN Chapter 12

[253]

Dueling network
Now, we build our dueling DQN; we build three convolutional layers followed by two
fully connected layers, and the final fully connected layer will be split into two separate
layers for value stream and advantage stream. We will use the aggregate layer, which
combines both the value stream and the advantage stream, to compute the q value. The
dimensions of these layers are given as follows:

Layer 1: 32 8x8 filters with stride 4 + RELU
Layer 2: 64 4x4 filters with stride 2 + RELU
Layer 3: 64 3x3 filters with stride 1 + RELU
Layer 4a: 512 unit fully-connected layer + RELU
Layer 4b: 512 unit fully-connected layer + RELU
Layer 5a: 1 unit FC + RELU (state value)
Layer 5b: Actions FC + RELU (advantage value)
Layer6: Aggregate V(s)+A(s,a)

class QNetworkDueling(QNetwork):

We define the __init__ method to initialize all layers:

 def __init__(self, input_size, output_size, name):
 self.name = name
 self.input_size = input_size
 self.output_size = output_size
 with tf.variable_scope(self.name):

 # Three convolutional Layers
 self.W_conv1 = self.weight_variable([8, 8, 4, 32])
 self.B_conv1 = self.bias_variable([32])
 self.stride1 = 4

 self.W_conv2 = self.weight_variable([4, 4, 32, 64])
 self.B_conv2 = self.bias_variable([64])
 self.stride2 = 2

 self.W_conv3 = self.weight_variable([3, 3, 64, 64])
 self.B_conv3 = self.bias_variable([64])
 self.stride3 = 1

 # Two fully connected layer
 self.W_fc4a = self.weight_variable([7*7*64, 512])
 self.B_fc4a = self.bias_variable([512])

Capstone Project – Car Racing Using DQN Chapter 12

[254]

 self.W_fc4b = self.weight_variable([7*7*64, 512])
 self.B_fc4b = self.bias_variable([512])

 # Value stream
 self.W_fc5a = self.weight_variable([512, 1])
 self.B_fc5a = self.bias_variable([1])

 # Advantage stream
 self.W_fc5b = self.weight_variable([512, self.output_size])
 self.B_fc5b = self.bias_variable([self.output_size])

We define the __call__ method and perform the convolutional operation:

 def __call__(self, input_tensor):
 if type(input_tensor) == list:
 input_tensor = tf.concat(1, input_tensor)

 with tf.variable_scope(self.name):
 # Perform convolutional on three layers

 self.h_conv1 = tf.nn.relu(tf.nn.conv2d(input_tensor,
self.W_conv1, strides=[1, self.stride1, self.stride1, 1], padding='VALID')
+ self.B_conv1)

 self.h_conv2 = tf.nn.relu(tf.nn.conv2d(self.h_conv1,
self.W_conv2, strides=[1, self.stride2, self.stride2, 1], padding='VALID')
+ self.B_conv2)

 self.h_conv3 = tf.nn.relu(tf.nn.conv2d(self.h_conv2,
self.W_conv3, strides=[1, self.stride3, self.stride3, 1], padding='VALID')
+ self.B_conv3)

 # Flatten the convolutional output
 self.h_conv3_flat = tf.reshape(self.h_conv3, [-1, 7*7*64])
 # Fully connected layer
 self.h_fc4a = tf.nn.relu(tf.matmul(self.h_conv3_flat,
self.W_fc4a) + self.B_fc4a)

 self.h_fc4b = tf.nn.relu(tf.matmul(self.h_conv3_flat,
self.W_fc4b) + self.B_fc4b)

 # Compute value stream and advantage stream
 self.h_fc5a_value = tf.identity(tf.matmul(self.h_fc4a,
self.W_fc5a) + self.B_fc5a)

Capstone Project – Car Racing Using DQN Chapter 12

[255]

 self.h_fc5b_advantage = tf.identity(tf.matmul(self.h_fc4b,
self.W_fc5b) + self.B_fc5b)

 # Club both the value and advantage stream
 self.h_fc6 = self.h_fc5a_value + (self.h_fc5b_advantage -
tf.reduce_mean(self.h_fc5b_advantage, reduction_indices=[1,],
keep_dims=True))

 return self.h_fc6

Replay memory
Now, we build the experience replay buffer, which is used for storing all the agent's
experience. We sample a minibatch of experience from the replay buffer for training the
network:

class ReplayMemoryFast:

First, we define the __init__ method and initiate the buffer size:

 def __init__(self, memory_size, minibatch_size):

 # max number of samples to store
 self.memory_size = memory_size

 # minibatch size
 self.minibatch_size = minibatch_size
 self.experience = [None]*self.memory_size
 self.current_index = 0
 self.size = 0

Next, we define the store function for storing the experiences:

 def store(self, observation, action, reward, newobservation, is_terminal):

Store the experience as a tuple (current state, action, reward, next state, is it a terminal
state):

 self.experience[self.current_index] = (observation, action, reward,
newobservation, is_terminal)
 self.current_index += 1
 self.size = min(self.size+1, self.memory_size)

Capstone Project – Car Racing Using DQN Chapter 12

[256]

If the index is greater than the memory, then we flush the index by subtracting it with
memory size:

 if self.current_index >= self.memory_size:
 self.current_index -= self.memory_size

Next, we define a sample function for sampling a minibatch of experience:

 def sample(self):
 if self.size < self.minibatch_size:
 return []

 # First we randomly sample some indices
 samples_index =
np.floor(np.random.random((self.minibatch_size,))*self.size)

 # select the experience from the sampled indexed
 samples = [self.experience[int(i)] for i in samples_index]

 return samples

Training the network
Now, we will see how to train the network.

First, we define the DQN class and initialize all variables in the __init__ method:

class DQN(object):
 def __init__(self, state_size,
 action_size,
 session,
 summary_writer = None,
 exploration_period = 1000,
 minibatch_size = 32,
 discount_factor = 0.99,
 experience_replay_buffer = 10000,
 target_qnet_update_frequency = 10000,
 initial_exploration_epsilon = 1.0,
 final_exploration_epsilon = 0.05,
 reward_clipping = -1,
):

Capstone Project – Car Racing Using DQN Chapter 12

[257]

Initialize all variables:

 self.state_size = state_size
 self.action_size = action_size

 self.session = session
 self.exploration_period = float(exploration_period)
 self.minibatch_size = minibatch_size
 self.discount_factor = tf.constant(discount_factor)
 self.experience_replay_buffer = experience_replay_buffer
 self.summary_writer = summary_writer
 self.reward_clipping = reward_clipping

 self.target_qnet_update_frequency = target_qnet_update_frequency
 self.initial_exploration_epsilon = initial_exploration_epsilon
 self.final_exploration_epsilon = final_exploration_epsilon
 self.num_training_steps = 0

Initialize the primary dueling DQN by creating an instance to our QNetworkDueling class:

 self.qnet = QNetworkDueling(self.state_size, self.action_size,
"qnet")

Similarly, initialize the target dueling DQN:

 self.target_qnet = QNetworkDueling(self.state_size,
self.action_size, "target_qnet")

Next, initialize the optimizer as an RMSPropOptimizer:

 self.qnet_optimizer =
tf.train.RMSPropOptimizer(learning_rate=0.00025, decay=0.99, epsilon=0.01)

Now, initialize experience_replay_buffer by creating the instance to our
ReplayMemoryFast class:

 self.experience_replay =
ReplayMemoryFast(self.experience_replay_buffer, self.minibatch_size)
 # Setup the computational graph
 self.create_graph()

Capstone Project – Car Racing Using DQN Chapter 12

[258]

Next, we define the copy_to_target_network function for copying weights from the
primary network to our target network:

 def copy_to_target_network(source_network, target_network):
 target_network_update = []

 for v_source, v_target in zip(source_network.variables(),
target_network.variables()):

 # update target network
 update_op = v_target.assign(v_source)
 target_network_update.append(update_op)

 return tf.group(*target_network_update)

Now, we define the create_graph function and build our computational graph:

 def create_graph(self):

We calculate the q_values and select the action that has the maximum q value:

 with tf.name_scope("pick_action"):

 # placeholder for state
 self.state = tf.placeholder(tf.float32, (None,)+self.state_size
, name="state")

 # placeholder for q values
 self.q_values = tf.identity(self.qnet(self.state) ,
name="q_values")

 # placeholder for predicted actions
 self.predicted_actions = tf.argmax(self.q_values, dimension=1 ,
name="predicted_actions")

 # plot histogram to track max q values
 tf.histogram_summary("Q values",
tf.reduce_mean(tf.reduce_max(self.q_values, 1))) # save max q-values to
track learning

 Next, we calculate the target future reward:

 with tf.name_scope("estimating_future_rewards"):
 self.next_state = tf.placeholder(tf.float32,
(None,)+self.state_size , name="next_state")

 self.next_state_mask = tf.placeholder(tf.float32, (None,) ,
name="next_state_mask")

Capstone Project – Car Racing Using DQN Chapter 12

[259]

 self.rewards = tf.placeholder(tf.float32, (None,) ,
name="rewards")

 self.next_q_values_targetqnet =
tf.stop_gradient(self.target_qnet(self.next_state),
name="next_q_values_targetqnet")
 self.next_q_values_qnet =
tf.stop_gradient(self.qnet(self.next_state), name="next_q_values_qnet")

 self.next_selected_actions = tf.argmax(self.next_q_values_qnet,
dimension=1)

 self.next_selected_actions_onehot =
tf.one_hot(indices=self.next_selected_actions, depth=self.action_size)

 self.next_max_q_values = tf.stop_gradient(tf.reduce_sum(
tf.mul(self.next_q_values_targetqnet, self.next_selected_actions_onehot)
, reduction_indices=[1,]) * self.next_state_mask)

 self.target_q_values = self.rewards +
self.discount_factor*self.next_max_q_values

Next, we perform the optimization using RMS prop optimizer:

 with tf.name_scope("optimization_step"):
 self.action_mask = tf.placeholder(tf.float32, (None,
self.action_size) , name="action_mask")

 self.y = tf.reduce_sum(self.q_values * self.action_mask ,
reduction_indices=[1,])

 ## ERROR CLIPPING
 self.error = tf.abs(self.y - self.target_q_values)

 quadratic_part = tf.clip_by_value(self.error, 0.0, 1.0)
 linear_part = self.error - quadratic_part

 self.loss = tf.reduce_mean(0.5*tf.square(quadratic_part) +
linear_part)

 # optimize the gradients

 qnet_gradients =
self.qnet_optimizer.compute_gradients(self.loss, self.qnet.variables())

 for i, (grad, var) in enumerate(qnet_gradients):
 if grad is not None:

Capstone Project – Car Racing Using DQN Chapter 12

[260]

 qnet_gradients[i] = (tf.clip_by_norm(grad, 10), var)

 self.qnet_optimize =
self.qnet_optimizer.apply_gradients(qnet_gradients)

Copy the primary network weights to the target network:

 with tf.name_scope("target_network_update"):
 self.hard_copy_to_target =
DQN.copy_to_target_network(self.qnet, self.target_qnet)

We define the store function for storing all the experience in the
experience_replay_buffer:

 def store(self, state, action, reward, next_state, is_terminal):
 # rewards clipping
 if self.reward_clipping > 0.0:
 reward = np.clip(reward, -self.reward_clipping,
self.reward_clipping)

 self.experience_replay.store(state, action, reward, next_state,
is_terminal)

 We define an action function for selecting actions using a decaying epsilon-greedy policy:

 def action(self, state, training = False):
 if self.num_training_steps > self.exploration_period:
 epsilon = self.final_exploration_epsilon
 else:
 epsilon = self.initial_exploration_epsilon -
float(self.num_training_steps) * (self.initial_exploration_epsilon -
self.final_exploration_epsilon) / self.exploration_period

 if not training:
 epsilon = 0.05

 if random.random() <= epsilon:
 action = random.randint(0, self.action_size-1)
 else:
 action = self.session.run(self.predicted_actions,
{self.state:[state] })[0]

 return action

Capstone Project – Car Racing Using DQN Chapter 12

[261]

Now, we define a train function for training our network:

def train(self):

Copy the primary network weights to the target network:

 if self.num_training_steps == 0:
 print "Training starts..."
 self.qnet.copy_to(self.target_qnet)

Sample experiences from the replay memory:

 minibatch = self.experience_replay.sample()

Get the states, actions, rewards, and next states from the minibatch:

 batch_states = np.asarray([d[0] for d in minibatch])
 actions = [d[1] for d in minibatch]
 batch_actions = np.zeros((self.minibatch_size, self.action_size))
 for i in xrange(self.minibatch_size):
 batch_actions[i, actions[i]] = 1

 batch_rewards = np.asarray([d[2] for d in minibatch])
 batch_newstates = np.asarray([d[3] for d in minibatch])

 batch_newstates_mask = np.asarray([not d[4] for d in minibatch])

Perform the training operation:

 scores, _, = self.session.run([self.q_values, self.qnet_optimize],
 { self.state: batch_states,
 self.next_state: batch_newstates,
 self.next_state_mask:
batch_newstates_mask,
 self.rewards: batch_rewards,
 self.action_mask: batch_actions})

Update the target network weights:

 if self.num_training_steps % self.target_qnet_update_frequency ==
0:
 self.session.run(self.hard_copy_to_target)

 print 'mean maxQ in minibatch: ',np.mean(np.max(scores,1))

 str_ = self.session.run(self.summarize, { self.state:
batch_states,
 self.next_state: batch_newstates,

Capstone Project – Car Racing Using DQN Chapter 12

[262]

 self.next_state_mask:
batch_newstates_mask,
 self.rewards: batch_rewards,
 self.action_mask: batch_actions})

 self.summary_writer.add_summary(str_, self.num_training_steps)

 self.num_training_steps += 1

Car racing
So far, we have seen how to build a dueling DQN. Now, we will see how to make use of
our dueling DQN when playing the car racing game.

First, let's import our necessary libraries:

import gym
import time
import logging
import os
import sys
import tensorflow as tf

Initialize all of the necessary variables:

ENV_NAME = 'Seaquest-v0'
TOTAL_FRAMES = 20000000
MAX_TRAINING_STEPS = 20*60*60/3
TESTING_GAMES = 30
MAX_TESTING_STEPS = 5*60*60/3
TRAIN_AFTER_FRAMES = 50000
epoch_size = 50000
MAX_NOOP_START = 30
LOG_DIR = 'logs'
outdir = 'results'
logger = tf.train.SummaryWriter(LOG_DIR)
Intialize tensorflow session
session = tf.InteractiveSession()

Capstone Project – Car Racing Using DQN Chapter 12

[263]

Build the agent:

agent = DQN(state_size=env.observation_space.shape,
 action_size=env.action_space.n,
 session=session,
 summary_writer = logger,
 exploration_period = 1000000,
 minibatch_size = 32,
 discount_factor = 0.99,
 experience_replay_buffer = 1000000,
 target_qnet_update_frequency = 20000,
 initial_exploration_epsilon = 1.0,
 final_exploration_epsilon = 0.1,
 reward_clipping = 1.0,
)
session.run(tf.initialize_all_variables())
logger.add_graph(session.graph)
saver = tf.train.Saver(tf.all_variables())

Store the recording:

env.monitor.start(outdir+'/'+ENV_NAME,force = True,
video_callable=multiples_video_schedule)
num_frames = 0
num_games = 0
current_game_frames = 0
init_no_ops = np.random.randint(MAX_NOOP_START+1)
last_time = time.time()
last_frame_count = 0.0
state = env.reset()

Now, let's start the training:

while num_frames <= TOTAL_FRAMES+1:
 if test_mode:
 env.render()
 num_frames += 1
 current_game_frames += 1

Select the action, given the current state:

 action = agent.action(state, training = True)

Perform the action on the environment, receive the reward, and move to the next_state:

 next_state,reward,done,_ = env.step(action)

Capstone Project – Car Racing Using DQN Chapter 12

[264]

Store this transitional information in the experience_replay_buffer:

 if current_game_frames >= init_no_ops:
 agent.store(state,action,reward,next_state,done)
 state = next_state

Train the agent:

 if num_frames>=TRAIN_AFTER_FRAMES:
 agent.train()

 if done or current_game_frames > MAX_TRAINING_STEPS:
 state = env.reset()
 current_game_frames = 0
 num_games += 1
 init_no_ops = np.random.randint(MAX_NOOP_START+1)

Save the network's parameters after every epoch:

 if num_frames % epoch_size == 0 and num_frames > TRAIN_AFTER_FRAMES:
 saver.save(session,
outdir+"/"+ENV_NAME+"/model_"+str(num_frames/1000)+"k.ckpt")
 print "epoch: frames=",num_frames," games=",num_games

We test the performance for every two epochs:

 if num_frames % (2*epoch_size) == 0 and num_frames > TRAIN_AFTER_FRAMES:
 total_reward = 0
 avg_steps = 0
 for i in xrange(TESTING_GAMES):
 state = env.reset()
 init_no_ops = np.random.randint(MAX_NOOP_START+1)
 frm = 0

 while frm < MAX_TESTING_STEPS:
 frm += 1
 env.render()
 action = agent.action(state, training = False)
 if current_game_frames < init_no_ops:
 action = 0
 state,reward,done,_ = env.step(action)
 total_reward += reward

 if done:
 break

 avg_steps += frm
 avg_reward = float(total_reward)/TESTING_GAMES

Capstone Project – Car Racing Using DQN Chapter 12

[265]

 str_ = session.run(tf.scalar_summary('test reward
('+str(epoch_size/1000)+'k)', avg_reward))
 logger.add_summary(str_, num_frames)
 state = env.reset()

env.monitor.close()

We can see how the agent is learning to win the car racing game, as shown in the following
screenshot:

Summary
In this chapter, we have learned how to implement a dueling DQN in detail. We started off
with the basic environment wrapper functions for preprocessing our game screens and then
we defined the QNetworkDueling class. Here, we implemented a dueling Q Network,
which splits the final fully connected layer of DQN into a value stream and an advantage
stream and then combines these two streams to compute the q value. Following this, we
saw how to create a replay buffer, which is used to store the experience and samples a
minibatch of experience for training the network, and finally, we initialized our car racing
environment using OpenAI's Gym and trained our agent. In the next chapter, Chapter
13, Recent Advancements and Next Steps, we will see some of the recent advancements in RL.

Capstone Project – Car Racing Using DQN Chapter 12

[266]

Questions
The question list is as follows:

What is the difference between a DQN and a dueling DQN?1.
Write the Python code for a replay buffer.2.
What is a target network?3.
Write the Python code for a prioritized experience replay buffer.4.
Create a Python function to decay an epsilon-greedy policy.5.
How does a dueling DQN differ from a double DQN?6.
Create a Python function for updating primary network weights to the target7.
network.

Further reading
The following links will help expand your knowledge:

Flappy Bird using DQN: https:/ /github. com/yenchenlin/
DeepLearningFlappyBird

Super Mario using DQN: https:/ /github. com/JSDanielPark/ tensorflow_ dqn_
supermario

https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/yenchenlin/DeepLearningFlappyBird
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario
https://github.com/JSDanielPark/tensorflow_dqn_supermario

13
Recent Advancements and

Next Steps
Congratulations! You have made it to the final chapter. We have come a long way! We
started off with the very basics of RL, such as MDP, Monte Carlo methods, and TD learning
and moved on to advanced deep reinforcement learning algorithms such as DQN, DRQN,
and A3C. We have also learned about interesting state-of-the-art policy gradient methods
such as DDPG, PPO, and TRPO, and we built a car-racing agent as our final project. But RL
still has a lot more for us to explore, with increasing advancements each and every day. In
this chapter, we will learn about some of the advancement in RL followed by hierarchical
and inverse RL.

In this chapter, you will learn the following:

Imagination augmented agents (I2A)
Learning from human preference
Deep Q learning from demonstrations
Hindsight experience replay
Hierarchical reinforcement learning
Inverse reinforcement learning

Imagination augmented agents
Are you a fan of the game chess? If I asked you to play chess, how would you play the
game? Before moving any pieces on the chessboard, you might imagine the
consequences of moving any piece and move the piece you think would help you to win.
So, basically, before taking any action, you imagine the consequence and, if it is favorable,
you proceed with that action, or else you refrain from performing that action.

Recent Advancements and Next Steps Chapter 13

[268]

Similarly, imagination augmented agents are augmented with imagination; before taking
any action in an environment they imagine the consequences of taking the action and, if
they think the action will provide a good reward, they will perform the action. They also
imagine the consequences of taking a different action. Augmenting agents with
imaginations is the next big step towards general artificial intelligence.

Now we will see how imagination augmented agents works in brief; I2A takes advantage
of both model-based and model-free learning.

The architecture of I2A is as follows:

The action the agent takes is the result of both the model-based and model-free path. In the
model-based path, we have something called rollout encoders; these rollout encoders are
where the agent performs imagination tasks. Let's take a closer look at rollout encoders. A
rollout encoder is shown as follows:

Recent Advancements and Next Steps Chapter 13

[269]

Rollout encoders have two layers: imagine future and encoder. Imagine future is where the
imagination happens. Look at the preceding diagram; the imagine future consists of the
imagination core. When feeding in the state, , to the imagination core, we get the new
state and the reward , and when we feed this new state to the next
imagination core we get the next new state and reward . When we repeat these
for some n steps we get a rollout which is basically a pair of states and rewards, and then
we use encoders such as LSTM for encoding this rollout. As a result we get rollout
encoding. These rollout encodings are actually the embeddings describing the future
imagined path. We will have multiple rollout encoders for different future imagined paths
and we use an aggregator for aggregating this rollout encoder.

Recent Advancements and Next Steps Chapter 13

[270]

Wait. How does the imagination happen in the imagination core? What is actually in the
imagination core? A single imagination core is shown in the following diagram:

The imagination core consists of a policy network and environment model. The
environment model is actually where everything happens. The environment model learns
from all the actions that the agent has performed so far. It takes the information about the
state and imagines all the possible futures considering the experience and chooses the
action which gives a high reward.

The architecture of I2A with all components expanded is shown as follows:

Recent Advancements and Next Steps Chapter 13

[271]

Have you played Sokoban before? Sokoban is a classic puzzle game where the player has to
push boxes to a target location. The rules of the game are very simple: boxes can only be
pushed and cannot be pulled. If we push a box in the wrong direction then the puzzle
becomes unsolvable:

If we were asked to play Sokoban, then we imagine and plan before making any moves as
bad moves lead to the end of the game. The I2A architecture will provide good results in
these kinds of environments, where the agent has to plan in advance before taking any
action. The authors of this paper tested I2A performance on Sokoban and achieved
significant results.

Learning from human preference
Learning from human preference is a major breakthrough in RL. The algorithm was
proposed by researchers at OpenAI and DeepMind. The idea behind the algorithm is to
make the agent learn according to human feedback. Initially, the agents act randomly and
then two video clips of the agent performing an action are given to a human. The human
can inspect the video clips and tell the agent which video clip is better, that is, in which
video the agent is performing the task better and will lead it to achieving the goal. Once this
feedback is given, the agent will try to do the actions preferred by the human and set the
reward accordingly. Designing reward functions is one of the major challenges in RL, so
having human interaction with the agent directly helps us to overcome the challenge and
also helps us to minimize the writing of complex goal functions.

Recent Advancements and Next Steps Chapter 13

[272]

The training process is shown in the following diagram:

Let's have a look at the following steps:

First, our agent interacts with the environment through a random policy.1.
The behavior of the agent's interaction with the environment will be captured in2.
a pair of two to three seconds of video clips and given to the human.
The human will inspect the video clips and understand in which video clip the3.
agent is performing better. They will send the result to the reward predictor.
Now the agent will receive these signals from the reward predicted and set its4.
goal and reward functions in line with the human's feedback.

A trajectory is a sequence of observations and actions. We can denote the trajectory
segment as , so , where o is the observation and a
is the action. The agents receive an observation from the environment and perform some
action. Let's say we will store this sequence of interactions in two
trajectory segments, and . Now, these two trajectories are shown to the human. If the
human prefers to , then the agent's goal is to produce the trajectories preferred by the
human, and the reward function will be set accordingly. These trajectory segments are
stored in a database as ; if the human prefers to then the is set to prefer .
If none of the trajectories are preferred, then both will be removed from the database. If
both are preferred, then the is set to a uniform.

You can check out the video at https:/ /youtu. be/ oC7Cw3fu3gU to see how the algorithm
works.

https://youtu.be/oC7Cw3fu3gU
https://youtu.be/oC7Cw3fu3gU
https://youtu.be/oC7Cw3fu3gU
https://youtu.be/oC7Cw3fu3gU
https://youtu.be/oC7Cw3fu3gU
https://youtu.be/oC7Cw3fu3gU
https://youtu.be/oC7Cw3fu3gU
https://youtu.be/oC7Cw3fu3gU
https://youtu.be/oC7Cw3fu3gU

Recent Advancements and Next Steps Chapter 13

[273]

Deep Q learning from demonstrations
We have learned a lot about DQN. We started off with vanilla DQN and then we saw
various improvements such as double DQN, dueling network architecture, and prioritized
experience replay. We have also learned to build DQN to play Atari games. We stored the
agent's interactions with the environment in the experience buffer and made the agent learn
from those experiences. But the problem was, it took us a lot of training time to improve
performance. For learning in simulated environments, it is fine, but when we make our
agent learn in a real-world environment it causes a lot of problems. To overcome this, a
researcher from Google's DeepMind introduced an improvement on DQN called deep Q
learning from demonstrations (DQfd).

If we already have some demonstration data, then we can directly add those
demonstrations to the experience replay buffer. For example, consider an agent learning to
play Atari games. If we already have some demonstration data that tells our agent which
state is better and which action provides a good reward in a state, then the agent can
directly make use of this data for learning. Even a small amount of demonstration will
increase the agent's performance and also minimizes the training time. Since the
demonstrated data will be added directly to the prioritized experience replay buffer, the
amount of data the agent can use from the demonstration data and the amount of data the
agent can use from its own interaction for learning will be controlled by the prioritized
experience replay buffer, as the experience will be prioritized.

Loss functions in DQfd will be the sum of various losses. In order to prevent our agent from
overfitting to the demonstration data, we compute L2 regularization loss over the network
weights. We compute TD loss as usual and also supervised loss to see how our agent is
learning from the demonstration data. Authors of this paper experimented with DQfd and
various environments, and the performance of DQfd was better and faster than prioritized
dueling Double DQN.

You can check out this video to see how DQfd learned to play the Private Eye
game: https://youtu. be/ 4IFZvqBHsFY.

https://youtu.be/4IFZvqBHsFY
https://youtu.be/4IFZvqBHsFY
https://youtu.be/4IFZvqBHsFY
https://youtu.be/4IFZvqBHsFY
https://youtu.be/4IFZvqBHsFY
https://youtu.be/4IFZvqBHsFY
https://youtu.be/4IFZvqBHsFY
https://youtu.be/4IFZvqBHsFY
https://youtu.be/4IFZvqBHsFY

Recent Advancements and Next Steps Chapter 13

[274]

Hindsight experience replay
We have seen how experience replay is used in DQN to avoid a correlated experience. Also,
we learned that prioritized experience replay is an improvement to the vanilla experience
replay as it prioritizes each experience with the TD error. Now we will look at a new
technique called hindsight experience replay (HER), proposed by OpenAI researchers for
dealing with sparse rewards. Do you remember how you learned to ride a bike? On your
first try, you wouldn't have balanced the bike properly. You would have failed several
times to balance correctly. But all those failures don't mean you didn't learn anything. The
failures would have taught you how not to balance a bike. Even though you did not learn
to ride the bike (goal), you learned a different goal, that is, you learned how not to balance a
bike. This is how we humans learn, right? We learn from failure, and this is the idea behind
hindsight experience replay.

Let's consider the same example given in the paper. Look at the FetchSlide environment as
shown in the diagram; the goal in this environment is to move the robotic arm and slide a
puck across the table to hit the target, a small red circle (diagram from https:/ / blog.
openai.com/ingredients- for- robotics- research/):

https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/
https://blog.openai.com/ingredients-for-robotics-research/

Recent Advancements and Next Steps Chapter 13

[275]

In few first trails, the agent could not definitely achieve the goal. So the agent only received
-1 as the reward, which told the agent it was doing wrong and that it did not achieve the
goal:

But this doesn't mean that agent has not learned anything. The agent has achieved a
different goal, that is, it has learned to move closer to the actual goal. So instead of
considering it a failure, we consider that it has a different goal. If we repeat this process
over several iterations, the agent will learn to achieve our actual goal. HER can be applied
to any off-policy algorithms. The performance of HER is compared by DDPG without HER
and vice versa and it is seen that DDPG with HER converge quicker than DDPG without
HER. You can see the performance of HER in this video: https:/ /youtu. be/ Dz_HuzgMxzo.

Hierarchical reinforcement learning
The problem with RL is that it cannot scale well with a large number of state spaces and
actions, which ultimately leads to the curse of dimensionality. Hierarchical reinforcement
learning (HRL) is proposed to solve the curse of dimensionality where we decompress
large problems into small subproblems in a hierarchy. Let's say the agent's goal is to reach
its home from school. Here the problem is split into a set of subgoals such as going out of
the school gate, booking a cab, and so on.

https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo
https://youtu.be/Dz_HuzgMxzo

Recent Advancements and Next Steps Chapter 13

[276]

There are different methods used in HRL such as state-space decomposition, state
abstraction, and temporal abstraction. In state-space decomposition, we decompose the
state space into different subspaces and try to solve the problem in a smaller subspace.
Breaking down the state space also allows faster exploration as the agent does not want to
explore the entire state space. In state abstraction, the agent ignores the variables, that are
irrelevant in achieving the current subtasks in the current state space. In temporal
abstraction, the action sequence and action sets are grouped, which divides the single step
into multiple steps.

We can now look into one of the most commonly used algorithms in HRL, called MAXQ
Value Function Decomposition.

MAXQ Value Function Decomposition
MAXQ Value Function Decomposition is one of the frequently used algorithms in HRL;
let's see how MAXQ works. In MAXQ Value Function Decomposition, we decompose the
value function into a set of value functions for each of the subtasks. Let's take the same
example given in the paper. Remember the taxi problem we solved using Q learning and
SARSA?

There are four locations in total, and the agent has to pick up a passenger at one location
and drop them off at another location. The agent will receive +20 points as a reward for a
successful drop off and -1 point for every time step it takes. The agent will also lose -10
points for illegal pickups and drops. So the goal of our agent is to learn to pick up and drop
off passengers at the correct location in a short time without adding illegal passengers.

The environment is shown next, where the letters (R, G, Y, B) represent the different
locations and a tiny, yellow-colored rectangle is the taxi driven by our agent:

Recent Advancements and Next Steps Chapter 13

[277]

Now we break our goal into four subtasks as follows:

Navigate: Here the goal is to drive the taxi from the current location to one of the
target locations. The Navigate(t) subtask should use the four primitive actions
north, south, east, and west.
Get: Here the goal is to drive the taxi from its current location to the passenger's
location and pick up the passenger.
Put: Here the goal is to drive the taxi from its current location to the passenger's
destination location and drop off the passenger.
Root: Root is the whole task.

We can represent all these subtasks in a directed acyclic graph called a task graph, shown
as follows:

You can see in the preceding figure that all the subtasks are arranged hierarchically. Each
node represents the subtask or primitive action and each edge connects the way in which
one subtask can call its child subtask.

The Navigate(t) subtask has four primitive actions: east, west, north, and south. The Get
subtask has a pickup primitive action and a navigate subtask; similarly Put subtask, has
a putdown (drop) primitive action and navigate subtask.

In MAXQ decomposition, MDP will be divided into a set of tasks such as

 is the root task and is the subtasks.

Recent Advancements and Next Steps Chapter 13

[278]

A subtask defines the semi MDP with states , actions , probability transition
function , and expected reward function , where is the
projected value function for the child task in state .

If the action a is a primitive action, then we can define as an expected immediate
reward of executing action a in the state s:

Now, we can rewrite the preceding value function in the Bellman equation form as follows:

 --(1)

We will denote the state-action value function Q as follows:

 -- (2)

Now, we define one more function called a completion function, which is the expected
discounted cumulative reward of completing a subtask :

 -- (3)

For equations (2) and (3), we can write the Q function as:

Finally we can redefine the value function as:

The previous equations will decompose the value function of the root task into value
functions of the individual subtask tasks.

Recent Advancements and Next Steps Chapter 13

[279]

For efficient designing and debugging of MAXQ decompositions, we can redraw our task
graphs as follows:

Our redesigned graph contains two special types of nodes: max node and Q nodes. The
max nodes define the subtasks in the task decomposition and the Q nodes define the
actions that are available for each subtask.

Inverse reinforcement learning
So, what did we do in RL? We tried to find the optimal policy given the reward function.
Inverse reinforcement learning is just the inverse of reinforcement learning, that is, the
optimal policy is given and we need to find the reward function. But why is inverse
reinforcement learning helpful? Designing a reward function is not a simple task and a
poor reward function will lead to the bad behavior of an agent. We do not always know the
proper reward function but we know the right policy, that is, the right action in each state.
So this optimal policy is fed to the agent by human experts and the agents try to learn the
reward function. For example, consider an agent learning to walk in a real-world
environment; it is difficult to design the reward function for all the actions it will do.
Instead, we can feed in to the agents the demonstrations (optimal policy) from the human
expert and the agents will try to learn the reward function.

Recent Advancements and Next Steps Chapter 13

[280]

There are various improvements and advancements happening around RL. Now that you
have finished reading the book, you can start exploring various advancements in
reinforcement learning and start experimenting with various projects. Learn and reinforce!

Summary
In this chapter, we have learned about several recent advancements in RL. We saw how I2A
architecture uses the imagination core for forward planning followed by how agents can be
trained according to human preference. We also learned about DQfd, which boosts the
performance and reduces the training time of DQN by learning from demonstrations. Then
we looked at hindsight experience replay where we learned how agents learn from failures.

Next, we learned about hierarchical RL, where the goal is decompressed into a hierarchy of
sub-goals. We learned about inverse RL where the agents try to learn the reward function
given the policy. RL is evolving each and every day with interesting advancements; now
that you have understood various reinforcement learning algorithms, you can build agents
to perform various tasks and contribute to RL research.

Questions
The question list is as follows:

What is imagination in an agent?1.
What is the imagination core?2.
How do the agents learn from human preference?3.
How is DQfd different from DQN?4.
What is hindsight experience replay?5.
What is the need for hierarchical reinforcement learning?6.
How does inverse reinforcement learning differ from reinforcement learning?7.

Recent Advancements and Next Steps Chapter 13

[281]

Further reading
You can further refer to these papers:

I2A paper: https:/ /arxiv. org/ pdf/1707. 06203. pdf

DRL from human preference paper: https:/ /arxiv. org/pdf/ 1706. 03741. pdf

HER paper: https:/ /arxiv. org/ pdf/ 1707. 01495. pdf

AI safety via debate: https://arxiv.org/pdf/1805.00899.pdf

https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1707.06203.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1706.03741.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1707.01495.pdf
https://arxiv.org/pdf/1805.00899.pdf

Assessments

Chapter 1
Reinforcement learning (RL) is a branch of machine learning where the learning1.
occurs via interacting with an environment.
RL works by train and error method, unlike other ML paradigms.2.
Agents are the software programs that make intelligent decisions and they are3.
basically learners in RL.
Policy function specifies what action to take in each state and value function4.
specifies the value of each state.
In model-based agent use the previous experience whereas in model-free5.
learning there won't be any previous experience.
Deterministic, stochastic, fully observable, partially observable, discrete6.
continuous, episodic and non-episodic.
OpenAI Universe provides rich environments for training RL agents.7.
Refer section Applications of RL.8.

Chapter 2
conda create --name universe python=3.6 anaconda1.
With Docker, we can pack our application with its dependencies, which is called2.
container, and we can simply run our applications on the server without using
any external dependency with our packed Docker container.
gym.make(env_name)3.
from gym import envs4.
print(envs.registry.all())

OpenAI Universe is an extension of OpenAI Gym and it also provides various5.
rich environments.
Placeholder is used for feeding external data whereas variable is used for holding6.
values.

Assessments

[283]

Everything in TensorFlow will be represented as a computational graph that7.
consists of nodes and edges, where nodes are the mathematical operations, say
addition, multiplication and so on, and edges are the tensors.
Computation graphs will only be defined; in order to execute the computation8.
graph, we use TensorFlow sessions.

Chapter 3
The Markov property states that the future depends only on the present and not1.
on the past.
MDP is an extension of the Markov chain. It provides a mathematical framework2.
for modeling decision-making situations. Almost all RL problems can be
modeled as MDP.
Refer section Discount factor.3.
The discount factor decides how much importance we give to the future rewards4.
and immediate rewards.
We use Bellman function for solving the MDP.5.
Refer section Deriving the Bellman equation for value and Q functions.6.
Value function specifies goodness of a state and Q function specifies goodness of7.
an action in that state.
Refer section Value iteration and Policy iteration.8.

Chapter 4
The Monte Carlo algorithm is used in RL when the model of the environment is1.
not known.
Refer section Estimating the value of pi using Monte Carlo.2.
In Monte Carlo prediction, we approximate the value function by taking the3.
mean return instead of the expected return.
In every visit Monte Carlo, we average the return every time the state is visited in4.
an episode. But in the first visit MC method, we average the return only the first
time the state is visited in an episode.

Assessments

[284]

Refer section Monte Carlo control.5.
Refer section On-policy Monte Carlo control and Off-policy Monte Carlo control6.
Refer section Let's play Blackjack with Monte Carlo.7.

Chapter 5
Monte Carlo methods are applied only for episodic tasks whereas TD learning1.
can be applied to both episodic and nonepisodic tasks
The difference between the actual value and the predicted value is called TD2.
error
Refer section TD prediction and TD control3.
Refer section Solving taxi problem using Q learning4.
In Q learning, we take action using an epsilon-greedy policy and, while updating5.
the Q value, we simply pick up the maximum action. In SARSA, we take the
action using the epsilon-greedy policy and also, while updating the Q value, we
pick up the action using the epsilon-greedy policy.

Chapter 6
An MAB is actually a slot machine, a gambling game played in a casino where1.
you pull the arm (lever) and get a payout (reward) based on a randomly
generated probability distribution. A single slot machine is called a one-armed
bandit and, when there are multiple slot machines it is called multi-armed
bandits or k-armed bandits.
An explore-exploit dilemma arises when the agent is not sure whether to explore2.
new actions or exploit the best action using the previous experience.
The epsilon is used to for deciding whether the agent should explore or exploit3.
actions with 1-epsilon we choose best action and with epsilon we explore new
action.
We can solve explore-exploit dilemma using a various algorithm such epsilon-4.
greedy policy, softmax exploration, UCB, Thompson sampling.
The UCB algorithm helps us in selecting the best arm based on a confidence5.
interval.
In Thomson sampling, we estimate using prior distribution and in UCB we6.
estimate using a confidence interval.

Assessments

[285]

Chapter 7
In neurons, we introduce non-linearity to the result, z, by applying a function f()1.
called the activation or transfer function. Refer section Artificial neurons.
Activation functions are used for introducing nonlinearity.2.
We calculate the gradient of the cost function with respect to the weights to3.
minimize the error.
RNN predicts the output not only based on the current input but also on the4.
previous hidden state.
While backpropagating the network if the gradient value becomes smaller and5.
smaller it is called vanishing gradient problem if the gradient value becomes
bigger then it is exploding gradient problem.
Gates are special structures in LSTM used to decide what information to keep,6.
discard and update.
The pooling layer is used to reduce the dimensions of the feature maps and keeps7.
only necessary details so that the amount of computation can be reduced.

Chapter 8
Deep Q Network (DQN) is a neural network used for approximating the Q1.
function.
Experience replay is used to remove the correlations between the agent's2.
experience.
When we use the same network for predicting target value and predicted value3.
there will lot of divergence so we use separate target network.
Because of the max operator DQN overestimates Q value.4.
By having two separate Q functions each learning independently double DQN5.
avoids overestimating Q values.
Experiences are priorities based on TD error in prioritized experience replay.6.
Dueling DQN estimating the Q value precisely by breaking the Q function7.
computation into value function and advantage function.

Assessments

[286]

Chapter 9
DRQN makes use of recurrent neural network (RNN) where DQN makes use of1.
vanilla neural network.
DQN is not used applied when the MDP is partially observable.2.
Refer section Doom with DRQN.3.
DARQN makes use of attention mechanism unlike DRQN.4.
DARQN is used to understand and focus on particular area of game screen5.
which is more important.
Soft and hard attention.6.
We set living reward to 0 which the agent does for each move, even though the7.
move is not useful.

Chapter 10
A3C is the Asynchronous Advantage Actor Critic network which uses several1.
agents to learn parallel.
Three A's are Asynchronous, Advantage, Actor Critic.2.
A3C requires less computation power and training time than DQN.3.
All agents (workers) works in copies of the environment and then global network4.
aggregate their experience.
Entropy is used to ensure enough exploration.5.
Refer section How A3C works.6.

Chapter 11
The policy gradient is one of the amazing algorithms in RL where we directly1.
optimize the policy parameterized by some parameter.
Policy gradients are effective as we don't need to compute Q function to find the2.
optimal policy.
The role of the Actor network is to determine the best actions in the state by3.
tuning the parameter, and the role of the Critic is to evaluate the action produced
by the Actor.

Assessments

[287]

Refer section Trust region policy optimization4.
We iteratively improve the policy and we impose a constraint that5.
Kullback–Leibler (KL) divergence between old policy and a new policy is to be
less than some constant. This constraint is called the trust region constraint.
PPO modifies the objective function of TRPO by changing the constraint to a6.
penalty a term so that we don't want to perform conjugate gradient.

Chapter 12
DQN computes the Q value directly whereas Dueling DQN breaks down the Q1.
value computation into value function and advantage function.
Refer section Replay memory.2.
When we use the same network for predicting target value and predicted value3.
there will lot of divergence so we use separate target network.
Refer section Replay memory.4.
Refer section Dueling network.5.
Dueling DQN breaks down the Q value computation into value function and6.
advantage function whereas double DQN uses two Q function to avoid
overestimation.
Refer section Dueling network.7.

Chapter 13
Imagination in an agent specifies visualizing and planning before taking any1.
action.
Imagination core consists of policy network and environmental model for2.
performing imagination.
Agents repeatedly take feedback from the human and change its goal according3.
to the human preference.
DQfd uses some demonstration data for training where as DQN doesn't use any4.
demonstrations data upfront.
Refer section Hindsight Experience Replay (HER).5.

Assessments

[288]

Hierarchical reinforcement learning (HRL) is proposed to solve the curse of6.
dimensionality where we decompress large problems into small subproblems in
a hierarchy
We tried to find the optimal policy given the reward function in RL whereas in7.
inverse reinforcement learning, the optimal policy is given and we find the
reward function

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Artificial Intelligence with Python
Prateek Joshi

ISBN: 978-1-78646-439-2

Realize different classification and regression techniques
Understand the concept of clustering and how to use it to automatically segment
data
See how to build an intelligent recommender system
Understand logic programming and how to use it
Build automatic speech recognition systems
Understand the basics of heuristic search and genetic programming
Develop games using Artificial Intelligence
Learn how reinforcement learning works
Discover how to build intelligent applications centered on images, text, and time
series data
See how to use deep learning algorithms and build applications based on it

https://www.packtpub.com/big-data-and-business-intelligence/artificial-intelligence-python

Other Books You May Enjoy

[290]

Statistics for Machine Learning
Pratap Dangeti

ISBN: 978-1-78829-575-8

Understand the Statistical and Machine Learning fundamentals necessary to
build models
Understand the major differences and parallels between the statistical way and
the Machine Learning way to solve problems
Learn how to prepare data and feed models by using the appropriate Machine
Learning algorithms from the more-than-adequate R and Python packages
Analyze the results and tune the model appropriately to your own predictive
goals
Understand the concepts of required statistics for Machine Learning
Introduce yourself to necessary fundamentals required for building supervised &
unsupervised deep learning models
Learn reinforcement learning and its application in the field of artificial
intelligence domain

https://www.packtpub.com/big-data-and-business-intelligence/statistics-machine-learning

Other Books You May Enjoy

[291]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
activation functions, ANNs
 hyperbolic tangent function 133
 real function 133
 sigmoid function 132
 softmax function 133
Adam optimizer
 reference 167
agent environment interface 11
agent
 about 9
 training, to play Doom 192
Anaconda
 download link 19
applications, RL
 about 15
 Computer Vision (CV) 16
 education 15
 finance 16
 inventory management 16
 manufacturing sector 16
 medicine and healthcare 15
 Natural Language Processing (NLP) 16
architecture, Deep Q Networks (DQN)
 algorithm 174
 convolutional network 171, 172
 experience replay 172
 rewards, clipping 174
 target network 173
artificial intelligence (AI) 6, 18
artificial neural networks (ANNs)
 about 130
 activation functions 132
 backward pass 141
 batch size 141
 epoch 141

 exploring 134, 135
 forward pass 141
 gradient descent 136, 137, 139, 141
 hidden layer 131
 input layer 131
 layers 131
 no. of iterations 141
 output layer 132
artificial neurons 129
Asynchronous Advantage Actor Critic (A3C)

algorithm
 about 208, 209, 225
 architecture 210
 mountain car example 212, 214, 218
 network, visualizing in TensorBoard 220, 223
 working 211
Atari game
 playing, by building agent 175, 176, 179, 183

B
backpropagation through time (BPTT) 148, 149
Bellman equation, solving
 dynamic programming (DP) technique, using 50
Bellman equation
 about 47
 deriving, for value and Q function 48, 50
 solving 50
Blackjack game
 playing, with Monte Carlo 75, 77, 80

C
car racing game
 dueling DQN, using in 262, 263
conjugate gradient method
 URL 240
constants 33

[293]

contextual bandits
 about 125
 reference 127
continuous environment 13
convolutional neural network (CNN)
 about 128, 155, 189
 architecture 161
 convolutional layer 156, 158, 159, 160
 fully connected layer 161
 pooling layer 160
 used, for classification of fashion products 162,

164, 167

D
Deep Attention Recurrent Q Network (DARQN)
 about 189, 204
 architecture 205
 attention layer 205
deep deterministic policy gradient (DDPG)
 about 231
 used, for swinging pendulum 233, 239
deep Q learning from demonstrations (DQFD)
 about 273
 reference 273
Deep Q Network (DQN)
 about 169, 170, 189, 208, 225, 249
 architecture 171
 dueling network architecture 186, 187
Deep Recurrent Q Network (DRQN)
 about 189, 190, 191, 225, 249
 architecture 191, 192
 Doom 194, 199, 204
deep reinforcement learning (DRL) 128, 169
DeepMind Lab 14
deterministic environment 12
discrete environment 13
Docker
 download link 20
 installing 20, 21
Doom
 about 193, 194
 playing, by training agent 192
 with Deep Recurrent Q Network (DRQN) 194,

199, 204
Double DQN 184

dueling network
 architecture 186, 187
 building 253
dynamic programming (DP) technique
 about 50, 73
 policy iteration algorithm, using 54, 57
 value iteration algorithm, using 51, 54

E
elements, reinforcement learning (RL)
 agent 9
 model 10
 policy function 10
 value function 10
environment wrapper functions 250, 252
episodic environment 13
epsilon-greedy policy 114
experience replay 172

F
fashion products classification
 CNN, using 162, 164, 167
frozen lake problem, solving
 policy iteration algorithm, using 64, 67
 value iteration algorithm, using 59
frozen lake problem
 solving 57, 58
 value iteration algorithm, using 62
fully observable environment 12

H
hard attention 206
hierarchical reinforcement learning (HRL) 275,

276, 279
hindsight experience replay (HER)
 about 274
 reference 275
human preference
 learning from 271

I
imagination augmented agents (I2A) 267, 268,

271

imagination core

[294]

 about 270
 environment model 270
 policy network 270
inverse reinforcement learning 279

J
Jupyter notebook
 URL 227

K
Kullback–Leibler (KL) 240

L
Long Short-Term Memory (LSTM) 128
Long Short-Term Memory recurrent neural

networks (LSTM RNN)
 about 149, 150, 154, 191
 used, for generating song lyrics 151, 152, 155
LSTM gates
 forget gate 150
 input gate 151
 output gate 151

M
Markov chain 41, 43
Markov Decision Process (MDP)
 about 41, 43, 189
 continuous tasks 44
 discount factor 44
 episodic tasks 44
 policy function 45
 reference 67
 rewards and returns 44
 state value function 46
 state-action value function (Q function) 46
Markov process 41, 43
MC-ES algorithm 84
model 10
Monte Carlo control
 about 83
 exploration 83
 Monte Carlo control 87
 off-policy Monte Carlo control 88, 89
 on-policy Monte Carlo control 85

Monte Carlo exploring starts concept 84
Monte Carlo prediction algorithm
 about 73
 every visit 75
 first visit 75
Monte Carlo
 about 75
 Blackjack game, playing with 75, 77, 78, 81
 methods 69
 prediction algorithm 73
 used, for pi value estimation 70, 73
multi-agent environment 13
multi-armed bandit (MAB) problem
 about 112, 114
 epsilon-greedy policy 114
 softmax exploration algorithm 116
 Thompson sampling (TS) algorithm 120, 122
 upper confidence bound (UCB) algorithm 117,

118

multi-armed bandit (MAB)
 applications 123
 reference 126
 used, for identifying advertisement banner 123,

125

N
Natural Language Processing (NLP) 145
network
 training 256, 261
neural networks
 in TensorFlow 141, 144
non-episodic environment 13
nonusable ace 77

O
OpenAI Gym
 about 14, 23
 basic cart pole environment, simulating 23, 25
 error fixes 22, 23
 robot, training to walk 26
OpenAI Universe
 about 14, 28
 video game bot, building 28, 30
OpenAI
 reference 40

[295]

optimal value 47

P
partially observable environment 13
partially observable Markov Decision Process

(POMDP) 190
pi value
 estimating, with Monte Carlo method 70, 73
placeholders 34
policy function 10, 30, 45
policy gradient
 about 226
 URL 227
 using, for Lunar Lander 226
prioritized experience replay 185, 186
Project Malmo 15
proportional prioritization 186
Proximal Policy Optimization (PPO) 245, 246

Q
Q learning, TD control
 about 95, 97
 and SARSA algorithm, differentiating 110
 used, for solving taxi problem 100, 102

R
recurrent neural network (RNN)
 about 128, 145, 147, 189
 backpropagation through time (BPTT) 148
 Long Short-Term Memory RNN 149
 unrolled version 146
reinforcement learning (RL)
 about 6, 8, 169, 226
 algorithm 8
 comparing, with ML paradigms 9
 elements 9
replay buffer
 building 255
RL environments
 continuous environment 13
 deterministic environment 12
 discrete environment 13
 episodic and non-episodic environment 13
 fully observable environment 12

 partially observable environment 13
 single and multi-agent environment 13
 stochastic environment 12
 types 12
RL platforms
 about 14
 DeepMind Lab 14
 OpenAI Gym 14
 OpenAI Universe 14
 Project Malmo 15
 RL-Glue 14
 ViZDoom 15

S
SARSA algorithm, TD control
 about 103, 106
 and Q learning, differentiating 110
 used, for solving taxi problem 107
sequential environment 13
single-agent environment 13
soft attention 206
softmax exploration algorithm 116
state value function 46
state-action value function (Q function) 46
stochastic environment 12
subtasks, hierarchical reinforcement learning (HRL)
 get 277
 navigate 277
 put 277
 root 277
system, setting up
 about 18
 Anaconda, installing 19
 Docker, installing 20
 OpenAI Gym, installing 21
 OpenAI Universe, installing 21

T
TD control
 about 94
 off-policy learning algorithm 94
 on-policy learning algorithm 94
 Q learning 95, 97, 98
 State-Action-Reward-State-Action (SARSA)

algorithm 103
temporal-difference (TD) learning 91
temporal-difference (TD) prediction 92, 93
TensorBoard
 about 36
 network visualization 220, 223
 scope, adding 37, 39
TensorFlow
 computation graph 34
 constants 33
 neural networks 141, 144
 placeholders 33
 reference 40
 sessions 35
 TensorBoard 36
 variables 33
Thompson sampling (TS) algorithm 120

Trust Region Policy Optimization (TRPO) 240,
244

types, attention layer
 hard attention 206
 soft attention 206

U
upper confidence bound (UCB) algorithm 117, 119
usable ace 77

V
value function 10
variables 33
video game bot
 building 28
ViZDoom 15

	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Introduction to Reinforcement Learning
	What is RL?
	RL algorithm
	How RL differs from other ML paradigms
	Elements of RL
	Agent
	Policy function
	Value function
	Model

	Agent environment interface
	Types of RL environment
	Deterministic environment
	Stochastic environment
	Fully observable environment
	Partially observable environment
	Discrete environment
	Continuous environment
	Episodic and non-episodic environment
	Single and multi-agent environment

	RL platforms
	OpenAI Gym and Universe
	DeepMind Lab
	RL-Glue
	Project Malmo
	ViZDoom

	Applications of RL
	Education
	Medicine and healthcare
	Manufacturing
	Inventory management
	Finance
	Natural Language Processing and Computer Vision

	Summary
	Questions
	Further reading

	Getting Started with OpenAI and TensorFlow
	Setting up your machine
	Installing Anaconda
	Installing Docker
	Installing OpenAI Gym and Universe
	Common error fixes

	OpenAI Gym
	Basic simulations
	Training a robot to walk

	OpenAI Universe
	Building a video game bot

	TensorFlow
	Variables, constants, and placeholders
	Variables
	Constants
	Placeholders

	Computation graph
	Sessions
	TensorBoard
	Adding scope

	Summary
	Questions
	Further reading

	The Markov Decision Process and Dynamic Programming
	The Markov chain and Markov process
	Markov Decision Process
	Rewards and returns
	Episodic and continuous tasks
	Discount factor
	The policy function
	State value function
	State-action value function (Q function)

	The Bellman equation and optimality
	Deriving the Bellman equation for value and Q functions

	Solving the Bellman equation
	Dynamic programming
	Value iteration
	Policy iteration

	Solving the frozen lake problem
	Value iteration
	Policy iteration

	Summary
	Questions
	Further reading

	Gaming with Monte Carlo Methods
	Monte Carlo methods
	Estimating the value of pi using Monte Carlo

	Monte Carlo prediction
	First visit Monte Carlo
	Every visit Monte Carlo
	Let's play Blackjack with Monte Carlo

	Monte Carlo control
	Monte Carlo exploration starts
	On-policy Monte Carlo control
	Off-policy Monte Carlo control

	Summary
	Questions
	Further reading

	Temporal Difference Learning
	TD learning
	TD prediction
	TD control
	Q learning
	Solving the taxi problem using Q learning

	SARSA
	Solving the taxi problem using SARSA

	The difference between Q learning and SARSA
	Summary
	Questions
	Further reading

	Multi-Armed Bandit Problem
	The MAB problem
	The epsilon-greedy policy
	The softmax exploration algorithm
	The upper confidence bound algorithm
	The Thompson sampling algorithm

	Applications of MAB
	Identifying the right advertisement banner using MAB
	Contextual bandits
	Summary
	Questions
	Further reading

	Deep Learning Fundamentals
	Artificial neurons
	ANNs
	Input layer
	Hidden layer
	Output layer
	Activation functions

	Deep diving into ANN
	Gradient descent

	Neural networks in TensorFlow
	RNN
	Backpropagation through time

	Long Short-Term Memory RNN
	Generating song lyrics using LSTM RNN

	Convolutional neural networks
	Convolutional layer
	Pooling layer
	Fully connected layer
	CNN architecture

	Classifying fashion products using CNN
	Summary
	Questions
	Further reading

	Atari Games with Deep Q Network
	What is a Deep Q Network?
	Architecture of DQN
	Convolutional network
	Experience replay
	Target network
	Clipping rewards
	Understanding the algorithm

	Building an agent to play Atari games
	Double DQN
	Prioritized experience replay
	Dueling network architecture
	Summary
	Questions
	Further reading

	Playing Doom with a Deep Recurrent Q Network
	DRQN
	Architecture of DRQN

	Training an agent to play Doom
	Basic Doom game
	Doom with DRQN

	DARQN
	Architecture of DARQN

	Summary
	Questions
	Further reading

	The Asynchronous Advantage Actor Critic Network
	The Asynchronous Advantage Actor Critic
	The three As
	The architecture of A3C
	How A3C works

	Driving up a mountain with A3C
	Visualization in TensorBoard

	Summary
	Questions
	Further reading

	Policy Gradients and Optimization
	Policy gradient
	Lunar Lander using policy gradients

	Deep deterministic policy gradient
	Swinging a pendulum

	Trust Region Policy Optimization
	Proximal Policy Optimization
	Summary
	Questions
	Further reading

	Capstone Project – Car Racing Using DQN
	Environment wrapper functions
	Dueling network
	Replay memory
	Training the network
	Car racing
	Summary
	Questions
	Further reading

	Recent Advancements and Next Steps
	Imagination augmented agents
	Learning from human preference
	Deep Q learning from demonstrations
	Hindsight experience replay
	Hierarchical reinforcement learning
	MAXQ Value Function Decomposition

	Inverse reinforcement learning
	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

